

View

Online


Export
Citation

CrossMark

MAY 10 2022

Beyond traditional wind farm noise characterisation using
transfer learning
Phuc D. Nguyen; Kristy L. Hansen; Bastien Lechat; ... et. al

JASA Express Lett 2, 052801 (2022)
https://doi.org/10.1121/10.0010494

Related Content

Annoyance due to amplitude modulated low-frequency wind farm noise: A laboratory study

J Acoust Soc Am (December 2022)

Etching processes of tungsten in SF6‐O2 radio‐frequency plasmas

Journal of Applied Physics (September 1991)

D
ow

nloaded from
 http://pubs.aip.org/asa/jel/article-pdf/doi/10.1121/10.0010494/16557456/052801_1_online.pdf

https://pubs.aip.org/asa/jel/article/2/5/052801/2843368/Beyond-traditional-wind-farm-noise
https://pubs.aip.org/asa/jel/article/2/5/052801/2843368/Beyond-traditional-wind-farm-noise?pdfCoverIconEvent=cite
https://pubs.aip.org/asa/jel/article/2/5/052801/2843368/Beyond-traditional-wind-farm-noise?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1121/10.0010494
https://pubs.aip.org/asa/jasa/article/152/6/3410/2839840/Annoyance-due-to-amplitude-modulated-low-frequency
https://pubs.aip.org/aip/jap/article/70/6/3314/177216/Etching-processes-of-tungsten-in-SF6-O2-radio
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2061339&setID=592934&channelID=0&CID=753418&banID=520987851&PID=0&textadID=0&tc=1&adSize=1640x440&matches=%5B%22inurl%3A%5C%2Fjel%22%2C%22inurl%3A%5C%2Fasa%22%5D&mt=1684892768906421&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Fasa%2Fjel%2Farticle-pdf%2Fdoi%2F10.1121%2F10.0010494%2F16557456%2F052801_1_online.pdf&hc=80541190743d4ad06c315b530d4300578bd13abb&location=


Beyond traditional wind farm noise characterisation
using transfer learning

Phuc D. Nguyen,1,a) Kristy L. Hansen,1 Bastien Lechat,2 Branko Zajamsek,1

Colin Hansen,3 and Peter Catcheside2

1College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
2Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia 5042, Australia

3School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia

ducphuc.nguyen@flinders.edu.au, kristy.hansen@flinders.edu.au, bastien.lechat@flinders.edu.au,
branko.zajamsek@flinders.edu.au, colin.hansen@adelaide.edu.au, peter.catcheside@flinders.edu.au

Abstract: This study proposes an approach for the characterisation and assessment of wind farm noise (WFN), which is based
on extraction of acoustic features between 125 and 7500Hz from a pretrained deep learning model (referred to as deep acous-
tic features). Using data measured at a variety of locations, this study shows that deep acoustic features can be linked to mean-
ingful characteristics of the noise. This study finds that deep acoustic features can reveal an improved spatial and temporal
representation of WFN compared to what is revealed using traditional spectral analysis and overall noise descriptors. These
results showed that this approach is promising, and thus it could provide the basis for an improved framework for WFN
assessment in the future. VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The global wind industry has undergone rapid expansion in power generation capacity over the past ten years, reaching to
over 22 000 wind farms and 1110GW in 2021.1 This fast growth is expected to continue, along with ongoing concerns
regarding social,2,3 ecological,4,5 and environmental impacts, such as noise generated by wind turbines.6,7 Multiple guide-
lines and standards8–10 have been developed to help mitigate the effects of wind farm noise (WFN) on surrounding com-
munities. Although these guidelines and standards have been updated regularly, the potential impact of WFN is still based
on common traditional noise metrics such as A-weighted (LA) or C-weighted (LC) sound pressure levels (SPLs).11 These
aggregate metrics are clearly important indicators related to the human perception of noise. However, there remains no
consensus agreement or firm evidence to support which metrics are most strongly related to human impacts and are thus
most suitable for WFN assessment.12 Moreover, prominent characteristics of WFN, such as amplitude modulation (AM),
also appear to importantly contribute to annoyance13–15 and possible sleep disturbance.16 Consequently, it is unlikely that
any single simple noise metric can adequately encapsulate both physical and psychological aspects of WFN impacts on
humans, and more comprehensive and evidence-based approaches remain needed. This problem is not unique to WFN
research but has also been identified as an issue in other research areas, such as sonic boom research, for which there is
no internationally agreed-upon standard noise metric.17

