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A B S T R A C T   

Few-atom catalysts, due to the unique coordination structure compared to metal particles and single-atom cat-
alysts, have the potential to be applied for efficient electrochemical CO2 reduction (CRR). In this study, we 
designed a class of triple-atom A2B catalysts, with two A metal atoms and one B metal atom either horizontally or 
vertically embedded in the nitrogen-doped graphene plane. Metals A and B were selected from 17 elements 
across 3d to 5d transition metals. The structural stability and CRR activity of the 257 constructed A2B catalysts 
were evaluated. The active-learning approach was applied to predict the adsorption site of key reaction inter-
mediate *CO, which only used 40% computing resources in comparison to “brute force” calculation and greatly 
accelerated the large amount of computation brought by the large number of A2B catalysts. Our results reveal 
that these triple atom catalysts can selectively produce more valuable hydrocarbon products while preserving 
high reactivity. Additionally, six triple-atom catalysts were proposed as potential CRR catalysts. These findings 
provide a theoretical understanding of the experimentally synthesized Fe3 and Ru3-N4 catalysts and lay a 
foundation for future discovery of few-atom catalysts and carbon materials in other applications. A new machine 
learning method, masked energy model, was also proposed which outperforms existing methods by approxi-
mately 5% when predicting low-coverage adsorption sites.   

1. Introduction 

Electrochemical carbon dioxide reduction represents a promising 
technique among all carbon-neutral technologies as it converts CO2 into 
value-added fuels or chemicals using renewable energy sources under 
mild conditions. A wide variety of materials, including pure metals [1], 
alloys (bimetallic [2], trimetallic [3], high-entropy [4]), oxides [5], 
carbides [6,7], sulfides [8], two-dimension materials [9], nano materials 
[10] and atomically dispersed catalysts [11] have been experimentally 
explored as CO2 electroreduction catalysts, but large scale CO2 conver-
sion remains challenging. The bottlenecks come from many aspects and 
innovative material design can improve most of them. For example, it 
can help engineering of reactions, enhancing product diffusion, and 
minimizing salt in electrolyte condensation. With the growth of interest 
in data science and artificial intelligence-enabled material design, a 
comprehensive database for CO2 reduction that includes various mate-
rials would provide significant benefits for these fields. 

Among all explored catalysts, atomically dispersed catalysts have 

attracted intensive research due to their superior catalytic activity and 
high atomic utility [11,12]. According to the number of anchored atoms, 
there are single-atom catalysts (SACs), dual atom catalysts (DACs), triple 
atom catalysts (TACs) and multiple atom catalysts. Among them, the 
SACs - disperse one single atom into substrates - have been studied 
extensively and proved to be effective to catalyse many reactions 
including hydrogen evolution reaction, oxygen evolution reaction (OER) 
[13,14], CO2 reduction reaction (CRR) [15] and nitrogen reduction re-
action (NRR) [16]. SACs offer maximum metal utilization as every atom 
acts as an active site. But, its single-atom active site also brings limita-
tions - the distance between single-atom sites must be sufficient and each 
site can only bind one intermediate. 

To go beyond the limitation of SACs, few atom catalysts (DACs and 
TACs) have been proposed and experimentally explored. Few-atom 
catalysts have active-site structures that can enhance or adjust the 
adsorption strength of reaction intermediates due to their higher coor-
dination number. This capability also allows for the co-adsorption of 
multiple intermediates during C-C coupling reactions [17], leading to 
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the generation of C2 or C3 species in CRR. Qiao group synthesized NiCu 
DACs which show superior CRR activity and CO selectivity over SACs 
[18]. Li et al. found that Pt2-MoS2 shows great CO2RR catalytic activity 
[19]. Guan et al. synthesized Cu and Cu4 anchored on hydrophobic 
cyclohexene, and found that Cu SAC shows high-activity and selectivity 
towards CH4 production, while Cu4 few atom catalysts show activity 
towards C2 hydrocarbon production [20]. For TACs, Ye et al. has syn-
thesized the Fe, Fe2 and Fe3 anchored on N-doped Carbon (NC) and 
found that Fe2 exhibits remarkable acid-related ORR performance [13]. 
Ji et al. has synthesized the Ru3-N4 through the pyrolysis strategy which 
shows good 2-aminobenzaldehyde catalytic activity [21]. Theoretical 
calculations have been used to obtain mechanism insight and optimize 
few atom catalysts. Pei et al. investigated TACs horizontally embedded 
in N-doped graphene (NG) substrate (A3-N6) for CRR [27], and found 
that A3-N6 demonstrates high activity and selectivity towards the gen-
eration of hydrocarbons, with a limiting potential that is lower than 0.7 
eV. Han et al. investigated horizontally embedded Fe2B-N6 for CRR 
[22], Zheng et al. and Cui et al. investigated vertically embedded A3-N4 
and A3@Graphene for NRR, respectively [23,24]. A2Bs embedded both 
horizontally and vertically on NG have not been systematically inves-
tigated for CRR due to Density Functional Theory (DFT) efficiency 
limitation. 

