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Abstract 

This project aims at developing machine-learning approach to unravel the thermolysis 

pathways of metal-organic frameworks (MOFs) into atomically doped metal oxide catalysts. 

The research methodology encompasses two main components, namely density functional 

theory (DFT) and a machine learning method based on the least absolute shrinkage and 

selection operator (LASSO). Starting with small amounts of experimental infrared 

spectroscopic data, the proposed machine-learning approach can extrapolate a more 

comprehensive infrared spectroscopy dataset. This augmented dataset is then employed to 

predict the pyrolysis pathways of MOF materials, providing valuable insight into the synthesis 

of single-atom catalysts (SACs). The innovation is that using infrared spectroscopy data-driven 

machine-learning for unveiling thermolysis pathways of MOFs is a powerful tool for 

understanding the behaviour of these materials and developing new applications for them. 

Chapter 1 is the introduction and Chapter 2 presents a literature review. The advances and 

challenges of machine learning assisted reaction pathway finding in SACs. Then the 

application of machine learning tools, IR spectra, and MOFs thermolysis is studied and 

presented. Chapter 3 the Formation Mechanism of a Single-Atom Catalyst via Infrared 

Spectroscopic Analysis. The synthesis of single-atom catalysts (SAC) through the pyrolysis of 

zeolitic imidazolate frameworks (ZIFs) represents a crucial pathway, and the mechanism can 

be examined using infrared (IR) spectroscopy. The results showed that the Pearson correlation 

exceeding 0.7 when compared to experimental data, the algorithm furnishes correlation 

coefficients for the chosen structures. This substantiates essential structural changes over time 

and temperature. Extends the study to other SACs formation from MOFs and the conclusions 

are drawn in Chapter 4, following the discussions of challenges and perspectives of machine 

learning on experimental graph recognition in reaction pathway exploration. The novel MOFs 

producing single atom catalyst provides a new platform for electrocatalyst development. This 
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approach possesses substantial potential for robustness and has the capability to be applied 

across a wide spectrum of applications for intelligent analysis of in situ experimental 

characterization data in the future. 
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Chapter 1: Introduction 

1.1 Significance of the Project 

Recently, there has been a remarkable advancement in the design of structures and foundational 

electrocatalytic studies concerning Single-Atom Catalysts (SACs)1-4, since SACs provide an 

extremely high surface area, allowing for more active sites and efficient catalytic reactions, 

which sparked researchers interest and boosted extensive studies2. Nonetheless, single atoms 

have a propensity to aggregate during both synthetic and catalytic processes owing to their 

elevated surface energy. In this regard, the distinctive attributes of metal–organic frameworks 

(MOFs)5, such as exceptional tailor ability, well-defined porous structures, effective design 

flexibility, and ultrahigh surface areas, make them ideally suited to meet the substrate 

requirements for stabilizing Single-Atom Catalysts (SACs) when compared to other 

conventional porous materials6. However, the exploration of their formation mechanisms is 

still in its infancy stage. This knowledge gap poses challenges when it comes to achieving 

precise and controlled syntheses of SACs from MOF thermolysis. As a result, Understanding 

the proper thermolysis reaction pathway which can forecast metal–metal interactions among 

densely populated metal single atoms are still urgently needed2. 

Over the past few years, machine learning has played a crucial role in extracting information 

from experimental graphs, particularly in-situ DRIFTS7, showcasing considerable potential for 

data mining driven by ML techniques. Datasets in this procedure facilitate extraction of 

dynamic processes linked to the structural evolution of materials. A substantial database is 

essential for training the machine learning (ML) model, and density functional theory (DFT) 

calculations offer a rich source of data for this purpose8. Despite observed disparities between 

DFT-simulated IR spectra and experimental results, prior studies have uncovered a well-fitted 

linear scaling relationship between the calculated C–O bond stretching peak using DFT and 
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the corresponding experimental data9. As a result, the application of ML algorithms, 

particularly those based on linear regression, shows promise in bridging the gap between 

theoretical and experimental results, ultimately leading to superior fitting outcomes10. 

