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A class of enumerations of importance in genetics
By R. A. Fisuer, F.R.S.

(Received 21 June 1949)

A number of enumorations arising in genetics, e.g. of sots of isomorphic genotypes, of modes
of gamete formation, of the modes of formation of ordered and unordered tetrads, etc.,
have been found in previous work to yield solutions expressible as the mean powers of
arbitrary degree of appropriate series of bases. These are such as to yield integral values of
the mean for all integral exponents,

The general combinatorial theorem governing this class of enumeration is given in § 2.
Other sections illustrate the method in operation by confirming and extending the genetic
formulae so far established.

In § 3-1is a brief discussion of a partitional function which serves to enumerate the numbers
of partitions of any partible number in & lattice of arbitrary dimensionality.

1. ILLUSTRATIVE EXAMPLES

During recent years a number of the problems encountered in genetic analysis have
been found to involve problems of enumeration, the solutions of which were far
from obvious, although structurally similar.

Among the first of these to have the solution published (Fisher 1947) were (i) the
number of modes of gamete formation in tetrasomic organisms with ! linked loci,
for which the formula

5 16+3.444,

2, 11, 107, 1451, ...,

was demonstrated by a somewhat indirect route. In the same paper the formula (ii)

6—'1-?3(2101—%—15.60’+3.30’+40.24’+45.2()l+135,10‘+335.6’+320.3’+630.2’),
9, 40, 3175, ...,

was offered tentatively for hexasomic forms. This has since been verified by the
general method to be here discussed. In an appendix also was given without proof
the enumeration (iii)

(1454 9.6/+ 14,29,

4, 24, 200, 2096, ...,

1}

for the number of sets of isomorphic genotypes of a tetrasomic organism heterogenic
at [ loci. No attempt was made at that time to enumerate the numbers for a hexa-
somic organism, for which, when [ is unity, the number is 10, and when [ = 2, the
number of sets was found to be 277. It will later be shown that the number using /
loci is in general

1

67(20214- 15.66! 4+ 60,30 +40.19°+ 120. 9"+ 180. 8+ 40. 7+ 120. 3" + 144-21),

10, 277, 20343, ...,
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Apart from their genetical meaning, the two examples last given are in general
combinatorial theory to be recognized as the numbers of partitions of the partible
numbers 4 and 6 in ! dimensions.

Since the events of a single reduction division are capable of determining not
a single gamete only, but a tetrad of two pairs of gametes, the joint content of which
specifies more completely than a single gamete the course of the preceding events, it
is relevant also to inquire as to the number of modes of tetrad formation. For
disomic organisms this is shown without great difficulty to be

561+ 3.4+ 7.29,
2, 7, 29, 136, 692, 3712,

With tetrasomic or hexasomic organisms the problem is much more complex. The
same is true of the specification of matings; e.g. those involving two disomic geno-
types, supposing them to be not equivalent homozygotes at any of the loci concerned,
or, in other words, ignoring all loci at which the mating is homogenic; then the
number of mating types heterogenic at exactly ! loci is found to be

K4 +5.6+2.2),
6, 48, 480, 5616, ...,

The question might be asked equally of polysomic organisms, or in respect of two
or more matings.

2. COMBINATORIAL STRUCTURE COMMON TO THIS CLASS OF PROBLEM

Let us suppose that a formula is to be constructed by inserting appropriate
‘contents’ into a finite number of cells or ‘containers’. Inherent in the data of each
problem is a certain finite group of permutations among the containers, or among the
elements of the contents. If any formula can be derived from another by a per-
mutation of this basic group, the two formulae are said to belong to the same set;
what is to be enumerated is the number of such sets.

It will be noticed that the formulae derived from any given formula by per-
mutations of the basic group, by which the sets are defined, may be all different, in
which case the set will contain a number of formulae equal to the order N of the
basic group, or alternatively that a subgroup of this group leaves the formula
unaltered, and that in this case the number of different formulae in the set is reduced
by a factor which is the order of the invariant subgroup.