Computational high-throughput screening has been employed as an 
alternative to the inefficient trial-and-error method, guiding the devel-
opment of innovative catalysts such as alloys and SACs [25,26]. 
Compared with SACs, the computational cost of high-throughput 
screening of few atom catalysts is significantly increased. This origi-
nates from the complexity of the metal element combinations – if the 
search space is limited to one element (e.g. A3-N6), it is a single variable 
optimization with expected search space of N (N is the number of ele-
ments for searching, e.g. 17 in the case of this study). However, the 
complexity dramatically increased to N2 (e.g., 289 in this study) in the 
case of two elements search and immediately becomes a bottleneck for 
finding optimal AB formula, especially considering the high computa-
tional cost of DFT. The complexity is even worse if multiple substrates 
and adsorption sites are considered. For this reason, most of current 
theoretical studies about few atom catalysts have been limited to one 
element for both DACs and TACs [23,27–29], while only a few works 
considered bimetallic compositions [30,31]. Challenge remains in 
developing computational methodologies to accelerate calculation so as 
to break the practical limitations in this direction. 

In recent years, machine learning (ML) has emerged in the compu-
tational chemistry community due to its strong ability to mine the un-
derlying relationships behind the input and output data [32]. For 
catalysis-related problems, it has been used to predict the adsorption 
energy [33–35], the activation energy [36], the entropy [37], and the 
molecular dynamics trajectory [38]. Most ML methods rely on 
geometrical representations (e.g. coordination number [39]) to encode 
the adsorption sites and predict their properties by statistical fitting, 
thereby replace part of time-consuming quantum chemical calculations 
and largely accelerate the high-throughput screening speed. However, 
ML method relies on a huge amount of data that forms the same dis-
tribution to make precise predictions. For example, if the training set 
consists of alloys, the test data should be alloys. If the test samples are 
oxides, it is considered out-of-distribution, and ML predictions based on 
such data cannot be relied upon. As a result, active learning - a method 
that selects samples and makes predictions iteratively instead of relying 
on existing datasets, has become increasingly popular. Ulissi group used 
coordination number fingerprint and active learning to find alloy cata-
lyst for HER and CRR [2,40]. Zhu et al. used elemental properties (e.g. 
total valence electrons, atomic number) and gradient boost regression 
algorithm to predict OH adsorption energy [30]. Wu et al. used 
elemental properties and topological information as representations, 
and deep neural network to predict DACs’ formation energies and 
overpotentials for OER and ORR [41]. 

