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Abstract

For the successful integration of System of Systems (SoS) type designs, there is

a critical need to understand the non-functional aspects of the design and how

these design aspects are affected by new or evolved operational conditions and

subsequent deployment scenarios. An undersea sensor network system is one

example of an SoS design where non-functional design aspects, such as power con-

sumption and temporal performance, are critical to the overall system performance

and capability, and are largely influenced by high-level operational needs.

There is a crucial need to develop methodologies for modelling and understand-

ing non-functional properties and corresponding deployment scenarios early in

the development and integration cycle. This includes the initial development and

subsequent evolution upgrade cycles.

This thesis presents literature that shows there are a small number of pockets of

research looking into measurement-based techniques for performance prediction of

SoS designs early in the development cycle. Furthermore, the literature shows that
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System Execution Modelling (SEM) techniques lead the way in providing low-level

insight into non-functional requirement behaviours and performances. However,

the techniques do not have sufficient capability for managing the complexities and

scale of the deployment of the software that make up SoS designs.

The literature also shows that there are optimisation techniques for problem

solving for many computing paradigms, including software deployment. However,

these approaches are not adequate for software component deployment. Further-

more, the literature shows system evolution performance prediction techniques

are either postmortem-based or largely abstract in nature, and not to the level of

fidelity required for SoS performance insights.

This thesis details new research to address the capability gap for modelling de-

ployment of large-scale evolving SoS. It will introduce a new software deployment

optimisation technique and modelling language that allows for evolution charac-

teristic definition and construction of evolved designs. It will present a software

deployment optimisation technique, algorithms and frameworks, and a capability

that enables software deployment to be shaped by high-level requirements.

We demonstrate the new optimisation capability with an undersea sensor system

case study, where we explore design and deployment options for achieving high-

level defined performances.

The testing and analysis presented in thesis shows the new optimisation ap-

proach operates and predicts correctly for each element of its optimisation algo-

rithm. While some performance shortfalls exist, largely due to the model fidelity

improvement requirements, our extensive verification and validation indicates the
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correct overall performance and ability to identify software component deployment

options in response to high-level requirements.

To complement the new optimisation capability, this thesis also introduces

a new DSML to allow for exploration of software deployment optimisation for

evolving systems. Known as CEML, this new language allows system designers

to gain insight into how best to utilise its available computing resources when the

software system evolves. The application of this new language was demonstrated

by working through an undersea sensor system evolution case study.

This thesis introduces four contributions to the research community associ-

ated with modelling and predicting system design performance, including system

evolution.
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1

1. Introduction

1.1 Constrained System Design

Systems of systems (SoS) are collections of systems that work together to achieve

a common purpose, where each individual system is typically independent in

its operation and management. SoS design approaches are found across many

domains including defence (Manthorpe, 1996), power networks (Perez et al., 2013),

space (NASA, 2005) and avionics and automotive systems (Farcas et al., 2010).

SoS are characterised by emergent behaviours resulting from the integration of

independently operating and managed heterogeneous systems that are typically

geographically distributed (Maier, 1998; Sage and Cuppan, 2001). In addition, SoS

are never viewed as achieving a finalised state, but instead are required to evolve

in response to user requirements or operational environment condition changes

(Cook, 2001).

SoS such as defence command and control systems and other mission-critical

distributed real-time and embedded (DRE) systems, can have life cycles in the

decades (Merola, 2006) and will continue to evolve throughout that time as individ-



CHAPTER 1. INTRODUCTION 2

ual systems are updated or replaced. Moreover, mission-critical DRE systems are

rarely built from scratch, and integrate legacy systems (Weiderman et al., 1997).

This therefore imposes limitations for integration options and methods for oper-

ational deployment, resulting in unexpected and potentially undesirable overall

system performances.

While an understanding of both functional and non-functional aspects of the

SoS architecture is important, non-functional aspects are of greater concern for

resource constrained host platforms, as there is little to no ability to improve

processing capabilities once developed. With strict budget allocations for space,

weight and power (SWaP) for various systems installed on many of these platforms,

any early insight into the performance of the SoS from its corresponding deploy-

ment becomes crucial in preventing an imbalance between resource availability

and demand, resulting in performance shortfalls and potentially expensive rebuilds.

The successful integration of systems within a SoS context has been identified

as one of the most substantial challenges facing military systems development

(Kewley et al., 2008). This challenge involves interfacing systems appropriately

to enable the desired system interactions to promote overall capability to satisfy

mission requirements. This is a challenge that is also a key concern within the

aerospace domain, and is becoming increasingly important in other domains such

as health and energy (Madni and Sievers, 2014).

Accordingly, there is a critical need to understand the non-functional aspects

(such as quality of service, power, size, timing) of the SoS integration and to

explore how they are affected by changes (static or dynamic) to new or evolved
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operational conditions, and subsequent deployment. An examples of this could be

a remotely deployed distributed sensor network SoS requiring upgrades to certain

systems, as well as the need to improved battery power supply duration times for

identified parts of the SoS.

As a result, there is a need to understand whether system upgrades are going

to firstly produce an increased resource footprint and whether the underlying

computing infrastructure (constrained) can support those new resource demands.

Then, there is the question of whether or not the upgrade and resource demand

level change will impact temporal performance. Lastly, there are questions about

the impact any changes will have on battery power supply capabilities. In regards

to addressing power supply duration improvements, insight would be needed to

understand the impact of reducing the power supply levels (leading to reduced

levels of processing capabilities), such as whether or not the computing resource

demands can still be satisfied with this reduction in processing capabilities, or if

there is a need to explore different deployment options to ensure the requirements

remain satisfied.

Another challenge for SoS development is to minimise any risk of architectural

change late in the development cycle, and the associated high costs thereof. De-

velopment of modelling methodologies is seen as crucial in trying to prevent late

changes by gaining insight into deployment and non-functional properties early

in the development and integration cycle (Balsamo et al., 2004). Such a benefit

would also be present when using modelling methods to inform an understanding

of the impacts of emergent behaviours for evolving SoS when deployed under
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constrained SWaP budgets.

This early insight cannot be achieved with traditional software engineering

methodologies, as they focus primarily on functional aspects of the system design

and leave the non-functional aspects until the final phases of the development life

cycle, when components have been integrated, deployed and configuration tested

(Balsamo et al., 2004; Happe, Koziolek, and Reussner, 2011; Jasmine and Vasantha,

2007). While functional requirements are always a critical focus, a methodology is

required to allow for modelling non-functional requirements at early design stages.

This would allow for evaluation of satisfaction of non-functional requirements

associated with real computing platforms, explore deployment and integration

constraints and permit in-depth trade-off analysis with significant benefits (Nawinna

and Sandeepani, 2020; Martens, 2011).

An undersea sensor network system is one example of a constrained SoS. This

type of SoS may consist of a variable number of sensor nodes, either fixed to the

seabed or mobile, and deployed to cover a designated investigation area. The SoS

can perform data collection operations, storage and forwarding operations, and

routing to a central collection node (Jindal, Saxena, and Singh, 2014 & Ovaliadis,

Savage, and Kanakaris, 2010). Undersea sensor network systems have application

in many domains such as mining exploration, disaster monitoring for floods,

tsunamis, earthquakes, volcano eruptions and oil spills, along with military use

in such areas as underwater mine detection and submarine surveillance, assisted

navigation, and sports (Felemban et al., 2015).

Many challenges must be addressed by an undersea sensor network system
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design and deployment, not only because of the acoustic and resource constraint

context, but also because of the complexities resulting from environmental impacts

with having to deploy into the harsh undersea environment. The SoS design and

deployment has to account for non-functional attributes such as limited bandwidth,

communication power requirements, temporal performance impact from long and

variable propagation delays, significant error rates, computational power demands,

power constraints, resource utilisation and system failures due to environmental

characteristics such as corrosion and fouling (Akyildiz, Pompili, and Melodia, 2004,

Awan et al., 2019, Heidemann et al., 2006 & Ovaliadis, Savage, and Kanakaris,

2010).

As a result, energy and resource capacities are seen as precious resources

(Akyildiz, Pompili, and Melodia, 2004), and there is a need to understand how

gains can be achieved in the lifetime of such SoS through identifying hardware

and software design choices that can lead to improvements in energy efficiencies

(Ovaliadis, Savage, and Kanakaris, 2010). For instance, a modelling method that

leads to exploration of all the different ways to deploy software across the available

hardware while achieving a certain level of resource utilisation and adhering to

other non-functional requirements, becomes a significant tool to help the designer

to make informed energy-efficient design choices. Furthermore, by enhancing such

a modelling method to allow for exploration of SoS evolution delivers insight into

whether those energy efficiencies can be maintained or, if not, where the drop off

may start to occur along those evolution paths.
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1.2 System Design Modelling

As part of modelling system designs there is a need to capture system characteristics

and behaviours, both static in the architectural design and dynamic in the system

execution, as part of providing the system designers with a complete view of

the system performance and design choice impacts. Furthermore, the ability to

start system testing earlier (i.e., at the point of conceptual design) and to combine

models with production components provides a continuous test and build approach,

and allows for early design risk identification.

Model Based Systems Engineering (MBSE) is a modelling approach fast

gaining popularity to support system engineering efforts in dealing with system

development sizes and complexities. It is largely centred around the move away

from traditional documentation to the application of models to detail the numerous

phases of the development life cycle. MBSE’s main focus is on capturing static

design details such as data modelling, requirements and architecture. The capturing

of the dynamic aspects of the system design and use of model execution is an area

of development (Friedenthal, Griego, and Sampson, 2009).

Pockets of work have seen MBSE approaches capture and investigate dynamic

aspects of system design (Armstrong, 2008); however, the fact that abstract mod-

elling is the foundation for these approaches reveals that there are difficulties in

providing the system designers with appropriate insight into the lower level dy-

namic characteristics and behaviours of the COTS technologies found with modern

SoS.
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With the introduction of the Model-driven Engineering (MDE) philosophy to

support the process and analysis of software system development, the use of such

tools has led to the application of software performance prediction techniques

(Kent, 2002; Barbierato, Gribaudo, and Iacono, 2011).

While MDE techniques are applied to the application of software development,

being used to model and solve the configuration phases, as well as execution

emulation, testing and analysis, its focus is purely on the software development

life cycle. Overall system performance, which includes computing infrastructure,

is not a consideration.

In contrast to the abstract approaches with the MBSE philosophy and the

limited design focus on software systems alone with the MDE philosophy, System

Execution Modelling (SEM) (Hill, Schmidt, and Slaby, 2009) is a development

that moves from pure research into a measurement-based performance prediction

technique designed to provide high-fidelity insight into overall system design

performance.

As part of a broader research program looking into integrated SEM environ-

ments for SoS deployment and operational context performance insight, Falkner

et al., 2013 introduces an architectural prototyping system capable of supporting

scenario-driven experimentation for evaluating model suitability for deployment

and real-time performance insight purposes. Falkner et al., 2014 also present an

integrated approach to performance analysis and prediction of model-driven DRE

defence systems centred on the use of the SEM paradigm. More recently, building

on their previous research, Falkner et al., 2018 introduced a method for design
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performance insight through an integrated model-driven approach for performance

prediction of real-time embedded defence systems and SoS.

However, while these SEM approaches do introduce a new modelling and

prediction techniques that considers the dynamic design aspects, overall system

performance and operational contexts of SoS deployment, the approaches are

predominantly focused on the representation of the system architecture and its

workload. The SEM approaches do not consider the need to search through a large

number of options associated with the deployment of large scale SoS, nor allow for

methods whereby guides or bounds for software deployment can be based on known

high-level requirements or constraints. Furthermore, the deployment techniques

introduced with these SEM approaches are only manual in nature, leading to an

inability to confidently search the large solution space for SoS deployment.

This thesis introduces an approach that addresses the identified capability gap

for modelling deployment of large scale SoS within the SEM modelling paradigm

introduced by Paunov et al., 2006, Falkner et al., 2014 and Falkner et al., 2018.

The method described in this thesis will not only show the use of automation to

search for SoS deployment options, but will also introduce an approach that will

enable software deployment option exploration using high-level non-functional

requirements and constraints modelling. The research outcomes from this thesis

are also associated with the broader SoS SEM environments research program that

has delivered key research outcomes by Falkner et al., 2013, Falkner et al., 2014

and Falkner et al., 2018.

This research will introduce a new modelling and prediction technique con-
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sisting of two main contributions. The first research contribution introduces a

new modelling approach that augments existing SEM modelling approaches for

articulating system architectures and workloads. This consists of both pictorial and

text-based modelling, and will allow for the definition of non-functional require-

ments and constraints associated with existing system architectures and workloads

(through standard SEM modelling). The second research contribution introduces

an automated learning mechanism to explore the large numbers of deployment op-

tions based on a system model, the run-time environment definition and modelled

non-functional requirements and constraints. This new automated search capabil-

ity injects itself seamlessly within the SEM modelling and prediction paradigm

execution flow and is the key mechanism for developing the final SEM models

ready for execution, rather than the extant manual approach via the SEM modelling

environment.

As the new research detailed within this thesis is not introducing a new SEM

approach, but rather looking to augment an existing SEM capability to close an

identified gap, the research will build on an already-developed SEM environment.

Furthermore, as this thesis is part of the broader research program that has delivered

work from Paunov et al., 2006, Falkner et al., 2014 and Falkner et al., 2018, the

SEM environment being built upon will be the MEDEA environment.

Using the proposed approaches allows system designers to guide and explore

software deployment rapidly through automated search, based on high-level re-

quirements and constraints, and gain insight into risks of performance impacts

associated with those high-level design drivers and their associated low-level de-
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sign choices. It also provides an ability to explore deployment options that would

not commonly be found with manual approaches, where deployment is primar-

ily guided through experience or previous deployment choices, thereby further

reducing any risk of performance impacts from sub-optimal design choices.

Examples of non-functional requirements and constraints that could guide the

software deployment options may include ensuring spare resource limits (possi-

bly resulting from required power supply improvements or capacity degradation

issues) are maintained for identified computing nodes. Overlaying these resource

requirements are constraints for software component mandate deployment as a

result of safety and system availability requirements. This results in the deployment

solution search trying to satisfy both sets of requirements and constraints, or at

least seek solutions that are optimised to support the greater number of require-

ments and constraints. Lastly, a safety critical thread is identified where a string

of interfaces must adhere to temporal performances. Once again, the identified

optimised deployment solutions seek to satisfy all, or as many as possible, of these

constraints.

An extension to the optimal software deployment search capability is to add

in the capability to have the search consider the evolution of the software system.

In addition to considering high-level requirements and constraints, the optimisa-

tion search would also take into account system evolution characteristics and the

resulting system evolution design options. In this scenario, potential design evolu-

tion paths would be explored, identified and deployed onto the existing run-time

computing infrastructure for execution purposes. These evolved designs would
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also include inherited high-level requirements and constraints (from the existing

system design to be evolved) or potentially new ones. The executions would then

be analysed to gain insight into the run-time computing infrastructure’s ability to

service the requirements of the evolved software system, as well as any impacts on

the resulting overall system performance.

To enable the aforementioned system evolution consideration, this thesis intro-

duces a new modelling method and exploration capability to identify possible new

evolved software system designs, based on defined system evolution characteris-

tics. The new method will once again augment an existing SEM modelling and

prediction execution flow.

The new approach introduced with this thesis builds a new modelling language

and set of modelling processes to enable definition of system design evolution char-

acteristics. It also introduces a framework that allows the system evolution models

to be interpreted to guide the search and creation of evolved system design options.

Lastly, the entire capability is integrated within an existing SEM environment exe-

cution flow, which would also include the software deployment optimisation search

capability, also introduced within this thesis. As a result, insight can be gained into

how well existing computing infrastructure can house optimally-deployed evolved

software system designs, while still satisfying high-level design drivers.

By delivering this new capability, system designers can gain insight into soft-

ware system design evolution impacts on resource-constrained run-time environ-

ments. Furthermore, the approach promotes an ability to drive upgrade cycles of

the underlying computing infrastructure (or parts thereof) based on the evolution
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path and growth of the software system itself, and not based on a set period of

time. In the case of design approaches based on decoupled periodic software

and computing infrastructure upgrade cycles (Mitchell, 2010b; Mitchell, 2010a;

Kerr, Phaal, and Probert, 2008; Boudreau, 2007), the time period for changing

the underlying computing infrastructure could be extended leading to cost benefits

and design change risk reductions. It would also provide insight into the life

expectancy of non-recoverable host platforms (i.e., space vehicles), where the

ability of fixed (non-up-gradable) computing infrastructure to host software system

evolution options can be investigated and obsolescence forecasted.

1.3 Thesis Organisation

This thesis provides a survey of the literature highlighting the research gap, fol-

lowed by the aim of this thesis in addressing that gap. A methodology chapter

then provides a high-level introduction and reasoning about the methods used to

develop the capability that will address the research gap.

A chapter on the new software deployment optimisation capability is then

provided, followed by a chapter detailing the testing approach conducted and the

results produced indicating correct behaviour and performance. This is further

enhanced by a subsequent case study chapter and a demonstration of the new

capability with an undersea network software system design and deployment

scenario.

Following the software deployment optimisation chapters, a chapter is provided
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introducing a new method and its use to explore system design evolution. This in-

cludes details on its application within a SEM environment, as well as development

and integration details.

Finally, a conclusion and future works chapter is provided, along with technical

detail annex chapters.
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2. Literature Review

2.1 System Design Modelling

A modelling approach that captures system characteristics and behaviours, both

static in architectural design and dynamic in system execution, provides system

designers with a complete view of system performance and design choice impacts.

Furthermore, it provides the ability to start system testing earlier (i.e., at the point

of conceptual design) and when combined with production components provides a

continuous test and build approach, which enables early design risk identification.

Model Based Systems Engineering (MBSE) is one such philosophy gaining

popularity with system developers as part of trying to handle the growth in com-

plexities in system designs. MBSE is an engineering approach that oversees the

transition from traditional document-centric engineering methods to the formalised

application of models to support the various system engineering processes starting

at the conceptual design phase and continuing throughout the later development

life cycle phases (Henderson and Salado, 2021).

Within the defence community there has been a wide spread adoption of MBSE



CHAPTER 2. LITERATURE REVIEW 15

for such tasks as software and hardware configuration, product line modelling,

requirements definition and data modelling (Hennig et al., 2016; Do, Cook, and

Lay, 2014; Mitchell, 2011; Mitchell, 2010a; Saunders, 2003). While these methods

provide well for capturing the static details of the system under design and their

inter-relationships, the approaches lack in providing insight into the dynamic

aspects of the system design.

MBSE approaches have been used to investigate dynamic aspects of system

design (Perez, 2014; Do, Cook, and Lay, 2014; Armstrong, 2008). However, the

fact that abstract modelling is used means large amounts of modelling effort and

complexity are required to account for important low-level system details and

dynamic behaviours. While the use of mathematical solvers can be incorporated

to improve the fidelity of the simulations, its ability to account for lower level

characteristics and behaviours of Commercial-Off-The-Shelf (COTS) technologies

still lacks the required fidelity.

In the hope of introducing new MBSE capabilities for system developers

based around Unified Modelling Language (UML), the Object Management Group

(OMG) have introduced executable UML. Products such as the Cameo Simulation

Toolkit1 offer executable capabilities for system design investigation in areas such

as verification, integration, temporal performance and deployment. Unfortunately,

these capabilities are still abstract in nature and while additional mathematical

solvers can be incorporated to improve the fidelity of the simulations, the ability to

account for lower level characteristics and behaviours of COTS technologies still

1https://www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-toolkit
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requires significant modelling efforts.

The prediction of software performance has developed from early approaches

based on abstract models to model-driven engineering (MDE)-based approaches

(Barbierato, Gribaudo, and Iacono, 2011). MDE is a software engineering phi-

losophy that has a broader scope than just the architecture alone, as set out by

the OMG’s Model Driven Architecture (MDA) vision for direct use of models

for software development and production. MDE considers both processes and

analyses for software development. It is conducted around heavy tool use, and

looks at elements such as modelling languages and models, and translations, as

well as maintaining and coordinating construction and evolution for both models

and languages (Akdur, Garousi, and Demirörs, 2018; Mohagheghi et al., 2013;

Kent, 2002).

MDE techniques are typically applied to the development of application soft-

ware components, but may also be used to model and solve the configuration and

deployment phases, as well as system execution emulation, testing and analysis.

This assists in the management of the entire software development life cycle.

System Execution Modelling (SEM) (Hill, Schmidt, and Slaby, 2009) is a

development from research into measurement-based performance prediction that

provides detailed early insight into the non-functional characteristics of DRE sys-

tem design. SEM looks to utilise the benefit of abstract modelling where models are

constructed relatively quickly at a fidelity level sufficient enough to answer system

design questions, but executes those models within an actual run-time computing

environment, such as those found with SoS constrained computing environments.
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By doing this, SEM provides the required low-level insight on performance and

behaviour of the COTS technology not seen with abstract modelling methods,

while still providing the quick design change investigation capabilities seen with

abstract modelling methods.

A SEM-based approach can support the evaluation of overall system perfor-

mance, software integration, interactions and message exchange, and the perfor-

mance impact of 3rd party software. At the core of this approach is the employment

of simple models of resource consumption and behaviour extracted from the sys-

tem’s business logic. Using these models, a representative source code can be

constructed and enable performance predictions analysis when deployed and exe-

cuted upon real software and hardware test-beds.

SEM and MDE can be used in combination to support the emulation of system

components and performance models, enabling performance data to be used to re-

design and reconfigure the SoS, prior to any construction of the corresponding real

system. The use of MDE, domain-specific modelling languages (DSMLs) (Paunov

et al., 2006), automatic code generation, and the utilisation of COTS technologies

have enabled the SEM approach to abstract the development complexities of DRE

systems, while still ensuring detailed performance insight at the level required

to provide performance evaluation of mission-critical system designs. However,

work in this area is still in its early stages and more work is required to better

support early performance prediction. In particular, there is a need to integrate

the representation and visualisation of models and performance information to

assist in early decision-making based on performance predictions using realistic
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data sources (Edwards, Malek, and Medvidovic, 2007a), and to integrate SEM

approaches and modelling environments with capabilities to support SoS consider-

ations. Furthermore, work is needed to explore automated methods for deploying

large-scale software system design models onto the available computing resources

based on guidance from high-level requirements and constraints.

2.2 System Performance Prediction

As the software industry seeks to improve development processes and reduce costs,

there has been a trend to transition from monolithic and proprietary type system

designs to system designs that are modular, built from reused code or product lines

and have a heavy reliance on standardisation (Kalske, Mäkitalo, and Mikkonen,

2018; Heydari, Mosleh, and Dalili, 2016; Balasubramanian et al., 2005). This

shift in paradigm has also bought with it a critical need to understand performance

or non-functional aspects of the design to minimise the risk of design change

(Nawinna and Sandeepani, 2020; Lai et al., 2019; Martens, 2011; Balsamo et al.,

2004), and a desire to do so as early as possible in the development cycle. As

a result, the traditional software engineering methodologies that focus first on

functional aspects of the system design and leave the non-functional aspects of

the design to a ‘fix-it-later’ approach (Balsamo et al., 2004; Happe, Koziolek, and

Reussner, 2011; Jasmine and Vasantha, 2007) are replaced with approaches that

introduce performance evaluation early into the development cycle.

One of the earliest attempts to integrate performance understanding early within
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the development cycle is the Software Performance Engineering (SPE) method-

ology (Smith, 1990). SPE allows for the modelling of software and hardware

resource requirements and analysis of their performance through the use of two

models: the software execution model and the system execution model. The first

model details software execution behaviour with the use of execution graphs, while

the use of Queuing Networks enables the system execution model to represent the

platform under analysis, including both software and hardware.

Smith and Williams, 1997 developed an approach for performance evaluation

of object-oriented systems using the SPE-ED tool. Using automation to generate

queuing networks from user developed behaviour scenarios or execution graphs, it

provides insight into end-to-end response times, elapse time for each processing

step, device utilisation and time spent at each computing device. However, this

approach needs expertise in low-level knowledge on resource utilisation to derive

the resource requirement model details for each software resource request.

An improvement on the SPE-ED approach was made with the direct use of

UML diagrams for the development of the two SPE models. Cortellessa and

Mirandola, 2002 developed the methodology known as PIMA-UML (Performance

IncreMental vAlidation in UML) to utilise standard UML notation diagrams. Using

enhanced UML diagrams to generate extended queuing network performance

models and classical computing performance analysis techniques (Nance, 1990;

Lavenberg, 1983), software engineers are provided with early and incremental

performance evaluations throughout the development cycle. This approach was

further evolved to consider mobile software architecture performance insights
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(Grassi and Mirandola, 2002). Once again, as was the case for SPE-ED, PRIMA-

UML requires expert knowledge to ensure models are detailed correctly to realise

accurate performance indicators.

There have been various UML-based approaches for performance modelling

that have recognised the need for standards-based notations to enable modelling

to occur directly from standards-based system design artefacts. This has been

exemplified with the Object Management Group (OMG) introduction of UML

profiles that focus on non-functional descriptions of system designs. Li, Wang, and

Shi, 2013; Tabuchi, Sato, and Nakamura, 2005; Distefano et al., 2004 introduced

the use of the now obsolete UML SPT (Schedulability, Performance and Time

) (OMG, 2003) profile to enable the modelling of performance early within the

development cycle. Distefano et al., 2004 detailed the first step of an automated

performance measurement process that contains a mapping of the UML SPT profile

to the Performance Context Model (PCM). While the use of an intermediate model

translates well for cross performance modelling platform capabilities, the use of

the obsolete SPT profile means that design artefacts based on newer UML profiles

would incur a further translation and the potential occurrence of misinterpretation

or information lost with profile mapping.

In 2008 the OMG introduced the UML MARTE (OMG, 2011) profile to replace

the SPT profile and delivered improved capabilities in UML in the domain of model-

driven development of real-time and embedded systems (RTES). The aim of the new

profile was to provide a mechanism to address analysis information requirements

through model annotation. Liehr and Buchenrieder, 2009; Gilmore et al., 2011 and
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Chise and Jurca, 2009 used the MARTE profile to develop UML descriptions of

the systems under development and then generate performance models (such as

extended queuing network model, analytical models or simulations) subsequently

to provide early performance insight.

Herrera et al., 2014 presents an approach for design capture and automated

performance model construction in support of exploring design options and com-

plexities in addressing tight performance requirements of embedded system design.

While Shailesh, Nayak, and Prasad, 2020 presents research based on the MARTE

profile annotated with UML sequence diagrams to enable automated evaluation

of system performance. Through model transformation methods, the meta-model-

based approach allows for mapping of sequence diagram information to Petri net

performance models, and performance insights, such as utilisation and throughput.

Ding, 2016 also introduces the use of Petri nets based modelling and anal-

ysis to investigate dynamic aspects of software architectures associated cloud

environments.

While these methodologies deliver the required early predictive insight into

performance, the majority of system level performance predictions do not consider

the complex characteristics of component-based systems and their interactions

with the operational computing environment (Kuperberg, Krogmann, and Reussner,

2008; Hill and Gokhale, 2008). In addition, while some considered the operational

environments characteristics from a high level, such as the SPE system execution

model, they did not translate well for accounting for the various configurations

of the operational computing environments. There is also little ability within the
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modelling frameworks to account for the complex nature with which a component

interacts with its operational computing environment and the number of deployment

permutations a component-based system could have, as well as the impact on the

overall performance of the system (Kuperberg, Krogmann, and Reussner, 2008;

Koziolek, 2010).

An alternative methodology to UML-based notation model development is the

use of existing or development of new architecture description languages (ADL).

These extant ADL’s or newly created ADL’s, when integrated with performance

modelling tool suites, also support performance analysis requirements.

The use of the Architecture Analysis and Design Language (AADL) models

(SAE, 2007; Feiler, Gluch, and Hudak, 2006) with the Ocarina tool suite allowed

Hugues et al., 2007 to develop a rapid prototyping process for the development of

DRE systems. Focusing on the design-by-refinement approach, this methodology

saw the development of AADL models and the assessment of those models for

semantic correctness and schedulability analysis for execution deadline times.

Hemer and Ding, 2009 developed an ADL called CRADLE whose aim was to

support improved architecture analysis, adaptation, and expressiveness of systems.

The ADL enabled models and architectures to be detailed in a more generic fashion,

thereby paving a way for a single model to instantiate the various compositions

of system architecture via parameterisation. The approach provides effective

insight into the interactions within the system architecture from the viewpoint

of component numbers, connectors, connection topology and communication

protocols, but does not account well for other non-functional aspects of the system
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design.

The introduction of domain specific modelling languages (DSML) and their

ability to better define problem domains or tasking (as compared with general-

purpose programming languages) in conjunction with the increasing use of model-

driven engineering (MDE) and new MDE technologies, led to the creation of

DSML development environments (Amyot, Farah, and Roy, 2006). These DSML

development environments therefore provided the capability to map, extract and

enhance existing ADL’s in way that catered for closer descriptive alignment of the

problem domain without having to create a totally new ADL.

Edwards, Malek, and Medvidovic, 2007b avoided the requirement to design an

architecture language from scratch by developing XTEAM (eXtensible Tool-chain

for Evaluation of Architectural Models) through the use of DSML mapping. The

approach provides a way to address detail shortfalls in existing ADLs, as well as

the inflexible notations and narrow vocabulary, while making the use of MDE to

develop XTEAM models and generates executable simulation models for dynamic

analysis. Using the Generic Modelling Environment (GME) (Vanderbilt, 2008), the

authors were able to map ADL’s to create the XTEAM ADL, while the XTEAM

model interpreter framework enabled the transformation of the XTEAM models

to executable analysis models. The approach provides effective insight into the

non-functional design aspects of energy consumption, reliability, latency and mem-

ory usage, but does not consider the performance characteristics associated with

different elements of the operational computing environment, such as middleware.

Heinrich et al., 2018 introduces a tool for software architecture quality inves-
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tigation based on the Palladio Component Model (PCM) (Reussner et al., 2011).

Using the PCM as a domain-specific language, various analysis techniques (e.g.,

Petri Nets, Queuing Network) are conducted through model transformation from

context views of the system and operational context. These provide insights on

system performance and how they trace to certain individual system components

of the system under investigation.

While the introduction of ADLs and DSML provides closer definitions of

concepts and relationships associated with non-functional aspects of the system

design, there is still little consideration for the complex nature of component

interactions within the system infrastructure. Furthermore, abstracted analysis

methodologies like Petri Net analysis or the use of simulation and other high-level

formal analysis approaches do not translate well to enable analysis of lower level

elements of the operational computing environment. The approaches fail to account

for the way components are deployed within their run-time environment and the

fact that the run-time environment could be heterogeneous in nature with varying

computing platform performances.

In an effort to address the need for performance analysis focusing on the lower

level elements of the operational environment, such as middleware, the approach of

utilising benchmark testing and embedding in performance models was established.

Liu et al. (Liu, Fekete, and Gorton, 2004) demonstrate such a technique

in response to the industry trend of incorporating increased use of middleware

architectures as a cost reduction strategy for distributed applications. Liu, Fekete,

and Gorton, 2004 demonstrate the use of queuing networks and state-machines
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to detail the system architecture and behaviour of service components and then

characterised the application’s infrastructure or service components’ utilisation.

The three modelling and characterisation steps then lead to the derivation of

the performance equation. With the use of middleware bench-marking within a

controlled test environment, the performance equation was populated with the

performance parameters needed to conduct the performance analysis.

Evangelista, 2021 introduce a method for performance modelling associated

with database management and the challenge of correct configuration for NoSQL

implementations. Through the use of Petri Nets and Queuing Networks models

in this instance, insights into cloud-based NoSQL deployment are delivered and

shown to provide benefit in addressing the challenges of preventing bad behaviour

and costs impacts to the users of such services. While Iakushkin, Shichkina, and

Sedova, 2016; Faisal, Petriu, and Woodside, 2014 also make use of Petri Nets and

Queuing Networks to enable performance modelling of middleware classes and

implementations, as part of component-level interaction investigation and design

decision support to consider performance aspects like utilisation, scaling and QoS.

Once again, these approaches were limited in accountability for lower level

details of the run-time environment, such as the cross platform and dynamic nature

of a software component-based run-time environment. While the modelling ap-

proaches provide high fidelity analysis of the software infrastructure performance,

the approaches do not translate well to heterogeneous environments. The process

of integrating the bench-marked performance metrics into performance equations

leads to higher quality results, but the requirement to conduct bench-marking for
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each type of middleware and execution scenarios does not translate well to hetero-

geneous environments. The time consuming nature of setting up and configuring

controlled test environments and test applications impacts the quick turnaround

benefit of abstract performance modelling and analysis.

2.3 Component-Based System Performance Pre-

diction

A survey conducted by Koziolek (Koziolek, 2010) observed that the majority of the

proposed research for the evaluation of non-functional aspects of component-based

systems could be categorised into either performance prediction or performance

measurement. These could be further broken down into approaches based on UML

or a proprietary meta-model, and focused on middleware, formal specification or

measurements of system implementation.

As detailed in Section 2.1, a number of approaches based on UML allow for the

abstraction of details and analysis, thereby providing reasonably quick turnaround

time for insight into performance of the design. However, they fail to capture the

details of the characteristics of how components can be deployed. In response,

Kaur, 2012; Jasmine and Vasantha, 2007; Balsamo, Marzolla, and Mirandola,

2006; Bertolino and Mirandola, 2003 introduced UML approaches that succeeded

in capturing both the required component-based information within the models and

the subsequent analysis. While succeeding in capturing the relevant information,

an open problem remains with the ability of these approaches to account for the
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dynamic and 3rd party nature of the operational environment and its interaction

with the system components (Becker et al., 2006).

Furthermore, as highlighted by Ozkaya, 2018, UML-based languages have been

adopted to domains like embedded and real-time systems, but a limited number

provide behavioural modelling viewpoints for design aspects such as deployment

and operation. The survey also shows there is limited support for simulation and

ability to gain insight into system dynamic aspects.

A complementary approach to establish modelling notations and analysis tech-

niques is introduced by Grassi et al. (Grassi et al., 2008; Grassi, Mirandola, and

Sabetta, 2005; Grassi, Mirandola, and Sabetta, 2007) who proposes a kernel lan-

guage known as KLAPER (Kernel LAnguage for PEformance and Reliability

analysis). KLAPER is an intermediate language that allows for the mapping of

design-oriented notations to analysis-oriented notations in a decoupled manner.

Ciancone et al., 2014; Ciancone et al., 2011 also introduces a KLAPER language

tool-suite to support reliability and QoS investigations for component-based system

designs and assemblies.

The use of a Meta Object Facility (MOF) meta-model-based approach enables

bridging of various design-model methodologies, with their many design-level

notations, to various analysis methodologies. It also paves the way for reductions

in effort and complexity when exploiting MOF-based model transformations frame-

works. Furthermore, the kernel language approach provides a way to capture the

relevant aspects and information of component characteristics for analysis, while

discarding unnecessary information.
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While the kernel language addresses the need to define specific component

oriented details and related analysis, the approach is limited in regards to detailing

the dynamic behaviour of components. Since the focus is on the mapping of extant

design-level notations and analysis methodologies, the same observations made

about the use of abstract approaches and their inability to account for the run-time

environment remains.

Performance prediction approaches with a middleware focus have gone part

way to delivering insight into the deployment environment and its impact on com-

ponent performance. The process of identifying performance specific middleware

characteristics and feeding them into analysis models allows for insight into perfor-

mance aspects of the lower level infrastructure elements (Abdelaziz, Kadir, and

Osman, 2011). This then provides insight into the impact on component behaviour

and overall performance of a particular design. Chen et al., 2005 extends the

work of Liu, Fekete, and Gorton, 2004 to consider the unique characteristics of

component-middleware. While Rathfelder et al., 2014 introduces work that looks

to model and predict performances for component-based systems, and the influence

of publish-subscribe middleware characteristics (through developed information

repositories) has on communications.

Eismann et al., 2018 introduces work that allows for component-level dependen-

cies to be modelled, model transformation, and Queuing Petri Net-based analysis to

explore the interactions between components and influence on system performance,

such as bottlenecks and utilisation.

Zhang et al., 2006 develops an approach that demonstrated the use of built-



CHAPTER 2. LITERATURE REVIEW 29

in architectural pattern libraries to capture the structure and behaviour of the

middleware of interest. It also provides a mechanism to have this information

automatically integrated into the UML-based application model for analysis.

Each approach tackles the problem of capturing the underlying computing in-

frastructure performance by either capturing characteristics through measurement,

or using architectural patterns. However, they lead to a heavy-handed approach

to the analysis of heterogeneous operational environments. Furthermore, the need

for configuration and measurement, or use of static structure and behaviour in-

formation, does not translate well for the dynamics involved with component

redeployment or changes in the hardware platforms. Each approach fails to capture

details and provide insight into the deployment and the redeployment of compo-

nents across more than one middleware and hardware platform within a single

operational scenario, as well as the resultant performance impact.

When trying to understand the performance of component-based systems, cur-

rent performance prediction techniques need to firstly recognise that the system

behaviour characteristics are predominantly a result of the manner in which the

components (which are assembled to satisfy the application’s functional require-

ments) are deployed and interact with the operational environment (Balsamo et al.,

2004; Kuperberg, Krogmann, and Reussner, 2008; Chen et al., 2002). Secondly,

and probably the most important, the prediction approaches have to consider the

emerging trend of reliance on third-party infrastructure software within component-

based heterogeneous systems; meaning the ability to provide accurate performance

details for embedding into abstracted models becomes difficult, as a direct result of
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there being little access to third-party performance details. It therefore becomes

evident that the only way to definitely understand the non-functional requirements

of such systems is through measurement-based approaches (Becker et al., 2006).

If the above observation is the driving force for shaping a performance predic-

tion technique for understanding stringent mission-critical system performance

requirements, limitations still exist with measurement techniques such as those

introduced by Rathfelder et al., 2014; Zhang et al., 2006; Chen et al., 2005; Liu,

Fekete, and Gorton, 2004. These approaches involve a heavy-handed measure-

ment and analysis process for gaining insight into performances of heterogeneous

platforms and use for overall system performance prediction. Therefore, the

measurement-based approach will have to be a mixed approach of measurement-

based with computing environment prototyping and modelling to allow for insight

into the complexities of the deployment characteristics, while still ensuring the

workload and design change analysis can occur easily. This then leads to the ability

to provide relatively high fidelity system performance prediction inputs into the

design phase of the development cycle (Koziolek, 2010).

2.4 System Execution Modelling (SEM)

SEM is an approach that proposes to exploit the construction of workload models

based on the internal logic of the software components to be analysed (Denaro,

Polini, and Emmerich, 2004). It allows system matter experts to model the software

system accurately before it is developed, and to capture software, hardware, and
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middleware constraints and perspectives that are impossible to capture in analytical

models. Denaro, Polini, and Emmerich, 2004, Paunov et al., 2006 and Hill et al.,

2010 define initial approaches for system execution modelling, employing the use

of prototyping to gain a detailed understanding of system design performance.

Denaro, Polini, and Emmerich, 2004 construct component-level temporal perfor-

mance models outside of the internal business logic, while Denaro, Polini, and

Emmerich, 2004 exploit the construction of workload models based on internal

business logic to provide more detailed and complete insight into the overall system

performance.

Slaby et al., 2006 introduce a measurement-based approach that allows software

and system engineers to conduct quantitative performance analysis, obtaining

crucial insight into performance issues associated with a system design, early

in the development cycle. The primary focus of this research is enterprise DRE

systems. The component workload emulator (CoWorkEr) utilisation suite (CUTS)

(Hill and Gokhale, 2008) is an implementation of this approach. The CUTS

environment employs predefined workloads for software components from which

code is generated, and integrates automated tools for the building, configuration,

and deployment of generated code on various hardware, software, and middleware

infrastructures. The system execution modelling tool suite significantly reduces

experimentation and analysis efforts early within the development cycle of a system

of interest. However, it only employs simplistic workloads focused only on CPU

and memory consumption alone. For example, a CPU-focused workload for a

software component would be defined and implemented as a raw busy-waiting
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time, e.g. wait = 5ms. This in turn limits its performance analysis capabilities,

with only simple aggregates of utilisation and network bandwidth consumption

available as performance metrics.

As part of a broader research program looking into integrated SEM environ-

ments for SoS deployment and operational context performance insight research

from Falkner et al., 2013, Falkner et al., 2014 and Falkner et al., 2018 expanded

the focus of the SEM research from Slaby et al., 2006. The aim of this work,

and the overall research program, introduced approaches that allow for analysis

at the SoS level, and support for scenario-driven experimentation for evaluating

model suitability for deployment and real-time performance insight purposes. The

research program presented a model-driven performance prediction system that

utilised realistic data sources and provide improved methods for visualisation of

the causes of performance issues, as well as relationships between the models and

performance constraints. The research program enabled performance prediction

to occur under a variety of conditions, using data obtained from real, emulated,

or simulated sources. The research program also introduced the use of Domain

Specific Modelling Languages (DSML) for elements such as scenario definition,

performance requirement and metric definitions, as well as system design evolution

investigation.

In addition to contributing to the overall research program and research out-

comes delivered by Falkner et al., 2013, Falkner et al., 2014 and Falkner et al., 2018,

this thesis introduces research outcomes that delivers the identified system design

evolution investigations capabilities within the SEM paradigm. Based around a



CHAPTER 2. LITERATURE REVIEW 33

system design evolution DSML, model translation, interpretation and creation, this

body of research is presented in Chapter 8.

While Falkner et al., 2013, Falkner et al., 2014 and Falkner et al., 2018 intro-

duced methods for model-driven large scale system design performance prediction,

that utilises real or synthetic data sources, the complexity of dealing with large

scale deployment of software is still a largely a manual process. When dealing

with small scale models, exploring all the possible software deployment options

with a manual process is viable. As the modelling scale increases and the num-

ber of options for software deployment grows significantly, manual methods are

less viable and the questions about the ability to identify appropriate deployment

options from the large solution space appears. Therefore, this presents the need

to have an ability to explore the benefit of search algorithms and automation for

identifying software deployment.

The ability to combine the developed SEM modelling approaches (Falkner et

al., 2013; Falkner et al., 2014; Falkner et al., 2018) with an automated optimisation

or learning mechanism would reduce the burden for designers investigating large

scale system designs. It would also allow for improved confidence in investigation

outcomes through the ability to search significantly larger sets of solutions. The ca-

pability would also pave the way to develop methods that would allow for software

deployment options to be explored and identified based on high level guidance

for certain goals. This would provide particular benefit to system designers, by

allowing them to drive automated searches with high-level design requirements

and constraints, and to understand the impact of different design choices. An
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example of this could be understanding how many different deployments exist that

would satisfy system end-to-end latency while ensuring spare resource limits are

maintained, or needing to adhere to mandated deployment constraints.

Furthermore, benefit can be provided to system designers when considering

the upgrade cycle aspects of the system and how deployment might occur as the

system evolves. By providing a DSML to detail potential evolution aspects for the

system design, this model could then be tied in with the deployment optimisation

capability, which, when integrated with a SEM modelling approach, would provide

insight into how a constrained DRE SoS would provide capability throughout its

lifetime.

2.5 Software Deployment Optimisation

Optimisation is a process whereby actions are taken to make the best or most

effective use of a situation or resource for a known function and desired outputs, the

task is to find the actions or inputs leading to those outputs (Eiben and Smith, 2003).

For a system this maybe to make modifications to achieve its best design options

in response to a set of criteria. In the case of software deployment optimisation

this could be to modify and search through the different ways the software can

be deployed within its computing environment with the aim of minimising or

maximising certain system features that are associated with a set of identified

system requirements or constraints.

As the complexity of system designs continue to increase, the complexity of
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search processes to identify best or most effective design outcomes also increases.