Discovering the vibrational mode in each atom bonding will facilitate the reaction pathway 

explanation and give positive feedback on practical instruction11. Due to substantial 

advancements in computing power, DFT calculations can now offer a precise depiction of the 

electronic structure of catalysts and vibration mode in each atom12. This can enrich the datasets 

for our machine-learning tool, it thus can help predict more accurate results to explain more 

complex reaction. This comparative analysis enables the deduction of the inherent formation 

mechanisms of SACs13, 14. 

The goal of this thesis is to study the reaction mechanisms of the Co3O4 from pristine ZIF-67 

and Pt-doped ZIF-67 metal single atom supported MOF. Co3O4 was SAC product from the 

thermolysis during the study because of its essential role in the electrocatalysis field. 

Additionally, the amalgamation of machine learning algorithms with theoretical calculations 

for the analysis of in situ experimental spectra holds the potential to complement human expert 

interpretation. Consequently, this approach is poised to evolve into a more widely adopted and 

versatile methodology15. 

1.2 Research Objectives 

The aim given to the study can be clearly obtained from the above statement is used machine 

learning method to explore the analysis thermolysis pathways of MOF. For this aim can be 

divided into three small objectives, they are: 

1. To achieve a high correlation between the LASSO fitted IR spectroscopy and experimental 

data. 
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The objective of this statement is to state that the IR intensity of different bonds from DFT 

calculation, as identified by the LASSO model, has a high correlation with the 

experimental data. This suggests that the LASSO model can accurately predict the 

vibrational modes that contribute most strongly to the IR spectrum, and that these modes 

are important for understanding the molecular structure and chemical properties of the 

molecule. 

To achieve this objective, a dataset of IR spectra and corresponding experimental data 

would need to be collected. The dataset would then be used to train a LASSO model, which 

would identify the vibrational modes that are most strongly correlated with the 

experimental data. The correlation between the predicted IR intensities and the 

experimental data would then be quantified using a statistical measure such as the Pearson 

correlation coefficient. If the correlation is high, it would suggest that the LASSO model 

is accurately predicting the important vibrational modes, and that these modes are crucial 

for understanding the molecule's structure and properties. 

2. Analysis of the thermolysis mechanism of ZIF-67. 

IR spectra provide information about the vibrational modes of molecules and are 

commonly used to identify the types of bonds present in a molecule. LASSO can be used 

to analyse IR spectra by identifying the most important vibrational modes that are 

correlated with experimental data. 

By identifying the most important vibrational modes using LASSO, it is possible to gain 

insights into the chemical and physical processes that occur during the thermolysis of ZIF-

67. For example, certain vibrational modes may be associated with specific chemical 

bonds that are broken or formed during the thermolysis process. By comparing the 
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vibrational modes to theoretical models or other experimental data, it may be possible to 

identify the intermediate species and reaction pathways that occur during thermolysis. 

3. Analysis of the formation mechanism of single-atom catalyst. 

The objective of this statement is to describe how the results of the thermolysis mechanism 

study of single-atom doped ZIF-67 can be compared with the previous thermolysis 

mechanism of ZIF-67. 

The thermolysis mechanism of single-atom doped ZIF-67 was studied for Pt-ZIF-67. To 

investigate the thermolysis mechanism of Pt-doped ZIF-67, various techniques such as 

LASSO-fitted infrared spectroscopy can be employed. The results obtained from these 

techniques can provide insights into the chemical and physical processes that occur during 

thermolysis. 

The results of the thermolysis mechanism study of Pt-doped ZIF-67 can be compared with 

the previous thermolysis mechanism of ZIF-67 to identify any differences that may arise 

from the presence of Pt. Comparing the vibrational modes and identifying any changes in 

the mechanism can provide insights into how the presence of Pt affects the thermolysis 

process. 

