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Starting with a purely empirical examination of the precision ob-
tained in estimates of the numbers of soil bacteria, the authors were
led to examine the properties of the small samples of the Poisson
series, and to recognise that the statistic x® supplies an index of dis-
persion for sets of parallel plates by which their homogeneity may
readily be examined. This new tool is then applied to examine the
circumstances in which aberrant or exceptional counts have been
found to arise, in data from Rothamsted and elsewhere.

372 Annals of Applied Biology, 9: 325-359, (1922),



Reproduced with permission of the Annals of Applied Biology

THE ACCURACY OF THE PLATING METHOD
OF ESTIMATING THE DENSITY OF
BACTERIAL POPULATIONS

WITH PARTICULAR REFERENCE TO THE USE OF
THORNTON’S AGAR MEDIUM WITH SOIL SAMPLES

By R. A. FISHER, M.A., H. G. THORNTON, B.A,,
anp W. A. MACKENZIE, B.Sc.

(Rothamsted Expervment Station)
(With 2 Text-figures)

1. INTRODUCTION

THE accuracy of the estimates of bacterial density, in samples of soil,
water, or other material, obtained by the plating method, is only one
of many points which arise in the interpretation of bacterial counts.
The full interpretation of such data would include a consideration
of the divers species that occur on the culture media, and of the
forms in which they exist in the soil. The partial or total exclusion of
certain forms, such as anaerobes, that require special cultural con-
ditions, must also be considered in a full examination of such data, for
a single medium supplies, necessarily, but a single aspect, however
comprehensive, of the bacterial flora of the soil. Questions too, as to
what is to be considered as the unit of enumeration—the individual
organism as it exists in the soil, or possibly groups of such organisms
adhering to single particles of soil, and undetached by the processes of
sampling and dilution—whatever their importance may be, are not the
object of the present investigation.

For if all these inquiries could be answered with certainty and pre-
cision it would still remain to be discovered with what accuracy the
numerical estimate of bacterial density, obtained from a single set of
plates, represented the actual bacterial density in the sample, and in the
material from which the sample was drawn.

The question of accuracy, therefore, unlike the other elements in the
interpretation of bacterial count data, is primarily a statistical question
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and may be thrown into the characteristic statistical form of the estima-
tion of a population from a sample. Only in peculiarly favourable cases,
however, as will be seen more clearly below, could we rely upon an
a priort mathematical solution.

2. Tar Pramine METHOD

The plate method of counting soil bacteria is an adaptation of the
plate counting technique, developed by Koch in 1881, applied to the
special conditions of soil bacteria.

The process in general consists in making a suspension of a known
mass of soil in a known volume of salt solution, and in diluting this
suspension to a known degree. The bacterial numbers in this diluted
suspension are estimated by plating a known volume in a nutrient gel
medium and counting the colonies that develope on the plate. An
estimate of the bacterial numbers in the original soil is then made by a
simple calculation, the mass of soil taken and the degree of dilution being
known.

There are great variations in the details of the method as employed
by various workers. These differences concern all the stages in the process
and also the nature of the gel medium used in plating. An idea of the
extent of this lack of standardisation may be gathered from a paper by
Z. N. Wyant(16) in which a number of the variations in technique used
by different workers has been collected from the literature.

As an example illustrating the process, however, the technique used
at Rothamsted and employed by Cutler in the bacterial count work
discussed below, will be described.

Ten grams of the soil sample are placed in 250 gm. of sterile saline
solution and shaken for four minutes to obtain a suspension of the soil.
1 c.c. of this suspension is placed in 99 c.c. of sterile saline solution and
shaken for one minute to ensure a uniform distribution of the contained
organisms. 1 c.c. of this second dilution is placed in another 99 c.c. of
saline and shaken for one minute. '

Every cubic centimetre of this final dilution will then contain g5¢5qs
grams of the original soil sample.

One c.c. of this dilution is then delivered into each of five petri dishes
and mixed with an agar medium. After incubation the bacterial ~olonies
on each plate are counted, and the mean of the five parallel count: “aken.
From this the bacterial numbers per gram of soil are estimated.