As a result, the use of search techniques like evolutionary algorithm searching is

emerging and gaining popularity for exploring solutions for real world complex

problems (Vikhar, 2016).

Evolutionary algorithms, which are a subset of evolutionary computation,

conduct solution searches through an evolution mechanism inline with what can

be observed through biological evolution. Through a process of reproduction,

mutation, re-combination and selection, the solutions produced within each search

cycle should evolve to be better than the previous set of solutions. In general, an

evolutionary algorithm implementation is a global search algorithm where an initial

population (set of solutions) is randomly generated. This is the first generation.

Subsequent generations are then produced through an iterative process (up to the

required number of generations) of solution fitness evaluation (a score to indicate

how good the solution is), selection of the fittest solutions (parents) for reproduction,

generation of children through crossover and mutation of selected parent solutions,

and finally replacement of least fit solutions with newly created more fit solutions.

Genetic algorithms are one of the most commonly used approaches for optimisation

and search problems (De Jong, 2006; Eiben and Smith, 2003; Vikhar, 2016).

In addition to the global optimisation search approaches, where solutions within

a generation are combined and mutated in an effort to gain better solutions, local

optimisation searches can also be used. A local optimisation search considers

only the individual solution within a generation, where crossover and mutation

can occur for its solution only to see if a more fit solution can be produced. If the
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new solution fitness is better than the original individual solution it replaces that

original solution (Hoos and Sttzle, 2004).

Evolutionary algorithms have been used for deployment optimisation purposes

to identify better ways to deploy wireless networks for such things as node numbers,

throughput, cost or transmission delay (Wang et al., 2017; Rebai et al., 2015; Budi

et al., 2014). Similarly, the use of evolutionary algorithms have been designed to

consider better ways to deploy cloud environments. Chen et al., 2012; Liu, Lu, and

Liu, 2010; Li et al., 2009 introduces the use of evolutionary algorithms to reduce the

costs by identifying where and when to place cloud computing infrastructure (i.e.

virtual machines and services), while Zhu et al., 2013 introduced a cost reduction

method utilising a genetic algorithm for optimising deployment of cloud services

across distributed data centres. Vanrompay, Rigole, and Berbers, 2008 also made

use of evolutionary algorithms to identify deployment profiles for services onto

a set of connected nodes to allow for a certain level of Quality of Service (QoS)

to exist while still minimising the communication cost between the chosen nodes.

While these approaches do consider the influence of non-functional requirements

(such as temporal performance), the level of these optimisations searches is at

the system or platform granularity and thus they do not consider the lower level

elements that make up those systems or platforms.

Peng et al., 2010 introduced deployment optimisation for mapping software

components to automobile electronic control units (ECU) built around the AU-

TOSAR (Automotive Open System Architecture) project. The research applies an

evolutionary algorithm to search for solutions to deployment profiles that minimise
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the communication costs between ECU nodes, while also considering resource

requirements and scheduling. The approach considers resource demands at the

individual component level, as well as the communications between components,

which then aggregate to produce the whole ECU node communication utilisation.

However, this approach does not consider temporal performance non-functional

requirements, such as end-to-end temporal performance of message exchanges

across a chain of components.

Meedeniya et al., 2011 introduces an approach that utilises the ArcheOpterix

framework2 that also looks into deployment of software components within a

ECU environments. The focus of this research is to optimise their deployment

around service reliability requirements. Using specifications from an AADL

system design specifications, software and hardware architecture details, along

with reliability-based attributes are extracted. These are then used to establish

an objective function for use in combination with a genetic algorithm to identify

deployment options based around service reliability. The approach does consider

behaviour and performance down to the software component level, but also suffers

from not considering interactions and end-to-end performances across multiple

components strung together.

Zimmer et al., 2012 also looks at evolutionary algorithms for optimising de-

ployment of components to an ECU. Once again geared around the AUTOSAR

project, the approach taken with this research is based around the ability to satisfy

safety requirements. This approach too considers the communication between

2Available on the web http:mercury.it.swin.edu.aug archeopterix
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components deployed, as well as constraints and resource demand, but once again

does not look into temporal performance requirements such as end-to-end timings.

White et al., 2011 presents research looking into the use of a hybrid heuris-

tics/evolutionary algorithm to evaluate optimising deployment within a DRE space

system with respect to the energy consumption footprint for the topology. Known

as ScatterD, the search looks at attributes and behaviours at the software component

level, such as tasks and CPU consumption, message rates, size, type and message

interactions between components. It also explores spatial deployment plans that

minimize power consumption while also considering network communication

requirements in combination with resources requirements and constraints. How-

ever, the network communication performance only considers interactions between

software component pairs and does not look at performance across a critical string

of components. This is also observed with the work introduced by Nazari et al.,

2016. In this work the definition of constraints and performance requirements that

lead to deployment options, via the use of a mixed integer linear programming

model, are focused on the interactions between components, and not across a series

of components of interest.

2.6 System Design Evolution Modelling

In support of the broader research program looking into integrated SEM envi-

ronments for SoS deployment and operational context performance, this thesis

introduces a new method that allows for definition of software system evolution
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that would feed into a SEM environment execution flow. To this end, this thesis

explored the literature to determine existing methods for software system evolution

prediction and modelling. This included looking at modelling contexts, system

evolution focus areas, levels of model fidelity and the ability to predict performance

for the entire system evolution.

Research into methods for exploring system evolution can largely be broken

into two main approaches: the forensic approach that looks back at system evolution

and observed characteristics, or the forward looking approach of predicting how

systems evolution could occur.

Baxter et al., 2006 conduct an in-depth study into the structure of Java programs

deployed over time. Through detailing structural characteristics of Java programs

and application-related variations, the research provides a basis as to how and why

certain structures occurs, as well as their management. Li et al., 2006; Lavery

et al., 2004 adopt a similar type of investigation by looking at design changes

with the introduction of factors such as legacy systems, security, concurrency and

open-sourcing, as well as the response to system bugs. Godfrey and Tu, 2001 look

at the case study of the Linux kernel evolution. Using a tool known as Beagle,

insight into how such a large system changed over time is provided.

While these approaches provide insight into common evolution paths of systems

and impacts, the investigations are conducted post system evolution and are unable

to provide support to system designers on system evolution options during the

system’s upgrade life cycle phase.

Selic, 1998 introduces a UML-based approach that facilitates software archi-
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tecture definition for initial design and evolution. By detailing system component

relationships and behaviours with abstract modelling constructs, the approach

constructs and executes models to give insight into possible design changes and

evolutions. Medvidovic, Rosenblum, and Taylor, 1999 extend this approach by

introducing ADL-based descriptions within a Java environment to enable model

analysis, evolution and implementations of possible software architectures. How-

ever, these approaches are built on abstract modelling methods and are limited in

their ability to account for the dynamic low-level performances and behaviours of

the run-time computing infrastructure.

Franco, Barbosa, and Zenha-Rela, 2013 introduces an ADL-based approach to

investigate reliability and other system quality attributes as a result of architectural-

level evolution. The work presents a method for ADL annotations to consider

control flow of inputs and outputs, usage profiles and component reliability specifi-

cations. These definitions then translate for use with a stochastic model (via the

PRISM tool (Kwiatkowska, Norman, and Parker, 2009)) to predict the impact of

component reliability, usage profile and system structure on the overall reliability.

As a result, insights are gain into performance shortfalls and support decisions on

how best to evolve a system.

Zhao et al., 2007 introduces an approach to allow for design pattern-based

investigation into system evolution via graphical design methods. Motivated by

identified shortfalls of UML-based descriptions, they show how defined evolution

paths for a set of design patterns, and transformation rules evolve designs auto-

matically through graph transformations mechanisms. While Ulbrich et al., 2010



CHAPTER 2. LITERATURE REVIEW 41

introduces work on using the MARTE profile for modelling existing real-time sys-

tem code base and it evolution, via auto-generation mechanisms, without creating

and analysing new evolved code baselines.

Koziolek et al., 2011 introduces a predictive approach through their integrated

framework for performance and reliability prediction of evolving system archi-

tectures. Using model transformation, the approach creates Palladio Component

Models (PCM) (Becker, Koziolek, and Reussner, 2007) from an architecture meta

model known as the Service Architecture Meta Model (SAMM) (Becker et al.,

2008). The SAMMPCMs form the evolution scenarios, where performance is

predicted with abstract model solvers. Koziolek et al., 2013 builds on this re-

search further with the application of SAMMPCMs for a control system evolution

performance prediction case study.

However these approaches still lead to a limited ability to account for the

low-level dynamic aspects of an evolved system design and its non-functional

performance.

2.7 Research gap

The literature shows that there are a small number of pockets of research on the use

of measurement-based techniques for performance prediction of a mission-critical

DRE system design early in the development cycle. Furthermore, the literature

shows that system execution modelling techniques lead the way in accounting for

low-level behaviours and performances when wanting to evaluate the relationships
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between business logic and resource demands, along with other non-functional

requirements.

While the outcomes from system execution modelling research are better suited

to provide the type and level of design change impact insight required for large,

complex, DRE system designs, there is a capability gap in being able to manage

the complexity and scale of large systems. Further improvements were made with

research from Falkner et al., 2013, Falkner et al., 2014 and Falkner et al., 2018

as part of a broader research program looking into integrated SEM environments

for SoS deployment and operational context performance. However, the ability to

handle complexities associated with deployment of large scale SoS requires further

research in order to introduce targeted and automated deployment of software

across an available run-time computing environment.

The literature shows that the application of deployment optimisation based

around non-functional requirements and constraints is evident in many computing

paradigms. However, large areas of research consider a granularity for deployment

optimisation at the system or platform level. For those cases where software

component granularity is present, the deployment optimisation is based around

the individual elements largely in isolation, rather than through broader system

aspects, such as end-to-end temporal performance.

It is also evident from the literature that if system evolution performance

prediction is required, of the methods that are forward looking rather than a

postmortem, research in these areas tends to be largely abstract in nature. To

maintain the level of fidelity required for the performance insight associated with
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mission-critical DRE SoS design evolution, an evolution prediction approach would

be required to for integration into a SEM type environment.
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3. Aim

The opening two chapters of this thesis detailed how SoS find themselves in a

continual state of change in response to evolving user requirements or operational

environment condition changes. Furthermore, when dealing with constrained

SoS, where there is no ability to add to its computing processing capability, non-

functional aspects of the architecture become a major design concern for the initial

design and subsequent evolution.

When employing modelling methods to gain insight into these non-functional

design aspects, it was also identified that there is a need to use a modelling method

that enables identification of design risks early in the development and integration

cycles for both the initial development and any subsequent upgrades. In addition,

by allowing for mapping of models onto real computing platforms for evaluation

of non-functional requirements and constraint satisfaction, significant benefit is

gained from earlier identification of design risks associated with constrained DRE

systems or SoS through measurement-based analysis.

Based on the literature search, pockets of performance prediction research

exist that focus on measurement-based techniques to deliver the level of fidelity
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required for early insight into systems and SoS design risks. Furthermore, the

measurement-based SEM technique led the way in providing insight into the low-

level behaviours and performances related to key non-functional requirements

associated with constrained SoS. However, this technique has a gap in capability

when dealing with the complexity of large scale SoS designs and how best to

deploy the large number of software components across a constrained computing

environment.

Furthermore, the literature indicates that system evolution performance predic-

tion research is largely abstract and not to the fidelity required for performance

insight for mission-critical SoS design. As a result, introducing a method for system

design evolution prediction with a SEM paradigm modelling environment would

enable high-fidelity mission-critical SoS design evolution performance prediction

and insight.

In response, this thesis introduces research that will deliver an automated

approach for optimised performance prediction of evolving DRE systems or SoS

designs. It will detail a method that utilises domain-specific modelling languages,

model-driven engineering, and deployment optimisation. The approach will be

a measurement-based prediction approach that allows for a ’what-if’ analysis of

optimal deployment of software guided from non-functional requirements and

constraints associated with an evolved system or SoS design.

As a result, system designers can initially explore how best to deploy software

on available computing resources, while satisfying high-level requirements and

constraints. Then, in contrast with periodic-based upgrade cycles for computing
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resources (or the host platform when dealing with fixed constrained computing

environments), upgrade cycles can occur based on software system evolution

paths and an ability for the current computing resources to still service high-level

requirements and constraints.

An example of this would be looking at how a software system could be opti-

mally deployed onto a constrained computing environment, followed by wanting

to understand how changing software resource footprints become an issue and

impact overall system performance. By allowing for modelling of evolution trends

associated with software system design, investigations can occur as to the possible

ways in which the software system design may evolve and what performances

would be expected when deployed. It would then allow for prediction of life

expectancy of fixed computing infrastructure.

Furthermore, in the case of fixed or constrained computing environment this

insight would also lead to exploration of the life expectancy of the operationally

deployed host platform. It could be used to investigate methods for load shedding,

possibly removing functionality, or, potentially, introduction of additional host

platforms and new computing capabilities under a distributed system paradigm.

The approach will firstly look to develop an evolutionary algorithm optimisa-

tion technique for software components to be deployed onto available run-time

computing nodes, based on high-level non-functional requirements and constraints.

Examples of non-functional requirements and constraints would be temporal per-

formance, SWaP budgets and mandated deployment needs.

This thesis will also introduce a new instrumentation framework capability.
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In the first instance this capability will allow for confirmation that the objective

function and search algorithm are behaving and performing as expected. It will then

provide insight into the capability of the search and performance of the optimal

software deployment solutions, relative to the defined non-functional requirements

and constraints.

The second part of this thesis research evaluates the development a new DSML

that will allow system designers to explore system evolution for particular parts

of the system or SoS design. The approach will be based around information

extraction from an extant design model, augmentation with the new DSML, and

creation of a new model to describe areas and characteristics of the possible system

evolution. As a result, this will guide exploration into options for how the system

design may evolve. These evolved designs can then be deployed optimally and de-

liver insight into their resultant performances. The DSML will allow for definition

of architectural changes, behaviour shifts and evolving resource constraints. This

would include decomposition of software components, improving failure resilience,

possible resource footprint growth, temporal performance improvements, evolving

SWaP budgets and evolving mandate deployment needs.
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4. Methodology

4.1 Software Deployment Optimisation Method-

ology

Figure 4.1 shows a generic high-level execution flow for the SEM method. As can

be seen, this execution flow is broken up into two main phases. The first phase is

the system under investigation definition through modelling, where the modelling

is completely manual and flows through four different system design context views.

The second phase is the construction of executable code, based on the developed

model, followed by the deployment of all the code artefacts in support of execution

on the available computing environment. This phase also includes the generation

and storage of all instrumentation data taken during the execution. Unlike the first

phase, this phase is completely automated.

In response to the capability gap identified previously, this thesis is introducing

an automated method to replace the existing manual and unbounded approach of

defining how software is deployed onto the available computing environment for
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Figure 4.1: Generic high-level SEM execution flow behaviour

the system under investigation. Furthermore, this new automated method will use

high-level requirements and constraints to guide the identification of deployment

options and resultant performance.

To execute this new capability the introduced approach removes the need for

conducting any manual software deployment modelling that normally occurs with

current SEM modelling practices. It then augments the modelling processes within

the Software System Instantiating Definition context view with new modelling

elements and processes to address the information gap associated with investigating

new system performance areas. A method is then introduced to extract pertinent

details from the overall system model. This extraction then enables the creation of

new interim models capable of holding the information needed for an automated

search method further down the execution flow path.
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Following the addition of new methods for the modelling phase, this thesis

introduces the use of a machine-based solution search technique. By applying

an automated search technique, the capability is able to work through the large

solution space for software deployment options and identify those solution that

perform best while satisfying high-level requirements and constraints. Based on

the use of evolutionary computation along with a developed scoring algorithm, the

search will be able to determine the system performances and how well a software

deployment profile satisfies the modelled high-level requirements and constraints.

As a result, the modelling and analysis effort for large software system or SoS

deployment is simplified by removing the complexities and effort associated with

achieving this manually.

With the solutions identified, the new method then utilises model interpreta-

tion and construction to enable integration with the desired SEM environment.

This results in the construction of SEM models with the optimised software de-

ployment profiles for the available resources found within the detailed computing

environment (i.e., from the original SEM model).

The last part of this new software deployment optimised capability is the intro-

duction of new instrumentation techniques to enable evaluation of the new system

performance areas associated with the high-level requirements and constraints.

Once again, this new method augments the existing instrumentation framework

found within the identified SEM environment.

As indicated previously, the research from this thesis is part of a broader SEM

research program. Another research outcome of this program was the development
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Figure 4.2: Generic high-level SEM execution flow additional components
forming the new capability behaviour

of the MEDEA SEM environment (Falkner et al., 2018). As a result, the MEDEA

modelling platform was chosen as the foundation from which to develop the new

software deployment optimisation capability introduced in this thesis.

Figure 4.2 shows the generic high-level SEM execution flow with the new auto-

mated software deployment capability components (coloured in green) introduced

in this thesis.

4.1.1 MEDEA Modelling Environment

In the MEDEA modelling process, the SoS design is modelled from various

perspectives, including the architecture and workload behaviour, and the assembly

of the SoS. These modelling perspectives are designed to capture the system
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designer’s current understanding of the structure and behaviour of the SoS and can

be transitioned through to integration of new systems, adaptation of systems, or

changes to the SoS integration approach.

The MEDEA model is defined using a platform-independent modelling lan-

guage, GraphML,1 where the definition supports modelling of interfaces, be-

haviours, and workloads in a manner independent of any intended execution plat-

form. A more detailed illustration of the MEDEA modelling methodology is seen

in Figure 4.3, which shows the modelling process, alongside the execution and per-

formance analysis and evaluation processes critical to the methodology. This thesis

will introduce enhancements to the modelling, file generation, instrumentation, and

evaluation processes (indicated by red stars).

The MEDEA modelling methodology and environment is divided into four

modelling aspects that are used to define the system interfaces, system behaviours

and workloads, the assembly of the SoS, and deployment of the SoS to the rep-

resentative test-bed platforms for experimentation and performance prediction

(Figure 4.4).

An overview has been provided for each of the four modelling aspects as

background detail to support the development of an understanding of the MEDEA

modelling approach and environment. Screenshots have also been included (Fig-

ure 4.4, 4.5, 4.6, 4.7 and 4.8) to show each modelling context and model elements

used to define the system design.

1http://graphml.graphdrawing.org

http://graphml.graphdrawing.org
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Modelling system architecture

The first aspect of modelling the system design is to model the high-level architec-

ture of the system, represented through the components’ interfaces and aggregated

data structures (Figure 4.4).

Figure 4.5 illustrates the interface definition of an example system, consisting

of various aggregate messages, with some structures exposed. Figure 4.5 also illus-

trates the interface definition of an example system, consisting of various aggregate

messages, with some structures exposed. It also shows the software components

and their interfaces that have been defined and will be used to construct the system

architecture. The system components are designed to exchange messages using

event ports consisting of out-going event ports (shown as the green port icon), and

in-going event ports (shown as red port icons).

Modelling system workload

After modelling the system structure, the behaviour and workload for each system

needs to be modelled, enabling performance models to be incorporated for each

system according to its core behaviours. For each component defined within the

system’s corresponding interface definition view, a definition for its behaviour

and workload is required. Behaviour is modelled either through initiation via a

periodic event, or the receipt of an event through a designated event port, which sup-

ports independent operation and communication between system sub-components

and between systems in the SoS. Within a model, branching constructs support
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constraint-based decision-making, resulting in different workloads to being exe-

cuted according to the environmental conditions.

Figure 4.6 illustrates the behaviour and workload definitions for one of the

components within an example system. In this example, the behaviour of the

component is initiated by the periodic sending of a message, indicated via a

periodic event timer, which then induces the consumption of CPU and memory

resources. Upon the completion of the for-loop associated with the periodic events,

an out-going message is then generated and transmitted out of the output port.

The model illustrated also shows the logging event post the transmission of a

message out of the output port.
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Figure 4.3: The MEDEA performance modelling and prediction process flow diagram (red star indicates process to
be enhanced through this research)
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Figure 4.4: The MEDEA modelling environment
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Figure 4.5: MEDEA interface definition modelling
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Figure 4.6: MEDEA behaviour and workload definition modelling
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Figure 4.7: MEDEA assembly modelling
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Figure 4.8: MEDEA deployment modelling
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Assembly Modelling

The behavioural and workload models defined previously form a generic pattern

from which multiple component instances may be created; each following the

same behaviour but operating independently. These component instances can then

be connected or grouped within assemblies, where external connections between

assemblies also occurs. The instantiation of these connected assemblies then

delivers the notion of SoS design modelling.

Figure 4.7 illustrates an example system consisting of multiple component

instances, including all required connections. In this example, instances of sender

and receiver components are created (along with visibility of the instantiated data

elements) and explicit connections are made between the in-going and out-going

event ports, accordingly. This example also shows a representation of the system

connections, via the modelling of in-going and outgoing event port delegates

between assemblies, resulting in an SoS model.

Deployment Modelling

The final stage in the MEDEA modelling methodology is the modelling of how

these system designs (made up of modelled assemblies and components) will be

deployed to the available hardware test-bed. Using a manual modelling process,

the system modeller identifies what assembly or component is to be deployed to a

particular computing node within the hardware test-bed. Figure 4.8 illustrates this

where the ’Receiver_3_2_2’ software component has been chosen (highlighted
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with the orange border) to be deployed to the computing node ’mandann01’ (also

highlighted) within the hardware test-bed. This process repeats for each component

or assembly needing deployment.

A more detailed description on the MEDEA SEM environment can be found in

the Falkner et al., 2018 publication.

Optimised and Automated MEDEA Deployment Modelling

To address the high-level architecture changes presented above, a combination of

evolutionary computation, new model elements and modelling processes, and in-

strumentation will complement the MEDEA modelling and execution environment.

This new technique will break the MEDEA execution flow and inject capability

to allow for MEDEA model augmentation. This augmentation includes the high-

level non-functional design information, optimisation processing and automated

code generation that result in construction of MEDEA-compliant models ready for

integration back into the MEDEA execution flow and eventual experimentation.

Finally, the constructed optimal models will also provide the new instrumentation

probe points to be utilised by the new instrumentation analysis framework, which

is also interfaced with the MEDEA results database.

Figure 4.9 shows the MEDEA execution flow and the injection points for the

new capability being generated with this research. The colouring of parts of the

diagram indicate that the additional elements are part of the same capability area

of the MEDEA execution flow.
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Figure 4.9: MEDEA Flow Diagram with Additional Deployment Optimisation Flow
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4.2 System Design Evolution Modelling Method-

ology

The second part of this thesis introduces a new modelling framework to augment

the newly-developed optimal software deployment search capability. With the

introduction of this new additional modelling framework, the overall modelling and

performance analysis capability is able to consider possible system design evolution

and performance impacts for the particular systems (including constrained systems)

under investigation.

As found with the SEM approach, the new modelling approach will be based on

an MDE philosophy to allow for easy transition between system design modelling

views to characterise the system evolution. This will then form as an overlay on

the initial system design model and enables the design evolution search.

The architectural philosophy used with this new capability was not to integrate

within the SEM-based modelling and analysis capability, but to utilise clear inter-

faces between environments. As a result, impacts from changes or upgrades to

each of the modelling schema associated with each would be minimised.

The development of the new modelling framework encompassed the creation

of a new DSML through the use of a meta-meta-modelling environment, the

application of the new DSML to construct models, a DSML-to-DSML translation

layer and finally an automated model construction capability.

Figure 4.10 shows the high-level design for interfacing the new modelling

framework with the SEM modelling context views.
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Figure 4.10: New Modelling Framework interfacing with Generic high-level SEM
execution flow with additional components behaviour

To enable the construction of the new DSML the meta-meta-modelling language

development environment Generic Modelling Environment (GME)2 was chosen.

In addition to this environment enabling the development of the new DSML, it also

served as the platform from which to execute the new language and construction of

the DSML models.

In addition to using the GME environment for DSML development and util-

isation, the CUTS SEM environment (Slaby et al., 2006) was also used for the

research effort. The driver behind this was that, at the time of conducting this new

research, the broader SEM research program this thesis was part of was using the

CUTS environment as a foundation for its research program.

2https:www.isis.vanderbilt.eduProjectsgme
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Unfortunately, the broader SEM research program moved on from the use of the

CUTS platform to developing its own new SEM environment, MEDEA (introduced

in the previous section). As a result, all the interfacing, searches, interpretations and

code construction capability developed for the CUTS DSML-to-DSML translation

layer for this research task was not transferable to the MEDEA environment. Large

portions of code became obsolete, requiring a second development effort.

In future research efforts, a fully integrated and executing capability would be

realised for the entire new modelling and analysis execution approach. This thesis

will introduce this new evolution modelling and analysis capability and detail how

it would execute, as well as the expected outcomes.

CUTS Modelling Environment

In line with the generic SEM architecture, the CUTS environment also allows for

the definition of the system through modelling context views of structure, behaviour

and workload, instantiation and deployment. While MEDEA presents these views

in separate modelling canvases, CUTS present a single canvas with modelling

traversing through an explorer-like window.

Figure 4.11 shows the CUTS modelling environment with the single modelling

canvas (Position Marker ’1’) along with the explorer window for moving through

the model context views, called the ’GME Browser’. Within this browser, the

modeller can define the system assembly of instantiated software components

(Position Marker ’2’), the plans for how to deploy the software system (Position

Marker ’3’), the definition of the behaviours and workloads (Position Marker ’4’)
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and, finally, the data and software component structure (Position Marker ’5’).
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Figure 4.11: CUTS modelling environment with main canvas view and browser window
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5. Deployment Optimisation

This chapter will provide technical details on the new approach introduced by this

thesis for identifying software deployment solutions that will deliver optimised

performance for known non-functional design aspects. The details included are

the new modelling elements and methods integrated into the MEDEA modelling

environment, followed by the developed method for information extraction to con-

struct an interim information model, and then the usage of that model. It will then

introduce the Evolutionary Search and Objective scoring algorithms developed, the

optimised MEDEA model construction process, and the new instrumentation and

analysis frameworks added to the MEDEA modelling and run-time environments.
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Figure 5.1: MEDEA Flow Diagram with more detailed information modelling process flow
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5.1 Information Modelling

As depicted in Figure 4.9, the deployment optimisation flow for this new approach

is made up of four components: the information modelling element (highlighted

in orange), the evolutionary computation optimisation algorithm (highlighted in

green), the graphML file generation (highlighted in blue), and instrumentation

analysis (highlighted in yellow).

As established in the previous chapters, the introduced software deployment

optimisation is looking to address how to deploy software to best utilise computing

resources present within the system computing environment, whilst meeting certain

non-functional requirements or constraints. Although many non-functional require-

ments or constraints could be introduced to drive the deployment optimisation

search task, the focus of this introduced approach was centred on the application

of constrained SoS, such as for undersea sensor systems. Therefore, to address the

many key attributes of an undersea sensor system identified by Akyildiz, Pompili,

and Melodia, 2004, Awan et al., 2019, Heidemann et al., 2006 and Ovaliadis,

Savage, and Kanakaris, 2010, the approach identifies software deployment options

based on temporal performance and Space, Weight and Power (SWaP) require-

ments, along with mandated deployment constraints. Furthermore, as conditions

change over the SoS’s life time, the approach can be re-run with changed bounds or

design drivers to validate the existing deployment options still satisfy, or develop

new deployment options.

The entry point for this new method is the process of capturing these require-
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ments and constraints within the context of the system design model. To achieve

this, the new method introduces both pictorial and text modelling to satisfy the

requirements of the evolutionary computation algorithms introduced in the next sec-

tion. Figure 5.1 shows an expanded view of the information modelling component

flow within the overall MEDEA deployment optimisation flow.

A detailed listing of the non-functional requirements and constraints that feed

into the deployment optimisation search process can be found in Appendix C.1.

5.1.1 Graphical Non-Functional Requirement and Con-

straint Modelling

The graphical modelling approach used in this section is based on the use of

a modified MEDEA environment with new modelling elements and processes,

and reduced MEDEA system design definition modelling along with MEDEA’s

graphML file format.

A standard graphML MEDEA model is imported into the new Non-Functional

MEDEA modelling environment where definitions for Interfaces, Behaviour and

Assemblies of the system design are considered. While definitions for software de-

ployment are not considered, the information present on computing nodes available

for deployment is still extracted from the imported graphML file.

The new modelling mechanisms developed for the new Non-functional MEDEA

Modelling environment are a combination new modelling elements and annotations

of newly-constructed attributes for modelling elements. In the case of the new
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modelling elements, these are introduced within the Assemblies context modelling

window. Known as CriticalChain modelling, the new approach allows for the

modeller to identify a critical thread within the system design to be the focus of

the investigation. This thread traces through each identified software component

and their interfaces, both externally between components and internally between

their identified interfaces. An example of the creation of a CriticalChain definition

within a system design model can be found in Figure 5.2.

To enable the annotation of new attributes to modelling elements within the

new Non-functional MEDEA environment, a new entry creation mechanism was

introduced for model element data tables. This enables the new attributes to be

inserted into the graphML file format for use later down the execution flow.

While this new data table entry mechanism allows for open creation of new

data types, restrictions were also introduced. The new capability restricted entries

to a set of predefined entries, which were anchored to the requirements of the

Evolutionary Computation algorithms. A listing of these pre-defined data entry

options can be found in Appendix A.1.

In addition to data entry restriction, two restrictions were introduced to the

modelling process. The first was associated with the Behaviour modelling context

window, where every interface found within the system design model requires a

single workload only associated with it alone. The second of these restrictions

was associated with the Assemblies modelling context window and middleware

definition to only allow for ZeroMQ middleware alone.

The introduction of these restrictions was not based on any architectural or
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capability reasoning, but were only introduced to reduce development complexities

for this initial concept. Future development efforts would naturally consider

the addition of various middleware options and multiple workloads as part of

investigating heterogeneous system designs.

Assemblies Modelling

The Assemblies modelling context window is where the majority of the non-

functional modelling occurs to support the optimisation software deployment

options search process later on. The focus of the modelling within this context is the

identification of the critical design thread or CriticalChain, temporal performance

requirements and mandated deployment constraints.

The CriticalChain definition requires the modeller to trace out an end-to-

end thread of the system design. Once defined, this enables end-to-end latency

calculations, which becomes the core component of the optimisation Objective

Score algorithm. It also serves as the foundation for determining other temporal

performance requirements.

Once the CriticalChain has been mapped out, other system design details are

extracted by tracing back through interfaces, workloads, software components and

assemblies associated with that thread. Figure 5.3 shows this arrangement with the

yellow CriticalChain model entities mapped across the system’s components and

assembly models via the interface or delegate modelling elements (highlighted).

The second step to the CriticalChain mapping effort is the selection of certain

segments of the mapped thread, and the addition of predefined Data Key values,
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as required. As a result, additional non-functional requirements can be attached

to parts of the critical thread to allow for high-level requirements (such as latency

requirements) to be included into the optimisation search.
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Figure 5.2: CriticalChain thread definition within a MEDEA system design model
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Figure 5.3: MEDEA Critical Chain mapping within a cropped view of the Assemblies Modelling Context
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In Figure 5.4 we can see a section of CriticalChain mapping for a system

design under investigation, with a segment highlighted for the purpose of attaching

additional attributes within its data table. In this case, the highlighted segment is a

single connection between two software component interfaces.

The internalConnection Data Key allows the modeller to define whether this

connection is between components or within, therefore dictating whether the other

required Data Table pre-defined attributes are required. If applicable, the modeller

can then define a maximum latency performance requirement for the identified

connection, as well as whether or not this connection is part of a string of interfaces

that must satisfy a total maximum latency performance requirement.

Upon completion of the CriticalChain modelling, the modelling then moves to

attaching predefined Data Table attributes to existing standard MEDEA modelling

elements.

Details about these allowable attributes for new or existing MEDEA modelling

elements can be found in Appendix A.1.
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Figure 5.4: MEDEA Assemblies Context Modelling cropped view with attribute information
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Hardware Modelling

As described in Chapter 4 the hardware modelling context window considers the

available computing environment and how software components or assemblies

deploy to the available nodes. For this introduced deployment optimisation process,

the original MEDEA graphML file does not include deployment profile details for

either software components or assemblies mapping to the available computing re-

sources. The construction of these deployment profiles and insertion into MEDEA

graphML files occurs as part of the outcomes from the optimisation process.

Within the hardware modelling context window, no new modelling elements are

found, but rather the modeller attaches predefined attributes to identified hardware

modelling elements. Figure 5.5 shows an example of a computing environment

with predefined attributes attached to a computing node.

As detailed in Appendix A.1, the hardware modelling context allows for weight

attributes associated with CPU and memory resources utilisation. The attachment

of these weights occurs on a per individual computing node basis and allows the

modeller to define the importance to adhering to those non-functional constraints

for the particular computing node.
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Figure 5.5: MEDEA Hardware Context: view with attribute information
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5.1.2 Text-based Non-Functional Requirements and Con-

straint Modelling

The text-based component of the Non-Functional modelling phase accounts for

three areas of information: the configuration items for the optimisation algorithms,

weights for certain algorithms and valid search parameters. These text-based defi-

nitions, along with pictorial-based definitions, form the complete set of variables

required for the optimisation processing algorithms to execute.

Furthermore, the modeller is also able to define growth factors over a series

of optimisation executions for identified workers and their workload levels. As a

result, the modeller is able to explore resource growth influences on maintaining

optimised outcomes, and resulting software deployment options. This capability

also forms the start of a foundation that enables exploration of system evolution

via workload growth and its impact on software deployment options for particular

computing environments.

All attributes are chosen via a Command Line Interface (CLI). The details

of these text-based model elements can be are found in Appendix A.2 and Ap-

pendix A.3.

The last area of text-based modelling allows for selection of the type of optimi-

sation algorithm to execute, processing initial conditions and characteristics of the

optimisation processing to be executed. The details on the CLI options can also be

found in Appendix A.4.
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5.2 Evolutionary Computation-based deployment

optimisation search

Figure 5.1 shows the Evolutionary Computation (EC) processing function as a

single component (highlighted in green) within the additional processing flow for

the overall MEDEA processing flow. The figure shows this function utilises the

XML files created out of the modelling (pictorial and text-based) phase previously

described. Following the completion of its optimisation search, it then feeds into

the Optimised Deployment graphML Files (highlighted in blue), also represented

as a single component within this execution flow view.

At the core of the EC processing is an Objective Function that utilises details

extracted from system design models, as well as using the measured data. Both

of these inputs are also used to enable modelling of the system performance. The

Objective Function is then executed with local and global search algorithms to

produce the search for and identification of optimised deployment solutions for the

current system under investigation. Figure 5.6 shows the execution flow and each

component is discussed below.
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Figure 5.6: Evolutionary Computation Processing Flow
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5.2.1 System Design Model

The system design model houses all the information about the computing re-

source requirements, interface and information flow requirements, the makeup of

the system architecture, and details about the computing nodes’ availability for

deployment within the system’s computing environment.

In addition, the model holds the non-function requirements and constraints the

software deployment needs to abide by, either completely or partially (depending

on the configuration of the search). Finally, the system design model holds the

initial condition and search characteristics required for the particular optimisation

processing for both local and global population searches.

5.2.2 Computing Environment Instrumented Data

The instrumented data fed into the Objective Function considers resource utilisation

of the ZeroMQ 1 middleware and latency performance of the ZeroMQ middleware

for particular message sizes. It also details the IP address, chip-set details, and the

level of CPU and memory resources available for consumption. For measurement

of available CPU resources, the approach taken to bench-mark is based around

MEDEA’s use of the Whetstone CPU bench-marking (Curnow and Wichmann,

1976), where measurements are in Millions of Whetstone Instructions Per Second

(MWIPS).

The instrumentation process occurs via scripts executed as Jenkins 2 jobs, and

1https://zeromq.org/
2https://jenkins.io/
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result in the information being aggregated into an XML file for translation and

use further down the optimisation processing flow. An example of this file can

be found in Appendix B.1. While ZeroMQ is the focus of the instrumented data

future developments would look to explore heterogeneous middleware deployment,

as well as the use of this TCP socket.

5.2.3 Performance Models

In a bid to reduce complexities and effort for instrumenting CPU and network

utilisation across many scenarios, a resource utilisation model was integrated

into the Objective Function processing. While the model used was a simple

representation of the relationship between resource utilisation and time delay, it

was suitable for this initial concept development.

The model used to represent the impact of resource utilisation for CPU and

network resources is based on a simple M/M/1 queuing model. This model deter-

mines the time delay multiplier for wait times of queued workloads. Two additional

modelling points above the 100% utilisation point are provided to cater for over util-

isation scenarios. The demands and raw wait times of the SoS workloads deployed

to CPU and network resources for each node are still calculated dynamically, and

change with each deployment scenario. The M/M/1 model (with over utilisation

threshold points) is a static modelling approach is used to account for further

impacts (and delays) as resource utilisation reaches saturation and beyond. Future

research would investigate the use of improved models or new instrumentation

approaches.
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As can be seen in Figure 5.7, up to the 100% utilisation point, the time delay

multiplier is a function of resource utilisation, and is based on Little’s Law (Little

and Graves, 2008) where:

L =′ Mean Number O f Jobs In System′

W =′ Mean Response Time′

and:

Arrival rate = λ

where the ’Mean Number Of Jobs In The System’ can be calculated as a

function of system utilisation ’ρ’:

L =
ρ

1−ρ

then:

W =

(
ρ

1−ρ

)
1
λ

or:

W =

1
µ

1−ρ

but:

′Service Rate′ = µ

′Service Time′ =
1
µ



CHAPTER 5. DEPLOYMENT OPTIMISATION 88

100

1000

10000

100000

100 1000

Delay Multiplier

(%)

Resource Utilisation (%)

+ + +
+

+
+
+
+

+

+

+

+

+

+

Figure 5.7: Model Characteristic Curve: Resource Utilisation v Time Delay
Multiplier

therefore:

′Mean Response Time′ =
′Service Time′

1−ρ

The data points used from this model can be seen in the Table 5.1 where a

number of utilisation points have been selected. This includes over utilisation

points, and their corresponding time delay multiplication data points. These values

have been captured in CSV file form and utilised for both CPU and network

interface utilisation for each node within the available computing environment.

Furthermore, while the granularity of the data points is reasonably large, the
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Resource Utilisation (%)
0 25 30 40 50 60 70 75 80 90 95 97 100 200 1000

Time
Delay
Multiply
Factor

100 133 142 166 200 250 333 400 500 1000 2000 3333 10000 50000 100000

Table 5.1: Utilisation values used

optimisation process that make use of this data also contains an interpolation step

to allow for improved data fidelity, as required.

5.2.4 Data Transformation

This component of the optimisation execution flows handles the ingestion and

transformation of all measured data points, performance model details and sys-

tem model information into the format required to be used by the optimisation

processing algorithms.

As detailed above, a design decision was made to decouple the Deployment

Optimisation framework from the underlying MEDEA Modelling environment

through the use of an information interface layer. This interface layer is the EC

XML file and is the conduit for information into the optimisation process via the

translation and aggregation process applied to numerous information artefacts

created during the system modelling phases.

The system information artefacts used for information aggregation and creation

of the EC XML file are:

• A modified graphML file with additional non-functional performance require-

ment details,

• A text-based file also containing non-functional performance requirement details,
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• An XML file containing details on hardware specifications on all available

computing nodes and extracted via a Jenkins job,

• XML files containing performance details on middleware (only on ZeroMQ

initially) for each available computing node, used for interpolation purposes

within the optimisation process and are not part of the EC XML aggregration

file,

• CSV files holding data points from the model used to represent performance

impacts based on resource utilisation factors. Files exist for both CPU and

Network interface utilisation for each available node. Once again, the data

are used for interpolation purposes within the optimisation process and are

not part of the EC XML aggregation file,

• A text-based file used to hold optimisation configuration details and initial

conditions.

The constructed EC XML file is divided into three main areas within the

main SystemEnvironment element. These sub-elements are the GlobalSettings,

HardwareDetail and SoftwareDetail elements. An example of these sections of the

XML file can be found in Appendix B.2, Appendix B.3 and Appendix B.4.

5.2.5 Initial Population

Using the optimisation process configuration and initial condition settings within

the EC XML file, the size of the population is set, the required number of gener-

ations set, and local optimisation algorithm selected. Once set, the optimisation

process can begin the deployment optimisation search with the construction of the
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initial population.

The initial population creation process utilises a random selection procedure

for attributing a computing node to a software component for deployment purposes.

These software components and computing node associations are then captured in

an array to represent a deployment profile for all software components found within

the system (not just the ones that make up the critical thread). These deployment

profiles then become the population members of the initial population.

Once constructed, each deployment profile population member is passed to

the Objective Function Algorithm to determine an initial Objective Score and to

determine if this initial deployment satisfies any non-functional construct that may

be imposed. The execution flow and calculations within the Objective Function

processing will be described later in this chapter.

If the deployment profile option is deemed as suitable, it is added to the

initial population, otherwise the deployment profile is discarded and the random

construction process repeated until a suitable deployment profile is found. This is

conducted for each population member created, up to the defined population size

where it is then passed to the Evolutionary Computation (EC) local search process

(refer to the next section). Figure 5.8 provides an overview of the processing flow

for the initial population creation and then entry to the local optimisation search

process.



C
H

A
P

TE
R

5.
D

E
P

LO
YM

E
N

T
O

P
TIM

ISATIO
N

92

Figure 5.8: Initial Population Creation Processing Flow
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5.2.6 Optimisation Search

We employ a hybrid optimisation algorithm, based on the research and observations

made on improved performances gained with hybrid optimisation algorithms (Chen

et al., 2007; Weise et al., 2016; Jamal, 2019). The algorithm conducts a global

EC optimisation search and then applies a local optimisation search to the global

search solutions.

Global EC Algorithm

The EC process adopted for the global search was based on the use of Fitness

Proportionate Selection (Holland, 1975), or the roulette wheel selection technique,

combined with crossover and mutation. These were implemented from scratch to

allow for flexibility and better customisation.

With Fitness Proportionate Selection being based around the probability of

selection proportional to the size of the Objective Score, the greater the Objective

Score, the greater the probability of that search solution (population member) being

selected from the population. In this case, the developed optimisation process

looks to minimise the Objective Score, so the smaller the Objective Score the

better the optimisation solution is for the software deployment profile. Therefore,

the Objective Scores produced are modified to ensure the size of the allocation is

proportional to the minimised Objective Scores.

The creation of the roulette wheel and its segments are based on determin-

ing the total Objective Score of the current population and then calculating the
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Figure 5.9: Roulette wheel segment allocation and selection

percentage of the current population member’s Objective Score compared to the

total Objective Score of the population. The percentage size then correlates to the

size of the segment (or slice) of the roulette wheel allocated for that population

member. Furthermore, the construction of the roulette wheel and proportions are

re-calculated with each deployment scenario to be investigated.

The roulette wheel is then used to select the parents by randomly selecting a

number between 0 and 100 and choosing the percentage segment of the roulette

wheel that aligns with that random number (Figure 5.9). This is repeated for the

selection of both parents, and a check is completed to ensure different parents are

chosen to create two new children.

Following the selection of the two parents, the optimisation process then
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Figure 5.10: Cross-over selection and parent combination

determines the crossover point between the parents to create the children, and the

mutation point for each child created.

In the case of the crossover point, this is once again determined with a random

number generator, whereby a number is chosen between a range of ‘0’ to the

number of the system software component looking to be deployed through the

optimisation process. Once determined, a combination of the parents’ deployment

profile details is created around that point to produce two children (Figure 5.10).

Following the creation of the two children, a mutation process is applied to

each child. The mutation process consists of randomly selecting an element from

the deployment array of each child, then randomly changing the number within

that element. This change process consists of a random selection of a number from

a set of numbers representing the nodes available for deployment (Figure 5.11).

