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Abstract

Deep neural networks (DNNs) have been recognized for their remarkable ability

to achieve state-of-the-art performance across numerous machine learning tasks.

However, DNN models are susceptible to attacks in the deployment phase, where

Adversarial Examples (AEs) present significant threats. Generally, in the Computer

Vision domain, adversarial examples are maliciously modified inputs that look similar

to the original input and are constructed under white-box settings by adversaries with

full knowledge and access to a victim model. But, recent studies have shown the ability

to extract information solely from the output of a machine learning model to craft

adversarial perturbations to black-box models is a practical threat against real-world

systems. This is significant because of the growing numbers of Machine Learning

as a Service (MLaaS) providers—including Google, Microsoft, IBM—and applications

incorporating these models. Therefore, this dissertation studies the weaknesses of

DNNs to attacks in black-box settings and seeks to develop mechanisms that can

defend DNNs against these attacks.

Recognising the practical ability of adversaries to exploit simply the classification

decision (predicted label) from a trained model’s access interface distinguished as a

decision-based attack, the research in Chapter 3 first delves into recent state-of-the-art

decision-based attacks employing approximate gradient estimation or random search

methods. These attacks aim at discovering lp>0 constraint adversarial instances,

dubbed dense attacks. The research then develops a robust class of query efficient

attacks capable of avoiding entrapment in a local minimum and misdirection

from noisy gradients seen in gradient estimation methods. The proposed attack

method—RAMBOATTACK—exploits the notion of Randomized Block Coordinate

Descent to explore the hidden classifier manifold, targeting perturbations to

manipulate only localized input features to address the entrapment issues in local

minima encountered by gradient estimation methods.

In contrast to dense attacks, recent studies have realised lp=0 constraint adversarial

instances, dubbed sparse attacks in white-box settings. This demonstrates that

machine learning models are more vulnerable than we believe. However, these

sparse attacks in the most challenging scenario—decision-based—have not been
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Abstract

well studied. Furthermore, the sparse attacks aim to minimize the number of

perturbed pixels—measured by l0 norm—leads to i) an NP-hard problem; and

ii) a non-differentiable search space. Recognizing the shortage of study about

sparse attacks in a decision-based setting and challenges of NP-hard problem and

non-differential search space, the research in Chapter 4 explores decision-based spare

attacks and develops an evolution-based algorithm—SPARSEEVO—for handling these

challenges. The results of comprehensive experiments in this research show that

SPARSEEVO requires significantly fewer model queries than the state-of-the-art sparse

attack for both untargeted and targeted attacks. Importantly, the query efficient

SPARSEEVO, along with decision-based attacks, in general, raise new questions

regarding the safety of deployed systems and poses new directions to study and

understand the robustness of machine learning models.

Extracting information solely from the confidence score of a machine learning model

can considerably reduce the required query budgets to attack a victim model. But

similar to sparse attacks in decision-based settings, constructing sparse adversarial

attacks, even when models opt to serve confidence score information to queries, is

non-trivial because of the resulting NP-hard problem and the non-differentiable search

space. To this end, the study in Chapter 5 develops the BRUSLEATTACK—a new

algorithm built upon a Bayesian framework for the problem and evaluates against

Convolutional Neural Networks, Vision Transformers, recent Stylized ImageNet models,

defense methods and Machine Learning as a Service (MLaaS) offerings exemplified by

Google Cloud Vision. Through extensive experiments, the proposed attack achieves

state-of-the-art attack success rates and query efficiency on standard computer vision tasks

across various models.

Understanding and recognizing the vulnerability of Deep Learning models to

adversarial attacks in various black-box scenarios has compelled the exploration of

mechanisms to defend Deep Learning models. Therefore, the research in Chapter 6

explores different defense approaches and proposes a more effective mechanism

to defend against black-box attacks. Particularly, the research aims to integrate

uncertainty into model outputs to mislead black-box attacks by randomly selecting

a single or a subset of well-trained models to make predictions to query inputs. The

uncertainty in the output scores to sequences of queries is able to hamper the attempt of

attack algorithms at estimating gradients or searching directions toward an adversarial

example. Since the uncertainty in the output scores can be improved through the
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diversity of a model set, the research investigates different techniques to promote

model diversity. Through comprehensive experiments, the research demonstrates that

the Stein Variational Gradient Descent method with a novel sample loss objective

encourages greater diversity than others. Overall, both introducing uncertainty into

the output scores and prompting diversity of the model set studied in this research is

able to greatly enhance the defense capability against black-box attacks with minimal

impact on model performance.
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Chapter 1

Introduction

T
HE first chapter of this dissertation provides a concise

introduction to the field of Machine Learning and discusses the

scope and challenges of the research problems. The chapter

also presents the motivations for the research and the objectives of

this dissertation, as well as emphasizing the contributions made in

the following chapters. This chapter concludes with a guide to the

dissertation’s structure.
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1.1 Introduction

1.1 Introduction

In recent years, deep neural networks (DNNs) have demonstrated remarkable

performance on a variety of vision tasks, earning them enough trust to be deployed

in what are often critical applications, such as self-driving cars (Chen et al., 2015) or

disease diagnosis (Anwar et al., 2018). DNNs’ superhuman performance on certain

tasks has also led to the industrialization of machine learning, with a growing numbers

of Machine Learning as a Service (MLaaS) providers—including Google Cloud Vision1,

IBM Watson Visual Recognition2, Amazon Rekognition 3 or Microsoft’s Cognitive

Services 4—and a plethora of applications incorporating DNN models. Now, at the

cost-per-service level, any system can easily integrate intelligence into applications.

However, the increasingly inevitable and widespread proliferation of machine learning

in systems is creating incentives and new attack surfaces to exploit for malevolent

actors.

Extensive research assessing the vulnerabilities of deep learning systems have already

shown that some models are critically susceptible to evasion attacks from Adversarial

Examples. These attacks, in general, seek to craft malicious, imperceptible perturbations

to be applied to model inputs in order to misguide or hijack the decision of the DNN

model.

Adversarial examples attacks, or simply adversarial attacks henceforth, conducted under

conditions of complete access to and knowledge of the target model (i.e. architecture

and parameters) in so-called white-box settings are well-studied. However, in

practical deployments of commercial and industrial machine learning systems, model

information is highly restricted to external parties. Now, attacks must be conducted in

black-box settings—with highly limited access to the model. In such practical settings,

an attacker is limited to interacting with a model through a query-response mechanism

and is only able to access the revealed model outputs, as illustrated in Figure 1.1.

Attacking these systems in such black-box scenarios is more practical and, therefore,

interesting to study. Since these attacks are able to compromise the reliability and

security of DNN models with limited access and information, they pose a significant

threat to the safety of applications and systems relying on DNNs. Therefore, this

1https://cloud.google.com/vision
2https://www.ibm.com/cloud/machine-learning
3https://aws.amazon.com/machine-learning/
4https://azure.microsoft.com/en-us/services/cognitive-services/
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Figure 1.1. An illustration of an attack to craft an adversarial example in a black-box scenario

in which an attacker aims to mislead a deep learning model using a query-response interaction via

the publicly exposed application programming interface or API (i.e. Google Cloud Vision or Amazon

Rekognition) of a MLaaS provider. Of particular concern, an attacker can query a model by sending a

request to a machine learning service API and exploit the response from that model to make changes

to the input data and craft an input that is capable of leading the model to make an incorrect

decision.

dissertation aims to study the vulnerability of deep learning models to adversarial

attacks in black-box scenarios.

Recently, research has demonstrated that adversarial attacks in black-box scenarios

relying solely on the limited information from a model’s output are feasible. The threat

posed by these attacks can be characterized as score-based or decision-based attacks by

examining the information revealed by a model to adversaries. Notably, in an effort

to quantitatively assess the imperceptibility of perturbations, adversarial attacks can

be categorized according to the lp norm-constrained perturbation of Dense Adversarial

Examples or Sparse Adversarial Examples. In general, in any attack against a DNN model,

an adversary may aim to cause the models to fail to make a correct decision—referred

to as an untargeted attack—or lead the DNN to make a malicious decision—referred to

as a targeted attack. In practice, achieving a targeted attack is significantly harder than

an untargeted attack. The details of black-box attack variations are illustrated in Figure

1.2 and explained further below:

• Score-based versus decision-based attacks. Query-based black-box attacks

capable of exploiting only a model’s output scores to craft adversarial examples

are referred to as score-based attacks, while black-box attacks in the more

restrictive setting relying solely on the label obtained from model queries

are dubbed decision-based attacks. This attack setting is considered the most

restricted threat model since the information exposed to an attacker is limited
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Figure 1.2. An illustration of adversarial attacks in different black-box settings in which attacks

aim at manipulating a source image (i.e. traffic light image) to evade a black-box deep learning

model. Specifically, in Score-based settings, the attack can merely access the output—Confident

Score while in Decision-based settings, the attack only has access to the model’s decision—predicted

label. Moreover, a targeted attack in decision-based settings requires a starting image from a target

class (i.e. street lamp). In Dense settings, an adversarial attack aims to perturb an entire source

image, whereas in Sparse settings, the attack only alters a few pixels of the source image.

to the hard-label—the most confident label predicted or decision, for instance, as

provided by the logo or landmark detection model services on Google Cloud

Vision5.

• Dense versus sparse attacks. Based on a similarity measure, imperceptibility

can describe an attack as a dense attack—l2, l∞ norm constrained adversarial

attacks—or a sparse attack—l0 norm constrained adversarial attacks. In the vision

domain, a l0 norm-constrained perturbation is equivalent to the number of pixels

manipulated. As such, the main aim of sparse attacks is to minimize the number

of perturbed pixels required to mislead the target machine learning model.

Since black-box scenarios are practical and provide insights into real-world security

threats faced by machine learning systems, it is logical to explore and investigate

adversarial attacks under these black-box scenarios. However, compared to the

5https://cloud.google.com/vision
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extensive studies that have focused on crafting adversarial examples in white-box

settings, there is not yet a comparable level of knowledge and understanding regarding

attacks in black-box settings. Notably, only a handful of studies have explored sparse

attacks and attacks under more challenging, decision-based settings. To this end, this

dissertation focuses on understanding the vulnerability of DNN models to threats from

lesser studied black-box attack variants and developing a means of defending against

such attacks.

1.2 Objectives

In seeking to contribute to knowledge and understanding about black-box attacks and

design defense mechanisms against them, this dissertation pursues the following two

objectives:

Objective 1: Understand the practical threats to deep learning models from

adversarial attacks under lesser studied black-box scenarios.

Objective 2: Develop a robust mechanism to defend against black-box

adversarial attacks with a marginal accuracy trade-off.

1.3 Challenges

Prior research has investigated score-based and dense attacks to promote our

understanding of deep learning model vulnerabilities. However, threats against

deep learning models in other black-box settings such as decision-based dense,

decision-based sparse or score-based sparse threat models have not been widely

studied. Additionally, known adversarial attacks under black-box threat models

require a large number of queries to deceive a learned model. Consequently, these

attack methods do not appear to scale well, especially to high-resolution tasks such as

ImageNet classification. Therefore, the practicability of the threat to real-world systems

is unclear. This leads to an open question about the existence of query efficient attacks

that can scale to threaten practical vision tasks.

For realistic attacks, achieving attack success with a limited query budget is important

because: i) MLaaS providers limit the rate of queries to their services; ii) throttling
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1.3 Challenges

at a service provider limits large-scale attacks; and iii) providers can recognize large

number of queries with similar inputs made in rapid succession to detect malicious

activity and thwart query attacks. Furthermore, from the perspective of both the

attacker and the provider, reducing the number of queries reduces the cost of mounting

the attack as well the time needed to evaluate the model and potential defenses6.

However, designing query-efficient adversarial attacks in black-box scenarios is a

difficult task. Therefore, this dissertation argues that to foster a deeper understanding

of black-box threat models, the query efficiency of attacks must be investigated further.

Challenges in Developing Query Efficient Black-box Attacks

Due to the lack of model knowledge and direct access to model gradients, formulating

query-efficient attacks, especially for high-resolution images, is challenging. Because

attack algorithms:

• Must estimate gradients or search for a direction toward adversarial examples

in the absence of gradient feedback. They therefore suffer from algorithmic

approximation to gradients that can hinder the efficiency of the attack. For

instance, gradient estimation frameworks used in dense attacks may suffer from

the problem of entrapment in local minima (Chen, Jordan and Wainwright, 2020).

• Encounter NP-hard problems. For example, sparse attacks are shown to be

NP-hard problems (Modas, Moosavi-Dezfooli and Frossard, 2019; Dong et al.,

2020).

• Face a large and complex search space of possible adversarial examples. For

instance, an attack in sparse settings has to search for an adversarial example over

a mixed space encompassing continuous values for color and discrete values for

pixel locations. Notably, when dealing with high-resolution data sets, this mixed

search space expands into a high-dimensional space that is colossal in size, as

discussed in Appendix C.7.

As such, crafting successful adversarial examples in black-box settings often

necessitates a substantial number of queries, especially when targeting high-resolution

data sets.
6For example, we consumed over 1,700 hours on two dedicated modern GPUs with 48 GB memory

to curate the results in our study in Chapter3
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On the other hand, a deeper understanding and knowledge of model vulnerabilities

to black-box adversarial attacks in different scenarios may allow us to establish the

criticality of the threat and indicate a need to develop mechanisms to defend deep

learning models. Developing robust defenses is an ongoing research challenge, that

this dissertation attempts to confront.

Challenges in Developing Robust Defenses against Black-box Attacks

An intuitive approach to developing such defense mechanisms is to leverage existing

countermeasures (Goodfellow, Shlens and Szegedy, 2014; Xie et al., 2018; Dhillon

et al., 2018; Xie et al., 2019; Rakin, He and Fan, 2019) originally devised for white-box

attacks in order to fortify DNN models against black-box attacks. While they can

defend against these black-box attacks, they often entail a compromise with respect

to accuracy (Tsipras et al., 2019; Yang et al., 2020b; Qin et al., 2021; Byun, Go and

Kim, 2022). For instance, adversarial training-based methods, renowned for their

effectiveness against white-box attacks (Athalye, Carlini and Wagner, 2018; Tramer

et al., 2020), are associated with a considerable reduction in accuracy as shown by

(Zhang et al., 2019; Zhang and Wang, 2019; Shafahi et al., 2019; Yang et al., 2020b; Doan

et al., 2022a). Consequently, developing a defense method that achieves the objectives

of both robustness and accuracy poses a formidable challenge.

Nevertheless, in contrast to their white-box counterparts, black-box attacks have

limited access to deep learning models’ output and are hindered by the lack of gradient

information. Due to this constraint, black-box attacks necessitate myriad queries

for sending manipulated input and observing the corresponding output that aims to

approximate gradients or find proper search directions toward adversarial examples.

Consequently, some defense methods (Qin et al., 2021; Byun, Go and Kim, 2022)

tailored for countering black-box attacks exploit this intrinsic weakness instead of

adopting adversarial training techniques to thwart black-box attacks. These defense

methods add random noise to each queried input at the inference phase to hamper

gradient estimation or random search. However, adding larger noise can result in a

decrease in clean accuracy as the model is sensitive to added random noise (Qin et al.,

2021) and does not see noisy images during training (Cohen, Rosenfeld and Kolter,

2019).

We can see that existing defenses compromise accuracy to achieve robustness

(i.e. robust at higher input distortion levels). Consequently, this leaves open the
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1.4 Summary of Contributions

question of how to obtain the objectives of both robustness and clean accuracy when

fortifying deep learning models against black-box attacks.

1.4 Summary of Contributions

To achieve the objectives of this dissertation, as outlined in Section 1.2, the research

presented here has made several original contributions in addressing the challenges

outlined in Section 1.3 to enhance knowledge of query-based black-box attacks and

efficient defense mechanisms against such attacks. The key developments and

contributions made in this dissertation can be succinctly summarized as follows:

1. (A Decision-Based Dense Attack) To improve knowledge of deep learning

model vulnerabilities in practical decision-based and dense scenarios, the study in

Chapter 3 analyzes different decision-based attack algorithms and investigates

a challenging optimization problem (i.e. the entrapment in local minima)

encountered by these attacks. First, this study presents a systematic investigation

of state-of-the-art decision-based attacks to demonstrate their robustness.

Through extensive experiments, this study uncovers the existence of challenging

instances, known as hard cases, where attack algorithms struggle to flip the

prediction of input towards a desired target class, even under an extremely

high number of model queries (i.e. high query budgets). We hypothesize that

these hard cases stem from entrapment in various local minima. Secondly, this

study introduces a novel attack method—RAMBOATTACK—which leverages a

search algorithm inspired by Randomized Block Coordinate Descent, refered

to as BLOCKDESCENT, to overcome the entrapment problem when gradient

estimation fails to guide the attack. Thirdly, the study provides new insights

into query-efficient mechanisms to craft adversarial perturbations. Unlike

existing techniques, the BLOCKDESCENT component of RAMBOATTACK focuses

on altering local regions of the input commensurate with the filter sizes employed

by deep neural networks (DNNs) to generate adversarial examples. This

proposed mechanism, in the hard cases, allows the discovery of potential

adversarial perturbations to exploit the model’s reliance on salient features of the

target class for classifying an input. The study demonstrates clear connections

between added perturbations and salient regions in images from the target class

using a visual explanation tool. Overall, RAMBOATTACK emerges as a more
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robust and query-efficient method for crafting adversarial examples than other

decision-based attacks. Notably, RAMBOATTACK demonstrates significantly

less sensitivity to the choice of a starting image from the target class when

compared with existing attacks in decision-based settings. This work has been

accepted for publication at the 29th annual Network and Distributed System

Security Symposium (NDSS’22) under the title ”RamBoAttack: A Robust Query

Efficient Deep Neural Network Decision Exploit” and contributes to achieving

Objective 1.

2. (A Decision-Based Sparse Attack) To improve knowledge of deep learning

model vulnerabilities in a practical decision-based and sparse setting, the work

in Chapter 4 studies sparse attacks and the resulting NP-hard optimization

problem. Firstly, this work examines the effectiveness of sparse attacks and

introduces a novel sparse attack—SPARSEEVO—an evolution-based algorithm, to

mitigate the complexity posed by the NP-hard problem. The proposed method

is capable of exploiting access to solely the top-1 predicted label or model

decision to search for an adversarial example while minimizing the number

of perturbed pixels required to deceive the model. Secondly, for the first

time, this work assesses the vulnerability of transformer-based models against

decision-based sparse attacks on the standard computer vision task ImageNet

and its relative robustness to a convolutional-based model. Thirdly, through

extensive experiments, the proposed attack algorithm demonstrates a significant

reduction in the number of model queries when compared to a state-of-the-art

decision-based sparse attack. Interestingly, SPARSEEVO achieves comparable

levels of success to a state-of-the-art white-box attack, even when operating under

a limited query budget. Overall, SPARSEEVO emerges as a significantly more

query-efficient method compared to state-of-the-art algorithms for generating

sparse adversarial examples under decision-based sparse settings. This work has

been accepted for publication at the Tenth International Conference on Learning

Representations (ICLR’22) under the title ”Query Efficient Decision-Based Sparse

Attacks Against Black-Box Machine Learning Models” and contributes to

achieving Objective 1.

3. (A Score-Based Sparse Attack) To provide new perspectives for understanding

and mitigating the vulnerabilities of DNNs in a practical score-based

and sparse setting, the research in Chapter 5 studies crafting sparse
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adversarial perturbations where models reveal scores and the resulting NP-hard

optimization problem. Firstly, the study proposes a new sparse attack

method—BRUSLEATTACK—in the score-based setting. The algorithm leverages

the knowledge of output scores and intuitions used to learn influential pixel

information from past pixel manipulations and to select pixel perturbations

based on pixel dissimilarity between a search space prior and a source image.

These strategies aim to remedy the NP-hard problem and accelerate the process

of searching for a sparse adversarial example. Secondly, comprehensive

experiments demonstrate that the proposed attack is more query-efficient

than the state-of-the-art methods across different data sets, various deep

learning models, defense mechanisms and attacks against Google Cloud Vision

in terms of attack success rate (ASR) and sparsity within a limited query

budget of 10K queries. Thirdly, for the first time, this work assesses

the vulnerability of transformer-based models against score-based sparse

attacks on the high-resolution dataset Imagenet and its relative robustness to

convolutional-based models. Overall, BRUSLEATTACK is a more query-efficient

attack algorithm for yielding sparse adversarial examples than other score-based

sparse attacks. This work is currently under review for the 37th Conference

on Neural Information Processing Systems (NeurIPS’23) under the title ”A

Query-Efficient Score-Based Sparse Adversarial Attack” and contributes to

achieving Objective 1.

4. (A Defence Against Black-Box Attacks) The study in Chapter 6 aims to develop

an effective defense mechanism against query-based black-box adversarial

attacks whilst maintaining high clean high accuracy. Firstly, this study introduces

an intuitive countermeasure that incorporates uncertainty in model outputs to

a black-box attacker by randomly selecting a subset of well-trained models

to make a prediction at test time. The aim is to mislead attack algorithms

seeking to estimate gradient feedback from model outputs to craft adversarial

perturbations. An extensive empirical study regime across a range of data sets

and models confirms that the method of randomness incorporation possesses a

strong capability to mislead black-box adversarial attacks. Secondly, to enhance

the defense capability, the study explores existing approaches for promoting

a diverse set of well-trained models to effectively increase the diversity in

model outputs. Through extensive experiments, the study shows a Bayesian
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learning method that pushes the model parameters of each model apart using

Stein Variational Gradient Descent (SVGD) along with the newly proposed sample

loss objective can encourage more diverse models and, consequently, model

outputs. Overall, the proposed defense incorporating the model of diversity

and randomness is able to achieve the greatest level of robustness with minimal

impact on clean accuracy compared to current defense methods. This work is

expected to be published after the submission of this dissertation and contributes

to achieving Objective 2.

5. (Open Source Code Releases) Through all the extensive studies, this dissertation

contributes three open-source code repositories to the research community:

• The source code for a query-efficient dense attack under

decision-based settings in Chapter 3: ”A Robust Query

Efficient Attack against Deep Neural” is available at

https://github.com/RamBoAttack/RamBoAttack.github.io

(RAMBOATTACK).

• The source code for a query-efficient sparse attack in the

decision-based scenario in Chapter 4: ”A Query Efficient

Sparse Attack In Decision-base Settings” is available at

https://github.com/SparseEvoAttack/SparseEvoAttack.github.io

(SPARSEEVO).

• The source code for a query-efficient sparse attack in the

score-based scenario in Chapter 5: ”A Query-Efficient

Score-Based Sparse Adversarial Attack” is available at

https://github.com/BruSLiAttack/BruSLiAttack.github.io

(BRUSLEATTACK).

1.5 Dissertation Structure

The dissertation structure is outlined in Figure 1.3 and is presented as follows:

1. Chapter 1 and Chapter 2 present a concise introduction to the fundamentals

of DNNs, potential threats and countermeasures in various scenarios. These
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chapters also delve deeper into threat models, examine various attacks, explore

defense mechanisms that can be employed to bolster resilience and discuss

evaluation metrics.

2. Chapter 3 explores dense attacks and the vulnerability of DNN models in a

decision-based scenario, highlighting the entrapment problem encountered by

these methods. This chapter also focuses on developing a novel attack method

that can be incorporated with other gradient estimation methods to overcome

the entrapment problem as well as improve query efficiency. The efficiency of

existing defense strategies against various decision-based dense attacks is also

examined here.

3. Chapter 4 considers the problem of searching sparse adversarial examples

to mislead DNN models in decision-based settings. Moreover, the chapter

considers the challenges posed by sparse attacks, i.e. non-differentiable

search space, and the NP-Hard problem and proposes an evolution-based

algorithm—SPARSEEVO—to alleviate these challenges. We also demonstrate

the practical threats of sparse attacks against both transformer-based and

convolutional-based architectures in computer vision tasks and analyze the

relative robustness of each.

4. Chapter 5 investigates the robustness of DNN models and the potential threat

posed by sparse attacks in score-based settings. This chapter introduces

a novel Bayesian-based algorithm—BRUSLEATTACK—- that leverages some

prior knowledge to search for sparse adversarial perturbations. We also

demonstrate the efficiency of BRUSLEATTACK against various deep learning

models including transformer-based and convolutional-based models, as well as

defense mechanisms across different data sets.

5. Chapter 6 examines the effectiveness and robustness of different defense

mechanisms against query-based black-box attacks. In addition, it explores

different methods to encourage the diversity of a set of models to hinder the

progress of query-based attacks. This chapter later proposes a new method that

leverages a diverse set of models and random model selection to defend against

query-based black-box attacks and demonstrate the high performance of the

proposed defense method against various black-box adversarial attacks across

different data sets.
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6. Chapter 7 gives a conclusive summary of the studies conducted for this

dissertation, summarizing the findings and discussing potential areas for future

exploration.
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Chapter 2

Background

T
HIS chapter introduces the literature on deep neural networks,

their vulnerabilities to attack in different scenarios and the current

defense mechanisms. The chapter presents a generic formulation

for the attack problem and notations, as well as exploring two main

architectures of deep neural networks (DNNs) in the vision domain.

Additionally, common attacks and countermeasures are discussed with

the aim of establishing a solid foundation and thorough understanding

of the subject matter. This section provides a brief overview of common

evaluation metrics used for quantifying experimental results, which are

crucial for drawing valid conclusions from the findings of this research.
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2.1 Notations

For notational consistency, lowercase bold letters (i.e. x) denote vectors, uppercase

bold typeface letters (i.e. X) represent matrices and lowercase letters (i.e. x) represent

random variables. Let ∥ x ∥p denote lp norm of x, A ⊙ B denote the element-wise

(Hadamard) product of A and B. f (x; θ) denotes a function of x parametrized by θ; to

simplify notation, the argument θ can be omitted as f (x). ℓ( f (x; θ), y) denotes the loss

between model output f (x; θ) and the ground-truth y. To simplify the notation, θ can

be dropped and f (x) is used rather than f (x; θ).

2.2 Deep Neural Networks

This section briefly introduces machine learning and deep learning models (illustrated

in Figure 2.1) and then presents the two most widely used deep learning models in

different vision tasks—convolutional neural networks (CNNs) and vision transformer

(ViT).

...
...... ...

...

Input OutputHidden

L layers = 3

Figure 2.1. An illustration of a deep neural network (DNN)

Machine Learning Models. Machine learning (ML) models (i.e. a support vector

machine, linear neural network or multilayer perceptron) can be defined as a

parameterized function that learns patterns and relationships from data, and then

uses this knowledge to make decisions on new data (i.e. predictions or classifications).

Concretely, f (x, θ) maps input data x ∈ X to a particular output y ∈ Y (i.e. an

image of traffic sign is mapped into a label of traffic sign in a classification task),

where θ denotes the parameter set. Based on a given collection of data—training
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data—the parameterized function can automatically learn and update its parameter

set θ by optimizing an objective function (i.e. minimize loss ℓ between model output

f (x, θ) and the ground-truth y specified by the data set). In practice, a widely used

technique—gradient descent—is leveraged to optimize this loss and then update the

parameter set of a ML model.

Deep Learning Models. Deep learning models, DNNs, are a specialized machine

learning model and are composed of multiple layers of interconnected processing

nodes, called neurons. These layers include one input layer, one output layer and L

hidden layers. Learning a DNN is similar to learning a ML model by optimizing the

loss ℓ as the following:

min
θ

1
n

n

∑
i=1

ℓ( f (xi, θ), yi) (2.1)

Figure 2.2. An illustration of data flow in a Convolutional Neural Network (CNN)—LeNet

(Lecun et al., 1998). The input—a handwritten digit—goes through convolutional, pooling

and dense layers to extract the feature of the input. The output layer has 10 possible

outcomes, which are probability. Image from Zhang et al. (2021a), https://d2l.ai/chapter_

convolutional-neural-networks/lenet.html.

Convolutional Neural Networks. Convolutional neural networks (CNNs) (LeCun,

Bengio and Hinton, 2015) are one of the most dominant DNNs in the vision domain

and are designed for processing grid pattern data such as images (Goodfellow,

Bengio and Courville, 2016). CNNs are able to adaptively learn spatial hierarchies
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of features from low-to high-level patterns (Yamashita et al., 2018). Generally,

CNNs are constructed by sequentially stacking different building blocks consisting of

convolutional, pooling and fully connected layers. Each convolutional layer comprises

a set of filters, named kernel, sliding over the image and performing a dot product

operation between each filter with the pixel values in the region of an image covered

by the filter. Pooling layers downsample or reduce the size of the feature maps, which

are the outputs from convolutional layers, so that CNNs are more robust to variations

in the input image. In a forward pass, as shown in Figure 2.2, the feature of an

input image is extracted by convolutional and pooling layers, while fully connected

layers combine and map the extracted features into outputs which are then used for

classification tasks.

Figure 2.3. An illustration of vision transformer (ViT). The ViT comprises an embedded patch

block and a transformer encoder that is constructed by multiple stacks of multi-head self-attention

and feedforward neural network layers (Dosovitskiy et al., 2021). Image from https://github.

com/google-research/vision_transformer.

Vision Transformer. Vision transformer (ViT) (Dosovitskiy et al., 2021) is a new type of

DNN that applies transformer architecture, which was originally designed for natural

language processing (NLP), to vision tasks. The transformer architecture is based on

attention mechanisms without any convolutional blocks. It comprises an embedded

patch block, a stack of multi-head self-attention and feedforward neural network

layers that allow the ViT to attend and capture the global dependencies between
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different parts of the input, as well as map the input’s features to higher-dimensional

representations. In a forward pass, as shown in Figure 2.3, an input image is first

split and flattened into fixed-size patches in an embedded patch block. Each patch

has learnable positional embeddings to encode its position in the image. These patch

embeddings are then sequentially fed into the transformer encoder to extract image

features and classify the input image.

2.3 Adversarial Attacks

Adversarial attacks are a class of threats that intentionally deceive a victim model

through such methods as hijacking the model’s prediction or evading the model’s

recognition or classification. This attack was first investigated in (Szegedy et al., 2014)

and has been studied by substantial research (Goodfellow, Shlens and Szegedy, 2014;

Carlini and Wagner, 2017; Madry et al., 2018; Alzantot et al., 2019; Cheng et al., 2020).

Generally, in the vision domain, adversarial attacks aim to craft an adversarial example

to cause the model to misclassify an input image at test time by carefully adding an

imperceptible perturbation to the input image. Concretely, this malicious objective

for targeted attacks in white-box and score-based settings across different perturbation

regimes can be formulated as the following:

x∗ = arg min
x̃

ℓ( f (x̃), ytarget) s.t. ∥x − x̃∥p ≤ ϵ , (2.2)

where p is the norm, ϵ is the perturbation budget, ℓ is the loss function (typically

cross-entropy), f is the network, x is the input, θ is the network parameter, and ytarget

is the desired class label—target class. However, for untargeted attacks, this objective is

different and formulated as follows:

x∗ = arg max
x̃

ℓ( f (x̃), y) s.t. ∥x − x̃∥p ≤ ϵ , (2.3)

where y is the ground-truth label. In contrast to white-box and score-based settings,

the malicious objective for targeted attacks in decision-based settings across different

perturbation regimes can be formulated as follow:

x∗ = arg min
x̃
∥x − x̃∥p s.t. f (x̃) = ytarget , (2.4)

Likewise, for untargeted attack in decision-based settings, the objective is formulated as

the following:
x∗ = arg min

x̃
∥x − x̃∥p s.t. f (x̃) ̸= y , (2.5)
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2.4 Threat Models

This section presents the taxonomy of widely studied threat models of adversarial

attacks as shown in Figure 2.7. Generally, a threat model can be categorized based

on: i) adversary capabilities (i.e. prior knowledge and access levels to a deep learning

model); and ii) similarity measure (i.e. lp norm-constrains). The details of attack

taxonomy are described in Section 2.4.1 and 2.4.2.

Adversarial
Attacks

White-box
Attacks

Black-box
Attacks

Score-based
Attacks

Decision-
based Attacks

Score-based
Dense Attacks

Score-based
Sparse Attacks 
(Chapter 5)

Decision-based
Dense Attacks 
(Chapter 3)

Decision-based
Sparse Attacks 
(Chapter 4)

(PGD, FGSM, L-FBGS,
JSMA, C&W, I-FGSM,   
 Wasserstein, Feature

Space, UAP, One Pixel,
PGDo, DeepFool, Sparse
Fool, Adverarial Patch)

(ZOO, NES, SimBA,
GenAttack,  ZO-NGD,
Bandit, SignHunter,

ZOSignSGD, BayesOpt,
Square, AutoZOOM)

(BA, OPT-Attack, 
Evolutionary, Sign-
OPT, HSJA, PSBA,

QEBA, RamBoAttack)

(Pointwise,
SparseEvo)

(LocSearchAdv, 
CornerSearch, 
Sparse-RS,  

BruSLeAttack)

Adversarial
Capabilities

Similarity
Measures

Figure 2.4. An attack taxonomy for various adversarial attack methods in different threat models.

The red boxes indicate the threat models explored in this dissertation. The attack methods proposed

in this dissertation are RamBoAttack, SparseEvo and BruSLeAttack.

2.4.1 Adversarial Capabilities

White-box Settings. An adversarial perturbation is an imperceptible noise when

added to an input cause a failure—simply misclassifying the input in an untargeted

attack or hijacking the decision of a model to generate a decision preselected by the

adversary (Szegedy et al., 2014) in a targeted attack. In white-box attacks, adversaries

may have full knowledge and access to the machine learning models (i.e. model

architecture, parameters, weights or objective loss) to effectively generate adversarial
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examples (Goodfellow, Shlens and Szegedy, 2014; Papernot et al., 2016a; Madry et al.,

2018; Carlini and Wagner, 2017; Xu et al., 2019).

Score-based AttacksDecision-based Attacks

street
lamp

Decision 
(Predicted label)

Query

Attacker Score

Query

0.15

0.05

0.65 ... ...
...

Attacker
... ...

...

Figure 2.5. An illustration of black-box adversarial attacks categorized based on access level and

knowledge including score-based and decision-based threat models.

Black-box Settings. In contrast to white-box attacks, on commercial and industrial

systems, attackers have limited or no knowledge of the model (i.e. model architecture,

parameters or weights). Access may be limited to only the full or partial output

information of the models (i.e. a probability distribution, confidence score or even

only top-K predicted labels). In practice, attackers can query a crafted adversarial

example to extract the information returned from the target model and then exploit

this information to achieve their objectives, as shown in Figure 2.5.

• Decision-based Settings. In some commercial and industrial machine learning

systems the information exposed to an attacker is limited to the hard-label

only—the most confident label predicted or decision, for instance logo or

landmark detection on Google Cloud Vision. This is the most restricted threat

model and recent studies (Brendel, Rauber and Bethge, 2018; Chen, Jordan

and Wainwright, 2020) have demonstrated the practicability of black-box attacks

under these restrictive decision-based settings (investigated in Chapters 3 and 4).

• Score-based Settings. Attackers in these settings may have access to full or

partial output scores from a target model but no model knowledge is exposed to

them (Chen et al., 2017; Ilyas et al., 2018) (investigated in Chapter 5).

Overall, score-based and decision-based settings are restrictive and challenging attack

settings given the limited access to information but present a practical threat model

for deployed systems. Moreover, the latter is particularly more threatening to

model owners and applications because an adversary is still capable of exploiting
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the very minimal information exposed—the top-1 predicted label—for constructing a

perturbation.

2.4.2 Similarity Mesures

The similarity measures—lp norm—can be used to describe the imperceptibility of

the perturbation and categorize adversarial examples quantitatively as illustrated in

Figure 2.6. Particularly, l2 and l∞ norm is used to quantify dense perturbations whereas

l0 norm quantitatively describes sparse perturbation for adversarial attacks. Formally,

the similarity measures lp norm can be formulated as the following:

∥x∥p = (
n

∑
i
∥xi∥p)

1
p , (2.6)

where n is the number of elements of x.

Source image Dense
Perturbation

Dense Adversarial
Example Source image

Sparse
Perturbation

Sparse Adversarial
Example

Dense Setting Sparse Setting

Figure 2.6. An illustration of black-box adversarial attacks categorized based on similarity measures

including dense and sparse settings.

• Dense Settings. The attacks in dense settings aim to search for a dense

adversarial perturbation whose all pixels are altered to fool a victim model. There

is a large body of work investigating dense attacks (Carlini and Wagner, 2017;

Papernot et al., 2017; Ilyas et al., 2018; Alzantot et al., 2019; Li et al., 2021a; Zhang

et al., 2021b), (investigated in Chapter 3).

• Sparse Settings. The main aim of sparse attacks is to minimize the number

of perturbed pixels required to mislead a target machine learning model.

Only a handful of works have investigated sparse attacks and these works

can be broadly categorized based on various degrees of adversarial access

to a model (i.e. white-box, score-based or decision-based settings) (Modas,

Moosavi-Dezfooli and Frossard, 2019; Croce and Hein, 2019; Schott et al., 2019;

Croce et al., 2022) (investigated in Chapter 4 and 5).
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2.5 Adversarial Defense

(Adversarial Training,
DeepDefense,  Distillation, RSE,
PNI, Dropout,  TRADES, Feature

Denoising, DivRobSet)

Post-processPre-process

...
...... ...

...

(JPEG Compression,
Bit-Red, SND, R&P, 
Autoencoder-based

Denoiser, RND, RBC)

(AAA, PredCoin,
Boundary Defense)

Input Output

Model  
Training  

(Chapter 6)

Figure 2.7. An illustration of various defense methods based on where they can apply in inference.

The defense mechanism proposed in Chapter 6 is DivRobSet.

Due to the threats and potential impacts of adversarial attacks, particularly in

white-box settings, significant research efforts have been dedicated to exploring and

developing defense mechanisms against these attacks. These mechanisms encompass

a wide range of approaches but we can differentiate them based on the area of focus

along a deep learning pipeline. The methods focusing on pre-processing inputs (Cao

and Gong, 2017; Liu et al., 2018b; Xu, Evans and Qi, 2018) aim to discard adversarial

perturbations or make the output information incorrect to be exploited. Another line

of research proposed to train a model to make it more robust against adversarial

examples (Tramèr et al., 2018; Xie et al., 2019; Zhang and Wang, 2019; Zhang et al.,

2022; Wang and Wang, 2022) while the approaches concentrating on post-processing

output scores (Chen et al., 2022a; Aithal and Li, 2022) aim to misguide attackers.

In pre-process approaches, defenders transform or manipulate the inputs before

feeding them into the model. These methods aim, firstly. to clean or alter added

perturbations that may exist in the inputs and, secondly, to mislead attackers when

they exploit output information to create a perturbation. Similarly, post-processing

approaches aim to misguide attack algorithms by purposefully modifying the output

information (i.e. confidence scores). When the output information from a model is

intentionally altered, it does not provide useful information for attack algorithms

built to search for a perturbation and hampers the progress of attacks. In contrast
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to the pre- and post-processing methods, the principle of robust training methods

is to enhance the model’s robustness to adversarial inputs through model training

with augmented data, new learning objectives or regularization methods. Although

methods designed for white-box attacks provide a defense against black-box attack

methods, the proposed methods trade off robustness for clean accuracy (Tsipras et al.,

2019; Qin et al., 2021). Interestingly, while most studies focus on white-box attacks,

research aiming to study the problem of developing defenses to black-box attack

methods, in particular, has only recently emerged (Pang et al., 2020; Qin et al., 2021).

The second research objective in this dissertation is to to develop a robust mechanism

to defend against black-box adversarial attackers.

2.6 Data sets

This section describes various data sets in the vision domain used in the studies

conducted for this dissertation. These data sets have different sizes, resolutions and

number of classes.

• MNIST. (Lecun et al., 1998) MNIST stands for Modified National Institute of

Standards and Technology and is a widely used benchmark data set in the field of

machine learning and computer vision. This data set consists of a large collection

of gray-scale images, handwritten digits from 0 to 9. Each image in MNIST has

a resolution of 28× 28 pixels. The data set has a training set (60,000 examples)

and a test set (10,000 examples) for training and evaluating the performance of

machine learning algorithms. This data set is used in Chapter 6.