In this study, we combined ML and DFT to investigate bimetallic A2B- 

N6 and A2B-N4 TACs. The overall workflow of our approach is shown in  
Fig. 1. Previous research has examined CRR on A3-N6 or Fe2B-N6 hor-
izontally embedded structures [22,27], but vertical A3-N4 was only 
investigated for NRR [23]. Achieving precise control over the horizontal 
or vertical A2B@NG catalysts is challenging. As a result, conducting a 
mechanism investigation on both can reduce the trial-and-error 
approach required and provide guidance for experimental chemists to 
achieve their synthesis targets. With the aid of machine learning, we are 
able to examine both of them simultaneously. Different from previous 
works that use ML to predict adsorption energy or limiting potential 
directly, here we only use ML to predict the most stable adsorption site 
(adsorption site at a low coverage). This results in halving the number of 
DFT calculations in comparison to “brute-force” screening, but still 
guarantees the DFT level accuracy. We investigated the formation en-
ergy of these TACs, which refer to the possibility of synthesizing them 
experimentally; and 257 CO adsorption energy profiles on TACs, the 
largest number of CO adsorption data set on graphene-based TACs as far 
as we know. We also investigated the CRR by building a linear scaling 
relation between limiting potentials and CO adsorption energy. Our 
results explain the experimentally verified Fe3@NC and Ru3-N4 cata-
lysts, and suggest Cu2Cr-N6, Cu2Mn-N6, Mn2Cu-N6, Fe2Mn-N4, 
Cu2Mn-N4 and Fe2Cr-N4 to be TACs for CRR with low limiting potential. 

2. Results and discussion 

2.1. Geometries and stability of triple-atom catalysts 

We begin our discussion by investigating the geometries and stability 
of TACs. Fig. 2a-b shows the geometries of the substrate and TACs 
considered in this study. A 6 × 6 × 1 graphene is used to represent the 
sparse distribution of triple atom clusters, as shown in Fig. S1a-b. The 
searching elements include 17 transition metals ranging from Group VI 
to Group XI elements (Fig. 2c). As shown in Fig. S1c-e, one initial 
structure was considered for A2B-N6 and two initial structures for A2B- 
N4, considering both previous theoretical and experimental studies [13, 
21–23,27]. After geometrical optimization, only clusters with geometry 
close to equilateral triangle were considered, which leads to 256 A2B 
clusters. These clusters are put in both N6 and N4 substrates, forming 
A2B-N6 and A2B-N4 TACs, respectively. 

Fig. 3 shows the formation energy of A2B-N6 and A2B-N4 TACs. For 
A2B-N6, 3d transition metal TACs (Mn2B, Fe2B, Ni2B, Cu2B) have low 
formation energy as indicated by darker color (Fig. 3a), while the for-
mation energy for 4d and 5d transition metals are much higher shown by 
lighter color. For A2B-N4, in addition to the 3d transition metals, Pd2B 
and Ag2B in 4d metals show low formation energy as well. Generally 
speaking, the formation energy agrees well with our observation of the 
structure stability of the physical models, with a few exceptions. For 
example, some clusters such as Ag2B and Au2B (summarized in Fig. S2) 
moved away from the graphene plane during optimization with an un-
symmetrical A2B-N4 initial structure (Fig. S1e) due to the weak *N 
adsorption of Ag and Au [42]. The low formation energy of Ag2B-N4 is 
inconsistent with this result, and we further calculated the binding en-
ergy, as shown in Fig. 3d. It is found that Pd2B-N6, Pd2B-N4, Ag2B-N4 
and Au2B-N4 have weak binding energy, which explains that they are 
easily to be escaped. In contrast, W2B-N4, Re2B-N4, Os2B-N4 and 
Ir2B-N4 have low binding energy but high formation energy. We 
conclude that the stable and experimentally easily synthesized TACs 
must have both low formation energy and strong binding energy at the 
same time. According to this criterion, among all TACs considered, 
Mn2B, Fe2B, Ni2B, Cu2B are stable on both N6 and N4 substrates, while 
Ru2B and Rh2B are stable on N4 substrates only. These conclusions from 
computational perspective agree well with experimental synthesis of 
Fe3@NC [13] and Ru3-N4 [21] structures. 
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2.2. Comparing machine learning models in predicting low-coverage site 