The last step in this search process is to confirm the created children satisfy

the constraints defined in the System Optimisation Model. This also includes the
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Figure 5.11: Mutation process

calculation of an Objective Score for that child. If a child’s deployment profile

does not satisfy the constraints, neither child is added to the population that will

become the basis for the creation of the next generation. Following the creation of

valid children and the complete new generation, a new population is determined by

taking the population members with the best Objective Scores up to the population

size.

The entire global search process is repeated to create each new generation, while

the number of generations to be created is set as part of the System Optimisation

Model.

The execution flow for the roulette wheel construction and Objective Score

conversion process, as well as the overall execution flow for the Global Search

process can be found in Figure 5.12.
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Figure 5.12: Global Search Process Flow
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Local EC Algorithm

Following the development of the final generation of the optimal deployment solu-

tions, the population is optimised further through the application of a local search

process. For the local search there are three choices of local search algorithms

that can be executed. The three search algorithms are exchange, jump or inversion

(Sutton, Neumann, and Nallaperuma, 2014).

Each of the local search algorithms undertake an approach of randomly se-

lecting element positions within the solution array (in this case the deployment

profile array) and changes the arrangement of the solution array around those

position selections. The exchange algorithm exchanges the elements within the

solution array at positions ‘i’ and ‘j’, while the jump algorithm moves the element

within the solution at position ‘i’ to position ‘j’ and then moves the other elements

from position ’i + 1’ and ’j’ (inclusive) by one step towards position ’i’. Finally,

the inversion algorithm adjusts the solution array by reversing the order of the

solution array elements between position ‘i’ and position ‘j’. Figure 5.13 shows

the adjustment approaches for each of the local search algorithms.

With each new local search solution array representing the node deployment

profile, the Objective Function is then applied to determine the Objective Score.

If the resulting Objective Score is greater than the original Objective Score (node

deployment profile), the new solution array is changed out with the original solution

array and taken into the next local search process step.

The number of local searches conducted is predefined as part of the System

Optimisation Model. Figure 5.14 shows the basic steps of the local search process
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Figure 5.13: Adjustment approaches for local search algorithms

being applied to the final generation’s population.
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Figure 5.14: Initial Population Local Search Process Flow
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Objective Function

The Objective Function has two core components of calculation that determine the

score and magnitude of the optimisation fitness for the particular search. The first

component is a temporal performance calculation associated with the particular crit-

ical thread (CriticalChain) of interest in the system design, traced out as part of the

System Optimisation Modelling phase. The second component is the calculation to

indicate how well the deployment profile satisfies the non-functional requirements

and constraints, also defined as part of the System Optimisation modelling phase.

As described in the modelling section above, a critical design thread is traced

out within the system design of interest. Using this defined thread, the end-to-end

latency is calculated as part of the search process, with the aim of making the

latency as small as possible, while still satisfying non-functional requirements and

constraints.

As can be seen in Figure 5.15, the trace considers the software components, the

paths and workloads within the software components, and the connections between

software components via their interfaces. The trace also details performance

requirements associated with those interface connections that are part of the thread.

In addition to the various system elements associated with the thread, the trace

details latency requirements related to segments of the critical thread.
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Figure 5.15: Critical Chain Trace
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Included in the end-to-end latency calculations is the time it takes for software

component workloads to be processed by the CPU, the time needed to transmit

data via the network interface and transmission times through the network.

Before any time calculations can occur, utilisation profiles have to be con-

structed for each node within the computing environment that are available for

deployment. This occurs as the Objective Score calculation includes the effects of

resource utilisation and resultant delays on processing and transmission times. Re-

source utilisation profiling considers all of the software components to be deployed,

not just those associated with the critical design thread.

As a result of needing utilisation mapping details for the Objective Scores,

each new deployment profile for each search requires a complete new mapping

of the software component to the nodes, alongside the resultant resource utilisa-

tion mapping. Once established, the total resource demands are translated into

utilisation percentages for the CPU processor and network interface for each node

available for deployment. When required later in the Objective algorithm, these

values are then used in combination with the resource utilisation performance curve

to calculate resource utilisation timing delay multiplication factors.

The execution flow for the calculation of the critical thread end-to-end latency

can be seen in Figure 5.16, while Figure 5.17 shows a further breakdown of the

element processing for each progress step along the CriticalChain.

Details for the different parts of this execution flow can also be found in

Appendix C.2.
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Figure 5.16: Critical Thread Temporal Performance Calculation Flow
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Figure 5.17: Critical Chain Element Temporal Performance Calculation Execution Flow
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The second component of the Objective Score calculation is how well the de-

ployment profile satisfies the identified non-functional requirements and constraints

defined within the System Optimisation model. Through testing how well satisfac-

tion is accomplished against the non-functional requirements or constraints, scores

are produced and added to the core CriticalChain end-to-end latency performance

score calculated previously. In some cases, these satisfaction scores may result in a

negative score and the overall Objective Score being reduced at that point in the

calculation process.

A formal definition of the objective function is as follows:

Let d be the software deployment options. The total Objective Score for that

particular deployment d is then:

Θ(d)=Θ(CC)+∑∆Cut +∑∆Mut +∑∆Ilat +∑∆Slat +∑Mc+∑Ma+∑NCs

(5.1)

where

Θ(CC) is the core critical thread end-to-end latency and CC is a component

within that critical thread,

∆Cut is the CPU utilisation satisfaction score,

∆Mut is the memory utilisation satisfaction score,

∆ILat is the Interface maximum latency satisfaction score,

∆SLat is the String maximum latency satisfaction score,

SMan is the software component mandate deployment satisfaction score,
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AMan is the assembly mandate deployment satisfaction score,

SColo is the software component no co-location mandate deployment satis-

faction score.

and:

Θ(CC) = ∑Pk pUc +∑Nk pUc +∑T xk pUn (5.2)

where

Pk p is the software processing latency,

Nk p is the network message processing latency,

T xk p is the message network transmission latency,

Uc is the CPU utilisation on node p, p = 1,m,

Un is the network interface utilisation on node p, p = 1,m,

k is the number of components within the critical thread k,k = 1,n on node

p.

In the case of computing resource consumption constraints and latency re-

quirements, the satisfaction scores are established via the use of a performance

curve, whereby a growth multiplier is chosen and applied to each satisfaction score.

These growth multipliers are proportional to the proximity of the predicted perfor-

mance result compared with the required non-functional constraint or requirement

modelled in the System Optimisation model.

The non-functional constraint and requirement Objective Score calculations

are for the following:

• CPU spare capacity,
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• Memory spare capacity,

• Connection maximum latency,

• String maximum latency,

• Component mandate deployment,

• Assembly mandate deployment,

• Component no-colocation mandate deployment.

The CPU and memory spare capacity Objective Scores calculations firstly

require the node mapping process to determine the overall computing resource

consumption for each of the computing nodes available for deployment. These

resulting overall usage amounts are then compared with the non-functional con-

straints defined for CPU and Memory spare capacity requirements found in the

System Optimisation model. The difference between the predicted and required

non-functional constraints is then used to determine the selection of the growth

multiplier function to be applied to the raw objective score.

For both CPU and memory this selection is based on two threshold percentage

levels, as well as the 100% resource utilisation point. Figure 5.18 shows a spare

utilisation threshold of 50%, an 80% hard threshold point and the 100% utilisation

point. In the case of the hard resource utilisation level, this is a hard-coded level

and is based on the common practice of having a utilisation ceiling of 80%, but it

can be changed to any desired level.

As can be seen from Figure 5.18, the choice of growth multiplier (and sub-

sequent scaled Objective Score) is such that optimisation scores are scaled up

(remembering the lower the Objective Score the more optimal the search is) as
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Figure 5.18: Example Resource Utilisation vs Scaled Objective Score
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the predicted utilisation passes beyond the spare capacity. This scaling up of the

Objective Score increases rapidly beyond the hardware threshold level, and even

more rapidly as the predicted utilisation goes beyond the 100% threshold. On

the other hand, if the predicted utilisation is less than the desired spare capacity,

the Objective Score is scaled down with a negative growth. This then produces a

reduction to the overall Objective Score, which indicates an ideal, optimal solution.

The four sections of resource utilisation, associating attributes and growth

multiplier functions are as follows:

Current Resource Utilisation −> µ

Resource Hard T hreshold Utilisation −> µt

Spare Capacity Level −> rs

and:

Growth Function =



−10n, 0 < µ < rs

10n, rs < µ < µt

10n+m2, µt < µ < 100

10n+m2 +o3, µ ≥ 100

(5.3)
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where:

f (n) =



rs − µ, 0 < µ < rs

µ − rs, rs < µ < µt

µt − rs, µt < µ < 100

µt − rs, µ ≥ 100

(5.4)

f (m) =


µ − µt , µt < µ < 100

100 − µt , µ ≥ 100
(5.5)

f (0) =
{

µ − 100, µ ≥ 100 (5.6)

The connection and string (remembering this is a segment of the critical thread)

maximum latency Objective Score calculations make use of the timing perfor-

mances calculated during the critical thread Objective Score calculations. These

calculations are then compared with the temporal non-functional requirements

defined in the System Optimisation model.

Once again, an Objective Score growth functions are used to scale the raw

Objective Score, and the choice of growth function is dependent on how close the

predicted performance is to the modelled performance threshold. In the case of

both the connection maximum latency and string maximum latency being used,

only a single threshold is utilised, and two growth functions are called upon.

In each case, the threshold is related to the maximum latency that is acceptable
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for a particular deployment, where this threshold is calculated as a comparison

percentage of the predicted maximum latency time compared with the desired

maximum latency time. As with the resource utilisation Objective Score scaling,

predicted performances that exceed this threshold are rapidly scaled up, while

performances below the threshold are scaled down with negative growth and result

in a reduction of the overall objective score.

The sections for maximum latency and associated growth functions are:

Current Comparison Percentage −> ρ

and:

Growth Function =


−10n, ρ ≤ 100

n2, ρ > 100
(5.7)

where:

f (n) =


100− ρ, ρ ≤ 100

ρ − 100, ρ > 100
(5.8)

Additional scaling can also be applied for the constraint Objective Scores

through the use of the weightings modelled for each. For the latency Objective

Score calculations, a single, defined weight is applied to the overall Objective Score

calculated for connection and string constraints. However, the resource utilisation

Objective Scores are calculated on a per node basis, and the weight is applied for
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that particular node alone.

The modelled deployment constraints serve the Objective Score calculation

in two ways. The first is whether the current search solution is to be included or

not, where inclusion means all the constraints are satisfied. The other is when

the search wants to consider search solutions that do not satisfy all the mandated

deployment constraints. In this scenario, a direct addition of satisfied and non-

satisfied constraints are determined and weights are applied to each.

Figure 5.19 shows the execution flow for the Overall Objective Score calcula-

tion.

Final generation of population

The output of the hybrid optimisation process leads to a final set of optimal

deployment profiles, based on the Objective Score of the final search solution

population, which occurs after the creation of a defined number of generations.

This final population is then used within the graphML file creation process to

construct the new MEDEA graphML files for the original system design model.

However, these new files now hold the node deployment details to dictate where

each of the software components are to be deployed.

This set of newly-created graphML files are then fed back into the original

MEDEA execution flow to enable experimentation, followed by analysis of the

performance gains from those optimised deployment profiles.
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Figure 5.19: Overall Objective Score Calculations
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6. Verification and Calibration

In the previous chapter, a new approach was introduced for identifying software

deployment solutions that deliver optimal performance for known non-functional

design aspects. It introduced new modelling elements and methods integrated

into the MEDEA modelling environment, information translation mechanisms,

and run-time instrumentation and analysis frameworks. It also introduced the

core elements of the approach, the Evolutionary Search and Objective Function

algorithms.

This chapter will detail new frameworks, methods and results to demonstrate

the approach introduced within this thesis operates as expected. It will verify the

Objective Function and Evolutionary Search algorithms are performing as expected,

and demonstrate the ability of the introduced capability to construct system designs

that deliver optimal performance for the known non-functional design aspects. It

also details calibration methods to improve algorithm performance, along with

results to demonstrate the improvement.
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6.1 Objective Function Algorithm Verification

and Calibration Requirement

As described in the previous chapter, at the core of the Objective Function is a

calculation of the predicted temporal performance of the critical thread of interest

within the system design. Furthermore, the time component calculations (for

workloads, component interfaces and middleware transmission) that make up this

core objective score are used for internal constraint objective score calculations,

which then add to the overall objective score calculation.

With time prediction a major element of the Objective Function algorithm

and a significant influence on the overall objective score, we focus on how well

the prediction of time compares with measured time. This is then followed by

determining the accuracy of the time representation to ensure a correct influence

from temporal performance constraints on the overall objective score.

To determine these factors, we used a specialised test model where the overall

objective score is based only on the critical thread temporal performance. Then,

by deploying and executing this test model, measurements and analysis were

conducted to determine how close the predicted critical thread time is to the

measured times.

In addition to understanding the performance and accuracy of the prediction

of the critical thread times, a second test model was deployed to allow for a

direct comparison of the raw temporal performance predictions (without the final

Objective Function final adjustment added) with the measured times. These tests
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then provided insight into how well the prediction algorithms account for time, and

whether there is a need for an adjustment factor to improve the time representation

and prediction performance of the algorithms.

While efforts have been made to provide an improved level of fidelity for the

prediction of time, the models used in this approach are not a 100% representation

of time. Subsequently, certain population members may be added to generations

in error and result in optimised deployment profiles being identified in error, or

possibly not identified at all. Follow-on research efforts would consider and

evaluate improved models for time representation that would improve the fidelity

and performance of the Objection Function and reduce the possibility of non-

optimal solutions being produced.

Verification Procedure

To test the performance of the optimisation search and its ability to represent time,

a generic baseline testing model was developed. This baseline model consisted of

four component definitions: a sender component (Figure 6.1), which initiates the

transmission of messages through the system, and three receiver components. In

this test case, the transmission of the message occurred at a constant rate of once

per second.

The receiver components have three different forms: to represent a communica-

tion conduit for reception and transmission with associated workloads (Figure 6.2),

a switching of workloads with certain logic on reception and subsequent trans-

mission (Figure 6.3), and to simply receive the message and have its associated
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Figure 6.1: Test Model Sender Component Definition

workload executed (Figure 6.4).
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Figure 6.2: Test Model Receiver Component Definition: transmission conduit

Figure 6.3: Test Model Receiver Component Definition: switching workload
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Figure 6.4: Test Model Receiver Component Definition: receive only

Furthermore, the workloads defined within each component, 15 in total across

all component instances, were the same size and based on a number of factors

derived from the resource specifications of the computing environment available

for the test exercise. These factors are detailed below. Tables 6.1 shows the results

of these factors being:

• equal in size, where the size is based around the node with the largest

resources available,

• the Objective Function algorithm hard CPU threshold level (80% in this

case) of the computing node with the largest resource,

• an even distribution of workload across the workers within the test model,

• applying a multiplication (50% increase) to prevent all the components from

being deployed to one node.
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Factor CPU Workload Memory Footprint
the largest node resource 2579 MWIPS 3364MB
the 80% threshold level 2000 MWIPS 2700MB

each worker within the model 133 MWIPS 180MB
50% increase factor applied 200 MWIPS 270MB

Table 6.1: Results of the application of the workload factors

Therefore, each workload defined within the test baseline model has a CPU

worker consuming 200 MWIPS and a memory worker consuming 270MB. In

addition to the consistent sizing of CPU and the memory consumption deployed, all

the messages transmitted were the same size and maintained the same transmission

frequency throughout the test model.

The reasoning behind this consistent and constant configuration of resources

was to ensure that the changes in resource utilisation put on each available node

were dependent on the number of workloads added to that node, and not related to

a particular workload characteristics added to the node.

From the four component definitions, 10 component instances (Figure 6.5)

were created to form the test model and a SoS representation suitable for search

algorithm performance verification testing.
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Figure 6.5: The Testing and Tuning System Model
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Verification Framework

To support the verification effort, additional measuring mechanisms were developed

and augmented with the existing MEDEA logging infrastructure. This included

the injection of new messages within the message header of the existing MEDEA

infrastructure. As a result, additional details on the relationships and performances

of the elements that made up the modelled system design thread of interest were

captured in readiness for analysis.

All the new information created was also captured in the SQL database created

out of the MEDEA execution logging framework, and a standalone text file.

The additional messages and attributes captured within the MEDEA SQL

database (as a series of text strings) are are as follows:

• Message header: ‘INTER’

• The INTER text string indicates that this logging event has captured

a flow of the critical thread that is between the software components,

utilising the middleware and network connection available within the

MEDEA run-time computing environment. It is the flow from the out-

put port of a software component to the input port of another software

component and both are identified as part of the critical path of the

system design model.

• Message header: ‘INTRA’

• The INTRA text string indicates that this logging event has captured

the flow of the critical thread that is within a software component. This

could be via an internal periodic event or the reception of a message
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via the input port of the software component. It indicates the flow is

about to execute workloads associated with the input and output ports,

as well as any associated logic found within that software component.

• Message header:‘ ECDetail’

• The ECDetail text string captures the modelled information on a seg-

ment of the identified critical path. This includes details on the system

model elements (graphML id information) that make up the particu-

lar segment, non-functional performance requirements and segment

positioning detail.

Further details on the message set can be found in Appendix D.1.

To make use of the additional information added to the MEDEA SQL database,

as well as the standalone text file, an information extraction, association and ag-

gregation framework was created. The processing steps within this framework

consisted of numerous extractions and translations, associations and aggregation

steps to develop the required new data sets. Using these data sets analysis and con-

firmation of correct performance for predicted latency and resource consumption

occurred, as well as search algorithm performance and the correctness of solutions

produced for deployment.

Figure 6.6 shows the framework execution flow with information processing

stages.



CHAPTER 6. VERIFICATION AND CALIBRATION 125

6.2 Objective Algorithm Performance Verifica-

tion

As detailed above, the first test model created was only concerned with the tem-

poral aspect of the system performance and did not introduce any non-functional

constraints into the optimisation search. This, therefore, enabled exploration as to

how well the predicted temporal performance compared with the measurements of

the temporal results of the critical thread.

This validation approach had two steps. The first step compared the complete

population set and their objective scores (which was also the predicted temporal

performance) with the measured temporal performance for each member of the

population set.

The second step of the validation process determined how the optimisation

solutions drive consumption of computing resources on each computing node, and

whether observed levels of consumption are following the desired characteristics

and impacting non-functional performance accordingly.

6.2.1 Validation Experimentation of Initial Conditions

The initial conditions for the validation experimentation were a solution population

of ten for each generation, the creation of solutions for twenty generations and

each member of a particular population for each generation to execute its particular

deployment profile for sixty seconds within the MEDEA run-time environment

(NB: 58 messages are only used for the analysis process to account for anomalies
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Figure 6.6: Information Processing Flow
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and loss of data during the destruction of each execution within the Jenkins envi-

ronment). Furthermore, during this validation experimentation phase no changes

were made to the test computing environment available for deployment, other than

exploring different network bandwidths.

The results of these individual runs were then downloaded from the MEDEA

run-time environment in their SQL database to form a repository in readiness for

input into the information processing flow depicted in Figure 6.6.

6.2.2 Validation Results

As part of establishing the goodness of the measured data sets for each population

member, we report the standard deviation and confidence interval calculations.

As indicated above, these calculations only consider 58 measurement samples of

each population member, while the confidence level calculations consider a 95%

confidence level Dekking et al., 2006.

Figure 6.7 shows the sample mean and standard deviation for each population

member of the overall population, while Figure 6.8 shows the sample mean for

each population member’s measured data set, as well as an indication of how well

the data set sits is within the 95% confidence level of the population mean for all

possible measurements. Both graphs in these test examples show a large portion of

the population data sets are of good quality with relatively low standard deviation

across the sets and a high level of confidence. The sets are within the 95% level of

the measurement population mean. Furthermore, while poor population data sets

are seen within these test scenarios, it is reasonable to assume that because of the
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low latencies being measured the effect of jitter (or packet transmission periodicity

deviation) may well be a factor in these lower quality data sets.

Figure 6.7: Standard Deviation of Measured Data Sets for the Calibration Process

After the quality of the population data sets was established, the next validation

step was to understand how well the predicted performance matches up with the

measured performance for each population member of the overall population. This

was achieved with two independent test steps.

Using an established method of validating prediction algorithms (Akdemir and

Jannink, 2015, Santtila et al., 2013, Pratt et al., 2004, Petersen et al., 2009, Wong

et al., 2012 and D’Ambros, Lanza, and Robbes, 2010), the first calculation was

a Pearson Correlation Coefficient (using the standard Python scipy stats library

1), along with the development of a scatter and distribution plot for the predicted

latencies versus the mean measured latencies.
1https://docs.scipy.org/doc/scipy/reference/stats.html
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Figure 6.8: 95% Confidence Interval of Measured Data Sets for the Calibration
Process

The second of these calculations was to determine the polynomial fit for each

of the predicted (remembering the prediction algorithm has been configured to only

predict the critical thread temporal performance) and mean measured data sets for

the latencies. This then enabled a comparison of the curves for each, and insight

into the performance of the predictions based on the alignment of the curves.

Figure 6.9 shows the results from one test run to confirm how well the predicted

results aligned with the measured latency results. This plot portrays the results

as scatter and distribution plots, as well as a Pearson Correlation Coefficient

calculation. In this case, we see the Pearson Correlation Coefficient being r=0.632,

indicating a strong relationship 2 between the predicted and measured data sets, as

well as a reasonably low p value indicating that 99.97% of the time the relationship

2The use of strong is based on the reference Akoglu, 2018
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is at this strong level.

Furthermore, we observe the distribution plots for both have a reasonable

alignment, in phase, and both exhibiting a convergence towards a minimum. While

the distribution spread at the minimum is not ideal and does not peak at the smallest

latency, the observed behaviour indicates the predictive nature of the objective

algorithm is trying to minimise latency. Future research efforts aiming to make

improvements in the models used for time representation and temporal performance

would lead to further improvements in the convergent behaviours observed here3.

From these plots it can be seen that the tests have a moderate to strong relation-

ship4 with the Pearson Correlation coefficients ranging from r=0.345 to r=0.513.

Furthermore, the results have a high levels of p values (the worst being a 99.96%

of the time the r value will be maintained). Overall, there is a strong indication of

good predictive performance for the optimisation algorithm to seek deployment

profiles with minimal latencies for message transmissions across that critical thread

of interest.

Figure 6.10 shows a set of results from the second calculation method, where

a polynomial fit for each data set occurs, followed by a correlation between the

curves across the entire population. Appendix D.3 shows the additional results of

the polynomial calculations.

As with the Pearson Coefficient tests, the polynomial fit tests occurred across

different network bandwidth configurations. Furthermore, the plots are presented

3Appendix D.2 shows the Pearson Correlation coefficients and corresponding distribution for
other validation test executions across differing network bandwidth configurations.

4The use of moderate to strong is based on the reference Akoglu, 2018
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Figure 6.9: Scatter Curve and Pearson Correlation Coefficient for the Mean
Sample Versus the Predicted Latency with r = 0.632
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Figure 6.10: Normalised Percentage Curve for the Average Latency versus the
Predicted Latency
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as a value of the percentage related to a minimum value of each data set.

As can been seen in the test results, both the predicted and measured data

sets have a reasonable alignment with each other in both magnitude and phase.

While we observe some size differences in magnitude for the test results, the

largest difference is less than 5%. These results further reinforces the observation

made from the first calculation process that the predictive performance of the

optimisation algorithm is at a reasonable level, and more importantly demonstrates

that the algorithm is exhibiting the desired outcome of minimising latency through

its search capability.

As detailed in the previous section, the optimisation algorithm considers re-

source utilisation levels. This not only focuses on the impact to the overall comput-

ing node resource utilisation, but also the impact of resource utilisation leading to

timing delays and resulting temporal performance. Furthermore, due to network

workload being constant and CPU workload being the only variable, this only

extends to CPU utilisation and its impact on temporal performance.

In the first test model deployment scenario, when no definition of constraints

is present to influence the search, the deployment of software components onto

computing nodes and consumption of their resources was based on ensuring the

associated time delays are as low as possible. It would therefore be reasonable to

expect (in general) that utilisation of CPU processing resources across the node

should be minimised as the number of generations increases.

Figure 6.11 and Figure 6.12 show two sets of test results for utilisation for

CPU processing resources across the four available computing nodes for software
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deployment. The first set of results shows an envelope for maximum CPU util-

isation for each generation across the generations, while the second set shows

the maximum CPU utilisation for each population member within the generation,

across the generation.

In line with the expected behaviour, we can see that the resources for CPU

do in general decrease in utilisation across the generations. From the maximum

CPU utilisation across generation graphs (Figure 6.11), we see the decrease for

each node and a leveling out to an approximate similar CPU utilisation. While the

maximum utilisation for each population across generations (Figure 6.12) shows an

initial scattering within generations and then the convergence with the increase in

the generation count. Both are expected results and in alignment with the prediction

of requiring equally dispersed workloads to minimise time delay and impact on the

overall temporal performance.

Based on these results, it can be further concluded that the optimisation algo-

rithm is behaving as desired, achieving reasonable levels of fidelity and accuracy

for representation and prediction of time performances. It also shows the algo-

rithm’s ability to change software deployment options in response to its solution

exploration.

6.2.3 Time Comparison Trend and Size Calculations

Following the confirmation of adequate levels of accuracy and desired prediction

performances by the optimisation algorithm, the final step of the testing process

was to conduct a series of comparison measurements to determine how accurate
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Figure 6.11: CPU Node 1 to 4: Maximum Utilisation Results Per Generation
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Figure 6.12: CPU Node 1 to 4: Maximum Utilisation Results Per Population Member Per Generation
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the representation of time is across the numerous test runs. The results from

these tests then determined the trend and size of the difference between the pre-

dicted time and the measured time across a large set of test results. These results

were then used in combination with the temporal requirement performance pre-

diction comparison calculation (Chapter 6.4) to establish adjustment factors to be

added to the Objective Function.

The calibration approach used was a straight forward comparison analysis of

the predicted latencies versus the measured latencies, followed by capturing the

deltas. The deltas were then averaged over the 58 measured samples versus the

predicted latency and then averaged across the test sets.

Figure 6.13 shows a scatter plot of the results of a comparison of the predicted

versus measured latencies. In this case, the plot is in milliseconds and shows

the differences across the entire population, along with the average and standard

deviation results. As can be seen from this plot, as well as other test and analysis

runs, the performance of the latency prediction is constantly higher than what is

measured.

Table 6.2 shows the results of averaging across numerous test runs, which were

also conducted with differing network bandwidth configuration. From this table it

can be concluded that the predictions of time performance are always greater than

the measured performance and the size of the delta is reasonably consistent, sitting

around the 33% point.
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Figure 6.13: Scatter Plot of Predicted and Measured Latency



CHAPTER 6. VERIFICATION AND CALIBRATION 139

Set X (ms) σ (ms) X (%) σ (%)
1 158.315 19.406 34.563 2.774
2 152.105 15.886 33.874 2.246
3 148.844 18.208 33.128 2.773
4 148.841 18.286 33.125 2.790
5 157.318 19.710 34.342 2.845
6 148.989 18.232 33.158 2.769
7 148.841 18.286 33.125 2.790
8 151.272 16.508 33.684 2.367
9 151.462 15.765 33.731 2.228
10 158.634 19.574 34.741 2.651
11 154.735 20.969 33.876 3.077
12 156.593 19.377 34.514 2.605
13 156.577 19.332 34.510 2.593

Average 153.327 18.426 33.875 2.655

Table 6.2: Predicted Versus Measured Latency Comparison Results and
Averages

6.3 Initial Generation Diversity and Search Al-

gorithm Performance

In addition to testing the prediction performance of the Objective Function algo-

rithm against measured results from execution of the deployment profile solutions,

verification was performed to ensure the search algorithm was behaving and per-

forming as expected. The areas of concern for this test were to ensure population

diversity of the initial generation was adequate enough, and whether the nature of
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the convergence and performance of the search algorithm was adequate.

To enable this analysis, a deployment profile number was added to the popu-

lation details of each member of the population. This was generated by simply

converting the deployment array of node id numbers into a binary representation,

aggregating the binary numbers to produce a binary string, and then converting

that string into an integer. In the test case, only four nodes were available for de-

ployment, so the conversion process simply utilised two binary bits for the integer

conversion.

In addition to proving a good level of diversity within the randomly created

initial population, the deployment numbers were also tracked across the generations

created to gain insight into the search algorithm performance. This should then

produced results that show a good spread of deployment profile numbers at the

beginning, followed by convergence onto optimised search solutions, or possibly a

single optimised solution.

Figure 6.14 shows the results of an analysis of an optimisation search for a

population of 100 across 40 generations. From this graph we can see the randomly

created initial generation population (Generation Number 0) has a good level of

diversity for the chosen deployment options from all the possible options available.

Subsequent generations created from the initial population begin to show the

convergence towards optimal solutions and, in fact, from about generation five the

results show convergence in four particular areas. At about generation 15 we see

convergence towards some maxima, followed by a drop off around generation 30

to a single maximum.
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Figure 6.14: Results of the specialised populations and generations executed
search

From these results, it can be concluded that, firstly, the random population

creation for the initial generation is diverse in nature and creates a rich starting point

for the optimisation search. Secondly, the search algorithm exhibits the expected

converging behaviour, as well as performance in reaching these convergence points.

When comparing the results of the specialised population test run (Figure 6.14)

with the results produced for the Objective Function test runs (Appendix D.4),

observations can be made about the objective tests converging around different

maximums. Furthermore, it can be seen that in some cases more than one optimised

solution was identified.

In response to this, analysis was also conducted to confirm that when more

than one optimised solution was identified, the identified solution’s objective score

was still being minimised.
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Figure 6.15: Deployment Profile Results #1

Figure 6.15, Figure 6.16, Figure 6.17 and Figure 6.18 shows some of the results

from the deployment profile to objective score comparison analysis. From these

plots we see that, while different and numerous maximums can be produced, all

the associated objective scores across the generations consistently converge to

a minimum, thereby confirming the correct behaviour and performance of the

Objection Function optimisation capability.

In response to large model execution times within the MEDEA environment

for each set of optimised deployment profiles (for example each set of 20 gen-

erations and population 40 requires a minimum of 24 hours), an investigation

also occurred to identify a generation and population size for the subsequent Case
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Figure 6.16: Objective Results #1

Figure 6.17: Deployment Profile Results #2
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Figure 6.18: Objective Results #1

Study experimentation. The outcome of this investigation was to identify the size

of the generation and population count that will ensure the required convergent

performance, while not leading to non-viable execution times for experimentation.

Based on the results shown in Figure 6.14 where we observe convergence

occurring at the 218425 deployment profile number from the 35th generation point,

the investigation initially compared results for a generation size of 50 rather than

40. Following this, population sizes ranging from 60 to 100 were then investigated.

Appendix D.5 has the results of one of the sets of generation and population

permutations test runs.

From the plots for a population of 100 and a generation count of 40, we observed

a convergence towards maximums across the plots, but there was a large variability

for the converged results. For a population of 100 and a generation count of 50, we

observe an improvement in consistency in the reaching the optimised outcomes

and convergence towards the same maximum. As a result, a generation count of 50

was identified for subsequent optimisation process and model executions.
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With the generation count number determined, the investigation then looked

into the population size and the smallest population that could maintain a consistent

performance for reaching the search outcomes. From the results of population

sizes of 60, 70, 80 and 90, we observed that the convergence performance for

a population of 60 and 90 showed the best convergence performance. We saw

similar convergence performances, as well as consistent final convergent results.

While a population size of 70 also shows consistent final convergent points, the

performance was not as good as that found with population sizes of 60 and 90. The

convergent performance for a population size of 80 was also not as good as that

observed for 60 and 90.

Based on these observations and the requirement to minimise the population

size as reasonably as possible, a population size of 60 and generation count of 50

was identified for use for subsequent case study experimentation.

After confirming the behaviour and performance for each of the Objective

Function and solution search algorithms individually, the last test conducted was

to determine how well the complete optimisation processing chain predicts and

optimises, and how those outcomes compare with the measured results. Using the

same test arrangements and results found for the Objective Function testing, an

analysis was conducted to firstly see how well the average measured critical chain

latencies aligned with the predicted latencies across the generations. Secondly,

the analysis looked at how the results of the measured latency converged across

the generations created, and how that convergence performance aligned with the

predicted results convergence.
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Figure 6.19 shows one pair of convergence comparison results between the

measured and predicted latencies from a series of 6 test results and analyses across

3 different network configurations. Appendix D.6 shows the results for the other 5

pairs of test and analysis results.

From these results, it can be seen that both the measured results and predicted

results converge and the convergence is in phase. Once again, it can be observed

that the predicted times are constantly greater than the measured times. While we

can see that the measured results do not converge to the smallest measured results,

the actual difference is relatively small, with most differences being less than 10

milliseconds and the largest in the order of 25 milliseconds.

The cause behind this could be a combination of the network jitters, time drift

and precision of time synchronisation across the distributed computing nodes.

Future research would look to further investigate and quantify the effect of jitter,

as well as aim to construct methods to minimise the differences through improved

time modelling, alongside improved distributed time synchronisation methods.

Building on all these tests, results and analysis, it can be concluded with rea-

sonable confidence that the combined behaviour and performance of the Objective

Function algorithm and search algorithm delivers a reasonable level of accuracy. As

a result, optimal solutions are identified that ensure software deployment profiles

that lead to delivery of the desired system performances.
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Figure 6.19: Latencies predicted versus measured convergence: 100Mb Network Configuration
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6.4 Interface and String Latency Optimisation

As detailed in the previous chapter (Chapter 5), the Objective Function and search

process looks for solutions that satisfy predefined temporal performance require-

ments for either a segment of the critical thread (string) or a single connection.

Using modelled latency requirements, the temporal performance of the critical

chain is minimised only to a point where string and single connection temporal

requirements are also satisfied.

To establish how well the Objective Function performs at satisfying any tempo-

ral performance requirement, a second test model was deployed. Building on the

first test model, this model included constraints for temporal performance require-

ments for a string maximum latency of 130ms and an interface (single connection)

maximum latency of 60ms. No constraints for resource utilisation or deployment

were present.

To undertake this testing and subsequent analysis, the Testing Framework also

included the ability to extract out raw (i.e., not including the final objective function

satisfaction adjustment) string and interface latency predictions.

Figure 6.20 and Figure 6.21 shows the predicted string latencies and measured

average string latencies for the deployed test model. From these plots we observe

that the algorithm is converging with solutions identified across the generations

sitting around the required 130ms, with a range from approximately 126ms to

148ms.

While a comparison of the results from the predicted and average measured
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string latencies continues to indicate a good level of prediction performance, there

is a need for the prediction algorithm to behave differently when satisfying tem-

poral requirements. This change leads to all predictions and optimised solutions

delivering latency performances that do not exceed any required maximum la-

tency. To achieve this, the tuning applied to the time representation and prediction

algorithm for temporal performance ensures less optimistic predictions, so the

measured results are either the same or less.

As a result, the modeller and analysis can work on the principle that the

predictions are going to meet or perform better than the requirements defined in

the model.

Figure 6.22 shows the results of the largest latencies for each population

member across the generations. Comparing these results with the prediction results

(Figure 6.20) shows that the predictions are also too optimistic and are consistently

better than the measured largest latencies.

Figure 6.23 and Figure 6.24 show the results of a predicted temporal perfor-

mance and the measured interface latency for each population member across the

generations. Once again, the predictions are too optimistic with the measured

results constantly greater 5.

In response to this, individual adjustment factors were applied to the prediction

algorithm for the string and interface temporal performance prediction to ensure

less optimistic algorithm performance. To minimise complexity with the first

5It should be noted that while the defined temporal performance requirements indicate a need to
be equal or less than 130ms for the string and 60ms for the interface, neither the prediction nor the
measured results were able to achieve this
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Figure 6.20: Predicted string latencies for a 130ms modelled defined constraint

Figure 6.21: Average measured string latencies for a 130ms modelled defined
constraint
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Figure 6.22: Largest measured string latencies for a 130ms modelled defined
constraint

Figure 6.23: Predicted interface latencies for a 60ms modelled defined constraint
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Figure 6.24: Largest measured interface latencies for a 60ms modelled defined
constraint
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instance of creating such factors, a straightforward approach of accounting for

the worst case performance was used. This took the form of simply identifying

the largest difference for each population across generations, and then taking the

largest from those sets. Future research efforts will look to improved methods

for creating the factors around trends and major influences on performance, and

possibly be a set of factors across the spectrum of results, rather than a single

blanket factor.

From Table 6.3 and Table 6.4, the adjustment factors for string latency predic-

tions and interface latency predictions were set to -26.42% and -30.16%. Using

these adjustments a second run of the string and connection latency constraint test

model was conducted (Figures 6.25, 6.26, 6.27 and 6.28).

From the prediction plots, we observe that the adjustment factor improves the

convergence performance of the prediction algorithm. The accompanying measured

latency results for both string and interface also showed improvement. From each

graph we see improved convergence performance, as well as the formation of a

threshold. While not as clean as desired, we see the solutions are in alignment with

the desired behaviour of identifying solutions at the required performance level or

better.
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Figure 6.25: Adjusted predicted string latencies for a 130ms modelled defined
constraint

Figure 6.26: Adjusted predicted interface latencies for a 60ms modelled defined
constraint
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Figure 6.27: Largest measured string latencies with adjustment factor applied for
a 130ms modelled defined constraint

Figure 6.28: Largest measured interface latencies with adjustment factor applied
for a 60ms modelled defined constraint
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Generation Population Number Maximum Latency Difference (%)
0 9 -16.70
1 11 -15.39
2 8 -13.87
3 4 -11.38
4 11 -11.83
5 11 -18.84
6 27 -16.20
7 52 -11.32
8 81 -19.45
9 35 -10.21
10 102 -26.42
11 101 -13.86
12 130 -12.55
13 133 -14.20
14 146 -16.26
15 146 -17.97
16 139 -13.25
17 173 -15.27
18 160 -17.13
19 160 -16.39
20 185 -16.81

Largest Delta -26.42

Table 6.3: Maximum Differences between Predicted and Measured Maximum
String Latencies

6.5 Software Component (and workload) Deploy-

ment Optimisation

Building on the desired software deployment performance we observed during the

critical thread prediction performance validation (Figure 6.11 and Figure 6.12), a

test was conducted to confirm the optimisation algorithm’s ability to satisfy the
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Generation Population Number Largest Difference Interface (%)
0 9 -26.28
1 11 -15.42
2 8 -18.86
3 4 -15.637
4 17 -18.53
5 11 -26.14
6 27 -28.52
7 27 -15.37
8 79 -18.08
9 57 -22.57
10 102 -17.75
11 106 -17.86
12 130 -24.23
13 133 -23.64
14 146 -28.28
15 146 -30.16
16 139 -22.02
17 173 -27.82
18 173 -27.82
19 178 -20.47
20 175 -19.163

Largest Difference -30.16

Table 6.4: Largest Differences between Predicted and Measured Maximum
Interface Latencies

modelled CPU utilisation requirements. Once again, utilising the initial test model,

CPU utilisation requirements were modelled for each available test computing

node. These requirements were as follows 6:

• Cranberry01 -> Nil spare CPU capacity,

• Cranberry02 -> 60% spare CPU capacity,

6It should be also noted the spare CPU utilisation capacities are from the hardware threshold
level of 80% detailed in Section 5.2.6
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• Mandarin01 -> 60% spare CPU capacity,

• Mandarin02 -> 40% spare CPU capacity.

Utilising the CPU utilisation measurements found within the MEDEA logging

framework, analysis was conducted to determine the worst case CPU utilisation

within each deployment solution within a generation. Following this, the maximum

utilisation for each generation was extracted to produce an envelope curve for the

maximum CPU utilisation for each computing node. These envelopes, and more

importantly the final utilisation, were then compared with the modelled spare CPU

utilisation requirements.

Figure 6.29, 6.30, 6.31 and 6.32 show the maximum CPU utilisation for each

deployment solution identified within each generation, across generations. While

Figure 6.33, 6.34, 6.35 and 6.36 shows the envelope curve for maximum spare

utilisation in comparison with the required spare CPU utilisation and hardware

(threshold) CPU utilisation for each computing node.

From the envelope curves we observe that the algorithm performs reasonably

well in satisfying each spare CPU utilisation requirement established in the test

model. We see three of the maximum CPU utilisation exhibiting levels under

the desired threshold (in the case of mandarin01, well under, at essentially zero),

while the envelope for cranberry02 falls slightly above the required threshold as a

result of the granularity of the workloads (equally) deployed within this test model

(Subsection 6.1).
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Figure 6.29: CPU Utilisation for each deployment within the generation for
computing node cranberry01, requiring no spare CPU resources

Figure 6.30: CPU Utilisation for each deployment within the generation for
computing node cranberry02, requiring 80% total spare CPU resources



CHAPTER 6. VERIFICATION AND CALIBRATION 160

Figure 6.31: CPU Utilisation for each deployment within the generation for
computing node mandarin01, requiring 80% total spare CPU resources

Figure 6.32: CPU Utilisation for each deployment within the generation for
computing node mandarin02, requiring 60% total spare CPU resources
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Figure 6.33: Maximum CPU Utilisation for generation for computing node
cranberry01, requiring no CPU resources

Figure 6.34: Maximum CPU Utilisation for each generation for computing node
cranberry02, requiring 80% total spare CPU resources
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Figure 6.35: CPU Utilisation for each generation for computing node mandarin01,
requiring 80% total spare CPU resources

Figure 6.36: CPU Utilisation for each generation for computing node mandarin02,
requiring 60% total spare CPU resources
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6.6 Software Component Mandate Deployment

Confirmation

Following the testing and validation efforts conducted on the various components of

the optimisation algorithm, the last algorithm validation task conducted established

that the solutions are abiding by any software component mandate deployment

constraint declared. This was achieved by constructing text files and simply

comparing the deployment arrays generated to confirm the final generations do not

violate any mandated software deployment requirement.

Table 6.5 shows the details from the deployment arrays of each member of the

final generation for the test model used for the latency and string testing effort

(Subsection 6.4). The array position represents a particular software component,

while the number at the array position represents the node the software component

has been deployed to (node numbers ranging from zero to three to represent four

nodes available for deployment). The subsequent tables (Table 6.6, Table 6.7 and

Table 6.5) show the details of the component deployment array of each member of

the final generation for three test models modified to have a componentMandateDe-

ployGroup requirement modelled, a componentMandateDeployOnly7 requirement

modelled and a noColocationPairId requirement modelled accordingly, and sepa-

rately.

7This new constraint has been introduced to account for the experimentation environment
constraints and requirements of the case study scenarios to come. This constraint allows for a
single software component to be deployed to a particular computing node and only that software
component
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In the case of the componentMandateDeployGroup constraint, this was repre-

sented as the Sender_1 component (first array position on the software component

deployment array) being deployed to Cranberry01 (node number zero). In the

case of the componentMandateDeployOnly constraint, this was represented as

the Receiver2_3_2 component (the last array position on the software component

deployment array) being deployed to Mandarin02 (node number three). Finally,

the noColocationPairId case was represented by Receiver2_2_1 component (soft-

ware component deployment array position seven) and Receiver2_2_2 component

(software component deployment array position nine), which cannot have the same

node numbers. Complete copies of these internal result text files can be found in

Appendix D.7.