• CIFAR-10. (Krizhevsky, Nair and Hinton, n.d.) CIFAR-10 stands for the Canadian

Institute for Advanced Research 10 and is commonly used for image classification

tasks. CIFAR-10 also serves as a benchmark for evaluating the performance of

various machine learning algorithms and provides a more challenging task than

MNIST due to the complexity of color images. This data set consists of 60,000

color images in 10 classes which are mutually exclusive. Each class has 6000

images and each image has a resolution of 32 × 32. The data set is divided

into a training set (50,000 images) and a test set (10,000 images) for training

and evaluating different machine learning algorithms. This data set is used in

Chapter 3, 4, 5 and 6.
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• STL-10. (Coates, Lee and Ng, 2011) STL-10 stands for Stanford Large-Scale

10-class and is a popular image data set for developing unsupervised feature

learning, deep learning and self-taught learning algorithms. This data set has

ten classes and is divided into a training set (5,000 labeled images) and a test

set (8,000 labeled images). Moreover, to serve unsupervised learning methods,

it provides 100,000 unlabeled images extracted from a similar but broader

distribution of images. The primary challenge is to make use of the unlabeled

data to build a useful image model prior to supervised training. This data set has

a higher resolution than CIFAR-10 (96× 96) and is a more challenging benchmark

for developing more scaleable unsupervised learning methods and advanced

learning algorithms. This data set is used in Chapter 5 and 6.

• ImageNet. (Deng et al., 2009) ImageNet is a large-scale visual database spanning

1000 object classes and provides a comprehensive data set that covers a wide

range of objects and scenes. This data set is divided into a training set (1,281,167

images), a validation set (50,000 images) and a test set (100,000 images) for

training and evaluating different deep learning algorithms. The data set is widely

used for object recognition and image classification tasks and has played a crucial

role in the development and advancement of deep learning algorithms for image

understanding. This data set is used in Chapter 3, 4, 5. In addition, ImageNet-10

is a subset of ImageNet with 10 classes and is used in Chapter 6.

2.7 Evaluation Metrics

This section describes various evaluation metrics used in Chapter 3, 4, 5 and 6 to

evaluate the efficiency of different attack methods and the robustness of different

defense mechanisms.

Accuracy. Accuracy (Acc) for a single model without attack, known as clean accuracy

or standard accuracy, is calculated as the following:

Acc =
c

Total
, (2.7)

where Total represents the total number of samples from the evaluation set, and c is

the number of correct predictions.

Attack Success Rate (ASR). It is calculated as the following:

ASR =
m
M

, (2.8)
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where m is the number of incorrect predictions and M denotes the number of samples

used for the attack evaluation.

Robustness. This metric quantifies the accuracy of a Deep Learning model under

attacks. The metric is formulated as follows:

Robustness = Acc(xadv) , xadv ∼ DADV (2.9)

where xadv denotes an adversarial example from a set of adversrial example DADV.

Sparsity Level. Sparsity level is the number of altered pixels over the total number of

pixels of an input image and is computed as follows:

Sparsity =
r
R

, (2.10)

where r represents the number of altered pixels while R denotes the resolution (i.e. the

number of pixels) of an input image.
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Chapter 3

RamBoAttack: A Dense
Attack Under

Decision-Based Settings

T
HIS chapter considers the problem of designing a query-efficient

dense adversarial attack—l2 norm-constraint—in a decision-based

setting. Machine learning models are critically susceptible to

evasion attacks from adversarial examples. Recent black-box attacks

which require only the predicted label from a model (distinguished as a

decision-based attack) have shown a remarkable reduction in the number

of queries to craft adversarial examples. Particularly alarming is the

practical ability to exploit the classification decision (hard label) from a

trained model’s access interface provided by a growing number of Machine

Learning as a Service (MLaaS) providers (i.e. Google, Microsoft or IBM) and

used by a plethora of applications. The study in this chapter highlights

the costly nature of discovering low distortion adversarial employing

approximate gradient estimation methods. It then introduces a robust

query efficient attack—BLOCKDESCENT—capable of avoiding entrapment in

a local minimum and misdirection from noisy gradients seen in gradient

estimation methods. The proposed attack method exploits the notion of

Randomized Block Coordinate Descent to explore the hidden classifier

manifold, targeting perturbations to manipulate only localized input

features to address the issues of gradient estimation methods. Overall, for

a given target class, BLOCKDESCENT is demonstrated to be more robust at

achieving a lower distortion within a query budget.

Page 27



3.1 Motivation and Contribution

3.1 Motivation and Contribution

Hidden layers

... ... ...... ......

street
lamp

Decision

Decision-based threat model

Query
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Attack
Toolbox

Starting image
from target class
street lamp

Source image

Figure 3.1. An illustration of black-box attack in the severely restricted threat model of a

decision-based attack. In a decision-based threat model, an adversary with a source image and

starting image from the target class, craft a sample, queries the model and observes the decision

returned by the model.

In black-box scenarios, without access to model gradient and model knowledge,

attacking machine learning systems is considerably challenging. To tackle

these challenges, recent studies have formulated the decision-based attack as

an optimization problem to propose algorithms based on gradient estimation

methods (Cheng et al., 2020; Chen, Jordan and Wainwright, 2020) and demonstrated

attacks with significantly fewer query numbers. However, the existing attacks suffer

from the following problems:

• Entrapment in local minima. In gradient estimation methods, as eluded to by

(Cheng et al., 2020), the search for an adversarial example can experience an

entrapment problem in a local minimum where extra queries expended by the

attacker fails to achieve a lower distortion adversarial example.

• Unreliability of gradient estimations. Further, as the magnitude of estimated

gradients diminishes on approach to a local minimum or a plateau, the estimated

gradients may become noisy and susceptible to misdirection.

• Sensitivity to the starting image. Then, intuitively, it can be expected that the

initialization of optimization frameworks with an available or intended starting

image, a necessity in decision-based attacks, to hinder an attacker from reaching

an imperceptible adversarial example. But, there is no known method to

determine a good starting image prior to an attack. Thus, the success of an attack can
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Chapter 3 RamBoAttack: A Dense Attack Under Decision-Based Settings

be expected to be sensitive to the available starting image; an attempt to discover

a better-starting image or target class through trial and error can not only lead to

detection and discovery by effectively increasing the numbers of queries needed

but also limit the scope of the attack by reducing the number of classes that can

be targeted.

In general, developing decision-based attacks poses a challenging optimization problem because

only binary information from output labels are available to us from the target model as opposed

to output values from a function.

Therefore, the study in this chapter seeks to understand the fragility of gradient

estimation methods and develop a more robust and query-efficient attack.

Consequently, the study aims to answer the following research questions (RQ).

RQ1: How can we assess the robustness of decision-based black-box attacks to understand

their fragility? (Section 3.2.3)

RQ2: What is the impact of the source and starting target class images accessible to an

adversary on the success of an attack? (Section 3.2.4 & extensive results in Section 3.4.6)

RQ3: How can an adversary construct a robust and query-efficient attack for achieving

low distortion adversarial examples for any starting image from the targeted class and

avoid the pitfalls of gradient estimation-based attack methods? (Section 3.3 & 3.4)

Main Contributions. This chapter aims to: i) address the research questions; ii) better

understand and assess the vulnerabilities of DNNs to adversarial attacks in the

pragmatic decision-based threat model; and iii) explore more robust attack methods.

The contributions of this chapter are summarised below:

1. The study presents the first systematic investigation of state-of-the-art

decision-based attacks to understand their robustness. Through extensive

experiments, this study highlights the problem of hard cases where attackers

struggle to flip the prediction of images towards a chosen target class, even

with increasing query budgets–see Figure 3.2. As summarized in Table A.7, all

comprehensive experiments in this study consume over 1800 computation hours

with 2 GPUs to curate results.
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2. Motivated by the findings, the study proposes a new

attack—RAMBOATTACK—that is demonstrably more robust. A search algorithm

analogous to Randomized Block Coordinate Descent—BLOCKDESCENT—is

proposed to address the entrapment problem where gradient estimation fails

to provide a useful direction to descend and combine BLOCKDESCENT with

gradient estimation frameworks to attain query efficiency. In contrast to existing

approaches, BLOCKDESCENT focuses on altering local regions of the input

commensurate with the filter sizes employed by DNNs to forge adversarial

examples.

3. The study provides new insights into query-efficient mechanisms for crafting

adversarial perturbation to attack DNNs. The proposed decision-based black

box attack method relying on localized alterations to inputs discovers effective

adversarial perturbations attempting to exploit the model’s reliance on salient

features of the target class to correctly classify an input to a target label in the

hard cases. Clear correlations between perturbations found and added to inputs,

and salient regions on target class images are illustrated with the aid of a visual

explanation tool.

4. Overall, RAMBOATTACK is a more robust and query-efficient approach for

generating an adversarial example of a high attack success rate compared to

existing counterparts. Importantly, the proposed attack method is significantly

less impacted by a starting image from a target class accessible to an adversary.

5. The need for reliable and reproducible attack evaluation strategies is recognized

and two evaluation protocols applied across CIFAR10 and ImageNet is introduced.

The dataset constructed through our extensive study is released to support future

benchmarking of black-box attacks under a decision-based setting.

3.1.1 Chapter Overview

Section 3.2 presents a threat model, problem formulation, robustness understanding

and intuition into the proposed attack method in this chapter; Section 3.3 details the

proposed attack framework and an end-to-end implementation; Section 3.4 evaluates

and analyzes the performance of different attacks across different datasets. Section 3.5

concludes this chapter.
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3.2 Investigation of Decision-Based Attacks

This section: i) formalizes an adversarial attack as an optimization problem; ii) revisits

current state-of-the-art methods; and iii) analyzes the results to present our intuitions

into the state-of-the-art attacks based on our observations.

3.2.1 Adversarial Threat Model

We adopt the threat model proposed in prior works (Brendel, Rauber and Bethge, 2018;

Cheng et al., 2019a; Chen, Jordan and Wainwright, 2020). Under the decision-based

black-box setting, adversaries have no prior knowledge such as model architecture or

parameters but have limited access to the output of a victim model—the model’s decision

as illustrated in Figure 3.1. Furthermore, an adversary can make numerous queries

to a victim’s machine learning model via an access interface and receive the model’s

decision. The adversary must have at least one image from a target class that is classified

correctly by the victim model if the adversary aims to carry out a targeted attack. This image

is the starting image used to initialize the attack. The adversary also holds at least one

image from a source class correctly classified by the model. The objective of the adversary

is to discover the minimum (imperceptible) perturbation—quantitatively measured by

the common distortion measure adopted in recent studies—to flip the decision for the

source image to the targeted class using the minimum number of queries to the model.

3.2.2 Problem Formulation

Given a source image x ∈ RC×W×H its ground truth label y from the label set Y =

{1, 2, · · · , K}, where K denote the number of classes, C, W and H denotes the number

of channels, width and height of an image, respectively. Given a pre-trained multi-class

classification model f : x→ y so that f (x) = y, in a targeted attack, an adversary aims

to modify an input x to craft an optimal adversarial example x∗ ∈ RC×W×H that is

classified as the class label desired by the adversary when used as an input for the

victim model. In an untargeted attack, an adversary manipulates input x to change the

decision of a classifier to any class label other than its ground-truth label. To simplify

the descriptions, we refer to the desired class label as the target class while the class of

the input x is called the source class.
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Figure 3.2. (Left) The number of hard cases from CIFAR10 found for Boundary Attack (BA),

Sign-OPT and HopSkipJump categorized by different pairs of a source and target class (starting

image) at a distortion threshold = 0.9 and a query budget of 50,000. (Right) The line chart

illustrates a significant difference between a hard versus non-hard case—interestingly increasing the

query budget to even 100,000 does not yield a lower distortion adversarial example.

Measuring Distortion. l2-norm is widely adopted, in all of the recent works as

in (Brendel, Rauber and Bethge, 2018; Brunner et al., 2019; Cheng et al., 2019b, 2020;

Chen et al., 2017), to measure the distortion and similarity between a generated

adversarial example and the source sample. Therefore, in this chapter, our approach

focuses on l2-norm. Then, let D(x, x∗) be the l2-distance that measures the similarity

between x and x∗.

Optimization Problem. The main aim of adversarial attacks is to minimize the

distortion measured by D while ensuring the perturbed input data is classified as

a target class—for a targeted attack—or non-source class—for an untargeted attack.

Therefore, an adversarial attack can be formulated as a constrained optimization

problem:

min
x∗

D(x, x∗)

s.t. C( f (x∗)) = 1,

x, x∗ ∈ [0, 1]C×W×H,

(3.1)

Here, C( f (x∗)) is an adversarial criterion that takes the value 1 if the attack

requirement is satisfied and 0 otherwise. This requirement is satisfied if f (x∗) ̸= y

for an untargeted attack or f (x∗) = y∗ for a targeted attack (i.e. for the instance x∗ to

be misclassified as targeted class label y∗).
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3.2.3 Understanding Robustness

The two current query-efficient attack methods employ gradient approximation

frameworks, whilst the earlier method relied on a stochastic approach. We briefly

summarize these methods before delving into our systematic study to understand their

robustness.

Random Walk along a Decision Boundary. The first attack under a decision-based

threat model proposed by Brendel et al. (Brendel, Rauber and Bethge, 2018) initialized

an image in a target class and in each iteration, sampled a perturbation from a Gaussian

distribution and projected the perturbation onto a sphere around a source image. If

this perturbation yields an adversarial example, the attack makes a small movement

toward the source image and repeats these steps until the decision boundary is

reached. Subsequently, by traveling along the decision boundary based on sampling,

projecting and moving toward the source image, the adversarial example is refined

until an adversarial example with a desirable distortion is discovered.

Optimization Frameworks. In the absence of a means for computing the gradient

for solving Equation 4.1, the attacks in (Cheng et al., 2019b) and (Cheng et al., 2020)

attempt to solve the optimization problem using methods to estimate the gradient.

(Cheng et al., 2019b) samples directions from a Gaussian distribution and applies

a zeroth-order gradient estimation method in their OPT-attack, then (Cheng et al.,

2020) leveraged their former optimization framework and proposed a zeroth-order

optimization algorithm called Sign-OPT that is much faster to converge. (Chen,

Jordan and Wainwright, 2020) introduced a different optimization framework named

HopSkipJumpAttack using a Monte Carlo method to find the approximate gradient

direction to descend.

Evaluating Robustness. To understand the robustness of recent attack methods and

illustrate the costly nature of discovering low distortion adversarial examples with

these attacks, we propose an exhaustive but tractable experiment using the relatively

small number of classes albeit with a significantly large validation set offered by

CIFAR10 dataset. The protocol for assessing the robustness of each state-of-the-art

method described is carefully described in Section 3.4.3.

Hard Cases. Empirically, we define a hard case as a pair of source and starting

images—the starting image is from a given target class—where a given decision-based
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attack fails to yield an adversarial example with distortion below a desirable threshold

using a set query budget.

3.2.4 Observations from Assessing Attacks

We make the following observations from our results summarized in

Figures 3.2 and 3.3.
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Hard-set A Hard-set B

Figure 3.3. (Left) Consider an attack to discover an adversarial example for the source image of

class car such that the car is predicted as belonging to the target class dog. We demonstrate the

very different results an adversary can obtain based on the availability of a target class image 1 and

image 2. The attacker initializes the attack for Boundary, starting image 1 is a better initialization.

In contrast, Sign-OPT and HopSkipJump discover better adversarial examples if they are initialized

with starting image 2. (Right) The scatter plot illustrates this attack scenario with 100 samples

randomly selected from their own hard set. The y-axis denotes the average distortion and the size

of each bubble denotes the variation in distortion for each source image with respect to 10 different

starting images from hard targets. It shows that all these methods are highly dependent on a starting

image in hard cases.

Observation 1: Hard Cases. In decision-based attacks, specific classes and/or samples from

classes are more difficult to attack than others. As illustrated in Figure 3.2 (left), the current

attack methods are not uniformly effective against all pairs of source and starting

images from target classes. Interestingly, any of the gradient estimation methods

can approximate the true gradient given enough queries (or samples) to the target

model. However, solutions can become entrapped in various local minima. Further,

approaching a local minimum or a plateau can considerably undermine the quality

of that approximation; for instance, estimated gradients may become noisy when the
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Figure 3.4. 2D (z1 and z2) Input Space Example. An illustration of the execution of the

three different decision-based attack methods (Boundary, Sign-OPT and HopSkipJump) to attack a

toy model employing 2D inputs. The attacks result in different final solutions denoted by a yellow

triangle (▲). We executed the algorithms 100,000 times; both Boundary Attack and Sign-OPT failed

to find the global minimum (the Optimal Point closest to the Source point) and HopSkipJump only

found the global minimum 2.5% of the time. This illustrates the problem faced by current attack

methods when attacking a machine learning model whose decision boundary in the input space is

multi-dimensional and highly complex for realistic and practical image inputs.

gradient magnitude diminishes whilst approaching a local minimum. As shown in

Figure 3.2 (right), even with 100K queries, the solutions based on the gradient direction

estimation methods do not improve the distortion of the adversarial sample for the car

classified as a dog (Hard case).

Observation 2: Attack initialization. An attack algorithm’s ability to find a low distortion

adversarial example with a given query budget is dependent on the starting image from a

target class selected for initializing the attack algorithm. Interestingly, (Chen, Jordan and

Wainwright, 2020) in their S&P2020 paper briefly noted the potential for an algorithm

to get trapped in a bad local minimum based on the starting image used to initialize

an attack. Our systematic study confirms this intuition.

In this case, the achievable distortion of an adversarial example is highly dependent on

the starting image and the behavior of the algorithm. This observation is illustrated by

comparing the results of starting image 1 with image 2 for different attack methods in

Figure 3.3 and by 100 samples randomly selected from the hard set of each method—see

Section 3.4.5 and 3.4.6 for more details. The results demonstrate the dependence of attack

success on the starting image accessible to an adversary.
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Currently, there is no effective initialization method to determine a good starting image, prior

to mounting an attack. Therefore, developing a robust attack that is less sensitive to

the choice of starting image remains an open challenge.

Observation 3: Perturbation Region. Current attack approaches aim to perturb the

whole image to traverse the decision boundary to find an adversarial example with minimum

distortion. In other words, these methods always manipulate the whole image at a

time and result in perturbations that is spread over the entire image as illustrated by

perturbation heat maps in Figure 3.3. Another interesting remark drawn from these

figures is that the main features (for example edges) of the starting image remains

super-imposed in an adversarial example. However, most of the state-of-the-art

classifiers in computer vision utilize convolutional filters to extract local patterns in

an image; further, visual explanation tools demonstrate the reliance of classifiers on

key salient features of an image. Therefore, whether an attack could achieve a lower

distortion adversarial example by targeting the filter operation over local features in contrast to

manipulation of the whole image remains an interesting direction to explore.

3.2.5 An Intuition into Attack Methods

To understand and illustrate the underlying cause of the first two observations, this

study uses Boundary attack (BA) (Brendel, Rauber and Bethge, 2018), Sign-OPT

(Cheng et al., 2020) and HopSkipJump (Chen, Jordan and Wainwright, 2020) to attack

a Toy model. The decision boundary of the Toy model in a 2D input space illustrates

a constraint of the optimization problem in Equation 4.1. This decision boundary

is represented by g(z1, z2) = (z1 − 2)(z1 − 1)2(z1 + 1)3 − z2 = 0 where z1 and

z2 denote two coordinates of a point such as a starting point or a source point as

illustrated in Figure 3.4. A point above the boundary is classified as in the target

class; otherwise, it belongs to the source class. The black dot (•) source point denotes a

source class example whilst the black dot (•) starting point denotes a starting target

class example. All three methods are initialized with the same starting point, this

study then employs the attacks to search for an adversarial point within the target class

and closest to the source point; alternatively, the study aims to solve the optimization

problem in Equation 4.1, where the objective is to minimize the l2 distance to the source

point subject to the constraint imposed by the decision boundary, using these attack

algorithms.
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Figure 3.5. A pictorial illustration of RamBoAttack to craft an adversarial example. In a

targeted attack, the first component (GradEstimation) initializes an attack with a starting image

from a target class (e.g. this study uses a clip art street lamp for illustration) and then manipulates

this image to search for adversarial examples that looks like an image from source class e.g traffic

light. The attack switches to the second component, BlockDescent, when it reaches its own

local minimum. BlockDescent helps to redirect away from that local minimum by manipulating

multiple blocks—or making local changes to the current adversarial example. Subsequently, the

adversarial example crafted by BlockDescent is refined by the third component (GradEstimation).

Figure 3.4 illustrates several intermediate adversarial example points denoted by

blue dots and a final adversarial example achieved by each method denoted by a

yellow triangle for one example attack execution. Given the stochastic nature of the

algorithms, this study executes each attack 100,000 times with different random seeds.

All of the methods, except HopSkipJump, fail to find the optimal solution—global

minimum—and HopSkipJump only managed to reach the optimal solution in 2.5 % of

the attempts. As illustrated in Figure 3.4, the approximate gradient appears to be noisy

and the methods traverse the decision boundary in an incorrect direction towards

the local minimum rather than the global minimum. Although not illustrated here,

changing the starting coordinate can lead all of these methods to discover the global

minimum.

3.3 Proposed Attack Framework

The study in this chapter observes that: i) gradient estimation methods in attacks face

an entrapment problem in a highly complex loss landscape; ii) current attacks focus on

altering all of the coordinates of an image simultaneously to forge a perturbation; and

iii) the success of current attacks are sensitive to the chosen or available starting image

possessed by an adversary.

The study proposes an analogous Randomized Block Coordinate Descent

method—named BLOCKDESCENT—that aims to manipulate local features and target
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convolutional filter outputs by modifying values of coordinates in a square-block

region and in different color channels with targeted perturbations. The study proposes

localized changes to affect convolutional filter outputs and pixel values as a means of

impacting salient features and may even mimic salient features of the target. This leads

to potential redirection and escapes from entrapment in a bad local minimum with

minimal but effective changes to the image to mislead the classifier. In other words,

this study proposes taking a direct path along some coordinates towards a source

image whilst retaining the target class label to prevent the problem encountered by

gradient estimation methods—entrapment in a local minimum as shown in Figure3.4.
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(Final adversarial 
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Figure 3.6. 2D (z1 and z2) Input Space Example. An illustration of our RamBoAttack

against the toy model in Figure 3.4. If the first gradient estimation method—GradEstimation

in Algorithm 3.1—leads to entrapment in a local minimum—denoted by x̃(1), · · · , x̃(4) at the

start—there is no effective mechanism to escape. However BlockDescent moves away from

the local minimum. This is illustrated by x̃(5), · · · , x̃(7) when the number of modified coordinates

is one in the 2D input space. Subsequently, the third component applying a gradient estimation

method searches for a better adversarial example x̃(k) in the neighborhood region and reaches the

nearly optimal solution xa. In contrast to results in Figure 3.4, when evaluating RamBoAttack

over 100,000 runs against the Toy model, the study observed the proposed attack to always find the

optimal or near optimal solution.

Further, when employing gradient estimation methods, the gradient values decrease

as the crafted adversarial example moves closer to the source image leading to

the increasingly larger number of perturbations needed to converge. This issue is

exacerbated if there is a plateau in the decision boundary; now the gradient estimation

methods are as effective as a random search. We conjecture that the hard cases are

examples of where the gradient of the distortions is generally small and, thus, leads to
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local optima. However, we observe that the gradient estimation methods are effective

in two cases: (a) initial stages of optimizing Equation (4.1) or (b) at close proximity to

the source image. In (a), the gradients are sufficiently large to be estimated effectively,

and in (b) small changes and refinements (i.e. few perturbation iterations) facilitate a

decent to the optimum.

Consequently, we propose a new framework using gradient estimation for the initial

descent—case (a)—supported by BLOCKDESCENT to escape entrapment and noisy

gradient problems and refining the adversarial example supported by a gradient

estimation-based descent to forge a robust and query-efficient attack. Importantly,

BLOCKDESCENT is insensitive to the choice of starting images, although it is effectively

initialized with a gradient estimation, because BLOCKDESCENT manipulates blocks

that cause a move away from the direction set by a starting image. The new framework

we propose, RAMBOATTACK, is illustrated in Figure 3.5.

Summary. Gradient estimation methods are fast but face the potential problem of getting

trapped in a bad local minimum, particularly in hard cases. BLOCKDESCENT, on the

other hand, is slower—selecting to manipulate local regions—but is capable of tackling the

problems faced by gradient estimation attacks. Therefore, we develop a hybrid framework called

RAMBOATTACK for query-efficient decision-based attacks that can exploit the merits of both

approaches. In particular, our derivative-free optimization method considers, for the first time,

an approach to manipulate blocks of coordinates in the input image to influence the outcome

of convolution operations used in deep neural networks as a means for misguiding a networks

decision and generating adversarial examples with minimal manipulations.

3.3.1 Approach

Our proposed attack thus comprises BLOCKDESCENT and two components of gradient

estimation—GradEstimation—as shown in Figure 3.5 and described in Algorithm 3.1.

The gradient estimation algorithms used by these two components can be the same or

different from each other. When starting an attack, particularly in targeted settings, the

first component is initialized with a starting image x̃ from a target class and approaches

the decision boundary via a binary search—the first step in a gradient estimation

method. We employ the gradient estimation method to search for adversarial examples

until reaching its own local minimum. We call it a switching point xs because, from this

point, the gradient estimation method switches to BLOCKDESCENT. If the gradient
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estimation method is entrapped in a local minimum, BLOCKDESCENT helps to move

away from that local minimum. Subsequently, when local changes are insufficient, the

attack switches to the third component to refine the adversarial example crafted by

BLOCKDESCENT which is considered as the second switching point. This refinement

aims to search for the final adversarial example xa with lower distortion.

Figure 3.6 illustrates RAMBOATTACK against the Toy model used in Section 3.2.5 and

demonstrates the effectiveness of the attack we propose. Particularly, the first gradient

estimation approach searches for and reaches the adversarial examples x̃(1), x̃(2), x̃(3)

at different steps towards approaching the source point but is stuck at x̃(4) which is

a local minimum of the objective function D(x, x∗) subject to the constraint defined

by the decision boundary g(z1, z2). Henceforth, BLOCKDESCENT searches for next

adversarial examples x̃(5), · · · , x̃(7) by modifying one coordinate at a time—in this

2D example—by applying δ changes. Subsequently, the second gradient estimation

method continues searching for adversarial examples x̃(k) in the neighborhood areas

until reaching the near optimal xa. Most importantly, in contrast to the experiment in

Figure 3.4 when evaluating RAMBOATTACK over 100,000 attacks on the Toy model,

our proposed attack always reached the optimal or near optimal solution.

When to switch to BLOCKDESCENT? The gradient estimation methods are designed

to work alone rather than with other methods. Therefore, we develop a sub-module

GRADESTIMATION to call these methods and determine when to switch from a

gradient estimation method to BLOCKDESCENT. Empirically, gradient estimation

methods reach their local minimum when they cannot find any better adversarial

example after several steps of searching. In practice, this can be determined by

the distortion reduction rate ∆ after every T queries—a time frame to calculate ∆.

However, in gradient estimation methods, the number of queries per iteration is varied

so we relax this by accumulating the number of queries after each iteration. Whenever

it exceeds T, we compute ∆ and if this distortion reduction rate is below a switching

threshold ϵs, it switches to BLOCKDESCENT (see Algorithm 3.2).

3.3.2 BlockDescent

We recognize that the architecture of most machine learning models in computer

vision is based on a Convolutional Neural Network (CNN) built on convolution

operations. These convolution operations are defined as c× q× q where q is the size
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Algorithm 3.1: RAMBOATTACK

Input: source image x, starting image x̃, model f

gradient estimation function g1, g2, reduction scale λ,

input dimensions N,square extension n,

block number m, query number T1, T2

1 xs ← GRADESTIMATION (x, x̃, f , g1, T1)

2 xs ← BLOCKDESCENT(x, xs, f , λ, N, n, m)

3 xa ← GRADESTIMATION (x, xs, f , g2, T2)

4 return xa

of the filter and c is the number of channels to extract local patterns of an image.

Consequently, we hypothesize that altering a block of coordinates as a square-shaped

region with an appropriate size can target significant filter outputs potentially having

a significant impact on the network’s decision. Perturbing these coordinates can result

in an adversarial example with fewer queries since we target regions of the input to

impact actual convolutional filters and potentially discover salient features to mimic.

Inspired by this, we adopt a notion of square-block perturbation regions and introduce

BLOCKDESCENT that manipulates blocks of size n. BLOCKDESCENT has two stages: i)

crafting a sample; and ii) its evaluation as described in Algorithm 3.3.

Crafting a Sample. In each iteration, the first stage of BLOCKDESCENT aims to yield

a sample x′ that is initialized with x(k) which is an adversarial example at k-th step.

To increase the convergent rate and reduce query number, BLOCKDESCENT modifies

several blocks of coordinates concurrently. It firstly selects m different coordinates

across different channels (R, G, B) of an image by choosing a set S = {S1, S2, · · · , Sm}
where St = {ct, wt, ht} is selected uniformly at random such that ct ∈ [1, C], wt ∈
[1, W] and ht ∈ [1, H], where t = 1, 2, · · · , m and C, W, H denote the number of

channel, width and height of an image. This random selection is sampling without

replacement and each selected coordinate x′c,w,h is a center of a square block x′Bt
, where

x′Bt
represents x′[ct,wt−n:wt+n,ht−n:ht+n]. Likewise, m corresponding blocks xBt are yielded

from the source image x. A mask M with the same size as x′Bt
can be defined as

M = sign(xBt − x′Bt
). This mask is used to identify the direction of perturbation for

each element of a block x′Bt
. When each element of a block which is a coordinate of

an image is manipulated to move along this direction, it tends to move towards to its

corresponding element in the source image. The sample x′ is crafted when each of m
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Algorithm 3.2: GRADESTIMATION

Input: source image x, switching image xs, model f

gradient estimation function g, query number T

1 nq ← 0, switch← False

2 d← D(x, x′)

3 while not (switch) do

4 x′, i← g( f , x, x′)

5 nq ← nq + i

6 if nq > T then

7 ∆← d− D(x, x′)

8 d← D(x, x′)

9 nq ← 0

10 if ∆ < ϵs then

11 switch← True

12 end while

13 return x′

blocks of coordinates is updated as below:

x′Bt
← x′Bt

+ M× δ (3.2)

Where δ is a scalar that denotes an amount of perturbation for each element and it

reduces by λ after each cycle. One cycle is ended when all coordinates are selected for

perturbation. If δ is initialized with a small value, it is slow convergent and results

in query inefficiency from the beginning. Whilst, for large initial δ, modifying blocks

of coordinate almost leads to a sample moving further from the source image from

the beginning rather than moving closer. Consequently, it requires several cycles

until δ reduces to a suitable value. To tackle this issue, we exploit the distribution

of the absolute difference between all coordinates of a sample and their corresponding

coordinate in a source image and use i-th percentile Pi of this distribution to specify a

proper initial δ. In Equation 3.2, only selected square blocks are perturbed while the

rest of x̃ remains unchanged.

Evaluate Crafted Sample. In the second stage, to ensure a descent of distortion and

improve query efficiency, a crafted sample x′ is merely evaluated by the victim model

if it moves closer to x. If the adversarial criteria is then satisfied (C( f (x′)) = 1), the
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Algorithm 3.3: BLOCKDESCENT

Input: source image x, switching image xs,model f

reduction scale λ, input dimension N

square extension n, block number m

1 k← 0, nq ← 0, switch← False

2 δ← Pi(|x− xs|), x̃(k) ← xs, Dnq ← D(x, x̃(k))

3 while not (switch) do

4 j← 0

5 while j < N and not (switch) do

6 /* Craft a new sample */

7 x′ ← x̃(k)

8 for t = 1, 2, · · · , m do

9 Uniformly select a set {c, w, h} at random without replacement

10 x′Bt
← x′[c,w−n:w+n,h−n:h+n]

11 xBt ← x[c,w−n:w+n,h−n:h+n]

12 /* Perturbation region */

13 M← sign(xBt − x′Bt
)

14 x′Bt
← x′Bt

+ M× δ

15 end for

16 /* Evaluate crafted sample */

17 if Dnq > D(x, x′) then

18 nq ← nq + 1

19 if C( f (x′)) = 1 then

20 x̃(k+1) ← x′

21 k← k + 1

22 Dnq ← D(x, x̃(k))

23 Compute ∆ using Equation 3.3

24 if ∆ < ϵs then

25 switch← True

26 j← j + m

27 end while

28 δ← δ
λ

29 end while

30 return x̃(k)
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perturbation will make a change to update the next adversarial example as x̃(k+1) = x′.

Otherwise, the perturbation will be discarded.

Determining when to switch to the next component. Similar to the switching

criterion of gradient estimation methods, BLOCKDESCENT should switch to the next

component when it cannot find any better adversarial example that can be empirically

measured by distortion reduction rate ∆ per T queries. However, we observe

that BLOCKDESCENT is a gradient-free optimization so ∆ is highly varied for each

subsequent query. As such we cannot simply apply the same criterion as gradient

estimation methods. Consequently, to determine a better switching criterion for

BLOCKDESCENT, we adopt a smoothing technique based on Simple Moving Average

to measure the distortion reduction rate ∆. In practice, ∆ is computed as follows:

∆← 1
T

nq−T

∑
l=nq−2T

(Dl − D(l+T)) (3.3)

where Dl is a distance between x and x̃(k) at query l, nq is nq-th query. If ∆ is smaller

than a switching threshold ϵs, BLOCKDESCENT switch to the next component.

3.4 Experiments and Evaluations

This section evaluates the effectiveness of RAMBOATTACK versus current

state-of-the-art attacks:

• Boundary Attack (Boundary) (Brendel, Rauber and Bethge, 2018)

• Sign-OPT (Cheng et al., 2020) and

• HopSkipJump (Chen, Jordan and Wainwright, 2020)

The attacks are evaluated on two standard vision tasks: CIFAR10 (Krizhevsky, Nair and

Hinton, n.d.) and ImageNet (Deng et al., 2009).

3.4.1 Experiment Settings

Models and Hyperparamters. For a fair comparison, for CIFAR10, we use the

same CNN architecture used by Cheng et al. (Cheng et al., 2019b, 2020). This
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network comprises of four convolutional layers, two max-pooling layers and two

fully connected layers. For evaluation on ImageNet, we use a pre-trained ResNet-50

(He et al., 2016) provided by torchvision (Marcel and Rodriguez, 2010) which obtains

76.15% Top-1 test accuracy. All images are normalized into pixel scale of [0, 1].

All hyper-parameters of our RAMBOATTACK are described in Appendix A.7.1 and all

of the evaluation sets are described in Section 3.4.4, 3.4.5, 3.4.3 and Appendix A.1.

Evaluation Measures. To evaluate the performance of a method, prior works use

different metrics such as a score based on the median squared l2-norm (Brendel, Rauber

and Bethge, 2018) and median l2-norm distortion versus the number of queries (Cheng

et al., 2020; Chen, Jordan and Wainwright, 2020). However, the median metric is

not able to highlight the existence of the so-called hard cases and their impact on

the performance of an attack so the evaluation may be less reliable. Therefore, in

addition to the median, we report average l2-norm distortion. We also adopt Attack

Success Rate (ASR) used in (Chen, Jordan and Wainwright, 2020) to measure the attack

success of crafted adversarial samples, obtained with a given query budget, at various

distortion limits.

Gradient Estimation Selection for RAMBOATTACK. We apply two state-of-the-art

gradient estimation methods, HopSkipJump and Sign-OPT, and derive two

RAMBOATTACK attacks: i) RAMBOATTACK (HSJA), composed of HopSkipJump,

BLOCKDESCENT and Sign-OPT; and ii) RAMBOATTACK (SOPT), composed of

Sign-OPT and BLOCKDESCENT. We do not use HopSkipJump for the second gradient

descent stage because we observe Sign-OPT to be more effective at refining adversarial

samples—as also observed in (Cheng et al., 2020).

3.4.2 Experimental Regime

This section summarizes all extensive experiments conducted on CIFAR-10 and

ImageNet datasets with different sparse attacks in decision-based settings.

• Evaluation Protocol: Section 3.4.3 proposes two different evaluation protocols

which are used in exhaustive experiments on hard-set and balance sets. Especially,

the exhaustive evaluation protocol is designed to explore the existence of a hard

set for decision-based attacks as observed in Section 3.2.4.
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• Robustness of RAMBOATTACK: Section 3.4.4 investigates the robustness of our

RAMBOATTACK and other methods by assessing the existence of a hard set for our

RAMBOATTACK and compares its performance with the state-of-the-art attacks.

• Attacking Hard Sets: Most attacks demonstrate their impressive performance

in non-hard cases whilst struggling with hard cases. Therefore, Section 3.4.5

compares and demonstrates the performance differences—in terms of query

efficiency, attack success rate and distortion—on hard evaluation sets.

• Impact of the Starting Image: The impact of the starting image from the target class

on the success of the attack is observed in Section 3.2.4. Hence, the exhaustive

experimental evaluations in Section 3.4.6 explore the sensitivity of an attack’s

success to the choice of the attacker’s starting image. An important consideration

to evade detection is through trial-and-error testing of starting images to find

easy samples or when access to samples (source or target class) is restricted.

• Attack Insights: Clear correlations between perturbations yielded by our

RAMBOATTACK and salient regions of target images embedded inconspicuously

in adversarial examples is observed and investigated in Section 3.4.7. These

artifacts result from the localized perturbation method in BlockDescent.

• Attacks Against Defended Models: Decision-based attacks are able to fool standard

models. This naturally leads to the critical question of whether or not such attacks

are able to bypass defended models. Thus, the experiments in Section 3.4.8 aim to

investigate the robustness of decision-based attacks against defense mechanisms.

• Validation on Balance Datasets: Constructing hard and non-hard sets for all

decision-based attack methods through exhaustive evaluations to assess

robustness is extremely time-consuming. Therefore, a reliable and reproducible

attack evaluation strategy is proposed to validate attack robustness. The

proposed evaluation protocol and results are deferred to Appendix A.1 and all of

the constructed sets for comparisons are released in future studies.

• Untargeted Attack Validation: In addition to targeted attacks, for completeness,

RAMBOATTACK and other state-of-the-art attacks are evaluated on CIFAR10 and

ImageNet under the untargeted attack setting in Appendix A.2.
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3.4.3 Proposed Robustness Evaluation Protocol

This section introduces two evaluation protocols for exhaustive experiments on

hard-set and balance sets. While the exhaustive evaluation protocol is designed to

discover the existence of a hard set in decision-based attacks, the balance evaluation

protocol aims at providing a fair comparison and reliable benchmark.
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1

n

n samples
(source)

m classes
(target)

2

... ...

Starting image pool for
different target classes

0

1

p

...

Select the best

2

Figure 3.7. The proposed evaluation protocol for assessing robustness under an exhaustive evaluation

setting. In this mode, each sample from a dataset with the size of n is evaluated to obtain an

adversarial example for that sample capable of flipping its predicted label to m different target

classes from that dataset. For each attack, a starting image is selected from a pool of p starting

images.

Protocol for exhaustive evaluations

An attack method is mounted to change the true prediction of the DNN from its ground

truth label for a given source sample image to each of the different target classes. For

CIFAR10 with ten classes and 10,000 samples from a testset, an attack method selects

each of the 1000 testset samples from a given class as a source image and attempts to

find an adversarial example for each of the other target classes (of which there are 9).

Consequently, we evaluate 90,000 pairs of source and starting images. Since there is no

effective method to choose a starting image from a target class, for a fair evaluation,

we apply the same protocol used in (Cheng et al., 2019b, 2020) to initialize an attack

for each method. We execute each attack with a query budget of 50,000 queries. Then

we identify hard cases of each attack method against the victim model (detailed in

Section 4.4.1). This protocol can be generalized to other datasets by choosing n samples

and m different target classes from that dataset where each target class has its own

starting image as shown in Figure 3.7.
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Figure 3.8. The proposed evaluation protocol requires a balanced dataset including n source classes

and a balanced target set comprising of n corresponding groups. On the balance source set, all

source classes have an equal number of samples (k) while all n corresponding groups have an equal

number of target classes (m). These target classes are different within a group but can be repeated

in other groups. From these groups Gn, a starting image is selected from a pool of p starting images.

Evaluation protocol for balance sets

The second research question highlights a need to evaluate the overall performance

of various black-box attacks under decision-based settings reliably. On CIFAR10, most

previous works propose to choose a random evaluation set with randomly sampled

images with label y and select a random target label ỹ (Cheng et al., 2020) or set ỹ =

(y + 1) mod 10 (Brendel, Rauber and Bethge, 2018; Brunner et al., 2019; Cheng et al.,

2019b). Nonetheless, these selection schemes may lead to an imbalanced dataset that

is insufficient to evaluate the effectiveness of the attack since it may lack the so-called

hard cases that occur more frequently with specific pairs of classes. As a result, it may

lead to a bias in evaluation results and fail to highlight potential weaknesses of an

attack. Consequently, were motivated to propose a more robust and reliable evaluation

protocol and illustrate it in Figure 3.8.

