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Abstract

Baryons such as the proton and neutron make up the large majority
of all visible matter in the universe. According to the standard model,
the structure of these baryons is defined by the interactions of their
constituent parts, the quarks and gluons. The gauge field theory which
governs these interactions is called Quantum Chromodynamics (QCD),
which has a property that prevents the application of perturbative meth-
ods at low energies. Currently, the best first-principles approach to
studying the effects of QCD at low energies is Lattice QCD, which relies
on a discretisation of spacetime. In this thesis we go through the deriva-
tion of the Feynman-Hellmann theorem and its application to lattice
QCD, specifically for the calculation of baryon matrix elements. This
Feynman-Hellmann method provides us with an alternative approach to
conventional lattice QCD techniques.

To study the internal structure of baryons we use the Feynman-
Hellmann method to calculate the electromagnetic form factors of the
octet baryons at high momentum transfers. In this calculation we take
advantage of the improved control of excited states provided by the
Feynman-Hellmann method as well as a weighted-averaging approach
to provide a robust analysis over a wide range of momenta. The form
factor results are then extrapolated to physical quark masses through
the use of a flavour breaking expansion. Our results for the electric form
factor GE show good agreement with experimental results, however the
results for the magnetic form factor GM do not agree well, indicating
that there could be more systematic effects presently unaccounted for.

The use of an expanded version of the Feynman-Hellmann method
which allows for the consideration of quasi-degenerate energy states,
allows for the investigation of the transition form factors of hyperons.
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These are valuable as they can provide insight into the oscillations
between quark flavour permitted by the standard model. We present
results for the matrix element of the Σ− to neutron transition which
agree well with a similar calculation using the conventional three-point
function method. This is promising as this novel method could provide
an independent approach to the determination of the CKM matrix
elements.
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Chapter 1.

Introduction

Throughout the 20th century there has been a large push to further the understanding
of the fundamental building blocks of our universe. The results of this research was
the construction of the Standard Model (SM) of particle physics in the 1970’s. This
model has been incredibly successful at describing the multitude of experimental results
over the years, and making predictions for future discoveries. The SM is comprised of a
set of matter particles which are acted upon by the force carriers of three fundamental
forces, each of which have their own special properties. The electromagnetic force acts on
electrically charged particles through photons, the weak force acts on the weak isospin of
particles through the Z0 and W± bosons, while the strong force acts on colour-charged
particles through the gluons.

The point particles which make up the overwhelming majority of all matter are
the quarks and the gluons, these form the constituent parts of both the proton and
the neutron, collectively referred to as the nucleons. The theory which describes the
interactions between the quarks and gluons is Quantum Chromodynamics (QCD), the
rules of these interactions are determined by the SU(3)-colour charge which each of the
particles contains.

QCD has a few unique properties which set it apart from other quantum field theories,
and which heavily influence how it can be studied. In addition to the quarks themselves,
the gluons also carry colour charge which allows them to self-interact. These self-
interactions lead to the notable behaviour of the QCD coupling strength decreasing at
high energies, this results in the particles being asymptotically free only at high energies
and in turn allowing for the application of perturbation theory to this high-energy regime.
Another property which stems from the gluon self-interactions is confinement, this is the
requirement that any observable particle must always be colour-neutral. A consequence
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of confinement is that the only way to study the properties of quarks is by considering
their bound states, called hadrons.

At low energies, the only first-principles approach to calculations in QCD comes
from the Lattice QCD formulation first presented by Wilson [4] in the 1970’s. Lattice
QCD relies on a discretised formulation of the theory, which can be used to numerically
calculate observables. The main challenge of this method lies in the many systematic
uncertainties which arise from the discretisation.

Aspects of the internal structure of the nucleons can be described by the distribution
of the electric charge and the magnetisation density, two properties which are encoded
in the momentum dependence of the electromagnetic form factors of the nucleons.
Experiments throughout the 1950’s and 60’s were able to determine these form factors
through the use of the Rosenbluth separation method [5], however more recent results
using the polarisation transfer method have produced a discrepancy in the ratio of the
electric-to-magnetic form factors of the proton at high momentum transfer (Q2). This
discrepancy has attracted a lot of attention from both experimentalists and theorists as
it indicates a potential zero-crossing of the electric form factor at high momenta. The
experimental response has seen renewed interest in improving the precision of the form
factor measurements at higher Q2, as well as experiments probing the contributions of
two-photon exchange (TPE) processes. Current results from DESY and JLab indicate
non-trivial contributions from TPE in various observables at low Q2, however these seem
to be as of yet insufficient to fully explain the discrepancy [6,7]. Since perturbative QCD
(pQCD) calculations can provide viable predictions at sufficiently large values of Q2, there
have been efforts in this area as well . Additionally, the Lattice QCD community has
shown interest in providing theoretical predictions for the form factors to shed light on the
discrepancy as Lattice QCD can theoretically map out the full momentum dependence
from zero to the experimental limit and potentially further if the systematic uncertainties
can be controlled sufficiently. In this thesis we will show results from a lattice calculation
of the nucleon electromagnetic form factors at large Q2 using a novel approach based
on the Feynman-Hellmann method. The aim of the calculation is to provide a viable
alternative to the more established three-point function approach which provides the
possibility of improved control over excited state contributions.

The standard model is based heavily on the idea of symmetries in nature, however
it also contains some approximate symmetries which are very important. One such
approximate symmetry is the SU(3)-flavour symmetry, which refers to the approximate
degeneracy in mass between the up, down and strange quarks relative to the masses of the
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three heavier charm, bottom and top quarks. This broken symmetry and the resulting
mixing between the different flavours of quarks through the weak force is included in the
SM through the unitary Cabibbo-Kobayashi-Maskawa matrix. These matrix elements are
parameters of the Standard Model and must obey the unitarity constraints, they are not
predicted by the theory but must be determined through a combination of theory and
experiment. Since they are universal, once the values of the CKM matrix are determined
they can lead to Standard Model predictions of a variety of hadronic decay channels. This
has led to many investigations into possible physics beyond the standard model (BSM)
through precision determinations of these matrix elements. These calculations rely on
experimental results or theoretical calculations of the properties of the hadrons containing
the various quark flavours. Lattice QCD is placed in a unique position to investigate this
mixing as the quark masses are free parameters for any lattice, this allows for the amount
of SU(3)-flavour breaking to be changed and the consequences to be investigated. In this
work we will investigate the effects of SU(3)-flavour symmetry breaking by calculating the
transition matrix elements of hyperons (baryons containing strange quarks) to nucleons,
the approach to these calculations will again use the Feynman-Hellmann theorem.

1.1. Outline

In chapter 2 we will discuss the motivation behind Lattice QCD and present a standard
description of the discretised QCD action. This is the method which we use throughout
this thesis to perform calculations involving low-energy strong force interactions.

Following this, in chapter 3 we discuss in detail how Lattice QCD can be used to
calculate the spectra of hadrons. The main sources of uncertainties in the calculations and
how these will be handled are covered here, then we also briefly show an application of
these methods to the calculation of the hadron masses on a large set of lattice ensembles.
The last section of this chapter covers the standard three-point function approach to the
calculation of matrix elements, which will be applied in later chapters.

Chapter 4 covers the Feynman-Hellmann method and its application to the path-
integral formalism of Lattice QCD. We derive an expression relating the shift in the
energy of the ground state of a lattice correlator to a matrix element in the forward limit.
When extending this method to off-forward matrix elements we have to take into account
the momentum-spin state degeneracies, we show examples of this for both the temporal
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and spatial vector currents. These examples allow for the calculation of both the Sachs
electromagnetic form factors.

In chapter 5 we investigate the internal structure of the nucleons and other octet
baryons by calculating their electromagnetic form factors. To perform this calculation
in Lattice QCD we apply the Feynman-Hellmann method as outlined in the previous
chapter. We calculate the form factors on a range of lattice ensembles with different
quark masses, lattice spacings and volumes, this variation in lattice setups is then used
to attempt to extrapolate the form factors to the physical quark masses and continuum
limit. Furthermore, this chapter also includes a description of various methods which are
used to account for the systematics present in Lattice QCD calculations.

In chapter 6 we investigate the transition matrix elements between Hyperons. To
calculate these matrix elements from the Feynman-Hellmann method requires us to
develop a new derivation of the theory which allows for quasi-degenerate energy states
to be considered. The first part of the chapter outlines this new formulation of the
theorem, this approach relies on the the application of the Dyson expansion to the
transfer matrix. The usual restriction to energy-degenerate states can be slightly relaxed
using this formulation and as a part of the calculation we investigate the higher order
effects of the quasi-degeneracy in energies. We apply this method to the calculation of
the matrix element for the Σ− to neutron transition at a range of momentum transfers.
Additionally this chapter also shows the results of a comparable calculation using the
more established three-point function method, which provides a means for validating and
benchmarking the results of the Feynman-Hellmann method.



Chapter 2.

Lattice QCD

Since QCD is a gauge field theory, the natural approach to calculations would be to use
perturbation theory similarly to its successfully application in Quantum Electrodynamics
(QED). Any such perturbative calculation will depend on the coupling constant of the
theory, in QED this is the fine-structure constant α ≈ 1/137, however due the asymptotic
freedom inherent to QCD, its coupling strength decreases as the interaction energy goes
up. This QCD coupling can be approximated by

αS(Q
2) ≈ 1

β0 ln(Q2/Λ2
QCD)

, (2.1)

where ΛQCD is a dimensional parameter [8]. This equation shows that the expected
behaviour is a decrease in the coupling strength with increasing momentum. At sufficiently
high energies this coupling allows for perturbation theory to make predictions of the
strong interactions. At low energies however, the large size of the coupling constant means
that an infinite number of different interaction diagrams will contribute significantly to
any QCD calculation, making perturbation theory impractical. The structure of hadrons
at these low energies can be thought of as a complicated mix of quarks and gluons and
their interactions rather than just the multiple-quark bound states they behave as at
high energies. Figure ?? shows a summary of measurements of the coupling αS against
the energy scale, showing this decrease in the strength of the coupling.

Studying the interactions of the strong force at low energies is very valuable for
our understanding of the fundamental particles, to do this requires a non-perturbative
approach to QCD calculations. lattice QCD provides a first principles approach to
low energy calculations of QCD and was first proposed by Kenneth Wilson in 1974 [4]
as a method for studying QCD non-perturbatively. Since then many computational
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Figure 2.1. Measurements of αS against the momentum(energy) scale Q in GeV. Figure
from [8].

techniques have been developed to improve and extend the capabilities of the method. In
this chapter we will lay out the basic construction of lattice QCD as well as the specific
methods used in the calculations presented in the following chapters. The explanation in
this chapter will mainly follow the texts by Rothe [9] however there are many other good
sources which contain more detail [10–13].

2.1. Path Integral Formalism

The path integral formalism for Quantum Field Theories (QFT) was first developed by
Feynman [14]. This formalism shows that it is possible to write down observables as
integrals over all possible paths weighted by an exponential of the action. The expectation
value of some operator O can be expressed as a path integral over the fermion fields and
the gauge fields by

⟨O⟩ = 1

Z

∫
D[Aµ, ψ, ψ̄]O eiS[Aµ,ψ,ψ̄], (2.2)
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where the partition function Z is defined as the path integral without any operators

Z =

∫
D[Aµ, ψ, ψ̄] e

iS[Aµ,ψ,ψ̄]. (2.3)

The fermionic degrees of freedom here are represented by Grassmann variables. The
integral measure contains the product of the integrals of each field over all possible
space-time points

D[Aµ, ψ, ψ̄] =
∏

x

dψ(x)
∏

y

dψ̄(y)
∏

z

dAµ(z). (2.4)

In Minkowski space-time the QCD action can be decomposed into a fermionic and
gluonic part

SQCD = SF + SG

=

Nf∑

f=1

∫
d4x ψ̄(x)(iγµDµ −mf )ψ(x)−

1

4
Tr
∫
d4xFµνF

µν ,
(2.5)

where ψ and ψ̄ are the quark fields and Aµ are the gauge fields. The fermion action also
depends on the gauge fields through the covariant derivative, defined as Dµ = ∂µ − igAµ.
The fermionic part of the action includes a sum over the number of quark flavours in the
theory, for full QCD this is 6, however most lattice QCD calculations limit this to the 3
(or 4) lighter quark flavours u, d, s(, c).

2.2. Euclidean Space-time

In the Minkowski space-time formulation of the path integral shown above the exponent
containing the action is imaginary. This leads to a sign problem which makes numerical
calculations of the path integral impractical. To solve this issue we will use a Wick
rotation to transform from Minkowski to Euclidean space-time. The Wick rotation can
be considered as an analytic continuation to imaginary time, performed by replacing
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t→ it. The relation between Minkowski and Euclidean space-time is

x4E = ix0M ,

xjE = xjM ,

∂E4 = −i∂M4 ,
∂Ej = ∂Mj ,

(2.6)

and the Euclidean space-time the metric is δµν = diag(+,+,+,+). The Dirac gamma
matrices in Minkowski space are related to those in Euclidean space-time by

γ4 = γ4 = γ0M , γi = γi = −iγiM . (2.7)

Using the above relations we can determine the action in Euclidean space-time

iSMQCD
Wick−−−→ −

Nf∑

f=1

∫
d4x ψ̄(x)(γµDµ +mf )ψ(x) +

1

4
Tr
∫
d4xFµνF

µν

= −SEQCD.
(2.8)

The path integral formulation in Euclidean space-time now has a real action in the
exponent, which removes the sign problem. From now on we will work in Euclidean
space-time and drop the labels.

2.3. Lattice Discretisation

To allow for numerical calculations of observables in lattice QCD, we need to discretise
the path integral formalism. The continuous coordinate space will be changed to a
discrete lattice of points

xµ → anµ, (2.9)

where a is the spacing between the points and nµ is a vector of integers. We will continue
to use the discrete 4-vector xµ = anµ as a label for the positions on the lattice. The
derivative will be replaced by a finite difference between two lattice sites,

∂µψ(x) →
1

2a
(ψ(x+ aµ̂)− ψ(x− aµ̂)) . (2.10)
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Uµ(x)

U †
µ(x)

ψ(x) ψ(x+ aµ̂)

Figure 2.2. The lattice gauge link Uµ(x) which connects the sites x and x + aµ̂. The
Hermitian conjugate of the gauge link connects the same two sites but is oriented
in the opposite direction.

Discretising the gauge fields is done by replacing them by gauge links Uµ(x) which
link adjacent sites on the lattice, in this case site x and x+ aµ̂ as shown in figure 2.2.
These gauge links are defined in terms of the parallel transport operator on the lattice

Uµ(x) ≡ Pexp
[
ig

∫ x+aµ̂

x

dzµAµ(x)

]
, (2.11)

where P is the path-ordering operator. These links are gauge covariant and transform as

Uµ(x) → U ′
µ(x) = Ω(x)Uµ(x)Ω(x+ aµ̂)†, (2.12)

for an element Ω(x) of SU(3). Taking the Hermitian conjugate of such a gauge link is
the same as reversing the direction,

U †
µ(x) ≡ U−µ(x+ aµ̂). (2.13)

Using these link variables it is possible to define a discretised fermion action

SF [ψ, ψ̄, U ] = a4
∑

x,y

ψ̄(x)M(x, y)ψ(y), (2.14)



10 Lattice QCD

where the Dirac operator M is defined as

M(x, y) =
1

2a

4∑

µ=1

γµ (Uµ(x)δx+aµ̂,y − U−µ(x)δx−aµ̂,y) +mδx,y, (2.15)

noting that this formulation of the discretised fermion action is gauge invariant due to
the explicit presence of the gauge links. If we check how this action behaves when taking
the continuum limit a→ 0 we find that the theory suffers from the problem of fermion
doublers. These are unphysical fermions which need to be removed for a reliable lattice
theory, see eg. [9] for a detailed discussion. The Nielsen-Ninomiya ‘no-go’ theorem [15,16]
shows that this doubling of the fermions in the continuum limit is a direct consequence
of discretising the action. The simplest strategy to remove these fermion doublers is to
introduce an additional term into the action which gives the doublers infinite mass in the
continuum limit and decouples them from the theory. The method which will be used
here to counter the doubling is the Wilson Improved action, another commonly used
alternative to this method is the staggered-fermion approach [17–19].

2.4. Wilson Improved Action

To solve the problem of doublers, the Wilson improved actions can be constructed [4].
This improvement to the fermion action is defined by

SWF = −ar
2

∑

x

ψ̄(x)∆ψ(x), (2.16)

where conventionally r = 1 and the operator ∆ is the discretised covariant Laplacian

∆ψ(x) =
1

a2

∑

µ

[
Uµ(x)ψ(x+ aµ̂) + U †

µ(x− aµ̂)ψ(x− aµ̂)− 2ψ(x)
]
. (2.17)

This improvement term modifies the fermion matrix from Eq. (2.15) into

MW (x, y)

= (m+
4

a
)δx,y −

1

2a

∑

µ

[
(1− γµ)Uµ(x)δx+aµ̂,y − (1 + γµ)U

†
µ(x− aµ̂)δx−aµ̂,y

]
.

(2.18)
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Additionally, a reparameterisation of the fermion fields in terms of the hopping parameters
κ allows the matrix to be rewritten as

MW (x, y) = δx,y − κH(x, y), (2.19)

where H is the hopping matrix and κ the hopping parameter,

H(x, y) =
∑

µ

[
(1− γµ)Uµ(x)δx+aµ̂,y − (1− γµ)U

†
µ(x− aµ̂)δx−aµ̂,y

]
, (2.20)

κ =
1

2(am+ 4)
. (2.21)

Now if we consider the continuum limit of this action again the fermion doublers will
obtain a contribution to their mass which is proportional to 1/a, removing them from
the theory. There will be one hopping parameter for each quark flavour in the theory,
which are used to set the quark masses on the lattice.

Following the ‘no-go’ theorem, removing the fermion doublers in this manner neces-
sarily requires breaking another symmetry, in this case the improved action will break
chiral symmetry. This Wilson improved action will approach the continuum limit with
corrections occurring at O(a). There are further improvements which can be made to
the fermion action to remove these O(a) effects, these are outlined in the Symanzik im-
provement program [20]. In this work we will use the clover-improved fermion action [21],
this action includes following additional term

SCF = cSWa
5
∑

x

∑

µ<ν

ψ̄(x)
1

2
σµνF̂µν(x)ψ(x), (2.22)

where cSW is the Sheikholeslami-Wohlert (clover) parameter, and F̂µν(x) is a discretised
version of the field strength tensor. To construct this discretisation we first define a
plaquette as the smallest possible loop of link variables on the lattice

Pµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ ν̂)U †

ν(x), (2.23)

which is illustrated in figure 2.3. These plaquettes are then used to define the discretised
field strength tensor as

F̂µν(x) =
−i
8a2

(Qµν(x)−Qνµ(x)) , (2.24)
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Uµ(x)

Uν(x+ aµ̂)

U †
µ(x+ aν̂)

U †
ν(x)

ψ(x) ψ(x+ aµ̂)

Figure 2.3. The plaquette which consists of the smallest connected loop of gauge links on
the lattice.

where we use a sum over the plaquettes in the µ− ν plane

Qµν(x) = Pµ,ν(x) + Pν,−µ(x) + P−µ,−ν(x) + P−ν,µ(x). (2.25)

This clover-improved action can remove the O(a) effects if cSW is tuned correctly,
improving accuracy at finite values of a. Additionally this will improve convergence to
the continuum limit as extrapolations are possible with respect to a2.

2.5. Gluon action

The gluon action of QCD contains the field strength tensors, so to define a discretised
version of it we will once again use the plaquettes defined in the previous section

Pµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ ν̂)U †

ν(x). (2.26)

The trace of any plaquette is gauge invariant (following from Eq. (2.12)) which is
important when constructing the action. The Wilson gauge action is defined as the sum
over all possible plaquettes on the lattice with each one having only one orientation

SG[U ] =
6

g2

∑

x

∑

µ<ν

Re
{
1

3
Tr [1− Pµν(x)]

}
. (2.27)
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The first factor is called the inverse coupling and is labelled by β = 6/g2. This gluon
action will approach the Yang-Mills action up to order O(a2) in the continuum limit.

The gauge links can also be combined in shapes other than the square plaquette, these
additional shapes can help with the construction of a gluon action which has an improved
approach to the continuum limit. Constructing rectangles Rµν and parallelograms Lµν
out of gauge links allows us to define the Lüscher-Weisz gluon action [22]

SLWG [U ] =
β

3

∑

x,µ<ν

[c0(1− Pµν(x)) + c1(1−Rµν(x)) + c2(1− Lµν(x))] , (2.28)

this new gauge action is improved up to O(a4). The coefficients ci depend on g2 and
have to obey c0 + 8c1 + 8c2 = 1, for the tree-level improved action used in this work the
coefficients will be fixed to the following values

c0 =
20

12
, c1 =

−1

12
, c2 = 0. (2.29)

An alternative set of coefficients which is often used is the Iwasaki gauge action [23].

2.6. Numerical simulations

The discretisation of the QCD action above provides a regularisation of the Euclidean
path integral. The path integral however is still defined over a large number of points and
considering all gauge field configurations for this would require an impractical amount of
computing power. For this reason, lattice QCD simulations rely on Monte Carlo (MC)
techniques to estimate the path integral. To see how this works we consider the Euclidean
path integral formulation of the expectation value of some operator

⟨O⟩ =
∫
D[U, ψ, ψ̄]O[U, ψ, ψ̄] e−S[U,ψ,ψ̄]∫

D[U, ψ, ψ̄] e−S[U,ψ,ψ̄]
, (2.30)

where the operator can be a function of the gauge fields and fermion fields. The fermions
in this formulation are represented by the Grassmann variables ψ(x) and ψ̄(x). Splitting
the exponential of the action into its fermionic and gluonic parts allows the fermionic
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part of the path integral to be integrated out

Z =

∫
DUe−SG[U ] D[ψ, ψ̄]e−

∑
x,y ψ̄(x)M(x,y)ψ(y)

=

∫
DUe−SG[U ] det [M ] .

(2.31)

This determinant of the fermion matrix M is computationally expensive to calculate,
which historically has led to many calculations setting it to be a constant value, which is
called the quenched approximation. This approximation can be seen as removing all of
the sea-quark interactions from the theory, although this is rarely used in modern lattice
QCD simulations.

The Dirac operator M for the improved fermion action as described above will be
γ5-Hermitian, making its determinant a real number this means that the determinant
will be real

det[M ] = det[γ5M †γ5] = det[γ25 ]det[M †] = det[M ]∗. (2.32)

This allows for the interpretation of eSG[U ]det[M ] as a probability distribution for each of
the gauge field configurations U ,

P(U) ∝ det[M ]e−SG[U ]. (2.33)

This probability distribution can be used together with importance sampling methods
such as the Metropolis algorithm to generate an ensemble of gauge field configurations
which can be used to estimate the path integral. This generation of configurations is
often the most computationally expensive part of lattice QCD calculations and there is
much active research into methods which can bring down this cost [24,25] . Currently
the most common approach involves the use of hybrid monte carlo (HMC) methods [26].
The path integral can now be redefined as an average of the operator evaluated on each
of the gauge field configurations in such an ensemble

⟨O⟩ = 1

Nconf

Nconf∑

i=1

O(Ui). (2.34)

This method will provide us with an estimate of the path integral, which will improve in
its precision with the size of the ensemble of gauge field configurations (Nconf) which is
used.
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Correlation functions

To calculate expectation values of operators constructed from quark fields, we will use
Wick’s theorem, which describes how quark propagators can be constructed by considering
all possible Wick contractions of the quark fields. These quark propagators are defined
as the inverse of the fermion matrix linking two points on the lattice

∑

y

S(z, y)γαcaM(y, x)αβab = δx,zδc,bδ
γ,β, (2.35)

where the greek indices (α, β, γ) are the dirac indices, the latin indices (a, b, c) are the
colour indices and x, y, z are the lattice coordinates. The quark propagator S(y, x) can
be written in terms of the quark fields by considering all possible Wick contractions
between them. For the example of two quark fields ψ̄(x) and ψ(y), the propagator is
written as

S(y, x)γαca = ψγc (y)ψ̄
α
a (x). (2.36)

Where this propagator represents the amplitude of a quark propagating from the lattice
site x to y. These Wick contractions remove the dependence on quarks as dynamical
fields.

Using the two methods above, the expectation value of an operator can be written as
a sum of the Wick-contracted fields on each configuration

⟨O⟩ = 1

Z

∫
DUdet[M ]e−SG[U ] O[U ]

=
1

Nconf

Nconf∑

i=1

O[Ui].

(2.37)

Where O[U ] is the set of fully Wick contracted propagators formed from the fields in the
operator O.

2.7. Lattice Boundary Conditions

The fermion fields in the path integral formalism are Grassmann variables which means
that they are anticommuting. To avoid boundary terms, the fermion fields are given
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periodic boundary conditions in the spatial dimensions, defined by

ψ(x⃗+ aLe⃗j) = ψ(x⃗), (2.38)

for j = 1, 2, 3 and where L is the spatial extent of the lattice. The temporal boundary
conditions meanwhile are set to be anti-periodic. The spatial periodicity makes the fields
single-valued, however it can be shown that requiring the observables to be single-valued
is sufficient [27, 28]. This allows for a complex phase to be included in the boundary
conditions, as long as it is also a symmetry of the action. Introducing this phase into the
boundary conditions is referred to as twisted boundary conditions, or partially twisted
boundary conditions (pTBC) when this modification is restricted to the valence quarks.
Consider redefining the valence quark field as follows

ψv(x) ≡ eiθ⃗·x⃗ψ̃v(x), (2.39)

where ψ̃v(x) obeys the normal periodic boundary conditions. When using a correlation
function constructed out of quark fields with these twisted boundary conditions, the
momentum of the correlator will be modified by the θ⃗ factor

p⃗ =
2π

aL

(
n⃗+

θ⃗

2π

)
. (2.40)

There are no restrictions on the values of θ⃗, so applying these boundary conditions allows
for much finer control over the momentum of the correlation functions than the usual
discretised momentum values. This is very advantageous for calculations of form factors
where the slope at small values of momentum is of interest [29–32]. The finite-volume
effects of using partially twisted boundary conditions have been shown to be exponentially
suppressed with the volume [27,28,33,34]. These twisted boundary conditions will be
used in the calculations presented in chapter 6.

2.8. Transfer Matrix

We have shown the path integral formalism of QCD, which together with the regularisation
provided by the lattice allows for the numerical calculation of observables. In the Euclidean
formulation this calculation can be done through the use of Monte Carlo techniques and
importance sampling. This path integral formalism can be related to the same system
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described on a Hilbert space with a Hamiltonian, which in turn allows us to write down
the energy spectrum of the observables [10].

In the Hamiltonian formalism, calculating the expectation value of an operator O
involves taking the trace over the complete set of energy eigenstates,

⟨O⟩ = Tr
[
e−HTO

]

Tr [e−HT ]

=

∑
n ⟨n|e−HTO|n⟩∑
n ⟨n|e−HT |n⟩

=

∑
n e

−EnT ⟨n|O|n⟩∑
n e

−EnT

T→∞−−−→ ⟨Ω|O|Ω⟩ ,

(2.41)

where for large time the ground state will dominate the signal, we usually label this the
vacuum state Ω.

We consider an operator T̂φ on the full Hilbert space, then consider the trace of this
operator over the space

Tr(T̂ βφ ) =
∫
dφ ⟨φ|T̂ βφ |φ⟩ . (2.42)

Now inserting a complete set of states in coordinate space at every timeslice,

Tr(T̂ βφ ) =
∫ ∏

x

dφ(x) ⟨φ0|T̂φ|φβ−1⟩ ... ⟨φ1|T̂φ|φ0⟩ . (2.43)

The operator T̂ is defined by its matrix element,

⟨φt+1|T̂ |φt⟩ = eL[φt+1,φt], (2.44)

where L[φt+1, φt] is part of the temporally decomposed action connecting two adjacent
timeslices. This decomposition is possible because we are dealing with a local action

S[φ] =
∑

t

L[ϕt+1, ϕt]. (2.45)
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If the transfer matrix as defined by Eq. (2.44) can be constructed, then it is possible
to show it will have the following form [35]

T̂ = e−aH , (2.46)

where H is the Hamiltonian operator which describes the same system as the path
integral formulation. This Hamiltonian will differ from the continuum Hamiltonian due
to Discretisation effects. The previously mentioned improvements to the lattice action
also serve to reduce this discrepancy between the two formalisms.

The existence of this transfer operator and its relation to the Hamiltonian guarantees
that the correlation function of any combination of operators has a spectral representation.
This is essential for the use of lattice QCD to determine energies and form factors of
hadrons. The transfer matrix allows us to describe the Euclidean correlation functions on
the lattice in terms of the energies of different states. This method is how lattice QCD
makes it possible to calculate the energies of various hadrons. Consider the correlation
function of two operators

Cχ(t) ≡
〈
χ(t)χ†(0)

〉
, (2.47)

where χ†(0) and χ(t) are a creation and annihilation operator respectively. Providing the
action allows for the existence of a transfer matrix, we can write down this expression in
terms of the trace over this transfer matrix,

Cχ(t) =
Tr
[
e−H(T−t)χ(0)e−Htχ†(0)

]

Tr e−HT

=

∑
n ⟨n|e−H(T−t)χ(0)e−Htχ†(0)|n⟩∑

m ⟨m|e−HT |m⟩

=

∑
n e

−En(T−t) ⟨n|χ(0)e−Htχ†(0)|n⟩∑
m e

−EmT

= ⟨Ω|χ(0)e−Htχ†(0)|Ω⟩ .