Generation Population Number Software Component Deployment Array
20 123 [3, 0, 1, 1, 1, 2, 2, 1, 2, 1]
20 152 [3, 0, 1, 1, 1, 2, 2, 1, 2, 1]
20 175 [3, 0, 1, 1, 1, 2, 2, 1, 2, 1]
20 179 [3, 0, 1, 1, 1, 2, 2, 1, 2, 1]
20 187 [3, 0, 1, 1, 1, 2, 2, 1, 2, 1]
20 194 [3, 0, 1, 1, 1, 2, 2, 1, 2, 1]
20 195 [3, 0, 1, 1, 1, 2, 2, 1, 2, 1]
20 201 [3, 0, 1, 1, 1, 2, 2, 1, 2, 1]
20 206 [3, 0, 1, 1, 1, 2, 2, 1, 2, 1]
20 208 [3, 0, 1, 1, 1, 2, 2, 1, 2, 1]

Table 6.5: Test Model with no mandate deployment constraint modelled
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Generation Population Number Software Component Deployment
20 136 [0, 1, 2, 2, 2, 3, 2, 3, 3, 2]
20 198 [0, 1, 2, 2, 2, 3, 2, 3, 3, 2]
20 207 [0, 1, 3, 2, 2, 2, 2, 3, 3, 2]
20 157 [0, 1, 3, 2, 3, 3, 3, 2, 2, 2]
20 192 [0, 1, 3, 2, 3, 3, 3, 2, 2, 2]
20 206 [0, 1, 3, 2, 3, 3, 3, 2, 2, 2]
20 147 [0, 1, 3, 2, 2, 3, 2, 3, 3, 2]
20 178 [0, 1, 3, 2, 2, 3, 2, 3, 3, 2]
20 190 [0, 1, 3, 2, 2, 3, 2, 3, 3, 2]
20 149 [0, 1, 3, 2, 3, 2, 3, 2, 2, 2]

Table 6.6: Test Model with a componentMandateDeployGroup mandate
deployment constraint modelled

Generation Population Number Software Component Deployment Array
20 144 [0, 2, 1, 1, 1, 1, 1, 1, 1, 3]
20 175 [0, 2, 1, 1, 1, 1, 1, 1, 1, 3]
20 189 [0, 2, 1, 1, 1, 1, 1, 1, 1, 3]
20 207 [0, 2, 1, 1, 1, 1, 1, 2, 1, 3]
20 162 [0, 2, 1, 1, 1, 1, 0, 1, 1, 3]
20 184 [0, 2, 1, 1, 1, 1, 0, 1, 1, 3]
20 156 [0, 2, 1, 0, 1, 1, 1, 2, 1, 3]
20 201 [0, 2, 1, 0, 1, 1, 1, 2, 1, 3]
20 84 [0, 2, 1, 1, 1, 2, 1, 1, 1, 3]
20 100 [0, 2, 1, 1, 1, 2, 1, 1, 1, 3]

Table 6.7: Test Model with a componentMandateDeployOnly mandate
deployment constraint modelled

We observe the componentMandateDeployGroup model results show the num-
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Generation Population Number Software Component Deployment Array
20 200 [3, 1, 2, 2, 2, 0, 2, 0, 0, 2]
20 206 [3, 1, 2, 2, 2, 0, 2, 0, 0, 2]
20 99 [3, 1, 2, 2, 0, 2, 2, 0, 0, 2]
20 122 [3, 1, 2, 2, 0, 2, 2, 0, 0, 2]
20 127 [3, 1, 2, 2, 0, 2, 2, 0, 0, 2]
20 174 [3, 1, 2, 2, 0, 2, 2, 0, 0, 2]
20 203 [3, 1, 2, 2, 0, 2, 2, 0, 0, 2]
20 153 [3, 1, 2, 2, 0, 0, 2, 0, 0, 2]
20 183 [3, 1, 2, 2, 0, 0, 2, 0, 0, 2]
20 133 [3, 1, 0, 2, 0, 2, 2, 0, 0, 2]

Table 6.8: Test Model with a noColocationPairId mandate deployment constraint
modelled

ber zero (’Cranberry01’) is only used for the ’Sender_1’component 8, while the

results for componentMandateDeployOnly show that the Receiver2_3_2 component

is only deployed to node number three (Mandarin02). Lastly, the noColocation-

PairId results show the software components found at array positions seven and

nine are never deployed to the same node number.

A final confirmation was to execute a test model with all three mandate de-

ployment constraints modelled, to ensure the solution identified from the opti-

misation process can simultaneously satisfy more than one modelled mandate

deployment constraint. Table 6.9 shows the results from this mandate deployment

multi-constraint model.

8in this case node number zero is only deployed once in the final generation, but throughout the
generation it can be seen number zero is used for deployment across other components, which is a
valid response
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Generation Population Number Software Component Deployment Array
20 135 [0, 1, 2, 2, 2, 2, 2, 2, 0, 3]
20 141 [0, 1, 2, 2, 2, 2, 2, 2, 0, 3]
20 143 [0, 1, 2, 2, 2, 2, 2, 2, 0, 3]
20 157 [0, 1, 2, 2, 2, 2, 2, 2, 0, 3]
20 163 [0, 1, 2, 2, 2, 2, 2, 2, 0, 3]
20 178 [0, 1, 2, 2, 2, 2, 2, 2, 0, 3]
20 182 [0, 1, 2, 2, 2, 2, 2, 2, 0, 3]
20 184 [0, 1, 2, 2, 2, 2, 2, 2, 0, 3]
20 191 [0, 1, 2, 2, 2, 2, 2, 2, 0, 3]
20 197 [0, 1, 2, 2, 2, 2, 2, 2, 0, 3]

Table 6.9: Test Model with mandate deployment multi-constraints modelled

We see from these results that across this final generation the optimised solu-

tions do satisfy three constraints modelled in this test. As a result, this indicates

the optimisation process is capable of reconciling more than one deployment con-

straint in any one execution and therefore can produce multi-constraint optimisation

solutions.
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7. Deployment Optimisation Case

Studies

As detailed in Chapter 1, an undersea sensor network system is one example of

a constrained SoS. It consists of numerous computing platforms, geographically

distributed over a designated investigation area, and is required to collect data,

store and transmit to a central collection point (Jindal, Saxena, and Singh, 2014 and

Ovaliadis, Savage, and Kanakaris, 2010). Undersea sensor network systems have

numerous applications within areas such as environmental monitoring, defence,

navigation and leisure (Felemban et al., 2015).

As highlighted by Akyildiz, Pompili, and Melodia, 2004, Awan et al., 2019,

Heidemann et al., 2006 and Ovaliadis, Savage, and Kanakaris, 2010, an undersea

sensor network system design has to consider constrained and fixed resources.

Furthermore, its deployment has to account for non-functional requirements such as

limited bandwidth, temporal performance impacts, significant error rates, changing

power demands, power supply constraints, resource utilisation and system failures.

In this chapter, an example of an undersea sensor monitoring network system
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design investigation will be used to demonstrate the new software deployment

optimisation capability introduced with this thesis. It will demonstrate its ability to

search the large and complex solution space for deploying software across available

computing nodes, while satisfying different design non-functional requirements.

This demonstration will start at a baseline design with no performance optimisation

considered, then introduces non-functional requirements across three different

scenarios, whereby new non-functional requirements are added with each scenario.

Table 7.1 details the non-functional requirements introduced across four scenarios.

Scenario Number Non-functional Requirements
0 Nil
1 System Failure Resilience
2 System Failure Resilience

Power Budget Reductions
3 System Failure Resilience

Power Budget Reductions
Temporal Performance

Table 7.1: System Design Investigation Scenarios

Furthermore, the three design investigation scenarios considered four design

changes:

• Non-functional Design Change 1: CPU Resource Utilisation Change for

identified nodes within the sensor network. There is a requirement to reduce

the node CPU resource utilisation levels (and increase their spare CPU

resource capacity) from normal conditions. The aim will be to identify
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software deployment profiles that best accommodate the impact of these new

CPU utilisation levels.

• Non-functional Design Change 2: Ensure Redundancy for identified soft-

ware component instances. There is a need to ensure redundancy exist within

the system network by ensuring identified software components do not reside

on the same node. The aim will then be to identify software deployment

profiles that accommodate these identified requirements.

• Non-functional Design Change 3: Latency Performance for the identi-

fied CriticalChain has defined latency performances. These latency require-

ments will mandate the maximum threshold for the end-to-end timings

of transmissions along that critical thread, including for a subsection (or

segment) of the critical chain, or a single interface. The aim will then be

to identify software deployment profiles that accommodate the impact of

ensuring violation of those maximum latency thresholds does not occur.

• Non-functional Design Change 4: Mandated Software Placement for iden-

tified software component instances. There is a need to ensure components

are placed on (deployed to) certain nodes within the undersea sensor system

network as a result of system architectural requirements. The aim will be to

identify software deployment profiles that accommodate the need to have

certain software deployed to certain nodes.

Figure 7.1 depicts the example undersea sensor network system to be inves-

tigated. It consists of two seabed sensor nodes, two seawater sensor nodes, a

surface sea-buoy node and a land-based receiver station. All the undersea sensors
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system nodes and the surface sea-buoy nodes are powered by batteries, while the

land based receiver station is connected to the power grid and incurs no power

constraints from battery use. Furthermore, to account for environmental influences,

the undersea system network communication capabilities will differ. Table 7.2

provides the network interface performance specifications for each node.

Node Number Node Type Transmit Rate Receive Rate
1 Surface Buoy 1Gb 1Gb
2 Seawater Sensor 100Mb 100Mb
3 Seawater Sensor 100Mb 100Mb
4 Seabed Sensor 10Mb 10Mb
5 Seabed Sensor 10Mb 10Mb
6 Land Receiver Station 1Gb 1Gb

Table 7.2: Sensor System Network Transmit and Receive Performance
Specifications

We can also see from the connections depicted in Figure 7.1 that not all nodes

are directly connected to each other. It is assumed any message received by a node

not meant for processing on itself will be forwarded to the intended node through

routing configuration. It will also be assumed for experimentation purposes that

this forwarding of messages will incur negligible latency.

Figure 7.2 shows the physical experimentation environment used for this case

study. Based on a completely virtualised computing environment using VMware1,

the environment consists of 7 virtual machines and a virtual switch. One virtual
1https://www.vmware.com
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Figure 7.1: Diagram of undersea sensor system network

machine is allocated for the MEDEA Master node, which contains the Jenkins

deployment and execution management environment, as well as the MEDEA

SQL database. The remaining six virtual machine are allocated as MEDEA run-

time nodes, available for software to be deployed onto for execution purposes.

For the six run-time nodes, three nodes were CentOS2 platforms and three were

Ubuntu3 nodes. All six VMware virtual machines were configured with the same

resource allocations and all six machines connected to the virtual switch in a simple

broadcast switch mode4.

Lastly, to allow for the representation of the different network/communication

bandwidths that would be present within the undersea network system environment,

bandwidth throttling capabilities were also introduced. The bandwidth throttling

2https://www.centos.org
3https://ubuntu.com
4Limited configuration was available from the broader experimentation environment
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was enabled through the use of WonderShaper5 software, which was installed on

all six run-times nodes.

As a result of the physical arrangement of the experimentation environment, and

the fact that there are no occurrences of a single connection between two run-time

nodes, a specialised modelling software deployment constraint and solution search

was introduced. This would then account for the communication configuration

scenario between the "Land Receiver Station" node and the "Surface Buoy" nodes.

Overlaying the physical computing nodes and network configuration of the

undersea sensor system is the software system to be deployed in a particular fashion

to meet high level non-functional requirements. This software system consists

of a set of five software assemblies housing their software component instances

and interfaces between them, as well as between assemblies. The five software

assemblies are:

• PrimarySeabedSensorAssembly (Figure 7.3)

• SecondarySeabedSensorAssembly (Figure 7.4)

• WaterAssembly_1 (Figure 7.5)

• WaterAssembly_2 (Figure 7.6)

• CommsAssembly (Figure 7.7)

5https://github.com/magnific0/wondershaper
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Figure 7.2: VMware-based Experimentation Environment
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Figure 7.3: MEDEA assembly view of undersea sensor software system PrimarySeabedSensorAssembly
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Figure 7.4: MEDEA assembly view of undersea sensor software system
SecondarySeabedSensorAssembly
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Figure 7.5: MEDEA assembly view of undersea sensor software system
WaterAssembly_1 Assembly
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Figure 7.6: MEDEA assembly view of undersea sensor software system
WaterAssembly_2 Assembly
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Within these assemblies, 19 different software component instances require

deployment. These 19 software component instances are based on 5 software

component definitions. These definitions are detailed below and diagrams of each

can be found in Appendix E.1:

• SampleSender: this software component definition represents the sampling

of the environment using its sensing capability, representing the sample in

message form and the transmission of those messages.

• Processing: this software component definition represents the reception of

a sample message and the execution of processing on those samples to serve

a data processing requirement.

• Tx_Repeater: this software component definition represents the reception

of messages and transmission onto the sensor system network. This trans-

mission can be via a newly processed and developed message, or be the

reception of an existing message from the network and the forwarding of

that message.

• Sample_Sender_Processing_Tx_monolith: this software component defi-

nition represents an internal processing of samples from the environmental

sensor, followed by a transmission within the single processing module. It

represents a legacy monolithic software system.

• Receiver: this software component definition represents the reception of

various message types and processing associated with reception of each for

correctness and integrity before being stored for use.

Furthermore, in contrast with the MEDEA model developed for testing purposes
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in Chapter 6, the component definitions used in this case study consist of workloads

of variable sizes.

The entire undersea sensor software system was created using software compo-

nent instances derived from the software component definitions and connection via

the available software component interface, using the assembly interface delegate

port. Figure 7.8 shows the MEDEA model assemblies’ view of the complete

undersea sensor software system architecture.

In addition to the arrangement of software assemblies and component instances,

a definition of the critical chain of interest can also be seen. This critical chain

can be seen tracing through the PrimarySeabedSensorAssembly (Figure 7.3) and

CommsAssembly (Figure 7.7) assemblies. It starts at the PrimarySensor compo-

nent instance, traces through the PrimarySampleProcessing, PrimarySampleTx

and PrimaryUnderWaterComms component instances , and then finishes at the

PrimaryAirComms component instance.

A closer view of the critical chain can be seen in Figure 7.9.
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Figure 7.9: MEDEA assembly view of the critical chain for the undersea sensor software system
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7.1 Scenario #0: No Constraint Deployment

This initial design scenario provided a baseline of performances where the software

deployment is optimised, with no constraints or requirements defined.

The specifications for this baseline design scenario experiment are detailed in

Table 7.3.

Configurable Attribute Specification
Spare CPU Utilisation Seawater Sensor 2 - 0%

Seawater Sensor 3 - 0%
Seabed Sensor 4 - 0%
Seabed Sensor 5 - 0%
Surface Buoy 1 - 0%

Land Receiver Station 6 - 0%
Tx/Rx Bandwidth Seawater Sensor 2 - 100Mb

Seawater Sensor 3 - 100Mb
Seabed Sensor 4 - 10Mb
Seabed Sensor 5 - 10Mb

Surface Buoy 1 - 1Gb
Land Receiver Station 6 - 1Gb

Population Size 60
Generation Count 50

Table 7.3: Design scenario 0 experimentation conditions

7.1.1 Experimentation Results

In line with the baseline testing conducted in Chapter 6 the first experiment con-

ducted on the case study model was with no performance requirements or con-

straints modelled. The aim of this experiment was to create a baseline for the
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critical chain temporal performance, objective scores and the resource consump-

tion for each available node before the application of any performance requirement

or constraint.

The baseline experiment results and the results for the following design scenario

investigation are based on the execution of 50 generations, where each generation

consists of 60 population members. Within each population member, 58 samples

have been taken within a 60 second execution period. Furthermore, each individual

population member performance characteristic was either based on an average of

the samples or the maximum result from the samples.

Figure 7.10 shows the objective scores converging towards a minimum across

the 50 generations. While Figure 7.11 shows the average temporal performance

results across the 50 generations for the critical chain identified for the case

study model. As observed from the execution and measurement of temporal

performance from the previous tests, we see the final generation of measured

temporal performances are not the lowest (a delta of less than 10% nonetheless),

but the measured performances still exhibits the desired convergence and reduction

behaviours across the generations.
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Figure 7.10: Objective scores for an undersea sensor software system across 50 generations and populations of
60
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Figure 7.11: Average critical chain latency (from 58 samples) for an undersea sensor software system across 50
generations and populations of 60
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Figure 7.12, Figure 7.13, Figure 7.14, Figure 7.15, Figure 7.16 and Figure 7.17

shows all the CPU maximum resource consumption, while Appendix E.2 shows all

(fullsize) maximum CPU and memory resource consumption for each generation’s

population members for each node available for deployment.

The first observation that can be made from these results is that the CPU utilisa-

tion is still largely inline with the expectation that the optimisation algorithm aims

to even out the distribution of workloads to minimise impact from large CPU utili-

sation delays on the latency performance of the critical chain6. Across the the six

computing nodes, the measured workloads were distributed relatively evenly across

four of the nodes (Cranberry01:5-15%, Cranberry02:15-20%, Mandarin02:5-15%,

Mandarin03:5-10%), while the other two nodes (Cranberry03:20-35%, Mandarin01:30-

45%) had increased levels of utilisation.

In line with observations made during the optimisation algorithm testing section,

memory utilisation was basically even across the generations for each node. The

variation across the generations for all the nodes ranged from approximately 12%

to 18%, while each node final generation utilisation ranged from approximately

13% to 17%. As a result, there is negligible room for adjustment to improve

consumption levels.

Noting that these case studies do not consider memory consumption as part

of the design investigation, and therefore play no part in the optimisation process,

memory utilisation for subsequent case studies was not considered.

6because of the variables sizes of workloads being distributed, the level of evenness for distri-
bution will not match that being reached with equal-sized workload distributions, as seen in the
previous testing
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Figure 7.12: Cranberry01 maximum CPU resource consumption for an undersea
sensor software system for the baseline experiment (50 generations with

populations of 60, and 58 samples for each population member)

Figure 7.13: Cranberry02 maximum CPU resource consumption for an undersea
sensor software system for the baseline experiment (50 generations with

populations of 60, and 58 samples for each population member)
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Figure 7.14: Cranberry03 maximum CPU resource consumption for an undersea
sensor software system for the baseline experiment (50 generations with

populations of 60, and 58 samples for each population member)

Figure 7.15: Mandarin01 maximum CPU resource consumption for an undersea
sensor software system for the baseline experiment (50 generations with

populations of 60, and 58 samples for each population member)
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Figure 7.16: Mandarin02 maximum CPU resource consumption for an undersea
sensor software system for the baseline experiment (50 generations with

populations of 60, and 58 samples for each population member)

Figure 7.17: Mandarin03 maximum CPU resource consumption for an undersea
sensor software system for the baseline experiment (50 generations with

populations of 60, and 58 samples for each population member)
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The final generation of component deployment arrays for the baseline case

study model are shown in Appendix E.1, along with their population number and

objective score. From this Table it can be seen that the optimisation process has

converged on 41 unique deployment profiles (Appendix E.2 across five different

objective scores. From the five different objective scores, the best performing

objective score led to nine different deployment options capable of delivering the

best performing critical chain latency performance (Table 7.4).

Table 7.4: Baseline design scenario unique deployment options

Number Unique Component Deployment Array Objective Score

1 [1, 2, 4, 5, 2, 4, 0, 2, 2, 2, 3, 5, 2, 2, 3, 2, 2, 3, 3] 349.53

2 [1, 2, 4, 5, 2, 4, 0, 2, 3, 2, 0, 5, 2, 3, 2, 2, 2, 2, 3] 349.53

3 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 0, 5, 2, 3, 2, 2, 2, 2, 3] 349.53

4 [1, 2, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 349.53

5 [1, 2, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 3, 2, 3, 3, 2, 3, 3] 349.53

6 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 2] 349.53

7 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 349.53

8 [1, 3, 4, 5, 3, 4, 0, 3, 2, 2, 2, 5, 2, 3, 2, 2, 2, 3, 3] 349.53

9 [1, 3, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 3, 2, 3, 2, 2, 3, 3] 349.53

As detailed in Chapter 5, the component deployment array size is based on

the number of component instances present within the software system, where
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each array index represents a particular component instance and the number within

the cell represents the computing node to which the software component is to be

deployed to. In this case study model, the component deployment array consists of

19 cells and the node numbers to be assigned range from zero to five. Table 7.5

and Table 7.6 detail which software component is assigned to which component

deployment array index and what node number is assigned to what computing node

within the run-time environment.

Array Index MEDEA ID Number Component Instance Name
0 911 PrimarySensor
1 386 TrackTx
2 376 PrimarySampleProcessing
3 1485 PrimarySampleTx
4 1865 TrackCreation
5 1157 PrimaryUnderWaterComms
6 1222 ReceiverStation
7 1277 AuxcillaryunderWaterComms
8 1802 TrackUnderWaterComms
9 1866 AuxcillaryAirComms

10 1928 TrackAirComms
11 1994 PrimaryAirComms
12 2125 SecondarySensor
13 2191 SecondarySampleProcessing
14 2253 SecondarySampleTx
15 2326 WaterSensor_1
16 2392 WaterCreation_1
17 2454 WaterTrackTx_1
18 2696 WaterSensor_2

Table 7.5: Case study deployment array software component assignment
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Node Number Computing Node Name Undersea System Node Name
0 Cranberry01 Surface Buoy 1
1 Cranberry02 Seawater Sensor 2
2 Cranberry03 Seawater Sensor 3
3 Mandarin01 Seabed Sensor 4
4 Mandarin02 Seabed Sensor 5
5 Mandarin03 Land Receiver Station 6

Table 7.6: Case study computing node assignment

7.2 Scenario #1: Dedicated Deployment and Sys-

tem Failure Resilience

The first design scenario demonstrates the need to satisfy two known mandated

software component deployment constraints, as well as the need to ensure a system

redundancy requirement is satisfied.

The first of the known mandated deployment constraints was the need for an

identified Seabed Sensor node to have a software component instance, associated

with a hypothetically environmental sensor hardware to be deployed together. The

second mandated deployment requirement was the need for the ’Land Receiver

Station’ node to only have the software component instance associated with the

receiver station function alone (the ReceiverStation) deployed onto it. For this spe-

cialised mandated deployment constraint, where only a single software component

instance can be deployed onto the receiver station node, a specialised mandated
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deployment constraint was introduced within the optimisation algorithm.

For the system redundancy requirement two software component instances

PrimarySampleTx and SecondarySampleTx were modelled using the noColocation

constraint, so they would never be deployed onto the same node. This scenario

represents a design change to reduce the risk of zero sample messages being

transmitted upon a single computing node failure.

The specifications for this case study experiment are detailed in Table 7.8.

Configurable Attribute Specification
Spare CPU Utilisation Seawater Sensor 2 - 0%

Seawater Sensor 3 - 0%
Seabed Sensor 4 - 0%
Seabed Sensor 5 - 0%
Surface Buoy 1 - 0%

Land Receiver Station 6 - 0%
Tx/Rx Bandwidth Seawater Sensor 2 - 100Mb

Seawater Sensor 3 - 100Mb
Seabed Sensor 4 - 10Mb
Seabed Sensor 5 - 10Mb

Surface Buoy 1 - 1Gb
Land Receiver Station 6 - 1Gb

Mandate Software Placement ’SecondarySensor’ placed on Seabed Sensor 5
’Receiver’ only placed on Land Receiver Station

No-Colocation Deployment Requirement ’PrimarySampleTx’ and ’SecondarySampleTx’
Non-functional Design Change 2 & 4

Population Size 60
Generation Count 50

Table 7.7: Design Scenario 1 experimentation conditions
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7.2.1 Experimentation Results

Figure 7.18 shows the objective scores converging towards a minimum across

the 50 generations. It can be seen that the optimisation process has converged

more quickly than the baseline experiment, where less variation in objective scores

occurred around the mid-20 generation point. From the final generation of predicted

results (Appendix E.4), a convergence to a single lowest objective score was found,

with 37 different optimised deployment options identified (Table 7.8).

Furthermore, Table 7.8 shows the satisfaction of all three mandated deployment

requirements. Deployment array index six (ReceiverStation) component instance)

has node five (Land Receiver Station node) always allocated and index 12 (Sec-

ondarySensor) placed on node 4 (Seabed Sensor). While deployment array index 3

(PrimarySampleTx) component instance and 14 (SecondarySampleTx) component

instance never have the same computing node allocated.

Figure 7.19 shows the average temporal performance results across the 50

generations for the critical chain identified. As a result of the introduced mandated

deployment requirements, an increased number of deployment options for the best

performing critical chain latency performance was found, and an improvement

convergence performance was found compared to the baseline scenario. In this

case, the improved convergence has also resulted in a small, improved latency

performance across the identified deployment profiles7.

7there is a y-axis scale change between the two graphs, with this graph being only 4ms compared
with 30ms for the baseline scenario
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Table 7.8: Design scenario 1 unique deployment options

Number Component Deployment Array Objective Score

1 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60

2 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60

3 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.60

4 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.60

5 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.60

6 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 2, 4, 4, 1, 2, 1, 1, 1, 2] 358.60

7 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60

8 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 2, 2] 358.60

9 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60

10 [0, 1, 4, 0, 1, 3, 5, 2, 2, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.60

11 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60

12 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.60

13 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 2, 4, 4, 1, 2, 1, 1, 1, 1] 358.60

14 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 2, 4, 4, 2, 1, 1, 1, 2, 2] 358.60

15 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 2, 4, 4, 2, 1, 2, 1, 1, 1] 358.60

16 [0, 1, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60

17 [0, 1, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 2, 2, 1, 1, 1] 358.60

18 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60

19 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 2, 1] 358.60

Continued on next page
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Table 7.8 – continued from previous page

Number Component Deployment Array Objective Score

20 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60

21 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.60

22 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.60

23 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60

24 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.60

25 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.60

26 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.60

27 [0, 2, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60

28 [0, 2, 4, 0, 2, 3, 5, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60

29 [0, 2, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60

30 [0, 2, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60

31 [0, 2, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60

32 [0, 2, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.60

33 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60

34 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60

35 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.60

36 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.60

37 [0, 2, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60
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Figure 7.19: Average critical chain latency for an undersea sensor software system with mandated deployment
requirements (50 generations with populations of 60, and 58 samples for each population member)
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Figures 7.20, 7.21, 7.22, 7.23, 7.24 and 7.25 shows the maximum CPU re-

source consumption for generation members of each node available for deployment

with this design scenario experiment. The first observation that can be made is

that CPU utilisation on Mandarin03 is reasonably consistent across the generation,

which is expected as this node only has the single software component instance

(ReceiverStation) deployed to it.

It can also be seen that a largely even distribution of workload is occurring

across three nodes (Cranberry01:15-18%, Mandarin01:5-10% and Mandarin02:10-

15%), while the remaining two nodes (Cranberry02: 15-50% and Cranberry03:5-

55%) have a similarly increased level of utilisation compared with the baseline case

study experiment. Once again, expected behaviour is found due to the optimisation

algorithm looking to minimise the impact of CPU resource utilisation delays and

impact on the critical chain latency performance.



C
H

A
P

TE
R

7.
D

E
P

LO
YM

E
N

T
O

P
TIM

ISATIO
N

C
A

SE
STU

D
IE

S
202

Figure 7.20: Cranberry01 maximum CPU resource consumption for an undersea sensor software system for the
design scenario 1 experiment (50 generations with populations of 60, and 58 samples for each population member)
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design scenario 1 experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure 7.22: Cranberry03 maximum CPU resource consumption for an undersea sensor software system for the
design scenario 1 experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure 7.23: Mandarin01 maximum CPU resource consumption for an undersea sensor software system for the
design scenario 1 experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure 7.24: Mandarin02 maximum CPU resource consumption for an undersea sensor software system for the
design scenario 1 experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure 7.25: Mandarin03 maximum CPU resource consumption for an undersea sensor software system for the
design scenario 1 experiment (50 generations with populations of 60, and 58 samples for each population member)
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7.3 Scenario #2: Undersea Sensor Network Power

Budget Reductions

Building on the opening system design scenario investigation, this scenario adds

an operational need to improve power utilisation and explore how to increase time

between battery replacements (and hypothetically reduce the resourcing associated

with such a task) for some nodes. As a result, a lower consumption of battery

power from the available nodes was required and achieved through changes in

spare CPU utilisation for those nodes.

The specifications for this design scenario experiment are detailed in Table 7.9.

7.3.1 Experimentation Results

Appendix E.5 shows the final generation population members for this design

scenario. The first observation made was that the objective scores are less than

those achieved in the previous design scenarios. This indicates the optimisation

process has identified component deployment options that are producing resource

utilisation that is less than the defined constraint. As a result, the objective scores

are further reduced, based on the gap between the defined threshold and predicted

utilisation. We can also see that the optimisation algorithm has produced the final

set of population members across only three, different, minimised objective scores

(Appendix E.6) and identified a single deployment option with the best objective

score (Table 7.10).
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Configurable Attribute Specification
Spare CPU Utilisation Seawater Sensor 2 - 70%

Seawater Sensor 3 - 70%
Seabed Sensor 4 - 40%
Seabed Sensor 5 - 40%
Surface Buoy 1 - 30%

Land Receiver Station 6 - 30%
Tx/Rx Bandwidth Seawater Sensor 2 - 100Mb

Seawater Sensor 3 - 100Mb
Seabed Sensor 4 - 10Mb
Seabed Sensor 5 - 10Mb

Surface Buoy 1 - 1Gb
Land Receiver Station 6 - 1Gb

Mandate Software Placement ’SecondarySensor’ placed on Seabed Sensor 5
’Receiver’ only placed on Land Receiver Station

No-Colocation Deployment Requirement ’PrimarySampleTx’ and ’SecondarySampleTx’
Non-functional Design Change 1, 2 & 4

Population Size 60
Generation Count 50

Table 7.9: Design Scenario 2 experimentation conditions

Table 7.10: Design scenario 2 final generation unique deployment options details

Number Component Deployment Array Objective Score

1 [4, 4, 0, 3, 4, 1, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 304.75

Inline with the resource utilisation testing conducted in Section 6 and the

overall modelling philosophies of exploring worst case performance scenarios,

Figures 7.26, 7.27, 7.28, 7.29, 7.30 and 7.31 shows the largest maximum CPU

resource consumption across the population members for each generation for each

node available for deployment for this design scenario experiment.



CHAPTER 7. DEPLOYMENT OPTIMISATION CASE STUDIES 210

From these plots, we see the optimisation search results identified non-conventional

component deployment options, and possibly a result that would unlikely be found

through any manual effort (assuming a manual approach is possible and practical).

We can observe that the optimisation algorithm had identified solutions where CPU

utilisation has been reduced below the threshold for five out of the six available

nodes. In some cases the resultant CPU resource consumption has been reduced

significantly (50-75% below the defined constraint).

More specifically, the optimisation has resulted in CPU resource consumption

close to the required thresholds for ’Cranberry02’ and ’Cranberry03’, while ’Man-

darin01’ sees a consumption sitting around 25% below the required threshold. In

the case of ’Cranberry01’ and ’Mandarin03’ the consumption are significantly

reduced and sit below the threshold at around the 75% and 50% accordingly.

While these results show impressive outcomes in reducing the CPU resource

utilisation compared with what is required, the impact of this was the optimisation

algorithm chose to over-utilise the CPU resources on ’Mandarin02’. In fact, the

utilisation was beyond the 80% hard threshold. This resulted from the fact that

the under-utilisation objective scores improvements (reductions) out weighed the

objective score increases from over-utilisation. As a result, the overall objectives

score was reduced and identified outcomes produced.

Figure 7.32 shows the maximum CPU utilisation across the population members

for each generation for Mandarin02. From this graph we can see there is an outlier

maximum CPU utilisation result responsible for going beyond the 80% hard

threshold point, but the majority of the population member CPU utilisation results
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are still in the over-utilisation realm.

While such a result is a correct outcome and may be acceptable, it would be

reasonable to assume that in most cases this would not be a desirable outcome from

the system designer aspect. In these situations, the use of the weights described in

Chapter 5 would be utilised. To combat the over-utilisation on ’Mandarin02’ and

reduce the potential for these kinds of outcomes, the system designers can apply a

weight for CPU spare utilisation for ’Mandarin02. This weight would then apply

an additional influence on the optimisation algorithm and aim to guide identified

solutions away from a direction that sees the over-allocation occurring.

Future research efforts would also look to introduce some improvements to the

optimisation algorithm that would better consider the over-allocation impacts, such

as the 80% hard threshold.
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Figure 7.26: Cranberry01’s largest maximum CPU resource consumption for an undersea sensor software system
for the design scenario 2 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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Figure 7.27: Cranberry02’s CPU largest maximum resource consumption for an undersea sensor software system
for the design scenario 2 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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Figure 7.28: Cranberry03’s CPU largest maximum resource consumption for an undersea sensor software system
for the design scenario 2 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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Figure 7.29: Mandarin01’s CPU largest maximum resource consumption for an undersea sensor software system
for the design scenario 2 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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Figure 7.30: Mandarin02’s CPU largest maximum resource consumption for an undersea sensor software system
for the design scenario 2 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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Figure 7.31: Mandarin03’s CPU largest maximum resource consumption for an undersea sensor software system
for the design scenario 2 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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Figure 7.32: Mandarin02’s CPU maximum resource consumption for population members for each generation for
the design scenario 2 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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Lastly Figure 7.33 and Figure 7.34 show the objective scores and critical

chain latencies across the generations. For the objective score results found in

Figure 7.33, the optimisation algorithm behaviour and performance for reaching the

final generation objective score were different from the previous design scenarios.

Based on the increased number of constraints and requirements, the convergence

performance is slower, while the rate of objective score reduction is also more

variable.

In the case of the critical chain latency results, we see that with the introduction

of the new constraints and requirements the optimisation algorithm’s (and overall

objective score) main influence was from CPU. As a result the final generation

critical chain latencies showed both less convergence and increases in latencies.
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Figure 7.33: Design scenario 2 objective scores for an undersea sensor software system across 50 generations
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Figure 7.34: Design scenario 2 Average critical chain latency for an undersea sensor software system (50
generations with populations of 60, and 58 samples for each population member)
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7.4 Scenario #3: Improved Data Quality of Ser-

vice (QoS)

The last system design scenario investigation introduced the additional design

change to ensure data senescence performance for identified software component

connections are being satisfied. Therefore, in addition to ensuring the identified

critical chain temporal performance is being minimised as much as possible (while

also considering the other defined system design constraints and requirements),

the optimisation process is also considering additional temporal performance

constraints for identified segments of the critical chain.

As a result, the investigation needs to explore software deployment options that

consider latency performance for a string of software component connections (a

segment of the critical thread), as well as a maximum latency threshold set for the

connection between the two components.

This design scenario explored the software deployment profiles that best ac-

commodate the impact of these changes. The specifications for this design scenario

experiment are detailed in Table 7.11

7.4.1 Experimentation Results

Appendix E.6 shows the final generation population members for this design sce-

nario. The first observation that can be made is that the objective scores have now
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Configurable Attribute Specification
Spare CPU Utilisation Seawater Sensor 2 - 70%

Seawater Sensor 3 - 70%
Seabed Sensor 4 - 40%
Seabed Sensor 5 - 40%
Surface Buoy 1 - 30%

Land Receiver Station 6 - 30%
Tx/Rx Bandwidth Seawater Sensor 2 - 100Mb

Seawater Sensor 3 - 100Mb
Seabed Sensor 4 - 10Mb
Seabed Sensor 5 - 10Mb

Surface Buoy 1 - 1Gb
Land Receiver Station 6 - 1Gb

Interface Max. Latency ’PrimarySensor’: output port
’PrimarySampleProcessing’: input port

Max latency: 60ms
String Max. Latency. ’PrimarySensor’: output port

’PrimarySampleProcessing’: input port
’PrimarySampleTx’: output port

’PrimaryUnderWaterComms’: input port
Max latency: 170ms

Mandate Software Placement ’SecondarySensor’ placed on Seabed Sensor 5
’Receiver’ only placed on Land Receiver Station

No-Colocation Deployment Requirement ’PrimarySampleTx’ and ’SecondarySampleTx’
Non-functional Design Change 1, 2, 3 & 4

Population Size 60
Generation Count 50

Table 7.11: Design Scenario 3 experimentation conditions

increased considerably compared with those achieved in previous design scenarios.

This indicates that while the optimisation process has identified component de-

ployment options that consider all the requirements and constraints, the predicted

performance outcomes are falling short in some areas compared with their defined
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thresholds.

It can also be seen that the optimisation algorithm has produced the final set of

population members across a much larger number of objective scores (20 different

scores). Furthermore, across these 20 objective scores, the optimisation process

identified 38 unique component deployment options (Appendix E.8), while the

best performing objective identified a single deployment profile (Table 7.12).

Table 7.12: Design scenario 3 final generation unique component deployment
details

Number Component Deployment Array Objective Score

1 [1, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 769.35

Figure 7.35 and Figure 7.36 shows the predicted interface and string latency

performances across the generations for this case study, while Figure 7.37 shows

the overall objective scores across the generations. As highlighted previously with

the increased objective scores, both the graphed predicted results for the interface

and the string latency show that the required performance thresholds are not being

met at any point across the generations. The final generation predicted latency

performance for the interface is approximately 66ms (when the required threshold

was 60ms) and the string is approximately 197ms (when the required threshold was

170ms). Looking at the overall graphed objective scores across the generations,

the performance and behaviour of the optimisation process is once again a rapid
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convergence early in the generation count with very little fluctuation in the rate of

reduction of the objective score beyond that knee point (approximately generation

3) of the graph, while Figure 7.38 shows the resultant critical chain latency results.

Figure 7.39, 7.40, 7.41 and 7.42 shows the maximum and average results for

both the interface and the string latency measurements. From these, we can observe

that the predicted results coming out of the optimisation process are pessimistic

compared with what is being measured, which is the desired outcome and intended

consequences of the calibration process and application of the calibration factors.

While there are still differences between predicted and measured results that require

further investigation and possibly algorithm adjustments with future research, in

general the results show a good account of the worst-case performance scenarios.

The second observation that can be made is that the convergence performance

is not as good as those found during the string and interface latency prediction

testing in Chapter 6. As opposed to the previous testing, where only the latency

requirements were being tested, this design scenario optimisation is trying to

optimise competing requirements and constraints from mandated deployment and

CPU resource utilisation definitions. As a result, the search outcomes are less ideal

and consolidated, and lead to a larger spread.
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Figure 7.35: Design scenario 3 predicted interface latencies for an undersea sensor software system across 50
generations
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Figure 7.36: Design scenario 3 predicted string latencies for an undersea sensor software system across 50
generations
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Figure 7.37: Design scenario 3 objective scores for an undersea sensor software system across 50 generations
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Figure 7.38: Design scenario 3: critical chain average latency for an undersea sensor software system across 50
generations (50 generations with populations of 60, and 58 samples for each population member)
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The maximum interface latency results (Figure 7.39) show a convergence

across the generations. In the case of the average latency results (Figure 7.40), the

convergence is more pronounced. More importantly, it can be seen that the largest

interface latency results and convergences drive towards the required threshold and

eventually go below this at the final generation. The existence of a single outlier

in the final generation can be seen just above the threshold, but in general, the

measured results show an alignment with the desired optimisation behaviour and a

reasonable account of the worst case latency performances. Future research will

look into the small number of outliers to determine why they occur and establish

methods to better account for them more effectively.

As with the interface latency results, the string latency results (Figure 7.41 and

Figure 7.42) also show convergence across the generations, with the average results

convergence once again being more pronounced. Importantly again, the conver-

gence towards the final generation leads to the results being below the required

threshold. Once more, there are a few outliers that should be investigated with

future research effort, but in general, the results align with the desired optimisation

behaviour and outcomes.

Figures 7.43, 7.44, 7.45, 7.46, 7.47 and 7.48 shows the largest maximum

CPU resource consumption across the generations for each node available for

deployment within this case study experiment.
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(50 generations with populations of 60, and 58 samples for each population member)
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generations with populations of 60, and 58 samples for each population member)
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Figure 7.41: Design scenario 3: maximum measured string latencies for an undersea sensor software system (50
generations with populations of 60, and 58 samples for each population member)
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generations with populations of 60, and 58 samples for each population member)
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These results show the influence of temporal performance requirements on

the CPU resource utilisation across the nodes, compared with the resource level

found with design scenario 2. In this case study, an increased number of nodes

are executing beyond their required resource threshold levels. Two nodes have a

reduction in utilisation levels compared with design scenario 2, while one remains

(as expected) at the same level as design scenario 2.

It can be seen that Cranberry01 has had an increase in utilisation level to

approximately 17% but remains under its threshold, Cranberry02 has increased

its level to approximately 30% and has exceeded its threshold, while Cranberry03

has also increased its utilisation level to approximately 15% and also exceeded

its threshold level. The results for Mandarin01 see a reduction in utilisation level

to approximately 10% and it is below its threshold, while Mandarin02 also sees

a reduction in utilisation level to approximately 65% but it is still exceeding its

threshold level.

Lastly, it can be seen that the utilisation level for Mandarin03 is the same,

which is to be expected as this is the node that has a single software component

deployed to it throughout the case studies. While the utilisation graph seems to be

more variable than would be expected with the constant workload deployed, the

generation population members CPU utilisation graph (Figure 7.50), shows this is

due to some outlier utilisation measurements. The vast majority of the measured

results exhibit the expected behaviour and are more aligned with the deployed

constant workload.
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Figure 7.43: Cranberry01 largest maximum CPU resource consumption for an undersea sensor software system
for the design scenario 3 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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Figure 7.44: Cranberry02 CPU largest maximum resource consumption for an undersea sensor software system
for the design scenario 3 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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238Figure 7.45: Cranberry03 CPU largest maximum resource consumption for an undersea sensor software system

for the design scenario 3 experiment (50 generations with populations of 60, and 58 samples for each population
member)
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Figure 7.46: Mandarin01 largest maximum CPU resource consumption for an undersea sensor software system for
the design scenario 3 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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Figure 7.47: Mandarin02 largest maximum CPU resource consumption for an undersea sensor software system for
the design scenario 3 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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Figure 7.48: Mandarin03 largest maximum CPU resource consumption for an undersea sensor software system for
the design scenario 3 experiment (50 generations with populations of 60, and 58 samples for each population

member)
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Figure 7.49: Mandarin02 maximum CPU resource consumption for population members for each generation for the
design scenario 3 experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure 7.50: Mandarin03 CPU maximum resource consumption for population members for each generation for the
design scenario 3 experiment (50 generations with populations of 60, and 58 samples for each population member)
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7.4.2 Case Study Discussion

The baseline design scenario showed critical chain latency performance converg-

ing to a range of approximately 0.217 to 0.232 seconds, and a CPU utilisation

distributed reasonably even across the six available computing nodes. Both items

showed the expected behaviours and results. From the best performing objective

score, the optimisation process identified nine unique deployment options capable

of providing the best performing latency performance for the identified critical

chain. Reviewing the nine different deployments, the optimisation process chose

computing nodes 2 and 3 (Seawater Sensor 3 and Seabed Sensor 4) as the main

deployment points for the various levels of workload to deploy. Furthermore, the

objective score is a direct indication of the critical chain latency performance, and

was 349.53.

Design scenario one introduced the design changes requiring the system design

to ensure mandated deployment constraints are satisfied between the identified

software components and computing nodes, alongside the no co-location constraint

between the two identified software components. As a result of satisfying these

constraints it was observed that the convergence performance was reduced and

37 unique deployment profiles were identified, compared with the nine from the

baseline scenario. As with the baseline scenario, the objective score was directly

related to the critical chain latency, was slightly increased (358.60) and produced

a slightly reduced latency range of approximately 0.215 to 0.225, because of

the increased number of deployment options identified for the best performing

objective score.
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Reviewing the identified unique deployment profiles, we observed the majority

of computing nodes chosen for software component deployment shifts from 2 and

3 (Seawater Sensor 3 and Seabed Sensor 4) for the baseline scenario to 1 and 2

(Seawater Sensor 2 and Seawater Sensor 3) for scenario 2. It would be reasonable

to conclude this shift is based on the highest workload being deployed to computing

node 3 and the aim being to minimise the impact of temporal delay from high

CPU utilisation for this node. This would be further driven by the overall aim

being to minimise the CPU utilisation across the available computing nodes, as

well as satisfying the deployment constraints (which includes only having a single

software component on the computing node 5).

