
Finite-Difference Methods

for the Diffusion Equation

Kenneth John Hayman B.Sc.(Maths.Sc.) (Hons.)

Thesis submitted for the degree of

Doctor'of Philosophy

Department of Applied Mathematics

University of Adelaide

March 1988

Contents

Surnrnary

Statement of OriginalitY

Acknowledgements

1 Introduction

Z The l-D Diffusion Equation with Dirichlet Boundary Conditions

2.7 Introduction .

2.2 The Modified Equivalent Equation Approach

2.3 Finding Methods of Improved Accuracy

2.3.7 Using Higher Order Derivative Approximations

2.3.2 Eliminating the Leading Error Terms

2.4 Numerical Stability

2.5 (1,3,3) Methods

2.6 The Optimal (1,5) Method

2.7 The (1,5,1) Method

2.8 Implicit Methods

2.9 Summary

3 The 1-D Diffusion Equation with a Neurnann Boundary Condition

3.1 Introduction .

3.2 Using External Grid Points

3.3 Using Interior Grid Points Only

4

8

I

10

16

16

19

29

29

32

ÐDt)r)

35

45

51

59

65

67

ol

70

74

863.4 Summary

1

CONTENTS

4 The

4.7

4.2

4.5

4.6

4.7

2-D Diffusion Equation

Introduction

Two Level Explicit Methods

4.2.7 (1,5) Forwa¡d-Time Centred-Space Method

4.2.2 (1,9) Weighted Explicit Method . . .

4.2.3 (1,13) Weighted Explicit Method

4.2.4 (1,21) \Meighted Explicit Method

4.2.5 (1,25) \Meighted Explicit Method

2

87

87

90

90

93

99

107

712

116

777

717

119

726

727

127

128

130

135

143

1to
l. rJJ

155

155

156

169

4.2-6 Summary

4.3 Three-Level Explicit Methods

4.4

4.3.1 (1,5,5) \Meighted Explicit Method

4.3.2 (1,9,9) Weighted Explicit Method

4.3.3 Other Three-Level Equations

4.3.4 Summary

Two-Level Implicit Methods

4.4.1 (5,5) Implicit Method

4.4.2 (9,9) Implicit Method

Locally One-Dimensional Methods

Alternating Direction Implicit Methods

Summary

5 Irregular Boundaries

5.1 Introduction .

5.2 Variable Grid Equations

5.3 Summary :..

6 Conclusions

A fJser Guide for the FDE Development Programs

A..1 Introduction .

L.2 DiíI'erencing a Partial Differential Equation

4.3 Finding the Modifred Equivalent Equation

L77

L77

Lt I

185

190

198L.4 Evaluating the Optirnal Equation .

CONTEJVTS

4.5 Numerical Stability and Solvability . .

4.5.1 Listing of Module COEFF.FOR

B Key Files for Program DfSC

8.1 Introduction

8.2 Keys for l-Dimensional Program

I}.3 Keys for 2-Dimensional Program

C Listing of Program SUPER

C.1 Introduction .

C.2 The Program SUPER

Bibliography

3

203

207

zLO

270

ztt
216

222

222

223

264

Surnmary

The development of accurate finite-difference methods for solving the linear diffusion

equation with constant coefficients, in either one or two spatial dimensions, is useful in

the study of several physical phenomena, such as underground water flow and diffusion

of heat through a solid body. As well as accuracy, however, the amount of computer

time taken to generate a solution must be taken into account, since this may be an

important practical constraint.

The approach taken has been to thoroughly examine the one-dimensional case and

then, having found some goocl methods to solve this problem, use the knowledge

gained to develop methods for solving the more complicated two-dimensional problem.

This work can then be extended to solve the variable coefficient diffusion equation, or

even the non-linear equation, by considering that over the size of the computational

stencil used, the linearised constant coefficient equation is a good approximation to

the equation being solved.

In order to determine the accuracy of a given finite-difference equation, lhe modi-

fi,ed equiualent equation, developed by \Marming and Hyett (1974) for their heuristic

stability analysis, has been adapted and used. This approach allows the simple de-

termination of the theoretical order of accuracy of any finite-difference equation, thus

allowing methods to bc compared with one another. Also, from the truncation error of

the modifi.ed equivalent equation, it is possible to climinate the dominant error terms

associated with finite-difference equations that contain free parameters (weighis), thus

Icacling to more accurate methods.

Several dift'erent finite-diffcrencc methods for ihe one-dimensional diffusion equation

4

SUMMARY b

are developed, and their theoretical and actual truncation errors, as well as the CPU

time required for solution, are compared to determine the most practical methods. To

determine the actual order of accuracy of the method, graphs of logi(Gridspacing)j

against log{l(.Error)l} are plotted for decreasing values of the grid spacing and the

results are examined. These graphs should be straight lines, and the slopes of the lines

give the actual order of accuracy of the method. In most cases, this order matches

the theoretical prediction, and in those cases where this is not so, the reasons for the

difference are investigated.

Where the normal derivative at one boundary (or even both boundaries) is specified

rather than the boundary value, the approximations at grid points on the boundary

must be calculated. It is shown that it is still possible to produce relatively accurate so-

lutions although the results are not as accurate as when the boundary value is known.

Also in this case the techniques for handling the problems that arise near the bound-

ary from some of the finite-difference equations having spatially wide computational

stencils must be revised.

The same techniques as rvr/ere used for the one-dimensional case are then applied to

developing accurate finite-difference equations for the two-dimensional diffusion equa-

tion. In this case the computational stencils contain more grid points, and therefore

allow more weights to be included. However, the larger number of low-order error

terms in the modified equivalent equation, arising from the added cross-derivative er-

ror terms, means that some of the extra weights must be used to maintain the same

accuracy as was achieved for the one-dimensional problem. Again, many different sten-

cils and their corresponding finite-difference equations are examined, in order to find

the best methods which can be practically applied. The method for determining the

actual order of accuracy of the method is the same as ihat used for the one-dimensional

case

The so-called "locally one-dimensional" methods are examined, where the very accu-

rate methods developed for the one-dimensional c¿se can be applied directly to ihe

two-climensional problem. The best of tlie one-dimensional mcthods uscd in this man-

ner are then cornpared with the best of the fully iwo-dimensional rnethods, to cleter-

SUMMARY

mine the preferred solution method. Note that to implement these methods correctly

it is necessary to split the two-dimensional diffusion equation into two one-dimensional

equations, each of which is solved alternately. Doing this requires special considera-

tion of values on the boundary in the cases where only diffusion in one direction has

been modelled. If this is not done then the results are downgraded to second-order

accurate, regardless of the order of the finite-difference equation used.

The other class of techniques in common use for solving the two-dimensional diffusion

equation is the alternating direction implicit methods, which combine the advantages

of implicit methods, particularly large stabiliiy ranges, with fast execution speed on

a computer, which is the major probiem with fully implicit equations for the two-

dimensional problem. Two different kinds of equations are considered, those based on

the "classical" ADI methods, and those based on a "marching" equation, which must

be applied "left-to-right" and then "right-tb-left" in each spatial direction, as weli

as alternating the spatial direction. The potential for generating accurate solutions

is examined for each type of equation, since these methods prove to be the only

way of obtained generally fourth-order accurate results without using spatially wide

computational stencils.

Another important practical problem that arises when solving the two-dimensional

problem is an irregular boundary, which results in the specified boundary values not

coinciding with the grid points of a uniform grid. This problem can be overcome by

developing special finite-difference equations which allow for a non-uniform grid spac-

ing at such a boundary. The effect of using these equations, which have a theoretical

accuracy one order lower than their uniform grid analogues, is examined.

In order to make this work feasible, computer programs were developed to perform

the time consuming and mechanical tasks involved with developing the finite-difference

equations by hand. Using these programs it is possible to start with a desired method

of differencing the diffusion equation, and have the computer determine the finite-

difference ecluation corresponding to that differencing, as well as its modified equivalent

eqr.ration. Weights specified in the original differencing càn thcn be used to eliminate

the dominant error terms, which then leads to the optimal form of the frnite-difference

6

SUMMARY I

equation. This optimal equation can then be checked for such things as time-stepping

(von Neumann) stability, solvability and/or ma¡ching stability, as appropriate. In

some cases it is possible to use some of the weights to enhance the stability region of

the equation rather than to increase the accuracy.

Acknowledgernents

I wish to express my sincere gratitude to my supervisor, Dr. B.J. Noye for his guidance,

encouragement and support during the period this work was carried out. Thanks also

go to David Beard for his invaluable assistance with computing probiems as they aroiie,

as well as to other members of the University of Adelaide Mathematics Departments

for their help and advice.

The financial support of a Commonwealth Postgraduate Research Award during the

period this work was done is gratefully acknowledged.

The use of the symbolic manipulation package Macsyma, by Symbolics Inc., and the

numerical IMSL subroutine libraries is also acknowledged.

I

Chapter 1

Introduction

This work is aimed at producing highly accurate frnite-difference methods for solving

the one and two-dimensional linear diffusion equations with constant coefficients. The

two-dimensional equation can be written in the form

aî a2î a2+

"
- o"# - oofr:0, (1.1.1)

where a" and a! a;re the constant coefficients of diffusion in the r and g directions

respectively. The one-dimensional equation is the special case of this where dv : 0.

Since the aim of this work is to produce methods which can be applied to practical

problems, it is necessary to produce methods which not only have high theoretical ac-

curacy, but are also practical to implement on a computer without requiring excessive

amounts of CPU time.

The ultimate goal is to produce good methods for the two-dimensional case, since

this equation has practical uses in such areas as modelling the flow of unclerground

water, the flow of oil in underground reservoirs (Bear, 7972), and the diffusion of

heat through solid bodies. To approach this goal, a thorough understanding of the

one-dimensional problem is required. Once this simpler problem Ìtas been examined

in detail and highly accurate and practical solution techniques have been found, the

experience gained can bc applied to thc much ûrore colnplic¿rted but rnore practically

useful two-dimension¿rl problern.

10

CHAPTER 1. INTRODUCTION 11

Extensions of this work into the cases with va¡iable coefficients are also possible. In

this case, the fully general form of the diffusion equation, namely

X - *("''*lr)#) - &("t'' a't'Òfi) :o (1 1 2)

in two-dimensions, must be considered. This equation is used in much the same areas

as the constant-coef,Êcient equation, but is more applicable in cases where there is a

steep "front" involved in the diffusion (Richtmyer and Morton, 1967). To adequately

handle problems such as this one, a good understanding of the constant coefrcient

case? as presented here, is a necessary prerequisite. Constraints on available time,

however, prevented this extension from being included in this work.

As already mentioned, the approach taken towards the goal of accurate methods for

the two-dimensional problem is to start with the one-dimensional case and find the

best methods for dealing with that case, with the various techniques being judged on

both the accuracy of the solution generated and the amount of CPU time required

to find the solution. From this work, insight is gainecl into the most advantageous

methods for developing solution techniques in the one-dimensional case, so that when

attempts are made to solve the more difficult two-dimensional problem, our efforts

can be directed in ways most likely to give profitable results.

In all cases, the chosen solution method is via finite-difference techniques, since they

offer enough flexibility to generate accurate solutions, and furthermore the numerical

errors can be predicted theoretically. Such predictions can then be checked against

results generated by test runs of problems with known solutions. In all cases where

computer time usage is referred to in this work, the amount of CPU time is meant

rather than the elapsed reai time, since this latter may vary enormously depending on

the system load.

Tlre one-dimensional problem is first approached using exqtlicil finite-difference meth-

ods, since these are both straight-forward to implcment and very fast to run on a

computer. Unfortunately, most methods of this type suffer from nurterical instabili-

ties, which in some cases place such severe restrictions orr the methods that they are

of no practical use. This is c¿r,uscd by the stability conditic.¡n dictzr.ting that, fol er

CHAPTER 1. I¡\TTRODUCTION 12

given spatial resolution of the the solution domain, the time step must be extremely

small, which means that many more time steps are required to find the solution, which

in turn increases the CPU time usage. Such problems frequently arise for methods

which are extremely accurate, which means that a balance must be struck between

high accuracy and keeping the computer time required to generate a solution within

reasonable bounds. Balanced with this, however, is the fact that such highly accurate

methods can produce very good results using a relatively coarse grid, and this can be

used to constrain the CPU time requirements of the solution.

Implicit methods, which in many cases have no limits on their stability, are then

investigated. These methods, however, require the solution of a set of linear algebraic

equations for each time step, which adds significantly to the amount of computer time

used to generate a solution. Also, the solution of this set of algebraic equations may

impose limitations on the use of the method, since the coeffi.cient matrix for the set

of equations is required to be diagonally dominant to ensure that the solution process

is stable. Added to this, it is found that even in cases where neither the stabiliiy of

the equation itself nor the solution of the equations imposes restrictions on the size of

the allowable time step, the error involved in the finite-difference equation increases

enormously with an increase in the time step used. This makes it impractical to use

large time steps to take advantage of the stability of these equations.

All the above work is done on the assumption that the boundary conditions are spec-

ified values on each boundary, which is usually referred to as a Dirichlef bounclary

condition (Dutr and Naylor, 1966). In the case where the normal derivative is known

instead, which is referred to as a Neumann boundary condition, the same solution

methods can be employed, but there is the additional problem arising from the re-

quirement to find the actual value at the boundary at each time level. A Neumann

boundary condition most frequently arises in practice where one boundary of the solu-

tion domain represents an impermeable layer or barrier, whicli is represerrted mathe-

rnatically by saying that the flow velocity across the boundary is zero (Leonard, 1983).

Other ca,ses, where there is a known, ìrut non-zero, flow across the boundary also arise

in some practical situatiorrs.

CHAPTER 1. INTP"ODUCTION 13

An added complication in using methods which work weil for the Dirichlet case to

solve the problem with a Neumann boundary condition is that the boundary value is

required by some of the methods used to solve the Dirichlet case, such as happens for

implicit equations, so these methods must be re-evaluated to determine whether they

are still practical. It is shown that rnost of the best methods for solving the Dirichlet

case still produce accurate results in this case, although the absolute size of the errors

has increased by several orders of magnitude, due to the added complication of the

problem and the extra approximations required.

F¡om this base, we attempt to find accurate solution techniques for the two-dimensional

case. Applying the same methods successfully used in the one-dimensional case' we

form generalised equations involving several free weights (parameters), which can be

chosen as desired to increase accuracy, numerical stability or both. Several classes of

methods are examined, again broadly classed as explicit or implicit. The solution of

the set of equations for the implicit methods however has increased in complexity quite

dramatically, since the coefficient matrix has now lost its tri-diagonal banded struc-

ture which allowed for relatively quick and efficient solution in the one-dimensional

problem. This being the case, most of the work on the two-dimensional problem is

concentrated on explicit equations.

Another approach to the two-dimensional problem which works quite successfully is

to use what are referred to as "locally one-dimensional methods". This involves con-

sidering the total two-dimensional problem as a series of one-dimensional problems,

firstly by considering a series of constant y values for half a time step, then a series

of constant r values for the remaining half time step. In this way, the methods de-

veloped for the one-dimensional problern can be directly applied to give a solution to

the two-dimensional problem. Note that there is a problem in the implementation of

such schemes, since the boundary conditions specified involve diffusion in both spatial

directions, but the approximations after the first half time step include diffusion in

only one direction. If the boundary conditions are used as given, the order of the

solution bccomes sccond-ordcr, regarclless of the ordcr of the difference equatiorr be-

ing userl. This problem c¿l,n Jrc overcome by noting that some boundary values at

CHAPTER 1. INTRODUCTION 74

the intermediate time level are not required for a rectangular solution domain, since

they are not used in the computations for the next half time step, and the remaining

values can be calculated from the previous boundary values using the finite-difference

scheme itself, so that the diffusion is the same at the boundaries as in the interior of

the region. The case of non-rectangular solution domains is also considered.

One other way of overcoming the problems of fully-implicit equations for the two-

dimensional problem is to use an "alternating direction implicit" (ADI) method. These

equations are structured so that the set of equations that has to be solved at each

time level involves only one spatial dimension. This means that the bandwidth of the

coefficient matrix is fixed at three, rather than increasing with the number of grid

points used. In this way it is possible to develop more accurate and stable methods

than is possible using explicit equations, without the enormous CPU time overhead

of the fully implicit equations.

A major part of the work of developing the finite-difference equations was the devel-

opment of a set of computer programs to speed up the process of flnding the finite-

difference equation corresponding to a given differencing of either the full advection-

diffusion equation (sometimes called the transport equation), namely

(1.1.3)

or one of its special cases, such as the diffusion equation.

Once a particular differencing of the original equation to be solved has been deter-

mined, these programs are used to generate the corresponding finite-difference eclua-

tion, its modified equivalent equation, and hence its truncation error, in a very short

period of time. This is a vast improvement over the several days of work often recluired

to determine this information by hand.

Due to the importance of these programs) the documentation describing their use

on the VAX is given in Appendix A, as well as a listing of the major prograrn in

Appendix C. These program$ can also be readily modified to cope with ecluations

other than the advection-diftusion ecluation, such as the first and second-order wave

ecluations (Noye aud Rankovic, 1986).

OT

At

aî aî a2î a2î
ar+u aa-o"a*r-ooaar:0*u

CHAPTER 1. INTRODUCTION 15

Once the modified equivalent equation has been determined, a set of equations, usually

non-linear and sometimes extremely complicated, can be derived which must then be

solved, either by hand or by using a symbolic algebraic manipulation package such

as MACSYMA, to determine the values for the free weights that will give the most

accurate method possible from the initial differencing. Given these values for the

rveights, another of the programs substitutes these values into the finite-difference

equation to give the optimai form of the equation. The von Neumann stability, and if

applicable the solvability of the equation can then be determined, and the equation can

then be tried in practice over its usable range, if this range is sufficient to be of practicai

interest. If the usable range (ie. the range over which the finite-difference equation

is consistent, von Neumann stable and solvable) is too severely limited, then this is

usually apparent within about half an hour of starting with the initial differencing,

which is again much better than the day or two required before these programs were

implemented.

Overall, this work provides several practically useful results. Some highly accurate

and practically usable finite-difference methods for both the one and two-dimensional

diffusion equations with constant coefficients have been derived and analysed, both for

the case of known boundary values and also the case where only the derivative is known

on one or more of the boundaries. The computer programs developed for this work

are also useful for very quickly determining the optimal finite-difference equation for a

given differencing, or else for analysing an existing equation to determine its theoretical

accuracy.

Chapter 2

The l-D Diffusion Equation with

Dirichlet Boundary Conditions

2.L Introduction

The one-dimensional linear diffusion equation with constant coeffi.cients can be written

AS

aî a2î
At - a|p :0, (2.1.1)

where a is the constant diffusion coefficient and î : î(r,,t). This equation is of

interest since it has practical applications in such processes as underground fluid flow,

which can be regarded as having no advection component, and in areas such as heat

conduction along a thin insulated rod, where the diffusion may be regarded as being

one-dimensional. Most practical applications, however, can only be accurately dealt

with using the two-dimensional diffusion equation, which is considered later in this

work (Chapter 4).

Equation (2.1.I) can be solved numerically by finite-difference techniques. Without

loss of generality) rvve may assume that equation (2.1.1) has been non-dimensionalised,

such that the spatial domain is [0,1], and a is a non-dimensional diffusion coefrcient.

The space domain is then divided into "I equal grid spacings of length Ar. The

16

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION 77

equation can then be solved on this grid by starting from some known initial state (ie.

time t : 0) and set of boundary conditions, using these to compute an approximation

to the state at a small time ú : Af later, and repeating this process untii the desired

time ú : ? is reached. It should be noted however that some solution techniques,

which are described later, use information from more than one time level to obtain

values at the new time level. In such cases some speciai starting procedure must be

used until solutions at enough time levels are available for the desired equation to be

employed.

In order to carry out this time stepping process, it is necessary to have both a specified

initial condition of the form

î(x,0):Í(*), for 0(c(1, (2.7.2)

and a pair of boundary conditions at x, :0 and r : 1. In the first instance, it will

be assumed that there is a Dirichlet boundary condition (ie. the boundary aalues ane

specified), in the form

î(0,r) : ar(t),
' î(1,f) : sz(t), (2.1.3)

for all ú > 0. Later, the case of a Neumann boundary condition (ie where l}re normal

deriuatiae is specified) at one boundary, in the form

drl
arl1o,,,:"'(t)' ¿>o (2'7'4)

will also be considered.

As well as the initial and boundary conditions, we need a finite-difference equation

that relates the values at both the current and next time levels. Such an equation

is derived by approximating all the derivative terms in (2.1.1), applied at the point

(j L*,,nLt), by combinations of approximate values of î at the grid points surrouncling

it. For convenience, the grid point j L,x at tìme nAú will be referred to as the (j, n)

grid poini, the exact value of. î at this point will be denoted bV îi and the approxirnate

o-A,t

va,lue hy ri. The substitution

J
-

----=(L*)"
(2.1.5)

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDI"ION 18

is used when writing finite-difference equations. This dimensionless quantity always

occurs in finite-difference approximations to equation (2.1.1), due to the form of this

equation and the derivatives involved in it.

As an example of a differencing, consider the simplest possible approximations to the

derivative terms in equation (2.1.1), namely

+T+r - +?
'J 'J

A¿
(2.1.6)

îi_r-2îi+îi+r
(a')' + o{(au)'?i. (2.1.7)

lVhen these approximations are substituted into equation (2.1.1), and the terms of

O{(A.r)2.,4t} are dropped to give an equation which is useful in practice, the finite-

difference approximation to (2.1.1) is

nT*7,J -ri

AÚ+o{l; :

r,:

OT

At

a2î
ar,

)

AÚ
-0 (2.1.8)

This can be rearranged to give the finite-difference equation

,I*t : sri-.' * Q - 2s)ri * srf+t, (2.1.e)

which is called the FTCS equation, since it is derived from the forward-time (FT) and

centred-space (CS) approximations to the derivative terms in equation (2.1.1). This

finite-difference equation uses the computational stencil shown in Figure 2.1.

o

o
(i,")

O

xtJ

Fìgure 2.I: Tl¿e (1,9) computational stencil of thc FTCS methoì|,

Equation (2.1.9) is termed cr.plicit, since it can be used directly to compute the value

at a grid point at the new tirne level from values at several grid points at the current

and previous time lcvels. Other equa,tions, which will be exarnined in detail later, are

t o

CHAPTER 2. l-D DIFFTISION - DIRICHLET CONDITION 19

termed implicit, since they relate the values at several grid points at the new time

level to values at the current and previous time levels. This leads to a set of linear

algebraic equations that must be solved at each time level.

To simplify the classification of finite-difference equations, methods will be referred to

as ,,a (prqrr) method" when the computational stencil of the equation invoives p grid

points at time level (n + 1), q points at time level n and r points at time level (n - 1).

if the method does not involve any points from time level (n - 1) then it is simply

referred to as an (p, q) method. Thus in this notation, the FTCS equation (2.1.9) is

a (1,3) method, since it uses only one grid point at time level (n + 1), three points at

tirne ievel n, and none at all at time level (" - 1). The extension of this notation to

equations which use more than three time levels is trivial, but such equations are not

considered in this work.

2.2 The Modified Equivalent Equation Approach

In order to compare the accuracy of various methods, some measure of the error

involved. in using a method must be found. The way that has been chosen to do this is

a modifi.ed equivalent equation approach similar to that used by Warming and Hyett

(1924). This approach is chosen because it provides much valuabie information about

the f.nite-difference equation, such as the form of the truncation error, how much the

solution is shifted spatially by the numerical solution and how much extra diffusion

is present, as well as providing for the easy comparison of the errors associated with

different finite-difference equations.

Finding the modified equivalent equation is a two-step process. The first step is to

expancl each term of the ûnite-difference equation as a Taylor series about the (j, n)

gricl point. This leads to an infinite order partial differential equation (PDE), which is

the actual PDE which is being solved by the finite-difference equation. This equation

wiil be termed the Equivalent Partial Differential Equation (EPDE). If this procedure

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION

is applied to the FTCS equation (2.1.9) above, the EPDE can be shown to be

0r Lt 02r 02r , (A¿)' ffr
_ _l_ -l-

--

!

ot' 2 aP "or2' 6 aF
(A¿). ür a(Lr)2 7ar
24 ãtt 12)ra

20

(2.2.2)

+ (2.2.1)

where all the derivatives are evaluated at the (j, n) grid point

The second step is to remove all the time derivative terms ftorr' (2.2.1) wiih the

exception of 0rl0t. This is achieved by repeatedly differentiating the latest form

of equation (2.2.1) itself, and adding an appropriate multiple of this back into itseif

(as it was before it was differentiated) to remove the desired terms. Thus to remove

t¡¡e 02rf 0f2 term, equation (2.2.1) is differentiated once with respect to f, multiplied

by _ |ltlz then added back into the original equation. Note that the terms must

be eliminated in order of increasing tolal derivatives, and within an order of total

d.erivatives in order of increasing space derivatives, or else the process will re-introduce

previously eliminated terms back into the equation. Thus the first term removed

is 02rf 0t2, followed by 02rl0tôr and so on. The resulting equation is termed the

Modified Equivalent Partial l)ifferential Equation (MEPDE), and should contain the

original partial differential equation as well as some error terms, if the finite-difference

equation is consistent with the diffusion equation (2.1.1). If the original PDE is zof

recovered in the MEPDE as the grid spacing Ar, Aú --+ 0, then the finite-difference

equation is not consistent with the PDE, and so the method is of no practical use.

The MEPDE for the FTCS equation (2.1.9) is thus

(Af)a ô5r , (At)5 ô16r a(ô'x)a ffr
#**fta* ar6+"'-0,

where

E(s,a, L,x,r)
.)ar

(6r - 1) Af
(2.2.3)

From equations (2.2.2) and (2.2.3) it is seen that the FTCS ecluation (2.1.9) is cou-

sistent with ecluation (2.1.1) and that ihe errors involved in using tlie FTCS equation

$/t- r2os2* 3os - Ð#+ o{(az)6}+

CHAPTER 2. l-D DIFFIJSION - DIRICHLET CONDITION 21

are of O{(Ar)'?}. This method is therefore called "second-order accurate", or, in less

formal terms, it is simply referred to as a "second-order method". This is all in accor-

dance with the known behaviour of this equation, as is the fact that the leading error

term vanishes for the value s : \16, making the method fourth-order accurate for

this particular case (Richtmyer and Morton, 1967). Note that in this work, the term

,,high-order" will be used to mean a method of high-order accuracy, unless otherwise

specifred.

In general, the modified equivaient equation for a finite-difference equation that is

consistent with the one-dimensional diffusion equation (2.1.1) can be written in the

form

(2.2.4)*-"#.å,,#:,,
where the condition

oJiff-' cP: o' P >- o

must hold for consistency. In addition, however, the condition

(2.2.5)

(2.2.8)

C^:0 for p 12 (2.2.6)

is d.esirable so that the leading error term is at least first order and hence of smaller

magnitude than the solution being sought. It is found that the coefrcients C, canbe

written in the form
2a(A.x\P.-2tr-_'-îro("), p)2. (2.2.7)

As mentioned by Warming and Hyett (1974), the original PDE must not be used in

place of the current EPDE to remove the time derivative terms during the "modifica-

tion" process, since the EPDE represents the finite-difference equation, and in general

a solution to the original PDE will not satisfy the finite-difference equation.

The moclified equivalent equation for the FTCS equation can be written in the general

f.orrn (2.2.7), with
Lr)'o¿

(6s - 1)
72

wbich meâns that in this case

C¿

In(r):6s-1 (2.2.e)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 22

It should be noted that is the leading error term in the MEPDE is Cna2 then ihe

method is order q accurate, due to the form of the coefficient given by (2.2.7).

It has a"lso been found (Noye, 1984) that the error terms in the MEPDE can be clas-

sified into two sets. Those error terms that a¡e associated wilh od,d, order derivatives,

such as Cs, Cu, etc., represent errors in the wave speed of the solution. Since the

diffusion equation does not translate the solution, these errors are better interpreted

as a spatial shift of the quantity r under consideration. It is also worth noting that

in the case where the spatial differencing is kept centred about the j¿å grid point, all

of these error terms are automatically zero, since the terms from the Taylor series

that produce these error terms cancel out when they are added together. Such cen-

tred equations thus involve no artifi.cial translation of the quantity r. This explains

the absence of such error terms in the modified equivalent equation (2.2.3) for the

FTCS method above, since the space derivative was approximated by a centred-space

difference approximation.

The error terms associated willn euen order derivatives, like Cz, Cq,, etc., represent

errors in the amplitude of the numerical solution, which means that the numerical so-

lution incorporates either more or less diffusion than is actually present in the original

PDE. There is no method of differencing that will force all of these to be zero for the

diffusion equation (2.1.1), due to the nature of the equation itself and the relationships

between the terms of the Taylor Series of the finite-difference equation.

The computation of the modified equivalent equation corresponding to a given finite-

difference equation is in fact a mechanical operation that lends itself to being pro-

grammed on a computer. Such a program, written in Pascal under ihe VAX/VMS

operating system, has been developed to produce both the EPDE and MEPDE for a

given finite-difference equation. This program uses 32-bii integer arithmetic, and so

is limited to a maximum of twelfTh-order derivatives, although in practice an overflow

can occur for tenth or even eighth-order derivatives for high-order accuracy equations.

This program, as well as several others that have been developed into a sophisti-

cated systcm for generating highly accurate finite-difference equations, is described in

Appcndix A. This system of programs allows the fast generation of finite-difference

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDI"ION 23

equations, given only the desired approximations to each derivative in the PDE. Also,

although these programs were developed to run on a VAX computer, they have been

successfully transported to other systems, including various micro-computers such as

the Apple Macintosh and machines running the popular CP/M-80 and MS-DOS op-

erating systems. The limitation on the maximum derivative order can be overcome by

using extend.ed precision integer arithmetic routines, but these must be coded as part

of the program on all the machines where the programs have been implemented, since

the required routines are not implemented by the machines themselves. This slows the

computation down by a factor of approximately one hundred relative to the version

which use integers of the size that the machines usually handle. Since the equations

which require this extended precision are usually complicated high-order equations

whose MEPDEs require significant amounts of CPU time to calculate anyway, this

magnitude of speed reduction is impractical in most situations.

Returning to the modified equivalent equation, it can be seen that this is an extremely

useful theoretical tool for determining the accuracy of a given finite-difference equation.

It is also desirable, however, to be able to check that these theoretical predictions

actually work in practice. In order to do this, it should be noted that the the total

error involved in using a finite-difference scheme is dominated by the ieading error

term of the modified equivalent equation, as succeeding terms contain progressively

higher pot¡¡ers of Ar, and thus get smaller. From equations (2'2.4) and (2.2.7), the

leading error term at the (j, n) grid point for an order g accurate method can be

written in the form

(2.2.10)

Thus for an orcler g accurate method with a sufficiently small Az and assuming that

the clerivative factor is approximately constant, the discretisation error is dominated

by tlie leading error term (2.2.10), so

lel o< (Aø)q (2.2.11)

'##',*,G)mr

for :r constant s, where e is the discretisation error (î -r) for the method. Tltis leacls

to

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION 24

l"l È K(L'x)q (2.2.12)

=+ log{lel} È qlog{Ar} + K' (2.2.13)

where Il is the constant of proportionalityin (2.2.11) and K' :log{K}. From (2.2.73),'

it can be seen that a graph of log{lel} plotted against log{Ac} for constant s should

produce a straight line of slope g for an order g method (see Noye, 1984). In this work'

we plot -1oS{lel} against -log{Ar} in order to keep most of the numbers positive,

as shown in Figure 2.2. In some cases, the points corresponding to small values of J,

say 20 or 30, are somervhat off the straight line generated by the remaining points'

This is caused by the value of Ac being large enough that higher order error terms

make a signif.cant contribution to the discretisation error, which invalidates the above

theory. In such cases, these erroneous points are not included in the graphs. Likewise,

in the case of sixth or eighth-order methods, the errors generated for large values of ,.I

are often smaller than the 14 digits of precision available on the VAX where the iests

were done. Again, this leads to erroneous results, due to "subtractive cancellation"

between the exact and approximate solutions, and so these points are also excluded

in the graphs, to avoid giving a misleading impression'

As another comparison, we can consider the amount of CPU time used. Let C(Ar)

be the amount of CPU time used in going from one time level to the next, using a

space step of Aø and a time step of At. The total amount of CPU time required to

reach the desired time level, Cp,is given by

CP(L;,Aú) : 'n{ x C(Az), (2'2'14)

where .l/ is the number of time steps required. If we wish to change the space step to

rAz, then in order to keep s constant, we also need to change the time step to 12Lt.

Since the number of operations per time level depends linearly on the number of grid

points (at least for the solution methods considered in this work), it can be seen that

c(rLr) : qP, (z.z.r5)

since there are now 1/r times as many grid points to find values for at the ncxt time

Ievel. Thus if r) 1 we now have fewer grid points at which to compute values, ancl

CHAPTER 2. l-D DIFFUSION - DIRICTI¿ET CONDITIO]V OELt)

less CPU time will be used. Also, since the time step has been changed, a different

number of time steps, .l[', will now be required to reach the desired time level, where

N' : Nlr2 (2.2.16)

Overall it can be deduced that

cp(r\,r,,2 Lt): Ø#Ð (2.2.77)

From this relation it follows that

Cp o(tl(/''Qs

+ log{CP} : -3los{Aø} + los{K}

Now - tog{Ac} : -(tlùiog{lel} I Ií from above

=+ -los{lel} : Gl3)Ios{Cp} + K'

where the 1{ terms represent constants. Thus a graph with - log{lel} plotted against

Iog{Cp}, which will be denoted as a -1og{leli vs log{Cp} graph, should also give a

straight line, although in this case the slope of the line is one third of the order of

the method. It should be noted however that of the two graphs, the error vs grid

spacing one is likely to be more accurate, since CPU time on a time-sharing system,

such as the VAX 11-785 used for this work, can be a,ffected by system overheads, like

the amount of paging done in response to system load.

One other comparison that can be used is to compare the amouni of CPU time that is

required to generate solutions of a given accuracy, which corresponds to an intuitive

notion of the "effi.ciency" of the solution. This is only of use for methods of similar

orders of accuracy, since ali the numerical results are for values in the range 10 < / <

100, so a low-order method will never be tested on a fi.ne enough grid to give the same

accuracy in the answers as a high-order method produces for even a very coarse grid.

Despite this limitation, however, this type of comparison can be very useful.

The fi.nite-difference equations are tested using iniiial and boundary conditions that

provide a known anaiytic solution to the diffusion equation, which allows the numerical

errors from the method to be found from comparison with the exact solution. The

r:xact solution to (2.1.1) used for the numerical tests is the Gauss peak defined by

(*-o 2

I
J

î(r,t):#*o{-
a@t + 7)

(2.2.r8)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITIO]V 26

where the constant ø : 0.5 so the peak is centred in the spatial domain of [0,1].

Ecluation (2.2.18) is used to define the initial and boundary conditions, as weli as the

exact solution to the problem, by substituting the appropriate values for ø and ú. The

values for the graphs in this work are taken at the point x : 0.2, so as to avoid the

regions of relatively small slope at both ends and near r : 0.5. In such regions the

numerical solution seems to be more accurate than over the remainder of the spatial

domain, so these regions are avoided to give a better reflection of the true accuracy

of the method. The methods are allowed to run lo T : 8, so that any instabilities

or inaccuracies in the equation should be apparent in the results. These values at the

point (0.2, S) can then be used to generate the graphs described above, and allow easy

comparison of the difference equations. The exact solution to the test problem at this

point and time, using the value a : 0.01 is î : 0.13...'

If these graphs are drawn for the FTCS equation (2.1.9), it is found that they are

indeed straight lines, with slopes as predicted. Examples of these graphs are shown in

Figures 2.2 and 2.3. These graphs show the line of best fit through the points for each

s, and the slope of this line is the value of. M listed in the legends of lhese graphs.

It is notable from the CPU graph, Figure 2.3, the the amount of CPU time required

to generate a solution to a specified accuracy is minimised amongst the second-order

cases by the values s : 0.1 and s : tl3, which are not the largest values shown in

the graph. This is an indication that the dominant error term is much smaller for

these values of s than for larger values such as s: \12. This type of efficiency (ie.

the amount of CPU tirne required to generate a solution to a given accuracy) is a

good method of comparing solution techniques, unless there are constraints on either

the minimum grid spacing required in the solution or the total amount of CPU time

allowed. In such cases, this measure is of less use.

Also of note fi-om the figures is the very much more accurate and efficient solution

olrtained for the special case s : \16, where the difference equation is fourth-order

accural;e. Such lesults as this inclicate enormous gains in accuracy and CPU time usage

that uray l-re obtained from the developrnent and usc of methods of higher orders of

accula,cy.

CHAPTER 2. l-D DIFFUSION - DIRTCHLET CONDITION 27

M = 2.0O

M = 4.04
M = 2.01
M = 1.99

10

NUMBER OF GRIDSPACINGS

40

1.s

- LoG f^xl
lo

100

2

10-11

10-10

-o10 -

1 0-8

'to-7

1 o-6

1 o-5

1o-4

1 0-3

11

10

I

I

7

6

:
!t_

oô
J

I

É,
o
É.
cÉ
IJJ

zo
l-
at)

trul
f!o
U'
o

3
0

Figure 2.2: Error as griil spacing graph for the (1'3) FTCS melhod (2.1'9)

CHAPTER 2. l-D DIFFUSION - DIRICII¿ET CONDITION 28

-)+-+
+t-

s= 0.1000
s = 0.1567
s = 0.3ft3Íl
s - 0.5000

M = 0.71

M = 1.44
M= O.72

M= O:72

11

10

0.01 0.04 0.1

cPU TrME (SECS)

0.4 1 4

LoG (cp)
l0

10 40 100

1o-1 1

1o-10

-o10 -

1 o-8

10-7

1 0-6

I O-5

1 o-4

1 o-3

:o
ooJ

I

7

cc
oÉ
CC
LJ.l

z
IF
al)
tr
lU
(Í.
o
Lô

I

5

5

4

3

Figure 2.3: Error a3 cP[I tíme graph for th,e (1,9) FTCS metl¿od, (2.1.9)

CHAPTER 2. l-D DIFFT¡SION - DIRICHLE,T CONDI"ION to

2.3 Finding Methods of Irnproved Accuracy

Having found a practical way to compare the errors of different finite-difference equa-

tions, .we can now look at ways in which more accurate equations can be generated.

Higher order equations are desired both because in any practical situation they pro-

duce more accurate answers for a given grid spacing, and also because a reduction in

ihe grid spacing produces a much greater increase in accuracy than the same reduction

using lower order methods.

Having theoretically developed such higher order methods, it is necessary to run them

in practice in order to check that a solution can be generated that is more accurate than

the solutions obtained. from lower order methods, such as ihe (1,3) FTCS equation, and

also to compare the methods of the same order with one another. Such a comparison

is in fact two-fold; one in terms of the absolute error obtained for a given grid spacing,

and the other in terms of the amount of CPU time required to find a solution to a

grven accuracy

In order to achieve these comparisons, the graphs of -log{leli ". -1og{Ar} and

-logileli vs log{Cp}, which were discussed in Section 2.2, are generated. As shown

there, these graphs should be straight iines with slopes depending on the order of the

method.

2.3.L Using Higher Order Derivative Approximations

The simplest way to try to produce higher order solution finite-difference methods is

to employ higher order approximations to the derivative terms in the original PDE

(2.1.1). If only two tirne levels are to be involved in the finite-difference equation,

then ii is not possible to increase the accuracy of the time derivative approximation.

This leaves only the space derivative to be improved, and this can be approximated

to f'ourth-orcler, rather than the second-order approximation (2.1.7), if five grid points

¿rre usecl insteacl of three. This produces an equation that uses the (1,5) computational

CHAPTER2.l-DDIFFUSI2N-DIRICHLETC2NDI?ION

stencil shown in Figure 2.4. T:he five-point spatial derivative approximation is

A'îl : -îî-z* 16îî; - 30îi il6îi+t - îi+z * O{(Aø)a}, (2.8.1)
a*"1¡ t2(Ln)2

which can be used in place of (2.1.7) in (2.1.8) to produce the new finite-difference

equation. This equation, developed by Noye (1934), can be written as

72ri+r : -"(rî-, * rî*r) a 16s({r + "h) + Q2 - 3Os)rrl'' (2'3'2)

o

t oo a
(i,")

oa

xrJ

Figure 2.4: The (1,5) computational stencil

This equation, having been derived, from a fourth-order approximation to the space

derivative¡ ñay be expected to be more accurate than the three-point FTCS equation

(2.1.g). However, when the modifred equivalent equation corresponding to (2.3.2) is

calculatecl, the leading error terms are found to involve the factors

In(t) : -6s,

fu(") : a(30s - 1). (2'3'3)

since (2.3.1) is a centrecl approximation for tire space derivative term, there are no

odd-order error terms in the modifred equivalent equation.

Despite having used a fourth-order approximation to the space derivative, the resulting

finite-c1ift'erence equation is still only seconcl-orcler accurate' Also, since ln(t) cannot

be forced to be zeto f.or any value of s) 0, there is no optimal value of s for which

the method becomes fourth-order'

Tlre la,ck of accuracy of the equation (2.3.2) is due to the use of the first-order approx-

imation to the time clerivative. The truncation error of O{At} associated with this

30

CHAPTER 2, l-D DIFFUSION - DIRICHLET CONDITION 31

approximation is of O{(Aø)'l fo. constant s, which accounts for the second-order na-

ture of this equation. This problem may be overcome, as shown below in Section 2.3.2,

by a more ca¡eful introduction of the higher order derivative approximation (2.3.1).

In practice, these theoretical predictions are confirmed, with the five-point method

producing numerical results of better accuracy for s (Ilt2 and lvorse for s > 7fl2

when compared to the three-point FTCS equation (2.1.9). This is to be expected,

since the magnitude of the leading error terms from the respective MEPDEs follows

the same trend, as shown in Figure 2.5.

lfn(")l

el4

312

(1,5) equation

(1,3) equation

314

s
0 118 114 318 112

Figure 2.5: Lead,ing error terrns for th.e (1,3) FTCS mellt'od and the standard (1,5)

equation.

From the above, it is apparent that rnerely using higher order approximations to some

of the der.ivative terms in the original PDE cloes not necessarily lead to higher order

finite-clifference equations. A more sophisticated approach is clearly needed to produce

finite-difl'ercnce schernes with a high order of erccuracy.

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDI?ION 32

2.3.2 Eliminating the Leading Error Terms

Another approach to generating higher order methods is to generate equations which

have some free parameters or weights involved in them, and then eliminate as many of

the lead.ing error terms as possible from the modified equivalent equation by choosing

suitable values for these weights.

For example, neither the three-point approximation (2.I.7) nor the fi.ve-point version

(2.8.1) produce a fourth-order method, so we nor¡/ try a weighted combination of the

two, namely

0'r l"
#1,È (1 - e) x [CS3 .t U, ")] + e x [cS5 at (j, n)] (2.3.4)

where CS3 is the three-point centred-space approximation (2.1.7) and CS5 is the five-

point approximation (2.3.1). If this combination is used to approximate the space

derivative in (2.1.1), the resulting finite-difference equation is

12ri+t : -sç(ri-z * "i*r)
+ {as(3 + ù}(rî, + rî*r) + {6(2 - 5s f (t - e)s)}ri. (2.3'5)

This equation uses the same computational stencil as that used by the (1'5) method

developed in the previous section (see Figure2.4).

The modifi,ed equivalent equation corresponding to equation (2.3.5) can be written in

the general forrn (2.2.4) with leading errors involving the terms

fr(") : 6s-L¡9,

fu(") : -1 + 5p(1 - os) * 30s(1 - a"). (2.3.6)

Again, since both of the difference approximations used for the space derivative are

centred about frre jth grid point, the odd-order error terms are automatically elimi-

nated from the MEPDE. The weightings that are used in this work are kept centred

for this reason, sirrce using non-centred approximations would mean that more weighis

would be needed to eliminate the odd-order errors.

From equations (2.3,6), it can be seen thai; the choice

V:L-6s (2.3'7)

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDI?ION

for the weight g will force la(s) : 0 and thus eliminate the term involving Ca from

the modified equivalent equation. This choice should then produce a method which

is fourth-order accurate. If this substitution is made, the finite-difference equation

becomes

r2ri+r : {s(6s -t)}("i_r*"i*r)
+ {ss(2 - gr)X"i, + r,ir) + {6(2 - 5s * as\}r; (2.3.8)

which has a modified equivalent equation in the general lorm (2.2.4) with the leading

error term involving the factor

lu(r) -4-30s*60s2. (2.3.e)

This shows that the equation (2.3.8) is indeed fourth-order accurate. Since (2.3.7) is

the only substitution that makes ln(") : 0, equation (2'3'8) is the "optimal" equation

for this computational stencil, in the sense that it has the highest order of accuracy

possible for this stencil. Thus the weighted combination of the two space derivative

approximations has produced a netù/ finite-difference equation that is fourth-order ac-

curate, rather than the second-order accuracy obtained by using either approximation

individually. This (1,5) equation is investigated in more detail, and its numerical

results examined, in Section 2.6 below.

It appears from this that the technique of first finding a weighted equation, then

deriving the corresponding modified equivalent equation and eliminating the leading

error terms by a suitable choice of the values for the weights is an extremely useful

method for producing high order finite-difference equations.

2.4 Nurnerical Stability

It seems likely from the above that very accurate frnite-difference methods can be

developed to solve the diffusion equation, and indeed this can be done in practice.