(2.48)

This transfer matrix formalism will be essential for the application of the Feynman-
Hellmann method to transition matrix elements presented in chapter 6.



Chapter 3.

Hadronic Observables

3.1. Two-point Correlation Functions

In the previous section we have shown that the lattice formulation of the expectation
value of a combination of operators has a spectral decomposition. We will outline the
exact expressions for these spectra here, as well as the methods and techniques applied
to analyse them. For lattice QCD calculations we will consider a two-point correlation
function projected onto some definite momentum state. We start by considering a two-
point correlation function constructed out of a creation operator χ̄ and an annihilation
operator χ. Using the translational invariance of the operators we can consider the
creation operator to be at the origin, while we sum over the spatial coordinates of the
annihilation operator to project the correlator onto a definite momentum state,

GH(t, p⃗ ) =
∑

x⃗

e−ip⃗·x⃗ ⟨χH(t, x⃗ )χ̄H(0)⟩ , (3.1)

we illustrate this two-point function in figure 3.1.

χ̄(0) χ(x)

Figure 3.1. A diagram of a baryon two-point function constructed from the creation and
annihilation operators χ̄(0) and χ(x) respectively.

19
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The two interpolating operators are products of local quark fields, constructed such
that they overlap with the ground state of the desired hadron. For example for a baryon
these interpolating operators could look like

χB(x)
α = ϵabc[q(x)]

α
a

(
[q(x)]βbΓ

βγ[q(x)]γc

)
, (3.2)

where the indices a, b, c are colour indices, α, β, γ are Dirac indices and Γ is a γ4-hermitian
matrix. In order to extract the spectrum of this correlator we need to define a set of
complete states of the QCD Hamiltonian

H |X(p⃗ )⟩ = EX(p⃗ ) |X(p⃗ )⟩ . (3.3)

We define the complete set of eigenstates of the QCD Hamiltonian as

1 =
∑

X,⃗k,s

∆3k

(2π)3
1

2EX(k⃗ )
|X, k⃗, s⟩ ⟨X, k⃗, s| , (3.4)

where ∆3k are the discrete elements of the momentum space and we will neglect the
explicit sum over spin indices for simplicity until they become relevant in the example in
the next section. We will also use the translational invariance property of the operators
defined on the lattice

χ(x⃗, t) = eĤte−ip̂·x⃗χ(0)e−Ĥteip̂·x⃗. (3.5)

By inserting a complete set of states into the correlation function we are able to extract
the time-dependence,

GH(t, p⃗ ) =
∑

X,⃗k

∆3k

(2π)3

∑

x⃗

e−ip⃗·x⃗

2EX(k⃗ )
⟨Ω|χH(0)e−Ĥteip̂·x⃗ |X, k⃗⟩ ⟨X, k⃗| χ̄H(0)|Ω⟩

=
∑

X,⃗k

∆3k

(2π)3

∑

x⃗

e−i(p⃗−k⃗ )·x⃗e−EX(k⃗ )t

2EX(k⃗ )
⟨Ω|χH(0) |X, k⃗⟩ ⟨X, k⃗| χ̄H(0)|Ω⟩ .

(3.6)

We now use
∑

x⃗ e
−i(p⃗−k⃗ )·x⃗ = V δp⃗,⃗k to project onto a definite momentum state after

summing over x⃗ and k⃗,

GH(t, p⃗ ) =
∑

X

e−EX(p⃗ )t

2EX(p⃗ )
⟨Ω|χH(0) |X, p⃗ ⟩ ⟨X, p⃗ | χ̄H(0)|Ω⟩ . (3.7)
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To simplify this expression somewhat we will use the following notation

GH(t, p⃗ ) =
∑

X

g(2)χ [X; p⃗ ]e−EX(p⃗ )t, (3.8)

where we define

g(2)χ [X; p⃗ ] =
⟨Ω|χH(0) |X, p⃗ ⟩ ⟨X, p⃗ | χ̄H(0)|Ω⟩

2EX(p⃗ )
. (3.9)

These expressions show that the two-point functions have a time-dependence which is
proportional to the sum of the exponentiated energies of all possible states which couple
to the operators. Since the states in the sum will have different energies, we expect that
at large times, the state with the lowest energy (ground state) will come to dominate the
signal

GH(t, p⃗ )
t≫0−−→ g(2)χ [X0; p⃗ ]e

−EX0
(p⃗ )t. (3.10)

This holds under the assumption that the temporal size of the lattice is sufficiently large
(T → ∞). This spectral expression of the correlation function is the central property
which allows lattice calculations to extract the energy of hadronic states.

3.1.1. Nucleon Energy

The interpolating operator used to construct a proton on the lattice is defined as

χN(x)α = ϵabc[u(x)]aα
(
[u(x)]bβ[Cγ5]βγ[d(x)]

c
γ

)
. (3.11)

This operator has a spin degree of freedom and the anti-symmetric tensor ϵabc makes it
antisymmetric in colour. Constructing a two-point function out of these operators will
introduce this spin degree of freedom into the overlap factors. Therefore, the overlap of
the interpolating operators with the states X can be defined in terms of spinors u and
overlap factors Z,

⟨Ω|χα(0)|X(p⃗, s)⟩ = Zχ,X(p⃗ )uα(p, s), (3.12)

⟨X(p⃗, s)|χ̄α(0)|Ω⟩ = Z̄X,χ̄(p⃗ )ūα(p, s) = Z∗
χ,X(p⃗ )ūα(p, s). (3.13)
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The convention for our spinors are set by

∑

s

u(p, s)ū(p, s) =
γµp

µ +M

2E(p⃗ )
. (3.14)

The spin degree of freedom in this expression requires us to include the sum over the
spin indices in the complete set of states again

Gαβ
N (t, p⃗ ) =

∑

X,s

e−EX(p⃗ )t

2EX(p⃗ )
ZχN ,X(p⃗ )Z̄X,χ†

N
(p⃗ )uα(p, s)ūβ(p, s). (3.15)

Now the resulting correlation function has two free Dirac indices, for the calculations in
this thesis we are mainly interested in a projection of the two-point function onto some
definite spin and parity state. To achieve this we contract the indices with a projection
matrix Γαβ,

GN(t, p⃗,Γ) =
∑

X,s

e−EX(p⃗ )t

2EX(p⃗ )
|Zχ,X(p⃗ )|2Γβαuα(p, s)ūβ(p, s)

=
∑

X

2
e−EX(p⃗ )t

EX(p⃗ )
|Zχ,X(p⃗ )|2F2(Γ, p⃗,m),

(3.16)

where we have defined the trace over the projection matrix and spinors as

F2(Γ, p⃗,m) =
1

4

∑

s

Tr[Γu(p, s)ū(p, s)]. (3.17)

The most common projections are the unpolarised and polarised projections,

Γunpol =
1

2
(1+ γ4), Γjpol± =

1

2
(1+ γ4)

1

2
(1± iγ5γj), (3.18)

where j is the chosen spin-polarisation axis. As an example, the unpolarised projection of
the two-point function of a nucleon at rest, considered in the large Euclidean time limit,

GN(t, p⃗ ,Γunpol.)
t≫0−−→ |ZN(p⃗ )|2

EN(p⃗ ) +MN

EN(p⃗ )
e−EN (p⃗ )t. (3.19)
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To visualise the dominant energy scale of the correlation function as a function of
time, we can construct the effective energy as

Eeff.(t) =
1

∆t
ln
[

G(t)

G(t+∆t)

]
, (3.20)

where ∆t is often set to unity. For large euclidean times, this will trend towards to the
ground state energy of the correlation function

Eeff.(t)
t≫0−−→ EN(p⃗ ). (3.21)

We will use this effective energy as a visual aid in determining the region where the
ground state dominates the signal of the correlation function.

3.1.2. Signal to Noise Ratio

For the precise determination of hadronic spectra from lattice QCD, it is necessary to
understand the origin of the noise present in the correlation functions and its behaviour
as a function of time. We will consider the correlation function of a nucleon as defined in
Eq. (3.16) and rewrite it as the gauge average over a combination of operators C(t)

GN(t) = ⟨CN(t)⟩ =
∑

x⃗

Γ ⟨χN(x⃗, t)χ̄N (⃗0, 0)⟩ . (3.22)

The variance of a nucleon two-point function can be expressed as

Ncalcσ
2
N(t) ≈ ⟨CN(t)C†

N(t)⟩ − ⟨CN(t)⟩2

=
∑

x⃗,y⃗

ΓΓ ⟨χN(x⃗, t)χ̄N(y⃗, t)χN (⃗0, 0)χ̄N (⃗0, 0)⟩

−
∑

x⃗

ΓΓ ⟨χN(x⃗, t)χ̄N (⃗0, 0)⟩2 ,

(3.23)

where Ncalc is the number of independent calculations [36]. By evaluating these two
expectation values and considering all possible quark contractions it is possible to show
their spectral decompositions

〈
|CN(t)|2

〉
≈ Z2

3πe
−3mπt + Z2

NN̄e
−2MN t + ... (3.24)

⟨CN(t)⟩2 ≈ Z4
Ne

−2MN t + ... (3.25)
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As indicated by the first term in Eq. (3.24), it turns out that the quark fields in the first
expectation value can be Wick-contracted to form a three-pion state, which will have
a lower energy than the two-nucleon state. This difference in time-dependences in the
variance is called Parisi-Lepage scaling [36, 37]. Thus for large time values we expect the
variance of the nucleon two-point function to be dominated by the three-pion state

Ncalcσ
2
N(t) ≈ Z2

NN̄e
−2MN t − Z4

Ne
−2MN t + Z2

3πe
−3mπt + ...

t≫0−−→ Z2
3πe

−3mπt.
(3.26)

Using this variance function we define the numerical Signal-to-Noise (StN) ratio as

S(t) = ⟨CN(t)⟩
σN(t)

t≫0−−→
√
Ncalc

Z2
N

Z3π

e−(mN− 3
2
mπ)t. (3.27)

The rate at which this ratio decreases will depend on the gap in energy between the
two-nucleon state and the three-pion state which contribute to the variance [38, 39]. It is
important to note that this scaling of the StN ratio will only occur at large Euclidean
times, at smaller time values the overlap factors Z play an important role in the behaviour
of the StN ratio.

In the variance function, the three-meson state which can be constructed from the four
nucleon interpolating operators depends on combinations of the quark operators in the two
sink operators χN (x⃗, t) and χ̄N (y⃗, t). The overlap of this state will be heavily suppressed
when these two operators do not overlap within a volume which is approximately the
size of the Compton wavelength of the pion. Since Eq. (3.23) contains independent sums
over x⃗ and y⃗, this suppression of Z3π compared to ZNN̄ and Z2

N scales with the spatial
lattice volume [40]. This suppression will be present for any meson state in the variance
function, thus for small time values we expect the variance function to be dominated
by the overlap factors of the two-nucleon states. The meson states are only expected to
start dominating the variance at large values of time, at which point the Parisi-Lepage
scaling from Eq. (3.27) holds. Before this is the case the Singal-to-Noise ratio will have
minimal time-dependence and will scale only with Ncalc,

S(t) ∝
√
Ncalc. (3.28)

The nucleon correlation function itself will usually become dominated by its ground
state long before Parisi-Lepage scaling starts to apply. Depending on the lattice volume
it is possible that contributions from ‘thermal states’ will degrade the signal before Parisi-
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Lepage scaling applies, these are states which propagate backwards from the source. The
time-region in the correlation function where the ground state is dominant and the StN
scaling is relatively time-independent is most useful for the accurate determination of
the energy of the nucleon.
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Figure 3.2. The effective energy of a nucleon two-point correlator (left), and the energy
scale of the Signal-to-Noise ratio as defined in Eq. (3.29). The red dotted line
indicates the expected energy scale for Parisi-Lepage scaling mN − 3

2mπ.

To illustrate the behaviour of the StN ratio for nucleon correlators we will define the
effective energy of the StN ratio,

ES(t) = ln

( S(t)
S(t+ 1)

)
. (3.29)

This function can be interpreted as the energy scale which dominates the StN ratio, at
large times we expect this to trend towards the Parisi-Lepage energy scale. Figure 3.2
shows the effective mass of a nucleon correlator on the left as well as the energy scale of
the StN ratio on the right. The effective energy in the left hand figure shows a plateau
region from timeslice t = 10, this indicates that the nucleon ground state dominates the
correlation function. From approximately timeslice t = 26 we can see that the noise in the
correlator increases markedly, indicating that we are in the Parisi-Lepage scaling regime.
Looking at the effective StN energy scale in the figure on the right we can confirm this as
the red dotted line shows the energy scale associated with Parisi-Lepage scaling and we
see that around timeslice t = 26, the energy scale starts to agree with the red dotted line.
The calculations in this work will focus on making the best use of the signal in the early
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timeslices before Parisi-Lepage scaling, where the StN ratio is relatively independent of
time.

3.1.3. Correlator Analysis

Using the knowledge of the Signal-to-Noise behaviour of nucleon correlation functions,
we know that the early time values are particularly valuable for obtaining a clear signal.
This is why we will apply analysis techniques which will allow us to make use of as much
of the early timeslices as possible. The effective energy as defined in Eq. (3.20) will trend
towards a constant value at large times. We identify this with the energy of the ground
state coupling to the interpolating operators. Before this asymptotic behaviour however,
the correlation function will have significant contributions from excited states with larger
energies than the ground state. The left hand figure of 3.2 shows this effective energy and
we can see that there is a plateau behaviour around t = [10, 25]. A simplified expression
of the correlation function spectrum is

G(p⃗, t,Γ) = A0e
−E0t + A1e

−E1t + ..., (3.30)

where we define Ai = g
(2)
χ [Xi; p⃗ ] which contains the overlap factors for the state Xi. A

straightforward approach to determine the energy of the ground state is to truncate the
above expression after the first term and use it to fit to the correlator in the plateau
region. However this method leaves out a significant number of early timeslices in which
the Signal-to-Noise ratio is excellent but the ground state is not dominant. To make use
of these additional timeslices we will also fit to the correlation function with two terms
in the expression in Eq. (3.30).

The effective energy figure does not give any indication of the time window in which
the two lowest-energy states are dominant contributions to the signal, this means that
there could be a lot of bias through the choice of fit window. To avoid this bias, we use
both ansätze to fit to the correlation function over a wide range of fit windows, and then
use a weighted averaging procedure to produce one result for the ground state energy. The
largest timeslice which can be included in the fit window is relatively straightforward to
determine by looking at the effective mass and the Signal-to-Noise ratio of the correlation
functions, therefore to vary the fit windows we include a range of different starting points.
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3.1.4. Weighted Average of Fits

The weighted averaging shown here uses a modified inverse variance weighting to establish
a weight for each fit [41]. The fits which are included in the averaging procedure are
from both the fit functions and for variations in the time-window for both. The weight
depends on the χ2 value of the fit and has an inverse dependence on the variance of the
fitted energy parameter. The weight corresponding to fit f is defined as

w̃f =
pf

(
δEf

0

)−2

∑N
f ′=1 pf ′

(
δEf ′

0

)−2 , (3.31)

where pf is the p-value of the fit f and δEf
0 is the uncertainty in the ground state energy

of fit f . The p-value is defined as

pf =
Γ(Ndof/2, χ

2
f/2)

Γ(Ndof/2)
, (3.32)

where Γ(z) is the gamma function and Γ(s, x) is the upper incomplete gamma func-
tion. Using these weights we can calculate the weighted average and the corresponding
uncertainties as follows:

Ē0 =
N∑

f=1

wfEf
0 , (3.33)

δstatĒ0
2
=

N∑

f=1

wf (δEf
0 )

2, (3.34)

δsysĒ0
2
=

N∑

f=1

wf (Ef
0 − Ē0)

2, (3.35)

δĒ0 =

√
δstatĒ0

2
+ δsysĒ0

2
, (3.36)

where N is the total number of fits. This method can be applied to multiple fit ansätze
as well as variations over the fit window, to minimise the effects of the systematic
uncertainties we will not include every fit window.
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3.1.5. Baryon Masses

We apply the above analysis methods to the determination of the masses of baryons on a
large set of the lattice ensembles generated by the QCDSF-UKQCD-CSSM collaboration,
the details of which are shown in Appendix C. The aim of this was to provide an improved
determination of the energies which could be applied consistently across multiple lattice
sizes and specifications. To visualise the weighted average procedure we show the results
of the fits to the nucleon correlation function on a 243 × 48 lattice in figure 3.3. The
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Figure 3.3. On the left-hand axis the mass of the nucleon in lattice units is shown for two
different ansätze and a range of tmin. values. The right-hand axis (bar plot)
shows the respective weights of each of the fits. The red band shows the weighted
average, the inner band shows the statistical uncertainties, the outer band shows
the combined statistical and systematic uncertainties. The result shown in green
highlights the fit with the highest weighting. The results here are from the
243 × 48 lattice with β = 5.40 and (κl, κs) = (0.119820, 0.119820).

figure shows the starting point of the fit window on the x-axis, the ground state energy
with uncertainties for each fit on the left y-axis and the weight for each fit on the right
y-axis. For all the fits shown here the end-point of the fit window was fixed to tmax = 24,
after this timeslice, it determined that the noise started to dominate over the signal by
looking at the effective mass. The fit results for a range of tmin values are included for
both of the ansätze, this range was chosen to be as broad as possible without including
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any ’poor fits’. Fits with very large uncertainties have also been excluded from the
figure and the weighted average. The green point indicates that the one-exponential
fit starting at tmin = 8 has the highest weighting, however some of the fits using the
two-exponential ansatz contribute significantly to the average as well. The dark red
band in the figure shows the value of the weighted average with statistical uncertainties,
while the lighter red band shows the size of the combined uncertainty to the weighted
average. The combined uncertainty also includes the systematic uncertainty due to the
inclusion of the two ansätze as well as the different fit windows. As expected there is
good agreement between the band and the highly-weighted fit results. We also note that
there is a difference between the highest weighted one-exponential fit and the highest
weighted two-exponential fit. This method allows for a more consistent determination of
baryon energies which does not rely on a manual choice of fit window.

The full results of applying this analysis method to the baryon correlation function
on all the lattice ensembles are shown in Appendix C, together with the previous
determination of the energy using a single ‘plateau’ fit as comparison.

3.2. Three-point Correlation Functions

A lattice three-point function is defined using two interpolation operators and a current
insertion. Starting with the path integral representation of this three-operator expectation
value, we can again derive a spectral representation through the existence of a transfer
matrix,

CB′OB(x, y) = ⟨χB′(x)O(y)χ̄B(0)⟩ (3.37)

=
1

Z

∫
DU det[M ]χB′(x)O(y)χ̄B(0) e

−SG[U ], (3.38)

where we use the symmetry of the lattice to position the creation operator at the origin.
The two interpolating operators χB and χB′ do not necessarily have to be the same
as this can also describe transitions between hadrons. If the temporal lattice size is
sufficiently large, the transfer matrix will pick out the vacuum state

CB′OB(x, y) = ⟨Ω|χB′(x)O(y)χ̄B(0)|Ω⟩ . (3.39)
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χ̄(0) χ(x)

O(y)

Figure 3.4. A diagram of a three-point function constructed from the creation and annihila-
tion operators χ̄(0) and χ(x) respectively and a current insertion O(y).

The Fourier projected three-point function is then defined as

GB′OB(p⃗
′, t; q⃗, τ) =

∑

x⃗,y⃗

e−ip⃗
′·x⃗eiq⃗ ·y⃗ ⟨Ω|χB′(x⃗, t)O(y⃗, τ)χ̄B (⃗0, 0)|Ω⟩ , (3.40)

where q⃗ is the momentum inserted by the current operator. Now inserting two complete
sets of states into the expression (with the spinor argument suppressed)

GB′OB(p⃗
′, t; q⃗, τ) =

∑

X,r
Y,s

∑

x⃗,y⃗

e−ip⃗
′·x⃗eiq⃗ ·y⃗

4EXEY
⟨Ω|χB′(x)|X(pX)⟩

⟨X(pX)|O(y)|Y (pY )⟩ ⟨Y (pY )|χ̄B(0)|Ω⟩ ,

(3.41)

and using the translational invariance of the operators allows us to project the momenta
through the sum over x⃗ and y⃗

GB′OB(p⃗
′, t; q⃗, τ) =

∑

X,r
Y,s

∑

x⃗,y⃗

e−ip⃗
′·x⃗

2EX

eiq⃗ ·y⃗

2EY
⟨Ω|χB′(0)eip̂·x⃗e−Ĥt|X(p⃗X)⟩

⟨X(p⃗X)|e−ip̂·y⃗eĤτO(0)eip̂·y⃗e−Ĥτ |Y (p⃗Y )⟩ ⟨Y (p⃗Y )|χ̄B(0)|Ω⟩

=
∑

X,r
Y,s

∑

x⃗,y⃗

e−ix⃗·(p⃗
′−p⃗X)

2EX

e−iy⃗·((p⃗X−p⃗Y )−q⃗ )

2EY
e−EX(p⃗X)te−(EY (p⃗Y )−EX(p⃗X))τ

⟨Ω|χB′(0)|X(pX)⟩ ⟨X(pX)|O(0)|Y (pY )⟩ ⟨Y (pY )|χ̄B(0)|Ω⟩ .
(3.42)



Hadronic Observables 31

The sum over x⃗ and y⃗ combined with the exponentials will now project the momenta as
p⃗X = p⃗ ′ and p⃗Y = p⃗ ′ − q⃗ = p⃗ , leading to

GB′OB(p⃗
′, t; q⃗, τ) =

∑

X,r
Y,s

e−EX(p⃗ ′)(t−τ)e−EY (p⃗ )τ

4EXEY

⟨Ω|χB′(0)|X(p⃗ ′)⟩ ⟨X(p⃗ ′)|O(0)|Y (p⃗ )⟩ ⟨Y (p⃗ )|χ̄B(0)|Ω⟩ .

(3.43)

The time dependence of this expression is now fully contained in the energy exponentials.
combining these with the sum over states X and Y will result in only the lowest-energy
state remaining for sufficiently large values of τ and t− τ . In this case we label these
ground states B and B′

GB′OB(p⃗
′, t; q⃗, τ)

t,τ≫0−−−→
∑

r,s

e−EB′ (p⃗ ′)(t−τ)e−EB(p⃗ )τ

4EB′(p⃗ ′)EB(p⃗ )

⟨Ω|χB′(0)|B′(p⃗ ′)⟩ ⟨B′(p⃗ ′)|O(0)|B(p⃗ )⟩ ⟨B(p⃗ )|χ̄B(0)|Ω⟩ .
(3.44)

Now we can write the overlap factors in terms of spinors and Z-factors as in Eq.
(3.12), while the matrix element of interest can also be decomposed into form factors and
spinors. We combine this with a projection of the correlator onto a definite polarisation
using the projection matrix Γ,

GB′OB(Γ, p⃗
′, t; q⃗, τ) =

e−EB′ (p⃗ ′)(t−τ)e−EB(p⃗ )τ

4EB′(p⃗ ′)EB(p⃗ )
ZB′B′(p⃗ ′)Z̄BB̄(p⃗ )

×
∑

r,s

Tr
{
ΓuB′(p′, r)ūB′(p′, r)J (q2)uB(p, s)ūB(p, s)

}
,

(3.45)

here J (q2) is a combination of form factors which describes the operator O. The sum
over the spin states can be combined with the spinors in the trace to get the expression

GB′OB(Γ, p⃗
′, t; q⃗, τ) =

∑

EB′ ,EB

e−EB′ (p⃗ ′)(t−τ)e−EB(p⃗ )τ

EB′(p⃗ ′)EB(p⃗ )
ZB′B′(p⃗ ′)Z̄BB̄(p⃗ )

× F3(Γ,JO, p⃗
′, q⃗,mB′ ,mB),

(3.46)

where we have defined

F3(Γ,JO, p⃗
′, q⃗,mB′ ,mB) =

1

4

∑

r,s

Tr
{
ΓuB′(p′, r)ūB′(p′, r)JO(q

2)uB(p, s)ūB(p, s)
}
.

(3.47)
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This function will yield different combinations of form factors depending on the current
and projection matrix.

3.2.1. Ratio of Correlation Functions

To extract the value of the matrix element, we have to deal with the time-dependence
of the three-point function. It is possible to fit the three-point function itself, however
this requires determining two separate time-dependences. More commonly a ratio of
three-point and two-point functions is constructed such that the time-dependence cancels
out in the large time limit. Since the three-point function depends on two Euclidean time
distances, we expect this ratio to show the correct value as a plateau when the operator
insertion time is approximately halfway between the source and the sink. Consider
the three-point function for large Euclidean times (τ, t− τ), then the ground state will
dominate the signal

GB′OB(p⃗
′, t; q⃗, τ)

t,τ≫0−−−→ e
−EB′

0
(p⃗ ′)(t−τ)

e−EB0
(p⃗ )τ

EB′
0
EB0

ZB′B′
0
(p⃗ ′)Z̄B0B̄(p⃗ )

× F3(Γ,JO, p⃗
′, q⃗,mB′ ,mB).

(3.48)

We define the ratio of three-point and two-point functions as

R(Γ,O; t, τ ; p⃗ ′, p⃗ ) =
GB′OB(Γ; p⃗

′, t; q⃗ , τ)

GB′(t, p⃗ ′)

√
GB′(τ, p⃗ ′ )GB′(t, p⃗ ′ )GB(t− τ, p⃗ )

GB(τ, p⃗ )GB(t, p⃗ )GB′(t− τ, p⃗ ′)
. (3.49)

In the simple case of a forward matrix element between two of the same baryons at rest,
this ratio reduces

R(Γ,O; t, τ ; 0⃗ , 0⃗ ) =
GBOB(Γ; 0⃗ , t; 0⃗ , τ)

GB(t, 0⃗ )

t,τ≫0−−−→ F3(Γ,JO, 0⃗ , 0⃗ ,mB,mB)

2m2
B

.

(3.50)

In this large Euclidean time limit there will be no more time-dependence, so we expect a
plateau region to show up at these times. In practical lattice QCD calculations it is not
always feasible to accumulate sufficient statistics to get a clear signal at large enough
Euclidean times. Therefore it is useful to explore the contributions to the signal by the
excited states. These contributions can be included explicitly in the analysis of the signal
to improve the extraction of the matrix elements.
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3.3. Error Analysis

Using the Monte Carlo approach to estimating the path integral makes the lattice QCD
calculations feasible on modern computers. The expectation value of the operator is
defined as the average across all gauge field configurations in the ensemble. To estimate
the uncertainty of this evaluation would require the generation of multiple independent
ensembles of gauge configurations over which the statistical variation of the observable
could be examined. This would increase the computational cost of the calculation. To
avoid this additional cost, lattice QCD calculations use resampling methods to determine
the uncertainties, such as the bootstrap, or jack-knife methods.

In this work we will be using the bootstrap resampling method for this purpose [42]. To
obtain an estimate for the uncertainty of an observable, firstly the observable is calculated
on a set of Nconf field configurations. From this set of evaluations of the observable, a new
set of Nconf is sampled with replacement. This resampling with replacement is repeated
Nboot times, and the average of the observable over the resampled set is saved. If the
number of resamples is sufficiently large, the new set of Nboot estimates of the observable
will then have a normal distribution which is used to determine the uncertainty in the
observable. This method produces reliable estimates of the uncertainty only if the initial
set of Nconf samples is representative of the entire population, which is ensured by the
gauge field generation process in lattice QCD.

For an observable O, which has been evaluated on Nboot sets of resampled field
configurations, the average and the variance are then defined as

O ≡ 1

Nboot

Nboot∑

i=1

Oi (3.51)

σ2
O ≡ 1

Nboot

Nboot∑

i=1

(
Oi −O

)2
. (3.52)

In this work we will use Nboot = 500 resamplings for all calculations.
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Chapter 4.

Feynman-Hellmann Method

The Feynman-Hellmann theorem was first applied in quantum mechanics where it
describes a relation between matrix elements and variations in the energy spectrum [43–46].
The theorem states that when a perturbation proportional to λ is made to the Hamiltonian
of a system, then the shift in the energy can be related to the matrix element of that
perturbation. Taking a Hamiltionan H = H0 + λHλ which depends on a continuous
parameter λ, then the derivative of the energy of its eigenstate ψ with respect to λ can
be expressed as

∂E

∂λ

∣∣∣∣
λ=0

= ⟨ψ|Hλ|ψ⟩λ=0 . (4.1)

This method has been applied to lattice QCD calculation in many forms. It’s main
strength comes from the fact that the calculation of a hadron spectrum is computationally
cheaper than that of matrix elements in lattice QCD. The most straightforward application
of this theorem in lattice QCD is for nucleon sigma terms [47–53], as these can be
determined from the matrix elements of the scalar currents. These calculations are
valuable for the interpretation of dark matter direct detection experiments. In this case
the perturbation is taken to be a parameter in the model itself, namely the quark masses.
However the perturbation can just as well come from an introduced parameter, this is
how the Feynman-Hellmann method has been applied to the calculation of hadronic
matrix elements in lattice QCD [54–59].