Design scenario two introduced the CPU spare resource constraints (in response

to power consumption reductions). Addressing these constraints, the optimisation

process identified a single deployment profile related to the best performing objec-

tive score. Furthermore, the objective score was significantly reduced compared

with the baseline scenario (and second design scenario) as a result of the optimisa-

tion algorithm producing highly optimised results (better than required), leading to

an overall reduction. However, we observed limitations in the optimisation process,

where highly optimised solution were found at the expense of a non-satisfactory

solution to one of the defined constraints.

Reviewing the single deployment option identified, we observed the same

component deployment to computing node 3 as was found with the previous

scenario. We also observed that computing node 4 is the primary node for software

deployment, which was reflected in the CPU utilisation graph and a reflection of
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the how the reduced objective score was achieved. We also observed the critical

chain latency range increased from approximately 0.215 to 0.255 seconds (compare

to the baseline), which indicates the optimisation algorithm was less focused on

minimising the critical chain latency as a consequence of trying to improve CPU

utilisation performance.

The final design scenario introduced latency performance requirements for a

pair of interfaces and a string of interfaces (a segment), both within the critical chain

of interest. In addition to the previously introduced requirements and constraints,

we observed the optimisation process identified a single deployment profile, but the

companion objective score was significantly higher than for the baseline scenario

and subsequent scenario one and two. While this scenario satisfied the defined

constraints, the increased objective score reflect the fact that CPU utilisation and

the temporal performance threshold were not satisfied.

Reviewing the deployment profile, we also observed the change in deployment

profile only considered the software component associated with the defined inter-

face and string temporal performance requirements. The deployments found from

the previous scenario were maintained, along with the inherited performances. We

also observed the critical chain latency range was similar to the baseline scenario,

which indicates that the optimisation algorithm is focused on temporal performance,

this time at the expense of CPU utilisation, which was reflected in the observed

over-utilisation of some of the available nodes.

Overall, we saw the successful application of the optimisation capability in

gaining insights into design options for an undersea sensor system and its de-
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ployment within the undersea environment to achieve defined performances. We

observed the optimisation process works through the increasingly complex solution

search space with the layering of competing requirements and constraints, and give

key insights on performance outcomes through the design scenarios. The approach

provided details of the difficulties in meeting defined thresholds, where flexibility

lies for adjustment with over-exceeding performances being obtained, and, in the

case of the last design scenario, the insight that not all performances will be met.

The result of this is that the system designer is equipped to build on the insights

gained by refining design decisions and adjusting performance expectations. This

will then flow back into the optimisation process until the undersea system design

and identified deployment delivers performance for the current version of the

system to a level acceptable to the system designer.

An extension to gaining insights into the current version of the system design,

deployment and performances, would be to use a language and modelling approach

to enable the optimisation process to consider software system evolution. This

would enable an understanding of how current requirements and constraints would

be impacted by software system evolution, and provide insight into what adjust-

ments would be required (and their resulting performance) in response to any such

software system evolution.

In the case of the undersea sensor system, the ability for the optimisation

process to consider software footprint growth, degradation of batteries through

age, or architectural changes would provide great benefit. It would enable system

designers to understand how far the undersea sensor system’s current computing
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infrastructure could support any future sensor system software development, and

what requirements and constraints may need to be changed to support any such

evolution.
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8. Evolution DSML

As indicated within the Aims chapter, the focus of the DSML and associating

modelling framework is to allow system designers to model and explore how

certain elements of a current system design may evolve. The benefit of such an

approach was also discussed in the Case Study, where insights could be gained

into how best to evolve and what optimised performances would be achieved for

the undersea sensor system.

By using a newly-created DSML, model information can be held on the be-

haviour and characteristics of the ways in which the system may evolve. Combining

this with information from the extant system design model, integrated with a SEM

environment, system designers can explore optimal design changes and perfor-

mance impacts for evolving systems.
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8.1 Component Evolution Modelling Language

(CEML) Model

The CEML (Component Evolution Modelling Language) DSML was developed us-

ing a Meta-DSML and GME (Davis, 2003) development approach. The modelling

needs for this DSML were as follows:

• Define software footprint evolution paths

• Define architectural evolution paths

• Define entity relationship constraints

• Define computing resource evolution paths

• Define temporal performance constraints

This approach consisted of using a meta-modelling language based on the

UML class diagram notation and OCL constraints to specify the new modelling

paradigm of the application domain. Using the meta-modelling language to define

syntactic, semantic, and presentation information, a DSML meta-model is created.

This DSML meta-model is then applied to the GME environment to automatically

generate the target domain-specific modelling environment, which then allows

for the construction of the domain-specific models. These models then enable

definitions associated with the application domain, such as what relationships may

exist among those application concepts, how the concepts may be organised and

viewed by the modeller, and the rules governing the construction of models.

Figure 8.1 shows one of the UML class diagrams produced to create the CEML

DSML. In this case, it defines the relationships between modelling elements at
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the component level, alongside evolution characteristics and behaviour defini-

tion. Within this UML model, there are connection points to other UML class

diagrams within the CEML DSML via ModelProxy elements. These are the Com-

ponentArchitectureInstanceProxy, DecomposeProxy and ComponentInstanceProxy

ModelProxy elements. Numerous Atom elements are found, indicating these model

elements are at the lowest level of modelling and definition, while the Model

elements indicate a lower level of modelling is present within this area, and the

composition of the next level is based on those elements connected to the Model

UML element. There are two Connection elements to define the rules as to which

model elements can be connected, while a FCO (or First Class Object) UML

element provides abstraction and enables inheritance across the different objects.

Appendix F shows all of the UML class diagrams found as part of the CEML

DSML.

The CEML meta-model was developed to allow for modelling context views

for evolution characteristics and behaviour modelling at the architectural, compo-

nent and resource layers. It also provides a context view to allow for deployment

constraint definitions. The complexities associated with modelling via numer-

ous context views were also reduced by separating each into GME’s ‘aspect’

model view, thereby removing the need to capture all information within a single

modelling canvas. The three main modelling layers for CEML are the Compo-

nentArchitectureInstance, ConstraintDeployment and SubComponent_Definition.

Within these layers exists a combination of different level modelling canvases and

modelling aspect windows.
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The entry point to the CEML modelling stage was the importation of a mini-

mum set of details from the PICML system design model to enable representation

of the system design within the CEML modelling environment. Figure 8.2 shows

the CEML modelling environment, with an example of an imported, simple, three

component software system for an unmanned autonomous vehicle (UAV) sys-

tem. The components comprised of a global positioning system (GPS) processing

component (Position Marker 1), a vehicle control component (Position Marker

2) and a communication component (Position Marker 3). We can also see that

this modelling layer consists of two different modelling aspect tabs for modelling.

These are the ComponentArchitecture and ComponentGrowthDefinition aspects

(Position Marker 4).

Figure 8.3 shows the CEML modelling environment in the ComponentGrowthDef-

inition modelling aspect view. Within this view tab, four different model entities

(Position Markers 1-4) are available for modelling growth at the component archi-

tecture level. These entities allow the modeller to detail system design evolution in

the areas of:

• Redundancy

• Workload Growth

• Decomposition
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Figure 8.2: CEML modelling environment showing the imported system design
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Figure 8.3: CEML modelling environment showing the component growth modelling
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Redundancy

In the case of redundancy, the modeller is offered four different forms of replication

as defined by NSWCDD, 2004. These are Primary/Shadow, Active, Passive and

Check Pointing. To achieve any of these, the modeller is provided with both active

(Position Marker 1) and passive (Position Marker 2) replication model entities,

along with associated configuration items such as replication number settings.

Furthermore, passive replication modelling includes an additional modelling

level to detail the characteristics of check pointing replications (if enabled). As can

be seen in Figure 8.4, there are two model entities available to set the number of

checkpoint interfaces (Position marker 2) and the check point message transmission

characteristics (Position Marker 1) behind each interface. Once an interface is

connected to an CheckPointUpdateRate model entity, the modeller can then choose

the entity and define the frequency and whether increasing frequency is required

(Position Marker 3 and 4).

Workload Growth

Figure 8.3 also shows the option to define a workload growth (Position Marker

4). Using this model entity, the modeller can assign a growth for workloads found

within identified components (Position Marker 5). Once assigned, the modeller can

then define the size of the growth and the number of steps1 to reach that growth

1Each step equates to a new architecture configuration
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Figure 8.4: CEML modelling environment showing the passive replication checkpointing modelling
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(Position Marker 6) for the workloads within the component. The last model

entity is the Decompose model entity (Position Marker 2). This allows the

modeller to investigate particular components moving from a monolith to be-

ing decomposed into a number of sub-components. In this case, the ’id-0065-

00000044_UAV1_CTRL’ component from the imported PICML UAV system

design model has been selected.

Decomposition

Figure 8.5 shows the component decomposition architecture modelling view and

details the decomposition architecture of the id-0065-00000044_UAV1_CTRL

chosen for decomposing in Figure 8.3. In this modelling view, the number of

sub-components wanted for the decomposition is defined along with how the

connections between the sub-component interfaces are required. In this case,

the decomposition consists of three sub-components and three new connections

between five new sub-component interfaces (Position Markers 2 and 3). While the

connections between new sub-component interfaces occur in this modelling view,

the interfaces and event behaviour within each created sub-component are required

and defined via the sub-component interface and behaviour modelling view.

Figure 8.6 shows the interface and event behaviour modelling for the sub-

component crt_Sub_ComponentInstance_3 from Figure 8.5. In this modelling

view, all the model entity options available for interface and event behaviour

definitions can be seen in the Part Browser (Position Marker 1).
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Figure 8.5: CEML modelling environment showing the component decomposition architecture modelling
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The main modelling window shows the definition for two event threads, both

beginning from newly-created sub-component input event port interfaces and

ending with a connection to an original id-0065-00000044_UAV1_CTRL output

event port interface (Position Marker 3), while the other is terminated internally. A

branch condition (Position Marker 2) can also been seen, leading to the creation of

two different workloads being executed within this sub-component. The last part

of this modelling phase is to highlight a ’Sub_Workload’ model (Position Marker

4) and then define the characteristics of that workload (Position Marker 5). The

settings for workloads within sub-components allows for definitions of the size

of the workload relative to the original monolith component workload amount,

whether this workload level is to be reach through a series of steps2 and if logging

is required for the workload event.

Once the component architecture growth and required component decompo-

sition modelling is complete, the modelling moves to the deployment constraint

modelling. To reduce complexity, aspect windows are used to guide the modeller

through the numerous constraints that can be modelled for the evolved system

design deployment. These modelling aspects allow for:

• Computing Node Mandate Deployment

• Component No-co-location

• Minimum Temporal Performance

• Resource Capacity

2Each step equates to a new architecture configuration
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Figure 8.6: CEML modelling environment showing a sub-component interface and event behaviour modelling
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Computing Node Mandate Deployment

Figure 8.7 shows the mandate deployment constraint modelling environment. This

modelling view has four modelling entities for use: two to account for the system

components (Position Marker 1) and sub-components (Position Marker 4), and two

to account for the computing nodes available for deployment. In the case of the two

computing nodes related to modelling entities, one identifies a particular computing

node (Position Marker 3) available for deployment, while the other modelling entity

is the deployment group (Position Marker 2) that captures particular components

and components requiring mandate deployment, and can be attached to one or more

available computing node. In the case of more than one computing node being

attached to a deployment group, all permutations of deployments are explored. In

this modelling view, all the modelling elements within the main modelling window

are greyed out and the modelling approach sees highlighting of all the parts of the

system design associated with the mandated deployment.

In the scenario shown in Figure 8.7, one of the sub-components (Position

Marker 7) of the id-0065-00000044_UAV1_CTRL is associated with a deployment

group (Position Marker 6), which is also associated with a single computing node

(Position Marker 5).

Component No-co-location

Related to modelling mandate deployment constraints, a modelling option is also

available for no-collocation constraints between certain elements of the evolved
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Figure 8.7: CEML modelling environment showing mandated deployment constraint modelling
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system design. For these modelled constraints, the relationship is between the

software components of the design and dictates that particular software components

never reside together on an available computing node. As depicted in Figure 8.8,

there are four modelling entities to identify the particular part of the evolved design

(Position Marker 1, 2, 4 and 5) the constraints are to be attached to, while one

modelling entity is used to define the constraint (Position Marker 3).

The main modelling window in Figure 8.8 shows two no-collocation constraints

modelled for the UAV software system. One constraint (Position Marker 6) declares

the two new sub-components cannot reside together when deployment occurs.

The other constraint definition (Position Marker 7) defines that, as part of the

construction of the passive replication for the UAV COMMS component, none

of the redundancy components constructed to achieve the desired replication can

reside with each other.

Minimum Temporal Performance

Following deployment modelling, the CEML modelling environment then defines

temporal performance constraints for certain parts of the evolved system design. In

this case, the modelling is defining maximum latency for connections between the

software components of the evolved software system design. Figure 8.9 shows the

connection between the original id-0065-00000043_UAV1_GPS component and

one of the new sub-components that requires a temporal performance constraint

(Position Marker 4). This also includes the definition of the maximum latency in

milliseconds (Position Marker 5).
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Figure 8.8: CEML modelling environment showing no-collocation constraint modelling
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For this part of the CEML modelling process only components or sub-components

are considered for temporal performance declaration. Future research would also

look to add the replication elements constructed through the CEML modelling

process.

Resource Capacity

The last area of constraint modelling within the CEML modelling environment

defines the resource capacities constraint for CPU or memory resources that will

be applied to the available computing nodes. Figure 8.10 depicts the modelling

environment for defining the spare resource capacity for the CPU (Position Marker

1) or the memory (Position Marker 2) applied to the computing nodes. In this case,

it can be seen that both computing nodes available within the UAV system design

have spare resource constraints declared for both CPU and memory, and the values

of these constraints are defined in the attribute declaration area (Position Marker

5).

Using all the architecture evolution characteristics and behaviours defined

through the CEML modelling phase, the CEML Model Interpretation process

(Figure 8.11) works through all the architecture evolution declarations and identifies

the resulting evolved system designs. For this concept development, these new

evolved system designs are based on permutations of all the architecture evolution

definitions. Future research would consider the use of evolutionary algorithms to

search for the most likely architecture evolution paths and resultant evolved system

designs.
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Figure 8.9: CEML modelling environment showing temporal performance constraint modelling
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Figure 8.10: CEML modelling environment showing computing node resource capacity constraint modelling
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Figure 8.11: System design evolution framework execution flow
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With the new, evolved system designs identified, the framework then uses the

original PICML system design model to create new, evolved PICML system design

models ready for deployment within the DIG framework. The final number of

new PICML system design models constructed is based on the different combina-

tions of evolved architectures (i.e., decomposition and replication), the different

arrangements of particular evolved architectures (i.e., increasing the number of

replication components up to the maximum) and number of run-time configurations

considered for particular evolved architectures (i.e., increasing the workload up to

the maximum evolved workload).

Figure 8.12 shows one of the evolved PICML UAV system design models

constructed out of the CEML interpretation process from the architecture evolution

definitions within the UAV CEML model. In this case, the evolved system design

has all three of the defined architecture evolutions combined into the PICML

single design model. This includes the active replication of the original id-0065-

00000043_UAV1_GPS component (Position Markers 1-5), the decomposition of

the original id-0065-00000044_UAV1_CTRL component (Position Markers 6-8)

and the use of passive replications configured in a primary/shadow arrangement

on the original id-0065-00000045_UAV1_COMMS component (Position Marker

9-12).

We can also see in the main modelling window all the newly-created compo-

nent instances, along with the required connections. For the active replication,

the original GPS component (Position Marker 1) remains executing, along with

four new copies of it (Position Markers 2-5), also executing. Furthermore, all
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connections for both inputs and outputs interface ports on all the components are

connected and communicating.

In the case of passive replication, the model shown is in the primary/shadow

replication configuration. In this configuration, the original COMMS (Position

Marker 9) component remains executing along with three copies (Position Markers

10-12) executing in shadow mode. The input and output interfaces are connected

for the primary original COMMS, while the shadow components (Position Markers

10-12) only have their input interface ports connected. The output interface ports

of the shadow components (Position Markers 10-12) are not connected (Position

Markers 20-22). Furthermore, to allow for state information to be shared from

the primary component to the shadow components, the checkpoint interface exists.

This interface is added to the original COMMS (Position Marker 16) along with

modifying its other modelling artefacts, as well as adding the newly-created shadow

component copies (Position Markers 17-19).

With each new model creation or existing model modification, all required

modelling artefacts associated with component implementation and component

architecture (Position Marker 23), component structure and behaviour (Position

Marker 24) and message structure and interface definition (Position Marker 25)

are also created, or modifications are made to existing artefacts. Furthermore,

when decomposition occurs, the original component associated with the decompo-

sition is removed within the system component architecture model (as depicted in

Figure 8.12).

In the case of the UAV system design, CEML modelling interpretation process
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would result in the construction of a number of new PICML system design models,

based on the 24 combinations of the ’GPS’ and ’COMMS’ component replications,

combined with the result of the decomposed component representation (future

research could consider stepping through the number of sub-components generated

up to the maximum). This number is then increased, based on the run-time

configurations for the workloads defined (i.e. a 10% step increase for each design

would result in an additional 10 designs for the workload associated with the

’GPS’ component), and possibly increased further with step growth for workloads

associated with the sub-components. Furthermore, the number could be increased

again if there is a requirement to explore the other configuration options for passive

replication modelling, such as ’check-pointing’ or ’passive replication’.
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Figure 8.12: Example of one of the evolved UAV software system models
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8.2 Modelling Framework

The aim of this modelling framework is to augment the analytical capability

found within the SEM modelling environment with the new DSML and modelling

mechanisms to explore system design evolution areas of interest. Through a series

of model information extractions, translations and transformations, the overall

capability enables the creation of new system design models that can then be fed

into a SEM environment for execution and measurement-based analysis. This

would include the utilisation of the newly created SEM environment deployment

optimisation capability, also introduced with this thesis. The approach introduced

here is built on the SEM environment created out of the research by Falkner et al.,

2013.

The performance evaluation framework for the SEM environment utilised for

this research, known as the DIG framework, is depicted in Figure 8.13. Because this

SEM environment served as the initial research and development foundation that

lead to the research and development of the MEDEA SEM environment (Falkner

et al., 2018), we see the same key pillars of capability: namely, the building of

models to represent system design and performance requirements, the execution

of those models onto representative computing environments, and extraction of

instrumented data to enable measurement-based analysis.

An important aspect of this work was that all architectural changes and newly

created system models resulting from the evolution exploration capability were

anchored to the original system design modelling paradigm. While different model
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Figure 8.13: Overall DIG framework performance evaluation

paradigms and information are used, the entry and exit points from this new

capability needed to be consistent and coherent with the original SEM environment

artefacts. To achieve this our design needs were:

• To minimise complexities by maintaining the use of abstract MDD ap-

proaches where possible,

• To utilise the same code artefacts from the extant system design model to

construct the evolved system architectures, behaviours and workloads,

• To translate high-level system requirements or constraints into a pictorial or

text-based models.

Figure 8.14 shows a breakdown of the main components of the system design

evolution performance prediction framework. The entry point into the framework

is the extraction of extant software design information and definitions captured
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Figure 8.14: System design evolution performance prediction framework

using a DSML known as PICML (Platform Independent Component Modeling

Language). This is followed by a DSML to DSML model translation to enable

insertion into a CEML DSML model. The CEML model is then updated and

used to search possible architecture evolution paths and the creation of new system

design PICML models. Finally, the new PICML system design models are executed

within the DIG framework.

The main elements of the framework are:

• The PICML Model: is a DSML constructed within a modelling environ-

ment that allows for creation of domain-specific modelling and program syn-
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thesis environments, known as the Generic Modelling Environment (GME)3.

This PICML DSML is used by the CoSMIC (Gokhale et al., 2003) / CUTS

(Slaby et al., 2006) environment to develop models that describe a system’s

architecture, its deployment alongside description of component behaviour

and resource consumption,

• DSML Transformation: is a Python script responsible for extracting, trans-

forming and translating the appropriate parts of the PICML system design

model to a CEML-based model,

• CEML: is a DSML developed within GME to allow for descriptions of areas

of the system design needing to be explored for possible evolution paths. The

CEML model itself, which runs within GME, guides exploration of ways

to evolve a system design through pictorial modelling for such elements

as architecture growth, deployment, resource requirements and deployment

constraints,

• Architecture Evolution Exploration: is a Python script that uses the infor-

mation and definitions found within a CEML model to search for possible

system architecture change options and resulting evolved system designs.

• Architecture Scenario: the deployment of a particular evolved system

design option onto the computing resource environment to be tested,

• DIG Framework: The model-driven SEM system design performance eval-

uation framework.

As depicted in Figure 8.14, four of the seven components within the frame-

3https://www.isis.vanderbilt.edu/Projects/gme/
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work make up the System Design Evolution Framework. The capability of this

framework is aimed to extract the smallest subset of extant model details required

to produce a system design representation with CEML. It then allows the new

CEML model to be augmented with the system architecture evolution characteris-

tics wanting to be investigated, and then enables the identification and creation of

new architectures for the extant system design, which leads to the creation of new

evolved system design models.

In this initial research effort, the creation of evolved system designs was based

on creating all permutations of architecture changes based on the CEML model.

Future research efforts would explore the use of evolutionary algorithms to search

for most likely architecture evolution paths.

The execution flow of the System Design Evolution Framework is depicted in

Figure 8.11. Below is a description of each element that makes up that execution:

• Model Information Scraping: this process traces through the extant system

design PICML model for information relating to the software architecture

and workloads associating with every software component found within the

system design model. The information scrapped is a minimum set of model

details to allow for a representation of all the software components, event

ports within software components, workloads associated with the event ports,

and finally the connection between software components and their event

ports. It also extracts details relating to the run-time environment available

for deployment. Furthermore, for every model detail extracted, the PICML

ID is extracted to support the requirements of the PCML Model Trace and
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Identification process later in the execution flow.

• PICML Model Detail To CEML Model Detail Translation: this process

takes all the extracted model details in PICML form and translates them into

the required format to enable them to be held within a CEML model.

• System Design CEML Model Creation: this process takes all the model

information translated into the CEML format and places it into an XML file

template that can be imported into the CEML modelling environment.

• System Evolution CEML Manual Modelling: using the CEML modelling

environment created through the use of GME and the CEML meta-model,

the imported CEML extant system design model (the created XML file) can

be annotated with modelling constructs to represent architecture evolution

characteristics for particular parts of the system design.

• CEML Model Interpretation: taking the completed CEML model with

system architecture evolution details this process identifies the number and

type of changes to occur for each area of interest in the system architecture

and then determines permutations of new system designs requiring creation.

• PICML Model Trace and Identification: working through all the architec-

ture changes for each system design change permutation this process uses

the PICML ID information to identify areas of the PICML extant model

requiring change. Once these are found, a trace through the entire PICML

model occurs to identify other, associated modelling elements requiring

change. With the full modelling thread mapped out the required modelling

changes occur to represent the particular system architecture change. All
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change threads are then combined to represent each system design change

permutation. The complete set of system design change permutations are

then stored for use later in the execution flow of the PICML Model Creation

process.

• PICML Model Creation: taking the set of system design change permu-

tations and a copy of the extant PICML system design model, this process

creates a new PICML model representing a particular architecture’s set of

changes and the resulting evolved system design model. This new PICML

model is then ready for deployment within the SEM run-time environment.

8.3 Transition to MEDEA SEM Environment De-

sign

While this body of research was built around the DIG framework, the overall

research of which this thesis was a part of had deprecated this framework and

developed the new MEDEA SEM environment. As a result, the integration software

associated with the DIG framework and the DSML translation became obsolete,

and a new design and second integration effort was required.

Figure 8.15 shows the new design execution flow of the overall system design

evolution performance prediction framework, which builds on the MEDEA ex-

ecution flow (Figure 4.9) including the deployment optimisation capability. For

this new design the integration point occurs after the MEDEA modelling phase,

with the delivery of the MEDEA system design model to the ’Model Information
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Scraping’ process. Furthermore, it can be seen that the original system design

evolution framework and execution flow largely remains unmodified (indicated

by the purple colouring). The remaining needs were to address the modification

requirements of replacing code associated with the PICML DSML translation

and modelling environment, integration with code needed for MEDEA DSML

translation, and modelling environment integration.

The new design depicted in Figure 8.15 also shows the two new components

(indicated by the blue colouring) addressing a capability gap to package models and

provide an automatic single delivery point for deployment optimisation. This would

build on the process introduced for delivering model files out of the deployment

optimisation phase to the Jenkins Continuous Integration Server via the batching

interface, which was developed as part of this thesis.

The scope of this thesis does not include this second development and integra-

tion effort. As a result, the case study section presented below will walk through

the modelling and performance prediction approach with manual intervention to

account for gaps within the overall integrated framework.
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Figure 8.15: Overall system design evolution performance prediction framework integrated with the MEDEA
deployment optimisation environment
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8.4 Case Study

The case study described here is based on another example of an undersea sensor

system. Due to the MEDEA DSML translation and integration framework not being

available, the MEDEA system design model constructed (Figure 8.16) was trans-

lated manually to allow for modelling within the CEML modelling environment.

This included the definition of the software system design and available comput-

ing nodes within the undersea sensor system network (Figure 7.1). This manual

translation also included the modelling information from the CEML modelling

environment back to the MEDEA modelling environment to enable deployment

optimisation, execution and measurement-based performance analysis.

8.4.1 System Design Evolution Definition

Figure 8.17 shows the CEML component architecture representation of the under-

sea software system developed within the MEDEA modelling environment for this

case study. As detailed above, the translation process from MEDEA to the CEML

only considered the components themselves, their interfaces and the connections

between the component interfaces.



C
H

A
P

TE
R

8.
E

VO
LU

TIO
N

D
SM

L
284

Figure 8.16: CEML DSML case study: undersea software system design
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Figure 8.17: Undersea software system: component architecture within the CEML modelling environment
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Figure 8.18: Undersea software system: component growth modelling within the CEML modelling environment
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Using this case study, the CEML environment will demonstrate its application

for investigating software system evolution, which includes software decomposi-

tion, introduction of redundancy and improved temporal performance. It will also

demonstrate its use when investigating design evolution and emergent properties.

In this scenario, it will also be accounting for battery performance degradation due

to age.

Figure 8.18 shows CEML component growth modelling applied to the under-

sea sensor system software components. The architectural evolution definitions

depicted are:

• WorkloadGrowth (Position Markers 1 and 2: workload increases are

wanted within the two software components SampleProcessing_1 and Sam-

pleProcessing_2, the increases being a 30% increase on current workload

levels. Furthermore, the exploration considers the increase over two steps of

a 15% increase and then the full 30% increase (Position Marker 5),

• PassiveReplication (Position Marker 3): the TrackRepeater software com-

ponent requires improved redundancy, so passive replication is being applied

to it. The type of passive replication explored was Primary/Shadow, there-

fore the input ports of each replica will be active and a checkpoint interface

will be required (refer to Figure G.3 for modelling of this). The number of

replicas required was two,

• Decompose (Position Marker 4): the Seawater_track_1 software compo-

nent was transitioned from a monolithic software application design to a dis-

tributed application through the development of a number of sub-components.
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The investigation was required to explore the impact of a different number

of sub-components and required connections, as well as new, distributed

workloads for the new sub-components. It also included a latency constraint

that was applied to the original output interface.

Figure 8.19 shows the decomposition modelling for the Seawater_track_1

software component within the CEML modelling environment. In the main mod-

elling window, we can see the decomposition wanting to explore the option of

breaking up the monolithic software component into three sub-components. It also

defines new connections between these sub-components, along with the original

output interface from the monolithic software component (Position Marker 3).

Appendix G shows the definition of the three sub-component behaviours, where

Sub_ComponentInstance_1_seawater_track_1 has a 20% portion of the total origi-

nal software component workload, with four increased steps of 25% ( Figure G.5),

Sub_ComponentInstance_2_seawater_track_1 has a 40% portion with no increased

steps (Figure G.6), and Sub_ComponentInstance_3_seawater_track_1 has a 50%

portion with four increase steps of 25% (Figure G.7).

The last part of the CEML evolution modelling for the undersea software system

defines the mandate deployment, temporal performance and resource capacity

constraints applied to the evolved software system design and deployment to the

undersea sensor system network resources.

Figure 8.20 shows the mandate deployment constraint modelling for the Sea-

water_Sensor_1 node within the undersea sensor system network. In this case,

the newly-developed component Sub_ComponentInstance_1_seawater_track_1



CHAPTER 8. EVOLUTION DSML 289

Figure 8.19: Undersea software system component decomposition modelling
within the CEML modelling environment

(Position Marker 3) has been associated with the mandate deployment group model

entity (Position Marker 2), which is tied to the Seawater_Sensor_1 computing

node (Position Marker 3). In addition to the new mandated deployment constraints

defined, mandated deployment constraints defined in the original MEDEA are also

inherited, and can be modified as required.

Following mandate deployment constraint modelling, the temporal performance

constraints are defined. Figure 8.21 shows a temporal performance constraint mod-

elled between the newly developed Sub_ComponentInstance_3_seawater_track_1

component (Position Marker 1) and the connection to the SampleProcessing_1

component (Position Marker 3). Furthermore, as this connection is associated with

a temporal performance constraint modelled within the extant MEDEA design
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model, the maximum latency definition within the CEML model (Position Marker

4) leads to a further improvement (decrease) of the maximum latency performance

for the connection.

The no-collocation constraint defined for the undersea sensor system relates to

the redundancy improvement introduced with the component architecture growth

modelling. In this case (Figure 8.22), the passive replication (Position Marker 2)

associated with the TrackRepeater component has been modelled (Position Marker

1) to ensure the replicas created will not be collocated when deployed onto the

undersea sensor system network.

As detailed above, this case study for the undersea sensor system considers a

scenario where battery performance degradation has occurred due to age. In this

case (Figure 8.23), the degradation is with computing nodes Seawater_Sensor_2

and Sea_Buoy. To account for this power supply performance reduction the levels

of spare CPU capacity have been increased for both nodes (Position Markers 1 and

2) to account for an additional increase of 20%. Furthermore, the investigation will

consider four increased steps up to the 20% total point (Position Marker 3).
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Figure 8.20: Undersea software system mandate deployment modelling within the CEML modelling environment
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Figure 8.21: Undersea software system temporal performance modelling within the CEML modelling environment
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Figure 8.22: Undersea software system no-collocation modelling within the CEML modelling environment
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Figure 8.23: Undersea software system CPU spare capacity modelling within the CEML modelling environment
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With the completion of the CEML definitions, the CEML interpretation process

is executed to develop all the permutations of evolved system designs and configu-

rations. An example of one of the evolved MEDEA undersea system designs can

be seen in Figure 8.24. Position Markers 1, 2 and 3 indicate the replication addition

where there is the primary function (Position Marker 1) and two passive shadows

(Position Marker 2 and 3) are keeping in synchronisation with the primary software

component but are not active. Meanwhile, Position Markers 4, 5 and 6 indicate

the new decomposed software component where the original monolith has been

broken into three new sub-components. To support the development of these new

sub-component instances, the CEML interpretation process also creates the new

software component definition. In this case, three new sub-component definitions

are produced and one of these definitions can be seen in Figure 8.25.

With the introduction of the integration between the CEML and MEDEA

environments, all the designs and configurations can then be bundled and delivered

to the MEDEA for deployment within its workflow. This would also utilise the new

unpacking and execution capability and the deployment optimisation capability

also introduced with this thesis. The result of this project is that system designers

will not only gain the ability to explore optimal deployment of a known software

system onto the system’s computing infrastructure, but also to explore how optimal

deployment of an evolving software system performs when it is deployed onto the

same computing infrastructure.
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Figure 8.24: An example of one evolved undersea software system design
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Figure 8.25: Evolved undersea software system design new component definitions
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In the case of an undersea sensor system, this would enable investigations

into how best to deploy the software as it evolves onto the existing computing

environment, how to gain insight into performance impact, and how to evaluate and

change requirements and constraints, based on different performance expectations.

Furthermore, it would also enable the exploration of how to feed in the effect

of battery capacity loss (through computing resource evolution modelling), or

communication performance constraints (through temporal performance evolution

modelling) from environmental changes.

The introduction of the CEML DSML did, in fact, enable a reduction in

complexity and effort in defining the various characteristics and behaviours needed

to capture the system evolution. It also showed potential as a guide to the modeller

through all the modelling requirements when generating complete definitions.

However, improvements in the level of abstraction are still needed to reduced the

amount of text-based annotations, as well as the number of modelling entities

needed to complete the definitions. This abstraction improvement would also help

to improve the scope of areas of the system design to be considered as part of the

evolution modelling.



299

9. Conclusions and Future Work

Systems of systems (SoS) are found across many domains, including defence,

power networks, space and avionics, and automotive systems. SoS are a collection

of systems that work together to achieve a common purpose, where the system’s

desired emergent behaviour results from the integration of independently operating

and managed heterogeneous systems. SoS are never viewed as achieving a finalised

state: they evolve in response to continually changing operational requirements and

have extremely long life cycles. In addition, mission-critical SoS are rarely built

from scratch and so they integrate legacy systems. As a consequence, significant

limitations exist for integration and operational deployment, resulting in potentially

unexpected and undesirable overall system performances at times.

The literature presented in this thesis showed that while an understanding of

both functional and non-functional aspects of the SoS architecture is important,

non-functional aspects are of greater concern for resource-constrained platforms, as

there is little to no ability to improve processing capabilities once the host systems

are developed. With strict budget allocations for space, weight and power (SWaP)

for various systems installed on many of these SoS host platforms, any early insight
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into the performance of the SoS from its corresponding deployment becomes

crucial in preventing an imbalance between resource availability and demand,

which can otherwise result in performance shortfalls and potentially expensive

rebuilds. The literature also showed there are challenges in SoS development to

minimise the risk of architectural change late in the development cycle, and the

associated high costs. As a result, modelling methodologies emerge as a crucial

tools in prevention of these late changes by offering key insights into deployment

and non-functional properties early in the development and integration cycle (for

the initial development) or subsequent upgrade cycles.

The literature also showed that early insight cannot be achieved through tradi-

tional methodologies, as they focus first on functional aspects of the system design

and leave the non-functional aspects until the final phases of the development life

cycle. The literature showed that any system design modelling needs to capture sys-

tem characteristics and behaviours, both static in architectural design and dynamic

in system execution. In addition, by allowing for mapping of models onto real

computing platforms for evaluation of non-functional requirements and constraint

satisfaction, significant benefit could be gained from earlier identification of design

risks associated with constrained SoS through measurement-based analysis. This

included low-level insights into behaviour and performances of the ever-increasing

number of COTS elements that make up a constrained SoS design.

Our literature review found pockets of performance prediction modelling re-

search that focus on measurement-based techniques and deliver the level of fidelity

required for early insight into COTS-based constrained SoS design risks. Lead-
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ing the way into measurement-based techniques was research known as System

Execution Modelling (SEM). Using a technique of deploying abstract application

business logic models and then executing them on actual real computing infrastruc-

ture, key insights into behaviours and performances, as well as integration, were

produced through post-execution measurement analysis. However, the literature

also showed the SEM technique was predominantly focused on the representation

of system architecture and its workload. The SEM approach did not consider large

scale searches associated with the deployment of the many SoS software elements,

or an ability to optimise any such deployment around known requirements or con-

straints for the system development effort. It was also shown that an extension to

the optimal software deployment search capability was to have the search consider

the evolution of the software system. By introducing a technique that allows for the

optimisation capability to account for system evolution characteristics in addition

to the high-level requirements and constraints, optimal software deployment could

be explored for evolved system design options.

The literature survey considered optimisation techniques to address the com-

plexity of searching the software deployment problem space. Optimisation tech-

niques can be found solving problems across many computing paradigms, including

software deployment. However, these approaches considered deployment optimi-

sation at the system or platform level and not the software component level. The

literature also showed system evolution performance prediction techniques were

either postmortem-based or largely abstract in nature, and not to the level of fidelity

required for performance insights associated with COTS-based constrained SoS
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design evolution.

In response to these gaps, this thesis introduced new research for modelling

deployment of large scale, evolving COTS-based constrained SoS. This thesis

introduced an approach consisting of a new SEM modelling approach, optimisation

algorithms to enable software deployment optimisation at the required fidelity,

new instrumentation methods, and a new modelling language for evolution char-

acteristics definition and construction of evolved software system designs. The

proposed approach was extensively verified and validated, and the experimental

analysis evaluated a realistic case study with several scenarios being showcased. In

fact, through the application of the case study, the new optimisation capability was

shown to provide critical and unique insights into optimised design exploration for

the various performance aspects, such as mandate deployment, power consumption

and temporal performance.

Novel SEM modelling approach: In response to the identified capability gap

for SEM environments to handle deployment of large scale SoS design models

automatically, this thesis introduced a novel SEM modelling approach centred

around system design critical chains (or threads) and non-functional requirement

modelling. By introducing new model entities and modelling processes, the system

modeller is capable of declaring desired behaviour and performances associated

with that identified critical chain, as well as non-functional requirements for the

broader software system and available computing nodes. Using these declarations,

the software deployment can then be automatically guided (the second novel
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contribution) through a more formal mechanism, based on high-level requirements

and constraints.

As a result, system designers are easily provided with insight and correlation

on low-level system performances and behaviours, as a result of high-level design

drivers.

There were some limitations with the modelling method within the SEM

environment as a result of the level of integration. This led to large usage of text-

based attribute annotation. Also, the initial method developed only considered a

single critical chain within the system design, but it would be reasonable to expect

system modellers would want to explore various design critical chains or threads.

Novel software deployment optimization algorithms: The literature survey iden-

tified research gaps with large areas of deployment optimisation research only

considering deployment optimisation at the system or platform level. Further-

more, for those cases where software component granularity was considered it

was around the individual elements largely in isolation, rather than broader system

aspects. In response to this, this thesis presented novel optimisation algorithms and

frameworks to address this capability gap and to serve as the automated searching

capability complementing the novel SEM modelling approach.

The testing and analysis presented in thesis showed the optimisation technique

introduced operated and predicted correctly for each element of its algorithms. The

results presented showed some performance shortfall, largely due to fidelity of the

models developed (which can be improved with future research). They also showed
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the overall performance and ability of the new optimisation approach correctly

identified software component deployment options in response to deployment

mandate requirements, resource utilisation constraints and temporal performance

requirements. This was further conveyed with the application of the introduced

technique to an undersea sensor network system design case study. This case study

showed how the application provided critical and unique insights into optimal de-

sign exploration for the various performance aspects, such as mandate deployment,

power consumption and temporal performance.

As with the novel SEM modelling approach, the introduced optimisation tech-

nique was limited to considering a single critical chain of the system design.

Novel instrumentation methods: The introduction of the novel modelling ap-

proach resulted in the need to construct a new SEM instrumentation approach.

This approach allowed for various new run-time measurements and correlations

of performances and events associated with the critical chain modelled with the

broader instrumentation capability of the SEM environment. The approach centred

around a data model implemented within the SEM model definitions and model

instantiation, as well as post-execution data translation and correlation processes to

enable analysis techniques to occur, such as the Pearson Correlation, Confidence

Intervals, Mean Standard Deviation and Polynomial Fit.

With this data and subsequent analysis, it was verified that the Objective

Function and Evolutionary Search algorithms performed as expected. It then

confirmed the ability of the introduced capability to construct system designs that
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deliver optimised performance for the known non-functional design aspects. It also

served to support calibration to improve algorithm performance.

Novel domain language for expressing system evolution: From the literature

it was identified that system evolution performance was mostly postmortem and

forensic, while research forward was largely abstract in nature and not suited to the

level of fidelity required for performance insight associated with mission-critical

DRE SoS design evolution. As a result, this thesis introduced a new DMSL and

interpretation and translation frameworks. These allowed SEM-based models

to have system evolution characteristics annotated to enable design exploration

and construction of new SEM-based models representing evolved system design

options.

Known as CEML, this new language, along with the newly developed language

translation and interpretation frameworks, presents a new method that allows

system designers to gain insight into how best to utilise available computing

resources when the software system evolves. This new language was demonstrated

by working through an evolution of an undersea sensor system, where the evolution

characteristics were defined and resulted in new, evolved design models being

constructed through new evolution exploration processes and in readiness for

execution within the MEDEA SEM environment. These processes would also

include utilisation of the novel optimisation technique, also introduced with this

thesis.

The research conducted within this thesis introduced four contributions to
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the research community associated with modelling and predicting system design

performance, including system evolution. In addition to realising these direct

research outcomes, the thesis research also supported the broader SEM research

program and its research outcomes and publications (Falkner et al., 2018, Falkner

et al., 2013 & Falkner et al., 2013).

9.1 Future Work

Building on the successful demonstration of the new technique for searching for

optimal software deployment of evolving systems with this thesis, several avenues

for future work were identified.

Operational Environment Deployment: While the initial focus of the research

for this thesis was around the design effort and insights for system designers, the

methods introduced here could also be applicable to operational environment and

dynamic changes to software deployment based on current operational conditions.

High-level requirements and constraints could be used to adjust the software

deployment in real-time, where the response could be based on such things as

operational posture, failure or damage, or the desire to adjust and extend operational

endurance. This would also consider testing methods to demonstrate robustness of

the approach and assurance of the outcomes.

Multi-Critical Chain Optimisation: For the new SEM model approach and op-

timisation capability, improvements could be made to allow for multiple critical

chains within a system design to be identified and reconciled to deliver software
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deployment profiles and optimal performance from defined non-functional require-

ments.

Additional Processor Platforms:Improvements can be made to the optimisation

algorithms to increase their scope in accounting for processing hardware beyond

the CPU-based computing nodes. New capabilities can be added for consideration

when deploying to GPU-based computing nodes, which would also introduce

methods for applying new, non-functional requirements to the available resources.

The optimisation algorithm could also be expanded to consider the use of shared

infrastructure through the use of virtualization and technologies like Docker or

microVMs, and how to consider the ability to dynamically change resources at

the system deployment level, while still ensuring deployment and performance

optimisation at the software component level.

CPU and Network Model Improvements: The models used for CPU and net-

work utilisation within the optimisation process could benefit from having higher

fidelity data added to them for interpolation purposes. As an alternative, the opti-

misation process could look into methods for directly applying instrumentation as

part of the optimisation process. This could occur in the form of a test harness or

possibly having the execution of models, instrumentation and optimisation within

a single execution loop.