A balance set comprises a balanced source set and a balanced target set. Both sets are

composed of N different source classes and N corresponding groups. Each group is

composed of m different target classes and all source and target classes are randomly

chosen from all classes of a test set. In addition, all target classes are different within

a group but can be repeated in other groups. Each source class has n samples selected

randomly from a test set. Adversaries may have one or several images from each

target class and select one to initialize an attack. Each attack method aims to craft

an adversarial example for every selected sample from each source class and flip
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its true prediction towards every target class given in the corresponding group of

balanced target set. The total number of evaluation pairs is N × n× m. For instance,

every sample of source class i (img: i1, i2, · · · , in) is flipped towards each target class

(class: i1, i2, · · · , im) in the corresponding group i (see Figure 3.8).

3.4.4 Robustness of RamBoAttack

We carry out a comprehensive experiment, similar to that in Section 3.2.4. In this

experiment, we use a range of distortion thresholds of 0.7 to 1.1. Notably, both (Chen,

Jordan and Wainwright, 2020) and (Cheng et al., 2020) reported their methods to

achieve a distortion level below 0.3 after 10,000 queries; hence our proposed values

are not guaranteed to discover hard cases because the smallest value, 0.7, is much

higher than 0.3 achieved in other studies. The main aim is to illustrate how our

RAMBOATTACK are able to craft more adversarial examples with distortions below

a range of distortions from 0.7 to 1.1 for each sample of the entire CIFAR10 test set. We

compare the performance of the RAMBOATTACK with Sign-OPT and HopSkipJump.

Figure 3.9 shows a remarkably low number of hard cases for the RAMBOATTACK.

The total number of hard cases achieved for our RAMBOATTACK is approximately

10 times lower for the distortion ranges from 0.9 to 1.1. For distortion at 0.7 and

0.8, the number of hard cases drops approximately 2 times and 5 times, respectively

in comparison with the other attack methods. Interestingly, as expected, hard pairs

encountered by Sign-OPT and HopSkipJump are resolved with RAMBOATTACK as

shown in Appendix A.5.

3.4.5 Attacking Hard Sets

This section analyses the performance difference in terms of query efficiency, attack

success rate and distortion on hard evaluation sets.

Evaluations on CIFAR10. From CIFAR10 test set, we generate a hard set for Boundary

Attack called hard-set A and another hard set for both Sign-OPT and HopSkipJump

called hard-set B. The hard-set A and B are composed of 400 hard sample pairs of a source

image and a starting image. A hard sample is selected when a distortion between a

source image and its adversarial example found after 50K queries is larger than or

equal to 0.9. For a fair comparison, each method is employed to craft an adversarial

example for each source image initialized with a given starting image. In addition,
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Figure 3.9. The number of hard cases found for Sign-OPT, HopSkipJump and RamBoAttack

with a range of distortion threshold from 0.7 to 1.1 using a budget of 50,000 queries (see detailed

results in Appendix A.5 and Figure A.9).
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Figure 3.10. A distortion comparison versus queries for each method using their own hard versus

non-hard cases.

we also construct a common non-hard set for all three attacks called non-hard set C to

compare and highlight the significant difference between evaluation results on hard

and non-hard sets as shown in Figure 3.10. Particularly, it shows that the average

distortion versus queries on the common non-hard set C achieved by these methods

is significantly lower than that obtained on their own hard set after 50K queries.

We evaluate our RAMBOATTACK on hard-set A & B. Figure 3.11 and 3.12 show

that Boundary Attack, Sign-OPT and HopSkipJump do not efficiently find an

adversarial example with low distortion; however, RAMBOATTACK can achieve better

performance on the hard-sets. We defer detailed evaluations on non-hard-sets to

Appendix A.1; as expected, RAMBOATTACK performs comparably well on these sets.

Histogram charts in Figure 3.13 demonstrate that for each hard-set, our attacks are able

to find lower distortion adversarial examples for most hard cases and the distortion
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Figure 3.11. Distortion (dist) on a log10 scale vs number of queries. It shows the results for our

RamBoAttacks versus Boundary attack on hard-set A. Our RamBoAttacks are more query

efficient in hard cases.
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Figure 3.12. Distortion (dist) on a log10 scale vs number of queries. It shows the results for our

RamBoAttacks versus Boundary attack on hard-set B. Our RamBoAttacks are more query

efficient in hard cases. Hence our attack is demonstrably more robust and query efficient.

distribution on both hard-sets: i) are shifted to smaller distortion regions; and ii) show

significantly smaller spread or variance.

Page 51



3.4.5 Attacking Hard Sets

Hard-set BHard-set A
RamBoAttack (SOPT)
Sign-OPT

HopSkipJump
RamBoAttack (HSJA)

RamBoAttack (SOPT)
Boundary Attack

RamBoAttack (HSJA)
Boundary Attack

Distortion Distortion

N
um

be
r 

of
 S

am
p

le
s

N
um

be
r 

of
 S

am
p

le
s

Figure 3.13. On both hard-set A and B selected from CIFAR10, the distortion distribution yielded

by RamBoAttacks are shifted left and indicates an overall smaller distortion than other attacks.

Number of queries Distortion

RamBoAttack (SOPT)
RamBoAttack (HSJA) Sign-OPT

HopSkipJumpBoundary

K K K K K

A
S

R
 (

%
)

K K K K K

A
S

R
 (

%
)

ASR at 25K query limit

ASR at 50K query limitMedian

Mean

L
o

g
  

  
(d

is
t)

10
L

o
g

  
  

(d
is

t)
10

H
ar

d-
se

t D

Our Attacks

Figure 3.14. Distortion in a log10 scale vs number of queries on hard-set-D. Our RamBoAttack is

more query efficient and achieves a higher ASR on this hard-set. Hence, our attack is demonstrably

more robust and query efficient.

Although we observe RAMBOATTACK to result in fewer hard samples in comparison

to other methods at various distortion thresholds, we construct a hard set for

RAMBOATTACK called hard-set D based on the same criteria used to generate hard-set A
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and B to assess if the hard-set for RAMBOATTACK could somehow be easier for the other

attack methods. The total number of samples for this set is 115 sample pairs because

RAMBOATTACK has a much lower number of hard cases than their counterparts

(namely BA, HopSkipJump and Sign-OPT) at a given distortion threshold as illustrated

in Figure 3.9. We summarize the results from our evaluations in Figure 3.14. As

expected, RAMBOATTACKS are more query efficient and are able to craft lower mean

and median distortion adversarial examples as well as achieve higher attack success

rates at both query budgets. In particular, at distortion levels above 1.0, in comparison

to other attacks, RAMBOATTACKS obtain much higher attack success rates—notably,

with significant margins at the lower query budget of 25K, since RAMBOATTACKS

employ BLOCKDESCENT when the gradient estimation method is unable to make

progress (potentially being stuck in a bad local minimum), to discover better solutions

and craft lower distortion adversarial samples.
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Figure 3.15. Distortion in a log10 scale vs number of queries on hard ImageNet evaluation sets. It

shows the results on the hard-set and our RamBoAttacks are more query efficient. Hence our

attack is demonstrably more robust and query efficient.

Evaluation on ImageNet. To demonstrate the robustness of our attacks on a large-scale

model and dataset, we compose a hard-set with 120 hard sample pairs from ImageNet. A

hard sample is selected when a distortion between a source image and its adversarial

example found after 50,000 queries by Sign-OPT and HopSkipJump is larger than or

equal to 15. Notably, we do not compose a hard set for Boundary Attack because it

cannot yield low distortion adversarial examples efficiently on large scale datasets.
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Figure 3.16. On the hard-set selected from ImageNet, the distortion distributions yielded by our

RamBoAttacks indicate an overall smaller distortion compared to other attacks. The distributions

is shifted to the left and has significantly less variance compared to other attacks.

Figure 3.15 demonstrates that our RAMBOATTACKS outperform both Sign-OPT and

HopSkipJump on the hard-set. We defer detailed evaluations on non-hard-sets to

Appendix A.1; notably, RAMBOATTACKS achieve improved results on the more

complex ImageNet dataset. The histograms in Figure 3.16 show distortion distributions

for our attacks shifted significantly to smaller distortion regions with smaller variance

and fewer outliers compared to other attacks.

3.4.6 Impact of Starting Images

In this experiment, we first compose subset A and B by selecting 100 random hard

sample pairs from hard-set A and B, respectively (see Section 3.4.5 for these sets). Our

RAMBOATTACKS are compared with Boundary attack on subset A and with Sign-OPT

and HopSkipJump, on subset B. In Section 3.4.5, each method needs to yield an

adversarial example for a pair of a given source image and a given starting image.

In contrast, in this experiment, the given starting image is replaced by 10 starting

images randomly selected from the CIFAR10 evaluation set and correctly classified by

the model. All evaluations are executed with a 50,000 query budget.

In Figure 3.17, the size of each bubble denotes the standard deviation while y-axis

value indicates average distortion. We can see that our RAMBOATTACKS almost

achieve smaller mean and standard deviation than Sign-OPT, HopSkipJump and

Boundary Attack on subset A and B. A robust method should be less susceptible to

the selection of a starting image and yield a low distortion adversarial example most

chosen starting images. We can observe from Figure 3.17 that our RAMBOATTACKS are
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Figure 3.17. An illustration of sensitivity of different attacks to various starting images. Each

method is evaluated on each subset and the charts show the average and variance of distortion for

each case of each subset achieved by different methods. y-axis denotes the average distortion while

the size of each bubble denotes the distortion variation. Compared with Boundary, Sign-OPT and

HopSkipJump attacks, our RamBoAttacks are much less sensitive to the choice of a starting

image.

more robust than Sign-OPT, HopSkipJump and Boundary attacks as a consequence of

being less sensitive to the chosen starting images.

3.4.7 Attack Insights

This section investigates correlations between perturbations yielded by our attack and

salient regions of target images embedded inconspicuously in adversarial example.

Perturbation Regions

First, we develop a simple technique to transform a perturbation with size C ×W ×
H to a Perturbation Heat Map (PHM) with size W × H that is able to visualize

perturbation magnitude of each pixel. This transformation is defined as:

PHMi,j ←
Ai,j

max(A)
, (3.4)

where Ai,j = ∑C
c=1 |(x − xa)c,i,j|; c ∈ [1, C], i ∈ [1, W] and j ∈ [1, H]. Second,

since Grad-CAM (Selvaraju et al., 2017) is a popular visual explanation technique for

visualizing salient features in an input image to understand a CNN model’s decision,
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we use it to investigate the adversarial perturbations generated by our attack and the

salient features in the target image largely responsible for a model’s decision for the

classification of an input to a target class.

Grad CAM
Tool

Grad CAM result

Sign-OPT HopSkipJump Ours

Starting Image (    )Source Image (    )

Boundary

Figure 3.18. Grad-CAM tool visualizes salient features of the starting image or target class: digital

watch. A perturbation heat map (PHM) visualizes the normalized perturbation magnitude at each

pixel. Comparing different perturbations crafted by different attacks highlights that the localized

perturbations yielded by RamBoAttack concentrate on salient areas illustrated by GRAD-CAM

and embed these targeted perturbations in the source image to fool the classifier to predict the target

class; even though, RamBoAttack does not exploit the knowledge of salient regions to generate

perturbations—additional examples in Appendix A.6, Figure A.10

In all of the attack methods, we observe the attacks to embed the target image

in the source image in a deceptive manner. However, in hard cases, based on

PHM and Grad-CAM outcomes, we observe a strong connection between adversarial

perturbations found and salient regions in starting images as illustrated in Figure 3.18

for RAMBOATTACKS. It shows that our RAMBOATTACKS are able to discover and limit

manipulations of pixels to salient regions responsible for determining the classification

decision of an input image to the target class to craft adversarial examples. This

salient region consists of the most discriminative local structures of a starting image

against a source image. Because BlockDescent is able to manipulate local regions,

RAMBOATTACKS are able to exploit only this discriminative region and employ less

adversarial perturbations than Sign-OPT and HopSkipJump to promote features of

a starting image and suppress the feature of the source image. Therefore, it may

shed light on why RAMBOATTACK with the core component BLOCKDESCENT is able

to tackle the so-called hard cases. Moreover, in these hard cases, we observe that
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Figure 3.19. An illustration of hard case (white stork to goldfish) versus non-hard case (white

stork to digital watch) on ImageNet. Adversarial examples in non-hard cases and hard cases

are yielded after 50K and 100K queries, respectively. Except for the Boundary attack, adversarial

examples crafted by different attacks in non-hard cases are slightly different whilst in the hard case,

our RamBoAttack is able to craft an adversarial example with much smaller distortion than other

attacks due to the ability of our BlockDescent formulation to target effective localized perturbations.

our RAMBOATTACK is able to yield perturbations with more semantic structure if

compared with Sign-OPT or HopSkipJump.

Visualization of ImageNet Hard versus Non-hard Cases

Figure 3.19 illustrates adversarial examples in non-hard cases and hard cases yielded

by Boundary Attack, Sign-OPT, HopSkipJump and our RAMBOATTACK (HSJA)

after 50K and 100K queries, respectively. The second row of Figure 3.19 shows

each corresponding adversarial example and the third row illustrates PHM of each

adversarial example. The last row shows the l2 distortion between each adversarial

example and the source image.

For the adversarial example of non-hard cases, all methods are able to craft

low-distortion adversarial examples except Boundary attack. These adversarial

examples and their corresponding distortions are comparable. On the contrary,

adversarial examples in hard cases yielded by Boundary Attack, Sign-OPT and

HopSkipJump have noticeably higher distortion than the one crafted by our attack.

We observe Boundary Attack, Sign-OPT and HopSkipJump to experience potential
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entrapment when searching for a low-distortion adversarial example, even when the

budget is increased to 100K queries.

Convergence Analysis

The problem considered in this chapter is non-convex and non-differentiable. As

such, providing a guaranteed global minimum is not possible. However, our insight

is that the gradient estimation in black-box attacks is unreliable, particularly in the

vicinity of the local minima. To remedy the problem, we propose RAMBOATTACK as

a generic method to overcome this issue. We employ a gradient estimation method

in the initial descent using any of the existing alternatives (before BLOCKDESCENT)

and subsequently in the refinement stage (after BLOCKDESCENT). Hence, employing

the gradient estimation in (Cheng et al., 2020), for instance, would imply that the

theoretical convergence analysis therein is still valid for our method.

3.4.8 Attack Against Defense Mechanism

In this section, we evaluate the robustness of various attacks against three different

defense mechanisms including region-based classification, adversarial training and

defensive distillation. These defense methods are selected due to their own strength.

Region-based classifiers can pragmatically alleviate various adversarial attacks

without sacrificing classification accuracy on benign inputs (Cao and Gong, 2017)

whilst adversarial training (Goodfellow, Shlens and Szegedy, 2014; Madry et al., 2018;

Tramèr et al., 2018) is one of the most effective defense mechanisms against adversarial

attacks (Athalye, Carlini and Wagner, 2018) and defensive distillation (Papernot et al.,

2016b) employ’s a form of gradient masking.

For a baseline, we choose C&W attack ((Carlini and Wagner, 2017)), a state-of-the-art

white-box attack. The adversarial training-based models used in this experiment

are trained with Projected Gradient Descent (PGD) adversarial training proposed

in (Madry et al., 2018). We evaluate our RAMBOATTACK and current state-of-the-art

decision-based attacks at different query budgets: 5K, 10K, 25K and 50K.

Results for Attacking against a Region-based Classifier

Figure 3.20 shows that the average and median distortion (on a log10 scale) achieved

by RAMBOATTACKS are significantly lower than BA, Sign-OPT and HopSkipJump. In
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addition, our attack outperforms others in terms of attack success rate (ASR) at 25K

and 50K query budgets—i.e. achieve higher ASR on defended models under different

query budgets and distortion thresholds. Based on these results, we observe our attack to

be more robust than exiting attacks when mounting an attack against region-based classifiers.
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Figure 3.20. Performance comparison between different state-of-the-art attacks and

RamBoAttack against a Region-based Classifier on CIFAR10. RamBoAttack outperforms

other black-box attacks and is able to craft significantly more effective adversarial examples of lower

distortion against the defense method as seen by the higher ASR results against the defended models

from RamBoAttack across all of the evaluations.

Analysis. The reason for this is that existing attack methods need to follow

the decision boundary where region-based classifiers are capable of correcting their

prediction by uniformly generating a large amount of data points at random and

returning the most frequently predicted label. This capability of region-based

classifiers prevents binary search in Sign-OPT and HopSkipJump from specifying

the boundary exactly and results in noisy and coarse boundary estimations that

cause all attack methods aiming to walk along the boundary to fail to estimate a

useful gradient direction. Nevertheless, our RAMBOATTACKS are able to break this

defense mechanism because the core component, BLOCKDESCENT, is a derivative-free

optimization that does not need to determine the boundary and estimate a gradient

direction to descend.
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Figure 3.21. ASR comparison between white-box (employed as a baseline) and current

decision-based attacks versus our RamBoAttack against Adversarial Training model and Defensive

Distillation on CIFAR10 (using the balanced set). Interestingly, RamBoAttacks are more effective

than the white-box attack method baseline and are slightly more robust under different query settings

when compared to other decision-based black-box attacks.

Results for Attacking against Adversarial Training and Distillation

Figure 3.21 shows the attack success rate (ASR) at different distortion levels and query

limits for various attack methods against an adversarially trained model and defensive

distillation model. Particularly, for adversarial training, our RAMBOATTACKS

can achieve comparable performance with Sign-OPT and HopSkipJump while

outperforming Boundary attack within the query limits of 5K, 10K or 25K. In addition,

we compare the performance of our attack at different query budgets with the

white-box attack—C&W—used as a baseline for comparison. Notably, we do not execute

C&W attack at different query settings because it is a white-box method and use the

best result produced by this attack.

Analysis. We observe that our attacks are able to obtain a comparable performance

with the C&W attack at the 5K query budget. When the query limit is up to 10K and

higher, our RAMBOATTACKS outperform the white-box C&W baseline attack method.

Nevertheless, Adversarial Training is still effective at reducing the ASR achieved by

our method, even with a 25K query budget. Success falls from around 99% (see

Figure A.5) to approximately 43% (see Figure 3.21) at a distortion of 1.0 (l2 norm).

Similarly, at a distortion of 0.3, the ASR decreases from about 60% (see Figure A.5)

to approximately 10% (see Figure 3.21). However, what we can observe is that as the
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distortion increases, the attack is more effective. This is expected because the attack

budget of the adversary is increased above and beyond the budget used for generating

the adversarial examples used for building the adversarially trained model.

Likewise, for defensive distillation, our RAMBOATTACKS can achieve comparable

performance with Sign-OPT and HoSkipJump whilst outperforming Boundary attack

and C&W whitebox baseline attack at different query budgets. These results confirm

the results and findings presented in (Chen, Jordan and Wainwright, 2020).

3.5 Conclusion

This chapter proposes a new attack method in a decision-based setting;

RAMBOATTACK. In contrast to modifying a whole image as in current attacks,

the proposed attack exploits localized perturbations to yield more effective and

low-distortion adversarial examples in the so-called hard cases. The comprehensive

empirical results demonstrate that the proposed attack outperforms current

state-of-the-art attacks. Interestingly, while the main proposed component,

BLOCKDESCENT, is able to significantly improve the performance and robustness of

attacks in the so-called hard cases, it does not degrade performance in non-hard cases.

As a result, validation results on small and large-scale evaluation sets demonstrate

that RAMBOATTACK is more robust and query efficient than current state-of-the-art

attacks. Notably, whilst an extensive set of results is presented in the main chapter,

additional results to support the study are in Appendix A.

Black-box
Attacks

Score-based
Attacks

Decision-
based Attacks

Score-based
Dense Attacks

Score-based
Sparse Attacks 
(Chapter 5)

Decision-based
Dense Attacks 
(Chapter 3)

Decision-based
Sparse Attacks 
(Chapter 4)

Figure 3.22. Upcoming chapter sneak peek.

The practicality of decision-based dense adversarial attacks, which manipulate an

entire input (i.e. image) with only access to models’ decision (i.e. predicted labels),
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presented in this chapter poses a critical threat to Deep Learning models employed in

real-world systems. This then raises a pertinent question what if manipulating solely

some pixels in the input is able to deceive Deep Learning models. To address this

concern, the upcoming chapter as depicted in Figure 3.22 will explore a new threat—a

sparse adversarial attack—against DNN models. This threat is crucial to investigate

because it demonstrates that DNN models are more susceptible to subtle changes in the

input than we believe. Further, this type of threat has not drawn much attention and

manifests as an inadequacy in our knowledge about the weaknesses of DNN models.

To this end, the next chapter will discuss the challenging problem associated with this

type of attack and propose a new sparse attack algorithm that is significantly more

query efficient than the existing methods.
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Chapter 4

SparseEvo: A Sparse
Attack Under

Decision-base Settings

T
HIS chapter considers the challenging problem of designing a

query-efficient sparse adversarial attack—l0 norm-constraint—in

decision-based settings. In contrast, the previous chapter

investigates the vulnerability of DNN models to dense attacks (l2
norm-constraint). The realisation of sparse attacks against black-box

models now demonstrates that machine learning models are more

vulnerable than we believe. Because these attacks are able to minimize

the number of perturbed pixels—measured by l0 norm—required to mislead

a model by solely observing the decision (the predicted label). But, such an

attack leads to an NP-hard optimization problem. The study in this chapter

proposes an evolution-based algorithm—SPARSEEVO—for the problem

and evaluates against both convolutional deep neural networks and vision

transformers. Notably, vision transformers are yet to be investigated under a

decision-based attack setting. Although conceptually simple, the proposed

attack with only a limited query budget outweighs the state-of-the-art

decision-based sparse attack Pointwise and is competitive with the whitebox

sparse attacks in standard computer vision tasks. Importantly, the query

efficient SPARSEEVO, along with decision-based attacks, in general, raise

new questions regarding the safety of deployed systems and poses new

directions to study and understand the robustness of machine learning

models.
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4.1 Motivation and Contribution

Unlike the l2 norm-constrained adversarial attack—Dense Attack—in Chapter 3, this

chapter introduces a new l0 norm-constrained adversarial attack—Sparse Attack. While

dense attacks (Athalye, Carlini and Wagner, 2018; Ilyas et al., 2018; Shukla et al., 2021)

are widely explored, sparse attacks have not drawn much attention. This potentially leads

to a lack of knowledge on model vulnerabilities to this perturbation regime. From

a security standpoint, sparse attacks are particularly as threatening as dense attacks.

Therefore, investigating sparse perturbation regimes is as pivotal and necessary as

dense perturbation counterparts. To this end, the study in this Chapter extensively

investigates the robustness of DNNs against Sparse Attacks and proposes a new attack

algorithm.
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Figure 4.1. Targeted Attack. Malicious instances generated for a sparse attack with different

query budgets using our SparseEvo attack algorithm employed on black-box models built for the

ImageNet task. With an extremely sparse perturbation (78 perturbed pixels over a total of 50,176

pixels), an image with ground-truth label traffic light is misclassified as a street sign.

To explore the robustness of DNNs against Sparse Attacks, the study in this chapter

will focus on convolution-based and Attention-based architectures introduced by

(Ramachandran et al., 2019; Cordonnier, Loukas and Jaggi, 2020; Touvron et al., 2021),

particularly the Vision Transformer (ViT) proposed by (Dosovitskiy et al., 2021) which

is competitive or even outperform convolution-based network (Carion et al., 2020;

Bhojanapalli et al., 2021). Existing studies have not considered adversarial attacks in l0
norm constraint-based perturbation regimes against ViT, although a few studies have

explored robustness against l2 and l∞ norm constraints (Shao et al., 2021). This raises

a critical security concern for the reliable deployment of real-world applications based

on vision transformers. Therefore, the study will focus on investigating a method
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capable of evaluating the robustness of convolutional DNNs as well as transformer

networks to understand the fragility of ViT in relation to CNNs under l0 norm

adversarial attacks.

Yielding sparse perturbations is incredibly difficult as minimizing l0 norm leads to

an NP-hard problem (Modas, Moosavi-Dezfooli and Frossard, 2019; Dong et al.,

2020). Existing sparse attacks in black-box settings, particularly in decision-based

scenarios, have a key shortcoming—the algorithms require a large number of model

queries to achieve sparsity and invisibility. Consequently, this study proposes a novel

evolutionary algorithm-based sparse attack method in the decision-based setting,

referred to as SPARSEEVO. Because the evolutionary algorithm is a derivative-free

method, it is able to handle the NP-hard problem significantly more effectively and

is more query efficient than the state-of-the-art counterpart—Pointwise (Schott et al.,

2019). An example of a targeted attack with the proposed algorithm is illustrated in

Figure 4.1 on the standard computer vision task, ImageNet.

To understand the fragility of different Deep Learning models to sparse adversarial

attacks in decision-based settings and examine the query efficiency of these sparse

attacks, this study aims to answer the following research questions (RQ).

RQ1: How can an adversary construct a robust and query-efficient decision-based attack

for achieving highly sparse adversarial perturbations in high-dimensional spaces? This

question will be explored in Section 4.3.

RQ2: How successful are decision-based sparse attacks against Convolutional Neural

Networks, Vision Transformers and defended models? And how do Vision Transformers

compare with CNNs in terms of robustness? This question will be explored in Section 4.4.

Main Contributions. The contributions of this chapter are summarised below:

• A novel sparse attack—SPARSEEVO—an evolution-based algorithm capable of

exploiting access to solely the top-1 predicted label from a model is formulated to

search for an adversarial example in the model’s input space whilst minimizing

the number of perturbed pixels required to mislead the model.

• The proposed attack algorithm can significantly reduce the number of model

queries compared with the sate-of-the-art counterpart, Pointwise. Further,
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SPARSEEVO achieves comparable success to PGD0—the state-of-the-art white-box

attack—in terms of attack success rate with a limited query budget.

• The first vulnerability evaluation of a Vision Transformer (ViT) on the standard

computer vision task ImageNet in a decision-based and l0 norm-constrained

setting is conducted and compared with ResNet to assess the relative robustness

of the ViT model.

4.1.1 Chapter Overview

Section 4.2 presents the related work on decision-based sparse attacks; Section 4.3

introduces the problem formulation and details the proposed attack algorithm; Section

4.4 evaluates and discusses the performance of different sparse attacks across different

datasets. Section 4.5 gives a conclusion of this chapter.

4.2 Related Work on Sparse Attacks

This section discusses prior works in the area of sparse adversarial attacks in

decision-based scenarios. It first presents sparse attacks in white-box settings and

then briefly criticizes sparse attack methods under score-based and decision-based

scenarios.

Sparse Attacks. The main aim of sparse attacks is to minimize the number of perturbed

pixels required to mislead a target machine learning model. Only a handful of works

have investigated sparse attacks and these works can be broadly categorised based on

various degrees of adversarial access to a model.

White-box methods. To realize sparse attacks in a white-box setting, SparseFool attack

introduced by (Modas, Moosavi-Dezfooli and Frossard, 2019) employed the idea of l1
relaxation from (Andrei and Ion, 2015) and exploited low mean curvature of decision

boundaries for l0 minimization. JSMA (Papernot et al., 2017) constructed a saliency

map for input to search for high-impact pixels on the model’s decision. Recently,

(Croce and Hein, 2019) introduced PGD0 that projects the adversarial perturbation

yielded by PGD (Madry et al., 2018) to the l0 ball. This attack method is capable of

generating significantly lower l0 perturbation and was shown to outperform other

white-box algorithms. Therefore, we use the PGD0 algorithm as an ideal case baseline

to compare the success achievable in a black-box setting.
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Score-based methods. (Su, Vargas and Sakurai, 2019) proposed the One-Pixel attack

based on a differential evolutionary algorithm. Although the One-Pixel method is

capable of searching and obtaining the most sparse perturbation, its attack success

rate (ASR) on large neural networks and high-resolution images is relatively low.

Importantly, the method requires a significant number of queries because it modifies

one pixel at a time while the input search space, dependent on image resolution, can

be enormous. Score-based methods exploit information exposed from a change in

confident score to alter a pixel subset in an input image; a model owner may prevent

this leakage by only exposing the top-1 predicted label to a model query.

Decision-based methods. In the decision-based setting, only the top-1 predicted label

of a DNN model is exposed to adversaries. Now, perturbing an input image slightly

will not expose subtle changes in the output corresponding to the perturbation; since

only the predicted class label is revealed. Therefore, a decision-based attack is the most

restrictive and challenging scenario. Most existing decision-based attack algorithms

are dense attacks (the objective is to minimise l2 or l∞ distortion). Interestingly, these

methods, including BA (Brendel, Rauber and Bethge, 2018), HSJA (Chen, Jordan and

Wainwright, 2020), QEBA (Li et al., 2020), NLBA (Li et al., 2021a), PSBA (Zhang et al.,

2021b), Sign-OPT (Cheng et al., 2020) or the covariance matrix adaptation evolution

strategy (CMA-ES) based method for face recognition tasks in (Dong et al., 2019),

can be adapted to a sparse attack setting by a projection to l0-ball; however, this is

not effective, as we show later in Appendix B.5. Although CMA-ES (Dong et al.,

2019) is an evolutionary algorithm, albeit for a dense attack, the formulation requires

individuals of a population to be real number vectors that can be sampled from a

Gaussian distribution. Thus, CMA-ES is well suited to the problem of dense attacks. In

contrast, the optimization problem in a sparse attack (l0 constrained) aims to minimize

the number of perturbed pixels. Importantly, the discrete search space encountered in

a sparse attack hinders the adoption of these dense attack algorithms to search for a

sparse adversarial example, efficiently.

To the best of our knowledge, the recent attack—Pointwise (Schott et al.,

2019)—applying a greedy search method to find sparse adversarial perturbations is

the first decision-based sparse method. This method is effective in untargeted settings

and on low-resolution datasets, but it is seen to require a prohibitively large number

of queries to achieve low sparse adversarial perturbations on large-scale datasets and

in a targeted attack setting (as seen in Section 4.4). In summary, the current black-box,
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sparse adversarial attack approaches still have shortcomings in sparsity and query efficiency.

Developing decision-based sparse attacks poses a challenging optimization problem because of:

i) limited access to only the decision of a target model; and ii) the NP-hard problem of l0 norm

constrained optimization.

4.3 Proposed Method

This section first formalizes a sparse adversarial attack as a combinatorial optimization

problem. It then describes the proposed attack—SPARSEEVO—an Evolutionary-based

method.

4.3.1 Problem Formulation

In the sparse attack setting, giving a normalized source image x ∈ [0, 1]C×W×H and

its corresponding ground truth label y from the label set Y = {1, 2, · · · , K} where K

denotes the number of classes, C, W and H denotes the number of channels, width and

height of an image, respectively. The classifier that we aim to attack is f : RC×W×H →
Y; our access is limited to its output label. In a targeted setting, x is perturbed such that

the instance x̃ ∈ RC×W×H obtained is misclassified to a desired class label ỹ ∈ Y
selected by the adversary. We refer to the desired class of the input x as the target class

and its ground-truth class as the source class. In an untargeted setting, the adversary

manipulates input x to change the decision of the classifier to any class label other than

its ground-truth, i.e.ỹ ∈ Y where ỹ ̸= y. Formally, a sparse adversarial attack (either

targetted or untargeted) to find the best adversarial instance x∗ can be formulated as a

constrained optimization problem:

x∗ = arg min
x̃
∥x− x̃∥0 s.t. f (x∗) = ỹ . (4.1)

where ∥∥0 is the l0 norm denoting the number of perturbed pixels. The optimization

problem in Equation 4.1 aiming to minimize the number of perturbed pixels leads to

an NP-hard problem (Modas, Moosavi-Dezfooli and Frossard, 2019; Dong et al., 2020).

Thus, the solution to the optimisation problem is non-trivial given the constraint and

the fact that f is not differentiable in this setting.
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4.3.2 SparseEvo Attack Algorithm

We devise an efficient parametric search method—SPARSEEVO—based on an

evolutionary algorithm approach to search for a desirable solution through an iterative

process of improving upon potential solutions. Through a process of recombination,

mutation, fitness evaluation and selection, the quality of a population improves over

time to yield a desirable solution. Importantly, our evolution-based search method

does not require prior knowledge about the underlying target model, such as model

architecture or model parameters to construct a fitness function for assessing potential

solutions. Consequently, this method detailed in Algorithm 4.1 and Figure 4.2 is

well-suited for solving the non-trivial optimization problem in Equation 4.1 in a

black-box setting and provides a possible remedy for the NP-hard problem. We detail

the formulation of the algorithm in the following.

Defining a Dimensionality Reduced Search Space. In applying a parametric search

method to the problem, each candidate solution can be defined as a parameter set

consisting of coordinates and RGB values defining all perturbed pixels of an

adversarial input in the search space RC×W×H. Naively applying a generic parametric

search method to seek potential solutions—parameter sets—as observed in One-pixel

algorithm (Su, Vargas and Sakurai, 2019), is not effective because the number of queries

to the model grows rapidly with respect to the input image size and the number of

perturbed pixels. We propose two techniques to reduce the search space. To facilitate

a parametric search method, instead of searching for parameters defining coordinates

and RGB values of each perturbed pixel, we propose to solely search for parameters

defining coordinates of pixels in the source image to perturb—i.e. image we aim to

craft adversarial perturbations for.

Constructing all candidate solutions which are parameter sets in the form of coordinate

values is dependent on the number of perturbed pixels and hinders the method

implementation. Therefore, we vectorize each candidate solution in a population as a

binary vector v ∈ {0, 1}N where 0-bits and 1-bits denote non-perturbed and perturbed

pixels respectively and N is the total number of pixels of an image. Each element of

v corresponds to a pixel and the position i of each element is identified by a mapping

function ϕ(n, m). Here, we employ a simple flattening technique defined by a mapping

function ϕ(n, m) = n + W × (m− 1) where n, m are coordinates of a pixel, and W is

the width of an image to reduce the search space further. For the color values of these

perturbed pixels, we select RGB values from their corresponding pixels in a starting
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image from the target class (we aim to misclassify the source image to the target class

in a targeted attack). We illustrate a source image and a starting image in the context

of the algorithm in Figure 4.2. All candidate solutions—binary vectors—can be changed

and evolved over iterations until a desirable solution is reached. Thus our parametric

search method essentially transforms to one that will discover the minimum set of most effective

pixels to inject into the source image to construct an adversarial example. Surprisingly, this

method is shown to be an extremely effective strategy for a decision-based sparse

attack.

The original search space RC×W×H is now transformed to the new search space {0, 1}N

where N = WH is the total number of pixels. In other words, a search space on RGB

values and n, m coordinates is transformed into a search space on i = ϕ(n, m) without

exploring RGB values. As a result, these techniques lead to a reduction in the size of

the search space when compared with the original search space.

Binary Differential
Recombination

Population

Mutation

Selection
Population Initialization 

(Algorthm 2) 

Source class 
(source image)

Target class 
(starting image)

Update

Fitness
Computation

Adversarial
Example

Construction

Fitness Evaluation

Figure 4.2. An illustration of SparseEvo algorithm. Population Initialization creates the first

population generation. This population is evolved over iterations through Binary Differential

Recombination, Mutation, Fitness Evaluation (Adversarial Example Construction and Fitness

Computation) and Selection stages. The source and starting images (used in a targeted attack)

are employed to create the initial candidate solutions —binary vector representations—at Population

Initialisation and to construct an adversarial example based on a candidate solution v(m)at Fitness

Evaluation stage.

Fitness Evaluation. Prior to describing the other phases of the algorithm, we describe

the Fitness Evaluation employed for determining the goodness of a candidate solution

necessary for the Population Initialization and the Fitness Evaluation stages.

Adversarial Example Construction. Since a candidate solution—a binary vector v—is

used to construct an adversarial example, its fitness is measured by computing an

optimization objective for its corresponding adversarial example. Therefore, we first

yield an adversarial example corresponding to v based on the following with c, n, m
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Algorithm 4.1: SPARSEEVO

Input: source image x, starting image x′, source label y, target label y∗, model f

population size p, initialization rate α mutation rate µ, query limit T

1 t← 0; V, G ← INITIALISEPOPULATION(x, x′, f , p, α)

2 kw ← arg max
k

(G), kb ← arg min
k

(G) // Find best and worst individuals

3 for t = 1, · · · , T do

4 Uniformly select v(j), v(q) ∈ V \ vkb
at random

5 Yield v(r) using Equation 4.5 and v(kb), v(j), v(q)

// Recombination

6 Yield v(m) by uniformly altering a fraction µ of all 1-bits of v(r) at random

// Mutation

7 Construct x̃ using Equation 4.2, with x, x′ and v(m)

8 Calculate g(x̃) using Equation 4.3 and f (x̃) // Fitness

computation

9 if g(x̃o) < Gkw then // Selection

10 Gkw ← g(x̃)

11 vkw ← v(m)

12 kw ← arg max
k

(G), kb ← arg min
k

(G)

13 end for

14 Construct x̃ using Equation 4.2 with x, x′ and v(kb) // Build adversarial

example

15 return x̃

representing a channel and two coordinates of a pixel.

x̃c,n,m ← (1− vi)xc,n,m + vix′c,n,m . (4.2)

The Fitness Function Formulation. A fitness function should reflect the optimization

objective. In the score-based setting, the objective is to optimize loss such that a given

input can be misclassified, a reasonable choice for the fitness function is based on

output scores as in (Alzantot et al., 2019; Qiu, Custode and Iacca, 2021). However,

in our problem, the objective to minimize l0 distortion directly results in an NP-hard

problem. To alleviate this computational burden, (Modas, Moosavi-Dezfooli and

Frossard, 2019) relaxed l0 to l1 norm to construct the white-box attack, SparseFool and

had access to the output scores, unlike in a decision-based setting. Nonetheless, in the
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decision-based setting, we find that optimizing l2 norm provides a better alternative

than l1. Therefore, in this research, we formulate our fitness function g (for the targeted

attack) as:

g(x̃)←

∥x− x̃∥2, if f (x̃) = ỹ

∞, otherwise
, (4.3)

Where x̃ is an image constructed using Equation 4.2 and ỹ is a target class. A similar

fitness function for the untargeted attack can be formulated as Equation 4.3 but the

constraint is now f (x̃) ̸= y.

Algorithm 4.2 presents pseudo-code for our Population Initialization approach as

presented in Section 4.3.2.

Algorithm 4.2: INITIALISEPOPULATION

Input: source image x, starting image x′, source label y, target label y∗, model f

population size p, initialization rate α

1 V← Ø, G ← ∞

2 n← ⌊αWH⌋ // W, H are image width and height

3

4 Generate a binary vector v using Equation 4.4

5 for t = 1, 2, · · · , p do

6 while True do

7 Generate v(o) by uniformly altering n of all 1-bits of v at random

8 Construct x̃ using Equation 4.2 with x, x′ and v(o)

9 Calculate g(x̃) using Equation 4.3 and f (x̃) // Calculate Fitness

Score

10

11 if g(x̃) < Gt then

12 Gt ← g(x̃)

13 V← V∪ {v(o)}
14 end while

15 end for

16 return V, G

Population Initialization. Recall, our search objective is to discover a minimum

perturbation represented by a binary vector—candidate solution. Hence, we initialize
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a population of p different candidate solutions from an initialized vector v(o) formulated

as following with C channel number.

v(o)
i ←

0, if xc,n,m = x′c,n,m ∀c ∈ {1, · · · , C}

1, otherwise
(4.4)

Every candidate is generated by only randomly altering d 1-bits of v(o), where d =

⌊αWH⌋, α is an initialization rate. A candidate solution is successfully added to the

population if its fitness score is not ∞; we explain our fitness function in Equation 4.3.

Otherwise, another d 1-bits are randomly flipped to generate another candidate

solution. This process is repeated until all p successful candidates are found and stored

in a population set V. The corresponding fitness score of each candidate solution is

stored in a fitness score matrix G. The pseudocode of the Population Initialization

phase is detailed in Algorithm 4.2.

uniform

Figure 4.3. The Binary Differential Recombination is shown in Algorithm 4.1 (line 6) and

Equation 4.5. ⊙ is an element-wise product, v(kb), v(j), v(q) are the best and two randomly selected

candidate solutions from a population respectively.