Furthermore, the comparison of the results of the thermolysis mechanism study of Pt-

doped ZIF-67 to theoretical models and computational simulations can provide a deeper 

understanding of the thermolysis mechanism and the factors that influence the formation 

of metal monomers and metal oxide nanoparticles. 
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1.3 Thesis Outline 

This thesis is presented in the form of journal publications. The results of the reaction 

mechanisms and machine learning studied are included. Specifically, the chapters in the Thesis 

are presented in the following sequence: 

➢ Chapter 1 this thesis was introduced. It emphasizes the importance of this project and 

outlines the research objectives. 

➢ Chapter 2 reviews the recent progress and challenges of thermolysis pathways of MOFs 

and used for machine learning in reaction mechanism studies. 

➢ Chapter 3 presents machine learning confirms the formation mechanism of a Single-Atom 

Catalyst based on ZIF-67 and Pt doped ZIF-67. 

➢ Chapter 4 presents the conclusion and perspectives for further work on revealing the 

thermolysis mechanism in more kinds of MOFs. 

1.4 References 

1. Huang, H.; Shen, K.; Chen, F.; Li, Y. Metal–Organic Frameworks as a good platform 

for the fabrication of single-atom catalysts. ACS Catalysis 2020, 10 (12), 6579-6586. 

DOI: 10.1021/acscatal.0c01459. 

2. Mitchell, S.; Perez-Ramirez, J. Single atom catalysis: a decade of stunning progress and 

the promise for a bright future. Nat Commun 2020, 11 (1), 4302. DOI: 10.1038/s41467-

020-18182-5 From NLM PubMed-not-MEDLINE. 

3. Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, B. In situ/operando techniques for 

characterization of single-atom catalysts. Acs Catalysis 2019, 9 (3), 2521-2531. 

4. Kim, J.; Kim, H. E.; Lee, H. Single‐atom catalysts of precious metals for 

electrochemical reactions. Chem Sus Chem 2018, 11 (1), 104-113. 

5. Kitagawa, S. Metal–organic frameworks (MOFs). Chemical society reviews 2014, 43 

(16), 5415-5418. 
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9. Cotton, F. A.; Kraihanzel, C. Vibrational spectra and bonding in metal carbonyls. I. 
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15. Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: a new 

frontier in heterogeneous catalysis. Accounts of chemical research 2013, 46 (8), 1740- 

1748. 
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Chapter 2: Literature Review 

2.1 Introductory Background 

Due to the rising global concerns over environmental issues and the limited availability of fossil 

fuels, the search for sustainable and renewable energy sources has become a crucial challenge 

in today's world. One important aspect of achieving sustainable energy systems is through the 

use of electrochemical storage and conversion devices, such as fuel cells, water decomposition, 

and electrochemical reduction of carbon dioxide and nitrogen. In these high-performance 

energy devices, the performance of electrocatalysts plays a pivotal role in electrochemical 

reactions.1-5 

Zeolitic imidazolate frameworks (ZIFs) are a class of metal-organic frameworks (MOFs) that 

have gained significant attention in recent years due to their unique structural properties and 

potential applications in various fields such as gas storage, separation, and catalysis.6-8 One of 

the most promising applications of ZIFs is their use as precursors for the formation of SACs. 

ZIFs can serve as an excellent precursor for the formation of SACs due to their ability to 

encapsulate metal ions within their structure. By thermal treatment or chemical activation, the 

metal ions can be converted into single atoms, which are dispersed on the support material with 

a high degree of control and uniformity.9 This allows to produce highly efficient SACs that can 

be tailored to specific applications. 