Full Environment Integration: Conduct development and integration of the

CEML model framework with the MEDEA SEM environment (and the optimisa-

tion capability introduced with this thesis) could be used to develop a complete

automated software system evolution deployment optimisation capability.
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A. Modelling Technical Detail

A.1 Existing MEDEA modelling element prede-
fined attributes
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New Attribute Description Associating Model El-
ement

maxLatencyStringGroupDetail This data pair is id, time in millisec-
onds i.e., 1,650

Assemblies Elements

assemblyMandateDeployGroup This is just an unique id label Assembly Elements

noColocationPairId This is just a unique id label Component Elements

componentMandateDeployGroup This is just a unique id label Component Elements

componentMandateDeployOnly This is just a unique id label Component Elements

connectionFrequency This can be a number or a func-
tion using the variable ’f’. NB:
the above detail are placed on the
delegate to delegate connection
when there are delegates nothing
is added to the eventPort to dele-
gate connectionFrequency

Connection Elements

connectionPayload This can be a number or a func-
tion using the variable ’n’ or ’m’.
NB: the above detail are placed on
the delegate to delegate connection
when there are delegates nothing is
added to the eventPort to delegate
connectionFrequency

Connection Elements

internalConnection This is boolean flag and set with
the string ’true’ or ’false’. NB:
the above detail are placed on the
delegate to delegate connection
when there are delegates nothing
is added to the eventPort to dele-
gate connectionFrequency

CriticalChain Connec-
tion Element
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New Attribute Description Associating Model El-
ement

maxLatencyConnection This is a number representing the
required time in milliseconds re-
quired for particular connection’s
latency. NB: the above detail are
placed on the delegate to dele-
gate connection when there are
delegates nothing is added to the
eventPort to delegate connection-
Frequency

CriticalChain Connec-
tion Element

maxLatencyStringGroup This is an unique id label to be ap-
plied to the connections part of a
particular string of interest which
has its latency set at the assembly
element level. NB: the above de-
tail are placed on the delegate to
delegate connection when there are
delegates nothing is added to the
eventPort to delegate connection-
Frequency

CriticalChain Connec-
tion Element

spareCapacityCPU this is a number representing the
percentage size of spare CPU re-
sources to remain on the particular
node

Node elements

spareCapacityMemory This is a number representing the
percentage size of spare Memory
resources to remain on the particu-
lar node

Node elements
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New Attribute Description Associating Model El-
ement

spareCapacityCPUWeight this a number representing the
weight to be applied to spare CPU
capacity result

Node elements

spareCapacityMemoryWeight This a number representing the
weight to be applied to spare Mem-
ory capacity result

Node elements

assemblyMandateDeployGroup This is an unique label that lines up
with the particular labels applied to
assembly elements

Node elements

componentMandateDeployGroup This is an unique label that lines up
with the particular labels applied to
the component elements

Node elements

componentMandateDeployOnly This is an unique label that lines up
with the particular labels applied to
the component elements

Node elements

connectionSpeedMB This is number representing the
speed of the particular connection.
NB: this may be taken over by the
ZMQ testing framework and result
provide for bandwidth and through
put for ZMQ connections

Node element
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A.2 Text-based Modelling Elements

CLI Prompt Attribute Application Non-Function
Characteristics

Pictorial-model entity com-
plement

‘Change the double bit
size’

Used to set the number of
bits that will represent a dou-
ble primitive within a mes-
sage

Size of message
primitive

Used in conjunction with the
message payload attribute
for the interface connection
model entity within the As-
sembly context window.
NB: Check if this is still used
or has been deprecated

‘Change the integer bit
size’

Used to set the number of
bits that will represent an in-
teger primitive within a mes-
sage

Size of message
primitive

Used in conjunction with the
message payload attribute
for the interface connection
model entity within the As-
sembly context window.
NB: Check if this is still used
or has been deprecated.

‘Change the flag to in-
dicate whether all the
connection latency re-
quirements are needed’

A Boolean flag used to tell
the optimisation process to
either ignore the deployment
if profiles that do not satisfy
the connection latency re-
quirements if set to TRUE or
use the current deployment
profiles do not satisfy the
connection latency require-
ments if set to FALSE

Decision flag to
determine if cer-
tain deployment
options will be
part of the optimi-
sation processing
or not

NA
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CLI Prompt Attribute Application Non-Function
Characteristics

Pictorial-model entity com-
plement

‘Change the flag to in-
dicate whether all the
component mandate de-
ployment requirements
are needed’

A Boolean flag used to tell
the optimisation process to
either ignore the deployment
if profiles that do not satisfy
the component mandate de-
ployment requirements if set
to TRUE or use the current
deployment profiles do not
satisfy the connection latency
requirements if set to FALSE

Decision flag to
determine if cer-
tain deployment
options will be
part of the optimi-
sation processing
or not

NA

‘Change the flag to in-
dicate whether all the
assembly mandate de-
ployment requirements
are needed’

A Boolean flag used to tell
the optimisation process to
either ignore the deployment
if profiles that do not sat-
isfy the assembly mandate
deployment requirements if
set to TRUE or use the cur-
rent deployment profiles do
not satisfy the connection la-
tency requirements if set to
FALSE

Decision flag to
determine if cer-
tain deployment
options will be
part of the optimi-
sation processing
or not

NA
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CLI Prompt Attribute Application Non-Function
Characteristics

Pictorial-model entity com-
plement

‘Change the flag to in-
dicate whether all the
no colocation require-
ments are needed’

A Boolean flag used to tell
the optimisation process to
either ignore the deployment
if profiles that do not satisfy
the component no colocation
mandate deployment require-
ments if set to TRUE or use
the current deployment pro-
files do not satisfy the con-
nection latency requirements
if set to FALSE

Decision flag to
determine if cer-
tain deployment
options will be
part of the optimi-
sation processing
or not

NA

‘Change the weight set-
ting for thread execu-
tion’

A multiplication factor used
to define the importance of
thread execution latency op-
timisation score and over-
all influence of the score
for the overall optimisation
score and therefore the popu-
lation search direction

Importance of
thread execution

NA

‘Change the satisfied
weight setting for con-
nection latency’

A multiplication factor used
to define the importance of
the connection latency op-
timisation score and over-
all influence of the score
for the overall optimisation
score and therefore the popu-
lation search direction

Importance
of connection
latency

NA
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CLI Prompt Attribute Application Non-Function
Characteristics

Pictorial-model entity com-
plement

‘Change the satisfied
weight setting for com-
ponent mandate de-
ployment’

A multiplication factor used
to define the importance of
the component mandate de-
ployment optimisation score
and overall influence of the
score for the overall optimi-
sation score and therefore the
population search direction

Importance of
component man-
date deployment

NA

‘Change the satisfied
weight setting for as-
sembly mandate de-
ployment’

A multiplication factor used
to define the importance of
the assembly mandate de-
ployment optimisation score
and overall influence of the
score for the overall optimi-
sation score and therefore the
population search direction

Importance of as-
sembly mandate
deployment

NA

‘Change the satisfied
weight setting for no
colocation’

A multiplication factor used
to define the importance of
the component no-colocation
mandate deployment optimi-
sation score and overall in-
fluence of the score for the
overall optimisation score
and therefore the population
search direction

Importance
of component
no-colocation
mandate deploy-
ment

NA
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CLI Prompt Attribute Application Non-Function
Characteristics

Pictorial-model entity com-
plement

‘Change the NOT satis-
fied weight setting for
connection latency’

This weight is used in the
same way as the satisfied
weight above but is separate
to allow the modeller and op-
timisation process to account
for unique NOT satisfy de-
ployment profile and allow
for an additional influence
on the overall optimisation
score and therefore the popu-
lation search direction.
NB: This weight is only in-
voked when the Boolean flag
is set to allow for deployment
options to be counted that not
do satisfy the requirements

Importance
of connection
latency NOT
being satisfied,
when associative
Boolean flag has
been set to allow
deployment op-
tions that do not
satisfy certain
non-functional
requirements.

NA
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CLI Prompt Attribute Application Non-Function
Characteristics

Pictorial-model entity com-
plement

‘Change the NOT satis-
fied weight setting for
component mandate de-
ployment’

This weight is used in the
same way as the satisfied
weight above but is separate
to allow the modeller and op-
timisation process to account
for unique NOT satisfy de-
ployment profile and allow
for an additional influence
on the overall optimisation
score and therefore the popu-
lation search direction.
NB: This weight is only in-
voked when the Boolean flag
is set to allow for deployment
options to be counted that not
do satisfy the requirements.

Importance
of component
mandate de-
ployment NOT
being satisfied,
when associative
Boolean flag has
been set to allow
deployment op-
tions that do not
satisfy certain
non-functional
requirements.

NA

‘Change the NOT satis-
fied weight setting for
assembly mandate de-
ployment’

This weight is used in the
same way as the satisfied
weight above but is separate
to allow the modeller and op-
timisation process to account
for unique NOT satisfy de-
ployment profile and allow
for an additional influence
on the overall optimisation
score and therefore the popu-
lation search direction.
NB: This weight is only in-
voked when the Boolean flag
is set to allow for deployment
options to be counted that not
do satisfy the requirements.

Importance of as-
sembly mandate
deployment NOT
being satisfied,
when associative
Boolean flag has
been set to allow
deployment op-
tions that do not
satisfy certain
non-functional
requirements.

NA
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CLI Prompt Attribute Application Non-Function
Characteristics

Pictorial-model entity com-
plement

‘Change the NOT satis-
fied setting for no colo-
cation’

This weight is used in the
same way as the satisfied
weight above but is separate
to allow the modeller and op-
timisation process to account
for unique NOT satisfy de-
ployment profile and allow
for an additional influence
on the overall optimisation
score and therefore the popu-
lation search direction.
NB: This weight is only in-
voked when the Boolean flag
is set to allow for deployment
options to be counted that not
do satisfy the requirements.

Importance
of component
no colocation
mandate de-
ployment NOT
being satisfied,
when associative
Boolean flag has
been set to allow
deployment op-
tions that do not
satisfy certain
non-functional
requirements.

NA

‘Change the ‘n’ num-
ber’

Used to set the value of
the ‘n’ variable that is used
within the behaviour work-
load modelling entities when
functions are used to set lev-
els of resource consumption
within those workers

Used to set the
resource utilisa-
tion in conjunc-
tion with a work-
load function

Used in conjunction with
the complexity function and
worker model entities within
the Behaviour context win-
dow.
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CLI Prompt Attribute Application Non-Function
Characteristics

Pictorial-model entity com-
plement

‘Change the ‘m’ num-
ber’

Used to set the value of
the ‘m’ variable that is used
within the behaviour work-
load modelling entities when
functions are used to set lev-
els of resource consumption
within those workers

Used to set the
resource utilisa-
tion in conjunc-
tion with a work-
load function

Used in conjunction with
the complexity function and
worker model entities within
the Behaviour context win-
dow.

‘Change the ‘f’ num-
ber’

Used to set the value of the
‘f’ variable that is used within
the behaviour workload mod-
elling entities when functions
are used to set levels of re-
source consumption within
those workers

Used to set the
resource utilisa-
tion in conjunc-
tion with a work-
load function

Used in conjunction with
the complexity function and
worker model entities within
the Behaviour context win-
dow.
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A.3 Text-based Workload Growth Modelling Elements
The listing below details the CLI options for changing the ‘n’, ‘m’ and ‘f’ variables that are utilised for complexity
functions associated with CPU and memory utilisation, as well as bandwidth consumption for interface connections.
The growth options are:
• ‘linear growth rate’
• ‘exponential growth’
• ‘half exponential growth rate’
• ‘quarter exponential growth rate’
• ‘Please enter the number of variable adjustments’
• ‘Please enter the size of change to be applied for each adjustment’
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A.4 Text-based EC Modelling Elements

CLI Prompt Description Characteristic

‘Change the size of EC population’ Used to set the size of the population for each
generation created, which include both the lo-
cal search processing and the global search
processing detailed in the next section.

Size of the population
from the solution space
to be carried across the
generation.

‘Change the number of EC local
Search’

Used to set the number of local searches to
occur before the initial population is moved to
the global search processing

How many times the lo-
cal search process is ap-
plied to the initial pop-
ulation.

‘Change the EC type of local search
to ‘exchange/inverse/jump’

Used to set the type of predefined local search
processing to occur on the initial population.
Details on these options found in next section

The optimisation algo-
rithm chosen for pro-
cessing the initial pop-
ulation

‘Change the EC number base to ‘in-
teger/binary’

Used to set the base number used for the pro-
cessing and search. Can be set to either an
integer-based search process or binary-based
search process. More provided in next section

Determines whether bi-
nary or integer base
numbers are to be used
for the processing.

‘Change the EC number of genera-
tions’

This option sets the number of generations to
be created from the global optimisation pro-
cess.

times the global optimi-
sation algorithm is exe-
cuted to lead to the cre-
ation of the final popu-
lation.
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B. Evolutionary Computation XML

B.1 Computing Environment Instrumented Data

<nodes>
<node cpu_hz="3.4700 GHz" cpu_mwips="2348.553526" cpu_name="Intel(R) Xeon(R)
CPU X5677 @ 3.47GHz" cpu_vendor="GenuineIntel" ip="192.168.111.87"
name="cranberry01" ram_availiable="3238" ram_free="3211" ram_total="3790">

<tcp_latency ip="192.168.111.243">86</tcp_latency>
<tcp_latency ip="192.168.111.97">151</tcp_latency>
<tcp_latency ip="192.168.111.85">107</tcp_latency>

</node>
<node cpu_hz="3.4700 GHz" cpu_mwips="2229.858248" cpu_name="Intel(R) Xeon(R)
CPU X5677 @ 3.47GHz" cpu_vendor="GenuineIntel" ip="192.168.111.243"
name="cranberry02" ram_availiable="3268" ram_free="3288" ram_total="3790">

<tcp_latency ip="192.168.111.97">85</tcp_latency>
<tcp_latency ip="192.168.111.85">150</tcp_latency>
<tcp_latency ip="192.168.111.87">101</tcp_latency>

</node>
<node cpu_hz="3.4700 GHz" cpu_mwips="2288.59661" cpu_name="Intel(R) Xeon(R)
CPU X5677 @ 3.47GHz" cpu_vendor="GenuineIntel" ip="192.168.111.85"
name="mandarin01" ram_availiable="3408" ram_free="2973" ram_total="3945">
<tcp_latency ip="192.168.111.243">103</tcp_latency>
<tcp_latency ip="192.168.111.97">117</tcp_latency>
<tcp_latency ip="192.168.111.87">155</tcp_latency>
</node>
<node cpu_hz="3.4700 GHz" cpu_mwips="2579.220766" cpu_name="Intel(R) Xeon(R)
CPU X5677 @ 3.47GHz" cpu_vendor="GenuineIntel" ip="192.168.111.97"
name="mandarin02" ram_availiable="3454" ram_free="3364" ram_total="3945">
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<tcp_latency ip="192.168.111.243">145</tcp_latency>
<tcp_latency ip="192.168.111.85">107</tcp_latency>
<tcp_latency ip="192.168.111.87">108</tcp_latency>
</node>

</nodes>

B.2 Global XML Details

<GlobalSettings id="2">
<GraphML_FileName id="3">

base_model_test_v3.3.3_noDeployModelling_EC_Testing_noConstraints
</GraphML_FileName>
<Variables id="10">

<NNumber id="11">1</NNumber>
<MNumber id="12">1</MNumber>
<FNumber id="13">1</FNumber>

</Variables>
<BitSize id="14">

<Integer id="15">32</Integer>
<Double id="16">64</Double>

</BitSize>
<Weights id="17">

<ExecutionThreadWeight id="18">
<Factor id="19">1</Factor>

</ExecutionThreadWeight>
<ConnectionConstraint id="20">

<MandateAll id="21">True</MandateAll>
<FactorSatisfied id="22">1</FactorSatisfied>
<FactorNotSatisfied id="23">1</FactorNotSatisfied>

</ConnectionConstraint>
<ComponentDeploymentConstraint id="24">

<MandateAll id="25">True</MandateAll>
<FactorSatisfied id="26">1</FactorSatisfied>
<FactorNotSatisfied id="27">1</FactorNotSatisfied>

</ComponentDeploymentConstraint>
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<AssemblyDeploymentConstraint id="28">
<MandateAll id="29">True</MandateAll>
<FactorSatisfied id="30">1</FactorSatisfied>
<FactorNotSatisfied id="31">1</FactorNotSatisfied>

</AssemblyDeploymentConstraint>
<NoColocationConstraint id="32">

<MandateAll id="33">True</MandateAll>
<FactorSatisfied id="34">1</FactorSatisfied>
<FactorNotSatisfied id="35">1</FactorNotSatisfied>

</NoColocationConstraint>
</Weights>
<EC_Detail id="36">

<PopulationSize id="37">10</PopulationSize>
<LocalSearchNumber id="38">2</LocalSearchNumber>
<LocalSearchType id="39">exchange</LocalSearchType>
<NumberBase id="40">integer</NumberBase>
<GenerationsCreated id="41">20</GenerationsCreated>

</EC_Detail>
</GlobalSettings>

B.3 Hardware XML Details

<HardwareDetail id="4">
<Nodes id="5">
<Node id="M400">
<NodeName id="42">cranberry01</NodeName>
<NodeMemory id="43">3211</NodeMemory>
<NodeCPU id="44">Intel(R) Xeon(R) CPU X5677 @ 3.47GHz</NodeCPU>
<NodeCPUHz id="45">3.4700 GHz</NodeCPUHz>
<NodeCPUVendor id="46">GenuineIntel</NodeCPUVendor>
<NodeCPUMWIPS id="47">2348.553526</NodeCPUMWIPS>
<NodeOS id="48">Linux</NodeOS>
<OSBits id="49">64</OSBits>
<IPAddress id="50">192.168.111.87</IPAddress>
<ConnectionSpeedMB id="51">1000</ConnectionSpeedMB>
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<SpareCapacityCPU id="52">0</SpareCapacityCPU>
<SpareCapacityMemory id="53">0</SpareCapacityMemory>
<WeightSpareCapacityCPU id="54">1</WeightSpareCapacityCPU>
<WeightSpareCapacityMemory id="55">1</WeightSpareCapacityMemory>
<Services id="56">
<Service id="57">SEM</Service>
</Services>
</Node>
<Node id="M401">
<Node id="M403">
<Node id="M404">
</Nodes>
<NodeConnection id="106">
<NodeOne id="107" referenceId="M400">192.168.111.87</NodeOne>
<NodeTwo id="108" referenceId="M401">192.168.111.243</NodeTwo>
<Latency id="109">86</Latency>
</NodeConnection>
<NodeConnection id="110">
<NodeConnection id="114">
<NodeConnection id="118">
<NodeConnection id="122">
<NodeConnection id="126">
<NodeConnection id="130">
<NodeConnection id="134">
<NodeConnection id="138">
<NodeConnection id="142">
<NodeConnection id="146">
<NodeConnection id="150">
</HardwareDetail>

B.4 Software XML Details
<SoftwareDetail id="6">

<Assemblies id="7">
<Assembly id="M910">
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<Component id="M911">
<ComponentName id="154">Sender_1</ComponentName>
<Interface id="M919">

<InterfaceName id="155">txMessage_1</InterfaceName>
<WorkloadPair id="156">

<CPUWorkload id="157">
<Function id="158">225</Function>

</CPUWorkload>
<MemoryWorkload id="159">

<Function id="160">3000</Function>
</MemoryWorkload>
<ForLoop id="161">10</ForLoop>

</WorkloadPair>
<WorkloadDataType id="162">Double</WorkloadDataType>

</Interface>
</Component>
<Component id="M979">
<Component id="M1038">
<Component id="M1099">
<Component id="M386">
<Component id="M654">

</Assembly>
<Assembly id="M1154">

</Assemblies>
<ExecutionThread id="8">

<CriticalConnection id="M1583">
<ConnectionSrc id="348" interfaceId="M1033"/>
<ConnectionDst id="349" interfaceId="M1279"/>
<InternalConnection id="350">false</InternalConnection>

</CriticalConnection>
<CriticalConnection id="M1582">
<CriticalConnection id="M1581">
<CriticalConnection id="M1486">
<CriticalConnection id="M1485">

</ExecutionThread>
<SystemConnections id="9">

<SystemConnection id="M1573">
<ConnectionSrc id="308" interfaceId="M1033"/>
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<ConnectionDst id="309" interfaceId="M1279"/>
<ConnectionType id="310">ZMQ</ConnectionType>
<ConnectionPayload id="311">50xm</ConnectionPayload>
<ConnectionFrequency id="312">f</ConnectionFrequency>

</SystemConnection>
<SystemConnection id="M1571">
<SystemConnection id="M1568">
<SystemConnection id="M1566">
<SystemConnection id="M1565">
<SystemConnection id="M1564">
<SystemConnection id="M1562">
<SystemConnection id="M1561">

</SystemConnections>
</SoftwareDetail>
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C. MEDEA Modelling Flow

C.1 Information Modelling Component Flow
The following is a list of non-functional requirements and constraints that feed into
the deployment optimisation search process:

1. Critical thread latency:
Refers to the identification of an end-to-end thread or path within the system
design that would be seen as a critical design element central to the function-
ality and performance of the overall system. The temporal performance of
this thread is minimised as much as possible, while still working to satisfy
other non-functional requirements and constraints.
The definition of this critical thread consists of identifying the software
components, component workload, component interface, intra-component
connections and inter-component connections (including delegate inter-
component connections between assemblies) that exist within a path of
interest within the overall system design.
In this first instance, the deployment optimisation will only consider a single
design thread of interest. Future concepts may look into the potential for
deployment around multiple design threads or paths.

2. String latency:
Allows for a requirement that a number of connected interfaces (one or more
but less than the critical thread count) found within the critical thread have
a total latency that does not exceed a maximum latency. As a result, the
optimisation process will seek to minimise a critical thread’s latency, while
still ensuring the identified string total latency is equal to or less than the
defined maximum latency.

3. Interface latency:
Requires the optimisation processing to consider the maximum latency time
of a single interface within the critical thread. Once again, the optimisation
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algorithm will aim to minimise a critical thread’s latency, while still ensuring
the identified interface latency is equal to or less than the maximum latency
time defined.

4. CPU and memory spare capacity:
The definition allows the modeller to define how much spare capacity they
need for both CPU and memory. The optimisation processing will then aim
to drive spare capacity for each resource on each computing node to be as
little as possible for deployment options identified from the search, while
aiming to ensure the spare capacities are maintained as much as possible.

5. Software component and assembly mandate deployment:
The mandate deployment constraints, which include component collocations,
and identified component and assembly deployment to particular computing
nodes, guides the optimisation search process to only consider the deploy-
ment options population members that abide by those constraints.
In addition to searching for deployments options that satisfy the mandate
deployment requirements, the optimisation search process can be configured
to consider population members that do not satisfy the requirements. In this
configuration, deployment options can be explored when all or a subset of
the deployment constraints are broken.

C.2 Critical Thread Temporal Performance Cal-
culation Flow

Detailed description for each part of the execution flow are as follows:
1. Node Deployment Profile: The Objective Function Algorithm traces through

every node defined within the graphML which represents the available com-
puting environment for deployment. Once traced and the information ex-
tracted, the process uses that information and applies it the current solution
search (deployment profile) where each software component (and expected
workload) is assigned to a particular computing node.

2. Profile CPU and Network Interface Utilisation: Using the node deploy-
ment profiles for the available computing environment, total consumptions
of CPU and network bandwidth resources are established for each comput-
ing node, for that particular search solution. For the CPU resources this is
measured in MWIPS, while the network bandwidth is measured in Mbits/s.

3. Computing Environment Resource Utilisation Profile Construction: Us-
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ing the output from the node CPU and network utilisation process, the results
are translated into percentages and aggregated to produce a profile for the
entire computing environment for that particular search solution.

4. Critical Chain Trace and Extraction Process: This process steps through
each element of the critical thread defined within the System Optimisation
Model. It steps through all the software component interfaces and associated
workers, as well as whether the current critical thread segment is a ’intra’ or
’inter’ software component connection (which triggers additional calculations
associated with non-functional constraints)

5. CPU Utilisation Details Extraction: CPU utilisation details for computing
nodes associated with the critical chain are extracted from the ’Computing
Environment Resource Utilisation Profile’ created earlier.

6. Network Utilisation Details Extraction: Network utilisation details for
computing nodes associated with the critical chain are extracted from the
’Computing Environment Resource Utilisation Profile’ created earlier.

7. Critical Chain Element Temporal Performance Calculation: The execu-
tion flow for the time calculation can be found in Figure 5.17 and consists
of:
• Connection Source Worker CPU Processing Time Calculation: With

all CPU processing workloads calculated around MWIPS the process-
ing time is a straightforward ratio calculation based on the worker num-
ber of MWIPS to be executed, divided by the total available MWIPS
resources available on the particular computing node. This ratio is
then directly correlated to time needed to process the current workload
in terms of seconds (NB: if the component interface has more than
one workload associated with it via conditional logic, the EC algo-
rithm will extract the details of the largest workload and use that for its
optimisation search).
• Connection Destination Worker CPU Processing Time Calcula-

tion: As per the Connection Source calculation above, the Connection
Destination calculations are the same.
• Calculate CPU Utilisation Time Delay and Apply: Using the CPU

utilisation percentage established for the entire computing environment,
each node utilisation percentage is then applied to the ’Utilisation ver-
sus Time Delay’ performance curve (Figure 5.7) calculated previously.
Using the results from the performance curve application, a delay mul-
tiplier is applied at various points within the critical thread segment
time/latency calculation (Figure 5.17). This calculation is executed for
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every component CPU workload and the entire set of calculations is
repeated with every new search solution (deployment profile).
• Payload Transmission CPU Processing Time Calculation for Source

and Destination Connection End: Using the details held within the
XML performance files for payload transmission for ZeroMQ and inter-
polation, CPU workload (which is captured as a percentage of the CPU
usage for each computing node CPU) is associated with the particu-
lar payload size transmissions, which are then extracted. Once again,
based on percentage of utilisation of the CPU, the resulting time is a
straight forward ratio calculation in seconds for the particular node.
• Payload Transmission and Reception Latency Calculations: As

with processing requirements for ZeroMQ transmission, latency per-
formance for ZeroMQ for payload sizes are also instrumented and
recorded in XML files for each computing node. These sample points
are then used with interpolation to determine transmission latency for a
particular connection.
• Calculate Network Bandwidth Utilisation Time Delay and Apply:

As with the CPU time delay calculation, the network bandwidth utilisa-
tion time delay is calculated by using the network utilisation percentage
established for each node and applying it to the resource utilisation
delay performance curve (Figure 5.7) calculated previously. It is then
applied to the ’Calculate Network Bandwidth Utilisation Time Delay
and Apply’ part of the critical thread segment time/latency calculation
execution flow (Figure 5.17).
• Calculate Maximum Connection Latency:Following the premise of

this modelling and prediction paradigm research, all input performance
data is based on the worst-case scenario. In this instance, the calcula-
tion of the latency for transmission for either end of the connection is
calculated and the worst performing results of the connection in the
optimisation algorithm. Transmission latency is calculated in millisec-
onds.

8. Critical Thread Element Temporal Performance Aggregation: All tim-
ing results calculated with associating resource utilisation delay factors are
then aggregated to produce the latency for that section of the critical thread
being investigated. This is then further aggregated with all the previous
segment latency results to produce the overall critical thread end-to-end
latency.
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D. Verification Framework and Cal-
ibration Experiment Details

D.1 Verification Framework Message Set
• Message header: ‘INTER’

• The INTER text string indicates that this logging event has captured a
flow of the critical thread that is between software components utilising
the middleware and network connection available within the MEDEA
runtime computing environment. It is the flow from the output port of
a software component to the input port of another software component
and both are identified as part of the critical path of the system design
model.
• The structure of this text string is:

* "INTER, eventTime, %s, messageId, %i, messageCreationTime,
%s, ECDetail_1, %s " where:

· eventTime -> is the timestamp for this currently logged event
· messageId -> unique identifier for the message being sent

along the identified critical path
· messageCreationTime -> the timestamp for when the current

message was originally created within the ‘sender’ component
· ECDetail_1 -> The text string capturing the critical path and

non-functional performance requirement details
• Message header: ‘INTRA’

• The INTRA text string indicates that this logging event has captured
the flow of the critical thread that is within a software component. This
could be via an internal periodic event or the reception of a message
via the input port of the software component. It indicates the flow is
about to execute workloads associated with the input and output ports,
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as well as any associating logic found within that software component.
• The structure of this text string is:

* "INTRA, eventTime, %s, messageId, %i, messageCreationTime,
%s, ECDetail_1, %s " where:

· eventTime -> is the timestamp for this currently logged event
· messageId -> unique identifier for the message being sent

along the identified critical path
· messageCreationTime -> the timestamp for when the current

message was originally created within the ‘sender’ component
· ECDetail_1 -> The text string capturing the critical path and

non-functional performance requirement details
• Message header:‘ ECDetail’

• The ECDetail text string captures the modelled information on a seg-
ment of the identified critical path. This includes details on the system
model elements (graphML id information) that make up the particu-
lar segment, non-functional performance requirements and segment
positioning details.
• The structure of this text string and an example of this text string is

below:
* "criticalChain, ‘X’, ‘SegmentPosition’, portId_Tx, ‘XXX’, por-

tId_Rx, ‘XXX’, internalConnection, ‘X’, maxLatency, ‘XXX’,
maxLatencyStringGroup, ‘X,XXXX, XXX’"

* "criticalChain, y, START, portId_Tx, 919, portId_Rx, 1031, inter-
nalConnection, n, maxLatency, 100, maxLatencyStringGroup, 1,
START, 650"
where:

· criticalChain -> indicates whether the component interface is
part of the identified critical path. If the component interface
is not part of the critical path, then the additional information
following is not required to the added to the ECDetail text
string. This will either be ‘y’ or ‘n’.

· ‘SegmentPosition’ -> is used to indicate where this particular
segment sits within the identified critical path. This can either
be ‘START’, ‘Middle’ or ‘END’

· portID_Tx -> the number following this label indicates the
particular component interface that is the output port or trans-
mitter of the identified segment. The number is based on the
graphML id number of that particular output port.
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· portID_Rx -> the number following this label indicates the par-
ticular component interface that is the input port or receiver of
the identified segment. The number is based on the graphML
id number of that particular input port.

· internalConnection -> this indicates whether the current seg-
ment is internal to a software component or whether the seg-
ment is a connection between software components. This will
either be ‘y’ or ‘n’. It should be noted that if the connection is
internal to a software component, then the transmitter end of
the segment will be the input port of the software component
and the receiver end of the segment will be the output port of
the software component.

· maxLatency -> this part of the text string indicates whether the
current segment (and its output port) has a latency performance
requirement associated with it. If there is no maximum latency
time requirement then it becomes ‘NA’.

· maxLatencyStringGroup -> in the same way a latency require-
ment is attached to a single segment of the identified thread,
this label indicates whether the current segment is part of a
string segment that has to satisfy a maximum latency require-
ment. There are two parts that make up this definition. The
first is the unique identifier for the particular segment string of
interest. The second part is the position of the segment within
that currently identified string, and can be either ‘START’,
‘Middle’ or ‘END’. In the case of a segment being the ‘START’
of the segment string, an additional piece of information is
attached to the text string. This is a number indicating the
maximum latency time required.

D.2 Predicted and Measured Scatter Plots
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Figure D.1: 16Gb Network Bandwidth and Pearson Coefficient r=0.632
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Figure D.2: 16Gb Network Bandwidth and Pearson Coefficient r=0.513



A
P

P
E

N
D

IX
D

.
V

E
R

IF
IC

ATIO
N

F
R

A
M

E
W

O
R

K
A

N
D

C
A

LIB
R

ATIO
N

E
X

P
E

R
IM

E
N

T
D

E
TA

ILS
355

Figure D.3: 16Gb Network Bandwidth and Pearson Coefficient r=0.506
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Figure D.4: 16Gb Network Bandwidth and Pearson Coefficient r=0.484
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Figure D.5: 1Gb Network Bandwidth and Pearson Coefficient r=0.345
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D.3 Latency Predicted and Measured Polyno-
mial Fit Plots
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Figure D.7: 1Gb Network Bandwidth
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Figure D.9: 100Mb Network Bandwidth
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D.4 Objective Function Diversity and Conver-
gence
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Figure D.10: Objective Function Test Results - 16Gb



A
P

P
E

N
D

IX
D

.
V

E
R

IF
IC

ATIO
N

F
R

A
M

E
W

O
R

K
A

N
D

C
A

LIB
R

ATIO
N

E
X

P
E

R
IM

E
N

T
D

E
TA

ILS
365

Figure D.11: Objective Function Test Results - 1Gb
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Figure D.12: Objective Function Test Results - 100Mb
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Figure D.13: Objective Function Test Results - 10Mb
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D.5 Generation and Population Investigation Re-
sults
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Figure D.14: Initialised Specialised Population and Number of Generations Test Results
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Figure D.15: Objective Function Test Results - 16Gb
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Figure D.16: Objective Function Test Results - 1Gb
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Figure D.17: Objective Function Test Results - 100Mb
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Figure D.18: Objective Function Test Results - 10Mb



A
P

P
E

N
D

IX
D

.
V

E
R

IF
IC

ATIO
N

F
R

A
M

E
W

O
R

K
A

N
D

C
A

LIB
R

ATIO
N

E
X

P
E

R
IM

E
N

T
D

E
TA

ILS
374

Figure D.19: Deployment Profile Test - Population Size:100 - Number of Generations: 40 - Results #1
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Figure D.20: Deployment Profile Test - Population:100 - Generations:40 - Results #2
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Figure D.21: Deployment Profile Test - Population:100 - Generations:40 - Results #3
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Figure D.22: Deployment Profile Test - Population:100 - Generations:40 - Results #4
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Figure D.23: Deployment Profile Test - Population:100 - Generations:40 - Results #5
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Figure D.24: Deployment Profile Test - Population:100 - Generations:40 - Results #6
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Figure D.25: Deployment Profile Test - Population:100 - Generations: 50 - Results #1
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Figure D.26: Deployment Profile Test - Population:100 - Generations:50 - Results #2
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Figure D.29: Deployment Profile Test - Population:100 - Generations:50 - Results #5
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Figure D.30: Deployment Profile Test - Population:100 - Generations:50 - Results #6
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Figure D.31: Deployment Profile Test - Population:90 - Generations:50 - Results #1
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Figure D.32: Deployment Profile Test - Population:90 - Generations:50 - Results #2
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Figure D.33: Deployment Profile Test - Population:90 - Generations:50 - Results #3
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Figure D.34: Deployment Profile Test - Population:90 - Generations:50 - Results #4



A
P

P
E

N
D

IX
D

.
V

E
R

IF
IC

ATIO
N

F
R

A
M

E
W

O
R

K
A

N
D

C
A

LIB
R

ATIO
N

E
X

P
E

R
IM

E
N

T
D

E
TA

ILS
390

Figure D.35: Deployment Profile Test - Population:80 - Generations:50 - Results #1
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Figure D.36: Deployment Profile Test - Population:80 - Generations:50 - Results #2
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Figure D.37: Deployment Profile Test - Population:80 - Generations:50 - Results #3
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Figure D.38: Deployment Profile Test - Population:80 - Generations:50 - Results #4
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Figure D.39: Deployment Profile Test - Population:70 - Generations:50 - Results #1
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Figure D.40: Deployment Profile Test - Population:70 - Generations:50 - Results #2
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Figure D.41: Deployment Profile Test - Population:70 - Generations:50 - Results #3
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Figure D.42: Deployment Profile Test - Population:70 - Generations:50 - Results #4
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Figure D.43: Deployment Profile Test - Population:70 - Generations:50 - Results #5
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Figure D.44: Deployment Profile Test - Population:70 - Generations:50 - Results #6
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Figure D.45: Deployment Profile Test - Population:60 - Generations:50 - Results #1
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Figure D.46: Deployment Profile Test - Population:60 - Generations:50 - Results #2
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Figure D.47: Deployment Profile Test - Population:60 - Generations:50 - Results #3
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Figure D.48: Deployment Profile Test - Population:60 - Generations:50 - Results #4
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Figure D.49: Deployment Profile Test - Population:60 - Generations:50 - Results #5
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Figure D.50: Deployment Profile Test - Population:60 - Generations:50 - Results #6
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D.6 Predicted and Measured Critical Chain Con-
vergence
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Figure D.51: 16Gb Network Configuration
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Figure D.53: 16Gb Network Configuration
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Figure D.54: 1Gb Network Configuration
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Figure D.55: 1Gb Network Configuration
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Figure D.56: 100Mb Network Configuration
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D.7 Software Deployment Mandate Constraint
Confirmation Text Files

D.7.1 Text File - no mandate constraints

0 - 1 - [3, 3, 1, 0, 2, 1, 0, 2, 2, 1] - 4252.52780735
0 - 2 - [1, 2, 1, 3, 0, 2, 3, 2, 0, 0] - 893.191068852
0 - 3 - [1, 0, 1, 3, 3, 2, 0, 0, 2, 1] - 1053.94072736
0 - 4 - [2, 1, 1, 0, 1, 2, 0, 1, 0, 1] - 1246.6385258
0 - 5 - [0, 0, 2, 2, 0, 1, 3, 0, 2, 1] - 6320.23799242
0 - 6 - [3, 2, 0, 0, 3, 3, 1, 0, 0, 2] - 863.043551712
0 - 7 - [3, 0, 1, 1, 0, 0, 2, 1, 3, 3] - 982.883866257
0 - 8 - [3, 2, 2, 3, 0, 2, 0, 0, 0, 1] - 966.874254631
0 - 9 - [2, 1, 3, 3, 0, 3, 1, 2, 2, 3] - 971.427755072
0 - 10 - [0, 2, 1, 2, 2, 2, 1, 3, 3, 2] - 979.945962673
1 - 16 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
1 - 17 - [2, 1, 3, 3, 0, 3, 1, 2, 3, 3] - 861.864510927
1 - 6 - [3, 2, 0, 0, 3, 3, 1, 0, 0, 2] - 863.043551712
1 - 2 - [1, 2, 1, 3, 0, 2, 3, 2, 0, 0] - 893.191068852
1 - 19 - [1, 0, 0, 3, 3, 1, 3, 0, 2, 1] - 928.800633736
1 - 8 - [3, 2, 2, 3, 0, 2, 0, 0, 0, 1] - 966.874254631
1 - 9 - [2, 1, 3, 3, 0, 3, 1, 2, 2, 3] - 971.427755072
1 - 10 - [0, 2, 1, 2, 2, 2, 1, 3, 3, 2] - 979.945962673
1 - 7 - [3, 0, 1, 1, 0, 0, 2, 1, 3, 3] - 982.883866257
1 - 14 - [3, 2, 0, 3, 0, 0, 2, 1, 3, 3] - 986.53480366
2 - 16 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
2 - 29 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
2 - 22 - [3, 2, 0, 0, 3, 3, 1, 0, 0, 3] - 839.957488429
2 - 17 - [2, 1, 3, 3, 0, 3, 1, 2, 3, 3] - 861.864510927
2 - 6 - [3, 2, 0, 0, 3, 3, 1, 0, 0, 2] - 863.043551712
2 - 24 - [2, 1, 0, 3, 0, 2, 0, 0, 0, 1] - 868.716229992
2 - 26 - [3, 1, 0, 3, 0, 2, 0, 1, 0, 1] - 882.851313679
2 - 2 - [1, 2, 1, 3, 0, 2, 3, 2, 0, 0] - 893.191068852
2 - 19 - [1, 0, 0, 3, 3, 1, 3, 0, 2, 1] - 928.800633736
2 - 23 - [3, 2, 3, 3, 0, 3, 1, 2, 0, 3] - 954.075066859
3 - 16 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
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3 - 29 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
3 - 31 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
3 - 40 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
3 - 22 - [3, 2, 0, 0, 3, 3, 1, 0, 0, 3] - 839.957488429
3 - 34 - [2, 1, 3, 3, 0, 3, 1, 0, 3, 2] - 848.966655887
3 - 17 - [2, 1, 3, 3, 0, 3, 1, 2, 3, 3] - 861.864510927
3 - 6 - [3, 2, 0, 0, 3, 3, 1, 0, 0, 2] - 863.043551712
3 - 36 - [2, 1, 0, 0, 0, 0, 2, 1, 3, 1] - 863.092200319
3 - 24 - [2, 1, 0, 3, 0, 2, 0, 0, 0, 1] - 868.716229992
4 - 16 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
4 - 42 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
4 - 47 - [3, 0, 2, 1, 1, 0, 2, 1, 3, 1] - 760.090789518
4 - 46 - [2, 1, 0, 3, 0, 3, 1, 0, 3, 3] - 778.221289427
4 - 29 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
4 - 31 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
4 - 40 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
4 - 22 - [3, 2, 0, 0, 3, 3, 1, 0, 0, 3] - 839.957488429
4 - 34 - [2, 1, 3, 3, 0, 3, 1, 0, 3, 2] - 848.966655887
4 - 49 - [3, 1, 0, 3, 0, 2, 0, 0, 0, 1] - 852.378455594
5 - 16 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
5 - 42 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
5 - 47 - [3, 0, 2, 1, 1, 0, 2, 1, 3, 1] - 760.090789518
5 - 53 - [3, 0, 2, 2, 1, 0, 2, 1, 3, 1] - 761.294043186
5 - 46 - [2, 1, 0, 3, 0, 3, 1, 0, 3, 3] - 778.221289427
5 - 29 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
5 - 31 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
5 - 40 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
5 - 54 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
5 - 22 - [3, 2, 0, 0, 3, 3, 1, 0, 0, 3] - 839.957488429
6 - 66 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 3] - 750.414741485
6 - 16 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
6 - 42 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
6 - 64 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
6 - 47 - [3, 0, 2, 1, 1, 0, 2, 1, 3, 1] - 760.090789518
6 - 53 - [3, 0, 2, 2, 1, 0, 2, 1, 3, 1] - 761.294043186
6 - 46 - [2, 1, 0, 3, 0, 3, 1, 0, 3, 3] - 778.221289427
6 - 29 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
6 - 31 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
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6 - 40 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
7 - 77 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 1] - 685.042944731
7 - 66 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 3] - 750.414741485
7 - 16 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
7 - 42 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
7 - 64 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
7 - 47 - [3, 0, 2, 1, 1, 0, 2, 1, 3, 1] - 760.090789518
7 - 53 - [3, 0, 2, 2, 1, 0, 2, 1, 3, 1] - 761.294043186
7 - 46 - [2, 1, 0, 3, 0, 3, 1, 0, 3, 3] - 778.221289427
7 - 29 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
7 - 31 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 3] - 820.314309043
8 - 77 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 1] - 685.042944731
8 - 88 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 3] - 729.698493056
8 - 66 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 3] - 750.414741485
8 - 83 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 3] - 750.414741485
8 - 16 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
8 - 42 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
8 - 64 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
8 - 47 - [3, 0, 2, 1, 1, 0, 2, 1, 3, 1] - 760.090789518
8 - 53 - [3, 0, 2, 2, 1, 0, 2, 1, 3, 1] - 761.294043186
8 - 46 - [2, 1, 0, 3, 0, 3, 1, 0, 3, 3] - 778.221289427
9 - 77 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 1] - 685.042944731
9 - 96 - [3, 0, 1, 1, 1, 2, 2, 1, 3, 1] - 695.899300559
9 - 88 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 3] - 729.698493056
9 - 66 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 3] - 750.414741485
9 - 83 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 3] - 750.414741485
9 - 16 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
9 - 42 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
9 - 64 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
9 - 47 - [3, 0, 2, 1, 1, 0, 2, 1, 3, 1] - 760.090789518
9 - 53 - [3, 0, 2, 2, 1, 0, 2, 1, 3, 1] - 761.294043186
10 - 77 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 1] - 685.042944731
10 - 107 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
10 - 96 - [3, 0, 1, 1, 1, 2, 2, 1, 3, 1] - 695.899300559
10 - 101 - [3, 0, 1, 2, 1, 0, 2, 1, 2, 1] - 697.348628595
10 - 88 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 3] - 729.698493056
10 - 106 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 0] - 747.375692458
10 - 66 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 3] - 750.414741485
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10 - 83 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 3] - 750.414741485
10 - 16 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
10 - 42 - [3, 0, 1, 1, 1, 0, 2, 1, 3, 1] - 757.684282183
11 - 115 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
11 - 77 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 1] - 685.042944731
11 - 107 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
11 - 111 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
11 - 96 - [3, 0, 1, 1, 1, 2, 2, 1, 3, 1] - 695.899300559
11 - 101 - [3, 0, 1, 2, 1, 0, 2, 1, 2, 1] - 697.348628595
11 - 88 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 3] - 729.698493056
11 - 106 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 0] - 747.375692458
11 - 66 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 3] - 750.414741485
11 - 83 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 3] - 750.414741485
12 - 123 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
12 - 115 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
12 - 77 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 1] - 685.042944731
12 - 107 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
12 - 111 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
12 - 130 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
12 - 96 - [3, 0, 1, 1, 1, 2, 2, 1, 3, 1] - 695.899300559
12 - 101 - [3, 0, 1, 2, 1, 0, 2, 1, 2, 1] - 697.348628595
12 - 129 - [2, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 710.036378072
12 - 88 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 3] - 729.698493056
13 - 123 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
13 - 115 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
13 - 77 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 1] - 685.042944731
13 - 107 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
13 - 111 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
13 - 130 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
13 - 132 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
13 - 96 - [3, 0, 1, 1, 1, 2, 2, 1, 3, 1] - 695.899300559
13 - 101 - [3, 0, 1, 2, 1, 0, 2, 1, 2, 1] - 697.348628595
13 - 129 - [2, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 710.036378072
14 - 123 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
14 - 141 - [3, 0, 2, 1, 1, 1, 2, 1, 2, 1] - 652.247601064
14 - 115 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
14 - 144 - [3, 0, 1, 2, 1, 3, 2, 1, 2, 1] - 680.964086895
14 - 77 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 1] - 685.042944731
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14 - 107 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
14 - 111 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
14 - 130 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
14 - 132 - [3, 0, 1, 1, 1, 1, 2, 1, 3, 1] - 694.696046892
14 - 96 - [3, 0, 1, 1, 1, 2, 2, 1, 3, 1] - 695.899300559
15 - 123 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
15 - 152 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
15 - 141 - [3, 0, 2, 1, 1, 1, 2, 1, 2, 1] - 652.247601064
15 - 115 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
15 - 156 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
15 - 157 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
15 - 153 - [3, 0, 1, 1, 1, 2, 2, 3, 2, 1] - 670.908297012
15 - 144 - [3, 0, 1, 2, 1, 3, 2, 1, 2, 1] - 680.964086895
15 - 160 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 3] - 680.964086895
15 - 77 - [3, 0, 1, 1, 1, 0, 2, 1, 2, 1] - 685.042944731
16 - 123 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
16 - 152 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
16 - 141 - [3, 0, 2, 1, 1, 1, 2, 1, 2, 1] - 652.247601064
16 - 164 - [3, 0, 2, 1, 1, 1, 2, 1, 2, 1] - 652.247601064
16 - 115 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
16 - 156 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
16 - 157 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
16 - 153 - [3, 0, 1, 1, 1, 2, 2, 3, 2, 1] - 670.908297012
16 - 144 - [3, 0, 1, 2, 1, 3, 2, 1, 2, 1] - 680.964086895
16 - 160 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 3] - 680.964086895
17 - 123 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
17 - 152 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
17 - 175 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
17 - 179 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
17 - 141 - [3, 0, 2, 1, 1, 1, 2, 1, 2, 1] - 652.247601064
17 - 164 - [3, 0, 2, 1, 1, 1, 2, 1, 2, 1] - 652.247601064
17 - 115 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
17 - 156 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
17 - 157 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
17 - 153 - [3, 0, 1, 1, 1, 2, 2, 3, 2, 1] - 670.908297012
18 - 123 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
18 - 152 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
18 - 175 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
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18 - 179 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
18 - 187 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
18 - 141 - [3, 0, 2, 1, 1, 1, 2, 1, 2, 1] - 652.247601064
18 - 164 - [3, 0, 2, 1, 1, 1, 2, 1, 2, 1] - 652.247601064
18 - 115 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
18 - 156 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
18 - 157 - [3, 0, 1, 1, 1, 3, 2, 1, 2, 1] - 669.634380065
19 - 123 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
19 - 152 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
19 - 175 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
19 - 179 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
19 - 187 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
19 - 194 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
19 - 195 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
19 - 141 - [3, 0, 2, 1, 1, 1, 2, 1, 2, 1] - 652.247601064
19 - 164 - [3, 0, 2, 1, 1, 1, 2, 1, 2, 1] - 652.247601064
19 - 196 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 2] - 652.247601064
20 - 123 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
20 - 152 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
20 - 175 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
20 - 179 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
20 - 187 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
20 - 194 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
20 - 195 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
20 - 201 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
20 - 206 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461
20 - 208 - [3, 0, 1, 1, 1, 2, 2, 1, 2, 1] - 640.814305461

