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ABSTRACT

The presence of abnormal Lymph Nodes (LNSs) in patients with colorectal cancer is an essential
determinant of prognosis and guides treatment options (surgical and medical). Staging with
Computed Tomography (CT) is somewhat inaccurate in determining true nodal status. As a result,
either approximate estimates must be made on imaging, or definitive nodal staging determined by
surgical resection before recommendations about the risk vs benefit of chemotherapy can be made

reliably.

Patients with advanced rectal cancer are commonly referred for neoadjuvant therapy as part of
standard care treatment protocols based on Magnetic Resonance Imaging (MRI) local staging.
Following neoadjuvant therapy, many patients then undergo surgical resection. However, a
significant proportion achieve a complete Clinical Response (cCR) with modern neoadjuvant
treatment, and these patients are increasingly offered non-operative management and surveillance
with the goal of organ preservation. Accurate clinical staging parameters and predictive markers of
tumour response may help guide more personalised treatment strategies and identify potential

candidates for non-operative management more accurately.

Within the past decade, a promising new strategy termed Total Neoadjuvant Therapy (TNT) has
been shown to improve compliance with chemotherapy, by delivering this sequentially with
chemoradiotherapy prior to surgery in patients with rectal cancer. TNT has the potential to reduce
distant failure risk and provide significantly higher rates of pathological Complete Response (pCR)
and cCR with an opportunity to manage patients non-operatively, however, optimal treatment

sequencing of radiotherapy and chemotherapy remains somewhat unclear.
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Pre-operative prediction of nodal status in colon cancer, neoadjuvant treatment response in rectal
cancer, as well as optimal sequencing of neoadjuvant therapy, represent major areas of weakness in
current treatment paradigms in colorectal surgical oncology. Furthermore, they are all areas of
active research, and frequently tie in together during Multi-Disciplinary Team meeting (MDT)

discussions in clinical practice.

The aims of this thesis are: Firstly, to investigate Artificial Intelligence (Al) models for prediction
of LN status on preoperative staging CT in patients with colon cancer. Secondly, to identify pre-
treatment factors predictive of Complete Response (CR) following neoadjuvant therapy in patients
with Locally Advanced Rectal Cancer (LARC), specifically sarcopenia, clinical and biochemical
factors. Lastly, to determine whether a Personalised Total Neoadjuvant Therapy (pTNT) protocol
with sequencing tailored to the clinical stage at presentation results in better short-term oncological

outcomes compared to a uniform protocol for all patients with advanced rectal cancer.

To achieve these aims, two meta-analyses were performed to identify the gaps in the field of Al LN
detection. The first, focused on the accuracy of deep learning algorithms and radiomics models
compared with radiologist assessment in the diagnosis of lymphadenopathy in patients with
abdominopelvic malignancies and the second solely focused on colorectal cancer. Subsequently, a
deep learning model was developed to assess LN status on staging CT in patients with colon cancer,
and the model’s performance was compared with baseline results of a prospective study evaluating

the accuracy of preoperative staging.

A systemic review and meta-analysis were performed to identify and assess Al segmentation
models able to predict sarcopenia using CT scans. Following this, an institutional colorectal cancer
database was interrogated to determine if sarcopenia or clinical and biochemical markers were

associated with tumour response in patients with LARC.
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Prospective data was collected on patients in two hospitals who underwent pTNT based on their
clinical staging at presentation for the treatment of advanced rectal cancer. A cohort study was
performed to summarise tumour response, chemotherapy compliance and the toxicity profile of
patients. An additional multicentre retrospective cohort analysis comparing pTNT over a 3-year
period to a historical cohort of randomised control trial patients who had extended chemotherapy in

the wait period (XCRT) or standard long course Chemoradiotherapy (SCRT) was conducted.

The two meta-analyses determined that deep learning assessment of LNs demonstrated the greatest
potential for assessment of LN without the need for surgery, with MRI for rectal cancer and CT in
colon cancer providing the greatest accuracy. Our clinical studies demonstrated that radiological
assessment remains the most effective preoperative method of staging LNs, with histology
considered the gold standard. Deep learning assessment using a ResNet-50 framework is limited to
very low accuracy and specificity in detecting abnormal LNs when compared to the radiologist’s
assessment. It is likely that the poor performance of the deep learning model is attributed to the lack

of features extracted from the CT scans.

The meta-analysis found that deep learning segmentation models can accurately predict sarcopenia
using CT scans. However, sarcopenia was not found to be a predictor of pCR in patients with
LARC. The clinical predictors of good tumour response after neoadjuvant therapy for rectal cancer
were found to be a clinical T2 stage and Body Mass Index (BMI) >25kg/m?. Pre-treatment
biochemical markers were not predictive of tumour response after neoadjuvant therapy for rectal

cancer.

Our research found that over 40% of the patients who underwent pTNT for the treatment of

advanced rectal cancer demonstrated a complete response in the primary tumour (pCR and/or cCR)
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resulting in a high rate of organ preservation. Furthermore, 45% of the patients with stage M1
disease achieved a complete M1 response. Compliance with chemotherapy was over 95% and
toxicity was lower than expected. When comparing a pTNT approach with XCRT or sCRT in
patients with LARC, there was a significant difference in complete response and cCR rate favouring

the pTNT group compared to the XCRT and sCRT groups.

In conclusion, these results suggest that a deep learning model with a ResNet-50 framework does
not serve as a reliable staging tool for the prediction of LN status using preoperative staging CT in
patients with colon cancer. Despite a large volume of research, the ability to predict which patients
are likely to achieve a complete response by measuring pre-treatment sarcopenia, clinical and
biochemical markers remains elusive. Early results of a pTNT approach tailoring sequencing of
neoadjuvant chemotherapy to disease risk at presentation are encouraging and compare favourably

to XCRT and sCRT in patients with advanced rectal cancer.
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CHAPTER 1: INTRODUCTION
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1.1 Colorectal cancer

Colorectal Cancer (CRC) is the second leading cause of cancer mortality worldwide, accounting for

an estimated 935,000 deaths annually. It is also the third most diagnosed cancer globally, with 1.9
million cases in 2020.% Over the past two decades, CRC incidence in Australia has progressively
increased and as a result, prevention and new treatment programs for CRC are actively being

evaluated and implemented.?

1.2 Abdominal and pelvic lymph nodes

Lymph Nodes (LNs) play a critical role in the human immune system by filtering the blood for
pathogens and abnormal cells (blood-lymph loop). This also makes LNs a location for neoplastic
cells to reside/accumulate.® The tumour cells enter lymphatic vessels and travel to the LNs along
lymphatic drainage pathways, which often accompany the arteries supplying or veins draining a
primary organ. The presence of local lymphadenopathy in patients with colorectal cancer is an
essential determinant of prognosis and guides treatment options (surgical and medical).* The most
common nodal groups involved are the mesenteric and mesorectal groups which can extend to the

retroperitoneal and pelvic sidewall compartments.®

Metastases to LNs generally follow the nodal stations in a stepwise direction as seen in Figure 1.°
The primary tumour cells travel to nodal stations that are closest to the primary tumour and then
progress farther away but within the lymphatic circulation.” Metastases to a nodal station farther
from the primary tumour without involving the nodal station close to the primary tumour (skip
metastases) are infrequent, although haematogenous spread to distant organs like the liver and the

lung is more common.®
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Figure. 1 Organisation of lymph nodes in the colon and rectum. Lymph nodes (coloured in green)

surround the vasculature (coloured in red).

1.3 Imaging a patient with a diagnosis of CRC

Initial colon cancer staging investigations involve a contrast-enhanced Computed Tomography
(CT) of the chest, abdomen and pelvis with intravenous and oral contrast.® A radiologist reports the
details of this scan including; the location, size and extent of the primary lesion, invasion of
adjacent structures, tumour factors that may affect the operation, visceral and peritoneal metastases
and locoregional LNs (pericolic and local drainage) as well as metastatic LNs (mesenteric,

retroperitoneal, pelvic and inguinal).®

In patients with colon cancer treated with curative intent, post-surgical resection LNs are inspected
for metastasis by specialist pathologists allowing further decisions about adjuvant therapy. This is
due to the inaccuracy of preoperative LN staging on cross sectional imaging (~70% accuracy) based
on published prospective data.!'? In addition, the process of assessing every individual LN ona CT

scan is time consuming and becomes an expensive process due to salary costs. As a result, LNs are
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typically commented on incidentally on radiology reports and in multidisciplinary team meetings.
Unlike in rectal cancer, LN status on preoperative imaging is not typically used to determine
neoadjuvant treatment in patients with colon cancer. In rectal cancer the presence of abnormal local
mesorectal or adjacent iliac lymphadenopathy is assessed preoperatively using high resolution
Magnetic Resonance Imaging (MRI).22 Pelvic MRI is somewhat more accurate than abdominal CT
in determining nodal status, but rectal cancer anatomy is also somewhat distinct from colon cancer
with other important local staging parameters such as circumferential margins used to determine

requirement for neoadjuvant therapy.4

1.4 Neoadjuvant and Adjuvant Therapy

Patients with a new diagnosis of CRC are stratified into different treatment pathways, based upon
preoperative tumour location and radiological staging after each case is discussed at a
Multidisciplinary Team Meeting (MDT). The use of preoperative neoadjuvant therapy is not
generally recommended in patients with stage I - 111 colon adenocarcinoma. Presently, the optimal
treatment strategy remains surgical resection.'® Following surgery, LN status on pathological
assessment is used in determining if adjuvant chemotherapy is recommended (stage I11 and high-
risk stage Il patients). The FOXTROT trial investigated the potential efficacy of neoadjuvant
chemotherapy administered to colon cancer patients with metastatic LNs.'® The results presented at
the 2019 American Society of Clinical Oncology Annual Meeting showed no significant difference
in 2-year failure rate (defined as either relapse or persistent disease). There was, however, a
significant reduction in incomplete tumour resection (R1 or R2) and pathological staging.'’
Although final results of this trial are yet to be published, preliminary data demonstrate that
accurate preoperative detection of metastatic LNs may become a more factor in the treatment of

colon cancer patients in future.
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In contrast to colon cancer, neoadjuvant therapy is recommended for patients with newly diagnosed
rectal adenocarcinoma with locally advanced clinical stage T3 or T4, and/or LN positive disease,
Extramural Vascular Invasion (EMVI) or threatened Circumferential Resection Margin (CRM) on
preoperative pelvic MRI.*® Neoadjuvant Chemoradiotherapy (nCRT) followed by Total Mesorectal
Excision (TME) and adjuvant chemotherapy is the accepted standard of care. Neoadjuvant therapy
may consist of either Short Course Radiotherapy (SCRT; 25GY radiation over 5 days) or long
course NCRT (variation around 50 Gy radiation over 5 weeks combined with 5 Fluorouracil [5-FU]
based chemotherapy).'® Radiotherapy plays a significant role in downstaging or downsizing rectal
tumours in the neoadjuvant setting, resulting in a lower rates of local recurrence after surgery.?
Following the completion of nNCRT, patients traditionally undergo curative TME surgery 6-12
weeks later, irrespective of treatment response.?* The goal of colorectal cancer surgery is en-bloc
resection of the tumour, major vascular pedicles and the draining LNs with the aim of reducing
local and distant recurrence rates.??> However, surgery also exposes patients increased morbidity and
mortality, as well as specific risks including but not limited to; anastomotic leak, the potential for a

permanent stoma and impairment of bowel, bladder and sexual function.?3-25

Approximately 15-20% of patients undergoing nCRT, develop a pathological Complete Response
(pCR) defined as complete regression with an absence of residual cancer cells in both the primary
tumour and mesorectal nodes.*®? However, not every patient responds well to radiation.
Treatment-related toxicity can also occur, which often negatively impacts patients’ overall health
and quality of life.?” Additionally, neoadjuvant radiotherapy can cause excessive tissue oedema and
fibrosis that can compromise surgical planes, posing a significant surgical challenge especially in

the narrow male pelvis.?®

In the adjuvant setting, commonly prescribed chemotherapy agents for both colon and rectal cancer

include 5-FU and Oxaliplatin.?® These agents act to restrict tumour cell division. 5-FU prevents the
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formation of essential nucleosides,*® and Oxaliplatin acts via the formation of Deoxyribonucleic
Acid (DNA) platinum adducts which deprive tumour cells of the essential building blocks for cell

replication.®3! The goal of adjuvant therapy is to eradicate systemic micro-metastatic disease.*?

With respect to rectal cancer, neoadjuvant therapy and surgical technique have improved
oncological outcomes, reducing 5-year local recurrence rates to 5-10 per cent over the last 20
years.>*3* However, the risk of distant relapse remains high at 30% in 10 years and is the leading
cause of mortality in rectal cancer patients.>® This is attributed to the lack of adjuvant chemotherapy
compliance. More than half of eligible patients do not receive their full adjuvant chemotherapy due
to delay in treatment, compliance issues, and postoperative complications.® As a result, research
efforts have focussed on ways to improve the delivery of chemotherapy by administering the
chemotherapy in the preoperative period. Total Neoadjuvant Therapy (TNT) for rectal cancer has
been developed as a result, whereby all systemic therapy is delivered before surgery to address the

limitations of adjuvant treatment.*’

1.5 Cost related to Neoadjuvant therapy

Treatment recommendations differ between colon and rectal cancers, as well as by disease stage,
resulting in different cost estimates.®® Most recent Australian data shows the cost of early-stage
disease has not substantially changed over time with costs ranging from AUD$34,337-AUD$43,776
per patient, as surgery alone is the main expense involved in treatment. However, neoadjuvant and
adjuvant therapy for advanced disease is expensive. For example, the addition of Oxaliplatin, which
is now standard of care for advanced colorectal cancer has significantly driven up costs to
AUD$71,156 per patient.®® Recent data from the US has shown cost-effectiveness for TNT at
US$40,708 per life-year, versus USD$44,248 per life-year for conventional therapy.* This is largely
because TNT can result in a clinical Complete Response (cCR), with patients avoiding surgery

entirely. Recently the results of the OPRA randomised phase 11 trial assessed the outcomes of 324
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patients with Locally Advanced Rectal Cancer (LARC) treated with TNT. The trial concluded that
organ preservation was achievable in half of the patients with LARC treated with TNT. In turn,
patients with a cCR would save the cost of TME, approximately USD$11,800.44? This data and
recent trends suggest that the treatment of later stages of colorectal cancer will involve more therapy
being administered preoperatively in the neoadjuvant rather than adjuvant setting. However, this
approach is fundamentally reliant on accurate LN staging to enable optimal targeting of neoadjuvant

therapy.

1.6 Atrtificial Intelligence in Medical Imaging and its application to CRC

The number of patient scans performed and the ability to store them digitally has been steadily
increasing over time. Artificial Intelligence (Al) has gained significant interest in the medical
imaging field due to continual improvement in all aspects of image interpretation from detection,
classification and automated image segmentation, to extraction of radiomic features and
biomarkers.** Al in health care offers a substantial opportunity to improve patient outcomes while
improving system efficiencies and reducing costs.* Human cognitive capability to effectively
manage large sets of information is limited, and Al is likely to have an important and

complementary role in this regard.

Al, machine learning, radiomics and deep learning are terms commonly used interchangeably
despite being distinctly defined and this can create some misunderstanding in the field. Al
encompasses deep learning and radiomics which are both subsets of machine learning that aid in
pattern recognition for different data types (Figure 2).%>4¢ Machine learning models are grouped
into either supervised or unsupervised models. Supervised models rely on annotated data. The type
of annotation depends on the task the model seeks to perform. In classification tasks where the
focus is to identify the presence or absence of a disease, images are labelled in a binary fashion

(disease positive or negative). For instance, in a study conducted by Glaser et al., a database
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consisting of 123 CT scans of patients with colon cancer had each scan labelled as LN positive or
LN negative.*” As the exact location of the LN is not provided within the image, this is referred to
as a weakly annotated database. Although the annotation does not specify the exact location of the
LNs, the model might still automatically learn to predict if patients with colon cancer are LN
positive or negative. The next level of annotation is drawing boundary boxes on each of the CT
scans indicating the region of interest. This strategy is referred to as sparse annotation. The highest
level of annotation is termed segmentation which consists of delineating or contouring the region of
interest on each image. Segmenting the region of interest is a tedious and time-consuming process
but it allows for more precise algorithms to be built. Alternatively, unsupervised machine learning
models do not involve manual annotations and are used for clustering where the aim is to group
data into homogeneous subgroups (e.g., identifying different CRC phenotypes). More recently,
semi-supervised methods have been developed that combine annotated and non-annotated data
together. A typical example of semi-supervised learning is reinforcement learning, in which the Al

model gradually learns through better exploration of non-annotated data.*®4°

Artificial Intelligence

Machine Learning

Deep Learning  Radiomics
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Figure. 2 Diagram illustrating subdivisions of artificial intelligence.