The use of Infrared (IR) spectroscopy in the study of reaction mechanisms is based on the 

principle that different functional groups have characteristic vibrational frequencies.10 

Therefore, changes in the intensity or position of specific IR bands during a reaction can 

provide insights into the reaction mechanism and the formation of intermediates. By analysing 
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the changes in IR spectra at different reaction times, it is possible to obtain a detailed picture 

of the reaction pathway and the intermediates involved.11 

In recent years, data-driven machine learning techniques, such as the LASSO algorithm, have 

been employed to analyse IR spectra and extract meaningful information about reaction 

mechanisms.12-13 These methods can help to identify key features of the IR spectra that are 

important for understanding the reaction mechanism and can provide a more comprehensive 

analysis of complex reaction pathways. 

2.2 Thermolysis mechanism of pristine ZIF-67 

FTIR has been a great tool for analysing the bond information in material due to its 

manoeuvrability among all practical equipment. Wu et al.14 conducted research on ZIF-67 to 

reveal those thermolysis routes in high temperature range.  

 

Figure 1 Temperature dependent in situ FTIR spectra of ZIF-8 and ZIF-6714 
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A noticeable difference appears in the peak related to “C C” stretching (1580 cm−1, as 

highlighted in Fig. 1). The peak was gradually broadened with the temperature rising to 350℃. 

Based on this information, the “C=C” was preliminary judged to be broken at this temperature, 

suggesting a direct collapse of its lattice structure without lattice deformation. However, this 

IR spectra contained different peaks and it may involve multiple bonds formation and break 

within one peak. Moreover, this research only provided the thermolysis routes in air from 25℃ 

to 300℃, but it did not reveal how the metal-oxide bond was formed and the quantity that 

presents in the corresponded temperature. 

2.3 Thermolysis mechanism of single-atom metal-doped ZIF-67 

Understanding the mechanism by which the metal in ZIF-67 is oxidized to useful metal oxide 

catalysts is important in industrial catalyst production, as it enables the optimization of the 

synthesis process and facilitates control over the properties of the resultant catalysts. Shan et 

al. elucidated the formation of high-density Pt single atoms with inter-site interactions in 

derived Co3O4 host.15 The resulting hybrid material is referred to as Pt-ZIF-67. In order to fully 

understand the driving force behind the construction of Pt-Pt interaction and the cleavage of 

organic ligands, the local evolution of metal-ligand coordination at Pt sites was analysed. The 

contour maps in Figures 2c, 2d and spectra revealed that a few characteristic peaks of ZIF-67 

framework were observed in both Pt-ZIF-67 and ZIF-67.  

As the thermolysis temperature increased, these peaks in Pt-ZIF-67 remained relatively stable 

until a sudden disappearance at around 300°C. This observation suggests that despite the host 

framework undergoing collapse from 250°C onwards, the organic ligands were retained until 

complete structured decomposition and transition to Co3O4 took place at 300°C. In contrast, 

ZIF-67 did not undergo such structural decomposition until being held at 300°C for more than 

60 minutes. The X-ray diffraction analysis (XRD) and diffuse reflectance Fourier-transform 

https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp02582k#fig1


 14 
 

infrared spectroscopy (DRIFTs) observations confirmed that the fully phased transition of Pt-

ZIF-67 occurred earlier than that of pristine ZIF-67, both of which were accompanied by the 

decomposition of 2-MeIm ligand. This result suggests that the incorporated Pt sites are possibly 

more vulnerable to be attacked by oxygen and therefore facilitate the phase transition to Co3O4. 

 

Figure 2 Pt-ZIF67 and pristine ZIF-67 with characteristic peaks indicated by arrows and 

labels.15 

2.4 Machine-learning for Unveiling Thermolysis Pathways 

The capability of machine learning (ML) to handle complex systems and make testable 

predictions has led to its application at the intersection of multiple disciplines. Although ML 

methods, including neural networks (NN), were proposed as early as the 1950s to 1970s, the 

application of ML in other fields was hindered by significant knowledge barriers. However, 

over the past decade, practical tools such as the Torch library, Scikit-Learn, and the Tensorflow 