Fig. 4 shows the adsorption sites for *CO on unsymmetrical A2B-N4 
(Fig. S3 shows the connectivity graph for adsorption models for A2B-N4; 
Fig. S4 shows those for A2B-N6). The adsorption sites on symmetrical 
A2B-N4 should be similar but only contain the first three sites as it is 
symmetrical in the upper and downside. From Fig. S3 and Fig. S4, we 
can observe that A2B-N4 and A2B-N6 exhibit similar adsorption struc-
tures. For instance, Fig. S3b and Fig. S4a showcase identical coordina-
tion atom fingerprints. The only distinction arises in Fig. S4e, where the 
C atom binds to 3 metal atoms, a structure absent in A2B-N4. Consid-
ering that there are 289 A2B structures which are anchored on N6 and 
N4 substrates, the total number of DFT adsorption energy calculations is 
about 2000, which is hardly achievable for “brute-force” calculation. 
The adsorption site at a low coverage - the site with the lowest 
adsorption energy when putting only one adsorbate on the slab – is the 
one that was mostly concerned in theoretical catalysis. In statistical 
physics, the relative probability of two states (adsorption structure 1 
with energy of E1 and structure 2 with energy of E2) can be calculated 
using the Boltzmann factor equation as exp( − E1 − E2

KBT ), where KB is the 
Boltzmann constant and T is the temperature. This implies that a small 
energy difference can result in a significant difference in probability. 
Here, we developed a Masked Energy Model (MEM) to predict the most 

stable site so DFT calculations on other sites are not required, as detailed 
in Computational Details. 

We now compare the proposed MEM with other models in predicting 
the low-coverage site. Currently, most studies are focused on predicting 
adsorption energy since it is the most commonly used descriptor of 
catalytic activity and selectivity. However, the TACs investigated in this 
study are different from materials such as pure metals, alloys, oxides, 
and single-atom catalysts, which have been studied extensively. We 
cannot benefit from the public data sets for those materials [44,45]. In 
this case, we used active learning in combination with MEM to address 
the problem of the limited number of samples and avoid the 
out-of-distribution prediction. Predicting the low-coverage site is a 
classification problem, where each site is labeled as either a 
low-coverage site or not. However, it still can be solved using regression 
algorithms by identifying the site with the lowest predicted value. Here, 
we are comparing gradient boosting classification (GBC), gradient 
boosting regression (GBR), support vector classification (SVC), support 
vector regression (SVR), GBR-MEM and SVR-MEM by using a toy data 
set generated in this study (93 slabs on N4 substrate, each slab has at 
least 2 calculated data points), as shown in Fig. 5. As expected, the ac-
curacy of all methods generally increases with the number of samples. 
However, the difference in performance is primarily due to the choice of 
classification or regression, rather than the fundamental algorithm, such 

Fig. 1. The overall workflow used in this study.  

Fig. 2. Illustration of (a) the A2B-N6, (b) the A2B-N4 TACs and (c) the transition metals screened as A and B element.  
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as gradient boost or support vector. While classification algorithms, such 
as GBC and SVC, only marginally outperformed random choice, 
regression algorithms, such as GBR and SVR, easily doubled the accu-
racy in predicting low-coverage sites. Moreover, the accuracy of 
regression algorithms can be further improved by incorporating the 
MEM. For instance, GBR-MEM improved the original GBR by 6.7%, and 
SVR-MEM improved the original SVR by 5.7% with a training ratio of 
10%. MEM enhances the prediction of low-coverage sites by providing a 
better representation of transferred sites. For example, an adsorbate that 
is placed on the top site but ends up at the hole site after relaxation 
would be represented by two data points in MEM: a hole site with an 
energy of − 1.0 eV and a masked top site with an energy of − 0.5 eV, but 
only one data point (the hole site) in the original Group and Period based 
Coordination Atom Fingerprint (GPCAF). MEM’s effectiveness is a major 
reason for the 60% reduction in the number of DFT calculations. 

2.3. Adsorption properties on A2B TACs 

The adsorption energy of *CO (ΔECO) is a commonly used descriptor 
for CO2 electrochemical reduction [1,2,28]. Fig. 6 shows the ΔECO on 

Fig. 3. The formation energy of (a) A2B-N6, (b) A2B-N4 and the binding energy of (c) A2B-N6, (d) A2B-N4. The y axis and x axis are the A element and B element in 
A2B clusters, respectively. Stable A2B-N6 and A2B-N4 are highlighted in black and bold. Low formation energy but high binding energy Pd2B-N6, Pd2B-N4, Ag2B-N4 
and Au2B-N4 are highlighted in red color. 

