
I 
 

 

 

 

PREDICTION OF PRE-OPERATIVE LOCAL STAGING AND 

OPTIMISING TREATMENT RESPONSE TO NEOADJUVANT 

THERAPY IN COLORECTAL CANCER. 

 

 

Mr Sergei Bedrikovetski 

 

Discipline of Surgery 

Faculty of Health and Medical Sciences 

The University of Adelaide 

 

 

 

 

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy 

in Surgery, The University of Adelaide, 2022. 

  



II 
 

 

TABLE OF CONTENTS 

 

STATEMENT OF DECLARATION .................................................................................. XV 

DEDICATION ................................................................................................................. XVI 

ACKNOWLEDGEMENTS .............................................................................................. XVII 

PUBLICATIONS ARISING FROM THESIS .................................................................. XVIII 

LIST OF ABSTRACTS AND PRESENTATIONS .............................................................. XX 

RESEARCH FUNDING AND SCHOLARSHIPS RECEIVED ........................................ XXIII 

LIST OF TABLES ......................................................................................................... XXIV 

LIST OF FIGURES ....................................................................................................... XXVI 

ABBREVIATIONS ........................................................................................................ XXIX 

CHAPTER 1: INTRODUCTION ........................................................................................ 35 

1.1 Colorectal cancer .................................................................................................... 36 

1.2 Abdominal and pelvic lymph nodes ........................................................................... 36 

1.3 Imaging a patient with a diagnosis of CRC ................................................................. 37 

1.4 Neoadjuvant and Adjuvant Therapy .......................................................................... 38 

1.5 Cost related to Neoadjuvant therapy .......................................................................... 40 

1.6 Artificial Intelligence in Medical Imaging and its application to CRC ........................... 41 

1.7 Predicting local response to neoadjuvant therapy in rectal cancer ................................. 46 

1.7.1 Clinical predictors of response to nCRT ................................................................... 47 

1.7.2 Biochemical predictors of response to nCRT ............................................................ 48 

1.7.3 Sarcopenia ............................................................................................................ 49 



III 
 

1.8 TNT for rectal cancer............................................................................................... 53 

1.9 Summary ................................................................................................................ 56 

CHAPTER 2: PRECIS ....................................................................................................... 58 

PART 1: ARTIFICIAL INTELLIGENCE ASSSESSMENT OF NODAL STATUS ON PRE-

OPERATIVE IMAGING FOR COLORECTAL CANCER. ................................................ 61 

CHAPTER 3: ARTIFICIAL INTELLIGENCE FOR THE DIAGNOSIS OF LYMPH NODE 

METASTASES IN PATIENTS WITH ABDOMINOPELVIC MALIGNANCY: A 

SYSTEMATIC REVIEW AND META-ANALYSIS. ........................................................... 62 

3.1 Abstract ................................................................................................................... 65 

3.2 Introduction ............................................................................................................. 66 

3.3 Methods .................................................................................................................. 67 

3.3.1 Search strategy ...................................................................................................... 67 

3.3.2 Selection criteria .................................................................................................... 69 

3.3.3 Data extraction and quality assessment ..................................................................... 69 

3.3.4 Statistical Analysis ................................................................................................. 70 

3.4 Results .................................................................................................................... 72 

3.4.1 Study selection ...................................................................................................... 72 

3.4.2 Study characteristics .............................................................................................. 74 

3.4.3 Quality Assessment ................................................................................................ 79 

3.4.4 Publication bias ..................................................................................................... 82 

3.4.5 Diagnostic Accuracy .............................................................................................. 84 

3.5 Discussion ............................................................................................................... 89 

3.6 Conclusion .............................................................................................................. 91 



IV 
 

CHAPTER 4: ARTIFICIAL INTELLIGENCE FOR PRE-OPERATIVE LYMPH NODE 

STAGING IN COLORECTAL CANCER: A SYSTEMATIC REVIEW AND META-

ANALYSIS. ........................................................................................................................ 92 

4.1 Abstract ................................................................................................................... 95 

4.2 Introduction ............................................................................................................. 97 

4.3 Methods .................................................................................................................. 98 

4.3.1 Search Strategy ...................................................................................................... 98 

4.3.2 Study Selection ...................................................................................................... 98 

4.3.3 Data Extraction ...................................................................................................... 99 

4.3.4 Quality Assessment and Publication Bias ................................................................. 99 

4.3.5 Statistical Analysis ............................................................................................... 100 

4.4 Results .................................................................................................................. 100 

4.4.1 Study Selection .................................................................................................... 100 

4.4.2 Study Characteristics ............................................................................................ 103 

