Y08 cpyce LWNEY

THE UNIVERSITY

o ADELAIDE

Infrared Spectroscopy Data-driven Machine
learning for Unveiling Thermolysis Pathways of
Metal-Organic Frameworks

By Yanzhang Zhao

School of Chemical Engineering and Advanced Materials

Faculty of Engineering, Computer and Mathematical Science

A Thesis submitted for the degree of Master of Philosophy
The University of Adelaide
Jan 2024



Table of Contents

ADSTFACT. ...ttt I
DECIATATION......eeeeee bbbttt b bbb 3
ACKNOWIEAGMENTS ... e e st et e et esbe e e e sneesreeneeanes 4
Chapter 1: INTrOAUCTION .......ooiiiie ettt re e e anaenreas 5
1.1 Significance 0f the PrOJECT.........coovoiiiie e 5
1.2 RESEAICN ODJECTIVES ....ocveiieeie ettt re e e nne e 6
1.3 THESIS OULIINE ... 9
1.4 RETEIEINCES ...ttt ettt b bbb 9
Chapter 2: LIterature REVIEW .........ccui ettt sttt sra e ens 11
2.1 Introductory BackgroUNd.............ccooiiiiiiiiiiiie e 11
2.2 Thermolysis mechanism of pristine ZIF-67 ..., 12
2.3 Thermolysis mechanism of single-atom metal-doped ZIF-67............c.ccoovcvnvinennn. 13
2.4 Machine-learning for Unveiling Thermolysis Pathways ...........cccccccooiininiiieienen, 14
2.5 IMEBENOUS ...ttt 16
2.6 RETEIEINCES ...ttt b e bbbt 20

Chapter 3: Machine Learning Confirms the Formation Mechanism of a Single-Atom

Catalyst via Infrared SpectroSCopiC ANAlYSIS........ccccvveiieiieiieieee e 24
3.1 Introduction and SIgNIfICANCE .........ccccvviiiiii e 24

3.2 Machine Learning Confirms the Formation Mechanism of a Single-Atom Catalyst

via Infrared SPectroSCOPIC ANAIYSIS ........ccuiiiiiiiiiiee e 25
Chapter 4: Conclusions and PerspeCiVES. .........ccuuiiieierereie e 57
4.1 CONCIUSIONS ...ttt bbbttt b bt 57
4.2 PEISPECTIVES. ...ttt bbbttt b e bbbt b et e bbbt bttt st 58



Abstract

This project aims at developing machine-learning approach to unravel the thermolysis
pathways of metal-organic frameworks (MOFs) into atomically doped metal oxide catalysts.
The research methodology encompasses two main components, namely density functional
theory (DFT) and a machine learning method based on the least absolute shrinkage and
selection operator (LASSO). Starting with small amounts of experimental infrared
spectroscopic data, the proposed machine-learning approach can extrapolate a more
comprehensive infrared spectroscopy dataset. This augmented dataset is then employed to
predict the pyrolysis pathways of MOF materials, providing valuable insight into the synthesis
of single-atom catalysts (SACs). The innovation is that using infrared spectroscopy data-driven
machine-learning for unveiling thermolysis pathways of MOFs is a powerful tool for

understanding the behaviour of these materials and developing new applications for them.

Chapter 1 is the introduction and Chapter 2 presents a literature review. The advances and
challenges of machine learning assisted reaction pathway finding in SACs. Then the
application of machine learning tools, IR spectra, and MOFs thermolysis is studied and
presented. Chapter 3 the Formation Mechanism of a Single-Atom Catalyst via Infrared
Spectroscopic Analysis. The synthesis of single-atom catalysts (SAC) through the pyrolysis of
zeolitic imidazolate frameworks (ZIFs) represents a crucial pathway, and the mechanism can
be examined using infrared (IR) spectroscopy. The results showed that the Pearson correlation
exceeding 0.7 when compared to experimental data, the algorithm furnishes correlation
coefficients for the chosen structures. This substantiates essential structural changes over time
and temperature. Extends the study to other SACs formation from MOFs and the conclusions
are drawn in Chapter 4, following the discussions of challenges and perspectives of machine
learning on experimental graph recognition in reaction pathway exploration. The novel MOFs
producing single atom catalyst provides a new platform for electrocatalyst development. This
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approach possesses substantial potential for robustness and has the capability to be applied
across a wide spectrum of applications for intelligent analysis of in situ experimental

characterization data in the future.
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Chapter 1: Introduction

1.1 Significance of the Project

Recently, there has been a remarkable advancement in the design of structures and foundational
electrocatalytic studies concerning Single-Atom Catalysts (SACs)**, since SACs provide an
extremely high surface area, allowing for more active sites and efficient catalytic reactions,
which sparked researchers interest and boosted extensive studies?. Nonetheless, single atoms
have a propensity to aggregate during both synthetic and catalytic processes owing to their
elevated surface energy. In this regard, the distinctive attributes of metal-organic frameworks
(MOFs)®, such as exceptional tailor ability, well-defined porous structures, effective design
flexibility, and ultrahigh surface areas, make them ideally suited to meet the substrate
requirements for stabilizing Single-Atom Catalysts (SACs) when compared to other
conventional porous materials®. However, the exploration of their formation mechanisms is
still in its infancy stage. This knowledge gap poses challenges when it comes to achieving
precise and controlled syntheses of SACs from MOF thermolysis. As a result, Understanding
the proper thermolysis reaction pathway which can forecast metal-metal interactions among

densely populated metal single atoms are still urgently needed?.

Over the past few years, machine learning has played a crucial role in extracting information
from experimental graphs, particularly in-situ DRIFTS’, showcasing considerable potential for
data mining driven by ML techniques. Datasets in this procedure facilitate extraction of
dynamic processes linked to the structural evolution of materials. A substantial database is
essential for training the machine learning (ML) model, and density functional theory (DFT)
calculations offer a rich source of data for this purpose®. Despite observed disparities between
DFT-simulated IR spectra and experimental results, prior studies have uncovered a well-fitted

linear scaling relationship between the calculated C—O bond stretching peak using DFT and



the corresponding experimental data®. As a result, the application of ML algorithms,
particularly those based on linear regression, shows promise in bridging the gap between

theoretical and experimental results, ultimately leading to superior fitting outcomes®.

Discovering the vibrational mode in each atom bonding will facilitate the reaction pathway
explanation and give positive feedback on practical instruction'’. Due to substantial
advancements in computing power, DFT calculations can now offer a precise depiction of the
electronic structure of catalysts and vibration mode in each atom*2. This can enrich the datasets
for our machine-learning tool, it thus can help predict more accurate results to explain more
complex reaction. This comparative analysis enables the deduction of the inherent formation

mechanisms of SACs!® 14,

The goal of this thesis is to study the reaction mechanisms of the CozO4 from pristine ZIF-67
and Pt-doped ZIF-67 metal single atom supported MOF. C0304 was SAC product from the
thermolysis during the study because of its essential role in the electrocatalysis field.
Additionally, the amalgamation of machine learning algorithms with theoretical calculations
for the analysis of in situ experimental spectra holds the potential to complement human expert
interpretation. Consequently, this approach is poised to evolve into a more widely adopted and

versatile methodology™®.

1.2 Research Objectives

The aim given to the study can be clearly obtained from the above statement is used machine
learning method to explore the analysis thermolysis pathways of MOF. For this aim can be

divided into three small objectives, they are:

1. Toachieve a high correlation between the LASSO fitted IR spectroscopy and experimental

data.



The objective of this statement is to state that the IR intensity of different bonds from DFT
calculation, as identified by the LASSO model, has a high correlation with the
experimental data. This suggests that the LASSO model can accurately predict the
vibrational modes that contribute most strongly to the IR spectrum, and that these modes
are important for understanding the molecular structure and chemical properties of the

molecule.

To achieve this objective, a dataset of IR spectra and corresponding experimental data
would need to be collected. The dataset would then be used to train a LASSO model, which
would identify the vibrational modes that are most strongly correlated with the
experimental data. The correlation between the predicted IR intensities and the
experimental data would then be quantified using a statistical measure such as the Pearson
correlation coefficient. If the correlation is high, it would suggest that the LASSO model
is accurately predicting the important vibrational modes, and that these modes are crucial

for understanding the molecule's structure and properties.

. Analysis of the thermolysis mechanism of ZIF-67.

IR spectra provide information about the vibrational modes of molecules and are
commonly used to identify the types of bonds present in a molecule. LASSO can be used
to analyse IR spectra by identifying the most important vibrational modes that are

correlated with experimental data.

By identifying the most important vibrational modes using LASSO, it is possible to gain
insights into the chemical and physical processes that occur during the thermolysis of ZIF-
67. For example, certain vibrational modes may be associated with specific chemical

bonds that are broken or formed during the thermolysis process. By comparing the



vibrational modes to theoretical models or other experimental data, it may be possible to

identify the intermediate species and reaction pathways that occur during thermolysis.

. Analysis of the formation mechanism of single-atom catalyst.

The objective of this statement is to describe how the results of the thermolysis mechanism
study of single-atom doped ZIF-67 can be compared with the previous thermolysis

mechanism of ZIF-67.