Fig. 4. Illustration of various adsorption sites on the unsymmetrical A2B-N4. 
The adsorption sites on symmetrical A2B-N4 are only (a)-(c) as the upper and 
downside are symmetrical. 

X. Li et al.                                                                                                                                                                                                                                        



Nano Energy 115 (2023) 108695

5

the A2B-N6 and A2B-N4 TACs. ΔECO ranges from − 4.20 to − 1.75 eV, 
which is stronger than that on Cu surfaces. Previous studies revealed 
that Group IX and X pure metals (Rh, Ir, Ni, Pd, Pt) have ΔECO ranging 
from − 2.5 to − 1.5 eV, and various Cu surfaces ranging from 

− 0.7–1.0 eV [1]. The CO adsorption on A2B TACs is more like Group IX 
and X elements, which would suppress the production of CO. For 
A2B-N6, most of the TACs have strong CO adsorption with ΔECO around 
− 3.1 eV; the only exceptions are Cu2Cr, Cu2Mn, Cu2Fe and Cu2Cu, 
which have ΔECO of − 1.92, − 2.02, − 2.19 and − 2.20 eV, respectively. 
The ΔECO is co-determined by both the A and B elements for A2B-N6; for 
example, A2Os-N6 has very low ΔECO values for all A metals. 

On the contrary, Fig. 6c shows that ΔECO is mainly determined by the 
A element for A2B-N4 (e.g. Mn2Os-N4, Fe2Os-N4, Ni2Os-N4 and Cu2Os- 
N4 have high ΔECO values). The ΔECO for A2B-N4 is peaked at − 2.25 eV 
– about 1.0 eV higher than the peak of A2B-N6. It is also found that the 
general trend for these A2B-N4 is different with the catalytic trend 
suggested by d-band theory. According to the d-band theory [43,44], the 
upper left transition metals in the periodic table (e.g. Cr, Mn) have 
strong adsorption and lower right transition metals have weak adsorp-
tion. For A2B-N4, upper left elements (e.g. Cr3-N4 and Mn3-N4) have 
weak adsorption and some lower right transition metals (e.g. Ir3-N4, 
Pt2Cu-N4, Ir2W-N4) have strong adsorption. In contrast, A2B-N6 still 
shows that upper left metals (Fe2B-N6, W2B-N6) have strong adsorption 
strength, while right metals (Cu2B-N6) have weak adsorption strength. 

2.4. Limiting potentials on A2B TACs 

Given the large number of A2B TAC structures in this study, a full 
DFT-level reaction steps analysis would be extremely complex. There-
fore, we focused on the two rate determining steps for CO2 reduction 
(*CO + H+ + e- → *CHO and CO2(g) + H+ + e- →*COOH). We randomly 
sampled ~30 A2B TAC structures on both N6 and N4, and calculated the 

Fig. 5. Learning curves of gradient boosting classification (GBC), gradient 
boosting regression (GBR), GBR with Masked Energy Model (GBR-MEM), sup-
port vector classification (SVC), support vector regression (SVR), SVR with 
Masked Energy Model (SVR-MEM) and Random choice. Each data point is the 
average of 10 times independent test, and error bars show ± 1σ. The GPCAF is 
used as the representation for all ML methods. 

Fig. 6. (a) The heatmap of the adsorption energy of CO (ΔECO) and (b) the histogram distribution of ΔECO on A2B-N6; (c) the heatmap of ΔECO and (d) the histogram 
distribution of ΔECO on A2B-N4. 
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*CHO and *COOH adsorption energies on them. Fig. S5 shows the DFT 
calculated ΔECHO and ΔECOOH against ΔECO on both N6 and N4 systems. 
On pure metal (211) surfaces, the *CO and *CHO binding energies show 
a linear slope of 0.88, which is seen as the major limitation on pure 
metals as a surface would stabilize the CHO and CO simultaneously [1]. 
Here, the slope is only 0.81 and 0.54, for A2B-N6 and A2B-N4 structures, 
respectively, which means the reaction step of *CO + H+ + e- → *CHO is 
easier on these TACs, especially on A2B-N4. The linear scaling relations 
in Fig. S5 lay the foundation for estimating limiting potentials for all A2B 
TACS catalysts considered in this study. 

