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Early Sources

A LTHOUGH the rapid progress and wide applica-

% tions of statistical methods during the last thirty
A years have made the subject one peculiarly
assoc1ated with the twentieth century, it is yet to be
noted that its roots go back to the Renaissance, like that
other great branch of applied mathematics, mechanics
or dynamics; that Pascal and Fermat were contem-
porary with Galileo and Newton, and that the laws
of chance were developed in relation to the problems of
gaming almost simultaneously with the deterministic
mechanical laws, which for some centuries seemed to
menace the world with an iron necessity.

The two important tributaries, developed before the
twentieth century, to the modern science of statistics
and to the corresponding educational discipline are, on
the one hand, the theory of probability, developing
through de Moivre, Laplace, and Poisson on the
mathematical side, through Thomas Bayes, Boole, and
Venn on the logical, and reaching out to practical
applications in life assurance and demography as the
aristocratic pastime of gaming fell into moral disrepute.

A second parallel development, almost independent
of the first, came to be known as the theory of errors.
Here the emphasis was not upon uncertainty of expecta-
tion, but upon the practical business of summarizing
and digesting a considerable observational record, of
the kind which systematic observations in astronomy or
the routine of surveying were already beginning to pro-
duce. Gauss’s name is particularly to be associated
with this development, the importance of which for
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mathematical studies is none the less great, although
the academic mathematician, developing the subject
didactically, is all too prone to lay his emphasis on the
more formal development of the theory of probability.

Galton and Statistical Biology

A man who, towards the end of the nineteenth cen-
tury, played a peculiar part in precipitating modern
developments was Francis Galton. A man of means
and, had he chosen, of leisure, Galton made his name
early in life as an African explorer. In 1869, evidently
reacting eagerly to his cousin Charles Darwin’s evolu-
tionary theory, he had written Hereditary Genius, one of
the most remarkable books of the century, and in it had
demonstrated how apparently intangible concepts, at
first vaguely apprehended, can be made quantitative
and relatively precise by the collection and adequate
presentation of statistical data. Throughout his life
this possibility evidently exercised a fascination on his
mind. In a crude way he attempted to collaborate in
discussing the numerical results of his cousin’s experi-
ments with plants. He tried his hand at the statistical
expression of meteorological phenomena, and, towards
the end of his long life, armed with much experience,
but without adequate mathematical technique, he
became convinced that quantitative, and particularly
statistical, methods were needed to consolidate Dar-
win’s ideas, and to give confidence to their practical
application. In Karl Pearson he found a man of
boundless confidence and ambitious energy, and, with
the sympathy of W. F. R. Weldon and his wide bio-
logical knowledge, Galton believed that a solid founda-
tion could be built for a timely advance in the method
and theory of biological research.

So far as Pearson’s work is concerned, the immediate
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outcome was the appearance from 1894 onwards of a
series of extensive memoirs entitled Mathematical
Contributions to the Theory of Evolution. In all there
were twenty-six of these, the first twelve appearing in
the Philosophical Transactions of the Royal Society.
The title chosen must be taken to represent rather
Galton’s hopes than Pearson’s performance, for Pearson
was here exploring his own general concepts in mathe-
matical statistics, such as skew-frequency -curves,
contingency, and the rather numerous statistics to
which, without distinction, he applied the term corre-
lation. These developments were accompanied by
extensive mathematical tables to facilitate their use.
Mendel’s laws are discussed in the twelfth memoir, but
only to be dismissed as inadequate.

A more enduring consequence was the foundation,
in 1901, of Biometrika: A Journal for the Statistical
Study of Biological Problems. For many years this
handsomely produced quarterly was undoubtedly the
centre of development of mathematical statistics in this
country. It accepted papers from outside Pearson’s
laboratory and included some of the most important
advances of a period of rapid progress. In building
up the high reputation of this journal Pearson’s labours
as editor were constant and indefatigable and constituted
the greater part of the scientific activity of his later life.

Although in following his own bent Pearson un-
doubtedly wandered far from Galton’s intention, yet he
may be regarded as ploughing the ground in preparation
for later developments. That the huge mass of his
writings have now little value must be ascribed to two
circumstances—first, that his mathematics were on the
whole clumsy and lacking in penetration and, second,
that without the power of self-criticism he was unable
and unwilling to correct his numerous errors or to
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appreciate the work of others, which would have been
of the greatest assistance. He seems to have regarded
observational material principally as a means of
illustrating his a prior: concepts, not as a means of
correcting them or as providing problems of interpreta-
tion in which statistical methods might be of service.
He seems to have felt a contempt for the work previously
done in the theory of errors and to have known little
about it. He certainly regarded the skew-frequency
curves he invented as improvements to be substituted
for the normal law of errors.