There is no point, however, in developing highly accura,te methods if they cannot be

irnplementcd to produce results of an acceptable accuriìcy in a reasonable amount

ooJù

CHAPTER 2, l-D DIFFUSION - DIRICHLET CONDITION

s <712

of CPU time. The abiliiy to do this using a finite-difference equation depends on

numerical siability of the difference equation. Thus as well as the accuracy of any

given method, we also need to check its stability range, and in this work this check is

done using the von Neumann method (O'Brien et. al., 1950)-

Checking the stability of our finite-difference equations is also important due to Lax's

Equivalence Theorem (Lax and Richtmyer, 1956), which states that "Given a properly

posed linear initial value problem and a finite-difference approximation to it that

satisfies the consistency condition, stability is the necessary and sufficient condition

for convergence". Here "convergence" is used to mean that the solution of the finite-

difference equation converges to the solution of the original PDE as the grid spacing

tends Io zero. Thus we require convergence if our solution is to be of any use, but

this property is extremely difficult to prove directly. Instead, 'vr/e use this theorem,

since the diffusion equation with (reasonable) given initial and boundary conditions

qualifies as a "properly posed linear initial value problem", which allows us to just

prove stability and consistency, which is a much simpler task.

In the case of the I'TCS equation (2.1.9) it is weli known (Richtmyer and Morton,

1967) that the von Neumann stability restriction is

34

(2.4.1)

which, while being somewhat restrictive, allows large enough time steps to obtain

results in a reasonable amount of computer time.

For tlre five-point method (2.3.2) it can be shown (Noye, 1984) that the von Neumann

stability range is

s < 3/8 (2.4.2)

which is more restrictive than the three-point FTCS equation (2.1.9). Thus the five-

point equation (2.3.2) has a smallcr stabilìty range than the three-point equation; in

addition it is no more accurate, and also requires special treatment next to the bouncl-

aries, since the equation then involves points that are outside the solution domain,

Consecluently, this mei,hod is of little practical use as a solution method ancl will not

be considered further in this work.

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION 35

For the fourth-order equation (2.3.8), the von Neumann stabiliiy range is

s <213 (2.4.3)

(Noye and Hayman, 1986a) which is a larger region than either of the other two

equations. This equation, like the basic five-point equation, requires special treatment

next to the boundaries, since the computational stencil extends beyond the boundaries

when applied to find either rf+l or "i!i. The equation (2.3.S), however, has both

greater accuracy and greater numerical stabiiity than either of the other methods

considered so far, and so the extra work to implement it in practice is worthwhile.

Since many frnite-difference equations have von Neuma¡rn amplifi.cation factors which

are extremely difficult to obtain in analytic form, many of the stability regions obtained

in this work have been found numerically. The computer program to do this (Steinle,

19S4) takes a range ofvalues of s and a range ofvalues for one weight, splits each range

up into a specifi.ed number of subintervals, then for each (s, weight) pair calculates the

von Neumann amplification factor, G, for a range of wave numbers. If any of these G

vaJ.ues has

lcl > 1 (2.4.4)

then the equation in unstable for that (s,weight) pair, otherwise it is stable. This

program gives a practical way of finding the von Neumann stability range for even

extremely complicated frl iie- difference equations'

2.5 (r,s,s) Methods

The fourth-order equation (2.3.8) is more accurate than the second-order methods,

such as the FTCS equation (2.1.9), generally in use at the present time. Before

exploring this method further, other ways of achieving fourth-order accuracy will be

exarnined. The advantages of the optimal (1,5) method, namely that it is explicit and

has a large stability range, should, if possible, be kept in a new technique. The (1,5)

method does however have problems dcaling wiih grid points next to a boundary (this

is described fulty in Section 2.6), arrd ¡ì ne\M techniclue should be soughb to avoid these.

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDI?ION 36

In an attempt to do this, the three-level (1,3,3) stencil shown in Figure 2.6 is used.

This gives an equation which is still explicit, so the advantages of quick computation

are still present; it has one extra grid point, which means that a fourth-order scheme

should be possible; it is also only three grid-points wide, so it will not require external

grid points when used next to the boundaries. Against this, however, is the fact that

since the stencil uses grid points from three time levels, some other scheme must be

used for the initial time step. This starter method should ideally be of the same order

of accuracy as the three-level method so as not to detract from the final numerical

results. For example, the fourth-order (1,5) equation (2.3.8) could be used to start a

fourth-order three-level method.

o

o
(i,')

o

oo

Figure 2.6: Cornputational stencil for the (1,3,3) meth'od

The (1,3,3) stencil, shown in Figure 2.6, allows the introduction of three weights. This

is done by differencing the derivative terms in (2.1.1) as follows:

0"l x 7 x {[BT ut (j -1, n)] * [BT at (r + t,
",;110tl¡

+ .\ x [FT ut (i,n)] + (t -21 - À) x [CT at (j,n)], (2.5.1)

Ô"1" x ex [CS.t (i,",)] +(r -e)x[CSat (i,n-r)), (2.5.2)
6a2lt

where BT, CT and FT represent the backward, centred and forward-time difference

approximations to Aî lù respectively, and CS denotes the three-point centred-space

differencing (2.I.7). The finite-difference equzrtion corresponding to this differencing

t

o

o

x.l

1S

CHAPTER 2. l-D DIFFT¡SION - DIRICHLET CONDITION 37

{2t - \ - 7}ri+1 : 2h - es}(rit + "iì *2{2es - ^}"i
+ 2{v"-s-'[Qî-i+"i¡)
+ {as(1 - Ð+21 * \-t}ri-'. (2.5.3)

Since the distribution of weights was chosen to keep the equation spatially centred, it

is expected that the modified equivalent equation corresponding to (2.5.3) will have

no od.d-order error terms, and indeed the modified equivalent equation, written in the

general fo rn (2.2.4) has leading error term involving the factor

fn(r) : 721(7- s) + 72s - 12ps * 6Às - 1,

and all the odd-order coefficients ate zero'

It can be seen by rearranging equation (2.5.4) that the substitution

(2.5.4)

1)9:r- r%+ z+
r(1 - ") (2.5.5)

(2.5.6)

s

will make fn(r) : 0 and hence remove the Cterror term from'this modified equivalent

equation. This produces an equation which is fourth-order accurate, namely

-6i1 +(t - 4)\ri*' : {1 -12s-6s() -4)}?i_, +",ir)}

+ {-2+24s tI2(s - 1xl - Zt)}ri

+ {6s() - 4) - 1X"5 + ",ï¡)
+ {6(i - 2s)(À -2ù - +}"î-'.

This accuracy of this equation can be verified by finding its modified equivalent equa-

tion, which has a leading error involving

fu(") :312 - 15s * 60s2 * 15s() - 27)(6.s - t) (2.5.7)

By rearranging (2.5.7),lu(r) can also be made zero, which would then give a sixth-

or.der ecluation. It should be noted, however, that despite having two weights left in

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDI?IO]V 38

equation (2.5.6), it cannot be made eighth-order, since the two weights always occur

together in the expression \-2'y, and to make it sixth order requires setting

\ - 2t: 1;.19-" + 40.t'
(2.5.S)

10s(1 - 6")

It follows that making the equation sixth-order removes both remaining weights from

the equation. The sixth-order equation is

6{20s2 - t}ri*t : 4s{i - 30s * I20s2}(ri-1 + rrlr)

+ 4{-3 * 28s - 60s2 - 240s3}ri

+ 4s{60s2 - t}(ri:l + rî*-i)

+ 2{3 - 56s * 300s2 - 240s3}ri-r. (2.5.e)

A desirable feature of a finite-difference equation, although clearly of lesser importance

than good accuracy, is a large stability range, which allows the spatial resolution to

be increased without necessarily having to use much smalier time steps. In fact, the

stability region for this equation is

s <716 (2.5.10)

which is only one quarter of that for the fourth-order (1,5) method.

This small stability range means that in order to increase the resolution of the solution

(ie. decreasing Aø), the time step rnust be reduced accordingly, which means that the

method may require more CPU time to generate a solution than another method with

a larger stability range. Nevertheless, since the method is sixth-order, even relatively

coarse grids give very accurate results, so refining the grid spacing may not be required,

in which case this equation is very good.

Tlre results obtained by this method, shown in Figures 2.7 and 2.8, are extrcmely

accurate when compared with those from methods of lower order, except for the case

of s : 1/6. The relatively poor accuracy in this case is expla.ined from the forrn of the

modified equivalent equation of (2.5.9), which has the leading error coeffi.cient

/-r _ a(Ln)6 | so+ooso - 12000s3 - r260s2 * 3J0s - 13 ìus--J0r400t t, sfLl6. (2.5.11)

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDI"ION 39

--t+-+
s = 0.0500
s - 0.1000
s = 0.1667

M = 5.81

M = 6.04
M = 3.99

10

NUMBER OFGR¡DSPACINGS

5

- LoG {Âx)
l0

40 100

2.O

1o-14

1o-13

10-12

1o-1 1

1o-10

_o10 "

I 0-8

14

13

12

11

10

cr
o
fE
É.
IJJ

6
tr
.D

E
Ê.o
al,

õ

I

I

7

âo
oo
J

I

-'l10 '

1 0-6

1 o-5

1 0-44
1

Error us grid, spacing graph for tlte sinth-ortler (1,9,3) melhod (2.5.9)

o

Figure 2.7

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION 40

++

0.1 0.4

cPU T|ME (SECS)

1 4 I0 40 100

14

13

12

11

1o-14

1o-13

10-12

1o-1 I

0-1
É.
ofr
É.
uJ
z,o
tr
Ø

h
cÉo
Lo

10

-o10 -

1 o-8

-a10 '

1 0-6

_F
10 "

1 o-4
0. 5 2.O

LoG (cp)
l0

Figure 2.8: Error us CP(J time graph for the sirth-ortler (1,3,3) melh'otl (2.5.9)

0

I

I

7

6

5

:o
oô
J

I

4
0-1

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION

The denominator term here, 1-6s, is the result of normalising the modified equivalent

equation. If ihe modified equivalent equation is considered before this normalisation

process, this termmultiplies bofh ôrlôú and 02rf 0r2. Thus at s:1/6, the modified

equation does not contain these derivatives, and the finite-difference equation is con-

sistent with some other partial differential equation, not the one-dimensional diffusion

equation. This causes the very bad results obtained from the numerical tests in this

case. To avoid this problem, the value of s is restricted to exciude the value s : 116.

Note that, for a given grid spacing and using the maximum allowable value of s in each

case, the amount of CPU time required to obtain a solution with the (1,3,3) method

is about four times that required by the (1,5) equation (see Section 2.6 below).

Against this, however, is the fact that the sixth-order (1,3,3) equation with s : 0.1

gives a more accurate ans'ù/er in slighily less CPU time than the (1,5) equation with

s : 213, which makes the (1,3,3) method more attractive if this advantage can be

utilised. Thus whether or not the (1,3,3) equation is practical to use is dependent

on any CPU and/or accuracy restrictions on the solution, such as a minimum spatial

resolution being required.

To cover cases where the sixth-order (1,3,3) equation is not practical to use, further

investigation of the weighted equation (2.5.3) is warranted. The choice of

I :'r::,-" (2512)

leads to the weil known equation of DuFort and Frankel (1953) , namely

{t. + zs}r7+l :2s(ri_, r ri+) + {1 - 2s}ri-L (2.5.13)

This equation has the advantage that is is von Neumann stable for ali s) 0, so there

is rro limit on the size of. the time step that may be ta,ken for a given grid spacing. In

order to dctcrrnine the accnracy of this equation, the modified ecluivalent equation is

derived, and tb.e leading error terms are found to cont¿in the factors

fr(") : l2's2-I

lu(r) : -(720s^ - t20s2 + 1) (2.5.14)

41

CHAPTER2.l-DDIFFUSI}N-DIRICHLETCONDI"ION42

Thus the DuFort-Franker equation is only second-order accurate in general, although

it becomes fourth-order in the special case s : 7l Jlz, when the factor Iln(") vanishes'

In the ,,optimal" case, however, the value of s is fixed', and so no use can be made

of the extra stability lange. In the general case, the equation is only second-order

accurate, and. as can be seen from fn(r), the magnitude of the error coefficient rises

quadratically as s is increased. Thus the numerical error associated with this method

increases enormously if s is increased to take advantage of the extra stability'

Although it has been successfully applied by many workers in the past, including

Fromm and Harlow (1963) and Hung and Macagno (1966), the DuFort-Frankel equa-

tion is of little practical use due to its being only second'-order accurate for general

values of s.

A better method than DuFort-Frankel, although not as accurate as the sixth-order

equation investigated earlier, is the fourth-order weighted equation (2'5'6)' This equa-

tioncanbere-writtenintermsofasingleweight'bysubstituting

0 :), - 2'y, (2'5'15)

giving the equation

_6{1 + 0}"î*, : {1 - 12s - 60s}(ri-' + "å')}
+ {-2+24s*720(s -t)}ri
+ {6es - 1X'i- + "åï)
+ {6á(1 - 2') - +}ri-' ', 0 + -7' (2.5.16)

This equation is at least fourth-order accurate for all s > 0 (it includes the sixth-order

equation discussecl above as a special case) ancl stili contains one free weight, which

can be usecl to try to increase the stabiliiy of the method'

In the case d : -1, the value ri+t is eliminatecl from the finiie-cliffereflce equation'

What rerna,ins is in fact a fourbh-orcler implicit equation, written at time levels n

trÙcl (n - 1), wirich w¿r.s fi.rst clerivt:cl by crantlall (1955)' This eqrration' which is

unco[dil;ionalìy stable (Figure 2.9), is discussecl irr more detail iD Section 2'8 below'

CHAPTER2.l-DDIFF:]SßN-DIRICHLETC2NDITION4S

Equation (2.ö.16) can now be entered into the numerical von Neumann stability pro-

gram, to try to find. a form ror 0, which may depend on s, that will maximise the

stability of the resulting method. The resulting plot, shown in Figure 2'9, shows that

the stability range increases as d > 0 increases, although the range never exceeds

s <1f2, Q'5'77)

and only approaches this value slowly as d becornes large'

0

3.0

2.0

1.0

0 s

0.1 0.2 0.3 0.4 0.5

-1 .0

-2.0

Figure 2.9: Stabitity plot in the s-0 plane of th,e weigh'ted (1,3,3) equution (2'5'16)

Tl¿e d,a,shed, Iine is the upper bounil on tl¿e stability region for 0 > 0 (2'5'17)'

The problem with letting d become large is, as for the DuFort-Frankel method above'

use of the increased stability range will degrade the accuracy of the solution' To see

this, the fourth-order error coefficient

,": #(1 - 10.s * 40s2 * i0ds(6,s - 1)) (2.5.18)

is ex¿rmine<l, and it is clear that for s > 716 this coeffi.cient increases linearly with d'

Also, as s is increased for a given 0) 0, the error coefficient increases quzrdratically'

Thus the gain in siability, which was ¿irne<f al, redr¡cing ihe cPU tirne rcquirecl, is

offset by a loss of accuracy, which is unaccepiable'

CHAPTER2.l-DDIFFT]SI}N-DIRICHLETC2NDITION44

These theoretical expectations aJ'e clearly derlonstrated by a numerical test of this

technique. If the method is run with I - 100, which gives stability up to s (0'4+,

the results shown in Figures 2'10 and 2'111' ate obtained'

-à(--
-€-
4t-

s = 0.100O

s = 0.2500

s = 0.3333

s = 0.4000

M= 4.72
M = 5.55
M = 5.91

M = 6.13

10

NUMBER OF GRIDSPACINGS

40

1.5

- LoG (^x]
10

100

2 0

_o
10 -

1 o-8

10-7

1 0-6

1 0-"

I O-4

8 É
o
cc(r
llJ
zo
f-
an

F
ul
É.o
u)
o

7:
's¿

()
o
J

I

4
1

Figure 2.\0: Error as grid. spacl,ng gro,ph for th,e fourth'-oriler (1,3,9) method' (2'5'16)'

uith 0: 100

Two points are obvious from these results. Firstly, the graphs, while being close to

straight lines, have slopes somewhat larger than the expected values' rvhich indicates

that for this set of initial and boundary conditions some cancellation of errors is

occurring. secondly, and more importantly, is the drop in acculacy as s is increased

towards the stability limit, which confirms the predictions that using the extra stability

range wouid. cause a loss of accuracy. This loss is not so great as to render the method

useless, however, since s is constrainecl by ihe stability iimit, so depending on the

circurnstances of the solution its use may be considerecl'

Overall, l¡oth the sixth-order and the weighted fourth-order (1,3,3) equations provicle

praciical solutions, a,lthough the practicality of each is <lcterrnined by the requirements

at the time of solution. Noi;e l,hat while the siability of the foulth-order (1,3,3) ecluiì'-

CHAPTER2.l-DDIFFUSI2N-DIRICHLETC2NDITION
45

-)+-+
-+t-

s = 0.1000
s = 0.2500
s = 0.33f|3
s = 0.4000

M = 1.6f
M= 1.90

M = 2.04

M = 2.11

9

0.1 o.4

CPU TIME (SECS)

1 4 10

0 5

40 100

2.O

_o
10 -

1 0-8

10-7

1 0-6

t
1 0-"

1 0-4

(f
o
cc(r
uJ
z
o
F
IF
rll
É.
oIo

8

7

6

5

:
IL

oo
J

I

4
0

LoG (cpl
l0

Figure 2.1!: Error us cP[J time graph for th'e fourth-ord'er (1,3,3) method (2'5'16)'

with 0: 100

tion is somewhat less than that for the (1,5) equation, the (1,3,3) equation does not

require special treatment near the boundaries, rvhich may be an advantage in some

situations

2.6 The Optim"l (1,5) Method

As discussed in section 2.5 above, an alternative explicit method to the fourth-order

(1,3,3) equation is the fourth-order (t,5) equation (2'3'8)' namely

I2ri+1 : {s(6s -t)\(ri-z|ri+z)
+ iss(2 - e")x'i , * rî+r) + {6(2 - 5s * 6s2)}ri (2'6'1)

However, there are problems with implementing this equation next to the borrndaries'

since the equation then involvcs gricl points outsicle the solution domain'

Nevertheless, it cloes avc-¡icl the stability and elror trade-off encountered wiih the

CHAPTER2.l-DDIFFUSI2N-DIRICHLETC?NDITION 46

fourth-order (1,3,3) method. To show this, we find the von Neumann amplification

factor for the (t,5) equation, which is given by

3 6s-1) (2.6.2)G(s, cos B) : 3

where B - mra,¿ and m is a wave number. For von Neumann stability, we require

lcl < 1 for ar| B. (2'6'3)

In order to satisfy (2.6.3), given that s) 0 for the equation to be of practical use' we

requrre

0<s <213, Q'6'4)

which is the resurt stated in Section 2.4 above. The complete derivation of this result

is given by Noye and Hayman (1986a). This is the largest stability range of any of

the methods developed so far, except for the DuFort-Frankel' More importantly, the

numerical error is independent of the stability limit, so the method should produce

reasonably accurate results even if s:213 is chosen'

Sincetheequation(2.3.8), whenapplied at j - 1or j - J - f involvesgridpoints

outside the solution domain, an alternative method must be employed to find the

values at rl+r and ri1f.

This method must be of the same accuracy as that used for the rest of the solution

domain, and should also be von Neumann stable over at least the range deflned in

(2.6.4). one way to create such a method is to approximate l]he ô2rf ôr2 term in an

off-centred fashion that contains enough grid points still to be fourth-order' such a

method, developed' by Noye and Hayman (1986a), is

12ri+1 : 2s(5 *6s)rfr+3(4_ 5s _ 78s2)ri *4s(24s_I)"i

+ 14s(1 - 6s)ri * 6s(6.s - I)ri * s(1 - 0s)ri (2'6'5)

at the r : 0 boundary with the mirror-image equation

12r'!+r : "(1 - 6s)r!-uf 6s(6s -r)r'i-o*14s(1' -6')tL"
+ 4s(24s - L)rÏ-, + 3(4 - 5s - 78s2)r!-, -l- 2s(5 * 6's)ri (2'6'6)

co"2 B* 1{ïjÐcosB* -it4

CHAPTER 2. l-D DTFFUSION - DIRICHLET CONDITIO]V 47

being used at the r : 1 boundary. To verify the accuracy of these equations' their

mod.ified. equivalent equations are examined. The two equations a¡e found to have the

SameMEPDE,andtheleadingerrortermcontainsthefactor

fu(r) :2(30s2 *76s - 13), Q'6'7)

whichverifi'esthefourth-orderacculacyoftheequations.

The von Neumann stability range, however, is not large enough to allow the use of

these equations d'irectly. The range, computed numerically' is

0(s<0.29..., (2'6'8)

which is a significantly smaller range than that given in (2'6.a)'

The only way around ihis problem is to use the formulae (2'6'5) and (2'6'6) with

k smaller time steps at the boundary, which then necessitates calculating values at

the time levels (n+ilk)Lt fot i: L,,2,3,..., k -I , i :0,7,2,3,4,5 and also for

j : J - 5, J - 4,, J - 3, J - 2, J - I, J. Alternatively, a single formula can be derived',

which is the equivalent of ,k steps using, say, (2.6'5). This formula however is extremely

complicated, with coefficients that are polynomials of large degree in s' so a simpier

method was sought.

crandali (1955) developed. an optimal (3,3) implicit method, based on the computa-

tional stencil shown in Figure 2.12. This equation, which is the most accurate possible

wiih this computational stencil, is

{r - osXri-T + ",1T)
+ 2{5* 6s}r,?+1

: {r + os}(r;1 + r,!r) + 2{6 - 6s}ri, (2'6'9)

which has a moclified equivalent equation that can be written in the general form

(2.2.4), with a leacling error term which involves the factor

fu(") :|0 -, 0s) (2.6.10)

which shows that the methocl is fourth-orrler accurate. When used on its own Lo solve

the diffusioD equation (2.1.1), this methocl, being implicit, I'r:quires the solution of a set

CHAPTER2.l-DDIFF:¡SI)N-DIRICHLETC2NDI"ION48

of linear algebraic equations at each time level. Even though the relatively efficient

Thomas (1949) algorithm can be used, this is a time-consuming process compared

to the use of explicit methods, and is the main disad'vantage of implicit methods in

general, particularly for solving multi-dimensional problems'

ooo
t,n o

(i,t')

X,J

Figure 2.72: computational stencil for the bound'arg scheme based" on crandall's (3,3)

method'

For the pufposes of overcoming the boundary problems inherent in the (1,5) explicit

scheme, however, Crand.all's equation can be used' in an explicit fashion to find the val-

ues rf+1 and r]111. This is possible because the values rff+l and t!+r al the boundaries

are known from the Dirichlet boundary conclition (the case of the Neumann conditìon

is discussed below in section 3), the values rl+t and'r!!) ate known from the main

formula and all the required values at time level n are also known' This leaves only

one value unknown in crandall's formula at either boundary, so the equation can be

re-arrangecl to give this value explicitly, namely

2{5 + 6s}rr?+1 : {6t - l}(tit +'ili)
+ {i + 6s}(rr1- 1+ "i¡) + 2{5 - 6s}ri (2'6'11)

wlrere j :7 is usecl at the r -- 0 boundary, and j - J - 1 is used at the t: I

bounclary.

one of thc ma.in rea.sons for trying this methocl is tliat crandall's implicit equation is

boih fourth-orcler accura,te for all s) 0 a¡cl also unconclitionally von Neumaln stable,

so it is hopecl that this shability will also be apparent in the rearranged fbrm' whcn

oo

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 49

equation (2.6.11) is checked numerically for stability, remembering that two of the

vaJues come straight from the boundary conditions and hence play no part in error

accumulation, and the other known value at time level (n f 1) is calculated from values

at time level n via the main formula, the von Neumann stability region is found to be

0<s<0.95. (2.6.12)

This is much larger than the stability region for the interior of the solution domain,

so use of this boundary scheme imposes no extra restrictions on the method' This

being the case, this technique of overcoming the boundary problems associated with

the (1,5) equation is to be preferred over the use of the off-centred approximations

and multiple steps at tire boundaries described above.

The actual results, obtained for the Gaussian peak def.ned by (2.2.78) and shown in

Figures 2.13 and 2.14, are very close to the expected ones; the graphs are straight

lines with slopes very close to the predicted values of 4 and 413 for the error and CPU

graphs respectively. The errors are much smaller than those of any other fourth-order

method. that has been considered so far. Even compared to the FTCS equation in the

optimal case when s :116, which gives results of similar accuracy to the (1,5) method,

the (1,5) method is superior in terms of computer time used. This is because the (1'5)

method with s :113 gives the same accuracy as the FTCS method with s : 116,

but can use twice the time step for a given spatial grid, due to the larger value of s.

This means that the same time level can be reached in only half as many time steps,

which significantly reduces the computational time required. It is interesting to note,

however, that of all the values shown, the value s : 0.25 uses the smallest amount

of CPU time to achieve a given accuracy. This coincides with the minimal value of

the error coefficient fu(r), given in equation (2.3.9), although experience with other

equations of different accuracies shows that in general terms the two values are merely

related and not necessarily equal. Compared with this is the fact that the srrallest

amount of CPU time required to gencrate a solution (indcpendent of the accuracy)

occurs for s : 2/3, which is the expected result since larger values of s allow larger

time steps and hen<:e use less cornputer time.

Compar.ecl to the fourth-order (1,3,3) ccluation (2.5.16) thc (1,õ) equation is superior

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION 50

--)<- s=0.1250 M=
+ s= 0'1667 M=
+ s= 0.2500 M=
--tl- s=0.G|3Íl M=
-€- s=0.5000 M=

NUMBER OF GRIDSPACINGS

40

1.5

- LOG (axl
l0

4.01
4.O2

3.95
3.S0
4.00

10 100

2.O

10-11

1o-10

1 o-9

1 o-8

I

I

:o
oo
J

I

11

10

0.1

1.0

fr
oÉ(f
uJ
z.o
F
U)
F
ul
cro
U)
o

10-77
1 0

Figure 2.73: Error as grid, spl,cing grapll for the fourth,-order (1'5) metlt'od, (2.3.8)

-x--.+
è
--.â-

s = 0.1250
s = 0.1667
s = 0.2500

s = 0.3333
s = 0.5000

M=
M=
M=
M=
M=

1.39
1.39
1.37
1.37
1.38

1l

10

cPU TIME {SECS)

o.4 1 4 10

0.5

LoG {cp}

40 I00

2.0

1o-1 1

1 0-7

I

I

:
o

(t
ô
J

I

cÉ

-^-10 9tu +G
tlj
z
o

1o-s E
U)
tr
tx
É.

1o-8 Iô

,_

Figrrre 2.74: Error us CPIJ time graplL for th,c fourth'-o'rrleî (1,5) mclhotl (2.3 B)

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION 51

in terms of both accuracy and computer time used. The use of Crandall's formula to

overcome problems next to the boundary means that there is no need to use any grid

points beyond. the physical soiution domain. Also, the von Neumann stability range

of the (1,5) equation is greater than that for the (1,3,3), which allows larger time steps

to be taken for the same grid spacing, so reducing the amount of CPU time required

in cases where a specified spatial resolution of the solution is required.

In summary, the preferred method of solution of the diffusion equation (2.1.1)' amongst

the explicit methods discussed above, is either the sixth-order (1,3,3) equation (2.5.9)'

if its stability restriction is not a problem or the fourth-order (1,5) equation (2.3'8)'

using the rearranged Crandall formula (2.6.11) at the boundaries. These have been

shown to give the most accurate answers, using only modest arnount of CPU time and

are very straight-forward to implement.

2.7 The (r,s,r) Method

Although the optimal (1,5) equation presented above provides high accuracy and a

good usable region, it is possible that even better methods may be possible using a

larger computational stencil. An attempt has been made to produce an even more

accurate method by extending the computational stencil to include the (j, n - 1) grid

point. This leads to a flnite-difference equation based on the (1,5,1) stencil shown in

Figure 2.15.

The (1,5,1) stencil allows the use of two weights, one for the spatial derivative in

exactly the same way as was done for the (1,5) equation, and another for the time

derivative. Thus the weighiing used is

0rl_t
atl

02r I_t
0r2l

j
n

l

d x [FT ut (i,")] + (1 - d) x ICT zL (j,n)],

tp x [CS3 ot (i,")] + (t - e) x [CS5 at' (j,n)]. (2.7.1)

CHAPTER 2. l.D DIFFTISION - DIRICHLET CONDITION 52

(2.7.3)

t,n

o

ooooo

o

X'J

0

Figure 2.75: The (1,5,1) com'putational stencil

This weighting produces the fi'nite-difference equation

o{d + t}rî*' : s{p -t}(ri-z+rh)*4s{a- ç}Oi-*ri+)
+ 6{es*20-ls}ri+6{1 -0]¡"i-', 0#-1, (2'7'2)

which has a correspou.ding modified equivalent equation whose leading error terms

contain the factors

fn(")

ru(")

: 60s-g,

From this, it is apparent that the equatiorr(2.7.2) is consistent with the one-dimensional

diffusion equation (2.1.1), and is, in gerreral, second-order accurate. However, the

choice of weights

2 130s2
15s

4 * 60s2
(2.7.4)

5

forces the terms 1,,(") : l6(s) : 0, so the equation resulting from the substitution

of these values shoulcl be sixth-ordcr accurate. Note also that for all re¿l.l s, the

substitution (2.7.\ satisfies the restriction I + -1on equa,tion (2.7.2). In fact, the

v

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION 53

resulting equation is

-2{30s2 t 15s +z)ri*t : r'{1 - 60s2}(rîz+ "i*r)
16s2{4 -. t1s'}(ri_1 + {r)
2{180sa-3s2 +a}ri

+ 2{30s2 - 15s -12}ri-t. (2.7,5)

It ca¡ be shown that this equation is in fact sixth-order, as expected, and that its

modified equivalent equation contains the factor

tr(") _ B4oos4 - 7oos2 + 16
el.6)

5

in its leacling error term. The von Neumann stability range of the equation (2.7.5) is

given by

s(0.51..., (2.7.7)

which, while it is not as large a range as that for the fourth-order (1,5) equation, is still

large enough to be useful in practice, especially since there should be a significant gain

in accuracy due to the increased order of accuracy of the finite-difference equation.

One complication with practical implementation of this method is the problem of

determining the approximation at the grid point next to a boundary. This was solved

for the (1,5) equation by using Crandall's fourth-order (3,3) equation, but this may

detract from the sixth-order accuracy of the (1,5,1) equation. Other possible solutions

to the probiem, such as sixth-order methods wiih a more compact or off-centred stencil

or interpolation of the correct accuracy, severely limit ihe von Neumann stability range

of the whole irnplementation, which may detract from the effectiveness of the rnethod'

For this reason, Crandall's equation will be used initially, in the same way as it was

for the (1,5) equation.

Another problem, associated with the fact that this equation uses values from three

time levels, is the need to use another technique to compute the first time step. Since

explicit two-level sixth-order methods tencl to be very unstaìrle, their use would un-

rrccessarily cornplicate the starting procedure, if there is sorre other less complicaied

starting mcthod, which gives acceptable results. In fact, therc are several such start-

irrg methocls. The best rnethods are either the þ-TCS ecluation with s :716, whichis

CHAPTER2,l_DDIFFTISION-DIRICHLETCONDITION 54

simple to implement but which would require several time steps to reach the required

time equivalent to one time step of the (1,5,1) equation with a larger value of s, or

the fourth-order (1,5) equation, which requires extra work at the boundaries, but is

stable over the entire stability range of the (1,5,1) equation and so needs to be used

for only one time step to find. the required starting values. It is found in practice that

the actual (fourth-order) starting scheme which is used makes little difference to the

final results obtained'

The results from implementing this scheme in practice are shown in Figures 2'16

a,,d. 2.77. The most obvious thing about the graphs is that the slopes of the lines

are all as would be expected for a sixth-order method. Thus the use of the Crandall

equation at the boundary and. the fourth-order starting scheme have not detracted from

the accuracy of the method in this case. Note however that in a different application

this may not be the case, and then some other technique such as those mentioned

above may be required at the boundary. Whether the increase in CPU time usage

arising from the much smaller stability range is justifi.ed by the high accuracy method

would, need to be determined for the particular application.

Notice that the minimum CPU time required to generate a solution of a particular

accuracy occur's for s : 0.2, which is very close to a local minimum of the coefficient

lr(r) given in equation (2.7.6). Another feature of Figure 2.77 is that the CPU usage

is 'ot much greater than that for the two fourth-order methods discussed earlier (see

Figure 2.I4), so this method. appears to be a better overall method than the fourth-

order ones

If t¡e sixth-order (1,3,8) equation (2.5.9) is used to filÌ in the value next to the bound-

ary at each time step, then the entire method, after the starting procedure, is sixth-

orcler. This cioes introd.uce, however, a much more restricted von Neumann stability

range) silce it was shown in Section 2.5 above that ecluation (2.5.9) is only stable and

consistent for

s < 116. (2.7.8)

The results of cloilg this, shown in Figures 2.18 and 2.19, ale very sirnilar to thosc fi'out

CHAPTER2.l-DDIFFUSI1N-DIRICHLETC2NDITION
55

s= 0.1000

s= 0.1667
s = 0.2000

s = 0.3f¡*l
s = 0.5000

M = 6.35
M = 6.31

M = 6.3Íl
M= 6.fi
M= 6.(M

10

NUMBER OF GRIDSPACINGS

40

cÉ
oÉ
tÍ.
t¡J

z
It-
att
tr
uJ
É.oIô

o

oo
J

I

I

I

7
1

13

12

11

10

100

2.O

1o-13

10-12

1o-11

1o-10

1 o-9

1 o-8

10-7
0 5

- LOG [ax]
10

Figure 2.16: Error us grid. spacing graph' for the sitth-ord,er (1,5,1) meth'od" (2'7'5),

using Crand,all netl to the bound'aries

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION Ðo

0.1 0.4

s = 0.1000

+ s= 0.1667
s = 0.2000

+t- s= 0.33Í13

-ê- s = o.5ooo

cPU T|ME (sEcS)

1 4 10

M=
M=
M=
M=
M=

2.',t5
2.15
2.15
2.09
2.05

40 100

l¿

o0
J

I

13

12

11

10

to-13

10-12

IO-l1

io-10

l o-9

i o-8

ro-7

É,oE
É.
t¡J

zo
l-
U'
tr
ul
rro
9.o

I

I

o
7
-1 2 00.5

LoG (cpJ
'10

Figure 2.77: Error as CPU time graph, for tlte sirtl¿-order (1,5,1) metl¿od, (2.7.5), using

Crandall nert to the bound,aries

CHAPTE,R 2. l-D DIFFUSION - DIRICHLET CONDITION Ðl

using Crandall. The difference is that this technique is slightly more accurate, and also

uses somewhat less CPU time to gain a specifred accuracy. Thus it is seen here again

that a restrictive stability range does not necessarily increase ihe CPU requirements

of the method, unless there is some minimum spatial resolution required.

-X--..+
-a-

s = 0.050O

s= 0.1000
s = 0.1429

M = 6.05
M = 6.02
M = 6.06

10

NUMBER OF GRIDSPACINGS

40 100

14 ro-14

13 1o-13

12

11 1o-11

-o10 -

8 r o-8
1.0 1.5 2.O

- LOG lax)

Figure 2.18: Error as grid, spacing graph for th,e sirtlt-ord.er (1,5,1) method (2.7.5),

using sirtl¿-ord,er (1,3,3) nert to ll¿e boundaries

Attempts at producing even higher-order methods, particularly one based on a (1,5,3)

stencil, produce finite-differences equations which tend to have severely limited von

Neumann stability ranges and also have modified equivalent equations which involvecl

coefficients which were too large to be dealt with on the VAX system being useci in the

time available. Such equations, while they may be of use after further investigation,

are thus not considered here.

2
É,o
fE
É.
ul
zo
F
u)
Þ
uJ
fÍo
Lo

o

oo
J

I

0-

0-10
0

Overall, of the explicit methods examined, the preferred method is to use either the

sixth-order (1,3,3) equation or the (1,5,1) equation with the problems near the bound-

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION 58

--++
s = 0.0500

s = 0.1000
s= 0.1429

M= 2.O7

M= 2.O7

M = 2.10

cPU TIME (SECS)

0.l 40 100 400 1 000

14 1o-14

13 1o-13

't2 1o-12

11 1o-11

1o-l0

1 o-9

1 0-8

LoG (cp)
l0

Figure 2.19: Error u CPU time graplL for th,e sixth,-oriler (1,5,1) metltod (2.7.5), using

sixtl¿-order (1,3,3) nent to the bound'aries

0,4 1 4 10

fro
cÉ
cr
IJJ

zo
F
U)
tr
t¡l
cÉo
Lô10

IL
(5
o
J

I

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION 59

aries overcome using either the sixth-order (1,3,3) equation or Crandall's equation.

The fourth-order (t,tr) and (1,3,3) equations, however, also produce very accurate

results for the test problem, and may be useful tools depending on circumstances.

2.8 Implicit Methods

The methods that have been examined so far have all been erplicit in nature. It

is possible to employ implicit methods, where the finite-difference equation relates

several values at the new time level to values at previous time levels.

Implicit methods have enjoyed considerabie popularity, since in general they tend to

have much larger stability ranges than explicit methods. The major drawback with

implicit methods however is that they require the solution of a set of linear aigebraic

equations for each time step, which requires both extra storage space and extra com-

putation time on a computer. Furthermore, the solution of this set of equations can

impose extra restrictions on the use of a method, since the algorithms used to solve

such equations are also subject to numerical instabilities. It is also worth noting again

that an equation with a large stability range does not necessarily use less CPU time

to generate a solution to a given accuracy.

Another undesirable feature of implicit methods is that they cannot make full use

of array processors. For an explicit method, any value at the new time level can

be computed directly from values at previous time levels, so the full power of array

processors can be used. This is noi the case for implicit methods, where values at

the new time level are expressed in terms of other values at the same time level, and

recluire the solution of a set of linear equations to find the individual values.

For implicit methods that use only three grid poìnt at time level (n + 1), the most

efficient way to solve the set of equations is the Thomas algorithm (Thomas, 1949).

This is a specialised case of Gauss eliminaiion with baclt substitution for the tri-

di;rgona,l systems of equations which such methods gcnerate. A sufÊcient condition

that this a,lgoriihm gives correct results is that the coefficient matrix of the systcm of

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITIO]V 60

equations be diagonaliy dominant, which means that for every row of the coefficient

matrix A: la¡¡l r_r
lot;l > Dl",¡|, (2.8'1)

j=t
i+i

with strict inequality holding for at least one row. \Mhile there does exist a stronger

definition of diagonal dominance, the condition (2.8.1) is adequate here due to the

form of the implicit finite-difference equations. This extra condition wiil be referred

to as soluability, and when combined wiih the von Neumann stability condition will

define the total region for which the method is actually usable.

One of the earliest implicit methods, and one which is still widely known and utilised, is

that due to Crank and Nicolson (1947). It is derived by splitting the spatial differencing

evenly between time levels n and (n * 1), which leads to the equation

{slz}(ri!i +",T,')+{1 + "}ri*'
{s l2}(ri_, * ri*) + {1 - "}ri. (2.8.2)

This equation has the advantage that it is both von Neumann stable and solvable for

s)0, (2.8.3)

(Noye, 1984) which means that in theory the time steps can be macle arbitrarily large.

The modified equation corresponding to equation (2.8.2) has leading errors involving

the terms

rn(')

ru(")

-1

-(1 + 30s2) (2.8.4)

From this, it is seen thai the Crank-Nicolson equation is only second-order accurate,

but it does have the advantage that the size of the leading error term is independent of

s. This mcans that large time steps can be used, although the resulLs are constrainecl

by the second-order accuracy.

Numcrical results for this rnethod, shown in Figures 2.20 and 2.2I, vcriÍy the theoly

above. Tl.re error gra',phs are almost idenbical, independent of s, exeept for a slight

CHAPTER 2. l-D DIFFUSION _ DIRICHLET CONDI?IOIV 61

deviation for s : 8 with ../ : 30. This is caused by the magnitude of the coefficient

of the fourth-order error term, lu("), which is given above, becoming large and thus

increasing the fourth-order error to the point where it makes a signiflcant contribution

to the overall error. Once this happens, the errors increase in proportion to s2, and

the accuracy of the method is destroyed. Also, the errors themselves are much worse

than those obtained. by the fourth-order explicit methods, and the savings in terms of

CpU iime used, are small at best. Overall, this method is of little practical use given

the accuracy and efficiency of the explicit methods developed earlier.

--x-
_F
+
-Et-

s = 0.5000
s = 1.0000

s = 2.@00
s = 8.0000

M = 2.00
M = 2.00
M = 2.01

M = 2.4s

10

NUMBER OF GRIDSPACINGS

40

1.5

- LOG {ôx}
10

100

6 1 o-6

E
1 0-"

l o-4

'r o-3

Ã

4

:
o¡

oo
J

I

É.
o
É,(f
IJJ

zo
tr
U)
tr
uJ(f
o
1t

õ
3

1 0 02

Figure 2.20: Error us grid spacing graph for th,e (3,3) Cranlc-Nicolson metlt'od' (2.8.2)

In ord.er to obtain more accuracy while still using the same computational stencil, the

differencing of the spatial derivative can be split between time levels n and (n + t)

in a more general fashion than used by Crank and Nicolson, This is done using one

weight, á, by expressing

#1,=d x [cs ut (i,r,)] + (1 - d) x lcs ot (i,n + 1)]. (2.s.5)

The resulting finite-difference ecluation is

"{0 - 1}("ii,'+,.rï+i) + {t *2.s(1 - 0)}r';+t

: 0.s(ri; * rî*r) + {1 - 20s}ri, (2.8.6)

CHAPTER 2. 1-D DIFFUSION - DIRICHLET CONDITION 62

-x---e----Á-
+¡-

s = 0.5000
s = 1.0000

s = 2.0000
s = 8.00m

M = 0.67
M = 0.67

M = 0.68
M = 0.86

cPU T|ME (SECS)

0.01 0.04 0.1
6

0.4 1 4 10 40 100

1 0-6

1 o-s

1 o-4

1 o-3

LoG {cp)
t0

Figure 2-2!: Error I)s CPU tirne graplr, for the (3,3) Cranlc-Nicolson method (2.8.2)

which reduces to the Crank-Nicolson equation (2.5.2) in the particular case of 0 : 712.

The modified equivalent equation couesponding to (2.8.6) has leading errors involving

fr(") :720s - 6s - 1, (2'8'7)

from which it can be seen that the method can be made fourth-order accurate if d is

chosen as

s::+ + (2.8.8)
2',72s

The result of this substitution is Crandall's fourth-order equation

{1 - 6sxriÏ + ",iÏ) +2{5 * 6s}ri+1

: {1 + 6s}(1i1 * "jf ,) + 2{6 - 6s}ri, (2.8.e)

which was used earlier to solve the boundary problems of the fourth-order (1,5) equa-

tion. This method is both von Neumann stable and solvable for all values of s) 0 and

it is fourth-orcler accurate for all s except for s : 7l\Æ, when it is sixth-order. This

optimal value, which can be derived from the modified equivalent equation coefücient

(2.6.10), can be used in practice to give good results, but the small value of s requires

small time steps and so incrcases the amount of CPU tirne rcquirecl. Thus practical

use of this optimal value depends on the accepta,bility of this restriction.

5

4

3

:o
(,
o)

I

cr
o
É.
cr
l¡J
zo
tr
U)
Ful
cco
an

õ

CHAPTER 2. l-D DIFFUSION - DIRICHLET CONDITION 63

Indiscriminate use of the extended usabie region of equation (2.8.9) is again not pos-

sible, since the fourth-order error coefficient contains a term involving s2. Thus as

s is increased to use larger time steps, the size of the dominant error term increases

quadratically, which eventually degrades the solution to the point where the results

are useless.

Again, numerical experiments verify the above theory. By comparing Figures 2.22

¿;nd 2.23 with Figures 2.20 and 2.21, it is obvious that the answers are much more

accurate than those produced by the Crank-Nicolson method, although for s à 1 they

are not as good as the resuits for the (1,5) explicit method in its stable range. This

means that any reduction in CPU time due to using large time steps is obtained at a

direct cost to the accuracy of the final solution. It is apparent that the increased CPU

time involved in solving the set of linear algebraic equations is minimising the saving

due to the larger time steps.

A comparison of efficiency of this method against the fourth-order (1,5) equation is

also useful. To get accuracy of 10-8 using the fourth-order (1,5) equation, Figure 2.74

indicates that less than one second of CPU time is required. T.o get the same accuracy

from Crandall's equation requires at least three or four seconds of CPU tirne, from

the results of Figure 2.23. This comparison too indicates that the implicit methods is

not as effi.cient for practical use as the explicit methods discussed previously.

Higher order implicit methods (sixth and even eighth order accurate) are possible

using such computational stencils as a (3,3,3) or a (5,5). However, methods that

use spatially wide stencils, such as a (5,5) equation, have extra problems near the

boundaries, and as yet no way has been found to deal with these that does not detract

from either the accuracy of the final solution or the stability of the method or both.