D.7.2 Text File - ’componentMandateDeployGroup’ man-
date constraints

0 - 1 - [0, 3, 2, 1, 1, 3, 1, 2, 0, 1] - 23484.5557481
0 - 2 - [0, 1, 3, 1, 3, 1, 2, 1, 0, 3] - 962.595302247
0 - 3 - [0, 1, 1, 3, 0, 0, 3, 0, 3, 1] - 67902.0986374
0 - 4 - [0, 1, 0, 1, 3, 1, 3, 0, 2, 1] - 1475714.79919



APPENDIX D. VERIFICATION FRAMEWORK AND CALIBRATION EXPERIMENT
DETAILS 419

0 - 5 - [0, 3, 1, 3, 1, 2, 1, 0, 3, 2] - 19964.070099
0 - 6 - [0, 3, 0, 0, 3, 0, 3, 3, 0, 2] - 23164.3999298
0 - 7 - [0, 1, 3, 2, 2, 3, 3, 0, 2, 0] - 23202.0599031
0 - 8 - [0, 2, 2, 2, 1, 1, 3, 2, 3, 3] - 243548.206235
0 - 9 - [0, 1, 2, 2, 3, 0, 3, 3, 2, 0] - 74689.6390619
0 - 10 - [0, 3, 2, 2, 1, 0, 0, 1, 2, 1] - 19701750.731
1 - 13 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
1 - 19 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
1 - 11 - [0, 1, 3, 2, 2, 3, 3, 0, 2, 0] - 739.911012671
1 - 12 - [0, 1, 3, 3, 3, 1, 2, 1, 0, 3] - 872.851964894
1 - 14 - [0, 3, 0, 3, 1, 2, 1, 0, 2, 0] - 881.408966774
1 - 2 - [0, 1, 3, 1, 3, 1, 2, 1, 0, 3] - 962.595302247
1 - 18 - [0, 3, 3, 3, 3, 1, 2, 1, 2, 0] - 994.188870304
1 - 16 - [0, 1, 3, 3, 1, 2, 1, 0, 2, 0] - 1070.15238969
1 - 20 - [0, 1, 1, 3, 0, 0, 3, 0, 2, 1] - 1091.68962969
1 - 15 - [0, 3, 0, 3, 3, 1, 2, 1, 0, 3] - 1151.62377711
2 - 13 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
2 - 19 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
2 - 11 - [0, 1, 3, 2, 2, 3, 3, 0, 2, 0] - 739.911012671
2 - 23 - [0, 1, 2, 2, 3, 0, 0, 3, 3, 2] - 792.373295338
2 - 26 - [0, 1, 3, 1, 3, 1, 2, 1, 2, 3] - 851.658017718
2 - 28 - [0, 1, 2, 2, 3, 0, 0, 3, 3, 0] - 856.593886371
2 - 12 - [0, 1, 3, 3, 3, 1, 2, 1, 0, 3] - 872.851964894
2 - 14 - [0, 3, 0, 3, 1, 2, 1, 0, 2, 0] - 881.408966774
2 - 24 - [0, 1, 3, 1, 3, 1, 2, 0, 0, 3] - 953.405404092
2 - 2 - [0, 1, 3, 1, 3, 1, 2, 1, 0, 3] - 962.595302247
3 - 13 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
3 - 19 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
3 - 11 - [0, 1, 3, 2, 2, 3, 3, 0, 2, 0] - 739.911012671
3 - 33 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 0] - 785.076131461
3 - 23 - [0, 1, 2, 2, 3, 0, 0, 3, 3, 2] - 792.373295338
3 - 31 - [0, 1, 3, 2, 2, 3, 0, 2, 3, 0] - 794.623956575
3 - 32 - [0, 1, 2, 2, 3, 0, 3, 0, 2, 0] - 796.198297677
3 - 34 - [0, 1, 2, 2, 3, 0, 3, 0, 2, 0] - 796.198297677
3 - 40 - [0, 1, 2, 2, 3, 0, 3, 0, 3, 0] - 801.936689214
3 - 36 - [0, 1, 3, 2, 2, 3, 0, 2, 2, 0] - 820.771303576
4 - 13 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
4 - 19 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
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4 - 49 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
4 - 11 - [0, 1, 3, 2, 2, 3, 3, 0, 2, 0] - 739.911012671
4 - 41 - [0, 1, 2, 2, 3, 0, 3, 0, 3, 2] - 743.088947192
4 - 43 - [0, 1, 2, 2, 3, 0, 3, 0, 2, 2] - 749.933371229
4 - 45 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 0] - 769.718291011
4 - 46 - [0, 1, 2, 2, 2, 3, 0, 2, 3, 0] - 777.550516627
4 - 33 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 0] - 785.076131461
4 - 23 - [0, 1, 2, 2, 3, 0, 0, 3, 3, 2] - 792.373295338
5 - 58 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 2] - 717.220502297
5 - 13 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
5 - 19 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
5 - 49 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
5 - 11 - [0, 1, 3, 2, 2, 3, 3, 0, 2, 0] - 739.911012671
5 - 41 - [0, 1, 2, 2, 3, 0, 3, 0, 3, 2] - 743.088947192
5 - 43 - [0, 1, 2, 2, 3, 0, 3, 0, 2, 2] - 749.933371229
5 - 45 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 0] - 769.718291011
5 - 46 - [0, 1, 2, 2, 2, 3, 0, 2, 3, 0] - 777.550516627
5 - 33 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 0] - 785.076131461
6 - 58 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 2] - 717.220502297
6 - 63 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 2] - 717.220502297
6 - 13 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
6 - 19 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
6 - 49 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
6 - 11 - [0, 1, 3, 2, 2, 3, 3, 0, 2, 0] - 739.911012671
6 - 41 - [0, 1, 2, 2, 3, 0, 3, 0, 3, 2] - 743.088947192
6 - 67 - [0, 1, 2, 3, 3, 0, 3, 3, 3, 2] - 746.94568723
6 - 43 - [0, 1, 2, 2, 3, 0, 3, 0, 2, 2] - 749.933371229
6 - 61 - [0, 1, 2, 2, 3, 0, 3, 0, 2, 2] - 749.933371229
7 - 75 - [0, 1, 2, 2, 3, 3, 3, 3, 3, 2] - 697.907638567
7 - 58 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 2] - 717.220502297
7 - 63 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 2] - 717.220502297
7 - 13 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
7 - 19 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
7 - 49 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
7 - 11 - [0, 1, 3, 2, 2, 3, 3, 0, 2, 0] - 739.911012671
7 - 41 - [0, 1, 2, 2, 3, 0, 3, 0, 3, 2] - 743.088947192
7 - 67 - [0, 1, 2, 3, 3, 0, 3, 3, 3, 2] - 746.94568723
7 - 43 - [0, 1, 2, 2, 3, 0, 3, 0, 2, 2] - 749.933371229
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8 - 75 - [0, 1, 2, 2, 3, 3, 3, 3, 3, 2] - 697.907638567
8 - 81 - [0, 1, 3, 2, 2, 3, 3, 3, 3, 2] - 697.907645564
8 - 87 - [0, 1, 2, 3, 3, 0, 3, 3, 2, 2] - 716.884307819
8 - 58 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 2] - 717.220502297
8 - 63 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 2] - 717.220502297
8 - 84 - [0, 1, 2, 2, 2, 0, 3, 0, 3, 2] - 718.594314618
8 - 88 - [0, 1, 2, 2, 3, 0, 3, 3, 2, 2] - 724.188909536
8 - 13 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
8 - 19 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
8 - 49 - [0, 1, 2, 2, 3, 0, 3, 3, 3, 2] - 731.86182571
9 - 97 - [0, 1, 2, 2, 3, 0, 3, 2, 3, 2] - 694.443270938
9 - 75 - [0, 1, 2, 2, 3, 3, 3, 3, 3, 2] - 697.907638567
9 - 81 - [0, 1, 3, 2, 2, 3, 3, 3, 3, 2] - 697.907645564
9 - 100 - [0, 1, 3, 2, 2, 3, 3, 3, 3, 2] - 697.907645564
9 - 87 - [0, 1, 2, 3, 3, 0, 3, 3, 2, 2] - 716.884307819
9 - 58 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 2] - 717.220502297
9 - 63 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 2] - 717.220502297
9 - 84 - [0, 1, 2, 2, 2, 0, 3, 0, 3, 2] - 718.594314618
9 - 88 - [0, 1, 2, 2, 3, 0, 3, 3, 2, 2] - 724.188909536
9 - 99 - [0, 1, 3, 2, 3, 0, 2, 2, 3, 2] - 727.810144337
10 - 102 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
10 - 109 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
10 - 97 - [0, 1, 2, 2, 3, 0, 3, 2, 3, 2] - 694.443270938
10 - 75 - [0, 1, 2, 2, 3, 3, 3, 3, 3, 2] - 697.907638567
10 - 81 - [0, 1, 3, 2, 2, 3, 3, 3, 3, 2] - 697.907645564
10 - 100 - [0, 1, 3, 2, 2, 3, 3, 3, 3, 2] - 697.907645564
10 - 87 - [0, 1, 2, 3, 3, 0, 3, 3, 2, 2] - 716.884307819
10 - 101 - [0, 1, 2, 3, 3, 0, 3, 3, 2, 2] - 716.884307819
10 - 58 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 2] - 717.220502297
10 - 63 - [0, 1, 3, 2, 3, 0, 3, 2, 3, 2] - 717.220502297
11 - 102 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
11 - 109 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
11 - 97 - [0, 1, 2, 2, 3, 0, 3, 2, 3, 2] - 694.443270938
11 - 113 - [0, 1, 2, 2, 3, 0, 3, 2, 3, 2] - 694.443270938
11 - 119 - [0, 1, 3, 2, 2, 0, 3, 2, 3, 2] - 694.443270938
11 - 75 - [0, 1, 2, 2, 3, 3, 3, 3, 3, 2] - 697.907638567
11 - 120 - [0, 1, 2, 2, 3, 3, 3, 3, 3, 2] - 697.907638567
11 - 81 - [0, 1, 3, 2, 2, 3, 3, 3, 3, 2] - 697.907645564



APPENDIX D. VERIFICATION FRAMEWORK AND CALIBRATION EXPERIMENT
DETAILS 422

11 - 100 - [0, 1, 3, 2, 2, 3, 3, 3, 3, 2] - 697.907645564
11 - 118 - [0, 1, 2, 2, 3, 0, 3, 2, 2, 2] - 716.020985018
12 - 128 - [0, 1, 2, 2, 3, 3, 3, 2, 2, 2] - 669.341504173
12 - 102 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
12 - 109 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
12 - 97 - [0, 1, 2, 2, 3, 0, 3, 2, 3, 2] - 694.443270938
12 - 113 - [0, 1, 2, 2, 3, 0, 3, 2, 3, 2] - 694.443270938
12 - 119 - [0, 1, 3, 2, 2, 0, 3, 2, 3, 2] - 694.443270938
12 - 75 - [0, 1, 2, 2, 3, 3, 3, 3, 3, 2] - 697.907638567
12 - 120 - [0, 1, 2, 2, 3, 3, 3, 3, 3, 2] - 697.907638567
12 - 81 - [0, 1, 3, 2, 2, 3, 3, 3, 3, 2] - 697.907645564
12 - 100 - [0, 1, 3, 2, 2, 3, 3, 3, 3, 2] - 697.907645564
13 - 136 - [0, 1, 2, 2, 2, 3, 2, 3, 3, 2] - 641.517870761
13 - 128 - [0, 1, 2, 2, 3, 3, 3, 2, 2, 2] - 669.341504173
13 - 138 - [0, 1, 3, 2, 2, 3, 3, 2, 3, 3] - 669.693891996
13 - 132 - [0, 1, 3, 2, 2, 3, 3, 3, 2, 2] - 680.227193069
13 - 102 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
13 - 109 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
13 - 97 - [0, 1, 2, 2, 3, 0, 3, 2, 3, 2] - 694.443270938
13 - 113 - [0, 1, 2, 2, 3, 0, 3, 2, 3, 2] - 694.443270938
13 - 119 - [0, 1, 3, 2, 2, 0, 3, 2, 3, 2] - 694.443270938
13 - 75 - [0, 1, 2, 2, 3, 3, 3, 3, 3, 2] - 697.907638567
14 - 136 - [0, 1, 2, 2, 2, 3, 2, 3, 3, 2] - 641.517870761
14 - 147 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
14 - 149 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
14 - 128 - [0, 1, 2, 2, 3, 3, 3, 2, 2, 2] - 669.341504173
14 - 138 - [0, 1, 3, 2, 2, 3, 3, 2, 3, 3] - 669.693891996
14 - 132 - [0, 1, 3, 2, 2, 3, 3, 3, 2, 2] - 680.227193069
14 - 102 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
14 - 109 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
14 - 97 - [0, 1, 2, 2, 3, 0, 3, 2, 3, 2] - 694.443270938
14 - 113 - [0, 1, 2, 2, 3, 0, 3, 2, 3, 2] - 694.443270938
15 - 136 - [0, 1, 2, 2, 2, 3, 2, 3, 3, 2] - 641.517870761
15 - 157 - [0, 1, 3, 2, 3, 3, 3, 2, 2, 2] - 648.938019235
15 - 147 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
15 - 149 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
15 - 128 - [0, 1, 2, 2, 3, 3, 3, 2, 2, 2] - 669.341504173
15 - 138 - [0, 1, 3, 2, 2, 3, 3, 2, 3, 3] - 669.693891996
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15 - 132 - [0, 1, 3, 2, 2, 3, 3, 3, 2, 2] - 680.227193069
15 - 102 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
15 - 109 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
15 - 97 - [0, 1, 2, 2, 3, 0, 3, 2, 3, 2] - 694.443270938
16 - 136 - [0, 1, 2, 2, 2, 3, 2, 3, 3, 2] - 641.517870761
16 - 157 - [0, 1, 3, 2, 3, 3, 3, 2, 2, 2] - 648.938019235
16 - 147 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
16 - 149 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
16 - 128 - [0, 1, 2, 2, 3, 3, 3, 2, 2, 2] - 669.341504173
16 - 138 - [0, 1, 3, 2, 2, 3, 3, 2, 3, 3] - 669.693891996
16 - 132 - [0, 1, 3, 2, 2, 3, 3, 3, 2, 2] - 680.227193069
16 - 169 - [0, 1, 2, 2, 2, 3, 3, 2, 2, 2] - 693.422307096
16 - 102 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
16 - 109 - [0, 1, 3, 2, 3, 0, 3, 2, 2, 2] - 693.825784687
17 - 136 - [0, 1, 2, 2, 2, 3, 2, 3, 3, 2] - 641.517870761
17 - 157 - [0, 1, 3, 2, 3, 3, 3, 2, 2, 2] - 648.938019235
17 - 147 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
17 - 178 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
17 - 149 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
17 - 172 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
17 - 176 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
17 - 128 - [0, 1, 2, 2, 3, 3, 3, 2, 2, 2] - 669.341504173
17 - 175 - [0, 1, 2, 2, 3, 3, 3, 2, 2, 2] - 669.341504173
17 - 138 - [0, 1, 3, 2, 2, 3, 3, 2, 3, 3] - 669.693891996
18 - 136 - [0, 1, 2, 2, 2, 3, 2, 3, 3, 2] - 641.517870761
18 - 157 - [0, 1, 3, 2, 3, 3, 3, 2, 2, 2] - 648.938019235
18 - 147 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
18 - 178 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
18 - 190 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
18 - 149 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
18 - 172 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
18 - 176 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
18 - 128 - [0, 1, 2, 2, 3, 3, 3, 2, 2, 2] - 669.341504173
18 - 175 - [0, 1, 2, 2, 3, 3, 3, 2, 2, 2] - 669.341504173
19 - 136 - [0, 1, 2, 2, 2, 3, 2, 3, 3, 2] - 641.517870761
19 - 198 - [0, 1, 2, 2, 2, 3, 2, 3, 3, 2] - 641.517870761
19 - 157 - [0, 1, 3, 2, 3, 3, 3, 2, 2, 2] - 648.938019235
19 - 192 - [0, 1, 3, 2, 3, 3, 3, 2, 2, 2] - 648.938019235
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19 - 147 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
19 - 178 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
19 - 190 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
19 - 149 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
19 - 172 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
19 - 176 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302
20 - 136 - [0, 1, 2, 2, 2, 3, 2, 3, 3, 2] - 641.517870761
20 - 198 - [0, 1, 2, 2, 2, 3, 2, 3, 3, 2] - 641.517870761
20 - 207 - [0, 1, 3, 2, 2, 2, 2, 3, 3, 2] - 648.049786313
20 - 157 - [0, 1, 3, 2, 3, 3, 3, 2, 2, 2] - 648.938019235
20 - 192 - [0, 1, 3, 2, 3, 3, 3, 2, 2, 2] - 648.938019235
20 - 206 - [0, 1, 3, 2, 3, 3, 3, 2, 2, 2] - 648.938019235
20 - 147 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
20 - 178 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
20 - 190 - [0, 1, 3, 2, 2, 3, 2, 3, 3, 2] - 655.305530711
20 - 149 - [0, 1, 3, 2, 3, 2, 3, 2, 2, 2] - 658.680101302

D.7.3 Text File - ’componentMandateDeployOnly’ man-
date constraints

0 - 1 - [0, 1, 0, 1, 2, 1, 2, 1, 2, 3] - 510003695.157
0 - 2 - [0, 2, 0, 1, 1, 2, 2, 2, 1, 3] - 450092669.447
0 - 3 - [0, 0, 2, 2, 1, 0, 1, 2, 1, 3] - 155447.916331
0 - 4 - [0, 2, 1, 0, 2, 2, 0, 0, 0, 3] - 184544654.901
0 - 5 - [0, 1, 1, 1, 0, 1, 2, 0, 0, 3] - 4263008.11716
0 - 6 - [0, 1, 0, 0, 0, 2, 2, 0, 2, 3] - 34016524.0462
0 - 7 - [0, 2, 0, 1, 2, 1, 2, 2, 2, 3] - 1346526777.83
0 - 8 - [0, 2, 2, 2, 1, 0, 2, 2, 0, 3] - 412840139.723
0 - 9 - [0, 2, 0, 2, 0, 2, 0, 0, 1, 3] - 1136978436.69
0 - 10 - [0, 2, 1, 2, 2, 1, 1, 0, 2, 3] - 144318291.946
1 - 13 - [0, 1, 2, 1, 2, 1, 2, 1, 2, 3] - 930.231483592
1 - 12 - [0, 1, 0, 1, 2, 1, 2, 0, 2, 3] - 1000.73484188
1 - 20 - [0, 2, 1, 1, 1, 2, 2, 2, 1, 3] - 1011.97455328
1 - 16 - [0, 1, 0, 1, 1, 1, 2, 0, 2, 3] - 1163.32932652
1 - 19 - [0, 0, 0, 0, 2, 2, 0, 0, 0, 3] - 14097.5490012
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1 - 3 - [0, 0, 2, 2, 1, 0, 1, 2, 1, 3] - 155447.916331
1 - 5 - [0, 1, 1, 1, 0, 1, 2, 0, 0, 3] - 4263008.11716
1 - 6 - [0, 1, 0, 0, 0, 2, 2, 0, 2, 3] - 34016524.0462
1 - 10 - [0, 2, 1, 2, 2, 1, 1, 0, 2, 3] - 144318291.946
1 - 4 - [0, 2, 1, 0, 2, 2, 0, 0, 0, 3] - 184544654.901
2 - 13 - [0, 1, 2, 1, 2, 1, 2, 1, 2, 3] - 930.231483592
2 - 28 - [0, 2, 1, 0, 2, 1, 1, 1, 1, 3] - 934.556702423
2 - 30 - [0, 2, 1, 1, 1, 1, 2, 2, 1, 3] - 936.777573263
2 - 12 - [0, 1, 0, 1, 2, 1, 2, 0, 2, 3] - 1000.73484188
2 - 20 - [0, 2, 1, 1, 1, 2, 2, 2, 1, 3] - 1011.97455328
2 - 16 - [0, 1, 0, 1, 1, 1, 2, 0, 2, 3] - 1163.32932652
2 - 21 - [0, 2, 1, 0, 2, 1, 1, 0, 2, 3] - 2075.29424626
2 - 27 - [0, 2, 1, 1, 1, 2, 2, 0, 2, 3] - 2210.85363908
2 - 25 - [0, 1, 2, 1, 1, 1, 2, 2, 1, 3] - 2434.38980883
2 - 23 - [0, 0, 2, 2, 1, 0, 1, 0, 1, 3] - 5717.4935834
3 - 31 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
3 - 13 - [0, 1, 2, 1, 2, 1, 2, 1, 2, 3] - 930.231483592
3 - 28 - [0, 2, 1, 0, 2, 1, 1, 1, 1, 3] - 934.556702423
3 - 30 - [0, 2, 1, 1, 1, 1, 2, 2, 1, 3] - 936.777573263
3 - 12 - [0, 1, 0, 1, 2, 1, 2, 0, 2, 3] - 1000.73484188
3 - 20 - [0, 2, 1, 1, 1, 2, 2, 2, 1, 3] - 1011.97455328
3 - 33 - [0, 2, 1, 1, 1, 2, 2, 2, 1, 3] - 1011.97455328
3 - 16 - [0, 1, 0, 1, 1, 1, 2, 0, 2, 3] - 1163.32932652
3 - 21 - [0, 2, 1, 0, 2, 1, 1, 0, 2, 3] - 2075.29424626
3 - 38 - [0, 1, 2, 2, 1, 1, 2, 2, 1, 3] - 2182.9415174
4 - 31 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
4 - 13 - [0, 1, 2, 1, 2, 1, 2, 1, 2, 3] - 930.231483592
4 - 28 - [0, 2, 1, 0, 2, 1, 1, 1, 1, 3] - 934.556702423
4 - 30 - [0, 2, 1, 1, 1, 1, 2, 2, 1, 3] - 936.777573263
4 - 12 - [0, 1, 0, 1, 2, 1, 2, 0, 2, 3] - 1000.73484188
4 - 41 - [0, 1, 2, 2, 1, 1, 2, 2, 0, 3] - 1001.25861432
4 - 20 - [0, 2, 1, 1, 1, 2, 2, 2, 1, 3] - 1011.97455328
4 - 33 - [0, 2, 1, 1, 1, 2, 2, 2, 1, 3] - 1011.97455328
4 - 45 - [0, 2, 1, 1, 1, 2, 2, 2, 1, 3] - 1011.97455328
4 - 46 - [0, 2, 0, 1, 1, 2, 2, 2, 1, 3] - 1121.11523826
5 - 31 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
5 - 53 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
5 - 13 - [0, 1, 2, 1, 2, 1, 2, 1, 2, 3] - 930.231483592
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5 - 28 - [0, 2, 1, 0, 2, 1, 1, 1, 1, 3] - 934.556702423
5 - 30 - [0, 2, 1, 1, 1, 1, 2, 2, 1, 3] - 936.777573263
5 - 57 - [0, 2, 1, 0, 1, 1, 2, 2, 1, 3] - 985.138457971
5 - 12 - [0, 1, 0, 1, 2, 1, 2, 0, 2, 3] - 1000.73484188
5 - 41 - [0, 1, 2, 2, 1, 1, 2, 2, 0, 3] - 1001.25861432
5 - 20 - [0, 2, 1, 1, 1, 2, 2, 2, 1, 3] - 1011.97455328
5 - 33 - [0, 2, 1, 1, 1, 2, 2, 2, 1, 3] - 1011.97455328
6 - 31 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
6 - 53 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
6 - 13 - [0, 1, 2, 1, 2, 1, 2, 1, 2, 3] - 930.231483592
6 - 28 - [0, 2, 1, 0, 2, 1, 1, 1, 1, 3] - 934.556702423
6 - 30 - [0, 2, 1, 1, 1, 1, 2, 2, 1, 3] - 936.777573263
6 - 68 - [0, 2, 1, 1, 1, 1, 2, 2, 1, 3] - 936.777573263
6 - 57 - [0, 2, 1, 0, 1, 1, 2, 2, 1, 3] - 985.138457971
6 - 69 - [0, 2, 1, 0, 1, 1, 2, 2, 1, 3] - 985.138457971
6 - 12 - [0, 1, 0, 1, 2, 1, 2, 0, 2, 3] - 1000.73484188
6 - 41 - [0, 1, 2, 2, 1, 1, 2, 2, 0, 3] - 1001.25861432
7 - 73 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
7 - 31 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
7 - 53 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
7 - 13 - [0, 1, 2, 1, 2, 1, 2, 1, 2, 3] - 930.231483592
7 - 28 - [0, 2, 1, 0, 2, 1, 1, 1, 1, 3] - 934.556702423
7 - 30 - [0, 2, 1, 1, 1, 1, 2, 2, 1, 3] - 936.777573263
7 - 68 - [0, 2, 1, 1, 1, 1, 2, 2, 1, 3] - 936.777573263
7 - 57 - [0, 2, 1, 0, 1, 1, 2, 2, 1, 3] - 985.138457971
7 - 69 - [0, 2, 1, 0, 1, 1, 2, 2, 1, 3] - 985.138457971
7 - 72 - [0, 2, 1, 0, 1, 1, 2, 2, 1, 3] - 985.138457971
8 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
8 - 73 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
8 - 86 - [0, 1, 2, 1, 2, 0, 2, 1, 2, 3] - 905.374772661
8 - 31 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
8 - 53 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
8 - 13 - [0, 1, 2, 1, 2, 1, 2, 1, 2, 3] - 930.231483592
8 - 28 - [0, 2, 1, 0, 2, 1, 1, 1, 1, 3] - 934.556702423
8 - 82 - [0, 2, 1, 1, 1, 2, 0, 0, 1, 3] - 936.168066857
8 - 30 - [0, 2, 1, 1, 1, 1, 2, 2, 1, 3] - 936.777573263
8 - 68 - [0, 2, 1, 1, 1, 1, 2, 2, 1, 3] - 936.777573263
9 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
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9 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
9 - 73 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
9 - 86 - [0, 1, 2, 1, 2, 0, 2, 1, 2, 3] - 905.374772661
9 - 31 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
9 - 53 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
9 - 13 - [0, 1, 2, 1, 2, 1, 2, 1, 2, 3] - 930.231483592
9 - 28 - [0, 2, 1, 0, 2, 1, 1, 1, 1, 3] - 934.556702423
9 - 94 - [0, 2, 1, 0, 2, 1, 1, 1, 1, 3] - 934.556702423
9 - 82 - [0, 2, 1, 1, 1, 2, 0, 0, 1, 3] - 936.168066857
10 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
10 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
10 - 73 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
10 - 108 - [0, 2, 1, 1, 2, 1, 1, 1, 1, 3] - 895.447826962
10 - 86 - [0, 1, 2, 1, 2, 0, 2, 1, 2, 3] - 905.374772661
10 - 31 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
10 - 53 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
10 - 106 - [0, 2, 1, 1, 1, 0, 0, 0, 1, 3] - 921.844897071
10 - 13 - [0, 1, 2, 1, 2, 1, 2, 1, 2, 3] - 930.231483592
10 - 28 - [0, 2, 1, 0, 2, 1, 1, 1, 1, 3] - 934.556702423
11 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
11 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
11 - 73 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
11 - 118 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
11 - 108 - [0, 2, 1, 1, 2, 1, 1, 1, 1, 3] - 895.447826962
11 - 86 - [0, 1, 2, 1, 2, 0, 2, 1, 2, 3] - 905.374772661
11 - 31 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
11 - 53 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
11 - 106 - [0, 2, 1, 1, 1, 0, 0, 0, 1, 3] - 921.844897071
11 - 13 - [0, 1, 2, 1, 2, 1, 2, 1, 2, 3] - 930.231483592
12 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
12 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
12 - 126 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
12 - 130 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
12 - 124 - [0, 2, 1, 1, 1, 2, 1, 2, 1, 3] - 858.83170805
12 - 73 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
12 - 118 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
12 - 108 - [0, 2, 1, 1, 2, 1, 1, 1, 1, 3] - 895.447826962
12 - 86 - [0, 1, 2, 1, 2, 0, 2, 1, 2, 3] - 905.374772661
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12 - 31 - [0, 2, 1, 1, 1, 2, 2, 1, 1, 3] - 917.029459676
13 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
13 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
13 - 126 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
13 - 130 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
13 - 136 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
13 - 124 - [0, 2, 1, 1, 1, 2, 1, 2, 1, 3] - 858.83170805
13 - 73 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
13 - 118 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
13 - 108 - [0, 2, 1, 1, 2, 1, 1, 1, 1, 3] - 895.447826962
13 - 86 - [0, 1, 2, 1, 2, 0, 2, 1, 2, 3] - 905.374772661
14 - 144 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
14 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
14 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
14 - 126 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
14 - 130 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
14 - 136 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
14 - 124 - [0, 2, 1, 1, 1, 2, 1, 2, 1, 3] - 858.83170805
14 - 73 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
14 - 118 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
14 - 142 - [0, 2, 1, 1, 1, 2, 0, 1, 1, 3] - 868.514180481
15 - 144 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
15 - 156 - [0, 2, 1, 0, 1, 1, 1, 2, 1, 3] - 837.436246975
15 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
15 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
15 - 126 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
15 - 130 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
15 - 136 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
15 - 152 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
15 - 153 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
15 - 124 - [0, 2, 1, 1, 1, 2, 1, 2, 1, 3] - 858.83170805
16 - 144 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
16 - 162 - [0, 2, 1, 1, 1, 1, 0, 1, 1, 3] - 807.024810838
16 - 156 - [0, 2, 1, 0, 1, 1, 1, 2, 1, 3] - 837.436246975
16 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
16 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
16 - 126 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
16 - 130 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
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16 - 136 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
16 - 152 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
16 - 153 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
17 - 144 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
17 - 175 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
17 - 162 - [0, 2, 1, 1, 1, 1, 0, 1, 1, 3] - 807.024810838
17 - 156 - [0, 2, 1, 0, 1, 1, 1, 2, 1, 3] - 837.436246975
17 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
17 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
17 - 126 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
17 - 130 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
17 - 136 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
17 - 152 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
18 - 144 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
18 - 175 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
18 - 189 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
18 - 162 - [0, 2, 1, 1, 1, 1, 0, 1, 1, 3] - 807.024810838
18 - 184 - [0, 2, 1, 1, 1, 1, 0, 1, 1, 3] - 807.024810838
18 - 156 - [0, 2, 1, 0, 1, 1, 1, 2, 1, 3] - 837.436246975
18 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
18 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
18 - 126 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
18 - 130 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
19 - 144 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
19 - 175 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
19 - 189 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
19 - 162 - [0, 2, 1, 1, 1, 1, 0, 1, 1, 3] - 807.024810838
19 - 184 - [0, 2, 1, 1, 1, 1, 0, 1, 1, 3] - 807.024810838
19 - 156 - [0, 2, 1, 0, 1, 1, 1, 2, 1, 3] - 837.436246975
19 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
19 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
19 - 126 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
19 - 130 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
20 - 144 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
20 - 175 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
20 - 189 - [0, 2, 1, 1, 1, 1, 1, 1, 1, 3] - 804.190625359
20 - 207 - [0, 2, 1, 1, 1, 1, 1, 2, 1, 3] - 805.313007799
20 - 162 - [0, 2, 1, 1, 1, 1, 0, 1, 1, 3] - 807.024810838
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20 - 184 - [0, 2, 1, 1, 1, 1, 0, 1, 1, 3] - 807.024810838
20 - 156 - [0, 2, 1, 0, 1, 1, 1, 2, 1, 3] - 837.436246975
20 - 201 - [0, 2, 1, 0, 1, 1, 1, 2, 1, 3] - 837.436246975
20 - 84 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959
20 - 100 - [0, 2, 1, 1, 1, 2, 1, 1, 1, 3] - 846.187154959

D.7.4 Text File - ’noColocationPairId’ mandate constraints

0 - 1 - [0, 2, 2, 2, 2, 0, 0, 3, 2, 1] - 2977.48951951
0 - 2 - [3, 2, 1, 0, 2, 0, 1, 3, 2, 0] - 88229.059026
0 - 3 - [3, 2, 3, 1, 0, 1, 2, 3, 1, 0] - 922.563629937
0 - 4 - [0, 0, 2, 1, 1, 2, 0, 1, 1, 3] - 5713.12260417
0 - 5 - [2, 3, 1, 3, 2, 3, 3, 0, 1, 0] - 987.754001381
0 - 6 - [2, 0, 0, 1, 0, 2, 1, 1, 0, 3] - 2437.88926956
0 - 7 - [3, 2, 1, 3, 1, 3, 0, 3, 1, 0] - 89792.3929562
0 - 8 - [1, 3, 0, 0, 1, 1, 0, 1, 1, 1] - 18157.6763419
0 - 9 - [1, 2, 3, 0, 0, 2, 2, 0, 0, 2] - 963.607564334
0 - 10 - [1, 1, 2, 3, 0, 1, 3, 0, 0, 2] - 5138.86735598
1 - 18 - [3, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 873.900832551
1 - 12 - [3, 2, 3, 1, 0, 1, 3, 3, 1, 0] - 898.930316415
1 - 3 - [3, 2, 3, 1, 0, 1, 2, 3, 1, 0] - 922.563629937
1 - 14 - [1, 0, 2, 2, 2, 0, 0, 3, 2, 1] - 938.897322104
1 - 9 - [1, 2, 3, 0, 0, 2, 2, 0, 0, 2] - 963.607564334
1 - 17 - [3, 2, 3, 1, 0, 1, 2, 0, 0, 2] - 965.891776848
1 - 5 - [2, 3, 1, 3, 2, 3, 3, 0, 1, 0] - 987.754001381
1 - 20 - [3, 2, 3, 0, 0, 1, 3, 3, 0, 2] - 995.191750868
1 - 19 - [0, 2, 3, 1, 0, 1, 2, 0, 1, 0] - 1026.78434538
1 - 13 - [0, 2, 3, 0, 0, 0, 2, 0, 0, 2] - 1481.69211643
2 - 18 - [3, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 873.900832551
2 - 12 - [3, 2, 3, 1, 0, 1, 3, 3, 1, 0] - 898.930316415
2 - 21 - [3, 2, 3, 0, 0, 1, 3, 3, 0, 1] - 907.922593988
2 - 3 - [3, 2, 3, 1, 0, 1, 2, 3, 1, 0] - 922.563629937
2 - 14 - [1, 0, 2, 2, 2, 0, 0, 3, 2, 1] - 938.897322104
2 - 9 - [1, 2, 3, 0, 0, 2, 2, 0, 0, 2] - 963.607564334
2 - 17 - [3, 2, 3, 1, 0, 1, 2, 0, 0, 2] - 965.891776848
2 - 26 - [1, 2, 3, 0, 0, 2, 2, 0, 1, 0] - 971.933954097
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2 - 5 - [2, 3, 1, 3, 2, 3, 3, 0, 1, 0] - 987.754001381
2 - 20 - [3, 2, 3, 0, 0, 1, 3, 3, 0, 2] - 995.191750868
3 - 40 - [1, 2, 3, 0, 0, 1, 3, 3, 0, 2] - 779.535805327
3 - 35 - [2, 3, 1, 3, 0, 1, 2, 0, 0, 2] - 846.885859717
3 - 18 - [3, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 873.900832551
3 - 12 - [3, 2, 3, 1, 0, 1, 3, 3, 1, 0] - 898.930316415
3 - 21 - [3, 2, 3, 0, 0, 1, 3, 3, 0, 1] - 907.922593988
3 - 31 - [2, 3, 1, 3, 0, 2, 2, 0, 0, 2] - 917.604999028
3 - 34 - [3, 2, 3, 0, 0, 1, 3, 0, 0, 2] - 921.510302745
3 - 3 - [3, 2, 3, 1, 0, 1, 2, 3, 1, 0] - 922.563629937
3 - 14 - [1, 0, 2, 2, 2, 0, 0, 3, 2, 1] - 938.897322104
3 - 9 - [1, 2, 3, 0, 0, 2, 2, 0, 0, 2] - 963.607564334
4 - 46 - [1, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 749.290111711
4 - 40 - [1, 2, 3, 0, 0, 1, 3, 3, 0, 2] - 779.535805327
4 - 48 - [3, 1, 2, 2, 2, 1, 3, 3, 0, 2] - 834.980529305
4 - 35 - [2, 3, 1, 3, 0, 1, 2, 0, 0, 2] - 846.885859717
4 - 18 - [3, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 873.900832551
4 - 12 - [3, 2, 3, 1, 0, 1, 3, 3, 1, 0] - 898.930316415
4 - 21 - [3, 2, 3, 0, 0, 1, 3, 3, 0, 1] - 907.922593988
4 - 31 - [2, 3, 1, 3, 0, 2, 2, 0, 0, 2] - 917.604999028
4 - 34 - [3, 2, 3, 0, 0, 1, 3, 0, 0, 2] - 921.510302745
4 - 50 - [3, 2, 3, 0, 0, 1, 3, 0, 0, 2] - 921.510302745
5 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
5 - 46 - [1, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 749.290111711
5 - 40 - [1, 2, 3, 0, 0, 1, 3, 3, 0, 2] - 779.535805327
5 - 48 - [3, 1, 2, 2, 2, 1, 3, 3, 0, 2] - 834.980529305
5 - 35 - [2, 3, 1, 3, 0, 1, 2, 0, 0, 2] - 846.885859717
5 - 57 - [2, 3, 1, 3, 0, 1, 2, 0, 0, 2] - 846.885859717
5 - 18 - [3, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 873.900832551
5 - 53 - [1, 2, 2, 0, 0, 0, 3, 3, 1, 0] - 889.410539589
5 - 12 - [3, 2, 3, 1, 0, 1, 3, 3, 1, 0] - 898.930316415
5 - 21 - [3, 2, 3, 0, 0, 1, 3, 3, 0, 1] - 907.922593988
6 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
6 - 67 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
6 - 46 - [1, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 749.290111711
6 - 40 - [1, 2, 3, 0, 0, 1, 3, 3, 0, 2] - 779.535805327
6 - 63 - [3, 1, 2, 3, 0, 1, 2, 0, 0, 3] - 805.942474446
6 - 48 - [3, 1, 2, 2, 2, 1, 3, 3, 0, 2] - 834.980529305
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6 - 35 - [2, 3, 1, 3, 0, 1, 2, 0, 0, 2] - 846.885859717
6 - 57 - [2, 3, 1, 3, 0, 1, 2, 0, 0, 2] - 846.885859717
6 - 62 - [2, 3, 1, 3, 0, 1, 2, 3, 1, 0] - 851.169031313
6 - 18 - [3, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 873.900832551
7 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
7 - 67 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
7 - 77 - [3, 1, 2, 3, 0, 0, 2, 3, 0, 2] - 729.892973914
7 - 46 - [1, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 749.290111711
7 - 40 - [1, 2, 3, 0, 0, 1, 3, 3, 0, 2] - 779.535805327
7 - 72 - [1, 3, 1, 3, 0, 0, 2, 0, 0, 2] - 801.350614628
7 - 63 - [3, 1, 2, 3, 0, 1, 2, 0, 0, 3] - 805.942474446
7 - 48 - [3, 1, 2, 2, 2, 1, 3, 3, 0, 2] - 834.980529305
7 - 78 - [3, 1, 2, 2, 2, 1, 3, 0, 2, 2] - 835.007280708
7 - 80 - [3, 1, 2, 3, 0, 1, 2, 0, 3, 2] - 841.693354948
8 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
8 - 67 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
8 - 85 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
8 - 77 - [3, 1, 2, 3, 0, 0, 2, 3, 0, 2] - 729.892973914
8 - 46 - [1, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 749.290111711
8 - 81 - [3, 1, 2, 3, 0, 2, 2, 0, 3, 2] - 767.994817361
8 - 40 - [1, 2, 3, 0, 0, 1, 3, 3, 0, 2] - 779.535805327
8 - 88 - [3, 1, 2, 2, 3, 1, 2, 0, 0, 2] - 784.306089244
8 - 86 - [3, 1, 2, 3, 0, 2, 0, 0, 3, 2] - 791.050271363
8 - 72 - [1, 3, 1, 3, 0, 0, 2, 0, 0, 2] - 801.350614628
9 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
9 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
9 - 67 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
9 - 85 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
9 - 92 - [3, 1, 2, 2, 0, 2, 2, 0, 3, 2] - 712.743588304
9 - 100 - [3, 1, 2, 3, 0, 2, 2, 2, 0, 2] - 715.109430289
9 - 96 - [3, 1, 0, 3, 0, 0, 2, 0, 0, 2] - 722.921750173
9 - 91 - [3, 1, 2, 3, 0, 2, 0, 0, 2, 2] - 725.233480949
9 - 77 - [3, 1, 2, 3, 0, 0, 2, 3, 0, 2] - 729.892973914
9 - 46 - [1, 2, 3, 0, 0, 0, 3, 3, 1, 0] - 749.290111711
10 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
10 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
10 - 67 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
10 - 85 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
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10 - 92 - [3, 1, 2, 2, 0, 2, 2, 0, 3, 2] - 712.743588304
10 - 100 - [3, 1, 2, 3, 0, 2, 2, 2, 0, 2] - 715.109430289
10 - 96 - [3, 1, 0, 3, 0, 0, 2, 0, 0, 2] - 722.921750173
10 - 91 - [3, 1, 2, 3, 0, 2, 0, 0, 2, 2] - 725.233480949
10 - 77 - [3, 1, 2, 3, 0, 0, 2, 3, 0, 2] - 729.892973914
10 - 105 - [3, 1, 2, 3, 0, 2, 2, 3, 0, 0] - 729.892973914
11 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
11 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
11 - 67 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
11 - 85 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
11 - 92 - [3, 1, 2, 2, 0, 2, 2, 0, 3, 2] - 712.743588304
11 - 115 - [3, 1, 2, 2, 0, 2, 2, 0, 3, 2] - 712.743588304
11 - 118 - [3, 1, 2, 2, 0, 2, 2, 0, 3, 2] - 712.743588304
11 - 100 - [3, 1, 2, 3, 0, 2, 2, 2, 0, 2] - 715.109430289
11 - 119 - [3, 1, 2, 2, 0, 2, 3, 0, 0, 2] - 720.518279316
11 - 96 - [3, 1, 0, 3, 0, 0, 2, 0, 0, 2] - 722.921750173
12 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
12 - 122 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
12 - 127 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
12 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
12 - 67 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
12 - 85 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
12 - 123 - [3, 1, 2, 3, 0, 0, 2, 0, 0, 2] - 701.315102495
12 - 125 - [3, 1, 2, 3, 2, 2, 2, 2, 0, 2] - 707.649529662
12 - 130 - [3, 1, 2, 3, 2, 2, 2, 2, 0, 2] - 707.649529662
12 - 92 - [3, 1, 2, 2, 0, 2, 2, 0, 3, 2] - 712.743588304
13 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
13 - 122 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
13 - 127 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
13 - 133 - [3, 1, 0, 2, 0, 2, 2, 0, 0, 2] - 670.683176254
13 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
13 - 67 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
13 - 85 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
13 - 132 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
13 - 123 - [3, 1, 2, 3, 0, 0, 2, 0, 0, 2] - 701.315102495
13 - 125 - [3, 1, 2, 3, 2, 2, 2, 2, 0, 2] - 707.649529662
14 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
14 - 122 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
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14 - 127 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
14 - 133 - [3, 1, 0, 2, 0, 2, 2, 0, 0, 2] - 670.683176254
14 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
14 - 67 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
14 - 85 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
14 - 132 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
14 - 141 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
14 - 146 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
15 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
15 - 122 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
15 - 127 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
15 - 153 - [3, 1, 2, 2, 0, 0, 2, 0, 0, 2] - 661.111259957
15 - 133 - [3, 1, 0, 2, 0, 2, 2, 0, 0, 2] - 670.683176254
15 - 154 - [3, 1, 2, 3, 2, 2, 2, 0, 0, 2] - 675.452536694
15 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
15 - 67 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
15 - 85 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
15 - 132 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
16 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
16 - 122 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
16 - 127 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
16 - 153 - [3, 1, 2, 2, 0, 0, 2, 0, 0, 2] - 661.111259957
16 - 133 - [3, 1, 0, 2, 0, 2, 2, 0, 0, 2] - 670.683176254
16 - 154 - [3, 1, 2, 3, 2, 2, 2, 0, 0, 2] - 675.452536694
16 - 164 - [3, 1, 0, 2, 0, 0, 2, 0, 0, 2] - 681.128079978
16 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
16 - 67 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
16 - 85 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
17 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
17 - 122 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
17 - 127 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
17 - 174 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
17 - 153 - [3, 1, 2, 2, 0, 0, 2, 0, 0, 2] - 661.111259957
17 - 133 - [3, 1, 0, 2, 0, 2, 2, 0, 0, 2] - 670.683176254
17 - 154 - [3, 1, 2, 3, 2, 2, 2, 0, 0, 2] - 675.452536694
17 - 175 - [3, 1, 2, 3, 2, 2, 2, 0, 0, 2] - 675.452536694
17 - 164 - [3, 1, 0, 2, 0, 0, 2, 0, 0, 2] - 681.128079978
17 - 52 - [3, 1, 2, 3, 0, 2, 2, 0, 0, 2] - 691.821259799
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18 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
18 - 122 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
18 - 127 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
18 - 174 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
18 - 153 - [3, 1, 2, 2, 0, 0, 2, 0, 0, 2] - 661.111259957
18 - 183 - [3, 1, 2, 2, 0, 0, 2, 0, 0, 2] - 661.111259957
18 - 133 - [3, 1, 0, 2, 0, 2, 2, 0, 0, 2] - 670.683176254
18 - 187 - [3, 1, 0, 2, 0, 2, 2, 0, 0, 2] - 670.683176254
18 - 154 - [3, 1, 2, 3, 2, 2, 2, 0, 0, 2] - 675.452536694
18 - 175 - [3, 1, 2, 3, 2, 2, 2, 0, 0, 2] - 675.452536694
19 - 200 - [3, 1, 2, 2, 2, 0, 2, 0, 0, 2] - 644.586389651
19 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
19 - 122 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
19 - 127 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
19 - 174 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
19 - 153 - [3, 1, 2, 2, 0, 0, 2, 0, 0, 2] - 661.111259957
19 - 183 - [3, 1, 2, 2, 0, 0, 2, 0, 0, 2] - 661.111259957
19 - 133 - [3, 1, 0, 2, 0, 2, 2, 0, 0, 2] - 670.683176254
19 - 187 - [3, 1, 0, 2, 0, 2, 2, 0, 0, 2] - 670.683176254
19 - 191 - [3, 1, 2, 0, 0, 0, 2, 0, 0, 2] - 670.683176254
20 - 200 - [3, 1, 2, 2, 2, 0, 2, 0, 0, 2] - 644.586389651
20 - 206 - [3, 1, 2, 2, 2, 0, 2, 0, 0, 2] - 644.586389651
20 - 99 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
20 - 122 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
20 - 127 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
20 - 174 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
20 - 203 - [3, 1, 2, 2, 0, 2, 2, 0, 0, 2] - 652.41233109
20 - 153 - [3, 1, 2, 2, 0, 0, 2, 0, 0, 2] - 661.111259957
20 - 183 - [3, 1, 2, 2, 0, 0, 2, 0, 0, 2] - 661.111259957
20 - 133 - [3, 1, 0, 2, 0, 2, 2, 0, 0, 2] - 670.683176254