The bacterial numbers obtained by the plating method do not repre-
sent the total bacterial content of the soil. This is clear from the fact
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that on no single medium will all the physiological groups of soil bacteria
develope. In using this method, however, it is hoped to obtain a standard
of bacterial density by which two or more soil samples can be compared.
To obtain this result from the method a careful standardisation of the
whole technique is essential, in order that those sources of error that
cannot at present be eliminated, such as the failure of some organisms
to develope on the plates, may be rendered so uniform as to affect the
count in a constant manner.

This standardisation must comprise both (@) the manipulative portion
of the technique involved in making the dilutions, and (b) the composition
of the medium employed in plating.

In applying results obtained by the method it is necessary to have an
estimate of its degree of accuracy, and in order to improve it, some know-
ledge must be obtained as to which stages in the process are the chief;
causes of the variation in results.

For the results of the plating method to have their highest possible
accuracy, very severe conditions would have to be fulfilled. Animaginary
experiment will perhaps serve to make the conditions clear.

If a 10 gm. sample of soil were diluted down to a dilution of 1 gm. in
250,000 c.c., enough material would be provided for 24 million plates.
The result of such an experimentwould beof the highest possible accuracy,
if one could assume that

(I) Each plate offers the same facilities for development.

(IT) The development of any organism is independent of other
organisms present.

(IIT) Development results in only one visible colony.

Since in practice only a few plates are prepared, two additional con-
ditions are involved in the sampling theory.

(IV) Each plate has an equal chance of receiving any organism.

(V) The organisms are distributed independently.

The fulfilment of the first, fourth and fifth conditions depends upon
the perfection of the technique employed. The second and third con-
ditions depend definitely on the nature of the organisms, and are only
matters of technique in so far as this term may be employed for the
choice or elaboration of a medium upon which the organisms, which it
is desired to study, fulfil those conditions, and which excludes the inter-
ference of those which would fail to do so.

These conditions can to some extent be tested independently. Thus,
in a short experiment, where a single batch of medium is used, it is to
be expected that the medium in each plate will offer the same facilities
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for development (Condition I). In a long experiment, however, where a
number of different batches of medium are used, this will be the case
only if the medium can be accurately reproduced, if, that is, different
batches of medium, prepared independently, give significantly the same
results. This reproducibility has been confirmed for Thornton’s agar
medium (Thornton, 192211)).

Again condition (IV) would fail if from any cause the dilution was
carried out in an irregular manner. This may be tested directly by carrying
through the whole dilution process independently with different portions
of the same sample. The following experiment is an example of such
a test.

Four portions of « sample of Barnfield soil, simultaneously analysed
by four different workers (Aug. 14, 1921), gave the following counts:

Table 1
Portion
Plate ‘A B ¢ D
1 2 28 31 37
2 30 33 26 32
3 30 32 28 32
4 29 2 32 30
5 32 27 31 26
Mean 20-4 29-2 206 314

The four sets of plates are indistinguishable from random samples
from a single population. The variance estimated as from a single sample
of 20 is 852, actually less than the mean value for the variance within
each set, 9-15. An equivalent test is provided by the correlation between
different plates of the same set; this is —089 +-108, negative and quite
insignificant. In spite of the fact that the different plates of the same
set agree very closely, the variation between the four means is quite

insignificant. _
Table 11
Portion

[ A N

Plate 1 II 111 v

1 72 74 78 69

2 069 72 74 67

3 63 70 70 66

4 59 69 58 64

3 59 66 o8 62

6 33 58 56 58

7 51 52 56 54
Mean 60-86 65-86 64-28 62:-86
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Equally close is the agreement between the sets of seven plates pre-
pared from four parallel series of dilutions (June 22, 1922), shown in
Table 1I. No trace of differentiation is observable, and the four sets
must be regarded as random samples from a single population.

On certain occasions the same point is established by the analysis of
simultaneous samples from the same field. An agreement in such cases
shows the uniformity in bacterial density of the portion of the field
sampled; it also serves to show that no significant differences are
introduced by variations in the process of dilution. Thus four simul-
taneous samples from Broadbalk (Aug. 14, 1921) gave the following
counts,

Table ITT

Sample
Plate T I 1 v
1 38 45 43 a7
2 32 40 34 41
3 52 45 52 35
4 32 31 55 36
5 40 43 38 45
Mean 388 408 444 36-8

From the whole set of 20 the variance is 56-27, from the four sets
of 5, 56-97, not a significantly greater value. The correlations between
plates of the same group is + -014 -+ -108, an insignificant positive value.