As demonstrated by Fig. 7, the limiting potential for two rate- 
limiting steps is depicted as a function of CO adsorption energies, 
revealing the high activity and selectivity that can be achieved through 
these TACs. It shows that these TACs have superior activity for CRR with 
limiting potential lower than 0.60 eV due to steeper overpotential slope 
for the rate-limiting step of *CO + H+ + e- → *CHO (0.19 for N6 and 
0.46 for N4). A few A2B with ΔECO of − 2.0 eV can have the estimated 
limiting potentials of < 0.60 eV even if they can not sit atop of the 
volcano plot. These values are lower than both Cu(211) and Cu-C3N4, 
which sit atop of the TM(211) and A-C3N4 volcano plot [28]. Besides, 
these TACs also shows high selectivity for hydrocarbon production since 
A2B-NG has a ΔECO of ~− 2.0 eV, much stronger than the Cu(211) and 
Cu-C3N4; thus, the production of CO would be suppressed and the CRR 
would result in more valuable hydrocarbon products. 

With the stability and activity analysis, we now make recommen-
dations for A2B@NG for CRR. First, Mn2B-N6, Fe2B-N6, Ni2B-N6 and 
Cu2B-N6 are the most stable ones among both N6 and N4 supported 
TACs, and Ru2B-N4 and Rh2B-N4 are also stable as N4 TACs. In addition, 
the limiting potential analysis suggests that a weak CO adsorption en-
ergy would have a low limiting potential, therefore increasing CRR ac-
tivity. Among all stable A2Bs, Cu2Cr-N6, Cu2Mn-N6, Mn2Cu-N6, Fe2Mn- 
N4, Cu2Mn-N4 and Fe2Cr-N4 have weak CO adsorption energy and low 
limiting potential, and are recommended as TACs for CRR. Especially, 
Cu2Mn shows high activity with both N6 and N4 systems, which means 
multiple configurations would be effective for CRR therefore increase 
the overall efficiency. 

Of course, there are still some challenges in the synthesis of these 
TACs. Firstly, controlling the number of atoms to be 3 and the A:B ratio 
of 2:1 is important for the CRR activity, as it has been demonstrated in 
this study that the CRR activity on A2B and B2A TACs are significantly 
different. A rational precursor selection, as introduced in Ref [13] which 
precisely synthesized Fe1 to Fe3 few-atom catalysts may help in 
achieving this control. Secondly, controlling the direction of these TACs 

- whether they are vertically or horizontally embedded, is vital for 
precise synthesis of A2B-N4 and A2B-N6. The application of electrostatic 
catalysis, [45] which utilizes an external electric field, may prove useful 
in controlling the direction. This is due to the polar nature of the A2B 
clusters, which align themselves along the electric field. As a result, it 
facilitates the synthesis of consistent vertical A2B-N4 or horizontal 
A2B-N6 TACs. The existence of these challenges implies that A2B TACs 
offer unique opportunities and difficulties for experimental verification. 

3. Conclusion 

In summary, we systematically investigated the stability and CRR 
activity on bimetallic A2B-N6 and A2B-N4 TACs using DFT calculation 
and machine learning. We found that Mn2B, Fe2B, Ni2B, Cu2B are stable 
N6 TACs, and Mn2B, Fe2B, Ni2B, Cu2B, Ru2B and Rh2B are stable N4 
TACs, which is consistent with the experimental evidence that Fe3@NC 
and Ru3-N4 have been fabricated experimentally. We propose a machine 
learning method, Masked Energy Model (MEM), for predicting low- 
coverage sites. MEM achieves an accuracy of ~5% higher than previ-
ous methods. By using active learning, we also calculated the CO 
adsorption energies on these TACs with 60% less computing resources 
used. Furthermore, a linear scaling relationship was built by randomly 
sampling N6 and N4 TACs and calculating the limiting potential for two 
rate-limiting steps on them. A volcano plot of limiting potential was also 
constructed for computational screening of optimal TACs. The volcano 
plot suggests that a weaker CO adsorption would result in a lower 
limiting potential on both N4 and N6 systems. Although none of the 
TACs can be located atop of the volcano, TACs with the highest CO 
adsorption energy (~− 2.0 eV) can have a limiting potential lower than 
0.6 V, outperforming state-of-the-art catalyst materials including Cu 
(211) and Cu-C3N4, while preserving high selectivity towards hydro-
carbon production. Among all TACs explored, six TACs with weak CO 
adsorption and low limiting potentials are recommended for experi-
mental verification. The finding of these stable TACs and the calculation 
of their CO adsorption energies sets a solid foundation for further 
investigation of carbon-related reactions such as carbon-nitrogen 
coupling and biomass reforming. Also, the active learning framework 
developed for the TACs discovery can be applied to uncover more 
intricate few-atom catalysts and carbon materials for various 
applications. 