library have reduced professional thresholds for users, 16 resulting in an increase in the 

application of ML in fields such as physics and chemistry17-18, as shown in Figure 3. 
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Figure 3. Pt-ZIF67 and pristine ZIF-67 with characteristic peaks indicated by arrows and 

labels.19 

This increase in ML application has led to the emergence of machine learning interatomic 

potentials (MLIP)20 and machine learning force fields (MLFF)21, which have been used to 

accelerate DFT computation and improve precision in large systems. Furthermore, 

interpretable ML methods22 are being used to understand various physical quantities on target 

properties and have resulted in suitable descriptors to make predictions. In addition, the inverse 

design approach23 is being applied to derive theoretical structures from experimental 

characterizations with improved accuracy and efficiency. 

 The optimal model is expected to be positioned in the upper left corner of the plot, even though 

it may lie in the infeasible region. Solutions that are located on the Pareto front near this ideal 

model are considered reasonable options. However, solutions with lower residuals may 

sacrifice the distribution of errors. On the other end of the Pareto front, some models may 

generate a nearly perfect normal error distribution, but they may not be effective in fitting the 

data. The best solution, therefore, must strike a balance between all objectives and should be 

chosen based on additional criteria and information. In the following section, we will discuss 

the distinctive characteristics of the Pareto front, which can serve as useful indicators for 

making valid decisions. A diagram summarizing all our approaches' relevant steps is included 

in the Figure 4. 
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Figure 4. Pt-ZIF67 and pristine ZIF-67 with characteristic peaks indicated by arrows and 

labels.24 

2.5 Methods 

This section outlines the methods and procedures to be followed in order to achieve the aims 

of the study. This section may include a discussion of the sources to be consulted that will 

inform the selection and use of these methods. 

DFT is used to simulate the Infrared Vibrational Spectrum 

VASP (Vienna Ab initio Simulation Package) is a widely used DFT (Density Functional 

Theory) code for simulating the electronic structure and properties of materials. VASP uses a 

plane-wave basis set and the projector-augmented wave (PAW) method to describe the 
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electronic structure of a system. The PAW method is a variant of the pseudopotential method 

that includes a partial core correction to improve the accuracy of the calculation. 

In practice, the process involves the following steps: 

1. Perform molecular dynamics simulations or quantum chemical calculations to obtain 

the positions and velocities of the atoms in the molecule. 

2. Calculate the dipole moment of the molecule as a function of time using the positions 

of the atoms. 

3. Calculate the dipole moment autocorrelation function from the dipole moment time 

series. 

4. Apply the DFT to the dipole moment autocorrelation function to obtain the IR 

vibrational spectrum. 

The resulting IR spectrum can then be compared to experimental spectra or used to predict the 

vibrational properties of new molecules. The accuracy of the simulation depends on the quality 

of the input data and the level of theory used in the calculations. 

Atomic Simulation Environment (ASE) is used as the interface to transform the DFT-

calculated vibrational frequencies into spectra. 

ASE is a Python library that provides a user-friendly interface for performing atomistic 

simulations and analysing the results. ASE includes various modules for performing DFT 

calculations, such as the popular DFT code VASP, as well as tools for analysing and visualizing 

the results. 
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To transform the DFT-calculated vibrational frequencies into spectra, ASE can be used in 

conjunction with other Python libraries such as NumPy and Matplotlib. The general process 

involves the following steps: 

1. Use ASE to perform a DFT calculation of the molecule of interest, including the 

calculation of the vibrational frequencies. 

2. Extract the vibrational frequencies from the DFT calculation using ASE's built-in tools. 

3. Use NumPy to convert the frequencies into wavelengths or wavenumbers that are 

suitable for plotting on an IR spectrum. 

4. Calculate the intensities of each vibrational mode based on the transition dipole 

moments, which can also be obtained from the DFT calculation. 

5. Plot the resulting IR spectrum using Matplotlib or another plotting library. 

VESTA is used for visualization. 