Radiomics is a field of research that relies on traditional machine learning methods, with some
recent developments expanding further into deep learning methods. Radiomics can extract large
amounts of data that are invisible to the human eye from medical images, uncovering advanced
features that can characterise tumours and lymph nodes non-invasively through data analysis.*®
Radiomics can extract more complex features categorised as: morphological features (eg. shape,
volume, diameter, image features), first order (eg. histogram, kurtosis, mean values, and textural
features) or higher order features (eg. co-occurrence of patterns and filter response).*® These
features can be extracted from any imaging modality such as CT, Positron Emission Tomography
(PET), or MRI. To choose the most prominent features according to the task, the algorithm will use
different techniques such as random forest, least absolute shrinkage and selection operator
(LASSO), support vector machine (SVM), logistic regression and others. It has been shown for the
task of predicting lymphadenopathy, radiomics will create a unique phenotypic atlas for each
tumour or LN and if paired with clinical data, this atlas enables the identification of new,
reproducible, image-based biomarkers which have already been used to predict preoperative LN

metastasis in patients with CRC.5%!

Deep learning refers to deep neural networks that do not necessarily require manually extracted
features. The architecture is designed in a way that automatically recognises and extracts features,
avoiding the need to manually define them (Figure 3). Deep learning models are composed of
multiple layers where each layer learns a set of hidden features, which in most cases cannot be
identified by a radiologist. The features in each layer are non-linear compositions of the features in
the previous layer. This allows the model to first learn very simple features in the first layers, which
are then merged to form more complex features for each layer.> In radiology, there are several
architectures used to build deep learning models, one of which includes Convolutional Neural

Networks (CNNs).5® The main idea behind CNN's is the simple features in a small area of an image
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can be analysed independently to their position and the rest of the image.>* Hence, the image can be
separated into small feature maps with each feature map being analysed in the same way and
independently of the other feature maps. The information of each feature map can then be combined
to generate a more abstract representation of the image. This relies on the succession of two
different steps: convolution and sub-sampling. In a convolutional step a feed forward neural
network (neural network where information moves unidirectionally) is applied to small regions of
the image, creating several maps of hidden features.>* In the sub-sampling step, the size of the
feature map is reduced, this is done by transforming the neighbourhood of features to a single value.
This reduction is accomplished by representing the neighbourhood of features with the maximum or
the average value as a single value. These two steps are then merged into a deep network with
several layers seen in the deep learning part of Figure 2. Deep learning models using CNN
architectures have demonstrated excellent diagnostic performance in medical imaging detection of
Alzheimer’s disease, and breast and lung cancer.>>®" In turn, with the success of CNNs, many other
architectures have been introduced, including AlexNet, ResNet-50, ResNet-101, VGG16, and
VGG19.58% In particular, a ResNet architecture is shown to be used in recent studies to predict
nodal staging on both radiological and pathological images from patients with CRC.5¢'ResNet-50
as the name suggests is a 50-layer CNN, it consists of 1-maxpool layer, 1-average pool layer and 48
convolutional layers.58% ResNet architecture makes use of residual blocks which in simpler terms
are “ identity shortcut connection” that skips one or more layers to improve the accuracy of the

models.%*
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Figure. 3 Artificial Intelligence approaches. Differences between machine learning, radiomics and

deep learning approaches for classification of LNs from abdominopelvic CT scans.

Developing an Al model successfully relies on the quality of the dataset on which it is trained, and
it is often more important than the learning model itself.%> This ensures that the model will perform
equally well on unseen cases as it will on training cases. In radiology, Al models need to be
generalisable to be used in multiple sites.*® Thus it is important to have a dataset that represents the
disease and different acquisition protocols.%® A model for LN staging classification should be
trained using a dataset reflecting the heterogeneity of lymphadenopathy patterns along with CT
scans acquired from different scanner manufacturers. If the training dataset only contains a unique
lymphadenopathy pattern (eg. All patients with colon cancer are node positive) or acquisitions are
all performed using the same CT scanner, the model runs the risk of being poorly generalisable.
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Datasets are usually divided into training, validation, and testing cohorts. During the training phase,
the model’s network is fed training data and tasked with making predictions at the output layer that
match the known ground truth annotations, each component of the network produces an expedient
representation of its input. Training a neural network means changing its parameters to optimise the
outputs of the network.®® Once the model has been trained, its performance is evaluated on the
validation cohort. The model with the best performance in the validation cohort is further evaluated

in the testing cohort.*®

A recent report suggests that Al assisted diagnosis in areas such as cardiology, ophthalmology,
pathology and oncology can potentially improve patient outcomes by 30-40%.%” The financial
benefits of Al are evident with estimates of up to USD $150 billion annual savings for the US
health care system by 2026.% Considering the drastic improvements in patient outcomes and cost
savings associated with Al, the only question remaining is which Al approach is most suitable for
LN staging. Deep learning algorithms are typically better suited to handle data classification
problems (i.e. lymph node being malignant or benign) with studies showing a substantial
performance gain compared to traditional machine learning methods.*>®° Despite the success of
applying deep learning to medical imaging, currently, there is no evidence that deep learning can

accurately predict LNs on preoperative staging CT in patients with colon cancer.

1.7 Predicting local response to neoadjuvant therapy in rectal cancer

The prediction of local response to nCRT in patients with LARC has been thoroughly discussed for
many years. There have been excellent reviews published in 2015 and 2022 reassessing the current
literature and highlighting the importance of this topic.”®"* A number of parameters including
clinical features such as the tumour stage according to the Tumour Node Metastasis (TNM)

classification, tumour size and location within the rectum have been identified as predictors of
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response to nCRT."%"27 Moreover, several histopathological parameters were identified from
tumour intrinsic features such as tumour budding and grade of tumour differentiation.”*" Lastly,
biochemical factors have become increasingly attractive as predictors of local response to nCRT.
Given the ease of blood sample collection and low cost, it would be convenient if these factors were
found to reflect aspects of tumour biology. Despite the growing interest in predictors for local

response to NCRT, no factors have yet reached clinical and external validation in large cohorts.

1.7.1 Clinical predictors of response to nCRT

Several clinical features have been identified as predictors of local response to nCRT in patients
with LARC, including tumour size, tumour differentiation, clinical stage, and tumour distance from
the anal verge.”>’%77 Retrospective studies reported pre-treatment tumour diameter to be associated
with treatment response in LARC. Bitterman et al. demonstrated that pre-treatment tumour diameter
<3cm was an independent predictor of CR following nCRT in patients with locally unresectable T1-
2 tumours and LARC."® Similar results have been shown in a larger population-based study
showing that patients with tumour diameter <3cm are more likely to achieve a pCR after nCRT or
SCRT regardless of their pre-treatment clinical stage.”® There is recent evidence showing that pre-
treatment tumour diameter is also a predictor of cCR in rectal cancer.®’ The authors also identified
clinical Tumour stage (cT) to be associated with cCR, which has been a more comprehensive
predictor of response.8%8 Several studies comprising of large patient cohorts found a lower pCR
rate in cT4 LARC and a higher cCR/pCR rate in patients with cT1-2 tumours after nCRT. /7798283
LN status was also found to be an independent predictor of local response.’?> Accordingly, patients

with clinical node positive LARC were associated with significantly lower rates of pCR or cCR."®

Controversy remains between the association of tumour location and response to nCRT. In a
retrospective study comprising of 173 patients with LARC, a distance from the anal verge of <5cm

was significantly associated with pCR.8 Similarly, a positive correlation of tumours located <3cm
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from the anal verge with CR was also reported.’”® Conversely, Restivo et al, demonstrated that a
distance from the anal verge of >5cm was a predictor of pCR in their cohort of 260 LARC
patients.®® Interestingly, a prospective study by Patel et al. found patients with low tumours (<4cm)
and higher tumours (>8cm), were less likely to have a pCR.% Accordingly, exact reason for the
association between the tumour distance from the anal verge and local response to nCRT remains

undetermined.

Despite many studies reporting promising results, clinical predictors of local response to nCRT in

LARC show poor sensitivity and specificity and have been contradicted in other studies. 82788

1.7.2 Biochemical predictors of response to nCRT

The correlation between local response of LARC to nCRT and biochemical markers in blood
samples has been investigated. A Brazilian review has reported haemoglobin, Carcinoembryonic
Antigen (CEA), C-Reactive Protein (CRP), White Cell Count (WCC), and several biochemical
ratios as common predictors of pCR with consistency in the literature.®® Higher level of
preoperative haemoglobin were associated with higher rates of pCR and revealed a benefit in
Overall Survival (0S).%° CEA is well established as the recommended biomarker for CRC
monitoring.%! Patients who present with elevated CEA levels pre-nCRT are less likely to achieve a
PCR.%29 Focussing on CRP, Aires et al. demonstrated low pre-nCRT CRP levels predicted a good
response to treatment based on a cohort of 171 LARC patients. A multicentred Korean study
showed that a reduction in pre-treatment WCC ratio during nCRT predicts good tumour response
and is significantly associated with increased recurrence free survival.®* Looking at further markers
of inflammation, particularly relevant as a hallmark of cancer biology, an elevated pre-nCRT
neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio are associated with lower rates of
PCR and poor prognosis.®®%" In addition, patients with a low pre-treatment lymphocyte-to-

monocyte ratio had lower pCR rates and significantly worse disease free survival (DFS) and OS
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after n"CRT.%8% With regards to the smaller subgroup of patients that achieve complete response,
recent evidence by Mbanu et al. revealed several clinical (pre-treatment tumour diameter, cT stage,
total radiotherapy depths) and biochemical factors (haemoglobin, alkaline phosphate, neutrophil-to-
lymphocyte ratio, neutrophil-monocyte to lymphocyte ration, lymphocyte count, albumin)
associated with cCR.2% Nevertheless, results vary between studies and very few have investigated a

large number of biomarkers together,100-102

To date, no biochemical features have demonstrated an ability to predict local response with
adequate sensitivity or specificity to reliably guide clinical practice. Given the limitations
mentioned above, more studies including a variety of common pre-treatment biochemical factors
are required to further explore the association between biochemical factors and the local response of

patients with LARC to nCRT.

1.7.3 Sarcopenia

Sarcopenia is a disorder characterised by loss of skeletal muscle mass, leading to reduced strength
and function.'® While the prevalence of sarcopenia in healthy individuals increases with age, the
rate of sarcopenia is further increased in patients with CRC, with incidence up to 60%.'%* General
risk factors include age, gender, Body Mass Index (BMI), reduced level of physical activity, and the
presence of chronic disease and comorbidities such as diabetes.® Causes of sarcopenia include
physiological aging, skeletal muscle disuse, systemic inflammatory processes, endocrine changes,
chronic alcohol consumption, malnutrition and insulin resistance.?® While ageing naturally disturbs
skeletal muscle integrity, changing the balance between hypertrophy and regeneration, sarcopenia is
a multifactorial disorder that involves muscle changes attributed to both cellular and molecular
pathways.%” Acute and chronic diseases have detrimental effects on metabolism, speeding up
catabolic processes, and there is growing interest in understanding the role of sarcopenia and its
association with cancer and outcomes. Cancer patients commonly experience weight loss and
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muscle degradation which can be exacerbated during treatment. Some evidence suggests that
tumour mass in cancer patients is responsible for molecular dysregulation, ultimately resulting in

muscle atrophy. 104108

The challenge in clinical practice is the lack of a quick and reliable measurement tool for
sarcopenia, hence routine assessment is not typically performed in clinical practice. In the tertiary
care setting, clinicians and surgeons commonly use the subjective “eye-ball end of the bed” test to
diagnose sarcopenia. Contrast-enhanced CT scans are routinely conducted in the pre-treatment
staging of patients with CRC, and medical image analysis is recognised as one method of
quantifying skeletal muscle mass. Measurements taken at the third lumbar vertebra (L3) is validated
as the standard for body composition. Estimates of skeletal muscle size at this level can provide a
surrogate marker for sarcopenia using formulas accounting for patient height and gender.1%°
However, these measurements are limited by inter-observer variability, fat infiltration resulting in
overestimation of muscle mass, and practical considerations including time restrictions impacting

health service efficiencies, limiting their use in practice (Figure 4).

The etiological factors of sarcopenia in cancer including systemic inflammatory processes,

endocrine changes and dysregulation of cellular and molecular pathways are also observed in

oncological treatment strategies.
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Figure. 4 Measurement of psoas muscle area in a CT image at the L3 vertebral body.

Cancer therapies such as surgery, chemotherapy and radiotherapy, often cause vomiting, loss of
appetite, fatigue and pain, potentially leading to further muscle atrophy.!'° Sarcopenia increases
susceptibility to chemotherapy toxicity among metastatic CRC patients.''! Sarcopenic patients have
a lower muscle mass compared to non-sarcopenic patients. The occurrence of chemotherapy
overdose in sarcopenic CRC patients may potentially be due to the altered ratio between muscle
mass and chemotherapy dosage. More importantly, since sarcopenia diagnosis is rarely considered
in oncological treatment, necessary reductions in dose delivery are not identified and ultimately
patients are treated inadequately.*'? The severity of adverse reactions and complications to
oncological treatment strategies can impact hospital stay and readmissions, increasing the cost

burden to the healthcare system and patient.38'3

51



Sarcopenia is known to have a negative association with not only chemotherapy toxicity but also
postoperative complications, quality of life and overall survival.!** Up to a third of patients suffer a
postoperative complication following colorectal resection with rates of 17% in colon cancer and
30% for rectal cancer in Australia and New Zealand.*'® Sarcopenic CRC patients experience a
significant increase in infection rates, increased inflammatory response, physical disability, delayed
recovery and in those with advanced staging have worse DFS and OS.1%8116.117 Moreover,
sarcopenia is reported to be associated with an increased risk of anastomotic leak, high grade

complications (Clavien-Dindo Grade 3-4), longer hospital length of stay and higher hospitalisation

costs 108,109,118,119

Sarcopenia places a substantial economic burden on the healthcare system.*?° The total estimated
cost of hospitalisations in individuals with sarcopenia in the United States is US$40.4 billion with
an average cost per person of US$260.1%! Recent evidence suggests that sarcopenic CRC patients
have significantly higher total hospital related costs in comparison to non-sarcopenic patients.'??
Sarcopenia is associated with postoperative infection and longer hospital stay for CRC surgical
resection (6.6 vs 5.4 days; P=0.03).1% Patients experiencing other post-operative complications stay
approximately 10 days longer and have over seven times the risk of in-hospital death than those
without complications. The presence of an adverse event increases the cost of each admitted
episode by AU$6,826 after adjusting for age and comorbidity.'?* The most recent Australian data
indicates the total cost of adverse events was AU$460.3 million, representing 15.7% of the total
expenditure on direct hospital costs, equating to an additional 18.6% of the total inpatient hospital

budget.115'124

Although this would be biologically plausible, it is unclear whether there is any correlation between

sarcopenia and tumour response to neoadjuvant treatment in rectal cancer. It would stand to reason
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that because of increased susceptibility to treatment-related toxicity, tolerance to and compliance

with treatment would be adversely affected, but this has not been formally investigated.

1.8 TNT for rectal cancer

Studies have highlighted potential drawbacks of adjuvant chemotherapy in patients with LARC and
several ongoing clinical trials are assessing different therapeutic strategies to improve oncologic
outcomes with nCRT. TNT is a promising new strategy that attempts to optimise the delivery of
trimodal therapy with the incorporation of chemotherapy before or after nCRT or SCRT and prior
to surgery. The two approaches are: (1) chemotherapy first (as induction therapy), followed by
SCRT or nCRT then surgery and (2) SCRT or nCRT first followed by chemotherapy (as
consolidation therapy), then surgery (Figure 5). The relative merit of these two schemas is an active

area of investigation.’

Conventional neoadjuvant therapy

adjuvant
s ) > =->

Total neoadjuvant therapy

induction
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» chemotherapy
consolidation ‘
nNCRT/SCRT » l chemotherapy

Figure. 5 Total Neoadjuvant Therapy.

The rationale behind the use of TNT is to improve compliance to treatment, enhance treatment
tolerability, increase tumour downstaging, facilitate organ preservation through Non-Operative

Management (NOM) in select patients, offer earlier treatment of micro-metastases to improve DFS
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and decrease the interval from ileostomy to reversal.'?® There are some potential disadvantages to
TNT which include delay to resection (potentiating tissue fibrosis which, in theory, can increase the
surgical difficulty) and development of chemotherapy toxicity that may impact the possibility of
definitive resection or lead to decline in performance and nutritional status. Due to inaccuracies in

pre-operative staging, some patients may also be over-treated with this strategy.