4. Computational methods 

4.1. DFT calculations 

All DFT calculations were performed using the Vienna ab initio 
simulation package (VASP) [46,47] with the Perdew-Burke-Ernzerhof 
(PBE) [48] exchange correlation functional, a 420 eV planewave cut-
off energy and a Monkhorst-Pack k-point mesh of 4 × 4 × 1. Geometry 
optimization was carried out using the BFGS algorithm implemented in 
the Atomistic Simulation Environment (ASE) code [49] until the 
maximum force less than 0.05 eV/Å. Following Ref [50], spin polari-
zation was considered for calculations involved with Mn, Fe, Co and Ni, 
with initial magnetic moments of 3, 3, 2, 1 μB, respectively. Dispersion 
correction was considered using DFT-D3 [51]. Different DFT settings, 
including DFT+U and an implicit solvation model,[52] have been tested 
for CO adsorption on A2B TACs. As shown in Table S1, these settings 
have slight influence on the CO adsorption energy calculated in this 
study. 

4.2. Machine learning and active learning 

Group and Period based Coordination Atom Fingerprint (GPCAF) 
[35] is used as the representation of adsorption site in this study (Fig. S6 
shows the construction of GPCAF for the structures in Fig. 4). Gradient 
Boost Classification, Gradient Boost Regression [53], Support Vector 

Fig. 7. Limiting potentials (UL) for the two rate-limiting steps as a function of 
adsorption energy of *CO (ΔECO) on A2B-N6(red), A2B-N4 (blue), transition 
metal (211) surfaces [1] (orange) and single atom supported by g-C3N4 catalysts 
(A-C3N4) [28] (green). The line to the left of the peak represents the *CO + H+

+ e- → *CHO reaction step and that to the right represents CO2(g) + H+ + e- 

→*COOH step. 
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Classification [54] and Support Vector Regression [55], as implemented 
in the Scikit-learn package [56], are used as the machine learning algo-
rithms. Different with previous studies which intend to predict the 
adsorption energy from initial configuration, the models used here are 
designed to predict the adsorption site with the lowest adsorption en-
ergy. This is done by giving those unstable sites a 0.5 eV higher 
adsorption energy (e.g. if a CO was initially put in the top site of Ni(111) 
surface and finished at the bridge site with an adsorption energy of 
− 1.5 eV, then a ‘fake’ data point of top site with an adsorption energy of 
− 1.0 eV was added to the training set. This model is denoted as Masked 
Energy Model, MEM). The MEM approach is expected to be effective for 
catalysts where site transferring occurs, such as pure metals, alloys and 
oxides. However, there is an exception when it comes to catalysts with 
surface defects, where adsorbates strongly prefer the defect site. In these 
cases, MEM would not make a substantial contribution to the prediction 
accuracy. 

The publicly available large data sets like OC20 [57] are mostly 
focused on alloy catalysts; therefore, machine learning model in this 
study cannot be beneficial from the large number of samples in the 
public data sets and here we use active learning to automatically select 
data points. Fig. S7 illustrates the active learning process used in this 
study. At each active learning iteration, the machine learning model is 
trained and used to predict uncalculated samples. The query strategy 
then selects some uncalculated data points for calculation using DFT. In 
this study, a query strategy that combines greedy query and random 
query is used. The greedy query requires the data points that were 
predicted to be low coverage site, and the random query requires data 
points randomly to avoid overfitting. At every active learning iteration, 
60% of samples were selected by greedy query and 40% by random 
query. After the DFT calculation, the dataset is updated and the next 
iteration begins. Our active learning ends when all machine learning 
predicted sites have been calculated using DFT. 