If, starting with one member of each set, we apply all permutations of the group,
including the identity, we shall develop an assemblage of formulae numbering in
all N times as many as the number of sets. In this assemblage every possible formula
must occur, and the frequency of its occurrence is equal to the order of the subgroup
by which it is unaltered.

Now the sum for all formulae of the orders of the subgroups of permutations by
which they are unaltered is equal to the sum for all permutations of the numbers of
formulae unaltered by them. Suppose, now, for any given permutation there are a
ways of inserting contents which shall be unaltered by this permutation, then, if the



A class of enumerations of importance in genetics 511

contents are added in ! successive layers, there must be o' invariant compound
formulae possible. The number of sets is then given by

1
— !

where § stands for summation over all the N permutations, including the identity,
of the given group.

3. OPERATIONAL PROCEDURE; ISOMORPHIC SETS OF GENOTYPES

Consider as a first illustration the number of isomorphic sets of tetrasomic
genotypes.

There are-four chromosomes, and the complete permutation group of these four
generates members of the same set. The twenty-four elements of this group may be
classified according to the partitions of 4, as follows:

1 without change, the identity {14)

6 interchanges of pairs {21?)

3 double interchanges of pairs (2%)

8 cycles of three (31)

6 cycles of four (4)
24 total

The same partitions also can be used to specify the cell contents at any one locus;
i.e. (1%) stands for the case of four different allelomorphic genes, (21%) for the case
where two only are alike, (22) for the case where there are two pairs of like genes,
and (31) for the case of three alike and one different. The last case (4), representing
four genes all alike, will be omitted, since the enumeration is to be in terms of the
number of heterogenic loci, so that no homogenic locus need be considered.

The number of formulae of these kinds, equal to the number invariant with the
identity, and the number invariant with the other classes of possible permutations,
are set out in table 1.

TABLE 1. NUMBER OF DISTRIBUTION FORMULAE OF DIFFERENT PARTITIONAL
TYPES INVARIANT FOR DIFFERENT TYPES OF PARTITION

type of permutation

IR total
dlftnbutlon formulale 8 3 3 " 1 number )
partition number (4) (31) (2%) (21%) (14) partition

(31) 4 — 1 — 2 4
(22) 3 1 —— 3 1 3
(21%) 6 — e 2 2 6
(1%) 1 1 1 1 1 1

total 2 6 6 14

The number of distribution formulae for a given partition
P = (p1"1p27'2_”), (pﬂ) =N,

n!

is @D
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appropriately to the fact that the interchange of any two equally numerous genes is
recognized to be a matter of indifference; the numbers of permutations of different
partitional types are, however,

n!

o (m .

these add to #! Each is a permutation in 7, cycles of p,, 7, cycles of p,, ete.

The individual entries in the body of table 1 show for each of the five types of
permutation for how many distribution formulae (of four different types in the four
rows) each is inoperative. The sums of the five columns show that

For 1 permutation (the identity) there are 14 invariant formulae,
For 9 permutations there are 6 invariant formulae,
For 14 permutations there are 2 invariant formulae.
Since the permutation group of four objects is of order 24, the enumeration

formula is now obtained as
(14 +9.6/+14. 29,

giving the number of partitions in (exactly) ! dimensions of the partible number 4,
or, the number of sets of isomorphic genotypes in a tetrasomic organism heterogenic
at (exactly) 7 loci.

For partitions of 6, or for hexasomic genotypes, we have, instead of table 1, a
gimilar table of ten rows and eleven columns, shown below as table 2.
giving, as previously stated, the enumeration

7%-5(202’+15.66’+60.301+40.19’+120.9’+180.8’+40.7’+120.3’—}-144'2’).
10, 277, 20343, ...,

In constructing the table it is a convenient check that the products of the entries
in each row with the numbers at the head of the columns add in each case to 720.