The thermolysis mechanism of single-atom doped ZIF-67 was studied for Pt-ZIF-67. To
investigate the thermolysis mechanism of Pt-doped ZIF-67, various techniques such as
LASSO-fitted infrared spectroscopy can be employed. The results obtained from these
techniques can provide insights into the chemical and physical processes that occur during

thermolysis.

The results of the thermolysis mechanism study of Pt-doped ZIF-67 can be compared with
the previous thermolysis mechanism of ZIF-67 to identify any differences that may arise
from the presence of Pt. Comparing the vibrational modes and identifying any changes in
the mechanism can provide insights into how the presence of Pt affects the thermolysis

process.

Furthermore, the comparison of the results of the thermolysis mechanism study of Pt-
doped ZIF-67 to theoretical models and computational simulations can provide a deeper
understanding of the thermolysis mechanism and the factors that influence the formation

of metal monomers and metal oxide nanoparticles.



1.3 Thesis Outline

This thesis is presented in the form of journal publications. The results of the reaction
mechanisms and machine learning studied are included. Specifically, the chapters in the Thesis

are presented in the following sequence:

» Chapter 1 this thesis was introduced. It emphasizes the importance of this project and
outlines the research objectives.

» Chapter 2 reviews the recent progress and challenges of thermolysis pathways of MOFs
and used for machine learning in reaction mechanism studies.

» Chapter 3 presents machine learning confirms the formation mechanism of a Single-Atom
Catalyst based on ZIF-67 and Pt doped ZIF-67.

» Chapter 4 presents the conclusion and perspectives for further work on revealing the

thermolysis mechanism in more kinds of MOFs.

1.4 References

1. Huang, H.; Shen, K.; Chen, F.; Li, Y. Metal-Organic Frameworks as a good platform
for the fabrication of single-atom catalysts. ACS Catalysis 2020, 10 (12), 6579-6586.
DOI: 10.1021/acscatal.0c01459.

2. Mitchell, S.; Perez-Ramirez, J. Single atom catalysis: a decade of stunning progress and
the promise for a bright future. Nat Commun 2020, 11 (1), 4302. DOI: 10.1038/s41467-
020-18182-5 From NLM PubMed-not-MEDLINE.

3. Li, X,; Yang, X.; Zhang, J.; Huang, Y.; Liu, B. In situ/operando techniques for
characterization of single-atom catalysts. Acs Catalysis 2019, 9 (3), 2521-2531.

4. Kim, J.; Kim, H. E.; Lee, H. Single-atom catalysts of precious metals for
electrochemical reactions. Chem Sus Chem 2018, 11 (1), 104-113.

5. Kitagawa, S. Metal-organic frameworks (MOFs). Chemical society reviews 2014, 43

(16), 5415-5418.



10.

11.

12.

13.

14

15.

Shan, J.; Liao, J.; Ye, C.; Dong, J.; Zheng, Y.; Qiao, S. Z. The dynamic formation from
metal-organic frameworks of high-density platinum single-atom catalysts with metal-
metal interactions. Angew Chem Int Ed Engl 2022, 61 (48), €202213412. DOI:
10.1002/anie.202213412 From NLM PubMed-not-MEDLINE.

Fanning, P. E.; Vannice, M. A. A DRIFTS study of the formation of surface groups on
carbon by oxidation. Carbon 1993, 31 (5), 721-730.

Bartolotti, L. J.; Flurchick, K. An introduction to density functional theory. Reviews in
computational chemistry 1996, 187-216.

Cotton, F. A.; Kraihanzel, C. Vibrational spectra and bonding in metal carbonyls. I.
Infrared spectra of phosphine-substituted group VI carbonyls in the CO stretching
region. Journal of the American Chemical Society 1962, 84 (23), 4432-4438.
Gastegger, M.; Behler, J.; Marquetand, P. Machine learning molecular dynamics for
the simulation of infrared spectra. Chemical science 2017, 8 (10), 6924-6935.

Kaiser, S. K.; Chen, Z.; Faust Akl, D.; Mitchell, S.; Perez-Ramirez, J. Single-atom
catalysts across the periodic table. Chemical reviews 2020, 120 (21), 11703-11809.
Kohn, W.; Becke, A. D.; Parr, R. G. Density functional theory of electronic structure.
The journal of physical chemistry 1996, 100 (31), 12974-12980.

Porezag, D.; Pederson, M. R. Infrared intensities and Raman-scattering activities within

density-functional theory. Physical Review B 1996, 54 (11), 7830.

. Chen, H.; Zhang, Z.; Hu, D.; Chen, C.; Zhang, Y.; He, S.; Wang, J. Catalytic ozonation

of norfloxacin using Co304/C composite derived from ZIF-67 as catalyst. Chemosphere
2021, 265, 129047.

Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: a new
frontier in heterogeneous catalysis. Accounts of chemical research 2013, 46 (8), 1740-

1748.

10



Chapter 2: Literature Review

2.1 Introductory Background

Due to the rising global concerns over environmental issues and the limited availability of fossil
fuels, the search for sustainable and renewable energy sources has become a crucial challenge
in today's world. One important aspect of achieving sustainable energy systems is through the
use of electrochemical storage and conversion devices, such as fuel cells, water decomposition,
and electrochemical reduction of carbon dioxide and nitrogen. In these high-performance
energy devices, the performance of electrocatalysts plays a pivotal role in electrochemical

reactions.t®

Zeolitic imidazolate frameworks (ZIFs) are a class of metal-organic frameworks (MOFs) that
have gained significant attention in recent years due to their unique structural properties and
potential applications in various fields such as gas storage, separation, and catalysis.®® One of
the most promising applications of ZIFs is their use as precursors for the formation of SACs.
ZIFs can serve as an excellent precursor for the formation of SACs due to their ability to
encapsulate metal ions within their structure. By thermal treatment or chemical activation, the
metal ions can be converted into single atoms, which are dispersed on the support material with
a high degree of control and uniformity.® This allows to produce highly efficient SACs that can

be tailored to specific applications.

The use of Infrared (IR) spectroscopy in the study of reaction mechanisms is based on the
principle that different functional groups have characteristic vibrational frequencies.
Therefore, changes in the intensity or position of specific IR bands during a reaction can

provide insights into the reaction mechanism and the formation of intermediates. By analysing
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the changes in IR spectra at different reaction times, it is possible to obtain a detailed picture

of the reaction pathway and the intermediates involved.!

In recent years, data-driven machine learning techniques, such as the LASSO algorithm, have
been employed to analyse IR spectra and extract meaningful information about reaction
mechanisms.'?® These methods can help to identify key features of the IR spectra that are
important for understanding the reaction mechanism and can provide a more comprehensive

analysis of complex reaction pathways.

2.2 Thermolysis mechanism of pristine ZIF-67

FTIR has been a great tool for analysing the bond information in material due to its
manoeuvrability among all practical equipment. Wu et al.** conducted research on ZIF-67 to

reveal those thermolysis routes in high temperature range.

heating

25°C

M 350 °C
I\

T T v T v T
3200 3000 1500 1000 500

wavenumber (cm™)

Figure 1 Temperature dependent in situ FTIR spectra of ZIF-8 and ZIF-67%
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A noticeable difference appears in the peak related to “C=C” stretching (1580 cm?, as
highlighted in Fig. 1). The peak was gradually broadened with the temperature rising to 350°C.
Based on this information, the “C=C" was preliminary judged to be broken at this temperature,
suggesting a direct collapse of its lattice structure without lattice deformation. However, this
IR spectra contained different peaks and it may involve multiple bonds formation and break
within one peak. Moreover, this research only provided the thermolysis routes in air from 25°C
to 300°C, but it did not reveal how the metal-oxide bond was formed and the quantity that

presents in the corresponded temperature.

2.3 Thermolysis mechanism of single-atom metal-doped ZIF-67

Understanding the mechanism by which the metal in ZIF-67 is oxidized to useful metal oxide
catalysts is important in industrial catalyst production, as it enables the optimization of the
synthesis process and facilitates control over the properties of the resultant catalysts. Shan et
al. elucidated the formation of high-density Pt single atoms with inter-site interactions in
derived CosO4 host.™® The resulting hybrid material is referred to as Pt-ZIF-67. In order to fully
understand the driving force behind the construction of Pt-Pt interaction and the cleavage of
organic ligands, the local evolution of metal-ligand coordination at Pt sites was analysed. The
contour maps in Figures 2c, 2d and spectra revealed that a few characteristic peaks of ZIF-67

framework were observed in both Pt-ZIF-67 and ZIF-67.

As the thermolysis temperature increased, these peaks in Pt-ZIF-67 remained relatively stable
until a sudden disappearance at around 300°C. This observation suggests that despite the host
framework undergoing collapse from 250°C onwards, the organic ligands were retained until
complete structured decomposition and transition to Co3O4 took place at 300°C. In contrast,
ZIF-67 did not undergo such structural decomposition until being held at 300°C for more than

60 minutes. The X-ray diffraction analysis (XRD) and diffuse reflectance Fourier-transform
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infrared spectroscopy (DRIFTSs) observations confirmed that the fully phased transition of Pt-
ZIF-67 occurred earlier than that of pristine ZIF-67, both of which were accompanied by the
decomposition of 2-Melm ligand. This result suggests that the incorporated Pt sites are possibly

more vulnerable to be attacked by oxygen and therefore facilitate the phase transition to Coz0a.