4.3. Screening criteria for catalyst stability 

The stability of the A2B@NG catalyst is evaluated by the formation 
energy Ef ,A2B− NG, which is calculated by: 

Ef ,A2B@NG = EA2B@NG − ENG − 2EA(bulk) − EB(bulk) (1)  

where EA2B@NG is the total energy of the whole TAC structure, ENG is the 
energy of the defected N6 and N4 substrate. EA(bulk) and EB(bulk) are the 
reference energies of element A and B, respectively. Here the energy per 
atom of the bulk metal structures at room temperature is used as 
reference energies. 

Following Ref [27], we also calculated the binding energy which 
measures the energy difference before and after a A2B cluster being 
anchored on the NG, as: 

Eb,A2B@NG = EA2B@NG − ENG − EA2B (2)  

where EA2B is the energy of A2B cluster without the substrate. 

4.4. Screening criteria for CRR activity 

The catalytic activity is evaluated by comparing their limiting po-
tentials (UL). To obtain limiting potential, the adsorption energy of 
relevant reaction intermediate is first calculated, as: 

ΔEads = Eads− slab − Eslab −
∑

S∈{C,H,O}

NSES (3)  

where Eads− slab is the DFT energy of adsorbate/slab complex, Eslab is the 
DFT energy of pure slab, NS and ES are the number and reference energy 
of element S in the adsorbate. In this study, the reference energies of 
carbon, oxygen and hydrogen are defined as , EO = ECO − EC, EH =

1/2EH2 . Hydrogen evolution reaction (HER) is a well-known competing 

reaction of CRR. Pei et al. have shown that most A3-N6 catalysts have 
weaker H adsorption than CO2. Here, we also compared the CO2 and H 
adsorption on some representative A2B catalysts (Fig. S8) and showed 
that the trend is consistent with A3-N6, [27] as the majority of A2B 
catalysts have weaker H binding strength, except for the Cu3-N6 tested 
here. This indicates that this type of catalyst structures is generally more 
selective to CRR than HER. 

To reduce the calculation amount for a full reaction network, we 
focused on the two rate-limiting steps [1,27]:  

*CO + H+ + e- → *CHO                                                                 (4)  

CO2(g) + H+ + e- →*COOH                                                            (5) 

where * denotes an adsorption site. 
For each reaction step, the reaction free energy ΔG is calculated by: 

ΔG = ΔE +ΔZPE − TΔS+Δ
∫

CpdT (6)  

where ΔE is the total DFT energy difference between reactants and 
products of each reaction, ΔZPE is the zero-point energy correction, ΔS 
is the vibrational entropy change, Δ

∫
CpdT is the heat capacity change. T 

is set as 298.15 K in our study. To accelerate the screening, a fixed nu-
merical correction was used with ΔZPE, ΔS and Δ

∫
CpdT on Cu(211) 

surfaces [58]. The energy of H+ + e- is referenced to ½ H2(g) according 
to computational hydrogen electrode [59]. 

The limiting potential (UL) is defined as: 

UL = max{ΔG1,ΔG2}/e (7)  

where ΔG1 and ΔG2 are the reaction free energy of the two rate-limiting 
steps (Eq. 4 and Eq. 5), and e is the elementary negative charge. We have 
verified all the possible reaction steps in CRR towards methane pro-
duction on Cu2Mn-N6 and Cu2Mn-N4. The free energy diagram in 
Fig. S9 shows that the *CO + H+ + e- → *CHO step is the rate-limiting 
step. The calculated limiting potentials are well correlated with the 
fixed numerical correction values (− 0.48 V vs − 0.52 V for Cu2Mn-N6 
and − 0.46 V vs − 0.40 V for Cu2Mn-N4). 
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