Other applications in lattice QCD include calculations of the nucleon isovector charges
[60,61], determinations of the gluon component of momentum in the nucleon [62,63] and
quark contributions to the nucleon’s spin [54]. Higher order extensions of the Feynman-

35
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Hellmann method have been successfully applied to the calculation of the Compton
amplitude and moments of the generalised parton distributions [64–67].

4.1. Path-Integral approach

The Feynman-Hellmann method relates the value of a matrix element to the derivative
of the energy. We will consider the effect of a modified QCD action, which we define as
S(λ) = S0 + Sλ. Consider a two-point function defined in the presence of this modified
action,

Cλ(t; p⃗ ) = λ⟨χ̃(t; p⃗ )χ̄(0; 0⃗ )⟩λ , (4.2)

where we define the momentum-projected interpolating operator as

χ̃(t; p⃗ ) =
∑

x⃗

e−ip⃗·x⃗χ(t, x⃗ ). (4.3)

In the path integral formalism the correlation function takes the following form

Cλ(t; p⃗ ) =
1

Zλ

∫
DU χ̃(t; p⃗ )χ̄(0)e−S(λ), (4.4)

where the partition function is

Zλ =

∫
DU e−S(λ), (4.5)

and we use DU to represent the integrand of all the field operators of the theory.

To consider the application of the Feynman-Hellmann method in lattice QCD we start
by taking the partial derivative of the correlation function with respect to the parameter
λ, evaluated at λ = 0,

∂Cλ
∂λ

∣∣∣∣
λ=0

=
1

Z

∫
DU χ̃(t; p⃗ )χ̄(0)e−S0

1

Z

∫
DU ∂S

∂λ
e−S0 − 1

Z

∫
DU χ̃(t; p⃗ )χ̄(0)∂S

∂λ
e−S0

= ⟨χ̃(t; p⃗ )χ̄(0)⟩
〈
∂S

∂λ

〉
−
〈
T

{
χ̃(t; p⃗ )χ̄(0)

∂S

∂λ

}〉
, (4.6)

where T indicates the time-ordered product of the operators.
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Similarly we can take the derivative of the spectral representation of the two-point
function as defined in Eq. (3.8). Noting that both the energy and the overlap factor will
now depend on λ, we can write the derivative as

∂Cλ
∂λ

∣∣∣∣
λ=0

=
∑

X

[
∂g

(2)
χ [X, p⃗, λ]

∂λ

∣∣∣∣
λ=0

− t
∂EX(p⃗, λ)

∂λ

∣∣∣∣
λ=0

g(2)χ [X, p⃗, 0]

]
e−EX(p⃗,0)t. (4.7)

Here we see that the term which contains the derivative of the energy will be time-
enhanced. We will use this to match up terms from the derivative of the path-integral
expression.

The modification to the action is defined as an operator projected onto a specific
momentum value

S(λ) = S0 + λi

∫
dt
∑

∆3x eiq⃗i·x⃗ ji(x)

= S0 + λi

∫
dtJi(t; q⃗i ),

(4.8)

where we define Ji(t; q⃗ ) =
∑

x⃗∆
3x eiq⃗i·x⃗ ji(t, x⃗ ), and we note that we consider only

currents with zero vacuum expectation values. The subscript i indicates that we can
consider multiple modifications each with their own momentum projection. We consider
the theory for continuous time for now as this is sufficient to produce a discrete spectrum
on the lattice.

Using this action, the derivative of the correlation function in Eq. (4.6) becomes

∂Cλ
∂λ

∣∣∣∣
λ=0

= C(t)

∫
dt′ ⟨J (t′; q⃗ )⟩ −

∫
dt′ ⟨T{χ̃(t; p⃗ )J (t′; q⃗ )χ̄(0)}⟩ . (4.9)

The first term here is proportional to the vacuum expectation value of the current
operator, which will be zero in most cases. The second term will need to be considered for
the various time-orderings. To calculate the contributions from the various time-ordering
regions we will rewrite the equation for discretised Euclidean time,

∫ ∞

−∞
dt′ ⟨T{χ̃(t; p⃗ )J (t′; q⃗ )χ̄(0)}⟩ =

∫ ∞

t

dt′ ⟨J (t′; q⃗ )χ̃(t)χ̄(0)⟩

+

∫ t

0

dt′ ⟨χ̃(t)J (t′; q⃗ )χ̄(0)⟩

+

∫ 0

−∞
dt′ ⟨χ̃(t)χ̄(0)J (t′; q⃗ )⟩ .

(4.10)
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The second time-ordering contains the matrix element of interest, where the current is
inserted between the two interpolating operators. The other two time-orderings contain
three-point functions where the current operator will create or destroy a meson before or
after the interpolating operators.

Central Time-ordering

Firstly we consider the time-ordering (0 < t′ < t) which contains the matrix element
of interest. We will start by inserting two complete sets of states into the correlation
function

∫ t

0

dt′ ⟨χ̃(t; p⃗ )J (t′; q⃗ )χ̄(0)⟩ =
∫ t

0

dt′
∑

X,p⃗X
Y,p⃗Y

∆3p⃗X
(2π)3

∆3p⃗Y
(2π)3

1

4EX(p⃗X)EY (p⃗Y )

∗ ⟨Ω|χ̃(t; p⃗ ) |X(p⃗X)⟩ ⟨X(p⃗X)| J (t′; q⃗ ) |Y (p⃗Y )⟩ ⟨Y (p⃗Y )| χ̄(0)|Ω⟩ .

(4.11)

Using the translational invariance of the operators allows us to extract the time dependence

∫ t

0

dt′
∑

X,p⃗X
Y,p⃗Y

∑

x⃗,y⃗

∆3p⃗X
(2π)3

∆3p⃗Y
(2π)3

∆3x⃗∆3y⃗ e−i(p⃗−p⃗X)·x⃗ei(q⃗−p⃗X+p⃗Y )·y⃗e−EX(p⃗X)t

∗ e
−(EY (p⃗Y )−EX(p⃗X))t′

4EX(p⃗X)EY (p⃗Y )
⟨Ω|χ(0) |X(p⃗X)⟩ ⟨X(p⃗X)| j(0) |Y (p⃗Y )⟩ ⟨Y (p⃗Y )| χ̄(0)|Ω⟩ .

(4.12)

Summing over the spatial coordinates gives delta functions in momentum which determine
the momenta of the states to be p⃗X = p⃗ and p⃗Y = p⃗− q⃗ ≡ p⃗ ′

∫ t

0

dt′
∑

X,Y

e−EX(p⃗ )t

4EX(p⃗ )EY (p⃗ ′)
e−(EY (p⃗ ′)−EX(p⃗ ))t′ ⟨Ω|χ(0)|X(p⃗ )⟩

∗ ⟨X(p⃗ )|j(0)|Y (p⃗ ′)⟩ ⟨Y (p⃗ ′)|χ̄(0)|Ω⟩ .
(4.13)

To solve the integral over t′, we will first split the sum over all states into a set of
energy-degenerate states and non-degenerate states since the difference in energies in the
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exponential will vanish for energy-degenerate states. The split integral becomes

∫ t

0

dt′
[ ∑

X,Y
EX=EY

e−EX(p⃗ )t

4E2
X(p⃗ )

⟨Ω|χ(0)|X(p⃗ )⟩ ⟨X(p⃗ )|j(0)|Y (p⃗ ′)⟩ ⟨Y (p⃗ ′)|χ̄(0)|Ω⟩ (4.14)

+
∑

X,Y
EX ̸=EY

e−EX(p⃗ )te−(EY (p⃗ ′)−EX(p⃗ ))t′

4EX(p⃗ )EY (p⃗ ′)
⟨Ω|χ(0)|X(p⃗ )⟩ ⟨X(p⃗ )|j(0)|Y (p⃗ ′)⟩ ⟨Y (p⃗ ′)|χ̄(0)|Ω⟩

]
.

Which, after evaluating the integral, shows that the term with energy-degenerate states
will be time-enhanced

∑

X,Y
EX=EY

t
e−EX(p⃗ )t

4E2
X(p⃗ )

⟨Ω|χ(0)|X(p⃗ )⟩ ⟨X(p⃗ )|j(0)|Y (p⃗ ′)⟩ ⟨Y (p⃗ ′)|χ̄(0)|Ω⟩

+
∑

X,Y
EX ̸=EY

[
e−EY (p⃗ ′)t − e−EX(p⃗ )t

4EX(p⃗ )EY (p⃗ ′)(EX(p⃗ )− EY (p⃗ ′))
⟨Ω|χ(0)|X(p⃗ )⟩

∗ ⟨X(p⃗ )|j(0)|Y (p⃗ ′)⟩ ⟨Y (p⃗ ′)|χ̄(0)|Ω⟩
]
.

(4.15)

Other Time-orderings

Now consider the integral over the first time region (t < t′ <∞). Inserting two complete
sets of states and extracting the time-dependence gives
∫ ∞

t

dt′ ⟨J (t′; q⃗ )χ̃(t; p⃗ )χ̄(0)⟩

=

∫ ∞

t

dt′
∑

X,p⃗X
Y,p⃗Y

1

4EXEY
⟨Ω|J (t′; q⃗ )|X(p⃗X)⟩ ⟨X(p⃗X)|χ(t; p⃗ )|Y (p⃗Y )⟩ ⟨Y (p⃗Y )|χ̄(0)|Ω⟩

=

∫ ∞

t

dt′
∑

X,Y

e−EX t
′
eEX te−EY t

4EXEY

∑

x⃗,y⃗

∑

p⃗X ,p⃗Y

e−iy⃗·(−p⃗X−q⃗ )e−ix⃗·(p⃗Y −p⃗X−p⃗ )

∗ ⟨Ω|j(0)|X(p⃗X)⟩ ⟨X(p⃗X)|χ(0)|Y (p⃗Y )⟩ ⟨Y (p⃗Y )|χ̄(0)|Ω⟩ .
(4.16)
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Once again we use the spatial and momentum-space sums to determine the momenta to
be p⃗X = −q⃗ and p⃗Y = p⃗− q⃗ ≡ p⃗ ′,

∑

X,Y

e−(EY −EX)t

4EXEY

∑

p⃗X ,p⃗Y

δ(3)(p⃗X + q⃗ )δ(3)(p⃗Y − p⃗X − q⃗ )

∫ ∞

t

dt′e−EX t
′

∗ ⟨Ω|j(0)|X(p⃗X)⟩ ⟨X(p⃗X)|χ(0)|Y (p⃗Y )⟩ ⟨Y (p⃗Y )|χ̄(0)|Ω⟩ .
(4.17)

Solving the integral gives
∫ ∞

t

dt′ ⟨J (t′; q⃗ )χ(t; p⃗ )χ̄(0)⟩

=
∑

X,Y

e−EY (p⃗ ′)t

4E2
XEY

⟨Ω|j(0)|X(−q⃗ )⟩ ⟨X(−q⃗ )|χ(0)|Y (p⃗ ′)⟩ ⟨Y (p⃗ ′)|χ̄(0)|Ω⟩ .
(4.18)

The last time-ordering with the integral over (−∞ < t′ < 0) gives a similar result

∫ 0

−∞
dt′ ⟨χ(t; p⃗ )χ̄(0)J (t′; q⃗ )⟩

=
∑

X,Y

e−EY (p⃗ )t

4E2
XEY

⟨Ω|χ(0)|Y (p⃗ )⟩ ⟨Y (p⃗ )|χ̄(0)|X(q⃗ )⟩ ⟨X(q⃗ )|j(0)|Ω⟩ .
(4.19)

Both of these expressions have a similar exponential time dependence and importantly
they do not contain the time-enhancement which will be used to extract the matrix
element.

4.1.1. Forward Matrix Elements

To show how this method can be used to determine the value of matrix elements we will
first consider the forward case where there is no momentum transfer between the states
(p⃗ ′ = p⃗ ). The expressions for the derivative of the two-point correlation function in Eq.
(4.7) and Eq. (4.9) are equal for all times, allowing us to match the time-enhanced terms
in both expressions. We consider both expressions in the large time limit where it can be
assumed that the ground state dominates the signal and all other states are exponentially
suppressed, we label the ground state N here. We note that for the forward case, the
energy degeneracy requirement in Eq. (4.15) reduces to a requirement that the states
be identical X = Y = N . Combining the time-enhanced terms from Eq. (4.7) and Eq.
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(4.15) gives

∂EN(p⃗, λ)

∂λ

∣∣∣∣
λ=0

e−EN (p⃗ )t

2EN(p⃗ )
⟨Ω|χ(0)|N(p⃗ )⟩ ⟨N(p⃗ )|χ̄(0)|Ω⟩

=
e−EN (p⃗ )t

4E2
N(p⃗ )

⟨Ω|χ(0)|N(p⃗ )⟩ ⟨N(p⃗ )|j(0)|N(p⃗ )⟩ ⟨N(p⃗ )|χ̄(0)|Ω⟩ ,
(4.20)

which reduces to

∂EN(p⃗, λ)

∂λ

∣∣∣∣
λ=0

=
1

2EN(p⃗ )
⟨N(p⃗ )|j(0)|N(p⃗ )⟩ . (4.21)

This expression now relates the change in the energy of the state due to the perturbation
in the action to the value of the matrix element. The particular interest of this expression
for lattice QCD stems from the fact that calculations of the spectrum of states are much
simpler than those of matrix elements. This relation then allows for a determination of
matrix elements which relies only on the calculation of the spectrum of the perturbed
system.

4.1.2. Off-forward Matrix Elements

To extend the Feynman-Hellmann method to the calculation of off-forward matrix
elements between two matching baryons, a momentum projection will be added to the
modification of the QCD action. We will consider a current insertion which contains
both signs of the momentum transfer q⃗, to retain its Hermitian properties

S(λ) = S0 + λ
∑

x

∆4x (eiq⃗·x⃗ + e−iq⃗·x⃗ )j(x), (4.22)

where j(x) = q̄(x)Γq(x) and Γ is any Dirac matrix.

To derive an expression relating the energy shift to the matrix element, we will have
to deal with the fact that our standard set of states is no longer an eigenstate of the
modified Hamiltonian as there will be mixing between the different momentum-spin
states with degenerate energies. To be able to take the derivative of the correlator we
must first find the states which diagonalise the modified Hamiltonian. The new set of
eigenstates are determined by the operator j(x) and how it couples to the momentum
and spin states, we will consider both the temporal and the spatial vector currents in
this section.
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Temporal Vector Current

The temporal vector current V4(x) is defined by the fourth gamma matrix between two
quark fields of flavour f ,

Vf4 (x) = q̄f (x)γ4qf (x). (4.23)

For two baryon states which are in the Breit frame with non-zero energy transfer such
that p⃗r = ±p⃗s, we write the matrix element of this current as

⟨X(p⃗r, σr)|Vf4 (0)|X(p⃗s, σs)⟩ =


0 1

1 0



rs

2MX G
f
E,X(Q

2) δσrσs , (4.24)

where the matrix is in momentum-space. Diagonalising this matrix gives two eigenvectors
(ej) with corresponding eigenvalues (µj)

e+ =


+

1√
2

+ 1√
2


 , µ+ = +2MX G

f
E,X(Q

2), (4.25)

e− =


+

1√
2

− 1√
2


 , µ− = −2MX G

f
E,X(Q

2). (4.26)

Using these eigenvectors we can construct new energy eigenstates

|X+(p⃗ )⟩ =
1√
2

[
|X(p⃗ )⟩+ |X(−p⃗ )⟩

]
, (4.27)

|X−(p⃗ )⟩ =
1√
2

[
|X(p⃗ )⟩ − |X(−p⃗ )⟩

]
. (4.28)

These states are combined to form a expression for the identity

I =
∑

X,|⃗k|,σ

∑

j

∆3k

(2π)3
|Xj(k⃗, σ)⟩ ⟨Xj(k⃗, σ)|
⟨Xj(k⃗, σ)|Xj(k⃗, σ)⟩

. (4.29)

When inserting this complete set of states into the two-point function it is important
to note that the nature of the lattice calculation does not allow us to easily choose an
arbitrary combination of momentum states at the source, these will be determined by
the sink momentum projection and momentum conservation. The sum over all momenta
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in the correlator will pick out the X+(p⃗ ) combination naturally, thus we will consider
the expression using this combination of states,

Gλ(t; p⃗, λ) =
∑

X

e−EX+
(p⃗ )t

2EX+(p⃗ )
⟨Ω|χ(0)|X+(p⃗ )⟩ ⟨X+(p⃗ )|χ̄(0)|Ω⟩ . (4.30)

Considering the derivative of this correlator, we can once again match the time-
enhanced part to the expression in Eq. (4.15),

∑

X

∂EX+(p⃗, λ)

∂λ

∣∣∣∣
λ=0

e−EX+
(p⃗ )t

2EX+(p⃗ )
⟨Ω|χ(0)|X+(p⃗ )⟩ ⟨X+(p⃗ )|χ̄(0)|Ω⟩ (4.31)

=
∑

X
|p⃗ |=|p⃗ ′|

e−EX+
(p⃗ )t

4E2
X+

(p⃗ )
⟨Ω|χ(0)|X+(p⃗ )⟩ ⟨X+(p⃗ )|Vf4 (0)|X+(p⃗

′)⟩ ⟨X+(p⃗
′)|χ̄(0)|Ω⟩ .

Taking the large Euclidean time limit for this expression reduces both sides to their
ground states and gives us an expression between the matrix element of the baryon and
the energy shift

∂EB+(p⃗, λ)

∂λ

∣∣∣∣
λ=0

=
1

2EB+(p⃗ )
⟨B+(p⃗ )|Vf4 (0)|B+(p⃗

′)⟩

=
MB

EB+(p⃗ )
Gf
E,B(Q

2).

(4.32)

This relation will only be valid in the Breit frame where p⃗ ′ = −p⃗ = ±q⃗/2. This limits the
accessible lattice momenta for this method, however using the Breit frame will minimise
the initial and final momenta (p⃗, p⃗ ′) for each value of Q2. These values of momenta will
improve the quality of the signal which is beneficial for calculations of matrix elements
at high momenta.

Spatial Vector Current

The spatial vector current is defined as before but with a spatial gamma matrix, for this
example we shall choose γ2,

Vf2 (x) = q̄f (x)γ2qf (x). (4.33)

For the spatial vector current to produce a real energy shift we require the current to
be imaginary. For the numerical simulations in this thesis however, we will use a real
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operator which we can show allows us to more easily isolate one of the Hamiltonian
eigenstates, allowing for a simpler analysis of the correlators.

We consider the matrix element of this current between two Breit frame momentum-
spin states (|p⃗r| = |p⃗s| ≡ |p⃗ |),

⟨X(p⃗r, σr)|Vf2 (q⃗ )|X(p⃗s, σs)⟩
⟨X(p⃗ )|X(p⃗ )⟩ =

Gf
M,X(Q

2)

2EX(p⃗ )




0 0 −q1 q3

0 0 q3 q1

q1 −q3 0 0

−q3 −q1 0 0




r,σr,sσs

, (4.34)

where the r and s indices are for momentum space and the σr, σs indices for spin space.
Since this matrix has a non-trivial spin dependence, the diagonalisation will result in
four eigenvectors (ejσ), with two distinct eigenvalues (µj)

e++ =




1

0

iq1√
q21+q

2
3

−iq3√
q21+q

2
3



, e−+ =




1

0

−iq1√
q21+q

2
3

iq3√
q21+q

2
3



,

e+− =




0

1

−iq3√
q21+q

2
3

−iq1√
q21+q

2
3



, e−− =




0

1

iq3√
q21+q

2
3

iq1√
q21+q

2
3



,

(4.35)

µ(±) = ±iλ
√
q21 + q23

Gf
M,X(Q

2)

2EB(p⃗ )
, (4.36)

where once again the index j spans momentum space and σ spans spin space.

This set of eigenvalues complicates the situation as it becomes difficult to construct a
correlation function which couples only to one energy eigenstate and not the other. None
of these eigenvalues contain a combination of momentum states as straightforward as for
the temporal current. The two-point function constructed with this perturbation will
couple to both energy eigenstates, and will not isolate just one energy exponential as
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for the temporal current. By expanding the transfer matrix for small λ and by writing
the matrix element in Eq. (4.34) in terms of the eigenvectors and eigenvalues we get the
following expression

Gλ(p⃗r, t,Γ
3
±) =

EB +MB

EB
|Z(p⃗ )|2



(1± iq1√

q21+q
2
3

)e−E
(+)
B (λ)t + (1∓ iq1√

q21+q
2
3

)e−E
(−)
B (λ)t

(1∓ iq1√
q21+q

2
3

)e−E
(+)
B (λ)t + (1± iq1√

q21+q
2
3

)e−E
(−)
B (λ)t



r

,

(4.37)

where

E
(±)
B (p⃗, λ) = EB(p⃗ )± µ(j), (4.38)

and the correlator is defined as a vector in the momentum space which contains
(+q⃗/2,−q⃗/2) with the index being r. More details on this expansion are included
in Appendix B and a more general form of this approach to the Feynman-Hellmann
method is derived in chapter 6.

Since the eigenvectors in Eq. (4.36) are imaginary, they can be seen as a phase shift
to the terms of correlator in Eq. (4.37), we can expand this phase shift for small values
of λt to get an expression for the real shift to the energy,

e−E
(±)
B (λ)t = e−EBt

[
e
∓iλ

√
q21+q

2
3

G
f
M,B

(Q2)

2EB
t

]

≈ e−EBt

[
1∓ iλ t

√
q21 + q23

Gf
M,B(Q

2)

2EB
+O(λ2t2)

]
.

(4.39)

Inserting this back into (4.37) gives

Gλ(p⃗r, t,Γ
3
±) =

EB +MB

EB
|Z(p⃗ )|2



e−EBt

(
1∓ λ t q1

Gf
M,B(Q2)

2EB

)

e−EBt

(
1± λ t q1

Gf
M,B(Q2)

2EB

)



r

=
EB +MB

EB
|Z(p⃗ )|2


e

−
(
EB(p⃗ )± λ q1

2EB
Gf

M,B(Q2)
)
t

e
−
(
EB(p⃗ )∓ λ q1

2EB
Gf

M,B(Q2)
)
t



r

.

(4.40)

This expression is now in the familiar form of a decaying exponential, where we can
identify the exponent with the energy of the ground state of the baryon. The shift of this
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energy compared to the energy of the ground state of the unperturbed correlator allows
us to extract the magnetic form factor GM . Additionally we see that the sign of the
energy shift depends on both the projection matrix and the sign of the sink momentum.
To summarise, we can write the Feynman-Hellmann relation between the ground state
energy of the correlator and the form factor as

∂EB(+p⃗, λ,Γ
3
±)

∂λ

∣∣∣∣
λ=0

= ± q1
2EB(p⃗ )

Gf
M,B(Q

2), (4.41)

∂EB(−p⃗, λ,Γ3
±)

∂λ

∣∣∣∣
λ=0

= ∓ q1
2EB(p⃗ )

Gf
M,B(Q

2). (4.42)

We can generalise this expression to any spatial vector current γi, spin-projection
matrix Γj±, and momentum projection p⃗, satisfying the Breit frame condition p⃗ = ±q⃗/2,

∂EB(p⃗,Γ
j
±)

∂λfi

∣∣∣∣
λ=0

= ± ϵijkqk
2EB(p⃗ )

Gf
M,B(Q

2). (4.43)



Chapter 5.

Electromagnetic Form Factors

5.1. Nucleon Structure

The internal structure of nucleons can be probed experimentally through electron-nucleon
scattering processes. The dominant process at low energies in these scattering events is
elastic scattering where the particle content before and after the collision is the same and
the nucleon remains in the ground state. Early experiments of electron-proton scattering
at Stanford University [68] were first able to probe the electric and magnetic charge
density of the proton. These densities were described by the electromagnetic form factors
which could be extracted from the experimental cross-section. The measurement of these
form factors as functions of the momentum transfer Q2 was first achieved for the proton
and then the neutron in the 1950’s [69,70]. These experiments were the first to confirm
that the proton had a finite size, providing a measurement of its charge radius at 0.77
fm [71].

Generally, baryon electromagnetic form factors can be described by matrix elements
of the electromagnetic current between baryon states, here expressed in Euclidean space,

⟨B(p′, s′)|Jem
µ (q)|B(p, s)⟩ = ūB(p

′, s′)

[
γµF1(Q

2) + σµν
qν

2MB

F2(Q
2)

]
uB(p, s), (5.1)

where the electromagnetic current is defined as the sum of the quark vector currents
weighted by their electric charge:

Jem
µ =

2

3
ūγµu−

1

3
d̄γµd−

1

3
s̄γµs. (5.2)

47
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The two form factors F1(Q
2) and F2(Q

2) in Eq. (5.1) are often called the Dirac and
Pauli form factors [72]. A common alternative basis for the form factors that we will use
in this work is the Sachs form factors:

GE(Q
2) ≡ F1(Q

2)− Q2

4m2
F2(Q

2), (5.3)

GM(Q2) ≡ F1(Q
2) + F2(Q

2), (5.4)

where GE(Q
2) and GM(Q2) are referred to as the electric and magnetic form factors

respectively. This basis is commonly used in electron scattering experiments as it allows
for the cross section to be expressed as a linear combination of the squares of the form
factors, with no cross terms [73]. The Sachs form factors are also useful for providing
insights into density distributions within the baryons as they are three-dimensional Fourier
tranforms of the charge and magnetisation distributions. These density distributions can
be revealed most readily at small values of Q2 through the definition of a mean-squared
radius for each of the distributions. The electric charge radius for the proton can be
defined as [74]

〈
r2E,p

〉
= −6

dGE,p

dQ2

∣∣∣∣
Q2=0

. (5.5)

A similar definition can be made for the magnetic form factor, however experimental
results for this are more difficult to obtain as the contributions from GM to the cross
section are suppressed by a factor of τ = Q2

4m2 [74]. In the the forward limit (Q2 = 0)
the electric form factor equals the charge of the chosen baryon, while the magnetic form
factor equals the baryon magnetic moment.

The interpretation of the form factors in terms of charge densities will only hold in
the non-relativistic limit. As we go to larger values of Q2, the difference in reference
frames between the initial and final state results in additional recoil terms in the radii.
Restricting the interpretation to the Breit frame, analogous to a boost to the infinite
momentum frame, results in a projection of the 3D charge density onto a 2D plane,
transverse to the direction of the approaching nucleon. This allows for the form factors
to be interpreted in terms of transverse charge and magnetisation densities.

Lattice QCD calculations of the nucleon electromagnetic form factors are useful for
guiding and interpreting the experimental results, they can also aid in resolving certain
tensions from experiment, such as for the proton radius. From the relation above in
equation (5.5) it can be seen that for determinations of the radii of nucleons, lattice
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QCD calculations need to focus on the small-Q2 range. Lattice QCD calculations allow
for the determination of the contributions of the individual quarks to the form factors,
as well as contributions from connected and disconnected diagrams. Form factors of
the hyperons can also be calculated through lattice QCD, these are more difficult to
determine through experiments so theoretical predictions from lattice QCD are valuable.

Figure 5.1. Experimental results for the ratio of form factors GE/GM against Q2. The blue,
magenta and red points show the results from recoil polarization experiments at
JLab [73]. The green points show the Rosenbluth separation data [75]. Figure
from [74].

Recent experimental determinations of the nucleon electromagnetic form factors have
been obtained at Jefferson Laboratory (JLab) [76]. One aspect of these results which is
of interest is the behaviour of the ratio GE/GM at large Q2. The current results seem
to indicate that this ratio has a downward trend, deviating from the phenomenological
dipole predictions. In figure 5.1 we show the experimental results for this ratio of form
factors. Despite the large uncertainties at large values of Q2, there is an indication that
the ratio GE/GM decreases and comes close to crossing over zero at large Q2. This
provides a motivation for lattice QCD calculations of the nucleon form factors to probe
this large-Q2 behaviour.
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5.2. Feynman-Hellmann Method

The Feynman-Hellmann method relates the shift in energy due to a perturbation in the
action to a desired matrix element. To apply this method to the calculation of nucleon
electromagnetic form factors we insert the following operator into the lattice QCD action

L(x) → L(x) + λfµ
(
eiq⃗·x⃗ + e−iq⃗·x⃗

)
q̄f (x) γµ qf (x), (5.6)

where we do not sum over µ and the modifications to each flavour f are considered
separately. The two exponentials are included in order to make the operator Hermitian,
this will ensure a real energy shift. The Feynman-Hellmann theorem then allows us to
extract the matrix element from the linear shift to the energy induced by this modification.

To isolate both the electric and magnetic form factors from the matrix elements we
require two different operator insertions. We will use the temporal vector operator γ4,
and the spatial vector operator γ2. These are two convenient choices as they allow us
to directly project onto the electric and magnetic form factors respectively. Since the
Feynman-Hellmann method is restricted to the Breit frame we have a smaller set of
available Q2 values than most three-point function calculations, these are listed in table
5.1. The current as defined in Eq. (5.6) includes both signs of the momentum transfer,
this means that there are two choices of sink momentum which satisfy the Breit frame
kinematics, both of which are included in the simulation as can be seen in the table.