Binary Differential Recombination. In some recombination methods used in genetic

algorithms (GA) e.g. k-point or uniform crossover, a couple of parents are mated

to produce an offspring for the next generation. However, after the Population

Initialization stage, all first-generation parents are slightly different from each other

since all of them are generated from an initialized vector v(o). Consequently, these

crossover variants lead to sub-par solutions and low query efficiency. To address

this problem, we increase diversity in a population. Inspired by the differential

evolutionary (DE) algorithms (Storn and Price, 1997), we create the next generation by

mutating and combining multiple existing parents. Nonetheless, applying DE naively
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is impractical since the mutation operation of the DE algorithm adds the weighted

difference of multiple selected parents to another parent to yield offspring. These

individuals are vectors in real coordinate space so the offspring can benefit from

weighted real-valued difference but it cannot be gained in our proposed search space

in which all candidate solutions are binary vectors. Therefore, we propose a Binary

Differential Recombination scheme—a hybrid method based on the uniform crossover

in GA and the notion of mutation in DE.

There are different mutation schemes that can influence the overall

performance (Georgioudakis and Plevris, 2020). In the problem of decision-based

attacks, through our empirical results shown in Appendix C.12, we observe that the

approach of recombining the best and two selected candidate solutions outperform

others. Hence, we first select two candidate solutions v(j), v(q) uniformly at random

from the population. We then employ uniform crossover for selecting each bit from

either selected candidate solutions with equal probability to yield a new candidate

solution. Subsequently, the best individual v(kb) in the population is recombined with

the new candidate solution by altering all 1-bits of v(kb) whose corresponding bits in

the new candidate solution are 0-bits. Formally, the Binary Differential Recombination

can be formulated as:

v(r) ← v(kb) ⊙ UniformCrossover(v(j), v(q)) (4.5)

where ⊙ is an element-wise product. This operation is visualized in Figure 4.3. As

a consequence of gaining from the difference between individuals, our method is

capable of boosting evolutionary progress as shown in Section 4.4.

Mutation. Diversity in the population is a key factor that enables exploration in the

search space to obtain better individuals. As a result, mutation operation aiming to

promote this population diversity is a crucial component of our method and every

offspring after the recombination step can be subject to mutation. In practice, we

uniformly select a fraction µ of all 1-bits of the offspring vo at random and set these

bits to zero. We do not select 0-bits for altering because it hinders the optimization

progress and requires more iteration to search for the optimum.

Selection. Our simple intuition is that individuals with better fitness values should

lead to survival over future generations. In problem 4.1, a smaller fitness value is

better and represents a more imperceptible adversarial example. To this end, if the

worst individual in the population has a higher fitness value than the offspring’s, it

will be discarded and the new offspring is then chosen to take its place.
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4.4 Experiments and Evaluations

This section evaluates the robustness and query efficiency of SPARSEEVO

and compares it with PGD0—white-box adapted l0 attack—and Pointwise—the

state-of-the-art spare attack in decision-based settings. These attacks are evaluated on

two standard vision tasks CIFAR10 (Krizhevsky, Nair and Hinton, n.d.) and ImageNet

(Deng et al., 2009).

4.4.1 Experiment Settings

Attacks and Datasets. For a comprehensive evaluation of the effectiveness of

SPARSEEVO, we employ two standard computer vision tasks with different

dimensions: CIFAR10 (Krizhevsky, Nair and Hinton, n.d.) and ImageNet (Deng

et al., 2009). We compare with the state-of-the-art sparse attack algorithm in

Pointwise (Schott et al., 2019) and use the white-box sparse attack PGD0 (Croce and

Hein, 2019) to benchmark against the black-box decision-based counterparts. For the

evaluation sets, we select a balanced sample set. We randomly draw 1,000 and 200

correctly classified test images from CIFAR10 and ImageNet, respectively. These selected

images are evenly distributed among the 10 (CIFAR10) and 200 randomly selected

(ImageNet) classes. In the targeted setting, while each image from CIFAR10 is attacked

to flip its ground-truth label to 9 target classes, a set of five target classes are randomly

selected for each image from ImageNet to reduce the computational burden of the

evaluation tasks. All of the parameter settings are summaries in Appendix C.11.

Models. For convolution-based models, we use a state-of-the-art

architecture—ResNet—(He et al., 2016), particularly, ResNet18 for CIFAR10, achieving

95.28% test accuracy, and a pre-trained ResNet-50 provided by torchvision (Marcel

and Rodriguez, 2010) for ImageNet with a 76.15% Top-1 label test accuracy. For

attention-based models, we selected a pre-trained ViT-B/16 model obtaining 77.91%

Top-1 label test accuracy (Dosovitskiy et al., 2021). Notably, this model was trained by

Google on the large scale and high resolution ImageNet dataset.

Evaluation Measures. To evaluate the performance of methods, we define a

normalised sparsity measure as l0-norm distortion divided by the total number of pixels

of an image and then compute the median of sparsity over an evaluation set—since

it is not sensitive to outliers. A measure used to evaluate the robustness of a model

is Attack Success Rate (ASR). A generated perturbation is successful if it can yield an
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adversarial example with a sparsity below a given sparsity threshold, then ASR is defined

as the number of successful attacks over the entire evaluation set. In black-box settings, ASR

can be calculated at different sparsity thresholds after the assessment of the evaluation

set with a given query budget. Notably, there is no query constraint for PGD0. We

run PGD0 with different perturbation budgets and ASR is calculated based on the best

achieved results.

Attack initialization (targeted and untargeted). We need a starting image x′ to

initialize an attack. For targeted attacks, we consider a randomly chosen correctly

classified image from the dataset. For untargeted attacks, we may perturb the source

image by adding a uniform, Gaussian (Cheng et al., 2020; Chen, Jordan and Wainwright,

2020) or salt and pepper noise (Schott et al., 2019) until it is misclassified. In practice,

we observe that employing salt and pepper noise for our untargeted attack is more

effective.

4.4.2 Experimental Regime

This section summarizes all extensive experiments conducted on CIFAR-10 and

ImageNet datasets with different sparse attacks.

• Sparse Attacks against Deep Learning Model. Section 4.4.3, 4.4.4 and 4.4.5 evaluate

the robustness of sparse attacks against different Deep Learning models in

decision-based settings on different datasets.

• Robustness of CNNs and ViT under Sparse Attacks. Section 4.4.6 compares the

robustness of the ViT model with the CNN model against sparse attacks under

the decision-based scenario.

• Sparse Attacks against a Defended Model. Section 4.4.7 examines the robustness of

SPARSEEVO and other sparse attacks against an adversarially trained model.

• Impact of Hyper-parameters, Recombination and Mutation. Section C.11 and C.12

study the impact of Hyper-parameters, Recombination and Mutation schemes

on the performance of SPARSEEVO.

• Analysis and Comparison with Other Baselines Appendix B.4 and B.5 discuss and

compare SPARSEEVO with Pointwise and improved PointWise. Appendix B.6

compares SPARSEEVO with dense attacks adapted to a sparse setting.
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• Adversrial Example Demonstration. Appendix C.16 illustrates some adversarial

example crafted by SPARSEEVO.

4.4.3 Attacks Against Convolutional Deep Neural Networks

This section evaluates the performance of different sparse attacks against a

convolutional-based model on a high-resolution dataset ImageNet.
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Figure 4.4. Evaluation set from ImageNet using the ResNet50 model with image size (W×H):
224×224. a) Median sparsity with the first and third quartiles used as lower and upper error bars

versus the number of model queries; and b) attack success rate versus sparsity thresholds.

Query Efficiency Evaluation. Figure 4.4a shows the median sparsity against

model query budgets on the ImageNet task. Our attack consistently outperforms

the Pointwise method in terms of queries and sparsity. In the untargeted setting,

SPARSEEVO achieves a lower sparsity than the Pointwise attack under various query

budgets. In the targeted setting, our attack is able to craft adversarial images with

extremely sparse perturbation within 20,000 queries for most images from ImageNet

but Pointwise does not perform well in this task.
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Attack Success Rate. Figure 4.4b illustrates ASR against different sparsity thresholds

at different query budgets for SPARSEEVO on the ImageNet task and we compare with

the best achievement of PGD0 (ideal, whitebox attack) and Pointwise (decision-based

sparse attack). In the untargeted setting, we observe that SPARSEEVO achieves a higher

ASR than Pointwise, employing a 5,000 query budget with a small budget of 1,000

queries. In the targeted setting, our attack with a 10,000 query budget demonstrates

significantly better ASR than Pointwise employing 20,000 queries. Interestingly, a

small query budget of 5,000 queries is adequate to achieve the same ASR as the

white-box setting in the PGD0 attack in the untargeted setting, while around 20,000

queries achieve comparable performance to the ideal white-box setting for a targeted

attack. This is significant for decision-based attacks since adversaries are given very

limited access to a model. Summary of results at different query budgets and attack

settings on the ImageNet vision task in Table 4.1.

4.4.4 Attacks Against a Vision Transformer

This section evaluates the performance of different sparse attacks against a

Transformer-based model on a high-resolution dataset ImageNet.

Query Efficiency Evaluation. Figure 4.5a shows the median sparsity against the

queries. With a limited number of queries, SPARSEEVO is able to achieve significantly

lower sparsity than Pointwise in both targeted and untargeted settings. While our

attack is able to converge to an extremely high sparsity after 3,000 and 15,000 queries

for untargeted and targeted settings, respectively. Pointwise fails to converge to lower

values in both settings.

Attack Success Rate. Figure 4.5b illustrates that with only 1000 queries, SPARSEEVO

outperforms Pointwise with a 5,000 query budget across all different sparsity

thresholds. Notably, in the untargeted setting, SPARSEEVO with a query budget of

5,000 is able to achieve slightly higher ASR than the ideal white-box PGD0 from a

sparsity threshold of 0.002. In the harder, targeted setting—SPARSEEVO with only

15,000 queries is able to obtain marginally lower ASR than PGD0, whereas, with a

20,000 query budget, our attack is as robust as PGD0 when the sparsity threshold is

larger than 0.01.
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Figure 4.5. Evaluation set from ImageNet using the ViT model with image size (W×H): 224×224.
a) Median sparsity with the first and third quartiles used as lower and upper error bars versus the

number of model queries; and b) attack success rate versus sparsity thresholds.

4.4.5 Attacks Against a CNN Model on the CIFAR10

Figure 4.6a shows the median sparsity against the queries as well as the first and third

quartiles used as lower and upper error bars. The figure provides a comprehensive

comparison of different attacks on the evaluation set from CIFAR10 in both untargeted

and targeted settings. Our attack consistently outperforms the Pointwise attack in

terms of queries and sparsity. Particularly, in the untargeted setting, our attack is

able to craft adversarial images by perturbing an extremely low number of pixels, on

average within 2,000 queries for most images on CIFAR10; while Pointwise only obtains

a sparsity of 0.75 for this evaluation set. In the targeted setting, SPARSEEVO converges

to a lower sparsity than the Pointwise attack with a given query budget.

Attack Success Rate (ASR). Figure 4.6b illustrates ASR against different sparsity

threshold at different query budgets for SPARSEEVO on the evaluation set from

CIFAR10 and also compare with the best achievement of PGD0 (ideal, white-box

baseline) and Pointwise (state-of-the-art black-box sparse attack). In the untargeted

setting, we observe that SPARSEEVO using 200 queries or more achieves higher success
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Figure 4.6. Evaluation set from CIFAR10 using a ResNet18 model. a) Median sparsity with the

first and third quartiles used as lower and upper error bars versus a number of model queries; and

b) attack success rate (ASR) versus sparsity thresholds.

rates than Pointwise using 500 queries. Notably, our black-box sparse attack can

achieve comparable ASR to PGD0 with a small query budget of 500 queries. In the

targeted setting, with only 500 queries our attack demonstrates significantly better ASR

than Pointwise across all sparsity thresholds, while SPARSEEVO achieves marginally

lower ASR than PGD0 (ideal, white-box baseline) with a query budget of 2,000.

Summary of results at different query budgets and attack settings on the CIFAR-10

vision task in Table 4.1.

4.4.6 Compare The Robustness of the Transformer and the CNN

In this section, we compare the robustness of ViT and ResNet50 models to sparse

perturbation in untargeted and targeted settings. Figure 4.7 reports the accuracy

of these models over adversarial examples of an evaluation set of 100 images from

ImageNet. We summarise results at query budgets and attack settings in Table 4.2 in

the Appendix. Overall, we find that the performance of ViT degrades as expected,
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Table 4.1: Median sparsity and ASR at different query budgets. A comprehensive

comparison among different attacks (PGD0, Pointwise and SPARSEEVO) on small and

large scale balance datasets.

Setting
Query

Methods
CIFAR10 Query ImageNet

budget Median ASR budget Median ASR

Untargeted

PGD0 0.0059 99.8% 0.0005 100%

200
Pointwise 0.0078 88.0%

2000
0.0016 68.0%

SPARSEEVO 0.0049 96.5% 0.0008 96.5%

500
Pointwise 0.0078 96.2%

5000
0.0012 77.0%

SPARSEEVO 0.0049 99.2% 0.0008 99.0%

Targeted

PGD0 0.0703 99.8% 0.0061 99.0%

1000
Pointwise 0.9612 0.0%

10000
0.9997 0.0%

SPARSEEVO 0.0311 96.5% 0.0511 48.5%

2000
Pointwise 0.7863 0.0%

20000
0.9975 0.0%

SPARSEEVO 0.0251 99.6% 0.0076 99.1%

Table 4.2: Accuracy of ResNet50 and ViT under attacks at different query budgets and

sparsity thresholds. A comprehensive comparison among different attacks (PGD0 and

SPARSEEVO) on small and large scale balanced evaluation sets from ImageNet

Setting Methods Query Budget ResNet50 ViT

Sparsity 0.002 0.004 0.002 0.004

Untargeted

PGD0 na 5% 0.0% 31% 14%

SPARSEEVO
2000 20% 5% 45% 25%

5000 17% 0.0% 35% 7%

Sparsity 0.02 0.03 0.02 0.03

Targeted

PGD0 na 2.0% 1.2% 4.4% 0.2%

SPARSEEVO
10000 66.8% 52.8% 20% 9.0%

20000 2.2% 0.6% 2.4% 0.2%
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Figure 4.7. Attack success rate versus sparsity thresholds at different query budgets for the

evaluation set from ImageNet with ViT vs ResNet. PGD0 is a white-box attack (ideal).

but it appears to be less susceptible than the ResNet50 model. Particularly, in the

untargeted setting, the accuracy of ViT across different sparsity thresholds is higher

than the ResNet50 model under both SPARSEEVO and PGD0. Interestingly, SPARSEEVO

only needs a small query budget of 2,000 to degrade the accuracy of ResNet50 that is

similar to white-box PGD0, while up to 5,000 queries are needed to make SPARSEEVO

attack on ViT worse than PGD0. In the targeted scenario, we observe that at a low

query budget e.g. 10,000, ResNet50 is much more robust than ViT under SPARSEEVO

whereas, at 20,000 queries, the accuracy of both ResNet50 and ViT models is almost

analogous and drops to approximately zero when the sparse perturbation is larger than

0.02. Notably, SPARSEEVO with a sufficient query limit e.g. 20,000 is able to maintain

its attack effectiveness against both ViT and ResNet50 while the attack effectiveness of

PGD0 is reduced—demonstrated by lower accuracy scores—when attacking ViT.
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Figure 4.8. Different sparse attacks against an adversarially trained model on the CIFAR10 task.

We show sparsity versus queries and ASR versus sparsity two different query budgets: 200 and 500.

4.4.7 Sparse Attacks Against an Adversarially Trained Model

This section studies the robustness of different sparse attacks against adversarially

trained ResNet-18 network on the CIFAR10 task using l∞ perturbations—one of the

most effective defense mechanisms against adversarial attacks (Athalye, Carlini and

Wagner, 2018). The accuracy of this adversarially trained network is 83.87%. We

choose PGD0 (Croce and Hein, 2019), a state-of-the-art white-box attack as a baseline for

comparison. The adversarial training based models used in this experiment is trained

with Projected Gradient Descent (PGD) proposed by (Madry et al., 2018).

The experiment is conducted on a balance evaluation set withdrawn from CIFAR10

randomly (we describe the dataset in Section 4.4.1. Median sparsity against the number

of queries is shown in Figure 4.8. The results indicate that SPARSEEVO converges faster

than the Pointwise attack. Figure 4.8 also shows the ASR at different distortion levels

and query limits for different attack methods against the adversarially trained model.

We observe that our attacks are able to obtain a comparable performance with the

ideal white-box PGD0 baseline attacks with a very limited query budget of merely

500 queries. Meanwhile SPARSEEVO is comparible with Pointwise with a given query

budget of 200, and outperforms it with a query budget of 500.

4.5 Discussion and Conclusion

In this work, the study proposes a new algorithm for a sparse

attack—SPARSEEVO—under a decision-based scenario. The comprehensive results
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demonstrate SPARSEEVO to outperform the state-of-the-art black-box attack in

terms of sparsity and ASR within a given query budget. More importantly, in a

high-resolution and large-scale dataset, SPARSEEVO illustrates significant query

efficiency and remarkably lower sparsity when compared with the existing sparse

attacks in the black-box setting. Most notably, the proposed black-box attack achieves

comparable success under small query budgets to the state-of-the-art white-box

attack—PGD0. Notably, whilst an extensive set of results is presented in the main

chapter, additional results to support the study are in Appendix B.

Black-box
Attacks

Score-based
Attacks

Decision-
based Attacks

Score-based
Dense Attacks

Score-based
Sparse Attacks 
(Chapter 5)

Decision-based
Dense Attacks 
(Chapter 3)

Decision-based
Sparse Attacks 
(Chapter 4)

Figure 4.9. Upcoming chapter sneak peek.

The efficient sparse attacks in decision-based settings require the model decision (i.e. a

predicted label) to mislead DNN models. A natural question is what if adversaries

can access the confidence score other than the model decision. To this end, the next

chapter, as depicted in Figure 4.9, will investigate a potential threat—a sparse attack in

score-based settings. In particular, the next chapter will aim to answer how efficiently a

score-based sparse attack can search for a small set of pixels to deceive a DNN model.

Notably, sparse attacks have not been extensively studied and thus our knowledge

about model weaknesses to such attacks is limited. The chapter will delve into the

challenges faced, such as the non-differentiable search space and the NP-hard problem,

and review existing sparse attack techniques. Subsequently, a new sparse attack

method in a score-based scenario will be proposed, and its query efficiency will be

empirically demonstrated through extensive experiments.
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Chapter 5

BruSLeAttack: A Sparse
Attack Under Score-base

Settings

T
HIS chapter continues the study of the lesser understood problem

of generating sparse adversarial attacks but under score-based replies

to model queries. As outlined in the previous chapter, sparse

attacks aim to discover a small number of pixels—the l0 bounded—to

inputs in order to craft adversarial examples and deceive deep learning

models. However, constructing sparse adversarial attacks, even with output

score to queries in a score-based setting, is non-trivial, because such an

attack leads to: i) an NP-hard problem; and ii) a non-differentiable search

space. An intuitive approach to these challenges is to adapt decision-based

sparse attacks, as investigated in Chapter 4, for score-based settings.

Nevertheless, these attacks cannot achieve high query efficiency due to the

lack of direct optimization and exploitation from the output scores. To

remedy these problems, this chapter introduces BRUSLEATTACK—a new

algorithm built upon a Bayesian framework for the problem and evaluates

the algorithm against Convolutional Neural Networks, Vision Transformers,

recent stylized ImageNet models, defense methods and machine learning as

a service (MLaaS) (i.e. Google Cloud Vision). The proposed attack scales

to achieve state-of-the-art attack success rates and query efficiency on standard

computer vision tasks such as ImageNet. Importantly, the attack algorithm

proposed here raises questions regarding the safety, security and reliability

of deployed systems.
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5.1 Motivation and Contribution

A large body of research has investigated malicious capability to deceive deep

learning models (i.e. exploiting model decisions as discussed in Chapter 3 and 4).

Since confidence scores expose more information compared to model decisions, we

can expect fewer queries to elicit effective attacks. Consequently, the potential for

developing attacks at scale under score-based settings is higher.

Additionally, while dense attacks have been widely explored, the success of sparse

attacks, especially under score-based settings, has drawn much less attention and

remains less well understood (Croce et al., 2022). This leads to a lack of knowledge

regarding model vulnerabilities to sparse perturbation regimes under a score-based

threat model. To this end, this chapter explores the fragility of deep learning models

against sparse attacks in score-based settings.

ResNet-50 ResNet-50
(SIN)

Vision
Transformer

Deep Learning
Model (MLaaS)

Query
Confidence 

scores

Sparse Attack

No

Success
Predicted as 
Warplane?

Model Query

80 pixels 
(0.16% sparsity)

Predicted as
Target class
Warplane

80 pixels 
(0.16% sparsity)

220 pixels 
(0.41% sparsity)

Sparse
Adversarial
Example

Figure 5.1. Targeted Attack. Malicious instances are generated by BruSLeAttack with

different perturbation budgets against three deep learning models on ImageNet. An image with

ground-truth label Minibus is misclassified as a Warplane. Interestingly, in contrast to needing

220 pixels to mislead the vision transformer, BruSLeAttack requires only 80 perturbed pixels to

fool ResNet-based models (more visuals in Appendix C.16). Visualizations and evaluation against

Google Cloud Vision is in Section 5.5.6 and Appendix C.15.

As discussed in Chapter 4, constructing sparse attacks is incredibly difficult as

minimizing l0 norm leads to an NP-hard problem (Modas, Moosavi-Dezfooli and

Frossard, 2019; Dong et al., 2020) even with scores and a non-differentiable search

spaces that are mixed (discrete and continuous) (Carlini and Wagner, 2017). Now,

for a given l0 constraint or number of pixels, it is necessary to search for the optimal
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set of pixels to perturb in a source image, as well as the pixel colors—-floats in [0, 1].

Solutions are harder if aiming to achieve both query efficiency and high attack success

rate (ASR) for high-resolution vision tasks such as ImageNet. To deal with these

challenges and realize a sparse attack in score-based settings, an intuitive approach is

to adapt decision-based attacks for score-based settings (i.e. SPARSEEVO—introduced

in Chapter 4). Specifically, we reformulate the score-based settings as decision-based

settings by exploiting the top-1 label corresponding to the top-1 output score and

equivalent to the model decision in decision-based settings. However, exploiting

the top-1 label hinders direct optimization from the output scores. Therefore,

decision-based sparse attacks cannot result in query efficiency in score-based settings,

as shown in Section 5.5.4.

Due to the limitation of adapting decision-based attacks to sparse settings, a better

approach is to design a sparse attack directly exploiting score information for

searching an adversarial example. The only scalable attempt to deal with these

challenges, SPARSE-RS (Croce et al., 2022), is to apply a stochastic search method.

However, SPARSE-RS still lacks query efficiency on high-resolution data sets. Thus,

the study in this chapter will consider a new formulation and propose a new

search method—BRUSLEATTACK—for a sparse adversarial example over an effective,

lower-dimensional search space. In contrast to the prior stochastic search and pixel

selection methods, the search direction is guided by the knowledge learned from

incorporating historical information of pixel manipulations (past experience) and the

informed selection of pixel-level perturbations from a lower-dimensional search space.

To explore the fragility of deep learning models against sparse attacks in score-based

settings, this chapter will focus on both convolutional-based and attention-based

architectures. While convolutional-based architectures are used in a plethora of

applications, attention-based architectures such as ViT (Dosovitskiy et al., 2021) or

Data-Efficient Image Transformers (Touvron et al., 2021) recently produced performance

breakthroughs and are generating increasing interest. Moreover, only a few

studies (Modas, Moosavi-Dezfooli and Frossard, 2019; Croce and Hein, 2019; Fan et al.,

2020; Dong et al., 2020) have considered robustness to sparse perturbation regimes.

This raises an important problem regarding the reliable deployment of real-world

applications that employ these architectures. To demonstrate the practical feasibility

of sparse attacks, we also consider the Google Cloud Vision. Figure 5.1 demonstrates

examples of our attack against different deep learning models on ImageNet.
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This chapter explores the vulnerability of different deep learning models to sparse

adversarial attacks in score-based settings and examines the query efficiency of these

sparse attacks. As such, the study in this chapter seeks to address the following

research questions (RQ).

RQ1: How can adversaries effectively construct query-efficient score-based attacks to yield

highly sparse adversarial perturbations in high dimensional spaces? This question will be

addressed in Section 5.4.

RQ2: How successful are score-based sparse attacks against convolutional neural networks

(CNNs), vision transformers and defended models? How do vision transformers compare

with CNNs in terms of robustness? This question will be explored in Section 5.5.

Contributions. This study aims to increase our understanding of lesser understood,

hard, score-based attacks to generate sparse adversarial examples, the main

contributions to which are threefold:

• We formulate a new sparse attack—BRUSLEATTACK—in the score-based setting.

The algorithm exploits the knowledge of model output scores and our intuitions

on: i) learning influential pixel information from historical pixel manipulations;

and ii) informed selection of pixel perturbations based on pixel dissimilarity

between our search space prior and a source image to accelerate the search for

a sparse adversarial example.

• As a first step, investigate the robustness of ViT and compare its relative

robustness with ResNet models on the high-resolution dataset Imagenet under

score-based sparse settings.

• We demonstrate the significant query efficiency of our algorithm over the

state-of-the-art counterpart in different data sets against various deep learning

models, as well as defense mechanisms, Google Cloud Vision in terms of ASR and

sparsity under 10K query budgets.

5.1.1 Chapter Overview

Section 5.2 presents the related work on score-based attacks; Section 5.4 introduces the

problem formulation and details the proposed attack algorithm; Section 5.5 evaluates
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the performance of different sparse attacks across different data sets and demonstrates

a possible threat against a real-world system—Google Cloud Vision. Section 5.6

summarizes the study’s findings and concludes this chapter.

5.2 Related Work

This section provides a discussion on existing non-sparse and sparse adversarial

attacks, first describing non-sparse attacks under different scenarios and then

presenting sparse attack methods under decision-based and score-based scenarios.

Non-Sparse (Dense) Attacks (l2, l∞). Past research has extensively examined dense

attacks in white-box settings (Goodfellow, Shlens and Szegedy, 2014; Madry et al.,

2018; Carlini and Wagner, 2017; Dong et al., 2018; Wong, Schmidt and Kolter, 2019; Xu

et al., 2020) and black-box settings (Chen et al., 2017; Tu et al., 2019; Liu et al., 2019b;

Ilyas, Engstrom and Madry, 2019; Andriushchenko et al., 2020; Shukla et al., 2021).

Due to the non-differentiable, high-dimensional and mixed (continuous and discrete)

nature of search spaces encountered in sparse settings, adopting these methods is

non-trivial (see our analysis in Appendix C.4). Recent work has explored sparse

attacks in white-box settings (Papernot et al., 2016a; Modas, Moosavi-Dezfooli and

Frossard, 2019; Croce and Hein, 2019; Fan et al., 2020; Dong et al., 2020; Zhu, Chen and

Wang, 2021). Here we mainly review sparse attacks in black-box settings but compare

these with a white-box sparse attack for interest in Section 5.5.4.

Decision-based Sparse Attacks (l0). Only a few recent studies, such as that of

POINTWISE (Schott et al., 2019) and SPARSEEVO (Chapter 4), have tackled the difficult

problem of sparse attacks in decision-based settings. The fundamental difference

between decision-based and score-based settings is the output information (labels

versus scores) and the need for a target class image sample in decision-based

algorithms. The label information hinders direct optimization from output

information. As such, decision-based sparse attacks rely on an image from a target

class (targeted attacks) and gradient-free methods. This leads to a different set of

problem formulations. We study and demonstrate that sparse attacks formulated for

decision-based settings do not lead to query-efficient attacks in score-based settings in

Section 5.5.4.

Score-based Sparse Attacks (l0). A score-based setting seemingly provides more

information than a decision-based setting. However, the formulations of score-based
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attacks (Narodytska and Kasiviswanathan, 2017; Zhao et al., 2019; Croce and Hein,

2019) suffer from prohibitive computational costs (low query efficiency) and do not

scale to high-resolution data sets i.e.ImageNet. The recent SPARSE-RS algorithm

in (Croce et al., 2022) reports the state-of-the-art, query-efficient, sparse attack and is a

significant advance. But large query budgets are still required to achieve low sparsity

on high-resolution tasks such as ImageNet in the more difficult targeted attacks.

5.3 Notation Table

Prior to delving into details, this section provides a list of notations in Table 5.1 to aid

the description of the proposed approach in Section 5.4.

Table 5.1: Table of notation descriptions.

Notation Description

x Source image

x̃ Synthetic color image

y Source class

ytarget Target class

f (x) Softmax scores

L(.) or ℓ(.) Loss function

B A budget of perturbed pixels

b A number of selected elements remaining unchanged

u(t) A binary matrix to determine perturbed and unperturbed pixels

v(t) A binary matrix to determine perturbed pixels remaining unchanged

q(t) A binary matrix to determine new pixels to be perturbed

αprior An initial concentration parameter

αposterior An updated concentration parameter

θ Parameter of Categorical distribution

Dir(α) Dirichlet distribution

Cat(θ) Categorical distribution

λ0 An initial changing rate

m1 A power decay parameter

m2 A step decay parameter

M Dissimilarity Map

w, h, c Width, height and number of channels of an image
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5.4 Proposed Method

In this study, we have focused on exploring adversarial attacks in the context of

score-based and sparse settings. First, we present the general problem formulation

for sparse adversarial attacks. Let x ∈ [0, 1]c×w×h be a normalized source image,

where c is the number of channels, w, h are the width and height of the image and

y is its ground truth label—the source class. Let f (x) denote a vector of all class

probabilities—softmax scores—from a victim model and f (r|x) denote the probability

of class r. An adversary aims to search for an adversarial example x̃ ∈ [0, 1]c×w×h such

that x̃ can be misclassified by the victim model (untargeted setting) or classified as a

target class ytarget (targeted setting). Formally, in a targeted setting, for a given x, a

sparse attack aiming to search for the best adversarial example x∗ can be formulated

as a constrained combinatorial optimization problem:

x∗ = arg min
x̃

L( f (x̃), ytarget) s.t. ∥x− x̃∥0 ≤ B , (5.1)

where ∥∥0 is the l0 norm denoting the number of perturbed pixels, B denotes a budget

of perturbed pixels and L denotes the loss function of the victim model f ’s predictions.

This loss may be different from the training loss and remains unknown to the attacker.

In practice, we adopt the loss functions in (Croce et al., 2022), particularly cross-entropy

loss in targeted settings and margin loss in untargeted settings. The problem with

Equation 5.1 is the large search space, given that we need to search for colors—float

numbers in [0, 1]—for perturbing a group of pixels in the source images x.

5.4.1 New Problem Formulation to Facilitate a Solution

Sparse attacks aim to search for the positions and color values of perturbed pixels; for a

normalized image, the color value of each channel of a pixel—RGB color value—can

be a float number in [0, 1]. Consequently, the search space is enormous. Instead of

searching in the mixed (discrete and continuous), high-dimensional search space, we

consider turning the mixed search space problem into a lower-dimensional, discrete

search space problem. Subsequently, we propose a formulation that will aid the

development of a new solution to the combinatorial search problem.

Proposed Lower Dimensional Search Space. We introduce a simple but effective

perturbation scheme. We uniformly sample, at random, a color image x′ ∈
{0, 1}c×w×h—which we call the synthetic color image—to define the color of perturbed

Page 91



5.4.2 A Probabilistic Framework for the l0 Constrained Combinatorial Search

pixels in the source image x. In this manner, each pixel is allowed to attain arbitrary

values in [0, 1] for each color channel, but the dimensionality of the space is reduced

to a discrete space of size w × h. The resulting search space is eight times smaller

than would be the case were we using the perturbation scheme in SPARSE-RS (Croce

et al., 2022) (see an analysis in Appendix C.7). Surprisingly, our proposal is shown

to be incredibly effective, particularly in high-resolution images such as ImageNet (we

provide a comparative analysis with alternatives in Appendix C.8).

Search Problem Over the Lower Dimensional Space. Despite the lower-dimensional

nature of the search space, a combinatorial search problem persists. As a remedy, we

propose changing the problem of finding x̃ to finding a binary matrix u for selecting

pixels in x to construct an adversarial instance. To that end, we consider choosing a set

of pixels in the given image x to be replaced by pixels from the synthetic color image

x′ ∈ {0, 1}c×w×h. These pixels are determined by a binary matrix u ∈ {0, 1}w×h where

ui,j = 1 indicates a pixel to be replaced. The adversarial image is then constructed as

x̃ = ux′ + (1− u)x where 1 denotes the matrix of all ones with dimensions of u, and

each element of u corresponds to one pixel of x with c channels.

Consequently, manipulating each pixel of x̃ corresponds to manipulating an element in

u. Therefore, rather than solving Equation 5.1, we consider the equivalent alternative

(proof is shown in Appendix C.6):

u∗ = arg min
u

ℓ(u) s.t. ∥u∥0 ≤ B , (5.2)

where ℓ(u) := L( f (ux′ + (1 − u)x), ytarget). Although the problem in 5.2 is

combinatorial in nature and does not have a polynomial time solution, the

formulation facilitates the use of two simple intuitions to iteratively generate better

solutions—sparse adversarial samples.

5.4.2 A Probabilistic Framework for the l0 Constrained Combinatorial

Search

It is clear that some pixels impart a more significant impact on the model decision than

others. As such, given a binary matrix u with a set of selected elements—a candidate

solution, we can expect some of these elements, if altered, to be more likely to result in

an increase in the loss ℓ(u). Then, our assumption is that some selected elements must

be hard to manipulate to reduce the loss, and as such, should be unaltered. Retaining
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Bird Bird Bird Bird Bird Dog

Round

Perturbed Images 

Loss
Predicted label

Dirichlet
probability density
over the simplex

Figure 5.2. A Sampling and Update illustration. The attack aims to mislead a model into

misclassifying a Bird image as Dog. Assuming that in round t− 1, an adversarial instance is classified

as Bird and loss ℓ = 4.8. We visualize three elements of αposterior for simplicity. Let {p1, p2, p3}
denote three perturbed pixels with corresponding posterior parameters {αposterior

1 , αposterior
2 , αposterior

3 }.
Assume that in round t, two pixels p1, p2 remain while p3 is replaced by p4 because a loss reduction

is observed from 4.8 to 1.9. All {αposterior
1 , αposterior

2 , αposterior
3 , αposterior

4 } are updated using Equation

5.6 but we visualize {αposterior
1 , αposterior

2 , αposterior
4 }. Since αposterior

4 is new and has never been selected

before, it is small in value (and represented using colder colors). From t to t + 45, while sampling

and learning to find a better group of perturbed pixels, αposterior is updated. Because p1 has a high

influence on the model’s prediction (represented using warmer colors), it is more likely to remain,

while p2, p4 are more likely to be selected for a replacement due to their lower impact on the model

decision. In round t + 46, pixel p2 is replaced by p5 because a loss reduction is observed from 1.9 to

0.6. Now, the predicted label is flipped from Bird to Dog.

these selected elements is more likely to circumvent a bad solution successfully. In

other words, these selected elements may significantly influence the model’s decision

and are worth keeping. In contrast to a stochastic search for influential pixels, we

consider learning the influence of each element based on historical information about

pixel manipulations.

The influence of these elements can be modeled probabilistically, with the more

influential elements attaining higher probabilities. To this end, we consider a

categorical distribution parameterized by θ, because we aim to select multiple

elements and this is equivalent to multiple draws of one of many possible categories.

It then follows to consider a Bayesian formulation to learn θ recursively. We adopt

a general Bayesian framework and design the new components and approximations

needed to learn θ. Intuitively, we can expect a new solution, ut, generated according

to θ to more likely outweigh the current solution and guide the future candidate
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solution towards more effectively minimizing the loss ℓ(u). Next, we describe these

components and defer the algorithm we have designed, incorporating its components

in Section 5.4.3.

Prior. In Bayesian statistics, the conjugate prior distribution of the categorical

distribution is the Dirichlet distribution. Thus, we give θ a prior distribution defined

by a Dirichlet distribution with the concentration parameter α as P(θ; α) := Dir(α).

Sampling u(t). For t > 0, given a solution—binary matrix u(t−1)—and θ(t), we

aim to: i) select and preserve highly influential selected elements (Equation 5.3); and

ii) draw new elements from unselected elements (Equation 5.4), conditioned upon

u(t−1) = 1 and u(t−1) = 0, respectively, to jointly yield a new solution u(t) (Equation

5.5). Concretely, we can express this process as follows:

v(t)
1 . . . , v(t)

b ∼ Cat(v | θ(t), u(t−1) = 1), (5.3)

q(t)
1 , . . . , q(t)

B−b ∼ Cat(q | θ(t), u(t−1) = 0), (5.4)

u(t) = [∨b
k=1v(t)

k ] ∨ [∨B−b
r=1 q(t)

k ] . (5.5)

Here v(t)
k , q(t)

r ∈ {0, 1}w×h, B denotes a total number of selected elements (the

perturbation budget), b represents the number of selected elements that remain

unchanged, and ∨ denotes logical OR operator.

Updating θ(t) (Using Our Proposed Likelihood). Finding the exact solution for the

underlying parameters θ(t) of the categorical distribution in Equation 5.3 and Equation

5.4 to increase the likelihood of yielding a better solution for u(t) in Equation 5.5 is often

intractable. Our approach is to find an estimate of θ(t) by obtaining the expectation of

the posterior distribution of the parameter, which is learned and updated over time

through Bayesian inference. We note that since the prior distribution of the parameter

is a Dirichlet, which is the conjugate prior of the categorical (i.e.distribution of u), the

posterior of the parameter is also Dirichlet. Formally, at each step t > 0, updating the

posterior and θ(t) is formulated as follows:

α
posterior
i,j = α

prior
i,j + s(t)i,j (5.6)

P(θ | α, u(t−1), ℓ(t−1)) : = Dir(αposterior) (5.7)

θ(t) = Eθ∼P(θ|α,u(t−1),ℓ(t−1))[θ], (5.8)

where αprior = α(0) is the initial concentration parameter, αposterior = α(t)

denotes the updated concentration parameter (illustration in Figure 5.2) and s(t)i,j =
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Algorithm 5.1: BRUSLEATTACK

Input: source image x, synthetic color image x′, source label y, target label

ytarget, model f

query limit T, scheduler parameters m1, m2, initial changing rate λ0

perturbation budget B, a number of initial samples N, concentration

parameters αprior

1 Create Dissimilarity Map M using Equation 5.11

2 u(0), ℓ(0) ← INITIALIZATION(x, x′, y, ytarget, f , N, B)

3 t← 1, a(0) ← 0, n(0) ← u(0)

4 Calculate θ(0) using αprior and Equation 5.8

5 while t < T and y(t) ̸= ytarget do

6 λ(t) ← λ0(tm1 + mt
2)

7 /* Generate a new solution */

8 u(t) ← GENERATION(θ(t), M, u(t−1), λ(t))

9 ℓ(t) ← L( f (u(t)x′ + (1− u(t))x), ytarget)

10 y(t) ← arg maxr f (r|u(t)x′ + (1− u(t))x)

11 /* Update θ and solution */

12 u(t), ℓ(t), θ(t), a(t), n(t) ← UPDATE (u(t), ℓ(t), u(t−1), ℓ(t−1), a(t), n(t))

13 t← t + 1

14 end while

15 return u(t)

((a(t))i,j + z)/(n(t)
i,j + z)) − 1. z is a small constant (i.e. 0.01) to ensure that both the

nominator and denominator are always non-zero. This smoothing technique is applied

since both the nominator and denominator can be zero when ”never” manipulated

pixels are selected. a(t)i,j is the accumulation of altered pixel i, j (i.e. u(t)
i,j = 0 and

u(t−1)
i,j = 1) when it leads to an increase in the loss, i.e. ℓ(t) ≥ ℓ(t−1) and n(t)

i,j is the

accumulation of selected pixel i, j in the mask u(t). Formally, a(t)i,j and n(t)
i,j can be

updated as the following:
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a(t)i,j =

a(t−1)
i,j + 1 if ℓt ≥ ℓ(t−1) ∧ u(t)

i,j = 1∧ u(t−1)
i,j = 0

a(t−1)
i,j otherwise

(5.9)

n(t)
i,j =

n(t−1)
i,j + 1 if u(t)

i,j = 1∨ u(t−1)
i,j = 1

n(t−1)
i,j otherwise

(5.10)

5.4.3 Sparse Attack Algorithm
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(Eq. 5.2)
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Update
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Figure 5.3. BruSLeAttack algorithm (detailed in Algo. 5.1). We aim to determine a set of pixels

to replace in the source image x by corresponding pixels in a synthetic color image x′. In the solution,

binary matrix u(t), white and black colors denote replaced and non-replaced pixels of the source

image, respectively. First, our intuition is to retain useful elements in the solution u(t) by learning

from historical pixel manipulations. We explore and learn the influence of selected elements by

capturing it with θ using a general Bayesian framework—darker colors illustrate the higher influence

of selected elements (Algo. 5.4). Second, we generate new pixel perturbations based on θ with the

intuition that a larger pixel dissimilarity M between our search space x′ and a source image can

possibly move the adversarial to the decision boundary faster and accelerate the search (Algo. 5.3).