1100 1200 1300 1400 900 1000 1100 1200 1300 1400
Wavenumber (cm™) Wavenumber (cm™)

B2
B

ggo °C
mins
00 °C
mins
275°C
250°C
225°C
200 °C
150 °C
100°C

25°C

High

I Low

Transmittance

900 1000

Figure 2 Pt-ZIF67 and pristine ZIF-67 with characteristic peaks indicated by arrows and

labels.*®
2.4 Machine-learning for Unveiling Thermolysis Pathways

The capability of machine learning (ML) to handle complex systems and make testable
predictions has led to its application at the intersection of multiple disciplines. Although ML
methods, including neural networks (NN), were proposed as early as the 1950s to 1970s, the
application of ML in other fields was hindered by significant knowledge barriers. However,
over the past decade, practical tools such as the Torch library, Scikit-Learn, and the Tensorflow
library have reduced professional thresholds for users, 1® resulting in an increase in the

application of ML in fields such as physics and chemistry!’-18 as shown in Figure 3.
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Figure 3. Pt-ZIF67 and pristine ZIF-67 with characteristic peaks indicated by arrows and

labels.®

This increase in ML application has led to the emergence of machine learning interatomic
potentials (MLIP)?° and machine learning force fields (MLFF)?!, which have been used to
accelerate  DFT computation and improve precision in large systems. Furthermore,
interpretable ML methods?? are being used to understand various physical quantities on target
properties and have resulted in suitable descriptors to make predictions. In addition, the inverse
design approach?® is being applied to derive theoretical structures from experimental

characterizations with improved accuracy and efficiency.

The optimal model is expected to be positioned in the upper left corner of the plot, even though
it may lie in the infeasible region. Solutions that are located on the Pareto front near this ideal
model are considered reasonable options. However, solutions with lower residuals may
sacrifice the distribution of errors. On the other end of the Pareto front, some models may
generate a nearly perfect normal error distribution, but they may not be effective in fitting the
data. The best solution, therefore, must strike a balance between all objectives and should be
chosen based on additional criteria and information. In the following section, we will discuss
the distinctive characteristics of the Pareto front, which can serve as useful indicators for
making valid decisions. A diagram summarizing all our approaches' relevant steps is included

in the Figure 4.

15



Select
Relevant
Terms
(LASSO)

(Fit LASSO Model

» Input Features
(Process
Parameters :
BE Target'Quantity
Concentrations) Power & Elxpa“d'al (Reaction Rate) esidual Norm
L Transformation ' Yhom:
Terms

) (Quali; of Fit)

dll

PPCC

c i (Robustness)
enetic
ar : Model
..TNU’\.. Algorithm I
Transformation
Parameters O
° ° ‘ X
2 %00 o ‘o -
Q -] o Q a Q
(&) L4 (§) (&}
2l gee D¢ D¢
o 09 [
0' (-] 0,
Residual Residual Residual
Norm Norm Norm

Figure 4. Pt-ZIF67 and pristine ZIF-67 with characteristic peaks indicated by arrows and
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2.5 Methods

This section outlines the methods and procedures to be followed in order to achieve the aims
of the study. This section may include a discussion of the sources to be consulted that will

inform the selection and use of these methods.

DFT is used to simulate the Infrared Vibrational Spectrum

VASP (Vienna Ab initio Simulation Package) is a widely used DFT (Density Functional
Theory) code for simulating the electronic structure and properties of materials. VASP uses a

plane-wave basis set and the projector-augmented wave (PAW) method to describe the
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electronic structure of a system. The PAW method is a variant of the pseudopotential method

that includes a partial core correction to improve the accuracy of the calculation.

In practice, the process involves the following steps:

1. Perform molecular dynamics simulations or quantum chemical calculations to obtain

the positions and velocities of the atoms in the molecule.

2. Calculate the dipole moment of the molecule as a function of time using the positions

of the atoms.

3. Calculate the dipole moment autocorrelation function from the dipole moment time

series.

4. Apply the DFT to the dipole moment autocorrelation function to obtain the IR

vibrational spectrum.

The resulting IR spectrum can then be compared to experimental spectra or used to predict the
vibrational properties of new molecules. The accuracy of the simulation depends on the quality

of the input data and the level of theory used in the calculations.

Atomic Simulation Environment (ASE) is used as the interface to transform the DFT-

calculated vibrational frequencies into spectra.

ASE is a Python library that provides a user-friendly interface for performing atomistic
simulations and analysing the results. ASE includes various modules for performing DFT
calculations, such as the popular DFT code VASP, as well as tools for analysing and visualizing

the results.
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To transform the DFT-calculated vibrational frequencies into spectra, ASE can be used in
conjunction with other Python libraries such as NumPy and Matplotlib. The general process

involves the following steps:

1. Use ASE to perform a DFT calculation of the molecule of interest, including the

calculation of the vibrational frequencies.

2. Extract the vibrational frequencies from the DFT calculation using ASE's built-in tools.

3. Use NumPy to convert the frequencies into wavelengths or wavenumbers that are

suitable for plotting on an IR spectrum.

4. Calculate the intensities of each vibrational mode based on the transition dipole

moments, which can also be obtained from the DFT calculation.

5. Plot the resulting IR spectrum using Matplotlib or another plotting library.

VESTA is used for visualization.

VESTA is a 3D visualization software designed for analysing electronic structures. Its full
name, Visualisation for Electronic Structural Analysis, reflects its capabilities. The software is
suitable for displaying structural models, volumetric data such as electron or nuclear densities,
and crystal morphologies. The program's features allow users to work with many objects, such
as atoms, bonds, polyhedral, and polygons on is surfaces. Multiple windows can be opened
simultaneously, with each window capable of containing numerous tabs that correspond to
different files. With VESTA, users have the flexibility to visualize and analyse complex
structures with ease. So that | can use this software to view the structure and intermediate that

been built in this project easily.
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LASSO in machine learning:

LASSO regression tries to find the best fitting line while simultaneously shrinking the less
important feature coefficients to zero. This makes LASSO a useful technique for feature
selection in high-dimensional datasets, where the number of features is much larger than the
number of observations. By setting the coefficients of unimportant features to zero, LASSO
effectively eliminates those features from the model, reducing overfitting and improving

generalization performance.

LASSO regression can be solved using optimization algorithms such as coordinate descent,
which iteratively updates the regression coefficients. The strength of the penalty term is
controlled by a hyperparameter called the regularization parameter, which can be tuned using

techniques such as cross-validation.

The capability of machine learning (ML) to handle complex systems and make testable
predictions has led to its application at the intersection of multiple disciplines. LASSO?42° is
the machine learning algorithm used for fitting the experimental data and bond feature

selection.

The simplest linear regression correlates with the infrared intensities. And the y-intercept S,

and the forms were shown as:
Yy =BX = Bo + B1xy + Brxz + Baxs + -+ Bpxp

The LASSO algorithm aims to figure out the best-fit model while concurrently driving some
of the IR’s model coefficients to enclose to zero, which will lead to a better interpretable

scattered model.

T

il
Y (i = BX)*+ A 15l

i—1 j=1
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The X here represents the bonds IR intensities simulated by ASE Infrared intensities class. Y
is the experimental data that can be regarded as the target set of LASSO machine learning. This
process was repeated for ‘X’ IR intensities resulting in ‘X’ linear transformation. Then, a series
of shrinkage in the coefficients is determined by the complexity parameter a. The strength of
this ‘balance’ term, is hyperparameter A. It aids in mitigating the overfitting of a model to the
training data by striking a balance between fitting accuracy and model simplicity. These
transformations facilitate the mapping of the source data's infrared intensities to the target data.
Consequently, the coefficients become more resilient to collinearity. We can therefore predict
the infrared intensities for the ZIF-67 by multiplying the g coefficient and then taking the

summation of the contribution to the intensities.
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Chapter 3: Machine Learning Confirms the Formation Mechanism of a

Single-Atom Catalyst via Infrared Spectroscopic Analysis

3.1 Introduction and Significance

In this study, we present a pioneering endeavour wherein an artificial intelligence (Al)-driven
analysis of in-situ temperature-dependent Fourier-transform infrared spectroscopy (DRIFTS)
data is employed to confirm the pyrolysis mechanism of pristine ZIF and Pt-doped ZIF-67 to
synthesize C030s and Pt-C030s SAC. The Al simulation exhibits a remarkable Pearson
correlation value as high as 0.7~0.9 compared with experimental data. Furthermore, this
algorithm provides correlation coefficients for the selected structural features, thereby
facilitating the extraction of invaluable insights into the structural evolution along the

temperature and time axis during the reaction process.
Highlights of this work include:

1. Establish DFT-calculated IR spectrum database of all possible chemical bonds during the
ZIF pyrolysis process and use machine learning algorithm to bridge the gap between theory
and experimental results to directly simulate and analyse in-situ experimental IR spectrum.