The shifts to the ground state energies due to the temporal vector and spatial vector
current are as determined in section 4.1.2 and section 4.1.2 respectively, they take the
following form

∂EB(p⃗ )

∂λf4

∣∣∣∣
λ=0

=
MB

EB(p⃗ )
Gf
E,B(Q

2), (5.7)

∂EB(p⃗,Γ
3
±)

∂λf2

∣∣∣∣
λ=0

= ± q1
2EB(p⃗ )

Gf
M,B(Q

2), (5.8)

where the momenta are restricted to the Breit frame condition such that p⃗ = ±q⃗/2.
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Table 5.1. The momentum transfer values which are considered here. The choices are
restricted to the Breit frame where p⃗ ′ = −p⃗. Since the current defined in Eq. (5.6)
includes both ±q⃗, there are two choices of sink momenta which satisfy Breit frame
kinematics, both of which are included in column 3.

β q⃗ (L/2π) p⃗ (L/2π) Q2[GeV2]

5.4

(0,0,0) (0,0,0) 0.00
(2,0,0) ±(1,0,0) 0.90
(2,2,2) ±(1,1,1) 2.69
(4,2,0) ±(2,1,0) 4.49
(4,4,0) ±(2,2,0) 7.18

5.5

(0,0,0) (0,0,0) 0.00
(2,0,0) ±(1,0,0) 1.10
(2,2,2) ±(1,1,1) 3.29
(4,2,0) ±(2,1,0) 5.48

5.65

(0,0,0) (0,0,0) 0.00
(2,2,0) ±(1,1,0) 1.15
(4,2,2) ±(2,1,1) 3.46
(4,4,2) ±(2,2,1) 5.19
(6,0,0) ±(3,0,0) 5.19
(6,4,2) ±(3,2,1) 8.08

5.80

(0,0,0) (0,0,0) 0.00
(2,2,0) ±(1,1,0) 1.54
(4,2,2) ±(2,1,1) 4.63
(4,4,2) ±(2,2,1) 6.95
(6,0,0) ±(3,0,0) 6.95
(6,4,2) ±(3,2,1) 10.80

5.3. Simulation Details

For the calculations in this work we use lattice ensembles with Nf = 2 + 1 flavours of
O(a)-improved clover Wilson fermions [77]. We will use four different values for the
bare coupling β, with corresponding lattice spacings in the range a = 0.0588(3) fm to
0.0818(9) fm. The lattice spacings have been determined through the calculation of
singlet quantities in previous works [78–81]. Two different volumes are included with all
details of the ensembles listed in table 5.2.
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On each of these ensembles we use the Feynman-Hellmann method to calculate the
electromagnetic form factors of the octet baryons for a range of Breit frame momenta.
The method as described in chapter 4 will be used, with modifications to the QCD
action including the momentum transfer, which requires a different action for each value
of Q2. These discrete momenta are chosen such that the corresponding values of Q2

across ensembles are relatively close together, even as the lattice spacing and volumes
change, which will facilitate global fits to the data more easily. The Feynman-Hellmann
modifications to the action will include a spatial vector current and a temporal vector
current, with the magnitude of the modification set to λ = 10−4, as this has been shown
to produce good results [57].

The calculations presented here will only show results for the connected contributions
to the form factors. To apply the Feynman-Hellmann method to the disconnected
contributions would require the generation of new gauge ensembles for each new operator
and momentum transfer, which would be very computationally expensive. Previous
calculations have indicated that the disconnected distributions could be small for large
Q2 [57, 82]. For these reasons we will neglect the disconnected contributions in this work.

Since all the ensembles we use here are in the isospin symmetric limit, the quark
contributions to the proton and neutron form factors are related as follows

Gu
E,p = Gd

E,n, (5.9)

Gd
E,p = Gu

E,n, (5.10)

and similarly for the magnetic form factors. This allows us to construct the neutron form
factors from the lattice results calculated for the proton and similar relations apply for
the other Baryons in the octet.

5.4. Correlator Analysis

The signal for the matrix elements is contained within the energy shift caused by the
modification to the lattice action. To accurately extract this shift from the correlation
functions it is beneficial to construct a ratio of the two-point correlators with different
momenta, spin and parity projections. These correlators will be calculated on the exact
same set of gauge field configurations, therefore the underlying gauge noise in each of
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Table 5.2. The ensembles used in the analysis and the number of gauge field configurations
used on each. The lattice spacings have been determined in [81].

# β L3 × T a [fm] κl κs Nconf.

1

5.40 323 × 64 0.0818(9)

0.119930 0.119930 1646
2 0.119989 0.119812 664
3 0.120048 0.119695 960
4 0.120084 0.119623 1333
5

5.50 323 × 64 0.0740(4)
0.120900 0.120900 1695

6 0.121040 0.120620 1858
7 0.121095 0.120512 1837
8

5.65 483 × 96 0.0684(4)
0.122005 0.122005 537

9 0.122078 0.121859 922
10 0.122130 0.121756 531
11

5.80 483 × 96 0.0588(3)
0.122810 0.122810 595

12 0.122880 0.122670 561
13 0.122940 0.122551 520

them will be correlated. When taking the ratio of these correlators, the result will have
an improved signal strength due to the correlations in the gauge noise.

From Eq. (5.7) we see that to calculate the electric form factor we consider correlators
which include the temporal vector current (γ4) and since the result does not depend on
the spin we use the unpolarised spin projection. In the off-forward case, the modification
to the action includes two momentum projections; in order to isolate only one of the
resulting energy shifts we must take a combination of the two momentum states. As
discussed in subsection 4.1.2, the two possible combinations are determined by the
eigenvalues of the Hamiltonian. The calculation of these two-point functions only allows
us to set the momentum projection for the sink operator, while the source operator
will couple to both momentum states due to the modified action. By taking a linear
combination of the correlators with the two momentum projections at the sink we are
then able to create a correlation function which isolates one of the energy shifts. we
define the momentum averaged correlation function

Ḡ(p⃗, λ, t) =
1

2
[G(λ,+p⃗, t) +G(λ,−p⃗, t)]. (5.11)
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Additionally, for the temporal vector current, a time-reversal combined with a reversal
of the parity projection gives the same result as inverting the sign of λ in the perturbation.
We will use this to create a correlator with the opposite energy shift. Combining all
the above, we construct a ratio of correlators which can isolate the energy shift for the
temporal current

RE(λ, p⃗, t) =
Ḡ+(λ, p⃗, t)Ḡ−(0, p⃗,−t)
Ḡ+(0, p⃗, t)Ḡ−(λ, p⃗,−t) , (5.12)

where the ± superscript indicates the parity projection, and the correlators with λ = 0

are included to improve the cancellation of the gauge field noise.

For the spatial vector current, the spin dependence of the matrix element results in
a more complicated set of energy eigenstates. As shown in section 4.1.2, when using a
real operator in the Feynman-Hellmann modification, the correlator isolates one energy
shift. This energy shift depends on the spin projection as well as the sign of the sink
momentum projection. Flipping the sign of both the spin and the momentum projections
together will result in the same energy shift being isolated, additionally the time- and
parity-reversal does not influence the energy shift. Using this we define two new averaged
correlation functions

G̃(λ,±p⃗, t) = 1

4
[G+

↑ (λ,±p⃗, t) +G−
↑ (λ,±p⃗,−t) +G+

↓ (λ,∓p⃗, t) +G−
↓ (λ,∓p⃗,−t)], (5.13)

where the arrows indicate the spin polarization projection. The ratio for the spatial
vector current is then defined as

RM(λ, p⃗, t) =
G̃(λ,+p⃗, t)G̃(0,−p⃗, t)
G̃(0,+p⃗, t)G̃(λ,−p⃗, t)

. (5.14)

In the large Euclidean time limit, both of the ratios above will reduce to a simple
exponential function, where the exponent contains the odd energy shift

RE/M(λ, p⃗, t)
t≫0−−→ A(λ)e−2∆E(λ)oddt. (5.15)

The odd energy shift is defined as the difference between the energies with a positive λ
and negative λ,

∆Eodd =
1

2
[E(λ)− E(−λ)] . (5.16)
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The ratios above have the advantage that they will remove the even order contributions
in λ. So the leading order term will be O(λ) (the term of interest) with corrections
occurring at O(λ3). We can use the effective energy to get an effective value of this
energy shift which can be used to inform the time range in which the ground state is
dominant,

∆EEff(t) ≡
1

2a
ln
[

RE/M(λ, t)

RE/M(λ, t+ a)

]
. (5.17)

We expect this effective energy to show a constant plateau for sufficiently large times. In
figure 5.2 we show this effective energy for the ratio RE,p where the Feynman-Hellmann
modification has been applied to the u-quark in the proton, on ensemble #5. The two
plots show the same effective energies, the shaded regions show the results of two different
fits which we will explain in more detail later.

In our analysis we will apply these correlator ratios to calculate matrix elements up
to large momentum transfers where we observe a degradation in the signal to noise ratio
of the correlation functions. In order to constrain the shift in the energy of the ground
state we will use a combination of two ansätze to fit the above ratios. The first ansatz
relies on the ground state becoming dominant at sufficiently large Euclidean time, but
before the signal is lost to noise. In this case each correlator in the ratios can be described
by a simple exponential function and the overall ratio reduces to an exponential of the
energy shift

R(p⃗, t) = Ae−2∆Et. (5.18)

This ansatz has been used successfully in [57], where the calculations were done on
ensemble #5 in table 5.2.

The second ansatz takes into account the contributions from excited states explicitly.
Since the modified action will also shift the energy of the excited states in the spectrum as
well as the overlap factors of both states, we have to include these as parameters. Using
the unperturbed correlation function we are able to accurately determine the values of
the overlap factors and the unperturbed energies of both states

G2pt(p⃗, t) = A0e
−E0t + A1e

−E1t. (5.19)
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Then using these determined values as inputs into the ansatz in Eq. (5.20) allows us to
get a better determination of the energy shift at early time-slices,

R(p⃗, t) =
(A0 +∆A0)e

−(E0+∆E0)t + (A1 +∆A1)e
−(E1+∆E1)t

(A0 −∆A0)e−(E0−∆E0)t + (A1 −∆A1)e−(E1−∆E1)t
. (5.20)

The form factor calculations presented here span a large range of momentum transfers
(Q2 = 0−11GeV2). Over this range the contributions from excited states to the two-point
correlators can change significantly. To extract the ground state reliably across this
range, we need to find an optimal fit window for both ansätze. Since this process of
choosing a fit window can influence the results significantly, we apply a weighted average
method. This method will reduce the reliance on researcher choice of fit window and
allow the two fit functions to complement each other. Figure 5.2 shows the effective
energy of the ratio in Eq. (5.12) with the results from both ansätze overlaid as bands.
The dark line covers the timeslices which are included in the fit while the light shaded
region is drawn to show the large-time value of the fits.
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Figure 5.2. The effective energy of the ratio of correlators for the γ4 operator inserted on
the up-quark in the proton. The results are for momenta q⃗ = ±(2, 0, 0) and
p⃗ = ±(1, 0, 0) calculated on ensemble #5. The effective energy of the one-
exponential fit and the two-exponential fit to the ratio are also shown with their
respective χ2

dof values. The dark line covers the timeslices which are included in
the fit while the light shaded region is drawn to show the large-time value of the
fits.
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5.4.1. Weighted Average

We use the same weighted average method here as was shown in subsection 3.1.3. The
weighted average is calculated for results from both ansätze to the ratio (Eq. (5.18),
(5.20)) and for variations over the fitting time window. The weight corresponding to fit
f is defined as

w̃f =
pf

(
δEf

0

)−2

∑N
f ′=1 pf ′

(
δEf ′

0

)−2 . (5.21)

The subset of suitable fit windows is chosen by looking at the effective energy of each
correlator (e.g. Figure 5.2), these fit windows are then averaged for both fit functions to
produce the final fit parameters. Figure 5.3 shows an example of this weighted average
for a selection of different fits. The upper figure shows fit results for a low momentum
transfer (q⃗ = 2π

L
(2, 0, 0)), the blue bars show the weights for the two-exponential fit

results while the black bars show the weights for the one-exponential fit results. It can
be seen that the results for the energy shift span quite a large range which introduces
the possibility of large effects from the researcher choice of fitting window. The weighted
average, shown in the red band removes this effect by including the result from each of
the fits as well as their quality. The lighter shaded red band shows the total uncertainty,
including the systematic uncertainty which comes from the inclusion of the large number
of fits. The lower figure shows the result for a high momentum transfer (q⃗ = 2π

L
(4, 2, 2)),

in this case the number of viable fit ranges is smaller due to the increased noise in
the correlator at high momentum. Here we see that the one-exponential fit results are
weighted more heavily, with smaller contributions from the two-exponential fit results.
Both plots are for the temporal current insertion on the u-quark on ensemble #5 in table
5.2.

5.5. Three-point Function Method Comparison

Three-point correlation functions are the most direct way to calculate form factors
in lattice QCD, this method has been studied extensively and many techniques have
been developed to improve the analysis of these functions. The main difficulty facing
calculations of lattice three-point functions is the decreasing signal-to-noise ratio at
large Euclidean times and the associated computational costs. Since the calculation of
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Figure 5.3. The energy shift extracted from the fit to the ratio with the two-exponential
function (blue points) and the one-exponential function (black points). The bar
graph shows the weight of each fit result for the value of tmin where the blue bars
correspond to the two-exponential fit and the black bars to the one-exponential
fit. The red band is the weighted average value, where the inner band shows
the statistical uncertainty and the outer band shows the total uncertainty, this
includes the statistical uncertainty and the systematic uncertainty from the
spread between the included fit results. The upper plot shows the energy shift for
the lattice momentum of q⃗ = ±(2, 0, 0)2π/L, the lower plot shows the energy shift
for the lattice momentum of q⃗ = ±(4, 2, 2)2π/L, both results are from ensemble
#5.
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three-point functions requires fixing either the operator insertion time or the sink time
before the final matrix inversions, it is costly to include many time combinations. Some
of the often used techniques to deal with this are multi-state fits [83–85], the summation
method [86–88] and Generalised Eigenvalue Problems [89,90], amongst others.

To compare the validity and effectiveness of the Feynman-Hellmann method we will
perform a comparison with the more established three-point function approach. We
calculate the same two nucleon electromagnetic form factors on ensemble # 5 using
three-point functions. This calculation is performed by using a sequential source inversion
through the sink. This method fixes the sink momentum in order to calculate the final
propagator from the sequential source. Since our comparison will be most useful if it
involves the exact same initial and final momentum states, we will perform four different
sequential source inversions where we set the sink momentum to match up with the Breit
frame conditions used in the Feynman-Hellmann calculation. This construction also gives
us access to a range of non-Breit frame momenta at no additional cost. To account for
the contributions of excited states to the signal, we also include three different source-sink
time separations (t = 0.74, 0.96, 1.18 fm). For each source-sink separation the three-point
correlation functions were calculated on 999 gauge configurations. Combining the lattice
results from all three source-sink separations allows us to perform a two-exponential fit
which explicitly includes the excited state contributions.

We construct the ratio as defined in Eq. (3.49) for each of the three source-sink time
separations. We will use the same two currents as were used in the Feynman-Hellmann
calculation (although we have access to all currents at no extra cost). Since we are
considering Breit frame kinematics, we can construct the ratios with the chosen projection
matrices such that they give the Sachs form factors

R(Γunpol, γ4; t, τ ;−
q⃗

2
,
q⃗

2
)

τ,t−τ≫0−−−−−→ E(q⃗/2)

m
GE(Q

2), (5.22)

R(Γ3
±, γ2; t, τ ;−

q⃗

2
,
q⃗

2
)

τ,t−τ≫0−−−−−→ 2E(q⃗/2)

q1
GM(Q2), (5.23)

where τ is the time-separation between the source and the current insertion time and
t− τ is the time-separation between the current insertion time and the sink.

We expect these ratios to show a constant plateau for sufficiently large separations
between the source, current insertion and the sink. In figure 5.4 we show the ratio for all
three source-sink separations. It can be seen that for the largest source-sink separation
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there is potentially a constant plateau, however the trend with increasing source-sink
separation suggests that contributions from excited states are still present in the signal.

This indicates that the source-sink separation is not sufficiently large enough to
suppress all of the excited state contributions. To improve the determination of the
ground state signal we will explicitly take the excited states into account in our ansatz
by using a two-exponential fit. Here we take the two lowest terms in the infinite sum
over states, the second exponential will not necessarily contain just the first excited state,
it will contain a mix of the first few excited states. Since we consider the three-point
functions for the Breit frame kinematics, the initial and final nucleon states will have the
same momenta, simplifying the analysis. The ansätze we use are as follows,

Gfit(t, p⃗ ) = A0e
−E0(p⃗ )t + A1e

−E1(p⃗ )t (5.24)

R(t, τ ; p⃗ ′, p⃗ ) =
1∑

i,j=0

√
Ai(p⃗ )Aj(p⃗ ′) Bij e

−Ei(p⃗ )τe−Ej(p⃗
′)(t−τ)

∗ 1

Gfit(t, p⃗ ′)

√
Gfit(τ, p⃗ ′)Gfit(t, p⃗ ′)Gfit(t− τ, p⃗ )

Gfit(τ, p⃗ )Gfit(t, p⃗ )Gfit(t− τ, p⃗ ′)
. (5.25)

We first fit to the two-point functions at the source and sink momenta, then we fit to
the ratio by using Eq. (5.25). In this fit to the ratio we use the evaluated fit functions
of the two-point functions as well as their energies, there are then four fit parameters
remaining in this function, Bij. The ground state matrix element we are interested in is
contained in B00.

In figure 5.4 we show the effective electric and magnetic form factors for the u quark
in the proton. We show both the results from the 3-point function calculation and the
Feynman-Hellmann calculation. The results are for the form factor at the lowest non-zero
momentum q⃗ = 2π

L
(2, 0, 0). The three-point function results are plotted as a function

of the operator insertion time τ , while the Feynman-Hellmann results are plotted as a
function of the sink time t. These figures highlight the additional time-slices which are
available in the Feynman-Hellmann analysis, facilitating improved control over excited
state contributions.

There are some qualitative differences between the two methods which should be
mentioned. When using the three-point functions, the sink momentum is fixed but the
operator insertion and the associated momentum can be changed for no additional cost.
This makes it relatively cheap to gather results for a large number of momentum transfers,
for this comparison we include only the results from the matching Breit frame momenta
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Figure 5.4. The effective electric (upper) and magnetic (lower) form factor of the u quark in
the proton. The squares, triangles and circles are the results from the 3-point
function calculation for source-sink separations of t = 10, 13, 16 timeslices respec-
tively. The pentagons show the results of the Feynman-Hellmann calculation of
the same form factor. The right hand side shows the results of fitting the 3-point
ratios with simple plateaus, a combined two-exponential fit (yellow circles) and
the weighted average result from Feynman-Hellmann method. Both form factors
shown are at the lowest non-zero momentum transfer q⃗ = 2π

L (2, 0, 0) on ensemble
#5.
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Figure 5.5. The electric (upper) and magnetic (lower) form factors of the proton versus
momentum transfer Q2. Results are shown from the two-exponential fit to
the 3-point function ratios (triangles), the one-exponential fits to the Feynman-
Hellmann results from [57] (crosses) and the Feynman-Hellmann results using
the weighted-average analysis (squares).
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however. The Feynman-Hellmann method does not require the source-sink separation to
be fixed which gives it access to a large range of source-sink separations, which aids in
the determination of the excited state contributions. The three-point functions require a
new set of simulations for each source-sink separation on the other hand.

In figure 5.5 we show the electric and magnetic form factors for both the Feynman-
Hellmann method as calculated in [57] as well as the re-analysis of the same data using
the weighted average method outlined above and the results from the three-point function
calculation. It can be seen that the results from both methods are compatible within
uncertainties, and there is minimal change in the size of the uncertainties between the
two methods.

5.6. Systematics

5.6.1. Orientation of the Spatial Current

The magnetic form factor can be calculated by the Feynman-Hellmann method through
the use of any spatial vector current, in the above results we have used the γ2 current.
Since the form factor depends only on Q2, it should be independent of which spatial
current and momentum configuration is used to calculate it. It is useful to investigate
whether the results from this method stay consistent under a change of spatial vector
current. To isolate only the effects of the lattice symmetry we will consider a Feynman-
Hellmann calculation in which we use the current −γ3 and combine this with the Γ2

±

projection matrix. By using the Feynman-Hellmann relation in Eq. (4.43) we see that
this should produce the same shift to the energy up to the effects of the lattice symmetry.
We do this calculation on ensemble #1 from table 5.2. Figure 5.6 shows this comparison
between γ2 and −γ3 for a momentum transfer of q⃗ = 2π

L
(2, 2, 2), we show the effective

energy shift together with the results of fitting the correlators over the same time windows.
The effective energies in the figure agree up to statistics, as do the fit results, which
indicates that any dependence on the direction of the spatial vector current is minimal.

5.6.2. Momentum Discretisation Effects

The electromagnetic form factors should in principle only depend upon the value of
Q2, however in the case of discretised momenta such as on the lattice there could be
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Figure 5.6. The effective energy of the ratio in equation (5.14), together with a fit to the
ratio which extracts a value for ∆E. We show this for two different spatial
currents γ2 and γ3. The current insertion here includes a momentum transfer of
q⃗ = 2π

L (2, 2, 2)

additional momentum dependences. The usual symmetries which are present in momenta
for the continuum will not transfer directly to lattice QCD. The effect of this difference
in symmetries on the Q2 dependence of the form factors is especially important for
simulations using the Feynman-Hellmann method as these use a small subset of all
possible momentum configurations.

To investigate these momentum discretisation effects we will consider two different
momentum transfer values which have the same value of Q2. The two chosen momenta
are q⃗ = 2π

L
(4, 4, 2) and q⃗ = 2π

L
(6, 0, 0), we will limit this test to one ensemble only (#8 in

table 5.2). In the continuum we would expect both momenta to produce the same form
factors, however on the lattice we expect some differences between the two results. In
figure 5.7 we show the effective energy of the energy shift produced by the γ4 operator
with these two momenta for both the u-quark and the d-quark. From the fit results in
the right hand panel of each figure we can see that the energy shifts agree statistically.

For the γ2 operator insertion we expect the energy shifts to show a significantly
discrepancy as they depend on the first element of the momentum transfer as well as
the form factor as was shown in Eq. (5.8). To compare these results we will therefore
divide out the first element of the momentum transfer for each energy shift. In figure
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Figure 5.7. The effective energy shift for the γ4 operator inserted on the u-quark (left) and
the d-quark (right) for two momentum transfers with the same value of Q2. The
bands show the result of our fitting procedure and they correspond to the points
in the right hand panel of each figure.

5.8 we show the effective energy of the energy shift now produced by the γ2 operator for
both momenta. once again we see statistical agreement with slight difference between
the two momenta. These two tests are a good indication that we are not dealing with
large momentum discretisation effects, however to produce higher precision results it will
be necessary to do a more thorough investigation into these effects over multiple lattice
ensembles.
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Figure 5.8. The effective energy shift for the γ2 operator inserted on the u-quark (left) and
the d-quark (right) for two momentum transfers with the same value of Q2. The
bands show the result of our fitting procedure and they correspond to the points
in the right hand panel of each figure.
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5.6.3. Lambda dependence

For the Feynman-Hellmann method to be applicable, the perturbation to the action
needs to produce a shift in the ground state energy which is predominantly linear in λ.
When the magnitude of the perturbation is too large, the higher orders in λ will start to
dominate which will contaminate the signal. However the perturbation still needs to be
sufficiently large such that the signal will not be lost in the noise. To ascertain that our
calculation remains in the linear regime and that we are able to extract a signal from
the lattice results, we perform the calculation for two values of λ (−10−4, 10−3) at the
largest momentum transfer value. The results of this comparison on ensemble #8 are
shown in figure 5.9, where we show the behaviour of the energy shift for both the spatial
and temporal currents. From the figure we can see that the relation between the energy
shifts is still predominately linear. For the simulations on all other ensembles we use the
value of λ = −10−4 to determine the form factors.
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Figure 5.9. The shift in the ground state energy due to the perturbations in the action,
plotted against the magnitude of the perturbation λ. The energy shifts shown
here are for the larges momentum transfer considered on ensemble #8 in table
5.2, q⃗ = 2π

L (6, 4, 2). We are able to show the linearity of the energy shift by
calculating the two-point functions at two different values of λ (−10−4, 10−3)
and using the zero intercept.
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Table 5.3. The baryons and mesons labelled by their index and their corresponding currents.
Here γ is any arbitrary Dirac matrix [91].

Index Baryon (B) Meson (F ) Current (JF )
1 n K0 d̄γd

2 p K+ ūγs

3 Σ− π− d̄γu

4 Σ0 π0 1√
2
(ūγu− d̄γd)

5 Λ0 η 1√
6
(ūγu+ d̄γd− 2s̄γs)

6 Σ+ π+ ūγd

7 Ξ− K− s̄γu

8 Ξ0 K̄0 s̄γd

0 η′ 1√
3
(ūγu+ d̄γd+ s̄γs)

5.7. Flavour-Breaking Expansion

After calculating the form factors for all light- and strange-quark combinations on each
of the lattice ensembles listed in table 5.2 we wish to investigate their dependence on the
quark masses. This quark mass dependence will allow for the extrapolation of the form
factors to their values at the physical quark mass through the use of a flavour breaking
expansion, outlined in detail in [79, 91]. This expansion relies on the fact that across the
ensembles we have used the average quark mass is kept constant at its physical value

m̄ ≡ 1

3
(mu +md +ms) . (5.26)

All of the ensembles have Nf = 2 + 1 flavours of quarks, where the up- and down-quark
masses have been made degenerate (mu = md ≡ ml). This allows us to consider the
quark mass dependence of each ensemble in terms of a single parameter, the deviation
from the SU(3) symmetric point

δml ≡ ml − m̄. (5.27)

Using the notation listed in table 5.3, we write the matrix element of a current JFj

between two baryons Bi and Bk as

⟨Bi|JFj |Bk⟩ ≡ AB̄iFjBk
, (5.28)
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where the indices i, j, k correspond to any of the indices in table 5.3. In this notation,
1 to 8 corresponds to the octet hadrons and non-singlet currents and 0 corresponds to
the singlet current. For our calculations presented in this chapter we do not consider
transition matrix elements so we are restricted to i = k.

The expansion in terms of δml was derived in [81] using SU(3) group theory, by
defining multiple Di and Fi quantities in terms of the matrix elements of the octet
baryons it is possible to extrapolate to the physical point. For the expansion we will
calculate three Di values and Fi values from the form factors of the various baryons.
These quantities are defined in such a way that they will have the same value at the
SU(3) symmetric point. The dependence of these quantities with respect to δml can
then be used to extrapolate to the physical quark masses. The Di values are defined as

D1 ≡ −(AN̄ηN + AΞ̄πΞ) = 2d− 2r1δml,

D2 ≡ AΣ̄ηΣ = 2d+ (r1 + 2
√
3r3)δml,

D4 ≡
1√
3
(AN̄πN − AΞ̄πΞ) = 2d− 4√

3
r3δml,

(5.29)

and for Fi

F1 ≡
1√
3
(AN̄ηN − AΞ̄ηΞ) = 2f − 2√

3
s2δml,

F2 ≡ (AN̄πN − AΞ̄πΞ) = 2f + 4s1δml,

F3 ≡ AΣ̄πΣ = 2f + (−2s1 +
√
3s2)δml.

(5.30)

The mesons and their corresponding currents are listed in table 5.3. As an example, this
means that for the case of AN̄πN we have the following

AN̄πN = ⟨N |Jπ|N⟩

=
1√
2
⟨N |(ūγu− d̄γd)|N⟩

=
1√
2

(
⟨N |ūγu|N⟩ − ⟨N |d̄γd|N⟩

)
.

(5.31)

The Di and Fi quantities can be combined into an ‘average D’ and ‘average F ’ for
which the δml dependence cancels and there is only a residual δm2

l dependence

XD ≡ 1

6
(D1 + 2D2 + 3D4) = 2d+O(δm2

l ), (5.32)
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and for Fi,

XF ≡ 1

6
(3F1 + F2 + 2F3) = 2f +O(δm2

l ). (5.33)

These will be used to normalise the Di and Fi quantities. The expressions in Eq. (5.29)
and (5.30) also show the parameterisation in terms of two slope parameters each for both
Di and Fi, while XD and XF constrain the values of d and f up to order O(δm2

l ).

5.7.1. XD and XF values

Firstly looking at the values of XD and XF tells us whether there are still δm2
l effects

present. This flavour breaking expansion is defined such that it is valid at any Q2. In
figure 5.10 we show the values of XD and XF for both GE and GM against δml at
Q2 = 1.1GeV2 for the ensembles #5-7. We expect the values at each Q2 to be constant
up to O(δm2

l ). Additionally, in figure 5.11 we show the same values at Q2 = 5.48GeV2,
the highest momentum transfer used on this ensemble, while the statistics are worse for
the higher momentum transfer, the fit still shows a relatively constant behaviour.
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Figure 5.10. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.50, (5-7 in table 5.2) for GE (left) and GM (right) at Q2 = 1.1GeV2.
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Figure 5.11. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.50, (5-7 in table 5.2) for GE (left) and GM (right) at Q2 = 5.48GeV2.