4.4.3 Quality Assessment and Publication Bias ............................................................... 103 

4.4.4 Diagnostic Accuracy ............................................................................................ 105 

4.5 Discussion ............................................................................................................. 111 

4.6 Conclusion ............................................................................................................ 113 

CHAPTER 5: A PROSPECTIVE STUDY OF DIAGNOSTIC ACCURACY OF 

MULTIDISCIPLINARY TEAM AND RADIOLOGY REPORTING OF PRE-OPERATIVE 

COLORECTAL CANCER LOCAL STAGING. ............................................................... 114 

5.1 Abstract ................................................................................................................. 117 

5.2 Introduction ........................................................................................................... 118 



V 
 

5.3 Materials and methods ............................................................................................ 119 

5.3.1 Patient selection ................................................................................................... 119 

5.3.2 Imaging and pathological evaluation ...................................................................... 120 

5.3.3 Statistical analysis ................................................................................................ 121 

5.4 Results .................................................................................................................. 122 

5.4.1 Baseline Characteristics ........................................................................................ 122 

5.4.2 Agreement between MDT and radiology report ....................................................... 125 

5.4.3 Diagnostic accuracy: cN stage in colon cancer ........................................................ 125 

5.4.4 Diagnostic accuracy: cT and cN in early surgery rectal cancer subgroup .................... 128 

5.5 Discussion ............................................................................................................. 130 

5.6 Conclusion ............................................................................................................ 132 

CHAPTER 6: DEEP LEARNING TO PREDICT LYMPH NODE STATUS ON PRE-

OPERATIVE STAGING CT IN PATIENTS WITH COLON CANCER............................ 133 

6.1 Abstract ................................................................................................................. 136 

6.2 Introduction ........................................................................................................... 137 

6.3 Materials and methods ............................................................................................ 138 

6.3.1 Study design........................................................................................................ 138 

6.3.2 Data ................................................................................................................... 138 

6.3.3 Ground Truth ...................................................................................................... 139 

6.3.4 CT image acquisition and processing ..................................................................... 139 

6.3.5 Deep learning model ............................................................................................ 140 

6.3.6 Performance evaluation ........................................................................................ 145 



VI 
 

6.3.7 Statistical analysis ................................................................................................ 145 

6.4 Results .................................................................................................................. 145 

6.4.1 Baseline characteristics ........................................................................................ 145 

6.4.2 Performance of the deep learning model ................................................................. 148 

6.5 Discussion ............................................................................................................. 151 

6.6 Conclusion ............................................................................................................ 152 

CHAPTER 7: ARTIFICIAL INTELLIGENCE FOR BODY COMPOSITION AND 

SARCOPENIA EVALUATION ON COMPUTED TOMOGRAPHY: A SYSTEMATIC 

REVIEW AND META-ANALYSIS. ................................................................................. 153 

7.1 Abstract ................................................................................................................. 156 

7.2 Introduction ........................................................................................................... 157 

7.3 Materials and methods ............................................................................................ 158 

7.3.1 Search Strategy .................................................................................................... 159 

7.3.2 Selection of studies .............................................................................................. 159 

7.3.3 Data Extraction and quality assessment .................................................................. 159 

7.3.4 Statistical Analysis ............................................................................................... 160 

7.4 Results .................................................................................................................. 161 

7.4.1 Study Characteristics ............................................................................................ 161 

7.4.2 Pooled performance using the DSC ....................................................................... 166 

7.4.3 Performance using the JSC ................................................................................... 171 

7.4.4 Publication bias ................................................................................................... 171 

7.4.5 CLAIM adherence ............................................................................................... 173 

7.5 Discussion ............................................................................................................. 175 



VII 
 

7.6 Conclusions ........................................................................................................... 178 

PART 2: PREDICTION OF LOCAL RESPONSE TO CHEMORADIATION IN LOCALLY 

ADVANCED RECTAL CANCER .................................................................................... 179 

CHAPTER 8: DOES SARCOPENIA PREDICT LOCAL RESPONSE RATES AFTER 

CHEMORADIOTHERAPY FOR LOCALLY ADVANCED RECTAL CANCER? ........... 180 

8.1 Abstract ................................................................................................................. 183 

8.2 Introduction ........................................................................................................... 185 

8.3 Material and Methods ............................................................................................. 186 

8.3.1 Patients ............................................................................................................... 186 

8.3.2 Sarcopenia assessment ......................................................................................... 187 

8.3.3 Endpoints ............................................................................................................ 189 

8.3.4 Statistical analysis ................................................................................................ 189 

8.4 Results .................................................................................................................. 189 

8.5 Discussion ............................................................................................................. 201 