Recent advances in deep learning in acoustics18 hold significant promise for improving WFN noise assessment.
In particular, Sethi et al.19 recently used a pretrained deep convolutional neural network (CNN), namely, VGGish,20 to
extract feature patterns in spectrograms. Hereafter, these features are referred to as deep acoustic features. The authors
showed that deep acoustic features can be used to accurately quantify variations in the natural environment across loca-
tions and time. Using a pretrained deep model (DEEP-Hybrid DataCloud project), Clar et al.21 were able to characterise
details of diurnal and spatial community-generated sound and noise sources. Other useful applications of machine learning
models are presented in many aspects of environmental acoustics, such as outdoor sound propagation22,23 and sound
emergence of wind turbine noise (the difference in LAs between wind farm operating and non-operating condition).24

The purpose of this study was to investigate whether deep acoustic features can be used as an alternative to tra-
ditional acoustic features for WFN characterisation. After introducing the methods and the data sets (Sec. 2), we first
sought to understand the degree of correlation between deep acoustic features and traditional acoustic features, such as
spectral shape and commonly derived noise indicators (Sec. 3.2). We then explored the ability of deep acoustic features to
reveal the variations in WFN characteristics across locations and time (Sec. 3.3).

a)Author to whom correspondence should be addressed.
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2. Methods

2.1 Data sets

All data sets used in this study were collected from four locations in the mid-north region of South Australia (see supple-
mentary material26 Table S1 and S2 for details). The first data set (data set 1) was a benchmark data set,25 which contains
6000 10-s audio files of WFN with 40% of audio samples containing AM. These data were extracted from a data bank
containing continuous data measured over 1 year at locations 1 and 2 (supplementary material26 Table S2). In this study,
data set 1 was used to evaluate the accuracy of AM detection algorithms trained with deep acoustic features. The second
data set (data set 2) included all samples in data set 1 (i.e., samples extracted from locations 1 and 2) and other samples
extracted from data sets measured at locations 3 and 4. Data set 2 thus contained noise samples measured at four different
locations near three wind farms (see supplementary material26 Table S2). Data set 2 contained data measured near three
wind farms and four residences located between approximately 1 and 9 km from the wind farms. Data set 2 was used to
investigate whether deep acoustic features can reveal the spatial fluctuations of WFN. The third data set (data set 3) was
extracted from data measured at location 2 over 1 year. To reduce the computational time, we extracted 10-s audio files
from 10-min samples. In total, the third data set contained over 50 000 10-s audio samples. Data set 3 was used to evalu-
ate whether deep acoustic features can reveal the temporal fluctuations of WFN. More details regarding wind farm charac-
teristics and measurement locations were provided in supplementary Tables S1 and S2.26 Other information regarding
equipment and measurement setup can be found in our previously published work.27 Regarding data cleaning, although
we removed all data containing rain contamination and farming machine noise, we were unable to separate WFN from
ambient noise. This is a current issue in the WFN research area, and there is no current validated method to address this
problem.12 A recent study conducted by Gloaguen et al.24 showed promising results to address this challenge, and this
approach could improve WFN characterisation in future studies.

2.2 VGGish

We used the VGGish model, which is a CNN model that has been pretrained on more than 2� 106 YouTube videos to
predict over 600 audio event classes.20 The architecture of the VGGish model is shown in Fig. 1(a). The VGGish model
includes a single channel input layer, followed by four convolutional (CONV) layers and three fully connected layers.
VGGish is a variant of the well-known VGG model, in particular configuration A with 11 weight layers. To prepare the
input for the VGGish model, the audio signal was framed into zero overlapping windows of 0.96 s. Each window was con-
verted into a spectrogram using a short-time Fourier transform with a window size of 25ms, a hop length of 10ms, and a
periodic Hanning window. A mel spectrogram was then computed by mapping the spectrogram to 64 mel bins covering
the range of 125–7500Hz. To avoid calculating a logarithm of zero, a log mel spectrogram was computed by adding a log
offset value of 0.001. The result of each window was a two-dimensional (2D) spectrogram image of 96� 64 pixels (i.e., 96
frames by 64 mel bands). This image was used as the input to the VGGish model. For other details regarding the VGGish
model, we refer the reader to the source code provided by the TensorFlow team.28