VESTA is a 3D visualization software designed for analysing electronic structures. Its full 

name, Visualisation for Electronic Structural Analysis, reflects its capabilities. The software is 

suitable for displaying structural models, volumetric data such as electron or nuclear densities, 

and crystal morphologies. The program's features allow users to work with many objects, such 

as atoms, bonds, polyhedral, and polygons on is surfaces. Multiple windows can be opened 

simultaneously, with each window capable of containing numerous tabs that correspond to 

different files. With VESTA, users have the flexibility to visualize and analyse complex 

structures with ease. So that I can use this software to view the structure and intermediate that 

been built in this project easily. 
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LASSO in machine learning: 

LASSO regression tries to find the best fitting line while simultaneously shrinking the less 

important feature coefficients to zero. This makes LASSO a useful technique for feature 

selection in high-dimensional datasets, where the number of features is much larger than the 

number of observations. By setting the coefficients of unimportant features to zero, LASSO 

effectively eliminates those features from the model, reducing overfitting and improving 

generalization performance. 

LASSO regression can be solved using optimization algorithms such as coordinate descent, 

which iteratively updates the regression coefficients. The strength of the penalty term is 

controlled by a hyperparameter called the regularization parameter, which can be tuned using 

techniques such as cross-validation. 

The capability of machine learning (ML) to handle complex systems and make testable 

predictions has led to its application at the intersection of multiple disciplines. LASSO24-25 is 

the machine learning algorithm used for fitting the experimental data and bond feature 

selection.  

The simplest linear regression correlates with the infrared intensities. And the y-intercept 𝛽0 

and the forms were shown as: 

𝑦 = 𝛽𝑋 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 +⋯+ 𝛽𝑝𝑥𝑝 

The LASSO algorithm aims to figure out the best-fit model while concurrently driving some 

of the IR’s model coefficients to enclose to zero, which will lead to a better interpretable 

scattered model. 
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The X here represents the bonds IR intensities simulated by ASE Infrared intensities class. Y 

is the experimental data that can be regarded as the target set of LASSO machine learning. This 

process was repeated for ‘X’ IR intensities resulting in ‘X’ linear transformation. Then, a series 

of shrinkage in the coefficients is determined by the complexity parameter 𝛼. The strength of 

this ‘balance’ term, is hyperparameter 𝜆. It aids in mitigating the overfitting of a model to the 

training data by striking a balance between fitting accuracy and model simplicity. These 

transformations facilitate the mapping of the source data's infrared intensities to the target data.  

Consequently, the coefficients become more resilient to collinearity. We can therefore predict 

the infrared intensities for the ZIF-67 by multiplying the 𝛽 coefficient and then taking the 

summation of the contribution to the intensities. 
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Chapter 3: Machine Learning Confirms the Formation Mechanism of a 

Single-Atom Catalyst via Infrared Spectroscopic Analysis 

3.1 Introduction and Significance 

In this study, we present a pioneering endeavour wherein an artificial intelligence (AI)-driven 

analysis of in-situ temperature-dependent Fourier-transform infrared spectroscopy (DRIFTs) 

data is employed to confirm the pyrolysis mechanism of pristine ZIF and Pt-doped ZIF-67 to 

synthesize Co3O4 and Pt-Co3O4 SAC. The AI simulation exhibits a remarkable Pearson 

correlation value as high as 0.7~0.9 compared with experimental data. Furthermore, this 

algorithm provides correlation coefficients for the selected structural features, thereby 

facilitating the extraction of invaluable insights into the structural evolution along the 

temperature and time axis during the reaction process. 

Highlights of this work include: 

1. Establish DFT-calculated IR spectrum database of all possible chemical bonds during the 

ZIF pyrolysis process and use machine learning algorithm to bridge the gap between theory 

and experimental results to directly simulate and analyse in-situ experimental IR spectrum. 