Using the probabilistic framework for l0 constrained combinatorial search, we devise

our sparse attack illustrated in Figure 5.3 and detailed in Algorithm 5.1. The attack

phases are discussed in detail below:

Initialization (Algorithm 5.2). Given a perturbation budget B and a zero-initialized

matrix, N first solutions are generated by uniformly altering B elements to 1 at random.

The best solution which incurs the lowest loss ℓ(0) is selected to be an initial solution

u(0). θ(0) is the expectation of αprior.

Generation (Algorithm 5.3). It is necessary here to balance exploration versus

exploitation, as in other optimization methods. Initially, to explore the search space,
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Algorithm 5.2: INITIALIZATION

Input: source image x, synthetic color image x′ source label y, target label ytarget

number of initial samples N,perturbation budget B, victim model fM

1 ℓ← ∞

2 for i = 1 to N do

3 Generate u′ by uniformly enabling B bits of 0 at random

4 ℓ′ ← L( fM(g(u′; x, x′)), y∗)

5 if ℓ′ < ℓ then

6 u← u′, ℓ← ℓ′

7 end for

8 return u, ℓ

we aim to manipulate a large number of selected elements. When approaching an

optimal solution, we aim at exploitation to search for a solution in a region nearby the

optimal solution and thus alter a small number of selected elements. Therefore, we use

the combination of power and step decay schedulers to regulate a number of selected

elements altered in round t. This scheduler is formulated as λt = λ0(tm1 + mt
2), where

λ0 is an initial changing rate, m1, m2 are power and step decay parameters respectively.

Concretely, we define a number of selected elements remaining unchanged as b =

⌈(1− λt)B⌉.

Algorithm 5.3: GENERATION

Input: probability θ, bias map M, mask u, changing rate λ

1 b← ⌈(1− λ)B⌉
2 v1 . . . , vb ∼ Cat(v | θ, u = 1)

3 q1 . . . , vB−b ∼ Cat(q | θM, u = 0)

4 u(t) = [∨b
k=1v(t)

k ] ∨ [∨B−b
r=1 q(t)

k ]

5 return u

Given a prior concentration parameter αprior, to generate a new solution in round t,

we first find αposterior as in Equation 5.6 and estimate θ(t) as in Equation 5.8. We

then generate v(t)
k and q(t)

r as in Equation 5.3 and Equation 5.4 respectively. A new

solution u(t) can be then formed as in Equation 5.5. Nonetheless, the naive approach of

sampling q(t)
r as in Equation 5.4 is ineffective and achieves a low performance at low

levels of sparsity as shown in Appendix C.10. Intuitively, when altering unselected
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Algorithm 5.4: UPDATE

Input: previous mask and lossu(t−1), ℓ(t−1),current mask and loss u(t), ℓ(t),small

constant z, matrices a(t), n(t)

1 a← a(t), n← n(t)

2 ni,j∈{[i,j]|(u(t−1)∨u(t))i,j=1} increase by 1

3 if ℓ(t) < ℓ(t−1) then

4 u← u(t), ℓ← ℓ(t)

5 else

6 u← u(t−1), ℓ← ℓ(t−1)

7 ai,j∈{[i,j]|(u(t−1)⊕(u(t−1)∧u(t)))i,j=1} increase by 1

8 end if

9 s← a+z
n+z -1

10 Update αposterior using s and Equation 5.6

11 Update θ using αposterior and Equation 5.8

12 return u, ℓ, θ, a, n

elements that are equivalent to replacing non-perturbed pixels in the source image

with their corresponding pixels from the synthetic color image, the adversarial instance

moves away from the source image by a distance. At a low sparsity level, since a

small fraction of unselected elements are altered, the adversarial instance is able to

take small steps toward the decision boundary between the source and target class. To

mitigate this problem (taking inspiration from (Brunner et al., 2019)) we employ a prior

knowledge of the pixel dissimilarity between the source image and the synthetic color

image. Our intuition is that larger pixel dissimilarities lead to larger steps. As such, it

is possible that altering unselected elements with a large pixel dissimilarity moves the

adversarial instance to the decision boundary faster and accelerates optimization. The

pixel dissimilarity is captured by a dissimilarity map M as follows:

M =
∑2

c=0 |xc − x′c|
3

, (5.11)

where c denotes a channel of a pixel. In practice, to incorporate M into the step of

sampling q(t)
r , Equation 5.4 is changed to the following:

q(t)
1 , . . . , q(t)

B−b ∼ Cat(q | θ(t)M, u(t−1) = 0) (5.12)
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Update (Algorithm 5.4). The generated solution u(t) is associated with a loss ℓ(t) given

by the loss function in Equation 5.2. This is then used to update αposterior (Equation 5.6

and illustration in Figure 5.2) and the accepted solution as the following:

u(t) =

u(t) if ℓ(t) < ℓ(t−1)

u(t−1) otherwise
(5.13)

5.5 Experiments and Evaluations

This section evaluates the robustness and query efficiency of BRUSLEATTACK and

compares it with SPARSE-RS—the state-of-the-art spare attack in score-based settings,

PGD0—white-box adapted l0 attack—and SPARSEEVO—the state-of-the-art sparse

attack in decision-based settings. These attacks are evaluated on three standard vision

tasks CIFAR10 (Krizhevsky, Nair and Hinton, n.d.), STL-10 (Coates, Lee and Ng, 2011)

and ImageNet (Deng et al., 2009).

5.5.1 Experiment Settings

Attacks and Datasets. For a comprehensive evaluation of BRUSLEATTACK, we

compose of evaluation sets from CIFAR-10 (Krizhevsky, Nair and Hinton, n.d.),

STL-10 (Coates, Lee and Ng, 2011) and ImageNet (Deng et al., 2009). For CIFAR-10

and STL-10, we select 9,000 and 60,094 different pairs of the source image and target

class respectively. For ImageNet, we randomly select 200 correctly classified test

images evenly distributed among 200 random classes from ImageNet. To reduce

the computational burden of the evaluation tasks in the targeted setting, five target

classes are randomly chosen for each image. For attacks against defended models

with adversarial training, we randomly select 500 correctly classified test images

evenly distributed among 500 random classes from ImageNet. We compare with the

state-of-the-artSPARSE-RS (Croce et al., 2022).

Models. For convolution-based networks, we use models based on a state-of-the-art

architecture—ResNet—(He et al., 2016) including ResNet18 achieving 95.28% test

accuracy on CIFAR-10, ResNet-9 obtaining 83.5% test accuracy on STL-10, pre-trained

ResNet-50 (Marcel and Rodriguez, 2010) with a 76.15% Top-1 test accuracy, pre-trained

stylized ImageNet ResNet-50—ResNet-50 (SIN)—with a 76.72% Top-1 test accuracy

(Geirhos et al., 2019) on ImageNet. For the attention-based network, we use a
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pre-trained ViT-B/16 model achieving 77.91% Top-1 test accuracy (Dosovitskiy et al.,

2021). For robust ResNet-50 models 7, we use adversarially pre-trained l2/ l∞ models

(l2-At and l∞-AT) (Logan et al., 2019) with 57.9% and 62.42% clean test accuracy

respectively.

Evaluation Metrics. We define a sparsity metric as the number of perturbed pixels

divided by the total pixels of an image. To evaluate the performance of an attack,

we use attack success rate (ASR). A generated perturbation is successful if it can yield an

adversarial example with sparsity below a given sparsity threshold, so ASR is defined

as the number of successful attacks over the entire evaluation set at different sparsity

thresholds. We measure the robustness of a model by the accuracy of that model under

an attack at different query limits and sparsity levels.

5.5.2 Experimental Regime

This section summarizes all extensive experiments conducted on CIFAR-10, STL-10 and

ImageNet datasets with different sparse attacks.

• Sparse Attacks against Deep Learning Model. Section 5.5.3, Appendix C.1,

Appendix C.2 and Appendix C.3 evaluates the robustness of sparse attacks

against different deep learning models in score-based settings across different

datasets. This section also compares the robustness of the ViT model with the

CNN model against sparse attacks.

• BRUSLEATTACK versus Decision-Based sparse and l0-Adapted Attack

Algorithms. Section 5.5.4 and Appendix C.4 compares the performance of

BRUSLEATTACK with decision-based sparse, Bayesian optimization-based and

l0-adapted attack algorithms in targeted settings.

• Sparse Attacks against a Defended Model. Section 5.5.5 examines the robustness of

BRUSLEATTACK and other sparse attacks against an adversarially trained model

and a robust defense designed for black-box attacks.

• Sparse Attacks against a Real-World System. Section 5.5.6 demonstrates the pracitcal

threat of BRUSLEATTACK against a real-world system—Google Cloud Vision.

7https://github.com/MadryLab/robustness
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• Influence of synthetic image, prior knowledge and hyper-parameters. Appendix C.8

analyzes the initialization of synthetic image. Appendix C.10 investigates the

influence of prior knowledge with a pixel dissimilarity map. Appendix C.12

studies the impact of key hyper-parameters.

5.5.3 Attacking Transformers & Convolutional Nets

In our study, we carried out comprehensive experiments on the ImageNet task under

the targeted setting to investigate sparse attacks against various deep learning models

(standard ResNet-50, ResNet-50 (SIN) and ViT). The results for the targeted and

untargeted settings are detailed in Appendix C.1. Additional results on STL-10 and

CIFAR-10 are provided in Appendix C.2 and C.3 respectively.
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Figure 5.4. Targeted setting on ImageNet. a-c) ASR of BruSLeAttack and Sparse-RS

against different deep learning models at sparsity levels of 0.4% (solid lines) and 1.0% (dashed

lines); d) Accuracy of different models against BruSLeAttack at sparsity levels of 0.4% (solid

lines) and 1.0% (dashed lines). More results on ImageNet in targeted settings (sparsity between

0.4% and 1.0%) and untargeted settings in Appendix C.1.

Convolutional-based Models. Figure 5.4a and 5.4b show that, at sparsity 0.4% (≈
200

224×224 ), BRUSLEATTACK achieves slightly higher ASR than SPARSE-RS while at
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sparsity 1.0% (≈ 500
224×224 ), our attack significantly outweighs SPARSE-RS at different

queries. Specifically, at queries from 2K to 6K, BRUSLEATTACK obtains about 10%

higher ASR than SPARSE-RS. Notably, a small query budget of 6K queries is adequate

for BRUSLEATTACK to achieve ASR higher than 90%.

Attention-based Model. Figure 5.4c demonstrates that at sparsity of 0.4%

BRUSLEATTACK achieves a marginally higher ASR than SPARSE-RS, whereas at a

sparsity of 1.0% our attack demonstrates a significantly better ASR than SPARSE-RS.

At 1.0% sparsity and with query budgets above 2K, our method achieves roughly

10 % higher ASR than SPARSE-RS. Overall, our method consistently outperforms the

SPARSE-RS in terms of ASR across different query budgets and sparsity levels.

The Robustness of Transformer versus CNN

Figure 5.4d demonstrates the robustness of the ResNet-50, ResNet-50 (SIN) and ViT

models to adversarially sparse perturbation in the targeted settings. We observe

that the performance of all three models degrades as expected. Although ResNet-50

(SIN) is far more robust against several types of image corruptions than the standard

ResNet-50, as shown in (Geirhos et al., 2019), it is equally vulnerable to sparse

adversarial attacks. Notably, our results in Figure 5.4d illustrate that ViT is much less

susceptible than the ResNet family to adversarially sparse perturbation. At sparsity

levels of 0.4% and 1.0 %, the accuracy of ViT is pragmatically higher than both ResNet

models under our attack across different queries. Interestingly, BRUSLEATTACK

merely requires a small query budget of 4K to degrade the accuracy of both ResNet

models to the same accuracy of ViT at 10K queries. These findings can be explained

by the fact that ViT’s receptive field spans over the whole image (Naseer et al., 2021)

because some attention heads of ViT in the lower layers pay attention to the entire

image (Paul and Chen, 2022). It is thus capable of enhancing relationships between

various regions of the image and is more difficult to evade than convolutional-based

models if a small subset of pixels is manipulated. Additional results in untargeted

settings are shown in Appendix C.1.

Page 102



Chapter 5 BruSLeAttack: A Sparse Attack Under Score-base Settings

A
SR

 (
%

)

Sparsity (%)

Our A�ack

Pointwise
SparseEvo

ResNet-50

10K PGD0

20K

20K

Figure 5.5. Targeted attacks on the ImageNet task against ResNet-50. ASR comparisons

between BruSLeAttack and baselines: i) SparseEvo and Pointwise (SOTA algorithms from

decision-based settings); ii) PGD0 (whitebox).

5.5.4 Comparing Performance with Prior Decision-Based and

l0-Adapted Attack Algorithms

In this section, we compare our method (10K queries) with baselines—SPARSEEVO

(Chapter 4), Pointwise (Schott et al., 2019) (both 20K queries) and PGD0 (Croce

and Hein, 2019; Croce et al., 2022) (white-box)—in targeted settings. Figure 5.5

demonstrates that BRUSLEATTACK significantly outperforms SPARSEEVO and PGD0.

This is as expected for SPARSEEVO and Pointwise, because decision-based attacks

only have access to the hard label. For PGD0, this outcome is predictable, since in

this method the l0 project step PGD0 has to identify the minimum number of pixels

required for projecting, such that the perturbed image remains adversarial, while there

appears to be no effective projection method to identify the pixels that can satisfy this

projection constraint. Notably, solving l0 projection problem also leads to another NP-hard

problem (Modas, Moosavi-Dezfooli and Frossard, 2019; Dong et al., 2020) and hinders the

adoption of dense attack algorithms to the l0 constraint. Moreover, the discrete nature

of the l0 ball impedes its amenability to continuous optimization (Croce et al., 2022).

Additional results for l0 adapted decision-based attacks on CIFAR-10 are presented in

Appendix C.4.

Alternative Loss for SPARSEEVO. Chapter 4 points out an alternative fitness

function based on output scores by replacing the objective to optimise distortion

with an objective to optimise loss. Therefore, this section evaluates SPARSEEVO

with an alternative fitness function in score-based settings. However, employing this
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Table 5.2: ASR comparison between our proposal and SPARSEEVO (Alternative Loss)

on CIFAR-10.

Sparsity Our Proposal SPARSEEVO (Alternative Loss)

1.0% 68.21% 54.78%

2.0% 90.24% 68.75%

2.9% 96.59% 74.0%

3.9% 98.48% 78.56%

alternative fitness function may not obtain a low sparsity level because minimising

the loss does not result in a reduction in the number of pixels. Additionally, the

Binary Differential Recombination (BDR) in Chapter 4 is designed for optimising l0
distortion, not a loss objective (i.e. alters perturbed pixels to non-perturbed pixels

which is equivalent to minimising distortion). Hence, naively adapting SPARSEEVO

in Chapter 4 to score-based settings may not work well.

To demonstrate, we conducted an experiment on CIFAR-10 using the same

experimental setup (same evaluation set of 9000 image pairs and a query budget of

500).

• First approach, we adapted the attack method in Chapter 4 to the score-based

setting with an alternative fitness function for minimizing loss based on the

output scores. We observed this attack always fails to yield an adversarial

example with a sparsity level below 50%.

• Second approach, we adapted SPARSEEVO by employing the alternative fitness

function, synthetic color image and slightly modifying BDR. Our results in Table

5.2 show that the adapted SPARSEEVO can create sparse adversarial examples but

is unable to achieve a comparable performance to BRUSLEATTACK.

Overall, even with significant improvements, the sparse attack proposed in Chapter 4

with an alternative fitness function does not achieve as good performance as

BRUSLEATTACK with a low query budget.

Differences Between BRUSLEATTACK and SPARSEEVO. Chapter 4 develops an

algorithm for a sparse attack but assumes a decision-based setting. Although both

works aim to propose sparse attacks, key differences exist, as expected; we explain

these differences below:
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Table 5.3: A comparison of ASR between our proposal (Synthetic Color Image) and

employing a starting image as in Chapter 4 on CIFAR-10.

Sparsity Our Proposal Use starting image

1.0% 68.21% 62.68%

2.0% 90.24% 87.17%

2.9% 96.59% 94.37%

3.9% 98.48% 97.17%

• While both works discuss how they reduce dimensionality (a dimensionality

reduction scheme) leading to a reduction in search space from C × H ×W to

H ×W, Chapter 4 neither proposes a New Problem Formulation nor gives proof

of showing the equivalent between the original problem in Equation (1) and

the New Problem Formulation in Equation (2) as we did in Section 5.4.1 and

Appendix C.6.

• Chapter 4 and Chapter 5 propose similar terms binary matrix u versus binary

vector v as well as an interpolation between x and x′. However, a binary vector

x in Chapter 4 evolves to reduce the number of 1-bits while a binary matrix u in

our study maintains a number of 1-elements during searching for a solution.

• We can find a similar notion of employing a starting image (a pre-selected

image from a target class) in Chapter 4 or synthetic color image (pre-defined by

randomly generating) in our study. However, it is worth noting that applying

a synthetic color image to Chapter 4 does not work in the targeted setting.

For instance, to the best of our knowledge, there is no method can generate

a synthetic color image that can be classified as a target class so the method

in Chapter 4 is not able to employ a synthetic color image to inialize a targeted

attack. In contrast, employing a starting image as used in Chapter 4 does not

result in query-efficiency as shown in Table 5.3, especially at low sparsity levels.

5.5.5 Attacking Defended Models

BRUSLEATTACK versus SPARSE-RS. In this section, we investigate the robustness

of sparse attacks (with a budget of 5K queries) against adversarial training-based

models using projected gradient descent (PGD) as proposed by (Madry et al.,
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Table 5.4: A robustness comparison (lower ↓ is stronger) between SPARSE-RS

and BRUSLEATTACK against undefended and defended models employing l∞, l2
adversarially trained models and RND on ImageNet. The robustness of the attacks

is measured by the degraded accuracy of models under attacks at different sparsity

levels.

Sparsity
Undefended Model l∞-AT l2-AT RND

SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK

0.04% 33.6% 24.0% 43.8% 42.2% 89.8% 88.4% 90.8% 85.0%

0.08% 13.2% 6.8% 26.8% 24.4% 81.2% 79.2% 82.2% 72.6%

0.12% 7.6% 2.6% 19.0% 18.4% 75.8% 73.8% 73.6% 61.0%

0.16% 5.2% 1.0% 16.6% 14.8% 71.4% 69.2% 64.8% 51.4%

0.2% 4.6% 1.0% 12.2% 11.8% 68.4% 66.4% 56.8% 42.6%

2018)—highly effective defense mechanisms against adversarial attacks (Athalye,

Carlini and Wagner, 2018) and random noise defense (RND) (Qin et al., 2021)—a

recent defense method designed for black-box attacks. The robustness of the attacks

is measured by the degraded accuracy of models under attacks at different sparsity

levels. The stronger an attack is, the lower the accuracy of the defended model.

The results in Table 5.4 show that BRUSLEATTACK consistently outweighs SPARSE-RS

across various defense mechanisms and different sparsity levels. Additional results on

CIFAR-10 is provided in Appendix C.5.

Undefended and Defended Models. The results in Table 5.4 show the accuracy of

undefended versus defended models against sparse attacks across different sparsity

levels. In particular, under BRUSLEATTACK and sparsity of 0.2%, the accuracy of

ResNet-50 drops to 1% while the l∞-AT model is able to obtain 11.8%. However, the

l2-AT model and RND strongly resist adversarially sparse perturbations and remain

accurate around 66.4% and 42.6 % respectively. Therefore, the l2-AT model and RND

are more robust than the l∞-AT model in defending against sparse attacks.

5.5.6 Attacking a Real-World System

To illustrate the applicability and efficacy of BRUSLEATTACK against real-world

systems, we attack the Google Cloud Vision (GCV) API provided by Google. Attacking

GCV is challenging since 1) the classifier returns partial observations of predicted scores with

a varied length based on the input and 2) the scores are neither probabilities (softmax scores)

nor logits (Ilyas et al., 2018; Guo, Frank and Weinberger, 2019). To deal with these

challenges, we employ the marginal loss between the top label and the target label and
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Figure 5.6. Demonstration of sparse attacks against GCV in targeted settings with a budget of

5K queries and sparsity of 0.5% ≈ 250
224×224 . BruSLeAttack is able to yield adversarial examples

for all clean images with less queries than Sparse-RS while Sparse-RS fails to yield adversarial

examples for Mushroom, Camera, Watch, & Building images. Illustration on GCV API (online

platform) is shown in Appendix C.15.

successfully demonstrate our attack against GCV. With a budget of 5K queries and

sparsity of 0.5%, BRUSLEATTACK is able to craft a sparse adversarial example of all

given images to mislead GCV whereas SPARSE-RS fails to attack four of them as shown

in Figure 5.6.

5.6 Discussion and Conclusion

The work in this chapter delves into the robustness of DNN models against

sparse attacks in the score-based scenario and proposes a novel sparse

attack—BRUSLEATTACK. This work demonstrates that when attacking different

deep learning models, including undefended and defended models and in different

datasets, BRUSLEATTACK consistently outperforms the state-of-the-art method in

terms of ASR at different query budgets. Crucially, in a high-resolution data set, our

comprehensive experiments show that BRUSLEATTACK is remarkably query-efficient

and reaches higher ASR than the current state-of-the-art sparse attack. Notably, whilst

an extensive set of results is presented in the main chapter, additional results to

support the study are in Appendix C.

Until this point, this dissertation has concentrated on query-based black-box attacks

in different settings and lp norm constraints. Defending against these query-based

black-box attacks is not trivial when the aim is to achieve the objectives of both high
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Figure 5.7. Upcoming chapter sneak peek.

robustness and clean accuracy. The following chapter, as illustrated in Figure 5.7,

will study existing defense frameworks designed for query-based black-box attacks

in order to understand their limitation in achieving robustness while maintaining

clean accuracy. The chapter will then introduce a more effective defense method for

achieving both strong robustness and high clean accuracy.
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Chapter 6

Model Diversity: A
Defense Approach Against

Query-Based Attacks

A
S as highlighted in Chapter 1 and investigated in Chapters 3,

4 and 5 the realization of query-based black-box adversarial

attacks poses critical threats against the safety and security

of deep learning models deployed in real-world systems. These safety

and security concerns provide a reason to investigate mechanisms to

defend against such black-box attacks. Although existing defense methods

designed for white-box attacks can be leveraged, they sacrifice model

performance for robustness. Therefore, this chapter aims to develop a

new defense framework with the goal of achieving the twin objectives of

robustness to black-box attacks and high model performance. The core

idea is to introduce uncertainty into each query response by randomly

selecting a well-trained model from a set for inference. To enhance this

uncertainty, we aim to learn a set of well-performing models by promoting

model parameter diversity during training using a new learning objective. By

injecting uncertainty imparted, naturally, by the model parameter diversity,

our proposed method is able to hinder the progress of query-based

black-box attacks and make it significantly more difficult for models to be

misled and hijacked. Although conceptually simple, the comprehensive

empirical analysis in this chapter demonstrates the effectiveness of the

proposed method against query-based black-box attacks.
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6.1 Motivation and Contribution

The comprehensive analysis and extensive experiments outlined in Chapters 3, 4

and 5 facilitates the understanding and recognition of critical threats posed by

black-box adversarial attacks to deep learning models deployed in real-world systems

(i.e. Google Cloud Vision). These threats compel us to study mechanisms that can

fortify deep learning models against such black-box attacks. One possible approach

to these threats is to leverage existing defense methods (Goodfellow, Shlens and

Szegedy, 2014; Liu et al., 2018a; Xie et al., 2019; Tramèr et al., 2018; Rakin, He and

Fan, 2019; Sen, Ravindran and Raghunathan, 2020; Meng et al., 2021; Zhang et al.,

2022) originally designed for white-box attacks. However, these methods improve the

model’s robustness against white-box attacks at the cost of reducing standard accuracy

(clean accuracy) (Tsipras et al., 2019; Yang et al., 2020b; Qin et al., 2021; Byun, Go

and Kim, 2022). To illustrate, adversarial training (AT) is one of the most effective

techniques against white-box attacks (Athalye, Carlini and Wagner, 2018; Tramer et al.,

2020). However, its downsides include reduced clean accuracy, as shown in (Zhang

et al., 2019; Zhang and Wang, 2019; Shafahi et al., 2019; Yang et al., 2020b; Doan et al.,

2022a). The trade-off between robustness and clean accuracy thus presents a key

challenge in developing effective methods capable of both high robustness and clean

accuracy.

In contrast to their white-box counterparts, black-box attacks have access only to

the output of deep learning models and not to gradient information. Consequently,

black-box attacks interact with the model to obtain the response difference between

interactions (i.e. query a single model on the input and observe the response from

the model) to estimate gradients or seek search directions toward an adversarial

example. To enhance the quality of gradient estimation or search directions, these

black-box attacks necessitate a myriad of interactions (i.e. queries). This exposes the

critical weakness of black-box attacks, many of which can be exploited by defenders.

Recently, random noise defense (RND) has been proposed by (Qin et al., 2021) as a

way of exploiting this inherent weakness and misleading black-box adversaries by

introducing random noise into queried inputs during the inference phase. However, it

is worth noting that adding excessive noise can reduce clean accuracy since the model

becomes sensitive to noisy images (Qin et al., 2021), especially if the model has not been

exposed to these noisy images in training (Cohen, Rosenfeld and Kolter, 2019). All

existing defense mechanisms compromise accuracy to achieve robustness, particularly
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at high distortion levels. Thus, achieving high robustness without compromising clean

accuracy remains an open challenge.

This dissertation pursues a new avenue based on our insights into attack algorithms

to hinder the progress of query-based black-box attacks while mitigating negative

impacts on model performance. Since decision-based attacks appear to be significantly

more difficult given that minimal information is exposed, we focus defending

against score-based attacks. Because, the attack algorithms are significantly more

query-efficient, as discussed in Chapter 5.

Our key insight is to inject uncertainty into the feedback exploited by an attacker, so as

to misdirect black-box attack algorithms as they attempt to estimate gradients or seek

directions toward adversarial examples. We achieve this while minimising negative

impacts on model performance by considering the random selection of a model from a

set of well-trained models for each prediction task request at test time. Our hypothesis

is that the feedback returned from randomly selected models can introduce sufficient

uncertainty to cause poor gradient estimates or randomise the search’s attempts to

hinder an attacker’s progress. Such feedback could therefore make an adversary’s

attempts to compromise the model’s robustness much more difficult. Notably, we

expect the proposed approach to maintain high clean accuracy, since it: (a) does not

inject noise into the input image at test time; and (b) relies on a set of well-trained

models.

There now remains the question of how we can generate a set of well-trained

models with sufficient diversity in outputs or feedback to the attacker to mislead

query-based attack algorithms. It is intuitive to expect the defense to be more

robust if the model outputs or feedback to sequences of model queries can be highly

diverse. Consequently, we explore existing approaches to promoting diversity in

model outputs in a set of well-trained models. Intuitively, we can expect that where a

set of models learns different representations, this will result in model output diversity.

Consequently, we explore methods that promote model diversity. In particular, we

consider Bayesian deep learning methods with a theoretical basis for learning the

distribution of models as a means to achieve a set of well-trained models capable of

generating diverse model outputs. As such, the study in this chapter seeks to address

the following research questions (RQ).
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RQ1: How can model diversification approaches provide a robust defense against

query-based black box attacks? This question will be addressed in Section 6.3.

RQ2: How robust are defense mechanisms against query-based black-box attacks? This

question will be explored in Section 6.4.

Contributions. In summary, this chapter aims to develop a more effective defense

mechanism against query-based black-box adversarial attacks; the main contributions

are three-fold:

• We propose a conceptually simple but effective defense strategy that introduces

uncertainty into models’ responses for the purpose of misleading black-box

adversarial attacks by randomly selecting a well-trained model that can make

predictions at test time.

• We systematically study different approaches to promote diversity in model

outputs to enhance uncertainty in responses generated to sequences of model

queries by an attacker. We propose promoting diversity in model outputs by

promoting model diversity during training whilst also achieving well-trained

models based on a new learning objective.

• We conduct experiments to show that (along with the newly proposed sample loss

objective), the Bayesian learning method, which employs an objective to push the

parameters of each model apart using Stein variational gradient descent (SVGD),

can encourage more diverse and well-performing models. This has the potential

to increase diversity in model outputs, thereby thwarting query-based black-box

attacks.

6.1.1 Chapter Overview

Section 6.2 presents a background to query-based black-box attacks and related work;

Section 6.3 introduces the problem formulation and details the proposed defense

algorithm; Section 6.4 evaluates the performance of different defense methods across

different datasets. Section 6.5 concludes this chapter.
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6.2 Related Work and Background

This section first presents existing defense methods against query-based black-box

attacks. The section then discusses the ensemble approach and its robustness.

Defense against Black-Box Attacks. Although a considerable amount of research

addresses the development defense mechanisms (Xie et al., 2019; Zhang and Wang,

2019; Liu et al., 2019b; Zhang et al., 2022; Wang and Wang, 2022) against white-box

attacks, countermeasures aimed at black-box attacks have received less attention and

have not been well studied. Recently, (Pang et al., 2020) has proposed AdvMind, an

algorithm which leverages query history to detect malicious queries. Recently, (Qin

et al., 2021) thoroughly investigated defense methods, dubbed ”random noise defense”

(RND), simply adding noise to the input. This method is well designed to disturb

query-based black-box attacks and defend against such attacks with only a marginal

drop in clean accuracy. However, our experimental results in Section 6.4 show that

RND fails to obtain the same robustness level as our proposal. A similar approach is

the regional-based classifier (RBC) (Cao and Gong, 2017), which adds noise to the input

multiple times rather than once (as per the RND) and outputs an average confidence

score.

Ensembles and Robustness. Ensembles is a widely studied approach in machine

learning, the purpose of which is to construct a set of models and train each model in

the set independently, with random initialization. In the inference phase, it combines

the predictions of all models to achieve high generalization performance (Krogh

and Vedelsby, 1994; Dietterich, 2000), resulting in high accuracy. (Zhang, Cheng

and Hsieh, 2019) has pointed out that hijacking ensembles—a set of models—is more

challenging than attacking a single model, as the attacker must deceive multiple

models simultaneously. However, our empirical results in Section 6.4 show that

launching black-box attacks against ensembles is not hard, and that ensembles are

slightly more robust than their single counterparts if all the individual models of an

ensemble jointly make predictions at test time.

Another line of works (Tramèr et al., 2018; Zhang, Cheng and Hsieh, 2019; Sen,

Ravindran and Raghunathan, 2020; Zhang et al., 2022; Wang and Wang, 2022) has

incorporated adversarial training with ensembles to investigate the resilience of

ensemble adversarial training against white-box adversarial attacks. Although these

proposed approaches have shown promising results in improving the ensemble’s

robustness, they forfeit clean accuracy.
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6.3 Proposed Method

In this section, we are interested in exploring and developing a defense method against

black-box attacks based on a set of models. We hypothesize that:

• Hypothesis 1. A method of achieving uncertainty in the output of a set of

models to a sequence of queried inputs at test-time through different functions

(learned models) can lead to sufficient randomness in predictions and misguide

a score-based black-box adversary. We expect the resulting uncertainty to

complicate the task of estimating gradient direction or determining search

directions towards an adversarial example for a black-box attacker.

• Hypothesis 2. Model parameters sampled from the posterior distribution

obtained using the Bayesian formulation of deep learning methods can lead

to diverse function representations. These functions, individually or in

combination—while achieving high performance—can reduce the information

available to a black-box attacker at test time with minimal to no compromise in

model performance.

We will investigate the first hypothesis in Section 6.3.1 and the second in Section 6.3.2.

6.3.1 Achieving Model Output Uncertainty for Black-Box Attackers

Through Randomness

To examine the first hypothesis, we recall that black-box attack algorithms need several

interactions with a model (i.e. events in which the algorithms query a model on the

input and observe the response from a model) to estimate gradients or search direction.

If a defense mechanism can harden the gradient estimation or direction search, it

is capable of decreasing the attack efficiency and enhancing the robustness of deep

learning models. In this regard, an intuitive approach is to mislead attackers by

injecting randomness into responses from models.

Conceptually simple but effective strategy for injecting randomness is to randomly

select a well-trained model from a set of models for the purpose of servicing requests

at test time. We can expect feedback from randomly selected models to misdirect

gradient and search direction estimation algorithms. Now, the probability of finding
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the sequence of gradients from randomly selected models leading to a strong attack are

significantly smaller than that from a single model. Concretely, we can estimate it as

1/KT where K denotes the number of individual models in a model set and T denotes

the average number of interactions required to generate an adversarial perturbation

with a single model. Formally, in this approach, the prediction at the inference (test)

time is formulated as follows:

y∗ = arg max
y

p(y | x), (6.1)

p(y | x) := softmax( fk(x; θk)), fk ∼ F (6.2)

where θk represents weights, F = { f1(·, θ1), f2(·, θ2), . . . , fK(·, θK)} denotes a set of

models. However, it may be impracticable to train a large set of models; further,

predicting with an ensemble is shown to lead to higher prediction accuracy (Krogh

and Vedelsby, 1994; Dietterich, 2000). Consequently, rather than selecting one model,

we uniformly select a subset of models at random with replacements. Naturally, this

leads to an increase in the effective number of models presented to the attacker from

the combination of models composed to make predictions. Formally, the prediction of

a subset of models is formulated as follows:

p(y | x) := softmax
[ 1

m

m

∑
k=1

fk(x; θk)
]
, fk ∼ F (6.3)

where m denotes the number of selected models of a subset. Overall, through

randomness in model selection, the approach introduced in this section injects

uncertainty into the model outputs extracted by a black-box attacker to evade gradient

estimation and direction search methods. But, to enhance adversarial robustness,

we aim to increase the uncertainty in exposed model outputs. Because we can

expect the defense to be more robust if the model outputs or feedback to sequences

of model queries is highly diverse or variable. We propose promoting model

parameter diversity to promote model output variance with minimal to no impact on

performance. Because, intuitively, we can expect a set of models learning different

representations for a machine learning task to result in model output diversity or

variance. With the goal of model diversity in mind, the next section investigates

our second hypothesis by considering Bayesian learning approaches with a theoretical

basis for learning the distribution of model parameters. Then, to achieve model output

variance in a set of well-trained models, we propose a new learning objective in the

Bayesian learning context. Subsequently, we explore alternative methods of promoting
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model diversity in Section 6.3.3, comparing these with our proposed method in an

extensive series of experiments in Section 6.4.

6.3.2 Proposed Method for Achieving Model Diversity

To explore the second hypothesis, we are interested in a framework for promoting

model diversity. In general, we can train an ensemble of models in parallel such

that their predictions are consistent while their parameters are diverse. Formally, the

training objective of such a framework can be expressed as follows:

min
Θ

E(x,y)∼D

[
ℓ
(

1
K ∑K

k=1 fk(x; θk), y
)]

, s.t. ∆(F ) (6.4)

where D denotes a training set, ∆ is a set of constraints on the set of functions F =

{ f1(·, θ1), f2(·, θ2), . . . , fK(·, θK)} to ensure diversity optimized over their parameters

Θ = {θ1, θ2, . . . , θK} and ℓ(., .) is the loss (i.e. cross-entropy).

There are two questions that have to be answered in the formulation of (6.4): (1)

what constraints best encourage the diversity of models (i.e. best ∆) leading to output

variance; and (2) since we minimise the loss over the average logits of the set of

functions to train these models, how can we ensure that the asymmetry between

models promotes high average and individual model performance?

Parameter Diversity Approach

To promote model diversity, we consider adopting a training framework incorporating

a Bayesian formulation of deep learning methods with Stein Variational Gradient

Descent (SVGD) method (Liu and Wang, 2016; Wang and Liu, 2019) we refer to

simply as the Bayesian training framework. The Bayesian training framework allows

us to learn a posterior distribution of parameters and the model parameters sampled

from that posterior distribution can result in diverse function representations, leading

to model diversity. As the SVGD method is able to repulse models’ parameters

directly, it is capable of encouraging learning diversified parameters and provides an

effective solution to question (1). Interestingly, this approach enables learning different

representations (Doan et al., 2022a) and, consequently, leads to output variance

without compromising clean accuracy. Formally, the learning diversity parameter
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algorithm is formulated as follows:

θk = θk − ϵϕ∗(θk) (6.5)

ϕ∗(θk) =
K

∑
k=1

[
κ(θk, θi)∇θiℓ( fi(x; θi), y)− γ∇θiκ(θk, θi)

]
, (6.6)

where θk denotes the weights of the k-th model, κ(·, ·) is a kernel function that

encourages model diversity, and γ is a hyperparameter to control the trade-off between

models’ diversity and the loss ℓ(., .) (i.e. cross-entropy).

Notably, while the SVGD method was employed for the purposes of adversarial

defense in (Doan et al., 2022a, 2023), incorporating adversarial training and

information gain, we do not adopt both of the adversarial training approaches due to

the resulting clean accuracy drop. Additionally, the method proposed by (Doan et al.,

2022a, 2023) does not consider the problem posed in question (2) and we propose a

new formulation for the problem as discussed below.

New Training Objective

We observe that the training objective in Equation 6.4 is not able to satisfy question (2)

as shown in Section 6.4.4. Simply, a naive adoption of the Bayesian training framework

with SVGD does not yield models that perform well individually, despite the fact that

the average performance of all models for a task is high. To address this problem, we

propose a new training objective that encourages individual model learning.

To encourage individual model learning while training a set of models, we propose the

incorporation of a sample loss training objective, ℓ( fi(x; θi), y), to formulate a new joint

loss as follows:

min
Θ

EB∼D, θi∼Θ

[
E(x,y)∼B

[
ℓ
(

1
K ∑K

k=1 fk(x; θk), y
)
+ ℓ

(
fi(x; θi), y

)]]
, (6.7)

where B denotes a batch of data sampled from a training setD. Notably, in this training

framework, we aim to train all models simultaneously, and for each batch of data B,

we uniformly select θi from Θ at random with replacement.

6.3.3 Alternative Approaches to Promote Model Diversity

We are interested in exploring alternative approaches which can improve the

robustness of the model set by encouraging its diversity. Findings from
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(Lakshminarayanan, Pritzel and Blundell, 2017; Fort, Hu and Lakshminarayanan,

2020; Wen, Tran and Ba, 2020) show that employing random initializations and

independent training strategies for ensembles can decorrelate networks’ predictions

and induce diversity. Thus, we will study and use ensembles (Lakshminarayanan,

Pritzel and Blundell, 2017) as a baseline. Additionally, recent research has proposed

two approaches—gradient-based (Teney et al., 2022) and score-based (Lee, Yao and Finn,

2023)—to promote model diversity. We will therefore investigate these two approaches

and compare them with SVGD.

Ensembles employing Random Initialization Approaches. (Lakshminarayanan,

Pritzel and Blundell, 2017) proposed to train a set of models—Ensemble—with random

initializations independently. This training procedure can be formulated as follows:

min
θk

E(x,y)∼D

[
ℓ( fk(x; θk), y)

]
, (6.8)

where θi denotes the weights of the i-th model, and ℓ(., .) is the loss (i.e. cross-entropy).

Gradient-based Approach. (Teney et al., 2022) introduced a method encouraging

diversity over a set of models by quantifying the similarity of the gradient of the

top predicted score of each model with respect to its features. This method aims to

train a set of models to discover predictive patterns commonly missed by learning

algorithms and promote diversity across the model set. Note that while their problem

is to improve out-of-distribution robustness, our problem is to enhance adversarial

robustness. In this study, we adopt their Diversity Regularizer (DivReg) to encourage

the diversity of models and formulate the training objective as follows:

min
Θ

E(x,y)∼D

[
∑K

k=1 ℓ( fk(x; θk), y) + λreg ∑i ̸=j δ fi, f j

]
, (6.9)

where δ fi, f j = ∇h fi(hi) .∇h f j(hj), λreg controls the strength of the regularizer,∇h f and

∇h f j denote the gradient of the top predicted score of models fi and f j with respect to

their own features hi and hj.