The Emergence of Modern Statistics

It was in the study of experimental data that the
characteristics of modern statistics first began to dis-
play themselves, notably in that series of methods which
are known as the tests of significance. The logical
situation behind these is exceedingly simple, though it
has been seriously obscured in recent times by the
elaboration of a highly sophisticated mathematical
background. This, however,is unnecessary, and all the
practical progress that has been made was achieved
without its aid. In general, if, in connection with a
given observational record, a hypothesis is considered
which is well defined in the sense that from it can be
derived definite expectations, we may use the observa-
tions to test whether these expectations have been
realized, or whether, on the contrary, the observations
depart so far from expectation in some relevant respect
that the hypothesis under consideration must be
deemed to be contradicted by the data, and must be
abandoned. In the latter case the deviations from
expectation are said to be significant, while in the
contrary case, if the observations are such that with
reasonable probability they might have arisen on the

36



STATISTICS

hypothesis under test, this hypothesis, though not
proved, has at least so far been confirmed, and, pending
further and more stringent observations, may be
accepted. Obviously this process of comparing obser-
vational data with more or less vaguely conceived hypo-
theses has been subconsciously inherent in experimental
work from the time of its inception. The hypotheses
conceived, however, by the active experimenter are
more or less fluid, and his judgment from the results is
personal and subjective. The possibility of an exact
test of significance relative to a properly defined hypo-
thesis, and to its necessary consequences in the fre-
quencies of the different observational records which
might have arisen from it—the possibility of an objec-
tive test appropriate to a given class of cases, and
specifying the level of significance of the judgment
imposed by the data—is of quite recent origin, and was
first clearly exemplified by a paper published in 1909
by W. S. Gosset, writing under the pseudonym
‘““ Student.”” !t One feature in particular should be borne
in mind when modern tests of significance are spoken of
as exact; namely, that the observational material is
assumed to be finite, and may consist of only a small
sample. Realism and practical applicability obviously
require this. Yet it was the greatest obstacle to clarity
of thought to pass from the vague and necessarily in-
exact approximations of “ the theory of large samples ”’
to a computational procedure appropriate to real cases
in which the sample is finite. It is characteristic of
this difficulty that when methods appropriate to *“ small ”
samples were developed, the protagonists of earlier
methods should have exerted themselves to stress the
smallness of the sample as a ground for disparaging the

1 Student ”’ (1908).  The Probable Error of a Mean. Biometrika,
vi, pp. 1-25.
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conclusions which could be based upon it. The study
of sampling problems appropriate to finite, and there-
fore sometimes small, samples was inseparable from the
development of exact and objective tests of significance,
and the underlying mathematics consisted almost wholly
in the realistic examination of such problems.

Student’s Test

The particular test to which Student’s name has been
attached concerns the precision of the mean of a sample
of observations, such as a series of analyses of random
samples of a bulk, the average value of which is of
interest. 'The kind of information which such a series
of analyses can give may be made clear by dividing the
whole series of possible or hypothetical values of the un-
known average into two classes, one of which is contra-
dicted by the data, while the other is consistent with it,
at a defined level of significance, or of stringency of the

est. Such a subdivision is achieved by a test of signi-

ficance by which we can determine whether or not
any chosen hypothetical value is rejected by the test.
Since the hypothetical value chosen is known we may
subtract it from each observation and reduce the
problem to that of testing whether a given sample from
a normally distributed population is or is not consistent
with the population having zero for its mean.

If the population sampled were of known variance it
was well known that the sampling distribution of the
mean of any number, N, of observations was a normal
distribution with the same mean, and the variance
divided by N. The probability of our mean exceeding
by chance the value observed would then be easily
calculable, and we might fix our level of significance
by saying that deviations were acceptable if they fell
within the limits fixed by definite values of the prob-
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ability of falling outside these limits—e.g., a not very
stringent but convenient level of significance would be
fixed by choosing a deviation of a magnitude which
would be exceeded in one direction or the other just
once in twenty trials. This comes to 1-g6 standard
deviation. The method therefore in use in the century
before the appearance of Student’s paper was to obtain
as good an estimate as possible of the variance of the
population sampled and to apply this calculation on the
assumption that the value estimated was in fact correct.