2. Develop Al workflow to extract chemical bond information correlated with experimental
data from the theoretical database. A successful fit of the experimental in-situ DRIFTs
spectrum is achieved with high correlation of 0.7-0.9, indicating effective simulation of
experimental results.

3. Through Al-analysed changes in chemical bond coefficients, the inferred reaction
mechanism, encompassing ZIF decomposition and Pt-O bond formation, closely aligns
with experimental findings, which demonstrates Al's potential in reasonably speculating

the reaction mechanism.
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4. The approach relies heavily on database construction and Al algorithms, with minimal
manual intervention. As such, it holds significant potential for robustness and can be
extended to intelligent analysis of experimental data to predict the formation mechanism

of more SAC:s.

3.2 Machine Learning Confirms the Formation Mechanism of a Single-Atom Catalyst

via Infrared Spectroscopic Analysis

This Chapter is included as it appears as a journal paper published by Yanzhang Zhao, Huan
Li, Jiegiong Shan, Zhen Zhang, Xinyu Li, Javen Qinfeng Shi, Yan Jiao, and Haobo Li*,
“Machine Learning Confirms the Formation Mechanism of a Single-Atom Catalyst via Infrared

Spectroscopic Analysis.” The Journal of Physical Chemistry Letters 14 (2023): 11058-11062.
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ABSTRACT: Single-atom catalysts (SACs) offer significant potential across various
applications, yet our understanding of their formation mechanism remains limited. Notably,
the pyrolysis of zeolitic imidazolate frameworks (ZIFs) stands as a pivotal avenue for SAC
synthesis, of which the mechanism can be assessed through infrared (IR) spectroscopy.
However, the prevailing analysis techniques still rely on manual interpretation. Here, we report
a machine learning (ML)-driven analysis of the IR spectroscopy to unravel the pyrolysis
process of Pt-doped ZIF-67 to synthesize Pt—Co3;0, SAC. Demonstrating a total Pearson
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DFTIR
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correlation exceeding 0.7 with experimental data, the algorithm provides correlation asi
coefficients for the selected structures, thereby confirming crucial structural changes with \h& E
time and temperature, including the decomposition of ZIF and formation of Pt—O bonds. |\~ "/ J
These findings reveal and confirm the formation mechanism of SACs. As demonstrated, the 5 :
: ! g 2 . i ; i Mechanism In-situ Spectrum
integration of ML algorithms, theoretical simulations, and experimental spectral analysis Analysis Simulation

introduces an approach to deciphering experimental characterization data, implying its
potential for broader adoption.

M achine-learning (ML) techniques are increasingly used
as effective tools to analyze the experimental spectra,
such as the X-ray absorption structure (XAS),'” nuclear
magnetic resonance (NMR),* infrared (IR),”® ultraviolet
(UV),” and Raman™ spectroscopies, etc. A primary objective
is to identify structures by comparing experimentally obtained
spectra to theoretically predicted spectra. These experiments
entail a series of multiple tests conducted under diverse
conditions, especially in situ experiments. ML becomes a viable
approach for reverse engineering atomic structures and, even
more promisingly, for inferring underlying mechanisms.'
Nevertheless, it is noteworthy that research in the latter
domain, specifically concerning the inference of unclear
mechanisms, remains relatively limited.

Single-atom catalysts (SACs) have attracted broad interests,
particularly in energy conversion applications.'"'* The primary
focus has predominantly centered on elucidating the origin of
their catalytic performance; however, the exploration of their
formation mechanisms remains limited. This knowledge gap
poses challenges when it comes to achieving precise and
controlled syntheses of SACs. Metal—organic framework
(MOF) materials are frequently employed as precursors for
the synthesis of SACs, which are subsecll}lently obtained
through a pyrolysis process.'>'* Shan et al.”>'® conducted a
comprehensive investigation into the evolution of cobalt-based
zeolite imidazolate framework (ZIF-67) during pyrolysis,
resulting in the formation of Pt-doped cobalt oxide (Pt—
Co3;0,) SAC. Their study employed in situ temperature-
dependent diffuse reflectance Fourier transform infrared

© 2023 American Chemical Society

< ACS Publications

spectroscopy (DRIFTS) in conjunction with complementary
experiments, including X-ray diffracion (XRD) patterns,
extended X-ray absorption fine structure (EXAFS) spectra,
and X-ray absorption near-edge structure (XANES) spectra
characterization. The collective findings demonstrated the key
role of the formation of metal—oxygen—metal bonds in
fostering metal—metal interactions among densely populated
metal single atoms.

The aforementioned research includes a series of in situ
DRIFTS, which hold significant potential for ML-driven data
mining. Such data sets enable the extraction of dynamic
processes associated with structural evolution in materials. A
substantial database is required to train the ML model, and
density functional theory (DFT) calculations provide a
sufficient pool of data for this purpose. Despite disparities
observed between DFT-simulated IR spectra and experimental
results,'” prior studies have revealed a well-fitted linear scaling
relationship between the calculated C—O bond stretching peak
using DET and the corresponding experimental data.'®
Consequently, the application of ML algorithms, particularly
those founded on linear regression, holds promise in bridging
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the gap between theoretical and experimental results, finally
yielding superior fitting outcomes.

Herein, we have, for the first time, applied the least absolute
shrinkage and selection operator (LASSO),'"™ a regression
algorithm, to analyze the in situ temperature-dependent
DRIFTS data set. Our aim was to gain deeper insights into
the underlying reaction mechanism. In comparison to other
ML algorithms, LASSO offers distinct advantages in terms of
interpretability and reliability, rendering it particularly well-
suited for this application. Through the analysis of pristine
ZIF-67 and Pt-doped ZIF-67, a comparative study is
conducted to discern the distinctions in the pyrolysis
mechanisms. Our investigation involved the examination of
the pyrolysis of ZIF-67, resulting in the synthesis of Co;0,,
and the pyrolysis of Pt-doped ZIF-67 with the objective of
producing Pt—Co;0, SACs. This comparative analysis allows
for inference of the underlying formation mechanisms of SACs.
Such integration of ML algorithms with theoretical calculations
for analyzing in situ experimental spectra offers the potential to
supplement human expert interpretation, thereby evolving into
a more widely adopted and versatile methodology.

The workflow is shown in Figure 1. First, we constructed a
data set encompassing all conceivable chemical bonds formed

ML Training Results Analysis

|Tm1ning Setl l ML Algorithm ‘ [Target Sell Correlatmn | ML 5""“"”“;‘“::3::
B4 b4 B9 —_

s m
¥ Q=P o> Exp.

P =)
{ -a/)’
- é
. LASSO regression

DFT calculated
chemical bonds
vibrations

Experimental IR
spectrum data

Jm

Inverse construction of)

Uﬂﬁ“'e"‘ structure evolution

Figure 1. Workflow for data-driven IR spectroscopic analysis to
extract the structural evolution mechanism using ML algorithms. The
experimental IR spectrum is reproduced with permission from ref 15.
Copyright 2022 Wiley-VCH.

during the pyrolysis of ZIF-67. This process involves elements,
such as Co, C, N, O, and H, in pristine ZIF-67 and the
addition of Pt in Pt-doped ZIF-67. Our data set covers a wide
range of chemical bonds, including C-C, C—N, C-O,
Co(Pt)—0, Co(Pt)—N, Co(Pt)—C, Co(Pt)—Co, C—H, and
O—H bonds. These chemical bonds may exist in diverse
structural environments, prompting us to build distinct models
for them encompassing both three-dimensional (3D) ZIF-
based and two-dimensional (2D) graphene-based models.
Computational models for pristine ZIF-67 and additional
models for Pt-doped ZIF-67 are shown in Figure 2. Our

@ @ CoN,-O CDN4 -OH CuN -0 P(MO

ZIF-67 Oxidized ZIF-67 CoN,-CO CnN1 -OH Oo;NG H;0| Pt-ZIF- 57 Oxidized Pt Z\F 67 P(N -0

£K3 200 % 1, B3

CoN, Coy CosNg CoNg  CoNsCO| PN, Pw,

CuzPIN.S PlN -CO

Figure 2. Computational models of the IR spectrum database for
chemical bonds during ZIF-67 (in the pink frame) and Pt-doped ZIF-
67 (in the green frame) pyrolysis. Atoms: Co, pink; P, green; C, gray;
N, blue; O, red; and H, white.

database comprises all non-equivalent chemical bonds within
these models, including 55 chemical bonds for ZIF-67 and 86
chemical bonds for Pt-doped ZIF-67, as detailed in Tables S1
and S2 of the Supporting Information, respectively. We
conducted DFT calculations to simulate the IR spectra for
each of chemical bond. The data for each chemical bond
includes the 6638 wavenumber—absorbance pairs, which have
been represented in 2D plots displayed in Figures S1—S32 of
the Supporting Information. In total, the database encom-
passes 935958 data points.