Score-based Approach. (Lee, Yao and Finn, 2023) proposed an approach to training

a collection of diverse models by independently training each head pair to make

predictions. We note that their method aims to enhance models’ robustness in order to

the shift between source and target data distribution whereas our problem improves

models’ robustness against adversarial attacks. In this study, we adopt their loss
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function to encourage model diversity. The training objective is formulated as follows:

min
Θ

E(x,y)∼D

[
∑K

k=1 ℓ( fk(x; θk), y) + λMI ∑k ̸=i LMI( fk(x; θk), fi(x; θi))
]
, (6.10)

LMI( f (x; θk), f (x; θi)) = DKL(p(ŷk, ŷi) ∥ p(ŷk)⊗ p(ŷi)), (6.11)

where DKL(. ∥ .) is the KL divergence and ŷi is the prediction fi(x; θi), λMI controls the

strength of mutual information loss LMI, p(ŷk, ŷi) is the empirical estimate of the joint

distribution and p(ŷk), p(ŷi) are the empirical estimates of the marginal distributions.

6.4 Experiments and Evaluations

This section evaluates the robustness and effectiveness of the so-called randomness

defenses which inject randomness into the response of a deep learning model. These

randomness defense methods. These defense mechanisms are evaluated on three

standard vision tasks MNIST (Lecun et al., 1998), CIFAR10 (Krizhevsky, Nair and Hinton,

n.d.), STL-10 (Coates, Lee and Ng, 2011).

Datasets, Network Architectures and Attack. In this study, we use three different

standard datasets MNIST (Lecun et al., 1998), CIFAR-10 (Krizhevsky, Nair and Hinton,

n.d.) and STL-10 (Coates, Lee and Ng, 2011). We use a network architecture from

(Cheng et al., 2020) for MNIST, VGG-16 (Liu and Deng, 2015) for the CIFAR-10 task

and ResNet18 (He et al., 2016) for the STL-10 task. The clean accuracy of these

network architectures and defended models is presented in Appendix D.2. To evaluate

the robustness of defense mechanism, we employ SQUAREATTACK (Andriushchenko

et al., 2020) which is the state-of-the-art attack method in score-based settings and more

effective than decision-based attacks as discussed in Chapter 5.

Defense Mechanisms. We compare our proposed method with RND (Qin et al.,

2021), RBC (Cao and Gong, 2017), the dropout approach (Gal and Ghahramani,

2016; Srivastava et al., 2014), ENSEMBLES (Lakshminarayanan, Pritzel and Blundell,

2017), diversity regularizer (DIVREG(Adapted)) (Teney et al., 2022) and diversity

disambiguity (DIVDIS(Adapted)) (Lee, Yao and Finn, 2023). Moreover, we

demonstrate the robustness of a single model (no defense) and ensembles (no defense).

In the case of ensembles (no defense), we simply conduct black-box attacks against

ensembles when all individual models make predictions together at test time.

Evaluation Metrics. We note that employing randomness defense mechanisms causes

a model to generate variant outputs (different confidence scores) for a benign or
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adversarial input. This input can be correctly or wrongly predicted when fed into a

defended model adopting randomness several times. Therefore, when an adversarial

input yielded by an attack aims to fool a model defended by a randomness defense

method, it could fail or succeed. The more frequently it fails, the more robust the

randomness defense is. To this end, we define the robustness of a randomness defense

method as follows:

Robustness = Exadv∼DADV
[Accr(xadv)], (6.12)

where Accr(xadv) = n
N , N represents the number of inferences of an adversarial

example and n is the number of correct predictions of the adversarial example xadv.

DADV is a set of adversarial examples generated by an attack algorithm.

Evaluation Protocol. Recall that when a benign input is fed into a defended model that

incorporates randomness into its response, it can be correctly or incorrectly predicted

or classified. The more frequently a benign input is misclassified by a defended

model, the less reliable that benign input will be for the purpose of constructing an

attack. For a fair and reliable comparison, we select benign inputs correctly inferred

1,000 times, dubbed reliable benign inputs. To reduce the computational burden of the

evaluation tasks on four different datasets, we compose each evaluation set out of 500

reliable benign inputs. We employ SQUAREATTACK (Andriushchenko et al., 2020) with

a 10,000 query budget to generate adversarial examples from reliable benign inputs for

the purpose of evaluating the performance of each defense method.

6.4.1 Experimental Regime

This section summarizes the extensive experiments conducted on the MNIST, CIFAR-10

and STL-10 datasets and against SQUAREATTACK.

• Effectiveness of the Proposed Method Against Black-box Attacks. Section 6.4.2

evaluates the robustness of different defense mechanisms (prior and proposed

methods using the new learning objective as well as other model diversification

approaches) against SQUAREATTACK (a score-based attack algorithm) across

different datasets.

• Diversity Analysis. Section 6.4.3 analyzes the degree of model diversity that is

encouraged by different methods.
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• Effectiveness of New Joint Loss. Section 6.4.4 demonstrates the effectiveness

of the new training objective in encouraging individual model learning while

promoting model diversity.

6.4.2 Robustness to Black-box Attacks

As discussed in Section 6.3.1 we can expect a more extensive set of models to yield

a lower chance of estimating gradient or searching a proper attack direction as well

as possibly obtaining better accuracy. However, due to the extensive computational

resources required and the complexity of different datasets (i.e. high dimension data),

we train a larger number of models for low-resolution data and a lower number of

models for high-resolution datasets. In this section, we carry out:

• Extensive training and evaluation on a set of 40 models with MNIST and

• Training and evaluation of a set of 10 models with CIFAR-10 and STL-10.

Furthermore, to reduce the computational burden of attack execution times with large

sample sets across muliple model diversification methods, we:

• Conduct extensive evaluations with MNIST and CIFAR-10 and

• Show generalisation of the results with a select model evaluation set using STL-10.

Evaluation on MNIST

In this section, we carry out extensive experiments to demonstrate the robustness

of different defense methods on an evaluation set selected from MNIST. For our

proposed approach, we train a set of 40 models using ENSEMBLES, DIVDIS(Adapted),

DIVREG(Adapted) and our proposed method and select the best model set for each

method based on test accuracy. To evaluate and compare robustness, we choose

different settings with different sizes of model subsets (i.e. 1, 3, 5, 20 or 30). The

results in Table 6.1 show that our proposed method is more robust than other diversity

promotion methods across different distortion levels and settings. More results

relating to training a set of 10 and 20 models are presented in Appendix D.1.

Additionally, we compare the performance of defense methods designed for black-box

attacks and our simple approach employing random model selection with various
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DropoutSingle Model (No Defense) Ensembles (No Defense) RBC

RND Ensembles DivDis (Adapted) DivReg (Adapted) Ours
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Figure 6.1. A robustness comparison (higher ↑ is stronger) between our proposed method and other

methods against SquareAttack on MNIST. For different diversity promotion methods, we train a

set of 40 models and randomly select a subset of 5 and 20 models. Defense robustness is measured

by the average accuracy of models over an evaluation set under attacks at different distortion levels.

Notably, a subset of one or three models is more robust than a subset of five models, which is more

robust than other defense methods.

diversity promotion strategies. In this comparison, we choose a setting for a set of

40 models and randomly select a subset of three out of 40 models. The same result

and performance can be illustrated with other settings. The results in Figure 6.1

demonstrate that our simple approach employing random model selection outweighs

other baselines and state-of-the-art defense methods designed for black-box attacks.

Evaluation on CIFAR-10

In this section, we conduct extensive experiments to demonstrate the robustness

of different defense methods on an evaluation set selected from CIFAR-10. Due

to limitations in training resources, we train a set of 10 models using ENSEMBLES,

DIVDIS(Adapted), DIVREG(Adapted) and our proposed method and select the best

model set for each method based on test accuracy. For robustness evaluation and

comparison, we choose different settings with different sizes of model subsets (i.e. 1, 3,

5 and 8). The results in Table 6.2 show that our proposed method is more robust than

other diversity promotion methods across different distortions and settings.

Additionally, we compare the performance of defense methods designed for black-box

attacks and our simple approach employing random model selection with different

diversity promotion strategies. In this comparison, we choose a setting for a set of
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Robustness on CIFAR-10
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DivDis (Adapted) DivReg (Adapted) Ours

Figure 6.2. A comparison of robustness (higher ↑ is stronger) between our proposed method and

other methods against SquareAttack on CIFAR-10. For different diversity promotion methods,

we train a set of 10 models and randomly select a subset of five models. The defense robustness

is measured by the average accuracy of models over an evaluation set under attacks at different

distortion levels.

10 models and randomly select a subset of five models. Likewise, the same result

and performance can be illustrated with other settings. The results in Figure 6.2

demonstrate that our simple approach employing random model selection outweighs

other baselines and state-of-the-art defense methods designed for black-box attacks.

Generalisation with Evaluation on STL-10

In this section, we conduct extensive experiments to demonstrate the robustness

of different defense methods on an evaluation set selected from STL-10. Due to

limitations in training resources, we train a set of 10 models using ENSEMBLES,

DIVDIS(Adapted), DIVREG(Adapted) and our proposed method and select the best

model set for each method based on test accuracy. To evaluate and compare robustness,

we choose a subset of five model subsets. The results in Table 6.3 show that our

proposed method is more robust than other diversity promotion methods across

different distortions and settings.

Additionally, we compare the performance of methods designed to defend against

black-box attacks and our straightforward approach employing random model
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selection with different diversity promotion strategies. In this comparison, we choose

a setting for a set of 10 models and randomly select a subset of five models. The

same result and performance can also be illustrated with other settings. The results in

Figure 6.3 demonstrate that our simple approach employing random model selection

outweighs other baselines and state-of-the-art defense methods designed for black-box

attacks.

6.4.3 Diversity Analysis

As presented in Section 6.3.2, more diversity among individual models results in

more output uncertainty for black-box attackers. Therefore, in this section, we use

Jensen–Shannon divergence as a metric to show model diversity promoted by different

methods. We measure model diversity on CIFAR-10 and STL-10 by calculating the

Jensen–Shannon divergence between the average softmax outputs of all models versus

the softmax output of each particle. We compute it over the testset of CIFAR-10 and

STL-10. The result in Figure 6.4 shows that our proposed method is able to achieve

Distortion

A
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u
ra

cy

Robustness on STL10

DropoutSingle Model (No Defense)
Ensembles (No Defense)

RBC
RND Ensembles 

DivDis (Adapted) DivReg (Adapted) Ours

Figure 6.3. A comparison of robustness (higher ↑ is stronger) between our proposed method and

other methods against SquareAttack on STL-10. For different diversity promotion methods, we

train a set of 10 models and randomly select a subset of five models. Defense robustness is defined

as the average accuracy of models over an evaluation set under attacks at different distortion levels.
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Diversity Comparison on CIFAR-10
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Figure 6.4. A model diversity comparison among Ensembles, DivDis(Adapted),

DivReg(Adapted) and our proposed method using Jensen–Shannon divergence on CIFAR-10 and

STL-10.

greater diversity among individual models, while ensembles obtain the least diversity.

It is expected because ensembles do not have any mechanism to encourage diversity.

6.4.4 Effectiveness of the Proposed Learning Objective (Sample

Loss)

As mentioned in Section 6.3.2, incorporating sample loss as a training objective

can encourage individual learning and helps each individual model obtain high

performance. These well-trained models lead to the success of our proposed approach.

Therefore, in this section, we aim to show the effectiveness and insights of the new

training objective with and without sample loss. We employ the SVGD method to

train a set of 10 models simultaneously with and without sample loss on two datasets,

MNIST and CIFAR-10. We train up to 1,000 epochs and select the best model set based on

test accuracy. The results in Table 6.4 show that each individual model in a model set

trained with the sample loss achieves high performance on both datasets. As a result,

randomly selecting five individual models is able to obtain high accuracy (92.4%) that

is slightly lower than the accuracy achieved by the set of all models (93.2%). In contrast,

without the sample loss, most models exceed 50% accuracy, and the random selection

of five models does not result in high accuracy (79%).
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6.5 Conclusion

The study in this chapter proposes a novel defense mechanism against query-based

attacks which exploit output model scores. Results from extensive experiments

demonstrate that the proposed defense mechanism consistently achieves better

robustness than state-of-the-art defense methods designed for query-based attacks

across different datasets. Interestingly, after we had encouraged a diverse set of

models employing the SVGD method and the proposed learning objective, our results

significantly outperformed those of other model diversity promotion schemes in terms

of achieving the twin objectives of high robustness and clean accuracy. While an

extensive set of results is presented in the main chapter, additional results in support

of the study can be found in Appendix D.

Up to this juncture, this dissertation has concentrated on exploring the vulnerability

of deep learning models to black-box query-based attacks and investigating defense

mechanisms against these attacks. The forthcoming chapter will provide a concise

overview of the challenges addressed and contributions made in this dissertation

towards building robust deep neural networks. The chapter will then outline

promising avenues for future research that have emerged as a result of the studies

presented in this dissertation.
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Table 6.1: A comparison of robustness (higher ↑ is stronger) between our proposed

method and other methods against SQUAREATTACK on MNIST. For the evaluation of

different diversity promotion methods, we train a set of 40 models and randomly select

a subset of a different number of models.

Random Methods Distortion = 0 0.8 1.6 2.4 3.2 4.0

1

ENSEMBLES 100% 99.6% 97.3% 93.4% 89.0% 80.2%

DIVDIS(Adapted) 100% 99.6% 97.4% 93.9% 88.1% 82.6%

DIVREG(Adapted) 100% 99.2% 96.2% 91.8% 84.3% 77.4%

Ours 100% 99.7% 98.9% 97.2% 93.5% 88.2%

3

ENSEMBLES 100% 100% 99.4% 94.2% 85.2% 74.6%

DIVDIS(Adapted) 100% 100% 98.6% 93.8% 83.7% 73.1%

DIVREG(Adapted) 100% 100% 99.0% 93.0% 79.7% 67.6%

Ours 100% 100% 99.8% 98.0% 91.4% 77.8%

5

ENSEMBLES 100% 100% 99.5% 95.8% 84.9% 70.8%

DIVDIS(Adapted) 100% 100% 98.6% 94.3% 79.9% 68.9%

DIVREG(Adapted) 100% 100% 98.4% 90.5% 79.5% 67.9%

Ours 100% 100% 99.8% 97.9% 90.1% 76.5%

20

ENSEMBLES 100% 100% 97.6% 86.4% 68.0% 49.0%

DIVDIS(Adapted) 100% 99.8% 95.9% 85.5% 72.2% 54.8%

DIVREG(Adapted) 100% 99.7% 96.1% 83.3% 67.0% 51.3%

Ours 100% 100% 99.3% 94.4% 77.5% 56.8%

30

ENSEMBLES 100% 99.9% 96.8% 81.2% 60.6% 40.0%

DIVDIS(Adapted) 100% 99.9% 95.9% 80.0% 64.9% 46.9%

DIVREG(Adapted) 100% 99.5% 93.9% 77.3% 59.7% 43.2%

Ours 100% 100% 98.6% 91.9% 70.4% 52.2%
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Table 6.2: A robustness comparison (higher ↑ is stronger) between our proposed

method and other methods against SQUAREATTACK on CIFAR-10. For the evaluation

of different diversity promotion methods, we train a set of 10 models and randomly

select a subset of a different number of models.

Random Methods Distortion = 0 0.8 1.6 2.4 3.2 4.0

1

ENSEMBLES 100% 90.0% 83.6% 75.4% 64.2% 55.1%

DIVDIS(Adapted) 100% 95.1% 90.1% 82.6% 72.0% 59.1%

DIVREG(Adapted) 100% 90.6% 86.2% 79.5% 69.6% 59.5%

Ours 100% 90.2% 86.9% 82.2% 75.2% 67.6%

3

ENSEMBLES 100% 97.1% 88.3% 78.6% 67.4% 55.4%

DIVDIS(Adapted) 100% 99.2% 96.1% 86.2% 75.8.3% 62.1%

DIVREG(Adapted) 100% 99.6% 93.5% 84.3% 72.1% 60.3%

Ours 100% 99.8% 96.7% 90.0% 82.2% 72.6%

5

ENSEMBLES 100% 97.7% 89.0% 76.1% 63.1% 52.3%

DIVDIS(Adapted) 100% 99.0% 93.9% 83.0% 70.8% 55.7%

DIVREG(Adapted) 100% 99.0% 91.6% 78.5% 65.3% 53.6%

Ours 100% 99.6% 95.6% 87.1% 76.5% 65.8%

8

ENSEMBLES 100% 98.2% 87.9% 76.9% 63.5% 52.2%

DIVDIS(Adapted) 100% 99.1% 94.1% 82.7% 70.4% 56.4%

DIVREG(Adapted) 100% 99.2% 90.9% 76.3% 64.6% 51.6%

Ours 100% 99.7% 96.0% 86.2% 76.2% 66.0%

Table 6.3: A comparison of robustness (higher ↑ is stronger) between our proposed

method and other methods against SQUAREATTACK on STL-10. For the evaluation of

different diversity promotion methods, we train a set of 10 models and randomly select

a subset of five models.

Methods Distortion = 0 1.2 2.4 3.6 4.8 6.0

ENSEMBLES 100% 99.6% 97.6% 92.5% 89.3% 82.9%

DIVDIS(Adapted) 100% 99.9% 99.2% 97.3% 94.9% 91.1%

DIVREG(Adapted) 100% 100% 99.5% 98.2% 95.0% 91.3%

Ours 100% 100% 99.7% 98.8% 96.6% 92.8%
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Table 6.4: Clean accuracy of a set of 10 models trained simultaneously with and

without sample loss on MNIST and CIFAR-10.

Dataset MNIST CIFAR-10

Training

Objective

Without

Sample Loss

With

Sample Loss

Without

Sample Loss

With

Sample Loss

All Models 99.6% 99.7% 89.8% 93.2%

Random 8 Models 87.3% 99.6% 59.7% 92.8%

Random 5 Models 79.4% 99.6% 39.8% 92.4%

Random 3 Models 69.9% 99.6% 31.0% 91.4%

Model 1 50.7% 99.3% 15.1% 88.5%

Model 2 36.6% 99.5% 13.8% 88.3%

Model 3 22.8% 99.3% 13.5% 88.5%

Model 4 42.2% 99.2% 10.0% 88.1%

Model 5 32.7% 99.5% 9.3% 88.9%

Model 6 35.4% 99.4% 12.4% 86.9%

Model 7 35.6% 99.4% 11.3% 88.4%

Model 8 32.0% 99.4% 12.4% 89.7%

Model 9 55.6% 99.3% 10.2% 87.7%

Model 10 99.3% 99.3% 80.8% 88.4%
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Chapter 7

Conclusion

T
HIS chapter concludes the dissertation and suggests directions

for future work.
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7.1 Thesis Overview and Summary

This dissertation undertook an in-depth investigation into emerging research on

the vulnerability of deep learning models to black-box attacks, ranging from the

Score-based to Decision-based scenarios. Through investigations into these problems, the

dissertation advances knowledge in the field and paves the way for more secure and

resilient real-world systems and applications employing such models.

To gain insights into the susceptibility of deep learning models, this dissertation first

introduced three novel attack methods in score-based and decision-based settings.

These methods exhibit state-of-the-art attack success rates against models built

from the two widely used deep neural network (DNN) architectures—Convolutional

Networks and Transformers. A comprehensive examination of these attack methods was

presented in Chapter 3, 4 and 5. In summary:

• The study in Chapter 3 first revealed the presence of hard cases and hypothesized

that these hard cases arise due to entrapment in local minima when gradient

estimation fails to guide the attack. To overcome the entrapment problem, the

study devised a novel search method—RAMBOATTACK—drawing inspiration

from randomized block coordinate descent (BLOCKDESCENT). Unlike existing

dense attacks, RAMBOATTACK focuses on altering local regions of the input

aligned with the filter sizes used in DNNs to generate low-distortion adversarial

examples in hard cases. This mechanism aims to exploit the model’s dependence

on salient features of the target class for classification to discover potential

adversarial perturbations. Lastly, the study employed a visual explanation

tool to provide a representation of the connections between the introduced

perturbations and salient regions in images associated with the target class.

• While the study in Chapter 3 shed light on the vulnerability of deep

neural networks to dense attacks, the study in Chapter 4 further explored

a new threat—sparse attacks in decision-based scenarios—that revealed new

weaknesses in machine learning models. However, conducting sparse attacks

is non-trivial due to the NP-hard problem, and it is more challenging in

decision-based settings. To remedy this problem, the study in this chapter

introduced a novel approach—SPARSEEVO—an evolution-based algorithm.

Furthermore, for the first time, this study explored the susceptibility of the

transformer to decision-based sparse attacks on the standard computer vision
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task ImageNet and established its relative robustness to convolution-based

models. Importantly, extensive experiments in this study demonstrated

that SPARSEEVO surpasses the performance of a state-of-the-art sparse

attack and achieves comparable attack success rates to the leading white-box

attack—PGD0—with limited query budgets.

• Similar to Chapter 4, Chapter 5 undertook an extensive investigation into

the vulnerability of deep learning models to sparse attacks. However, the

sparse attacks examined in this chapter require output score information

rather than the model’s decision. Even where score information is available,

sparse attacks still come up against the NP-hard problem. To mitigate this

challenging problem, the research in Chapter 5 introduces a novel sparse

attack method—BRUSLEATTACK. This method aims to learn influential

pixel characteristics from historical information on pixel manipulations. It

then integrates a pixel selection mechanism based on the dissimilarity of

pixels between a search space prior and a source image. Extensive and

comprehensive experiments in the chapter demonstrated that BRUSLEATTACK

outperforms state-of-the-art methods in terms of both attack success rate and

sparsity across various datasets (i.e. CIFAR-10, STL10, ImageNet), deep learning

models (i.e. Convolutional-based, Transformer-based), and defense mechanisms

(i.e. Adversarial Training and RND) within limited query budgets. More

interestingly, the research exhibited successful sparse attacks against a real-world

system—Google Cloud Vision.

To pave the way for more secure deep learning models employable in real-world

systems and applications under black-box scenarios, this dissertation explored a

wide range of approaches to mechanisms for defense against black-box attacks.

Nonetheless, these approaches face the challenge of obtaining two objectives: a

marginal drop in clean accuracy and high robustness. To address these challenge, this

dissertation proposed a novel defense method. The approach was examined through

comprehensive experiments in Chapter 6. In summary:

• The study in Chapter 6 devised a novel countermeasure that introduces

uncertainty into model outputs by randomly selecting a subset of well-trained

models when making predictions. This uncertainty allows the proposed method

to deceive black-box attacks that rely on gradient estimation or random search
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methods exploiting model outputs. Moreover, this study examines various

approaches to encourage a diverse set of models, thereby increasing the variance

in model outputs and further enhancing defense capability. Through extensive

experiments, the study showed that a Bayesian learning approach utilizing Stein

variational gradient descent (SVGD) alongside a novel sample loss objective is

capable of encouraging greater diversity in a model set regarding its respective

outputs. Overall, the rigorous empirical study in this chapter demonstrated that

incorporating randomness and promoting model diversity significantly impedes

the progress of black-box attacks and strengthens the resilience of the models

against these attacks.

7.2 Future Work

From a security perspective, black-box attacks always pose critical threats to the

safety of applications and systems employing deep learning models. This dissertation

has mainly focused on black-box attacks against machine learning as a service that

performs image classification tasks in the digital and vision domains. However,

these black-box attacks may endanger deep learning models in video learning tasks

(i.e. video classification, recognition or object detection) and in the physical, text,

audio or video domains. However, deceiving deep learning models employed in

the physical domain or in video learning tasks is even more challenging due to

several environmental and hardware factors. This results in greater complexity in

input manipulation, as well as a higher need for computing resources. In regard

to this, understanding both the problems and challenges of black-box attacks in the

digital domain presented in this dissertation will reveal some insights and possibilities

to deal with these challenges. On the other hand, from a defense standpoint,

withstanding black-box attacks in speech or text domains is still challenging due to

domain differences. To this end, this section will discuss numerous opportunities and

possibilities that merit future studies on new black-box threats and countermeasures

to enhance further the resilience and robustness of deep learning models in various

learning tasks.

• How can we realise black-box attacks developed in Chapter 4 and Chapter 5

against deep learning models for video learning tasks? While exploring the

safety and reliability of models used in the context of classification as a service
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deployed in real-world systems, video classification services are increasingly

offered by providers such as Google Cloud Intelligence8 or Amazon Rekognition

Video9. While a large body of work has been conducted examining the

vulnerability of deep learning models used for the image classification task,

there is a handful of research (Wei et al., 2020; Li et al., 2021b; Zhan et al.,

2023) about the robustness of deep learning models for video learning tasks

(i.e. video classification (Diba et al., 2018) or recognition tasks (Feichtenhofer

et al., 2019)) against black-box attacks. However, these attack algorithms mainly

focus on dense settings. Therefore, safety and security concerns relating to the

employment of models for video learning tasks in real-world systems under

sparse black-box scenarios are less well-studied. To this end, it is crucial for future

research to explore sparse black-box attacks against deep learning models trained

for video learning tasks.

• How can we extend sparse attacks to the physical domain? In the physical

domain, a (physical) adversarial example that is generated, printed and captured

by a camera can fool a real-world system employing a deep learning model that

requires interactions with the physical world (i.e. self-driving cars or drones) (Jan

et al., 2019; Wang et al., 2022). A handful of works have studied physical

adversarial attacks that generate adversarial examples (i.e. sticker, patch, laser

or projector light) (Eykholt et al., 2018; Thys, Ranst and Goedeme, 2019; Liu

et al., 2019a; Lovisotto et al., 2020; Yang et al., 2020a; Nguyen et al., 2020; Jia

et al., 2022; Chen et al., 2022b; Huang and Ling, 2022; Doan et al., 2022b).

These visible adversarial examples are possibly detected by defense systems

adopting abnormal input detection methods (Xiang and Mittal, 2021). To evade

the detection method employed by defense systems, a generated perturbation

needs to be less visible or sparse—quantified by l0 constraint. With regard to

this, the process of deceiving a deep learning model in the physical domain is less

well-studied. Therefore, future research endeavors should focus on developing

techniques to yield sparse perturbation in the physical domain.

• How can we apply the defense concept of uncertainty and model diversity

introduced in Chapter 6 in other domains? The defense method introduced in

Chapter 6 mainly focuses on black-box attacks in the vision domain. However,

8https://cloud.google.com/video-intelligence/docs/streaming/video-classification
9https://aws.amazon.com/rekognition/video-features/
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black-box attacks have been developed in other domains such as text (Lee et al.,

2022) and audio (Taori et al., 2019). To withstand these black-box attacks, it

would be insufficient to naively adopting the defense method introduced in

Chapter 6 across domains. Therefore, the adoption of the proposed concept

of uncertainty and model diversity to defend against black-box attacks across

domains represents a promising research direction.

• How can we improve the training efficiency of SVGD? Although training a

robust model using the SVGD method can achieve state-of-the-art robustness

against black-box attacks, as shown in Chapter 6, this method is time-consuming

and computationally intensive. The robust training method based on SVGD

can take several weeks to complete, particularly for a large model set and for

large-scale and high-resolution datasets (i.e. ImageNet). As a consequence, it

hinders the employment of the SVGD method in real-world applications that

require the training of large-scale and high-resolution datasets or model owners

who have limited computation resources. Future research should thus address

these concerns by adopting pre-trained models and the transfer learning method.

This approach can allow SVGD to push model weight apart at some last layer so

as to achieve diversity. Exploring this promising research direction will ideally

serve to reduce training time and computation resources, making training with

the SVGD method more scalable and employable to all model owners.
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A.1 Targeted Attacks on Balanced and Non-hard Sets
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Figure A.1. A comparison between three current state-of-the-art attacks and RamBoAttack on

a balance set selected from CIFAR10.

Balanced Set with CIFAR10. It is simple to carry out a comprehensive evaluation over

all classes, so we choose N=10, n=10 and m=9. In addition, to demonstrate the query

efficiency and effectiveness of each attack, we employ a query budget of 25,000 and

50,000 across all experiments. RAMBOATTACK obtain slightly better median and mean

distortion than HopSkipJump and Sign-OPT at 25K and 50K, as shown in Figure A.1

and Table A.1. On the standard deviation metric used to measure distortion variance

across an evaluation set, our RAMBOATTACK outperform Boundary, HopSkipJump

and Sign-OPT at query limit of 25K and 50K. In order words, our attack performs

robustly across the evaluation set.
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Table A.1: Comparison among attacks with RAMBOATTACK on small and large scale

balance datasets.

Query
Methods

CIFAR10 ImageNet

budget Mean Std Median ASR(ϵ=0.3) Mean Std Median ASR

25K

Boundary 0.674 0.654 0.499 22.6% 31.80 18.43 32.88 5.5%

HopSkipJump 0.507 0.748 0.296 50.8% 11.91 8.39 10.87 51.4%

Sign-OPT 0.526 0.754 0.286 53.6% 14.21 11.52 9.81 46.3%

RamBo. (HSJA) 0.336 0.218 0.283 54.0% 11.33 8.0 8.62 53.1%

RamBo. (SOPT) 0.363 0.359 0.282 54.1% 11.25 9.47 9.62 57.5%

50K

Boundary 0.399 0.404 0.319 45.2% 23.73 15.65 20.71 16.6%

HopSkipJump 0.460 0.683 0.273 55.3% 7.09 5.11 4.87 82.0%

Sign-OPT 0.420 0.562 0.267 59.1% 7.79 7.84 5.87 73.3%

RamBo. (HSJA) 0.300 0.178 0.260 59.9% 4.80 3.70 3.92 93.1%

Rambo. (SOPT) 0.306 0.193 0.261 60.11% 5.02 4.57 3.84 92.3%
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Figure A.2. A comparison between three current state-of-the-art attacks and RamBoAttack on

a large scale balance set selected from ImageNet.

Balanced Set with ImageNet. ImageNet has 1000 distinct classes, hence carrying out

a comprehensive evaluation like on CIFAR10 requires huge computing resources and

time. Therefore, we choose N=200, n=1 m=5 and limit the query budget to 25,000

and 50,000. The average distortion (on a log10 scale) against the queries and attack

success rate (ASR) at 25K and 50K query budgets achieved by RAMBOATTACK is better

than Boundary, Sign-OPT and HopSkipJump attacks as seen in shown in Figure A.2.
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As shown in Table A.1, on average distortion metric, RAMBOATTACKS obtain better

results and achieve a significantly smaller standard deviation of distortion overall.
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Figure A.3. A comparison between three current state-of-the-art attacks and RamBoAttack on

a non-hard set C selected from CIFAR10. In non-hard cases, we perform comparably.

On non-hard sets. In this section, we evaluate the performance of SignOPT,

HopSkipJump and our RAMBOATTACKS on both CIFAR10 and ImageNet non-hard

set. The common non-hard set C drawn from CIFAR10 for all methods is composed

of 400 non-hard sample pairs. They are selected such that a distortion between a
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Figure A.4. A comparison between three current state-of-the-art attacks and RamBoAttack

on a non-hard set selected from ImageNet. In non-hard cases, RamBoAttacks improve attack

performance by yielding more effective adversarial examples notable in ASR results.
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source image and its adversarial example found after 50,000 is smaller or equal 0.6.

Likewise, a non-hard set from ImageNet is composed of 120 non-hard sample pairs and

the distortion threshold to select these is 7. Figure A.3 and A.4 show that our attack

has comparable performance to SignOPT and HopSkipJump on CIFAR10 non-hard

subsets whilst demonstrating improved attack performance by yielding more effective

adversarial examples, especially with a 50K query budget, as seen in the higher attack

success rates obtained by RAMBOATTACKS.

A.2 Untageted Attack Validation
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Figure A.5. Comparing between three current state-of-the-art attacks and RamBoAttack on the

balance set selected from CIFAR10 under untargeted setting.

Here, we evaluate our RAMBOATTACK and other state-of-the-art attacks on two

different balanced sets from CIFAR10 and ImageNet as described in Appendix A.1

under an untargeted scenario for completeness. First, on the balance set from CIFAR10

, our attacks can achieve comparable performance with Sign-OPT and HopSkipJump

and obtain approximately 97% success rate at a distortion of 0.5 on a 25K query

budget (see Figure A.5); however, our attack method outperforms Boundary attack.

In contrast, on the balance set selected from ImageNet, we observe that our methods

can achieve comparable performance with Sign-OPT but outperform HopSkipJump

and Boundary attack as shown in Figure A.6.
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Figure A.6. Comparing between three current state-of-the-art attacks and RamBoAttack on the

balance set from ImageNet under untargeted setting.
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Figure A.7. The first and second columns illustrates ASR vs. queries for our RamBoAttacks

with respect to Boundary attack on hard-set A and with respect to HopSkipJump and Sign-OPT

on hard-set B. For a given query budget, as expected, our RamBoAttacks yield similar ASR

to Sign-OPT and HSJA with very low query budgets and significantly higher ASR with budgets

above 10K queries, where gradient estimation methods do not appear to improve the adversarial

example found with increasing numbers of queries. Similarly, the third column illustrates ASR vs.

queries for our RamBoAttacks with respect to HopSkipJump and Sign-OPT on the hard-set I.

RamBoAttacks are more query efficient and are able to yield significantly higher ASR under low

distortion settings.
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A.3 Attack Success Rates vs Query Budgets

In this section, we show results at three different perturbation budgets ϵ = 0.4 and

0.6 for hard-sets A and B from CIFAR10 and ϵ = 10 and 20 for the hard-set I selected

from ImageNet. The results in A.7 demonstrate that our attack is significantly more

robust than other attacks within 4-11K query budgets. From 11K, RAMBOATTACKS

outperforms others. The reason is that, around this region, the gradient estimation

method switches to BLOCKDESCENT, resulting in much higher attack success rates

compared to the baselines. Notably, on the high-resolution benchmark task ImageNet,

RAMBOATTACKS achieve significantly better results compared to the baselines.
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Figure A.8. An illustration of the sensitivity of different attacks to various chosen starting images.

The size of each circle denotes the standard deviation and y-axis indicates the mean distortion. The

results are from the CIFAR10 balance set and a non-hard subset from non-hard set C. Compared with

Boundary, Sign-OPT and HopSkipJump attacks, our RamBoAttacks are much less sensitive to

the choice of starting image in general. In non-hard cases, all of the attacks can achieve comparable

results. Hence our attack is demonstrably more robust.

A.4 Impact of Starting Images Balance & Non-hard

subset

In this section, we first compose a non-hard subset with 100 random non-hard sample

pairs selected from non-hard set C. We also compose a balanced subset from the balance

set described in Appendix A.1. We then evaluate our RAMBOATTACK, Sign-OPT,

HopSkipJump and Boundary attack on these subsets. To conduct this experiment,

for every source image and each of its target classes, we randomly select 10 different
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starting images and these attacks are executed with a query budget of 50K. We

calculate the mean and standard deviation of distortion for each sample to measure

the robustness of each attack to yield adversarial examples for each source image and

target class pair.
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Figure A.9. The number of hard cases on CIFAR10 obtained from different attack methods

categorized by pairs of source and target classes (at distortion threshold = 0.8, 0.9 and 1.0).

RamBoAttacks are seen to nearly overcome all of the hard cases encountered by other

decision-based black-box attack methods; thus, demonstrating the robustness of our proposed attack.

In Figure A.8, the size of each bubble denotes the standard deviation while the y-axis

indicates the mean distortion value. We can see that, on the non-hard subset, the

RAMBOATTACKS are able to achieve comparable results to all of the state-of-the-art

methods. On the balance subset, our RAMBOATTACKS can achieve significantly

less variance (smaller bubbles) at lower distortions while most results achieved

by Sign-OPT, HopSkipJump and Boundary indicate larger variance (larger bubbles)

and higher distortions. Consequently, our RAMBOATTACKS are more robust than

Sign-OPT and HopSkipJump and less sensitive to the chosen starting image.

A.5 Robustness of RamBoAttack

Figure A.9 provides further detailed results on hard cases encountered by different

attack methods at distortion thresholds of 0.8, 0.9 and 1.0. Compared to Boundary,
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Sign-OPT and HopSkipJump attacks, our RAMBOATTACKS achieve a much lower

number of hard cases at all distortion thresholds.

A.6 Perturbation Regions and Attack Insights

Grad CAM
Tool

Grad CAM result

Sign-OPT HopSkipJump Ours

Starting Image (    )Source Image (    )

Boundary

Figure A.10. Grad-CAM tool visualizes salient area of the starting image Staffordshire bull

terrier. A perturbation heat map (PHM) visualizes the normalized perturbation magnitude at each

pixel. It shows that the perturbation yielded by RamBoAttack is able to concentrate on salient

areas illustrated by GRAD-CAM even though RamBoAttack does not exploit the knowledge of

salient regions to perturb.

In this section, we provide additional results on the connection between the adversarial

perturbations yielded by RAMBOATTACK and salient regions visualized by the

Grad-CAM tool. Effectively, all of the attack methods embedded the target features

within the source image where the changes are effectively unnoticeable. However,

Figure A.10 illustrates that a high density of adversarial perturbations yielded by our

attack concentrates on a region that is matched to the salient features visualized by the

Grad-CAM tool. This is possible because our attack methods employ localized changes

to search for adversarial examples and are able to effectively find perturbations

targeting salient features of the target class to apply to the input source class image

to fool the classifier to classify the source image as the target class.

Further, to help visualize different levels of l2 distortions, we include Figure A.11. We

illustrate two examples where we showcase the sample adversarial examples crafted

by RAMBOATTACK during the progression of the attack.
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0.7 0.3618.89 12.43 7.16 1.99 1.05

61.15 28.99 21.45 15.36 10.03 5.67 3.3

Starting image Source image

Starting image Source image

CIFAR10

ImageNet

L2Distortion -

L2Distortion -

Figure A.11. An illustration of different distortion levels produced by RamBoAttack. The first

row demonstrates an example from CIFAR10 with a starting image of a dog gradually perturbed

until it is similar to the source image car—the adversarial example. The bottom row demonstrates

an example from ImageNet with is a starting image of a digital watch gradually perturbed until

it is similar to the source image white stork—the adversarial example.

A.7 Computation Time of Experiments

A.7.1 Hyper-parameters and Impacts

Gradient Estimation: The main hyper-parameter nt used in the gradient estimation

method is to control when the first component terminates and switches to

BLOCKDESCENT. In practice, we keep track of query numbers executed and distortion

between the source image and a crafted sample per iteration. This information is then

used to determine distortion reduction rate ∆ over T queries. On CIFAR10, if applying

HopSkipJump or Sign-OPT to the first component, T = 500 or 400, respectively while

on ImageNet, T = 2000 or 1000, respectively.

BLOCKDESCENT: The hyper-parameters used are n = 1, initial δ = Pi(|x− xs|), m =

1, λ = 1.2, ϵr = 0.01, ϵs = 0.01 for GradEstimation, ϵs = 0.01 for BLOCKDESCENT,

T = 500 and Pi = P100. For the larger dataset, ImageNet, the changes are: m = 16, λ =

2, ϵr = 0.1, ϵs = 1 for GradEstimation, ϵs = 0.1 for BLOCKDESCENT, T = 1000 and

Pi = P50.

A.7.2 The impact of parameter λ:

The key parameter that may influence BLOCKDESCENT is λ because it controls the step

size (or perturbation magnitude δ) for each cycle (see line 28 in Algorithm 3.3). For
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Table A.2: Summary of computation time for each experiment

Experiments Duration

Robustness of RAMBOATTACK (Sec. 3.4.4) 627 hrs

Benchmark on Hard & Non-hard sets (Sec. 3.4.5) 275 hrs

Impact of the Starting Images (Sec. 3.4.6) 38 hrs

Visual Explanation (Sec. 3.4.7) 5 hrs

Attack against a Defended Models (Sec. 3.4.8) 281 hrs

Hyper-Parameters and Impacts (App. A.7.1) 60 hrs

Validation on Balance Datasets (App. A.1) 414 hrs

Untargeted Attack Validation (App. A.2) 126 hrs

Total 1826 hrs

ImageNet - Mean

Number of queries
K K K K K
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Figure A.12. A comparison between RamBoAttack with different values of λ on 100 source and

target class sample pairs selected from ImageNet.

example, λ is used to determine the step from x(4) to x(5) in Figure 3.6. If λ is small,

δ reduces slightly and thus remains relatively large after each cycle. Consequently

BLOCKDESCENT takes large movements that are likely to yield large-magnitude

adversarial examples and/or miss the optimal solution. Alternatively, it may cross

the decision boundary into an undesired class (source image class in a targeted attack).