A good, and, indeed, the best possible, estimate was
available in Bessel’s formula

I
— I

§2 =

S(x — x)2,

in which x stands for any observation of the series, x
for their mean or average value, S for summation over
all the values of the sample, and N for the number of
observations. Consequently, the permissible limits at
the 5 per cent level of significance would on this
method be given by

s .
+ VN (1-96).

The important thing to notice here is that the state-
ment that s2is the best possible estimate of the unknown
variance is not the same as the statement that the
variance is in fact equal to s2. The estimate s, like the
mean value of x, will be subject to errors of random
sampling, and will sometimes be greater and sometimes
less than the true value. It is not obvious, and was not
obvious to the mathematical traditions of the nine-
teenth century, in what way this circumstance should
affect our conclusions.

What Student perceived was that although the
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sampling distributuion of x must depend on the un-
known variance of the population sampled, yet that of

the ratio
== x[sVN

must be independent of this unknown variance. Its
distribution would depend only on the known size of
the sample N, and Student set himself to determine
what its actual distribution might be. Using an ex-
tremely crude mathematical approach he arrived in
fact at the correct distribution, and showed that the
frequency was not proportional to

— 312
e~

which would have justified the traditional method, but

rather to
t2 )—;N
I
( T N — 1 ’

a distribution for which the frequencies of extreme
values fall off much less rapidly than for the normal
distribution.

Student gave a simple table for evaluating the prob-
ability that # should fall outside any chosen limits.
Since then fuller tables have been made available, so
that it is easy at any chosen level of significance to find
the corresponding limiting values of 2z, For ten
observations, for example, the 5 per cent limits are not
+ 1-960, but + 2:262.

It will be noticed that the use of Student’s criterion
completely removes all doubt or embarrassment due
to the size of the sample being finite and the estimate
5% not exactly equal to the true variance. It is in this
sense that the modern tests of significance are spoken
of as ““ exact ” in contradistinction to the approximate
tests developed without this refinement and commonly
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referred to as derived from * the theory of large
samples.”

This example has been set out in full, not only be-
cause its point has been missed in many expositions,
but because it displays very simply the intimate inte-
gration of the whole class of advances which make up
modern statistical methods. It was mentioned in
passing that Bessel’s formula supplies the best possible
estimate of variance available from the data, and this
at once raises a series of questions—How is it known to
be the best? In what sense is it the best? What
criteria exist for judging one estimate to be better than
another ?—questions which it is the function of the
Theory of Estimation to answer.

Again, Student could have had no success without
recognizing and solving a problem of a type at that time
almost untouched—mnamely, the problem of the exact
sampling distribution of quantities calculable from
samples. These problems of distribution looked ex-
ceedingly formidable in Student’s time, and although
since then many have been solved it is still true to say
that where there is doubt or difficulty it is usually
because the relevant problem of distribution has so far
baffled analysis.

Thirdly, if we express Student’s £ in the form

t = (x —p)fsvVN

where the unknown mean, g, of the population sampled
has been introduced explicitly, it is seen that ¢, the
sampling distribution of which is known merely from
the size of the sample, is expressible as a function
jointly of the observed quantities x and s, and of the
unobservable parameter p. It constitutes an example
of what have been called pivotal quantities, by which
we can pass equally to probability statements about x
41
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and s for given p, or about p, given x and s. These
latter are known as statements of fiducial probability,
to avoid confusion with the statements of inverse
probability, which are possible when certain a prior:
knowledge is available—e.g., as to the frequency with
which different values of x shall occur in a bulk, such as
has been sampled, but which cannot be derived without
presuming (or assuming) such knowledge a priors. Itis
the quality of fiducial probability that it is available in
the absence of knowledge a priori, and as an obvious
consequence that its meaning or logical content must
be different from that of any statement of inverse
probability. Its validity is derived from the complete
independence of all unknown or hypothetical elements,
which the pivotal distributions enjoy.

