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Tue CoNDITIONS UNDER WHICH %2 MEASURES THE DISCREPANCY
BETWEEN OBSERVATION AND HYPOTHESIS. &

* See Author's Note, Paper 31.

1. Introductory.

Tug interesting series of experiments on the distribution of 2%
reported by Dr. Brownlee [1] affords an opportunity, not only of
clearing up such doubts as still remain as to the necessity of entering
Elderton’s table with a corrected, or reduced, value of »/, but also
of bringing the conditions under which ¥? affords a measure of-
goodness of fit into relation with the general theory of statistical
estimation.

If « is the frequency of observations in any compartment of a
frequency distribution, and if m is the expectation in that com-
partment, Pearson introduced ({2]1900) the statistic

Z‘_g{‘z'—'ﬁl }

as a measure of the diserepancy between observation and expectation.
He succeeded in calculating the distribution of %2, when the values
of z were the frequencies in random samples from an infinite popu-
lation in which the frequencies were proportional to m, and showed
that the distribution 6f 2 depends, in the limit when the samples are
large, only on the number of classes, #’, into which the samples were
divided. In the same paper Pearson considered the possibility that
when the values of m are not a priori expectations, but are themselves
calculated from the observed values, the distribution of %2 might
be modified by this procedure. He concluded that this was not so,
and applied the test without correction to several examples in which
the expectations in the several classes had been caleulated from the
distribution in the sample.

In 1922 3] I was able to show, in the case of contingency tables,
for which the margins of the expected table are reconstructed from
those of the observed table, that the distribution of %2 was given
exactly by Pearson’s formula if we take for »/, not the number of
classes in the table, but one more than the number of degrees of
freedom in which the cxpected table might differ from the values
observed. The number of degrees of freedom is the number of
frequencies which may be given arbitrary values without conflicting
with the condition that the marginal totals are already specified.
Thus, for a contingency table with two variates having » rows and
¢ columns, n’ should be equated, not to ez, but to 1 4 (¢ — 1) (r — 1).
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In the same paper I expressed the opinion that the same reasoning
should be applied to testing the goodness of fit of frequency curves,
but that some discrepancy would arise if the grouping used in
calculating the theoretical distribution were different from that
employed in testing the goodness of fit.

Dr. Brownlee, after verifying the accuracy of the distribution
with corrected 7', in several instances, considers a coin-tossing
experiment, in which he has obtained 32 samples in cach of which
256 observations are distributed in the five classes, 4 heads, 3 heads,
2 heads, 1 head, no head. He finds that when the observations are
compared to the theoretical distribution, given by the expansion of

&+ 8
the values of 42 obtained agree well with expectation for 4 degrees of
freedom (0 =05); also that when compared to the theoretical
distribution
(p + )%, pt+g=1

where p is obtained from the observations, by making ¥* a minimun.
the observed values of ¥? agree with expectation for 3 degrees of
freedom (n’ =4); but when the comparison is made with areas
of a normal curve calculated by moments, using Sheppard’s correc-
tion, in which calculation z degrees of frecdom, representing the mean
and standard deviation, are involved, the values of ¥ do not at all
conform to expectation for 2 degrees of freedom (n' = 3), but are
distinetly higher. In fact, 5 out of the 32 values of 2 observed
exceed 6, for which, when #'=3, P is about 0-05; so that in 5
individual samples we should be led to conclude that the observation
significantly contradicted the hypothesis, and in the aggregate of
12 samples contradicted it conclusively.

2. Reasons for abnormal distribution of »*.
This example illustrates so well the different reasons for which
42 may be abnormally distributed that these reasons may be
considered in turn. 2 will be abnormally distributed-—

(A.) If the hypothesis lested is not in facl lrue.

The distribution in the population from which Brownlee’s
samples were drawn appears to have been in the ratio I, 4, 6, 4, 1,
This ratio is not reproducible by dissecting a normal curve at equal
intervals of the abscissa. In terms of the standard deviation the
distance from the mean of the limits of the central group would be
from the Kelley-Wood table [4], 0-488777 ; the next. limits, repre
senting the points beyond which the tail of the curve is one-sixteenth
of the total arca, would be at -+ 1534121 ; while to include the
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whole area the next limits are at infinity. For the hypothesis to
be true, these values should be in the ratio 1:3:5. If we suppose
the whole tail to be included in the extreme classes, we must still
recognize that the central class, including three-eighths of a normal
curve, stands on a smaller length of abscissa than the adjoining
areas each including one-quarter of the curve. If, therefore, the
values of ¥2 are found to be excessive, they are only performing
their prime function in indicating the inexactitude of the hypothesis
tested. In fact, with increasing samples, the values of ¥* in such
a case should increase without limit, and cannot be expected to
be distributed as in Elderton’s table.

