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THE GOODNESS OF FIT OF REGRESSION FORMULAE
AND THE DISTRIBUTION OF REGRESSION
COEFFICIENTS

Author's Note (CMS 6.596a)

Paper 19 had shown how x? could be used correctly to test the good-
ness of fit of frequencies. It was natural to follow it by an investiga-
tion of the goodness of fit of regression lines. This is a more difficult
problem, and a more maturely written paper. It is shown that the
x* distribution supplies only an approximation, the true distribution
being that later known as z or F in the analysis of variance. Before
its general applicability was recognised the z distribution kept turn-
ing up unexpectedly. Its relationships and uses were first summarised
(Paper 34) in 1924. It is treated here as a modified x%. It is shown
that the method may be extended to non-linear regression, and en-
ables a correct interpretation to be put on the “correlation ratio.”
Section 6 takes up a second topic, connected with the first only by
arising also in regression data. It is shown that the significance of
the coeflicients of regression formulae, linear or non-linear, simple or

multiple, may be treated exactly by “Student’s” t-test.

Journal of the Royal Statistical Society, 85: 597-612, (1922).
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Tue Goooness oF Fir oF RegrrssioNn FoORMULE, AND THE
DistriBuTiON OF REGRESSION COEFFICIENTS.

By R. A. FisHEr, M.A.

Introduction.

Tue widespread desire to introduce into statistical methods some
degree of critical ‘exactitude has led to the employment, now
general in careful work, of the two types of quantity which charac-
terize modern statistics, namely, the * probable error” and the
test of “ goodness of fit.” The test of goodness of fit was devised
by Pearson, to whose labours principally we now owe it, that the
test may readily be applied to a great variety of questions of
frequency distribution. It is an essential means of justifying
a posteriors the methods which have been employed in the reduction
of any body of data. Slutsky and Pearson have extended the
test to apply also to the fitness of regression formul®, Pearson’s
correlation ratio having also been employed for this purpose.

It has been shown in a previous communication [2 Fisher, 1922]
that the x? test of goodness of fit can be accurately applied only
il allowance is made for the number of constants fitted in recon-
structing the theoretical population. This correction is particularly
important in contingency tables, but is necessary in all cases; and
the fact that it has not been recognized has led to the adoption
of erroneous values in almost all the cases in which tests of goodness
of fit have been employed. The values of P have been exaggerated,
and it is to be feared that in many cases wrong conclusions have
been drawn from the values of P obtained.

Tt has, therefore, been necessary to extend the examination to
the tests of goodness of fit of regression lines. The errors due to
neglecting the number of constants fitted are here very pronounced ;
but in addition other points have to be taken into consideration,
which did not arise in our previous investigation. In the most
important class of cases the curve of distribution of x* is now no
longer of the Pearsonian Type III, which is the basis of Elderton’s
tables, but of the neighbouring Type VI. Certain misconceptions
also exist as to the form of the distribution of the correlation
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ratio, », which we hope to have cleared up. We have also taken
the opportunity of solving the outstanding problem of the distri-
bution of the regression coefficients in small samples.

1. The accurate application of Elderton’s tables.

With any two variables # and y we shall suppose that the
number of observations for which z =z, is n,, and the number
of these for which y =y, is n,,; also that 7, is the mean of the
observed values of y for a given value of z, so that

Wy Ty = Sp(rpyyy).

We may regard the group i, as a random sample from a popu-
lation in which the value of .« is constant ; but the value of y varies
freely about a certain mean, m,, with a certain standard deviation,
(I'II.
For such samples of #,, therefore, the mean, 7,, will vary about
the same mcan ue,, and since this mean of 7, is independent of
the number of the array, », will be the mean of all values of 7,
from random samples, hewever the number n, may vary.