Problems of Distribution

A class of mathematical problems which came into
prominence with the initiation of more critical methods
of statistics are known as problems of distribution.
From the observational data, whether frequencies or
measurements, quantities can be calculated aimed at
representing properties of the distribution sampled.
In the case of measurements there are characteristically
symmetric functions of the observations. The whole
class of functions calculable from the data are known as
‘“ statistics.””  If we know, or are given by hypothesis,
the distribution of each individual observation, and
know also that these several distributions are inde-
pendent of each other, though expressible in terms of
one or more unknown parameters, it is theoretically
possible to deduce the sampling distribution of any
chosen statistic, so as to determine the relative fre-
quency with which it would fall within specified limits
were the sampling process repeated indefinitely from
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like material. Although this theoretical possibility is
obvious, such problems appear at first sight to be
extremely difficult of explicit solution. Their exact
solution in an increasing number of important cases has
supplied a powerful stimulus to the demand for exact
tests of significance, and to the development of an
adequate theory of estimation.

Speaking generally, problems of distribution can be
approached by three methods. The first, which the
subject owes to somewhat similar researches in statis-
tical mechanics, consists in the geometric representa-
tion of the sample by a point in generalized Euclidean
space, having as many dimensions as there are observa-
tional values. The entire sample is thus represented
by a single point, and the frequencies with which
samples of all possible kinds will appear in the random
sampling process is represented by a frequency density
in the manifold space employed. For any chosen
statistic, if we assign it a particular value, the samples
which will lead to this value will fall generally on a
continuous sub-space, so that the generalized space
may be regarded as subdivided in a series of slices by
chosen values of the statistic. The total frequencies
found in these regions gives the frequency distribution
of the statistic in question. In simple cases, for
example, space may be divided by a series of parallel
planes, or by a series of concentric hyperspheres, and
the frequency distributions, such as those of X and s2 in
Student’s problem, may be found with little difficulty.
This geometric method has indeed been found more
successful than any other, and to it are due the majority
of the exact solutions now known,

A second method is to proceed by  mathematical
induction ” from a sample of given size to a sample
containing one additional observation or set of observa-

43

195



196

STATISTICS

tions. If the distribution is known for a sample of
size N, it may be possible to infer, knowing that the
next observation is independent of those that precede it,
the distribution for size N - 1, and so to obtain the
general formula.

A third method, using a more advanced type of
mathematical analysis, is based upon what is known as
the characteristic function. It has been widely dis-
cussed and is of great theoretical simplicity, but so far
has not led to the resolution of difficulties recalcitrant
to other methods. If x is a variable quantity of known
distribution, then for any real value of ¢ it is demon-
strable that the average value of ¢ exists mathematic-
ally, and has an absolute value not greater than unity.
Regarded as a function of # this is known as the charac-
teristic function. Given the characteristic function, the
corresponding frequency distribution may be inferred
by an inverse process involving integration.

Now, although the distribution of a given statistic
calculable from a sample of observations offers a
problem requiring some penetration and insight, yet it
is possible without consideration to write down formally
an expression for its characteristic function in terms
involving a finite number of processes of integration.
Consequently, by using the inversion mentioned above,
we have here a method of the utmost generality for
solving problems of distribution.

The Theory of Estimation

During the long period in which the exact sampling
distributions of the statistics commonly in use were
unknown and thought to be unattainable in practice,
the properties of such distributions could not be used as
a means of comparing the merits of such different
methods of statistical reduction as might suggest them-
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selves. Indeed, the belief was expressed that it was
impossible to compare the merits of two methods of
estimation without reference to the particular purpose
for which the estimates were required, and that the
notion of a best estimate was only a subjective illusion.

As soon, however, as statistics are regarded as having
knowable sampling distributions, a number of com-
parisons suggest themselves as representing unquestion-
able desiderata in any quantity used in estimation. In
the first place it will usually be true for any appropriate
statistic, that, as the sample from which it is drawn
grows larger and larger, its range of distribution will
grow narrower and narrower without limit, so that it is
said to converge in probability, in the sense that there
is a limiting value T, such that the probability of the
absolute value of the deviation of the statistic from this
limit exceeding any chosen quantity ¢, however small,
shall tend to zero. If this is true, then the limiting
value will depend only on the population sampled, and
will necessarily be some function of the parameters by
which this population is characterized. The estimate
is said to be consistent when the statistic 7" is used as
an estimate of this particular function of the parameters
and not of any other. We may say, then, that T'is a
consistent estimate of a parameter 6 if in large samples it
converges in probability to the limit 6. Although the
use of inconsistent estimates is not unknown in some
special cases where the error involved is exceedingly
minute, yet I believe the desirability of satisfying this
criterion has never been challenged. In what follows
it will be assumed that the estimates spoken of are
consistent estimates.