A pretrained model was used to save computational and human resources involved with the training and valida-
tion of a new model. Although the VGGish model was not trained to identify WFN indicators specifically, it was trained
using audio files that contain unique features of noise, such as swoosh, swish, and thump, widely associated with WFN.29

Application of this pretrained model thus could be particularly useful when applied to characterise WFN. Another benefit
of using the pre-trained VGGish model is that it is unlikely to be overfitted because it has been trained using a massive
data set and is thus capable of classifying a wide range of noise types not necessarily represented within our potentially
somewhat location-specific data set that may differ compared to other regions. In other words, this model has the potential
to perform well when applied to different data sets containing WFN with a wider range of noise characteristics. Also, the
VGGish model was trained using mel spectrogram images, which better reflect how humans perceive sound compared to
conventional spectrograms calculated using a short-time Fourier transform. The mel spectrogram represents a psycho-
acoustic scale, and thus the resulting deep acoustic features are expected to show stronger relationships with human
responses (i.e., annoyance) compared to conventional spectrograms, although further investigation is needed to verify this.
The limitation of the VGGish model is that the upper bound frequency of the input mel spectrogram was high for WFN,
which typically contains frequencies below 2000Hz. Removing these frequencies could thus potentially improve model per-
formance. Also, the frequency content of WFN in the infrasonic and very low frequency ranges (i.e., below 125Hz) is
removed when using the VGGish model. However, this could still be acceptable because wind farm infrasound is normally
well below the human hearing threshold,30 and no studies to date have shown that it has adverse effects on humans. Also,
the most commonly identified problematic component of WFN is AM, which often occurs within the frequency range
between 200 and 800Hz.31 This information is thus well captured by the VGGish model.

2.3 Dimensionality reduction methods

We used principal component analysis (PCA)32 to reduce from higher- to lower-dimensional acoustic features. This pro-
cess can efficiently remove highly correlated acoustic features that are redundant, resulting in an improvement in the
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machine learning algorithm performance and reducing the risk of overfitting. In our analysis, the number of features
extracted from the CONV1 and embedding layers was reduced from 32 to 10 and from 128 to 20, respectively [Fig. 1(b)].
The number of principal components was chosen such that most (95%) of the variance within the high-dimensional data
was preserved in the lower-dimensional data (i.e., the cumulative explained variance was above 0.95 in this study). Thus,
the total number of combined low-level and high-level deep acoustic features was 30 [Fig. 1(b)]. To visualise deep acoustic
features on a two-dimensional plot, we used the uniform manifold approximation and projection (UMAP)33 to further
reduce dimensionality from 30 deep acoustic features to two features. The benefit of UMAP compared to PCA is that it
can preserve both global and local geometry of the data, so it is expected to provide superior visualisation of WFN compo-
nents. The benefit of using UMAP compared to other projection methods, such as t-distributed stochastic neighbour
embedding (t-SNE), is that UMAP is more computationally efficient and better preserves the global structure of the data
compared to t-SNE (see supplementary Fig. S1 for details).26

2.4 Performance of deep acoustic features

To evaluate the ability of deep acoustic features to identify WFN AM, we used a recent advanced and successful machine
learning method called extreme gradient boosting (XGBoost)34 to identify AM in data set 1. The XGBoost algorithm uses
multiple decision trees to capture nonlinear relationships between input variables (acoustic features) and output (AM vs
no AM) to make an ensemble prediction. We also used XGboost classifiers to evaluate the ability of deep acoustic features
to reveal spatial and temporal dependencies of WFN. All XGboost classifiers were trained on 80% and evaluated on 20%
of the data. Hyperparameters of XGboost classifiers, such as learning rate and max depth, were optimised with the
Bayesian hyperparameter tuning method.35 The searching space and optimised hyperparameters of the AM classifiers are

Fig. 1. VGGish and deep acoustic features. (a) The architecture of the VGGish model. (b) An illustration of the VGGish feature extraction.
Curved paths represent how the input spectrogram is convoluted with the filters to create new images in the CONV layers. We finally com-
bine the features in the CONV1 and embedding layers to represent the acoustic information of the input noise sample. These combined fea-
tures are referred to as deep acoustic features.
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provided in supplementary Tables S3 and S4.26 We reported the performance of the classifiers on the test sets throughout
this study.