The phase Il TIMING trial investigated whether adding cycles of mMFOLFOX6 between nCRT and
surgery patients with LARC would increase the pCR rates in a four-arm design.?® The pCR rate
tended to significantly increase with the number of added chemotherapy cycles during the waiting
period (P=0.004). The pCR rate was highest (38%) with the group who received 6 cycles of
mFOLFOX6 and the longest interval to surgery (20 weeks) after n\CRT and lowest (18%) in the
group who received no cycles and had the shortest time to surgery after n\CRT (6 weeks). Long-
term data of the TIMING trial revealed that adding neoadjuvant consolidation chemotherapy after
nCRT lead to increases in treatment compliance and DFS, however no significant change was
observed in regard to OS or surgical complications (Clavien-Dindo graded >3).127128 The strategy
of administering consolidation chemotherapy in the interval between SCRT and surgery to further
increase rates of pCR has also been tested and compared with conventional nCRT in the POLISH 11
trial.!?® The trial included patients with poor prognosis such as cT3/4 tumours, with approximately
half of these tumours located in the lower rectum. Trial results showed no significant difference in

7-year DFS and OS between the two groups.

More recently, the phase Il RAPIDO trial compared SCRT followed by 18 weeks of consolidation
chemotherapy then TME, to conventional nCRT and reported improved rates of pCR (28% vs 14%,
P<0.0001) in addition to improved disease-related treatment failure (23.7% vs 30.4%, P=0.019)
after a 4-year follow up.*® There were no significant differences in the severity of adverse events

between the two treatment arms (38% vs 34%). In the experimental arm, 85% of patients completed
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neoadjuvant chemotherapy, although 37% of patients who started adjuvant therapy in the nCRT
group prematurely stopped chemotherapy due to poor compliance. The phase Il trial PRODIGE 23
investigated whether induction chemotherapy (MFOLFIRINOX) before nCRT followed by TME
and adjuvant therapy improved DFS compared with conventional nCRT in patients with resectable
non-metastatic LARC. The trial reported significantly higher pCR rates (11.7% vs 27.5%,
P<0.001), 3-year DFS (68.5% vs 75.7%, P=0.034) and 3-year metastasis free survival (71.7% vs
78.8%, P<0.02) in the TNT arm without any difference in surgical complications in comparison
with the conventional NCRT arm. However, neither the PRODIGE 23 nor RAPIDO trials have

shown an OS advantage in the TNT arms.

In contrast, CAO/ARO/AIO-12 had TNT in both arms which consisted of 3 cycles over 6 weeks of
induction or consolidation chemotherapy (FOLFOX) with nCRT. The consolidation arm achieved a
higher pCR (25%) compared to the induction arm (17%). Notably, the radiotherapy related severe
adverse event rate was lower and compliance was higher in the consolidation chemotherapy group
with upfront radiation. Conversely, the chemotherapy induced severe adverse event rate was lower
and compliance was higher in the induction chemotherapy group with upfront chemotherapy. This
suggests that the treatment modality given first within TNT will have better compliance and lower
toxicity rates and vice versa. Comparable to CAO/ARO/AIO-12 is the OPRA Trial which used 4
months of induction or consolidation FOLFOX or CAPOX chemotherapy with nCRT with a
primary aim to detect a 10% improvement in DFS in either treatment arm compared to a 75%
historical rate.*? Patients who achieved a cCR or near-cCR were offered NOM and the remainder
underwent surgery. Although OPRA reported no improvement in DFS in either group, they found a
significantly higher 3-year organ preservation rate in the consolidation chemotherapy group
compared to induction chemotherapy group (53% vs 41%, P<0.01). Unfortunately, the OPRA trial

failed to report adverse events induced by nCRT and chemotherapy separately, however the authors
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reported no difference in the overall rate of adverse events between treatment groups (41% vs
34%). In addition, while organ preservation was reported, rates of cCCR were not.

Until now, most neoadjuvant treatment protocols have been designed for the “average patient” with
LARC based on RCT inclusion criteria which reflect this. As a result of this “one-size-fits-all”
approach, neoadjuvant treatments can be very successful for some patients but not for others.
Personalised TNT (pTNT), one the other hand, is an innovative approach developed locally in
South Australia that considers the patient’s clinical stage at presentation to determine the sequence
of preoperative chemotherapy (induction chemotherapy versus consolidation chemotherapy) before
or after nCRT.**! The hypothesis behind the pTNT approach for advanced rectal cancer is that
patients with the need for systemic control should undergo induction chemotherapy to reduce the
risk of distant failure and patients with the need for local control should undergo consolidation
chemotherapy to reduce the risk of local relapse.*®2-134 It is important to note, the lack of data
throughout the literature supporting a personalised treatment approach over the standard of care

treatment in patients with advanced rectal cancer.

1.9 Summary

Among the metastatic pathways of colon cancer, LN metastasis is the least well characterised pre-
operatively owing to limitations in medical imaging and interpretation. LN metastases determine
prognosis, and the potential benefit of neoadjuvant chemotherapy in select patients with colon
cancer. To improve the performance of preoperative LN staging in colon, several image-based
models have been proposed. Radiomics models derived from CT or MRI images are predominant,
however deep learning seems to lead to a higher diagnostic accuracy. To date, no studies have
attempted to use deep learning for predicting lymph node status on preoperative staging CT in

patients with colon cancer.
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At present the management of LARC includes nCRT followed by TME and adjuvant chemotherapy
if indicated. nCRT results in downstaging in approximately two-thirds and cCR in one-fifth of
patients. In the select group of patients that achieve a cCR, some authors have proposed advocating
for organ preservation, forgoing surgery will eliminate the associated morbidity and mortality.
Despite a large volume of studies reporting some promising results, no clinical, radiological, or
biochemical features have demonstrated an ability to predict response with adequate sensitivity or
specificity to guide treatment. Consequently, more robust data on sarcopenia, clinical and
biochemical predictors of response is required to accurately assess which patients are likely to

sustain a pCR.

Lastly, studies have highlighted potential drawbacks of adjuvant chemotherapy in rectal cancer
including treatment delays and poor compliance. As a results of these challenges, several trials have
advocated for systemic chemotherapy to be given preoperatively (TNT). Results of these advanced
phase trials have shown that TNT can increase rates of cCR and pCR and improve DFS. Although
therapy associated toxicities were more frequently observed in the TNT arm of these trials, this
does not result in difference in compliance, surgical management and postoperative complications
when compared to conventional NCRT. While TNT has increased in popularity, a major question
relating to treatment sequencing remains unsolved. It is unclear whether consolidation
chemotherapy is better than induction chemotherapy in all LARC patients or whether treatment

sequencing should be tailored towards clinical stage at presentation.
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CHAPTER 2: PRECIS
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The work in this thesis is presented in three parts.

Part 1: Artificial intelligence assessment of nodal status on pre-operative imaging for
colorectal cancer.

This part of the thesis describes the potential of using Al to predict the presence or absence of
metastatic disease in local lymph nodes in CRC. In this section, we ask whether Al can improve on

the current 70% accuracy of radiologists in nodal staging using the same imaging modality.

Chapter 3 presents a systematic review and meta-analysis aiming to determine the accuracy of
deep learning algorithms and radiomics models compared with radiologist assessment in the
diagnosis of lymphadenopathy in patients with abdominopelvic malignancies. Chapter 4 is a
systematic review and meta-analysis that updates the available evidence on the accuracy of deep
learning algorithms and radiomics models compared with radiologist assessment in the diagnosis of
lymphadenopathy solely focused on patients with CRC. To establish a baseline accuracy of
preoperative lymph node staging in colon cancer based on local experience, in Chapter 5, a
prospective cohort study was conducted at the Royal Adelaide Hospital and St Andrews Hospital to
assess the diagnostic accuracy of multidisciplinary team and radiology reporting of pre-operative
CRC local staging. Chapter 6 describes the development and assessment of a deep learning model
used to diagnose local lymph nodes on preoperative staging CT scans in a cohort of 1201 patients
with colon cancer. Using pathological confirmation from surgery as the gold standard, allowed us to
classify patients into LN positive or LN negative. This study was designed from the beginning to
address the knowledge gap identified in the previous chapters. Given the negative findings in a
large cohort of patients and the failure of the deep learning model to outperform the radiologist’s
assessment of lymph nodes on preoperative staging CT, we shifted the focus towards the potential

application of Al in sarcopenia diagnosis on CT imaging. Chapter 7 is a systematic review and
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meta-analysis aimed to assess the performance of CT-based Al segmentation models used for body

composition analysis and sarcopenia diagnosis.

Part 2: Prediction of local response to chemoradiation in locally advanced rectal cancer.
The second part of this thesis focuses on predictors of response following neoadjuvant therapy for
patients with LARC. We evaluated sarcopenia, clinical and biochemical factors to determine if they

could predict local response after neoadjuvant therapy.

In Chapter 8, a retrospective cohort study was conducted to investigate the association between
sarcopenia and tumour response after N\CRT in patients with LARC. Chapter 9 presents a
retrospective cohort study relating to clinical and biochemical predictors of tumour response after

neoadjuvant therapy in rectal cancer.

Part 3: Outcomes of a personalised Total Neoadjuvant Therapy (pTNT) protocol for the
treatment of advanced rectal cancer.

In the last part of this thesis, we investigate whether Total Neoadjuvant Therapy sequencing should
be tailored to clinical stage at presentation rather than a uniform protocol for all patients with

advanced rectal cancer.

Chapter 10 examines short-term outcomes of a personalised Total Neoadjuvant Therapy (pTNT)
protocol with treatment sequencing based on clinical stage at presentation. The protocol consisted
of two-schema based on clinical stage, patients with distant failure risk received induction
chemotherapy before nCRT and patients with locoregional failure risk received nCRT followed by
consolidation chemotherapy. Finally, Chapter 11 includes a multicentred retrospective comparative
analysis between pTNT versus extended chemotherapy in the wait period (XCRT) versus standard

Chemoradiotherapy (sCRT) in patients with LARC.
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PART 1: ARTIFICIAL INTELLIGENCE ASSSESSMENT OF NODAL STATUS ON PRE-

OPERATIVE IMAGING FOR COLORECTAL CANCER.
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CHAPTER 3: ARTIFICIAL INTELLIGENCE FOR THE DIAGNOSIS OF LYMPH NODE

METASTASES IN PATIENTS WITH ABDOMINOPELVIC MALIGNANCY: A

SYSTEMATIC REVIEW AND META-ANALYSIS.
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3.1 Abstract

Introduction: Accurate clinical diagnosis of lymph node metastases is of paramount importance in
the treatment of patients with abdominopelvic malignancy. This review assesses the diagnostic
performance of deep learning algorithms and radiomics models for lymph node metastases in

abdominopelvic malignancies.

Methodology: Embase (PubMed, MEDLINE), Science Direct and IEEE Xplore databases were
searched to identify eligible studies published between January 2009 and March 2019. Studies that
reported on the accuracy of deep learning algorithms or radiomics models for abdominopelvic
malignancy by CT or MRI were selected. Study characteristics and diagnostic measures were
extracted. Estimates were pooled using random-effects meta-analysis. Evaluation of risk of bias was

performed using the QUADAS-2 tool.

Results: In total, 498 potentially eligible studies were identified, of which 21 were included and 17
offered enough information for a quantitative analysis. Studies were heterogeneous and substantial
risk of bias was found in 18 studies. Almost all studies employed radiomics models (n=20). The
single published deep-learning model out-performed radiomics models with a higher AUROC (0.912
vs 0.895), but both radiomics and deep-learning models outperformed the radiologist’s interpretation
inisolation (0.774). Pooled results for radiomics nomograms amongst tumour subtypes demonstrated
the highest AUC 0.895 (95%Cl, 0.810 - 0.980) for urological malignancy, and the lowest AUC 0.798

(95%Cl, 0.744 - 0.852) for colorectal malignancy.

Conclusion: Radiomics models improve the diagnostic accuracy of lymph node staging for

abdominopelvic malignancies in comparison with radiologist’s assessment. Deep learning models

may further improve on this, but data remain limited.
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3.2 Introduction

The most recent U.S. mortality data estimates suggest that 264,420 deaths per year are attributed to
abdominopelvic malignancy.®®® For the majority of these tumours, particularly with the
adenocarcinoma subtypes, the most likely initial sites of metastases are to locally draining Lymph
Nodes (LN). Therefore, the status of these nodes remains a key factor in determining patient staging,
treatment strategy, and survival.”**¢137 For this reason, all national guidelines commonly recommend

treatment options based directly on preoperative staging in this setting.13-141

Despite advances in medical imaging technology, the accurate clinical prediction of LN status
remains difficult. Non-invasive imaging modalities such as Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI) have been widely used for the evaluation of LN status with
mixed results. As diagnostic accuracy of LN metastases depends largely on the level of training and
experience of the radiologist, and the quality of the scanner itself, sensitivity and specificity may vary
among studies. CT has reported accuracy rates as low as 60-78%% for determining LN metastases?,
along with sensitivity rates of 47% and specificity rates of 71%.!' Similarly, the quality of
preoperative LN staging using MRI in terms of sensitivity and specificity are 77-86% and 67-71%,

respectively. 143145

Artificial Intelligence (Al) may have a promising role in this area, potentially overcoming some
human limitations in diagnostic accuracy.®®%¢ Radiomics models and deep-learning algorithms have
shown promising results integrating CT and MRI for detection of LN metastases for selected
indications.}*"14° However, despite numerous breakthrough studies demonstrating expert level
diagnosis by Al models, currently there are no studies systematically assessing and summarising data

on Al for abdominopelvic LN detection from source CT or MRI.
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The purpose of this study is to conduct a systematic review and meta-analysis of published data on
diagnostic accuracy of deep-learning algorithms and radiomics models for primary LN staging in

patients with abdominopelvic malignancies.

3.3 Methods

3.3.1 Search strategy

A systematic search in Embase (PubMed, MEDLINE), Science Direct and IEEE Xplore Digital
library was performed using Preferred Reporting Items for Systematic Reviews and Meta-analysis
(PRISMA) guidelines.*®® All potentially relevant studies from January 1, 2009 to March 31 2019
were identified. The following MeSH terms were used: “Artificial intelligence”, “machine learning”,
“deep learning”, ‘“convolutional neural network”, ‘“automatic detection”, “computer-aided”,
“Radiomic”, “Radiomics”, “CT”, “MRI”, “images”, “diagnostic imaging”, “radiology”, “lymph

node”, “lymph nodes”, “lymph node detection” (Table 1). Additional studies were identified from

hand-searching reference lists of all relevant articles.

67



Table 1 Search Strategy

Literature Search in Limits Search terms

sources

Science Direct | Advanced search | Research (“Artificial intelligence” OR “deep learning”
articles, OR “convolutional neural network” OR
years “automatic detection” OR “Radiomic” OR

(2009-2019)

“Radiomics”) AND (“CT” OR “MRI”) AND
(“Lymph node” OR “lymph node detection™)

Embase,
(PubMed,
MEDLINE)

Advanced search

N/A

(‘artificial intelligence'/exp OR ‘artificial
intelligence’ OR 'machine learning'/exp OR
'machine learning' OR 'deep learning'/exp OR
‘deep learning’ OR 'convolutional neural
network'/exp OR ‘convolutional neural
network' OR "automatic detection' OR
‘computer-aided' OR ‘Radiomic’ OR
‘Radiomics’) AND (‘ct'/exp OR 'ct' OR
'mri‘'/exp OR 'mri' OR 'images' OR 'diagnostic
imaging'/exp OR 'diagnostic imaging' OR
'radiology'/exp OR 'radiology’) AND (‘lymph
node*' OR 'lymph node detection’) AND
([article]/lim OR [article in press]/lim) AND
[english]/lim AND [2009-2019]/py

IEEE Xplore
Digital Library

Journals &
Magazines

Years
(2009-2019)

(“Artificial intelligence” OR “machine
learning” OR “deep learning” OR
“convolutional neural network” OR
“automatic detection” OR “computer-aided”
OR “segmentation” OR “Radiomic” OR
“Radiomics”) AND (“CT” OR “MRI” OR
“images” OR “diagnostic imaging” OR
“radiology”) AND (“Lymph node*” OR
“lymph node detection”)
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3.3.2 Selection criteria

All original studies assessing radiomics models or deep-learning algorithms to analyse CT or MRI
images with the purpose of detecting LN metastases in patients with abdominopelvic organ
malignancy were included. Abdominopelvic organs were defined as: liver, gallbladder, kidneys,
spleen, pancreas, stomach, small bowel, colon, rectum, bladder, and internal reproductive organs. The
search was limited to studies published in English language. Studies focused on segmentation and
feature extraction methods only, case reports, editorials, letters, meta-analysis, comments, mini-

reviews, book chapters and all conference which did not include complete data were excluded.

Titles and abstracts were then screened after removing duplicates, for eligibility by three independent
reviewers (S.B., N.N.DV. and G.M.) using Covidence systematic review software, Veritas Health
Innovation, Melbourne, Australia (available at www.covidence.org). Discrepancies regarding

inclusion and exclusion of specific studies were discussed and resolved by consensus.