In the second step, we proceeded to train the ML model by
fitting the LASSO model using DFT data as input and
experimental data as the target output. The IR spectra for each
chemical bond are regarded as ML features. The experimental
target data are sourced directly from ref 15, encompassing the
pyrolysis process of both ZIF-67 and Pt-doped ZIF-67. This
process involves a gradual temperature increase from 20 to 300
°C, followed by a 90 min hold at 300 °C. The in situ DRIFTS
spectra are thereby measured on the temperature—time axis,
comprising 23 and 24 spectral lines for ZIF-67 and Pt-doped
ZIF-67, respectively, totaling 47 lines. This experimental data
set contains 41 830 data points, which are visualized in the
form of 2D mapping.

In the third step, we further analyzed the results of ML
training, where the LASSO algorithm provides two key
parameters: correlation and coefficient. The detailed calcu-
lation methods for these parameters are specified in the
Computational Methods of the Supporting Information.
Correlation, which is referred to as the Pearson correlation
in this study, ranging from 0.0 to 1.0, denotes the degree of
relationship between the ML prediction set and the
experimental data. Higher correlation values signify more
accurate replication of experimental results by ML. Coefficient,
particularly in our work, representing the significance of
various chemical bonds, allows for the quantification of the
influence of individual bonds along the temperature—time axis.
Coefficients for all chemical bonds are summarized in Figures
S1—532 of the Supporting Information. Notably, some key
bond coefficients decrease or increase across the temperature—
time axis. This phenomenon suggests that some chemical
structures associated with specific bonds diminish during the
reaction, while others significantly increase. This implies the
transformation of certain structural entities into alternative
forms. This method facilitates the reverse construction”* of the
chemical structures based on spectral information.

Figure 3 shows the comparison between the ML-simulated
in situ temperature-dependent DRIFTS spectra within the
developed workflow and the corresponding experimental
results. Remarkably, the ML-predicted spectrum closely
resembles the experimental spectrum, a similarity quantita-
tively substantiated by correlation values in panels ¢ and f of
Figure 3, approximately 0.7 and 0.9 for ZIF-67 and Pt- d()ﬁp
ZIF-67, respectively. According to the literature reports,” 26
Pearson coefficients of 0.60 and above indicate a strong
correlation or association. p values significantly lower than 0.05
indicate the reliability of the linear correlation observed in ML
(Figure S34 of the Supporting Information). The correlation
values thus affirm the success of our ML predictions for the in
situ DRIFTS spectra. Furthermore, as depicted in Figure 4, the
majority of distinct features employed by our ML model
demonstrate low correlations. This underscores the rationality
of using these calculated IR spectra as features in our ML

approach.
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Figure 3. ML-simulated in situ temperature-dependent DRIFTS
spectra in comparison to experimental characterization outcomes for
the pyrolysis processes of (a—c) ZIF-67 and (d—f) Pt-doped ZIF-67,
respectively. (a and d) Experimental results exhibited a striking
resemblance to the (b and e) ML simulations, with (c and f)
correlations reaching approximately 0.7 and 0.9, respectively.
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Figure 4. Pearson correlation between every pair of primary features,
i.e,, calculated IR spectrum for each chemical bond in the (a) ZIF-67
and (b) Pt-doped ZIF-67 pyrolysis process.

It was observed that both experimental and LASSO-
predicted spectra presented similar IR peaks that appeared
around 1000, 1150, and 1300 cm™. Additionally, the
absorbance intensity is stronger at lower temperatures, and
the sudden intensity decrease when the time surpassed 60 min
held at 300 °C was associated with sample decomposition of
ZIF-67 as a result of long-time thermolysis. Noticeably, Pt-
doped ZIF-67 exhibited relatively less thermal stability in
Figure 3d, and the sample was completely decomposed when
the temperature rose to 300 °C. The positions of Fourier
transform infrared spectroscopy (FTIR) peaks are affected by
the energies of vibration modes within the solids, and the
energy can be noticeably changed by alterations in atomic
arrangements. The peak position and absorbance intensity
provide a clear indication that the overall IR intensity
absorbance of the three peaks at 1000, 1150, and 1300 cm™!
in Pt-doped ZIF-67 declined during the heating process. While
the predicted IR spectra for both ZIF-67 and Pt-doped ZIF-67
exhibit significant similarity to their corresponding exper-
imental spectra, it is worth noting that the LASSO regression
analysis presents a higher overall correlation for Pt-doped ZIF-
67 compared to pristine ZIF-67. Moreover, it exhibited a
higher correlation value in the lower temperature zone.

Given the successful outcomes of our ML predictions, we
then investigated the extraction of chemical structure
information from the provided coefficient data. The
coefficients associated with the 3D models based on ZIF
exhibit a consistent decrease throughout the pyrolysis reaction
process, as evident in Figures S1, S2, S14, and S1S of the

Supporting Information. This decline corresponds to the
decomposition of the ZIF structure, wherein the Co—N bonds
manifest high coefficients in comparison to other chemical
bonds involved in the pyrolysis process. This observation
underscores the prevalence of Co—N bonds as the
predominant chemical bond. Concurrently, some bonds
among intermediate products gradually emerge, including
metal-C bonds, metal-OH bonds, and metal-O bonds.
Interestingly, even though our training set encompasses
intermetallic cluster structures, such as Co;, Co,Pt, and Coy,
their coefficients overwhelmingly remain at 0, as depicted in
Figures $11—513 and $29—532 of the Supporting Information.
This indicates that the ML rarely selects these specific
structures, which aligns with experimental observations where
metals tend not to agglomerate but form oxides or single-atom-
doped oxides."®

To facilitate a more insightful analysis of the dynamic
evolution process during pyrolysis, we selected chemical bonds
that exhibit the most pronounced changing trends and compile
them in Figure 5. For clarity of observation, all coefficient

a b

10 1.0
- .
80 5 / 0.5
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Figure 5. Coefficients of selected chemical bonds along the
temperature—time axis for the pyrolysis processes of (a) ZIF-67
and (b) Pt-doped ZIF-67. The model structures corresponding to the
different colors of the chemical bonds are labeled below, and they are
positioned along the temperature—time axis based on the approximate
peak positions of the coefficients. It illustrates the evolution process of
the structures. Atoms: Co, pink; Pt, green; C, gray; N, blue; and O,
red.

values have been normalized. In the case of pristine ZIF-67
(Figure S5a), the initial structures, ZIF-67 (purple line) and
oxidized ZIF-67 (red line), prominently dominate and persist
until the temperature reaches 300 °C. At this point, they begin
to rapidly decline, implying that the structural integrity of ZIF-
67 remains largely intact until the pyrolysis temperature
reaches 300 °C. Around the temperature range of 250—300
°C, notable intermediates emerge, including the Co—CO
(orange line) and Co—OH (blue line) structures. Subse-
quently, as the system is held at 300 °C over time, these
intermediates undergo oxidation, transforming into a Co—0O
(green line) structure with a higher oxidation state.

We compared this to the case of Pt-doped ZIF-67 (Figure
5b). Pt-ZIF-67 (gray line) predominantly characterizes the
initial structure of the reaction. Subsequently, the Co; (dark
red line) cluster becomes noticeable, but it diminishs above
300 °C. Furthermore, the Co—CO (orange line) and Co—OH
(blue line) structures identified in pristine ZIF-67 appear as
intermediates. More significantly, a prominent Pt—O (pink
line) structure becomes evident above 300 °C. This aligns with
experimental observations where the formation of Pt—O bonds
play a key role as an intermediate step in generating SACs."” It
suggests that Pt exhibits a tendency to avoid agglomeration
and, instead, undergoes a process involving the formation of

https://doi.org/10.1021/acs.jpclett.3c02896
J. Phys. Chem. Lett. 2023, 14, 11058-11062
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Pt—O and Co—O bonds, ultimately incorporating into the
crystal lattice of Co;0,.

On the basis of ML-assisted IR spectral analysis, we have
gained comprehensive insights into the intricate processes
involved in the formation of the SAC, Pt—Co;0,, from ZIF
pyrolysis. The entire process was found to be primarily an
oxidation process, wherein Co and Pt atoms initially form
connections with the N atoms of the four methylimidazole
ligands within the ZIF framework. As the ZIF skeleton
disintegrates, a planar CoN,, or PtN, structure is formed, albeit
in a relatively small proportion. More prevalent are structures
with oxygen-containing intermediates, such as CO or O,
adsorbed onto them. When held at a high temperature of 300
°C over time, the four N atoms gradually detach, coinciding
with the formation of Co—Q bonds (green line in Figure 5a).
In comparison, the coefficient of Pt—O bonds increases
obviously faster (pink line in Figure Sb) than that of Co—O
bonds, indicating that Pt—O bonds are formed earlier than
Co—0O bonds. This is consistent with experimental observa-
tions that the transformation from Co—N to Co—0O starts at
about 300 °C after Pt—N begins to gradually change into Pt—
O. These Pt—O and Co—O bonds then connect with each
other, culminating in the formation of Co;0, or Pt-containing
high-density Pt—Co;0 structures.