Any opinion put forward by Professor Pearson is worthy of
respect ; but it is impossible to agree with his statement [1, p. 240]
that “ This result cannot be taken as obvious, as the size of the
“array in the sample varies.” The fact, however, Pearson has
verified for large samples as far as the third order of approximation.
The difference in principle is of some importance, since the simplicity
of many of the results here obtained is a consequence of the fact
that we have not attempted to eliminate known quantities, given
by the sample, from the distribution formule of the statistics
studied, but only the unknown quantitics—parameters of the popu-
lation from which the sample is drawn-—which have to be estimated
somewhat Inexactly from the given sample.*

Next, for arrays of any given size, the standard deviation of 7,
is o,/ /Ny, and it will be normally distributed if the population-array
be normal, and approximately so in most cases if u, be large.
Pearson rightly points out that the values of 7, for arravs of
different sizes will not be normally distributed, but the distribution
will be markedly leptokurtic cven for considerable arrays. This
result follows from the fact that the distribution is a mixture of

* Statistics whose sampling distribution depends upon other stat: iies
given by the sample cannot, in the strict sense, fulfil the Criterion of Suffiei oy,
In certain cases evidently no statistic exists which strictly fulfils this eriterion,
In these cases statistics obtained by the Method of Maximum Likelihood appear
to fulfil the Criterion of Efficiency; the extension of this criterion to finite

samples thus takes a new importance.
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normal distributions, having the same mean, but different standard
deviations. This mixed distribution need not concern us, however,
for in applying tests of fitness we do not in practice ignore the size
of the array. The simple fact is, that, when the population arrays
are normal, the quantity
2y = Ny (I — mp)

is normally distributed about zero, with a standard deviation oy,
and this distribution is independent of the size of the array.

In the case when the population arrays are equally variable,
op is constant [= o], and if there are a arrays, the quantity

S(2p?) = S{np(fp — mp)*}

is the sum of the squares of @ independent, normally and equally
variable quantities, and consequently, if we write

X?O-2 = S(ZPZ) s

x2 will be distributed as is the ordinary measure of goodness of fit.
In applying Elderton’s tables we must, of course, put n" equal to
one more than the number of degrees of freedom, as I have demon-
strated elsewhere [2]. If the values of m, were known a priori,
we should take »’ = a + 1, but for regression formule fitted to
the data by equations linear in y, we merely reduce the number
of degrees of freedom by the number of constants fitted. Thus,
if m,, is a linear function of z, and a straight line is fitted, we have
n’ = a — 1, and the value of x2 then constitutes a test of whether
or not m, is in reality adequately represented by a linear function
of x. Similarly, if a cubic polynomial in z be fitted, we have

n =a— 3.

2. The exact distribution of X% when o s determined from the data.

So far the results are exact on the assumption that o is known ;
but as in practice o must usually be obtained from the data, errors
will be introduced from this source which necessarily influence
the distribution of x2 It is true that o may be estimated from
the whole data, and is therefore known with accuracy of a higher
nrder than the quantities which contribute to x2; nevertheless it is
necessary to determine what aberrations are to be expected when
the data are not very numerous.

From each array we can directly calculate the second moment
5,2, and it has been shown [3] that the second moment of a normal
sample of n, is so distributed that the frequency with which it falls
into the range ds,? is proportional to

np—3  _ mpspt
o™ () 2 e 20 d(sp?);
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the chance that all the observed values of s,? fall in assigned ranges
is the product of asuch quantities, for all are distributed indepen-
dently ; consequently to find the optimum value of o, which will
also be the value with the least probable error, we must make this
product a maximum for variations of o,

Taking logarithms and differentiating, we have

iIi _ S (mpsp?)  S(mp—1)
o o o

whence the optimum value of ¢2 is s> where
(N—a)s? = S(nps,?).

We shall, therefore, suppose that o is estimated by this method,
and that

2 S (2.%)

s2

X

2

we must now find the distribution of this statistic.

The distribution of s2 is of the same kind as those with which
we have been concerned. For

S (npsy?) = 8 (y—7p)%

and may be regarded as the sum of the squares of N equally variable
quantities, independent save for @ linear restrictions of the form

Sp (y) = mpdp.

If, therefore, we specify the distribution of s* in such a way as
to express the frequency element, df, in terms of the variate
element within which it occurs, we shall have

¢
df ™47 T2 gy
where ¢ stands for s¥N — a). In the same way if 7 stand for x2s?
we have, if p 4 1 constants have been used in fitting,
if @ 40P T g

and these two distributions are independent, for the one depends
only on the deviations from the means of normal samples, and the
other only on the means.

The distribution of x2 will now be that of (N—a);-, 80,
substituting

_ X
T N—a
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in
N—n—2 ag—p—
— e e G PR
t T e 2 didr,

we obtain, ignoring constants,

2a-2~3 N—p—3 -_’_.(1 ._L)
(X)) 2 t % e 2\ N-a) grgye

and so, on integrating from 0 to o« with respect to ¢,
“N—p—l

a—p—2

o)+ ) T e

’I‘hg variation in s?, therefore, changesthe exact form of the distri-
bution curve for x* from Type III to Type VI. The change is,

however, very small if N be large, for as N increases

<1+Nx—a

and so reproduces the Type TII distribution.