2.5 Statistical analysis

Statistical analyses, including Pearson’s correlations and receiver operating characteristic (ROC) curve analyses, were per-
formed using R version 4.0.0.36 ROC area under curve (AUC) and F1-score were used as the main classifier performance
metrics throughout this study. All visualisation was implemented in R using ggplot2 and circlize packages. All grouped
data are reported as mean 6 SD.

2.6 Data and code availability

The data sets used in this study are available in Ref. 37. The source code used to extract deep acoustic features and gener-
ate the main figures is published in Ref. 38.

3. Results

3.1 Deep acoustic features

We proposed a different approach from previous studies,19 in which features in CONV and embedding layers were
extracted instead of features in the embedding layer only. We hereafter refer to features extracted from CONV layers as
low-level acoustic features and features extracted from the embedding layer as high-level acoustic features [Fig. 1(b)].
While high-level acoustic features can capture global acoustic content of an input spectrogram, such as energy distribution,
as a function of frequency and time, we also expected that low-level acoustic features could indicate local patterns in the
input spectrogram, such as intermittent acoustic features represented by vertical and horizontal lines. Combining these fea-
tures was expected to capture both the general and detailed characteristics of the noise. To investigate the meaning of each
layer in the deep model and to test whether low-level acoustic features indeed capture detailed patterns of the input spec-
trogram, we show a case study in Fig. 1(b). In this case study, a spectrogram of a 0.96-s audio recording was input to the
deep model. The input spectrogram was convoluted with 64 filters to create 64 new images in the CONV1 layer. Each
filter was trained to detect different patterns of the input spectrogram. To visualise this, we highlighted two fundamental
filters and showed the corresponding images in the CONV1 layer [Fig. 1(b)]. The filters successfully detected vertical (dis-
tribution of acoustic energy over frequency bands) and horizontal (intermittent acoustic energy over time) patterns of the
spectrogram. There were 64 filters in the CONV1 layer that can thus detect other detailed patterns of the input spectro-
gram. These new spectrogram images representing local patterns of the input were then passed to deeper layers (i.e.,
CONV2–4 layers), where the number of filters were doubled after each layer, resulting in much more detailed and com-
prehensive patterns of the input spectrogram. We reasoned that this combination of low- and high-level acoustic features
[Fig. 1(b)] can comprehensively capture both detailed and general information about the input noise sample. However, fea-
tures extracted from deeper CONV layers were very localised rather than global. In this study, we only used the low-level
acoustic features extracted from the CONV1 layer [Fig. 1(b)]. The explanations for this are analysed in detail in Sec. 3.2.
Finally, the deep acoustic features include 10 low-level features and 20 high-level features.

3.2 Deep acoustic features reveal noise characteristics

To investigate potential relationships between deep and traditional acoustic features and WFN unique features (i.e., AM
characteristics), we ran a pairwise correlation analysis, in which all possible pairs between these features were determined,
and their corresponding Pearson’s correlation coefficients, r, were then calculated. The traditional acoustic features
included spectral shape features (i.e., spectral slope, spectral spread, spectral flux) and environmental noise indicators (i.e.,
LA and LC). The AM features included AM fundamental frequency and AM depth. A full list of these features and their
physical meaning is provided in supplementary Table S5.26 The pairwise correlation coefficients were presented in a chord
diagram39 as shown in Fig. 2(a). We observed moderate to strong correlations between these features. Both low- and high-
level acoustic features were correlated with traditional acoustic features and AM features, indicating that both low- and
high-level acoustic features are useful for capturing information about the noise character. Deep acoustic features were cor-
related with the most important AM features, such as the AM fundamental frequency, peakloc; AM strength (depth),
DAM, AMfactor; rising and decay slopes of AM peaks, pos slope; neg slope; and variations of unweighted SPL in octave
bands centred at 1000Hz, L 1000. Furthermore, deep acoustic features were also correlated with common traditional
acoustic features, such as LAs, LC/LA ratio, G-weighted SPL (LG)/LA, and spectral shape features, such as spectral spread
and spectral slope. This is striking as the correlation analysis reveals that the deep acoustic features are not only able to
represent traditional acoustic features but are also related to unique characteristics of WFN.