- By the most sensitive tests possible, no differentiation is observable.

There is thus reason to claim that the manipulative technique can
be so efficiently standardised that no significant variations in it are
detectable, having regard to the variance that occurs between the colony
numbers developing on parallel plates from a single final dilution.

Our attention is thus drawn to this variance between parallel plates,
which may be due solely to the chance distribution of organisms within
the final dilution, or may in addition be influenced by the mutual
interference between organisms on the plates, or by the failure of certain
organisms to develope into single discrete colonies.

It is therefore necessary, in interpreting the results of the counting
technique, to discover the relative importance of these influences, on the
colony numbers, and on the variance between them. It is on the experi-
mental evidence as to the actual nature of this variance between parallel
plates that our further conclusions will be based.

Nevertheless, the two questions of the reproducibility of the medium
and of the equivalence of results obtained by independent series of
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dilutions made from a single sample, are here insisted upon, because
failure in either of these two points would not necessarily affect the
agreement between parallel platings, from the same final dilution, which
is studied below.

3. Ture PoissoN SERIES

It was shown by Poisson(1) in 1837, that if a large number of indi-
viduals, N, are each exposed independently to a very small risk of an
event of which the probability of occurrence in any instance is p, then
the number of occurrences, z, in any trial will be distributed according
to a definite law, sometimes called the Law of Small Numbers. The
distribution of z is found to depend on a single parameter

m = pN,

in such a way that the probability that the number of occurrences shall
be z is given by the formula
o T
Cox!”

It should be noted that z is always a whole number, while # may be
fractional; the mean value of z is equal to m, and when  is large the
distribution, except for its essential discontinuity, resembles a normal
distribution, having its mean at m and the variance (the square of the
standard deviation) also equal to m.

The importance of the Poisson series in modern statistics was brought
out by “Student’(2) in 1907, in discussing the accuracy of counting
yeast cells with the haemocytometer. Since the chance of any given
yeast cell settling upon any given square of the haemocytometer is
extremely small, while the number of cells is correspondingly great,
“Student” arrived independently at the Poisson formula, as a theoretical
result under technically perfect conditions. He was able to show that,
in some instances, counts of 400 squares agreed with the theoretical

1 The Poisson Series had been successfully applied by von Bortkiewicz to the annual
number of deaths from horse-kick in a number of Prassian Army Corps(10). Miss Whitaker’s
criticism(8) of this application is entirely vitiated by her neglect of the variation of random
samples.

H. Bateman (1910)(9) arrived at the formula for the Poisson Series, as the distribution
of the number of a particles, emitted by a film of poloninm, which strike a sensitised sereen
in successive equal intervals of time. The formula was used by Rutherford anc ‘eiger to
test the independence of simultaneous emissions. The distribution of 2608 co. s shows
a general agreement with expectation, though there are discrepancies not easily to be
explained by chance. The observations are certainly not adequate, as these authors suggest,
as “a method of testing the laws of probability.”
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distribution, and that when this is the case the accuracy of the count
is known with precision and depends only on the number of cells counted?.

The ideal conditions for bacterial counts made by the dilution
method, are closely parallel to those found necessary in the case of the
haemocytometer. The chief practical difference lies in the fact that
instead of 400 squares with only a few yeast cells in each, we have some
five plates with perhaps 200 colonies apiece. The agreement of the
results with the theoretical distribution cannot, therefore, be demon-
strated from a single count. Under ideal conditions the data would
consist of a number of small samples from different Poisson series. For
this reason as soon as it was suspected that this ideal condition might
have been realized in practice, a special investigation of the nature of
such samples was undertaken, owing to the importance of demonstrating
the substantial fulfilment of the severe conditions laid down in the
previous section.

4. PreLiMiNARY REpuctioN oF CutLER’s DATA

When the question of the accuracy of the bacterial counting technique
was discussed between the present authors in the spring of 1921, it was
decided that the daily observations of bacterial numbers then being
carried out at Rothamsted by Cutler would afford a valuable opportunity
of studying the variance between parallel plates and its causes. In this
choice our investigation was more than fortunate, for no other series of
bacterial counts known to us, of which many have been examined, would
have gone so far in clearing up the obscurities of the subject.