We acknowledge certain limitations in the model, such as
the fact that the DRIFTS data used for training only focus on
the higher wavenumber organic ligand region and the absence
of training data on oxide structures below 900 cm™
final step of oxide formation to be missed in the ML analysis. It
is still noteworthy that the ML-driven analysis closely aligns
with manual analysis results, especially concerning the
mechanistic aspects up to Co—O and Pt—O bond formation."
This underscores the potential of ML, following training with
substantial theoretical simulation data, to provide highly
accurate insights into in sifu experimental data analysis.

In summary, this work involves the utilization of a ML tool
based on the LASSO algorithm for the comprehensive analysis
of in situ temperature-dependent DRIFTS in experimental
setting. The comprehensive modeling of chemical bond
information and the establishment of a theoretical database
have enabled the trained ML model to effectively emulate real
experimental data. This emulation is reflected in correlation
values as high as 0.7—0.9, confirming the effectiveness of ML
to simulate experimental data. Simultaneously, the correlations
provided by ML for different chemical bonds during the
experimental data fitting process can be used to infer chemical
structures. In combination with variations along the temper-
ature—time axis, this information offers deep insights into the
chemical reaction mechanisms. The observed degradation of
the ZIF framework, the gradual oxidation of oxygen-containing
species adsorbed on the metal, and the emergence of Co—O
and Pt—O bonds align remarkably well with findings obtained
from various experimental characterizations. It is worth
highlighting that the entire workflow that we have developed
relies heavily on database construction and ML algorithms,
with minimal manual intervention. As such, we believe that this
approach holds significant potential for robustness and can be
extended to a broad range of applications for intelligent
analysis of in situ experimental characterization data in the
future.
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Computational methods
DFT calculations

All Density functional theory (DFT) calculations were conducted by using the Vienna ab-initio simulation
package (VASP)! with the Perdew-Burke-Ernzerhop (PBE)? exchange-correlation and all calculations used
the projector-augmented wave (PAW)? potential to describe the ionic cores. Each 3D ZIF structure was
calculated by setting a 600 eV plane-wave cutoff energy and a Monkhorst-Pack® k-point grid of 3x3x3. The
lattice constants of the unit cell for those 3D structures including all of the possible intermates are a=b =c =
1691 A, a = f=y=290° As for the 2D intermediate structures, a hexagonal unit cell was built with the lattice
constants determined to @ = b = 12.3 A, vacuum layer 20 A. A Monkhorst-Pack* k-point grid of 3x3x1 was
employed. The DFT-D3° was utilized to address the Van der Waals interactions, the convergence of the energy
was set to be 1x107 eV and that of geometry optimization was set to be maximum force <= 0.05 eV/A. Spin
polarization was considered for calculations involved with Co, with initial magnetic moments of 2 us.
Different settings including force convergence and Hubbard correction (DFT+U) were tested for various
chemical bonds. The tests show that these settings have only minor impact on the IR spectra calculations in

this study (Tables S4, S5).
Vibrations for IR spectrum

The Infrared intensities class, as implemented in the Atomic Simulation Environment (ASE)®, was applied in
this study. The infrared modes’ were utilized by a finite difference approximation of the Dynamical matrix by
setting the magnitude of displacements with 0.01 A and the width of 20 cm™ with the Gaussian process

regression to plot infrared spectra.
LASSO regression

LASSO® was used as a linear model algorithm to estimate the sparse coefficients and its objective function

was shown:

1
min —— [| Xw—y |3+ allwl
w 2nsamples

The input array X was preprocessed extracting IR intensities features from the different chemical bonds, the
input array y here is the experimental value from IR spectra. nsamples represents the number of samples for
training. A grid search was performed using a base-10 logarithm grid for a (ranging from le-9 to 10). It was
observed that a low o value yielded the highest Pearson correlation values. Therefore, a universal « of 1e-9 is
used in this study. The data is set to be centered; therefore, no intercept will be used in this calculation, and
forced all coefficients to be positive. The Elastic Net was set to default where the norm of the coefficient

vector is set to be 1.
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As a comparison with LASSO, ridge regression and ordinary least squares (OLS) regression algorithms were
tested with the same hyperparameters. As shown in Figure S33, LASSO is a more suitable choice compared
to ridge regression due to the wide numerical ranges of the various features and the small, sparse coefficients
present in the data of this study. Additionally, LASSO is more effective in preventing overfitting compared to

OLS regression, making it a better fit for the requirements of this study.
Model validation

In statistics, the Pearson correlation can produce a value that measures linear correlation between two sets of
data. It is the ratio between the covariance of two variables and the product of their standard deviations. thus,

it is essentially a normalized measurement of the covariance. The Pearson correlation function was shown as:
n - -
Zizl(xi %) i—y)
rxy - n n
JEn im0 [T, 00- 90

where 7 is the sample size, x; and y; are each sample point index, 7y, is the value correlation for the x, y value.
In here, we will use this Pearson correlation value to reflect the feature that was presented in Figure 4 in the
main text. Additionally, this parameter was applied to identify the consistency of the experimental and LASSO

predicted IR spectra.
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Figure S1. Calculated IR spectrum and corresponding LASSO coefficients for ZIF-67 in ZIF-67 pyrolysis.
(a) C-C bond on the methyl; (b) C-C bond in the 5-membered ring; (c) C-H bond in the methyl; (d) C-H bond
on the 5-membered ring; (e) C-N bond in the 5-membered ring; (f) C-N bond in the 5-membered ring; (g) Co-

N bond. The calculated chemical bonds are indicated in yellow, as shown in the insets.
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Figure S2. Calculated IR spectrum and corresponding LASSO coefficients for oxidized ZIF-67 in ZIF-67
pyrolysis. (a) Co-N bond; (b) Co-O bond. The calculated chemical bonds are indicated in yellow, as shown in

the insets.
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Figure S3. Calculated IR spectrum and corresponding LASSO coefficients for CoN4 in ZIF-67 pyrolysis. (a)
C-C bond in the 5-membered ring; (b) C-C bond in the 6-membered ring; (c¢) C-N bond in the 5-membered
ring; (d) C-N bond in the 6-membered ring; (e) Co-N bond. The calculated chemical bonds are indicated in

yellow, as shown in the insets.
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Figure S4. Calculated IR spectrum and corresponding LASSO coefficients for CoN4-O in ZIF-67 pyrolysis.
(a) C-C bond in the 5-membered ring; (b) C-C bond in the 6-membered ring; (c) C-N bond in the 5-membered
ring; (d) C-N bond in the 6-membered ring; (e) Co-N bond; (f) Co-O bond. The calculated chemical bonds

are indicated in yellow, as shown in the insets.
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Figure S5. Calculated IR spectrum and corresponding LASSO coefficients for CoN4-CO in ZIF-67 pyrolysis.
(a) C-O bond; (b) Co-C bond; (c) Co-N bond. The calculated chemical bonds are indicated in yellow, as shown

in the insets.
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Figure S6. Calculated IR spectrum and corresponding LASSO coefficients for CoNs-OH in ZIF-67 pyrolysis.
(a) Co-N bond; (b) Co-O bond; (c) O-H bond. The calculated chemical bonds are indicated in yellow, as shown

in the insets.
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Figure S7. Calculated IR spectrum and corresponding LASSO coefficients for CoN3 in ZIF-67 pyrolysis. (a)
C-C bond; (b) C-N bond; (c) Co-N bond. The calculated chemical bonds are indicated in yellow, as shown in

the insets.
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Figure S8. Calculated IR spectrum and corresponding LASSO coefficients for CoN3-O in ZIF-67 pyrolysis.
(a) C-C bond; (b) C-N bond; (c) Co-N bond; (d) Co-O bond. The calculated chemical bonds are indicated in

yellow, as shown in the insets.
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Figure S9. Calculated IR spectrum and corresponding LASSO coefficients for CoN3-CO in ZIF-67 pyrolysis.
(a) C-O bond; (b) Co-C bond; (¢) Co-N bond. The calculated chemical bonds are indicated in yellow, as shown

in the insets.
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Figure S10. Calculated IR spectrum and corresponding LASSO coefficients for CoN3-OH in ZIF-67 pyrolysis.
(a) Co-N bond; (b) Co-O bond; (¢) O-H bond. The calculated chemical bonds are indicated in yellow, as shown

in the insets.
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Figure S11. Calculated IR spectrum and corresponding LASSO coefficients for CosNe in ZIF-67 pyrolysis.
(a) C-C bond in the 5-membered ring; (b) C-C bond in the 6-membered ring; (c) C-N bond in the 5-membered
ring; (d) C-N bond in the 6-membered ring; (¢) Co-Co bond; (f) Co-N bond. The calculated chemical bonds

are indicated in yellow, as shown in the insets.
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Figure S12. Calculated IR spectrum and corresponding LASSO coefficients for CosNe-H20 in ZIF-67
pyrolysis. (a) Co-O bond; (b) O-H bond. The calculated chemical bonds are indicated in yellow, as shown in

the insets.