8.6 Conclusion ............................................................................................................ 202 

CHAPTER 9: CLINICAL AND BIOCHEMICAL PREDICTORS OF TUMOUR RESPONSE 

AFTER NEOADJUVANT THERAPY IN RECTAL CANCER. ........................................ 203 

9.1 Abstract ................................................................................................................. 206 

9.2 Introduction ........................................................................................................... 207 

9.3 Methods ................................................................................................................ 208 

9.3.1 Patients ............................................................................................................... 208 

9.3.2 Treatment ........................................................................................................... 208 

9.3.3 Data collection .................................................................................................... 211 



VIII 
 

9.3.4 Outcomes measures ............................................................................................. 211 

9.3.5 Statistical analysis ................................................................................................ 212 

9.4 Results .................................................................................................................. 212 

9.4.1 Patient characteristics ........................................................................................... 212 

9.4.2 TRG and complete response.................................................................................. 216 

9.4.3 Logistic regression analysis .................................................................................. 218 

9.5 Discussion ............................................................................................................. 222 

9.6 Conclusion ............................................................................................................ 225 

PART 3: ADOPTION OF A PERSONALISED TOTAL NEOADJUVANT THERAPY 

PROTOCOL FOR THE TREATMENT OF ADVANCED RECTAL CANCER ................ 226 

CHAPTER 10: PERSONALISED TOTAL NEOADJUVANT THERAPY (PTNT) FOR 

ADVANCED RECTAL CANCER: A PROSPECTIVE COHORT STUDY WITH 

TAILORED TREATMENT SEQUENCING BASED ON CLINICAL STAGE AT 

PRESENTATION. ............................................................................................................ 227 

10.1 Abstract ............................................................................................................... 230 

10.2 Introduction ......................................................................................................... 232 

10.3 Methods .............................................................................................................. 233 

10.3.1 Patient Selection ................................................................................................ 233 

10.3.2 Treatment .......................................................................................................... 234 

10.3.3 Endpoints .......................................................................................................... 237 

10.3.4 Statistical Analysis ............................................................................................. 237 

10.4 Results ................................................................................................................ 238 

10.4.1 Patient characteristics ......................................................................................... 238 



IX 
 

10.4.2 Treatment delivery ............................................................................................. 241 

10.4.3 Clinical and pathological response ....................................................................... 244 

10.4.4 Toxicity ............................................................................................................ 249 

10.5 Discussion ........................................................................................................... 249 

10.6 Conclusion ........................................................................................................... 252 

CHAPTER 11: TOTAL NEOADJUVANT THERAPY VS CHEMOTHERAPY DURING 

THE ‘WAIT PERIOD’ VS STANDARD CHEMORADIOTHERAPY FOR LOCALLY 

ADVANCED RECTAL CANCER. ................................................................................... 253 

11.1 Abstract ............................................................................................................... 256 

11.2 Introduction ......................................................................................................... 257 

11.3 Materials and Methods .......................................................................................... 258 

11.3.1 Patient Selection ................................................................................................ 258 

11.3.2 Treatment .......................................................................................................... 259 

11.3.3 Endpoints .......................................................................................................... 262 

11.3.4 Statistical Analysis ............................................................................................. 262 

11.4 Results ................................................................................................................ 263 

11.4.1 Patient characteristics ......................................................................................... 263 

11.4.2 Response to treatment and survival outcomes........................................................ 266 

11.4.3 Surgical and pathological outcomes ..................................................................... 269 

11.5 Discussion ........................................................................................................... 272 

11.6 Conclusion ........................................................................................................... 274 

SYNOPSIS ....................................................................................................................... 275 

CONCLUSIONS .............................................................................................................. 281 



X 
 

FUTURE DIRECTIONS .................................................................................................. 283 

APPENDIX – A: SUPPEMENTARY MATERIAL FOR ARTIFICIAL INTELLIGENCE 

FOR THE DIAGNOSIS OF LYMPH NODE METASTASES IN PATIENTS WITH 

ABDOMINOPELVIC MALIGNANCY: A SYSTEMATIC REVIEW AND META-

ANALYSIS. ...................................................................................................................... 285 

APPENDIX – B: SUPPEMENTARY MATERIAL FOR ARTIFICIAL INTELLIGENCE 

FOR PRE-OPERATIVE LYMPH NODE STAGING IN COLORECTAL CANCER: A 

SYSTEMATIC REVIEW AND META-ANALYSIS. ......................................................... 289 

APPENDIX – C: SUPPEMENTARY MATERIAL FOR DEEP LEARNING TO PREDICT 

LYMPH NODE STATUS ON PRE-OPERATIVE STAGING CT IN PATIENTS WITH 

COLON CANCER. .......................................................................................................... 297 