As well as this, these methods however tend to have very sma1l usable ranges such as

s<1/6 (2.8.10)

or even less. This means that extremely small tirne steps must be used, which dramat-

ically increases the amount of computer timc needed to find a solution. Such rnethods,

bcing irnplicit in nature, also require, as previously mentionr:cl, the solution of a set

CHAPTER 2. l-D DIFFIISION - DIRICHLET CONDITION 64

-x---€-+
-+l-

s = 0.5000
s = 1.0000

s = 2.0000
s = 8.0000

M = 3.99
M = 3.99
M = 3.96
M = 3.87

10

NUMBER OF GRIDSPACINGS

40

1.5

- LOG {ax)
t0

100

2.0

1o-10

1 0-9

I O-8

1 o-7

1 0-6

10

(r
o
É.
É.
ul
z
o
tr
aFtlj
ccoIo

I

I

7

:o
oo
J

I

5
1

Error as grid, spt,cing graplL for Crand,all's (3,3) rnethod' (2.6.9)

t o-5
0

Figtre 2.22

--å<---+-+-
-Et-

s = 0.5000
s = 1.0000
s = 2.0000
s = 8.0O00

M:
M=
M=
M=

1.trr
1.37

1.33
1.37

CPU TIME (SECS)

0.01 0.04 0.1 0.4 1 4 10 40 100

10 1o-10

1 o-s

1 o-8

1 0-7

1 0-6

5 1 o-5

LoG (cp)
t0

:o
(,
ô)

I

8

7

6

É.
o(f
E
L!
zo
F
<n
Ftlj
cÉo
U)
ô

Figure 2.23: Emor as CPIJ time groplL for Cro,ndall's (3,3) metlt'od (2'6.9)

CHAPTER2'l-DDIFFUSI}N-DIRICIilETC)NDITIoN6S

of equations for each time step taken, which further adds to the computer time used'

In view of these as yet unresolved problems, such methods are not considered in this

work.

2.9 Summary

From the above, it is apparent that crandall's method, while being by far the besi

of the practical implicit methods, is not in general an improvement over the explicit

methods developed earlier, in terms of either accuracy or cPU time used' Given this'

the explicit methods are stiii preferred. since they d'o not require the solution of sets of

equations, and are thus easier to implement. AIso, since our ultimate goal is to produce

methods for solving the two-dimensional diffusion equation, the solution of a set of

equations at each time step is undesirable, because the extra cPU time required to do

this increases enormously in two dimensions due to the mole complex structùre of the

coefficient matrix and the much larger number of equations to be solved' The most

obvious advantage of the implicit metLods, that of having unlimited usable ranges'

has been shown to be counteracted by a large increase in the size of the errors if the

value of s is increased. For small values of s, the extra CPU time required to solve the

set of linear algebraic equations at each time step, as weli as the slightly larger errols

for the.impiicit methods, make the explicit methods better to use'

Explicit methods appear to be the best methods to use to solve a practical problem'

Exactly which methocl is the "best" is dependent on circumstances, there being trvo

different choices. If a small von Neumann stability range is acceptable, which is the

case where the use of coarse gricls is possible and/or accuracy is the prime concern)

then one the sixth-order equations is clearly the best choice' If, however, cPU time

is a prirne concern, then the fourth-orcler (1,5) equation will be the best choice of

solution techni<1ue, since it offers the largest von Neumann stability range'

The 1ack of a single ,,best" technique is a relìection of the fact th¿l.t there are many

rlifl'erent f^cl;ors involvecl irr a solution, some of which will be more important than

others i* each specifi.c ca,se. The irnportant thing founcl herc is th¿rt restricted stability

CHAPTER 2. l-D DIFFUSION - DTRICHLET CONDITION 66

ranges do not necessarily count against a high-order method, since such a method can

produce extremely accurate results of a relatively coarse grid. Amongst methods of the

same order of accuracy, however, the one with the largest stabiliiy range will generally

use less CPU time to generate solutions.

Chapter 3

The l-D Diffusion Equation with a

Neumann Boundary Condition

3.1- Introduction

The preceding work is based on the assumption of having Dirichlet boundary condi-

tions, namely conditions of the form

î(0, ú) : s{t)
î(1, ¿) : sz(t). (3.1.1)

The other case that needs to be considered is the Neumann boundary condition, where

at least one of the boundary conditions is given in the form

aî
ã: "'(r). (3.1.2)

The foilowing work assumes that such a boundary condition is given only at the

ø : 0 boundary, although the principles used to solve this case can be applied at

lhe r : 1 boundary as well. Such a boundary condition usually arises in practice

where, for example, there is an impermeable barrier or layer, which is represented

rnatlrematically as there being zero velocity across the boundary (Bear, 1972). Other

c¿l,scs where the (non-zero) velocity across a boundary is krtown are, ltowever, possible

as well.

67

CHAPTER 3. l-D DIFFUSION - NEUMANN CONDITION

The additional problems with this type of boundary condition arise from the fact that

the value on the boundary at the new time level is unknown. This means that one

of the values rfr+l and rf+l must be found without requiring knowledge of the other

value. This extra value to be calculated near the boundary requires different handling

of the boundary problems to that used for the Dirichlet case.

In order to incorporate a boundary condition of the form (3.1.2) into a finite-difference

scheme, the derivative 0r f 0r must be expressed as a combination of known values of

r at nearby grid points. Care must also be taken thai this approximation does not

degrade the accuracy of the solution near the boundary, as such a loss of accuracy will

eventualiy reduce the accuracy throughout the solution domain.

To determine the necessary accuracy for an approximation, consider that the approx-

imation is accurate to order g. This in general involves one of the forms

F(îi,îi,îT,...,îi)
Ar + O{(Ac)q}' (3.1.3)

G(+:r,îi,îi,. . . ,îi_)
Ar + o{(az)q}, (3.1.4)

where the functions .t' and G ane linear functions. Note that in (3.1.a) ¿i value îlt at

the exterior grid point (-4", nAf) is included, and this value must also be determined

if this form is used.

When (3.1.3) or (3.1.4) is rearranged to give an approximation for îi, i : -L,0, 1, . . .,

the error term in that value becomes O{(Az)q+l}. \Mhen such an approximation is

substituted into the difference equation, it is clear from the form of equation (2.i.8)

that there is a decrease in accuracy of two orders, corresponding to division by either

(Ar)' or Aú, since

Ar o< (Ar)' (3.1.5)

for a fixed vaiue of s

To verify that this last assertion about the required order of accuracy is correct,

consider substituting the fourth-order approximation for rl-2, namely

68

l;:
[:

OT

A"
dT

A.

ri-2 N 4rit - 6ri * 4ri*, - ri*, (3.1.6)

CHAPTER 3. l-D DIFFI¡SION - NEUMANN CONDITIO]V 69

into the fourth-order equation (2.3.8). If the above theory is correct, the fourth-

order approximation (3.1.6) should be reduced by the substitution to second-order'

as a result making the finite-difference equation second-order. In fact, the resulting

finite-difference equation is

,l*t : sri-t * Q - zs)ri * sr[+t, (3.1 .7)

which is the three-point FTCS equation (2.1.9). This has already been shown to

be, in general, second-order accurate, which is the expected result. If however, the

sixth-order approximation to ri-z is used, the resulting equation is

72ri+1 : 2s(6s + ó)"ît+ 3(4 - 5s - 18s2)ri

+ 4s(24s - I)ri*, f 14s(1 - 6s)ri*,

+ 6s(6s - \)ri*"* s(1 - 6s)ria, (3.1.8)

which is fourth-order accurate for all values of s, since its modified equivalent equation,

written in the forrn (2.2.4) has a leading error term containing the factor

lu(") :60s2 * 150s -26. (3.1.e)

Again, this is in accordance with our expectation, and illustrates that to substitute

a value into a finite-difference equation of order p wiih no loss of accuracy, an order

p + 2 approximation to that value is required.

Returning to the derivative boundary condition problem, we have shown that to use

a clerivative boundary condition approximation to substitute a value into a finite-

difference equation which is of order ir without loss of formal accuracy, the approxima-

tion to the derivative must have a truncation error of (4")'*t. Given this information,

attention can noìvr/ given to solution techniques incorporating the derivative boundary

condition.

The numerical test used for this problem is aimost identical to that used for the

Diriclrlet condition, except that the peak described by (2.2.18) has been moved from

o, : 0.5 to a : 0.25. This is done so that the derivaiive aL r : 0 is not close to

zero, since if this derivative is close l,o zero, artificially good results are obtainecl.

CHAPTER 3. l-D DIFFUSION - NEUMÁNN CONDITION

The error measurements are still taken at ¿ : 0.2 after time ? : 8, as was the

case for the Dirichlet condition. Note however that the exact solution has changed

to î : 0.17.... Since this is the same order of magnitude as that for the Dirichlet

condition, comparing the magnitude of the absolute errors obtained for the Neumann

and Dirichlet conditions is still reasonable.

9.2 Using External Grid Points

One way to approach the problem of not knowing the actual values at the bound-

ary, regardless which fourth-order finite-difference equation used in the interior of the

solution domain, is to add a set of extra grid points outside the solution domain

al r : -Ar. The frctitious value r", at these grid points can be found from the

fi.fth-order approximation

-12î*. - 65ît + 720îi - 60îi +20îi -3îi + o{(ar)5i, (3.2.1)
60Ar

by rearranging this and dropping the error terms of 0{(Ar)6} to give the explicit

formula

72r!r: -60arci - 65rf * r20ri - 60ri i 20r! - \ri, Q.2.2)

where cT : ct(nLú), Given these external values, ihe (1,3,3) equation (2.5.16) can be

used to calculate the actuai values on the boundary at the new time level.

Also, since the values at the boundary at the current time level and all previous time

levels are known, the (1,3,3) equation can be used to find the value rf+l without any

added complication arising from the derivative boundary condition.

In theory then, this use of the (1,3,3) equation appears to be a simple way to overcome

the problems associated with the derivative boundary condition, while still maintaining

fourth-order accuracy. Unfortunately, the use of the extrapolation formula (3.2.2)

results in a large reduction of the stability range of the method. In fact, the stability

range is now only

s(0.23..., (3.2.3)

70

AîPt_
Arl"-

CHAPTE,R 3. l-D DIFFIISION - NEUMANN CONDITION 77

for 0 :100. This compares badly with the case of the Dirichlet boundary condition,

where the stability range was more than double this value. Also, the most eff'cient

value, in terms of using the least CPU time to achieve a given absolute errorr rvas seen

to be at about s : 0.25 for the Dirichlet condition, and that value is now outside the

stabiliiy range. Increasing the value of d does not signifi.cantly improve the stability

region, and again detracts from the accuracy of the solution, as in the case of a Dirichlet

boundary condition.

--)c-
-#--å-

s = 0.0500

s= 0.1000

s = 0.2000

M= 4.22
M = 4.18
M = 3.94

10

NUMBER OF GRIDSPACINGS

40

1.5

- LoG (^x)
t0

100

2.O

_-,
10

t o-6

I 0-"

1 o-4

7

6

É.
o
É.
É.
UI

6
tr
Ø
tr
uJ
cÉo
</)

õ

:o
(,
o
J

I

4
1 0

Figure 3.1: Error us grid, spaci,ng graph for the ertrapolated (1,3,3) equati,on uith'

0 :700, sto'ble for s 10.23+.

The accuracy obtained by this method is also not good, as shown in Figures 3.1

and 3.2, the errors being between one and two orders of magnitude larger than for the

Dirichlet case studied earlier (compare with Figures 2.10 and 2.11). It is also apparent

that the amount of CPU required to achieve a given error is decreasing as s increases

over the values shown, so a technique that increased the stability range could well

improve the efficiency of the method from this point of view as well.

Given that this technique appears to reduce the stability of finite-difference equations,

the sixth-order (1,3,3) cquation is not considered since a reduction of like rnagnitude

to that for the fourth.-order ecluation would render it impractical, cven given ibs high

CHAPTER 3. l-D DIFFTISION - NEUMANN CONDITION 72

--å+-++
s = 0.0500

s = 0.1000

s = 0.2000

M= 1.47

M = 1.4s
M = 1.37

0.1 0.4 1 4 10

cPU TIME (SECS)

40 100 400 1 000

1 0-7

1 0-6

E
1 0-"

(t + os)(r; + ri) +2(5 - 6s)ri

2(ó+6s)ri+1 -(1 -6s)ri+r, sltl6'

cc
o
É.
É
til
zo
tr
U)
tr
ul(r
o
an

õ

5

4

7

o

(,
o)

I

t o-4

LoG {cp)

Figure 3.2: Error as cP[J time graph for lhe extrapoluted (1,3,3) equation with' 0 - 100'

stable for s 10.23+.

accuracy.

The results for the spatially wide finite-difference equations, such as the fourth-order

(1,5) equation (2.3.8) or the sixth-order (1,5,1) equation (2'7'5)', a¡e similar to those

for the (1,3,3) equation. The unknown values "l+1
and rf+1 can be found from the

known values ri, i :0(1)/ as follows. Firstly, the value r!, al the exterior grid point

is found from the sixth-order approximation (3.2.2). The (1,5) equation (2'3'8) can

then be used to determine the value rf+1. In order to analyse this method, the two

steps can be combined into a single finite-difference equation, namely

. -L44ri+r : 60s(6s - 1)accî +s(678s -2ó7)r[_ 48(24s2 - 10s + 3)ri

+ 36s(18s _ 7)rî - 64s(6s - 1)'i * 3s(6s -7)"î' (3'2'4)

The value rf+l at the boundary can then be determined from a rearrangement of

Crandall's fourth-order equation (2'6'9) into the form

(1 - 6s)ri'+l
(3.2,5)

CHAPTERS.l-DDIFFIISI)N-NEUMANNCONDITION

\Mhen implementing this scheme in practice, it is found that as higher order approxi-

mations to the derivative at x :0 are used, there is a reduction in the maximum value

of s for which the resulting frnite-difference scheme is von Neumann stable' In par-

ticular, use of the approximation (3.2.1) gives a scheme which is only von Neumann

stable for s (0.21... . This limit, while being only an heuristic stability measure

(Trapp and. Ramshaw, 1976) has been found to be very close to correct in practice'

It is also sufficiently small that, like the fourth-order (1,3,3) equation above, the most

effi,cient values of s, found for the Dirichlet case' are outside the stability range'

such a smali stability range thus severely limits the usefulness of the scheme' one

way to overcome this problem, mentioned above in Section2'6, is to use k time steps

each of /\tlk at the boundary, so the effective value of s is divided by k, and the

stabiliiy range is muitiplied by k. Putting lc : 3 thus provides a stability range of

approximately s < 0.63. . . , which does not detract signifrcantly from the stability of

either of the equations (2.3.8) or (2.7.5) used at other interior grid points' In order

to implement this scheme, values must be calculated at two intermediate time levels,

these values being used in the formulae (2.3.8) and (3.2.5) to finally obtain the desirecl

results for rfr+l and rf+l.

Alternatively, this substitution can be done algebraically to produce formulae that go

directly from time lever n to time lever (n f 1) without the expricit use of intermediate

time levels, which saves storage space and cPU tirne on a computer' The resulting

formulae are very complicated, involving grid points as far as j :8 from the boundary

(r : 0), muitiplied by polynomial coefficients of order 6 in s. \Mhile these could

be implemented in practice, other methods have been sought in order to avoid the

complicated forms of the single equation and the extra storage requirements of using

multiple stePs.

Overall, the use of exterior grid points has been found to be unsatisfactory, due to the

severe von Neumann stability restrictions that are placed on the solution process due

to having to extrapoiate the values at the exterior grid points.

CHAPTEI-S'l-DDIFFIISIIN-NEUMANNco]VDITIoN

3.3 Using Interior Grid Points OnlY

Given the unacceptable stability restrictions imposed by the use of exterior grid points'

alternative methods which do not require such points must be examined'

One such alternative method which can be used in conjunction with a fourth-order

(1,3,3) equation is to use the frfth-order approximation to 0îf ôt, namely

ôî1" _ -IsTît +300îi -300îi +200îi -7óîi +rzîi + O{(Ar)5}, (8.8.1)

A*lr- 6oAo

applied at time level (n { 1) to give an explicit formula for the boundary value rfr+1,

namely

I37r[+L: _60aøci*t + 300ri+1 - 300ri+1 * 200ri+1 - 75ri+r t 12r!+L . (3.3.2)

when this method is tested for von Neumann stability, it is found to be stable over

at least the same range as the original fourth-order (1,3,3) method, so in this case,

hand,ling the Neumann boundary condition imposes no extra restrictions over the

Dirichlet case, and the most efficient values can be chosen.

74

-å(-.....€-
s = 0.2500

s = 0.3f130

s = 0.4000

M= 4.25
M = 4.16

M= 4.12

10

NUMBER OF GRIDSPACINGS

40

1.5

- LoG (ax)
10

100

2.O

l o-6

1 o-5

l o-4

t o-3

6

5

cr
o
cÉ
fr
r,tJ

6
t-
U)

h(r
o(h
o

4

:o
oô
J

I

â
'I 0

Figure 3.3: Error as grid s\tacin,g graph, for th'e fourtlt'-order (1,3,3) equation, u'sing

interior poirt't's only, uitlt' á : 100

CHAPTERS.l-DDIFFIISI2IV-NEUMANNCONDITION 75

-++-++
I = 0.2500
s = 0.3333

s = 0.4000

M=
M=
M=

1.47
1.41

1.40

0.1 0.4

CPU TIME (SECS)

1 4 10 40 100

1 0-6

1 0-"

1 0-4

1 o-3
-1 0 0.5 2

LoG [cp)

Figure 3.4: Error us cPu time graplL for the fourth-ord,er (1'3,3) equati'on' usi'ng

interior points onlY, with d : 100

The numerical results shown in Figure 3.3 and 3.4 show that the method is fourth-

order, as expected., but the actual errors are two orders of magnitude worse than for the

Dirichlet boundary condition (see Figure 2.i0). This decrease in the accuracv of the

generated solution is largely due to having to approximate the value on the boundary'

For the Dirichlet condition there was an exact value being inciuded at every time step,

which will tend to reduce ihe build-up of errors. In the case of the Neumann condition,

the boundary value is approximated and this benefit is not gained.

Given that the fourth-order (1,3,3) equation can be successfully implemented with no

more restrictions than for the Dirichlet case, the sixth-order (1,3,3) equation should

also be tried. In order to approximate the boundary condition to the correct order, a

seventh-order approximation ro 0î l0r must be derived. This leads to the formula

10g9rfr'+1 : -420Lxci+r +zg40ri+1 - 4410rî+t a 4900rf+1

B675ri+r * r764ri+1 - 490";+' + 60r7+t (3.3'3)

which is the sixth-ord.er analogue of equation (3.3.2) above. If this extrapolation is

usecl with the sixth-orcler (1,3,3) equation, therc is no reduction in thc numerical

stability range, siÛce the range is alrea<Iy very restrictive'

É.
oÉ
cr
ul
zo
tr
I
b(f
O
U)

o

5

4

:o
o0
J

I

3

CHAPTERS.l-DDIFFUSIIN-NEUMANNCO]VDITION

The numerical results, shown in Figures 3.5 and 3.6, display a number of interesting

features. Most obvious is the fact that the slopes of the lines are much greater than

expected theoretically, and that the value of s has very little impact on the acculacy

obtained. for a given grid spacing. This may be caused' by a combination of the error

terms of the (1,3,3) equation, the method of handling the boundary and the test

problem itself, but further investigation is required to determine the exact cause with

certaintY.

-){-4+-
s = 0.0500

s = 0.1000

s = 0.1429

M = 8.43
M = 8.35

M = 8.29

10

NUMBER OF GRIDSPACINGS

40

5

- LOG lax)
10

100

2 o

1 o-8

1 o-7

1 0-6

1 o-5

r o-4

I
cÉ
o(I
É
UJ

zo
F
.J'
F
Lll
(E
o
a.o

6

:o
oo
J

I

7

0
4

1

Figure 3.5: Error us grid, spacing graplt for the sirth-ord'er (1,3,3) equalion' using

interior Points onlY

Also worth noting is that not only are the results clearly more accurate than those

for the fourth-order (1,3,3) equation, which is to be expected', but the amount of cPU

time requirecl to generate a solution to a given accuracy is also better in the sixth-order

case, indicating that, in this case, the restricted von Neumann stability range should

not d.etract from the method's practicality'

If this technique is tested with lower-order boundary approximations being used' it

is fbuncl that the results deteriorate to unacceptallle levels, even with the use of a

sixth-orcler approximation rather than the seventh-order one used above'

CHAPTER 3. l-D DIFFUSION - NEUMANN CONDTTION 77

-)+--€-
s = 0.0500
s = 0.1000
s= 0.1429

M = 2.89
M= 2.87
M = 2.83

4

cPU T|ME (SECS)

10 40 100

1 .5

LoG [cp)
t0

400 1 000

3.0

I

7

1 o-8

'lo-7

1 0-6

10 -

1 o-4

:o
oo
J

I

6

cr
o(f
IT
uJ
z
o
t--

U)

ñ
ff
o
a
ô

4

Figure 3.6: Error as CP(I time graplù for tlte sirth,-order (1,5,9) equation, using interior

points only

The fourth-order (1,5) equation (2.3.8) presents more obvious dillìculties than either

form of the (1,3,3) equation discussed above, since it cannot be used next to the

boundary without requiring exterior grid points. However, this problem can be over-

come by using a combination of the Neumann boundary condition and appropriate

rearr angement of Crandall's fourth- order equation

In particular, Crandall's formula (2.6.9) can be rearranged to obtain a formula for the

value ,T*t, namely

{1 - 6s}ri+1 {1 + 6s}(ri + ri) + 2{5 - 6s}ri

2{5+6s}ri+r -{1 -6s}ri+1 , sl716. (3.3.4)

In the case where s : 1/6, Crandall's equation reduces to the fourth-order special

case of the (1,3) FTCS equation, and this equation can be used to find ri+l withoui

ioss of accuracy. The fifth-order approximation to 0rl0n (3.3.1) is then applied ai

tirne level (n + 1) to give the explicit formula for the l-rorrndary valuc (3.3.2) for rf+l.

This boundary approximation has l¡een applied over the entire range of stabiliiy of

CHAPTEI-S.l-DDIFFUSI)N-NEUMANNCONDI?ION78

the interior method, namely 0 < s <213, andhas shownno signs of instability' In

fact, numerically examining the von Neumann stability of the equation involving the

boundary point that is used. to step to the next time level, shows ihat it is stable up

toatleasts:l,sothisboundarytechniqueimposesnoextrastabilityrestrictions'

*
....-€-
*
-€l-

s = 0.1000

s = 0.2500

s = 0.5000
s = 0.6667

M = 5.09
M= 4.67
M = 6.09
M = 6.67

NUMBER OF GRIDSPACINGS

'I 0 40 100

I 1 0-8

1 o-7

1 0-6

1 o-5

1 o-4
0 2.O

- LoG {^xl
t0

points

Note that this method, while still based on the idea of using both the derivative bound-

aïy condition ancl a reaÌrangement of Crand'all's formula, d'oes not use an extefior grid

point, nor is its use dependent on the use of a particular frniie-difference equation in

the interior of the region. Any finite-difference equation could be usecl in the interior

of the region) as long the von Neumann stability of the boundary technique is not

exceeded

The nurnerical results for this techniclue, shown in Figures 3.7 and 3'8, are more

accurâte than those results obtained by the fourth-order (1,3,3) equation' but not as

accurate as the sixth-orcler (1,3,3) equation. of interest, however, is that the cPU

usage of the (1,5) equation to obtain a solution of a given accuracy is only about half

that for the sixth-orcler (1,8,3) ecluation. Thus if the accurâcy of ihe (1,5) equation is

:o
oo
J

I

cÉ
oÉ
cc
ul
z
o
t-
|t)
tr
uJ
CE()
a
o

7

6

5

4
1

Figure 3.7: Error as grid' spacing graph for the (1,5) equation usi,ng only interior grid

5

CHAPTERS.l-DDIFFUSIcN-NEUMANNCONDIT/O/V 79

-)<-+
L

s = 0.1000

s = 0.2500
s = 0.51000

s = 0.6667

M = 1.73
M = 1.s8

M = 2.05
M= 2.27

cPU T|ME (SECS)

0.1
I

0.4 | 4 10 40 I00

:o
(5
(J
J

I

CE

o
fE
É.
rlJ
z
o
Þ-

Ø

E(r
o
ao

7

6

1 o-8

1 o-7

1 0-6

1 0-"

1 o-4

5

0-1
4

2 00.5

LoG {cp)
l0

Figure 3.8: Error as cPlJ time grL,pli for the (1,5) equati,on using only interior grid,

points

acceptable for the problem being solved, this appears to be a better technique than

the earlier (1,3,3) equations.

The effect of using less accurate approximations to the derivative at the boundary can

be examined here. The fourth-order approximation

OT

A.
-25îi + 48îi - 36îi + 16îi - 3îi

+ o{(ar)a}, (3.3.5)
n

o 724,r

can be appliecl at time level (n f 1) and rearranged to give the explicit form

2órn+1 : - l2¡,xcl.ll ¡ gri+r - J6ri+r a 16rf+1 - 3ri+t, (3.3.6)

which can be used in place of (3.3.2). In this case the results, shown in Figures 3.9

ancl 3.10, are less accurate than for the fifth-order derivative approximation, although

they are still good, as indicated by the fact that errors plotted against grid spacing

o' a logariihmic scale still have slope greater than the predicted value of four. In

this case, ¡owever, the CPU efrciency advantage over the sixth-order (1,3,3) methocl

has been lost, so the drop in accuracy of the boundary approxirnation has somewhat

CHAPTEI-S.l-DDIFFUSI)N-NEUMANNCONDITION80

damaged the practicality of the method. Note that this is in contrast to the sixth-

order (1,3,3) equation, where it was found that a drop of even one order of accuracy

intheboundaryapproximationdegradedthesolutionunacceptably.
M = 4.63
M = 4.78
M = 4.91

M = 4.92

-)<-.....€-

4t-

s = 0.1000

s = 0.2500

s = 0.500O

s = 0.6667

cÉoÉ
É.
UJ

zo
tr
U'

lll
cÉo
.f)
õ

-4
4

-o
Ço

oo
J

I

6

5

10

0

NUMBER OF GRIOSPACINGS

40

'I .s

- LOG {axi
i0

100

2 0

1 0-6

1 0-"

10

1 o-3
0

3
1

Figure 3.9; Error as grid, spacing graplL for th,e (1,5) equation using an o{4} boundary

o,pproriTTLati,on

s = 0.1000

s = 0.2500

s = 0.5000

s = 0.66,67

M = 1.s7

M = 1.63

M = 1.67

M = 1.67

cPU TIME (SECS)

0.4 1 4 10 40 1000.1

-4

5

4

:o
(t
0
J

I

6

3

1 0-6

c
1 0-"

10

1 o-3

cr
o
tÍ.
É
tlJ
z
o
f-
tr)

h
É.o
<h

o

0

LOG

5

(cp)
t0

0

Figure 3.10: Error as cP(I time graph for th'e (1,5) equation using un o{4} bountlury

úp'pt'olLi,mal,io'n

CHAPTERS.l-DDIFFUSI)N-NEUMANNCONDITIONSI

The use of still lower-order approximations, such as the third-order approximation

Ll" : -IIîi + I8îi - eîi + 2îi
+ o{(Aø)3}, (3.s.7)

1xlo- 6Ar

lead.s to results that are even less accurate, and of lower than fourth-order' as shown

by the slopes of the graphs of Figures 3.11 and 3.12, which show the results of using

equation (3.3.7). such low-order boundary handling is therefore entirely impractical'

M= 3.77
M = 3.58
M = 3.39
M = 3.s7

NUMBER OF GRIDSPACINGS

10 40 100

6
'I o-6

r o-5

t o-4

l o-3
1.5 2 o

- LOG (^xl
10

--x-.....€-
+
#

s = 0.100O

s = 0.2500

s = 0.500O

s = 0.6667

:o
(t
o
J

I

(r
o
É.
É.
t.u
z
o
tr
L
b
cÉo
aJ)

õ

4

3
1

Figure 3.77: Error us grid, spaci,ng graph for th,e (1,5) equationusi,ng an o{3} boundury

approú,mation

Thus it appears that boundary approximations that are one order of accuracy less

that that theoretically required can be used' in some cases' some loss of accuracy is

evident if this is done, and the cPU advantage of the (1'5) equation is lost' so this

iclea is not considered practical to use'

Given the above experience, the sixth-order (1,5,1) equation (2'7 'ó) can be handled in

the same manner as the fourth-orcler (1,5)'equation Although the (1,5,1) equation is

sixth-order accurate, and. so the boundary treatment should also be at least as accu-

ra,te, it .was seefr for the Dirichlet condition that a fourth-order boundary treatment

sufficecl to give sixth-order results'

For tlre Neurnann condition, however, this proves notto be the case' The results for

this equation, shown in Figures 3.13 ancl 3'L4, show a marlted difference fÌom the

CHAPTERS,l-DDIFFUSICN-NEUMANNcoNDITIoN
82

--+<-
4
#

s = 0.1000
s = 0.2500

s = 0.5000

s = 0.6ô67

M= 1.27

M= 1.22

M= 1.1s
M= 1.21

CPU TIME (SECS)

0.1
6

0.4 1 4 10 40 100

2.O

cÉ
o
ET(f
I,IJ

zo
tr
U)
Ë
tu
cro
U)
õ

-4

5

4

:o
(t
ô)

I

1 0-6

1 0-"

10

1 o-3

-1 0 0.5

LoG [cp]
't0

Figure 3.1.2: Error as cP(J time graph forth'e (1,5) equationusing ún o{3} boundary

approrirnation

expected straight lines of slope six. In fact, the derivative boundary condition has

reduced this equation to being only fourth-order accurate for all values of s, except

for s : tf2, andeven this is not much better than frfth-order' AIso worth noting is

the fact that the absolute errors are in faci bigger for this equation that for those for

the(1,5)equation,whichweregivenaboveinFigures3'7and3'8'

To overcome these problems would require some sort of sixth-order handling of the

bound.ary, but sixth-ord,er finite-difference equations based on such stencils as (1,3,3)

ancl (3,3,3) have restricted von Neumann stability ranges. Examining the cPU graph

for the (1,5,1) equation (Figure 3.14), it is noted' that the most efficient values of s

are the larger values, with efficiency dropping off dramatically towards s : 0'1' as

indicatecl by the much longer cPU times required to get a particular accuracy' Since

the use of sixth-order finite-difference equations would force us to use such inefficient

values of s to achieve stability, this type of approach was not consiclered in more detail'

especially since efi'orts in this direction inclicated that there was almost no increase in

accuracy

An alternative is to develop an off-centred stencil which is sixih-order accurate, but

CHAPTER 3. l-D DTFFUSION - NEUMANN CONDITION 83

+
-€-
+r-

s = 0.1000

s = 0.2500

s = 0.33&l
s = 0.5000

M= 4.24
M = 4.04
M = 4.37

M - 5.36

NUMBER OF GBIOSPACINGS

40

1.5

- LOG {^x}
l0

10010
1 0-6

10

1 o-4

1 0-3

10-2

-5
5

4

É.
o
É.
É.
uJ
zo
F

Il-
LrJ
cÉoIô

3

ê
.q
-eoo
J

I

2

0
,|

-110

2 0

Figure 3.13

gríd, points

Error us griil spacing graph for the (1,5'1) equation using only interior

CHAPTERs.l_DDIFFUSI2N.NEUMANNCONDI"ION
84

++
+l-

s= 0.1000
s = 0.2500

s = 0.3333
s = 0.5000

M = 1.48

M = 1.43

M - 1.s1

M= 1.91

CPU TIME (SECS)

0.1 0.4 1 4 10 40 'l 00

2 q

6
1 0-6

1 o-5

1 o-4

1 0-3

10-2

-l10

4

tr
o
É
cc
t¡J

zIt-
at
tr
IJJ
Ê.o
Lô

3

2

-g
(t
o
J

I

0

0-1 0.5

LoG {cp)
lo

Figure 3.L4: Error us cP(J time grt,ph for the (1,5,1) equation using only interior gritl

points

CHAPTER 3. l-D DIFFIISION - NEUMANN CONDITION

canbeusednexttotheboundaries.Todothis,theapproximation

-4î +1 -oT
n +î fT

+ o{(aø)a} (3.3.s)

85

n
10î 1

72(Lx)2

may be used. The finite-difference equation is developed in exactly the same manner

as the centred (1,5,1) equation, using the same weights in the Same mannel. The

resulting equation can be made sixth-order by suitable choice of the weights' The

sixth-ord'er finite-difference equation that results is

{60s2 - 150s -26}ri+1 : s2{120s'-302}ri-t

{540sa -729s2 +52}ri + s2{960s2 - 316}lir

+ s2{t+- s40s2}rjf, + s2{360 s2 - 6}ri*"

+ ,'{1 - 60s2}ri¡++ {26 - 150s - 60s2}ri-r ' (3'3'9)

This equation is found to be von Neumann stable only over the approximate range

s < 7f 3, (3'3'10)

which is somewhat less than the range of the main equation' Numerical results ob-

tained with this equation, in this more restricted stability region, have also proven

to be even less accurate. This is despite using the "correct", seventh-order, approx-

imation to the derivative condition, in place of the fifth-order one used for the (1'5)

equation. This result may be due to the fact that the equation (3'3'9) is off-centred'

so there are odd-ord.er error terms in the modifred equivalent equation which are not

present for the centred equations. This off-centred technique appears to offer no solu-

tion to the problems with the use of the (1,5,1) equation, and is thus not considered

further

overall, the (1,5,1) equation has produced results of disappointing accuracy with no

major cPu time advantage, and so must be consiclered as unsuitable for use with

Neumann bounclary conditions until better methods of handling those boundary con-

ditions are found

CHAPTERS.I.DDIFFUSI2N-NEUMANNCONDITION 86

3.4 Sumrnary

The add.ition of a derivative boundary condition to the probiem has significantly com-

plicated. the solution process, as might be expected. Having re-evaluated the ap-

proaches used for the known bound'ary condition in view of this, it is apparent that

the errors are several orders of magnitude larger with the derivative boundary con-

d.ition included than for the case without it. Despite this, the errors are still small

in absolute terms, being of 0{10-7} in numbers of 0{10-1}, if a grid spacings of

Ar : 1/80 or finer are used'

It is of particular interest that the (1,5,L) equation, which produced very good results

for the case of a known bound.ary value, gives relatively poor results with a derivative

bound.ary condition, despite all efforts at handling the boundary to the correct order of

accuracy. Further work is needed before this particular problem can be satisfactorily

be overcome

overall, the solution process that gives the most accurate ans'wers is the sixth-order

(L,3,3) equation (2.5.9), using a seventh-order approximation to the derivative bound-

ary condition. Against this, however, is the CPU time efficiency of using the fourth-

order (1,5) equation (2.3.8) in the interior of the solution domain, with the Crandall

variant used. both to solve the problems at the known boundary at r : 1 and to

find ri+1. This is followed by an extrapolation based on the derivative approximation

(8.3.1) to flnd the value rf+l at the r : 0 boundary. Once again, which of these two

methods is preferred. is clependent on circumstances, since each has both advantages

and disadvantages compared to the other'

Chapter 4

The 2-D Diffusion Equation

4.! Introduction

The information gained from the preceding study of the one-dimersional diffusion

equation, and. attempts to produce fast and accurate solution schemes for it, can

now be applied to a more general and physically meaningful case' namely the two-

dimensional constant-coefficient diffusion equation. This equation can be written as

aî 02î a2î

at - "'ffi - oo# :0, (4'1'1)

where a" and o¿y alre considered to be constants'

To compare different methods for solving this equation, the modifi'ed equivalent equa-

tion approach used for the one-dimensional case can again be used, but some changes

need to be mad.e. These changes are necessary because of the fact that the general

form of the modifred equivalent equation is now

-,,1L-",#.åic,,,ffi :0. (4.r2)

From this form, it can be seen that as long as

o",f,tlr-o c''': o'

then the finite-dift'erence scherne is consistent with the two-dimensional diffusion equa-

tio' (4.1.1). I¡ orclcr for the leacling errors to be smaller in magnibude than the solution

p20 (4.1.3)

87

CHAPTER 4. THE 2-D DIFFUSION EQUATION 88

values, the condition

Cp,c:O for p 32 (4'1'4)

is also desirable. It is also apparent from this general form that instead of there being

only one rth ord."1. error term, as for the one-dimensional case, there may now be

(n + 3).such error terms. This means that to create a method of a given order using

a general weighted scheme and choosing appropriate weights, many more weights are

now required so that all the desired error terms can be removed. These extra weights

can be readily introduced, however, due to the greater number of grid points available

to the difference schemes.

T5e difference schemes to be investigated here will be again written in terms of

non-dimensional diffusion parameters, which, in a manner analogous to the one-

dimensional case, are defined as

o'rLtt' :
@"!

Given this, the error coefficient s Cp,q in the modified equivalent equation can be written

arLtso:($ (4.1.5)

(4.1.7)

(4.1.8)

0r., a,<..
1n

,..,t'¡ , Sþî,
the form
,.,t't Íler 7 ,

2or(As)r-z
fo,n(s,, sr) if q : 0 or q: Pt, (4.1.6)

pl

' ; >".i 4(Lx¡n- o(av)n
lo,n(s", sr) if p l2q,

co,n

q'*-
(p - q)!q!(at)

a(L,r)q (adn
(q!)'?(At)

fo,n(t,, "r) if. p : 2q,

/'l).;))i).rr , i

4,1'<"'<Y

where s: r if. q:0 an¿ s :- A if. p: g. This particular form has been chosen so that

the functions lo,n(s,, sr) are as simple as possible. In particular, they tend to avoid

having sø or ss in a denominator.

As was noted in earlier chapters, if centred frnite difference forms are used to ap-

proximate 02îf 0r2 anð,02îf 0u2, then the resulting computational stencil is spatially

symmetric, and there are no "ocld-order" derivative terms in the modifi.ed equivalent

equation for that method. In the two-dimensional case the derivative term with coef-

ficicnt Cr,o may l¡e consiclerecl of "odcl-order'" if either p is odd or else one (or possibly

botlr) of g ancl (p - ,ù is odcl. Thrrs if the stencil is centred, thele are no crror terms

CHAPTER4.THE2-DDIFF:.ISfuNEQuATIONs9

involvingÔ3rfÌrqôy3-c,norwilltherebetermslliketrl0xôa3.Thissimplifiesthe

form of the resulting methods, as well as greatly reducing the number of weights that

must be included. in a method to force it to be of high order. Most of the methods

discussed in this chapter will have centred stencils to take advantage of this fact'

Methods for solving the equation (a.1.1) can be divided into two classes' The first of

these are two-dimensional methods, that use a stencil that is itseif two-dimensional'

These can be further subdivid.ed into explicit and implicit methods, based on whether

or not they require the solution of a system of equations at each time step' in exactly

the same manner as lMas d.one in the one-dimensional case' The other class comprises

the one-dimensional methods, which use one-dimensional stencils (either explicit or

implicit) to solve the Problem'

The method used for d,enoting two-dimensional methods is exactly the same as that

used in one dimension; namely, a method. described. as being "^ (p, g, r) method" uses

p points the (n + 1)th time level, g points at the
"rth

u,td r at the ('- 1)th, with the

r term being omitted in the case of the method involving only two time levels'

In order to check the numerical accuracy of two-dimensional methods, a test problem

is required. The particular problem chosen is the two-dimensional analogue of the

Gauss peak (2-2.18) used in the one-dimensional case' namely

. 1 l_@-o)' l"*oJ-(v-Ð'\ (4.1.e)
î(*,,a,ú) :

Gú + Ð ""p t a,(4t + 1) J
--- \-ã¡+t *¡1 '

where the constants ø and b are both set to 0.5, so that the peak is centred in the

spatial domain. As for the one-dimensionai case, the equation (4'1'9) is used to define

both ihe initiai and bounclary conditions, as well as to generate the exact solution

to compare the numerical ans'ù/ers against. The errors for the graphs presented in

this chapter are taken at the point (0.2,0.2), for the same reasons as tire choice of

tlre point r :0.2 in the one-climensional case, and' the diffusion parameters used are

dx : dv : 0.01. In this case, however, the tests are only run lo T :2' since the

amount of cPU time requirccl to use ? : 8 was found to be excessive, while no extra

infbrmation was obtained'

}HAPTER 4. THE 2-D DTFFUSTON EQUA"TON 90

4.2 Two Level Explicit Methods

Since explicit methods do not require the solution of a set of linear equations for each

time level, they have the potential to be very much faster on a computer than implicit

methods. This is more of a consideration in two or more dimensions than it is in one

dimension, owing to the vastly increased number of equations that must be solved for

the implicit methods, as well as the more complex form of the system of equations in

two or more dimensions.

4.2.L (1,5) Forward-Time Centred-Space Method

The direct analogue in the two-dimensional case to the FTCS method for solving the

one-dimensional problem is to use a forward-time approximation to the time derivative

at the (j,k,r) grid point, and to approximate both the spatial derivatives by their ap-

propriate second-order centred-space approximations. This gives the two-dimensional

finite-difference equation, based on the computational stencil shown in Figure 4'1,

rill : s,rî-t,t ¡ sorf¡c-t+ (i - 2s, - 2s)ri* * s,ri+t,* + ssri,k+t. @'2.1)

k

x'J

Figure 4.1: Computational slencil for tlt'e (1,5) meth'otl

t

Tþis metlìod, Iike its one-climensional counterpart, is easy i,o irnplement, requiring no

}HAPTER 4. THE 2-D DTFFUSION EQUATTON 91

special treatment near the boundaries if the boundary values are given and the region

is rectangular. Also, being explicit, this method does not require the solution of a

set of equations at each time level. If the boundary values are not specified (ie. we

have a derivative or mixed boundary condition) then extra work is required to find

approximations at grid points on the boundary, but this is true of any method.

A von Neumann stability analysis of equation (a.2.1) Ieads to the stability criterion

s, * ss < ll2, (4.2.2)

which can be seen to be very restrictive (Roache, 1974). In the symmetric case where

sn : sy: s* this condition becomes

s* 1Lf 4 (4.2.3)

which is twice as restrictive as the one-dimensional case.

The modifled equivalent equation for equation (4.2.L) can be written in the general

form (4.1.2) where the leading non-zero error terms contain the factors

f¿,0 : 6sr-1

ll,z: '9"sv

Is,¿ : 6s, - 1. (4,2.4)

Thus this method is seen to be second-order accurate for general values of s' and sy

It is also worth noting that although the terms la,s and 14,4 can be macle to vanish

by the choice of values 5, : ss : 116, the second-order error term la,2 is not zero

for these values (or indeed any other values of s,) 0 and ", > 0). Thus there are

no optimal values of s, and s, which make the method fourth-order, which contrasts

with the one-dimensional case where s : tl6 makes the method fourth-order.

The actual numerical results for this method, shown in Figures 4.2 and 4.3, show

that the method is performing exactly às expected fiom the theor-y. The error vs.

grid spacing graphs are all straight lines with slopes close to two, indicating that the

method is second-order accurate. Also, by similar reasoning to the one-dimensional

case, it ca,n be shown that for an order q method,

- log{lel} -- klÐIos{Cp} t K', (4.2.5)

1HAPTER 4. THE 2-D DTFFUSTON ESUATTON 92

-)<-+-
-+¡-

s'= 0.1000

s'= 0.1667

3'= 0.2000
s'= 0.2500

M = 2.01

M = 2.01

M = 2.36

M= 2.O4

'I 0

NUMBER OF GRIDSPACINGS

40

1.5

- LoG [¿x]
Í0

100

2.O

1 o-8

1o-7

1 0-6

1 0-5

1 o-4

1 o-3

I

7

6

5

:o
o
0
J

I

cc
ofr
cr
trJ

o
F
|t)
Ful
É.oo
o

4

3
1

Figure 4.2: Error as grid, spaci,ng graph. for the (1,5) FTCS metltod (/,.2.1)

0

-+<-€-
{l-

s'- 0.1000
s'= 0.1667

s'= 0.2000
s'= 0.2500

M = 0.53

M = 0.s4
M = 0.63
M = 0.55

4 10

cPU TIME (SECS)

40 100 400 r 000 4000 1 0000

I

7

1 0-8

1 o-7

1 0-6

1 0-5

1 0-4

1o-3

LoG {cp)

6

5

4

:o
(,
o)

I

Éo
cl.(r
ul
z.o
t-
U'
F
uJ(f
o
al)
ô

Figure 4.3: Error as CPU time graplù for th'e (1,5) FTCS mcthotl, (4.2.1)

CHAPTER 4. THE 2-D DIFFUSION EQUATION 93

and once again the graphs agree with this theoretical expectation

The most important feature of these graphs is the fact that ihe CPU time taken to

generate a solution is so much larger than for the one-dimensional problem. This

justifies the seiection of the preferred methods in one dimension based on CPU usage

as well as error, since a method which uses too much CPU time on the one-dimensional

problem will be totally impractical to use when it is generalised into two dimensions.

Note that, as for in the one-dimensional case, increasing the value of s* and hence the

size of the time step does not necessarily decrease the CPU time required to generate

a solution. As shown in Figure 4.3, the least amount of CPU time required to flnd a

solution of a given accuracy for the parameters tested occurs for s* : 0.200.

This gives some insight into the problems involved in developing accurate methods for

the two-dimensional case, based on accurate methods for the one-dimensional problem.

The error terms involved with the cross-derivatives in the modifred equivalent equation

(such as 14,2 above) have no analogue in the one-dimensional case, and often exhibit

quite different behaviour from the pure ø or y derivative terms. This must be taken

into account when developing methods, for example, by adding extra'weights into the

general form of a method to permit these error terms to be eliminated.

4.2.2 (1,9) 'Weighted Explicit Method

The (1,5) method above lacks sufficient grid points to allow the use of weights to try

to produce more accurate methods. In order to introduce some weights, more grid

points need to be introduced into the computational stencil, so as to allow weighted

differencing of the spatial derivative terms in (a.1.1). The (1,9) stencil shown in

Figure 4.4 allows for the introduction of two weights, while still retaining a compact

stencil. Centred difference approximations wiih symmetric weighting are used for the

spatial derivative terrns in order to lceep the resulting equation spatially centred. The

space derivative in the ø direction can be approximated by a weighted combination of

centred-sp¿r.ceapproximations at lc- 1, k and k+f. A similarweightingschemecan

be used f'or the sp¿ìce derivative in the y clirection.