S8

40



a e b

1e-2
6 4 : 5¢
" 5.1 10 -
(= A c
.4 D / \ o
2 g 2 [ | 3 =
< g A 35 5 0
2 o} 1\ Q
(&) I\ /\ &)
0 oi y\_“_‘/ ey 0.0 _AAJ— -5
1000 2000 3000 0 5 10 15 20 1000 2000 3000 0 5 10 15 20
C e 1e-2 d et 1e-2
5
6 = t
< 6 =
. 2 (]
€04 ] B4 ©
e =
< E 0 2 £ 0
2 [S) 2; 8
0 -5 0: et -5
1000 2000 3000 0 5 10 15 20 1000 2000 3000 0 5 10 15 20
e 1e-2 le-2
5 5
1 - 1 -
c c
{4} [}
2 ] 2 2
2 % 0 < g0
o <]
o [}
0 -5 0 -5
1000 2000 3000 0 5 10 15 20 1000 2000 3000 0 5 10 15 20
1e-2 h 1e-1 1e-2
g g 5
1
4 - -
. o e o
8 £ 2 k)
< 5 ° < g 0
o 2 o
o o
0 -5 0 -5
1000 2000 3000 0 5 10 15 20 1000 2000 3000 0 5 10 15 20
Wavenumber (cm-') Temperature-time coordinate Wavenumber (cm-) Temperature-time coordinate

Figure S13. Calculated IR spectrum and corresponding LASSO coefficients for CosNe in ZIF-67 pyrolysis.

(a) C-C bond in the 5S-membered ring; (b) C-C bond in the 6-membered ring; (¢) C-N bond in the 5-membered

ring; (d) C-N bond in the 6-membered ring; (e) Co-Co bond in the bottom layer; (f) Co-Co bond between the

bottom and top layer; (g) Co-Co bond in the top layer; (h) Co-N bond. The calculated chemical bonds are

indicated in yellow, as shown in the insets.
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Figure S14. Calculated IR spectrum and corresponding LASSO coefficients for Pt-ZIF-67 in Pt-doped ZIF-
67 pyrolysis. (a) C-C bond on the methyl; (b) C-C bond in the 5-membered ring; (c) C-H bond in the methyl;
(d) C-H bond on the 5-membered ring; (e) C-N bond in the 5S-membered ring; (f) C-N bond in the S-membered

ring; (g) Co-N bond; (f) Pt-N bond. The calculated chemical bonds are indicated in yellow, as shown in the

insets.
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Figure S15. Calculated IR spectrum and corresponding LASSO coefficients for oxidized Pt-ZIF-67 in Pt-
doped ZIF-67 pyrolysis. (a) Co-N bond; (b) Co-O bond; (¢) Pt-N bond; (d) Pt-O bond. The calculated chemical

bonds are indicated in yellow, as shown in the insets.
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Figure S16. Calculated IR spectrum and corresponding LASSO coefficients for CoNs4 in Pt-doped ZIF-67
pyrolysis. (a) C-C bond in the 5-membered ring; (b) C-C bond in the 6-membered ring; (c) C-N bond in the
5-membered ring; (d) C-N bond in the 6-membered ring; (¢) Co-N bond. The calculated chemical bonds are

indicated in yellow, as shown in the insets.
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Figure S17. Calculated IR spectrum and corresponding LASSO coefficients for CoNs-O in Pt-doped ZIF-67
pyrolysis. (a) C-C bond in the 5-membered ring; (b) C-C bond in the 6-membered ring; (c) C-N bond in the
S-membered ring; (d) C-N bond in the 6-membered ring; (¢) Co-N bond; (f) Co-O bond. The calculated

chemical bonds are indicated in yellow, as shown in the insets.
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Figure S18. Calculated IR spectrum and corresponding LASSO coefficients for CoNs-CO in Pt-doped ZIF-
67 pyrolysis. (a) C-O bond; (b) Co-C bond; (c) Co-N bond. The calculated chemical bonds are indicated in

yellow, as shown in the insets.
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Figure S19. Calculated IR spectrum and corresponding LASSO coefficients for CoN4-OH in Pt-doped ZIF-
67 pyrolysis. (a) Co-N bond; (b) Co-O bond; (c) O-H bond. The calculated chemical bonds are indicated in

yellow, as shown in the insets.
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Figure S20. Calculated IR spectrum and corresponding LASSO coefficients for PtNs in Pt-doped ZIF-67
pyrolysis. (a) C-C bond in the 5-membered ring; (b) C-C bond in the 6-membered ring; (c) C-N bond in the
5-membered ring; (d) C-N bond in the 6-membered ring; (e) Pt-N bond. The calculated chemical bonds are

indicated in yellow, as shown in the insets.
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Figure S21. Calculated IR spectrum and corresponding LASSO coefficients for PtN4-O in Pt-doped ZIF-67
pyrolysis. (a) C-C bond in the 5-membered ring; (b) C-C bond in the 6-membered ring; (c) C-N bond in the
S5-membered ring; (d) C-N bond in the 6-membered ring; (e) Pt-N bond; (f) Pt-O bond. The calculated chemical

bonds are indicated in yellow, as shown in the insets.
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Figure S22. Calculated IR spectrum and corresponding LASSO coefficients for CoN3 in Pt-doped ZIF-67
pyrolysis. (a) C-C bond; (b) C-N bond; (¢) Co-N bond. The calculated chemical bonds are indicated in yellow,

as shown in the insets.
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Figure S23. Calculated IR spectrum and corresponding LASSO coefficients for CoN3-O in Pt-doped ZIF-67
pyrolysis. (a) C-C bond; (b) C-N bond; (c) Co-N bond; (d) Co-O bond. The calculated chemical bonds are

indicated in yellow, as shown in the insets.
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Figure S24. Calculated IR spectrum and corresponding LASSO coefficients for CoN3-CO in Pt-doped ZIF-
67 pyrolysis. (a) C-O bond; (b) Co-C bond; (c) Co-N bond. The calculated chemical bonds are indicated in

yellow, as shown in the insets.
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Figure S25. Calculated IR spectrum and corresponding LASSO coefficients for CoN3-OH in Pt-doped ZIF-
67 pyrolysis. (a) Co-N bond; (b) Co-O bond; (c) O-H bond. The calculated chemical bonds are indicated in

yellow, as shown in the insets.
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Figure S26. Calculated IR spectrum and corresponding LASSO coefficients for PtN3 in Pt-doped ZIF-67
pyrolysis. (a) C-C bond; (b) C-N bond; (c) Pt-N bond. The calculated chemical bonds are indicated in yellow,

as shown in the insets.
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Figure S27. Calculated IR spectrum and corresponding LASSO coefficients for PtN3-O in Pt-doped ZIF-67
pyrolysis. (a) C-C bond; (b) C-N bond; (¢) Pt-N bond; (d) Pt-O bond. The calculated chemical bonds are

indicated in yellow, as shown in the insets.
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Figure S28. Calculated IR spectrum and corresponding LASSO coefficients for PtN3-CO in Pt-doped ZIF-67
pyrolysis. (a) C-O bond; (b) Pt-C bond; (c) Pt-N bond. The calculated chemical bonds are indicated in yellow,

as shown in the insets.
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Figure S29. Calculated IR spectrum and corresponding LASSO coefficients for CosNs in Pt-doped ZIF-67

pyrolysis. (a) C-C bond in the 5-membered ring; (b) C-C bond in the 6-membered ring; (¢) C-N bond in the
5-membered ring; (d) C-N bond in the 6-membered ring; (e) Co-Co bond; (f) Co-N bond. The calculated

chemical bonds are indicated in yellow, as shown in the insets.
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Figure S30. Calculated IR spectrum and corresponding LASSO coefficients for CosNe-H20 in Pt-doped ZIF-

67 pyrolysis. (a) Co-O bond; (b) O-H bond. The calculated chemical bonds are indicated in yellow, as shown

in the insets.
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Figure S31. Calculated IR spectrum and corresponding LASSO coefficients for Co2PtNs in Pt-doped ZIF-67

pyrolysis. (a) C-C bond in the 5-membered ring; (b) C-C bond in the 6-membered ring; (c) C-N bond in the
5-membered ring; (d) C-N bond in the 6-membered ring; (e) Co-Co bond; (f) Co-N bond; (g) Co-Pt bond; (h)

Pt-N bond. The calculated chemical bonds are indicated in yellow, as shown in the insets.
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Figure S32. Calculated IR spectrum and corresponding LASSO coefficients for CoeNes in Pt-doped ZIF-67
pyrolysis. (a) C-C bond in the S-membered ring; (b) C-C bond in the 6-membered ring; (c) C-N bond in the
5-membered ring; (d) C-N bond in the 6-membered ring; (e) Co-Co bond in the bottom layer; (f) Co-Co bond
between the bottom and top layer; (g) Co-Co bond in the top layer; (h) Co-N bond. The calculated chemical

bonds are indicated in yellow, as shown in the insets.
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Figure S33. Pearson correlations across the temperature-time coordinates using different regression

algorithms in ZIF-67 (a) and Pt-doped ZIF-67 (b) pyrolysis.
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Figure S34. LASSO p-value across the temperature-time coordinates in ZIF-67 (a) and Pt-doped ZIF-67 (b)
pyrolysis.
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Table S1. Chemical bonds in the database for ZIF-67 pyrolysis.