2 > e ,

2 >—— E:L__l _ixﬂ

3. The nature of the approximation of the Type VI curve

ep=t N—p—3 ,
=

601

(N—a)~ 2 —p—: 2
df ~ () @
N—a—2, a—p—3, —a
2 ' 2
to the Type 111 curve
_a—p-—1
2 2 a—p—3 i
== . 2 da.
af pE—y T e @
—g—!

When z is small, the two curves have closely similar forms, the

latter being the distribution of x?, as given by Elderton’s table,
when n' = a — p. The ratio of the ordinates at the terminus of

the curve is obtained by expanding the constant multiplier of the

first curve in powers of N~1. It reduces to

(' —1) (' —3)
L+ 4N

for high values of P ; therefore, 1 — P, as given by Elderton’s table,

* The symbol z! is used throughout this paper as equivalent to T'(xz + 1),

whether x is an integer or not.
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may be corrected by multiplying by this factor. Near the centre
of the curve we may observe the position of the mean and mode,

Mean. Mode.
Type III ... a—p—1 ¢a—=p—3
. N—a N—a
Type VI o loe=p=DFxg—"35 (“-77~3)N~—~a—{-—2

The mean, therefore, is raised and the mode lowered in about the
same proportion. For the higher values of z the curves are not
closely similar, and since it is for these especially that the value of P
1s required, we shall obtain the nccessary correction in P, as far
as the terms in N—1. The ratio of the ordinates is

1
1 + N {2 —2(n" — 1)z + (0" — 1) (' — 3)};

but, since

'

71 n’_3

9% - 5 !'Pn'($)=j’x

we have the correction

41N [/ =1) (' 41) Pypam (' =1)" Pos g+ (' —1) (' —3) Py}

T b (W 1) Prrag—2 (0/—1) Plag - (0'—3) P},

which, in the absence of tables of the Type VI curve, will usually
be found adequate.

4. The correlation ratio.

We are now in a position to make an accurate use of the correlation
ratio, as a test of the fitness of regression formule. Let Y be the
function of x used as regression formula, and let

I‘Tf}(,‘zé',u‘J = 8 {n, (Yp—¥)*}, Ns? =RB(y—9)°

where 7 is the mean of all the observed values of y; then it is easy
to see that, provided Y has been fitted to the data so that

S {ny (-‘Z{)"Yp)?}
is a minimum for proportional variations of Y—7, then

N(1—R?) s = 88 {ny (y—Y,)’}
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But the correlation ratio is given by the parallel formula,
N{@=»") 8" = 88 {npq (§—3,)*} = (N—a)s?;
hence, by subtraction,

N (@*—R?) s = 8 {n, (7p—Yp)?} = x%?

In other words

and to test the significance of »2 — R? we enter Elderton’s table
with #° = @ — p, where p -+ 1 is the number of constants fitted to
the regression line. ‘ Thus, for a linear regression formula,

2,2
X = N—a =%,
7
and v ,
n = a—1,

using, if necessary, the correction for Type VI as before.

The exact form of the distribution of ; itself would be difficult
to obtain, but in practice 5 is usually employed to test the validity,
of a linear or other regression formula. For this purpose it is not the
distribution of 7 but of the more variable quantity (72*—R2)/(1—4?%)
that is required, and the above expressions show it is approximately
represented by a Type III curve, and that the probability of a greater
discrepancy occurring by chance may be obtained from Elderton’s
table.

5. Comparison with previous formule.

Slutsky, in his method [4, p. 83] of treating homoscedastio
data, has used a process analogous to that arrived at above, but
with four deviations :—

(i) He averages the standard deviations of the arrays, and not
their squares, in estimating the value of 2.
(ii) He divides his total by N instead of N — a.
(iii) He enters Elderton’s table with »'=a +1, instead of
n =a—p.

(iv) He takes the Type III distribution to be exact.