In all cases of practical importance it is found that as
the sample is made larger without limit, the form of the
distribution of the estimate about its limiting value
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tends to assume that of the normal law of frequency of
error discovered by Laplace and Gauss, and that the
variance of the distribution then falls off inversely to
the size of the sample. In other words, if v is the
variance of the distribution and N the size of the sample,
the product Nv tends in general to a finite limit.
Evidently this limit measures in an inverse sense the
precision of the estimate under discussion, at least in
large samples. The second criterion that has been
developed, known as the criterion of efficiency, is that
this limit shall be as small as is possible. Statistics
satisfying this second criterion as well as the first are
said to be efficient. ~Since the minimum of the limiting
value of Nv is directly calculable from the data of
any problem, it is comparatively easy to test whether
any proposed estimate is efficient, and if not to recog-
nize that it must be capable of improvement. The
recognition of this criterion swept away the claims of
methods of estimation which had been most confidently
advocated about the beginning of this century. The
utility of this advance was the greater since it was
shown that an efficient estimate in single or simul-
taneous estimation could always be obtained by the
method of maximum likelihood, and that, starting with
any consistent method, routine calculations would give
the numerical values with whatever precision might be
desired. On the practical plane our second criterion
provides, therefore, a comprehensive solution of the
problem of estimation.

On the theoretical side the problem at this point is
still far from closed. Many different efficient estimates
may be proposed. These will, indeed, tend to equiva-
lence as the samples are made larger, but for any finite
sample they will differ in value. They will differ also
in the form of their error distributions, and evidently
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one may be preferred to another. The analysis, how-
ever, of the criterion of efficiency points the way to a
further means of discrimination. It has been pointed
out above that the limiting value of the product Nv
in large samples has a minimum which does not depend
on any chosen method of estimation, but on the samp-
ling properties of the data. This property specifies in
an inverse sense how valuable each unit of the original
data was for the purpose of estimation in view. In
fact, the reciprocal of this minimum limit is defined as
the quantity of information provided by each unit of the
data, or in simple cases by each original observation.

Now, given the exact sampling distribution in a finite
sample of any proposed statistic, it is equally possible
to ascertain the quantity of information which a single
value of this statistic will provide, and to compare this
quantity with that provided by any alternative statistic
derived from a sample of the same size. 'The notion of
efficiency, based originally on the limits for large
samples, may thus be extended to the comparison of
statistics derived from finite samples. It may be shown
that the amount of information in an estimate can never
exceed the finite amount of information supplied by the
original data, consequently the criterion of efliciency
when extended to small samples implies merely that the
loss of information, if any, incurred in the process of
statistical reduction, shall be made as small as is
possible.

A particular class of statistic was early shown to
satisfy a condition more stringent than that of the
criterion of efficiency—namely, that no loss of in-
formation whatever is incurred. In such cases the
statistic is said to be suffictent. What this means in
practice is illustrated by a further property of sufficient
statistics—namely, that if T is a sufficient statistic and
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T’ any other statistic whatever, then the simultaneous
distribution of T and 7" in random samples shall be
such that for any chosen value of T the distribution of
T’ shall be wholly independent of the value of the
parameter 6 to be estimated. In other words, as soon
as we know the value of 7', then the value of 7" is com-
pletely irrelevant to the estimation of 8, and supplies no
information whatever about it. Since, in the case of
sufficient statistics, this is true of all alternatives which
can be proposed, we are using our words consistently
when it is said that the sufficient statistic contains all the
information about 6 originally present in the data.
When sufficient statistics exist thay can be found by the
method of maximum likelihood, and in such cases we
have a method of estimation which is satisfying not
only practically but also theoretically.

It will be noticed that sufficient statistics do not exist
in all cases, and that their existence depends on the
functional form of the problem. To complete what is
here said on the theory of estimation, it should, there-
fore, be added that in a number of cases in which suffi-
cient statistics, in the strict sense, do not exist, yet it is
possible to render estimation exhaustive, and to avoid
all loss of information, by the use of what are known as
ancillary statistics, which possess the properties that
while they themselves have random sampling distribu-
tions independent of all unknown parameters, yet that
they, together with the estimates obtained by maximum
likelihood, form an exhaustive set. 'The use of ancillary
statistics does not alter the estimate arrived at, but does
alter its sampling distribution, and thus supplies
add:tional information which, without their use, would
be lost.