The table for partitions of 8 is shown in table 3. The work is heavier here, though
most of the entries can be written down at sight. The enumeration formula is,
however, not very lengthy, as it has only 19 terms. It may be written in the form

Tobgo 4139 4 1o 1079 + 135 351 + 535 254 + 557 163"+ 55 . 86
e SU A 42048 3T+ 5. 3204+ 5. 200 + 5. 197445 . 18
+5- 1204210+ 4. 9+ 5. 4+ 5.3+ . 24

The numerical values are
21, 2974, 2991002,

3-1. Properties of a special partitional function

In connexion with this mode of enumerating the number of partitions of any
partible number in ! dimensions, it may be noted that the general result may be
expressed in terms of two partitional functions.

If P stands for any partition of the partible number n

P = (ppp5r...), Z(pm) = n,
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and a(P) stands for the partitional function

n!
Tophaml..

a(P)

b}

then «(P) enumerates the numbers of permutations of given partitional type.
The method of § 3 has also defined a second partitional function, which we may
denote by e(P), such that the number of partitions of » in | dimensions is
2 (e—1)\alX (),
Pln Pin
in which the summation is taken over all partitionsin 0 or 1 dimension of the number
n, 80 that Z(x) = n!. The number of partitions in 0 or 1 dimension is therefore
Z{e—1Da
l4+———7— =
or the average value of e over all permutations.
For small partitions the numerical value of ¢ may be obtained more expeditiously
than by the construction of the bipartitional table, for when P = (17) it is seen thate
is the coefficient of x%fn! in the expansion in powers of  of

F(z) = e 1,
The series of coefficients is

1, 1, 2, 5 15 52, 203, 877, 4140,

3 >

up to the eighth degree.

Given the contents of any partition we may build up a differential operator
competent to give the partitional function e, by acting upon F(z). For unit parts
we need only insert a factor D for each part; for prime parts a factor (D +1); for
compound parts having f factors (excluding unity), the factor is (D +f). If, then,
no two parts have a common factor, the differential operator is complete. Thus for
the partition (3213) we have the operator

DY D+ 1y
yielding 524 2(15)+5 = 87,

in accordance with the entry [giving (e— 1)] in table 3.

When some of the parts have common factors we have to introduce also the
sums of the factors common to any two parts, the sums of the squares of the factors
common to any three, and so on. So for the partition P = (62), we find

(D+3)2+11 = D*+6D+20,
and for P = (23) the operator is
(D+1)2+3.2.(D+1)+4=D3+3D*+9D + 11,
giving e(P)=5+64+9+11 =31,
in accordance with the entry in table 2.

The operational procedure as stated here is not entirely correct. See ]J.H.Bennett
(1956) Partitions in more than one dimension. Journal of the Royal Statistical
Society, B, 18, 104-112,

159
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4., MoODES OF GAMETE FORMATION

Consider a tetrasomic organism having (of any particular kind) four homologous
chromosomes, 4, B, C and D. Thé gametes will be diploid, and will contain for each
locus two representative genes. A gamete may then be represented by

A4 4 formulae,
AB 12 formulae.

Gametes of the first kind are said to exhibit double reduction at the locus in question.
However many loci are considered, the gamete represented by any formula will be
said to have originated by the same mode of gamete formation as that represented
by any formula derivable from the first:

(@) by reversal of the symbols for the gametic chromosomes, an operation which
may be represented by the symbol 7,

(b) by permutation of the parental chromosomes, represented by such symbols as
(ab), (abc), (ab) (cd), ete., 24 in all, including the identity 1.