3.3.3 Data extraction and quality assessment

The full texts of all eligible studies were then reviewed for reporting on the type of radiomics or deep-
learning model, study characteristics and outcome measures. The following data was then extracted
from each study: study type, total patient number, sample size for diagnostic accuracy, target area,
image modality, reference gold standard, additional clinicopathological features and diagnostic
endpoint. To obtain diagnostic accuracy data, we extracted True Positive (TP), False Positive (FP),
True Negative (TN), False Negative (FN), and Area Under the receiver operating Curve (AUC) along
with other parameters. The primary outcome of interest was AUC; other statistical measures of
algorithmic performance such as sensitivity and specificity were evaluated separately. Two
independent reviewers (S.B and N.N.DV) performed a quality assessment of selected studies by using

the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria.*>
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3.3.4 Statistical Analysis

For the quantitative meta-analysis, the testing set results of studies that presented absolute numbers
for AUC and their 95% confidence intervals, TP, FP, TN, FN or those that provided enough
information to extract/derive the numbers manually. If results were not reported in an independent
test set, cross validation results are reported. When different Al models were tested within the same
paper, the proposed model in the paper with the highest diagnostic performance was used for analysis.
Additionally, a sub-analysis was performed to estimate the accuracy of the radiologist’s assessment
derived from studies that reported this. The corresponding AUCSs, sensitivities and specificities of

radiologists were extracted in the same way as described above.

Two software packages MedCalc for Windows, version 16.4.3 (MedCalc Software, Ostend, Belgium)
and RevMan, version 5.3.1%2 were utilised for statistical analysis. Missing data were computed using
formulas derived from a confusion matrix (Table 2) with the help of the above software packages.
Forest plots were generated from pooling sensitivity, specificity and AUC data using random-effects
model to incorporate the variability between studies.'® To assess heterogeneity between studies the
inconsistency index (12) was used. 1% values below 50% indicated low heterogeneity, while values
above 50% indicated substantial heterogeneity.®™ A funnel plot was also constructed to visually

assess publication bias.
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Table 2 Formulas

Number Formula Summary
TP TP e
1 — = Sensitivity
P TP+ FN
TN TN e
2 _— Specificity
N TN + FP
TP+TN TP+ TN
3 = Accuracy
P+ N TP+TN+ FP+FN
4 TP PPV
TP + FP
5 L NPV
TN +FN
5 (Upper Limit — Lower Limit) SE

3.92

P, condition positive; N, condition negative; FN, false negative; FP, false positive; TN, true negative

and TP, true positive; PPV, positive predictive value; NPV, negative predictive value; Upper limit,

upper limit of confidence interval; Lower limit, lower limit of confidence interval; SE, standard error
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3.4 Results

3.4.1 Study selection

The initial search identified 498 studies after duplicates were removed, and of these 414 studies were
excluded based on screening of titles and abstracts, resulting in 58 studies for full-text review. A total
of 21 articles met the inclusion criteria and were considered eligible for systematic review (Figure.

6).
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3.4.2 Study characteristics

The characteristics of radiomics and deep-learning studies are summarized in Table 3. All included
studies were published between 2011 and 2019. Of the 21 included studies, 17 had sufficient data for
meta-analysis of AUC (Figure. 7), the patient cohorts were comprised of colorectal malignancies (4
studies), gynaecological malignancies (5 studies), hepatobiliary malignancies (2 studies), upper
gastrointestinal malignancies (4 studies) and urological malignancies (2 studies). Reference standards
were consistent across most malignancies and the modality of imaging being used. Most studies used
pathology as the gold standard (20/21), only one study assigned a level of suspicion for each lymph

node decided by a MD researcher and a radiologist to determine its reference standard.
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Table 3 Characteristics of individual studies

First Year | Study type Total Sample Target Image modality | Reference | Additional Diagnostic
author Patients, | size for Area Standard | Clinicopathological | endpoint
n diagnostic features
accuracy, n
Colorectal
Meng®®® | 2019 | Retrospective 345 148 cRaenC(;[:: MRI Pathology Age, sex, CEA level Patient
Ly 2018 | Prospective 765 414 Rectal MR Pathology i Lymph
cancer Node
_ Rectal Age, gender, smoking _
Chen'% 2018 | Prospective 115 33 cancer ERUS,CT,SWE | Pathology | history and laboratory Patient
tests
Huang'®® | 2016 | Retrospective 326 200 Colorectal CT Pathology CEA level, cN, Patient
cancer histologic grade
Avg of
Cai®’ 2012 | Prospective 228 leave-one- Rectal CT Pathology - Lymph
cancer Node
out CV
Avg of Lymph
Tsels® 2012 | Retrospective 17 leave-one- (I?ectal MR Pathology - Node
out CV ancer (n=43)
Avg of Rectal Lymph
Cui®™® 2011 | Prospective 228 leave-one- cancer CT Pathology - Node
out CV (n=220)
Gynaecology
Wang'¥® | 2019 | Retrospective 96 29 Cervical MRI Pathology Age, histopathologic Patient
cancer grade, cN
Uterine -
Kan'® 2019 | Retrospective 143 43 Cervical MRI Pathology Patient
cancer
. Clinical stage, tumour
161 : Cervical . ]
Yu 2019 | Retrospective 153 51 cancer MRI Pathology | diameter, cLN, grey- Patient

level
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non-uniformity

Wu'$2 | 2019 | Retrospective | 189 63 ii‘;‘]’égf' MRI Pathology | | 2umoursperi ¥ CN Patient
Avg of Uterine Lymph
Kim?63 2011 | Retrospective 143 leave-one- | cervical MRI Pathology - Node
out CV cancer (n=680)
Hepatobiliary
Biliary cN
Jite4 2019 | Retrospective 247 70 Tract CT Pathology Patient
cancer
2019 Biliary CA 19-9 > 1000 U/ml
Jjites Retrospective 155 52 Tract CT Pathology Patient
a cancer
Upper Gl
i . Gastric CT. stage a_nd_ cN stage, .
Jiang®® | 2019 | Retrospective 1689 1017 CT Pathology | differentiation status Patient
cancer
and CA199 level
167 : Gastric ]
Feng 2019 | Retrospective 490 164 cancer CT Pathology - Patient
Zhou'®® 2013 | Retrospective 175 Af\(\)/%%‘\S/ S:;ng CT Pathology - Patient
Zhang'®® | 2011 | Retrospective 175 Af\(\)/%%‘\sl S:r‘:’égf CT Pathology - Patient
Urology
Wul? 2018 | Retrospective 103 34 E;La:]dcdee;r MRI Pathology cN Patient
wul’t 2017 | Retrospective 118 38 %ﬁ}dcde?r CT Pathology cN Patient
Avg of Prostate Lymph
Debats!’? | 2011 | Prospective 146 leave-one- cancer MRI CLOS - Node
out CV (n=2347)




CV, cross-validation; CT, computed tomography; MRI, magnetic resonance imaging; ERUS, endorectal ultrasound; SWE, shear-wave elastography;

CEA, carcinoembryonic antigen; CLOS= classification based on level of suspicion
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Figure. 7 Forest plots per surgical speciality
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3.4.3 Quality Assessment

According to the QUADAS-2 tool, overall risk of bias in patient selection was high in 15 (71%)
studies and low in six (29%) studies. Risk of bias in the index test was high in 12 studies (57%) and
low in nine (43%). Risk of bias in the reference standard test was high in one study (4.8%) and low
in 20 studies (95.2%). Flow and timing had all 21 studies with unclear risk of bias. Overall
applicability concerns were low; however, three studies were judged to have high applicability

concerns (Figure. 8). Individual evaluation of the risk of bias and applicability are shown in Table 4.
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Table 4 Assessment of bias risk (BR) and applicability concerns (AP) of included studies
using the QUADAS-2 tool

Study ID | Patient Index Reference | Flow Patient Index | Reference
Selection | Test Standard | and Selection | Test Standard
(BR) (BR) (BR) Timing | (AP) (AP) (AP)
(BR)
Lu4’ Low Low Low Unclear | Low Low Low
Jiang®® High High Low Unclear | Low Low Low
Jite4 High Low Low Unclear | Low Low Low
Jit6® High Low Low Unclear | Low Low Low
Wang*#® High High Low Unclear | Low Low Low
Feng®’ High Low Low Unclear | Low Low Low
Meng*® High High Low Unclear | Low High Low
Kan'6? Low Low Low Unclear | Low Low Low
Yulél High High Low Unclear | Low Low Low
Wu'e? High High Low Unclear | Low Low Low
Chen?*®® Low Low Low Unclear | Low Low Low
Wul” High Low Low Unclear | Low Low Low
Wul’t High High Low Unclear | Low Low Low
Huang®® High High Low Unclear | Low Low Low
Zhou'®® High Low Low Unclear | Low Low Low
Cait® Low High Low Unclear | Low High Low
Tsel®® High High Low Unclear | Low Low Low
Cui*>® Low High Low Unclear | Low Low Low
Debats'’? Low High High Unclear | Low High Low
Kim?13 High High Low Unclear | Low Low Low
Zhang'®° High Low Low Unclear | Low Low Low
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3.4.4 Publication bias
To assess publication bias of the studies, a funnel plot of diagnostic AUC was constructed. The shape
of the funnel plot revealed asymmetry within included studies (Figure. 9), supporting information).

The funnel plot indicates between study heterogeneity and small study effects.
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Figure. 9 Funnel plot of the area under the receiver operating characteristic (AUC) in 17 studies
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3.4.5 Diagnostic Accuracy

Table 5 presents analysis of AUC achieved by the Al models and their performance in various
surgical specialties. The one study using deep learning achieved the highest diagnostic accuracy with
an AUC of 0.912 in urological malignancy. Based on the 17 studies that were included in the
quantitative analysis, the highest AUC overall was seen in urological malignancy (AUC 0.895,
95%Cl, 0.810 - 0.980), followed by gynaecological malignancy (AUC 0.893, 95%Cl, 0.847 - 0.939).
Hepatobiliary and upper gastrointestinal malignancies had similar AUCs of 0.851 (95%Cl, 0.761 -
0.940) and 0.825 (95%CI, 0.789 - 0.860), respectively. It should be noted that the two hepatobiliary
malignancy studies used their entire cohort from the training phase to test their radiomics model
during the testing phase, likely overestimating the pooled AUC. Colorectal malignancies had the

lowest AUC with a pooled value of 0.798 (95%Cl, 0.744 - 0.852).

In terms of radiologist performance, the highest pooled AUC was again seen in urological malignancy
(AUC 0.774, 95%Cl, 0.672 - 0.875), followed by gynaecological (AUC 0.749, 95%Cl, 0.656 - 0.842)
and upper gastrointestinal (AUC 0.740, 95%Cl, 0.712 - 0.767) malignancy. The lowest two AUCs
were seen in colorectal malignancy (AUC 0.636, 95%CI, 0.586 - 0.686) and hepatobiliary malignancy
(AUC 0.633, 95%Cl, 0.549 - 0.716). Heterogeneity among radiologist assessment pooling was low
with an 1% value of 0%. Detailed assessment measures of deep learning, radiomics models and

radiologists reported by individual studies are available in Table 6 and Table 7.
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Table 5 Summary estimates for AUCs per surgical specialty

(0.672 - 0.875)

Variable Studies | Patients | Summary Estimate | Heterogeneity Heterogeneity
n n 95%CIl) (12, %) P Value
(n) (n) (
Deep learning
Colorectal 1 765 0.912 | - -
Radiomics
0.798
Colorectal 4 607 (0.744 - 0.852) 77.0 0.005
0.893
Gynaecology 5 220 (0.847 - 0.939) 41.8 0.143
- 0.851
Hepatobiliary 2 402 (0.761 - 0.940) 48.3 0.164
0.825
Upper Gl 4 1531 (0.789 - 0.860) 425 0.156
0.895
Urology 2 72 (0.810 - 0.980) 0 0.918
Radiologist
0.636
Colorectal 2 181 (0.586 - 0.686) 0 0.650
0.749
Gynaecology 2 144 (0.656 - 0.842) 0 0.566
. 0.633
Hepatobiliary 2 402 (0.549 - 0.716) 0 0.945
0.740
Upper Gl ! 1017 (0.712 - 0.767) ¢ i -
Urology 2 72 0.774 0 0.4327

AUC, area under the receiver operating characteristic; CI, confidence interval; Gl, gastrointestinal
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Table 6 Results of individual studies

First P | N |TP| F | TN | F | PP | NPV | Sensitivity | Specificity | Accuracy | AUC 95%ClI Standard
author P N | V ,%0 ,% ,%0 ,%0 Error®
%
Colorectal
Meng's | 63 | 83 |46 |30 | 47 | 171981 1734¢] 730 56.6 637 | 0097 | o612-0781 | 00431
Lu¥ _ - - . - R - - - - - 0.912 - -
Chen™ | 14 |19 | - | - | - | - | - | - i i i 0857 | 726 -0.989 0.0671
14
Huang [0 [ oo | . | .| - [ .| - | . i : : 0788 | 0779-0.797 0.0046
Ca™ | - - - -1 - -1 -1- 89 82 88 i i i
Tse™® |39 | 4 | - | - | - | -] - | - i ; 91.0 i i .
cui™® | 75 |153| 87 |28 [125] gc | 1071 g35¢) g9 82 88 | 0.855° | 0.803-0.898° | 0.0242
Gynaecology
Wang® | - | - | - |- | - |- | - | - i : : 0.922 0.825 - 1 0.0446
Kan'®b | 14 | 20 | 10 | gc| 2L | 4¢ |50 |gagc| 714 72.4 721 | 9% | 0584-00924 0.0867
yuer | 15136118 1gc) 27 1 oe 91| 931 | 867 75.0 784 | 9870 | 0747.0.048 0.0513
wule? | 14 | ag | B[ 15|34 1 gc 482110001 46, 69.3 762 | 0.847° | 0.734-0.925°¢ 0.0487
kimies | 79 1610 50 | g5 | 505 | 11 | a1 | osc 84 86 86 0924 | 0.901-0.943 0.0107
Hepatobiliary
gie [ 12511221 952 | 29 | g3a | 35| 756 | o9 7a ) 79 pa 7622 741¢ | 9800 1 4700-0.900 0.0510
jits | gga| 874|592 | 23 |paa| ga | 20 g78a| gege 73.6° 79.4c | 9892 1 (810_0975 0.0421
Upper Gl
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Jiang 1% (696|321 | - | - | - | - | - | - i i i 0829 | 0810-0.847 0.0094
Feng” | - | - | - | - | - |- |80]|500]| 726 68.1 713 | 078 | 0699-0833 0.0342
Zhou's® | 134 | a1 | 120 | ge| 33 | 1419360 500c  gg5 80.0 874 | 0829 | 0747-0911° | 00418
Zhang™ | 1o | 49 |119 ) g¢| 32 |15 | g3 |676¢| g5 785 862° | 0876 | 0.804100.948° |  0.0366
Urology

wua |12 22| - - oo o] i i i 0.890 0.744 - 1 0.0653
TV TESCN A VIS I A AR O A B i i i 0899 | 4.761-0.990 0.0584
2Debats17 ] ] o ] ] ] ] ] 0.935 ) ]

& Values extracted from testing set comprised of full cohort.

b \Values extracted from radiomic signature.

¢ Manually calculated values using eq. (1,2,3,4,5,6)

P, condition positive; N, condition negative; FN, false negative; FP, false positive; TN, true negative and TP, true positive; PPV, positive predictive

value; NPV, negative predictive value; AUC, area under the receiver operating characteristic; Cl, confidence interval
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Table 7 Comparison between radiomics and radiologist in included studies

First _— . .
Author Radiomics models Radiologist P Value
Sensitivity, | Specificity, Sensitivity, | Specificity,
% % AUC 95%ClI % % AUC 95%ClI
Colorectal
Meng?ss 73.0 566 | 097 | 0612-0781 70.4 55.9 0.632° | 0.578-0.683° i
156 0.857
Chen - - 0.726 - 0.989 - - 0.671 0.511-0.831 0.012
Gynaecology
161 0.870
Yu 86.7 75.0 0.747 - 0.948 - - 0.772 0.633-0.878 -
Wwutle? 100.0 69.3 0.847 | 0.749-0.945°¢ 43.1 100.0 0.717 | 0.574-0.859°¢ -
Hepatobiliary
Jites 72.0° 7622 | 98091 0700 - 0.900 43.2° 83.6° | 0.630 | 0.520-0.740 i
165 a a 0.892
Ji 86.8 73.6 0.810-0.975 - - 0.636 0.507 - 0.764 -
Upper Gl
Jiang 16 - - 0.829 0.810 - 0.847 779°¢ 70.1°¢ 0.740° | 0.712-0.767° -
Urology
wut" - - 0.890 0.744 -1 - - 0.727 0.573 - 0.882 -
171 0.899 c c c c
Wu - - 0.761 - 0.990 71.4 90.3 0.809 0.649 - 0.918 -

AUC, area under the receiver operating characteristic; CI, confidence interval
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3.5 Discussion

Due to the widespread application of Al in medical imaging in recent times, radiomics and deep-
learning models are now being actively evaluated for LN staging in a variety of malignancy types.
To our knowledge, this is the first systematic review of Al system performance in the diagnosis of
metastatic regional LN in abdominopelvic malignancy. Our review demonstrates variability in the
accuracy depending on tumour type, but a promising improvement upon radiologist’s interpretation,
which is the current standard of care. In addition, it is possible that deep learning methods will further

improve upon existing radiomics models.