CHAPTER 4. THE 2-D DIFFUSION EQUATION

The weighted scheme that is thus arrived at is

012
Ar ? x {[CS at (j,,t - 1,n)] * [CS ai (i,tt ¡ 1,")]]

+ (t -zç) x I CS .t (i, k,n)],

È 7 x {[CS at (j -t,fr,n)]t I CS at (j +t,k,")]]

+ (t -2t) x I CS at (i, k,n)),

94

02r

O'r
af

n

i,k
(4.2,6)

where CS is used to denote a three-point centred space difference approximation about

the specified grid point. This differencing leads to the (1,9) weighted explicit equation

*n*L
'i,k

: 1g", + 1sr](ri-t,x-, i rI+r,*-r l rl-r,*+, * t\r,*+r)

+ {", - 2(p", + 7sr)}(ri¡-r * ,io+r)

+ {r" - 2(ç", + 1s)}(ri-r,o * "rïr,*)
+ {7 - 2(s, * ss) * 4(Ps, + 1s))ri*, (4.2.7)

which uses the computational stencil shown in Figure 4'4

xrj

Figure 4.4: Computational stencil for th.e (1,9) rneth.od

From this equation, the leading error terms can be examined in order to determine

the theoretical order of accuracy of this method, and what values of the weights, if

any, will improve tliis. The modifred equivalent equation can be written in thc general

form (4.1.2), with the lea,ding error terms being

t

cHAprER 4. THE 2-D DTFFUSTON ESUATTON 95

In,o : 6st-1

lq,z : Irs? - 9s, -'Ysy

l¿,¿ : 6s, - 1. (4.2.S)

From this form of the modified equivalent equation, it can be seen that the weights

are not involved in the second-order error terms la,s and 14,4, so this method cannot

be made fourth-order accurate by any choice of weights. What can be done, however,

is to remove the cross-derivative term 1a,2, which will reduce the second-order error.

To do this we set la,2 : 0, which gives

sr(su - v) (4.2.e)I_
ss

as the condition on the weights. Since equation (4.1.i) is symmetrical with respect to

r and y, it is desirable that a finite-difference equation to solve this equation should

possess similar symmetry. In this case, no particular effort is required to achieve this,

since the weights g and 7 in equation (A.2.7) only occur in the expression

(ç"" * Ito) (4.2.70)

which reduces to s,s, on substitution of the expression (4.2.9). Thus removing the

error term la,2 gives the explicit (1,9) finite-difference equation

,il' : s,so(rl-r,x-11rl;,*+, * ri+r,n-1 * rrir,*+r)

+ su{1 - zs,}(ri¡,_r * ri¡+r)

+ ",{1 - 2so}Qi_r,¡t ri+t,x)

+ {(1 - 2s,)(1 - 2s)}rin. (4.2.r1)

Despite this method being only second-order accurate, it can be shown to be von

Neumann stable in the region

s,37f2 and so17f2 (4.2.12)

wlriclr is a marked improvement over the (1,5) FTCS equaiion (4.2.1), f'or which tlie

stability limit was s, * sy < Il2, or in the symmetric case sr - s.!r: s* (1/4. Fol

]HAPTER 4. THE 2-D DTFFUSTON EQUA"TON 96

equation (4.2.11) the stability criterion for the symmetric case' ss : ss : s" 11f2,

means that for a given grid spacing and diffusion coefficients, time steps can be twice as

Iarge as those used for the (1,5) equation without introducing numerical instabilities,

and so a given time can be reached in half as many time steps. Offset against this

expectation is the fact that the leading error terms are linear in s' and se1 so the error

may be expected to increase as s* is increased, possibly to an unacceptable level'

The fact that no gain of accuracy has been achieved can be verified by looking at the

modified equivaient equation corresponding to equation (4.2.11) which can be written

in the general form (4.1.2) with leading error terms containing the factors

fo,o : 6s"-1

lq,, : 0

l+,q : 6tr-1 (4'2'73)

as expected from the derivation of equation (4.2.7L). Note that the choice s" : sv :

1/6 will make this scheme fourth-order.

The numerical results for the method, shown in Figures 4.5 and 4.6, largely reflect

the theoretical findings, including the special case of s* : Il6 where the method is

fourth-order, as opposed to the second-order which is apparent for the other values

shown. In the general case, however, the results are somervl¡hat less accurate than those

from the (1,5) equation (4.2.1), shown in Figures 4.2 and 4.3. Also, the most efrcient

value of s* (excluding s. : 1/6), in terms of minimising the amount of CPU time

required to generate answers of a given accuracy, appears to be s* : 0.25. In general,

therefore, the (1,9) method requires much more CPU'time to generate a solution of a

given accuracy than the (1,5) equation, so the (1,9) equation is of little practical use.

cHAprER 4. THE 2-D DTFFUSTON EQUA"TON 97

S'=
S'*
S'=
S'=
S'=

10

NUMBER OF GRIDSPACINGS

40 100

2:O

-o10 -

1 o-8

10-7

l0-6

1 o-5

1 o-4

1 o-9

I

I

fr
oc
E
t¡J
zIF
U'

lll
fEo
Lô

6

5

4

ê
IL

cto
J

I

o

Figure 4.5: Error as grid, spacing greph for hhe (1,9) m.ethod (4.2.11)

1HAPTER 4. THE 2-D DTFFUSTON ESUATTON 98

-)++=s
-+l--+

3'=
3'=
8'=
S'=
S'-

0.1000
0.1667
0.2500
0.33Ít3
0.5000

cPU T|ME (SEoS)

10 40 100

0.52
1.05
0.52
0.53
0.54

400 1000 4000 10000

M=
M=
M=
M=
M=

0.1 0.4 1 4

I -o'to -

7

I O-8

'to-7

1 0-6

I O-5

1 o-4

1 0-3
0 5

LoG lcp]
t0

Figure 4.6: Error as CPU time graph for the (1,9) method (4.2.11)

Eofr
cc
IJJ

z
o
Þ
U)
F
l¡lfro
Lô

6

5

ê
o

ao)
I

4

04'I

CHAPTER 4. THE 2-D DIFFUSION EQUATION 99

4.2.3 (1,13) 'Weighted Explicit Method

As happened for the one-dimensional case, the previous two sections have shown that,

using two-level explicit stencils which are only three spatial grid points wide to ap-

proximate the spatial derivatives, finite-difference equations cannot be derived to give

more than second-order accuracy for general s, and sr. Although there are specific

values of s, and s, which will make some of these methods fourth-order, for a method

to be of practical use it should allow for variations of these values without degrading

the accuracy of the solution. Also, these specific values restrict the size of the time

step allowed to values which are much smaller than is desirable in practice.

Again, five-point approximations to the spatial derivatives can be used to overcome

these limitations. This again leads to problems with finding values at grid points next

to a boundary, and these problems must be addressed in order for any method to

be useful in practice. In order to keep these problems to a minimum, the first case

considered will use only two five-point approximations; one for 02r f ôx2 and the other

for ô2rf 0y2,bolln about the (j,k,n) grid point. This leads to a (1,13) stencil, shorvn

in Figure 4.7, which is the minimum possible explicit extension of the (1,9) case, given

that the equation must be kept spatially centred so as to force as many of the error

terms as possible to be zero.

The weighted differencing used in thrs case ts

02rl_t
0*'l i,k

n

N px{[CS3at (j,lt- t,n)] +[CS3ut0,k+1,n)]]

+ 7xICS5at'(j,k,n))

+ (1 -2ç - 7) x I CS3 .t (i, k,n)),

È d * {[CS3 at (l -1,h,n)] * [CS3.t (r + 1,k,n)]]

+ exICS5at(j,k,n))

+ (7 - 20 - €) x I CS3 ut (/, k,r)),

02r
0a' i,k

(4.2.t4)

where CS3 and CS5 are used to represent three and five-point centred-space approxi-

mations respectively to the spatial dr:rivative.

Usirrg thcse weight;ed approximations gives the weighted (1,13) explicii finite-dilÏerence

1HAPTER 4. THE 2-D DTFFUSTON EQUA"TON

x'J

Figure 4.7: Computational stencil for the (1,13) metÍt'od

: 1s,(rl-z,t t ri+2,*) * esoQi¡-" -l rix+z)

72{tps, * îso}QT_l,¡_r * ,Tr,r+,t rI*r,o_, * "rir,t+r)
+ 4{6(9s, + îsy) - (3 + 1)s,}(ri_r,n * ,i+r,t)

+ 4{6(ps, -f ?so) - (3 + e)su}Qir-t * rir+r)

+ 6{(4 - 8e l1)s, + (4 - 8d -t e)s, - 2}"i,0.

100

equation

¡tzrin

(4.2.15)

The modified equivalent equation corresponding fo (4.2.75) can be written in the

general form (4.1.2) with leading error terms containing the factors

fa,o : 7*6s"-1

llp : søss-psr-îsu

fa,a : e *6sr-1 (4.2'16)

so in general the method can be seen to be second-order accurate. It can be seen from

(4.2.16) however, that if the weiglrts are chosen to have values which satisfy

1HAPTER 4. THE 2-D DTFFUSTON EQUATTON

1-6s,
sr(s, - d)

sD

1-6s, (4.2.17)

then all of the second-order error terms will be zero, and so the resulting method must

be at least fourth-order accurate, as l5,n : 0 for all g.

On substituting the expressions (4.2.17) into equation (4.2.75), the resulting equation

7

v

e

1S

-72rif1
f

The thing to be noted about this equation is the fact that the fourth weight d, has

also been eliminated from this equation. As in the case of the (1,9) method, this is

due to the fact that it was only present in (a.2.15) as part of the sub-expression

(9s, | ?so) e.2.19)

and this expression simplifres to s's, on substitution of. @.2.77).

The rnodified equivaient equation corresponding to equation (a.2.18) can be written

in the general form (4.1.2) with leading error terms

fo,o : 2(2-15s'*30s'2)

fo,, : s'sr(6s'-1)

lo,¿ : s"sr(6so-1)

fu,u : 2(2 - 15s, * 30sr2), (4.2.20)

which verifies that the method is fourth-order accurate for all values of s, and sr.

A rrurnerical von Neumann stability analysis of the method reveals that the ecluation

1HAPTER 4. THE 2-D DTFFUSTON EQUATTO^r 102

(4.2.18) is stable for

s, * ss < 213, (4.2.21)

which is a larger region of the (s,, "r)
plane than that for the (1,5) equation (4.2.1) but

not as large as that for the (1,9) equation (4.2.1L). This slight disadvantage relative to

the latter case is more than offset by the fact that this method is fourth-order accurate,

whereas both of the previous methods lvere only second-order. It should also be noted

that although the choice of s, : sy: 116 will force the cross-derivative error terms

lo,z and fo,¿ to be zero, the other fourth-order error terms cannot be eliminated, so

there are no special values of s, and s, which make this method sixth-order.

Having shown that this method is more accurate than the others considered so far,

the problems near the boundary, due to the large spatial spread of grid points, must

now be overcome) or else the method is of no practica,l use. The difrculty, as in the

one-dimensional case, is that when the equation (4.2.18) is used to compute the values

at the grid point next to'a boundary, a reference is made to a grid point outside the

boundary, and the value of r at this point is not known.

This problem can be overcome in several ways in the case where the boundary values

are known. The first method involves extrapolating values of r at external grid points

(ai the
"rth

ti-. level) to sixth-order, using the formula

rlt,n x 6rlJ, - 75ri,¡ * 20ri,r - 75r!,¡ * 6rf,,r - rT,r, (4.2.22)

which produces the same accuracy as the finite-difference method applied at the in-

terior grid points. This value can then be used directly in equation (a.2.18) to find

the value next to the boundary at the new time level. This has the advantage that it

is easy to implernent and does not use large amounts of CPU time. It may, however,

significantly detract from the theoretical stability region of the method, particularly

as the order of accuracy of the extrapolation increases.

Looking at actual numerical results, shown in l-igures 4.8 and 4.9, the fourth-order

accuracy of equation (a.2.1S) is apparent. It is also apparent that the results from

this method arc rrruch more accurate, in absolute terms, than those producecl by the

second-order methods discussed above. It should be noted that there is no sign of

1HAPTER 4. THE 2-D DTFFUSTON EQUI'TION 103

-'<-_+
+
+¡-

s'= 0.1000
s'= 0.,|667
s'= 0.2500
s'= 0.3333

M = 4.04
M= 4.Ol
M= 4.14
M= 4.12

10

NUMBER OF GRIDSPACINGS

40

1.5

- LclG (axl
10

1 o-g

1 0-8

10-7

1 0-6

1 o-5

4000 1 0000

100

2.O

cÉ
ofrú
ul
zo
F-
al,

E
É.o
U'
õ

7

6

5
1

:I
(¡
(J
J

I

I

I

0

Figure 4.8: Error us grid, spa,cif¿g graph for the (1,13) method, (1.2.18), using ertra'po-

Io,tion at tl¿e bounìlari'es

s'= 0.100O

s'= 0.1667
s'= 0.2500

s'= 0.3333

M=
M=
M=
M=

1.04
1.03
1.06
1.06

4

CPU TIME (SECS)

40 1 00 400 1 00010
1 0-s

1 o-8

10-7

1 0-6

1 o-s

LoG (cp)
10

Figure 4.g: Error as CPU time graplL for th,c (1,15) rr¿eLh'od (4.2'15), usi'ng ent'rapolu-

tion, a,t tlt'c bour¿du,ries

É.
o(r(r
uJ
zo
F
U'-llj(r
()
(¡,
õ

I

7

6

:
J¿

I
J

I

1HAPTER 4. THE 2-D DTFFUSTON EQUATTON 104

any numerical instability in these results, such as may have been introduced by the

extrapolation to the exterior grid points. Any instability introduced by the extrap-

olation appears to have been damped out by the main finite-difference equation, so

this boundary technique is practical to use. Note that this may not be so for other

finite-difference equations which may be used in the interior of the region.

Another way to overcome the boundary problem is to use a compact three-level

method, such as a (1,9,9) method, to find the value next to the boundary. The method

chosen must be of the same order of accuracy as the method used for the rest of the

region, namely fourth-order, and should also be stable over at least the same region

as the main method. Some three-level methods that may be used for this purpose are

described later in Section 4.3. It is shown there that such three-level methods, as in

the one-dimensional case, tend to have more restricted stability ranges than two-level

methods. In particular, the fourth-order (1,9,9) equation has a stability range that is

much smaller than that for the (1,13) equation itself. Since there are other practical,

fourth-order schemes for handling the boundaries, the use of three-level methods has

not been investigated further'

Another different approach is to calculate all the values at the next time level except

those next to the boundaries, then use interpolation with sixth-order accuracy at the

new time level to fill in these values. This technique has the advantage of being easy

to impiement and quick to run on a computer, so the computing time advantage of

using an explicit method is preserved. Again the effect on numerical stability of using

this scheme must be examined to ensure that the method is still of practical use. ln

this case, an adverse affect on the stabiliiy of the whole scheme is evident, and this

technique also has thus been pursued no further.

The last method to be considered here involves the use of an implicit (9,9) centrecl

stencil to find a set of equations relating the values next to the boundary. One ad-

vantage of this is that it is possible to produce a method based on this stencil that

is unconditionally stable, so the overall method remains stable for the same region

a,s the interior method. The (9,9) stencil is used by frrst calculating all the values

at the new time level except those next to the bounclary (which are the values to be

CHAPTER 4. THE 2-D DIFFUSION EQUATION 105

found). Starting from any corner position, number the unknown grid points from 1 to

(2J +21{ -8), where there are J grid points in the ø direction and I{ in the y direction

(the direction of numbering is unimportant). An example of such a numbering scheme

is shown in Figure 4.10. Then the use of a (9,9) centred stencil (ie. a 3 x 3 square of

grid points at each time level) in the corner of the region with grid point 1 gives an

equation for points labelled (2J +21{ - 8), 1 and 2. Shifting the stencil one grid point

along, in the same direction as the points were numbered, gives an equation involving

the same three points with point 3 added. Another shift produces an equation involv-

ing points 2, 3 and 4 on1y. As the stencii is shifted around the boundary of the region,

a set of (2J +2K - 8) linear equations is built up.

Figure 4.70: One possible numbering sch,eme of grid poi,nts for tlr.e bound,ary solution

sch,eme based on a (9,9) stencil, wit'h J : I{ :6

The structure of these equations is almost tri-diagonal, but there are ten non-zero

values which are not part of a norrnal tri-diagonal system. Two of these (corresponding

to tlre presencc of point (2J +21{ - B) in the first equation and point 1 in the last one)

c¡rn be lefl; in the system if a special cyclic solver is employed (Evans and HatzoJ.roulos,

131211109

16 (:2J*2K-8)

15

74

o o oo
4 b1 2 3

oo
6

oo
I

oo
8

o o oo o

1HAPTER 4. THE 2-D DrEFtlsroN EQUATTON 106

1976), and the other eight values can be easily removed by elimination with other

equations
-l+
4+

s'= 0.1000

s'= 0.1667

s'= 0.3333

M = 4.00
M = 4.02
M = 4.07

NUMBER OF GRIDSPACINGS

40 10010

I 1 o-9

1 0-8

1 0-7

:o
(,
ô
J

I

(E
o
É.
É
ul
z
o
F
U)
É
ul
fE
O(t
o

7

6 1 0-6

t
1 0-"

5 2.O

- LoG (axl
lo

Figure 4.!I: Error a3 gri,d, spo,cing graph for th,e (1,13) method (4'2'15), using û (9,9)

equa,tion at the bound,aries

since the (9,9) method. used to generate these equations is fourth-order the accuracy

of the values found next to the boundary will match that of the values in the rest of

the region. The numerical results for this boundary scheme, shown in Figures 4'11

arrð.4.12, are very similar to the results obtained for previous boundary techniques'

both in terms of the accufacy of the solutions and the amount of cPu time required

to generate the solution. This is somewhat surprising, since the extra requirement to

set up ancl solve a set of linear equations at each time step could be expected to add

signifi.cantly to the cPU time required. This result, with only a marginal increase in

the cPu usage) shows that the vast majority of the cPU time requìred to generate the

solution is use<l in the interior of the region) so the extra time used at the bounclary

is not a signiflcant factor'

Noie that thc value s* : 0.2b is omitteci from the numerical tri¿lls of the (9,9) boundary

teclrnique, because in this case the o{4} (9,9) equation used has scveral zeto coelfr'-

cients, which changes the structure of the system of ecluations that neecls to be solved'

5
1 0

1HAPTER 4. THE 2-D DTFFUSTON EQUATTON 107

-)++ s' = 0.1ofl)
s'= 0.1667
s'= 0.3333

M=
M=
M=

1.09
1.09
1.1 1

4 10

cPU TIME (SECS)

40 100 400 1 000 4000 1 0000

1 o-9

1 o-8

1 o-7

1 0-6

I 0-'

LoG {cp}
l0

Figure 4.72: Error us CPU time graph for th,e (1,13) method (4.2.15)' using ú (9,9)

equation at the boundari,es

This leads to an attempt to divide by zero in the solution process, and while a special

case could be made for this, doing this would make meaningful comparisons of CPU

time impossible. Also note that the (9,9) meihod of handling the boundary problems

is useful since it may be applied without changes to both the logical extensions of the

(1,13) stencil, namely ihe (1,21) and (1,25) stencils, which are discussed iater. This

contrasts with techniques Such as extrapolation, where several extra external values

must be computed for each of these extensions.

4.2.4 (t,Zt) Weighted trxplicit Method

Having found one reasonably stable, fourth-order accurate method for solving equation

(4.1.1), consideration is now given to finding methods which are either more accurate

then this (ie. sixth-order), or which possess a larger stability range, or both. Methods

should not disproportionately increase the CPU time used; ideally the same amount

of CPU time should give solutions of comparable accuracy. This objective recluires

pore points to be introduced into thr: computatiorral stencil, but once again care rnust

I

I

:o
(,
o
J

I

cÉo
cÉ
É.
ul
zo
F
U'

E
o
ao

7

6

5

CHAPTER 4, THE 2-D DIFFUSTON EQUATION 108

be taken to ensure that all spatial differencing is kept centred. This is achieved by

inciuding five-point approximations to the spatial derivatives, one grid spacing either

side of the (j,,b, n,) grid point. By doing this, it is now possible to incorporate extra

weights into the scheme, which can be used to either increase the order of accuracy, if

possible, or to try to increase the stability range of the method.

In fact, it is possible to include eight weights into the computational stencil, by weight-

ing the spatial derivative terms as follows:

ð2rl_t
0*'l i,l,

N e x {lCS3 at (j,tt -2,n)liI CS3 .t (j, k +2,n)]]

+ x x ICS3.t (j, k,n)]*(t -z(v*t t")- Ð x ICS5.t U, l',r)],

+ 7 x {[CS3 ai (j,t - 1,n)] * [CS3 ut (i,k + 1,n)]]

+ ,. x {[CS5 at (j,h - 1, n)] * [CSb .t (j, k + 1, n)]]

È d x {[CS3 at (j -z,k,n)] * [CS3 .t (r + 2,k,n)]]

+ a x ICS3.t U,k,n)]+(L-2@ *e f À)-'l) x ICS5 ar(j,k,n)]

+ € x {[CS3 at (l - t,k,n)] * [CS3 "t (r + 1,fr,n)]]

+ À t {[CS5 ai (r - 1, k, n)] + [CS5 .t (r + 1,,t, n)]]. (4.2.23)

This appears to give much more flexibility than even the (1,13) scheme above, due to

the extra number of weights which can be used to eliminate error terms or increase

stability.

The finite-difference equation that results from this differencing is

fL

-72ri,[1 :

+

+

+

+

+

+

{n", - 720s0}Qi-2,*¿ * rI-r,t +r l ri+2,t"-t * rj\",**t)

{(1 - 2p - 2l - 2tr - X)s, + 2a0so}Qi-2,¡ * rl¡2,r,)

{(1 - 20 -2e-2^- ry)s, * 249s"}(ri,¡-r+ri*+r)

{Àr, - 72ps,}(ri-t,t -z * "I+r,o-r l r'l;,x+z * rj"+r,x+r)

a{@r * 37)s, + (4) + 3e)sr}(ri r,¡-r * rf-t,t+t I rl¡t,*-r * ri+r,o+r)

{aQ + Bç -l8t * 8tr - 4)t, + 6(4e f 5À)sr}(ri ,,x * rl+r,n)

6{(5 - x - I0ç- 102 - 10n)s" + (5 - n -I00- 10e- 10À)s, -2}ri*
{a(n + B0 * Be + BÀ - 4)su I6Øt + 1r)s,}(rio_, * ri*+) (4.2.24)

1HAPTER 4. THE 2-D DTFFUSTON EQUATTON 109

which is fully centred about the (j, k) grid position, as was intended by the differencing

chosen. The computational stencil used by this equation is shown in Figure 4'13' The

modifi.ed equivalent equation corresponding to this finite-difference equation can be

written in the general form (4.1.2), with leading error terms which contain the factors

fr,o : 6s'-X-21 -2P

la,z : srss - (l + n *49)s,- (.* I +4d)s,

f¿,¿ : 6r, - r¡ - 2e - 20' Ø'2'25)

t,n

xtJ

Figure 4.L3: computational stencil for the (1,21) metl¿od

All these terms involve some of the weights from the method, so it may be possible

to use these weights to remove the error terms (4.2.25) and produce a method of ai

least fourth, if not sixth, order accuracy. solution of the equations to make (4'2'24)

fourtlrorder ieads to the values

X : 6s"-2V-21

À

n : 6r, - 20 - 2e Ø'2'26)

being req'irecl fbr three of the weights. Note however that this choice of weights will

remove the syrnmetry witir rcsp<:ct to r ancl y frorn the equation. To overcome this

CHAPTER 4, THE 2-D DIFFUSION EQUATION 110

lack of symmetry, the expression for À is replaced by the pair of more specialised

conditions

,7f

À : s,l2-e-40 (4.2.27)

This substitution leaves four weights free in the equation, and since there are four

fourth-order erroÍ terms in the modified equivalent equation (since it is centred), de-

riving a sixth-order method may still be possible. However, examination of the mod-

ifi,ed equivalent equation corresponding to the new equation with the values (4.2.26)

arrd (4.2.27) substituted shows that the new leading error terms, written in the general

form (4.1.2), contain the factors

fo,o : 60sr2-30s"*4

fo,z : s,(6s,s, - 4p -'Y - sul2) - t20so

fo,¿ : sr(6s,s, - 40 - e - s,f2) - 72gs,

lo,e : 60sr2 - 30s, * 4, (4-2'28)

from which it can be seen that the terms 16,6 and 16,6 have no weights in them, and

so cannot be removed by any choice of values for the weights.

Thus the (1,21) method is no more accurate than the (1,13) method, and needs more

effort near the boundaries to cope with the additional points that would ordinarily fall

outside the boundary of the region when the stencil is used at grid points next to the

boundaries. Given this, there is very little use looking at this scheme further, unless

it can be shown to be much more stable than the (1,13) scheme for some choice(s) of

the remaining weights.

The resulting (1,21) equation has too many weights involved to effectively investigate

its numerical stability, so the error terms 16,2 and lo,¿ will be eliminated frrst. In order

to do this, the values

^t : (6r, - 112-720fs,)so - 49

e : (6r, - 712 - L2gfs,r),s, - 40 (4,2.2s)

1HAPTER 4. THE 2-D DTFFUSTON ESUA"TON 111

are substituted into equation (4.2.24) with the other weights given above. This re-

moves the fourth-order cross derivative terms involving 16,2 and l6,a from the modified

equation, as well as simplifying the fi,nite-difference equation by removing two more

weights.

The finite-difference that results from all the above substitutions is given by

-72ri,[r : s,sr{1 - 6t'Xti 2,k-t * rI-z,t+t * rl¡2,r,-r * ri*r,o*r)

+ ",{(1 - 6s,)(1 - 2s)}(ri-z,r * ri+z,t)

+ "r{(1 - 2s,)(1 - 6sr)}(rix_z i ri*+z)

+ s,sr{l - 6so}Qi_t,k_z * rI_t,t +r I rI*r,r_, t ,i*r,u*r)

+ 4s,sr{6s, * 6sv - 5}("1r,* -1i {r,x+t * rI+t,t-t * r,|r,t+t)

+ 2s,{12s, * 19s, - 24s,su - \8s02 - 8}(rir,r * rI+r,n)

+ 2sr{19s, ! 12so - 24s,so - 18s,2 - 8X"rî-, + ri,r+)

+ 6{-2 * 5(s, * ss) - 72s,so - 6(",' + ss2) f 12s,sr(s * + sy)}r?k.

(4.2.30)

Note that here, as in previous cases, the substitution of specified values for most of the

weights has eliminated all the weights. The von Neumann stability of this equation

can be determined numerically and is found to be convex region bounded by

0< sE <213

sr + sr(1

0 < sy < 213, (4.2.31)

shown in Figure 4.14. This is a slightly larger stability region than the (1,13) equation,

so a numerical test of the method is required to determine which is the preferred

method of solution. The best method of handling the boundary problerns in this case

is to use the (9,9) impiicit scheme, since it used no more CPU for the (1,13) case

than tLre other boundary techniques examined, it can be used here in exactly the same

form, and imposes no extra stability restrictions on the method.

The results from a, numerical experimcnt, shown in Figures 4.15 ancl 4.16, show that

the results are very similar to those fbr the (1,13) equation. The accuracy obtaincd

1HAPTER 4. THE 2-D DTFFUSTON EQUI,TION

sa

213

713

772

st
0 113 213

Figure 4.74: Von Neumann stability region for the optimal (1,21) equation. Note th'at

the line s, * sy : I is exclud,ed" from the region

is practically identical, as is the CPU time requirecl for each run. Overall, there is

little to distinguish this method from the (1,13) method described above. The (1,13)

equation may be preferred because it involves fewer grid points and is thus somewhat

simpler to implement, but even this is only a marginal difference.

4.2.5 (L,25) Weighted Explicit Method

A final attempt to produce an explicit sixth-order method is now made by using the

full 5 x 5 grid of points at the ,'rth ti-" level to produce a weighted (1,25) method.

This can be done by using the same basic weighting as for the (1,21) method described

above, with the addition of the five-point approximations at the edge of the stencil.

This adcls an extra weight in each spatial direction, which wili be denoted by ø in the

x-clirection and ø in the y-direction.

Such a rnethod stiil has the same problems as the (1,13) and (1,21) equations near

}HAPTER 4. THE 2-D DTFFUST?N EQUATTON 113

10

NUMBER OF GRIDSPACINGS

40

1.5

- LOG l^x)
iô

-tr(--€--+

++

s'= 0.1000
s'= 0.1667
s'= 0.33f13

M = 4.00
M= 4.O2

M = 4.06

100

2.0

1 o-9

1 0-8

1 o-7

1 0-6

I

7

6

=(¡)
(t
ô
J

I

cr

Elrr!
zo
F
U)

tll
E
o
Ò
ô

5
1 o

s'= 0.1000
s'= 0.1667
s'= 0.3334ì

M=
M=
M=

1.06
1.06
1.08

1 o-5

4000 1 0000

Figure 4.75: Ercor as gr;d spa,cing gro'ph for lhe (1,21) meth,od' (4.2.30), using a (9,9)

equation at the bound,aries

4 10

CPU TIME (SECS)

40 1 00 400 I 000

1 o-9

1 0-8

1 0-7

1 o-6

1 o-5

Loc [cp)
10

Irigure 4.16: D'rror as CPU time gro.plL for th.e (1,21) method (4.2.30), using a (9,9)

equut'i,on o,t tl¿e boundarics

I
Éo
É.
cr
ul
z
o
t--

U)

h
cc()
U)
o

:o
oô
J

I

7

6

5

jHAPTER 4. THE 2-D DTFFUST?N EQUA"TON 174

the boundaries of the solution region, with the added complication that when used in

a corner of the region there is one point of the stencil that is outside the region in

bofñ, spatial directions, rather than just one as has been the case with the methods

discussed. so far. This adds to the difficulties of implementing these methods, as well

as introducing an additional source of errors, unless the (9,9) implicit method is used,

in which case these extra problems never arise.

The flnite difference equation that corresponds to this differencing is

12ri* :
+

+

+

+

+

+

{rr, + osu\(riz,*-r l rl-z,x+z * rI+z,t -z * rhz,t +r)

{n r, - 4(30 + a|so}(ri-2,,r-r f rl-2,*+t * r|*r,*-, i ri*r,o+t)

{)r, - aQg + 4u)s"}(ri-t,k-z * rI¡,t +z l rl*r,r-, * ,i*t,n*r)

{(1 - 2e - 2a - 21 - 2r - y)s, + 6Øe * 5o)su}Qi-2,t" i ri+2,t")

{6(+V* 5ø)s, + (1 - 20 - 2o - 2e - 2À - n)s'}(ri*-, * ri*+z)

+{(31 | 4r)s" * (3e + a))sr}(ri r,À-r * ,l-r,t +,.I rl¡t,r,-t I ,l*r,r*r)

{aQ+89 *8a * 8z * 8tr - 4)s'}-6(ae+5À)sr}(ri uxl rI+t,x)

{6Gl* 5zr)s, + aØ+ 8d + 8ø * 8e + 8) - lso}Qi*-t + rix+r)

6{(x + 109 * 10¿.r * 107 * 10zr - 5)s'

+(ry + 10d + 10o I LOe * 10À - 5)s, * 2\ri*' @.2'32)

The modifred equivalent equation corresponding to equation @.2.32) can be written

in the general form (4.1.2) with leading error terms

f¿,0 :6s"-x-21 -2P
la,, : s,sy - (4a]-49 * r{7)t" - (a" + 40 +À* e)s,

lq,n: 6"r-q-2e-2e. (4'2'33)

These error coeffi.cients can be made zero by the choice of

: 6s, - 2l -2ç
: s, - (4a + 4w * l) - Ø" * 40 ¡ \+ e)(sols,)

: 6tr-2e-20

x

,If

t? (4.2.34)

cHAprER 4. THE 2-D DTFFUSTON EQUA"TON 115

n
kv

xrJ

Figure 4.1.7: Cornputational stencil for the (1,25) method

which leads to a fourth-order finite difference equation. As was done for the (1,21)

method however, the equation for z' is split into two equations, in order to keep the

symmetry of the difference equation. This is achieved by

) : s,lz-4o-40-e,
7r :

"ul2 - 4a - 49 - 1. (4.2.35)

If the modified equivalent equation corresponding to this fourth-order equation is

examined however, it is found that

16,0:4-30s,*60s,2 (4.2.36)

which contains no weights, and so the method cannot be made sixth-order by any

choice of weights. It can be seen that this will happen no matter what weights rve

clroose to make (4.2.32) fourth-order, a,s for this equation

fe,o : 4- S(x-t27 *2p) + 30(x + 21 t29)s, -720s,2, (4.2.37)

and to eliminate the term l4,s \ile must set

X * 21 * 29 : 6s,' (4'2'38)

t

CHAPTER 4, THE 2-D DIFFUSION EQUATION 116

Substituting this into equatior (4.2.37) gives equation (4.2.36) unconditionally, so that

any choice of weights that makes equation (4.2.32) fourth-order makes eliminating

further weights to give a sixth-order method impossible'

Thus this equation cannot be made any more accurate than the (1,13) and (1,21)

equations discussed earlier and is significantly more complicated, due to the additional

weights. These extra weights also mean that the von Neumann stability of the equation

cannot be usefully examined numerically wiih the current programs. Since, based

on previous experience, the method is unlikely to be signifrcantly more stable than

previous methods (the best likety result being s, 12f 3 , sy 3 213),lhe possible small

saving in CPU time is not worth the added complication of this equation.

4.2.6 Surnmary

Of alt the two-Ievel explicit methods, the best fourth-ordei equations found were the

(1,13) and (1,21) equations. The (1,21) equation has the advantage of a somewhat

bigger von Neumann stability range than the (1,13) equation, but uses rnore grid

points and so is generally more complicated to implement next to a boundary. Note

that this disadvantage may be overcome by using the (9,9) implicit equation to find

the values at grid points next to the boundary, with very little if any CPU time

penalty compared to other methods, so this is the preferred technique of handling the

boundary problems.

It is not practical to extend the computational stencil any further spatially, due to the

increasing problems of points outside the region when the stencil is used near a bound-

ary. Given this, attention is now shifted towards three-level explicit methods, where

ûlore grid points, and hence more weights, can be introduced into the computational

stencil without extending it spatially.

}HAPTER 4. THE 2-D DTFFUSTON EQUA"TON r77

4.9 Three-Level Explicit Methods

Three level methods are worth considering for a number of reasons. The main one is

that more grid points can be included in the computational stencii while still keeping

the stencil compact spatially, thus avoiding (or at least minimising) the problems

discussed above that occur near the boundaries of the solution domain.

This also leads to an increase in the number of weights that can be used, both because

there are now two time levels on which to difference the spatial derivatives, and also

because backward-time differencing can be used to weight the time derivative as well,

which was not possible for the two-level methods. It should be kept in mind, however,

that three-level methods were, in general, less stable than two-level methods for the

one-dimensional problem, and this may also be the case here. If this does carry over

into the two-dimensional problem, then a three-level equation would need to be at

least sixth-order accurate to make up for a reduced stability range.

4.3.L (1-,5,5) Weighted Explicit Method

The simplest possible three-level method is based on the (1,5) two-level method de-

scribed in Section 4.2.I above, with an extra 5 grid points included at the (" - 1)th

time level, as shown in Figure 4.18.

This stencil allows for the inclusion of five weights in centred fashion, aJthough, juclging

by past experience, the number of points in the stencil is iikely to be insufficient to

obtain a very accurate method. The differencing used to include these weights is

0r
At

rL

i,k
È 7 x {[BT at (i - 7,k,n)] * [BT at (r + t, k, ")]]
+ À " {[BT at (i,l'- i,n)] * [BT at (i,t, ¡ 1,n)]]

+ .lxÏCTat (j,k,")l

+ (1 - 2t - 2^ - r) x I FT at (j,k,r)],

x çxlCS3 ¿it (j,k,")l+(1 - ç)xÍ CS3 at (j,k,n -1)1,

CHAPTER 4. THE 2-D DIFFUSION EQUATION 118

Figure 4.I8: Cornputational stenci,l for the (1,5,5) method

d x ICS3.t (i,k,n)]* (1 -d) x ICS3't U,k,n-r)]. (4.3.i)

It can be seen that this differencing is not centred in time. It is however still centred in

space) which is in fact sufficient for the resulting finite-difference equation to possess

the desirable features of centred equations, na.rnely that the odd-order error terms are

all zero. The finite-difference equation that results from the differencing (+.a.t) is

t

xrj

02r "
N

oy' ¡,t

{a I4t +4À - t}ri[' :
+

+

+

+

+

2{l - 9s"} (ri-t,t * ri+t,x)

2{^-9so}Qi*_t*rix+)

2{21 + 2), * u I 2gs, { 20su - 7}"i,r

z{(e - 1)", - t}Gi--\,,+ r,i-i¡,)

2{(0 - 1)"" -),}(ri¡\ +'Ío-i,)

{4(1 - v)s, *4(1 - 0)", - I}ri[' (4.3.2)

This equation gives rise to a modified equivalent equation which ha,s leading error

]HAPTER 4. THE 2-D DTFFUSTON EQUA"TON

terms containing the factors

119

(4.3.5)

f¿,0

ln,,

fr,n

: 121 - 1+6(3 -29-41 -Ð,-r)t,
: Àr" + 7sv * (3 - 0 - 41 - 4), - a - P)s,sy

: 72^- 1+6(3 -20-41 -Ð,-c.r)sr. (4.3.3)

There are no values of the weights thai eliminate all three of these errors simultane-

ously for general values of s, and sr. This can be verified by eliminating the terms

la,s and la,a, which is done bY setting

721 - 1*s'(18 -6u-2Ð,-2a1)
12s,

72), - 1 f sr(18 - 6¿..r - 2aÀ - 2a1)
(4.3.4)

12so

If this substitution is made and the modifiecl equivalent equation of the resuiting

equation is examined, it is found to contain factors in the leading error terms of

I

0

T1r 4,0

FL 4,2

TrL 4,4

The absence of any of the remaining weights in these expressions means that la,2 can-

not be eliminated, for general s, and sv, so the method is only second-order accurate.

Thus this method is, as expected, significantly less accurate than the fourth-order

methods presented in previous sections.

4.3.2 (1,9,9) Weighted Explicit Method

If the (1,5,5) computational stencil used above is extended to a (1,9,9) stencil, eight

more grid points are involved in the stencil, which should allow a more accura.te method

to be developed. This is clone by adding extra weights into the differencings for both

the space and time derivatives, which should allow at least all the second-order error

ter-ms to l¡e eliminated, to produce a fourth-order equation.

1HAPTER 4. THE 2-D DTFFUSTON EQUA"TON 120

t n

v k

xrj

Figure 4.!9: Computational stencil for the (1,9,9) rnethod'

The differencing used is basically the same as that used for the (1,5,5) stencil, with

some extra differencings introduced to incorporate the extra points added to the com-

putational stencil. To keep the stencil spatially centred, the same weight must be used

for all four of the additional backward time derivatives introduced, but two additional

weights can be added in the differencing for each of the space derivative terms, giving

a total of ten weights for the method. The weighting uÀed is thus

ãrl"+l È'vx {[BT at (r-t,k,n)]-l[BT at (r+t,k,')]]
ôt l¡,r t

+ À " {[BT at (i,t - t,n)] * [BT at (i,t ¡ 1'")]]

+ x x {[BT at (i -t,k -!,")] + [BT at (i -t,,1+r,n)]

+[BT ut (r + I,k - t, n)] * [BT at (i + t,k + 1, r¿)]]

+ u xlFT at (i,k,"))+ (1 - 2(t +
^+2Ð

- k,) x ICT at (i,k,n)],

l+l x õ x {lCS3 at (i,t -l,n)l * [CS3 ut (i,k f 1,n)]]
o*'l,,r

+ cp x I CS3 ot (i,k,r)j

+ rx{ÍCS3 at (i,t'-7,n- 1)l +[CSS ¿t (r,ß+1'n-1)]]

+ (1. - Zo - 2tr - e) x I CS3 ai (i,k,n - 1)],

CHAPTER 4. THE 2-D DIFFUSION EOUA"IO¡\r 127

u x {l CS3 at (i - t,k,n)l + [CS3 "t (j + L, k, n)]]

d x I CS3 .t (i, k,")]

g x {l CS3 at (i -t,k,n- 1)l + [CS3 at (r + t,,t,n- 1)]]

(7 - 2v - 2P -d) x I CS3 at (i,,k,r- 1)]. (4.3.6)

{u -f 41a 4) t 8y - 2}ri!1 : 2{x - os, - uso}

(ri-r,r,-t * ri-t,t +r l ri*t,o-, l,i*r,r*r)

+ 2{l - ps, l2vso}Qi-r,r I ,i+r,r)

+ 2{À + 2os" - ?su}Qix_t + "k*r)
. + 2{a *21 i-?), * 4x * 29t' +20s0 -t}rix

2{X+rs,lBsu}

(rî--l,o-, + "r5Ë+1
+ 1Å-iÈ-1 + rilr',* +r)

+ 2{(2o *2tr te -L)s, t20ss- t}?i-l,r+"îÎ,r)
+ 2{2trs, * (2u + 2P + 0 - I)so- ÀXrriß-ll + rîl}r)

+ {4(1 -9-20-2tr)s,
+4(1-0-2u-20)"o-r\ril', (4.3.7)

which can be shown to have a modified equivalent equation that is in the general form

(4.7.2) with leading error terms involving the factors

fa,o : -1 + 24y*72t - 6(ao -129 -l8yI 47 * 4À*u- 3)",

lap : (2X+À -ø - n)t, + (2x*l - v - þ)so

+ (3 -2o - I -2u - 0 -a - 41 - Ð, - 8X)s's,

l,t,¡ : -1 + 24yi72^-6(au ¡20 t8y1- 41 *4À*a - 3)rr. (4.3'8)

Thesc second-ordcr elror terms can be rernoved by a suitable choice of values for some

of the wcights. In ordcr to keep the equation spatially symmetrical, four weights are

õ2r l"
lru

oa'l¡,n

+

+

+

This differencing leads to the frnite-difference equation

CHAPTER 4. THE 2.D DIFFUSION EQUATION 122

used instead of the minimum three, the choice being

7r : (3 -2o - I -2v - 0 -u - 47 -Ð'-8y)(solz) - " f *2X,

P : (3 -2o - g -2u - 0 - u - 47 - Ð,-8y)(s,12) - " -l'y l2X,

p : {-1 + 24x+12t -6@o *8xt4ta4À*tr - 3)s,} l(72s,),

0 : {-1 +24x+12^-6(au*8x*4ta4)*ø-3)su} l(72s), (4.3.9)

where the values given for g and d must also be substituted in the expressions for

zr and B. This substitution leads to a fourth-order finite-difference equation in which

several of the weights appear only in common sub-expressions. To simplify the form of

the equation, we can, without loss of generality, replace each of these sub-expressions

with a new "weight", which can then be treated exactly like any other weight. The

substitution made is

u: u+a(l+\l-zX)
e : X-osr-Ltsyt (4.3.10)

which yields the spatially centred fourth-order finite-difference equal,ion

6{p -z},îl' :
+

+

+

+

+

+

L2e(ri-t,x-, I ri-t,x+1 * rl¡t,*-, l rI*r,n*r)

{1 - 18s, - 24e * 6p.s,}(ri_r,r l ri+r,n)

{1 - 18s, - 24e * 6¡1,s"}(r?r_, -l rix+)

{36(s, * sv) - 16 + 72¡1,(1- so - sr) * 48e}rix

{ ", + s o * 72 e} (rl--rt,r" -, * rî-rt,x +, ¡ ri¡-r',* -, + riì,r *t)

{8s, + 2"o - 7 - 6 ¡.t s, + 24e} (ri--1t,0 t riì,*)

{2", +8", - 1 - 6¡rs, + 2ae}Qit }, + ril})

{4 - 16(s, * sv) - 6p(7 -2s, -2sò - 48e}ri,l1, (4.3.11)

witlr tlre proviso lhat p, I 2 being required so as to retain the explicit nature of ihe

fi nite-difference equation.

Thc fourth-older error tcrms corresponding to this finite-difference equation then con-

La,in the factors

CHAPTER 4. THE 2-D DIFFUSION EQUATION 723

fu,o

fo,z

lu,n

lu,u

: (213){1 - 20s, * 100s"2 * 10¡-rs,(1 - 0s,)}

: (L112){s,(6s, - l-L44e) *6sr(¡r - 1) +36s,sr(5 - ap)}

: (213){1 - 20so f 100sr2 * 10psr(1 - 6"r)}. (4.3.12)

It can be seen from coefficients (4.3.i2) that the (1,9,9) equation cannot be made

sixth-order for general sr and s, since to force 16,0 : lo,z : 0, we require

p: 20s,(1-5s,)-1
10s,(1 - 6r,)

6s" - 1 * 6sr(p - 1) + 36s,sr(5 - 3p)
(4.3.13)

144

and this substitution removes ali the weights from the expressions for l6,a and 16,6,

without, in general, making these zero. Note, however, that in the special câse s, :

ss : s*, the substitution (4.3.13) d,oes also make lo,¿ : lo,o:0, so a sixth-order

equation in possible in this case.