In conjunction with daily estimations of soil protozoa carried out at
Rothamsted from July 1920, daily counts of bacteria were also made in
the protozoological laboratory (Cutler17)). The dilution technique used in
this work has been described above. Plates were incubated at 18°C.,
and counted after five and seven days, the seven day counts only are
considered here. Throughout the work the agar medium recently
elaborated by Thornton (11) was used. The data thus supply an extensive
test of this medium under routine conditions.

When the statistical examination of these data was commenced it
was not anticipated that any clear relationship with the Poisson dis-
tribution would be obtained; the reduction was designed to determine
empirically the relation between the mean bacterial number calculated
from any set of plates, and the variability of that set about the mean.
Knowing this relation, a probable error could be assigned to each value.

1 Valuable tables of the Poisson Series have been prepared by H. E. Soper(?).
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Two statistics were calculated from each set of plates. If z stand for
the number of colonies on each plate, and n for the number of plates,
the necessary statistics were:

the mean Z= 7-1,; S (x),
and the variance = ;?__1_ S (z — E)?,

where S stands for summation.

The values of v, being the estimates of the variance from small
samples, were inevitably affected by large sampling errors, which
depended upon the number of plates. The whole body of four-plate sets
was therefore divided into groups, according to the value of Z Thus for
the two groups of four-plate sets having a mean number of colonies
65-75 and 75-85, the following values of » were obtained:

Table IV Table V
65-75 75-85
e A Y f_— A Y
Set No. T v Set No. T v
29 6975 6558 59 77100 78-00
33 7350 2700 89 7675 14291
51 6875 | 31225 | 97 84.75  144-25
60 7150 | 401-67 105 8450  56-33
128 7375 6091 149 7950  77-67
164 7275 14625 169 84-50  123-67
227 67-30 2767 240 82-25 8-91
241 68-75 891 273 84-50 4833
249 67-25 7-58 301 84-25  73-91
263 7325  112:58 Mean 83-78

272 72-75 5291
330 70-00 55:33
Mean of 12 106-55
Mean of 10 56-47

Two facts are apparent from these results (1) the variability of v is
so great that accurate values are not obtained from the means of about
10 values; (2) the difficulty of estimating the variance for given values
of 7 is still further increased by the occurrence of occasional very large
values of v. The values of v in sets 51 and 60 in Table IV are much
greater than the other 10 values in the same group. The values of the
means obtained by excluding and including these high values : o given

at the foot of the table.
The first difficulty could be overcome by fitting to the actual values

obtained a smooth curve representing the mean v for given Z; before
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doing so, however, it was thought advisable to exclude as far as possible
the exceptional large values. As a rough criterion it was decided to
exclude those values which exceeded by more than threefold the mean
value of the group. In the larger groups this criterion acted well; in the
smaller groups, such as occurred for high and low values of Z, it was
necessarily inconclusive, even when account was taken of neighbouring
groups. The curve fitting was therefore confined to the region in which
the data appeared to be sufficiently abundant.

2401
I 4 Plates
200f
- ...' ‘ e
- XN
N »
160} 0\\\)
&
v b Q.
120}
8o 5 Plates”
40 B
P Q Q |
O — Il 1 i 1 1 1 i 1 A 1 1
30 60 90 120 150 180
x
Fig. 1. Smooth curves fitted to Cutler’s data.
Curves of the form v = AT + B7?

(where 4 and B are two constants determined from the data) were fitted
to the four-plate data from # = 0 to % = 180, and to the five-plate data
from 0 to 160; the curves obtained are shown in Fig. 1.

The straight line, v = %, represents the relation between the variance
and the mean in the Poisson Series. The curves evidently tend to cling
closely to this line, especially in the region (60-120) where the data are
most abundant. The curves strongly suggested that the departures in
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these data from the Poisson samples were not, as had been expected,
systematic, but were due to the sporadic occurrence of exceptional sets;
the curvature in the smooth curves being perhaps largely due to the
crudity of the criterion employed in excluding the exceptions. This view
impressed the authors with the necessity of studying the distribution of
small random samples from the Poisson Series, with the double object
of devising a valid criterion for the recognition of exceptions, and of
testing accurately whether or not the remainder were in reality such
random samples.