The logical form in which the information supplied
by observational data about unknown and hypothetical
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parameters or about observations not yet actually made,
should be expressed, deserves close attention. In the
early work of Thomas Bayes, published 1763, a serious
attempt was made to bring the problem within the
scope of the theory of probability, so that on the basis
of the observations, statements of probability could be
made as to the value of the hypothetical parameters.
It appears that, in general, it is not possible to set the
results accurately within this framework of ideas.
Bayes’ approach was accepted somewhat uncritically by
Laplace as the basis of his theory of inductive inference,
but from the middle of the nineteenth century a succes-
sion of writers, beginning with Boole, pointed out that
this approach is open to criticism and leads to con-
tradictions. These criticisms appear to be unanswer-
able, and the theory of inverse probability, originating
with Bayes, is now almost universally abandoned. The
existence of pivotal quantities having the properties
explained above, with distributions independent of all
unknowns, and expressible in terms both of observable
statistics and of one or more of the unknowns, does,
however, allow probability statements about these
unknowns to be inferred from the known distribution
of the pivotal quantity. Statements derived in this
way are known as statements of fiducial probability, and
the corresponding distributions of the parameters as
fiducial distributions. In practical applications these
are often referred to as providing confidence limits.

Information and Experimental Design

The development of the precise quantitative notion
of the quantity of information transformed the statis-
tician’s task in two ways. It had been his business to
make the most of the data available. So long as grossly
defective methods of doing so were current, and recom-
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mended by the highest authorities, it was natural that
precise or reliable results obtained should stand to the
credit of the statistical method employed; in the
contrary case, if no tolerably precise results were obtain-
able, the statistician presented his work with a some-
what apologetic air. When, however, it became
manifest and easily demonstrable that any finite body of
numerical data contained only a finite amount of
information, and that methods of extracting either the
whole, or very nearly the whole, of this had been made
available, it became obvious that so far as precision was
concerned, the statistician as such had no responsibility.
His task was fulfilled, if he correctly assessed the
amount of information, and presented his results em-
bodying the whole of it relevant to the questions under
discussion. At this stage his task resembles that of a
chemist making an assay, and it would be absurd for
him to be ashamed if the assay is low, or elated should 1t
prove to be high. The precision of the results and
their value for all purposes are inherent in the body of
numerical data originally available.

Relieved of one responsibility, statistical work is
in the position to undertake another. The methods by
which quantitative information is assessed reveal also
to what particular features of the observational record
its limitations are principally due. We are in a position
to estimate how many observations and of what kind
would be needed to give results of any required pre-
cision. It is this very fundamental change of outlook
that has turned the attention of so much modern
statistical work in the direction of the design or plan-
ning of observational records, and of experimental
arrangements. Most modern text-books of statistics
deal now explicitly with some aspects of experimental
design with reference, in particular, to the needs of
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quantitative biology. The history of the art of experi-
mentation is, of course, a long and complicated one,
and although it is now most readily apprehended by the
student through the exposition of formal principles, yet
these have come relatively late in its historical develop-
ment. The driving force and urge to improvement has
lain in the diverse enterprise of thousands of workers
exercising their curiosity and ingenuity in overcoming
particular difficulties. In such fields as biology,
agriculture, psychology, it early became evident that
the technique of experimentation traditional in the so-
called exact sciences of physics and chemistry was not
sufficiently penetrating. Exploration of knowledge in
the biological fields required in particular controlled
experiments—i.e., experiments in which it is not the
absolute values of the observed quantities which are of
primary interest, but comparisons between these. The
principles of the complex subject of biological control
were, however, very hazily understood and, for more
than a generation, the word * control ” was used in an
almost reverentially mystical attitude.