D.7.5 Text File - deployment mandate multi-constraints

0 - 1 - [0, 0, 1, 0, 1, 2, 0, 2, 1, 3] - 56825798.9281
0 - 2 - [0, 2, 0, 1, 0, 1, 0, 2, 2, 3] - 74248857.1131
0 - 3 - [0, 1, 0, 1, 0, 1, 1, 0, 0, 3] - 1655261897.62
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0 - 4 - [0, 0, 2, 0, 1, 0, 2, 0, 1, 3] - 24382832.7063
0 - 5 - [0, 1, 2, 2, 2, 1, 1, 0, 2, 3] - 358724387.267
0 - 6 - [0, 2, 2, 0, 0, 0, 0, 2, 1, 3] - 305914950.345
0 - 7 - [0, 0, 1, 0, 2, 0, 2, 0, 1, 3] - 1556544054.58
0 - 8 - [0, 2, 0, 2, 0, 0, 0, 1, 2, 3] - 143006269.558
0 - 9 - [0, 1, 0, 1, 2, 0, 1, 2, 0, 3] - 88285283.6008
0 - 10 - [0, 0, 0, 0, 1, 0, 2, 0, 1, 3] - 3465876177.99
1 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
1 - 18 - [0, 2, 2, 0, 0, 0, 0, 2, 1, 3] - 1268.06327426
1 - 15 - [0, 0, 1, 0, 2, 1, 1, 0, 2, 3] - 5618.26894253
1 - 12 - [0, 0, 2, 0, 1, 0, 2, 1, 1, 3] - 5666.15810672
1 - 13 - [0, 0, 1, 0, 2, 0, 2, 1, 0, 3] - 9152.15154627
1 - 4 - [0, 0, 2, 0, 1, 0, 2, 0, 1, 3] - 24382832.7063
1 - 1 - [0, 0, 1, 0, 1, 2, 0, 2, 1, 3] - 56825798.9281
1 - 2 - [0, 2, 0, 1, 0, 1, 0, 2, 2, 3] - 74248857.1131
1 - 9 - [0, 1, 0, 1, 2, 0, 1, 2, 0, 3] - 88285283.6008
1 - 8 - [0, 2, 0, 2, 0, 0, 0, 1, 2, 3] - 143006269.558
2 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
2 - 18 - [0, 2, 2, 0, 0, 0, 0, 2, 1, 3] - 1268.06327426
2 - 24 - [0, 1, 1, 0, 2, 1, 0, 2, 1, 3] - 2482.62180121
2 - 27 - [0, 0, 2, 0, 1, 1, 2, 1, 1, 3] - 5073.209387
2 - 15 - [0, 0, 1, 0, 2, 1, 1, 0, 2, 3] - 5618.26894253
2 - 12 - [0, 0, 2, 0, 1, 0, 2, 1, 1, 3] - 5666.15810672
2 - 22 - [0, 0, 1, 0, 2, 1, 2, 1, 0, 3] - 8200.51817101
2 - 13 - [0, 0, 1, 0, 2, 0, 2, 1, 0, 3] - 9152.15154627
2 - 4 - [0, 0, 2, 0, 1, 0, 2, 0, 1, 3] - 24382832.7063
2 - 1 - [0, 0, 1, 0, 1, 2, 0, 2, 1, 3] - 56825798.9281
3 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
3 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
3 - 18 - [0, 2, 2, 0, 0, 0, 0, 2, 1, 3] - 1268.06327426
3 - 24 - [0, 1, 1, 0, 2, 1, 0, 2, 1, 3] - 2482.62180121
3 - 40 - [0, 2, 2, 0, 2, 1, 1, 0, 2, 3] - 2577.39585632
3 - 27 - [0, 0, 2, 0, 1, 1, 2, 1, 1, 3] - 5073.209387
3 - 15 - [0, 0, 1, 0, 2, 1, 1, 0, 2, 3] - 5618.26894253
3 - 12 - [0, 0, 2, 0, 1, 0, 2, 1, 1, 3] - 5666.15810672
3 - 36 - [0, 0, 1, 0, 2, 1, 0, 2, 1, 3] - 6345.10617152
3 - 38 - [0, 0, 1, 0, 1, 0, 0, 1, 1, 3] - 7184.8074403
4 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
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4 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
4 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
4 - 46 - [0, 1, 1, 2, 2, 2, 2, 1, 0, 3] - 976.681411615
4 - 41 - [0, 1, 1, 2, 2, 1, 2, 1, 0, 3] - 1072.07290711
4 - 18 - [0, 2, 2, 0, 0, 0, 0, 2, 1, 3] - 1268.06327426
4 - 50 - [0, 2, 2, 0, 0, 0, 0, 2, 1, 3] - 1268.06327426
4 - 47 - [0, 1, 2, 0, 2, 1, 0, 0, 1, 3] - 2113.53963164
4 - 24 - [0, 1, 1, 0, 2, 1, 0, 2, 1, 3] - 2482.62180121
4 - 40 - [0, 2, 2, 0, 2, 1, 1, 0, 2, 3] - 2577.39585632
5 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
5 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
5 - 52 - [0, 1, 2, 2, 2, 0, 2, 1, 0, 3] - 882.584531592
5 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
5 - 46 - [0, 1, 1, 2, 2, 2, 2, 1, 0, 3] - 976.681411615
5 - 41 - [0, 1, 1, 2, 2, 1, 2, 1, 0, 3] - 1072.07290711
5 - 51 - [0, 1, 1, 2, 1, 2, 2, 2, 0, 3] - 1094.95757855
5 - 18 - [0, 2, 2, 0, 0, 0, 0, 2, 1, 3] - 1268.06327426
5 - 50 - [0, 2, 2, 0, 0, 0, 0, 2, 1, 3] - 1268.06327426
5 - 57 - [0, 1, 2, 2, 2, 0, 0, 2, 1, 3] - 1755.31662465
6 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
6 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
6 - 67 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
6 - 52 - [0, 1, 2, 2, 2, 0, 2, 1, 0, 3] - 882.584531592
6 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
6 - 46 - [0, 1, 1, 2, 2, 2, 2, 1, 0, 3] - 976.681411615
6 - 41 - [0, 1, 1, 2, 2, 1, 2, 1, 0, 3] - 1072.07290711
6 - 51 - [0, 1, 1, 2, 1, 2, 2, 2, 0, 3] - 1094.95757855
6 - 18 - [0, 2, 2, 0, 0, 0, 0, 2, 1, 3] - 1268.06327426
6 - 50 - [0, 2, 2, 0, 0, 0, 0, 2, 1, 3] - 1268.06327426
7 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
7 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
7 - 67 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
7 - 52 - [0, 1, 2, 2, 2, 0, 2, 1, 0, 3] - 882.584531592
7 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
7 - 46 - [0, 1, 1, 2, 2, 2, 2, 1, 0, 3] - 976.681411615
7 - 75 - [0, 1, 0, 2, 2, 1, 2, 1, 0, 3] - 1056.14214258
7 - 73 - [0, 1, 1, 0, 2, 2, 2, 1, 0, 3] - 1064.09677178
7 - 76 - [0, 1, 1, 0, 2, 2, 2, 1, 0, 3] - 1064.09677178
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7 - 41 - [0, 1, 1, 2, 2, 1, 2, 1, 0, 3] - 1072.07290711
8 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
8 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
8 - 67 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
8 - 52 - [0, 1, 2, 2, 2, 0, 2, 1, 0, 3] - 882.584531592
8 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
8 - 46 - [0, 1, 1, 2, 2, 2, 2, 1, 0, 3] - 976.681411615
8 - 84 - [0, 1, 0, 2, 2, 1, 2, 2, 0, 3] - 991.315465758
8 - 87 - [0, 1, 0, 2, 2, 1, 2, 2, 0, 3] - 991.315465758
8 - 75 - [0, 1, 0, 2, 2, 1, 2, 1, 0, 3] - 1056.14214258
8 - 89 - [0, 1, 0, 2, 2, 1, 2, 1, 0, 3] - 1056.14214258
9 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
9 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
9 - 67 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
9 - 91 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
9 - 52 - [0, 1, 2, 2, 2, 0, 2, 1, 0, 3] - 882.584531592
9 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
9 - 94 - [0, 1, 0, 2, 2, 2, 2, 0, 0, 3] - 958.505720195
9 - 46 - [0, 1, 1, 2, 2, 2, 2, 1, 0, 3] - 976.681411615
9 - 95 - [0, 1, 1, 2, 2, 2, 2, 1, 0, 3] - 976.681411615
9 - 84 - [0, 1, 0, 2, 2, 1, 2, 2, 0, 3] - 991.315465758
10 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
10 - 107 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
10 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
10 - 67 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
10 - 91 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
10 - 52 - [0, 1, 2, 2, 2, 0, 2, 1, 0, 3] - 882.584531592
10 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
10 - 104 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
10 - 94 - [0, 1, 0, 2, 2, 2, 2, 0, 0, 3] - 958.505720195
10 - 101 - [0, 1, 2, 1, 2, 0, 2, 1, 0, 3] - 969.130805344
11 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
11 - 107 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
11 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
11 - 67 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
11 - 91 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
11 - 114 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
11 - 52 - [0, 1, 2, 2, 2, 0, 2, 1, 0, 3] - 882.584531592
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11 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
11 - 104 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
11 - 118 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
12 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
12 - 107 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
12 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
12 - 67 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
12 - 91 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
12 - 114 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
12 - 121 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
12 - 130 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
12 - 52 - [0, 1, 2, 2, 2, 0, 2, 1, 0, 3] - 882.584531592
12 - 16 - [0, 1, 2, 2, 2, 1, 2, 1, 0, 3] - 889.709608808
13 - 135 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
13 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
13 - 107 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
13 - 134 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
13 - 137 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
13 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
13 - 67 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
13 - 91 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
13 - 114 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
13 - 121 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
14 - 135 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
14 - 141 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
14 - 143 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
14 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
14 - 107 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
14 - 134 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
14 - 137 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
14 - 144 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
14 - 145 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
14 - 31 - [0, 1, 2, 2, 2, 1, 2, 2, 0, 3] - 845.119763919
15 - 135 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
15 - 141 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
15 - 143 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
15 - 157 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
15 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
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15 - 107 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
15 - 134 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
15 - 137 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
15 - 144 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
15 - 145 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
16 - 135 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
16 - 141 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
16 - 143 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
16 - 157 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
16 - 163 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
16 - 162 - [0, 1, 2, 2, 2, 2, 2, 0, 0, 3] - 805.955216592
16 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
16 - 169 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
16 - 107 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
16 - 134 - [0, 1, 2, 2, 2, 0, 2, 2, 0, 3] - 839.988494686
17 - 135 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
17 - 141 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
17 - 143 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
17 - 157 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
17 - 163 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
17 - 178 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
17 - 162 - [0, 1, 2, 2, 2, 2, 2, 0, 0, 3] - 805.955216592
17 - 179 - [0, 1, 2, 2, 2, 2, 2, 0, 0, 3] - 805.955216592
17 - 45 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
17 - 169 - [0, 1, 2, 2, 2, 2, 2, 1, 0, 3] - 811.157498684
18 - 135 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
18 - 141 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
18 - 143 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
18 - 157 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
18 - 163 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
18 - 178 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
18 - 182 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
18 - 184 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
18 - 162 - [0, 1, 2, 2, 2, 2, 2, 0, 0, 3] - 805.955216592
18 - 179 - [0, 1, 2, 2, 2, 2, 2, 0, 0, 3] - 805.955216592
19 - 135 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
19 - 141 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
19 - 143 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
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19 - 157 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
19 - 163 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
19 - 178 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
19 - 182 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
19 - 184 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
19 - 191 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
19 - 197 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
20 - 135 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
20 - 141 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
20 - 143 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
20 - 157 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
20 - 163 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
20 - 178 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
20 - 182 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
20 - 184 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
20 - 191 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
20 - 197 - [0, 1, 2, 2, 2, 2, 2, 2, 0, 3] - 778.679877744
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E. Case Study MEDEA Model Dia-
grams

E.1 Undersea Sensor System Software Compo-
nent Definitions
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Figure E.1: Sample sender behaviour definition
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Figure E.2: Receiver behaviour definition
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Figure E.3: Processing behaviour definition

Figure E.4: Tx_Repeater behaviour definition
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Figure E.5: Sample_Sender_processing_Tx_Monolith behaviour definition
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E.2 Case Study 0: CPU and Memory Consump-
tion Plots
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Figure E.6: Cranberry01 maximum CPU resource consumption for an undersea sensor software system for the
baseline experiment (50 generations with populations of 60, and 58 samples for each population member)



A
P

P
E

N
D

IX
E

.
C

A
SE

STU
D

Y
M

E
D

E
A

M
O

D
E

L
D

IAG
R

A
M

S
449

Figure E.7: Cranberry02 maximum CPU resource consumption for an undersea sensor software system for the
baseline experiment (50 generations with populations of 60, and 58 samples for each population member)
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450Figure E.8: Cranberry03 maximum CPU resource consumption for an undersea sensor software system for the

baseline experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure E.9: Mandarin01 maximum CPU resource consumption for an undersea sensor software system for the
baseline experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure E.10: Mandarin02 maximum CPU resource consumption for an undersea sensor software system for the
baseline experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure E.11: Mandarin03 maximum CPU resource consumption for an undersea sensor software system for the
baseline experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure E.12: Cranberry01 maximum memory resource consumption for an undersea sensor software system for
the baseline experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure E.13: Cranberry02 maximum memory resource consumption for an undersea sensor software system for
the baseline experiment (50 generations with populations of 60, and 58 samples for each population member)
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456Figure E.14: Cranberry03 maximum memory resource consumption for an undersea sensor software system for

the baseline experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure E.15: Mandarin01 maximum memory resource consumption for an undersea sensor software system for
the baseline experiment (50 generations with populations of 60, and 58 samples for each population member)
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458Figure E.16: Mandarin02 maximum memory resource consumption for an undersea sensor software system for

the baseline experiment (50 generations with populations of 60, and 58 samples for each population member)
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Figure E.17: Mandarin03 maximum memory resource consumption for an undersea sensor software system for
the baseline experiment (50 generations with populations of 60, and 58 samples for each population member)
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E.3 Case Study 0: Final Generation Array

Table E.1: Baseline case study final generation details

Population Number Component Deployment Array Objective Score
1993 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 349.534090099
2599 [1, 2, 4, 5, 2, 4, 0, 2, 2, 2, 3, 5, 2, 2, 3, 2, 2, 3, 3] 349.534090099
2713 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 349.534090099
2793 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 349.534090099
2833 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 349.534090099
2870 [1, 3, 4, 5, 3, 4, 0, 3, 2, 2, 2, 5, 2, 3, 2, 2, 2, 3, 3] 349.534090099
2912 [1, 2, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 349.534090099
2913 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 349.534090099
2918 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 349.534090099
2957 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 3, 3] 349.534090099
2966 [1, 3, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 3, 2, 3, 2, 2, 3, 3] 349.534090099
2989 [1, 2, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 349.534090099
2999 [1, 2, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 3, 2, 3, 3, 2, 3, 3] 349.534090099
3006 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 3, 3] 349.534090099
3021 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 349.534090099
3027 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 2, 3, 3, 2, 2, 3] 349.534090099
3032 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 2] 349.534090099
2195 [1, 0, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.113102898
2451 [1, 0, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.113102898
2518 [1, 3, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 2, 2, 3, 0, 2, 2, 3] 350.113102898
2596 [1, 2, 4, 5, 2, 4, 0, 2, 2, 0, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.113102898
2639 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 0, 5, 2, 3, 2, 2, 2, 2, 3] 350.113102898
2798 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 0, 3] 350.113102898
2823 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 0, 3] 350.113102898
2826 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 2, 3, 0, 2, 2, 3] 350.113102898
2874 [1, 2, 4, 5, 3, 4, 0, 0, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 350.113102898
2887 [1, 0, 4, 5, 2, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.113102898
2890 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 2, 3, 0, 2, 2, 3] 350.113102898
2891 [1, 2, 4, 5, 2, 4, 0, 2, 3, 2, 0, 5, 2, 3, 2, 2, 2, 2, 3] 350.113102898
2906 [1, 3, 4, 5, 2, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 0, 3] 350.113102898
2947 [1, 2, 4, 5, 3, 4, 0, 3, 2, 2, 0, 5, 2, 3, 2, 2, 2, 2, 3] 350.113102898

Continued on next page
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Table E.1 – continued from previous page
Population Number Component Deployment Array Objective Score
2971 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 0, 5, 2, 3, 2, 2, 2, 2, 3] 350.113102898
3009 [1, 2, 4, 5, 2, 4, 0, 2, 3, 2, 0, 5, 3, 3, 2, 2, 2, 2, 3] 350.113102898
3039 [1, 0, 4, 5, 2, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.113102898
3040 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 0, 2, 2, 3] 350.113102898
3057 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 0, 5, 2, 3, 2, 2, 2, 2, 3] 350.113102898
2130 [1, 2, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 2, 3, 2, 2, 2, 3] 350.152309296
2476 [1, 3, 4, 5, 3, 4, 0, 2, 1, 3, 3, 5, 2, 2, 2, 2, 2, 2, 3] 350.152309296
2531 [1, 2, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 2, 3, 2, 2, 2, 3] 350.152309296
2543 [1, 3, 4, 5, 3, 4, 0, 2, 1, 3, 3, 5, 2, 2, 2, 2, 2, 2, 3] 350.152309296
2568 [1, 1, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 350.152309296
2573 [1, 1, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 350.152309296
2574 [1, 2, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 2, 3, 2, 2, 2, 3] 350.152309296
2677 [1, 2, 4, 5, 3, 4, 0, 2, 3, 2, 3, 5, 2, 2, 2, 2, 3, 1, 2] 350.152309296
2736 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 1, 5, 2, 2, 3, 2, 2, 2, 3] 350.152309296
2761 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 1, 3, 3, 2, 2, 2, 3] 350.152309296
2768 [1, 2, 4, 5, 3, 4, 0, 2, 1, 3, 3, 5, 2, 3, 2, 2, 3, 2, 3] 350.152309296
2841 [1, 2, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.152309296
2864 [1, 3, 4, 5, 3, 4, 0, 2, 1, 3, 3, 5, 2, 2, 3, 2, 2, 3, 3] 350.152309296
2892 [1, 1, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 2, 3, 2, 2, 3, 3] 350.152309296
2904 [1, 3, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 2, 3, 2, 2, 3, 3] 350.152309296
2915 [1, 1, 4, 5, 3, 4, 0, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 3, 3] 350.152309296
2928 [1, 3, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.152309296
2940 [1, 2, 4, 5, 3, 4, 0, 1, 2, 3, 3, 5, 2, 2, 3, 2, 2, 2, 3] 350.152309296
2980 [1, 3, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 2, 3, 2, 2, 2, 1, 3] 350.152309296
3004 [1, 3, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 350.152309296
3012 [1, 2, 4, 5, 3, 4, 0, 1, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.152309296
3026 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 1, 2] 350.152309296
2946 [0, 1, 4, 5, 3, 4, 3, 1, 1, 1, 1, 5, 2, 2, 2, 2, 2, 1, 2] 350.207174541
2516 [1, 3, 4, 5, 0, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.402609297
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Table E.2: Baseline case study unique deployment options

Number Unique Component Deployment Array Objective Score
1 [0, 1, 4, 5, 3, 4, 3, 1, 1, 1, 1, 5, 2, 2, 2, 2, 2, 1, 2] 350.20
2 [1, 0, 4, 5, 2, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.11
3 [1, 2, 4, 5, 3, 4, 0, 0, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 350.11
4 [1, 0, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.11
5 [1, 1, 4, 5, 3, 4, 0, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 3, 3] 350.15
6 [1, 1, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 2, 3, 2, 2, 3, 3] 350.15
7 [1, 1, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 350.15
8 [1, 2, 4, 5, 2, 4, 0, 2, 2, 0, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.11
9 [1, 2, 4, 5, 2, 4, 0, 2, 2, 2, 3, 5, 2, 2, 3, 2, 2, 3, 3] 349.53
10 [1, 2, 4, 5, 2, 4, 0, 2, 3, 2, 0, 5, 2, 3, 2, 2, 2, 2, 3] 349.53
11 [1, 2, 4, 5, 3, 4, 0, 1, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.15
12 [1, 2, 4, 5, 3, 4, 0, 1, 2, 3, 3, 5, 2, 2, 3, 2, 2, 2, 3] 350.15
13 [1, 2, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 2, 3, 2, 2, 2, 3] 350.15
14 [1, 2, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.15
15 [1, 2, 4, 5, 3, 4, 0, 2, 1, 3, 3, 5, 2, 3, 2, 2, 3, 2, 3] 350.15
16 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 0, 5, 2, 3, 2, 2, 2, 2, 3] 349.53
17 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 1, 5, 2, 2, 3, 2, 2, 2, 3] 350.15
18 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 2, 5, 2, 3, 2, 2, 2, 3, 3] 350.15
19 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 1, 3, 3, 2, 2, 2, 3] 350.15
20 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 2, 3, 0, 2, 2, 3] 350.11
21 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 2, 3, 3, 2, 2, 3] 350.11
22 [1, 2, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 0, 3] 350.11
23 [1, 2, 4, 5, 3, 4, 0, 3, 2, 2, 0, 5, 2, 3, 2, 2, 2, 2, 3] 350.11
24 [1, 2, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 349.53
25 [1, 2, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 3, 2, 3, 3, 2, 3, 3] 349.53
26 [1, 3, 4, 5, 0, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.40
27 [1, 3, 4, 5, 2, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 0, 3] 350.11
28 [1, 3, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 2, 3, 2, 2, 3, 3] 350.15
29 [1, 3, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.15
30 [1, 3, 4, 5, 3, 4, 0, 2, 1, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 350.15
31 [1, 3, 4, 5, 3, 4, 0, 2, 1, 3, 3, 5, 2, 2, 2, 2, 2, 2, 3] 350.15
32 [1, 3, 4, 5, 3, 4, 0, 2, 1, 3, 3, 5, 2, 2, 3, 2, 2, 3, 3] 350.15
33 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 1, 2] 350.15
34 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 0, 2, 2, 3] 350.11

Continued on next page
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Table E.2 – continued from previous page
Number Unique Component Deployment Array Objective Score
35 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 2] 349.53
36 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 3] 350.15
37 [1, 3, 4, 5, 3, 4, 0, 2, 2, 2, 3, 5, 2, 3, 3, 2, 2, 2, 3] 349.53
38 [1, 3, 4, 5, 3, 4, 0, 3, 2, 2, 2, 5, 2, 3, 2, 2, 2, 3, 3] 349.53
39 [1, 3, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 2, 2, 3, 0, 2, 2, 3] 350.11
40 [1, 3, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 2, 3, 2, 2, 2, 1, 3] 350.15
41 [1, 3, 4, 5, 3, 4, 0, 3, 2, 2, 3, 5, 3, 2, 3, 2, 2, 3, 3] 349.53

E.4 Case Study 1: Final Generation Array

Table E.3: Case study 1 final generation details

Number Component Deployment Array Objective Score
875 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
910 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
930 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
962 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1053 [0, 2, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1058 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.604161459
1083 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1090 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1145 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.604161459
1150 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1209 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.604161459
1223 [0, 2, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.604161459
1234 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 2, 4, 4, 2, 1, 1, 1, 2, 2] 358.604161459
1241 [0, 2, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.604161459
1259 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.604161459
1274 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1275 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 2, 4, 4, 1, 2, 1, 1, 1, 2] 358.604161459
1277 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.604161459

Continued on next page



APPENDIX E. CASE STUDY MEDEA MODEL DIAGRAMS 464

Table E.3 – continued from previous page
Number Component Deployment Array Objective Score
1330 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.604161459
1348 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1365 [0, 2, 4, 0, 2, 3, 5, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.604161459
1375 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 2, 2] 358.604161459
1389 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.604161459
1391 [0, 2, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.604161459
1401 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1406 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.604161459
1417 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1429 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 2, 2] 358.604161459
1430 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1433 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.604161459
1444 [0, 2, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.604161459
1452 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.604161459
1453 [0, 2, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1454 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.604161459
1457 [0, 1, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1460 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.604161459
1461 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1462 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.604161459
1484 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 2, 4, 4, 1, 2, 1, 1, 1, 1] 358.604161459
1489 [0, 1, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 2, 2, 1, 1, 1] 358.604161459
1526 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.604161459
1542 [0, 1, 4, 0, 1, 3, 5, 2, 2, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.604161459
1568 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.604161459
1575 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.604161459
1582 [0, 2, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.604161459
1584 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1585 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.604161459
1591 [0, 1, 4, 0, 1, 3, 5, 2, 2, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.604161459
1604 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.604161459
1609 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 2, 1] 358.604161459
1614 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.604161459
1622 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.604161459
1623 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.604161459

Continued on next page
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1629 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 2, 4, 4, 2, 1, 2, 1, 1, 1] 358.604161459
1631 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.604161459
1636 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.604161459
1637 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1644 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459
1646 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.604161459
1647 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.604161459

Table E.4: Case study 1 unique deployment options

Number Component Deployment Array Objective Score
1 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60
2 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60
3 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.60
4 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.60
5 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.60
6 [0, 1, 4, 0, 1, 3, 5, 1, 1, 2, 2, 4, 4, 1, 2, 1, 1, 1, 2] 358.60
7 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60
8 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 2, 2] 358.60
9 [0, 1, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60
10 [0, 1, 4, 0, 1, 3, 5, 2, 2, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.60
11 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60
12 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.60
13 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 2, 4, 4, 1, 2, 1, 1, 1, 1] 358.60
14 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 2, 4, 4, 2, 1, 1, 1, 2, 2] 358.60
15 [0, 1, 4, 0, 2, 3, 5, 1, 1, 2, 2, 4, 4, 2, 1, 2, 1, 1, 1] 358.60
16 [0, 1, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60
17 [0, 1, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 2, 2, 1, 1, 1] 358.60
18 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60
19 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 2, 1] 358.60
20 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60
21 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.60
22 [0, 1, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.60

Continued on next page
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23 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60
24 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.60
25 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.60
26 [0, 1, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 2, 2, 1, 1, 1, 1] 358.60
27 [0, 2, 4, 0, 1, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60
28 [0, 2, 4, 0, 2, 3, 5, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60
29 [0, 2, 4, 0, 2, 3, 5, 1, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60
30 [0, 2, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60
31 [0, 2, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60
32 [0, 2, 4, 0, 2, 3, 5, 2, 1, 1, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.60
33 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60
34 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 1, 2, 1, 1, 1] 358.60
35 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 1] 358.60
36 [0, 2, 4, 0, 2, 3, 5, 2, 1, 2, 1, 4, 4, 1, 2, 1, 1, 1, 2] 358.60
37 [0, 2, 4, 0, 2, 3, 5, 2, 2, 2, 1, 4, 4, 1, 1, 1, 1, 1, 1] 358.60

E.5 Case Study 2: Final Generation Array

Table E.5: Case study 2 final generation details

Population Number Component Deployment Array Objective Score
2394 [4, 4, 0, 3, 4, 1, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 304.749652395
2518 [4, 4, 0, 3, 4, 1, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 304.749652395
2814 [4, 4, 0, 3, 4, 1, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 304.749652395
2949 [4, 4, 0, 3, 4, 1, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 304.749652395
2959 [4, 4, 0, 3, 4, 1, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 304.749652395
2376 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2385 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2407 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2502 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2536 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
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2679 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2706 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2738 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2766 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2793 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2807 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2829 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2895 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2896 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2925 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2934 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2980 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2992 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
3030 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
3044 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.778902441
2038 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2163 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2168 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2188 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2225 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2261 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2311 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2320 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2339 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2359 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2413 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2419 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2441 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2495 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2497 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2546 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2620 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2623 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2661 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2667 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
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2731 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2771 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2856 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2885 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2909 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2915 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2921 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2932 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2941 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2942 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2951 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
2982 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
3004 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
3014 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276
3048 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.274040276

Table E.6: Case study 2 final generation unique deployment options details

Number Component Deployment Array Objective Score
1 [4, 4, 0, 3, 4, 1, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 304.75
2 [4, 4, 0, 2, 4, 0, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 304.78
3 [4, 4, 0, 2, 4, 1, 5, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 305.27

E.6 Case Study 3: Final Generation Array
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Table E.7: Case study 3 final generation details

Population Number Component Deployment Array Objective Score
2997 [1, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 769.347629203
2788 [2, 4, 3, 1, 4, 0, 5, 4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] 774.892021322
2900 [2, 4, 1, 0, 4, 3, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 781.933458614
2754 [2, 4, 3, 1, 4, 0, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 784.500950446
2370 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 788.378725669
2702 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 788.378725669
2863 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 788.378725669
2937 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 788.378725669
2960 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 788.378725669
3016 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 788.378725669
3060 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] 791.274167565
2904 [2, 4, 1, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] 791.449641165
3023 [2, 4, 1, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] 791.449641165
2599 [1, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4] 791.660820973
2474 [2, 4, 3, 0, 4, 2, 5, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4] 801.553095173
3012 [2, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] 801.553095173
3015 [2, 4, 3, 0, 4, 2, 5, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4] 801.553095173
2261 [2, 4, 3, 1, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 803.709175616
2872 [2, 4, 3, 1, 4, 0, 5, 4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 805.211913644
2886 [2, 4, 3, 1, 4, 0, 5, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 0, 4] 805.211913644
2901 [2, 4, 3, 1, 4, 0, 5, 4, 0, 4, 4, 4, 4, 4, 0, 4, 4, 4, 4] 805.211913644
2564 [2, 4, 3, 0, 4, 1, 5, 4, 4, 1, 4, 4, 4, 4, 4, 1, 4, 4, 4] 810.342599649
3045 [2, 4, 3, 0, 4, 1, 5, 4, 4, 1, 4, 4, 4, 4, 4, 1, 4, 4, 4] 810.342599649
2209 [1, 4, 3, 0, 4, 2, 5, 4, 0, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 810.439910649
2593 [2, 4, 1, 0, 4, 2, 5, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 811.146775119
2735 [2, 4, 3, 1, 4, 2, 5, 4, 4, 4, 4, 0, 4, 4, 4, 0, 4, 4, 4] 812.36729737
2815 [2, 4, 3, 1, 4, 2, 5, 4, 4, 4, 4, 0, 4, 4, 4, 0, 4, 4, 4] 812.36729737
2945 [2, 4, 3, 1, 4, 2, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 0, 4] 812.36729737
2993 [2, 4, 3, 1, 4, 2, 5, 4, 4, 4, 4, 0, 4, 4, 4, 0, 4, 4, 4] 812.36729737
2850 [2, 4, 3, 1, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 813.039196726
2150 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 813.858654536
2237 [2, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 813.858654536
2288 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 813.858654536
2384 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 813.858654536

Continued on next page
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Table E.7 – continued from previous page
Population Number Component Deployment Array Objective Score
2472 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 813.858654536
2513 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 813.858654536
2784 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 813.858654536
2877 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 813.858654536
2953 [2, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 813.858654536
2964 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 1, 4] 813.858654536
3029 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 813.858654536
3035 [2, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 813.858654536
1617 [1, 4, 3, 0, 4, 2, 5, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 0, 4] 815.899427159
2191 [2, 4, 3, 0, 4, 1, 5, 4, 0, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4] 815.899427159
2917 [1, 0, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4] 815.899427159
2284 [0, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 816.273333477
2382 [0, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 816.273333477
2389 [0, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 816.273333477
2469 [0, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 816.273333477
2594 [0, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 816.273333477
2769 [0, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 816.273333477
2773 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 817.271034516
2914 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 817.271034516
2982 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 817.271034516
2346 [2, 4, 1, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 817.406878099
2698 [2, 4, 1, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 817.406878099
2911 [2, 4, 1, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 817.406878099
3041 [2, 4, 1, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 817.406878099
2962 [2, 4, 3, 1, 4, 0, 5, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 817.490440818
1996 [0, 4, 3, 1, 4, 2, 5, 4, 0, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 819.414913421

Table E.8: Case study 3 final generation unique component deployment details

Number Component Deployment Array Objective Score
1 [1, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 769.35
2 [2, 4, 3, 1, 4, 0, 5, 4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] 774.89
3 [2, 4, 1, 0, 4, 3, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 781.93

Continued on next page
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Table E.8 – continued from previous page
Number Component Deployment Array Objective Score
4 [2, 4, 3, 1, 4, 0, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 784.50
5 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 788.38
6 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] 791.27
7 [2, 4, 1, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] 791.45
8 [1, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 4] 791.67
9 [2, 4, 3, 0, 4, 2, 5, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4] 801.55
10 [2, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4] 801.55
11 [2, 4, 3, 1, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 803.71
12 [2, 4, 3, 1, 4, 0, 5, 4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 805.21
13 [2, 4, 3, 1, 4, 0, 5, 4, 0, 4, 4, 4, 4, 4, 0, 4, 4, 4, 4] 805.21
14 [2, 4, 3, 1, 4, 0, 5, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 0, 4] 805.21
15 [2, 4, 3, 0, 4, 1, 5, 4, 4, 1, 4, 4, 4, 4, 4, 1, 4, 4, 4] 810.34
16 [1, 4, 3, 0, 4, 2, 5, 4, 0, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4] 810.44
17 [2, 4, 1, 0, 4, 2, 5, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4] 811.15
18 [2, 4, 3, 1, 4, 2, 5, 4, 4, 4, 4, 0, 4, 4, 4, 0, 4, 4, 4] 812.37
19 [2, 4, 3, 1, 4, 2, 5, 4, 4, 4, 4, 0, 4, 4, 4, 4, 4, 0, 4] 812.37
20 [2, 4, 3, 1, 4, 2, 5, 4, 4, 4, 4, 0, 4, 4, 4, 0, 4, 4, 4] 812.37
21 [2, 4, 3, 1, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 813.04
22 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 813.86
23 [2, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 813.86
24 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 813.86
25 [2, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 813.86
26 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 1, 4] 813.86
27 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 813.86
28 [2, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 813.86
29 [1, 4, 3, 0, 4, 2, 5, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 0, 4] 815.90
30 [2, 4, 3, 0, 4, 1, 5, 4, 0, 4, 4, 4, 4, 4, 1, 4, 4, 4, 4] 815.90
31 [1, 0, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4] 815.90
32 [0, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 816.27
33 [0, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 1, 4, 4, 4] 816.27
34 [0, 1, 3, 0, 4, 2, 5, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 816.27
35 [2, 4, 3, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 817.27
36 [2, 4, 1, 0, 4, 2, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 817.41
37 [2, 4, 3, 1, 4, 0, 5, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4] 817.50
38 [0, 4, 3, 1, 4, 2, 5, 4, 0, 4, 4, 1, 4, 4, 4, 4, 4, 4, 4] 819.41
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F. CEML DSML UML Class Diagrams
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Figure F.1: CEML DSML component architecture modelling UML class diagram
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Figure F.2: CEML DSML component evolution modelling UML class diagram
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Figure F.3: CEML DSML component decomposing modelling UML class diagram



A
P

P
E

N
D

IX
F.

C
E

M
L

D
SM

L
U

M
L

C
LA

SS
D

IAG
R

A
M

S
477

Figure F.4: CEML DSML component event modelling UML class diagram
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Figure F.5: CEML DSML component deployment constraint modelling UML class diagram
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G. CEML Case Study Model Dia-
grams
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Figure G.1: Component architecture within the CEML modelling environment
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Figure G.2: Component growth modelling
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Figure G.3: Checkpoint modelling
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Figure G.4: Component decomposition modelling
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Figure G.5: Sub_ComponentInstance_1_seawater_track_1 behaviour modelling
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Figure G.6: Sub_ComponentInstance_2_seawater_track_1 behaviour modelling



A
P

P
E

N
D

IX
G

.
C

E
M

L
C

A
SE

STU
D

Y
M

O
D

E
L

D
IAG

R
A

M
S

486

Figure G.7: Sub_ComponentInstance_3_seawater_track_1 behaviour modelling
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Figure G.8: New sub-component mandate deployment modelling
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Figure G.9: Inherited component mandate deployment modelling
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Figure G.10: Temporal performance constraint modelling
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Figure G.11: No-collocation modelling
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Figure G.12: CPU spare resource capacity modelling
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