5. SMALL SAMPLES OF THE PoISSON SERIES

The study of small samples, essential as it is to the development of
adequate statistical methods, has hitherto been practically confined to
the normal curve and surface. The following investigation may serve to
show, that by taking account of the fundamental properties of those
statistics which are derived by the method of Maximum Likelihood, the
sampling problems of even discontinuous distributions admit of material
simplification.

In a sample from a Poisson Series, the chance of any observation
having the value of z is

o T
z!’
where i is the parameter of the series.
Hence the chance of observing a given series of values xy, ¥; ... ¥, 15
Af = wlay! o,

If we estimate m from such a sample by the method of maximum

likelihood, we have

0 . nx
a—w-b(logAf)—-——n+—7-7:—-0,

so that % is the most likely value of m, and in consequence, as Fisher has
recently shown(3), it may satisfy the criterion of sufficiency, in which
case the distribution of any other statistic, for a given value of Z, must
be independent of m.
That this is so may be proved directly; for
an:v
enm
oyt .. z,!
may be put into the form
(nm)n® (nz)!
(n@)! " wrtayla! ..z,

—nm

3
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the first factor represents the chance of obtaining a given value of Z,
and the second, which does not involve m, gives the chance that the
sample shall show any particular partition of the total, once the total
is fixed. The distribution of any statistic which depends upon this
partition, must therefore be independent of m, once # is fixed. The
problem of the distribution of v is therefore susceptible of the great
simplification, that we need only consider its distribution for given values
of ¥, and that this distribution is wholly independent of m.

The distribution of this, or any other, statistic, which depends upon
a partition of an integer, must necessarily be discontinuous; when,
however, Z is large, even for small values of n, the number of possible
values of ¢ becomes sufficiently great for its distribution to be represented
by a frequency curve. This procedure is the more advantageous in that.
by the choice of a new statistic, which shall replace v, we can throw the
distribution into a form independent of Z whereas the actual partitions
possible in the neighbourhood of equipartition, will necessarily change
with the fractional part of Z.

The frequency with which any given partition of the total, n7, occurs,
is in fact the frequency with which any given series of values are obtained
when the total is distributed at random into n cells, the expectation
in each being Z. It is well known that when this is the case, the
statistic

14—

R=zS@—m=(m-1)2

As

B

measures the departure of the sample from equipartition, being equi-
valent mathematically to Pearson’s test of agreement between observa-
tion and expectation. The distribution of }y? is well represented by a

smooth curve independent of # of the form (Pearson’s Type 3)
n—3

and the frequency with which y* exceeds successive integral values, has
been tabulated by Elderton (4, 1902 and 5, 1914) for values of » from
0 to 30.

We are therefore in a position to test whether the conditions which
lead to the Poisson Series are in fact fulfilled in any given body of
bacterial data for which the counts on individual plates are known; it
is only necessary to calculate the above index of dispersion (x?) from each
set of parallel plates, and to determine whether the distribution of this
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index is or is not in accordance with the distribution predicted from
Elderton’s tables, when

and n' = n.

The statistic x* thus supplies an index of dispersion for sets of parallel
plates. If the bacterial counts conform to the Poisson distribution the
average value of x% will be one less than the nmumber of plates. For
sufficiently mumerous sets of plates the agreement may be lested more
exactly by the use of Elderton’s Tables.

6. THE x* INDEX OF DISPERSION APPLIED TO CUTLER’S DATA

The values of x2 obtained from the sets of four parallel plates, grouped
according to the value of the mean, are shown in Table VI.