Need for control arises from the experimenter’s
consciousness that he is ignorant of innumerable causes
which may affect his experimental results. It is for
this reason that controlled experimentation was first
developed and refined in sciences which did not think
of themselves as ‘‘ exact.” If plants are grown in a
greenhouse, the experimenter is aware that the con-
ditions in which they are grown may not be the same as
those prevailing in other years, or in other green-
houses. He prefers, therefore, to rely on comparisons
between groups of plants grown together in the same
greenhouse. If he wishes to know whether the addition
of an element, such as boron, to the solution in the
water culture affects the growth of plants, he will make
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sure not only that a number of his plants are treated
with boron, but also that a number grown in parallel
with them shall be without this addition. The object
of his experimental comparison is to make sure that if a
significant difference does appear in the growth of the
two groups of plants, it shall properly be ascribed to the
addition of boron ; and also, what is a different problem,
to make sure that if boron is in fact capable of affecting
appreciably the growth of the plants, his experiment
shall be competent to detect this effect. Obviously,
also, if there are many different questions in the mind of
the experimenter, more complex systems of control
may need to be elaborated. Although traditionally a
particular group of experimental units such as the plants
receiving no boron have been spoken of as “ controls,”
in contradistinction to the other groups of plants in the
experiment, yet in the design of the experiment, and in
the treatment of the results, no special role is played by
this control group, for all should be thought of inter-
changeably as controlling one another.

Naturally, from the beginning of controlled experi-
mentation a great deal of care has been given to render
the circumstances and treatment of the different groups
of experimental units closely alike in all respects save
those under test. It has only more recently been
realized that differences in environment between units
assigned to the same treatment are equally of vital
significance to the success of the experiment, and to
rendering it capable of an unequivocal interpretation.
At its simplest this general principle arises from the fact
that we can only judge of the significance of the differ-
ence in performance of groups of units treated differently
by comparison with similar differences in performance
between units treated alike This being so, it became
obviously imperative for the validity of the comparison
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that the physical conduct of the experiment shall
ensure that the very same uncontrolled causes of
diversity which affect units treated differently shall
equally act between units treated alike. The modern
experimenter, therefore, takes care that nothing in his
experimental arrangements shall allow unknown causes
of diversity to affect either group of comparisons with-
out equally affecting the other. The most general
means to effecting this is by what is called randomiza-
tion.

A simple example may be used to show what random-
ization amounts to. In one of his experiments Darwin
compared the growth rates from germination of two
groups of maize seedlings, one from self-fertilized and
the other from cross-fertilized parents. Darwin ar-
ranged his seedlings in pairs, one from cross-fertilized
and the other self-fertilized, growing each pair side by
side in the same pot. He took the greatest care that
these two plants should be comparable in, for example,
the date of germination. It is probable that all the
seedlings from self-fertilized plants were in a line along
one side, whereas those from cross-fertilized plants
were in a parallel line along the other side of the pots,
perhaps one line was on the east and the other on the
west. Since it is not known a priori which side would be
favoured, owing, for example, to differential insolation,
or to the convection currents circulating in the green-
house, the comparison between one group and the other
was fair or unbiased, in that neither was known to
enjoy any advantage from such causes. On the other
hand, such causes are not known not to exist, and if they
exist, they will affect all the plants in one line differen-
tially from their opposite numbers in the other line.
There was, therefore, in Darwin’s experiment the
possibility of a cause affecting differentially comparisons

53

205



STATISTICS

between the different groups of plants, without affect-
ing equally the differences between the relative per-
formances of the different pairs. All that the statistical
examination of the results can ascertain is that the
difference between the two averages of fifteen plants
each is rather greater than could be ascribed to chance,
judging from the variation among the fifteen differ-
ences in the fifteen pairs of plants. The statistical
analysis does not, therefore, exclude the possibility that
this apparently significant result was really due, in part
at least, to the sites assigned to the two treated groups.

If, however, randomization had been applied in the
experimental design,the members of each pair would be
assigned to the west or east side of their pots at random,
as by tossing a coin. Any significant difference be-
tween the performances of the two contrasted groups
would then be known to be ascribable to the effect of
self-fertilization. Randomization is a device designed
to ensure that the laws of chance used in testing the
significance shall be validly operative in the physical
conduct of the experiment.

To summarize briefly the steps by which statistical
studies have gained their present level of usefulness, we
may say that during the present century we have
learnt

(i) To conserve in its statistical reduction the
scientific information latent in any body of
observations.

(ii) To conduct experimental and observational
inquiries so as to maximize the information ob-
tained for a given expenditure.

In accomplishing these tasks of immediate utility, it
has incidentally furthered the task of experimental
54
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science by incorporating the vast amorphous body of
research experience, which has been accumulating for
centuries, in principles of scientific inference which
can be taught to students. The art of adding to
natural knowledge by experimentation is no longer the
“ mystery ”’ of a craft, but, in a sense in which it has
not been before, part of the heritage of a scientific
education.
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