If the substitution (4.3.13) is made, the "optimal" (in the sense that as many of the

low order error terms as possible have been eliminated) finite-difference equation for

the (1,9,9) computational stencil is found to be

c-

-36{1 - zos,2}ri[t :

+

+

+

+

{2s,(7 - 300s, + 1260s,2) - 6sr(1 -28s, * 100s,2)}

(rit,t" * ri+t,t)

{5s,(1 -L2s,* 36s,2) f 3sr(1 - 28s,* 100s,2)}

(rit,r,-r * rl-t,*¡t t rf*r,r-, *,i*t,o*r)

{10s"(5 - 24s, - 36s,2)- 6so(7 * 32s,- 380s"2)}

(ri*-r + rir¡)
{4s,(743 - 240s, - 1260s

"2)

tl2su(7 * 32s* - 380s,2) - 72|ri*

{-bs,(1 - 36s,2) - 3sr(1 - 8s, - 20s"2)}

(ri--Ì¡,-r I rî-t',*+t i ,i*-|,*-r+
"åÏÈ+1)

+ {-2s,(7 - 540s"2) * 6sr(t - 8s" - 20s,2)}

(ri_-|,* + 1å-iÀ)

+ {-10s,(5 - 36s, * 36s,2) * 6sr(7 - 68s, *220s,2)}

(rî*], + de-ìl)

+ {36 - 4s"(143 -720s, * 540s,2)

-t2so(7 - 68s" t 220s,2)jrirL ,s, t #^
(4.3.14)

The condition s, + llJn corresponds to the condition p + 2 from equation (4.3.11).

Equation (4.3.14) is still symmetric with respect to each spatial dimensionindividually,

but is not totally symmetric, due to the asymmetric nature of the substitution (4.3.13).

It should be noted that there is no symmetric substitution which removes any of the

error terms (4.3.12), except in the case where s' : ss : s*, due to the form of the

coefficients. This asymmetry does not, however, introduce any extra error terms into

the modified equivalent equation. The factors from the coefficients of the leading error

terms in the modified equation coüesponding to (4.3.14) are given by

CHAPTER 4. THE 2-D DIFFUSION EQUATION 124

0

so(20s,2-1Xr"-sr)
20s"(1 - 6",)

(1 - 6s, - 6", * 2Os"sr)(s, - ss)
(4.3.15)

10s,(1 - 6s,)

From this, it is clear that the equation is sixth-order accurate in the case ss : sv,

since both of the remaining fourth-order error terms contain (", - sr) as a factor.

If the von Neumann stability of equation (4.3.14) is examined, it is found to be stabie

for only the sma1l region approrima'felE defined by

sr<

s1r S 113. (4.3.16)

For some values of s, the upper limit for s, is slightly rnore than 1/3, in sorne cases

as lrigh as 0.4. In the case sr - su : s*, for which the equation is sixth-order, the

stability lirnit is s* : t 16, which is far too restrictive for the method to be of practical

fo,o : le,z :

Trr 6,4

Trr 6,6

CHAPTER 4, THE 2-D DIFFUSION EQUATION 725

use, especially since it is only fourth-order accurate. Given this stability range, the

(1,13) equation (4.2.18) is a more practical method, since it has the same fourth-order

accuracy and twice the stability range in the r-direction.

Notice that there seems to be some correspondence between this method and the sixth-

order (1,3,3) equation (2.5.9) for the one-dimensional case, in that both are three-level

expiicit equations, both use all available points in a spatially three point wide stencil

and both restricted to s* (tf 6 for von Neumann stability. Note, however, that the

one-dimensional (1,3,3) equation was sixth-order accurate, whereas the best that can

be done here is fourth-order accuracy.

What can be done to attempt to overcome the small stability range is to look at the

von Neumann stability of the fourth-order weighted equation (4.3.11), to see if this is

suitably stable for some choice of the weights. To be of practical use, the fourth-order

equation wouid have to be stable over a range which is comparable to that obtained for

the fourth-order methods discussed earlier. However, a numerical stability analysis of

equation (4.3.1i) shows that there are no values for the weights ¡.r and e that produce

a von Neumann stable scheme for s, : sy: s* :112,, or even s* : Ll3. Since any

lesser range would be overly restrictive, given the ranges of earlier methods, we must

conclude that the (1,9,9) stencil cannot produce a practically useful equation.

Experience with unsuccessfully trying to develop several spatially wide three-level

rnethods for the one-dimensional case, with stencils such as (1,5,5), shows that such

equations generally have very restrictive von Neumann stability ranges, even when

the desired accuracy could be obtained. Given this, and the anaiogy between the one-

dimensional (1,3,3) equation and the two-dimensional (1,9,9) equation, it is expected

that abtempting to find more accurate methods by extending the three-level stencils

spatially will be unsuccessful.

4.3.3 Other Three-Level Equations

Given the success of the (1,5,1) stencil in the one-dirnensional case it is worth trying

to develo¡r iln arra,logous equation, which uses fewer points at time level (n - 1) than

CHAPTER 4. THE 2-D DIFFUSION EQUATION 126

at time level n, for the two-dimensional problem.

As a first attempt, a (1,5,1) stencil can be considered. This stencil oniy allows one

weight, on the time derivative, and the resulting equation cannot be made fourth-order

by any choice of this weight. Thus this equation is only second-order accurate for all

s, and su, and so is not worth considering.

An equation based on a (1,9,1) computational stencil can include three weights, one

for each space derivative and one for the time derivative, which may possibly be used

to eliminate all three second-order error terms and make a fourth-order method. If

this is tried, however, it is found that la,e and la,a depend only on the time weight,

and both are simultaneously zero only in the case s' - ss : s*' Thus this equation

too is only second-order accurate in the general case'

Closer to a direct analogy of the one-dimensional (1,5,1) stencil is a spatially cen-

tred (1,1-3,5) stencil, which can incorporate nine weights. Despite the large number

of weights, it is found that the resulting equation cannot be made sixth-order accu-

rate, and the fourth-order version of the equation has no advantages over the earlier

explicit methods in terms of accuracy or von Neumann stability, so this equation is

not considered in any more detail.

The last possible approach is to use a spatially centred (1,13,9) stencii, which can

incorporate twelve weights. The resulting finite-difference equation can be made sixth-

order by suitable choices for the values of the weights. The problems arise from the

fact that the sixth-order equation has coefficients containing numbers r¡¡hich are too

large to allow development and analysis of this equation on the VAX computer used

for this work. Further work may produce a good sixth-order equation from this stencil,

but since the analysis cannot be carried out on the computers available this has not

been done here.

}HAPTER 4. THE 2-D DTFFUSTON ESUATTON L27

4.3.4 Summary

It can be seen from the above that three-level methods, which provided the very accu-

rate and von Neumann stable (1,5,1) equation to solve the one-dimensional problem,

are not as practically useful for the two-dimensional problem. There is a similar ten-

dency to that seen in the one-dimensional case for there to be a severe reduction in

von Neumann stability for spatially wide three-level equations. Also, the only real

analogue of the sixth-order (1,5,1) equation for the one-dimensional case contains co-

efÊcients which are sufficiently large to prevent analysis on the available computing

facilities.

Thus overall, whiie three-level methods may appear to offer more accurate solutions

from compact computational stencils, in practice no more accuracy is obtained than

from the two-level methods.

4.4 Two-Level Irnplicit Methods

Another way of trying to incorporate more grid points into a stencil, and hence to

get more accuïacy, is to use implicit methods. By analogy with the one-dimensional

case, it is expected that such methods would be very much more stable than the

explicit methods discussed in Section 4.2 above, and, for a given spatial extent of a

computational stencil, more accurate. Balanced against this is the fact that at each

time level, a set of linear algebraic equations must be soived to give the values at the

new time level, and in two dimensions this becomes an extremely large time-consurning

problem, due to the large number of unknown values at the new time level.

It may, however, be expected that implicit methods could be made more accurate than

the explicit ones discussed above, as there is more possibility of introducing weights

into the equations. This is due to the extra points at the new time level, which ¿rllow

forward-time differences to be used at several space positions, rather thztn just thc

(j,k,rr,) grid point, as v/as the case for two-level explicit methods.

CHAPTER 4. THE 2-D DIFFUSION EQUATION 128

4.4.t (5,5) Implicit Method

In order to check whether the general results for one-dimensional flniie-difference

methods will carry over into the two-dimensional case, a very simple (5,5) method

is considered. lVhile this is likely to have insufficient grid points in the stencil to be

even fourth-order accurate, it can still se¡ve to investigate such properties as the von

Neumann stability of such methods.

i n

v

xrJ

Figure 4.20: Computational stencil for th,e (5,5) meth,od

Using such a computational stencil, illustrated in Figure 4-20, the only way of weight-

ing the spatial derivative terms is by splitting the differencing between time levels,

namely

a2 I x I CS ur (j,k,n* t)] + (t - À) , I CS at (i,k,n)],
ðx2

a2
d x ICS at (j,k,nI t)] +(t -0), ICS at (i,k,")]. (4.4.1)

0y

The tirne derivative is also lirnited in terms of potential ways to introduce weights,

since the stencil is to be kept centred. One way of differencing is

T

T
2

k

n

i,
TL

i,

0r
At

n

;
È v x {l FT at (i - 1,h,n)l I I FT at (r 1- t, k, ")]]
+ .y x {l FT ai (j,t' - t, n)l * [FT ai (r, fr 1- 1, ")]]
+ (L-2ç-2t) x {[FT ut(i,k,")]].

k

(4.4.2)

1HAPTER 4. THE 2-D DTFFUSION ESUA"TON 129

This differencing leads to the finite-difference equation

{p -)",} Uijl,o + ,i|lÐ + {) - îso}Qi[\ + r;fÌl)

+ {l - 2V - 2t t 2),s, * 2îsr}rifl

: {À", - ç - ",}?i_1,, * rf¡t,x) * ids, -.'t - so}Qit _t + ri*¡r)

+ {2p + 21 t 2s,(L - À) + 2so(7 - 0)}ri,r (4.4.3)

which can be shown to have a modifred equivalent equation that has leading error

terms that contain the factors

l¿,0 : (12p+6s,(1 -2))-1)
l+,2 : (7""+s"sr(l -0-))+gsr)
l¿,a : (121 + 6sr(1 - 20) - 1). (4.4.4)

As expected, these error terms cannot be removed simultaneously to make the method

fourth-order. If this is tried, then la,s :14,4:0leads to
1*6s,(2À-1)

9: 12
1*6sr(2d-1)

^r
12

(4.4.5)

and substituting these back into la,2 gives

f.^-s'*sg
"t,z: ft-.

(4.4.6)

There are no weights left in this expression, and no specific values of s, and s, which

make 1l zero, except in the case where s" : -s, which means that s' : sv : 0,

which is of no practical use as it forces the time steps to be of zero size. Thus this

method cannot be made fourth-order, but is instead second-order for all values of s,

and so) 0.

The equation that results from substituting the values (4.4.5) into equation (4.4.3) is

{r - os,}(riJr',*+ ril}ì + {1- os,}(rif,_lr +',i*T,)

+ 4{2 + 3s' * Itu}ri['
: {1 + 6?l(r}'_t,* t ri*r,r) + {1 + A'2}?ä_, -t rin+)

+ 4{2 - 3s, - 3su\rir, $.4.7)

CHAPTER 4. THE 2-D DIFFUSION EQUATION 130

which has no weights left in it. A theoretical von Neumann stability analysis of this

method shows that it is unconditionally stable, and furthermore it can be shown that

the method is also unconditionally solvable. This is obviously much better than any

of the explicit methods. This is also consistent with the observation from the one-

dimensional case that two-level implicit methods tend to be more stable than explicit

ones. The major problem with such methods is the large system of linear algebraic

equations that must be solved at each time step.

Running a numerical test for this equation produces results as shown in Figures 4.21

and 4.22. These results \/ere generated using the (5,5) equation, with the sets of linear

equations being solved at each time ievel by a banded equation solver, since this uses

many less operations than a fuil Gauss eiimination process (Reid, i971). The main

feature of these graphs is the enormous amount of CPU time required to generate the

solutions, even for such small values as ,./ : K : 40. Another run, that included the

value J : K : 50 as well required over two days of CPU time to run. This ievel

of CPU time usage is unacceptable for a method in most practical situations. Since

the only real difference between this and the explicit methods discussed previously

is the requirement to solve a system of linear equations at each tirne step, it can

be concluded that implicit methods in general are impractical, since even with more

effi.cient solution techniques, the size of the sets of equations will consume significant

amounts of CPU time.

Given this problem with the amount of CPU time required to run implicit methods, no

further work will be done on them, except to generate the fourth-order (9,9) equation

which can be used earlier to overcome the boundary problems which arise from such

expiicit equations as the (1,13) equation.

4.4.2 (g,g) Implicit Method

To be useful as a boundary technique for explicit equations wiih spatially wicle com-

putational stencils, a (9,9) implicit equation must be at least fourth-order accurate.

1HAPTER 4. THE 2-D DTFFASTON EQUATION 131

-t(--+
--¿-

s'- 0.1000
s'- 0.2500

s'= o.gú00

M= 2.07
M = 1.97
M = 1.64

êo

I
J

4

10

0

4 10

++
s'= 0.1000
s'= 0.25m
s'= 0.5000

M = 0.36

M = 0.34

M = 0.28

NUMBER OFGRIDSPACINGS

40

1.5

LOG 0
t0

_E10 "

1 o-4

1 o-3

10-2

4000 10000 40000100000

100

2 0

cÍ.
o
cÉ
cc
rrJ
zo
Ê
at,

ñ
cÍ.o
an

õ
2

1

Figure 4.2L: Emor as grid spt,cing grt,ph for the (5,5) implicit method, (/,./,.7)

0.1 0.4 1

cPU T|ME (SECS)

40 1 00 400 1 000

é
o
=9
ao
J

4

(E
o
cc
CC

t¡J

6
F-

Lt-
tr¡
É.
o
U)

õ

3

2

_R10'

ro-4

r o-3

lo-2

LoG (cp!
l0

Figure 4.22: Error us CPII timc graplr' for th'e (5,5) implicit metlt'od' (/,.4.7)

1HAPTÐR 4. THE 2-D DTFFUSTON EQUATTOIV t32

v k

xrJ

Figure 4.23: Cornputøtional stencil for the (9,9) meth,od

Although as many as ten weights could be incorporated into a (9,9) computational

stencil, most of these could not be usefully used, since we seek only a fourth-order

equation, which requires only three or four weights to eliminate the second-order error

terms. To ensure that the second-order errors can be eliminated, six weights will be

used, distributed among the spatial derivatives as follows:

02rl_t
0*'l

t

n

N ? x {[CS at (j,l' -L,n* t)] + [CS at (l,tt¡ r,n * 1)]]

+ exICSur(j,k,n)]

+ I t {[CS at (j,tt - 1,n)] * [CS ai (i,l' ¡ 1,")]]

+ (7 - 2n - 2^ -.) x I CS at (i,k,n)],

È X x i[CS at (l - t, k,ni 1)] +[CS at (r + t,fr,nf 1)]]

+ øxICSut(i,k,")]

+ 9 x {[CS at (j - t,k,n)] * [CS at (r + t, k,")]]

+ (7 - 2x - 20 - zr) x I CS at (i,k,")]. (4.4'8)

Conrbined with this, the forward-time differencing is used for the temporal derivative

to give the weightcd finite-difference equation

i,k

02r
Aa'

fI

i,k

1HAPTER 4. THE 2-D DTFFUSTON ESUATTON

{?r, + yso} Qfi,¡-l + lrl-Tfr+l + 7ffiß-1 + rrïÏÀ+1)

+ {.",' zyso}Qi!},e + ri++iÈ)

+ {r"u - zr¡s,}(ri[]t + "iilit) - {1 + 2es, rzrrsu}ril'

: {1", + îsu}({t¡,_, * rl_r,r,+, * rï+r,r_1 * zr!1,¡_,.1)

+ {(2n +2), * e- 1)", *2îsu}Q?-r,¡ * "år,o)

+ {2Às, + (2x + 20 + zr - 1)sr}(ri*-t I ri,o+t)

+ {(2 - 4r¡ - Ð, - 2e)s' + (2 - 4y - 40 - 2tr)so - L}ri*. (4.4.9)

The modified equivalent equation corresponding to this equation can be written in the

general form (4.1.2) with the leading errors terms

l¿,o :6(1 -2e -4r¡)s,-L,,
l+,2 : -(À + n)s, - (0 + X)sv+(1 - 2x-2\ -7r -e)s,s,

f¿,n : 6(1 - 2r - 4Y)so - t. (4'4.10)

These ieading errors can be forced to be zero, while still maintaining the symmetry of

the finite-difference equation, by the choice of weights

l. Jt)

0

I
7f

1

7-4x 1

2

7-4n
\2so

2 72s,
(4.4.11)

Although this scheme cannot be made sixth-order accurate, since there are insufrcient

weights, it is useful to iook at the coefficients in the leading error terms, after the above

substitution is made. These terms can be written in the form (4.1.2) with

e

lo,o

le,z

fa,¿

fo,o

312 - 30s,2,

6Q - 2aq ,'I I-24y - sø - 36s"2su

72

6(1 -24y)sr2 +6(1 -24r¡)s"so

: 312 - Sosrz

L2
- s.1t - 36sr2s,

(4.4.12)

1HAPTER 4. THE 2-D DTFFUSTON EQUATTON

From this, it can be seen that the value

1-6(s, + s?,) * 166xs, * 36s,s,
(4.4.13)

144s,

removes the remaining two weights from the finite-difference equation, and also elim-

inates the cross-derivative error terms lo,z and 16,a. The resulting fourth-order ttopti-

mal" flnite-difference equation is

{1 - 6s, - 6r, * 36s,sr}(rijl,o-r + rÊtÀ+l + rrfifr-l + råÏÈ+1)

+ {10 - 60s, * !2s, - 72s,so}Qi!l,k + riír,k)

+ {10 + !2s, - 60s, - 72s,so}Qi,**-t, + "il}t)
+ {100 + 720(s, * sg) ¡L4ls,sn}rift

{1 - 6s, - 6r, - 36s,sr}(rf-r,t -t * rft¡,+r I ,I*t,o-, * rj|r,r+r)

+ {-10 - 60s" * 72s, | 72s,so}(rI-r,r + ri¡t,)

+ {-10 * 72s, - 60s, l72s"so}(rir,-r * rix+)

+ {-100 * 120(s, * sv) - I44s,so}ri¡, G.4.14)

which can.be used to overcome the boundary problems of the spatially wide (1,13) and

(1,21) explicit equations discussed earlier. Although using this equation to overcome

problems near the boundary involves solving a set of equations at each time step, the

set of ecluations in this case is basically tri-diagonal in nature, and so can be solved

very efñciently by the Thomas algorithm, exactly as'was done for the one-dimensional

implicit methocls. This is in contrast to using the implicit method to solve the entire

problem, where the band width of the coefñcient matrix increases with the values of

J and -Il, which then uses extremely large amounts of CPU time.

Attempts to produce a sixth-order (9,9) equation, which may be useful to overcome

boundary problems if a sixth-order explicit equation is developed by using a weighted

clifferencing for the time derivative as well gives similar results to the above; namely,

making the methorl fourth-order eliminates all the weights from some of the fourth-

orcler error terms, thus mahing it impossible to eliminate all these terms and rnake

the rnethod sixth-order.

734

n

CHAPTER 4. THE 2-D DIFFUSION EQUATION 135

4.5 Locally One-Dimensional Methods

Another solution technique which is worth consideration here is the class of methods

referred to as "locally one-dimensional" (LOD) methods, developed by people such

as D'Yakonov (1963) and Marchuk (1975). In such techniques, rather than using a

two-dimensional finite-difference equation to solve the two-dimensional diffusion equa-

tion, the two-dimensional probiem is split into a series of one-dimensional problems.

Because this one-dimensional approach only allows for diffusion in one direction, the di-

rection in which the one-dimensional equation is applied must be constantly swapped,

from the ø-direction to the g-direction then back again, between each time step.

The main advantage of this technique is that the accurate techniques that were devel-

oped for the one-dimensional case can be applied directly. From a development point

of view this is desirable since the one-dimensional equations contain fewer weights, and

are thus usually much easier to work with than the full two-dimensional equations.

In order to implement such a scheme in practice, it is necessary to determine when to

swap the direction of the one-dimensional scheme. It is found that it is oest to split

each time step in half. For the first half time step, the one-dimensional technique is

used in, say, the y-direction, then for the second half time step it is changed to the ø-

direction. Combined with this, however, is the need to correctly model the amount of

diffusion in each direction. In a real situation, there is an amount of diffusion o, in the

y-direction, and this is present over the whole time. In the numerical implementation,

however, the g-direction diffusion is only present in the first half time step, when

the gr-direction one-dimensional equation is in use. To overcome this, the amount of

diffusion in the numerical scheme is doubÌecl. In similar fashion, the z-diffusiort is

doubled over the second half time step, to account for the fact that there 'was none

in the first half time step. The net effect of this is to leave the values of s, ancl s,

unaltered, since ¿rlthough the diffusion has been cloubled, the time step is only half as

large, and these two factors cancel each other.

Anothcl factor th¿r,t must be ta,ken into account is that the boundary values which

apply at the interrrrecliate tirne level are not thosc specifi,ed for the "cotnplete" (ie.

}HAPTER 4. THE 2-D DTFFUSTON ESUATTOIV 136

non-intermediate) time levels. Firstly, it should be noted that the boundary values at

A : 0 and y : 1 at the intermediate time level are not required for the second half-step

to the new time level, and so need not be calculated. If the values on the boundaries

r : 0 and r : 1 are found by application of the specified boundary condition applied

at the intermediate time level, it is found that any finite-difference method degenerates

to second-order accuracy. This is due to the fact that the boundary value incorporates

diffusion in both the r and y-directions, whereas the interior values computed at the

intermediate time level include diffusion only in the y-direction, due to the use of the

one-dimensional equation. This effect is clearly shown by running the (1'3) FTCS

equation with values of s : 716 and s : 712, the results of which are shown in

Figures 4.24 and 4.25. Note that results are shown only up to J : -I{ : 80, since

computational time rises dramatically for higher values of "I and K, and no more

information is obtained.

=+È
---F

s'= 0.1667 M= 1.82

s'= 0.5000 M= 2.O2

10

NUMBER OF GRIDSPACINGS

40 100

2.0

1 o-7

1 o-6

1 o-5

1 o-4

_?10 "

:o
8-
J

I

É
o
cÉff
UJ

z
o
tr
u)

ñ
É.
o
ú)
o

4

5

'1 0 1.5

- LoG {ax)
l0

Figure 4.24: Error us grid spacing graplt. for tlte (1,3) FTC'ï LOD metlt'orl, usi,ng lh'e

boundury condition aI tl¿e intermedi,ale time leucl'

The altern¿rtive to using the boundary condìtion at r :0 ¿rnd r : 1 ¿rt the intermcdi¿rte

time step is to take the boundary values from the previous tirne level and apply the

CHAPTER 4, THE 2-D DIFFUSION EQUATIOJV 137

-x--+ s'= 0.1667
s'= 0.5000

M = 0.50
M = 0.56

4

cPU T|ME (SECS)

10 40 100 400 1 000

7 1 0-7

1 0-6

t
1 0--

1 o-4

6

(f
o
É.
CE
uJ
z
o
F
U'

h(f
O
U)
o

:o
(5
o
J

I

5

4

3
_a10 "

'I .5 3.0

LoG {cp)

Figure 4.25: Error as CPU time graph for the (1,3) FTCS LOD method, using th'e

boundary cond,ition at the intermediate time leael.

finite-difference equation being used elsewhere in th¿ interior of the region to give the

values along the boundaries at the intermediate ievel. Note that the endpoint values

al y - 0 and A : 7 are not required. This technique has the advantage that the

values at the intermediate time level all incorporate consistent amounts of diffusion

in both spatial directions. The numerical results obtained after making this change

to tlre FTCS LOD method used above are shown in Figures 4.26 ar'd 4.27. Note that

the solution for s* : 0.5 is theoretically only second-order accurate, so this solution

suffered little degradation in accuracy. This explains the evident lack of improvement

in this solution.

The above results clearly show that using the correct treatment of the boundaries

at the intermediate time level is extremely important in the generation of the final

solution. In particular, the given boundary condition should not be appiied at tire

interrnecliate time level, which avoids the problems shown above. This is particularly

relevanL for implementing equations which use spa,tially wide computational str:nc.ils,

such as the (1,5) and (1,5,1) equal;ions. In these cases, we ncecl to find the values at

1HAPTER 4. THE 2-D DTFFUSTON EQI/ATTON 138

s'= 0.1667 M= 4.01

s'= 0.51000 M= 2.02

10

NUMBER OF GRIDSPACINGS

40 100

I -ó10 -

I O-8

ß-7

I 0-6

1 o-s

1 o-4

1 o-3
5 2.O

-LoG {âx}
t0

Figure 4.26: Error as grid spl,cing gra,,ph for the (1;) FTCS LOD method", using the

(1,3) equation on the bound,ary at the inlermeiliate time leuel.

7

6

5

4

3
1

ê
l¿

8-
J

I

rr
o
É,
cÍ
t,rJ

z
et-
9.
Ful
CEo
9,o

0

CHAPTER 4. THE 2-D DIFFUSION EQUATION 139

--'+-
-+

s._ 0.1667 M= 1.07

s'= 0.5000 M= 0.55

cPU TIME (SECS)

0.1 40 1 00 400 I 000

I -o10 '

1 o-8

1 0-7

1 0-6

1 o-5

1 o-4

3 1 o:3

Loc {cp)
f0

Figure 4.27: Error as CPU time graplù for the (1,3) FTCS LOD method, using tlt'e

(1,3) equation on th'e boundary at the intermed,iate time leuel.

o.4 1 4 10

I

7

Éo
d
É.
Lrj

zo
tr
a
trrll
doao

6

Ê
r¡-

(t
o
J

I

4

1HAPTER 4. THE 2-D DTFFUSTOIV EQUA"TON i40

(4.5.1)

the grid. points next to the boundary, without requiring the value at the grid point on

the boundary.

This problem can be overcome in exactly the same rù/ay as lÃ/as done for the Neumann

boundary condition case for the one-dimensional problem. The re-arrangement of

Crandall's fourth-order implicit equation (3'3'4), namely

{1 - 6s}ri+1 {t+esi(ri +ri) +2{5 -6s}ri
2{5+6s}ri+1-{1 -6s}ri+1 , sf rf6,

can be used to find the missing end point. In the case s : 116, Crandall's equation

reduces to the fourth-order special case of the (1,3) FTCS equation, and this equation

can then be applied to find the required value in this case, without any loss of accuracy.

The numerical results from applying this technique to the fourth-order (1,5) equation

are shown in Figures 4.28 and 4.29.

These results show that this technique is producing answers that are as accurate as

the fourth-order two-dimensional equations, such as the (1,13) and (1,21) equations

discussed earlier. Also notice that the CPU times are slightly less than for ihe (1,13)

scheme, and that to achieve a specifrc accuracy requires much less CPU time. Overall,

use of the LOD method seems to be better than using the corresponding fu1ly two-

dimensional frnite- difference equations.

The effective use of such three-level one-dimensional equations as the sixth-order

(1,5,1) and (1,3,3) equations requires several problems to be overcome. Firstly, a

two-level starter must be employed for the first half time step, and this must produce

diffusion in the correct direction. Ideally, this starting method should be of the same

order of accuracy as the three-level equation to be used, but for sixth-order equations

appropriate two-level starter methods are not usually available. As was the case in

the one-climensional case) a fourth-order starter, such as the fourth-order (1,5) equa-

tion, should be used. Having cornpleted the first half time step using the starter,

cornputations over the next half tirnc step can be carried out with either the starter

rrrethod or t}1e three-level method to be usr:d for thr: rest of the tirne steps, depending

on the method of irnplementation. In either case, the diffr,rsion rnust be in the opposìte

CHAPTER 4. THE 2-D DIFFUSION EQUATION 747

--x-+
--å-
4t-+

s'= 0.1000
s'- 0.1667

s'= 0.33f13

s'= 0.5000
s'= 0.6667

M=
M=
M=
M=
M=

4.O7

4.01

s.71
3.99
4.12

10

NUMBER OF GRIDSPACINGS

40

1.5

- LOG {ax}
l0

100

2.O

1 0-9

1 o-8

_a10 '

1 0-6

_q10 -

1 o-4

I

I

:
I

<5ó)
I

7

É.
o
cr
CC
UJ

zo
tr
a
F
IJ.J(r
o
Lô

4
1 0

Figure 4.28: Error ß grid spacing graph for the fourth-ord,er (1,5) LOD meth'od,, using

Crand,o,ll's equa,tion nert to the bounilary.

1HAPTER 4. THE 2-D DTFFUSTON EQUA"TON r42

+(-+-
+t-
-+

cPU T|ME (SECS)

10 40 100 400 1000 4000 10000

0

M-
M-
M=
M-
M-

0.1
I

4

-1 .0

o.4 1 4

8 CE

o
CE
IE
[lJ
z
I¡-
an
trul
É.o
Lo

1 o-77

6

5

1 0-9

1 o-8

1 0-6

1 o-5

1 0-4

:
-gL

oo
J

I

1

LOG (cp)
t0

5

Figure 4.29: Error us CPU tirne graph for the fourtlt-ord'er (1,5) LOD method,, using

Crandall's equation next to the boundary.

1HAPTER 4. THE 2-D DIFFUSTON EQUA?IO^I

direction to that which was initially used by the starting scheme

The results obtained using such equations show the error vs. grid spacing graphs

having slopes around two, despite the finite-difference equations being sixth-order.

This is due to the fact that a three-level equation uses values from two previous time

steps. For the one-dimensional diffusion equation, this is no problem, but when applied

to the two-dimensional case, it results in values that include diffusion in only one

spatial direction being combined with values that include diffusion in both directions

to try to produce an approximation that alternates between requiring diffusion in only

one direction and requiring it in both directions. This "mixing" of values results in

inaccurate approximations and degrades the accuracy of the solution to second-order

irrespective of the acculacy of the finite-difference equation employed.

Overali, it can be seen that locally one-dimensional techniques provide an effective \¡/ay

to solve the two-dimensionai problem. In particular, these techniques are much simpier

to develop and implement than fully two-dimensional equations, due to the absence

of the cross-derivative error terms that must be eliminated to produce accurate fully

two-dimensionai equations. At the moment, the locally one-dimensional technique

is restricted to two-level finite-difference equations, which in turn limits accuracy to

fourth-order. If the problems associated with "mixing" values from several time levels

can be overcome, however, then the more accurate sixth-order three-level equations

could aiso be employed.

4.6 Alternating Direction lrnplicit Methods

The final solution tecirnique to be considered in this work is the alternating direction

implicit (ADI) approach. This class of techniques, originally developed by Peaceman

a,nd Rachford (1955) and Douglas (1955), is based on a desire to obtain the useful

properties of implicit methods, most notably the extended stability range) without

incurring thc enormous CPU time overheads of using fully two-clirrrensional implicit

equations. This is done by using an ccluation which is irnplicit in one spatial dircction

only, while points from the currenl; and previous ti¡nr: levels can be uscd ¿rs required,

143

CHAPTER 4, THE 2-D DIFFUSION EQUATION 744

since these do not affect the explicit or implicit nature of the equation. In practice,

this means that for each value of. j : 7-.J - 1, the ADI equation can be used to

generate a set of I{ -I equations that must be solved tofindthe values ,i|t.."i,*t-t.

Thus J - L of these sets of equations must be solved to step from time level n to time

level n * 1. This contrasts with the fully implicit equations which require the solution

of a single set of (/ - 1X/f - 1) equations. The big advantage of the ADI technique

is that the bandwidth of the sets of equations is a fixed number that depends only on

the spatial extent of the computational stencil, which allows the use of very effi.cient

solving techniques such as the Thomas algorithm can be used. This compares with

the fully implicit equation where the bandwidth of the set of equations is proportional

to the product of the numbers of grid spacings in either spatial direction, which leads

to enormous amounts of CPU time being required to solve the equations as J and K

are increased.

Also of note is the fact that by alternating the spatial direction in which the equation

is applied, it is possible to get cancellation of errors between the two sv/eeps. This

means that ADI equations that by themselves are only say second-order accurate may

actually produce results that are fourth-order accurate, if the second-order errors can

be made to cancel each other out on sv/eeps of alternate direction.

The original ADI equation, which is based on the (3,3) computational stencil shown

in Figure 4.30, is the òimplest possible form for an ADI equation, and there is no

possibility of introducing any weights into an equation based on this stencil. Note

that, unlike the LOD methods discussed earlier, an ADI equation is consistent with

the complete two-dimensional diffusion equation, so there are no problems with having

to split the time steps in half, and any boundary conditions specifiecl will be correct

after each step of the ADI process. In some situations, however, it may be desirable

to actually split the time steps in half, particularly in the case where the ciesired time

level occurs after an odd number of fuli time steps.

1'he finite-difference equai,ion based on the stencil shown in Figure 4.30 is

CHAPTER 4. THE 2-D DIFFUSTON EQUATION 145

t

xrJ

Figure 4.30: Computational stencil for th,e Classical (3,3) ADI method

suQi[]1 + ,ill)-(1 +2"),i['
: -s'(rl-t,x l- ,i+r,ò - (1 - 2s,)rir, (4.6.1)

with a very similar equation with the roles of s a¡rd gr reversed holding for the alternate

direction sweep. The modifi.ed equivalent equation corresponding to this equation has

leading error terms containing the factors

f¿,0 : 6sr-1

l¿,2 : 0

lq,+ : -(6s, * 1), (4.6.2)

while the factors for the alternate direction equation are

f¿,0 : -(6s"+1)
lt,z : 0

Ta.,¡ : 6s, - 1. (4.6.3)

It can be readily secn from this that either equation by itself is second-order accurate,

and no choice for the values of s") 0 and s,) 0 will make it fourth-order. It is worth

noting that thesc error terms are not symrnetric, which is one of the m¿l,in reasons for

jHAPTER 4. THE 2-D DTFFUSTON EQUA.TION 746

using the equation with the implicit portion alternating between the spatial directions

with every time step. In this manner, the errors tend to balance each other, and in

the case of some equations they can even be made to cancel each other to produce

more accurate results.

The other reason for using the alternating direction is the von Neumann stability of

the equation. Equation (a.6.1) itself is only conditionally stable (Noye, 1984), but it

can be shown that the use of this equation over two time steps, one in each spatial

direction, is unconditionally stable, which makes this technique more attractive in

some practical situations.

-J#-
-.+
-€-

s'= 0.1667
s'= 0.2500
s'= 0.5000
s' = 1.0000

M = 1.99
M = 1.97
M = 1.86
M = 1.00

10

NUMBER OF GRIDSPACINGS

40 100

5 r o-5
É.o(f
É
ul
zo
tr
U)
tr
UJ
cr
O
u)
õ

1 o-4

t o-3
5 2.O

- LoG (^x]
t0

Figure 4.37: Error as grid spacing graph' for the classical (3,3) ADI rnethod.

The results from this method, shown in Figures 4.31 and 4.32 bear out the theoretical

predictions. The results are very close to being second-order accurate, with the ex-

ception of the unexpectedly accurate result for s : 1 with J : I{ - 20, which may be

due to some cancellation amongst the leading error terms of the modifi.ed equivalent

equation. It should be noted that alternating the direction of use of the stencil has

the effect of adcling components of the modified equivalent equation, so for the clouble

sweep the coefiìcients are

4

-s¿

I
J

I

0
3

1

CHAPTER 4. THE 2-D DIFFUSION EQUATION 747

--)++
-€I-

s'= 0.1667
s'= 0.2500
s'= 0.5000
s'= 1.0000

M = 0.51

M = 0.50
M = 0.48
M = 0.26

cPU T|ME (SECS)

0.1 fE
ofr
Íf
tu
z
o
F.

U)
F
lJ.,l(r
o
U)
o

0.4 1 4 I0 40 I00 400 1000 4000 10000
1 o-5

4 1 o-4

3 1 o-3
5 4.0

LoG {cp}
l0

Figure 4.32: Error as CPU time grapll for the clo"ssical (3,3) ADI method,.

FOr.4,0 -L

lr,z : 0

fa,¿ : -2. (4.6.4)

The fact that the leading error terms are independent of s, and so explains why the

numerical errors are so close together regardless of the value of s" : sv : s* chosen.

Thus ADI methods appear to be viable in practice, but we need to look at ways of

getting better accuracy from such techniques if they are to be a useful alternative to

the methods discussed earlier.

If all the grid points (j +t,k+\,n) are incorporated into a (3,9) computational stencil,

then four weights can be introduced in the finite-difference equation; one on the time

derivative, one on one of the spatial directions and two on the other spatial direction

(which is the direction in which the equation is implicit). If this is done, the leading

error terms are found to have coefficients that contain the factors

f¿,0

o

8-
J

I

l¿,2

l,t,,t

: 6sr-1

: () - d)s, - psy + (1 - l)s,s'
:6rr-1+121 -'I21so (4,6.5)

Wliile this would appear to be of little use, sincr: la 6 contains no weights, the propelty

CHAPTER 4. THE 2-D DIFFUSIO¡\r EQUATION 148

of adding the errors over a double sweep can be used to advantage here. In particular,

if we can force la,2 : 0 and 14,4 : 1 - 6sr, then when the two errors are added over

a double s\Meep, all the second-order errors will cancel, and the resulting method will

be fourth-order.

In order to achieve this fourth-order accuracy, the values

À

e

.Y

I

116

116

1

0 (4.6.6)

must be chosen, which leads to the "optimal" finite-difference equation

{6"o-1X"iË, +ri,l})
_s,(rl_t,x_r +

-t4{2s, - L\ri* +

4{1 + Bso}ri[\ :
rI-t,t +t * rlt¡,r-t * rj|r,t+r) - s,(ri-t,t i'I+t,x)

{2", - r}(rin; * ri*+). (4.6.7)

The double sweep of this equation can been shown numerically to be unconditionally

von Neumann stable, and its unconditional solvability, even over a single sweep, is

very simply shown analytically from the coefficients at time levei n I !, namely by

showing that

411 + 3'rl à 216s, - 1l (4.6.8)

for all so) 0. Thus this method, used in an ADI fashion, is usable for all values of

sr)0andsr)0.

The results of a nurnerical experiment with this equation are shown in Figures 4.33

and 4.34, from the fourth-order nature of the solutions can be seen. This is worthy

of comment because it is the first time that we have been able to obtain fourth-order

accuracy using only a cornpact nine-point computational stencil at each time level;

¿¡.ll the other methods considered have used spatially wide stencils. The interest here

lies not so much in this fact for itself, since we have fourrd accurate ways to overcornc

the probler¡rs of spatially wide stencils, but in the fact that maybe this could lead to

jHAPTER 4. THE 2-D DTFFUST2N EQUA"TON 149

---€-
+
-+t-

s'= 0.1667
s'= 0.2500
s'= 0.5000
s'= 1.0000

M = 4.01

M = 3.99
M = 4.00
M = 3.98

10

NUMBER OF GRIDSPACINGS

40 100

I -o10 "

1 0-8

10-7

1 0-6

1 o-5

1 o-4

1 0-3
5 2 0

- LoG (ax)
l0

Figure 4.33: Error as grid spacing grt,ph for th,e fourth-order (3,9) ADI metlt,od.

sixth-order equations using a manageable sized computational stencil (ie. at most a

5 x 5 square of grid points at any one time level).

Also worth noting is that the size of the error increases with s*, so the most accurate

results are obtained for the smallest values of s*, which contrasts with some of the

earlier methods. This is due to the fourth-order error term of the double sweep, which

contains the factors

lu,o : -2(1- 30s' f L20s"2)

lo,z:le,a : 0

fo,e : -2(r - 3os, * 72osr2) (4.6.9)

wlrich vanish (giving a sixth-order method) for s, : sy : s* È 0.039... and s* =
0.210..., and increase in magnitude as s" increases above 0.210.... From the CPU

graph it can also be seen that these small values of s* are the most efficient values,

since thcy provide a solution to a spccified accuracy in the sm¿rllest amount of CPU

l;iure. In absolute terrns, however, the efficiency of this technique is not as good as

7

É.
ofr
cc
TJJ

2o
tr
U)
tr
r¡J
É.
OIo

ê
q)

aô
J

I

5

4

3
1 0

CHAPTER 4, THE 2-D DIFFUSION EQUATTON 150

-)++
+t-

s'= 0.1667
s'= 0.2500
s'= 0.5000
s'= 1.0000

M = 1.02
M= 1.01

M = 1.02
M = 1.02

0.1
I

3
-1 .0

0.4 1 4

cPU TrME (SEcS)

10 40 100

5

Loc [cp)
t0

400 1000 4000 10000

4.0

I

_o
10 "

1 o-8

10-7

1 0-6

a
1 0-'

1 o-4

1 0-3

7

fT
oE
fT
ul
z
o
Ë
<t,
tr
rlj
fT
o
9.o

o

(t
o
J

I

5

4

Figure 4.34: Error as CPII time graph for th,e Jourth-order (3,9) ADI metlt'od'.

that of the explicit (1,13) and (1,21) equations; up to 30% more CPU time is required

to generate solutions of a given accuracy, most of which is due to the time required to

solve the sets of equations at each time level.

Further extensions to the computational stencil, such as a (3,13) stencil or even three-

level stencils such as (3,9,5), (3,9,9) or (3,9,13) could be developed in exactly the same

fashion in an attempt to gain such a sixth-order equation. Care should be taken,

however, as to which err-ors are eliminated, since some errors may be automatically

taken care of by the alternate-direction step, so removing these using the weights is

u¡.necessary. The development of such equations is not done here, largely because the

emphasis of the work has been towards explicit methods, since these can use the full

potential of array processors whereas implicii methods cannot, but also due to time

limitations.

Another variety of ADI rnethod is that Jrased on the computational stcncil showrr

in Figure 4.35, which is a loose two-dimensio¡ral analogue of the technique used by

1HAPTER 4. THE 2-D DTFFUSION ESUA"TON 151

Saul'yev (1964) for the one-dimensional problem. Such an equation can still be con-

sidered as ADI because, given the values at the r : 0 boundary at time levei (n * 1)

from the boundary condition, this equation can be used to find the values at r : A,r

by application of the ADI process. These values can then be used to find those at

r:2Lx, and so on. across the grid.

xrJ

Figure 4.35: Computati,onal stencil for the (6,6) ADI method.

There is an immediately obvious problem in that there is no set of three points at the

same time level that can be used to approximate Lhe ô2î lôr2 term in the diffusion

equation. The easiest way around this problem is to consider using the full (9,9)

stencil, on which the differencing is straight-forward, and adding and subtracting an

appropriate multiple of 0î f ðr to the diffusion equation. If ihe weighted scheme used

for 02îf ôr2 al botl¿ hirne levels is say 7x CS at k t 1 and (t -4)x CS at k, then

both extra 0î l0n terms must be multiplied by 7; the extra term which is subtracied

is approximated by forward-space differencing at time levei (n f 1) and the one which

is added is approximated by backward-space differencing at time level n. All this has

the effect of removing the unwanted grid points from the resulting finite-difference

equation, lcaving an equation which uses only the desired glid points.

As usual, the modified equivalent cclual;ion corresponcling to this ecluation rnust be

examined, and in this case the leading error tcrms contain the factors

t

1HAPTER 4. THE 2-D DTFFUSTON EQUATTOIV 752

fg,o : sø

lg,t : 0

lt,, : Stsy

lg,e : 0, (4'6.10)

which appears to make the method oniy first-order accurate. In fact, however, the C3,s

and C3,2 terms of which the non-zero factors are part both contain the factor Ar as

weli as the factor given. This means that if the equation is run both "left-to-right" and

"right-to-Ieft" for each spatial direction, these errors will cancel each other out, since

the second sweep is the equivalent of the first with Ar replaced by -L,x. Thus the

method can be made second-order, even before any alternating direction techniques

are applied.

This method can be further improved, since there are still weights in the equation.

The second-order error terms contain the factors

' fn,o : -1 - 12s,2

la,z : (l_ p)t,*ess +s,2sy

l¿¡ : -L * 729. (4.6.11)

It should be noted that since these are multiplied by (4")' in the appropriate C4,n,n :

0r2,4 terms, the double sweep to remove the first-order error terms will only introduce

a factor of two to all of these, and this does not affect the following calculations.

We wish to make l+,2:0 and T4,4: I { l2so2 in order to achieve fourth-order with

this ADI scheme. This can be readily done by the choice of weights

.,1 :g : (1 +6sr2)/6

e : -s,2 (4.6.12)

which leads to an "optimal" finite-dift'erence equatiou. Unfortuna,tely, this equatiorr is

unstable for even such values as s" : 712, and is found numerically to laclc a suffciently

large von Neumann stability range to be of practical use, given that we have alreacly

1HAPTER 4. THE 2-D DIFFUSTON ESUATTOIV 153

found a fourth-order ADI method that is unconditionally stable. Other equations

based on this stencil, but which are only second-order accurate can be developed

which are von Neumann stable and thus could be used to solve the two-dimensional

diffusion equation, but the lack of accuracy makes this undesirable in practice.

Despite this, however, it may still be possible to develop stable finite-difference equa-

tions based on the ideas above, that require "marching" across the grid in a certain

direction and obtain accurate solutions to the two-dimensional diffusion equation.

Such an investigation, however, is not carried out in this work-

4.7 Surnmary

It has been seen that much of the information gained by the study of the one-

dirnensional problem has helped in the study of the two-dimensional case. In par-

ticular, the modified equivalent equation approach has allowed the analysis of the

errors associated with various finite-difference equations, which in turn allows the

development of more accurate equations. AIso of great use were general techniques

for dealing with spatially wide computational stencils next to the boundaries of the

solution domain.

Unlike the one-dimensional case, it has not been possible with the time and computing

resources avaiiable to deveiop a sixth-order accurate technique for solving the two-

dimensional case. \Mhat has been done, holvever, is to compare the various classes of

solution techniques via finite-differences, namely explicit and implicit two-dimensional

equations, locally one-dimensional (LOD) equations ancl alternating direction imþlicit

(ADI) methods. Implicit two-dimensional equations have been found to require enor-

mous amount of CPU time, both relative to the other techniques and also in absolute

terms. Such equations are therefore not considered to be practical solution techniclues.