(i) Pearson [1, pp. 249-51] has criticized the first point, but
his practice is not quite explicit. In his opinion evidently, if the
surface is homoscedastic, we must take sgf‘(l —?%), but in the
special case when the regression is also linear he replaces 1 — 7%
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by 1 — % The point is not one of importance, and I am not
convinced that any material difference would be made by replacing
I —* by 1 — R? in general, when the regression is well fitted.
There would seem to be no reason for treating linear differently
from other regression formule. In dealing with Slutsky’s price
data, where the regression is doubtfully linear, Pearson prefers
to use 1 — 7%

(ii) The second point is, strictly, a matter of convenience, for
when we know the distribution of yx2 calculated by one method,
we also know its distribution in the second case. Sinece neither of
these distributions is exactly the Type IIT tabled by Elderton, we
are free to use whichever we please. The form we have chosen
has the advantage of involving the best estimate of o, and we have
chosen it for this reason ; but as in the Type VI distribution errors
of estimation arc completely eliminated, this choice has only the
force of a convention. The close agreement of the curve we have
obtained with the corresponding Type III in the neighbourhood
of the median is a practical advantage ; it should in any case be
noted that the corrections which we have obtained for P refer
only to our own form of the statistic x2.

Although strictly a matter of convenience, there is a real
advantage when the matter is approached from other points of
view, in the use of the best estimates. Thus, for example, when
the arrays are undifferentiated, with respect to the distribution of
y, we naturally take

’ 1
N1 S 97
as the best estimate of the variance of the whole of the observation ;
and as the arrays are undifferentiated this should agree on the
average with our estimate of the variance in each array,

1 .
N"—(IJ SS '{’npq(y_e,/?’)u}‘

Now

(L= S(y — y)? =SS {nyg (y—7»)°} ;
whence it follows that the mean value of 1 — »* is

N—a

N1’
and that of ,°, therefore,
' a—1
N-—1°

Pearson has discussed the distribution of % in this case [5].
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Observing that, even if the arrays are wholly undifferentiated,
7 will necessarily be positive, he points out that, in testing whether 7
differs significantly from zero, it is not only necessary to know the
standard error of 4, but also the mean value about which it varies.
The standard error of y for undifferentiated arrays he had previously
[6] evaluated at 1/v'N, and he then by a somewhat intricate method
finds for the mean value of 42 the value

a—1
N

and deduces that the mean value of » will be

a—1
N 2
the latter deduction being clearly a slip.
In the case under consideration we have p =0, R =0, the
regression line fitted being Y ==%. Then

N—a)
(N—a) 2

will be distributed in the Type VI curve
-1 N-3,

(N—qa) = Ty a—3< T - B
— = (1 > ?ode;
i N—a—2,a—3, ° TR

2

whence substituting for x, we find that »,* is distributed in the
Type I curve

N—3, ‘
2 : ( ny)a_;_.}(l ‘))y_‘:‘?_:-zd 2
<) = —n" < /
N—a—2,a-3, ' ! e
5 i

For large values of N the distribution of ; does not tend to
normality as Pearson supposed, but that of »? tends to a Type III
curve. For the mean values of 5 and »2 we have

a—2, N-3,
=T e
! 5!
or, approximately,
a—2,
- 2 2/ 3
= A/ % (1)
3
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while
= _a-l
T =N

in agreement with our previous value.

The mean value for 52 thus agrees sufficiently with that obtained
by Pearson, but the accurate values for the mean and the standard
deviation differ from his values. There is no purpose for pressing
further a comparison on these lines, since, unless the number of
arrays be large, the distribution of 7 is far from normal, and the
significance of an observed value of » may be tested with some
accuracy by the use of x>

It may be noticed that, when the number of arrays is large,

—- -2 1
to a first approximation, of which the second factor may usually
be ignored.

(iii) The third point of difference between my method and those
of Slutsky and Pearson, whereby I have made allowance for the
number of constants involved in fitting the regression formula, has
been more fully explained in a recent paper [2].

It is there shown that if

X2 = ”2"‘ "2)2 }

where %, is the number of observations expected, and n, the number
observed in any cell, then the value of »" with which Elderton’s
table should be entered is not the total number of cells, but one
more than the number of values of

np - ';ip
which can be independently specified. That is to say, that when
the values of %, are reconstructed from the data of the sample,
(n" — 1) is the number of degrees of freedom left after making

this reconstruction.
In the same way for regression lines

1 -
Xt = 58 {n, =Y,

and, if @ is the number of arrays, n’ — 1 = a, only if the values of
Y, are assigned independently of the sample. If, as more u-ually
is the case, the values of Y, are those of a regression formula fitted
to the sample, the number of values of

gp"Y?
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which can be independently specified is reduced by the number of
constants fitted. For example, if a cubic polynomial has been
fitted, the number of degrees of freedom is (¢ — 4), so that
n =a—3.