5.7.2. Fanplots

For the electric form factor, XGE
D will vanish for Q2 = 0 and be very small for any

non-zero Q2. To avoid divisions by zero we will use XF to normalise the fan plots of Di

for GE, and for consistency we will do the same for GM . Using the coefficients outlined
in equation (5.29) and (5.30) we fit to the D̃i and F̃i quantities, where we have defined
D̃i = Di/XF and F̃i = Fi/XF .

Figure 5.12 shows the resulting fan plot for the electric form factor for both D̃i and
F̃i at the lowest non-zero momentum transfer. The characteristic branching out of the
quantities as δml deviates from zero can be seen. The vertical dotted line in the figure
represents the physical quark masses which have been taken from [81]. We modify the
linear functions defined in equations (5.29)-(5.30) to include the normalisation by XD

and then use them to fit to D̃i and F̃i, these fits are shown as the bands in the figure.
In the left hand plot we can see that for δml = 0, the three Di agree and have small
uncertainties, while at non-zero δml they branch out due to SU(3)-symmetry breaking.
In the left hand figure we divide Fi by XF , which is exactly equal to one when δml, this
improves the constraints on the fit parameters. Taking the value of the fit functions at
the physical point as shown by the dotted line in the figure we can determine the values
of the Di and Fi at the physical point. This in turn will allow us to reconstruct the full
form factors at the physical point.
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Figure 5.12. The Di and Fi quantities for the electric form factor GE at Q2 = 1.1 GeV2

plotted against δml for the three ensembles at β = 5.50, (5-7 in table 5.2). The
dotted line represents the physical point. This is from the flavour diagonal form
factors of the N, Ξ and Σ baryons.

5.8. Lattice Spacing and Volume Dependence

The flavour breaking expansion as outlined above takes into account only the variation
of the quark masses along a specified trajectory. To further understand the systematics
present in our calculations we need to account for additional factors of the lattice
calculation. To do this we will extend the flavour breaking expansion to include terms
involving the lattice spacing, the lattice volume and the quark mass of each ensemble.
Such an expansion will only work if we are able to include form factor results at the
same Q2 value across these different ensembles. Since the momentum on each lattice
is dependent on the spacing and volume, we currently do not have matching Q2 values
across the ensembles as can be seen in figure 5.13, where we show the value of Q2 plotted
against the lattice spacing a. The Q2 values in this figure are valid for all baryons on
those ensembles as a feature of the Feynman-Hellmann method is that the momentum
transfer always satisfies the Breit frame condition.

5.8.1. Momenta Grouping

To allow an investigation of the effects of lattice spacing (and different δml values) on
the form factors, we will shift the form factors on different ensembles to a common set of
nearby momenta. The black lines in figure 5.13 show the values of these shifted momenta,
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Figure 5.13. The momenta with black lines which show the average momenta of values which
lie close together. The bands show the range of the values which we will scale
to the black line.

Table 5.4. The five values of Q2 which were chosen such that we can shift the form factor
results on separate ensembles to them.

Q2[GeV2]

0
1.17
3.13
4.93
7.37

while the grey bands show the spread of the points in each grouping of momentum,
the black lines are set by the average of the Q2 values in each grouping. Table 5.4
shows these five values of Q2. The Q2 dependence of the form factors is most commonly
parameterised by a dipole form factor [74, 92]. Other parameterisations have been
observed to describe the form factors better, such as the z-expansion [93,94], however
since we have a small number of points and the dipole form is relatively simple we will
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use this form. Importantly, we will only use this dipole form to shift the form factors to
the common Q2 values. The dipole is defined by

GD =
aD(

1 + Q2

Λ2

)2 , (5.34)

where for the parameterisation of the experimental results of the nucleon form factors,
Λ2 = 0.71GeV2 [92]. For our results Λ is kept as a free parameter, while for GE, aD is
fixed to either 2 or 1 for the doubly represented and singly represented quarks respectively.
For the fits to the magnetic form factor GM , aD is kept as a free parameter.

After fitting each of the quark contributions to both of the form factors we use these
fits to shift the results to the common values of Q2 using the following equation

G(Q2
avg.) = G(Q2

sim.) +
(
Gfit(Q2

avg.)−Gfit(Q2
sim.)

)
. (5.35)

This shift is done by using the fit function from each bootstrap and using that to shift
the data point for that bootstrap. In figure 5.14 we show an example of the fit of the
dipole function to the up-quark contribution to the proton electric form factor (Gu

E,p).
Also shown are the shifted form factor values which line up well with the bands.
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Figure 5.14. The dipole fit to the up-quark contribution to the electric (left) and magnetic
(right) form factor of the proton. The simulation results are the black circles,
the dipole fit is the blue band and the shifted results are the green crosses.
Results are from ensemble #1 in table 5.2.
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5.9. Global Fits

The previously shown flavour breaking expansion was defined in terms of δml. In order to
combine results at different lattice spacings, we will use a dimension-less combination of
observable pseudoscalar meson masses to quantify the amount of SU(3)-flavour symmetry
breaking on each ensemble. To do this we will use the pion and kaon masses on each of
the ensembles, redefining δml as

δml →
m2
π −X2

π

X2
π

, X2
π =

2m2
K +m2

π

3
. (5.36)

Now we can express the flavour breaking expansion in terms of this dimensionless variable.

To account for the effects of the finite lattice spacing and lattice volume we will
introduce new parameters into the expressions for both XD/F and Di, Fi. To fit the
singlet quantities XD and XF , we will use the following ansatz [79]

XD,F = X∗
D,F

(
1 + c1

1

3
[fL(mπ) + 2fL(mK)]

)
+ c

(n)
2 an + c3δm

2
l , (5.37)

where the first term encodes the finite size effect, the function fL(m) is motivated by
chiral perturbation theory [79,95,96], it is defined as

fL(m) = (am)2
e−mL

XNL
, (5.38)

and

XN =
mN +mΣ +mΞ

3
, (5.39)

is the average of the octet baryon masses. The index n is taken to be either 1 or 2, as it
is possible that the dependence on a2 is more dominant than that on a. We also note
that the parameterisation of the lattice spacing here is only approximate as it does not
take into account the differences in lattice geometry of the different q⃗ values. The ansatz
for the singlet quantities in equation (5.37) now has three additional fit parameters
(c1, c

(n)
2 , c3). The relative size of each of these additional parameters is not well known so

in order to find the minimal set of parameters required to describe the results we will
consider ansätze with all combinations of these parameters.
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Table 5.5. The lattice ensembles restated with the lattice spacing, mπL, the pion mass and
the kaon mass for each ensemble. The numbering is that same as in table 5.2.

# a [fm] mπL mπ [MeV] mK [MeV] XN [MeV]

1

0.0818(9)

5.44 410 410 1125
2 4.84 365 424 1129
3 4.25 320 440 1097
4 3.85 290 450 1101
5

0.0740(4)
5.59 466 466 1239

6 4.32 360 505 1203
7 3.72 310 526 1187
8

0.0684(4)
6.86 412 412 1113

9 5.94 357 441 1151
10 5.04 303 457 1118
11

0.0588(3)
6.11 427 427 1192

12 5.12 358 456 1182
13 4.02 281 477 1180

We modify the ansätze for the Di and Fi quantities with correction terms proportional
to a and δm2

l . For the D fan, D̃i = Di/XF ,

D̃1 =
XD

XF

− 2(r̃1 + b̃
(n)
1 an)δml + d̃1δm

2
l , (5.40)

D̃2 =
XD

XF

+ ((r̃1 + b̃
(n)
1 an) + 2

√
3(r̃3 + b̃

(n)
3 an))δml + d̃2δm

2
l , (5.41)

D̃4 =
XD

XF

− 4√
3
(r̃3 + b̃

(n)
3 an)δml + d̃4δm

2
l . (5.42)

Similarly for F̃i = Fi/XF ,

F̃1 = 1− 2√
3
(s̃2 + ẽ

(n)
2 an)δml + f̃1δm

2
l , (5.43)

F̃2 = 1 + 4(s̃1 + ẽ
(n)
1 an)δml + f̃2δm

2
l , (5.44)

F̃3 = 1 + (−2(s̃1 + ẽ
(n)
1 an) +

√
3(s̃2 + ẽ

(n)
2 an))δml + f̃3δm

2
l . (5.45)

Once again we will also consider the above ansätze with the a terms replaced with a2.
The parameters of our lattice ensembles which we require for these correction terms are
listed in the table 5.5.
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Table 5.6. The fit results for the first non-zero momentum transfer value Q2 = 1.17GeV2.
The values given for XD, XF , GE,p and GM,p are all determined from taking the
fit functions to the limit where a → 0, mπL → ∞ and mπ,mK → physical masses.

Fit XGE
D χ2

dof XGE
F χ2

dof GE,p χ2
dof Di χ2

dof Fi

δml -0.0287(26) 0.14 0.2889(50) 3.42 0.1452(88) 0.29 0.94
a, δml -0.030(30) 0.15 0.383(55) 3.45 0.31(15) 0.29 0.90
a2, δml -0.029(15) 0.15 0.341(28) 3.40 0.227(65) 0.29 0.88
δm2

l -0.037(17) 0.13 0.320(34) 3.66 0.160(50) 0.27 1.05
a, δm2

l -0.038(35) 0.14 0.420(66) 3.69 0.35(19) 0.27 1.02
a2, δm2

l -0.037(23) 0.14 0.376(45) 3.64 0.26(10) 0.26 0.99
a, δm2

l , mπL -0.038(35) 0.16 0.436(84) 3.96 0.37(20) 0.27 1.02
a2, δm2

l , mπL -0.037(23) 0.16 0.377(45) 3.90 0.26(10) 0.26 0.99

Fit XGM
D χ2

dof XGM
F χ2

dof GM,p χ2
dof Di χ2

dof Fi

δml 0.5962(72) 1.76 0.783(11) 1.14 0.718(23) 0.43 0.77
a, δml 0.619(84) 1.91 0.68(13) 1.19 0.46(21) 0.33 0.80
a2, δml 0.617(44) 1.90 0.741(68) 1.21 0.58(12) 0.33 0.80
δm2

l 0.580(53) 1.91 0.724(83) 1.19 0.59(12) 0.36 0.68
a, δm2

l 0.604(95) 2.09 0.63(15) 1.25 0.39(22) 0.27 0.69
a2, δm2

l 0.600(66) 2.08 0.69(11) 1.27 0.49(16) 0.27 0.68
a, δm2

l , mπL 0.62(11) 2.29 0.66(18) 1.38 0.41(23) 0.27 0.69
a2, δm2

l , mπL 0.605(67) 2.23 0.70(11) 1.34 0.50(16) 0.27 0.68

5.9.1. Fitting XD and XF

In table 5.6 we list the results of the fits at one Q2 with all the different ansätze described
above. The table lists the χ2 per degree of freedom, as well as the extrapolated values of
XD and XF in the limit a→ 0, mπL→ ∞ and mπ,mK → physical masses. The results
are listed for a range of combinations of correction terms to the fit functions. The fit
results for the additional momentum transfer values can be found in Appendix E.

From table 5.6 we can see that the first fit which only uses the δml dependent terms
is able to constrain the values of XD and XF much better than any other with no visible
decrease in fit quality. Any fit which includes the lattice spacing or the lattice volume
has a reduced ability to constrain these values, this then also results in a much increased
uncertainty on the form factor extrapolation. We conclude from this that with the
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current set of ensembles we are unable to sufficiently constrain the lattice spacing and
lattice volume effects. The values shown for XD and XF in the table are determined by
taking the ansatz in (5.37) at the limit where a→ 0, mπL→ ∞ and mπ,mK → physical
masses.

In figures 5.15, 5.16 we show the results of the third and the eighth ansatz from table
5.6. To be able to compare the simulation results with the fit results, we shift them
to the limit where a → 0, mπL → ∞ and mπ,mK → physical masses by using the fit
results in a similar way as Eq. (5.35). All of the simulation results are relatively far
removed from the continuum limit a→ 0, which means that the fit results are not very
well constrained in this region. It can also be noted that while there is a spread in the
values of XD and XF , there is no clear indication of any strong a- or a2-dependence.
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Figure 5.15. LH panel: XGE
F against a2, RH panel: XGM

F . The grey band is a fit using the
correction term a2 in the ansatz (third fit in table 5.6). The results are for the
momentum transfer Q2 = 1.17GeV2.

5.9.2. Fan Plots

The results of fitting D̃i and F̃i with different variations of the ansätze shown in equation
(5.40) and (5.43) are shown in table 5.6. In figures 5.17 and 5.18 we show the results of
two of these fits. To present the fit function and simulation results in a clear manner we
have used the fit values to shift the results to a common lattice spacing of a = 0.07 fm.
We have chosen a non-zero value of the lattice spacing for this comparison as shifting the
results to the continuum limit reduces the clarity due to XD and XF being relatively
unconstrained using these fits. Figure 5.17 shows that the values of Di and Fi cluster well
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Figure 5.16. LH panel: XGE
F against δml, RH panel: XGM

F . The grey band is a fit using
the correction terms a2, δm2

l , mπL in the ansatz (eighth fit in table 5.6). The
results are for the momentum transfer Q2 = 1.17GeV2. The simulation results
here are shifted to the limit a → 0, mπL → ∞ and mπ,mK → physical masses
using the fit results.

together and the chosen ansatz fits the points very well. The same can be said for the
extrapolation shown in figure 5.18 which looks very similar apart from some increased
uncertainties on the points. However as we concluded earlier due to the poor constraints
on the lattice spacing and volume dependence of XD and XF , once the fan plots are
shifted to a = 0, the noise on all of the points blows up. The fan plots for the magnetic
form factor as well as the higher momentum transfers can be found in Appendix E.
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Figure 5.17. The D-fan (left) and F-fan (right) with fit ansätze using only the δml dependence
(first fit in table 5.6).
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Figure 5.18. LH-panel: the D-fan with fits including the terms: δml, a
2 (third fit in table

5.6). RH-panel: the F-fan with fits using the same fit functions The simulation
data here have been shifted to the lattice spacing of a = 0.07 fm.

5.10. Reconstructed Form Factors at the Physical Point

After extrapolating the parameterisations of the D- and F-fans we can use these to
reconstruct the form factors in the physical limit. To do this we will multiply the fan plot
parameters by the parameterisation of XF using the same set of correction parameters

ri = (r̃i + b̃ia)XF , (5.46)

si = (s̃i + ẽia)XF , (5.47)

di = d̃iXF , (5.48)

fi = f̃iXF . (5.49)

We also take d = XD/2 and f = XF/2. Now we use the currents as defined in [91] in the
following combinations

ūγu =
1√
3
Jη

′
+

1√
2
Jπ

0

+
1√
6
Jη, (5.50)

d̄γd =
1√
3
Jη

′ − 1√
2
Jπ

0

+
1√
6
Jη, (5.51)

s̄γs =
1√
3
Jη

′ −
√

2

3
Jη. (5.52)

Our calculation is restricted to the connected contributions to the form factors, this gives
us some constraints on the flavour-diagonal matrix elements. There are no connected
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contributions for ⟨p|s̄γs|p⟩, ⟨Σ+|d̄γd|Σ+⟩ or ⟨Ξ0|d̄γd|Ξ0⟩. This constraint gives the
following relations

AN̄η′N =
√
2AN̄ηN , (5.53)

AΣ̄η′Σ =
√
6AΣ̄πΣ −

√
2AΣ̄ηΣ, (5.54)

AΞ̄η′Ξ =
√
6AΞ̄πΞ −

√
2AΞ̄ηΞ. (5.55)

The quark contributions to the proton form factors are therefore

⟨p|ūγu|p⟩ = 1√
3
AN̄η′N +

1√
2
AN̄πN +

1√
6
AN̄ηN (5.56)

=

√
3

2
AN̄ηN +

1√
2
AN̄πN . (5.57)

This can be constructed from a linear combination of D1, D4, F1, F2. Solving the linear
equations gives

⟨p|ūγu|p⟩ = −
√
3

2
√
2
D1 +

√
3

2
√
2
D4 +

3

2
√
2
F1 +

1

2
√
2
F2. (5.58)

For our analysis we require this expression in terms of the expansion parameters. The
same method gives the other connected quark contributions to the baryon form factors,

⟨p|ūγu|p⟩ = 2
√
2f +

(√
3

2
r1 −

√
2r3 +

√
2s1 −

√
3

2
s2

)
δml (5.59)

+

(
−

√
3

2
√
2
d1 +

√
3

2
√
2
d4 +

3

2
√
2
f1 +

1

2
√
2
f2

)
δm2

l , (5.60)

⟨p|d̄γd|p⟩ =
√
2(f −

√
3d) +

(√
3

2
r1 +

√
2r3 −

√
2s1 −

√
3

2
s2

)
δml (5.61)

+

(
−

√
3

2
√
2
d1 −

√
3

2
√
2
d4 +

3

2
√
2
f1 −

1

2
√
2
f2

)
δm2

l , (5.62)
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〈
Σ+
∣∣ūγu

∣∣Σ+
〉
= 2

√
2f +

(
−2

√
2s1 +

√
6s2

)
δml (5.63)

+
(√

2f3

)
δm2

l , (5.64)

〈
Σ+
∣∣s̄γs

∣∣Σ+
〉
=

√
2(f −

√
3d) +

(
−
√

3

2
r1 − 3

√
2r3 −

√
2s1 +

√
3

2
s2

)
δml (5.65)

+

(
1√
2
f3 −

√
3

2
d2

)
δm2

l , (5.66)

〈
Ξ0
∣∣ūγu

∣∣Ξ0
〉
=

√
2(f −

√
3d) +

(
2
√
2r3 + 2

√
2s1

)
δml (5.67)

+

(
−
√

3

2
d4 +

1√
2
f2

)
δm2

l , (5.68)

〈
Ξ0
∣∣s̄γs

∣∣Ξ0
〉
= 2

√
2f +

(
−
√

3

2
r1 +

√
2r3 +

√
2s1 −

√
3

2
s2

)
δml (5.69)

+

( √
3

2
√
2
d1 −

√
3

2
√
2
d4 +

3

2
√
2
f1 +

1

2
√
2
f2

)
δm2

l . (5.70)

To construct the form factors from the parameters we combine them with the values of
XD and XF in the limit a → 0, mπL → ∞ and mπ,mK → physical masses. This will
give the individual quark contributions to the form factors which can then be combined
to produce the connected electromagnetic form factors of the baryons.

5.10.1. Connected Nucleon Form Factors

Using the methods in the previous section we can combine the quark contributions
together with their respective electric charges (Eq. (5.2)) to produce the connected
contributions to the nucleon form factors. Figure 5.19 shows the electric and magnetic
form factors for the proton, showing only the results from the extrapolation with the δml

term. The yellow dotted lines in the figures show a parameterisation of experimental
data from [92]. The electric form factor shows great agreement with the data over the
entire range of momentum transfers. The uncertainties on the electric form factor are
also reasonably small for all but the highest momentum transfer, although we do note
that many of the lattice systematics are not included in this extrapolation to the physical
point. Including the other lattice ensemble variables in the extrapolation results in
much larger uncertainties which are left out here as they are not very informative. The
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magnetic form factor results show a large discrepancy with the experimental data over
the entire range of momentum transfers. The points all have similar uncertainties to the
electric form factor, however we must conclude that there is some systematic uncertainty
which has not been accounted for here. This could either come from some aspect of the
analysis or due to our limited ability to constrain the flavour breaking expansion.

Figure 5.20 shows the electric and magnetic form factors for the neutron, again
compared to a parameterisation of experimental data [92]. Since these results are related
to the proton form factors through the isospin symmetry it is natural that they exhibit
similar properties. The electric form factor of the neutron also shows very good agreement
with the data as well as small uncertainties. The magnetic form factor shows the same
discrepancy as for the proton although it is slightly smaller here.

5.10.2. Isovector Form Factors

The results from this calculation did not include the disconnected contributions to the
form factors. These are expected to be small at large momenta, but nonetheless they
limit our results. Isovector combinations of the form factors are very useful in this regard,
because for the nucleon these quantities contain only the connected contributions. The
disconnected contributions will cancel out when taking the difference. In figure 5.21 we
show the isovector electric and magnetic form factors, as well as the parameterisation of
experimental results [92]. The electric form factor once again shows very good agreement
with the experimental results. The magnetic form factor shows less agreement which
should warrant further study as this indicates that the issue does not lie with missing
disconnected contributions.

For the electric form factor, the isovector combination has an interesting feature which
can be seen from parameterisations of the experimental results. This is the point around
Q2 = 4.5GeV2 where the proton and neutron form factors cross over and the isovector
form factor crosses zero. In figure 5.22 we show the isovector combination for the electric
form factor, the lattice results shown are those from the global fit using only δml. The
uncertainties for the isovector combination cross over zero, however the central values
seem to agree well with the parameterisation of the experimental results.
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Figure 5.19. The Extrapolated values for GE,p and GM,p. Showing the results from ex-
trapolating the lattice data to the physical parameters using only the first fit
listed in table 5.6. The dotted line shows the parameterisation of experimental
data [76,92]. The points are offset slightly for clarity.
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Figure 5.20. The Extrapolated values for GE,n and GM,n. Showing the results from ex-
trapolating the lattice data to the physical parameters using only the first fit
listed in table 5.6. The dotted line shows the parameterisation of experimental
data [76,92].
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Figure 5.21. The Extrapolated values for the isovector form factors GE and GM . Showing
the results from extrapolating the lattice data to the physical parameters using
only the first fit listed in table 5.6. The dotted line shows the parameterisation
of experimental data [76,92]. The points are offset slightly for clarity.
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Figure 5.22. The isovector electric form factor as well as the proton and neutron electric
form factors, shown on a logarithmic scale. This highlights the point around
Q2 = 4.5GeV2 where the form factors cross over and the isovector combination
has a crosses zero. The lattice results shown here are from using the first global
fit in table 5.6. The bands are from the Kelly parameterisation.
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5.10.3. Ratio of the Electric and Magnetic Form Factors

Using the extrapolated values of the form factors we can now also consider the ratio of the
electric and magnetic form factors. We can compare the the lattice results to experimental
values for this ratio of form factors for the proton from Jefferson Lab [73,97,98]. Since
the extrapolations with additional parameters were unable to constrain the form factors
sufficiently, we consider only the leading order (δml) fit results from table 5.6. In figure
5.23 we show these results together with the experimental data. As noted before there is
a large discrepancy between our results for the magnetic form factor which produces a
similar discrepancy in the ratio of the form factors which can be seen in the figure. We
must conclude that there is still some unknown systematic present in our calculations
of the magnetic form factor or in the extrapolation of this form factor to the physical
masses which is causing the large discrepancy. We do note that our results show the
same downwards trend as seen in the experimental results, however it is as yet impossible
to tell whether there is a zero crossing present without additional statistics at the high
momentum transfers.
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Figure 5.23. The Extrapolated values for GE/GM for the proton. Showing the results from
extrapolating the lattice data to the physical parameters using the δml fit listed
in table 5.6.
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5.10.4. Baryon Form Factors

The flavour breaking expansion allows us to reconstruct the form factors for the nucleons
as well as for the Σ baryons and Ξ baryons. We compare the doubly represented and
singly represented quark contributions to GE and GM for these baryons in figures 5.24
and 5.25 respectively. Here we have chosen to show the results from the first global fit in
table 5.6 (δml).

This grouping into singly and doubly represented quark contributions is useful as it
allows for investigations of the environmental effects on the form factors. The difference
between the Gu

E,p and Gu
E,Σ+ form factors must be due to the difference in mass of the

spectator quark, in this case the d-quark and s-quark. The upper plot in figure 5.24
shows these form factors and we can see that the heavier spectator quark results in
an enhanced form factor. This is confirmed by comparing Gd

E,p and Gu
E,Ξ in the lower

plot of the same figure, here again the heavier spectator quark results in an enhanced
form factor. On the other hand the spectator quarks in Gd

E,p and Gs
E,Σ+ are identical,

thus their difference can be attributed to the difference in mass of the active quarks (d
and s). Figure 5.24 shows that a heavier active quark also results in an enhanced form
factor, while the comparison between Gu

E,p and Gs
E,Ξ confirms this relation for the doubly

represented quarks.

These insights can give us some intuition as to the difference in the charge distribution
between the baryons. The charge radius depends on the slope of the form factors at
Q2 = 0, such that a steeper slope indicates a broader charge distribution and vice versa.
Using this, our results indicate that a heavier spectator quark produces a narrower charge
distribution. For the active quark a larger mass also results in a narrower distribution.
The magnetic form factors in figure 5.25 show the same relation at the smallest value of Q2,
however we note that for larger momenta the order of the form factors is inverted for the
doubly represented quarks. We should note that this simulation was not aimed at small
values of Q2 and as such we do not show any explicit values for the charge/magnetisation
distributions.
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Figure 5.24. The extrapolated values of the quark contributions to the electric form factor
(GE) of each of the baryons. The upper plot shows the doubly represented
quark contributions and the lower plot shows the singly represented quark
contributions. The points are offset slightly for clarity.
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Figure 5.25. The extrapolated values of the quark contributions to the magnetic form factor
(GM ) of each of the baryons. The upper plot shows the doubly represented
quark contributions and the lower plot shows the singly represented quark
contributions. The points are offset slightly for clarity.



Chapter 6.

Transition Matrix Elements

6.1. Weak Interactions and the CKM Matrix

Weak Interactions

In the standard model, the strong force is known to conserve flavour at all times,
however the weak force allows flavour mixing interactions. This mixing is encoded in
the Cabibbo-Kobayashi-Maskawa (CKM) matrix which was constructed as an extension
of the Cabibbo model to the three generations of quarks [99, 100]. The CKM matrix
describes the transitions between ‘up’-type quarks and ‘down’-type quarks of the three
quark generations. Each element represents the probability amplitude of a quark changing
flavour through a weak interaction. The elements of the 3× 3 matrix are defined as

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 . (6.1)

The standard model puts a constraint on this matrix, by requiring it to be a unitary
matrix. If the CKM matrix were found to be non-unitary then this would be an indication
of new physics beyond the standard model.

The unitarity constraint on the first row of the matrix can be written as

|Vud|2 + |Vus|2 + |Vub|2 = 1, (6.2)
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where the current determinations of the magnitudes of the elements in the first row
are [101]

|Vud| = 0.97373(31), |Vus| = 0.2243(8), |Vub| = 0.00382(20). (6.3)

The magnitude of |Vub| is sufficiently small that it does not contribute significantly to
the unitarity constraint, leaving the most room for improvement in the determination of
the second element |Vus|. This element encodes the probability of a u-quark changing
into an s-quark through the weak interaction. This can happen in various processes such
as (semi-)leptonic kaon or hyperon decays.

The majority of efforts to constrain the Vus element have been focused on neutral kaon
decays K0

L → πeν as well as several charged kaon decays [101,102]. These decays allow
for the extraction of the product |Vusf+(0)|, which includes the CKM matrix element
and the form factor at q2 = 0. These experimental measurements can then be combined
with lattice QCD calculations of the form factor f+(0) to produce results for Vus [103].

Hyperon Semi-leptonic Decays

Hyperons are a class of baryons containing at least one strange quarks but no heavier
quarks. As an alternative to kaon decays, the |Vus| element can also be constrained by
hyperon semi-leptonic decays which satisfy |∆S| = 1.

In figure 6.1 we show a diagram of an example of a |∆S| = 1 semi-leptonic decay of
the Σ− to a neutron and a lepton-antineutrino pair. Consider the general semi-leptonic
decay of a hyperon B → B′ l ν̄l. We can write down the matrix element in terms of a
hadronic component and a leptonic component

M =
GS√
2
ūB′(OV

α +OA
α )uB ūeγ

α(1 + γ5)vν , (6.4)

where GS contains the Fermi coupling constant GF and the relevant Cabibbo mixing
angle, e.g. GS = GFVus for |∆S| = 1 transitions and GS = GFVud for ∆S = 0 transitions.
The matrix elements of the hadronic vector current and axial-vector current are defined
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Figure 6.1. A diagram showing the semi-leptonic decay Σ− → n l− ν̄l where a Σ− decays
into a neutron and a lepton-antineutrino pair. This transition is mediated by the
weak force, which allows for the change in quark flavour from s to u.

(in Euclidean space) as

OV
α = γαf1(Q

2) + σαβq
β f2(Q

2)

MB +MB′
+ qα

f3(Q
2)

MB +MB′
, (6.5)

OA
α = γαγ5g1(Q

2) + σαβγ5q
β g2(Q

2)

MB +MB′
+ qαγ5

g3(Q
2)

MB +MB′
. (6.6)

The vector current is described by three form factors, the vector f1, the weak magnetism
f2 and the induced scalar form factor f3. The axial current is also described by three
form factors, the axial vector g1, the weak electricity g2 and the induced pseudo-scalar
form factor g3. At zero momentum transfer Q2 = 0 the first two form factors of each
current are called the vector coupling and the axial-vector coupling, gV = f1(0) and
gA = g1(0), respectively.

Additionally we define the scalar form factor f0(q2) as the combination of the vector
and induced scalar form factor

f0(q
2) ≡ f1(q

2) +
q2

M2
B −M2

B′
f3(q

2), (6.7)
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which is often more convenient for the lattice QCD calculation.