ADI methods have not been considered in much detail here, although further work

should be possible along the lines of the examples giverr above, The rnain reasons for

not consiclering these rnethods in detail are that tiris work is directcd rnainly at ex-

plicit techniclues, since implicit techniqrres tend by their nature to require more CPU

1HAPTER 4. THE 2-D DTFFUSTON ESUATTON

time, and also because explicit techniques can use the full computing potential of array

processors; many values at the new time level can be calculated simultaneously from

the known values at the old time level, whereas for implicit methods which require the

solution of a set of linear equations this is not possible. This will further add to the

cPU time difference between the two types of techniques.

There is little to separate the fourth-order explicit two-dimensional equations from

the fourth-order LOD equations, since they both solve the test problem with the same

degree of accuracy and in similar amounts of cPU time. The LoD methods are

probably slightly better for several reasons, however' Firstly, the small differences

in accuracy and CPU usage between two-dimensional equations and LOD methods

tend to favour ihe LOD methods. Also, the development and implementation of

one-dimensional equations tend.s to be simpler, due to the absence of cross-derivative

error terms. Also, if the problems associated with using three-level methods in an

LOD method are overcome this woulcl provide a simple way to obtain a sixth-order

accurate solution. This is potentially a much more elegant method of obtaining sixth-

order accuracy for the two-dimensional problem than attempting to find a fully two-

dimensional sixth-order equation.

754

Chapter 5

Irregular Boundaries

5.1- Introduction

The preceding work has all been based on solving the diffusion equation, in either

one or two dimensions, on linear or rectangular spatial regions respectively which a.re

covered. by a rectangular grid of uniform spacing. Such a region is ideal for the appli-

cation of finite-differences, since the rectangular grid completely covers the region, and

it can be arranged so that grid points lie exactly on the boundaries, so the boundary

conditions can be easily incorporated.

In a practical problem, however, it is unlikeiy that the region over which a solution

is required witl be perfectly rectangular. Instead, the boundary can be expected

to be irregular in shape, and so in general the grid points will not lie exactly on

the boundary. This creates more problems, since a technique for incorporating the

boundary conditions into the solution process must be found that does not cletract

from the accuracy of the rest of the solution.

One way that can be used to overcome this is to find a transformation of coordinates

tþat maps the solution domain onto a rectangular region, which also alters the gov-

erning partial differential cquation accordingly, after which the problem is solved on

the new, rectangular grid. The transformation usually alters the governing cliffusion

155

CHAPTER 5. IRP,EGULAR BOUNDARIES 156

equation into an advection-diffusion equation, the solution to which is somewhat more

complicated than the diffusion equation being discussed in this work. This solution

must then be transformed back into the original coordinates to get the solution to the

actual problem. This approach is outside the scope of this work.

The other approach to the problem is to develop finite-difference equations which deal

with the case where one grid spacing at the boundary is not the same size as the

other grid spacings used. This creates problems of its own, since the finite-difference

equation that results is no longer centred in space.

5.2 Variable Grid trquations

In order to investigate frnite-difference equations to be used in such circumstances, it is

necessary to defi.ne the grid to be used, and then develop appropriate approximations

to the space derivative term in the diffusion equation. The grid next to the irregular

boundary is set up as shown in Figure 5.1, assuming that the irregular boundary

is on ihe right-hand edge of the region. If it is on the left, then a mirror-image of

this fi.gure applies. Note that the boundary is always assumed to lie in the interval

((/ - 1)Az, JLrl. In the case where r: 1, the grid becomes the uniform grid rve

have been dealing with before. For r) 1, the grid point immediately to the left of

the.boundary itself would be (/ - 2)L,n, with the other points placed accordingly.

(J - z)Lr
I

(/ - 1)Ar
I

(J - 1* r)Ar
I

A,r rL.x

Figure 6.L: Modifi,cd grid for an irregular boundary (0 <, 1I here)'

CHAPTER 5. IRP"EGT]LAR BOUNDARIES

The basic three-point approximation to ô2îf ôr2 now becomes

a2î 2rii-r-2(r+1)îi I2îi+,
+ O{(r - 1)(Aø), r(L^r)2}, (5.2.1)

0x2 r(r t 1)(Aø)2

where the (j + r,n) grid point is the boundary point, which has a space position of

(i + r¡n" (cf. Noye, 1984). It is apparent that this is one order of accuracy less than

the corresponding equation for the uniform grid (2.r.7). In the case where r : 1,

this reduces to the uniform grid case, as expected. If equation (5.2'1) is used with

the standard forward-time difference (2.1.6) for the time derivative (since the grid

is still uniform in time), a forward-time variable-space (FTVS) (1,3) finite-difference

equation, is obtained, namelY

r(r * t)rî*t - 2rsrf-t * (r * 1X' - 2s)ri * 2sri*,. (6'2'2)

The computer program used to evaluate the modified equivalent equation correspond-

ing to a finite-difference equation has been adapted to cope with the case where the

grid spacing is no longer uniform at one point, by allowing for the change in the Taylor

series calculated. It is found that the modified equivalent equation corresponding to

(5.2.2) has leading error terms which can be written in the general forrr' (2.2.7) with

coefficients

t;:

157

(5.2.3)

f3(s, r)

la(s, r)

: (1-")
: 6s-1fr(1-r)

Note that these coefrcients in general depend on both s and r. It can be seen that in

the uniform grid case, wherer':1, the equations (5.2.3) reduce to the single original

formula (2.2.g), but in the general case, equation (5.2.3) is only first-order accurate,

due to the coefficient l3(s,r) being non-zero.

Thus the non-uniform grid spacing at the boundary has lowered the accuracy of this

equation by one order. This means that it may be necessary to include more weights in

such stencils just to achieve the same order of accuracy that was done for the uniform

grid.

The non-uniform anaiogue of the five-point approximation (2,3.1), which again is one

order of accuracy lower than its uniform grid counterpart, is given by

CHAPTER 5. IRREGULAR BOUNDARIES 158

In similar fashion to the development of the fourth-order (1,5) equation for the uni-

form grid case, this can be used in weighted fashion with the centred three-point

approximation (for the uniform grid), to give the weighted finite-difference equation

3r(r * 1)(r + 2)(r + s)"i*' : -esr(r + 1)(r -t 2)ri-z

+ 3sr(r + 1)(r + 3)(r +2+ ç)ri-'
+ 3r(r * 2)(r + 3)((r + 1X1 - 2') - se)ri

+ sr(r * 1)(r + 2)(r + 3Xe + 3)ti'
+ 69sri¡1a,. (5.2.5)

The modifled equivalent equation corresponding to this finite-difference equation has

a leading error term involving'the coefficient

la(s,r) -p- 1*6s (5.2.6)

which means that the second-order error term can be eliminated by the choice of

weight

p:1-6s. (5.2.7)

Ii is of interest to note that this value is independent of the value of r, and hence that

this is the same weight as that used for the uniform grid case. If this substitution is

made, the finite-difference equation becomes

3r(r * 1)(r + 2)(r + s)"i*' : sr(r f 1)(r +2)(6s - I)ri-,
+ 3sr(r + 1)(r + 3)(r - 6s * 3)rj'-r

+ 3r(r f 2)(, + 3)((r + 1X1 - 2') - s(l - 6s))r,1'

+ s(r * 1)(r + 2)(r + 3)(3r - 6s * l)r,ir

a2î
A"'

fL

6s(6s - 1)ri¡1¡,,+ (5.2.8)

CHAPTER 5. IRREGULAR BOUNDARIES 159

which is the non-uniform equivalent of the fourth-order (1,5) equation (2.3'8). In this

case, however, examination of the modifred equivalent equation shows that the leading

error term contains the factor

ls(s, r) : (r - 1)(1 - 6s), (5.2.e)

which means that the equation (5.2.8) is only third-order accurate, except in the

special cases where either r:7 or s:1/6. In either of these cases, the leading error

term is eliminated and the equation becomes fourth-order.

The von Neumann stability range of this equation is worth considering. Except for

the impractical values r : 0, -7r-2r-3, which remove the grid value from time level

(n + 1) from the difference equation, the stability range for r I 0 is approximately

s (0.1. As r increases from 0 to 1, this range increases to s S 2/3, which is the

restriction present in the uniform grid case. \Mhat is more interesting, however, is

that as r is increased from 1 to 2, the stability range increases even more, until at

r:2 it is nearly s (1. This suggests that, if this equation is to be used in practice,

the value of r used should be greater than one. Thus next to the boundary, the last

grid spacing should be larger than the rest of the grid spacings, rather than smaller.

Once again, to implement this scheme in practice requires another method to be used

next to the boundary, due to the spatial extent of the (1,5) stencil. Taking the analogue

from the one-dimensional case, a non-uniform version of Crandall's (3,3) equation will

be developed. Thus to solve the diffusion equation, the uniform grid (1,5) equation

can be usecl in the interior of the solution domain, the variable grid (1,5) equation is

used two grid points in from the irregular boundary and the variable grid Crandall

equation is used next to the boundary.

The optimal-order variable grid (3,3) equation can be developed in the same way as in

the uniform grid case. fn this case, however, the forward-time approximations to the

time clcrivatives at (j t 1, n) are included with weights À and á respectively, as well

as the spatial weight d. This increases the number of weights available to elirninate

lnwa,¡tecl crror terrns from the modifiecl equivalent equation. The weightr:d ec¡ration

CHAPTER 5. IRREGULAR BOUNDARIES 160

that results is

{2r0s-)r(r+1)}"í1"

*(r * 1){"(r - I - 7) - 2ls}ri+t

1-{20s-^y(r+1)}ti1" : {2rs(0 - 1) - Àr(r * I)}ri-,

+ (r + 1){r(À + -Y - 1) + 2s(1 - e)}"i

+ {2s(0 - 1) - y(r * \)}ri+,. (5.2.10)

This weighted equation can be analysed by finding its modifred equivalent equation,

which is found to have complicated coeffi.cients C3 andCa of the leading error terms.

In order to eliminate these terms, the values

: {r(720s - 6s - 12 *r + t}/{6r(r + 1)}

: {120s -6s* 12 ir -1}/{6r(r+1)} (5.2.11)

must be chosen. If these values are substituted back into equation (5.2.10), it is found

that the weight d is also eliminated from the finite-difference equation, which becomes

{r(6s l_r2-r-t)}ri!}

-{('+ 1)(6s + 12 + 3r * 1)}rr?+1

*{6s -r2 -r*7}ril,1 : {-r(6s -r2*r+1)}f1
+ {(" + 1)(6s - r' - 3, - t)}ri

{6s* r2 *r -L}ri+,. (5.2.12)

This equation can be analysed using the modified equivalent equatioir approach, which

shows that the leading error term involves the factor

15(s, r) : r - 1)(r +2)(2r *7 (5.2.13)
3

which inclicates that this equation, like the optimal case of the (1,5) equation on

a variable grid, is only third-order accurate. This consistency of orders allows the

ophirnal (3,3) equation to bc used to ovcrcome the boundary problems associated with

the (1,5) equation.

À

^t

CHAPTER 5. IRREGULAR BOUNDARIES 161

Despite the fact that these methods are only third-order accurate for general values

of r and s, it is worth running some numerical tests to see what results are actually

obtained by using them. This is because the real problem we wish to solve is the

two-dimensional case, and it was seen in the last chapter that three-level methods for

the one-dimensional problem require more work before they can be used in locally

one-dimensional fashion. Thus the high-order (1,3,3) and (1,5,1) equations developed

earlier are of no interest in the current context, until such problems with LOD methods

are resolved.

To test the variable grid (1,5) and (3,3) equations in practice, we again use the same

problem as for the one-dimensional uniform grid case, except that the left-hand bound-

ary is no longer at r : 0.0, but at some point s, : rLt where 0 1 x7 (Ar and

I < r (2. The exact value for r7 is determined by the value of r being used, since

the coeffi,cient of the leading error term in the modified equivalent equation is norv

fn(r, s) rather than just ln(") as has been the case so far. Thus for our error graphs

to remain as straight lines, the values of both s and r must be specified, which means

that the position of the left h,nd boundary must vary as the grid spacing is changed.

The numerical results are still taken from the point n :0.2 at time T : 8.

The results from such a numerical test are shown in Figures 5.2 to 5.5, which shorvs

that the method is still close to fourth-order accurate, despite using the third-order

variable grid equations at the boundary. The exceptionally good value for r : I.25

with .I - 70, which is not present for r : 1.75, is an indication that for this set of

values and this problem, thele is in some sense an ttoptimal" case, with some error

terms cancelling each other out to produce a better than expected result. Other than

this, however, the results are showing that the accuracy of the fourth-order (1,5) has

not been {iminished by the introduction of the irregular grid spacing at the boundary.

Given tiris good result in the one-dimensional case, this iechnique can be readily

extended to solve the two-dimensional problem by means of the LOD technique. This

woulcl then provide an efficient means of solving the two-dimensional problem on an

irr.cgula,r region, such as may be found in sorne physical region being rnodelled. One

big advantirgr: is th¿t ihis method recluires only two forms of the ecluatiorrs, one for the

CHAPTER 5. IRREGULAR BOUNDARIES 762

10

NUMBER OF GRIDSPACINGS

40

1.5

- LOG lóxl
l0

1?
.....€-
-+

-x-_F
+

s= 0.125O

3 = 0.3Íì3Íl
s - 0.6667

M = 3.8ft
M = 3.5s
M= 5.22

100

2.0

10-1 1

1o-.l0

1 o-9

1 o-8

1 o-7

11

I

I

:o
oo
J

I

10

0.1

tÍ.
o
cÉfr
t¡J
zo
F
an

tir
cro
U)
ô

7
1 0

Figure 5.2: Error as gri¿l spacing gro,ph for the one-d,inxensi,onal problem using th'e

aariable grid (1,5) equation uith an irregular lefl-ha,nil boundary, r:7.25.

s = 0.1250
s = 0.33Í)3
s = 0.6667

M=
M=
M=

1.3'l
1.22
1.78

CPU TIME (SECS)

0.4 1 4 10 40 100

1t

10

1o-l1

1 0-9

1 0-8

1 0-7

00-
fr
o
É.
É.
ul
zo
F
at)

b
ET
o
<l)

o

I

:
o

I
IJ

I

I

7
-1 .0 5 2.O

(cpì
10

Figure 5.3: Dmor as CPU time grúplL for tltc one-(limeTLsion,al problcnl using tl¿c aari-

able grid (1,5) cquation will¿ un irrcgular left-hanrl boun,du,ry, r : I.25.

0

LOG

CHAPTER 5. IRREGULAR BOUNDARIES 163

10

NUMBER OF GRIOSPACINGS

40 100

10 1o-10

1 o-9

1 o-8

1 o-7
1.5 2.O

- LoG {¡x}

Figure 5.4: Error as grid, spacing graph for the one-dimensional problem using th'e

aariable grid, (1,5) equation wi,th an irregular left-hand, bouniløry, r:\.75.

É.
oE
ú,
t¡J
z
o
tr
U'
tr
uJ
cc
o(t
õ

I:It
oô
J

I

--å(-=+
--¿-

-++-.+

s = 0.1250
s = 0.3Íl3il
s: 0.6667

M= 4.73
M = 4.79

M = 3.86

7
1 0

s= 0.1250
s = 0.33fì3
s = 0.6667

M= 1.61

M = 1.63

M = 1.32

cPrJ T|ME (SECS)

0.1 o.4 1 4 10 40 100

2.0

10 10-10

1 o-9

1 0-8

10-7

CEo(r
cÍ
uJ

6
tr
an

E
É.o
<¡)

õ

:
o

(5
ô
J

I

7
-1 .0 0.5

LoG (cp)
f0

Figure 5.5: Error us CPIJ timc gro,ph for tltc onc-(Jimcnsional problenx using tlte uari'

able gritl (1,5) equation uitl¿ an irrcgular left-han,d, bounùary, r: I.75.

CHAPTER 5. IRP"EGULAR BOUNDARIES 164

left-hand boundary and its mirror image for the right-hand boundary. If a fully two-

dimensional method was to be developed, it would require the development of many

different equations, since the geometry of the boundary relative to the grid being used

leads to many different grid spacings not being the "uniform" size. For example, on a

square region that has different grid spacings at the edges to the "uniform" spacing in

the interior,'we require one equation which has a variable grid spacing in one spatial

direction, for general use next to a boundary, three more equations which are rotations

of the first equation, for use next to the other three boundaries, as well as four more

equations which have a variable grid spacing in both spatial directions, for use in the

corners of the region. This is a total of eight equations, and it should be noted that

the square geometry has lead to a much smaller number of equations than would be

needed for a general irregular region.

4.05
3.82
3.74
3.99
4.O4

(r
o(I
rÉ
uJ
z.o
tr
U)
tr
ul
cco(t
o

7

*
--€-
4¡-+-

0.1000
0.2000
0.æ33
0.5000
0.6667

s'=
s'=

s'=
s'=

M=
M=
M=
M=
M=

10

NUMBER OF GRIDSPACINGS

40

l o-9

1 o-8

t o-7

1 o-6

1 o-5
5 2.O

- LoG [ax]
t0

Figure 5.6: Error us grid, spacing graph, for the two-d,imensional problem using llt'e

uariable gri¿ (1,5) equation in an LOD fash'ion, r:7.25.

The numerical results for the use of the variable grid, third-order (1,5) and (3,3)

ecluai,ions, shown in Figures 5.6 to 5.9, were generated by using the same test problem

as for tlre general two-dirnensional problem, but with the boundaries at r : rL and

100

:g
(,
o
J

I

6

5
1 0

CHAPTER õ. IRREGULAR BOUNDARIES 165

-*-+
+l-+-

0.1000
0.2000
0.3itæ
0.5000
0.6667

CPU TIME (SECS)

1 00 400 1 000

1.03
0.98
0.96
1.O2

1.M

4000 10000

4.0

4.04
3.75
3.56
3.90
3.99

100

1 o-g

1 o-8

10-7

1 0-6

1 o-5
2.O

S'=

S'=
S'=
s'=

M=
M=
M=
M=
M=

10 40

I I O-9

1 o-8

1 o-7

1 0-6

1 o-5

:o
(9
o
J

I

7

5
1

É.
o
.Ec
UJ

z
IF
U'
Ë
trr
Éo
aô

6

0

LoG lcp]
i0

Figure ó.7: Error as CPU tirne graph for the two-ilimensi,onal problem using the uari-

able grid (1,5) equation in an LOD fashion, r :7.25.

--++..#
-+
4l-
-ê-

0.1000
0.2000
0.3333
0.5000
0.6667

s'=
s'=
s'=
s'=

M=
M=
M=
M--
M=

10

NUMBEB OF GRIDSPACINGS

40

1.5

- LoG llx)
t0

I

I
É.
o
crc
t.lJ

z
IF
U)

E
cÉ
O
U)

õ

:
o

oô
J

I

7

6

0

lrigure 5.8: Error as grid spl.cing gï'üph for tlte two-dimensionul problern using th,e

uurial¡le gri¿ (1,5) eguútion in an LOD fashion, r : I.75.

CHAPTER 5. IRREGULAR BOUNDARIES 166

-)++
--+t-
-+

0.1000
0.2000
0.ægl
0.5000
0.6667

cPU TIME (SECS)

100 400 1 000

1.03
0.96
0.91
1.00
1.03

4000 1 0000

3'=
S'=
S'=
S'=

M=
M=
M=
M=
M=

10 40

I 1 o-9

1 o-8

1 o-7

1 0-6

7

:o
(t
o)

I

E,o
É.
cr
l¡l
zo
f-
tt
LJ
É.o
U)
o

6

1 0-"
5 4.0

(cp)
t0

Figure 5.9: Error as CPU time grt,plL for the two-di,mensional problem using the aari-

able grid (1,5) equation in an LOD fasltion, r :1.75.

A: VL where 01r¡, (Aø and 0 1V" < Ay. The other boundaries'were unchanged,

and the results are still taken from the point (0.2,0.2) at time T :2. As in the case

of the one-dimensional test, this problem 'was run with two different values of r, to

judge the effects of the value of r on the results.

The results show that the order of accuracy, as judged by the slopes of the lines, has

only been decreased siightly due to the third-order nature of the variable grid equations

used next to the boundary. It is worth noting, however, that the actual accuracy of the

solutions generated is still the same as that for the uniform grid case. The omission of

values f.or J : K :20 and J : I{ : 30 on these graphs rñ/as necessary to present the

correct overall impression of these results; the actual points that were removed gave

errors that were significantly morc accurate than expected. For instance, the error for

J : I(:30 and s:0.2.ü/as approximately 10-8'5, rather than the 10-6'5 that would

be expected from the rest of the results. The cause of such anomalous results has not

bcen determined, and requires extra work beyond what is done here.

5
1 0 2

LOG

For a general curved boundary, much the same techniques can be applied, except that

CHAPTER 5. IRREGULAR BOUNDARIES 767

along each one-dimensional space line we must keep track of the value of r required

at each end. The major problem introduced by this extension, however, is that the

boundary can no longer be split into two halves, each aligned in one of the spatial di-

rections. Thus all the boundary values must be found at the intermediate time level,

rather than only some, and these values cannot be found from the finite-difference

equation since the boundary is neither straight, even over the length of the compu-

tational stencil, nor aligned in one of the primary spatial directions. This problem

can be overcome either by careful application of the given boundary condition, or the

use of extrapolation from the interior values. If the boundary condition is separable

into parts involving each of the space variable separately, as is the case with our test

problem since it is just the product of a Gauss peak in each of the ø and y directions,

then this form can be used to find the boundary conditions. This is done by substi-

tuting different values of t into each part of the equation, to reflect the fact that at

the intermediate time level the solution has diffused in only one spatial direction. It

should be noted here, however, that an analytic form of the bounda^ry condition is not

usual in practical situations; in most cases the boundary conditions are given as a set

of numerical data, so this method cannot be used. This method is used here, however,

since this allows for a better analysis of the results'

The other alternative for modelling the boundary at the intermediate time level is to

use either some other one-dimensional finite-difference equation or extrapolation to

find the boundary value from the known values in the interior of the region. This

technique is undesirable as it tends to limit the von Neumann stability of the final

scheme, or in the worst cases makes it totally unstable. Nevertheless, the form of

some boundary conditions may dictate that this is the best technique to be used on

a particular problem. Since the boundary condition is specified in a closed analytic

form for our test problern, it will be used to approximate the values on the boundary

at the intermediate time level.

It is also worth noting that in this case, there is no viay that the value of r can be

kept constant; indeed the value varies for each one-dirnensional time line thai the

frnite-difference method is applied to, and in the general case, the values of r at the

CHAPTER 5, IRREGULAR BOUNDARIES 168

"left' and "right" boundaries will also differ. This being the case, the graphs of error

vs grid spacing and CPU time can no longer be expected to be straight lines, since the

leading coeffi.cient of the modified equivalent equation depends on s and r. The actual

numerical results from running the (1,5) LOD scheme on a circular region, namely the

circle (æ - Ll2)2 + (A - tlz)" : Il4, using the usual two-dimensional Gauss peak to

provide initial and boundary conditions, are shown in Figures 5.10 and 5.11.

-+F
--tf
-€-

s'= 0.1000
s'= 0.39|3
s'= 0.6667

10

NUMBER OF GRIDSPACINGS

40 100

6 1 o-6

1 o-5

1 o-4
2.O

- LoG {^x}
i0

Figure 5.1-0: Error us grid, spøcing graph for tlte circular bound,ary problem using tlte

uariable grid (1,5) equøtion in an LOD fashi'on.

The most obvious feature of these graphs is that they are no longer straight iines of

slope four, and indeed that fact that the solutions obtained with "/ : K :80 are not

much more accurate than those for J : I{ :20 is somewhat disappointing. Also note

that while the absolute accuracy is stili quite good, being approximately four decimal

digits, the accuracy of the solution has fallen quite markedly from the case where r

was fixed. These results show that while the (1,5) LOD technique is a good method for

solving two-dimensional problems, further investigation needs to be done in the case

where the boundary of the solution domain is curved or irregular. In particular, most

of the problems evident in the results for the circular region arise from the necessity

to evaluate all the points on the boundary at the intermecliate time level. Clearly,

further work is necessary to determine the best way that this can be done, hopefuìly

without compromising either the accuracy or the stability of the method as a whole.

o

I
-J

I

É.
o
cÉ
É.
uJ

z
o
F
at)

tr
ul
cl.
O
ao

4
0

A
X

o

o
o

A A "1
o
Aâ

CHAPTER 5. IRREGULAR BOUNDARIES 169

s'= 0.1000
s'= 0.3333
s'= 0.5667

0.1 0.4 1

cPU TrME (SECS)

4 10 40

LoG {cp}
l0

100 400 1 000 cro(f
E
lrJ
zo
F
L
F
TU
cÉo
Io

IL

I
J

I

6

4

1 0-6

1 0-"

1 o-4
-1

Figure 5.11: Error us CPU ti,me graph for the circular bound,ary problem using th,e

uariable grid (1,5) equation in an LOD fashion.

5.3 Surnmary

It has been seen that the problems arising from the region not being perfectly rectan-

gular, which means that there is not necessarily a grid point exactly on the boundary

with a uniform grid, can be overcome by using variants of our existing finite-difference

equations. These new equations incorporate the fact that the grid is non-uniform next

to the boundary, and are in general one order less accurate than their uniform grid

counterparts. Note that many of the properties of the uniform grid equations are still

true of the variable grid versions, since the latter must reduce to the former in the

special case r :1.

The numerical results for the two-dimensional problem, which is the case for which

an irregular boundary is most likely to occur in practice, show that the accuracy of

the solution on a square grid, with different grid spacings at the boundaries is close

to that obtained using the LOD scheme on a uniform grid, despite the tlieoretical

accuracy being one order less, and the actual order being slightly less than four in

general. The results on a circular region indicate that othcr considerations, which

sometimes tend to be corrsidered as only rninor factors in ihe solution process, such

as the modelling the boundary values at the interrnedi¿lte time step, can be of great

o
o

A o
1*¡Ä ox

o x
Â, âor x

CHAPTER 5. IRREGULAR BOUNDARIES 170

importance in generating an accurate final solution, and further investigation of such

factors is needed to produce more accurate solutions in this case.

Nevertheless, it iÈ thus seen that the locally one-dimensional soiution technique is

useful in practice for solving such problems with irregular boundaries, where a fully

two-dimensional method would be very much more complicated to develop and im-

plement, since it would require many different equations to deal with all the different

combinations of variable grid spacings which are possible.

Chapter 6

Conclusrons

It has been shown that the "best" *uy to solve the diffusion equation by finite-

difference techniques, in either one or two spatial dimensions, is dependent on the

circumstances requiring the solution. In general, the higher the theoretical order of

accuracy of the solution technique the better, but constraints on CPU time available

or the minimum required resolutic,r may dictate the use of a less accurate method

which has a larger von Neumann stability range'

The basis of analysis of the various finite-difference equations considered here is the

modified equivalent equation approach, developed from the 1974 work of Warming

and Hyett. This allows direct and simple comparison of the errors associated with the

equations as well as providing a means to develop more accurate equations. This is

achieved by incorporating free weights into a generalised equation, then eliminating

the dominant error terms from the modified equivalent equation by suitable choice

of values for these weights, to give more accutate finite-difference equations. Since

the generation of equations and their corresponding modified equivalent equations is a

time consuming, tedious and error-prone tash by hand, a suite of computer programs,

written in Pascal, has been developed to carry out the mechanical operations. This

results in large savings in the time required to develop new firiite-difference equations.

For the one-dimensional problem, the most accurate method found is the sixth-order

(1,5,1) equation, which is also von Neumann stable over the riìrìge s (0.51,.., which

t71

CHAPTER 6. CONCLUSIONS 772

is much better than the other sixth-order methods considered. While even higher

order equations can be developed, these are all implicit in nature, which means that

there is the extra overhead of the solution of a set of linear algebraic equations to

be solved at each time level which must be considered. In addition to this, such

equations have very restrictive von Neumann stability ranges, so increasing the value of

s somewhat to offset the CPU time overhead is not possible. Achieving higher accuracy

by increasing the width of the computational stencil is not practical either, since the

problems near the boundaries become correspondingly greater, with more points near

the boundary having to be calculated by some alternative means, preferably without

a loss of accuracy from this process.

The fourth-order (1,5) equation is also very useful for obtaining a solution in cases

where the sixth-order equations are unsuitable. It is simpler to implement than the

(1,5,1) equation, since it uses values from only two time levels and so does not require

a different technique for starting. Also, the boundary problems can be overcome to the

correct order of accuracy by use of Crandall's equation, without the loss of accuracy

imposed on the (1,5,1) equation by the use of the sixth-order (1,3,3) equation next to

the boundary.

If a boundary condition is given as a derivative (a Neumann condition) rather than

a known value (the Dirichlet condition), much the same techniques can still be used,

but extra effort is required to accurately determine the values at grid points on the

boundary. This involves extra approximations, and somewhat different techniques

for handling the problems associated with spatially wide computational stencils must

also be used. All this leads to a decrease in accuracy which shows up very ciearly

in the numerical results. The worst affected method was the (1,5,1) equation, for

reasons which are not clear, but may be connected with it using both values from

three time levels and a spatially wide stencil. Further investigation of this problem is

required to obtain a better understanding of the problems in this case. The rest of the

"good" method for the Dirichlet case, namely the fourth-order (1,5) and (1,3,3) and

the sixth-order (1,3,3) equations, still produce quite accurate answers for the Neumann

boundary condition. Which of these rnethods is the "bestt' is again dependent on the

CHAPTER 6. CONCLUSIONS 173

circumstances of the solution.

For the two-dimensional problem, it has been found much harder to develop high-

order finite-difference equations. This is mainly due to the existence of extra t'cross-

derivative" error terms in the modified equivalent equation which must be also be

eliminated in order to generate high-order equations. These extra error terms force

an increase in the number of weights which must be used to eliminate them, which

greatly increases the complexity of the finite-difference equations. This extra complex-

ity prevented the development of a sixth-order equation with the computing resources

available, although with the use of a larger, more powerful computer such an equation

may be developed successfully.

Many of the features discovered in the one-dimensional problem carry over into the

two-dimensional case. In particular, using two-level explicit computational stencils

limited to three grid points in each spatial direction, it is not possible to develop a

finite-difference equation which is more than second-order accurate in generai. Like-

wise, for computationa.l stencils which extend over fi.ve grid points spatially, the best

possible equation is fourth-order accurate.

Three-level methods were in general disappointing, since all the equations that could

be analysed were no better than fourth-order, rather than sixth-order as tñ/as obtained

in the one-dimensional case. This was due, however, to the complex nature of the

weighted finite-difference equations, in particular that for the (1,13,9) cornputational

stencil, which cannot be analysed on the available computing resources.

Implicit methods for the two-dimensional problem, as 'was expected, require enormous

amounts of CPU time, due to the requirement of solving a set of linear algebraic

equations at each time level. The problem is that the although the coefficient matrix

of the equation set is banded, the bandwidth is directly proportional to the number

of equations, rather than fixed as was the case in one dimension. This massive CPU

time overhead makes implicit equations totally impractical to use, so the only equaiion

seriously developed was the fourth-order (9,9) equation, which can be used to solve

the boundary problems associated with spatially wide explicit equations like the (1,13)

CHAPTER 6, CONC¿USIONS 774

and (1,21) equations. Used in this fashion, the bandwidth of the set of equations to

be solved is fixed at three, so the CPU time overhead is reduced to quite acceptable

levels.

"Locally one-dimensional" (LOD) techniques, which are based on splitting the two-

dimensional equation into two one-dimensional problems then using the established

one-dimensional solution techniques on each of them, avoid the need for the more

complex fully two-dimensional equations. It has been shown that these techniques

require less CPU time to run than full two-dimensional equations, and the accuracy

of the solutions obtained is similar. The one problem encountered is that finite-

difference equations that use values from three time levels cannot be used, since the

time levels generated here involve diffusion in only one and both spatial directions

alternately. This prevents three-level methods from generating accurate results, and

so the preferred solution technique here is the fourth-order (1,5) equation.

Overall, the LOD techniques are seen to offer somewhat better prospects than the

fully two-dimensional equations for solving the two-dimensional diffusion equation,

since they generate solutions of the same accuracy in less CPU time, and are much

simpler to develop and implement. Extra work needs to be directed at solving the

problems associated with using three-level equations in this fashion, which may be the

best way to obtain a sixth-order solution technique for the two-dimensional problem.

The alternative is to develop the sixth-order (1,13,9) equation to the point where is can

be implemented in practice, since this will undoubtedly give more accurate answers

than the fourth-order techniques presented here.

Alternating direction implicit (ADI) methods provide another good way to obiain

accurate solutions to the two-dimensional diffusion equation in a moderate amount

of CPÜ time. These equations are typically of a fairly low order of accuracy when

considered in isolation, but if they are considered after two applications, one in each

spatial clirection, it is found that some of the iower-order error terms have cancelled

each other out. The development of such equations needs to take this into account,

since it provides a convenient way to generate spatially compact high-order equations.

Such an equation was shown to be the only fourth-order equation that was found that

CHAPTER 6, CONCLUSIONS 175

did not require a spatially wide computational stencil, which immediately removes the

problems near the boundaries. It is found, however, that since the solution process

involves the solution of many sets of linear equations at each time level, the amount

of CPU time required to frnd a solution is somewhat more than that needed by the

explicit equations. This amount of CPU time is, however, still moderate and only

a fraction of the CPU time required by the fully implicit methods, so stabie ADI

techniques should be considered favourably when choosing a solution technique.

Irregular boundaries, such as may be found when modelling physical regions, can be

dealt with either by mapping the irregula"r region onto a rectangular region, when

the solution techniques alreády discussed can be applied, or else by developing speciai

flnite-difference equations that take the irregularity into account. The incorporation

of a va¡iable grid spacing is found to reduce the formal order of accuracy of the

finite-difference equations by one, so the optimal (1,5) and (3,3) equations are now

third-order instead of fourth. Numerical tests have shown, however, that this has

only a slight impact on the solutions generated by using these equations next to the

boundaries. Give this, these equations can be applied in a locally one-dimensional

fashion to generate a solution to the two-dimensional diffusion equation on an irregular

region. This is much simpler than developing a fully two-dimensional equation that

must incorporate a different variable grid spacing in each spatial direction, especially

since there are only two (mirror-image) forms of the one-dimensional equations (for

the left and right-hand boundaries), rather than the many different equations required

of the two-dimensional equation. This is another illustration of the practicality of the

LOD approach to solving the two-dimensional problem.

Overall, the modified equivalent equation approach has proven to be extremely useful

and practical, both to analyse existing finite-difference equations and to develop new

and more accurate ones to solve both the one and two-dimensional linear diffusion

equations with constant coefficients. Several very accurate equations have been devel-

oped, discussed and compared on the basis of both accuracy of solution and the CPU

time required to generate that solution. There is, however, no clear "best" method

for solving any of the problems discussed here; the method to be preferred must de-

CHAPTER 6. CONC¿USIONS 776

pend on constraints such as the available computing capacity and the required spatial

resolution and accuracy.

Further work remains to be done in several a,reas, such as more accurate techniques

for the Neumann boundary condition, using three-level equations as LOD equations,

the development of more accurate ADI methods and also the development of sixth-

order fully two-dimensional equations. The extension of this work into the variable

coeffi.cient diffusion equations in both one and two dimensions should also be examined,

since these equations provide a better approximation to many of the physical processes

that we set out to model.

Appendix A

L]ser Guide for the FDE

Developrnent Programs

,A'.1- trntroduction

This appendix describes a system for the development of accurate finite-difference

equations (FDEs) to solve the one or two dimensional linear advection-diffusion equa-

tions with constant coefficients (sometimes referred to as the transport equations).

The two-dimensional form of this equation is

aî aî aî a2î a2î
At +" a*+, Uo-""ar, - oo W:o (4.1.1)

where LL)'u) er and a, are constants. This equation can be used to describe such things

as the spread of pollutant in a stream or heat transfer in a solid object (in which

case u. and u are both zero). Two special cases of this equation occur, firstly when

dt : dy : 0, which leads to the advection equation, and secondly when 'u, : ,r : 0,

which is the diffusion equation.

The equation (4.1.1) can be solved numerically by finite-difference techniques. Wiih-

out loss of generality we can assume that (4.1.1) is written in a non-dimensional form,

suclr that tlr.e space domain is [0,1] in both the u and y direciions, whilc u,, u, a, antd.

a, ref.er to non-dimensional quantities. Tlie space domain is thcn divided up into a

L77

APPENDIX A. FDE DEVELOPMENT PROGRAMS 178

rectangular grid, with "I grid spacings each of length Ar in the ø direction, and K

grid spacings of iength Ag in the y direction. Alternative grid geometries, such as

triangular and hexagonal are possible, but the programs described in this appendix

deal only with the rectangular case. The equation (4.1.1) can then be solved on this

grid by starting from a known initial state (at time t : 0), then using this information

to approximate the state at time t : Af, and so on until the desired time f : ? is

reached.

This stepping process is achieved by approximaiing the derivative terms in (A'.1.1)

by combinations of approximate values of î at the grid points defined above. For

convenience, the grid point Un*,nLA) at time nAt is referred to as the (j,fr,n) grid

point, and the approximate value of î at this point is ri*.When the derivative terms

are approximated and rearranged into useable formulae, several dimensionless ratios

are found to occur. These are denoted by:

u\t uLt
çt-

^) vY--A.xLy
o,rÂ.t

.)ð - ---------------;- (Lr)"
(A.1.2)

(A.1.3)

(A.1.4)

(A.1.5)

As an example of this, consider the diffusion equation

aî' a2î a2î
at - o' a*, - oo

ao,
:0'

and the finite-difference approximations

ri,fr - ri*
A' + o{aú},

ri-r,x-2rix*rl*t,o
(ar)'

ôr
At

a2î
A.'
a2î

W

* o{(Az)'?},

(A.1.6)

If these forms are substituted into (A..1.1) and rearranged, the resulting equation is

ri,[l : s"rf-t¡c¡ sorf,x-t +(1 - 2s,-2s)rinl s,rI+t,*¡sorf,x+t (4.1.7)

after the terms of O{Lt,(Ar)',(Ay)'} are dropped. This equation can then be used

to find values of. r at one time level from the values at the previous time levei.

In order to check that this diffcrence scheme is actually solving the correct partial

differential equation (PDE) (called being consistent), and also to find the formal error

rix¿ - 2rini ri*+r
+ o{(,'s)r}

(av)'

APPENDIX A. FDE DEVELOPMENT PROGRAMS 179

involved in this approximation, we now fi.nd the corresponding modified equivalent

partial differential equation (MEPDE). This is done by expanding all the terms in

(4.1.7) as Taylor Series about the (j, k, n) grid point, then differentiating the resulting

equation and adding the result back into the original equation repeatedly to remove

all the derivative terms invoiving AlAt, except for the term 0rf 0t.

In the case of the example above, the resulting MEPDE is

0r 02r 02r
ä - ",# - orfr -l E(r,s,,sytAc, A9) : g (A..1.8)

where

E(rrs"rsorL,rrL'y) (1 - 6s,) -
(ar):(Ay)'? (","r)

12

oo(La)'
72

(1 - 6s,) + o{(aø)n, (ny)n}. (4.1.e)

Thus it can be seen that (4.1.7) is consistent with the two-dimensional diffusion equa-

tion (4.1.3) with an error of O{(Az)',(LU)'},, as all the other errors terms in -E are

much smaller than the leading error terms given in (4.1.9). A mrthod with errors of

this form is called second-order accurate; in general if the leading error terms involve

(Ar)"(Ay)o(Af)" where a + b l2c: d then the method is said to be of older d.

As can be readily appreciated from the above example, working out the finite-difference

equation that corresponds to a given set of approximations to the derivative terms in

(4.1.1) and then finding the corresponding MEPDE can be a very long and tedious

process in all but the very simplest of cases. To overcome these problems (and the

associated errors which invariably creep into hand calculations), a set of computer

programs has been developed to perform these mechanical tasks, thus removing most

of the possibility of errors, and saving large amounts of time. The relationship between

the programs thernselves and the frles they use and produce is shown in Figure 4.1.

Tlr.e current implementation of this set of programs is written in Vax Pascal V3.5

and runs uncler VAX/VMS. Despitc this, the programs are written in almost stand¿rrd

Pasca,l. 1'he only VAX extensions used are exponentiation, the use of the "-" character

in identifier narnes and the use of error trapping and file name defaulting for opening

APPENDIX A. FDE DEVELOPMEN? PROGRAMS 180

I DSET I

r--

L--

f--

L--
DISC I

--a

-_J

--f

--J

f--

L__
I SUPER

--1

--J

r--

L--

Í--
L

--

SUBST I

--l

_-J

--l

--J

IMACSYMAI

Figure 4.1: Lelationsl¿iqt betucen progro,nß anil lh,eir inpul antl oulltut f,Ics. Tlte

program, rL&n1,es are euplained in tlt e tcul.

DSK

.WTS

.FDE FND

DSC

KEYS.DAT

MEQ .COM

OFD FND

APPENDIX A. FDE DEVELOPMENT PROGRAMS 181

files. All these are reasonably common extensions to Pascal, and things like name

defaulting and "-t' characters can be removed without changing the program behaviour

signiflcantly. Thus it is a reasonably simple matter to get these programs to run on

other machines and/or operating systems. This has in fact been done in the case

of SUPER, which was converted to run on a micro-computer under CP/M-80, using

Turbo Pascal V2. If has also been successfully ported to the Apple Macintosh.

All input and output files for the set of programs are ordinary text files that may be

changed with a text editor, and all information is passed from one program to the

next by means of these files. Thus each program can be run independently of the

others; there is no need to run any other programs if output from one only is needed,

and input files for that program can be created using a text editor (eg. Ludwig on

University of Adelaide computers).

The programs described he¡e fall into two categories. The first category includes those

designed for the one-dimensional advection-diffusion equation, which have the program

names referred to in this document and are located, along with the required data files,

in the directory D2: IKHAYMAN.PHD.MUDPDE.DVL-SYS] on Vax E. The second category

of programs includes those for use with the two-dimensional advection-diffusion equa-

tion, which are located in the directory D2 : IKHAYMAN . PHD . MODPDE. DVL-SYS . TDMOD]

and have the prefix "2D" before the names given in the text.

The development process is started by selecting the desired computational stencil for

the method, then choosing how to difference each derivative in the equation over

that stencil. This may involve several weights, either because it is desired to split a

derivative approximation between two or more different grid points and/or to ailow

for optimisation of the resulting method by choosing optimal values for the weights.

These optimal values are usually chosen to rerrrove the leading error terms from the

MEPDtr corresponding to the method, although they can also be used to achieve

other desirablc features for the method, such as an increase in ihe numerical siability

region. The program DSE'I is used to convert the desired differencing and weighting

into an input filc suitable for DISC to rcad. From this input filc, the program DISC

is uscd to find the weightcd forrn of the finite-differerì.ce equation (FDE) for the given

APPENDIX A. FDE DEVELOPMENT PROGRAMS 182

differencing

Having d,one this, the error involved in using the finite-difference equation must be

determined. This is done by using the program SUPER to find the MEPDE for the

method. The input file for this program is generated by the program DISC. From the

MEPDE, the aim is usually to eliminate as many of the leading error terms as possible

by a suitable choice of the values of the weights, although, as noted above, this may

not always be the case. In some cases, one weight may be required to ensure that

the method involves no artificial diffusion. The optimal weight values may be found

either by hand, which becomes difrcult once there are more than one or two weights,

or using a symbolic manipulation package such as MACSYMA'

The values of the weights, as well as the weighted finite-difference equation, are then

used by the program SUBST to find the optimal finite-difference equation (ie. the

one with the highest formal order) corresponding to the original differencing. If it is

necessary to check the MEPDE of the optimal scheme, an input file to SUPER is also

generated by SUBST. This is also useful in cases where two schemes of the same order

of accuracy are to be combined to give a scheme of higher order.

AII the programs have a similar input forrnat. Each input file, and output file, is

prompted for in turn, and the user can enter the corresponding file name. Values

that are given in square brackets (' ' [] ' ') .t the end of the prompt indicate default

values that are added to whatever the user specifies to generate the final file name

to be usecl. Note that these defaults are overridden if the user specifres the field in

question, and that all files are assumed to be in the current default directory unless

otherwise specified by the user. The only exception to this last rule is the KEYS file

for the program DISC, which is assumed to be in the same directory as the program

D]SC.

Values in parentheses (' ' () ' ') just prior to the default strings are defaults if the

user merely presses "RETURN" in response to the prompt (ie. enters no fiie name)'

This is usually "(keyboard)" for an input file, which irrdicates that the input from

th¿t file will be prornptecl for from the user's terminal, and "(screen)" for an output

APPENDIX A. FDE DEVELOPMENT PROGRAMS 183

file, which means that output to that file will appear on the terminal screen. A value

of "(none)" mea.ns that the file will not be generated unless the user gives the file a

name. If there is no default value given, then the file is required by the program, and

thus must exist (once the defaults mentioned above have been added).

If a file cannot be opened or created with the name as specified, then the file is
prompted for again in most cases. In the case of an input file, the user should check

that the file exists and is accessible in the specified directory (or the current one if
non.e was specified). For an output file, the user should check that the file can be

created in the specified (or current) directory and that there is sufficient available disk

quota available to create the frle.

The last section of this appendix describes several programs that, while not being

part of the system for developing accurate finite-difference equations, are essential for

creating practically usable finite-difference method"s. They were written in Vax Fortran

by Peter Steinle and are used for checking various stabiiity characteristics of a finite-

difference equation. Details of their use and input file format, which differs from the

rest of the programs described in this document, are given in Section A.b.