It is now easy to consider for each of the 48 possible operations, how many of the
16 formulae specified above are invariant.

permutations

for the identity all 16 formulae are invariant 1
for r 4 formulae A4, BB, CC, DD 1
(ab) 4 formulae CC, DD, CD, DC 6
(ab) r 4 formulae CC, DD, AB, BA 6
(ab) (cd) 0 3
{ab) (cd) r 4 formulae AB, B4, CD, DC 3
(abe) 1 formula, DD 8
(abe) r 1 formula DD 8
(abed) 0 6
(abed) r 0 6

48

The formula enumerating the modes of gamete formation is therefore

F5(164+16. 4+ 186),

or, more simply, 3a,%-1,
where a = gz(4+8)
is easily calculated, since = 4a_,—2
I 1 2 3 4 5 6

a 1 2 6 22 86 342
3a2—1 2 11 107 1451 22187 350891

By the methods previously employed the enumeration of the modes of gamete
formation in hexasomic organisms presented a very intricate problem, and I had
little confidence in the formula given. The method of this paper gives the same
result by a much simpler path. The two modes of formation for a single locus are
easily seen to give the two types of formula:

type number of formulae
ABC 120
AAB 90
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The number of these is to be ascertained for a group of permutations involving
changes of two kinds. (i) Permutations of the position in which the three elements
of the gamete are written down. These are six in number, being the identity (1),
three interchanges of pairs (12), (23), (31), and two cyclic changes (123), (132).
(ii) There are the 6! permutations of the six letters a, b, ¢, d, ¢ and f, standing for the
parental chromosomes. The whole group of 6! 3! changes is exhibited in a two-way
table, in which the number of invariant members of each class of formula have been
entered separately.

TaBre 4. NUMBERS OF GAMETIC FORMULAE INVARIANT FOR VARIOUS

PERMUTATIONS
permutations of order (gametic
permutations chromosormes)
?f lettirsi 1 3 2 number
parenta I 12 123
chromosomes) (12) (123) type
1 I 120, 90 0, 30 0,0
15 (ab) 24, 36 8, 12 0,0
45 (ab) (cd) 0, 6 8, 2 0,0
40 (abc) 6, 18 0,6 3,0
15 (ab) (cd) (ef) 0,0 0,0 0,0
120 (abe) (de) 0,0 2,0 3,0
90 (abed) 0,6 0,2 0,0
40  (abe) (def) 0,0 0,0 6, 0
90  (abed) (ef) 0,0 0,0 0,0
144 (abede) 0,0 0,0 0,0
120 (abcdef) 0,0 0,0 0,0

Adding the numbers for the two types of formulae, it appears that

1 permutation is inoperative for 210 formulae
15 permutations are inoperative for 60 formulae
3 permutations are inoperative for 30 formulae
40 permutations are inoperative for 24 formulae
45 permutations are inoperative for 20 formulae
135 permutations are inoperative for 10 formulae
335 permutations are inoperative for 6 formulae
320 permutations are inoperative for 3 formulae
630 permutations are inoperative for 2 formulae

giving the formula stated above, equivalent to
1355210 + 5560 + 15300 + 1oy 247+ 54200 + 5100+ £5 6 + 330+ L2l
2, 40, 3175,

Tetrasomic gametes from octosomic parents may be of three kinds

ABCD with 1680 formulae
AABC with 2016 formulae
AABB with 168 formulae
Table 5 shows in columns corresponding with permutations of the gametic
chromosomes, and rows with permutations of the parental chromosomes, the
number of formulae invariant to each type. Since no formula is unaltered by some
of the permutations of the parental chromosomes, these have been omitted.

161
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TaBLE 5. NUMBERS OF GAMETIC FORMULAE INVARIANT FOR VARIOUS
PERMUTATIONS SEGREGATING IN OCTOSOMICS