Radiomics is a set of hand-design features/characteristics that are automatically computed from the
image. These features are then used by a classifier/algorithm to produce a diagnosis. Radiomics
models, better known as nomograms, incorporate the radiomics signature with clinical variables to
enable superior prediction by improving pre-test probability.!® On the contrary, deep-learning
models, such as Convolutional Neural Networks (CNNSs) are a relatively new type of algorithm that
can produce the diagnosis by automatically learning the optimal features for producing such
diagnosis, without human defined parameters.'”® Deep learning models have been shown to perform
relatively well in many tasks and to outperform radiomics models. However they require large data

sets to achieve a competitive performance.l’#17

Most included studies investigating the use of Al in LN detection for abdominopelvic malignancies
employed radiomics (n=20), with only one study using deep learning. There were few prospective
studies (n=5), with the majority being retrospective with clinical data collected from case notes, and
radiology and pathology reports. Several radiomics studies have critical limitations typical of
diagnostic studies, such as limited sample size, lack of external validation and potential overfitting.
Moreover, radiomics models developed using imaging obtained from a single scanner may produce

a lack of generalizability and selection bias. Image acquisition from multiple scanner types is
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preferable when developing an Al model for the general population. Significantly, several studies
failed to address the disproportionate sample size between node positive and node negative patients
and did not discuss how this imbalance may have affected the analysis. The reproducibility and
clinical value of the Al model should be tested using an independent cohort. However, two of the
radiomics studies used their entire cohort from the training phase during the testing phase of their
model, rather than using a new cohort of patients.*541% This probably meant that both studies would
have over-optimistic AUCs, as their proposed models would re-identify the same imaging features
seen in the training phase as in the testing phase. There was high heterogeneity among studies in both
the radiomics models and radiology subgroups. The high heterogeneity observed among subgroups
may have been attributed to differences in population and the small sample sizes in each included

study.

The use of an appropriate label for the presence or absence of lymphadenopathy in the development
of radiomics and deep learning models is another issue to be considered. Both models typically
incorporated the radiologist’s diagnosis into the algorithm and failed to designate the pathological or
surgical diagnosis as the ground truth when labelling their training cohort. Therefore, model accuracy
tended to bias towards the radiologist’s assessment, which is a problem since for many
abdominopelvic malignancies radiologist assessment accuracy has historically been quite
limited.*>%42 In the future, we suggest labelling the training cohort with pathological staging, this
alternative may help newly developed deep learning algorithms to outperform existing algorithms

training with radiological staging.

The current review found 11 studies that reported on diagnostic performance of the radiologist. Most
studies approached the assessment of radiomics or deep learning models in isolation, but two studies
specifically compared radiomics with the radiologist’s assessment and found a significant difference

favouring the radiomics model.1"8177 A recent meta-analysis performed by Liu and Faes et al. found
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diagnostic performance of deep-learning models to be equivalent to that of health-care professionals
for rectal cancer staging.*>® However, evidence comparing deep-learning versus radiologists for LN
metastases detection in abdominopelvic malignancies remains scarce, which limits our ability to

extrapolate the diagnostic benefit of these systems in healthcare delivery.

This meta-analysis has several limitations. Firstly, the analysis was not separated between per-patient
and per-nodal basis, which could potentially have skewed the data in favour of a higher pooled AUC
(by artificially increasing the n). Secondly, there were a substantial number of studies in which some
of the required test performance measures were not published and subsequently the value was
calculated manually. The variability between different patient populations, scanner technology, and
criteria for LN metastases may also have affected the accuracy of the results. Lastly, due to the high
heterogeneity of studies, the pooled estimated of the quantitative results must be interpreted with

caution.

3.6 Conclusion
Radiomics models improve the diagnostic accuracy of lymph node staging for abdominopelvic
malignancies in comparison with radiologist’s assessment. Deep learning models may further

improve on this, but data remain limited.
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CHAPTER 4: ARTIFICIAL INTELLIGENCE FOR PRE-OPERATIVE LYMPH NODE

STAGING IN COLORECTAL CANCER: A SYSTEMATIC REVIEW AND META-

ANALYSIS.
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4.1 Abstract
Introduction: Artificial Intelligence (Al) is increasingly being used in medical imaging analysis.
We aimed to evaluate the diagnostic accuracy of Al models used for detection of lymph node

metastasis on pre-operative staging imaging for colorectal cancer.

Methods: A systematic review was conducted according to PRISMA guidelines using a literature
search of PubMed (MEDLINE), EMBASE, IEEE Xplore and the Cochrane Library for studies
published from January 2010 to October 2020. Studies reporting on the accuracy of radiomics
models and/or deep learning for the detection of lymph node metastasis in colorectal cancer by
CT/MRI were included. Conference abstracts and studies reporting accuracy of image segmentation
rather than nodal classification were excluded. The quality of the studies was assessed using a
modified questionnaire of the QUADAS-2 criteria. Characteristics and diagnostic measures from
each study were extracted. Pooling of area under the receiver operating characteristic curve

(AUROC) was calculated in a meta-analysis.

Results: Seventeen eligible studies were identified for inclusion in the systematic review, of which
12 used radiomics models and five used deep learning models. High risk of bias was found in two
studies and there was significant heterogeneity among radiomics papers (73.0%). In rectal cancer,
there was a per-patient AUROC of 0.808 (0.739-0.876) and 0.917 (0.882-0.952) for radiomics and
deep learning models, respectively. Both models performed better than the radiologists who had an
AUROC of 0.688 (0.603 to 0.772). Similarly in colorectal cancer, radiomics models with a per-
patient AUROC of 0.727 (0.633-0.821) outperformed the radiologist who had an AUROC of 0.676

(0.627-0.725).
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Conclusion: Al models have the potential to predict lymph node metastasis more accurately in
rectal and colorectal cancer, however, radiomics studies are heterogeneous and deep learning

studies are scarce.

96



4.2 Introduction

Colorectal Cancer (CRC) is the second most common malignancy and the third leading cause of
cancer-related mortality in the world, accounting for 862,000 deaths annually.’® CRC nodal
metastases play a pivotal role in disease-free survival and in determining appropriate adjuvant and
neoadjuvant treatment.'”® As a result of the application of preoperative staging MRI in patients with
rectal cancer, neoadjuvant chemoradiation has become the standard of care in locally advanced
tumours, resulting in improved local control and resectability. Owing to the lower accuracy of
lymph node staging in colon cancer at diagnosis, neoadjuvant treatment is not as commonly
recommended.'>*3® However, this may change following the results of the recent Fluoropyrimidine,
Oxaliplatin and Targeted Receptor Pre-Operative Therapy (FOXTROT) trial showing the safety and
efficacy of neoadjuvant chemotherapy in patients with locally advanced colon cancer.'® Therefore,
improved accuracy in clinical nodal staging at diagnosis may become critical in surgical planning

and targeting effective neoadjuvant treatment for these patients. 81182

Clinical staging of CRC is typically performed by radiologists assessing contrast enhanced
Computer Tomography (CT) images in patients with colorectal cancer, and in addition, Magnetic
Resonance Imaging (MRI) in patients with rectal cancer. The staging accuracy of CT and MRI is
affected by multiple factors, such as equipment performance, standardised imaging protocols, the
reporting radiologist’s experience, and patient-specific factors. Overall, published series have
reported a 70% accuracy of diagnosing lymph node metastasis on CT, and 69% on MRI using

standard criteria. 11183

Current staging paradigms with its limited diagnostic and staging accuracy may be able to
overcome by using Artificial Intelligence (Al) models. Al-enabled radiomics involves the
extraction of a large number of investigator defined features from medical images using advanced

computational algorithms.*8* While radiomics models have been used to predict lymph node
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metastasis in CRC with partial success, previous studies by Ding et al. and Wang et al. demonstrate
that deep learning algorithms have the potential to identify more subtle patterns that may elude
conventional radiological and statistical methods.'®'8 Deep learning is a technique that involves
the use of convolutional neural networks to self-educate an algorithm based on useful
representations of images, thus bypassing the step of extracting manually designed features.®® In
recent years, radiomics nomograms and deep learning models have started to make a meaningful

contribution to radiological diagnoses.*®

The aim of this systematic review and meta-analysis is to evaluate the accuracy of Al models in

diagnosing lymph node metastasis on CT and/or MRI in colorectal cancer patients.

4.3 Methods

4.3.1 Search Strategy

This systematic review and meta-analysis was performed according to the recommendations of the
Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and
was registered with the International Prospective Register of Systematic Reviews with an analysis
plan prior to conducting the research. A systematic search of the Cochrane Library, PubMed
(MEDLINE), EMBASE and IEEE Xplore databases was performed for studies published between
January 1% 2010 and October 1 2020. The following search terms were used: artificial intelligence,
deep learning, convolutional neural network, machine learning, automatic detection, radiomics,
radiomic, CT/MRI, lymph node, lymph node metastasis, colon, rectal, colorectal (Appendix B:
Table 1). Reference lists of articles retrieved were also searched manually to identify additional

eligible studies.

4.3.2 Study Selection
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Articles were included if they met the following criteria: (1) included patients with
histopathological diagnosis of CRC; (2) developed or used a radiomics or deep learning algorithm
to assess CT or MRI pre-operative lymph node metastasis detection and (3) published in English
language. Exclusion criteria were (1) case reports, review articles, editorials, letters, comments, and
conference abstracts; (2) studies focusing on segmentation or feature extraction methods only and
(3) animal studies. After removing duplicates, titles and abstracts were reviewed for eligibility by
two independent reviewers (SB and NNDV) using Covidence systematic review software (Veritas
Health Innovation, Melbourne, Australia, available at www.covidence.org). Any disagreements

were resolved by consensus arbitrated by a third author (TS).

4.3.3 Data Extraction

Data from selected full-text articles were reviewed for reporting on the type of radiomics or deep
learning model, study characteristics and outcome measures. The extracted data included the first
author, year of publication, country, study type, number of patients, sample size for diagnostic
accuracy, age, imaging modality, type of malignancy, Al model, and referenced standard. Data
related to the accuracy of the radiologists’ assessment derived from studies using clinical nodal
staging or clinical nomograms solely based on N-staging was also collected. To obtain diagnostic
accuracy data of Al models and radiologists’ assessment, two-by-two contingency tables,
sensitivity, specificity, accuracy, and Area Under the Receiver Operating Characteristic Curve
(AUROC) were extracted or reconstructed. The primary endpoint was AUROC, secondary

endpoints included sensitivity, specificity, and accuracy.

4.3.4 Quality Assessment and Publication Bias

The modified version as proposed by Sollini et al. of the Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) tool was used to access the methodological quality of the included
studies.*® Minimum criteria for fulfilling each QUADAS-2 item were discussed by two reviewers
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(SB and NNDV) and disagreements were resolved by consensus. Publication bias was assessed

using the Egger regression test and is presented as a funnel plot of diagnostic AUROC.

4.3.5 Statistical Analysis

Meta-analysis was performed using testing set results of studies that presented absolute numbers for
AUROC and 95% confidence intervals, contingency tables or provided sufficient information to
derive the numbers manually. If results were not reported in an independent test set, cross validation
or full test sample results are presented in this review. When results of different Al algorithms were
reported in one article, the proposed algorithm with the highest diagnostic performance was

analysed.

Three software packages, MedCalc for Windows, version 16.4.3 (MedCalc Software, Ostend,
Belgium), RevMan, version 5.3.21 and Meta-DiSc version 1.4, were utilised for statistical analysis.
Missing data were computed using confusion matrix calculator or manually derived using formulas
in Appendix B: Table 2. Pooling sensitivity, specificity and AUROC data was conducted using the
Mantel-Haenszel method (fixed-effects model) and the DerSimonian Laird method (random-effects
model).1%%1% To assess heterogeneity between studies, the inconsistency index (I2) was used.®?
Heterogeneity was quantified as low, moderate, and high, with upper limits of 25%, 50% and 75%
for 12, respectively. Forrest plots were drawn to show AUROC estimates in each study in relation to

the summary pooled estimate. A funnel plot was constructed to visually assess publication bias.

4.4 Results

4.4.1 Study Selection
A total of 68 studies were identified and 53 remained after removing duplicates. Review of titles

and abstracts left 25 studies for full-text review. Finally, 17 studies were included in the systematic
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review, 12 of which could be used in the meta-analysis and five studies were excluded due to

insufficient information (Figure 10).47:157:185.186,193-205
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Figure. 10 PRISMA flow chart outlining the selection of studies for review.
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4.4.2 Study Characteristics

Twelve studies used radiomics models and five used deep learning models (Appendix B: Table 3).
All included studies were published between 2011 and 2020. Study design was retrospective in 11
and prospective in six studies. Fourteen studies were single-center and three were multi-center.
Patients were predominantly male with a median age of 60 years (54 - 64). Eight studies used MRI
and nine used CT to train their algorithm. The type of malignancy was colorectal in three studies,
colon only in two, and rectal only in 12. Eleven studies used per-patient diagnostic output (the
patient is node positive or negative) and 6 studies used per-nodal diagnostic output of lymph node
metastasis (each individual node analysed separately). Fifteen studies used the postoperative
pathology report as reference standard, and one study used a radiology report as the reference

standard. The reference standard for the one remaining study was not reported.

4.4.3 Quality Assessment and Publication Bias

The methodologic quality of included studies is summarized in Figure 11. As per the QUADAS-2
tool, risk of bias in patient selection was low in 15 (88%) studies and high in two (12%) studies.
Risk of bias in the index test was high in one study (6%) and low in 16 (94%). Risk of bias in the
reference standard test was low in 15 (88%), high in one study (6%) and unclear in one study (6%).
Flow and timing had all 17 studies with unclear risk of bias. Overall applicability concerns were
low (Additional file 1: Table S4). Funnel plot assessment (Appendix B: Figure 1) showed no

significant publication bias (Egger’s intercept 1.11, 95%CI -1.22 to 3.42, p=0.313).
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Figure. 11 Summary of QUADAS-2 assessments of included studies.
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4.4.4 Diagnostic Accuracy

For the 12 studies that could be included in the quantitative analysis, 10 used radiomics and two
used deep learning. For each outcome, summary estimates of sensitivity, specificity and AUROC
were produced with 95% confidence intervals on a per-patient and per-nodal basis (Table 8). Pooled
colorectal and rectal, per-patient and per-node detailed diagnostic measures reported by individual
studies are shown in Table 9. The data for radiomics models in rectal cancer showed high
heterogeneity with the exception of per-node AUROC and sensitivity. On a per-patient basis,
radiomics in rectal cancer pooled AUROC was 0.808 (95%CI 0.739-0.876; Figure. 12) and pooled
sensitivity and specificity were 0.776 (95%CI 0.685-0.851) and 0.676 (95%CI 0.608-0.739),
respectively. On a per-nodal basis radiomics in rectal cancer pooled AUROC was 0.846 (95%Cl
0.803-0.890) and pooled sensitivity and specificity were 0.896 (95%CI 0.834-0.941) and 0.743
(95%CI1 0.665-0.811), respectively. On a per-patient basis radiomics in CRC pooled AUROC was
0.727 (95%CI 0.633-0.821). The radiologist per-patient assessment in rectal cancer pooled AUROC
was 0.688 (95%CI 0.603 to 0.772), sensitivity was 0.678 (95%CI 0.628-0.726) and specificity was
0.701 (95%CI 0.667-0.733). Further, the radiologists per-patient assessment in CRC pooled
AUROC was 0.676 (95%CI 0.627-0.725), sensitivity was 0.641 (95%CI 0.577-0.702) and
specificity was 0.657 (95%CI 0.597-0.713). The deep learning data demonstrated low heterogeneity
(1?=0.00%, p=0.829), and on a per-patient basis, deep learning models outperformed radiomics and
radiologist assessment in rectal cancer with an AUROC of 0.917 (95%CI 0.882-0.952). Deep
learning sensitivity and specificity were reported in a single study as 0.889 and 0.935, respectively

(Table 9).