6. The distribution of regression coefficients.

Hitherto we have only considered data in which & number of
values of y are observed corresponding in groups to identical
values of x; little statistical or physical data is strictly of this
form, although the former may in favourable cases be confidently
grouped, so as to simulate the kind of data for which the fitness
of regression lines may be tested. The limitation of our methods
to data of this form constitutes one of the most serious deficiencies
in the statistical methods so far available. The position is well
stated by Pearson [1, p. 258] :— |

“ Of course it is needful for a test of this kmd that the

“ number of measurements of A, ‘the dependent variable,’
“ should considerably exceed the number of values of B tested.
“Tt would fail entirely if only one value of A were taken for
“each value of B, however numerous the latter might be.
“We must have some basis on which to determine the error
“made in a single determination of A. This is a point,
“1 think, often overlooked by the physicist. A fairly good
‘ determination—I mean a quantitation determination—of the
“ goodness of fit of theory to observation could be made from
“ten series of eight observations of A corresponding to ten
“wvalues of B. But no mcasure of goodness of fit could be
‘““ obtained from eighty observations of A corresponding to
“eighty values of B, yet the latter system would probably
“make the greater appeal to most physicists. I do not see
“lhow quantitively to obtain any measure of the goodness of fit
“ of theory to observation in the latter method of procedure.”

It appears to the writer that the problem is one rather for the
statistician than for the physicist; for, given equally variable
arrays, and a regression line of known form, the problem is perfectly
objective. I emphasize it here as a problem awaiting solution—
a manageable solution of which would be of great practical utility.
That it is an objective problem is clear from the confidence with
which very bad fits will be rejected at sight, as also from the fact
that rough and common-sense methods of testing have been developed
for some purposes. [9, Fisher, 1921.]

Although exact methods of testing the goodness of fit of regression
lines are not available for the extended class of data, we are in a
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position to give an exact solution of the distribution of the regression
coefficients. This problem has been outstanding for many years; -
but the need for its solution was recently brought home to the
writer by correspondence with “ Student,” whose brilliant researches
[7] in 1908 form the basis of the exact solution.

For consider a simple linear regression formula

Y=a+ bz ~7),
of which the coefficients @ and b are calculated by the equations

b':—‘—S (y(z— =) .
S(z—m2’

a=4j,

we note first that a and b are orthogonal functions, in that given
the series of values of z observed, their sampling variation is
independent.

Now ““Student ” [7] has shown how the probable error of a
may be calculated ; for if for a given value of z the standard
deviation of y is o, then a will be normally distributed, so that

=
a—

aT

a \/;;.,
then 7 is normally distributed about zero with standard deviation
unity. If o? is unknown, the best estimate that can be made of it

from the sample is

So that if a is the population value of @, and 7 =

1
¢ —_~ 8§ (y—Y)2
§t = =8 (y—Y)

where the sum is divided by (n — 2) to allow for the two constants,
used in fitting the regression line. Then the distribution of s is,

SZ
if X2 = (n — 2)=,

n—4

. 1 X9>2 —x? (ﬁ)
Y= (3)° 7 az)

The distribution of thetwo quantities s and a are wholly independent ;
hence, following ‘ Student,” we find the distribution of a quantity
completely calculable from the sample, namely,

T o T . &
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For

1 03 =X 9 1 -xz
df = e &> e 2gX 1 % g
(2 2 T ¢ X . 62

n—3

— 1 1 NT e+ X2 .
o= T, (-2_> e d<7> dz;
——!

and integrating with respect to x2 from 0 to «o, we have

n—3,
1 2 dz
Vr n;l-! . (1+_z2)7%‘1 ’

the Type VII curve obtained by *‘Student,” with.n reduced by

unity, since we have fitted a regression line of the first degree.
Similarly, for b,

o (7'.‘Z

and if
(b—B) /S [@a—7)
VS (y—=Y)?
we arrive at the same distribution as before, /3 being the population
value of the regression coefficient.
The above argument immediately extends ‘itself to regression

lines of any form and involving any number of cocfficients. For,
suppose the regression cquation is of the form