Structure E.ul:l; :Z]; Type of bond Corresponding Figure
ZIF-67 7 C-C (2); C-H (2); C-N (2); Co-N (1) Figure S1
Oxidized ZIF-67 2 Co-N (1); Co-O (1) Figure S2
CoNy 5 C-C (2);C-N(2); Co-N (1) Figure S3
CoNs-O 6 C-C (2); C-N (2); Co-N (1); Co-O (1) Figure S4
CoN4-CO 3 C-0O (1); Co-C (1); Co-N (1) Figure S5
CoNs-OH 3 Co-N (1); Co-O (1); O-H (1) Figure S6
CoNs 3 C-C (1); C-N (1); Co-N (1) Figure S7
CoN3-O 4 C-C (1); C-N (1); Co-N (1); Co-O (1) Figure S8
CoN3-CO 3 C-0O (1); Co-C (1); Co-N (1) Figure S9
CoN;-OH 3 Co-N (1); Co-O (1); O-H (1) Figure S10
Co3Ns 6 C-C (2); C-N (2); Co-Co (1); Co-N (1) Figure S11
Co3Ne-H20 2 Co-0(1); O-H (1) Figure S12
CogNs 8 C-C (2); C-N (2); Co-Co (3); Co-N (1) Figure S13
SUM 55

Table S2. Chemical bonds in the database for Pt-doped ZIF-67 pyrolysis.

Structure i,u;; Eﬁz Type of bond Cori?isg::;r;ding
Pt-ZIF-67 8 C-C (2); C-H (2); C-N (2); Co-N (1); Pt-N (1) Figure S14
Oxidized Pt-ZIF-67 4 Co-N (1); Co-O (1); Pt-N (1); Pt-O (1) Figure S15
CoNy4 5 C-C (2); C-N (2); Co-N (1) Figure S16
CoN4-O 6 C-C (2); C-N (2); Co-N (1); Co-O (1) Figure S17
CoN4s-CO 2 C-0O (1); Co-C (1); Co-N (1) Figure S18
CoN4s-OH 3 Co-N (1); Co-O (1); O-H (1) Figure S19
PtN4 5 C-C (2); C-N (2); Pt-N (1) Figure S20
PtN4-O 6 C-C (2); C-N (2); Pt-N (1); Pt-O (1) Figure S21
CoN; 3 C-C (1); C-N (1); Co-N (1) Figure S22
CoN3z-O 4 C-C (1); C-N (1); Co-N (1); Co-O (1) Figure S23
CoN3-CO 3 C-0O (1); Co-C (1); Co-N (1) Figure S24
CoNs-OH 3 Co-N (1); Co-O (1); O-H (1) Figure S25
PtN; 3 C-C (1); C-N (1); Pt-N (1) Figure S26
PtN3-O 4 C-C (1); C-N (1); Pt-N (1); Pt-O (1) Figure $27
PtN3-CO 3 C-O (1); Pt-C (1); Pt-N (1) Figure S28
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Co3Ng
Co3Ng-Hz0
Co:PtNs
CoeNg
SUM

o~ DN

86

C-C (2); C-N (2); Co-Co (1); Co-N (1)
Co-0 (1); O-H (1)

C-C (2); C-N (2); Co-Co (1); Co-N (1); Co-Pt (1)

C-C (2); C-N (2); Co-Co (3); Co-N (1)

Table S3. Temperature and time coordinate in Figures S1-S13, S14-S32.

Coordinate

o 0 NS R W N =D

[\ INEN ST S R & i el e e
W N = S O NN SN R W N =S

ZIF-67
Temperature (°C)
20
50
100
150
175
200
200
225
250
273
275
300
300
300
300
300
300
300
300
300
300
300
300

Time (min)

10

20
30
40
50
60
70
80
90
100
110
120

S22

Pt-ZIF-67
Temperature (°C)
20
50
75
100
100
100
120
150
175
200
200
225
250
250
270
300
300
300
300
300
300
300
300
300

Figure $29
Figure S30
Figure S31
Figure S32

Time (min)

0
10
20
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Table S4. Comparison of IR spectra frequency and intensity under different convergence of force criteria.

Co-0 bond in CoN3-OH Pt-O bond in PtN3-OH
Convergence of N . 1 Nelp
vy Frequency (cm™) Intensity (a.u.) Frequency (cm™) Intensity (a.u.)
0.05 969.9 2.66 1115.5 5.83
0.01 969.9 2.67 1115.5 5.83
0.005 969.9 2.68 1115.5 5.94

Table S5. Comparison of IR spectra frequency and intensity under different U values. U = 3.5 eV for Co” and

7.5 eV for Pt were applied as the median values of the tests, respectively.

Co-0O bond in CoN3-OH

U (eV) Frequency (cm™) Intensity (a.u.)
0 969.9 2.66
3.0 989.8 2.68
3.5 978.6 2.75
4.0 990.0 2.67

Pt-O bond in PtN3-OH

U (eV) Frequency (cm™) Intensity (a.u.)
0 1115.0 5.83
7.0 1143.9 5.79
7.510 1141.3 5.79
8.0 1136.4 5.82

S23

55



Supplementary References

(1) Kresse, G.; Furthmiiller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane

wave basis set. J. Phys. Rev B. 1996, 54, 11169-11186.

(2) Perdew, J. P.; Burke, K.; Emzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.
1996, 77, 3865.

(3) Blochl, P. E. Projector augmented-wave method. Phys. Rev. B. 1994, 50, 17953-17979.

(4) Monkhorst, H. J.; Pack J. D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188—
5192.

(5) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density

functional dispersion correction (DFT-D) for the 94 elements H-Pu. Chem. Phys. 2010, 132, 154104.

(6) Larsen, A. H.; Mortensen, J. I.; Blomgvist, J.; Castelli, I. E.; Christensen, R.; Dulak M.; Friis, J.; Groves,
M. N.; Hammer, B.; Hargus, C.; Hermes, E. D. The atomic simulation environment-a Python library for

working with atoms. J. Phys.: Condens. Matter. 2017, 29, 273002.

(7) Frederiksen, T.; Paulsson, M.; Brandbyge, M.; Jauho, A. P. Inelastic transport theory from first principles:
Methodology and application to nanoscale devices. Phys. Rev. B. 2007, 75, 205413.

(8) Kim, S. I.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, D. An interior-point method for large-scale 11-
regularized least squares. J. Mach. Learn. Res. 2007, 1, 606-617.

(9) Capdevila-Cortada, M.; Lodziana, Z.; Lopez, N. Performance of DFT+U approaches in the study of
catalytic materials. ACS Catal. 2016, 6, 8370-8379.

(10) Tian, Z. A DFT+U study of the segregation of Pt to the CeO2x X3[110)/(111) grain boundary.
arXiv:1710.03929, 2017.

524

56



Chapter 4: Conclusions and Perspectives

4.1 Conclusions

In summary, this thesis involves the utilization of a ML tool based on the LASSO algorithm
for the comprehensive analysis of in situ temperature-dependent DRIFTS in experimental
setting. In chapter 3, this thesis are achieved the comprehensive modelling of chemical bond
information that relevant to the pristine ZIF-67 and Pt-doped ZIF-67, and the establishment of
a theoretical database have enabled the trained ML model to effectively emulate real
experimental data. The emulation is evident in correlation values can be highest to 0.9,
affirming the proficiency of machine learning in replicating experimental data. Moreover, ML-
generated correlations, obtained while fitting experimental data for various chemical bonds,

can serve as valuable indicators for deducing chemical structures.

Integrating variations along the temperature-time axis provides profound insights into
chemical reaction mechanisms. The degradation of the ZIF framework, the gradual oxidation
of oxygen-containing species on the metal, and the formation of Co-O and Pt-O bonds
observed align closely with results from diverse experimental characterizations, which has
been shown in chapter 3. Notably, the comprehensive workflow we have established heavily
depends on database construction and ML algorithms, requiring minimal manual intervention

in chapter 3.

The understanding of the reaction mechanisms, vibrational mode of chemical bonds between
ZIF-67 and Pt-doped ZIF-67, IR designed LASSO machine learning algorithm and reaction
pathway for producing more single atom catalysts helps guide the design of other

electrocatalyst materials in MOFs.
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4.2 Perspectives

Therefore, we posit that this approach has substantial potential for practical and can be
expanded to a diverse array of applications for intelligent analysis of in situ experimental

characterization data in the future. These include;

1. Currently, we only process ZIF-67 and Pt-doped ZIF-67 in our machine learning model
There lack of enough data for us to enable the model to reveal the single atom catalysts
from other metal doped ZIF-67. Therefore, we plan to expand the training set which can
enable us to predict more kinds of SACs from different MOFs.

2. Linear regression model such as LASSO has its restriction in predicting certain range of
IR spectra, so further experiments can be focused on using different machine learning
model to conduct the research, this also can benefit on verifying the common application
on different types of MOFs.

3. IR spectra as the training set is still not enough to reveal the reaction pathway in more
complex reaction, so we plan to feed more experimental graphs such as UV-Visible
Spectra, X-ray Diffraction (XRD) Patterns, etc. This can enhance the accuracy of the

model and reveal more reaction details.
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