Except for the program DISC, which was written by Mark Rankovic, and the Fortran

siability characteristic programs written by Peter Steinle, all the programs described

here were developed and written myself. They represent a large but worthwhile in-

vestment of effort, since there is an enormous saving of time possible with their use,

especially in the more complicated two-dirnensional cases. The most important of

the programs is SUPER, which actually takes a finite-difference equation and cleter-

mines its modifiecl equivaient equation; the listing for the one-climensional forrn of this

program is given in Appendix C.

APPÐNDIX A. FDE DEVELOPMENT PROGRAMS 184

Exarnple

To illustrate the use of each program, an optimai (1,5,1) method based on the stencil

shown in Figure 4.2 will be developed to solve the one-dimensional diffusion equation

ôr 02r
At-a*:O. (4.1.i0)

At the end of each section, this stencil will be used to illustrate the use of the pro-

gram discussed in that section. Where appropriate, the output files generated by the

programs are listed as well.

t,n

o

aooao

o

xrJ

Figure A.2: The (1,5,1) Computational Stencil

The (1,5,1) stencil allows two weights to be used, as follows:

9 x IFT at (j,")] + (1 - P) x I CT ar (j,n)],, (4.i.11)

e x I CS3 at (j,")l + (1 - p) x I CS5 at (j,")] (4.1.12)

where CS3 ìs used to denote a three-point centred space difference approximation

about the specified point, CS5 represents a five-point centred space approximation,

FT represents a forward time approximation and CT represents a three-point centred

time approximation.

OT
N

u
J

^ônO'T
N

^tNur'
l

APPENDIX A. FDE DEVELOPMENT PROGRAMS 185

A,.2 Differencing a Partial Differential Equation

The first step towards finding an accurate solution method for the equation (4.1.1)

is to substitute finite-difference forms for the derivative terms in the equation, then

simpiify the result to give the corresponding finite-difference equation. The program

DISC is designed to do this, based on a set of pre-defined differencings of various

derivative terms. The input format for this program however is not particulariy easy

to work with, so the program DSET was written to convert an easily created fiie that

describes the differencings and weightings to be used into a form suitable for input

into DISC.

Generating the input file for DISC

Progran Name:

Author:

Date:

DSET

Ken Hayman

November 1986

This program is designed to make it easier to create input files for DISC. DSET

takes an input fi.le which describes the weighting to be used. The format of this file

consists of a one line title to describe the equation to be developed, followed by, for

each differencing to be used, an explession in parentheses, which may extend over

several lines, followed by "* KEY(n)", where n is the number of the discretisation

key, obtained from the tables given in Appendix B. At the end of the file, there

must be a line that consists of ((- 0'), to emphasise that the equation is written in

LHS: 0 format. Note that the coefÊcient terms must be enclosed in parentheses,

regardless of how simple they are. Thus "(1) * KEY(13)" must be written instead of

just "KEY(13)". Also note thab no sign is allowed before the opening parenthesis of

the expression, so "(-(<expression>)) * I{EY(13)" is the correct form for entering a

negative coefficient.

The output from this program is ¿r, file suitable for input into DISC. It should be realised

that thi,s filc itself is not the shortcst possible lepresentation of the diffcrencing, as

APPENDIX A, FDE DEVELOPMENT PROGRAMS 186

collection and simplification of like terms has not been done. However, this makes no

difference to the operation of DISC, as this simplification is done by DISC itself as it

processes its input file.

Exarnple

The discretisation keys for the example problem can be obtained from a listing like

that given in Appendix B below. This listing contains all the differencings that are

available in the standard key file, and should be updated if any new differencings are

added to this file. This file of standard differencings is called I{EYS.DAT, and is kept

in the same directory as the program DISC. If the required differencing for a method is

not listed, then it is necessary to create a customised file of differencings (called a key

.¡1le), which contains the desired new differencing, as well as any of the standard ones

that are used by the method. The differencings in the new file are given key numbers

starting from 1 and increasing sequentially. Care should be taken to correctly calculate

the key numbers of the differencings in the new file, as they will be quite different to

those in the standard file.

For the current example, however, the standard key file is sufficient, since the method

uses only the foliowing differencings:

FT

CT

CS3

CS5

Key 3

I(ey 13

Key 47

Key 44 (A.2.1)

From these key numbers, and the weightings (4.1.11) and (4.1.12) given above, the

input file for DSET can be forrned. The file is

1-D Diffusion: tJeighted (1,5,1) Method

(theta) x Key(3)

APPENDIX A. FDE DEVELOPMENT PROGRAMS 187

(1-Theta) x rey(13)

(-Rlprraxehi)'r Key(41)

(-ltptra*(1-Phi)) * xey(++)

=Q

(remembering that the equation must be in LHS : 0 form). DSET takes this file and

produces an input file suitable for DISC to read and evaluate the corresponding FDE.

Finding the Finite Difference Equation

Program Name:

Author:

Date:

DISC

Mark Rankovic

September 1985

Modifications since by Ken Hayman

This program takes a differencing on a given computational stencil and produces

the corresponding finite-difference equation, as well as an input file for the program

SUPER.

In order to make the program as fl.exible as possible, the differencings that it "knows"

about are read in from a file. This file has the following format:

(x-space offset> (y-space offset> <time-offset>

(numerator) <denominator) (delta-x) <delta-y) (delta-t)

where (x-space-offset) is the spatial offset in the x-directic.¡n of ihe grid point from j,
(y-space-offset> is a similarly defined ofi'set in the y-direction and <time-offset)

is the offset of the grid point from time level n. The terms (numr-:rator> ancl

<denominator) form a multiplying factor', and <deliâ-X), <delta-y) and <deita-

t) are th.r: powers of Âz, Ay and Af respectively. In the the one-dimensional case,

APPENDIX A. FDE DEVELOPMENT PROGRAMS 188

the numbers <y-space-offset> and <delta-y> are absent from the file. Note that the

line structure of the file is important, although individual items on the lines may be

separated by an arbitrary number of spaces.

This information is repeated for each grid point involved in the differencing, and each

differencing is terminated by a line containing a single asterisk (*). This asterisk is

required even after the last differencing in the file. The differencings in the key file

are referred to by number, with the first differencing in the file being number one.

To use this system effectively, a printed copy of the differencings in the file and their

corresponding numbers should be kept, as the numbers are not readily apparent from

the file itself, particularly in the two-dimensional version, where there are currently

more than 450 different keys. Copies of the key frles for the one and two-dimensional

cases are given in Appendix B.

The program DISC takes as input both the key file described above and a frle ihat

describes the differencings to be used. The latter file provides information about the

differencings to be applied to the various derivative terms in the partial differential

equation. This frle can either be generated by hand, or produced by the program

DSET, which is described above. The first line of this file is the name of the method

(up to 80 characters long), then on successive lines are the number of weights used,

and their names (which are converted internally to upper case). Following this, and

again with one item per line, are the (integer) numerator and denominator (with any

sign included in the numerator rather than the denominator) and the powers of u,

a (for the one-dimensional case) or Ltr) 'u) e,r and ou (for the two-dimensional case)

and the weights (if any) which multiply the term. Following this is the number of the

discretisation to be applied, which is obtained from the key file listing, then a "Y" if

there is another term to be input or a "N" if this was the last one. Extra terms are

entered in exactly the same format, starting wiih the numerator and ending with the
((Y"/((N" response as appropriate.

The prograur talces the input data and finds the corresponding finite-difference equa-

tion by conrìrining together and simplifying all the contributions at ea,ch grid point

by ndding terr¡rs wiih a,ll thc s¿une powers together into one term and eliminating any

APPENDIX A, FDE DEVELOPMENT PROGRAMS 189

term whose coefficient becomes zero. Once all the differences from the input file have

been processed, the resulting equation can be written out without any further changes.

The program produces two output files from the simplifred data. The first of these is

a file that gives the resulting finite-difference equation in an easily understood form,

which can readily be used to implement the method. This file is also used as input

to the program SUBST, described later, and so should be kept. The second file is an

input file to the program SUPER, used for finding the MEPDE corresponding to the

difference equation. This file is an optional output, and may be suppressed by just

pressing RETURN when prompted for its name. If it is produced, it will prompt for

the order of the highesi derivative SUPER should work rvith. This value should be

chosen with care; restrictions on its value are explained later in Section 4.3.

Exarnple

For the example problem given at the end of Section 4.1, the finite-differen.ce equation

generated by DISC, using the input file generated by DSET, is as follows:

FDE for : 1-D Diffusion: l{eighted (1,5,1) Method

(tlz * THETA

+ t/2) * ttu(n+1, j)

(t/tz*s
- 7/72'r S ,r, PHI) x tlU(n,j-2)

(tls *s*PHr
-4/3xS)xTAU(n,j-l)

(-1*THETA

-T/2*S*PHI
+S/2*S)xTAU(n,j)

APPENDIX A. FDE DEVELOPMENT PROGRAMS

(t/3 *s*PHr
- 4/3 * s),¡ TAU(n,j+l)

(tltz*s
- I/!2 r. S * puf) x TAU(n,j+2)

(-t/2
+ t/2 * THETA) * tlu(n-1,j)

190

(A.2.2)

which corresponds to the finite-difference equation

6{0 + t}ri*' : s{ç - I}("i-rI ri*) i 4s{a - p}?i-1* "i+)
+ 6irps * 20 - 6slri + 6{1 - e}ri-'

=Q

Program Name

Author:

Date:

on rearrangement into the more usual form.

4.3 Finding the Modified Equivalent Equation

SUPER (or SUPERSLOI'¡)

Ken Hayman

March 1984 (original Progran FINDMOD)

(see source listing below for update details)

This program will calculate the modified equivalent equation corresponding to a given

finite-difference equation, up to the term containing a derivative of a specified order.

This modified equivalent equation can be used to determine the theoretical accuracy

of the finite-difference equation, as well as to produce optimal versions of weighted

frnite-difi'erence equations, by choosing values of the wcights that eliminate some of

the le¿lding error terms in the MEPDE.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 191

SUPER takes its input either straight from the keyboard, in which case each piece of

information required is prompted for, or from a file, which has the necessary input set

out with one item to a line. Note that input should not come straight from a batch

job's main input file, as the accumulated lengths of the prompts may cause a run-time

error in the program. To overcome this problem, either specify that input comes from

SYS$INPUT, which will suppress the prompts but sti[read the data from the batch

job input file, or else use a separate input file. Input files for SUPER are generated

both by the program DISC, described above, and by SUBST, described in Section 4.4.

Although both these automated programs produce files that are somevuhat longer

than those that may be produced manually, SUPER will colleci like terms together

and simplify them properly, so there is no loss incurred by using these programs tcr

generate input files.

Although a user should rlever have to know about the format of the input file for

SUPER (since these files are generated by both DISC and SUBST), a knowledge of

this format may be useful to either make minor moclifications directly or to track

down problems. The file starts with a one-line title for the method, which may be

up to 80 characters long, followed by the maximum order of the derivative to be usecl

in the calculations. This number should be chosen with care, with regard to the

expected order of the method, and the available amount of computer time. As this

number increases, the amount of work SUPER must do also increases greatly, which

is then reflected in the execution time. More importantly, however, the magnitude

of the numbers it must work witir increases, which in turn increases the chance of

encountering integers beyond the rrachine's range. Note that with 32-bit integers

such as those used on the VAX rarìge of computers, there is an absolute upper limit

of twelve on this number, due to the fact that the progra,m uses the factorial of this

number in the calculations.

If this restricted range of integers is a problem, the program SUPERSLOIV can be

used instead of SUPER. SUPER.SLOW uses arrays of integers to represent multiple-

prccision integers, thus extending thc range of numbers available. The ma,jor disad-

va,ntage here is that :rll ¿rithrnetic operations on such integers are simulated as pari of

APPENDIX A. FDE DEVELOPMENT PROGRAMS r92

the program, which results in a massive increase in the amount of CPU time needed

to frnd results. This increase has been found to be around 100 fold in some small test

cases where a direct comparison has been possible. Apart from the size of the numbers

they will handle, SUPER and SUPERSLO\ i are identical, so no further distinction

between them will be made.

Following the derivative order in the input file (each item must be on a separate line)

is the number of weights used, and their names (which are converted to upper case

internally by the program). Following this is a repeated construct that specifies the

finite-difference equation. It starts off by specifying the numerator, denominator and

pov¡ers of Ar, Alt, u and a (or Ar, L,y, Ltr't!,i'u) e.r and ao for the two-dimensional

case) followed by the powers of the weights (if any weights are being used, the powers

must be given in the same order that the weights were specified at the top of the input

flle). This information makes up a coefficient, which may (indeed should) multiply

several r values at various grid points. These grid points are noi,¡/ specified, by giving

the z space position, relative to j, the y space position relative to,b (for the trvo-

dimensional case only), followed by the time level, relative to n, and an integer which

multiplies this particular term. Atty denominator that multiplies a term must be

taken out as a factor and specified with the rest of the coefficient part above. This is

followed by either a ((Y", to indicate there is another grid point value that multiplies

the current coefficient, or a ((N" to indicate that there is not. Once all the grid points

that a given coefficient multiplies have been entered, a "Y"/"N" response is required

to indicate whether there is another coefficient to enter. If so, then the whole construct

just described is repeated, until all coefficients are entered.

The program works by expanding all the terms out as Taylor Series about the (j, n)

grid point (o. (1, k, n) grid point, for the two-dimensional case), then collecting up any

like terms to produce a truncated version of the equivalent partial clifferential equation

(trPDE) corresponding to the finite-difference equation. The EPDE is then norrnalised

by dividing by the coefficient of.0rf 0t,, and is then lepeatedly differentiated with the

result being added back into the equation so as to rcrnove ¿rl1 the derivatives with a

time clependence in them, with tlie exception of the 0rl0t term. This produces the

APPENDIX A. FDE DEVELOPMENT PROGRAMS 193

MEPDE, which has only spatial derivatives, except for the 0r l0t te¡m. This form can

then be used to verify the consistency of the difference equation, while the additional

terms form the truncation error of the method, denoted by E.

This technique for finding the modified equivalent equation assumes that the order

of differentiation is unimportant when eliminating terms. If this assumption is not

valid (for instance, if the initial condition contains a discontinuity) then any results

obtained using this MEPDE may be invaiid.

The modified equivalent equation is stored internally as a set of linked lists, so there is

no specific limit on the number of terms in the coefficient of any particular derivative.

Also, any components that are no longer required are returned to the available storage

by means of the Pascal Dispose function, so as to keep the overall storage requirements

to a minimum. In the case of a large problem on a machine with a small amount of

memory, the program may terminate with an "out of memory" type error, but on a

machine such as a VAX this is extremely unlikely, although it can happen with ea,rly

versions of SUPER that don't release unneeded storage space with the Pascal Dispose

procedure.

One of the steps in producing the modified equivalent equation is to divide the equiv-

alent equation by the coefficient of ?rf ôt, as mentioned above. If this coefÊcient is

an expression involving addition and/or subtraction then the division is beyond the

scope of this program. To overcome this restriction, the coeffi.cient is given the name

DEN0M, and the equation is divided by this. In cases where this happens, the output

will contain the expression that has been replaced at the iop of the output, then the

modifi.ed equivalent equation will refer to powers of ¡enoU. So that the program can

achìeve the maximum simplification (and not produce results that are highly mislead-

ing to a casual observer), the powers of DENoU in any given coefficient in the modified

equivalent equation are equalised by muitiplying appropriate terms by DENOM. This

allows the prograrrr's simpliflcation routines to work on the expression, in particular,

correctly representing some of the leading coefficients a,s zeto rather than extremely

complicated expressions that simplify to zero after much extra worh. This allows easy

verification that these cor:fficients üre zero) for checlcing optirna.l dift'erence equations.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 794

The output from this program consists of two files. The first contains the complete

form of the EPDE and the MEPDE, which can be used to analyse the difference

equation. The second is a file that forms the basis for an input to MACSYMA. It

contains equations that are the cancelled forms of each of the error terms from the

MEPDE, with right hand sides that are just ((- 0". Each of the equations is numbered

"F.", where n is the order of the derivative that term was multiplying in the MEPDE

(or "Fny", where y is the order of the y derivative of the term, in the two-dimensional

case). Thus to find optimal values for the weights that make some of the leading error

terms zero, this file could be input io MACSYMA, and the ALGSYS command in

that package used to solve the desired subset of the equations'

Before doing this however, it is necessary to modify the F2 equation if the original

equation involved diffusion, as this term will contain the diffusion term -a ô2rf õx2.

Thus for the pure diffusion equation, there is a line

F2:(-1)=0$

which must be deleted. If there is more than one term involved in the modified

equivalent equation coefficient C2, say a scheme for the transport equation that has

artificial diffusion, then just the one term needs to be deleted, not the whole equation.

If the whole equation is deleted, then the reference to the equation must also be

removed from the list of equations to be solved. In the above case, the line that solves

for the weights is

algsys (ltz ,f 4 ,f 6f , ltugt.q, Pur]) ;

which must be changed to

argsys (lt+,f 6l , ITHETI, PHr]) ;

since the F2 equation was deleted entirely

Notc that the output of the MACSYMA file is optional, ancl can be suppressed by

just pressing RtrTURN when its name is prorrpted for. In the ca,se of the full two-

APPENDIX A. FDE DEVELOPMENT PROGRAMS 195

dimensional advection-diffusion equation, however, this MACSYMA file has not yet

been implemented, and alternate means should be used to find optimal values for the

weights. The easiest way to do this is to edit the main output file, removing the

EPDE, and setting up the desired equations to be solved, then using this as input to

MACSYMA. This procedure is usually satisfactory, as the reduction of any ans\Mers

from the form involving Ac's etc. to the simpler form involving s,'s and sr's is usually

very simple, and can be done by the user as the answer is read.

It should be noted that the output from MACSYMA is not suitable for input directly

inio SUBST as a weight file (ie. .\MTS extension). The values of the weights must be

read from the MACSYMA output and re-formatted into the format of a weights file

using a text editor such as Ludwig. The format of this fiIe is described in Section 4.4.

Also worth noting is the fact that if the output from MACSYMA is something of the

form

(cn)

then MACSYMA was unable to find any solutions to the given set of equations for the

weights specified. Note also that the "(cn)" in outpui by MACSYMA (like ihe above)

has no relationship to the coefficients of the modified equivalent equation which have

been denoted by Cn in this work.

Example

For the example problem, given the input frle for SUPER generated by DISC, the

main output frle is

1-D Diffusion: I'üeighted (1,5,1) Method

Initial coefficient of DTau/DT is

il

(r*DELTA_T)

APPENDIX A. FDE DEVELOPMENT PROGRAMS

Equivalent Partial Differential Equation :

(1)*DTau/DT

(t/2 * THETA * DELTA-T) * D2Tau / otz

(-r*ALPHA)*D2Tau/Dx2

(t/a *, DELTA-Trr2) * D3Tau / o"ts

(t/z+ * THETA * DELTA-T,¡,¡3) * D4Tau / DT

(- T/TZ * ALPHA * PHI ¡F DELTA-X,K*2) X D4TAU / OX+

(t/720 ,k DELTA-T*,¡4) x DSTau / ots

(tlzzo * THETA * ¡g¡1¡-Tx*5) * D6Tau / O'tA

(tlgo * ALPHA * DELTA-X,¡'¡4

- L/72 *. ALPHA * PHI * DELTA-X**4) * D6Tau / OXA

"Modified" Partial Differential Equation :

(r)xttau/ot

(-t*ALPHA)xD2Tau/nxz

(- t/12 ,* ALPHA * PHr * DELTA x'k*2

+ L/2 ,k ALPHA**2 * THETA ,k DELTA_T) * D4Tau / DX4

196

APPENDIX A. FDE DEVELOPMENT PROGRAMS 797

(1/90 * ALPHA * DELTA-x**4

- T/72 *. ALPHA *. PHI * DELTA-X**4

+ t/72 * ALPHA**2 * THETA ,¡ PHI * DELTA-X**2 * DELTA-T

- t/2 ,k ALpHA*,k3 * THETA**2 * DELTA_T**2

+ 7/6 *, ALPHA**3 ,F DELTA-T**2) * D6Tau / oxa

It is evident from this that the finite-difference equation is consistent with the one-

dimensional diffusion equation, with a truncation error

a(L,r)2
E(r,s, L.æ)

72
I

ffr
A"^'0)

6

##,n - tp(r- 6sd) * 60s2(t - s"0))#+ o{(ar)'6n.g r)

Thus the weighied (1,5,1) method is in general second-order accurate, although in

Section 4.4 below, values will be chosen for the weights that make the method more

accurate.

The MACSYMA file produced for this method is

$ set noverify

$ nacsyma

F2 (-1)=0$

F4: (- tltz * PHI

+ t/2 * S * TIIETA) = 0$

F6: (t/so
_ L/72 * pHT

+ I/12 * S ,t THETA ,¡ PHI

- 1/2 * S**2 ,k THETA**2

+L/6*S**2)=0$

:

+

APPENDIX A. FDE DEVELOPMENT PROGRAMS 198

algsys (ltz,t+,f 6l , [rurtl,Pttt]) ;

quit O ;

$ if " ' 'notify' r' . eqs. "" then notify = r'$sys-ute:notify"

$ notify "<MACSYMA finished)"

$ exit

In this case it is clear that the F2 equation must be removed (as explained above)

for the system of equations to be consistent. It should be noted however that if the

method incorporates numerical diffusion, then only one term needs to be rernoved

from the F2 equation, rather than the whole equation as 'was the case here.

^.4
Evaluating the Optimal Equation

Prograrn Name:

Author:

Date:

SUBST

Ken Haynan

JuIy 1986

The purpose that program SUBST serves is two-fold. Firstly, it can be used to create

an input fiIe for SUPER from a file which is much easier to enter correctly than the

SUPER input fiIe itself. Secondly, and its main use, however, is to substitute specific

values of weights into a weighted difference equation and simplify the result to produce

the new ecluation. These values of the weights may be generated from MACSYMA,

as described above, or by some other convenient method, such as another package, or

by hand.

The main input file to SUBST is the file that specifies the finite-difference equation

to be used. This is exactly the output file produced by the program DISC described

in Section 4.2 above, so if DISC was used to generate the initial finite-difference

equation, then the output file produced by it can be used directly. Oiherwise, the file

must be created using a text editor. This file is very similar to the input file described

above for DSET. Its forrnat consists of a one-line title for the method, followed by

APPENDIX A. FDE DEVELOPMENT PROGRAMS 199

the finite-difference equation itself, which is specified by a coefficienl, in parentlt,eses

multiplied by ihe value of. r at a given grid point, repeated for each grid point that

the equation includes. For example, one term from an equation may look like

(r

-2 '. S) * TAU(N,J)

for the one-dimensional case, or

(t

-2xSx
-Z * SY) i'TAU(N,J,K)

for the two-dimensional case, which specifies (1 - 2s)ri in the first case or (1 - 2s, -
2s)rir in the second. Note that each grid point in the computational stencil of the

equation must appear exactly once in the input file, and while the coefficient may

extend over multiple lines, it must be enclosed in parentheses, no matter how simple

it is (eg. r/ must be specified as (1) * TAU(N,J)). Each new gridpoint has an implicii

"a" sign in front of its coefficient, so the signs of the terms inside the coefficient should

be written accordingly. Also, after the last grid point of the equation, an ": 0" is

required. This requirement is both to accommodate the output from DISC, and also

to serve as a reminder that the equation must be in LHS : 0 form when entered into

this program.

The other input file into this program is a file that specifies the values of weights to be

substituted into the equation. If no weights are to be substituted (ie. this run is only

to generate an input file for SUPER) then RETURN should be pressed when this file

name is prompted for. If, however, it is desired to substitute some weight values, this

frle is required. The format of the file is

<weight-name) : (expression)

where <weight-name) is one of the weights in the equation, and <expression) is the

expression to be substitutecl in its place. This expression can extend onto multiple

APPENDIX A. FDE DEVELOPMENT PROGRAMS 200

lines, and need not be in parentheses. Each new weight name should start on a new

line, however.

One restriction on the expressions that may be entered into the program SUBST,

either as a coeffi.cient of the difference equation or the value of a weight, is that any

exponentiation must be to an integer power (ie. no weights or expressions are allowed

as powers). This is due to the internal representation used, and should not be a

problem in any forseeable application of this program to developing finite-difference

equations, and has been mentioned for completeness only. Also, division by expressions

containing addition and/or subtraction is not allowed directly, but can be achieved

by dividing by the pre-defined name DENOM, which can then be defined to be the

expression to be divided by. This is also not a restriction in practice, as the sets

of weights from a weighted scheme have been found to either all share a common

denominator, or can be made so very easily, so one DENOM suf;Ê.ces. In the unlikely

event that this is not the case, several runs of SUBST, using different weight files with

different values of DENOM could be used.

SUBST works by building up a tree form of each weight to be substituted,. then building

a tree for each coefficient in turn, substituting the weights into ihis by referencing the

appropriate weight sub-tree at the correct place in the expression tree, and simplifying

the resulting expression. This new expression is then written to the output file.

The output files from this program are exactly the same as those from DISC, namely

a formatted version of the new finite-differênce equation, and an optional input file for

the program SUPER (which may be suppressed by pressing RETURN when prompted

for its narne). Note that the file type for the finite-difference equation file produced

by SUBST is different from that produced by DISC (.OFD rather than .FDE) to

distinguisli the two files. This allows the original weighted finite-difference equation

to be used with a diff'erent weight file at a later time, if desired. The input file for

SUPER allows the user to run the resulting finite-difference equation back through

SUPER to verify th¿t the given weighting has removed or modified the leading error

terms as cxpccted, and also to looh at the sirlplified forrn of the rnodifìcd equivalcnt

ecluation for thc new mcthod.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 20r

Example

From Equation 4.3.1 above, either by hand calculation or using a package like MAC-

SYMA, it can be found that the leading error terms in the modified equivalent equation

for the weighted (1,5,1) method are removed by the choice of weights

4 * 60s2
(A..4.1)v

5

To verify that this choice does in fact remove the leading errors, and to find the

corresponding FDE, the following weight file is input to SUBST, along with the FDE

file produced earlier by DISC:

Theta= (Z+gOxs^Z) / (fS*"¡

phi=(4+60*,s^2) /S

The optimal FDE, as produced by SUBST is

FDE for : 1-D Diffusion: t{eighted (1,5,1) Method - Optinal Version

(+ * s**<-1

+60*S
+ 30) x tAU(n+l, j)

(txs
- 60 'r S,r*3 ¡ x TAU(n,j-2)

(-o+x5
+ 240 * S**3) * tlU(n,j-l)

(- g * S{,*-1

+6,kS

-360*S**3)xTAU(n,j)

APPENDIX A. FDE DEVELOPMENT PROGRAMS

(-o+xs
+ 240 * S**3) * ttU(n,j+t)

(t'¡s
- 60 * S**g) ,¡ TAU(n , j+Z)

(-30
+ 4 * S{'*-1

+60*S)xtAu(n-1,j)

202

=Q

which corresponds to the FDE

-2{80s2 * 15s + z}ri*t :
"'{1 - 60s2}(ri-z i ri+r)

t6s2 {+ - tts2}(ri_1 + "i¡)
72{180s4-3s2 +a}ri

+ 2{30s2 - 15s +2}"î-t. (A.4.2)

Note that (A.4.2) has been multiplied through by s from the output from SUBST, so

as to simplify the form of the resulting FDE.

If this FDE is examined (by using SUPER with the corresponding input file, also

generated by SUBST), it is found that this new equation is still consistent with the

one-dimensional diffusion equation, and the leading error term is of O{(A,r)6} for

arbitrary values of s, the error terms shown in Equation 4.3.1 having been eliminated

by the choice of weights. This means ihat ihis finite-difference ecluation is sixth-order

accurate

Since there is only one choice of weights ihat eliminates both the second and fourth-

order error terms, the above FDE is in fact the highest order method possible for

the (1,5,1) stencil. Other methods, of lower order, can be genr:rated by other: cltoices

APPENDIX A. FDE DEVELOPMENT PROGRAMS 203

of the weights, and still other methods are possible using other differencings of the

derivative terms of the diffusion equation. It should be noted, however, that the use

of off-centred derivatives leads to the inclusion of more low-order error terms, which

must all be removed to generate a high-order method, which in turn requires the use

of more weights. Such problems were not apparent in the example case, as centred

approximations were used for all derivatives.

4.5 Numerical Stability and Solvability

Program Nane

Author:

Date:

VNS, SOLVABLE

Peter Steinle

1983

Finding a finite-difference equation which is of high-order accuracy in theory does not

mean that the equation will give highly accurate numerical solutions. For the solution

to be accurate, the equation must not allow the uncontrolled accumulation of round-off

errors, in which case the method is termed stable. For implicit methods that require

the soiution of a set of linear algebraic equations at each time step, the solution of

this set of equations must be stable, in which case the method is solaable. Overall, a

finite-difference method is only of practical use in the smallest region where it is von

Neumann stabie and solvable, if the latter is appiicable to the method.

The von Neumann stability of a method can be determined analytically in some cases,

most notably when the computational stencil is centred about the (j, n) grid point.

This approach, however, is extremely cornplicated for all but the most basic finite-

difference equations, so a numerical equivalent has been developed. This is based on

the von Neumann stability test, discussed more fully in Noye (1985), which requires

that

lG(s, B)l < 1 for all B e l},ur) (4.5.1)

where G is the a,mplification factor associ¿rtcd with ihe method. The program fbr this

test, which is callcd VNS, works by evaluating G for many values ot B in the range

APPENDIX A. FDE DEVELOPMENT PROGRAMS

AS

204

10,%rl for a given value of s, and checking whether lGl < 1 or not. If lcl) 1 for

any value of B, then the method is unstable for that value of s, otherwise it is stable.

The results are output as a graph suitable for printing on a line printer. Note that

while there are versions of this program for both the one and two-dimensional cases,

the other programs described later in this section are at present only available for the

one-dimensional case.

The solvability of a method is determined solely by the coefficients at the (n+f)th time

Ievel. The criterion used is that the coeffi,cient matrix for the system of linear equations

must be diagonally dominant, which means that the magnitude of the coefficient on the

leading diagonai of the matrix must not be exceeded by the sum of the magnitudes of

the other coefficients on that row of the matrix. This may be written mathematically

rL

lo,,¿l) D l"o,¡l , i: 1(1)rz, (4.5.2)

l7i
where the A : la¿,¡l is the n x n coefficient matrix for the system of equations to

be solved. This condition is checked by ihe program SOLVABLE. Note that this

deflnition of diagonal dominance is adequate in this context due to the form of the

implicit finite-difference equations being used.

The input for the programs for the one-dimensionai case is in a different format to the

previous programs) and is achieved by editing the Fortran source program COEFF . FOR

and entering data about the method. A listing of this program is given below in

Section 4.5.1. The variable NIeveIs must be set to indicate the number of time levels

involved in the computational stencil, and should be either two or three in most cases.

A three line title can be entered into the variable Tit1e, and this appears at the

top of the result file. The last data needed are the coefficients of the finite-difference

equation itself. As for the previolls programs, the finite-difference equation must be in

the form of LHS : 0. The vari¿rble Coeff (a,b) contains the coefficient of rfiò, while

the variables Stencil(b,1) and Stencil(b,2) hold the nurnberof grid points to the

left ancl right rcspectively of the (j,n*b) grid point. This array Stencil is used to

spcecl up thc resulting program by elirninating redundant operations. Note tliat when

cntering values for Coeff , the varial¡le to go along the horizont¿rl axis of the output

APPENDIX A. FDE DEVELOPMENT PROGRAMS 205

must be referred to as C and the one on the vertical axis S, regardless of the label

these axes have in the output.

The input for the two-dimensional von Neumann stability program is very similar to

the above. The title and the variable NIeveIs are exactly the same, but now the

stencil is split up into t'planest' running in the æ direction. For each of these t'planes"

at each time level, the value Stencil(a,b,1) and Stencil(a,b,2) hold the number

of grid points in the computational stencil to the left and right respectively "t ri[]".
The values Coeff (a,b,c) hoid the coefficients of ,iÏf,r*,. Although there are four

parameters available, namely Cr : c', CU : cy, Sr : s' and SA : so, Cx - Cy

and Sr - Sg in order that the result can be output in a useful graphical format. As

was the case for the one-dimensional prograrn, the variable Cr - Cy is output on the

horizontal axis, while the variable Sr - Sy is output on the vertical axis.

Having set up the correct coefficients in the appropriate program, this program must

then be compiled and linked with both the double precision IMSL library (the single

precision IMSL library is used for the two-dimensional program, to reduce the running

time to an acceptable vaiue) and either the program VNS to examine the von Neu-

mann stability of the method, SOLVABLE to examine the solvability of an implicit

method. As an example of how to do this, the command to link a coefficient file called

MY-COEFF for a von Neumann stability plot is

$ TT¡IX MY-COEFF,VNS,SYS-PACK:IMSLIBD/L

after the file VNS has been copied to the current clefault directory and compiled. 'Ihe

single precision IMSL library is called IMSLIBS rather than IMSLIBD in the above.

\Mhen the program is run, several questions must be answered. The first is the name

for the output file, followed by the labels to put on the horizontal and vertical axes.

Following this is the range of values for each of the variables, followed by the number of

(equally spaced) values for each of these to use. If there is no second varial¡le (eg in the

case of the advection or diffusion equation with no weight involved), then specifying

a v¿rlue of zero points for the vertical v¿r'i¿rble will produce the correct output.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 206

Example

To find the region in which the sixth-order finite-difference equation (A.4.2) is von

Neumann stabie, the coefficients of this equation should be edited into a copy of

CoEFF.FOR, along with the other information required (title, number of levels, etc.).

This is then linked with the VNS program, and the resulting output is as follows, using

an interval of [0,1] with 50 subintervals.

(t,5,1) Explicit Method 0{6}

1-D Diffusion Equation

I,J

I

I

O.OOOO +SSSSSSSSSSSSSSSSSSSSSSSSSS

-+---------+---------+---------+---------+---------+---) S

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

This indicates that the method is von Neumann stable in the region

s < 712. (A.5.3)

In order to get a more accurate stability region, the interval of interest can be narrowed

down to the are:ì around s : 112. The output for the interval [0.45,0.55] with 50

sul¡intervals is

APPENDIX A. FDE DEVELOPMENT PROGRAMS 207

(1,5,1) Explicit Method 0{6}

1-D Diffusion Equation

ïl

I

I

O.OOOO +SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

-+---------+---------+---------+---------+---------+---) s

0.4500 0.4700 0.4900 0.5100 0.5300 0.5500

which shows that the actual upper limit for siability is between 0.516 and 0.518.

Further investigation using successively smaller intervals gives a more accurate von

Neumann stability range for the method as

s < 0.51638 (4.5.4)

Since this particular method is explicit, there is no need to check the solvabiliiy of the

method. Thus the region defined by (4.5.4) gives the usable region for the method.

4.5.1 Listing of Module COEFF.FOR

This section contains a listing of the code module COEFF.FOR, which is the file

that must be edited to input the finite-difference equation into the stabiiity checking

progïams. Note that in VAX Fortran, an exclamation mark (!) means the rest of that

line is a cornment.

APPENDIX A. FDE DEVELOPMENT PROGRAMS 208

Subroutine Get-Coeffs (C, s)

* *******{(*,F********,F********,********************:fi*****i<****t<*********t<

x This is the only nodule that needs to be changed by a user. It *

* contains the details of the FDE. Note that the FDE should be *

* entered in LHS = 0 form. *

**
* The first variable will be the one appearing on the horizontal axis *

x if this is used with stability Programs *

l!*

x I'Jritten by Peter Steinle *

* Modified by Ken HaYman, JuIY 1987 *

x Changed to LHS = O format, for compatability with the rest of the *

,¡ FDE development system. Removed useless third dimension from *

x Coeff array. *

****>F*****d(*{<**,1.***********{.*************X******'k*i(t ********,***********

fmplicit None

Integer Nlevels, Stencil(-Z:t, Z)

Double Precision C, s, Coeff(-g:9, -2:7)

character*(70) TitIe(3)

Common /FDE/ Coeff, StenciI, Title, Nlevels

* Set up the number of leve1s that the method involves here

Nl-evels = 3 ! No. of leveIs involved

* And the three line title to be printed above the stability

x plot is entered here.

Title(1) ='== Enter name hgre=========================)

Title(2) = ' Name of eqn '

Tit]e(3) = ' and anything else here '

* STENCIL(n,1) holds the number of points to the left and

* STENCIL(m,2) holds the number of points to the right of the

APPENDIX A. FDE DE,VELOPMENT PROGRAMS

(j ,m)trr grid point

COEFF(x,y,1) holds the coeff icient of Tau(j+¡ç,n+y)

Stencil(1,1) = Q

Coeff(-2,I) =0d0 !Tau(j-2,n+1)

Coeff(-1,1)=0d0 !Tau(j-l,n+1)

Coeff(0,1)=l*t*5 lTau(j ,n+1)

Coeff(1,1) = 0d0 ! Tau(j+l,n+l)

Coeff(Z,t) = 0d0 ! Tau(j+2,n+1)

Stencil (I,2) = Q

209

{<

*

*

Stencil(O,t) = f
Coeff(-Z,O) = 0d0

Coeff(-1,0)=C*2*s
Coeff(0,0) = 0d0

Coeff (t, O) = -C + 2*s

Coeff(2,0) = 0d0

Stencil (O,Z) = l

Stencil (-1 , 1) = Q

Coeff (-2,-I) = 0d0

Coeff(-t,-f) = 0d0

Coeff(0,-f)=!-2*s
Coeff(1,-1) = 0d0

Coeff(2,-t) = 0d0

stencil (-t,z) = Q

Return

End

Tau(j -2,n)

Tau(j-1,n)

Tau(j ,rì.)

Tau(j+1,n)

Tau(j+2,n)

Tau(j -2,n-I)
Tau(j-1,n-1)

Tau(j ,n-1)

Tau(j+1,n-1)

Tau(j +2,n-7)

Appendix B

Key Files for Program DISC

B.I- Introduction

This appendix lists the available differencings and their corresponding key numbers for

use with the program DISC. If differencings are required that a¡e not listed here, then

a new file must be created that contains both the required "standard" differencings,

from those listed here, as well as the extra ones that are required. This new f.le can

then be used with DISC to difference the partial differentiai equation in the desired

manner. This process is described in more detail in the section on program DISC

above.

2t0

APPENDIX B. I<EY FILT,S FOR PROGRAM DISC

8.2 I{eys for l-Dimensional Prograrn

Time derivatives:

277

ooooo

ooooo

ooooo

0r
at ¡:-2(1)2 I<EY:1+(j+2)

ooooo

ooaoo

ooaoo

0r
0t

j:-2(1)2 KEY:6+(j+2)

ooaoo

ooooo

oo.oo

0r
0t ¡ : -2(t)2 I<EY : 11 + (j + 2)

APPENDIX B. KEY FILES FOR PROGRAM DISC

Space derivatives:

272

ooooo

ooooo

ooooo

0r
ôæ

n : -1(1)1 KEY : 16 + (n + 1)

oaooo

ooooo

ooooo

0r
0r

n : -1(1)1 KEY : 19 + (n + 1)

ooooo

ooaoo
ôr
ôn

n : -1(1)1 KEY :22 + (n + 1)

ooooo

ooooo

oaoao

ooooo

0r
ôr

n : -1(1)1 KEY :25 I (n + 1)

APPENDIX B. KEY FILES FOR PROGRAM DISC 213

ooooo

ooaoo
0r
A.

n: -1(1)1 KEY :28 + (n + 1)

ooooo

ooooo

ooaoo
0r
A"

n : -1(1)1 KEY :31 + (n + 1)

ooooo

ooooo

ooaao
0r
0n

n : -1(1)1 KEY :34 + (n + 1)

ooooo

ooooo

oaoaa
0r
ôr

n : -1(1)1 KEY :37 + (n + 1)

ooooo

APPENDIX B. KEY FILES FOR PROGRAM DISC 274

ooooo

oaooo
ô2r
ôæ2

?? : -1(1)1 KEY : 40 + (n + 1)

ooooo

ooooo

ooooo
02r
012

rz : -1(1)1 KEY :43 + (rz + 1)

ooooo

ooooo

ooooa
03r
ð13

n : -1(1)1 KEY :46 + (n + 1)

ooooo

ooooo

aaaoo
03r
0n3

n : -1(1)1 KEY :49 + (rz + 1)

ooooo

APPENDIX B. KEY FILES FOR PROGRAM DISC 275

ooooo

oaooo
ôar
ôra

n : -1(1)1 KEY :52 + (n + 1)

ooooo

APPENDIX B. KEY FILES FOR PROGRAM DISC

El.3 l(eys for 2-Dimensional Program

Time derivatrves:

216

ooooo

ooaoo

ooooo

ðr
At

j : -2(1)2

k - -2(t)2

KEY -1+5(j+2)+(k+2)

ooooo

ooooo

ooooo

ôr
at

j : _2(t)2

k: -2(t)2

KEY :26*5(j+2)+(k+2)

ooooo

ooooo

ooooo

ôr
at

j : -2(7)2

k: _2(7)2

KEY:51 +50+2)+(k+2)

APPENDIX B. KEY FILES FOR PROGRAM DISC

Space derivatives:

k: -2(I)2

277

Ts KEY:76+3(k+2)+(n+1)

KEY:e1 +3(j+2)+(n+1)

ooooo

oooao

ooooo

0r
0s

s:g:

?? : -1(1)1

j : -2(1)2

n : _1(1)1

ooooo

oaooo

ooooo

0r
0s

Ð:&.

k: -2(r)2

?? : -1(1)1

j : -2(L)2

n : -1(1)1

KEY : 106 + 3(fr +2) + (n + 1)

KEY - 121+ 3(j + 2) + (n + 1)s=a

rs

k: -2(L)2

n : _1(1)1

j : -2(L)2

KEY : 136 +3(k +2) + (n + 1)

ooooo

aoaoo

ooooo

0r
0s

s=a

rz : -1(1)1

I(EY : 151 + 3(j +2) + (n + 1)

APPE]VDIX B. KEY FILES FOR PROGRAM DISC 218

ooooo

ooooo

ooooo
0r
ôs

o:4.

k: -2(t)2

n : -1(1)1

j : -2(1)2

n : -1(1)1

KEY : 166 + 3(ft +2) + (rz + i)

KEY:181 +3(j +2)+("+1)vs

ooooo

s:I:
k: -2(1)2

n : -1(1)1

j : -2(r)2

n : -1(1)1

KEY : 196+ 3(k +2) + (rz + 1)

KEY :27L + 3(j +2) + (n + 1)

ooaoo
0r
0s

ooooo
s=y

îs

k: _2(7)2

n : -1(1)1

j : -2(L)2

KEY :226 + 3(k + 2) + (n + 1)

ooooo

oaaoo

ooooo

ôr
0s

s=u

n : -1(1)1

KEY :241+ 3(j + 2) + (n + 1)

APPENDIX B. KEY FIIES FOR PROGRAM DISC 219

ts

k: _2(1)2

n: -1(1)1

j : -2(1)2

?? : -1(L)1

KEY :256+3(k +2)+(n+1)

KEY :277+3U+2)+(n+1)

ooooo

aoaao
0r
A"

ooooo
s=y

ooooo

3=t:

3:y:

k: _2(L)2

?? : _1(1)1

j - -2(r)2

n : -1(1)1

KEY :286 +.3(k +2) + (rz + 1)

KEY :301 +3U +2)+ (n+1)

aoooa
0r
0s

ooooo

Ts

k: -2(L)2

n : -1(1)1

j : -2(r)2

KEY :316 + 3(k +2) + (n + 1)

ooooo

ooooo
02r
0s2

ooooo
s:a:

n: _1(1)1

KEY :331 + 3(i + 2) + (n + 1)

APPENDIX B. KEY FILT,S FOR PROGRAM DISC 220

ts

g:a:

k: -2(1)2

n : _1(1)1

j - -2(1)2

n : -1(1)1

KEY:346+3(fr+2)+(n+i)

KEY : 361 + 3(j +2) + (n + 1)

aaooa

ooooo

ooooo

02r
0s2

ooooo

a:4.

k: _2(L)2

n : -1(1)1

j : -2(1)2

rz : -1(1)1

KEY:376+3(k+2)+(n+1)

KEy:391+3U+2)+(rz+1)

aaoao
ôsr
ôs3

ooooo
as

oaaoo

ooooo

ooooo

ffr
0s3

k: _2(7)2

n : _1(1)1

j : -2(t)2

KEY:406+3(k+2)+(n+1)

s=a

n : -1(1)1

r(trY :42t+3(j +2)+ (n+1)

APPENDIX B. KEY FILES FOR PROGRAM DISC 227

ts

s:y:

k: _2(7)2

n : _1(1)1

j : _2(7)2

n : _1(1)1

KEY:436+3(k+2)+(n+1)

KEY :457 + 3u +2) + (n + 1)

ooooo

oooao
ffr
0sa

ooooo

Appendix C

L ng of Prograrn SUPER

C.1- Introduction

This Appendix gives the listing of the program SUPER, described in Appendix A

above, for the one-dimensional case. This is the main program of the finite-difference

equation development package; which takes a finite-difference equation and determines

its modified equivalent equation. The program for the two-dimensional case is very

similar to the one given here, but has an extra subscript on some arrays and extra

ioops in the main processing routine to handle the extra spatial dimension.