In contrast, if λ is large, BLOCKDESCENT takes finer steps to yield adversarial samples

whilst moving towards the source image and likely stay in the desired class (target

class in a targeted attack). Nevertheless, the empirical result with 100 pairs of

source and target class images on ImageNet shown in Figure A.12 illustrates that the
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overall performance of RAMBOATTACK is not greatly affected by λ and at λ = 2,

RAMBOATTACK achieves the best performance.

A.8 C&W Attack Configuration and Results Collection

For clarity, here we describe the configuration used for the C&W attack, the C&W

execution strategy, and results collection for the C&W attack and black-box attacks.

For the C&W attack, we adopt the PyTorch implementation of the C&W method used

in (Cheng et al., 2019b, 2020). In their implementation, they use a learning rate of

0.1 and 1000 iterations for all evaluations (see GitHub). To search for an adversarial

example for an image, the method performs a binary search step to find a relevant

constant c within a range from 0.01 to 1000 until a successful attack is achieved. With this

configuration, the C&W attack is run once to always yield an adversarial example for

every instance. We record the distortion of the adversarial example found.

C&W Results Collection. To construct ASR vs. distortion results, at different distortion

thresholds: i) we compute the number of source images in the evaluation set meeting

a given distortion threshold (along the x-axis); ii) then divide this by the total number

of images in the evaluation set to compute the ASR at each distortion value.

Blackbox Attack Results Collection. For the black-box attacks, we perform a black-box

attack for each evaluation-set source image, using the set query budgets: 5K, 10K, and

25K. We record the distortion achieved by each source image with a set query budget.

To construct ASR vs. distortion, at different distortion thresholds with a given query

budget: i) we compute the number of source images in the evaluation set meeting

a given distortion threshold (along the x-axis); and ii) then divide this by the total

number of images in the evaluation set to compute the ASR at each distortion value.
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B.1 Hyper-parameters

We list in Table B.1 the key hyper-parameters used for SPARSEEVO on the two

different evaluation sets across CIFAR10 and ImageNet. This hyperparameter set can

be applicable for attacking against ViT-B/16 on a large scale and high-resolution

dataset—ImageNet. Notably, we only needed to adjust the mutation rate when moving

from the high resolution to the low resolution CIFAR10 task; thus, our method provides

a robust algorithm that can be easily adapted for different vision tasks. The image size

used in all our ImageNet experimental tasks (including experiments on ResNet50 and

ViT models) is (3 channels) × 224 (W) × 224 (H). This is the standard input size for the

pre-trained model (PyTorch) on the ImageNet dataset we used.

B.2 Investigate Hyper-Parameters, Recombination and

Mutation

In this section, we conduct comprehensive experiments to study the impacts of

hyper-parameters used in our algorithm and the different recombination and mutation

schemes we considered. These experiments are carried out on 1,000 randomly selected

images from CIFAR10 in an untargeted setting. For the hyper-parameter study, we tune

Table B.1: Hyper-parameters setting in our experiments

Parameters
CIFAR10 ImageNet

Untargeted Targeted Untargeted Targeted

Population size (p) 10 10 10 10

Initialization rate (α) 0.004 0.004 0.004 0.004

Mutation rate (µ) 0.04 0.01 0.004 0.001
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population size or mutation rate at a time while using the scheme of recombining the

best and two randomly selected candidates from the population as well as the scheme

of mutating only 1-bit binary values.

Figure C.4a shows that with different population sizes and a mutation rate of 0.04,

even a small population size of 10 is adequate for SPARSEEVO to converge rapidly.

Our method with a larger population size almost converges to as low sparsity as

the population size of 10 after 200 queries. So population size has a small impact

on the overall performance of SPARSEEVO. With a mutation rate of 0.04 and a fixed

population size of 10, the algorithm performs well and converges fastest to a low

sparsity compared to other mutation rates as shown in Figure C.4b. Consequently,

our attack method is more influenced by the mutation rate but this is not unexpected.

Recombination schemes

Query
best & 2 random candidates
3 random candidates
2 random candidates

Query

Mutation schemes

1-bits mutation
0&1-bits mutation 0.8
0&1-bits mutation 0.9
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Mutation rate
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a) b)

Figure B.1. Sparsity versus number of model queries on CIFAR10 with ResNet18 to show the

impacts of different hyper-parameters on SparseEvo.

To evaluate how different schemes of recombination and mutation steps affect our

method, we use a population size of 10 and mutation rate of 0.01 and change
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the recombination or mutation scheme, one at a time. Figure C.4c illustrates that

recombining three randomly selected individuals does not achieve as high query

efficiency as the scheme of recombining the best and the other two randomly selected

from the population. For mutation schemes, we intend to mutate merely 1-bits—1-bits

mutation—or both 0-bits and 1-bits—0 & 1-bits mutation—of a binary vector at a time.

For 1-bits mutation scheme, we randomly alter a factor µ of all 1-bits of a selected

binary vector. For schemes mutating both 0-bits and 1-bits, we randomly flipped n

1-bits and n(1−β)
β 0-bits where n = µβ. We find that the scheme of mutating only 1-bits

performs marginally better than other schemes with β = 0.8 and β = 0.9 because

mutating both 0 and 1-bits possibly slows down the convergent speed as illustrated in

Figure C.4d.

B.3 A Comparison with the Whitebox Baseline

Notably, PGD0 is an adapted-to-l0version of the PGD attack with a projection. PGD0

simply projects the adversarial example generated by PGD attack onto the l0-ball

(the process is described in Appendix B.6 earlier regarding adopting non-sparse

decision-based attacks). This projection does not guarantee that a projected solution

yields the best gradient descent direction for the following iteration of PGD to find

an adversarial example that minimises l0. Hence, even with full access to the model,

PGD0 may not always yield the optimal solution but rather an approximation and is

not always an upper bound for the attack performance, particularly in the untargeted

setting on ImageNet as shown in Figure 4.5b and the second plot of Figure 4.7.

B.4 Algorithmic Comparison with PointWise

In this section, we discuss why SPARSEEVO is capable of searching for a desirable

solution (an adversarial example with a smaller number of perturbed pixels) with

much fewer queries.

1. Greedy vs. Evolutionary approach. Pointwise chooses to greedily minimize the

number of perturbed pixels by randomly selecting and altering one dimension

(i.e. single colour channel) of a randomly selected pixel position i,j of the starting

image x′ ∈ RC×W×H at a time (i.e per query). If the alternation successfully
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fools the model, it will be retained; otherwise, the change will be discarded. In

contrast, SparseEvo evaluates candidate proposals to alter several pixels at a time

and all dimensions of a pixel simultaneously to yield new candidates solutions

for the next evolution; so it is able to converge faster and with fewer queries.

2. Smaller search space. Pointwise formulation leads to a search space with a size

of C ×W × H where C is the three RGB channels, W is image width and H is

image height. We reduce this search space to W × H because SparseEvo solely

searches for pixel positions but does not try to search for different colors for each

pixel (see “Defining a Dimensionality Reduced Search Space” in Section 4.3.2 and

Appendix B.5).

3. Better scalability to large image sizes. Given that PointWise only changes one

dimension at a time (i.e a pixel), to reduce the number of starting image (target

class) pixel values different from the source image (to minimize l0), the random

selection method needs to select: i) the same pixel position i, j; and ii) a different

colour channel for the same pixel position i, j in subsequent iterations to move

a given pixel value i, j in a starting image (target class image) to be the same as

the source image. While this is more likely in a small image task (with smaller

W and H values) like CIFAR10, it is far less likely, even within the 20,000 query

budget used with large input images in the ImageNet task where mean sparsity

values for the 1000 test image pairs remain nearly 1.

4. Iterative improvements to “good” solutions. Importantly, our approach formulates

a search for a solution with the minimum number of perturbed pixels through

an iterative process of improving upon good solutions from previous iterations

informed by our objective function. In contrast, Pointwise employs a purely

random method to select the pixel dimension and position i, j to alter.

B.5 Comparison with an Improved PointWise Algorithm

PointWise randomly selects and alters one dimension (a colour channel) of a randomly

selected pixel position i, j of an image x′ ∈ RC×W×H at a time (i.e. per query). Therefore,

the Pointwise formulation leads to a search space with a size of C×W × H where C is

the three RGB channels, W is image width and H is image height. Consequently, it is

not scalable to large image sizes, for example, ImageNet with a size of 224× 224; this

can be observed in Figure 5.4 and 4.5.
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Table B.2: Mean sparsity measure at different queries (lower is better) for a targeted

attack setting. A comparison between SparseEvo and improved Pointwise on a set

of 100 image pairs on ImageNet (here PW-np denotes PointWise with the number of

selections set to np and italicised fonts indicate the best results for PW.)

Query Budgets 1 500 1000 2000 4000 8000 12000 16000 20000

PW(published version) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PW-4 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.93 0.88

PW-8 1.00 1.00 1.00 1.00 0.99 0.94 0.81 0.58 0.35

PW-16 1.00 1.00 1.00 0.99 0.94 0.64 0.45 0.42 0.40

PW-32 1.00 1.00 0.99 0.95 0.71 0.54 0.50 0.46 0.42

PW-64 1.00 1.00 0.95 0.78 0.67 0.62 0.56 0.51 0.46

PW-128 1.00 0.96 0.84 0.77 0.74 0.67 0.61 0.56 0.52

SparseEvo 1.00 0.76 0.63 0.46 0.26 0.08 0.03 0.01 0.01

In this section, we attempted to make PointWise more query efficient on ImageNet

by modifying PointWise to perform multiple selections at a time (i.e. per query) and

perform a series of experiments using different selection parameters np. Table B.2

shows the mean sparsity obtained by our improved Pointwise method with different

selection parameter values; np = 4, 8, 16, 32, 64, 128. The results show that the

best performance of the modified Pointwise algorithm—PW-8—is much better than

the original implementation but it is still far behind our method. SparseEvo still

outperforms our improved Pointwise algorithms across various query budgets.

B.6 Comparison with Adapted l0 Attacks

We are motivated to investigate if decision-based dense attacks (l2 and l∞ constrained)

such as BA (Brendel, Rauber and Bethge, 2018), HSJA (Chen, Jordan and Wainwright,

2020), QEBA (Li et al., 2020), NLBA (Li et al., 2021a), PSBA (Zhang et al., 2021b),

SignOPT (Cheng et al., 2020) or RayS (Chen and Gu, 2020) can be adapted to a

sparse setting by a projection to l0-ball. This idea is promising because PGD can

be successfully adapted to a sparse setting to provide a sparse attack algorithm in

a white-box setting. In this section, we conduct a study to evaluate this idea by

modifying the HSJA method because it is shown to be a query-efficient decision-based

dense attack (l2 and l∞ constraint), to an l0 constraint algorithm called l0-HSJA.
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Table B.3: Mean sparsity measure at different queries (lower is better) for a targeted

setting. A comparison between l0-HSJA and SparseEvo on a set of 100 image pairs on

CIFAR10

Queries 1 500 1000 2000 4000 8000 12000 16000 20000

l0-HSJA 1.00 0.82 0.95 0.92 0.92 0.95 0.95 0.94 0.94

SPARSEEVO 1.00 0.36 0.027 0.025 0.025 0.025 0.025 0.025 0.025

Notably, the same could be done for other methods e.g. QEBA, NLBA, PSBA, SignOPT,

or RayS.

Importantly, the authors of HSJA proposed two different ways of gradient estimation

purposely formulated for l2 and l∞ scenarios. However, the l0 distance metric is

non-differentiable and therefore is ill-suited for standard gradient descent (Carlini and

Wagner, 2017; Fan et al., 2020) so we leverage l2 to estimate the gradient. The difference

between the l0-HSJA algorithm and published HSJA is the projection step. Instead of

performing l2 and l∞ projection steps as in HSJA, l0-HSJA performs an l0 projection

as in the PGDl0 method. To search for the minimum number of pixels to perturb, we

adopt a binary search to minimise l0. At each iteration (with the discovered adversarial

sample from HSJA), we perform the following projection procedure:

1. l0-HSJA sorts pixel differences between the sample adversarial crafted by HSJA

and the source image.

2. l0-HSJA then performs a binary search for k denoting the minimum number of

(perturbed) pixels to retain from the sample adversarial crafted by HSJA. Here,

k=ur+lr
2 where lr and ur are lower and upper ranges, initialized with 0 and N,

respectively. N is the total number of pixels in an image.

3. Subsequently, we create a sparse adversarial example by keeping only the top-k

pixels of the HSJA crafted adversarial sample and replacing the rest of the pixels

of the crafted sample with their corresponding pixel in the source image we plan

to fool. These top-k pixels have the least difference from their corresponding

pixels. This yields the projected image xp for evaluation. If the projected sample

can mislead a victim model successfully, ur is updated with k (to search for a

lower number of perturbed pixels). Otherwise, lr is updated with k.

4. This step is repeated until the ur and lr difference is less than or equal to 1.

Page 154



Appendix B Chapter 4 Appendix

For the following iteration of l0-HSJA, we use the projected image xp to craft a new

adversarial example x′p to attempt to improve upon the projected adversarial example

from the current iteration.

The results we obtained, shown in Table B.3, illustrate the average sparsity for a set

of 100 image pairs on CIFAR-10. Our evaluations show that applying l0 projection to

dense attacks (formulated for l2 and l∞ methods) does not yield a query-efficient sparse

attack aiming to minimize the number of perturbed pixels. We can understand this

result, because, at each projection step, the modified l0-HSJA algorithm still requires

a large number of queries to determine a projection that minimises l0 (in other words,

to determine the minimum number of pixels to retain where the crafted sample is still

adversarial).

To the best of our knowledge, there is no efficient method in a black-box decision-based

setting to determine how many pixels and which pixels can be selected to be projected

such that the perturbed image does not cross the unknown decision boundary of the

DNN model. Additionally, the problem of minimizing the number of selected pixels

to be projected leads to an NP-hard problem (Modas, Moosavi-Dezfooli and Frossard,

2019; Dong et al., 2020). Although we use the projected image with the minimum

number of perturbed pixels, l2 and l∞ decision-based attacks require perturbing a

whole image in the following iteration, thus the next iteration does not necessarily

move the input towards the objective of minimizing the number of perturbed pixels.

Thus, l0-HSJA and other dense methods do not provide an efficient algorithm for

sparse attacks.

B.7 Illustration of Sparse Adversarial Examples

This section provides more illustration of sparse adversarial examples crafted by

SPARSEEVO.
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Figure B.2. Visualisations from a targeted attack Settings. Malicious instances generated for a

sparse attack with different query budgets using our SparseEvo attack algorithm employed on

black-box models built for the ImageNet task.
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Overview of Materials in the Appendix

A brief overview of the extensive set of additional experimental results and findings

in the Appendices that follow. Notably, given the significant computational

resource required to mount black-box attacks against models and extensive additional

experiments, CIFAR-10 is employed for the comparative studies. Importantly,

empirical results have already established the generalizability of the proposed attack

across CNN models, ViT models, three datasets and Google Cloud Vision.

1. Evaluation of score-based sparse attacks on ImageNet (targeted settings at

sparsity levels between and including 0.4% and 1.0%; and untargeted settings)

(Appendix C.1).

2. Evaluation of score-based sparse attacks on STL-10 to demonstrate generalization

(Appendix C.2).

3. Evaluation of score-based sparse attacks on CIFAR-10 demonstrate generalization

(Appendix C.3).

4. Additional evaluation of attack algorithms adopted for sparse attacks (l0 attacks)

(Appendix C.4)

5. Comparing BRUSLEATTACK and SPARSEEVO to supplement the results in

Figure 5.5 (Appendix C.4.1)

6. A Discussion Between BRUSLEATTACK (Adversarial Attack) and B3D (Black-box

Backdoor Detection) (Appendix C.4.5)

7. Additional evaluation of score-based sparse attacks against state-of-the-art

robust models from Robustbench (Appendix C.5).
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8. Proof of the optimization reformulation (Appendix C.6)

9. An analysis of the search space reformulation and dimensionality reduction.

(Appendix C.7).

10. An analysis of different generation schemes for synthetic images we considered

(Appendix C.8).

11. Study of BRUSLEATTACK performance under different random seeds

(Appendix C.9).

12. An analysis of the effectiveness of the dissimilarity map employed in our

proposed attack algorithm (Appendix C.10).

13. Detailed information on the consistent set of hyper-parameters employed,

initialization value for αprior and computation resources used (Appendix C.11).

14. The notable performance invariance to hyper-parameter choices studies with

CIFA-10 and ImageNet (Appendix C.12).

15. Additional study of employing different schedulers (Appendix C.13).

16. Detailed information on the evaluation protocols BRUSLEATTACK

(Appendix C.14).

17. Visualizations of sparse attack against Google Cloud Vision (Appendix C.15).

18. Additional visualizations of dissimilarity maps and sparse adversarial examples

(Appendix C.16).
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C.1 Sparse Attack Evaluations On ImageNet

This section shows detailed results for evaluating the performance of sparse attacks in

targeted and untargeted settings on ImageNet. The section then analyzes the relative

robustness comparison among models.

Table C.1: ASR at different sparsity levels across different queries (higher is better). A

comprehensive comparison among different attacks (SPARSE-RS and BRUSLEATTACK)

against various Deep Learning models on ImageNet in the targeted setting.

Query
ResNet-50 ResNet-50(SIN) ViT

SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK

Sparsity = 0.4%

4000 49.9% 57.3% 40.5% 47.8% 21.5% 26.0%

6000 65.5% 69.4% 55.0% 60.4% 31.8% 37.3%

8000 74.1% 77.3% 63.3% 66.6% 39.6% 43.9%

10000 79.1% 82.7% 68.5% 70.9% 45.2% 49.0%

Sparsity = 0.6%

4000 59.6% 75.1% 49.7% 66.2% 30.8% 40.7%

6000 74.0% 86.3% 65.6% 77.8% 43.7% 52.0%

8000 85.0% 90.3% 77.6% 83.4% 52.2% 61.0%

10000 90.9% 93.0% 84.3% 87.0% 61.7% 67.3%

Sparsity = 0.8%

4000 65.8% 84.3% 56.3% 76.7% 38.2% 49.4%

6000 79.2 90.6% 71.1% 87.0% 50.2% 63.4%

8000 87.9% 94.3% 81.9% 91.0% 60.0% 72.2%

10000 93.4% 96.4% 89.6% 92.4% 69.6% 79.0%

Sparsity = 1.0%

4000 69.3% 88.6% 59.2% 82.4% 43.1% 56.8%

6000 82.1 94.2% 75.6% 91.4% 56.1% 72.4%

8000 89.8% 96.8% 83.8% 94.0% 65.6% 81.3%

10000 94.3% 97.7% 91.0% 95.5% 74.3% 86.8%

Targeted Settings. Table C.1 shows the detailed ASR results for sparse attacks on

high-resolution dataset ImageNet in the targeted settings shown in Section 5.5.3. The

results illustrate that the proposed method is consistently better than SPARSE-RS across

different sparsity levels from 0.4 % to 1.0 %.

Untargeted Settings. In this section, we verify the performance of sparse attacks

against different Deep Learning models including ResNet-50, ResNet-50 (SIN) and ViT

models in the untargeted setting up to a 5K query budget. We use an evaluation set
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Table C.2: ASR at different sparsity levels across different queries (higher is better). A

comprehensive comparison among different attacks (SPARSE-RS and BRUSLEATTACK)

and various DL models on ImageNet in the untargeted setting.

Query
ResNet-50 ResNet-50(SIN) ViT

SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK

Sparsity = 0.04%

1000 52.4% 58.8% 51.0% 55.4% 29.0% 31.2%

2000 58.4% 65.0% 59.2% 63.6% 36.2% 37.4%

3000 61.8% 68.4% 63.8% 67.0% 41.0% 41.2%

4000 65.4% 70.4% 65.8% 68.2% 44.2% 44.4%

5000 66.4% 72.4% 66.6% 69.2% 46.4% 46.7%

Sparsity = 0.08%

1000 72.8% 77.4% 73.8% 75.8% 47.2% 50.6%

2000 81.2% 86.8% 80.4% 83.4% 57.6% 61.0%

3000 84.6% 89% 84.4% 87.0% 64.2% 67.8%

4000 85.6% 90.4% 86.6% 88.2% 69.6% 72.6%

5000 86.8% 90.8% 87.0% 88.6% 72.6% 74.6%

Sparsity = 0.16%

1000 87.0% 89.4% 87.6% 88.0% 64.8% 68.6%

2000 90.8% 95.2% 92.0% 94.0% 78.4% 81.4%

3000 93.4 96.8% 94.8% 95.6% 85.0% 86.4%

4000 94.4% 97.6% 96.2% 97.0% 87.0% 89.2%

5000 94.8% 98.4% 96.8% 97.4% 89.8% 90.0%

Sparsity = 0.2%

1000 88.6% 92.2% 90.2% 91.0% 71.2% 73.0%

2000 92.4% 96.6% 94.4% 95.0% 82.6% 84.4%

3000 94.4 97.8% 95.8% 96.4% 87.4% 89.8%

4000 95.2% 98.4% 97.2% 98.0% 90.8% 91.0%

5000 95.4% 98.6% 98.2% 98.4% 92.2% 92.6%

of 500 random pairs of an image and a target class to conduct this comprehensive

experiment. Our results in Table C.2 and Table C.1a-c show that BRUSLEATTACK

is marginally better than SPARSE-RS across different sparsity levels when attacking

against ViT. For ResNet-50 and ResNet-50 (SIN), at lower sparsity or lower query

limits, our proposed attack outperforms SPARSE-RS while at higher query budgets

or higher sparsity levels, SPARSE-RS is able to obtain slightly lower ASR than our

method. In general, BRUSLEATTACK consistently outperforms SPARSE-RS and only
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needs 1K queries and sparsity of 0.2% (100 pixels) to achieve above 90% ASR against

both ResNet-50 and ResNet-50 (SIN).

A
SR

 (
%

)

ResNet-50 ResNet-50 (SIN)

Sparse-RS

Bayesian

Sparsity of 0.04% (Dashed lines)Sparsity of 0.2% (Solid lines)

Queries Queries

a) b)

ViT

ResNet-50
ViT

ResNet-50 (SIN)

Model Robustness
A

cc
u

ra
cy

 (
%

)

Queries Queries

d)c)
A

SR
 (

%
)

A
SR

 (
%

)

Figure C.1. a-c) Untargetted Setting. ASR versus the number of model queries against different

Deep Learning models at sparsity levels of 0.4% (solid lines) and 1.0% (dashed lines); d) Accuracy

versus the number of model queries for model robustness comparison against BruSLeAttack, in

the untargeted setting and at sparsity levels (0.04% = 40
224×224 , 0.2% = 100

224×224).

Relative Robustness Comparison among Models. To compare the relative robustness

of different models, we evaluate these models against our attack. Table C.2 and Figure

C.1d confirm our observations about the relative robustness of ResNet-50 (SIN) to the

standard ResNet-50 in the targeted setting (presented in Section 5.5.3). It turns out that

ResNet-50 (SIN) is as vulnerable as the standard ResNet-50 even though it is robust

against various types of image distortion. Interestingly, ViT is more robust than its

convolutional counterparts under sparse attack. Particularly, at sparsity of 0.2% and

2K queries, while the accuracy of both ResNet-50 and ResNet-50 (SIN) is down to about

5%, ViT is still able to remain ASR around 15%.
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C.2 Sparse Attack Evaluations on STL10 (Targeted

Settings)

Table C.3: ASR (higher is better) at different sparsity levels in targeted settings.

A comprehensive comparison between SPARSE-RS and BRUSLEATTACK against

ResNet9 on a full evaluation set from STL-10.

Methods Q=1000 Q=2000 Q=3000 Q=4000 Q=1000 Q=2000 Q=3000 Q=4000

Sparsity = 0.22% Sparsity = 0.44%

SPARSE-RS 53.82% 61.65% 65.84% 68.0% 73.34% 81.47% 85.24% 87.49%

BRUSLEATTACK 57.69% 65.05% 68.8% 71.22% 78.21% 85.03% 88.31% 90.26%

Sparsity = 0.33% Sparsity = 0.54%

SPARSE-RS 65.6% 74.0% 78.0% 80.65% 78.66% 86.31% 89.64% 91.61%

BRUSLEATTACK 70.27% 77.55% 81.16% 83.42% 83.29% 89.78% 92.55% 94.08%

We conduct more extensive experiments on STL-10 in the targeted setting with all

correctly classified images of the evaluation set (60,094 sample pairs and image

size 96×96). Table C.3 provides a comprehensive comparison of different attacks

across different sparsity levels ranging from 0.11% (10 pixels) to 0.54% (50 pixels).

Particularly, with only 50 pixels, BRUSLEATTACK needs solely 3000 queries to achieve

ASR beyond 92% whereas SPARSE-RS only reaches ASR of 89.64%.

C.3 Sparse Attack Evaluations on CIFAR-10 (Targeted

Settings)

In this section, we conduct extensive experiments in the targeted setting to investigate

the robustness of sparse attacks on an evaluation set of 9,000 pairs of an image and

a target class from CIFAR-10 (image size 32×32). Sparsity levels range from 1.0%

(10 pixels) to 3.9% (40 pixels). Table C.4 provides a comprehensive comparison of

different attacks in the targeted setting. Particularly, with only 20 pixels (sparsity

of 2.0 %), BRUSLEATTACK needs solely 500 queries to achieve ASR beyond 90%

whereas SPARSE-RS only reaches ASR of 89.21%. Additionally, with only 300 queries,

BRUSLEATTACK is able to reach above 95% of successfully crafting adversarial

examples with solely 40 pixels. Overall, our attack consistently outperforms the

SPARSE-RS in terms of ASR and this confirms our observations on STL-10 and

ImageNet.
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Table C.4: ASR (higher is better) at different sparsity thresholds in the targeted

setting. A comprehensive comparison among different attacks (SPARSE-RS and

BRUSLEATTACK) against ResNet18 on an evaluation set of 9,000 pairs of an image

and a target class from CIFAR-10.

Methods Q=100 Q=200 Q=300 Q=400 Q=500

Sparsity = 1.0%

SPARSE-RS 36.22% 50.6% 58.17 % 62.59% 66.26%

BRUSLEATTACK 42.32% 54.73% 61.49% 65.33% 68.21%

Sparsity = 2.0%

SPARSE-RS 60.51% 76.1% 83.13% 86.89% 89.21%

BRUSLEATTACK 66.01% 79.19% 84.84% 88.27% 90.24%

Sparsity = 2.9%

SPARSE-RS 71.29% 85.67% 91.21% 94.28% 95.78%

BRUSLEATTACK 75.54% 88.22% 92.91% 95.2% 96.59%

Sparsity = 3.9%

SPARSE-RS 75.91% 90.21% 94.78% 96.97% 97.98%

BRUSLEATTACK 80.44% 91.24% 95.43% 97.4% 98.48%

C.4 Comparing BruSLeAttack With Other Attacks

Adapted for Score-Based Sparse Attacks For

Additional Baselines

C.4.1 Additional Evaluations With Decision-Based Sparse Attack

Methods

This section carries out a comprehensive experiment on CIFAR-10 in the targeted

setting (more difficult attack) with 9000 different pairs of the source image and target

classes (1000 images distributed evenly in 10 different classes against 9 target classes)

to compare BRUSLEATTACK (500 queries) with SPARSEEVO (2k queries) introduced in

Chapter 4. We compare ASR of different methods across different sparsity thresholds.

The results in Figure C.2 demonstrate that our attack significantly outperforms

SparseEvo. This is expected because SparseEvo is a decision-based attack and has only

access to predicted labels.
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Figure C.2. Targeted attacks on CIFAR-10 against ResNet-18. ASR comparisons between

BruSLeAttack and baselines i) Sparse-RS and adapted l0-HSJA (decision-based settings);

ii) PGD0 (whitebox).

C.4.2 l0 Adaptations of Dense Attacks

Adapted l0 Attacks (White-box). For our interests, we explore a strong white-box l0
attack which is adapted from PGD (Madry et al., 2018)—named PGD0 (Croce and Hein,

2019). To this end, we compare BRUSLEATTACK with white-box adapted l0 attack

PGD0 using the same evaluation set from CIFAR-10 as decision-based attacks. The

results in Figure C.2 demonstrate that our attack significantly outperforms PGD0 at low

sparsity threshold and is comparable to PGD0 at high level of sparsity. Surprisingly,

our method outweighs white-box, adapted l0 attack PGD0. It is worth noting that there

is no effective projection method to identify the pixels that can satisfy sparse constraint

and solving l0 projection problem also encounter NP-hard problem. Additionally,

discrete nature of the l0 ball impedes its amenability to continuous optimization (Croce

et al., 2022).

Adapted l0 Attacks (Decision-based). It is interesting to adapt l2 attacks such as HSJA

(Chen, Jordan and Wainwright, 2020), QEBA (Li et al., 2020), or CMA-ES (Dong et al.,

2020) method for face recognition tasks to l0 attacks. Consequently, we adopted the

HSJA method to an l0 constraint algorithm called l0-HSJA to conduct a study. For

l0-HSJA, we follow the experiment settings and adapted l0-HSJA in Chapter 4 and

refer to Chapter 4 for more details. Notably, the same approach could be adopted for

QEBA (Li et al., 2020). The results in Table C.5 below illustrate the average sparsity for

100 randomly selected source images, where each image was used to construct a sparse

adversarial sample for the 9 different target classes on CIFAR-10—hence we conducted

900 attacks or used 900 source-image-to-target-class pairs. The average sparsity across

Page 164



Appendix C Chapter 5 Appendix

Table C.5: Mean sparsity at different queries for a targeted setting. A sparsity

comparison between l0-HSJA on a set of 100 image pairs on CIFAR-10.

Queries 4000 8000 12000 16000 20000

l0-HSJA 93.66% 94.73% 95.88% 96.74% 96.74%

different query budgets is higher than 90% even up to 20K queries. Therefore, the ASR

is always 0% at low levels of sparsity (e.g. 4%) (shown in Figure C.2). These results

confirm the findings in Chapter 4 and demonstrate that l0-HSJA (20K queries) is not

able to achieve good sparsity (lower is better) when compared with our attack method.

Consequently, applying an l0 projection to decision-based dense attacks does not yield

a strong sparse attack.

Similar to the problem of PGD0, adapted l0-HSJA has to determine a projection that

minimizes l0 (the minimum number of pixels) such that the projected instance is still

adversarial. To the best of our knowledge, no method in a decision-based setting is

able to effectively determine which pixels can be selected to be projected such that the

perturbed image does not cross the unknown decision boundary of the DNN model.

Solving this projection problem may also lead to another NP-hard problem (Modas,

Moosavi-Dezfooli and Frossard, 2019; Dong et al., 2020) and hinder the adoption of

these dense attack algorithms to the l0 constraint. Consequently, any adapted method,

such as HSJA or other dense attacks, is not capable of providing an efficient method to

solve the combinatorial optimization problem faced in sparse settings.

C.4.3 Comparing BruSLeAttack With One-Pixel Attack

In this section, we conduct an experiment to compare BRUSLEATTACK with the

One-Pixel Attack (Su, Vargas and Sakurai, 2019). We conduct an experiment with 1000

correctly classified images by ResNet18 on CIFAR10 in untargeted settings (notably

the easier attack, compared to targeted settings) using ResNet18 These images are

evenly distributed across 10 different classes. We compare ASR between our attack

and One-Pixel at different budgets e.g. one, three and five perturbed pixels. For the

One-Pixel attack10, we used the default setting with 1000 queries. To be fair, we set

the same query limits for our attack. The results in Table C.6 show that our attack

10https://github.com/Harry24k/adversarial-attacks-pytorch
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Table C.6: ASR comparison (higher ↑ is stronger) between One-Pixel and

BRUSLEATTACK against ResNet18 on CIFAR-10.

Perturbed Pixels One-Pixel BRUSLEATTACK

1 pixel 19.5% 27.9%

3 pixel 41.9% 69.9%

5 pixel 62.3% 86.4%

outperforms the One-Pixel attack across one, three and five perturbed pixels, even

under the easier, untargeted attack setting.

C.4.4 Bayesian Optimization

We are interested in the application of Bayesian Optimization for high-dimensional,

mixed search space. Recently, (Wan et al., 2021) has introduced CASMOPOLITAN, a

Bayesian Optimization for categorical and mixed search spaces, demonstrating that

this method is efficient and better than other Bayesian Optimization methods in

searching for adversarial examples in score-based settings. Therefore, we study and

compare our method with CASMOPOLITAN in the vision domain and the application of

seeking sparse adversarial examples. We note that:

• CASMOPOLITAN solves problem 5.1 directly by searching for altered pixel

positions and the colors for these pixels. In the meanwhile, our method aims

to address problem 5.2, which is reformulated to reduce the dimensionality and

complexity of the search space significantly. In general, CASMOPOLITAN aims

to search for both color values and pixel positions, whilst BRUSLEATTACK only

seeks pixel locations.

• To handle high dimensional search space in an image task, CASMOPOLITAN

employs different downsampling/upsampling techniques. It first downscales

the image and searches over a low-dimensional space, manipulates and

then upscales the crafted examples. Unlike CASMOPOLITAN, our

method–BRUSLEATTACK–does not reduce dimensionality by downsampling the

original search space but only seeks pixels in an image (source image) and

replaces them with corresponding pixels from a synthetic color image (a fixed

and pre-defined image) (see Appendix C.7 for our analysis of dimensionality

reduction).
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Figure C.3. Targeted attacks on CIFAR-10 with a query budget of 250. ASR comparisons between

BruSLeAttack and CASMOPOLITAN (Bayesian Optimization).

• CASMOPOLITAN is not designed to learn the impact of pixels on the model

decisions but treats all pixels equally, whereas BRUSLEATTACK aims to explore

the influence of pixels through the historical information of pixel manipulation.

We use the code11 provided in (Wan et al., 2021) and follow their default settings.

We evaluate both BRUSLEATTACK and CASMOPOLITAN on an evaluation set of

900 pairs of a source image and a target class from CIFAR-10 (100 correctly classified

images distributed evenly in 10 different classes versus the 9 other classes as target

classes for each image) with a query budget of 250. The results in Figure C.3 show

that BRUSLEATTACK consistently and pragmatically outperforms CASMOPOLITAN

across different sparsity levels. This is because:

• The mixed search space in the vision domain, particularly in sparse adversarial

attacks, is still extremely enormous even if downsampling to a lower dimensional

search space. It is because CASMOPOLITAN still needs to search for a color

value for each channel of each pixel from a large range of values (see Appendix

C.7 for our analysis of dimensionality reduction).

• Searching in a low-dimensional search space and upscaling back to the original

search space may not provide an effective way to yield a strong sparse adversarial

perturbation. This is because manipulating pixels in a lower dimensional search

space may not have the same influence on model decisions as manipulating

pixels in the original search space. Additionally, some indirectly altered pixels

11https://github.com/xingchenwan/Casmopolitan
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stemming from upsampling techniques may not greatly impact the model

decisions.

C.4.5 A Discussion Between BruSLeAttack (Adversarial Attack) and

B3D (Black-box Backdoor Detection)

Natural Evolution Strategies (NES). A family of black-box optimization methods that

learns a search distribution by employing an estimated gradient on its distribution

parameters (Wierstra et al., 2008; Dong et al., 2021). NES was adopted for score-based

dense (l2 and l∞ norms) attacks in (Ilyas et al., 2018) since they mainly adopted a

Gaussian distribution for continuous variables. However, solving the problem posed

in sparse attacks involving both discrete and continuous variables leads to an NP-hard

problem (Modas, Moosavi-Dezfooli and Frossard, 2019; Dong et al., 2020). Therefore,

naively adopting NES for sparse attacks is non-trivial.

The work B3D (Dong et al., 2021), in defense of a data poisoning attack or backdoor

attack, proposed an algorithm to reverse-engineer the potential Trojan trigger used to

activate the backdoor injected into a model. Although the method is motivated by NES

and operates in a score-based setting involving both continuous and discrete variables,

as with a sparse attack problem, they are designed for completely different threat

models (backdoor attacks with data poisoning versus adversarial attacks). Therefore it

is hard to make a direct comparison. However, more qualitatively, there are a number

of key differences between our approach and those relevant elements in (Dong et al.,

2021).

1. Method and Distribution differences: (Dong et al., 2021) learns a search

distribution determined by its parameters by estimating the gradient on the

parameters of this search distribution. In the meantime, our approach is to

learn a search distribution through Bayesian learning. While (Dong et al., 2021)

employed Bernoulli distribution for working with discrete variables, we used

Categorical distribution to search discrete variables.

2. Search space (larger vs. smaller): B3D searches for a potential Trojan trigger in

an enormous space as it requires to search for pixels’ position and color. Our

approach reduces the search space and only searches for pixels (pixels’ position)

to be altered so our search space is significantly lower than the search space used
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in (Dong et al., 2021) if the trigger size is the same as the number of perturbed

pixels.

3. Perturbation pattern (square shape vs. any set of pixel distribution): (Dong et al.,

2021) aims to search for a trigger which usually has a size of 1× 1, 2× 2 or 3× 3 so

the trigger shape is a small square. In contrast, our attack aims to search for a set

of pixels that could be anywhere in an image and the number of pixels could be

varied tremendously (determined by desired sparsity). Thus, the combinatorial

solutions in a sparse attack problem can be larger than the one in (Dong et al.,

2021) (even when we equate the trigger size to the number of perturbed pixels).

4. Query efficiency (is a primary objective vs. not an objective): Our approach aims

to search for a solution in a query-efficiency manner while it is not clear how

efficient the method is to reverse-engineer a trigger.

C.5 Evaluations Against l2, l∞ Robust Models From

Robustbench and l1 Robust Models

l2, l∞ Robust Models. To supplement our demonstration of sparse attacks

(BRUSLEATTACK and SPARSE-RS) against defended models on ImageNet in Section

5.5.5, we consider evaluations against SoTA robust models from RobustBench12

(Croce et al., 2020) on CIFAR-10. We evaluate the robustness of sparse attacks

(BRUSLEATTACK and SPARSE-RS) against the undefended model ResNet-18 and two

pre-trained robust models as follows:

• l2 robust model: “Augustin2020Adversarial-34-10-extra”. This model is a top-7

robust model (over 20 robust models) in the leaderboard of robustbench.

• l∞ robust model: “Gowal2021Improving-70-16-ddpm-100m”. This model is a

top-5 robust model (over 67 robust models) in the leaderboard of robustbench.

We use 1000 samples correctly classified by the pre-trained robust models and evenly

distributed across 10 classes on CIFAR-10. We use a query budget of 500. We compare

the accuracy of different models (undefended and defended models) under sparse

attacks across a range of Sparsity from 0.39% to 1.56%. Notably, defended models

12https://github.com/RobustBench/robustbench
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Table C.7: A robustness comparison (lower ↓ is stronger) between SPARSE-RS and

BRUSLEATTACK against undefended and defended models employing l∞, l2 robust

models on CIFAR-10. The attack robustness is measured by the degraded accuracy of

models under attacks at different sparsity levels.

Sparsity
Undefended Model l∞-Robust Model l2-Robust Model

SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK

0.39% 26.5% 24.2% 65.9% 65.0% 84.7% 84.2%

0.78% 7.8% 6.4% 48.1% 46.0% 70.6% 68.3%

1.17% 2.5% 2.0% 38.1% 35.1% 57.6% 54.3%

1.56% 0.6% 0.6% 28.8% 26.4% 44.4% 43.8%

are usually evaluated in the untargeted setting to show their robustness. The range

of sparsity in the untargeted setting is usually smaller than the range of sparsity used

in the targeted setting. Thus, in this experiment, we use a smaller range of sparsity

than the one we used in the targeted setting. Our results in Table C.7 show that

BRUSLEATTACK outperforms SPARSE-RS when attacking undefended and defended

models. The results on CIFAR-10 also confirm our observations on ImageNet.

l1 Robust Models. We also evaluate our attack method’s robustness against l1 robust

models. There are two methods AA-I1 (Croce and Hein, 2021) and Fast-EG-1 (Jiang

et al., 2023) for training l1 robust models. Although (Croce and Hein, 2021) and (Jiang

et al., 2023) illustrated their robustness against l1 attacks, Fast-EG-1 is the current

state-of-the-art method (as shown in (Jiang et al., 2023)). Therefore, we chose the l1
robust model trained by the Fast-EG-1 method for our experiment. In this experiment,

we use 1000 images correctly classified by l1 pre-trained model13 on CIFAR-10. These

images are evenly distributed across ten classes. To keep consistency with the previous

evaluation, we also use a query budget of 500 and compare the accuracy of the robust

model under sparse attacks. The results in Table C.8 show that our attack outperforms

BRUSLEATTACK across different sparsity levels. Interestingly, l1 robust models are

relatively more robust to sparse attacks than other adversarial training regimes in

Table C.7, this could be because l0 bounded perturbations are enclosed in the l1-norm

ball.