105



Table 8 Pooled results of per-patient and per-node diagnosis from deep learning, radiomics and

radiologists
Variable Studies | Type of No. of Pooled | Heterogeneity | Heterogeneity
analysed | malignancy | studies results | (12, %) P Value

(95%

Cl)
Deep learning
AUROC Rectal 2 0.917 0.00 0.829
per-patient | 185186 (0.882-

0.952)
Radiomics
Sensitivity | 195197198 | Rectal 3 0.776 0.00 0.368
per-patient (0.685-

0.851)
Sensitivity | 199204 Rectal 2 0.896 0.00 0.393
per-node (0.834-

0.941)
Specificity | 199197198 | Rectal 3 0.676 75.4 0.017
per-patient (0.608-

0.739)
Specificity | 199204 Rectal 2 0.743 87.8 0.004
per-node (0.665-

0.811)
AUROC 194,203 Colorectal | 2 0.727 94.1 <0.0001
per patient (0.633-

0.821)
AUROC 195-198.202 | Rectal 5 0.808 63.3 0.028
per patient (0.739-

0.876)
AUROC 199,204 Rectal 2 0.846 0.00 0.433
per node (0.803-

0.890)
Radiologist
Sensitivity | 194203 Colorectal | 2 0.641 70.9 0.064
per-patient (0.577-

0.702)
Specificity | 194203 Colorectal | 2 0.657 11.1 0.289
per-patient (0.597-

0.713)
Sensitivity | 19519 Rectal 4 0.678 57.5 0.070
per-patient (0.628-

0.726)
Specificity | 19519 Rectal 4 0.701 97.8 <0.0001
per-patient (0.667-

0.733)
AUROC 194,203 Colorectal | 2 0.676 58.4 0.121
per-patient (0.627-

0.725)
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AUROC
per-patient

195-198,202

Rectal

0.688
(0.603
to
0.772)

93.4

<0.0001

AUROC, area under the receiver operating characteristic; CI, confidence interval
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Table 9 Results for deep learning radiomics models and radiologist in accuracy to detect lymph

node metastasis

First T |F [T |F |PP | NP | Sensiti | Specifi | Accur | AUR | 95%CI | Stand
author P |IP [N [NV, |V, |vity city acy, oC ard
% | % |,% ,%0 % Error
C
Deep learning
Per-patient
. 0.876- | 0.022
186 _ _ . _ _ - - - -
Ding 0.920 0.964 4
90. | 92. 0.912 | 0.842- | 0.029
185
Wang 40 |4 |58 |5 9 1 88.9 93.5 91.6 c 0.958 6
Glaser*’? |- |- |- |- |- - - - - 0.860 | - -
Per-node
Lu3%0 - |- - - - - - - - 0.912 | - -
Li2% - |- - -] - - - 94.4 - - -
Radiomics
Per-patient
1
29 33 82. | 76. 0.778- | 0.024
Eresen!®® 6° 0 7436 |84.62 |79.49 |0.825
¢ © 1. |8° |7° 0.872 0
6
: 69 | 44 | 12 61. | 65. 0.583- | 0.033
194
Li c |c |ge Z 06 | 64 50.74 | 7442 |63.96 |0.650 0.713 1
Yang'® 013 5¢ 621 62 Z::’ ge 85.0 82.0 83.0 0.780 8828 8'074
Nakanish 0.800- | 0.048
196 |- ) ) 0900 15990 |5
Zhou®®’ 024 627 Z4 ? 4117. 33' 82.8 73.3 75.4 0.818 8;8% 2'044
1
46 | 36 | 47 56. | 73. 0.697 | 0.612- | 0.043
Meng 1% 7 73.0 56.6 63.7
97 fe Je e | [ ]1ce |40 0781 |1
Chen® |- |- |- |. |- ) ) ) i 0.857 8;58 8.067
Huang?® |- |- |- |- |- ) ) ) ) 0.788 8;;3- 2.004
Per-node
zhytee | 18121321 ‘2‘6' 87' 047 |60.4 [694° 0812 [P 8'049
Cai®’ - - -] - 89 82 88 - - -
Tse20° - - - - - - - - 91.0 - - -
1
: 11117 |78 86. | 85. 0.855 | 0.801- | 0.024
204
Cui 1c|c e f 7¢ | gc 89 82 88 c 0.898° |7
Radiologist
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Per-patient

c

4
104 d 94 | 63| 10 59. | 72. 0.645- | 0.030
Li c |c |gc c2 9 5 69.1 63.4 65.9 0.708 0.765 5
193 133123 |16|6 |58. |72 0.718- 0.027
Eresen ¢ |c |c [c |gc |7 84.6 41.0 62.8 0.772 0.825 3
195 1 |50. | 75. 0.629 | 0.543- 0.042
Yang 41 | 41 | 43 1 10 4 74.6 51.2 60.4 c 0.709¢ |3
Nakanish 14 |2 | 100 | 83. . |0.855 | 0.805- 0.023
{196 b 7110 719 |0 5 71.0 100.0 88.3 c 0896¢ |2
197b 21|13 | 35. | 85. 0.585- 0.025
Zhou 49 | 89 5 g |5 0 56.3 70.7 67.5 0.635 0.683 0
3
88196 |12 47, | 77. 0.632 | 0.578- 0.026
198 b
Meng ¢ |c |gc C7 g¢ | pc 55.9 70.4 61.3 c 0683¢ |8
202 . i i i i 0.511- 0.081
Chen 0.671 0.831 6
4
203 | 58 | 30 | 69 65. | 61. c c . |0.636 | 0.565- 0.034
Huang c e e ? 9c | ge 57.4 69.7 63.5 c 0.702¢ |9
Per-node
3
204 39110 |52 27. | 59. c c ¢ |0.430 | 0.365- 0.033
Cui c |qc|c 6 7¢ | qc 52 34 39.9 c 0.497¢ |7

& Values extracted from training set.

b \/alues extracted from total cohort.

¢ Manually derived/reconstructed values using formulas from Additional file 1: Table S2

4 Values extracted from clinical models

FN, false negative; FP, false positive; TN, true negative and TP, true positive; PPV, positive

predictive value; NPV, negative predictive value; AUROC, area under the receiver operating

characteristic; Cl, confidence interval
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Figure. 12 Forest plots of per-patient area under the receiver operating characteristic curve

(AUROC). (a) Deep learning in rectal cancer, (b) radiomics in rectal cancer, (c) radiomics in

colorectal cancer, (d) radiologist in rectal cancer and (e) radiologist in colorectal cancer.
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4.5 Discussion

To our knowledge, this is the first systematic review and meta-analysis of deep learning and
radiomics performance in the assessment of lymph node metastasis in rectal and CRC patients. The
results demonstrate a very high AUROC of 0.917 (95%Cl, 0.882-0.952) when a deep learning
model is used as a diagnostic tool compared with a radiomics model (AUROC 0.808, 95%CI 0.739-
0.876). The diagnostic performance of both deep learning and radiomics models surpassed that of

the radiologist assessment with an AUROC of 0.688 (95%Cl, 0.603 to 0.772).

A number of research studies have already suggested Al has the potential to transform the
healthcare sector particularly in areas where image recognition can be applied.?%2% |n terms of
colorectal diseases, Al has been applied to colonic polyps, adenomas, colorectal cancer, ulcerative
colitis and intestinal motility disorders.?%-?12 Owing to the rapid development of Al technology, Al
is bound to continually play an important role in the field of colorectal diagnosis and treatment.?*3
Furthermore, the increase in computing power paired with the availability of large imaging
databases offer the opportunity to develop more accurate Al algorithms.(10) At present,
applications of deep learning to medical imaging are in vogue. However, deep learning models have
several drawbacks, including variability in the images, large sample size, poor generalization and
extensive computing resources. These models tend to rely on superficial data patterns and often fail
when external factors such as different imaging acquisition parameters and types of scanners cause

a distribution shift. 24

In this review, most studies used radiomics (n=12), rather than deep learning methodology (n=5)

largely owing to deep learning technology being more recent, but also because it requires specific
expertise. This limits the ability to draw definitive comparisons between the two Al models as one
is somewhat over-represented in the data. Additionally, most studies were retrospective in design,

making them prone to confounding and selection bias. Several studies focused on the technical
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aspects of the algorithm and did not address key limitations such as input variation, absence of
clinical information (age, tumour site, patient history) and potential data overfitting often caused by
noise in the data, overcomplicated models, and small sample sizes. Another issue, particularly
common in deep learning studies, is the failure to report contingency tables or sufficient detail to
enable reconstruction. We had to exclude five (29%) studies from the meta-analysis due to
incomplete data. Most studies were conducted at a single-center and used internal verification or
resampling methods (cross validation). Internal validation, however, tends to overestimate the
AUROC due to the model’s lack of generalizability, limiting the integration of Al models into the
clinical setting.?*> Therefore, external validation prediction models using images from different
hospitals are required to create reliable estimates on the level of performance at other sites.?'® The
number of studies diagnosing lymph node metastasis on a per-nodal basis in this meta-analysis is
small. This is understandable, given that lymph node metastasis is staged on a per-patient basis in
the clinical setting. Interestingly, five studies on rectal cancer extracted radiomics features from CT

despite MRI being the gold standard imaging modality for lymph node detection in clinical practice.

This meta-analysis has some limitations that merit consideration. Firstly, a relatively small number
of deep learning studies were available for inclusion. This, along with the heterogeneity seen in
radiomics studies, means that the summary estimates of AUROCSs have to be interpreted with
caution. Secondly, because of incomplete reporting of results by several studies, estimates of
diagnostic performance were calculated using limited data. Thirdly, given the majority of the
included studies originate from China, there is a potential for geographical bias. Lastly, the wide
range of scanner types, imaging protocols, and criteria for lymph node metastasis used may have
affected accuracy of results. Results for radiomics and the radiologist assessment were highly
heterogenous, which may be attributed to the different imaging modalities and small sample sizes.
In the future, diagnostic Al models will have to be rigorously evaluated on their clinical benefit in

comparison to current standard of care, as not all are suitable for clinical practice. Therefore, studies
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comparing Al with the clinicians’ performance are most valuable and are more likely to ensure safe

and effective implementation of Al technology into daily practice.?!"?18

4.6 Conclusion

Al models have the potential to predict lymph node metastasis more accurately on a per-patient basis
in colorectal cancer than the radiologists’ assessment, however, radiomics studies are heterogeneous
and deep learning studies are scarce. With further development and refinement, Al models capable
of accurately predicting nodal stage may represent a significant advance in pre-operative staging of

colorectal cancer to better inform clinician and patient.
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CHAPTER 5: APROSPECTIVE STUDY OF DIAGNOSTIC ACCURACY OF

MULTIDISCIPLINARY TEAM AND RADIOLOGY REPORTING OF PRE-OPERATIVE

COLORECTAL CANCER LOCAL STAGING.
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5.1 Abstract
Introduction: The aim of this study was to correlate and assess diagnostic accuracy of preoperative
staging at Multidisciplinary Team Meeting (MDT) against the original radiology reports and

pathological staging in colorectal cancer patients.

Methods: A prospective observational study was conducted at two institutions. Patients with
histologically proven colorectal cancer and available preoperative imaging were included.
Preoperative tumour and nodal staging (cT and cN) as determined by the MDT and the radiology
report (CT and/or MRI) were recorded. Kappa statistics were used to assess agreement between
MDT and the radiology report for cN staging in colon cancer, cT and cN in rectal cancer, and
Tumour Regression Grade (TRG) in patients with rectal cancer who received neoadjuvant therapy.
Pathological report after surgery served as the reference standard for local staging, and AUROC

curves were constructed to compare diagnostic accuracy of the MDT and radiology report.

Results: A total of 481 patients were included. Agreement between MDT and radiology report for
cN stage was good in colon cancer (k=0.756, C195% 0.686-0.826). Agreement for cT and cN and in
rectal cancer was very good (kw=0.825, C195% 0.758-0.892) and good (kw=0.792, C195% 0.709-
0.875), respectively. In the rectal cancer group that received neoadjuvant therapy, agreement on
TRG was very good (kw=0.919, C195% 0.846-0.993). AUROC curves using pathological staging
indicated no difference in diagnostic accuracy between MDT and radiology reports for either colon

or rectal cancer.

Conclusion: Preoperative colorectal cancer local staging was consistent between specialist MDT

review and original radiology reports, with no significant differences in diagnostic accuracy

identified.
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5.2 Introduction

Colorectal cancer is the third most frequently diagnosed cancer in the world, with 1.9 million new
cases in 2020. It is also the second leading cause of cancer-related death, accounting for an
estimated 935,000 deaths annually.* Modern preoperative radiologic staging modalities, such as
Computer Tomography (CT) and Magnetic Resonance Imaging (MRI), allow for fairly accurate
pre-operative staging, and inform selection of the most appropriate management strategy for each

patient.

In rectal cancer, pelvic MRI preoperative staging provides essential information on tumour depth
infiltration and perirectal nodal metastasis.?'® These factors determine the need for neoadjuvant
therapy and extent of surgical treatment. The role of preoperative CT imaging in colon tumours is to
identify adjacent organ infiltration (T4b stage) and distant metastasis. Locoregional staging (T and
N stage) is of marginal clinical utility given neoadjuvant therapy is not standard of care.??°
However, there is growing interest in administering neoadjuvant chemotherapy to decrease the risk
of disease recurrence in locally advanced colon cancers.” In view of this, accurate preoperative

staging for both colon and rectal cancer assists patient selection for neoadjuvant therapy and

surgical planning.!

Most colorectal cancer guidelines state that all patients should be discussed at a Multidisciplinary
Team Meeting (MDT);?21222 3 collaborative forum for decision making attended ideally by
surgeons, radiologists, pathologists, and medical and radiation oncologists.??® At the MDT,
accurately documented preoperative staging assists decision making.??* In rectal cancer, for
instance, discussion in the MDTSs have shown to increase the proportion of patients receiving
neoadjuvant treatment, resulting in better local disease control and higher curative surgery

rates 225,226
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Previous studies in this field have shown inconsistencies in staging documentation and
demonstrated that preoperative staging accuracy with MDT recommendation to be significantly
higher compared to the radiology report alone.??"?8¢ However, most reports come from small and
single-centre retrospective studies. Prospective data on the agreement and accuracy of MDT and
radiology report in colorectal cancer are lacking, and in our context, with high quality specialised
colorectal cancer staging reporting, it remains unclear whether the MDT discussion was upgrading
or downgrading patient stage. Therefore, we aimed to prospectively investigate the level of
agreement in preoperative staging between MDTSs and radiology reports and to determine the

accuracy of these modalities for diagnostic decision making in colorectal cancer.

5.3 Materials and methods

This prospective cohort study is reported according to the STARD statement??® and was approved
by the Central Adelaide Local Health Network Human Research Ethics Committee
(HREC/19/CALHN/73) and the Ethics Committee of a private tertiary care center (#116). This
study was conducted in accordance with the Helsinki Declaration. The requirement for informed

consent was waived given the low or negligible risk to patients.

5.3.1 Patient selection

Consecutive patients with histologically proven colon or rectal adenocarcinoma at two tertiary care
centers (both in Adelaide, Australia) who were discussed at the weekly colorectal MDTs between
March 1% 2019, and March 04" 2022, were considered for the study. Patients without available
reports from CT/MRI of preoperative stages from MDT and radiology or cases where the reporting

radiologist was also a member of the colorectal MDT were excluded.
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5.3.2 Imaging and pathological evaluation

Preoperative imaging for colon and rectal cancer included abdominopelvic CT with oral and
intravenous contrast or water as a negative contrast. Rectal cancers underwent high resolution
multiparametric MRI. Rectal cancer patients receiving neoadjuvant therapy underwent restaging
MRI 8-10 weeks following completion of their chemoradiotherapy.?>2° All scans were reported by
a specialist radiologist or junior radiologist supervised by a specialist radiologist at both institutions
prior to MDT discussion. Reporting was performed in a standardised manner using the Cancer
Council Australia recommended proforma.?! Staging at MDT was determined by one of three
specialist radiologists with specific experience in gastrointestinal and pelvic MRI and oncologic
imaging, colorectal surgeons, medical and radiation oncologists, and pathologists. At the MDT
meeting, CT or MRI scans were reviewed against the radiology report by specialist radiologists in
combination with the treating team. Patients were recorded as node negative during data collection
if there was no mention of abnormal nodes in the radiology report. Tumours above the peritoneal
reflection were defined as colon cancers. Agreement of preoperative staging and restaging Tumour
Regression Grade (TRG)?*? between MDT and radiology report for rectal cancer was also assessed.
As previous studies have described??”?3, patients with rectal cancer were divided into “early
surgery” or “neoadjuvant therapy” subgroups. The early surgery group underwent surgery after
diagnosis or received short-course radiotherapy without a wait period (thus had pathological staging
that could be used as the reference standard). The neoadjuvant therapy group received Total
Neoadjuvant Therapy (TNT), or standard long course Chemoradiotherapy (CRT), or short course
radiotherapy with a wait period (thus had significant tumour downstaging and the pathological

staging could not be used to determine pre-operative clinical staging accuracy).