The program is written in largely standard Pascal, although the following non-standard

features ane used, and may have to be changed to implement the program on another

system:

¡ Use of the VARYING [n] OF CHAR type for varying length strings. The function

LENGTH(str) returns the current length of "str". Such strings may also be read

in directly from a fi.le of type TEXT in VMS Pascal.

o Tire underscore character (-) it used in identifier names, to enhance readability

o Use of the OPEN procedure to open a named file. The options in this call ¿rllow

such things as providing default values for unspecified portions of the filc name,

isti

222

APPENDIX C. LTSTING OF PROGRAM SUPER 223

whether the file should already exist or is to be created and what sharing options,

if any, are to be allowed.

o Use of error recovery procedures from I/O calls, to prevent program termination

if an error arises, such as a named file not existing. The function STATUS(file)

returns a non-zero code if an error in fact occurred during the last I/O operation

on t'fiIe".

o Use of the exponentiation operator "**". Note that for systems which do not

support this, "A * *8" can be written as "exp(B * log(A))".

Many compilers have some or ail of these features allowed, despite their being non-

standard. On systems where one or more of thern are missing, they are not hard to

implement, or in some cases, such as the error trapping,they can be omitted altogether,

since they are not essential to the operation of the program.

C.2 The Prograrn SUPER

Progran Modif ied-Equat ion (input, output, inf iIe, outf ile, macf ile) ;

{ Author

Date

System

Language

K. J. Haymaa

8 March 1984

VAX/VMS V3.4

Pasca1 V2.3)

{ As of December 1987:

System : VAX/VMS V4.5

Language : Pascal V3.5 i

{ l,to¿itie¿ :

23 August 1984 - produce output file suitable for
running through MACSYMA

APPENDIX C. ¿ISTING OF PROGRAM SUPER

September 1984 -

17 April 1986

224

16 August

25 August

November

16 April

27 NIay

1986 -

1986 -

1986 -

1987 -

1987 -

allow coefficient of DTau/DT to be

multi-nomial

incorporate simplification of nodified

equation where coeff of DTau/DT is nulti-nonial.

AIso use DISPOSE to control use of VM to

some extent.

incorporate into FDE development system', give

the various files default types

fix bug with non-Var paraneter to Write-Entry

in relation to FIX-ORDER call

fix MACSYMA output file, remove denominator

terms fron it
Allow simplification of C2 term for multinomial

denominators

Make MACSYMA file a valid .C0M file I

{naximum number of weights allowed}

{maximum order of derivative}

{ min deriv term to output to MACSYMA file }

{tris program is designed to find the Modified PDE for a given FDE,

which gives the coefficients C2,C3,C4,... The Progran will all-ow

coefficients up to CI2 to be calculated (except that intermediate

results ¡nay generate integer overflows if this is attemPted) .)

Const max-r¡ts = 15i

top-deriv = t2;

src = 0;

dst = 1;

min-mac-term = 2;

Type wt-type = array [1..max-wts] of integer;

nm-type = varying t30l of char;

{ for the names of the weights }

APPENDTX C. ¿IS?I]VG OF PROGRAM SUPER

entry-ptr = ^entry-tyP.;

entry-type = record

numrden :

{ ttre main data type }

u, alpha

dx, dt

wt

fden

Var table

exi st s

exist 1

den ptr

max-deriv

cnt,

wts

infile

outfile
macfile

iname

onalne

mnane

title
inter
nt name

too hard

simple

ch

225

{number of weights being used}

{input file}

{output file}

{MAcSYMA file}

{VAX/VMS input file nane}

{VAX/VMS output file name}

{VAX/VMS MACSYMA file name}

{titte for output file}

{input is direct from terminal}

nm-type;{names for the veights}

{something wrong with the data}

{can do the division}

next

End;

integer;

{numerator+denominator of coeff}

integer; {power of U and ALPHA}

integer; {power of DX and DT}

wt-type; {power of weíghts}

integer;

{power of multi-nomial denominator}

entry-ptr;{next term}

{ tA¡fe represents main equation }

array [0. .top-aeriv,0. .top-deriv,0. .1J of entry-ptr;

array [0..top-deriv] of boolean;

boolean; {)= 1 exists flag is true }
entry_ptr;

integeri {rnax deriv used in current problern}

integer;

text;

t'ext;

text;
varying [80] of char;

varying [80] of char;

varying [80] of char;

varying t80l of char;

boolean;

array [1..max-wts] of

boolean;

boolean;

char;

APPENDIX C. TISTING OF PROGRAM SUPER

Procedure Kill-Chain(Var ptr : entry-ptr);

{ Free up the storage used by a linked list which is no

longer required. Ì

Var ptrl : entry-ptr;

Begin

r¡hiIe (ptr <> nil) do

Begin

ptrl '= ptr^.next;

dispose(ptr);

ptr := ptrl;

End;

End; { Kill-chain }

Procedure Initialise(which : integer);

{C1ear out the half of TABLE pointed to by I,IIIICH}

Var i,j : integer;

Begin

for i:=0 to max-deriv do

for j:=0 to max-deriv do

kilI-chain(table [i,j ,whichJ) ;

End; {Initiatise}

{ release any used space }

Function Getgcd(n7,n2 : integer) : integer;

{fin¿s the GCD of N1 and N2. Note that both are assumed to be positive}

226

Var r : integer;

APPENDIX C. ¿IS"ING OF PROGRAM SUPER

Begin

while n2()0 do

Begin

T := nl mod n2;

n1 := n2l

n2:= ri

End;

getgcd := n1;

End; {Getgcd}

Procedure Cancel(Var n1,n2 : integer);

{Cancel the fraction nI/n2 into its lowest terms}

Var gcd : integer;

Begin

gcd := getgcd(abs(n1),abs(n2)) ;

if gcd()O then

Begin

n1 := n1 div gcd;

n2 := n2 div gcd;

End;

End;

Procedure Add(nurn1,num2,den1,den2 : integer;

Var resnunrresden : integer);

{ Procedure to add two fractions (nun1/den1 and num2/den2) together.

Note DIV ig done before * to avoid overflow problems.)

227

Var gcd,tl1,t12 : integer;

APPENDIX C. ¿ISTING OF PROGRAM SUPER

Begin

gcd := getgcd(den1,den2) ;

resden := denl*(den2 div gcd);

tI1 := numl*(resden div denl);

t]-2 := num2*(resden div den2);

resnum := tI1+t12;

cancel (resnun, resden) ;

End; {Add}

Procedure Enter(tab,x-deriv,t-deriv : integer; ent-ptr : entry-ptr;

wts : integer);

{Place an entry into the main equation tabIe, adding into another

tern if possible)

Var ptr,oldptr : entry-ptr;

found : boolean;

i : integer;

Begin

ptr : = table [x-deriv,t-d.eriv,tab] ;

oldptr := ni1;

found := false;

while (ptr<>nil) and (not found) do

{ start with existing entry }

{ look for natching entry }
with ptr^ do

Begin

found (ent-ptr^.dx=dx) and (ent-ptr^.dt=dt)

and (ent-ptr^.u=u) and (ent-ptr^.alpha=alpha)

and (ent-ptr^.fden=fden) ;

1 to wts do

: = found and (ent-ptr^ .wt [i] =wt [i]) ;

228

for i: =

found

APPENDIX C. ¿ISTING OF PROGRAM SUPER 229

if found then {add this into the existing entry}

Begin

add(ent-ptr^ .num,num, ent-ptr^ . den,den,.num,den) ;

if nu¡n=O then {the entries caricelled, so delete them}

Begin

if oldptr=niI then

table[x-deriv,t-deriv,tabJ'= ptr^ .next

else

oldptr^.next'= ptr^.next;

dispose(ptr);

End;

End

else

Begin {not found, so get next link in chain, if any}

oldptr := ptr;
ptr ;= ptr^.next;

End;

End;

if not found then {doesn't exist, so must add an additional term}

Begin

new(ptr);

with ptr^ do

Begin

cancel (ent-ptr^ . num, ent-ptr^ . den) i {put coefficient in lowest

terms)

num := ent-ptr^.num;

den := ent-ptr^.den;

dx := ent-ptr^.dx;

dt := ent-ptr^.dt;
u := ent-ptr^.u;

alpha := ent-ptr^.aIpha;

APPENDIX C. TISTING OF PROGRAM SUPER 230

for i := 1 to wts do

wt [i] : = ent-ptr^ .wt [i] ;

fden := ent-ptr^.fden;

next := nil;
End;

if oldptr () nil then

oldptr^.next := Ptr
else {if entry did not already have one term}

table[x-deriv,t-deriv,tabJ := ptr;

End;

End; {Enter}

Function Conpare(ptrt, Ptr2 : Entry-Ptr;

Extra-U, Extra-A, Extra-D, Mult Integer): Boolean;

{ Compare the terms Ptrl and Ptr2 for equality (with Ptr2 multiplied

by Mult, U**(Extra-U) and ALPHA**(Extra-A). The two are equal if they

have the same number of components, and each component of one can be

found in the other. Note that this relies on both of then being in

sinplified form)

Var

Function Count-Terms(Ptr : Entry-Ptr) : fnteger;

{ Count the number of components in the term Ptr }

SPtr

Found

I

Entry-Ptr;

Boolean;

fnteger;

Var Tally : Integer;

APPENDIX C. LISTING OF PROGRAM SUPER 231

Begin

Tally := 0;

tr'thile (Ptr <> Nil) Do

Begin

Tally := TaIIy + 1;

Ptr := Ptr^.Next;

End;

Count-Terms := Tally;

End; { Count-Terms }

{ for each term in the entry }

Begin { Compare}

Found := False;

{ compare numbers of terms }

If Count-Terms(Ptrl) = Count-Ter¡ns(Ptr2) Then

Begin

Found := True;

While (Ptrt <> NiI) And (Found) Do

Begin

SPtr := Ptr2i

Found := False;

{ look for term in other chain }
I.lhile (Sptr <> Ni1) And (Not Found) Do

Begin

Found .= (ptrl_^.Num = Mult x SPtr^.Num)

And (Ptrt^.Den = SPtr^.Den)

And (ptrt^.Dx = SPtr^.Dx) And (ptrL^.Dt = SPtr^.Dt)

And (Ptrt^.U = SPtr^.U + Extra_U)

And (ptrt^.Alpha = SPtr^.Alpha + Extra_A)

And (ptrt^.FDen = SPtr^.FDen + Extra_D);

For I := 1 To trrlts Do

Found := Found And (ptrt^.ltt[I] = SPtr^.wt[I]);

APPENDIX C. ¿ISTING OF PROGRAM SUPER

SPtr := SPtr^.Next;

End;

Ptrl := Ptrl^.Next;

End;

End;

Compare := Found; { return the result }
End; { Conpare }

Procedure Enter-data;

{ Reads in the FDE from either arr input file or the terminal. }

Var i : integer;

t ine-1eve1, space-posn, minus

another,Ist-trm : boolean;

ans : char;

ptr : entry-ptr;

integer;

Function Factorj-aI(n : integer) :integer;

{ Returns the factoríaI of n.'Note that values of n > 12 will
cause an overflow error. Ì

Begin

if n(0 then { ¡a¿ input value }
writeln(outfi1e,'N (0 - can"t find N!')

else if n(=1 then { trivial case }
factorial

else { work it out recursively }
factorial := n*factorial(n-1) ;

End; {Factorial}

232

APPENDIX C. ¿ISTING OF PROGRAM SUPER

Function Binomial(n,r : integer) :integer;

{ f:.n¿ the binonial coefficient C(n,r). This way is ok, since this

routine hasn't ever bonbed on an overflow and it's the clearest

way to do it, but it could be coded differently if necessary to

avoid such errors)

Begin {Binomial}

if n(r then

writeln(outfile,'N (R - can"t find binomial coefficient')
else

binornial '= (factorial(n) div factorial(r)) ¿iv factorial(n-r);
End; {Binomial}

Procedure Generate (space, time

233

m].nus

integer; ptr
integer) ;

entry_ptr;

{ Derive the Equivalent PDE fron the initial data, by expanding things

as Taylor series and collecting up the terns.)

Var total-deriv, t-deriv,k
ptr2 : entry-ptr;

integer;

Procedure Put-In(deriv,t-deriv : integer; ptr,ptr2 : entry-ptr);

{ l¿a a term ínto the nain equation }

Var x-deriv,i : integer;

APPENDTX C. ¿IS?IIVG OF PROGRAM SUPER

Begin {Put-in}
x-deriv := deriv-t-deriv;

with ptr2^ do

Begin

num .= ¡g¡*ptr^.num;

den .= dsn*ptr^.den;

cancel (num, den) ;

dx .= d¡ç+ptr^.dx;

dt '= dt+ptr^.dt;

u := u+ptr^.u;

alpha := alpha+ptr^.alpha;

for i := 1 to wts do

wt [i] : = wt I j] +ptr^ . r.rt [i] ;

End;

Enter (src, x-deriv, t-deriv, ptr2, wt s) ;

End; {Put-:-n}

Begin {Generate}

for total-deriv:=0 to max-deri-v do { for each total deriv

for t-deriv:=O to total-deriv do { for each time deriv

Begin

new(ptr2) ;

with ptr2^ do

Begin

{ Here we must be careful to avoid 0**0, since the results are

somewhat nasty in Vax Pascal (or were when this was written!)

num := minus x binomial(totaI_deriv,t-deriv) ;

if (space=O) and (t-deriv<)total-deriv) then

num := 0

else if (space()O) or (t-aeriv()total-deriv) then

num := num * spacer()k(totaI_deriv-t_derív);

234

)

)

)

APPENDIX C, ¿ISTING OF PROGRAM SUPER

End;

if (time=O) and (t-deriv<>O) then

num := 0

else if (time<>O) or (t-deriv<>O) then

num := num * time**t_deriv;

den := factorial(total-deriv) ;

cancel (nun, den) ;

dx := total-deriv-t-deriv; { set potrers up properly }
dt := t-deriv;

u := 0;

alpha := 0;

for k := 1 to nrts do

wt[k] := o;

fden := 0;

End;

if ptr2^.num()0 then { have got term, now insert }
put-in (totaI-deriv, t-deriv, ptr, ptr2) t

dispose(ptr2);

End;

{Generate}

Procedure Upcase(Var string : nm-type);

{ Convert the passed name into upper case characters }

Var i: integer;

Begin {Upcase}

for i := 1 to length(string) do

if string[iJ in [,a,. .,2,f then

string[iJ := chr(ord(string[iJ)
End; {Upcase}

235

ord('a') + ord('l'));

APPENDIX C. ¿IS"ING OF PROGRAM SUPER

Begin {Enter-Data}

if inter then

r¡rite ('Enter Titte f or method : ') ;

readln (inf ile, title) ;

repeat

if inter then

write('Enter order of highest derivative : ');
readln (inf i1e, max-deriv) ;

until (max-deriv)0) and (max-deriv(=top-deriv) ;

repeat

if inter then

write('Enter number of weights : ');
readln(infile,wts) ;

until (wts)=Q) and (wts(=max-wts);

for i := 1 to r¡ts do

Begin

repeat

if inter then

write('Enter name for weight ' , i: 1, ' : ') ;

readln(infile,wt-nane [i]) ;

until tength(wt-name [i]) >O ;

upcase(wt_name tíl) ;

End;

repeat { get each different term }
new(ptr);

with ptr^ do

Begin

if inter then

write('Enter numerator of coefficient : ,);

readln(infile,num) ;

236

APPENDIX C. IISTING OF PROGRAM SUPER

if inter then

write('Enter denominator of coefficient : ');
readln(infile,den);
if den(O then {Make sure sign is in numerator}

Begin

num := -num;

den := -den;

End;

if inter then

write('Enter power of DELTA X : ');
readln(infile,dx);
if inter then

write('Enter poÌver of DELTÀ T : ');
readln(infile,dt);
if inter then

write('Enter power of U : ');
readln(infiIe,u) ;

if inter then

w¡ite('Enter power of ALPHA : ');
readln (inf ile, alpha) ;

for i:=1 to wts do

Begin

if inter then

write('Enter power of ,,wt_name[i],, : ,);

readln(inf ile,wt [i]) ;

End;

fden := 0;

End;

repeat { get each grid point that this term appl-ies to }
if inter then

write('Enter space position, relative to j : ,);

237

APPENDIX C. ¿ß?ING OF PROGRAM SUPER 238

readln (inf ile, space-po sn) ;

if inter then

write('Enter time IeveI, relative to n : ');
readln (inf i1e, tine-leveI) ;

if inter then

write ('Coefficient : ') ;

readln (infile , minus) ;

generate(space-posn,time-Ievel,ptr,minus) ; { add into equation }

if inter then

Begin

writeln;
write('Another tern (Y/N) : ');

End;

readln(ínfile,ans);
if not (ans in ['N' , 'Y' ,' n' ,'y']) then

writeln('Invalid response "',ans,'" - assuning N0');

Ist-trm '= (ans='Y') oï (*"='y');

until (not lst-trm);

dispose(ptr); { release unneeded storage }
if inter then

Begin

writeln;
write()Another coefficient (Y/N) : ,);

End;

readln(infile,ans);
if not (ans in ['N' , 'Y' ,' n' ,'y'J) then

writeln('Invalid response "' , ans, "' - assuming N0') ;

another .= (ans=,Y,) or (ans=,yr);

until (not another);

End; {Enter-data}

APPENDIX C. LISTING OF PROGRAM SUPER

Procedure Normalise;

{tiris makes sure that the coefficient of DTau/DT is 1}

239

Var i,j,dgcd

PtT

integer;

entry_ptr;

Procedure Reduce(ptr : entry-ptr; sinple : boolean);

{ Oiviae the specified term by the coefficient of DTau/Dt, so as to

nake this coefficient 1 ín the modified equation)

Var k : integer;

Begin {Reduce}

while ptr()nil do

Begin

if simple then

Begin

with ptr^ do

Begin

{ Sirnple denom - can do the division direct }

num := num*taU1e[0,1,src] ^.den;

den := den*table[0, 1,src] ^.num;

if den(O then

Begin

num := -num;

den := -den'

End;

cancel (nun, den) ;

dx := dx-tabIe[0,1,src] ^.dx;

dt := dt-table[0,1,src] ^.dt
;

APPENDIX C. ¿ISTING OF PRAGRAM SUPER 240

u := u-table[0r1,src]^.u;

alpha : = alpha-table [0 , 1 , src] ^ . alpha;

for k:=1 to wts do

wt [k] := wt[k]-tab1e[0,1,src] ^.wt [k] ;

End;

End

else

with ptr^ do { ¡nust use the FDEN trick }
Begin

fden := 1;

den := den*dgcd;

ca¡ceI (num, den) ;

End;

ptr '= ptr^.next;

End;

End; {Reduce}

Begin {Nornalise}

too-hard := false;

sinple := true;

if table[O,O',src]<>nil. then { check for valid coefficients }
Begin

¡rriteln(outfile);

writeln(outf ile, '*** Coeff icient of Tau(n, j) is non-zero. *:k*') ;

writeln('*** Coefficient of Tau(n,j) is non-zero. *x*');

too-hard := true;

End

else

Begin

ptr := table[0,1,src];
if ptr=nil then

Begin

APPENDIX C, LISTING OF PROGRAM SUPER 247

writeln (outfile) ;

writeln(outfite, '*t* Coefficient of DTau/DT is zero. ***');

writeln(r*** Coefficient of DTau/DT is zero. ***');

too-hard := true;

End

else

Begin

sinple

if not simple then { we must work hard }
Begin

dgcd := abs(ptr^.num);

ptr ;= ptr^.next;

while ptr()niI do

Begin

dgcd : = getgcd(dgcd, abs (ptr^ . nun)) ;

ptr '= ptr^.next;

. End;

End;

for i:=0 to max-deriv do { sirnplify each term in turn }
for j:=0 to max-deriv do

if (i<>o) or (j<>1) then

reduce(tab1e [i, j,src],sinple) ;

den-ptr := nil;

if not sinple then { a few brute-force simplifications }
Begin

new(ptr) ;

with ptr^ do

Begin

num := 1;

den := 1;

dx := 0;

APPENDIX C. TISTING OF PROGRAM SUPER

dt := 0;

u := 0;

alpha := 0;

for i := 1 to wts do

wt[i] := 0;

fden := 0;

next := nil;
End;

den-ptr := table[0,1rsrc] ;

table[0,1,src] := ptr;

ptr := den-ptr;

while ptr()nil do

with ptr^ do

Begin

den := den*dgcd;

ca¡ceI (num, den) ;

ptr := next;

End;

{ Coefficient of DTau/Dx is really U, so make it look right }

if compare(tab1e[1,0,src],den-ptr, 1,0,1,1) then

Begin

new(ptr) ;

with ptr^ do

Begin

num

den '= t;
dx := 0;

dt := 0;

u:=7i

242

APPENDIX C, ¿ISTING OF PROGRAM SUPER

alpha := 0;

for i := 1 to wts do

wt[i] := 0;

fden := 0;

next := nil;

End;

table[1,o,src] := ptr;

End;

End

else

reduce (table [O , 1 , src] ,true) ;

End;

End;

End; {Normalise}

Proced.ure Multipty(ptr,sptr : entry-ptr; j,k : integer;

isden,fix : boolean);

{ Uuttipty two terms together }

Var rptr : entry-ptr;

1: integer;

Begin

while ptr()niI do

Begin

with ptr^ do

Begin

new(rptr);

rptr^.num := -num*gPtr^.num;

íf fix then rPtr^.num := -rPtr^.num;

243

APPENDIX C. ¿ISTING OF PROGRAM SUPER

rptr^.den := den*sPtr^.den;

cancel (rptr^ . num, rptr^ . den) ;

rptr^.u := u*sPtr^.u;

rptr^.aIpha := alPha+sptr^.alpha;

rptr^.dx := dx+sPtr^.dx;

rptr^.dt := dt+sPtr^.dt;

for 1:=1 to wts do

rptr^ . wt [1] : = Itt []l +sptr^ . wt [I] ;

if (isden) then

rptr^.fden := sPtr^.fden+1

else

rptr^.fden := fden*sptr^.fden;

End;

enter(dst, j ,k,rptr,wts) ;

dispose(rptr);

ptr '= ptr^.next;

End;

End; {Multiply}

Procedure Process-data;

{Main driving routine to find the modified equation}

Var i, j rk,cd,x-deriv,t-deriv
sptr : entry-ptr;

integer;

Procedure Add-in(source,dest : integer) ;

{add in the last line done into the total equation}

244

Var i,j
ptr

integer;

entry-ptr;

APPENDIX C, ¿IS?ING OF PROGRAM SUPER

Begin

for i:=2 to max-deriv do

for x-deriv:=O to i-1 do

Begin

initiatise(¿st);
while sptr()niI do

Begin

for cd := i to max-deriv do

Begin

for j := 0 to cd do

Begin

k := cd-j i

if (j)=x-deriv) and

t-deriv := i-x-deriv; {T derivative}

sptr := table[x-deriv,t-deriv,src] ;

{totaI derivative}

{X derivative}

{point to term to be removed}

(k>=t_deriv-1) then

{we have a new term}

245

Begin

for i:=0 to max-deriv do

for j:=0 to nax-deriv do

Begín

ptr := table[i,j,source] i tstart of the term to be added in]

while ptr()nil do

Begin

enter(dest, i, j,Ptr,wts) ;

{enter the term in the ¡naster equation}

ptr '= ptr^.next; {point to the next term}

End;

End;

End; {Add-in}

APPENDIX C. ¿ISTING OF PROGRAM SUPER

End;

End;

sptr := sptr^.next;

End;

add-in(dst, src) ;

End;

246

nultiply(table [j -x-deriv,k-t-deriv+1, src],

sptr, j,k, falserfalse) ;

{entry to be rnultiplied}

{for 5 ...}
{for cd ...}

{while sptr ...}
{update master equation}

{for x-deriv ...}

{ Coefficient of D2Ta!/Dy'2 is reaIly ALPHA, so make it look right }

if (not sinple) and conpare(table12,O,src],den-ptr,0,1,1,-1) then

Begin

new(sptr);

with sptr^ do

Begin

nUm := -1;

den := 1;

dx := 0;

dt := 0;

u := 0;

alpha := 1;

for i := 1 to wts do

wt [i] := o;

fden := 0;

next := nil;
End;

table[2,0,src] := sptr;

End;

End; {Process-data}

APPENDIX C. ¡ISTING OF PROGRAM SUPER

Procedure Fixup;

{ttris is called in the case where we have a DENOM tern, and it maftes

sure that all references to denom in a tern have the sane Power. This

has the effect of getting some sirnplification done.)

247

Var ptr, ptrl ,1ast ,

ptr2, one

deriv,x-deriv,
t-deriv,
i, j,

max:denort

f i-rst

: entry-ptr;

: integer;

: boolean;

Begin

initialise(¿st);
new(one);

with one^ do

Begin

{The value 1, as a record. This is used}

{to nultiply terms back into the equation.}

num := 1;

den := 1;

u := 0;

alpha := 0;

dx := 0;

dt := 0;

for i := 1 to wts do

wt[i] := o;

fden := 0;

next := nil;

End;

APPENDIX C. ¿ISTING OF PROGRAM SUPER 248

for deriv:=l to ¡nax-deriv do

for x-deriv:=O to deriv do

Begin

t-deriv := deriv-x-deriv;

ptr := table[x-deriv,t-deriv,src] ;

if (ptr <> nil) then

Begin

{ First work out what the maximum denominator is }

max-denom := -2i
ptrl := ptr;

while (ptr1 <> nil) do

Begin

if (ptrl^.fden) max-denon) then

max_denom ¡= ptrl^.fden;
ptrl '= ptrl^.next;

End;

{Now we must multiply what r¡e have by the denominator polynomial as

many times as necessary to get this rshole term over a common power of

the denominator. Then the various Enter routines l¡iII take care of the

desired simplif ication.)
while (ptr <> ni1) do

Begin

if (ptr^.fden = max-denom) then {enter it as it is}
mult iply (one, ptr, x-deriv, t-deriv, faIse, true)

{ trle must NOT step through terms of PTR, so it)s specified it second}

else

Begin

ptrl := table[x-deriv,t-derív,dstJ ;

{save current values}

ptr2 := ptr; {current term}

APPENDIX C. IISTING OF PROGRAM SUPER 249

first := true; {use only 1 term}

for i := 1 to (max-denorn - ptr^.fden) do

Begin

table[x-deriv,t-deriv,dstl := ni1;

{initialise}
¡rhi1e (ptr2 <> nil) do

Begin

nultiply(den-ptr,ptr2,x deriv,t-deriv,
true,true);

{multip1y term * deno¡ninator}

if first then

Begin

first := false; {on1y use one term}

ptr2 := nil;
End

else

Begin

last := ptr2;

{get next term to rnultiply}

ptr2 '= ptr2^.next;

dispose(last); {c1ean up the garbage}

End;

End;

ptr2 := table [x-deriv,t-deriv,dst] ;

{finat result}
End;

mult iply (ptr1, one, x-deriv, t-deriv, f a1se, true) ;

{add in what was already there}

End;

ptr '= ptr^.next; {and step on to next term}

End;

APPENDIX C. ¿6"ING OF PROGRAM SUPER 250

End;

End;

dispose(one); {clea¡ up now}

initialise(src);
for i := O to nax-deriv do {copy back to right area}

for j := 0 to max-deriv do

table[i,j,src] := table[i,j,dst] ;

End; tfixup)

Procedure I,lrite-Entry(Var ptr : entry-ptr; x-deriv,t-deriv : integer);

{Vlrites out a single entry in the table. ALL terms are written by one

call)

Var xpwr,tpwr,

acnt,

k : integer;

save-ptr : entry-ptr;

isu,

isalpha,

j ustchanged,

changed,

domac,

fírst: boolean;

Procedure Order-Entry(var ptr : entry-ptr);

{ ttris makes sure that the terms invlovíng U are all before the terms

without â U, thus making life easier to r¡rite MACSYMA files for the

Transport Equn)

Var uptr,aptr,luptr,laptr : entry-ptr;

APPENDIX C. ¿ISTING OF PROGRAM SUPER

Begin

uptr := nil;
aptr := nil;
Iuptr := nil;
laptr := nil;
while (ptr <> nil) ¿o

Begín

with ptr^ do

if (u <> 0) then

Begin

if (uptr = nil) then

uptr := ptr
else

luPtr^.next := Ptr;
luPtr := Ptr;

End

else

Begin

if (aptr = nil) then

aptr := ptr
else

laPtr^.next := Ptr;
laptr := ptr;

End;

ptr '= ptr^.next;

End;

isu := (uptr <> nil);
isalpha '= (aptr <> nil);
if isu then

luptr^.next := aptr;

{ There is a term involving U }
{ There is a term not involving U }

257

APPENDIX C, LISTING OF PROGRAM SUPER

if isalpha then

laptr^.next := nil;
if isu then

ptr := uptr

else

ptr := aptr;

End; { Order-Entry }

Begin { write-rntry }
order-entry(ptr) ;

save-ptr := ptr;

first := true;

domac := (x-deriv+t-deriv))= min-mac-term;

if isu then

changed := false

else

changed := true;

while ptr()niI do { for each term }

with ptr^ do

Begin

if (not first) then

Begin

write(outfiIe,' ');
if donac then

write(rnacfile,' ');
if num)=O thbn

Begin

write(outfile, '+ ') ;

if domac then

if not justchanged then

write(macfile,t+ ')

252

APPENDIX C. ¿IS?ING OF PROGRAM SUPER

else

write(macfile,' ') ;

End

else

Begin

write(outfile,'- ');
if domac then

write (¡nacf ile, '- ') ;

End;

End

else

Begin

wri.teln(outfile);

if donac then

Begin

writeln (macfile) ;

exists[x-deriv+t-deriv] := true;

existl := true;

End;

write(outfile,'(t);

if domac then

Begin

write(macfile,'F', (x-deriv+t-deriv) : 1,' :

if (isu a¡rd isalpha) then

write (macfile, ' (') ;

End;

if num)=O then

Begin

write(outfile, ' ') ;

if donac then

write(macfile,' t);

253

(,);

APPENDIX C, ¿ß?ING OF PROGRAM SUPER

End

else

Begin

write (outfile, '- ') ;

if domac then

¡¡rite (¡nacf ile, '- ') ;

End;

first := false;

End;

write (outf ile, abs (nu¡n) : 1) ;

if domac then

write (nacf ile, abs (num) : 1) ;

if (den<>l) then

Begin

write(outfite ,' /' den:1) ;

if domac then

write (macf ile , t / t ,den: 1) ;

End;

xpur := dx; { Copy of powers of DELTA-X and DELTA-T }
tpwr := dt;

if u()0 then

Begin

if changed then

writeln('Consistency failure in output routine,)
else

Begin

xpwr := xpwr - (x-deriv + t-deriv - 1);

write(outfile,' x U') ;

if u()1 then

Begin

254

APPENDIX C. ¿ISTING OF PRAGRAM SUPER

write(outfile, '**' ,u:1) ;

if domac then

Begin

write(macfile,, * C,);

if u()2 then

write(¡nacfile,' **,, (u-1) : t) ;

xpwr := xprlr + u - 1;

tpwr:=tpwr-u+1;
End;

End;

End;

End;

if alpha<)O then

Begin

if changed then

xpwr := xprrr - (x-deriv + t_deriv - 2);

write(outfile,' * ALPHA,) ;

if alpha()1 then

write (outfile,' **', alpha: 1) ;

if ((aIpha>1) or not changed) and d.omac then

Begin

write(nacfile,' x S');
if not changed then

acnt := alpha

else

acnt := alpha-1;

if acnt()1 then

l¡rite (macf ile , , ** , , acnt : 1) ;

xpwr := xptrr + 2*acrLi;

tpwr := tpwr - acnt;

255

APPENDIX C. LISTING OF PROGP"AM SUPER

End;

End;

{ Now we check for any stray DELTA-X or DELTA-T terms that neren't

soaked up by the C and S terms)

if (xpwr <> 0) and domac then

Begin

write(macfile,' * DELTA-X') ;

if xpwr()l then

write(nacfile,' **',xpwr : 1) ;

End;

if (tpwr <> 0) and domac then

Begin

write (macf ile , ' ,¡ DELTA-T') ;

if tpwr()l then

write(macfile,' **',tpwr : 1) ;

End;

for k:=1 to wts do

if wt [k] <>o tiren

Begin

write(outfile,' *',wt-name[k]) ;

if domac then

write(macfi1e,' *',wt-name[k]) ;

if wt [k] <>1 ttren

Begin

write(outfile ,t **' ,wt [k] :1) ;

if domac then

write (macfile, '** I ,wt [k] : 1) ;

256

APPENDIX C. ¿ISTING OF PROGRAM SUPER

End;

End;

if dx()O then

Begin

r¡rite (outf i1e, ' * DELTA-X') ;

if dx<)1 then

write(outfile,' **',dx : 1) ;

End;

if dt()O then

Begin

write(outfile,' * OELTA-T') ;

if dt<)1 then

write(outfile, r**' ,dt:1) ;

End;

{ Note that ¡¡e don't have to write out'r* DEN0M**-xrrto the MACSYMA

file, as all the terms have the same power of DENOM, so Ìre rnultiply

through and remove it entirety! ! !)

if fden()O then

Begin

write(outfile, : x DENOM') ;

if fden<)-1 then

write(outf iIe, t,**' ,-f den: 1) ;

End;

justchanged := false;

if (next <> ni1) and (not changed) and domac then

if next^.u = 0 then

257

APPENDIX C. ¿IS?ING OF PROGRAM SUPER

Begin

changed := true;

justchanged := true;
writeln(macfile,,) r) ;

write(macfile,, + (S/C)*(,);

End;

258

if (next=nil) and (x-deriv+t_deriv)O) then

Begin

write(outfile,' .) * D,);

if donac then

Begin

if isu and isalpha then

write(¡nacfile,')) = 0$')

else

write(nacfile,') = O$');

End;

if (x-deriv+t_deriv))1 then

write (outf ile, (x_deriv+t_deriv) : 1) ;

write(outfile,,Tau / r)
;

if x-deriv)0 then

Begin

write(outfile, ,DX,) ;

if x_deriv)l then

write (outfile , x_deriv : 1) ;

write(outfile,, ,);

End;

if t-deriv)0 then

Begin

write(outfile,,DT,);
if t_deriv)l then

APPENDIX C. ¿ISTING OF PROGRAM SUPER

write (outf i1e,t-deriv : 1) ;

End;

End

else if next=nil then

Begin

write(outfile,,) r);

if do¡nac then

write(macfile,,) r);

End;

writeln (outfile) ;

if do¡nac anrd not justchanged then

sriteln(nacfile);
ptr : =next ;

End;

ptr := save_ptr;

End; {write-entry}

Procedure Ì{rite_results ;

{Displays the tab1e, in "correct'r order}

Var deriv,x_deriv,t_deriv : integer;

Begin {l.Irite_results}
if not simple then

Begin

write(outfíle,,DEI'I0M =,) ;

write_entry (den_ptr, O, 0) ;

End;

259

APPENDIX C. LISTING OF PROGRAM SUPER 260

for deriv:=1 to ¡nax-deriv do

for x-deriv:=O to deriv do

Begin

t-deriv := deriv-x-deriv; {¡rrite out the entry}

write-entry (table [x-deriv , t -deriv , src] , x-deriv , t-deriv) ;

End;

End ; {trtlrite-results}

Begin { main prograrn }

inter := false;

repeat

write('Enter input file (keyboard) t.fUD] : ',error:=continue);
readln(iname) ;

if (Iength(iname)=9) then

Begin

iname .= ,SyS$INPUTr;

inter := true;

End;

open(inf ile, iname, default : =' . FND',history : =readonly,

sharing : =readonly, error : =continue) ;

until (status (intite¡=9¡ ;

reset(infile);
repeat

write('Enter output file (screen) t.l,lgq] : ',error:=continue);
readln(oname) ;

if (length(oname)=0) then

oname

open (outf ile, oname, def ault : =' . MEQ', history : =nerr, error : =continue) ;

until (status (outfile)=6) ;

rewrite(outfile);
repeat

APPENDIX C. LISTING OF PROGRAM SUPER 267

write(,Enter MACSYMA file (none) [.COM] : ',error:=continue);
readln(mname) ;

if (length(mnane)=Q) then

mnanne .= ,l{L: r; {Don,t write MACSYMA f ile}

open (nacf iIe, mname, def ault : =' . COM', hi st ory : =nerl, error : =cont inue) ;

until (status (macfile)=9) ;

rewrite(macfile);

max-deriv := top-deriv;

Initialise(src); {initialise both halves of the table}

Initialise(¿st) ;

Enter-data; {read in the data}

writeln(outfile,title); {write title onto output file}
writeln(outfile);
writeln(outfile,'Initial coefficient of DTau/DT is :');

write-entry(table [0, 1, src], 0, 0) ;

Nornalise; {make sure coeff of DTau/DT is 1}

writeln(outfile);
writeln(outfiIe,'Equivalent Partial Differential Equation :') ;

wríteln(outfile, '------- --------');
tJrite-Results; {write out the initial equation, for checking}

if not too-hard then

Begin

Process-data; {tlna the modified PDE}

writeln(outfile);
writeln(outfile, '"Modified" Partial Differential Equation : ') ;

writeln(outfile, ' ------- --------') ;

existl := false;

for cnt := min-mac-term to top deriv do

exists[cnt] := false;

rewrite(macfile) i {on1y want final resul-ts on MACSYMA file}
r¿riteln(macf ile, '$ set noverif y') ;

APPENDIX C. ¿ISTING OF PROGRAM SUPER

writeln(nacfile,' $ macsyma') ;

if not simple then fixup;

I'lrite-results; {write out the final results}

writeln(macfile);
if existl and (wts > 0) then

Begin { there are some weights to renove }
write(nacf iIe,' algsys (') ;

ch

for cnt := min-mac-term to top-deriv do

if exists [cnt] the

Begin

write (macf ile, ch: 1 ,'f ' ,cnt : 0) ;

ch

End;

r¿rite (macf ile, '] , ') ;

ch '='[';

for cnt := 1 to t¡ts do

Begin

writ e (nacfile , ch, wt-name [cnt]) ;

ch '='r'i

End;

writeln(macfile,']) ;') ;

End;

writeln(macfiIe,'quitO ;') ;

vrit eln (macf ile ,

, $ it tt, r r r notifyr r', . eqs. '," then ,
,

'notify = rr$sys-ute:notify"')
;

writeln(macfiIe, '$ notify "(MACSYMA finished)"') ;

writeln(macfile, '$ exit') ;

End

else if (table[0,0,src] <> nil) then

262

APPENDIX C. ¿ß"I]VG OF PROGRAM SUPER

Begin

¡rriteln(outfile);
writeln(outfi1e,'Coefficient of Tau(n,j) is :,) ;

write_entry(table [0, 0, src], 0, 0) ;

End;

End

263

Bibliography

Ames, W.F. (1977), "Numerica^l Methods for Partial Differential Equations", Second

Edition, Academic Press, Thomas Nelson and Sons.

Bear, J. (7972), "Dynamics of Fluids in Porous Media", Eisevier Publishers

Caussade, B.H. and Renard, G. (1977), "Contribution to the Numerical Solution of

Nonlinear Parabolic Partial Differential Equations", Ad,uances in Computer Meth,od,s

for Partial Differential Equations II, editor R. Vichnevetsky, IMACS, pp. 62 - 64.

Colgan, L.H. (1981), "Iterative Methods for Solving Large Sparse Linear Systems",

Numerical Solulions of Pørtial Differential Equations, editor J.'Noye, North-Holland

Publishing, pp. 367 - 396.

Crandall, S.H. (1955), "An Optimum Implicit Recurrence Formula for the Heat Con-

duction Equation" , Quarterly of Applied Matl¿ematics, YoI. 13, No. 3, pp. 318 -
320.

Crank, J. (1975), "The Mathematics of Diffusion", Second Edition, Oxford University

Press, London.

Crank, J. and Nicolson, P. (1947), "A Practical Method for Numerical Evaluation of

Solutions of Partial Differential Equations of the Heat-Conduction Typ"", Proceedings

of the Cambridge Philosophical Society, Vol. 43, No. õ0, pp. 50 - 67.

Croft, D.R. and Lilley, D.G. (1977), "Heat Transfer Calculations Using Finite Differ-

ence Equations", Applied Science Publishers, London.

264

BIBLIOGRAPHY 265

Douglas, J. Jr. (1955), "On the Numerical Integration of. ô2u f 0r2 * 02u f 0y2 : ôu I 0t

by Implicit Methods", Journal Society of Industrial Appli,ed, Malhernatics, Vol. 3, No.

1, pp. 42-65.

Duff, G.F.D., and Naylor, D. (1966), "Differential Equations of Applied Mathematics",

John Wiley and Sons.

DuFort, E.C. and Frankel, S.P. (1953), "Stability Conditions in the Numerical Treat-

ment of Parabolic Differential Equations", Mathematical Tables and Other Aids to

Computation, Vol. 7, pp. 135-152.

D'Yakonov, E.G. (1963), "Difference Schemes with Sptii Operators for Multi Dimen-

sional Unsteady Problems" , USSR Compulational Mathematics, YoI. 4, No. 2, pp.

92-110.

Evans, D.J. and Hatzopoulos, M. (1976), "The Solution of Certain Banded Systems

of Linear Equations using the Folding Algorithm", The Computer Journal, Vol. 19,

No. 2, pp. 184 - 187.

Evans, D.J. and Abdullah, A.R. (1985), "A new explicit method for the diffusion-

convection equation", Computers and, Math,ernatics with Applications, Vol. 11, pp.

745 - 154.

Fromm, J.E. and Harlow, F.H. (1963), "Numerical Solution of the Problem of Vortex

Sheet Development", Physics of Fluids, Vol. 6, No. 7, pp. 975-982.

Graffi, D. (1980), "Nonlinear Partial Differential Equations in Physical Problems",

Pitman Advanced Publishing Program.

Hung, T.K. and Macagno, E.O. (1966), "Laminar Eddies in a Two-Dimensional Con-

duit Expansion", La Houille Blanche, Vol. 21, No. 4, pp. 391-400.

Lax, P.D. and Richtmyer, R.D. (1956), "survey of the Stability of Linear Finite Dif-

ference Ec¡uations" , Communications on Purc and Apqtlied Mathcmulics, Vol. 9, pp.

267 - 293.

BIBLIOGRAPHY 266

Leonard, B.P. (1983), "A Convectively Stable, Third-Order Accurate Finite-Difference

Method for Steady Two-Dimensional Flow and Heat Transfer", Numerical Properties

and Melhod,ologies i,n Heat Transfer, editor T.M. Shih, Springer-Verlag.

Mann, K.J. (1981), "Inversion of Large Sparse Matrices - Direct Methods" , Numerical

Solutions of Partial Differential Equations, editor J. Noye, North-Holland Publishing,

pp. 311 - 355.

Marchuk, G.I. (1975), "Methods of Numerical Mathematics", Springer-Verlag, New

York.

Noye, B.J. (1984), "Finite Difference Techniques for Partial Differential Equations",

Compulati,onal Techniques for Differenlial Equations, editor J. Noye, North-Holland

Mathematics Studies 83, pp. 95 - 354.

Noye, B.J. and Hayman, K.J. (1986a), "An Accurate Five-Point Explicit Finite-

Difference Method for Solving the One-Dimensional Linear Diffusion Equation" , Com-

putational Techniqu,es anil Applications: CTAC-9í, editors B.J. Noye and R.L. May,

North-Holland Publishing Co., pp. 205 - 276.

Noye, B.J. and Hayman, K.J. (1986b), "Accurate Finite Difference Methods for Solv-

ing the Advection-Diffusion Equation" , Computational Techniques and, Applications:

CTAC-9í, editors B.J. Noye and R.L. May, North-Holland Publishing Co., pp. 137 -
158.

Noye, B.J. and Rankovic, M.J. (1986), "An Accurate Explicit Finite-Difference Tech-

nique for solving the One-Dimensional Wave Equation",, Communications in Applied

Numerical MelhotLs, YoI. 2, pp. 557 - 561.

O'Brien, G.G., Hyman, M.A. and Kaplan, S. (1950), "A Study of the Numelical

Solution of Partial Differential Equations", Jonrnal of Mathematics and Pltysics, Vol.

29, pp. 223 - 251.

Patankar, S.V. and Baliga, B.R. (1978), "A New Finite-Differerìce Scheme for Parabolic

Differential Equations", Numerical Hcat Transfcr, Vol. 1, pp. 27 - 37.

BIBLIOGRAPHY
267

Peaceman, D.W. and Rachford H.H. Jr. (1955), "The Numerical Solution of parabolic

and Elliptic Differential Equations", Journal Society of Ind,ustrial Applieit Mo,thernat-

ics, Vol. 1, No. 1, March 195b, pp 28 - 4I.

Reid, J.K. (1971), "Large Sparse Sets of Linear Equations',, Acad.emic press.

Richtmyer, R.D. and Morton, K.W. (1967), "Difference Methods for Initial-Value
Problems", Second Edition, Interscience publishers.

Roache, P.J. (1974), "Computational Fluid Dynamics", Hermosa publishers, Albu-
querque.

Rosinger, E.E. (1982), "Nonlinear Equivalence, Reduction of pDEs to oDEs and Fast
convergence Numerical Methods", pitman Advanced publishing program.

Saul'yev, V'I(. (1964), "Integration of Equations of Parabolic Type by the Methods

.of Nets", Translated by G.J. Tee, pergamon press.

steinle, P.J. (1984), Computer Program to find the von Neumann stability Region for
a Finite-Differcnce Equation, Personal communication.

Thomas, L.H' (1949), "Elliptic Problems in Linear Difference Equations over a Net-
work", Watson Scientific Computing Laboratory, Columbia University, New york.

Trapp, J.A. and Ramshaw, J.D. (1976), "A simple Heuristic Method for Analyzing
the Effect of Boundary Conditions on Numerical Stability" , Journal of Computational
Physics, Vol. 20, pp. 288 - 242.

Warming, R.F. and Hyett, B'J- (7974), "The Modified Equation Approach to the Sta-
bility and Accuracy Analysis of Finite-Difference Methods", Journal of Computational
Ph,ysics, Vol. 14, pp. 1bg - ITg.