Y =« -+ I)Xl -'f— CX;I +oeeens ]L'X],,

where X, X, ...... X, arc orthogonal functions of « for the observed
values, so that

S (XaX;) == 0

—~in the most important case X, will be polvnomial in x, of degree p,
orthogonal to the polynomials of lower degree [9)-—then, for
example,

k e S ("[/XI')
S (X/;'J)
and ,
, o=
Tp- = m .
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Also, if
1

2 p——1d
s n—p—1

S (n—Y)*

the distribution of s is given by

— 1 (X2 n_z_g —3x? 2
¥=mg - (5) 7 a0

p—2
2

where

Consequently, if
2 = (h=x) VEXP)
VB (y=Y)’
the distribution of 2 is the Type VII curve

. n~—77—2!
df = —— 2 dz :
If \//-77-.7]’“7)—.3"(1-"22)12:—
5—!

and in this case, when p 4 1 constants have been fitted, all the
other regression coefficients will be distributed in like manner,
only substituting the corresponding function of z for X,.

Tables of the Probability Integral of the above Type VII distri-
bution have been prepared by * Student ™ [8], for values of n — p
from 0 to 30. Thesc tables are in a suitable form for testing the
significance of an observed regression coefficient. For larger
samples the curve will be sufficiently normal for most purposes,
the variance of 2z being

1
n—p—3"

The utility of “ Student’s” curve for the distribution of errors

.in the mean of a sample, in terms of the standard deviation, as

estimated from the same sample, is increased by the circumstance
that the same distribution also gives that of differences between
such means. Thus,if Z and ' are themeans ofsamples of # and »’,
and we wish to test if the means are in sufficient agreement to
warrant the belief that the samples are drawn from the .ame
population, we may calculate

. = T /\/ nn
= e o
V8 (z—&)2+4-8" (z'—z')? n+n'

For n, read y.
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then z will be distributed so that

ntn'—3,
1 9 ) dz
df = —= . el
\/; n+7;’”4| (1+z2)n+121-—1 )

This method of comparison may be applied directly to regression
coefficients, when the same series of values of z is observed in each
case.

The above problem in which the errors of the coeflicients of
a regression of any form are considered, is in reality a special case
of the multiple regression surface—special in the sense that with
a single variable we can conveniently choose the terms of the
regression equation, so that the several terms consist of uncorrelated
functions. When this is not the case we have such a regression
system as

Y=0b2+ by, + ...... -+ by
when ;, @, ...... z, are p independent variables, with certain
mutual correlations. The accuracy of the regressmn coefficients
is only affected by the correlations which appear in the sample, so
that if we construct the determinant

A=1] S (23 S (mxg) covrvvrvnnn. S (z1zp)
S (w3ry) S (757) vvvnneeenn. S (xz))
S (ryp) S (T2p) oiiiiiiinns S (xp?)
from the values of the sample, then

2
5 oA
oy =

where Ay is the minor of S(x;%).

Consequently, if
(hi—i31) /X

Z:’:\/....._.._\/__

then, as before, z will be distributed in the Type VII distribution

n—p—2, .

9 2
Af =-—=. TR
\/71' n—-]‘;——:}‘ (1+22)—2

Conclusions.
(1) In testing the fitness of regression lines account must be
taken of the number of degrees of freedom which have been
absorbed in the process of fitting.
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(2) The Type III distribution of Elderton’s tables is not exact
for testing regression lines, but the tables may be used as a basis
of a useful approximation.

(3) The exact distribution of x2 is given by a curve of the
Pearsonian Type VI, which for large samples approaches the Type III
distribution.

(4) For undifierentiated arrays the distribution of #2 is given by
a curve of the Pearsonian Type I; for large samples this curve
approaches the Type IIT distribution.

(5) The distribution in random samples. of a great variety of
regression coefficients may be treated by the method introduced
by “ Student ™ for the distribution of the mean of a normal sample,
and as in that case lead to a distribution curve of the Pearsonian
Type VII, which for large samples rapidly approaches normality.

The importance of the last result is considerable. It shows
that a number of regression coefficients may be safely calculated
from a sample of moderate size. Thus, in studying relations of a
complex kind, such as occur in agricultural meteorology, it is
useful to know that we may as accurately determine thirty
coefficients from a sample of sixty sets of observations as we may
calculate a single coefficient, or mean, from a sample of thirty-one
observations. '
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