Table VI
x2

T 511512535 (455565 7585|9505 >11 Total
202! - - — ] | —|—i—=|—|—=]—= — 2
0| 1] - = =1 |- =] —=]—]—= — 1
40l 2 —|2 | —t2l 1| —|—|—]|—]— — 7
50 —11 {2 |s 2l 1L - — - — — 12
60-1 5 {3 |2 == 2 = =] — 12:3 13
70|13 |2 |4 — 1=t =] =] =1 ~=11386,169]| 1
o tf1sleslr |12~ —|——|~— — 9
90| 2 138 |1 : 1 = - — =1 1= — 11
100} 113 {36 — | — | —1|—] 11— —1]148,245]| 1i:5
ot — | 2541 1| = = = =] =] =1 — — 45
1200 2| — 1 — |1 |~ —1 1] —]—1—1-— 151 5
130 —| — |1 S0 —| 1| — N A | 14.2 45
40 | — | — | 2 15 1| 1] — =] — — 55
ol s 1 |5 1 | = | = | = — — 10
6|61 | —| —|—|—=|—|—|—]—]— — 7
m | 1| -1 =1 |- =] —==]11=1-—= 175 4
180 ) 4 |1 1 == — ] vl =11 240,138} 10
ol 1! —] | —| - —1—=1—|—]—|— — 1
2001 2 |1 "2 (NS (S RN, R U, S (S N - 158 55
210 | 1 |1 — 1 |- SN (U N O, - 3
92920 | — | — |1 | — | —| —| =11 —1|—|—]122,168]| 4
20 | — | —| — | — 11| —| 1| —1—1-— — 214 3
240 | — | — |1 —~ 1211 NS N U — 4
25 | 1| — | — | — | - — | —| —] —|—1— — 1
20| 1 | — ] — ! —| — ] —|—|—1—1—=1—= 114 2
220 | — |1 | — | — ] —1|—]— — = =] 291 2

39022 [30 |16 | 11| 6 54103 |2]z2 16 156

No obvious relationships are observable between the value of x? and
that of 7. There is indeed an excess of the exceptionally large values of
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x? (> 11) among the higher values of Z, but this on investigation proved
to be completely accounted for by the epidemic character of the occur-
rences of these large values, which we shall demonstrate below (see Fig. 2).
The longest and most severe epidemic occurred during a period (Oct.-
Dec.) when the bacterial numbers were generally high. Within this
period no sensible association is apparent.

Confining attention therefore to the distribution of ¥, irrespective of
the mean number of colonies counted, it is clear that the sets with
exceptionally large variations, which interfered with the preliminary
reduction of the data, are now distinguishable as those with high values
of x2. If the sets were random samples of Poisson Series, it appears {rom
Elderton’s Tables that only 3 per cent. of the observed values should
exceed 9. It is clear that there is here a group which must be excluded
in considering the agreement of the remainder with the theoretical
distribution. If this were the only irregularity in the observed numbers
we should therefore compare them with a theoretical series having the
same total below 9. As it is there is also some irregularity visible at the
beginning of the series, suggesting that there is also an excess of unduly
small values of y2. For this reason we shall base our comparison on the
total observed between 1 and 9, as is shown in Table VII.

Table VII
Comparison of observed and expected distribution of x2, 4-plate data.
x* Expected | Observed | Difference x?
m mo X £ cm
b 24-97 39 T+ 14-03
15 28-76 22 ~ 676 1:589
2:5 22-72 30 + 728 2:333
35 16-36 16 ~ 36 -008)
45 11-27 11 - 27 006+ -136
55 7-56 6 ~ 156 | -322)
65 4-99 3 + -0l -000)
7-3 3-25 4 + 75 173y 260
83 2:10 3 4 90" -386 1
over 9 3-68 20 Xt = 4-817, 4:324
Total 125-66 156 P = 682, 232

Within the range from 1 to 9, the agreement of the observed with the
expected values is striking. When tested in eight groups, the probability
of obtaining a worse fit by chance from perfectly normal data is -682,
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and even when grouped in the most unfavourable manner, by throwing
together consecutive positive and negative residuals, a method suggested
by Mr Udny Yule, the probability is still -232. There is therefore no
significant deviation of those values from expectation.

Of those above 9, we may anticipate that some three or four will be
normal values and the remainder exceptions. It is of course impossible
to separate these with absolute certainty. In discussing the evidence for
epidemics we shall assume that the four values below 11 are normal and
that the remainder are exceptions. When, however, the fact of the
epidemic incidence of those exceptional values is taken into account, it
appears that the two between 10 and 11 are among the relatively few
“normal” sets occurring in an epidemic period and are therefore probably
exceptions, while the two between 9 and 10, and possibly also the value
at 11-4, are for the same reason probably normal.