Even if a hypothesis be true, the value of ¥ obtained will
not measure the goodness of fit, if the method of fitting employed
is inadequate ; for in such a case the hypothesis to be tested is
not adequately represented by the series of “expected” frequencies
obtained.

In the first place the distribution of »2 will be abnormal —

(B.) If the method of estimation employed vs Inconsistent.

A method of fitting fails to fulfil the criterion of consistency if,
when applied to an infinite sample, v.e. to the whole population,
it fails to reproduce the exact form of the population. Let us
suppose that the frequencies in the five classes of the population
were proportional to the areas of a normal curve divided at + 0-5,
+ 1:5; the fractions in the five classes would then be—

00668072, 0-2417303, 0-3829250, 0-2417303, 0-0668072 ;

from these the second moment, using Sheppard’s correction, is
0-934585, whereas the true standard deviation is unity, equal to
the grouping unit. Thus, using an indefinitely large sample, our
method of estimation introduces an error of about 3 per cent. into
our estimate of the standard deviation. Consequently from this
cause also the values of %? obtained will increase indefinitely as
the size of the sample is increased.

(C.) If the method of estimation employed vs Inefficient.

In any problem of estimation innumerable statistics, all func-
tions of the observations, may be devised for the estimation of the
required parameter, such that in all cases the error tends to zero
as the size of the sample is increased. Such statistics all satisfy
the criterion of consistency, and may all be termed consistent ;
for large samples the sampling distribution of each of them may
tend to normality, with variance inversely proportional to the
number in the sample from which it was calculated, but the variance
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of different statistics derived from samples of the same size will
generally be different. We are thus led to specify out of the mass
of consistent statistics, a group characterized by the fact that as
the sample is increased their distribution curves tend to normality
with the least possible variance. Such statistics satisfy the criterion
of efficiency, and may be called efficient statistics. The efficiency
of any other statistic is defined so as to be inversely proportional
to its variance in large samples, the efficiency of efficient statistics
being 100 per cent. For example, it may be proved that in
estimating the mean of a normal distribution, no statistic can be more
efficient than the mean of the sample, and that this has a variance
of o62/n, where u is the number in the sample. The variance
of the median obtained from a large sample tends to the value
notf2n ;  consequently, while the efficiency of the mean is roo0
per cent., that of the median is only 63-66 per cent.

3. Properties of efficient statistics.

I have shown elsewhere [5] that a statistic satisfying the criterion
of efficiency may be found by the Method of Maximum Likelihood,
and that its variance in random samples may be calculated directly
from the frequency distribution of the population. If m is the
expected frequency in any class, and z is the frequency observed,
then any parameter 0, of which the series of values of m are functions,
may be estimated by maximizing

L =8 (zlog m)
for variations of 0 ; this leads to an equation of the form

(3320

from which, in any special case, 0 may be obtained. The variance in
random samples of the value 80 obtained is given by

o2
— _§ = g(m 5 log )
c

or, since S(m) is independent of 8, by
1 J1Om
&\ m\ 90, ) J
Before connecting these properties with the distribution of 2,
we may prove two elementary propositions respecting statistics
which satisfy the criterion of efficiency.
1. The correlation between any two estimates of the same para~
meter which satisfy the criterion of efficiency tends to -1, as the
sample is increased indefinitely.
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Let the variance of each estimate tend to 62[n as the sample is
increased, and let the correlation between the two estimates be 7.
Then the variance of their mean will be

62 147

—
But, by hypothesis, this cannot be less than 62[n, therefore » cannot
tend to a value less than unity.

2. The correlation between any estimate which satisfies the
criterion of efficiency, and any other consistent estimate of the same
parameter, tends for increasingly large samples to a limit, 7, given by

r= JE,
where E is the efficiency of the second statistic.
Let A be the efficient statistic with variance ¢?/n, and B the

inefficient statistic with variance o2[En; from them compound a
new statistic C, such that

(1+E=2/E)C=(1—r/E)A+ (E—r/E)B;

then the variance of C is

g2 1 — 2 o2 1 —r2

W TIE—2JE n I—p2+ (r— JER’

if therefore r does not tend to ./E as the samples are increased the
variance of C will tend to be less in the limit than the variance of

- A, which is impossible. Therefore, in the limit » = /E.

An easy corollary is that the correlation of 4 with (B — 4) is
zero, so that the deviations of B from the population value may be
regarded as made up of two parts: one, an error of random sampling,
properly so called, is the deviation of 4 from the population value ;
the other, distributed independently of the first, is the error of
estimation by which the inferior estimate, B, differs from the superior

estimate, 4.