Tumours were grouped based on the presence or absence of tumour invasion through the muscularis
propria into the surrounding mesorectum. Lymph node metastasis were defined as any visible node

> 9mm on the short axis, nodes with mucinous signal characteristics, nodes 5-9mm with two

120



additional morphologically suspicious features (round shape, irregular borders or heterogenous
contrast enhancement) and nodes >5mm with all three features present were considered to be
positive.Z** The presence of extramural vascular invasion (EMVI) was considered positive if tumour
signal extends into an adjacent vascular structure from the primary tumour or involved lymph
nodes, expanding and disrupting the vessel borders. A positive Circumferential Resection Margin
(CRM) for upper and mid rectal tumours was defined as involvement of the mesorectal fascia or
within Imm of the mesorectal fascia. In low rectal tumours, tumour involving or within Imm of
inter-sphincteric plane or levator ani muscle was considered as involved CRM.%3! For colon cancer,
MDT and radiology reported cN-stage were compared with the pN-stage. In the rectal cancer: early
surgery group, MDT and MRI reported cT and cN-stage were compared with the pT and pN-stages.
For imaging and pathological staging, the 8th edition of the American Joint Committee on Cancer

(AJCC) TNM staging was used.?®

5.3.3 Statistical analysis

Descriptive statistics were used to describe baseline characteristics. Agreement between MDT and
radiology report for clinical colon cancer Nodal (cN) staging was evaluated using Cohen’s kappa
(k). A weighted Cohen’s Kappa (kw) was applied for matrices larger than 2x2 quadratic in the
agreement evaluation for clinical Tumour stage (cT), cN staging, CRM and EMVI for all rectal
cancers, and radiological TRG (TRG 1-5) criteria proposed by Patel et al.?*® on restaging for the
neoadjuvant therapy subgroup. A kappa and weighted-kappa values of <0.20 was considered
‘Poor’, 0.21-0.40 as ‘Fair’, 0.41-0.60 as ‘Moderate’, 0.61-0.80 as ‘Good’, and 0.81-1.00 as ‘Very
good’.Z*® The Fisher’s exact test was used for statistical analysis. Alpha was set at p<0.05.
Diagnostic measures using pathological were assessed using Area Under the Receiver
Characteristic Curve (AUROC), accuracy, sensitivity, specificity, Positive Predicted Value (PPV)

and Negative Predicted Value (NPV). SPSS Statistics for Windows, version 27 (SPSS Inc.,
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Chicago, Ill., USA) and MedCalc for Windows, version 16.4.3 (MedCalc Software, Ostend,

Belgium) were used for analysis.

5.4 Results

5.4.1 Baseline Characteristics

A total of 481 patients were included (Figure. 13). Junior radiologists overseen by a specialist
radiologist reviewed the scans of 151 (31%) patients, the remaining 330 (69%) patients had their
scans reviewed by a specialist radiologist. The median age was 70 years (range 29-95) and 58%
were male. Of these patients, 346 (72%) presented with colon cancer and 135 (28%) with rectal
cancer. In rectal cancer, 55 (41%) received TNT, 10 (7%) received long-course CRT, 12 (9%)
received short-course radiotherapy and 58 (43%) did not receive neoadjuvant treatment. The
median number of resected lymph nodes for all resections was 18 (range, 1-124). Other

demographics are summarized in Table 10.
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Figure. 13 Patient selection.
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Table 10 Baseline characteristics of colorectal cancer patients

Variable Value
Age, median (range), y 70 (29-97)
Sex, n (%)
Male 281 (58)
Female 200 (42)
Tumour location
Caecum 49 (10)
Ascending colon 73 (15)
Transverse colon 88 (18)
Descending colon 19 (4)
Sigmoid colon 117 (24)
Rectum 135 (28)
Neoadjuvant therapy , n (%)
TNT 55 (41)
Long course CRT 10 (7)
Short course RT 12 (9)
None 58 (43)
Operation
Extended/Right hemicolectomy 153 (44)
Left hemicolectomy 8 (2
Subtotal or total colectomy 19 (6)
High anterior resection 66 (19)
Low anterior resection 20 (6)
Ultra-low anterior resection 20 (6)
Hartmann's operation 32 (9)
Abdominoperineal resection 10 (3)
Proctocolectomy 3(1)
Pelvic exenteration 12 (4)
Ileocolic resection 2 (1)
No. of harvested LNs 18 (1-124)
No. of positive LNs 0 (0-31)

TNT, total neoadjuvant therapy; CRT, chemoradiotherapy; RT, radiotherapy; LNs, lymph nodes

" Rectal cancer only
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5.4.2 Agreement between MDT and radiology report

In 346 colon cancer patients, agreement between MDT and radiology report for cN stage was good
(k=0.756, C195% 0.686-0.826, p<0.001). In 135 rectal cancer patients (total cohort), agreement for
cT and cN was very good (kw=0.825, CI195% 0.758-0.892, p<0.0001) and good (kw=0.792, C195%
0.709-0.875, p<0.0001), respectively. In addition, the agreement for CRM and EMVI was very
good (k=0.920, C195% 0.851-0.989, p<0.0001) and very good (k=0.814, CI195% 0.740-0.914,
p<0.0001), respectively. Out of 68 patients in the neoadjuvant therapy subgroup, 64 patients
underwent re-staging MRI. The correlation of TRG between MDT and radiology report was very

good (kw=0.919, C195% 0.846-0.993, p<0.0001).

5.4.3 Diagnostic accuracy: cN stage in colon cancer

Diagnostic measures were calculated for 270 colon cancer patients with available histopathology
(Table 11, Figure. 14). The AUROC showed no significant difference between the MDT and
radiology report (0.667 vs. 0.667, p=1.00). The MDT had similar accuracy (69% vs. 70%),
sensitivity (56% vs. 52%), PPV (63% vs. 65%) and specificity (78% vs. 81%) compared with the

radiology report. The NPV was 72% in both the MDT and radiology report.
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colon cancer

Table 11 Diagnostic results of MDT and CT report compared with pathological N staging for

N-stage pN P-value
MDT cN pNO pN1-2
cNO 126 48 <0.0001
cN1-2 36 60
Report cN
cNO 132 52 <0.0001
cN1-2 30 56
MDT cN Report cN
AUROC 0.667 (95%CI 0.607-0.723) 0.667 (95%CI 0.607-0.723) 1.00
Accuracy (%) 69 (95%CI 63-74) 70 (95%CI1 64-75)
Sensitivity (%) 56 (95%CI1 46-65) 52 (95%Cl1 42-62)
Specificity (%) 78 (95%Cl1 71-84) 81 (95%CI 75-87)
PPV (%) 63 (95%CI 54-70) 65 (95%CI 56-73)
NPV (%) 72 (95%Cl1 68-77) 72 (95%C1 67-76)

MDT, multidisciplinary team meeting; AUROC, area under the receiver operating characteristic

curve, PPV, positive predictive value; NPV, negative predictive value.
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5.4.4 Diagnostic accuracy: c¢T and cN in early surgery rectal cancer subgroup

Diagnostic measures were calculated for 35 early surgery rectal patients (Table 12, Figure. 14).
MDT could differentiate low-risk (cTO-T2) from high-risk tumours (cT3-T4) with an 71% vs. 66%
accuracy, 67% vs. 72% sensitivity, 76% vs. 59% specificity, 75% vs. 65% PPV, 68% vs. 67% NPV
compared to the radiology report. The AUROC was not significantly different (AUROC 0.716 vs.
0.655, p=0.273). The MDT differentiated between node positive (cN1-2) from node negative (CNO)
tumours with an 77% vs. 74% accuracy, 45% vs. 55% sensitivity, 92% vs. 83% specificity, 71% vs.
60% PPV, 79% vs. 80% NPV, compared to the radiology report. The AUROC was not significantly

different (AUROC 0.686 vs. 0.689, p=0.944).
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Table 12 Accuracy of clinical report and MDT tumour staging versus pathologic tumour
stage in the early surgery subgroup for rectal cancer

T stage pT P Value
MDT cT T0-2 T3-4
cT0-2 13 6 0.018
cT3-4 4 12
Report cT
cT0-2 10 5 0.068
cT3-4 7 13
N Stage N
MDT cN NO N1-2
cNO 22 6 0.021
cN1-2 2 5
Report cN
cNO 20 5 0.041
cN1-2 4 6
MDT cT Report cT
AUROC 0.716 (95%CI 0.538- 0.655 (95%Cl 0.476-0.807) 0.273
0.855)
Accuracy (%) 71 (95%C1 54-85) 66 (95%CI 48-81)
Sensitivity (%) 67 (95%C1 41-87) 72 (95%Cl1 47-90)
Specificity (%) 76 (95%CI 50-93) 59 (95%Cl 33-82)
PPV (%) 75 (95%C1 55-88) 65 (95%CI 50-78)
NPV (%) 68 (95%CI 52-81) 67 (95%CI 46-82)
MDT cN Report cN
AUROC 0.686 (95%CI 0.507- 0.689 (95%CI 0.511-0.834) 0.944
0.831)
Accuracy (%) 77 (95%C1 60-90) 74 (95%C1 57-88)
Sensitivity (%) 45 (95%CI 17-77) 55 (95%CI 23-83)
Specificity (%) 92 (95%Cl1 73-99) 83 (95%CI 63-95)
PPV (%) 71 (95%Cl1 36-92) 60 (95%CI 35-81)
NPV (%) 79 (95%CI 68-86) 80 (95%CI 67-89)

MDT, multidisciplinary team meeting; AUROC, area under the receiver operating characteristic

curve, PPV, positive predictive value; NPV, negative predictive value.
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5.5 Discussion

This is the first study to prospectively compare diagnostic agreement between a specialised
colorectal cancer MDT and the radiology report for colorectal cancer patients. Our results
demonstrate a good level of diagnostic agreement between MDT and radiology report in the setting

of colorectal cancer, and no statistically significant difference in diagnostic accuracy.

In line with a meta-analysis and a Danish population-based study, we found that it remains
challenging to correctly identify patients with nodal involvement. The meta-analyses of 13 studies
found summary estimates for sensitivity and specificity concerning nodal involvement of 71% and
67%, respectively,?®” and the Danish study including 4834 patients found a sensitivity of 57%,
specificity of 66% and an accuracy of 63% in predicting nodal involvement by the MDT.%3 Similar
results are observed in the current study, with a 56% sensitivity, 78% specificity and 69% accuracy.
A recent study by Kobh et al., in which nodal staging was assessed by an expert radiologist issuing
formal CT reports, found a sensitivity and specificity of 85% and 40%, respectively.?® The
differences in sensitivity and specificity between the current study and their findings can likely be
attributed by their low sample size (n=23). Moreover, Hong et al. reported the radiologist diagnostic
AUROC for malignant nodal status of 0.663 using the largest measured short-axis diameter of
lymph node and presence of internal heterogeneity when combined.?*° Our results demonstrate a
similar AUROC of 0.667 for colon cancer nodal involvement staged on MDT and radiology report.
This diagnostic difficulty likely arises from CT being unable to detect micrometastasis and
distinguishing benign node enlargement secondary to peritumoral inflammation from those with
metastatic disease. Considering the limited clinical significance of preoperative nodal staging in
colon cancer and the concordance between MDT review and the radiology report found in our
study, preoperative nodal staging during MDT could be avoided. Nevertheless, it is clear that MDT

is still to be recommended to make clinical management decisions in general, and perhaps less
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focus on repeat nodal staging would increase MDT efficiency and allow more cases to be discussed

with that goal in mind.

Preoperative rectal cancer staging is important for the choice of treatment and prognosis of the
patient, as the cT and cN stage are key factors to determine whether a patient is best treated by
immediate surgery or could benefit from neoadjuvant therapy first. In our study, the sensitivity,
specificity and AUROC assessment of advanced T stage (T0-2 vs. T3-4) in the MDT (67%
sensitivity, 76% specificity and AUROC 0.716) and radiology report (72% sensitivity, 59%
specificity and AUROC 0.655) were lower than in the meta-analysis by Zhang et al. (pooled
sensitivity 87%, specificity 73% and AUROC 0.918).24! This disparity in diagnostic AUROCs
could be due to the different interpretation of perirectal tissue invasion, which, as pointed out by
Zhang, could have an effect on diagnostic accuracy. In comparison with retrospective data from
Australia and New Zealand, the accuracy of extramural tumour involvement on MDT staging was

higher in our cohort (71% vs. 51% vs. 52%). 143242

The diagnosis of mesorectal Nodal involvement (cN) by MDT and radiology report in the early
surgery rectal cancer subgroup drew mixed results compared to the pooled results of radiologists’
staging from Al-Sukhni et al. meta-analysis.** Our sensitivity on radiology reporting compares
poorly to their pooled result (55% vs 77%), while our specificity for the radiology report is much
higher that reported in this meta-analysis (83% vs 71%). Similarly, when comparing our MDT and
radiology report results to those reported by Park et al., they reported a higher sensitivity (78%) and
lower specificity (83%).2% The sensitivity and specificity when adopting morphological and signal
criteria to assess malignant nodes remains an area of controversy.?3-245 Nevertheless, our study and
Park et al. both used size and nodal characteristics to identify suspicion of nodal metastasis. The
poor sensitivity in our cohort could be attributed to a small sample size, selection bias in the early

surgery subgroup and by a higher size criterion (nodal short-axis diameter) being applied by the
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radiologist. Individual colorectal unit thresholds also matter for calibration. It maybe that due to the
high adoption of TNT at the two hospitals in questions, identification of true negatives has taken on

relatively more importance than identification of true positives.

There are several limitations to this study. Firstly, since rectal cancer patients with metastatic nodes
undergo neoadjuvant treatment, selection bias is expected in the early surgery rectal cancer
subgroup. Therefore, we are uncertain to what degree our findings can be generalized to patients
with more advanced disease. Secondly, due to the small number of patients in the early surgery
rectal cancer group, staging accuracy could not completely be assessed. Finally, given our small
sample size, our findings need to be verified with a larger population study. MDT remains

important for the discussion of management strategies and overall co-ordination of cancer care.

5.6 Conclusion

Preoperative colorectal cancer local staging was consistent between specialised MDT and original
radiology reports, with no significant differences in diagnostic accuracy identified

between MDT and the radiology report in nodal staging in colon cancer and tumour and nodal

staging in the early surgery rectal cancer.
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CHAPTER 6: DEEP LEARNING TO PREDICT LYMPH NODE STATUS ON PRE-

OPERATIVE STAGING CT IN PATIENTS WITH COLON CANCER.
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6.1 Abstract

Introduction

Lymph Node (LN) metastases are an important determinant of survival in patients with colon
cancer, but remain difficult to accurately diagnose on preoperative imaging. This study aimed to
develop and evaluate a deep learning model to predict LN status on preoperative staging Computed

Tomography (CT).

Methods

In this ambispective diagnostic study, a deep learning model using a ResNet-50 framework was
developed to predict LN status based on preoperative staging CT. Patients with a preoperative
staging abdominopelvic CT who underwent surgical resection for colon cancer were enrolled. Data
were retrospectively collected from February 2007 to October 2019 and randomly separated into
training, validation, and testing cohort 1. To prospectively test the deep learning model, data for
testing cohort 2 was collected from October 2019 to July 2021. Diagnostic performance measures

were assessed by the Area Under the Receiver Operating Characteristic Curve (AUROC).

Results

A total of 1201 patients (median [range] age, 72 [28-98 years]; 653 [54.4%] male) fulfilled the
eligibility criteria and were included in the training (n=401), validation (n=100), testing cohort 1
(n=500) and testing cohort 2 (n=200). The deep learning model achieved an AUROC of 0.619
(95%CI 0.507-0.731) in the validation cohort. In testing cohort 1 and testing cohort 2 the AUROC

was and 0.542 (95%CI 0.489-0.595) and 0.486 (95%CI 0.403-0.568), respectively.

Conclusion
A deep learning model based on a ResNet-50 framework does not predict LN status on preoperative

staging CT in patients with colon cancer.
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6.2 Introduction

Colon cancer is the fifth most diagnosed cancer amongst men and women worldwide. In 2020, over
one million newly diagnosed cases and 576,858 deaths were attributed to this disease.! The standard
curative treatment remains complete resection of the primary tumour with regional Lymph Nodes
(LN) and adjuvant chemotherapy in higher risk patients.?*® The presence of LN metastasis is a
vitally important determinant of prognosis and treatment options.*>?*” Currently, these LNs are
examined by specialist pathologists, with decisions about adjuvant therapy only possible after
resection in patients without distant metastatic disease.?*® In clinical practice, knowledge of
preoperative LN involvement is rarely used given that neoadjuvant chemotherapy is typically only
administered in patients with stage IV disease. Recently the Foxtrot trial revealed that neoadjuvant
chemotherapy can be delivered safely with potential for pathological downstaging.’ However, this
study included patients with a wide range of colon cancer staging. The limited diagnostic accuracy
of pre-operative LN staging currently precludes the possibility of stratifying patients for

neoadjuvant treatment.