In Weinberg’s classification, both f3 and g2 are second class form factors [104]. These
form factors are equal to zero when the initial and final states are the same baryon, as
well as in the exact flavour-SU(3) limit.

Experimental results for the Σ− → ne−ν̄e decay have resulted in the determinations
of some ratios of these form factors. The ratio of the axial coupling over the vector
coupling has been determined as gA/gV = 0.340(17) and the ratio of the weak magnetism
form factor over the vector form factor as f2(0)/f1(0) = 0.97(14) [101,105,106].

Just as for the kaon decays, the product |Vusf1(0)| can be extracted from |∆S| = 1

hyperon semi-leptonic decay experiments [106]. For these experimental results the
common assumption is made that g2 = 0. The latest determination of |Vus| from hyperon
decays has produced the result |Vus| = 0.2250(27) [107].

In the exact flavour-SU(3) limit, the value of the vector form factor f1(0) is set by the
Clebsch-Gordon coefficients [107]. The Ademollo-Gatto theorem requires the corrections
to f1(0) to only start at second order in the flavour-SU(3) breaking [108, 109]. Therefore
a precise determination of the SU(3) breaking effects on f1(0) is required to be able to
constrain |Vus| using semi-leptonic hyperon decays.

Phenomenological determinations of the SU(3) breaking contributions to f1(0) have
so far not been able to produce sufficient precision on the magnitude or the sign of the
correction [110]. There is a demand for model independent calculations of these SU(3)
breaking effects.

Recent lattice QCD calculations have shown a negative sign for the SU(3) breaking
correction to f1(0) [31,111–115]. The standard procedure for lattice QCD determinations
of the form factor f1 at q2 = 0 has been to first determine f0(q2max), where q2max =

(MΣ −MN)
2, then the momentum dependence of f0(q2) is calculated, which can then

be used with an e.g. dipole ansatz to scale the value of f0(q2max) to f0(0) = f1(0). The
calculated value of f1(0) then needs to be extrapolated to physical pion masses to produce
a reliable result.

In this chapter we will present a calculation of f0(q2max) from the Σ− → nl−ν̄l transition,
using a novel approach to the lattice QCD calculation based on the Feynman-Hellmann
method, this is similar to the approach suggested in [56]. Additionally we will also
calculate the momentum dependence of the vector matrix element. Since determining the
momentum dependence of f0(q2) requires simulations with at least two vector currents it
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is not included here, as we will only use one vector current. To verify the results of this
new method we calculate the same quantities using the standard three-point function
methods and present a comparison between the two methods. The work in this chapter
also appears in [116], which has been accepted for publication by Physical Review D.

6.2. Transfer Matrix and Feynman-Hellmann

As in chapter 4, we will use the Feynman-Hellmann theorem in this calculation, we will
hover present a different derivation of the method using the Dyson expansion of the
transfer matrix. To start we consider a system which is determined by a Hamiltonian
with a modification, Ĥλ(q⃗ ) and a possible momentum transfer q⃗

Ĥλ(q⃗ ) = Ĥ0 −
∑

α

λα
ˆ̃Oα(q⃗ ). (6.8)

The sum over the index α allows for multiple modification operators Oα with different
magnitudes λα, however here we will just be considering a single modification.

This Hamiltonian can now be used to define lattice correlation functions. Consider
a two-point correlation function of two baryon operators, where the creation operator
is defined at a single space-time location and the annihilation operator is defined in
momentum space

Cλ(t; q⃗, p⃗
′) =

〈
ˆ̃B(t; p⃗ ′) ˆ̄B(0, 0⃗ )

〉
λ
, (6.9)

here the annihilation operator is defined as

ˆ̃B(t; p⃗ ′) =

∫

x⃗

e−ip⃗·x⃗B̂(t, x⃗ ). (6.10)

As shown in chapter 2, we can rewrite this correlation function in terms of the transfer
matrix of the system (which depends on the modified Hamiltonian)

Cλ(t; q⃗, p⃗
′) =

Tr[Ŝλ(q⃗ )T
ˆ̃B(t; p⃗ ′) ˆ̄B(0, 0⃗ )]

Tr[Ŝλ(q⃗ )T ]
, (6.11)
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where Ŝλ(q⃗ ) is the transfer matrix of the system. The transfer matrix is related to the
Hamiltonian of the system as follows

Ŝλ(q⃗ ) = e−Ĥλ(q⃗ ). (6.12)

The temporal length of the lattice is defined by T . If this length is taken to be sufficiently
large relative to the operator insertion time, then the vacuum state will dominate
the trace. Translational invariance of the operators allows them to be written as
B(t; p⃗ ′) = S−t

λ B(0; p⃗
′)Stλ. Using this gives the following expression for the correlation

function

Cλ(t; q⃗, p⃗ ) =

∑
n ⟨n|eĤλ(q⃗ )(T−t) ˆ̃B(0; p⃗ ′)eĤλ(q⃗ )t ˆ̄B(0, 0⃗ )|n⟩

∑
m ⟨m|eĤλ(q⃗ )T |m⟩

T−t≫0−−−−→ λ⟨Ω| ˆ̃B(0; p⃗ ′)Stλ
ˆ̄B(0, 0⃗ )|Ω⟩λ .

(6.13)

Inserting a complete set of states we get an expression for the two-point function
where the transfer matrix uses the modified Hamiltonian,

CλB′B(t; p⃗, q⃗)

=
∑

X(p⃗X)

∑

Y (p⃗Y )

λ⟨0| ˆ̃B′(p⃗ ′)|X(p⃗X)⟩ ⟨X(p⃗X)|Ŝλ(q⃗ )t|Y (p⃗Y )⟩ ⟨Y (p⃗Y )| ˆ̄B(⃗0 )|0⟩λ .
(6.14)

The sum over the complete set of states here can be broken up into states which are in
the set of quasi-degenerate energy states and states outside this set

∑

X(p⃗X)

|X(p⃗X)⟩ ⟨X(p⃗X)| ≡
ds∑

r

|Br(p⃗r)⟩ ⟨Br(p⃗r)|+
∑

X(p⃗X)/∈S

|X(p⃗X)⟩ ⟨X(p⃗X)| = 1̂, (6.15)

where we define the set S of quasi-degenerate energy states by their energies such that
for the dS elements of the set, their energies satisfy

EBr(p⃗r) = Ē + ϵr, r = 1, ..., dS. (6.16)
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6.3. Dyson Expansion

We write the transfer matrix with the perturbed Hamiltonian as

Ŝλ(q⃗ ) = e−(Ĥ0−λÔ(q⃗ )). (6.17)

This expression can be expanded by an approach similar to the Dyson expansion, using
the following identity,

et(Â+B̂) = etÂ +

∫ t

0

dt′e(t−t
′)ÂB̂et

′(Â+B̂). (6.18)

This expression can be iterated if we consider the operator B̂ to be small. We apply this
expansion to the transfer matrix for small values of λ

Ŝ(q⃗ )t = e−(Ĥ0−λÔ(q⃗ ))t

= e−Ĥ0t + λ

∫ t

0

dt′e−Ĥ0(t−t′)Ô(q⃗ )e−Ĥ0t′

+ λ2
∫ t

0

dt′
∫ t′

0

dt′′e−Ĥ0(t−t′)Ô(q⃗ )e−Ĥ0(t′−t′′)Ô(q⃗ )e−Ĥ0t′′

+O(λ3).

(6.19)

Pulling out the first exponential and truncate the expansion at O(λ2) gives

e−(Ĥ0−λÔ(q⃗ ))t = e−Ĥ0t

(
1 + λ

∫ t

0

dt′eĤ0t′Ô(q⃗ )e−Ĥ0t′ +O(λ2t2)

)
. (6.20)

Now we insert this expansion into Eq. (6.14) and consider the central matrix element
for all the possible combinations in the sum over the complete set of states. Firstly we
consider the case where both X and Y are elements of the set S. The matrix element
then takes the following form

⟨Br|e−(Ĥ0−λÔ)t|Bs⟩

= ⟨Br|e−Ĥ0t

(
1 + λ

∫ t

0

dt′eĤ0t′Ôe−Ĥ0t′ +O(λ2t2)

)
|Bs⟩ (6.21)

= e−EBr tδrs + λe−EBr t

∫ t

0

dt′e−(EBs−EBr )t
′ ⟨Br|Ô|Bs⟩+O(λ2t2), (6.22)
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using ⟨Br|Bs⟩ = δrs. The integral over t′ can be evaluated

e−EBr t

∫ t

0

dt′e−(EBs−EBr )t
′

= e−(EBr+EBs )t/2
e−(EBr−EBs )t/2 − e(EBr−EBs )t/2

EBs − EBr

.

(6.23)

Since the states in the set S have quasi-degenerate energies, we can expand the energies
for small deviations around the average energy. Using the fact that we defined the average
energy of the set as Ē and each state in S has an energy defined as EBr = Ē + ϵr, then

e−EBr t

∫ t

0

dt′e−(EBs−EBr )t
′

= e−Ēt
[
1− (ϵr − ϵs)

t
2

]
−
[
1 + (ϵr − ϵs)

t
2

]
+O (ϵ3t3)

ϵs − ϵr
(6.24)

= e−Ēt
(
t+O

(
ϵ2t3
))
, (6.25)

where we note that the second order in the expansion cancels out in the difference.
Inserting this back into equation (6.22)

⟨Br|e−(Ĥ0−λÔ)t|Bs⟩ = e−EBr tδrs + λ ⟨Br|Ô|Bs⟩ e−Ēt
(
t+O(ϵ2t3)

)
+O(λ2t2). (6.26)

The same expansion for small values of ϵ can be applied to the first term

⟨Br|e−(Ĥ0−λÔ)t|Bs⟩
= e−Ēt

[
δrs + t

(
−ϵrδrs + λ ⟨Br|Ô|Bs⟩

)
+O(λtϵ2t2) +O(ϵ2t2)

]
+O(λ2t2).

(6.27)

To get to this point we have relied on two expansions, in λt and in ϵt. We will consider
only the lowest orders in either expansion and denote any second order contributions
from each expansion or a combination of them as O(2). The expression for the matrix
element now reads

⟨Br|e−(Ĥ0−λÔ)t|Bs⟩ = e−Ēt
[
δrs + t

(
−ϵrδrs + λ ⟨Br|Ô|Bs⟩

)
+O(2)

]
. (6.28)
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6.3.1. Cross Terms

We have so far only considered the terms for which both states in the matrix elements
are contained within the set S. We will consider the cross terms now

⟨Br|e−(Ĥ0−λÔ)t|X⟩

= e−EBr t ⟨Br|Y ⟩+ λe−EBr t

∫ t

0

dt′e−(EY −EBr )t
′ ⟨Br|Ô|Y ⟩+O(λ2t2).

(6.29)

The inner product in the first term equals zero and the integral in the second term can
be split up

⟨Br|e−(Ĥ0−λÔ)t|X⟩

= λ
e−EBr t

EY − EBr

⟨Br|Ô|Y ⟩ − λ
e−EY t

EY − EBr

⟨Br|Ô|Y ⟩+O(λ2t2).
(6.30)

We can expand the energy of the Br state again in terms of the deviation from the
average energy Ē,

⟨Br|e−(Ĥ0−λÔ)t|X⟩ = λe−Ēt
1− ϵrt+ (ϵrt)

2

EY − EBr

⟨Br|Ô|Y ⟩+O(2) + damped terms. (6.31)

We now define the more damped terms as any term that includes e−EY t for Y /∈ S, which
will decay exponentially faster than e−Ēt,

⟨Br|e−(Ĥ0−λÔ)t|X⟩ = λe−Ēt
⟨Br|Ô|Y ⟩
EY − EBr

+O(2) + damped terms. (6.32)

Similarly for the other cross term,

⟨X|e−(Ĥ0−λÔ)t|Bs⟩ = λe−Ēt
⟨X|Ô|Bs⟩
EX − EBs

+O(2) + damped terms. (6.33)

The last set of terms in the sum over states is fully made up of damped terms

⟨X|e−(Ĥ0−λÔ)t|Y ⟩ = damped terms. (6.34)

We now redefine the states in the presence of the perturbation as follows

|Bs(p⃗s)⟩λ = |Bs(p⃗s)⟩+ λ
∑

EY ≫Ē

|Y (p⃗Y )⟩
⟨Y (p⃗Y )|Ô|Bs(p⃗s)⟩

EY − EBs

. (6.35)
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Using the above we can now express the two-point function from Eq. (6.14) such that
the sum over all states is reduced to only go over the set S,

CλBB′(t) =
∑

rs

λ⟨0| ˆ̃B′(p⃗ ′)|Br(p⃗r)⟩λ ⟨Br|e−(Ĥ0−λÔ)t|Bs⟩ λ⟨Bs(p⃗s)| ˆ̄B(⃗0 )|0⟩λ . (6.36)

At this point we can use Eq. (6.36) to determine the matrix element by extracting the
term linear in time from the correlation function. However it is also possible to consider
this correlation function as a Generalised Eigenvalue Problem (GEVP), doing this allows
us to get a better determination of the matrix element.

6.3.2. Systematics

In order to satisfy the assumptions we have made here we require that the parameters
in our expansion remain small. Additionally, since we disregard the damped terms, we
also require that t≫ 0 to make sure these terms are sufficiently suppressed. This means
O(2) contains O(ϵ2t2) ,O(λ2t2) and O(ϵtλt). To satisfy the validity of these expansions
we require the following

0 ≪ t≪ 1

λ
, 0 ≪ t≪ 1

max|EBr − EBs |
. (6.37)

6.4. Generalised Eigenvalue Problem

The matrix element between the two states Br and Bs in Eq. (6.36) can be expanded as
we have shown in equation (6.28). We will define the linear-in-time part of this equation
as the matrix Drs

⟨Br|e−(Ĥ0−λÔ)t|Bs⟩ = e−Ēt (δrs + tDrs) , (6.38)

with

Drs = −ϵrδrs + λ ⟨Br|Ô|Bs⟩ . (6.39)

The matrix Drs is a dS × dS Hermitian matrix, which can be diagonalised. Doing so, we
let µ(i) be the real eigenvalues and e(i)r the orthonormal eigenvectors of this matrix (for
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i = 1, ..., dS). The eigenvectors will produce the identity when summed together,

dS∑

i=1

e(i)r e
(i)∗
s = δrs. (6.40)

The matrix Drs can then be written as a sum over the eigenvalues and eigenvectors

Drs =

dS∑

i=1

µ(i)e(i)r e
(i)∗
s . (6.41)

Now we can replace Drs in Eq. (6.36) by the sum over the diagonalised components

⟨Br|e−(Ĥ0−λÔ)t|Bs⟩ =
dS∑

i=1

e(i)r
[
1 + µ(i)t

]
e(i)∗s e−Ēt. (6.42)

The eigenvalues µ(i) are expected to be small as they depend on the size of both ϵ and λ.
Using this, we re-exponentiate the factor between the eigenvalues in Eq. (6.42),

⟨Br|e−(Ĥ0−λÔ)t|Bs⟩ =
dS∑

i=1

e(i)r e
(i)∗
s e−E

(i)
λ t, (6.43)

where we define the energy in the exponent as

E
(i)
λ = Ē − µ(i). (6.44)

6.4.1. Correlation Function

Using the methods outlined above allows us to rewrite the original correlation function
in terms of the eigen-values and -vectors of Drs,

CλB′B(t) =

dS∑

i=1

A
(i)
λB′Be

−E(i)
λ t, (6.45)

where we have defined the amplitudes as containing the overlap factors together with the
eigenvectors

A
(i)
λB′B =

dS∑

r=1

ZB′

r e
(i)
r

dS∑

s=1

Z̄B
s e

(i)∗
s , (6.46)
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with the overlap factors here being defined as

ZB′

r = λ⟨0| ˆ̃B′(p⃗ ′)|Br(p⃗r)⟩λ , (6.47)

Z̄B
s = λ⟨Bs(p⃗s)| ˆ̄B(⃗0 )|0⟩λ . (6.48)

Now we have a relation between the matrix element and the energy of the diagonalised
correlation matrix. Determining the energies E(i)

λ from the perturbed two-point correlation
functions now follows the same method as a Generalised Eigenvalue Problem (GEVP)
which will diagonalise the time dependence of CλB′B(t).

6.5. Quasi-Degenerate Baryon States

We will now apply the Feynman-Hellmann method to the calculation of the transition
matrix element between two baryon states with quasi-degenerate energies.

6.5.1. Σ → N Transition

We will now consider the transition between a Σ baryon and a neutron. We would like the
energies of the two baryons to be as degenerate as possible, to minimise contaminations
from other energy states. To achieve this, we will use partially twisted boundary
conditions for the neutron which will give it very specific momentum values which we
use to tune the energies to be close together. We will consider these two states to be our
set of quasi-degenerate baryons, defining them as

|B1(p⃗1)⟩ = |Σ(p⃗ )⟩, |B1(p⃗2)⟩ = |N(p⃗+ q⃗ )⟩ . (6.49)

Where EN(p⃗ + q⃗ ) ≈ EΣ(p⃗ ), we define the average energy such that both states are a
small deviation away from it EN(p⃗+ q⃗ ) = Ē ± ϵ and EΣ(p⃗ ) = Ē ∓ ϵ. Any other states
present in the system will have energies well above these two energies. In figure 6.2 we
show the energies of the Σ and neutron plotted against their momentum. As shown,
when the neutron is given a specific momentum θ, its energy will equal the mass of the
Σ baryon.

In this setup we have two quasi-degenerate states in the set S, meaning that the
matrix Drs will be a 2× 2 matrix with two eigenvalues and eigenvectors which we will
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Σ(p)

Figure 6.2. A sketch of the energy of the neutron and Σ states plotted against the momentum
p. The red line shows the energy of the neutron when it has an additional
momentum θ. The additional momentum θ from the twisted boundary conditions
allows for the quasi-degeneracy of the energies EN (θ) = EΣ(0) as can be seen at
p = 0.

label by ±. To satisfy momentum conservation between the states, we express the matrix
elements between the two baryons as

⟨Br(p⃗r)| ˆ̃O(q⃗ )|Bs(p⃗s)⟩ =
(
0 a∗

a 0

)

rs

, (6.50)

where

a = ⟨B2(p⃗2)|Ô(⃗0 )|B1(p⃗1)⟩ . (6.51)

Now to get these matrix elements we need to determine the eigenvalues of the matrix
Drs in Eq. (6.39). We do this by applying the quadratic equation

µ(±) = −1

2
(ϵ1 + ϵ2)±

1

2

√
(ϵ1 − ϵ2)2 + 4λ2|a|2, (6.52)
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this gives the modified energies

E
(±)
λ = Ē − µ(±) =

1

2
(E1 + E2)∓∆Eλ. (6.53)

Since we only consider a set of two states here, the eigenvalues must be related by
µ(+) = −µ(−) = ∆Eλ. A more convenient form is to express the matrix element in terms
of the difference between the energies from the two eigenstates,

∆Eλ = E
(−)
λ − E

(+)
λ =

√
(E2 − E1)2 + 4λ2|a|2. (6.54)

We can also obtain an expression for the eigenvectors from this

e(±)
r = N (±)


 λ|a|
κ±

1
|a|a



r

, (6.55)

where κ± = 1
2
(E1 − E2)± 1

2
∆Eλ and N (±) are the normalisations chosen such that the

eigenvectors are orthonormal. We can now use Eq. (6.54) to determine the value of the
matrix element at various momentum transfers q⃗ . Since the difference in the energies
between the two states in our system (E2 − E1) is also present under the square root in
this relation, we expect to get a better determination when this difference is minimised.

6.6. Lattice Calculation of the Transition Matrix

Element

To perform this lattice QCD calculation we are required to calculate 2-point correlation
functions with a modified action. Since we are considering the transition between a Σ−

baryon and a neutron, the operator we insert into the action will introduce a mixing
between the u-quark and the s-quark. This mixing requires that new elements be added
to the fermion matrix,

S = Sg +

∫

x

(
ū, s̄

)

 Du −λT
−λT ′ Ds




u

s


+

∫

x

d̄ Dd d. (6.56)
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We note that we have split the fermionic part of the action from the gluon action (Sg)
and the operator we insert is defined by

T (x, y; q⃗) = Γ eiq⃗·x⃗δx,y, (6.57)

where Γ is any combination of γ-matrices. The requirement of γ5-hermiticity gives
T ′ = γ5T †γ5. Using this action we then define the (u, s)-flavour fermion matrix as

M =


 Du −λT
−λγ5T †γ5 Ds


 , (6.58)

where we leave out the Dirac and colour matrices, but each element is a matrix in Dirac-,
colour- and coordinate space.

6.6.1. Expansion of the Green’s Functions

The correlation function will be constructed out of the elements of the inverse of the
matrix in Eq. (6.58). Taking the inverse gives the following matrix,

M−1 (6.59)

=


 (Du − λ2T D−1

s γ5T
†γ5)

−1 λD−1
u T (Ds − λ2γ5T †γ5D

−1
u T )−1

λD−1
s γ5T †γ5(Du − λ2T D−1

s γ5T
†γ5)

−1 (Ds − λ2γ5T †γ5D
−1
u T )−1


 .

We identify the Green’s functions as the elements of the inverted fermion matrix


Guu Gus

Gsu Gss


 =


(M−1)uu (M−1)us

(M−1)su (M−1)ss


 . (6.60)

The Green’s functions for these correlators are defined as

G(uu) = (1− λ2D−1
u T D−1

s γ5T †γ5)
−1D−1

u

G(ss) = (1− λ2D−1
s γ5T †γ5D

−1
u T †)−1D−1

s

G(us) = λD−1
u T G(ss)

G(su) = λD−1
s γ5T †γ5G

(uu).

(6.61)
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This shows that the off-diagonal elements can be written in terms of the diagonal
elements. Additionally, these expressions contain nested matrix inversions, this is possible
to calculate but it would be computationally expensive. To simplify the calculation, we
will expand the elements of this matrix for small values of λ, which is appropriate as our
calculation relies on λ being small. We also note that the expansion parameter here is λ2

which will reduce the higher order contributions. This expansion leads to the following
iterative equations for the Green’s functions

G
(uu)
2n+2 = D−1

u + λ2D−1
u T D−1

s γ5T †γ5G
(uu)
2n ,

G
(ss)
2n+2 = D−1

s + λ2D−1
s γ5T †γ5D

−1
u T G(ss)

2n ,

G
(us)
2n+1 = λD−1

u T G(ss)
2n ,

G
(su)
2n+1 = λD−1

s γ5T †γ5G
(uu)
2n ,

(6.62)

for integer values of n = 0, 1, 2, .... We define the lowest order Green’s functions as
G

(uu)
0 = D−1

u and G
(ss)
0 = D−1

s . These equations will approach the true form of the
Green’s functions for n → ∞. We note that all of the odd orders in λ will contribute
to the off-diagonal Green’s functions while the even orders contribute to the diagonal
elements. This expansion also allows for the value of λ to be set after performing the
inversions, allowing us to freely choose it without additional computational costs.

The leading order results for each of the Green’s functions are

G(uu) = D−1
u +O(λ2),

G(ss) = D−1
s +O(λ2),

G(us) = λD−1
u T D−1

s +O(λ3),

G(su) = λD−1
s γ5T †γ5D

−1
u +O(λ3).

(6.63)

In these calculation we will use δx⃗,⃗0 δt,0 as the initial source for the Green’s functions.
Consider the leading order off-diagonal Green’s function G(us)

1 , now with the Dirac, colour
and coordinate indices explicit, as well the full expression for T from Eq. (6.57)

[G
(us)
1 (x, 0)]αδad = λe−iq⃗·z⃗ [D−1

u (x, y)]αβab [Γ]
βγ δyz δbc [D

−1
s (z, 0)]γδcd , (6.64)
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where we use the Einstein convention of summing over repeated indices. If we explicitly
write out the coordinate-space sum over y and z, we get the expression

[G
(us)
1 (x⃗, t; 0⃗, 0)]αδad = λ

∑

y⃗

e−iq⃗·y⃗
∑

ty

[D−1
u (x⃗, t; y⃗, ty)]

αβ
ab [Γ]

βγ [D−1
s (y⃗, ty; 0⃗, 0)]

γδ
bd . (6.65)

From this expression we can see that the off-diagonal Green’s function can be calculated
in a similar manner to a lattice three-point function with a sequential source inversion
through the operator, with a sum over the operator insertion time ty. Similarly, the higher
order contributions to the diagonal and off-diagonal Green’s function are calculated by
constructing sequential sources from the preceding order and summing over time, noting
that the quark flavour changes after each sequential source.

Using these Green’s functions we can now construct a 2 × 2 matrix of correlation
functions

Cλrs(t; q⃗) =


CλNN(t; q⃗) CλNΣ(t; q⃗)

CλΣN(t; q⃗) CλΣΣ(t; q⃗)


 , (6.66)

where we define the correlators as follows

CλNN(t) =
∑

x⃗

e−i(p⃗+q⃗)·x⃗ϵabcϵa′,b′,c′

⟨trD[Γ[G(dd)(x, 0)]aa
′
]trD[[G̃(uu)(x, 0)]bb

′
[G(dd)(x, 0)]cc

′
]

+ trD[Γ[Gdd(x, 0)]aa
′
[G̃(uu)(x, 0)]bb

′
[G(dd)(x, 0)]cc

′
]⟩,

(6.67)

where the tilde modifies the correlator by G̃ = (Cγ5Gγ5)
TD and Γ is the spin projection

matrix. The other correlators defined similarly, these are listed in Appendix F.

By using the iterative expressions in (6.62) it is possible to construct the correlation
functions up to any order in λ (with associated computational costs). As the multiplication
with lambda is done after all of the fermion matrix inversions, each order in the expansion
can be calculated by adding a sequential source to the previous order

By using these expressions we can incrementally construct the correlation functions
for any value of λ, as the multiplication with λ is done after all of the fermion matrix
inversions. We expect there to be a sweet spot where the magnitude of lambda is
sufficiently large to give a clear signal but not so large that the energy shift is outside
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the linear regime1. To get a good idea of how well the expansion holds for a range of λ
values we will construct the correlation functions for values of λ up to 0.05 and consider
the energy shift for each order in the expansion up to and including O(λ4).

6.6.2. Calculation Kinematics

We will now apply the Feynman-Hellmann method to the calculation of the Σ → N

transition. To achieve this we introduce the temporal component of the vector current γ4
into the flavour off-diagonal elements of the action, allowing mixing between the u- and
s-quark to occur. This means that the modification to the action will take the form of

T (x, y; q⃗ ) = e−iq⃗·x⃗ δxy γ4. (6.68)

The modified fermion matrix produced by this action can then be approximated by
constructing the sequential sources as outlined above.

As outlined in Eq. (6.49), the set of quasi-degenerate states will consist of |Σ(p⃗ )⟩ and
|N(p⃗+ q⃗ )⟩. We shall consider the case where the Σ is stationary (p⃗ = 0⃗), meaning that
the Euclidean momentum transfer is given by

q = (i(MΣ − EN(q⃗ )), q⃗) , and Q2 = − (MΣ − EN(q⃗ ))
2 + q⃗ 2. (6.69)

The vector matrix element for a transition between two different baryons can be
parameterised by three form factors, if we average over the spin index this gives

⟨N(q⃗ ′,+)|ūγ4s|Σ(⃗0 ,+)⟩rel
=
√
2MΣ(EN(q⃗ ) +MN)(
fΣN
1 (Q2) +

EN(q⃗ )−MN

MN +MΣ

fΣN
2 (Q2) +

EN(q⃗ )−MΣ

MN +MΣ

fΣN
3 (Q2)

)
,

(6.70)

where we have used the relativistic normalisation.