4. The mainimuni of 2.

All statistics which satisfy the criterion of efficiency being
equivalent for large samples, it is important in connection with the
2 test that the method of minimizing y? is one of them. For
2 g S (@ = m)*\

1 m S

X

and if this is a minimum for variation of a parameter 6, we find

R

g <w2 — m? ()m> -0

A —— 8 R _ .
m2 ¢l
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Now, for large samples this equation tends to equivalence with
that obtained by the Method of Maximum Likelihood, for the latter
may be written

EEIRTI
m o/
and, for large samples, the factor,
z -+ m

m

tends in all classes to the constant value, 2. Hence, all methods of
fitting involving only efficient statistics tend, for large samples, to
ninimize y”.

5. The effect on 42 of substituting for the true value of any parameter
an estimate of it derived from sample.

Let o stand for the frequency in any class expected from the
true value of the parameter, and m' the corresponding frequency
alculated from an cfficient estimate.

Let
2
v2 =8 { (x — m) }
P —”m‘
o o J(®— m’)‘z}
2 =8 ;
~ { m'
then

»2_~’2=Sf(x—'m)2 _ (x——-m’)2}: {2 _}____l_}
% s L m m’ S (m m’)

The difference of the reciprocals of i and m’ will depend on the
difference 360 between the true value of the parameter and its value
derived from the sample. Since 30 decreases proportionately to
1", as the size of the sample is increased, we shall expand the above
expression in powers of 30, noticing that since both x and m increase
proportionately to n, we shall have to carry the expansion as far
as the term in (30)2, while in that term factors which tend to unity
with incrcasing sample, such as zfm’, may be omitted. Now

1 1 1o S0 - { 2 om *.]2 1 2\ (30)

73 9

R _
¢l ’

— | y— ] el el
K cl m? 00 S

but, since %* has been made a minimumn,
. /I oom’ V= 0

- = =Y

Km’l c )

and

m o m'?
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Hence

Morcover, for any efficient statistic,
Lo {L(tmp,
o m oo | S
consequently the amount, by which 2 is reduced, is the square
of a quantity normally distributed with unit standard deviation.
The substitution thus diminishes the average value of »2 by unity,
and this alone shows that if 42 is still distributed in the type III
distribution given by Elderton’s table, the value of #»” with which the
table is entered must be reduced by unity. It is, however, apparent,
since 0 has been found by a process equivalent to making x'2 a
minimum, that y2 is distributed independently of the additional
square, (30)%/c?, and since %2 is distributed as is the sum of the
squares of a number of quantities distributed normally and inde-
pendently each with unit standard deviation, it is necessary that 2
should be distributed as in the sum of the squares of a number smaller
by unity of such quantities, and consequently the type III distri-
bution is always reproduced.
1f, however, y,% is the value obtained by using an inefficient
statistic of cfficiency E, then we find as above

N

v 2
AN A
)

where o2 is the variance of an efficient statistic, and 80 is the error
of estimation by which the inefficient statistic differs from the
efficient one. The mean value of (86)2 is
Gz< -1- —1};
\ B /
consequently the mean value of 3,2 may be found from that of 42
‘

by subtracting 2 — T In this case, however, the distribution is

not the Type IIT characteristic of %2 It will be noticed that with
efficiencies below 50 per cent., the mean value of ¥2 1s less than that
of %% so that the reconstructed population is generally less like
the sample than is the population from which the sample was drawn.

The effect of using statistics, therefore, which are inconsistent
is to make the value of ¥ increase indefinitely with the size of the
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sample ; consistent statistics which are somewhat inefficient dis-
turb the distribution by altering the mean, and in other ways.
When such are used the value of %% obtained does not meagure
merely the deviations of observation from hypothesis, but includes
also deviations due to errors in the estimation of the parameters.
Consequently such values should not be entered ir: Elderton’s table in
testing goodness of fit, but, if such tests are intended, the small cor-
rections should be applied by which efficient statistics may be
obtained.

The cases in which Dr. Brownlee’s experiments have verified the
theoretical distribution of 42 have all been obtained, actually or by
approximation, by making ¥* a minimum. The theoretical distri-
bution would equally have appeared if any other efficient method
had been used. For example, the five frequencies, «, B, ¥, 3, ¢,
might have been fitted with the binomial distribution

256 {(& +m) + (3 — )}
by taking
1024 = 2 (¢ — &) + (B — 9).

It is not necessary for our purpose to push refinement in methods
of fitting beyond the requirement that all statistics used should be
fully efficient, for the y* distribution is in any case only exact when
the sample is increased without limit, and in these circumstances all
efficient statistics are equivalent. Only in an enquiry into the
accuracy of the %2 distribution for small samples would such further
refinements be required, and it is by no means obvious with small
samples (i) that the method of minimizing ¥? possesses any ad vantage
over other efficient methods, or (ii) that the form of %2, without
modification, provides the ideal mecasure of discrepancy for small
samples. The method of maximum likelihood, for example [5],
minimizes the quantity

L:s<x10g;’£\
.

m
r — m)? z — mp z — mp

:s{,g(_~_> S ikl R C Ak I
m m )

of which 42 is the limit as the samples are indefinitely increased.
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