Computed Tomography (CT) is the most common imaging modality used in the preoperative
staging of colon cancer. Despite excellent performance for the assessment of distant metastasis, the
accuracy of preoperative assessment of LNs remains low; ranging from 54% to 64% using current
diagnostic criteria based on size (LNs >1cm).11249250 Several studies have attempted to apply
different diagnostic criteria based on size, signal intensity, and morphology. However, the results of
these studies are varied, and to date, there are no validated imaging criteria for the preoperative

assessment of metastatic LNs,237:251.252

Avrtificial intelligence has demonstrated excellent diagnostic performance on preoperative LN
staging in a variety of abdominopelvic malignancies.'®” Deep learning as a subset of artificial

intelligence is emerging as a more effective way to extract information from medical images in
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comparison with traditional models. Deep learning has the advantage of automatically and
adaptively learning spatial hierarchies of features through its convolutional neural layers.®
However, evidence regarding the use of deep learning for predicting LN staging in patients with
colon cancer is scarce. Therefore, this study aimed to develop and evaluate a deep learning model to

predict LN status on preoperative staging CT in patients with colon cancer.

6.3 Materials and methods

6.3.1 Study design

This ambispective diagnostic cohort study is reported using the Artificial Intelligence in Medical
Imaging (CLAIM) guidelines.?>® The study protocol was approved by the Central Adelaide Local
Health Network Human Research Ethics Committee (HREC/19/CALHN/73) and St Andrew's
Hospital Human Research Ethics Committee (#116). This study was conducted in accordance with
the principles of the Declaration of Helsinki. Informed consent was waived for all study
participants.The goal of this study was to develop and evaluate a deep learning model used to

predict LN status based on preoperative staging abdominopelvic CT in patients with colon cancer.

6.3.2 Data

Patients diagnosed with colonic adenocarcinoma who underwent surgical resection with regional
lymphadenectomy treated/referred to the Royal Adelaide Hospital or St. Andrews Hospital, South
Australia were eligible for inclusion. All included patients underwent standard unenhanced or
contrast-enhanced CT preoperatively. As a result, some of the preoperative staging CT scans
originated from the referring hospitals. The training cohort, validation cohort, and testing cohort 1
comprised of 401, 100, and 500 retrospectively included patients treated between February 2007
and October 2019, respectively. Testing cohort 2 comprised of 200 prospectively included patients
treated between October 2019 and July 2021 with the same enrollment criteria. Exclusion criteria

consisted of patients whose original CT scans were corrupted or not available, received neoadjuvant
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chemotherapy, or had missing pathological N stage. Baseline clinicopathological data including
age, sex, tumour location, procedure type, and pathological TNM stage were extracted from a

prospectively collected colorectal cancer database.

6.3.3 Ground Truth
The ground truth for N stage was determined on pathology assessment of the surgical specimen.
Staging was based on the 8th edition of the American Joint Committee on Cancer (AJCC) TNM

staging criteria.?®

6.3.4 CT image acquisition and processing

All patients underwent 0.5mm-7mm slice, standard unenhanced or post-intravenous contrast-
enhanced preoperative CT of the abdomen and pelvis, with oral contrast or water as a negative
contrast. We primarily analysed the portal venous phase CT images because of the clarity by which
the LNs can be seen, however, we also analysed the few selected cases where only an arterial
contrast-enhanced CT was available. A standard unenhanced CT was performed for patients with
renal impairment or allergic to the intravenous contrast. Preoperative CT scans were exported from
the Picture Archiving and Communication System (Carestream), or, through InteleViewer™
(Intelerad Medical Systems Inc) for CT scans performed in private imaging centers. Details
regarding the CT systems are presented in Appendix C: Table 1. Axial plane sequences were
isolated from the remainder of the CT images and anonymised using MicroDicom viewer (version

3.2.7; www.microdicom.com). Each axial plane CT sequence was assigned a binary label based on

the ground truth (pNO vs pN1-2).

Manual segmentation of regional LNs on axial slices was conducted by a science postgraduate
student (S.B.) and a junior medical officer (W.S) trained and supervised by a senior colorectal
surgeon (T.S.) who ensured the correct segmentation of the regional LNs during surgery using the
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ITK-SNAP software (version 3.6.0; www.itksnap.org) (Appendix C: Figure. 1).2°* Regional LNs

were segmented according to the anatomical location of the primary tumour. For right sided
tumours, segmentation included the mesenteric LNs around the ileocolic vessels (blood supply to
the cecum and proximal ascending colon), right colic vessels (blood supply to the mid-distal
ascending colon), and middle colic vessels (blood supply to the proximal to the mid-transverse
colon) arising from the superior mesenteric vessels. For left-sided tumours, mesenteric LNs were
segmented around the left colic vessels (blood supply to the distal third of the transverse colon, the
splenic flexure, and descending colon) and sigmoid vessels (blood supply to the sigmoid colon)
arising from the inferior mesenteric vessels. Manual LN segmentation was performed in the training

and validation cohorts (n=501) (Appendix C: Table 2).

6.3.5 Deep learning model

We proposed a convolutional neural network consisting of a segmentation ResNet-50 model and a
classification ResNet-50 model to predict LN metastasis based on CT imaging.?® The ResNet-50
model consisted of 48 convolution layers, 1 MaxPool, and 1 Average Pool layer. In the
segmentation task, the ResNet-50 (Figure. 15) was used as the encoder of the segmentation model,
and the several transposed convolutions were followed by the residual blocks in the decoder
(Figure. 16). We used the bilinear interpolation in the last layer to restore the feature map to the
original resolution. The segmentation model played an assistant role in classification. We used the
segmentation model to predict the positive slices in each volume which would be inputted into the
classification model for diagnosis. The backbone (encoder) of the segmentation model was used to
initialize the classification model. The ResNet-50 model, which has the same architecture as the
segmentation encoder, was used in the classification task. The backbone was initialized by using the
segmentation pre-trained weights. The pre-trained segmentation model was utilised for each volume
to segment lymph nodes and select 40 slices as the candidates for diagnosis. These candidates

shared the same semantic label as the volume. The classification model took these slices as input to
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make the final decision. We used the binary cross-entropy loss to optimize the classification model

(Figure. 17).
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6.3.6 Performance evaluation
The prediction model was assessed by measuring the Area Under the Receiver Operating
Characteristic curve (AUROC), accuracy, sensitivity, specificity, Positive Predictive Value (PPV),

and Negative Predictive Value (NPV).

6.3.7 Statistical analysis

The parametricity of continuous measures was determined using the Shapiro-Wilk test. Normally
distributed data were expressed as mean (standard deviation) and nonparametric data as median
(range). Categorical measures were presented as frequencies and percentiles. A comparison of
groups was performed using Pearson’s chi-squared test concerning categorical data. Exact or Monte
Carlo methods were used for calculations depending on the table type and data count. One-way
ANOVA or Kruskal-Wallis test was performed with respect to continuous data. A P value less than
0.05 was considered statistically significant. Statistical analysis was performed using IBM SPSS
Statistics for Macintosh, version 28 (IBM Corp., Armonk, N.Y., USA) and MedCalc for Windows,

version 20.027 (MedCalc Software, Ostend, Belgium).

6.4 Results

6.4.1 Baseline characteristics

A total of 1201 patients (median (range) age, 72 (28-98) years; 653 (54.4%) male) were included in
the study (Figure. 18). The clinicopathological characteristics for the training cohort (n=401),
validation cohort (n=100), training cohort 1 (n=500) and testing cohort 2 (n=200) are listed in Table
13. A significant difference was found between gender, tumour location, operation, pathological T
stage and N stage, the total number of LN harvested, and the total number of positive LNs. A
significant difference was also found in the types of scanners and the thickness of CT scan slices

(Supplementary Table S1-2).
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Table 13 Clinicopathological characteristics of patients with colon cancer

median (range)

Variables Training Validation Testing Testing P-value
Cohort Cohort Cohort 1 Cohort 2
(n=401) (n=100) (n=500) (n=200)
Age, median (range), y 74 (28-97) 75 (30-91) 71(29-98) | 72 (29-94) | 0.26
Gender 0.03
Male 241 (60.1) 54 (54.0) 251 (50.2) | 107 (53.5)
Female 160 (39.9) 46 (46.0) 249 (49.8) |93 (46.5)
Tumor location <0.001
Right 222 (55.4) 83 (83.0) 302 (60.4) | 118 (59.0)
Left 179 (44.6) 17 (17.0) 198 (39.6) | 82 (41.0)
Operation <0.001
Right 186 (46.4) 43 (43.0) 237 (47.4) |91 (45.5)
hemicolectomy
Extended 32 (8.0) 29 (29.0) 56 (11.2) 22 (11.0)
right/transverse
colectomy
Left 12 (3.0) 5(5.0) 12 (2.4) 3(1.5)
hemicolectomy
HAR 130 (32.4) 8 (8.0) 148 (29.6) | 48 (24.0)
Hartmann’s 9(2.2) 3(3.0) 12 (2.4) 15 (7.5)
Subtotal or total | 26 (6.5) 10 (10.0) 34 (6.8) 16 (8.0)
colectomy
Proctocolectomy |5 (1.2) 0 (0.0) 1(0.2) 2 (1.0)
Other 2 1(0.2) 2 (2.0) 0 (0.0) 3(1.5)
pT stage 0.003
TO/Tis 8 (2.0) 2 (2.0) 17 (3.4) 4 (2.0)
Tl 49 (12.2) 8 (8.0) 59 (11.8) 26 (13.0)
T2 36 (9.0) 5 (5.0) 83 (16.6) 20 (10.0)
T3 220 (54.9) 55 (55.0) 244 (48.8) | 94 (47.0)
T4 88 (21.9) 30 (30.0) 97 (19.4) 56 (28.0)
pN stage 0.004
NO 261 (65.1) 47 (47.0) 324 (64.8) | 117 (58.5)
N1/2 140 (34.9) 53 (53.0) 176 (35.2) |83 (41.5)
Total no. of LNs 16 (1-154) 18 (1-60) 18 (1-51) 20 (1-124) | <0.001
harvested, median
(range)
No. of positive LNs, 0 (0-18) 1(0-32) 0 (0-18) 0 (0-12) 0.001

LNs, Lymph nodes; HAR, high anterior resection

Data are presented as number (percentage) of patients unless otherwise indicated.

8 Other: ileocolic resections and total pelvic exenterations
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6.4.2 Performance of the deep learning model

In the validation cohort, the deep learning model achieved an AUROC of 0.619 (95%CI 0.507-
0.731) (Figure. 19). The deep learning model achieved a 96.2% (95%CI 87.0-99.5) sensitivity,
12.8% (95%CI 48.3-25.7) specificity, 57.0% (95%ClI 46.7-66.9) accuracy, 55.4% (95%CI 52.4-
58.4) PPV and 75.0% (38.9-93.4) NPV. For testing, the deep learning model yielded AUROC
values of 0.542 (95%CI 0.489-0.595) in testing cohort 1 and 0.486 (95%CI 0.403-0.568) in testing
cohort 2. The deep learning model showed high sensitivities of 96.6% (95%CI 92.7-98.7) and
91.6% (95%CI 83.4-96.5), low specificities of 5.2% (95%CI 3.1-8.3) and 6.0% (95%CI 2.4-11.9)
and low accuracies of 37.4% (95%CI 33.1-41.8) and 41.5% (95%CI 34.6-48.7) in the testing cohort
1 and testing cohort 2, respectively. Of note, the model had PPVs of 35.6% (95%CI 34.8-36.5) and
40.9% (95%CI 39.0-42.8) and NPVs of 73.9% (95%CI 53.2-87.6) in the 2 testing cohorts,

respectively (Table 14).
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Table 14 Diagnostic performance of the LN metastasis model for the assessment of LN metastasis

in the validation and testing cohorts

Cohort AUROC Accuracy Sensitivity | Specificity | PPV NPV
(95%Cl) (95%Cl) (95%CI) | (95%ClI) (95%CI) | (95%ClI)

Validation | 0.619 57.0 96.2 12.8 55.4 75.0

cohort (0.507- (46.7-66.9) (87.0-99.5) | (48.3-25.7) | (52.4-58.4) | (38.9-93.4)
0.731)

Testing 0.542 37.4 96.6 5.2 35.6 73.9

cohort 1 (0.489- (33.1-41.8) (92.7-98.7) | (3.1-8.3) (34.8-36.5) | (53.2-87.6)
0.595)

Testing 0.486 41.5 91.6 6.0 40.9 50.0

cohort 2 (0.403- (34.6-48.7) (83.4-96.5) | (2.4-11.9) (39.0-42.8) | (26.7-73.3)
0.568)

AUROC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV,

negative predictive value
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Figure. 19 The Area Under the Receiver Operating Characteristic Curves (AUROCSs) derived from

the deep learning model for lymph node staging in the validation and 2 training cohorts.
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6.5 Discussion

In this ambispective diagnostic study, we attempted to develop a deep learning model to predict LN
status on preoperative staging CT in patients with colon cancer. Our deep learning model showed a
low predictive ability and reproducibility across validation and two different testing cohorts.
Moreover, while the model had high sensitivity, it had very low specificity for malignant lymph
nodes. To our knowledge, this is the largest diagnostic study to use deep learning for the prediction

of LN staging on preoperative CT imaging for patients with colon cancer.

Recently, two meta-analyses have shown that most artificial intelligence models used to predict LN
staging in colorectal cancer are radiomics-based signatures.*8”2% However, this approach relies on
predefined handcrafted features that carry inherent observer bias which may cause relevant
information contained in the image to be missed or removed.*® Consequently, we developed a deep
learning model to try to overcome this problem by automatically learning from LN segmentations
and CT images, a model that might uncover subtle relations between LNs characteristics and

metastatic potential.>*2%

Somewhat surprisingly, our preliminary deep learning model predicted the LN stage in patients
with colon cancer with a higher AUROC (0.860 vs 0.486) than the present study.*” The discrepancy
in diagnostic performance can be attributed to weak points of the preliminary study which included
a smaller sample size (123 versus 1201 in the present study) and differences in deep learning
architecture (DenseNet?*® versus ResNet-50 in the present study). Compared with a recent
radiomics study, the model in this study achieved a worse diagnostic performance with lower
AUROC (0.486 vs 0.825), specificity (6% vs 86%), and accuracy (42% vs 79%).>! Importantly, the
present study included only patients with colon cancer, however, our meta-analysis reported a
higher diagnostic performance by radiomics models in comparison with the present study (AUROC

0.727 vs 0.486). Moreover, the significant difference in patient characteristics across cohorts may
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have affected the model’s performance, however reports suggest that datasets with diverse patient
cohorts mitigate bias of Al models.?*?%° Taken together, these results suggest that a radiomics-
based approach using CT images is potentially more effective in predicting LN staging when

compared to deep learning.

In clinical practice, the advantages of using a deep learning model over routine preoperative
radiological LN staging include saving the substantial cost of radiology reporting and potentially
improved accuracy leading to better targeting of treatment options. In comparison with previous
studies, the sensitivity of our deep learning model may be higher but the model achieved
consistently lower AUCs, accuracy, and specificities.?3":252261 This finding suggests that radiologists
have a higher diagnostic capability in staging regional LNs on CT imaging in patients with colon

cancer compared to the deep learning model in this study.

Several limitations of this study should be noted. First, segmentation of LNs was done manually,
which inherently leads to interobserver and intraobserver variability. Variability in segmenting LNs
might lead to inconsistency in the extracted imaging features and subsequently influence the
classification of LNs. In the future, this could be addressed with the use of automated segmentation
tools which are rather less time-consuming and remove interobserver variability. Second, CT
images were collected from different scanners, resulting in wide heterogeneity in imaging hardware
and acquisition protocols. Regardless, selecting a single imaging protocol is an unrealistic reflection
of daily clinical practice and would have made the results non-generalizable. Third, the results of

this study were from two institutions, so multicentre validation is required to assess reproducibility.

6.6 Conclusion
This study suggests a deep learning ResNet-50 model is not reliable in comparison with the current

clinical standard in predicting LN status on preoperative staging CT in patients with colon cancer.
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CHAPTER 7: ARTIFICIAL INTELLIGENCE FOR BODY COMPOSITION AND

SARCOPENIA EVALUATION ON COMPUTED TOMOGRAPHY: ASYSTEMATIC

REVIEW AND META-ANALYSIS.

153



Statement of Authorship

Title of Paper

Artificial intelligence for body composition and sarcopenia evaluation
on computed tomography: A systematic review and meta-analysis.

Publication Status

Published

Publication Details

Bedrikovetski S, Seow W, Kroon HM, Traeger L, Moore JW, Sammour
T. Artificial intelligence for body composition and sarcopenia evaluation
on computed tomography: A systematic review and meta-analysis. Eur J
Radiol. 2022 Apr;149:110218. doi: 10.1016/j.ejrad.2022.110218. Epub
2022 Feb 15. PMID: 35183899.

Principal Author

Name of Principal Author
(Candidate)

Sergei Bedrikovetski

Contribution to the Paper

Conception and design of the work
Data acquisition

Analysis and interpretation of data
Drafting the final manuscript

Overall percentage (%)

85%

Certification:

This paper reports on original research | conducted during the period of
my Higher Degree by Research candidature and is not subject to any
obligations or contractual agreements with a third party that would
constrain its inclusion in this thesis. I am the primary author of this

paper.

Signature

Date 01/08/2022

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

i.  the candidate’s stated contribut