It is thus possible to separate this class of exceptions trom the
remaining data with some degree of certainty and to study them
individually, but this is not possible for the excepticnally invariable sets.
All that we can do here is to show that the evidence for their real
existence is stronger than appears in Table VII. If we subdivide the
region of the first two groups of that table somewhat more closely we
obtain

Table VIII.
x Expected Observed
0 -
11-82 21
75
9-97 12
95
12-56 17
1-15
14-15 9
1-35

the excess of numbers is most clearly marked in the group of smallest
values, and is possibly though not certainly confined to the region.

These conclusions are independently confirmed by the sets of five
parallel plates. In Table IX is shown a comparison of the observed
distribution with that expected, on the basis of the total observed
between 2 and 11.

The agreement with expectation in the range from 2 to 11 is perfectly
satisfactory; when tested in the 9 unit groups, the possibility of obtaining
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a worse fit by chance from normal data is -765. Grouping together the
consecutive positive and negative errors, it only falls to -571. There is
again no significant deviation of the distribution in this range from
expectation.

Table IX
Comparison of observed and expected distribution of x?, 5-plate data
2 Expected | Observed | Difference o
X m m -+ X m
5 10-94 25 +14-06
15 21-10 27 + 590
25 21-58 24 292 271 400
35 18-41 20 + 159 137§ Y7
45 14-39 12 - 2:39 397
55 10-69 11 + 31 '()09$
6-5 7-67 9 + 1-33 231
75 5:37 5 - 37 '0)0% 826
85 3-70 0 - 370 3700
9-5 2-51 3 + 49 096 57
10-5 1-68 2. + 82 061§ 19
over 11 3:22 18 x¥=4-927, 2-938
Total 121-26 156 P= 765, -571

Of the values above 11, three lie between 12 and 13, and in discussing
the evidence for epidemics we shall assume that these are normal sets,
and that all those above 13 are exceptions. When we take the evidence
of epidemic incidence into account, it is found that the only four sets
above 13 which might reasonably be considered normal all occur in
epidemic periods, and that the same is true of one out of the three between
12 and 13. This therefore (No. 160, see Fig. 2) is probably also an
exception.

The conclusions to be drawn from the 4-plate and from the 5-plate
data, thus confirm each other at every point. In both groups the sets
having exceptionally high variability may be identified in almost every
case with certainty. The majority of both groups, about 124 of the
4-plate sets, and about 117 of the 5-plate sets, are evidently true samples
of the Poisson Series. Both groups show an excess of cases of small
variability, but it is not possible to specify the actual sets affected by
this; it is evident that this cause, like that which produces high varia-
bility, is sporadic and not systematic in its action: it affects a certain
number of sets in a definite manner, leaving the majority unaflected.
This effect, whatever be its nature, is more clearly brought out in the
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5-plate than in the 4-plate sets, possibly because the sets of five plates
make possible a closer scrutiny into the exactitude of the agreement
between the observed sets, and samples from a Poisson Series.

For the same reason the 50 sets of three plates cannot be expected
to provide much additional information. The seven exceptionally high
values stand out perfectly clearly ; the lowest is 9-2, a value which would
be exceeded by only one normal sample (of 3) in 100. The next highest
values 54 and 6-4, would not be suspect save for their occurrence in
December; they will be treated as normal.

Since the 3-plate sets are relatively scanty, we can best test their
agreement with theory by dividing the theoretical distribution of 43
values at its quintiles, so that the expectation is the same in each group.
We then have

Table X. Sets of three plates

x2= 177 P=-115
x? Expected | Observed 22
m m+x
0
86 8 -36
4464
86 6 6-76
1-0216
86 11 5-76
1-8326
86 8 -36
3-2190
86 10 1-96
Total 43 43 15-20

The agreement with expectation is excellent, and the sets of three
plates bear out the conclusions derived from the sets of four and five
plates, save that here there is no visible excess of low values of X%

It appears therefore that out of the 362 sets of plates examined the
majority represent true samples from the Poisson Series, such as would
be the case if the biological and technical difficulties of the bacterial
count method as applied to soil had been completely surmounted. Forty
sets, which can be identified almost with certainty, are affected by some
cause or causes which greatly increase the variability between th plates,
while probably a smaller number, including apparently non. of the
3-plate sets, are affected by a second cause of error, which reduces the
variability between the plates.
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