To further investigate the ability of deep acoustic features to detect AM, we trained an XGBoost classifier to
detect AM in data set 1 and measured the performance using AUC (see Sec. 2). We also compared the performance of
deep acoustic features and features extracted from CONV and embedding layers. The models trained with features
extracted from CONV1 and embedding layers had higher performance compared with those trained with features
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extracted from CONV2-4 layers [Fig. 2(b)]. The deep acoustic features showed the best performance. This was expected,
as the deep acoustic features were a combination of features extracted from CONV1 and embedding layers [Fig. 1(b)].

Finally, we compared the performance of the deep acoustic feature method with previously published methods
for identifying AM, including the reference method developed by the Institute of Acoustics UK31 and our previously pub-
lished method25 using all traditional acoustic and AM features. The AUCs of the deep acoustic feature method for the
training and testing data sets were 0.86 and 0.85 (F1-score¼ 0.71), respectively. The AUCs of the model trained with tra-
ditional acoustic and AM features for the training and testing data sets were both approximately 0.9 (F1-score¼ 0.76). The
accuracy of the model trained with deep acoustic features (AUC¼ 0.85, F1-score¼ 0.71) was higher than that of the refer-
ence method (AUC¼ 0.7, F1-score¼ 0.59) [Fig. 2(c)]. However, the deep acoustic feature model had a lower accuracy
than the model trained with traditional acoustic and AM features. This was expected, as these features were designed spe-
cifically for AM detection, including features from other AM detectors, such as DAM, AMfactor, and prominence ratio.
Furthermore, all of these features were carefully selected by acoustic experts for the AM detection task. It is thus not sur-
prising that its performance was the best, but the main advantage of deep acoustic features is that it had high performance
without involving an acoustic expert. We expected that deep acoustic features could be used to detect other unique charac-
teristics of WFN, such as tonal and impulsive characteristics.

3.3 Deep acoustic features reveal spatial and temporal dependencies of WFN

We further explored whether deep acoustic features can be used to identify spatial dependencies of WFN (e.g., linked to
the geometry of the wind farm and/or the topography of the site) as well as temporal dependencies (e.g., linked to the
weather conditions and/or the noise production of the wind turbines). Figure 3(b) focuses on spatial dependencies and
presents four clear clusters corresponding with noise measured at four locations, as shown 1–4 in Fig. 3(a). The distances
between these clusters could be used to assess the degree by which the noise measurements differ between locations. To
evaluate the performance of deep acoustic features, we trained an XGboost model to classify noise at different locations.
We found that the performance of the deep acoustic feature model was remarkable, with an AUC ¼ 0:9860:003 (F1-
score¼ 0.986 0.002). The performance of the model based on traditional and AM features had an AUC¼ 0.766 0.008
(F1-score¼ 0.66 0.01) and lower AUC ¼ 0:7160:01 (F1-score¼ 0.516 0.01) if only LA and LC were used. These results
indicate that the traditional acoustic features used here are not as sensitive to spatial variations in WFN as deep acoustic
features. Although we observed differences in noise characteristics measured at different locations using the deep acoustic
features, the underlying reason for these differences remains unclear, and the results could be affected by local ambient
noise, distance to the wind farm, and the number of wind turbines. Larger and more suitable data sets are needed to
investigate whether the deep acoustic features are sensitive to these changing conditions.