To calculate the necessary correlators on the lattice, we start with a two-point
correlator for the nucleon and one for Σ. Then we construct a sequential source from
this correlator using the operator defined above (Eq. (6.68)), while summing over the
operator time. We do this iteratively until we have reached the correlator at O(λ4). We

1Eq. (6.54) is not strictly linear in λ, we refer to the regime where the λ2 term is the dominant
contribution under the square root.
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save the intermediate steps and contract them with other quark correlators to get a
baryon spectrum for each of the four orders in lambda to check for convergence. The
difference between the perturbed energies extracted from the GEVP will contain the
relevant matrix element

∆Eλ =

√√√√(EN(q⃗ )−MΣ)
2 + 4λ2

∣∣∣∣∣
⟨N(q⃗,+)|ūγ4s|Σ(⃗0,+)⟩rel√

(2EN(q⃗ ))(2MΣ)

∣∣∣∣∣

2

. (6.71)

6.6.3. Partially Twisted Boundary Conditions

To be able to test the limits of our theory for quasi-degenerate baryons, we apply partially
twisted boundary conditions. We do this by modifying the boundary conditions of the
valence quarks by including a phase shift, which then contributes to the momentum of
the quark. Applying these boundary conditions to the valence quarks is sufficient to
achieve the desired energy [27,28]. The use of these partially twisted boundary conditions
introduces new finite volume corrections, however these have been demonstrated to be
exponentially small in the volume, and are usually neglected [32,117]. For our chosen
kinematics, the neutron has a lower energy than the Σ, so we modify the boundary
conditions of one of the valence quarks of the neutron to adjust its momentum. For our
chosen kinematics, we introduce the twisted boundary conditions for the u-quark in the
neutron, adding a twist in the y-direction. This will shift the momentum of the neutron
such that its energy is closer to the mass of the Σ. The momentum of the Σ and neutron
will be defined as

p⃗ = 0⃗, q⃗ =

(
0,
θ2
L
, 0

)
. (6.72)

In table 6.1 we show the various values of the twist parameter we use in this calculation.
For run #5 we are able to get the energies of the neutron and Σ to be almost degenerate,
while for run #2 we aimed to set the neutron energy such that the four-momentum
transfer between the two states is close to zero (Q2 = 0). The other momentum values
are included to attempt to map out the momentum dependence of the matrix element.
The column for (MΣ −MN) in table 6.1 is computed from the ratio of the two-point
correlators for those baryons.
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Table 6.1. The chosen twist values in the y-direction and the corresponding values of q⃗ 2 and
the energy gap between the Σ and N .

run # θ2/π q⃗ 2 EN MΣ − EN Q2 [GeV2]

1 0.0 0.0 0.424(11) 0.0366(33) -0.0095
2 0.448 0.0019 0.429(10) 0.0351(35) 0.0050
3 1 0.0096 0.437(10) 0.0301(42) 0.0621
4 1.6 0.0247 0.450(12) 0.0182(57) 0.1730
5 2.06 0.0408 0.462(12) 0.0030(69) 0.2900
6 2.25 0.0488 0.469(13) -0.0037(78) 0.3468

6.6.4. Generalised Eigenvalue Problem

The Generalised Eigenvalue Problem (GEVP) is commonly used in lattice QCD calcu-
lations to separate the ground state from excited states through the use of operators
with different couplings to these states. This is often done through different amounts of
smearing [118–121] or different parity projections [90]. Here we will use the GEVP to
diagonalise the matrix in Eq. (6.66).

We apply the GEVP to the 2× 2 correlator matrix Cλrs(t; 0⃗, q⃗ ) at a chosen time-slice
t0 and time-step ∆t0, since there will be two eigenvectors and eigenvalues we label these
with ±. The GEVP is expressed as

C−1
λ (t0)Cλ(t0 +∆t0)u

(i)(t0,∆t0) = c(i)(t0,∆t0)u
(i)(t0,∆t0), (6.73)

v(i)(t0,∆t0)Cλ(t0 +∆t0)C
−1
λ (t0) = c(i)(t0,∆t0)v

(i)(t0,∆t0), i = ± (6.74)

where v(i) are the left handed eigenvectors and u(i) are the right handed eigenvectors; c(i)

are the eigenvalues for i = ±. Solving the GEVP will give the two eigenvectors which can
be combined with the correlator matrix to construct two new states. These two states
are defined by the following matrix multiplication of the eigenvectors and the correlator
matrix,

C
(i)
λ (t) = v(i)r [Cλ(t)]rsu

(i)
s , (6.75)

again for i = ±. These two correlators represent the two eigenstates of the perturbed
system. The eigenvectors of the correlator matrix are related to the eigenvectors of the
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matrix Drs by

v(i)r =
N (i)

Zr
e(i)r , and u(i)r =

N̄ (i)

Z̄s
e(i)s , (6.76)

where N (i) and N̄ (i) are normalisation constants.

The transition matrix element will be contained in the energy difference between the
two correlators C(−)

λ and C(+)
λ . To extract this energy splitting we construct the ratio of

the correlators

Rλ(t; q⃗ ) =
C

(+)
λ (t; q⃗ )

C
(−)
λ (t; q⃗ )

. (6.77)

In the large Euclidean time limit, this ratio will behave like a one-exponential function
which will show up in the effective energy as a plateau region. We use this effective
energy to pick out a suitable plateau region and fit a one-exponential function to the
ratio,

Rλ(t; q⃗ )
t≫0−−→

A
(+)
λ,0 e

−E(+)
λ,0 t

A
(−)
λ,0 e

−E(−)
λ,0 t

= Bλe
−∆Eλt, (6.78)

where ∆Eλ = E
(+)
λ,0 − E

(−)
λ,0 is the energy splitting defined in equation (6.71). We can fit

to this ratio with the ansatz in Eq. (6.78) to extract the energy shift ∆Eλ for a range of
λ values. Once we have extracted this energy shift for a range of λ values, we can fit to
it and extract a value for the matrix element by using Eq. (6.71).

6.7. Results

6.7.1. Two-point Correlators

In figure 6.3 we show the values of the correlators defined in Eq. (6.62) on a logarithmic
scale. The left hand figure shows the correlators which start with a nucleon propagator
and then have sequential sources appended to this i.e. n = 0, 1, 2 in Eq. (6.62). The
right hand figure shows the correlators which start with a Σ propagator, both figures
are shown for all the orders up to O(λ4) at λ = 0.025. In the lower subplot we show
the magnitude of the highest order correction for both the flavour diagonal and flavour
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off-diagonal correlators. The flavour off-diagonal contribution at O(λ3) still contributes
at this value of λ, while the O(λ4) does not produce any significant correction.
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Figure 6.3. LH panel: The value of the two-point functions CNN (t) and CNΣ(t) versus t for
λ = 0.025 at O(λ),O(λ2),O(λ3),O(λ4) for run #5. RH panel: similarly for the
two-point functions CΣN (t) and CΣΣ(t). The lower subplot shows the magnitude
of the change due to the highest order correction for both the flavour diagonal
and off-diagonal correlators. The points are slightly offset for visibility

In figure 6.4 we show the effective value of the energy shift, this is determined by
taking the effective energy of the ratio defined in Eq. (6.78)

(∆Eλ)eff = − ln

(
Rλ(t+ 1)

Rλ(t)

)
. (6.79)

The effective energy shift is shown once again for the correlators at O(λ1), O(λ2), O(λ3)

and O(λ4). The left hand panel shows the results for λ = 0.025, which shows very minimal
differences between the different orders in λ. The right hand panel is for λ = 0.05, here
the two lowest order results clearly start to deviate from the higher order results, the
results at O(λ3) and O(λ4) are still in agreement however. Since the approximation is
truncated at a finite order of λ, it is important to be careful in pushing λ to large values
as can be seen from these figures.
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Figure 6.4. LH panel: ∆Eλ versus t for λ = 0.025 at O(λ),O(λ2),O(λ3),O(λ4) for run #5.
RH panel: similarly for λ = 0.05. The points are slightly offset for visibility

6.7.2. Tests

GEVP Parameters

We need to check that the parameters used in the GEVP are appropriate and give
reliable results. This becomes more of an issue as the energies of the two states come
closer together. We will use a set of criteria to determine an optimal set of parameters
introduced by [122].

• The correlation functions should have a good statistical signal over the range spanned
by t0 and ∆t0.

• The estimate of the energy difference from the eigenvalue c(i) should be close to the
final estimate of the energy difference from the projected correlators.

The energies can be estimated from the eigenvalues c(i) by using E(c(i)) = −
(
ln c(i)

)
/∆t0,

while by the projected correlators we refer to the correlators constructed by multiplying
the correlator matrix with the eigenvectors. Since we are interested in the energy
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Figure 6.5. The difference between two estimates of the ∆E, one calculated from the
eigenvalues of the GEVP and the other from a fit to the ratio of correlators in
Eq. (6.78). The difference is shown as a function of both t0 and ∆t0. For each
value of ∆t0 it is shown for the values t0 = 1− 8, where the dashed lines separate
the values of ∆t0. These results are from run #5. The uncertainties are reduced
for ∆t0 ≥ 4 and they start agreeing with zero for t0 ≥ 6.

difference between the two states, we will consider

∆E(c+, c−) = (ln c(+) − ln c(−))/∆t0

=
ln
(
c(+)/c(−)

)

∆t0
.

(6.80)

This will then be compared to the energy shift from fitting to the ratio of correlators as
described in Eq. (6.78). Figure 6.5 shows the difference between these two estimates of
the energies for run #5. For ∆t0 ≥ 4 the uncertainty in the difference is reduced and for
t0 ≥ 6 the difference starts to agree with zero. Therefore we will choose t0 = 6,∆t0 = 4

as the parameters for the GEVP in runs #4, #5 and #6. For the first three runs the
difference between the energies of the neutron and Σ− is large enough that the GEVP
gives consistent results for smaller parameters and so we choose t0 = 4,∆t0 = 2 for those
runs.

Eigenvectors and state mixing

The eigenvectors from the GEVP contain information about the mixing between the two
baryons. The amount of mixing will be dependent on the size of λ as well as the difference
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Figure 6.6. LH panel: the squared elements of the right-orthogonal eigenvector. This
eigenvector is constructed from the value of the matrix element and the energy
shifts through Eq. (6.55). RH panel: the eigenvector from from solving the
GEVP, multiplied by the overlap factors Zr. These two determinations of the
eigenvectors should be equal as shown by equation (6.76). All eigenvectors are
shown for λ = 0.025.

in energy between the two baryons. We expect there to be the most amount of mixing
when the baryons are degenerate in energy and less mixing at momenta removed from
this degeneracy. Figure 6.6 shows the squares of the elements of each of the eigenvectors
for λ=0.025.

The left hand figure shows the eigenvectors constructed by using Eq. (6.55), using
the value of the matrix element and the energies of the baryons. The right hand figure
shows the eigenvectors as determined by solving the GEVP, multiplied by the appropriate
overlap factor Zr. These eigenvectors should be equal as was shown in Eq. (6.76). The
squares of the eigenvalues show how much mixing is occurring due to the perturbation
to the action, values close to 0.5 mean that the states are strongly mixed, while values
closer to 0 and 1 imply minimal mixing of the states. We can see that for this value of λ,
some mixing is occurring at all momenta, but it is maximised around q⃗ 2 ≈ 0.03, when
the squares of the eigenvector values are around 0.5 and the energies are close to being
degenerate.
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6.7.3. Energy Shifts

In figure 6.7 we show the energy shift as a function of λ for each of the four orders in
the expansion of the correlator. Since we can choose the value of λ freely after all of the
propagators have been calculated, we show these results here as bands. The left hand
figure displays the energy shifts for run #1, which shows that the lower orders in the
approximation start to deviate from the expected linear behaviour at values of λ around
λ ≈ 0.015− 0.025.

The right hand panel shows the energy shift for run #5, which is the run where
the two states are the most degenerate in energy. It can be seen that in this case the
expansion in λ holds up better as the two highest orders agree up to λ ≈ 0.05. We note
that the value of ∆Eλ is negative at small values of λ, in contrast to the theoretical
description which predicts a purely positive energy shift. This is due to the ordering of
the states being difficult to determine for small λ when the energies are near degenerate.
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Figure 6.7. LH panel: ∆EλΣN versus λ at O(λ),O(λ2),O(λ3),O(λ4) for run #1. RH panel:
similarly for run #5. The bands only show the energy shifts which have been
determined from a fit with χ2

dof < 1.5. Once λ becomes large enough that the
ansatz does not produce a high quality fit, we cut off the band.

To extract a value for the matrix element we consider the results from the O(λ4)

correlator. To avoid issues with the negative energy shift we fit to the square of the



Transition Matrix Elements 117

energy shift, using the square of Eq. (6.71) as an ansatz

(∆Eλ)
2 = (EN(q⃗ )−MΣ)

2 + 4λ2

∣∣∣∣∣
⟨N(q⃗,+)|ūγ4s|Σ(⃗0,+)⟩rel√

(2EN(q⃗ ))(2MΣ)

∣∣∣∣∣

2

. (6.81)

Here the energies of the neutron and the Σ, as well as their energy difference are known
quantities which we have determined by fitting to the unperturbed two-point correlation
functions.

Since the energy shift is calculated from the same set of correlation functions multiplied
together with different powers of λ, they are very strongly correlated. This correlation
prevents the application of a conventional χ2 goodness-of-fit test for a fit to the λ-
dependence. To determine the quality of our fit we therefore investigate the region in λ
where our derivation holds up well.

6.7.4. Fitting the λ-dependence

The method described here relies on the assumption that both baryons are quasi-
degenerate in energy as well as assumptions on the size of the expansion parameter λ.
To determine whether or not these assumptions hold, we look at the slope of the energy
shift. In the limit of the energy degeneracy we expect that for sufficiently large values of
λ the energy shift will show a linear behaviour.

To get an estimate of the matrix element in this quasi-degenerate limit, we can
consider the ratio in Eq. (6.77) at two successive values of λ. This will take advantage of
the cancellation of correlations between the ratios

Rλ+δλ(t)

Rλ(t)

t≫0∝ e−(∆Eλ+δλ−∆Eλ)t. (6.82)

Using this we can define an effective value for the matrix element by taking the effective
energy of the double ratio

⟨ME⟩eff (t, λ) = − 1

2δλ
ln

(
Rλ+δλ(t+ 1)

Rλ(t+ 1)

Rλ(t)

Rλ+δλ(t)

)
,

EN (q⃗ )−MΣ→0

0≪t≪ 1
λ−−−−−−−−→ ⟨ME⟩ ,

(6.83)

where we define ⟨ME⟩ as the normalised value of the matrix element in Eq. (6.81).
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In figure 6.8 we show this effective matrix element against time for the O(λ4) results.
The fits to this produce a good result and they show a good plateau region where the
contributions from the ground state energy dominate.
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Figure 6.8. The effective energy of the double ratio of equation (6.82) versus time, showing
the fit the to the slope of the λ-dependence of ∆Eλ at O(λ3) and O(λ4) for run
#1 (LH) and run #5 (RH). For the first run, the ratio is taken at λ = 0.01429,
while for the run #5 it is taken at λ = 0.02143.

In figure 6.9 we show effective matrix element as a function of λ for both O(λ3) and
O(λ4) results. Additionally we show the value of the matrix element extracted from
solving Eq. (6.81) at each value of λ. The black circles in these figures correspond with
the matrix element at the value of λ used in figure 6.8. It can be seen that for the first
three runs the disagreement between the two orders starts around λ ≈ 0.02. For the runs
#4–#6 the two highest orders start to deviate from each other around λ ≈ 0.03.

These figures give us a good indication of how well our method holds up over a range
of λ values. The upper limit of usable λ values is set by the agreement between O(λ3) and
O(λ4). On the lower end of λ, the GEVP produces large uncertainties in the energy shift
for runs #4–#6, which we will avoid. From these figures we determine that the range of
optimal values is approximately 0 < λ < 0.015 for runs #1–#3 and 0.015 < λ < 0.03 for
runs #4–#6.

As a last comparison we insert the extracted value for the matrix element into Eq
(6.82) and compare this to the absolute value of the energy shift as a function of λ. This
comparison in shown in figure 6.10 for the order O(λ4) results of all six runs. For runs
#5 and #6 there is some discrepancy at small values of λ as the energy shift was negative
for certain bootstrap resamplings. The fit result however does agree well in the central
region of λ which we are considering.
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Figure 6.9. The slope of |∆Eλ| versus λ for at O(λ3) and O(λ4) for all runs. The bands
show the matrix element produced by taking the slope between two successive
values of λ, while the black point indicates the value of λ we have chosen to keep
consistent between runs.
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Figure 6.10. |∆Eλ| versus λ for at O(λ4) for all runs. The fit results are overlaid over the
lattice results.
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6.7.5. Expansion Parameters

To double check the validity of our chosen windows in time as well as λ, we can compare
them to the requirements laid out in the previous section. Recall that the requirements
outlined earlier were

0 ≪ t≪ 1

λ
, 0 ≪ t≪ 1

max|EBr − EBs|
. (6.84)

In this calculation, the largest values for each of the expansion parameters which we
considered are

tfit = 8− 16, (6.85)
1

λmax
=

1

0.03
≈ 33, (6.86)

1

max|EBr − EBs|
=

1

0.0366
≈ 27. (6.87)

For runs #4–#6, the energy shift will be much smaller than the above, improving the
expansion in O(ϵt). The magnitude of λ will remain consistent between the runs however.

6.7.6. Avoided Level Crossing

This calculation relies on introducing a mixing parameter between two quark flavours
and determining the resulting energy shift. This shift in energy will have avoided level
crossing behaviour as in perturbation theory. In figure 6.11 we show the energies of the
neutron and Σ− baryons plotted against the momentum of the neutron, for each of the
runs. The left hand figure shows the unperturbed energies, while the right hand figure
shows the energies after applying the GEVP to the correlator matrix. The right hand
figure shows the distinctive avoided level crossing behaviour in the energies.

6.8. Three-point Function Calculation

To assess the qualities of the Feynman-Hellmann calculation we construct a similar
calculation using three-point functions and compare the results of both methods. To
make the comparison as informative as possible we will use the same number of lattice
configurations for each run.
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Figure 6.11. The energy of the neutron and Σ− baryons plotted against the momentum
of the neutron. The left hand panel shows the unperturbed energies of the
neutron and Σ. The right hand figure shows the energies of the two states (C(−)

λ ,
C

(+)
λ ) which are produced by the GEVP, where the size of the perturbation is

λ = 0.025.

The three-point function calculation will be constructed using a sequential source
inversion through the sink, this means that the source-sink time-separation is fixed and
the operator insertion time can be varied after the propagators are calculated. To get
an estimate of the contribution from excited states in this calculation we simulate with
three different source-sink separations (tsink = 0.74, 0.96, 1.18 fm). The sequential source
through the sink method also requires fixing the momentum at the sink. We choose to
keep the sink at zero momentum allowing the initial momentum to change.

6.8.1. Lattice Three-point Functions

As shown in previous sections the lattice three-point function has a spectral decomposition.
Here we consider the case of a n→ Σ− transition where the Σ− is at rest,

GNΣ(Γproj,ΓO; 0⃗, p⃗ ; t, τ) =
∑

i,j

e−E
i
N (p⃗ )τe−M

j
Σ(t−τ)

M j
ΣE

i
N(p⃗ )

Zj
χ,Σ(⃗0 )Z̃

i
N,χ(p⃗ )

∗ F3(Γproj,ΓO; 0⃗ , p⃗ ;M
j
Σ,M

i
N),

(6.88)
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and F3 is defined in Eq. (3.47). The vertex function of the vector current Vµ between
two different baryons can be parameterised by three form factors

⟨Σ(p⃗ ′, r′)|Vµ(q⃗ )|N(p⃗ , r)⟩ = ūΣ(p⃗
′, r′)

[
γµf

NΣ
1 (Q2) + σµν

qν
MN +MΣ

fNΣ
2 (Q2)

+ i
qµ

MN +MΣ

fNΣ
3 (Q2)

]
uN(p⃗ , r),

(6.89)

where q = p′ − p. We will consider this three-point function for the case where the
Σ baryon at the sink is fixed at zero momentum p⃗ ′ = 0⃗ and only the initial neutron
can have non-zero momentum. Using the two-point and three-point functions we can
construct a ratio which will remove any time dependence in the limit where both time
intervals are sufficiently large (τ, t− τ ≫ 0)

R(ΓProj,O; t, τ ; 0⃗ , p⃗ ) =
GNΣ(ΓProj;O; t, τ ; 0⃗ , p⃗ )

GΣ(t, 0⃗ )√
GΣ(τ, 0⃗ )GΣ(t, 0⃗ )GN(t− τ, p⃗ )

GN(τ, p⃗ )GN(t, p⃗ )GΣ(t− τ, 0⃗ )
,

(6.90)

where all the two-point functions are projected onto the unpolarised, positive parity state.
Consider the temporal vector current V4 and the unpolarised projector for the kinematics
above, then in the large Euclidean time limit, this ratio will reduce to the matrix element
with some kinematic factors

R(Γunpol,V4; t, τ ; 0⃗ , p⃗ )
τ, t−τ≫0−−−−−→ F3(Γunpol,ΓV4 ; 0⃗ , p⃗ )

MΣ

√
2EN(p⃗ )(EN(p⃗ ) +MN)

(6.91)

=
1

2
√
EN(p⃗ )MΣ

⟨N(p⃗ ,+)|ūγ4s|Σ(⃗0,+)⟩rel . (6.92)

We will once again consider a two-exponential function as the ansatz for fitting the
ratio. The ansätze with two exponentials for both the two-point functions and the ratio
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are

GΣ
fit(t, p⃗ ) =

1∑

i=0

AΣ
i e

−EΣ
i t, GN

fit(t, p⃗ ) =
1∑

i=0

ANi e
−EN

i t, (6.93)

R(t, τ ; 0⃗ , p⃗ ) =
1∑

i,j=0

√
AΣ
i A

N
j Bij e

−EΣ
i te−(EN

j −EΣ
i )τ

∗ 1

GΣ
fit(t, 0⃗ )

√
GΣ

fit(τ, 0⃗ )G
Σ
fit(t, 0⃗ )G

N
fit(t− τ, p⃗ )

GN
fit(τ, p⃗ )G

N
fit(t, p⃗ )G

Σ
fit(t− τ, 0⃗ )

,

(6.94)

where we fit the two-point functions first to determine the amplitudes (Ai) and the
energies (Ei) and then use these parameters in the fit to the ratio where the parameters
Bij are determined. For this calculation we are only interested in the matrix element
between the ground states which is contained within B00. The fit to the ratio is performed
using the data from all three source-sink separations simultaneously.

6.8.2. Double ratio

To improve the signal of the ratios we also perform the three-point function calculation
of the reverse transition Σ− → n. For this calculation we once again keep the sink
momentum fixed at zero. Since this is now the neutron momentum, the discretised lattice
momenta will result in slightly different Q2 values. For q⃗ 2 = 0 we have access to the
three-point functions for both transitions, these can be combined to form a ’double ratio’
which has been shown to produce a more symmetric signal [30]. This ratio uses both
transition three-point functions together with the two-point functions to cancel out the
time-dependence in the large Euclidean time limit

R2(Γunpol,ΓV4 ; t, τ ; 0⃗ , 0⃗ ) =

√
GNΣ(t, τ ; 0⃗ , 0⃗ )GΣN(t, τ ; 0⃗ , 0⃗ )

GΣ(t, 0⃗ )GN(t, 0⃗ )

τ, t−τ≫0−−−−−→ F3(Γunpol,ΓV4 ; 0⃗ , 0⃗ )

2MΣMN

=
1

2
√
MNMΣ

⟨N (⃗0 ,+)|ūγ4s|Σ(⃗0,+)⟩rel .

(6.95)

In this ratio the time dependence due to the current insertion is canceled off by the two
three-point functions, which should result in a better cancellation than the previous ratio
where this cancellation was achieved by dividing by two-point functions. . To apply the
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Figure 6.12. The ratio of the three-point function and multiple two-point functions for the
operator V4 at zero momentum p⃗ = 0⃗ with the unpolarised projector. The
green bands show the result of the fit to the ratio while the blue band shows
the extracted value of the matrix element ⟨Σ(⃗0 )|V4|N (⃗0 )⟩

two-exponential fitting method to this ratio we construct a similar ansatz to Eq. (6.93)
containing two three-point functions with common parameters Bij.

6.8.3. Results

Figure 6.12 shows the ratio in Eq. (6.90) for the three different source-sink separations
at p⃗ = 0⃗. For all three ratios the results do not show a plateau behaviour, this is most
readily explained by the difference in excited state contributions from the source and
sink operators. In figure 6.13 we show the double ratio from Eq. (6.95) again for p⃗ = 0⃗.
This time the ratios do exhibit a plateau behaviour for the larger source-sink separations
and as expected the double ratio produces a more symmetric signal by including both
transition directions.

Figures 6.12 and 6.13 also show the results of the two-exponential fit overlaid on the
ratio in the blue band. Noting the change in the scale of the y-axis, the double ratio
clearly produces a much better signal. We apply the fitting method described above
to all the vector operators for both the unpolarised and polarised projector, using the
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Figure 6.13. The double ratio from equation (6.95), shown for the three source-sink sep-
arations. The blue band shows the result of the fit with the two-exponential
ansätze in Eq. (6.93).

results from these fits allows us to solve the system of linear equations and get a value
for each of the three form factors.

6.8.4. Results Comparison

In order to consider the relative qualities of the Feynman-Hellmann and three-point
function method, we will compare two values of the matrix element from the two methods.
These points are at Q2 = 0.29GeV2 for the FH method and Q2 = 0.27GeV2 for the
three-point function method. For the comparison we will show the effective value of the
matrix element as a function of time for both methods. For the three-point function
method, this means we show the ratios for each of the source-sink time separations, while
for the Feynman-Hellmann method we show the value of effective matrix element as
defined in Eq. (6.83). At the chosen values for Q2 the energy difference between the Σ

and neutron is relatively small (MΣ − EN = 0.0030(69)) as can be seen from table 6.1.
This means that the effective matrix element from the Feynman-Hellmann method will
have minimal corrections due to the quasi-degeneracy at this Q2 value.

In figure 6.14 we show the effective FH result together with the ratios from three-point
function calculation (multiplied with the appropriate kinematic factors). There is good
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Figure 6.14. A comparison between the values of the matrix element from Feynman-Hellmann
and the three-point function calculation at Q2 ≈ 0.28GeV2. The left hand
panel shows the effective value of the matrix element as a function of operator
insertion time (τ) for the three-point function and as a function of sink time (t)
for the Feynman-Hellmann method. The bands show the fit results, while the
right hand panel shows these fit results in more detail, the orange cross shows
the result of the two-exponential fit to all three-point function results.

agreement between the two results as can be seen in the right hand panel of this figure.
Qualitatively we can say that while the Feynman-Hellmann results are noisier at large
times, access to these large times gives us a clearer indication of the control over the
excited state contributions, which is more difficult to estimate from the three-point
function results.

Figure 6.15 shows the values of the matrix element against Q2 from this calculation as
well as those from the Feynman-Hellmann approach. both results have been renormalised
using renormalisation constant ZV = 0.863(4) from [91]. The agreement between both
methods is very good as can be seen. The three-point function method produces smaller
uncertainties at Q2

min (= q2max), due to the double ratio, otherwise the uncertainties for
both methods are comparable in size. In table 6.2 we show the results for the renor-
malised matrix element from both the Feynman-Hellmann method and the three-point
method. The Feynman-Hellmann approach presented here has shown good agreement
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Figure 6.15. Results for ⟨N(q⃗ )|ūγ4s|Σ(⃗0 )⟩renrel versus Q2. The triangles show the results from
the Feynman-Hellmann method while the circles show the various three-point
function results.

with the established three-point function approach. This is encouraging for extending
this calculation to produce a full estimate of f1(0).

This calculation only used one component of the vector current, which gives access
to the scalar form factor f0(q2) at Q2

min, but not its full momentum dependence as that
requires simulations with at least two vector currents. To calculate the momentum
dependence would require doing the calculation for an additional component of the vector
current. Doing this additional calculation would allow for the extrapolation of the scalar
form factor to Q2 = 0 which determines f1(0). Beyond that, the calculation can be
performed on a range of ensembles with different pion masses, which would allow for the
extrapolation of f1(0) to the physical quark masses. Providing that the method holds up
across a range of lattice ensembles, it could be used to produce a new determination of
the CKM matrix element |Vus|.

This specific Feynman-Hellmann approach has the advantage that the perturbed
quark propagators are fully calculated before they are combined with the λ parameter
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Table 6.2. The renormalised matrix element ⟨N(q⃗,+)|uγ4s|Σ(⃗0,+)⟩renrel against Q2 in GeV2

for the six runs. We also give five additional Q2 results: a-e using the conventional
3-point correlation function approach.

run # Q2 [GeV2] ⟨N(q⃗,+)|uγ4s|Σ(⃗0,+)⟩renrel

1 -0.0095 0.897(27)
2 0.0048 0.878(32)
3 0.062 0.817(40)
4 0.17 0.684(49)
5 0.29 0.535(38)
6 0.35 0.486(42)
a -0.011 0.882(21)
b 0.22 0.589(37)
c 0.27 0.541(38)
d 0.44 0.394(46)
e 0.53 0.387(50)

and contracted to form baryon correlators. This allows the propagators to be reused at
little extra cost to construct other hadron correlation functions which can be used for
other hyperon transitions, such as Λ → p, Ξ → Σ, K → π, etc. Since the masses of these
hadrons are different, the form factors would be determined at different values of Q2.
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Chapter 7.

Conclusion & Outlook

The scope of lattice QCD calculations have been progressing at a fast pace in recent years
with improvements in computing capabilities and the development of new algorithms.
Further, we are seeing more and more simulations being performed at the physical quark
masses, extending the predictive power of lattice QCD. There are however still many
limitations to current simulations which would benefit from improvements in the analysis
methods. Many of the current limitations to lattice QCD simulations stem from our
lack of understanding of systematic uncertainties. To improve our understanding of
these uncertainties it is valuable to consider multiple methods for calculating the same
observables, especially when these methods contain different systematic uncertainties.

A large part of the uncertainty in the calculation of hadron spectra on the lattice
can be traced to the contributions from excited states. As our understanding of these
excited states improves the need for advanced analysis tools has increased as well. In this
thesis we have focused on model averaging as a method for handling the excited state
contributions reliably across a large range of momenta. This weighted averaging across
multiple time windows and ansätze has shown to produce robust results for extracting
the spectrum of nucleons across a wide range of lattice ensembles, the results of which
were presented in chapter 3.