type of permutation of gametic chromosome

1 6 3 8 6

I (12) (12) (34) (123) (1234)
1 3864 392 56 .
28 ( 1170 222 58 2
210 (ab) (cd) 204 100 60 . 4
112 (abe) 540 80 20 15 .
420 (ab) (cd) (ef) 6 26 62 . 6
1120 (abc) (de) 54 30 22 9 2
420 (abed) ‘ 204 36 12 4
105 (ab) (cd) (ef) (gh) . . 64 . 8
1680 (abe) (de) (fg) . 4 24 3 4
1120 (abe) (def) 6 2 2 12 .
2520 (abed) (¢f) 6 10 14 6
1344 (abcde) 54 12 6 .
1120 (abe) (def) (gh) . ) 4 2
1260 (abed) (ef) (gh) . . 16 . 8
3360 (abcd) (efg) . . . 3 4
4032 (abcde)(fg) . 2 8 . 2
3360 (abcdef) 6 2 2 .
1260 (abed) (efgh) . . . . 8
3360 (abedef) (gh) . . 4 . 2

The enumerating function, in 31 terms, is then:

3864}
28,1170 1260. 62 5040, 24% 15120.10¢
112. 540 630.60° 3360.22¢ 8960.9¢
6.392! 84.58¢ 336.20¢ 27846.8!
168.222¢ 3.56¢ 3780.16¢ 29092. 6¢
630.204¢ 2464 . 54} 896.15° 57540.4¢
1260. 100 2520. 36} 7560.14% 40320. 3
672.80¢ 6720.30 18284. 127 122472 .2
315.64¢ 2520.26¢

all divided by 8!4!, or 967680.
The numerical values, when lis 1, 2 and 3, are 3, 188 and 135188,

5. TETRAD FORMATION

Another case in which the number of formulae is not so great that they cannot
easily be examined individually is that of tetrad formation in diploid organisms. If
all four products of the same meiosis can be observed, and if the pair of products
of the first division can be distinguished, we have an ordered tetrad, with formulae
of two kinds:

type of formula number
4,45a,a 2
4,a; 4,a 4

The permutation group by which representations of the same mode of tetrad
formation can be recognized consists of (i) two interchanges within the pairs of



A class of enumerations of tmportance in genetics 519

products of the second division, which may be represented by the symbols p, ¢;
(ii) interchange between the products of the first division, represented by 7; (iii) inter-

change of the gene symbols (4a). The group is of order 186.
Then it is easy to verify table 6, showing the number of formulae invariant for

any combination of these operations.

TABLE 6. NUMBER OF FORMULAE FOR ORDERED TETRADS INVARIANT FOR
DIFFERENT INTERCHANGES

gene interchange

. e

rever'sa?ls of T (4a)
position

1 I 6 —

2 pq 2 -

1 pq 2 4

1 r 2 4

2 rp, g — 2

1 rpg 2 4

The number of modes of formation of ordered tetrads is therefore
(67 +3.4+7.2Y),
2, 7, 29, 136, 692, _
If the products of the second division are not recognizable, we shall have an
unordered tetrad. Here there is only one type of formula
AAdaa,

which can be written in 6 ways. Permutation among these four elements, in 24 ways,
together with interchange of the gene symbols gives a group of order 48, with
invariance shown by table 7.

TABLE 7. NUMBERS OF FORMULAE FOR UNORDERED TETRADS INVARIANT
FOR -DIFFERENT PERMUTATIONS

gene interchange

permutations T \
of position I (Aa)
1 I 6 —
6 (ab) 2 —
3 (ab) (cd) 2 4
6 (abed) — 2

The number of modes of formation for unordered tetrads is therefore
(61 +3.4+15.2),
1, 3, 11, 48, 236,

With ordered tetrads for tetrasomic organisms, the basic group contains four
additional interchanges between the chromosomes of the four diploid gametes, while
the gene interchange is replaced by a group of 24 permutations of the parental
chromosomes. The order of the group is thus 27. 4!,
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* I find this case very confusing, and have not thoroughly checked the result. It
is put on record as an aid to any later worker who may consider the problem:

4]
57 g7(630'+ 4,900+ 51.24'+ 10.18'+ 102. 12+ 161 .6/ + 252, 4/ + 24. 3"+ 84. 2+ 312)
8, 2538,

The unordered tetrads will be about one-third as numerous.
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