Fig. 2. Deep acoustic features reveal unique noise characteristics. (a) Relationship between deep acoustic features and traditional acoustic and
AM features. The colours of the curves connected between the two features indicate the degree of correlation. (b) Performance of models
trained with features extracted from CONV1–4 layers, embedding layers, and deep acoustic features. (c) Performance of the model trained
with deep acoustic features is compared with previously published methods.
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Daytime and nighttime noise dependencies were expected to be different due to atmospheric stability, which
changes between nighttime and daytime. This was revealed in Fig. 3(c) using deep acoustic features. The diurnal pattern
corresponds to the UMAP1 axis, where the nighttime data points were clustered on the left, while the daytime data points
were clustered on the right. Interestingly, we also observed a transition between the daytime and nighttime noise depen-
dencies. For example, the centroid of data points at clock times close to midnight (22:00 to 2:00) and midday (10:00 to
15:00) were well separated into two groups [Fig. 3(c)]. The transition hours were distributed between these two groups.
These findings indicate that the deep acoustic features are very sensitive to small changes in the diurnal noise dependen-
cies. Although the dependencies of the noise at different seasons were also expected to be different, due to changes in
weather conditions, this was, however, not observed [Fig. 3(d)] except for a slightly higher SD in winter, and this observa-
tion is likely due to specific seasonal effects. It is possible that the weather conditions were not significantly different across
seasons at our measurement locations. For example, there is no snow cover during winter, resulting in a reduced change
in the ground impedance compared to other locations in colder climates. Furthermore, the average temperature difference
between winter and summer during the measurement period was approximately 15 �C.27 Finally, the wind farm power
output between months was not significantly different (see supplementary Fig. S2 for details).26 These factors could explain
the small changes in noise characteristics between seasons.

4. Discussion

This work shows that deep acoustic features can produce similarly meaningful representations of noise as traditional
acoustic features, such as LA, LC, LG, and spectral shape indicators, but can also represent unique spatial and temporal
dependencies, such as AM. The use of deep acoustic features, as presented in this study, could provide a more

Fig. 3. Spatial and temporal characteristics of WFN. (a) Noise measured at four locations in South Australia. (b) The numbers of data points
at locations 1–4 are 3000 (N1 and N2) and 1000 (N3 and N4). The elliptical shape shows one standard deviation (SD) of the data in the clus-
ter. (c) Colours of data points indicate clock time. The numbers indicate the centroids of data points at different clock times from 0 to 23. The
number of data points is 56 356. (d) Seasonal characteristics of the noise with summer (December–February), autumn (March–May), winter
(June–August), and spring (September–November).
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comprehensive approach not only to characterise the unique features of WFN, such as AM, but also to reveal the variabil-
ity of noise characteristics as a function of time and location.

Although the current approach to assess WFN is mainly based on common metrics, such as LA or LC, there is
still debate around these metrics as they do not capture unique noise characteristics associated with WFN.12 The advan-
tages of traditional acoustic features are that they are already widely implemented, accepted, and interpretable. However,
these weighted measures have largely evolved around measurement and interpretation convenience, with uncertain rela-
tionships with human impacts. Given recent advances in computational resources, publicly available deep models, and
especially the ability of deep acoustic features to provide more detailed information, more systematic and evidence-based
measures beyond traditional approaches for assessing WFN should be considered. For example, the baseline characteristic
of the noise can be established using deep acoustic features extracted from data measured during the pre-construction
phase of wind farms. The operational characteristic of the noise during the operational phase of a wind farm can also be
monitored. The difference in the characteristics of the noise during the pre-construction and operational phases of a wind
farm could be estimated and used as an overall indicator to quantify how a wind farm alters the noise characteristics with
potential impacts on amenity in surrounding communities. A similar approach has indeed been successfully applied in
other systems, such as for civil40 and mechanical structural health monitoring41 systems. We thus anticipate that this
approach will have significant utility for more comprehensive evaluation of environmental noise impacts.

5. Conclusion

We conclude that using deep acoustic features is a useful approach for characterising WFN and environmental noise in
general, which captures relevant acoustic characteristics in frequencies between 125 and 7500Hz. The noise characteristics
presented in this study included both WFN and ambient noise. We showed that deep acoustic features represent both
overall physical properties and characteristics unique to WFN. Deep acoustic features can clearly reveal the spatial and
temporal characteristics of WFN, providing more detailed insight into the noise character than traditional acoustic fea-
tures. Future use of deep acoustic features holds major promise for comprehensive assessment of the overall character of
environmental noise in regions surrounding wind farms.
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