The Feynman-Hellmann method as applied to the calculation of electromagnetic
form factors relies heavily on the accurate determination of energies of the hadrons and
small shifts in these energies. To determine the momentum dependence of the form
factors it is of great importance that these energy shifts are extracted consistently from
correlators with a large range of momentum projections. In this work we have shown
that the weighted averaging method is a useful addition to the analysis tool set which
removes some of the biases due to the choice of fit window and which allows for the
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inclusion of a systematic uncertainty which encapsulates the variability between the fit
windows. In chapter 5 we have shown the results of simulations making use of these tools
to calculate the nucleon electromagnetic form factors on a range of lattice ensembles. The
form factors shown in this chapter are compared to results from a three-point function
calculation and we show that there is agreement between the two methods. We argue that
the Feynman-Hellmann method together with the analysis tools allows for better control
over the contributions from excited states. We repeat the calculation on a large set of
lattice ensembles and apply a flavour-breaking expansion to attempt an extrapolation
of the form factors to the physical quark masses. The extrapolation results in a set of
nucleon form factors which can be compared to experimental data. For the electric form
factor we are able to show good agreement with the data, however for the magnetic form
factor there is a large discrepancy. This discrepancy is likely due to the inability of our
simulation results to fully constrain the form factor dependence on many of the lattice
systematics. These results show a promising path for the Feynman-Hellmann method
to be used as an alternative method for calculating the nucleon electromagnetic form
factors at high momentum. The use of a larger set of lattice ensembles or quark masses
closer to the physical ones will be necessary to provide truly competitive predictions of
the form factors.

In chapter 6 we have extended the derivation of the Feynman-Hellmann method to
include quasi-degenerate energy states, which allowed for an expolarative calculation
of hyperon transition matrix elements. This extension relies on the energy difference
between the two unperturbed states being relatively small, as such we chose the Σ− → n

transition with the nucleon at non-zero momentum. The results in the chapter show that
the Feynman-Hellmann method is able to produce results of comparable precision to the
three-point function method on this lattice ensemble. As for the previous results, the
analysis of the Feynman-Hellmann method here is simpler due to there being only one
set of exponentially decaying excited states present in the correlator. These simulation
are a first step towards developing an alternative approach for the determination of the
hyperon transition form factors. Further calculations will be necessary in order to test
the applicability of this method once the mass-splitting between the hyperons increases
at lower quark masses, and to study the effects of other lattice systematics on the results.
This is a promising result however, and it opens the door to many other calculations,
the simplest extensions being the calculation of meson transition matrix elements and
simulations with a spatial vector current to allow for the determination of individual
form factors.
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Appendix A.

Conventions

A.1. Metric and Dirac Matrices

A.1.1. Euclidean Spacetime

The Euclidean spacetime metric is defined by

δµν ≡




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



. (A.1)

The rotation to Euclideon space is set by the following transformation

γµM ≡ (γ0M , γ
i
M)

Wick−−−→ γµ ≡ (γi, γ4)− (−iγiM , γ0M), (A.2)

this gives the relationship for the Dirac matrices in Euclidean space,

{γµ, γν} = 2δµνI. (A.3)

The fifth Dirac matrix is defined as

γ5 ≡ γ1γ2γ3γ4 = −γ5M , (A.4)
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and the antisymmetric tensor is defined as

σµν ≡
i

2
[γµ, γν ], (A.5)

which relates to Minkowski spacetime by

σ4i = −iσ0i
M , (A.6)

σij = −σijM . (A.7)

We use the following Dirac basis,

γ4 =


I 0

0 −I


 , γi =


 0 −iσi
iσi 0


 , γ5 =


 0 −I

−I 0


 , (A.8)

where σi are the Pauli matrices and all the matrices are Hermitian. The Pauli matrices
are

σ1 =


0 1

1 0


 , σ2 =


0 −i
i 0


 , σ3 =


1 0

0 −1


 . (A.9)

A.2. Projection Matrices

Paritye and spin projectors for the spin-half baryons are defined as

ΓP± =
1

2
(I± γ4), (A.10)

ΓjS± =
1

2
(I± iγ5γj), (A.11)

where êj is the chosen spin-polarisation axis, which is chosen to be e3 for the work in this
thesis. The combinations of these projectors which are used in the analysis of baryon
correlators are

Γunpol ≡ ΓP+ (ΓS+ + ΓS−) =
1

2
(I+ γ4), (A.12)

Γjpol ≡ ΓP+ (ΓS+ − ΓS−) =
i

2
(I+ γ4)γ5γj, (A.13)

Γj± ≡ ΓP+ΓS± =
1

2
(I+ γ4)

1

2
(I± iγ5γj) =

1

2
(Γunpol ± Γpol). (A.14)



Appendix B.

Feynman-Hellman Method for the
Spatial Vector Current

Consider the perturbed two-point correlator

Gλ(p⃗, t,Γ) = Γαβ λ⟨χ̃α(p⃗, t)χ̄β(0)⟩λ (B.1)

Inserting two complete sets of states

Gλ(p⃗, t,Γ) = Γαβ
∑

X,⃗kX
σX

∑

Y,⃗kY
σY

∆3kX
(2π)3

∆3kY
(2π)3

1

(2EX)(2EY )
⟨Ω|χ̃α(p⃗, 0)|X(p⃗X , σX)⟩

∗ ⟨X(p⃗X , σX)|e−Ĥλt|Y (p⃗Y , σY )⟩ ⟨Y (p⃗Y , σY )|χ̄β(0)|Ω⟩

(B.2)

Using the Dyson expansion we can expand the matrix element in the previous equation,
we will consider this for the set of states which are degenerate in energy, such that the
only free variables are the sign of the momentum and the spin,

⟨B(p⃗r, σr)|e−Ĥλt|B(p⃗s, σs)⟩
2E(p⃗ )

(B.3)

=
1

2EB(p⃗ )
⟨B(p⃗r, σr)|e−Ĥ0t(1− λ

∫ t

0

dt′eĤ0t′Ṽ2(q⃗ )e
−Ĥ0t′)|B(p⃗s, σs)⟩ (B.4)

= eEB(p⃗ )t

[
δσrσsδrs −

tλ

2EB(p⃗ )
⟨B(p⃗r, σr)|Ṽ2(q⃗ )|B(p⃗s, σs)⟩

]
. (B.5)

From above we know the matrix element of the spatial vector current between two Breit
frame states, we use this with a slight modification to the eigenvalues to include the
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additional terms of the above expression,

tλ

2EB(p⃗ )
⟨B(p⃗r, σr)|Ṽ2(q⃗ )|B(p⃗s, σs)⟩ =

∑

j,σ

e(jσ)σrr e
(jσ)∗
σss µ(j) t, (B.6)

where

µ(±) = ±iλ
√
q21 + q23

Gf
M,X(Q

2)

2EB(p⃗ )
. (B.7)

The eigenvectors and eigenvalues can be used to rewrite the expression in Eq. B.5 as

⟨B(p⃗r, σr)|e−Ĥλt|B(p⃗s, σs)⟩
⟨B(p⃗ )|B(p⃗ )⟩ =

∑

j,σ

e(jσ)σrr

[
1− tµ(j)

]
e(jσ)∗σss eEB(p⃗ )t (B.8)

=
∑

j,σ

e(jσ)σrr e
(jσ)∗
σss eE

(j)
B (p⃗,λ)t, (B.9)

where

E
(±)
B (p⃗, λ) = EB(p⃗ )± µ(j) (B.10)

The next step is to evaluate the expression for the two-point correlator in Eq. B.2
using these new eigenvectors and the polarised projection matrix

Gλ(p⃗r, t,Γ
3
±) =

EB +MB

2EB
|Z(p⃗ )|2

∑

j

eE
(j)
B (p⃗,λ)t

∑

σr,σs,s

(1± σr)δσrσs
∑

σ

e(jσ)σrr e
(jσ)∗
σss (B.11)

=
EB +MB

EB
|Z(p⃗ )|2

∑

j,s

eE
(j)
B (p⃗,λ)t




1 ∓(j) iq1√
q21+q

2
3

±(j) iq1√
q21+q

2
3

1



rs

(B.12)

=
EB +MB

EB
|Z(p⃗ )|2



(1± iq1√

q21+q
2
3

)eE
(+)
B (λ)t + (1∓ iq1√

q21+q
2
3

)eE
(−)
B (λ)t

(1∓ iq1√
q21+q

2
3

)eE
(+)
B (λ)t + (1± iq1√

q21+q
2
3

)eE
(−)
B (λ)t



r

(B.13)

This expression is now in the same form as Eq. 4.37.
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Baryon masses
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β L3 × T (κl, κs) (κ1, κ2) am1-exp amw.avg

5.4

243 × 48

(0.119820, 0.119820) (0.119820, 0.119820) 0.5626(34) 0.5565(64)

(0.119860, 0.119860) (0.119860, 0.119860) 0.5159(65) 0.5115(93)

(0.119895, 0.119895) (0.119895, 0.119895) 0.5061(60) 0.5051(76)

(0.119930, 0.119930) (0.119930, 0.119930) 0.4815(55) 0.4819(56)

(0.120000, 0.120000) (0.120000, 0.120000) 0.4709(90) 0.4692(98)

(0.120048, 0.119695)

(0.120048, 0.119695) 0.4941(63) 0.4945(61)

(0.120048, 0.120048) 0.460(12) 0.4623(96)

(0.119695, 0.120048) 0.5127(44) 0.5122(46)

(0.119695, 0.119695) 0.5466(34) 0.5395(39)

323 × 64

(0.119930, 0.119930) (0.119930, 0.119930) 0.4671(27) 0.4664(37)

(0.119989, 0.119812)

(0.119989, 0.119812) 0.4541(42) 0.4523(50)

(0.119989, 0.119989) 0.4723(35) 0.4709(44)

(0.119812, 0.119989) 0.4821(29) 0.4809(37)

(0.119812, 0.119812) 0.4984(26) 0.4946(32)

(0.120048, 0.119695)

(0.120048, 0.119695) 0.4691(42) 0.4606(65)

(0.120048, 0.120048) 0.4264(59) 0.4142(94)

(0.119695, 0.120048) 0.4919(30) 0.4893(39)

(0.119695, 0.119695) 0.5245(25) 0.5155(38)

(0.120084, 0.119623)

(0.120084, 0.119623) 0.4644(49) 0.4644(72)

(0.120084, 0.120084) 0.4098(98) 0.414(17)

(0.119623, 0.120084) 0.4916(29) 0.4905(43)

(0.119623, 0.119623) 0.5329(23) 0.5292(34)
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β L3 × T (κl, κs) (κ1, κ2) am1-exp amw.avg

5.5

323 × 64

(0.120900, 0.120900) (0.120900, 0.120900) 0.4690(40) 0.4646(43)

(0.120920, 0.120920) (0.120920, 0.120920) 0.4440(70) 0.4431(73)

(0.120950, 0.120950) (0.120950, 0.120950) 0.4348(77) 0.4333(97)

(0.120990, 0.120990) (0.120990, 0.120990) 0.4107(89) 0.4097(78)

(0.121021, 0.121021) (0.121021, 0.121021) 0.385(12) 0.380(11)

(0.121040, 0.120620)

(0.121040, 0.120620) 0.4642(42) 0.4622(81)

(0.121040, 0.121040) 0.4179(70) 0.411(12)

(0.120620, 0.121040) 0.4833(25) 0.4805(52)

(0.120620, 0.120620) 0.0 0.4991(27)

(0.121040, 0.120770)

(0.121040, 0.120770) 0.4490(59) 0.4370(68)

(0.121040, 0.121040) 0.4236(83) 0.4043(79)

(0.120770, 0.121040) 0.4600(50) 0.4451(67)

(0.120770, 0.120770) 0.4769(30) 0.4745(48)

(0.121050, 0.120661)

(0.121050, 0.120661) 0.4502(63) 0.4493(59)

(0.121050, 0.121050) 0.3923(92) 0.3963(90)

(0.120661, 0.121050) 0.4727(39) 0.4700(55)

(0.120661, 0.120661) 0.5108(30) 0.5101(30)

(0.121095, 0.120512)

(0.121095, 0.120512) 0.4641(49) 0.4673(93)

(0.121095, 0.121095) 0.397(11) 0.400(14)

(0.120512, 0.121095) 0.470(10) 0.468(10)

(0.120512, 0.120512) 0.0 0.5216(30)

(0.121099, 0.120653)

(0.121099, 0.120653) 0.4312(99) 0.430(12)

(0.121099, 0.121099) 0.379(16) 0.380(21)

(0.120653, 0.121099) 0.4581(57) 0.4561(69)

(0.120653, 0.120653) 0.4984(36) 0.4950(51)

(0.121145, 0.120413)

(0.121145, 0.120413) 0.4739(42) 0.4715(58)

(0.121145, 0.121145) 0.395(11) 0.3959(84)

(0.120413, 0.121145) 0.5073(21) 0.5063(28)

(0.120413, 0.120413) 0.5670(14) 0.5658(16)

483 × 96 (0.121166, 0.120371)

(0.121166, 0.120371) 0.4680(66) 0.4666(62)

(0.121166, 0.121166) 0.3859(66) 0.3851(83)

(0.120371, 0.121166) 0.5074(26) 0.5040(44)

(0.120371, 0.120371) 0.5730(26) 0.5669(32)
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β L3 × T (κl, κs) (κ1, κ2) am1-exp amw.avg

5.65

323 × 64

(0.121975, 0.121975) (0.121975, 0.121975) 0.4222(30) 0.4160(52)

(0.122005, 0.122005) (0.122005, 0.122005) 0.4129(34) 0.4030(71)

(0.122030, 0.122030) (0.122030, 0.122030) 0.3933(76) 0.3922(99)

(0.122050, 0.122050) (0.122050, 0.122050) 0.3817(60) 0.3772(69)

(0.122078, 0.121859)

(0.122078, 0.121859) 0.4063(30) 0.4019(60)

(0.122078, 0.122078) 0.3825(39) 0.3807(78)

(0.121859, 0.122078) 0.4190(25) 0.4172(44)

(0.121859, 0.121859) 0.4396(21) 0.4378(36)

(0.122130, 0.121756)

(0.122130, 0.121756) 0.4162(39) 0.4156(52)

(0.122130, 0.122130) 0.3801(71) 0.3807(83)

(0.121756, 0.122130) 0.4307(28) 0.4286(42)

(0.121756, 0.121756) 0.4620(20) 0.4592(32)

483 × 96

(0.122005, 0.122005) (0.122005, 0.122005) 0.3858(48) 0.3860(44)

(0.122078, 0.121859)

(0.122078, 0.121859) 0.4047(24) 0.4039(30)

(0.122078, 0.122078) 0.3810(27) 0.3801(33)

(0.121859, 0.122078) 0.4149(19) 0.4136(24)

(0.121859, 0.121859) 0.4360(17) 0.4343(24)

(0.122130, 0.121756)

(0.122130, 0.121756) 0.3976(31) 0.3976(54)

(0.122130, 0.122130) 0.3527(39) 0.3488(68)

(0.121756, 0.122130) 0.4194(24) 0.4165(36)

(0.121756, 0.121756) 0.4548(20) 0.4515(31)

(0.122167, 0.121682)

(0.122167, 0.121682) 0.4003(36) 0.3929(68)

(0.122167, 0.122167) 0.3427(53) 0.3345(98)

(0.121682, 0.122167) 0.4227(31) 0.4226(45)

(0.121682, 0.121682) 0.4652(23) 0.4646(34)

643 × 96 (0.122227, 0.121563)

(0.122227, 0.121563) 0.3769(58) 0.3782(36)

(0.122227, 0.122227) 0.3272(89) 0.325(14)

(0.121563, 0.122227) 0.4240(35) 0.4149(28)

(0.121563, 0.121563) 0.480(15) 0.4744(23)
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β L3 × T (κl, κs) (κ1, κ2) am1-exp amw.avg

5.80 483 × 96

(0.122760, 0.122760) (0.122760, 0.122760) 0.3782(18) 0.3766(28)

(0.122810, 0.122810) (0.122810, 0.122810) 0.3557(24) 0.3552(27)

(0.122870, 0.122870) (0.122870, 0.122870) 0.3152(65) 0.3136(73)

(0.122880, 0.122670)

(0.122880, 0.122670) 0.3588(19) 0.3570(28)

(0.122880, 0.122880) 0.3353(24) 0.3336(36)

(0.122670, 0.122880) 0.3688(16) 0.3663(24)

(0.122670, 0.122670) 0.3894(14) 0.3872(19)

(0.122920, 0.122920) (0.122920, 0.122920) 0.3156(59) 0.316(13)

(0.122940, 0.122551)

(0.122940, 0.122551) 0.3614(23) 0.3597(32)

(0.122940, 0.122940) 0.3190(33) 0.3178(43)

(0.122551, 0.122940) 0.3798(15) 0.3772(21)

(0.122551, 0.122551) 0.4149(12) 0.4118(18)

β L3 × T (κl, κs) (κ1, κ2) am1-exp amw.avg

5.95 483 × 96

(0.123411, 0.123411) (0.123411, 0.123411) 0.3344(20) 0.3334(25)

(0.123411, 0.123558)

(0.123411, 0.123558) 0.3057(18) 0.3046(24)

(0.123411, 0.123411) 0.3210(15) 0.3198(20)

(0.123558, 0.123411) 0.2969(26) 0.2957(33)

(0.123558, 0.123558) 0.2782(34) 0.2773(45)

(0.123460, 0.123460) (0.123460, 0.123460) 0.3082(30) 0.3071(41)

(0.123510, 0.123510) (0.123510, 0.123510) 0.2938(30) 0.2927(36)

(0.123523, 0.123334)

(0.123523, 0.123334) 0.3076(32) 0.3041(60)

(0.123523, 0.123523) 0.2831(40) 0.2788(78)

(0.123334, 0.123523) 0.3184(24) 0.3157(43)

(0.123334, 0.123334) 0.3395(20) 0.3373(34)
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Appendix D.

Additional XD and XF plots

D.1. β = 5.40 ensembles
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Figure D.1. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.40, (1-4 in table 5.2) for GE (left) and GM (right) at Q2 = 0.9GeV2.
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Figure D.2. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.40, (1-4 in table 5.2) for GE (left) and GM (right) at Q2 = 2.7GeV2.
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Figure D.3. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.40, (1-4 in table 5.2) for GE (left) and GM (right) at Q2 = 4.5GeV2.
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Figure D.4. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.40, (1-4 in table 5.2) for GE (left) and GM (right) at Q2 = 7.2GeV2.

D.2. β = 5.50 ensembles
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Figure D.5. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.50, (5-7 in table 5.2) for GE (left) and GM (right) at Q2 = 1.1GeV2.
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Figure D.6. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.50, (5-7 in table 5.2) for GE (left) and GM (right) at Q2 = 3.29GeV2.
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Figure D.7. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.50, (5-7 in table 5.2) for GE (left) and GM (right) at Q2 = 5.48GeV2.
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D.3. β = 5.65 ensembles
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Figure D.8. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.65, (8-10 in table 5.2) for GE (left) and GM (right) at Q2 = 1.15GeV2.
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Figure D.9. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.65, (8-10 in table 5.2) for GE (left) and GM (right) at Q2 = 3.46GeV2.
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Figure D.10. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.65, (8-10 in table 5.2) for GE (left) and GM (right) at Q2 = 5.19GeV2.
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Figure D.11. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.65, (8-10 in table 5.2) for GE (left) and GM (right) at Q2 = 8.08GeV2.
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D.4. β = 5.80 ensembles
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Figure D.12. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.65, (11-13 in table 5.2) for GE (left) and GM (right) at Q2 = 1.54GeV2.
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Figure D.13. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.65, (11-13 in table 5.2) for GE (left) and GM (right) at Q2 = 4.63GeV2.
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Figure D.14. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.65, (11-13 in table 5.2) for GE (left) and GM (right) at Q2 = 6.95GeV2.
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Figure D.15. The values of XD and XF plotted against Q2, for the three ensembles at
β = 5.65, (11-13 in table 5.2) for GE (left) and GM (right) at Q2 = 10.8GeV2.
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Global fit results

Table E.1. The fit results for momentum transfer Q2 = 3.13GeV2

Fit XGE
D χ2

dof XGE
F χ2

dof GE,p χ2
dof Di χ2

dof Fi

δml -0.0248(29) 0.56 0.0764(48) 1.24 0.0308(91) 0.07 0.42
a, δml -0.058(39) 0.54 0.102(69) 1.38 -00.01(18) 0.04 0.43
a2, δml -0.042(20) 0.53 0.090(35) 1.38 0.005(72) 0.04 0.43
δm2

l -0.042(20) 0.54 0.111(34) 1.26 0.087(67) 0.06 0.36
a, δm2

l -0.070(41) 0.53 0.139(74) 1.42 0.1(37) 0.03 0.12
a2, δm2

l -0.056(26) 0.53 0.126(46) 1.42 0.08(19) 0.03 0.12
a, δm2

l , mπL -0.070(41) 0.62 0.139(74) 1.66 0.1(37) 0.03 0.12
a2, δm2

l , mπL -0.056(26) 0.61 0.126(46) 1.66 0.08(19) 0.03 0.12

Fit XGM
D χ2

dof XGM
F χ2

dof GM,p χ2
dof Di χ2

dof Fi

δml 0.2282(65) 2.87 0.2859(95) 1.43 0.307(18) 0.49 1.25
a, δml 0.430(98) 2.67 0.46(14) 1.40 0.64(37) 0.51 1.31
a2, δml 0.333(50) 2.64 0.379(71) 1.38 0.47(16) 0.53 1.30
δm2

l 0.285(45) 3.03 0.290(68) 1.61 0.40(12) 0.52 1.31
a, δm2

l 0.52(12) 2.70 0.49(17) 1.59 0.79(41) 0.54 1.41
a2, δm2

l 0.414(73) 2.66 0.41(11) 1.56 0.61(20) 0.54 1.40
a, δm2

l , mπL 0.54(14) 3.10 0.53(20) 1.80 0.85(46) 0.54 1.41
a2, δm2

l , mπL 0.416(73) 3.04 0.41(11) 1.71 0.61(21) 0.54 1.40
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Table E.2. The fit results for momentum transfer Q2 = 4.93GeV2

Fit XGE
D χ2

dof XGE
F χ2

dof GE,p χ2
dof Di χ2

dof Fi

δml -0.0195(27) 2.04 0.0436(41) 0.97 0.014(12) 0.03 0.23
a, δml -0.071(26) 1.90 0.073(39) 1.00 0.14(41) 0.02 0.12
a2, δml -0.047(13) 1.88 0.058(20) 1.00 0.06(16) 0.02 0.13
δm2

l -0.028(16) 2.16 0.062(26) 1.00 0.11(16) 0.02 0.25
a, δm2

l -0.078(30) 2.03 0.090(46) 1.04 0.22(50) 0.02 0.12
a2, δm2

l -0.054(21) 2.00 0.076(33) 1.04 0.15(25) 0.02 0.12
a, δm2

l , mπL -0.077(30) 2.20 0.090(46) 1.13 0.22(50) 0.02 0.12
a2, δm2

l , mπL -0.053(21) 2.17 0.076(33) 1.13 0.15(25) 0.02 0.12

Fit XGM
D χ2

dof XGM
F χ2

dof GM,p χ2
dof Di χ2

dof Fi

δml 0.1446(62) 1.58 0.1859(93) 1.35 0.219(17) 0.24 0.69
a, δml 0.347(61) 0.87 0.480(93) 0.68 0.97(37) 0.20 0.58
a2, δml 0.251(32) 0.82 0.338(48) 0.66 0.55(14) 0.20 0.57
δm2

l 0.197(38) 1.54 0.242(59) 1.37 0.33(11) 0.25 0.69
a, δm2

l 0.383(69) 0.83 0.52(10) 0.68 1.13(43) 0.20 0.59
a2, δm2

l 0.290(47) 0.78 0.378(72) 0.67 0.67(20) 0.20 0.58
a, δm2

l , mπL 0.383(69) 0.90 0.52(11) 0.73 1.14(43) 0.20 0.59
a2, δm2

l , mπL 0.290(47) 0.85 0.378(72) 0.73 0.67(20) 0.20 0.58
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Table E.3. The fit results for momentum transfer Q2 = 7.37GeV2

Fit XGE
D χ2

dof XGE
F χ2

dof GE,p χ2
dof Di χ2

dof Fi

δml -0.0146(30) 1.41 0.0298(46) 0.63 0.011(32) 0.01 0.02
a, δml -00.007(21) 1.52 0.028(33) 0.68 0.04(58) 0.01 0.00
a2, δml -0.011(11) 1.52 0.028(17) 0.68 0.01(16) 0.01 0.00
δm2

l -0.011(21) 1.53 0.036(26) 0.68 0.02(23) 0.01 0.02
a, δm2

l -00.005(27) 1.67 0.034(40) 0.75 0.05(73) 0.01 0.00
a2, δm2

l -00.009(22) 1.67 0.035(29) 0.75 0.03(36) 0.01 0.00
a, δm2

l , mπL -00.005(27) 1.86 0.034(40) 0.83 0.05(73) 0.01 0.00
a2, δm2

l , mπL -00.009(22) 1.86 0.035(29) 0.83 0.03(36) 0.01 0.00

Fit XGM
D χ2

dof XGM
F χ2

dof GM,p χ2
dof Di χ2

dof Fi

δml 0.0970(70) 0.85 0.128(10) 0.97 0.147(16) 0.35 0.69
a, δml 0.164(49) 0.74 0.222(71) 0.88 0.17(14) 0.36 0.73
a2, δml 0.132(26) 0.73 0.176(38) 0.88 0.170(62) 0.35 0.73
δm2

l 0.083(43) 0.92 0.121(64) 1.06 0.078(73) 0.26 0.66
a, δm2

l 0.143(59) 0.77 0.199(85) 0.95 0.12(15) 0.27 0.71
a2, δm2

l 0.108(46) 0.76 0.150(68) 0.95 0.094(91) 0.27 0.71
a, δm2

l , mπL 0.143(60) 0.85 0.199(86) 1.05 0.12(15) 0.27 0.71
a2, δm2

l , mπL 0.108(46) 0.84 0.150(67) 1.05 0.094(91) 0.27 0.71
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Appendix F.

Correlation Functions

We define the baryon correlation functions as the expectation value of two baryon
interpolation operators, projected onto a definite momentum value and spin-parity state.

CλΣΣ(t) = trDΓ
〈
B̃Σ(t; p⃗ )B̄Σ(⃗0, 0)

〉
λ
, (F.1)

CλΣN(t) = trDΓ
〈
B̃Σ(t; p⃗ )B̄N (⃗0, 0)

〉
λ
, (F.2)

CλNΣ(t) = trDΓ
〈
B̃N(t; p⃗+ q⃗ )B̄Σ(⃗0, 0)

〉
λ
, (F.3)

CλNN(t) = trDΓ
〈
B̃N(t; p⃗+ q⃗ )B̄N (⃗0, 0)

〉
λ
, (F.4)

The interpolating operators we define by

B̃Σα(t; p⃗ ) =

∫

x⃗

e−p⃗·x⃗BΣα(t; x⃗ ) =
∑

x⃗

e−p⃗·x⃗ϵabcdaα(x)
[
db(x)TDCγ5s

c(x)
]

(F.5)

B̃Nα(t; p⃗ ) =

∫

x⃗

e−p⃗·x⃗BNα(t; x⃗ ) =
∑

x⃗

e−p⃗·x⃗ϵabcdaα(x)
[
db(x)TDCγ5u

c(x)
]

(F.6)

Using this, the correlation function can be written in terms of the quark propagator

CλNN(t) =
∑

x⃗

e−i(p⃗+q⃗ )·x⃗ϵabcϵa′,b′,c′

⟨trD[Γ[G(dd)(x, 0)]aa
′
]trD[[G̃(uu)(x, 0)]bb

′
[G(dd)(x, 0)]cc

′
]

+ trD[Γ[Gdd(x, 0)]aa
′
[G̃(uu)(x, 0)]bb

′
[G(dd)(x, 0)]cc

′
]⟩,

(F.7)
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CλΣΣ(t) =
∑

x⃗

e−ip⃗·x⃗ϵabcϵa′,b′,c′

⟨trD[Γ[G(dd)(x, 0)]aa
′
]trD[[G̃(ss)(x, 0)]bb

′
[G(dd)(x, 0)]cc

′
]

+ trD[Γ[Gdd(x, 0)]aa
′
[G̃(ss)(x, 0)]bb

′
[G(dd)(x, 0)]cc

′
]⟩,

(F.8)

CλNΣ(t) =
∑

x⃗

e−i(p⃗+q⃗ )·x⃗ϵabcϵa′,b′,c′

⟨trD[Γ[G(dd)(x, 0)]aa
′
]trD[[G̃(us)(x, 0)]bb

′
[G(dd)(x, 0)]cc

′
]

+ trD[Γ[Gdd(x, 0)]aa
′
[G̃(us)(x, 0)]bb

′
[G(dd)(x, 0)]cc

′
]⟩,

(F.9)

CλΣN(t) =
∑

x⃗

e−ip⃗·x⃗ϵabcϵa′,b′,c′

⟨trD[Γ[G(dd)(x, 0)]aa
′
]trD[[G̃(su)(x, 0)]bb

′
[G(dd)(x, 0)]cc

′
]

+ trD[Γ[Gdd(x, 0)]aa
′
[G̃(su)(x, 0)]bb

′
[G(dd)(x, 0)]cc

′
]⟩,

(F.10)
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