13https://github.com/IVRL/FastAdvL1
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Table C.8: A robustness comparison (lower ↓ is stronger) between SPARSE-RS and

BRUSLEATTACK against undefended and defended models employing l1 robust

models on CIFAR-10. The attack robustness is measured by the degraded accuracy

of models under attacks at different sparsity levels.

Sparsity
Undefended Model l1-Robust Model

SPARSE-RS BRUSLEATTACK SPARSE-RS BRUSLEATTACK

0.39% 26.5% 24.2% 86.6% 85.8%

0.78% 7.8% 6.4% 75.8% 74.8%

1.17% 2.5% 2.0% 68.5% 64.8%

1.56% 0.6% 0.6% 59.4% 55.9%

C.6 Reformulate the Optimization Problem

Solving the problem in Equaion 5.1 lead to an extremely large search space because

of searching colors—float numbers in [0, 1]—for perturbing some pixels. To cope

with this problem, we i) reduce the search space by synthesizing a color image x′ ∈
{0, 1}c×w×h—that is used to define the color for perturbed pixels in the source image

(see Appendix C.7), ii) employ a binary matrix u ∈ {0, 1}w×h to determine positions of

perturbed pixels in x.

When selecting a pixel, the colors of all three pixel channels are selected together.

Formally, an adversarial instance x̃ can be constructed as follows:

x̃ = (1− u)x + ux′ (C.1)

Proof of The Problem Reformulation. Given a source image x ∈ [0, 1]c×w×h and a

synthetic color image x′ ∈ {0, 1}c×w×h. From Equation C.1, we have the following:

x̃ = (1− u)x + ux′

x̃− (1− u)x = ux′

ux̃ + (1− u)x̃− (1− u)x = ux′

(1− u)(x̃− x) = u(x′ − x̃)

We consider two cases for each pixel here:

1. If ui,j = 0: then (1− ui,j)(x̃i, j − xi, j) = 0, thus x̃i, j = xi, j
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2. If ui,j = 1: then ui,j(x′i,j − x̃i, j) = 0, thus x̃i, j = x′i, j

Therefore, manipulating binary vector u is equivalent to manipulating x̃ according to

C.1. Hence, optimizing L( f (x̃), y∗) is equivalent to optimizing L( f ((1− u)x+ ux′), y∗).

C.7 Analysis of Search Space Reformulation and

Dimensionality Reduction

Intuitively, sparse attacks aim to search for the positions and color values of these

perturbed pixels. For a normalized image, the color value of each channel of

a pixel—RGB color value—can be a float number in [0, 1] so the search space is

enormous. The perturbation scheme proposed in (Croce et al., 2022) can be adapted

to cope with this problem. This perturbation scheme limits the RGB values to a set

{0, 1} so a pixel has eight possible color codes {000, 001, 010, 011, 100, 101, 110, 111}
where each digit of a color code denotes a color value of a channel. This scheme may

result in noticeable perturbations but does not alter the semantic content of the input.

However, this perturbation scheme still results in a large search space because it grows

rapidly with respect to the image size. To obtain a more compact search space, we

introduce a simple but effective perturbation scheme. In this scheme, we uniformly

sample at random a color image x′ ∈ {0, 1}c×w×h—synthetic color image—to define

the color of perturbed pixels in the source image x. Additionally, we use a binary

matrix for selecting some perturbed pixels in x and apply the matrix to x′ to extract

color for these perturbed pixels as presented in Appendix C.6. Because x′ is generated

once in advance for each attack and has the same size as x, the search space is eight

times smaller than using the perturbation scheme in (Croce et al., 2022). Surprisingly,

our elegant proposal is shown to be incredibly effective, particularly in high-resolution

images such as ImageNet.

Synthetic color image. Our attack method does not optimize but pre-specify a

synthetic color image x′ by using our proposed random sampling strategy in our

algorithm formulation. This synthetic image is generated once, dubbed a one-time

synthetic color image, for each attack. We have chosen to generate it once rather than

optimizing it because:
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• We aim to reduce the dimensionality of the search space to find and adversarial

example. Choosing to optimize the color image would lead to a difficult

combinatorial optimization problem.

– Consider what we presented in Section 5.4.1. To solve the combinatorial

optimization problem in Equation 5.1, we might search a color value for

each channel of each pixel–a float number in [0,1] and this search space is

enormous. For instance, if we need to perturb n pixels and the color scale is

2m, the search space is equivalent to Cc×n
2m×c×w×h .

– To alleviate this problem, we reformulated problem in Equation 5.1 and

proposed a search over the subspace {0, 1}c×w×h. However, the size of this

search space is still large.

– To further reduce the search space, we construct a fixed search space—a

pre-defined synthetic color image x′ ∈ {0, 1}c×w×h for each attack. The

search space is now reduced to Cn
w×h. It is generated by uniformly selecting

the color value for each channel of each pixel from {0, 1} at random (as

presented in Appendix C.7 and C.6).

• In addition, a pre-defined synthetic color image x′-–a fixed search

space—benefits our Bayesian algorithm. If keeping optimizing the synthetic

color image x′, our Bayesian algorithm has to learn and explore a large number

of parameters which is equivalent to Cc×n
2m×c×w×h and we might not learn useful

information fast enough to make the attack progress.

• Perhaps, most interestingly, our attack demonstrates that a solution for

the combinatorial optimization problem in Equation 5.1 can be found in a

pre-defined and fixed subspace.

Searching for pixels’ position and color concurrently. In general, changing the color

of the pixels in searches led to significant increases in query budgets. In our approach,

we aim to model the influence of each pixel bearing a specific color, probabilistically,

and learn the probability model through the historical information collected from pixel

manipulations. So, we chose not to first search for pixels’ position and search for their

color after knowing the position of pixels but we aim to do both simultaneously. In

other words, the solution found by our method is a set of pixels with their specific

colors.
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Table C.9: Target setting. ASR (higher is better) at different sparsity thresholds

in the targeted setting. A comprehensive comparison among different strategies of

synthetic color image generation to initialize BRUSLEATTACK attack against ResNet18

on CIFAR-10.
Methods Q=100 Q=200 Q=300 Q=400 Q=500

Sparsity = 1.0%

Uniform 32.18% 41.68% 48.09 % 52.38% 55.48%

Gaussian 21.29% 29.87% 35.0 % 38.72% 41.53%

Ours 42.32% 54.73% 61.49% 65.33% 68.21%

Sparsity = 2.0%

Uniform 54.04% 69.08% 76.48% 80.91% 83.76%

Gaussian 40.02% 55.17% 63.2 % 68.58% 72.28%

Ours 66.01% 79.19% 84.84% 88.27% 90.24%

Sparsity = 2.9%

Uniform 65.82% 80.62% 87.84% 91.39% 93.38%

Gaussian 52.4% 69.91% 78.42 % 83.24% 86.39%

Ours 75.54% 88.22% 92.91% 95.2% 96.59%

Sparsity = 3.9%

Uniform 73.04% 86.32% 92.33% 95.02% 96.34%

Gaussian 61.0% 77.26% 84.88 % 89.63% 91.94%

Ours 80.44% 91.24% 95.43% 97.4% 98.48%

C.8 Analysis of Synthetic Image Initialization

In this section, we analyze the impact of different schemes including different random

distributions, maximizing dissimilarity and low color search space.

Different random distributions. Since the synthetic color images are randomly

generated, we can leverage Uniform or Gaussian distribution and our method.

Because the input must be within [0, 1], we can sample x′ from U [0, 1] or N (µ, σ2)

where µ = 0.5, σ = 0.17. For our method, we uniformly sample at random a color

image x′ ∈ {0, 1}c×w×h. In order words, each channel of a pixel receives a binary

value 0 or 1. The results in Table C.9 show that generating a synthetic color image

from Uniform distribution is better than Gaussian distribution but it is worse than

our simple method. The experiment illustrates that different schemes of generating

the synthetic color image at random have different influences on the performance
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of BRUSLEATTACK and our proposal outweighs other common approaches across

different sparsity levels. Particularly at low query budgets (e.g. up to 300 queries) and

low perturbation budgets (e.g. sparsity up to 3%), our proposal outperforms the other

two by a large margin. Therefore, the empirical results show our proposed scheme is

more effective in obtaining good performance. Most interestingly, as pointed out by

HSJA authors (Chen, Jordan and Wainwright, 2020), the question of how best to select

an initialization method or in their case initial target image remains an open-ended

question worth investigating.

Maximizing dissimilarity. There may be different ways to implement your suggestion

of generating a synthetic color image x′ that maximize the dissimilarity between the

original image x and x′. But to the best of our knowledge, no effective method can

generate a random color image x′ that maximize its dissimilarity with x.

Our approach to this suggestion is to find the inverted color values of x by creating

an inverted image xinvert to explore color values different from x. We then find the

frequency of these color values (in each R, G, B channel) in xinvert. Finally, we generate

a synthetic color image x′ such that the more frequent color values (in R, G, B channels)

in xinvert will appear more frequently in x′. By employing the frequency information

of color values in x, we can create a synthetic color image x′ that is more dissimilar to

x. In practice, our implementation is described as follows :

• Yield the inverted image xinvert = 1 - x. Note that x ∈ [0, 1]c×w×h

• Create a histogram of pixel colors (for each R, G, B channel) to have their

frequency in xinvert.

• Then we randomly generate a synthetic color image based on the frequency of

color values that allows us to maximize the dissimilarity.

The results in Table C.10 show that an approach of maximizing the dissimilarity

(using frequency information) yields better performance at low sparsity levels as we

discussed in Appendix C.10. However, it does not result in better performance at high

levels of sparsity if compared with our proposal.

Low color search space. Instead of reducing the space from 8 color codes to a fixed

random one, we consider choosing between 2-4 random colors. That would allow us to

search not only in the position space of the pixels but also in their color space without
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Table C.10: ASR comparison between using a synthetic color image uniformly

generated at random (our proposal) and maximizing dissimilarity on CIFAR-10.

Sparsity Our Proposal Maximizing Dissimilarity

1.0% 68.21% 70.16%

2.0% 90.24% 90.75%

2.9% 96.59% 95.78%

3.9% 98.48% 97.85%

Table C.11: ASR comparison between using a fixed random color search space (our

proposal) and two or four random color search spaces on CIFAR-10.

Sparsity Our Proposal Two Random Colors Four Random Colors

1.0% 68.21% 60.11% 57.9%

2.0% 90.24% 78.12% 78.1%

2.9% 96.59% 85.89% 90.67%

3.9% 98.48% 91.23% 95.28%

increasing search space significantly. The results in Table C.11 show that expanding

color space leads to larger search space. Consequently, this approach may require more

queries to search for a solution and results in low ASR, particularly with a small query

budget.

C.9 BruSLeAttack under Different Random Seeds

It is possible that the initial generated by uniformly selecting the color value for each

channel of each pixel from {0, 1} at random (as presented in Appendix C.7 and

Appendix C.6) could impact performance. We investigated this using Monte Carlo

experiments. To analyze if our attack is sensitive to our proposed initialization scheme.

We generated 10 different synthetic color images (x′) for each source image and target

class pair. We chose an evaluation set of 1000 source images (evenly distributed across

10 random classes) and used each one and our attack to flip the label to 9 different

target classes. So we conducted (1000× 9 source-image-to-target-class pairs) × 10 (ten

because we generated 10 different for each pair) attacks (90K attacks) against ResNet18

on CIFAR-10. We report the min, max, average and standard deviation ASR across the

entire evaluation set at different sparsity levels. The results in Table C.12 show that
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our method is invariant to the initialization of x′. Therefore, our initialization scheme

does not affect the final performance of our attacks. Actually, the more complex task of

optimizing x′ and devising efficient algorithms to explore the high dimensional search

space or the generation of better image synthesizing schemes (initialization schemes)

to boost the attack performance leaves interesting works in the future.

Table C.12: ASR (Min, Mean, Max and Standard Deviation) of our attack methods

across the entire evaluation set at different sparsity levels with a query budget of

500, with 10 times different initialization of synthetic color image for each attack on

CIFAR-10.

Sparsity ASR (Min) ASR (Mean) ASR (Max) Standard Deviation

1%(10 pixels) 68.14 % 68.36 % 68.66% 0.35

2%(20 pixels) 90.24% 90.76% 91.38% 0.48

2.9%(30 pixels) 96.62% 96.71% 96.78% 0.11

3.9%(40 pixels) 98.17% 98.35% 98.49% 0.13

C.10 Effectiveness of Dissimilarity Map

In this section, we aim to investigate the advantage of using prior knowledge of pixel

dissimilarity.

On CIFAR-10. Similarly, we conduct another experiment on an evaluation set which is

composed of 1000 correctly classified images (from CIFAR-10) evenly distributed in 10

classes and 9 target classes per image. However, to reduce the burden of computation

when studying hyper-parameters, we use a query budget of 500. The results in Table

C.13 confirm our observation on ImageNet.

On ImageNet. We conduct an experiment on the same evaluation set of 500

samples from ImageNet used in Section 5.5 and in the targeted setting. The results

in Table C.14 show that employing prior knowledge of pixel dissimilarity benefits

our attack, particularly at a low percentage of sparsity rather. At a high percentage

of sparsity, BRUSLEATTACK adopting prior knowledge only achieves a comparable

performance to BRUSLEATTACK without prior knowledge. Notably, at a sparsity

of 0.2%, BRUSLEATTACK is slightly worse than SPARSE-RS. Nonetheless, employing

prior knowledge of pixel dissimilarity improve the performance of BRUSLEATTACK

and makes it consistently outweigh SPARSE-RS.
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Table C.13: ASR comparison between with and without using Dissimilarity Map on

CIFAR-10.

Sparsity With Dissimilarity Map Without Dissimilarity Map

1.0% 68.21% 67.16%

2.0% 90.24% 89.42%

2.9% 96.59% 95.96%

3.9% 98.48% 97.92%

Table C.14: ASR at different sparsity thresholds and queries (higher is better)

for a targeted setting. A comparison between SPARSE-RS, BRUSLEATTACK and

BRUSLEATTACK with prior on an evaluation set of 500 pairs of an image and a target

class on ImageNet.

Methods Q=2000 Q=4000 Q=6000 Q=8000 Q=10000

Sparsity = 0.2%

SPARSE-RS 9.4% 20.6% 29.6 % 33.4% 38.4%

BRUSLEATTACK (without prior) 8.8% 19.6% 27.4 % 34.4% 38.2%

BRUSLEATTACK 12% 23.6% 31.6% 36.6% 40.4%

Sparsity = 0.4%

SPARSE-RS 23.6% 48.4% 63.0% 72.6% 78.8%

BRUSLEATTACK (without prior) 30.2% 53.4% 64.4% 73.0% 78.6%

BRUSLEATTACK 33.2% 54.2% 66.8% 76% 82.4%

Sparsity = 0.6%

SPARSE-RS 29.6% 57.6% 73.2% 85.8% 92.0%

BRUSLEATTACK (without prior) 43.6% 71.6% 85.0% 91.8% 94.6%

BRUSLEATTACK 45.4% 75.6% 87.4% 91.8% 94.6%

C.11 Hyper-parameters, Initialization and Computation

Resources

All experiments in this study are performed on two RTX TITAN GPU (2 × 24GB)

and four RTX A6000 GPU (4× 48GB). We summarize all hyper-parameters used for

BRUSLEATTACK on the evaluation sets from CIFAR-10, STL-10 and ImageNet as shown

in Table C.15. Notably, only the initial changing rate λ0 is adjusted for different

resolution datasets e.g. STL-10 or ImageNet; thus, our method can be easily adopted

for different vision tasks. Additionally, to realize an attack, we randomly synthesize
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a color image x′ for each attack. At the initialization step, BRUSLEATTACK randomly

creates 10 candidate solutions and chooses the best.

Table C.15: Hyper-parameters setting in our experiments

Parameters
CIFAR-10 STL-10 ImageNet

Untargeted Targeted Untargeted Targeted Untargeted Targeted

λ0 0.3 0.15 0.3 0.15 0.3 0.05

αprior 1 1 1 1 1 1

m1 0.24 0.24 0.24 0.24 0.24 0.24

m2 0.997 0.997 0.997 0.997 0.997 0.997

C.12 Hyper-Parameters Study

In this section, we conduct comprehensive experiments to study the impacts and the

choice of hyper-parameters used in our algorithm. The experiments in this section

are mainly conducted on CIFAR-10. For λ0, we conduct an additional experiment on

ImageNet.

C.12.1 The Impact of m1, m2

In this experiment, we use the same evaluation set on CIFAR-10 mentioned above. To

investigate the impact of m1, we set m2 = 0.997 and change m1 = 0.2, 0.24, 0.28.

Likewise, we set m1 = 0.24 and change m2 = 0.993, 0.997, 0.999 to study m2. The

results in Table C.16 show that BRUSLEATTACK achieves the best results with m1 =

0.24 and m2 = 0.997.

C.12.2 The Impact of λ0

On CIFAR-10. Similarly, we conduct another experiment on the same evaluation set

which is composed of 1000 correctly classified images (from CIFAR-10) as described

above. We use the same query budget of 500. We use m1 = 0.24 and m2 = 0.997

and change λ0 = 0.15 to study the impact of λ0. Our results in Table C.17 show that

BRUSLEATTACK achieves the best results with λ0 = 0.15.

On ImageNet. We use 500 random pairs of an image and a target class from ImageNet in

a targeted setting. For the hyper-parameter study, we tune the initial changing rate at
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Table C.16: ASR of BRUSLEATTACK with different values of m1, m2 on CIFAR-10.

Sparsity
Fixed m2 = 0.997 Fixed m1 = 0.24

m1 = 0.2 m1 = 0.24 m1 = 0.28 m2 = 0.993 m2 = 0.997 m2 = 0.999

1.0% 67.32% 68.21% 67.48% 67.34% 68.21% 67.21%

2.0% 88.67% 90.24% 88.94% 89.64% 90.24% 89.12%

2.9% 95.37% 96.59% 95.54% 96.25% 96.59% 95.82%

3.9% 97.24% 98.48% 97.68% 97.59% 98.48% 96.21%

Table C.17: ASR of BRUSLEATTACK with different values of λ0 on CIFAR-10.

Sparsity λ0 = 0.1 λ0 = 0.15 λ0 = 0.2

1.0% 68.05% 68.21% 68.12%

2.0% 89.38% 90.24% 88.33%

2.9% 96.15% 96.59% 95.56%

3.9% 98.16% 98.48% 97.08%

Table C.18: ASR at different sparsity levels and queries (higher is better) in a targeted

setting. A comparison between λ0 = 0.03 and λ0 = 0.05 on a set of 500 pairs of an

image and a target class on ImageNet.

Initial changing rate Q=2000 Q=4000 Q=6000 Q=8000 Q=10000

Sparsity = 0.2%

λ0 = 0.03 10.2% 22.6% 29.2 % 35.6% 41.4%

λ0 = 0.05 12% 23.6% 31.6% 36.6% 40.4%

Sparsity = 0.4%

λ0 = 0.03 31% 53.6% 65.6% 74.2% 80%

λ0 = 0.05 33.2% 54.2% 66.8% 76% 82.4%

Sparsity = 0.6%

λ0 = 0.03 45.4% 75.4% 84.6% 89.8% 92.8%

λ0 = 0.05 45.4% 75.6% 87.4% 91.8% 94.6%
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a time. Figure C.4 shows that with different initial changing rates λ0, BRUSLEATTACK

obtains the best results when λ0 is small such as 0.03 or 0.05. However, at a small

sparsity budget, λ0 = 0.03 often achieves lower ASR than λ0 = 0.05 as shown in Table

C.18 because it requires more queries to make changes and move towards a solution.

Consequently, λ0 should not be too small. If increasing λ0, BRUSLEATTACK reaches its

highest ASR slower than using small λ0. Hence, the initial changing rate has an impact

on the overall performance of BRUSLEATTACK.

C.12.3 The Choice of αprior

In this section, we discuss the choice of αprior and provide an analysis on the

convergence time.

• αprior = 1 (αi = 1 where i ∈ [1, k]). In our proposal, we draw multiple

pixels (equivalent to multiple elements in a binary matrix u) from the Categorical

distribution (K categories) parameterized by θ = [θ1, θ2, ..., θK]. When initializing

an attack, we have no prior knowledge of the influence of each pixel that is higher

or lower than other pixels on the model’s decision so it is sensible to assume

all pixels have a similar influence. Consequently, all pixels should have the

same chance to be selected for perturbation (to be manipulated). To this end,

the Categorical distribution where multiple pixels are drawn from should be a

uniform distribution and θ1 = θ2 = ... = θK = 1
K .

λ0

A
SR

 (
%

)

Queries

= 0.1λ 0

= 0.03λ 0
= 0.05λ 0
= 0.07λ 0

Figure C.4. ASR versus model queries on ImageNet. BruSLeAttack against ResNet-50 with

sparsity of 1.0 % in a targeted setting to show the impacts of different hyper-parameters on

BruSLeAttack.

Page 181



C.13 BruSLeAttack With Different Schedulers

We note that Dirichlet distribution is the conjugate prior distribution of the

Categorical distribution. If the Categorical distribution is a uniform distribution,

the Dirichlet distribution is also a uniform distribution. In probability and

statistics, Dirichlet distribution (parameterized by a concentration vector α =

[α1, α2. . . , αK], each αi represents the i-th element where K is the total number of

elements) is equivalent to a uniform distribution over all of the elements when

α = [α1, α2. . . , αK] = [1, 1, . . . , 1]. In other words, there is no prior knowledge

favoring one element over another. Therefore, we choose αprior = 1.

• αprior < 1 (αi < 1 where i ∈ [1, k]). We have αposterior = αprior + s(t) and s(t) =

(a(t) + z)/(n(t) + z)− 1. So we have αposterior = αprior + (a(t) + z)/(n(t) + z)− 1.

Because (a(t) + z)/(n(t) + z) ≤ 1, we cannot choose αprior < 1 to ensure that the

parameters controlling the Dirichlet distribution are always positive (αposterior >

0).

• αprior > 1 (αi > 1 where i ∈ [1, k]). Since αposterior = αprior + (a(t) + z)/(n(t) +

z)− 1 and 0 < (a(t) + z)/(n(t) + z) ≤ 1, if αprior ≫ 1, in the first few iterations,

αposterior almost remains unchanged so the algorithm will not converge. If

αprior > 1, the farther from 1 αprior is, the more subtle the αposterior changes. Now,

the update (a(t) + z)/(n(t) + z) needs more iterations (times) to significantly

influence αposterior. In other words, the proposed method requires more time

to learn the Dirichlet distribution (update αposterior). Thus, the convergence time

will be longer. Consequently, the larger αi is, the longer the convergence time is.

C.13 BruSLeAttack With Different Schedulers

We carry out a comprehensive experiment to examine the impact of different

schedulers including cosine annealing and step decay. In this experiment, we use the

same evaluation set with 1000 images from CIFAR-10 evenly distributed in 10 classes

and 9 target classes per image and we use the same query budget (500 queries). The

results in Table C.19 show the ASR at different sparsity levels. These results show that

our proposed scheduler slightly outperforms all other schedulers. Based on the results,

Step Decay or Cosine Annealing schedulers can be a good alternative.
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Table C.19: ASR comparison between using a Power Step Decay (our proposal) and

other schedulers on CIFAR-10.

Sparsity Our Proposal Step Decay Cosine Annealing

1.0% 68.21% 68.11% 68.02%

2.0% 90.24% 89.34% 89.15%

2.9% 96.59% 96.12% 95.89%

3.9% 98.48% 98.26% 98.18%

C.14 Evaluation Protocol

In this section, we present the evaluation protocol used in this research.

1. In the targeted attack settings.

• SparseRS (Croce et al., 2022) evaluation with ImageNet: Selected 500 source

images. But each source image class was flipped to only one random target

class using the attack. So that is a total of 500 source-image-to-target class

attacks. This evaluation protocol may select the same target class to attack

in the 500 attacks conducted. Thus, this could lead to potential biases in the

results because some classes may be easier to attack than others.

• To avoid the problem, in the targeted attack setting, we followed the

evaluation protocol used in (Vo, Abbasnejad and Ranasinghe, 2022).

Essentially, we flip the label of the source image to several targeted classes,

this can help address potential biases caused by relatively easier classes

getting selected multiple times for a target class.

• Our evaluation with ImageNet: We randomly selected 200 correctly

classified source images evenly distributed among 200 random classes. But,

in contrast to SparseRS, we selected 5 random target classes to attack for

each source image. In total we did 200× 5 = 1000 source-image-to-target

class attacks on ImageNet for targeted attacks.

2. In the untargeted attack setting (attacks against defended models), we conducted

500 attacks (similar to SparseRS). We randomly selected 500 correctly classified

test images from 500 different classes for attacks.
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3. Further, our unique and exhaustive testing with CIFAR-10 and STL-10

corroborates ImageNet results given the significant amount of resources it takes

to attack the high-resolution ImageNet (224× 224) models.

• For STL-10 we conducted 60,093 attacks against each deep learning model

(6,677 of all 10,000 images in the test set which are correctly classified versus

9 other classes as target classes for each source image). We used every single

test set image in STL-10 (96 × 96) in our attacks to mount the exhaustive

evaluation where no image from the test set was left out.

• For CIFAR-10 (32 × 32) we conducted 9,000 attacks against each deep

learning model (1000 random images correctly classified versus the 9 other

classes as target classes for each source image).

4. For evaluations against a real-world system (GCV) in the significantly

more difficult targeted setting (not the untargeted setting), we provide new

benchmarks for attack demonstration because we provide a comparison between

BRUSLEATTACK and the previous attack, SPARSE-RS. To make it clear, we

provide a brief comparison as follows:

• Other related past studies (dense attacks)(Ilyas et al., 2018; Guo et al., 2019),

showcase an attack against a real-world system but uses 10 attacks. While

(Ilyas et al., 2018) illustrated only one successful example when carrying out

an attack against Google Could Vision.

• Importantly, we did not simply use our method only, as in (Ilyas et al., 2018;

Guo et al., 2019) but demonstrated a comparison between BRUSLEATTACK

and SPARSE-RS. In practice, we used 10 samples for each attack, so there are

20 attacks.

In general, our evaluation protocol is much stronger than the one used in previous

studies. We evaluate on three different datasets CIFAR-10, STL-10 (not evaluated in

prior attacks) and ImageNet with ResNet-50, ResNet-50 (SIN), Visitation Transformer

(not evaluated in prior attacks).

C.15 Attack Against Google Cloud Vision

Table C.20 and Figure C.5, Table C.21 and Figure C.6 show our attack against

real-world system Google Cloud Vision API.
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Table C.20: Demonstration of sparse attacks against GCV in targeted settings.

BRUSLEATTACK is able to successfully yield adversarial instances for all five examples

with less queries than SPARSE-RS. Especially, for the example of Mushroom, SPARSE-RS

fails to attack GCV within a budget of 5000 queries. Demonstration on GCV API

(online platform) is shown in Figure C.5.

Examples

No Attack Car Flower Fire Truck Vehicle Mushroom

BRUSLEATTACK
Window Yellow Pepper Window Window Landscape

(1.8K Queries) (99 Queries) (328 Queries) (1.83K Queries) (490 Queries)

SPARSE-RS
Window Yellow Pepper Window Window Mushroom

(4.66K Queries) (211 Queries) (395 Queries) (3.3K Queries) (>5K Queries)

No Attack (Clean input) Our Attack SparseRSa) b) c)

Figure C.5. a) demonstrates results for clean image (no attack) predicted by Google Cloud

Vision (GCV). b) shows the predictions from GCV for adversarial examples crafted successfully by

BruSLeAttack with less than 3,000 queries and sparsity of 0.05 %. c) shows the results from

GCV for adversarial examples crafted by Sparse-RS with the same sparsity. But Sparse-RS needs

more queries than BruSLeAttack to successfully yield adversarial images or fail to attack with

query budget up to 5,000 as shown in Table C.20.
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Table C.21: Demonstration of sparse attacks against GCV in targeted settings.

BRUSLEATTACK is able to successfully yield adversarial instances for all five examples

with fewer queries than SPARSE-RS. Especially, for the example of Mushroom,

SPARSE-RS fails to attack GCV within a budget of 5000 queries. Demonstration on

GCV API (online platform) is shown in Figure C.5.

Examples

No Attack Reflex Camera Y.L.Slipper Watch Building Stop Sign

BRUSLEATTACK
Circle Flowering Plant Jewellry Gas Material P

(3.8K Queries) (899 Queries) (2.9K Queries) (983 Queries) (2.77K Queries)

SPARSE-RS
Gas Flowring Plant Font Fixture Font

(>5K Queries) (988 Queries) (>5K Queries) (>5K Queries) (>5K Queries)

No Attack (Clean input) Our Attack SparseRSa) b) c)

Figure C.6. a) demonstrates results for clean image (no attack) predicted by Google Cloud

Vision (GCV). b) shows the predictions from GCV for adversarial examples crafted successfully by

BruSLeAttack with less than 3,000 queries and sparsity of 0.05 %. c) shows the results from

GCV for adversarial examples crafted by Sparse-RS with the same sparsity. But Sparse-RS needs

more queries than BruSLeAttack to successfully yield adversarial images or fail to attack with

query budget up to 5,000 as shown in Table C.21.

Page 186



Appendix C Chapter 5 Appendix

C.16 Visualizations of Dissimilarity Maps and Sparse

Adversarial Examples

In this section, we illustrate:

• Sparse adversarial examples, sparse perturbation crafted by our methods versus

salient region produced by GradCAM method (Selvaraju et al., 2017) or attention

map produced by a ViT model (Dosovitskiy et al., 2021).

• Sparse adversarial examples crafted by BRUSLEATTACK when attacking

ResNet-50, ResNet-50 (SIN) and Vistion Transformer.

• Dissimilarity Map produced from a pair of a source and a synthetic color images.

Figure C.7 and C.8 illustrate sparse adversarial examples and spare perturbation of

images from ImageNet in targeted and untargeted settings. In targeted settings, we use

a query budget of 10K, while in untargeted settings, we set a query limit of 5K. We use

GradCAM and Attention Map from ViT to demonstrate salient and attention regions.

The sparse perturbation δ is the absolute difference between source images and their

sparse adversarial. Formally, sparse perturbations can be defined as δ = |x− x̃|.

The results show that for ResNet-50, the solutions found do not need to perturb salient

regions on an image to mislead the models (both targeted and untargeted attacks).

Attacks with ViT models in untargeted settings also lead to a similar observation.

Interestingly, for some images e.g. a snake or a goldfinch in Figure C.7, we observe that

a set of perturbed pixels yielded by our method is more concentrated in the attention

region of ViT. This seems to indicate some adversarial solutions achieve their objective

by degrading the performance of a ViT. This is perhaps not an unexpected observation,

given the importance of attention mechanisms to transformer models.
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C.16 Visualizations of Dissimilarity Maps and Sparse Adversarial Examples

Original Image Sparse Adversarial
Example Sparse Perturbation GradCAM

Aircraft Carrier Predicted as Target
class Peke

Goldfinch Predicted as Target
class Chickadee

Snack Predicted as Target
class Snail

Attention MapSparse Adversarial
Example Sparse Perturbation

Predicted as Target
class Peke

Predicted as Target
class Chickadee

Predicted as Target
class Snail

ResNet-50 Vision Transformer

100 pixels

100 pixels

100 pixels

100 pixels

100 pixels 100 pixels

Figure C.7. Targeted Attack. Visualization of Adversarial examples crafted by BruSLeAttack

with a budget of 10K queries. In the image of sparse perturbation, each pixel is zoomed in 9

times (9×) to make them more visible.

Original Image Sparse Adversarial
Example Sparse Perturbation GradCAM

Aircraft Carrier Predicted as Missile

Goldfinch Predicted as Spider web

Snack

Attention MapSparse Adversarial
Example Sparse Perturbation

Predicted as
Amphibian

Predicted as Rifle

ResNet-50 Vision Transformer

50 pixels

50 pixels

50 pixels

100 pixels

50 pixels 50 pixels

Predicted as  
Grass Snake

Predicted as  
Grass Snake

Figure C.8. Untargeted Attack. Visualization of Adversarial examples crafted by BruSLeAttack

with a budget of 5K queries. In the image of sparse perturbation, each pixel is zoomed in 9 times

(9×) to make them more visible.
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Figure C.9 and C.10 demonstrate some examples of adversarial examples yielded

by BRUSLEATTACK when attacking different deep learning models (ResNet-50,

ResNet-50 (SIN) and Vision Transformer) in targeted settings produced using a 10K

query budget.

ResNet-50

60 pixels  
(0.12% sparsity)

ResNet-50 
(SIN)

Vision
Transformer

Predicted as
Target class
Snail 

70 pixels  
(0.14% sparsity)

100 pixels  
(0.2% sparsity)

Sparse
Adversarial
Example 

20 pixels  
(0.04% sparsity)

Traffic 

Light

20 pixels  
(0.04% sparsity)

20 pixels  
(0.04% sparsity)

Sparse
Adversarial
Example 

Original image

Original image Predicted as
Target class

Figure C.9. Visualization of Adversarial examples crafted by BruSLeAttack with a budget of

5000 queries.
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C.16 Visualizations of Dissimilarity Maps and Sparse Adversarial Examples

ResNet-50

60 pixels  
(0.12% sparsity)

ResNet-50 
(SIN)

Vision
Transformer

Predicted as
Target class
chickadee 

50 pixels  
(0.1% sparsity)

120 pixels  
(0.24% sparsity)

Sparse
Adversarial
Example 

100 pixels  
(0.2% sparsity)

Peke

100 pixels  
(0.2% sparsity)

100 pixels  
(0.2% sparsity)

Sparse
Adversarial
Example 

Original image

Original image Predicted as
Target class

Figure C.10. Visualization of Adversarial examples crafted by BruSLeAttack with a budget of

5000 queries.
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Figure C.11 illustrates some examples of Dissimilarity Map yielded by a source image

and a synthetic color image.

Source Image
Synthetic  

color image Dissimilarity Map Source Image
Synthetic 

color space Dissimilarity Map

Source Image
Synthetic  

color image Dissimilarity Map Source Image
Synthetic 

color space Dissimilarity Map

Figure C.11. Visualization of Dissimilarity Maps between a source image and a synthetic color

image.
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Appendix D

Chapter 6 Appendix

Table D.1: A robustness comparison (higher ↑ is stronger) between our proposed

method and other methods against SQUAREATTACK on MNIST. For the evaluation of

different diversity-promotion methods, we train a set of 10 models and randomly select

a subset of a different number of models.

Random Methods Distortion = 0 0.8 1.6 2.4 3.2 4.0

1

ENSEMBLES 100% 98.4% 91.9% 87.1% 82.0% 74.6%

DIVDIS(Adapted) 100% 98.3% 92.9% 86.6% 78.9% 70.9%

DIVREG(Adapted) 100% 96.1% 88.5% 80.9% 72.5% 66.5%

Ours 100% 98.7% 94.4% 89.3% 86.0% 80.0%

3

ENSEMBLES 100% 99.9% 98.7% 91.6% 78.7% 68.0%

DIVDIS(Adapted) 100% 99.8% 97.6% 87.8% 76.9% 62.5%

DIVREG(Adapted) 100% 99.8% 85.5% 88.1% 77.6% 69.1%

Ours 100% 99.9% 99.6% 95.4% 83.3% 70.3%

5

ENSEMBLES 100% 100% 98.6% 90.5% 74.4% 55.8%

DIVDIS(Adapted) 100% 99.8% 96.3% 85.0% 71.6% 57.0%

DIVREG(Adapted) 100% 99.9% 94.4% 83.8% 72.1% 60.0%

Ours 100% 100% 99.4% 95.3% 81.1% 63.8%

8

ENSEMBLES 100% 100% 98.5% 90.3% 73.5% 54.2%

DIVDIS(Adapted) 100% 99.5% 94.3% 82.6% 67.1% 53.5%

DIVREG(Adapted) 100% 99.9% 93.2% 80.7% 72.3% 59.7%

Ours 100% 100% 99.4% 95.3% 81.1% 63.8%

D.1 Diverse Set of Models Against Black-box Attacks on

MNIST

In this section, we demonstrate additional results for training a set of 10 and 20 models

using ENSEMBLES, DIVDIS(Adapted), DIVREG(Adapted) and our proposed method.
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D.2 Accuracy of Non-defense versus Defense Models

Table D.2: A robustness comparison (higher ↑ is stronger) between our proposed

method and other methods against SQUAREATTACK on MNIST. For the evaluation of

different diversity-promotion methods, we train a set of 20 models and randomly select

a subset of a different number of models.

Random Methods Distortion = 0 0.8 1.6 2.4 3.2 4.0

1

ENSEMBLES 100% 99.2% 96.1% 91.6% 85.1% 75.4%

DIVDIS(Adapted) 100% 99.0% 95.5% 91.1% 82.7% 74.5%

DIVREG(Adapted) 100% 96.5% 91.8% 83.7% 76.8% 68.6%

Ours 100% 99.4% 97.3% 94.2% 90.2% 83.5%

3

ENSEMBLES 100% 100% 99.5% 95.4% 85.7% 70.8%

DIVDIS(Adapted) 100% 100% 97.8% 89.9% 79.3% 66.5%

DIVREG(Adapted) 100% 100% 97.0% 91.1% 83.9% 76.5%

Ours 100% 100% 99.8% 98.1% 90.5% 78.8%

5

ENSEMBLES 100% 100% 99.3% 93.2% 77.5% 62.8%

DIVDIS(Adapted) 100% 99.8% 97.5% 90.6% 76.8% 60.4%

DIVREG(Adapted) 100% 99.9% 97.8% 90.6% 76.8% 60.4%

Ours 100% 100% 99.4% 94.8% 85.1% 70.0%

10

ENSEMBLES 100% 99.9% 98.2% 86.5% 67.1% 46.0%

DIVDIS(Adapted) 100% 99.7% 93.1% 79.1% 65.0% 50.1%

DIVREG(Adapted) 100% 99.9% 94.0% 83.0% 72.9% 62.6%

Ours 100% 100% 99.5% 95.0% 76.8% 60.0%

Table D.4 and Table D.3 show clean accuracy under different model training and

random selection strategies. For robustness evaluation and comparison, we choose

different settings with different sizes of model subsets (i.e. 1, 3, 5, 8 or 10) and show the

results in Tables D.1 and D.2—these results provide further evidence to demonstrate

that our proposed method is more robust than other diversity promotion methods

across different distortions and settings.

D.2 Accuracy of Non-defense versus Defense Models

In this section, we show the clean accuracy achieved by different models and

defended models on different datasets as shown in Table D.4. For models employing

diversity-promotion methods, we demonstrate the accuracy obtained by these models

in Table D.3.
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Table D.3: Clean accuracy achieved by different defended models employing

diversity-promotion techniques on different datasets with a different random number

of models.

MNIST

Quantity Random Ensembles DivDis DivReg Ours

10

1 99.5% 99.5% 97.5% 99.4%

3 99.6% 99.6% 99.2% 99.6%

5 99.7% 99.6% 99.4% 99.6%

8 99.6% 99.6% 99.5% 99.6%

20

1 99.5% 99.5% 97.6% 99.0%

3 99.6% 99.6% 99.3% 99.5%

5 99.6% 99.6% 99.4% 99.5%

10 99.7% 99.6% 99.6% 99.6%

40

1 99.3% 99.5% 98.6% 98.7%

3 99.5% 99.5% 99.4% 99.2%

5 99.5% 99.6% 99.5% 99.4%

20 99.6% 99.7% 99.6% 99.6%

30 99.6% 99.7% 99.6% 99.6%

CIFAR-10

Quantity Random Ensembles DivDis DivReg Ours

10

1 92.2% 90.5% 91.8% 87.9%

3 93.8% 92.5% 93.9% 91.1%

5 94.0% 93.3% 94.3% 92.3%

8 94.4% 93.5% 94.5% 92.5%

STL-10

Quantity Random Ensembles DivDis DivReg Ours

10 5 91.6% 90.2% 89.7% 88.2%
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D.2 Accuracy of Non-defense versus Defense Models

Table D.4: Clean accuracy achieved by non-defense models and defended models

on different datasets. All methods make a prediction with a single model except

ensembles (using all invidual models for inference).

Dataset Single Model Ensembles Dropout RND RBC

MNIST 99.64% 99.72% 99.49% 98.59% 99.62%

CIFAR-10 92.09% 94.76% 91.93% 87.63% 92.02%

STL-10 90.39% 92.15% 90.01% 86.38% 90.34%
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