2. Develop AI workflow to extract chemical bond information correlated with experimental 

data from the theoretical database. A successful fit of the experimental in-situ DRIFTs 

spectrum is achieved with high correlation of 0.7-0.9, indicating effective simulation of 

experimental results. 

3. Through AI-analysed changes in chemical bond coefficients, the inferred reaction 

mechanism, encompassing ZIF decomposition and Pt-O bond formation, closely aligns 

with experimental findings, which demonstrates AI's potential in reasonably speculating 

the reaction mechanism. 
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4. The approach relies heavily on database construction and AI algorithms, with minimal 

manual intervention. As such, it holds significant potential for robustness and can be 

extended to intelligent analysis of experimental data to predict the formation mechanism 

of more SACs. 

3.2 Machine Learning Confirms the Formation Mechanism of a Single-Atom Catalyst 

via Infrared Spectroscopic Analysis 

This Chapter is included as it appears as a journal paper published by Yanzhang Zhao, Huan 

Li, Jieqiong Shan, Zhen Zhang, Xinyu Li, Javen Qinfeng Shi, Yan Jiao, and Haobo Li*, 

“Machine Learning Confirms the Formation Mechanism of a Single-Atom Catalyst via Infrared 

Spectroscopic Analysis.” The Journal of Physical Chemistry Letters 14 (2023): 11058-11062. 
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Chapter 4: Conclusions and Perspectives 

4.1 Conclusions 

In summary, this thesis involves the utilization of a ML tool based on the LASSO algorithm 

for the comprehensive analysis of in situ temperature-dependent DRIFTS in experimental 

setting. In chapter 3, this thesis are achieved the comprehensive modelling of chemical bond 

information that relevant to the pristine ZIF-67 and Pt-doped ZIF-67, and the establishment of 

a theoretical database have enabled the trained ML model to effectively emulate real 

experimental data. The emulation is evident in correlation values can be highest to 0.9, 

affirming the proficiency of machine learning in replicating experimental data. Moreover, ML-

generated correlations, obtained while fitting experimental data for various chemical bonds, 

can serve as valuable indicators for deducing chemical structures. 

Integrating variations along the temperature–time axis provides profound insights into 

chemical reaction mechanisms. The degradation of the ZIF framework, the gradual oxidation 

of oxygen-containing species on the metal, and the formation of Co–O and Pt–O bonds 

observed align closely with results from diverse experimental characterizations, which has 

been shown in chapter 3. Notably, the comprehensive workflow we have established heavily 

depends on database construction and ML algorithms, requiring minimal manual intervention 

in chapter 3. 

The understanding of the reaction mechanisms, vibrational mode of chemical bonds between 

ZIF-67 and Pt-doped ZIF-67, IR designed LASSO machine learning algorithm and reaction 

pathway for producing more single atom catalysts helps guide the design of other 

electrocatalyst materials in MOFs. 
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4.2 Perspectives 

Therefore, we posit that this approach has substantial potential for practical and can be 

expanded to a diverse array of applications for intelligent analysis of in situ experimental 

characterization data in the future. These include: 

1. Currently, we only process ZIF-67 and Pt-doped ZIF-67 in our machine learning model 

There lack of enough data for us to enable the model to reveal the single atom catalysts 

from other metal doped ZIF-67. Therefore, we plan to expand the training set which can 

enable us to predict more kinds of SACs from different MOFs. 

2. Linear regression model such as LASSO has its restriction in predicting certain range of 

IR spectra, so further experiments can be focused on using different machine learning 

model to conduct the research, this also can benefit on verifying the common application 

on different types of MOFs. 

3. IR spectra as the training set is still not enough to reveal the reaction pathway in more 

complex reaction, so we plan to feed more experimental graphs such as UV-Visible 

Spectra, X-ray Diffraction (XRD) Patterns, etc. This can enhance the accuracy of the 

model and reveal more reaction details. 

 

 

 

 

 

 

 