APPENDIX – D: SUPPEMENTARY MATERIAL FOR ARTIFICIAL INTELLIGENCE 

FOR BODY COMPOSITION AND SARCOPENIA EVALUATION ON COMPUTED 

TOMOGRAPHY: A SYSTEMATIC REVIEW AND META-ANALYSIS ......................... 301 

APPENDIX – E: SUPPLEMENTARY MATERIAL FOR PERSONALISED TOTAL 

NEOADJUVANT THERAPY (PTNT) FOR ADVANCED RECTAL CANCER: A 

PROSPECTIVE COHORT STUDY WITH TAILORED TREATMENT SEQUENCING 

BASED ON CLINICAL STAGE AT PRESENTATION .................................................... 308 

LIST OF REFERENCES .................................................................................................. 313 

 

 

 

 

 

 



XI 
 

ABSTRACT 

 

The presence of abnormal Lymph Nodes (LNs) in patients with colorectal cancer is an essential 

determinant of prognosis and guides treatment options (surgical and medical). Staging with  

Computed Tomography (CT) is somewhat inaccurate in determining true nodal status. As a result, 

either approximate estimates must be made on imaging, or definitive nodal staging determined by 

surgical resection before recommendations about the risk vs benefit of chemotherapy can be made 

reliably. 

 

Patients with advanced rectal cancer are commonly referred for neoadjuvant therapy as part of 

standard care treatment protocols based on Magnetic Resonance Imaging (MRI) local staging. 

Following neoadjuvant therapy, many patients then undergo surgical resection. However, a 

significant proportion achieve a complete Clinical Response (cCR) with modern neoadjuvant 

treatment, and these patients are increasingly offered non-operative management and surveillance 

with the goal of organ preservation. Accurate clinical staging parameters and predictive markers of 

tumour response may help guide more personalised treatment strategies and identify potential 

candidates for non-operative management more accurately.  

 

Within the past decade, a promising new strategy termed Total Neoadjuvant Therapy (TNT) has 

been shown to improve compliance with chemotherapy, by delivering this sequentially with 

chemoradiotherapy prior to surgery in patients with rectal cancer. TNT has the potential to reduce 

distant failure risk and provide significantly higher rates of pathological Complete Response (pCR) 

and cCR with an opportunity to manage patients non-operatively, however, optimal treatment 

sequencing of radiotherapy and chemotherapy remains somewhat unclear. 
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Pre-operative prediction of nodal status in colon cancer, neoadjuvant treatment response in rectal 

cancer, as well as optimal sequencing of neoadjuvant therapy, represent major areas of weakness in 

current treatment paradigms in colorectal surgical oncology. Furthermore, they are all areas of 

active research, and frequently tie in together during Multi-Disciplinary Team meeting (MDT) 

discussions in clinical practice. 

 

The aims of this thesis are: Firstly, to investigate Artificial Intelligence (AI) models for prediction 

of LN status on preoperative staging CT in patients with colon cancer. Secondly, to identify pre-

treatment factors predictive of Complete Response (CR) following neoadjuvant therapy in patients 

with Locally Advanced Rectal Cancer (LARC), specifically sarcopenia, clinical and biochemical 

factors. Lastly, to determine whether a Personalised Total Neoadjuvant Therapy (pTNT) protocol 

with sequencing tailored to the clinical stage at presentation results in better short-term oncological 

outcomes compared to a uniform protocol for all patients with advanced rectal cancer.  

 

To achieve these aims, two meta-analyses were performed to identify the gaps in the field of AI LN 

detection. The first, focused on the accuracy of deep learning algorithms and radiomics models 

compared with radiologist assessment in the diagnosis of lymphadenopathy in patients with 

abdominopelvic malignancies and the second solely focused on colorectal cancer. Subsequently, a 

deep learning model was developed to assess LN status on staging CT in patients with colon cancer, 

and the model’s performance was compared with baseline results of a prospective study evaluating 

the accuracy of preoperative staging. 

 

A systemic review and meta-analysis were performed to identify and assess AI segmentation 

models able to predict sarcopenia using CT scans. Following this, an institutional colorectal cancer 

database was interrogated to determine if sarcopenia or clinical and biochemical markers were 

associated with tumour response in patients with LARC. 
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Prospective data was collected on patients in two hospitals who underwent pTNT based on their 

clinical staging at presentation for the treatment of advanced rectal cancer. A cohort study was 

performed to summarise tumour response, chemotherapy compliance and the toxicity profile of 

patients. An additional multicentre retrospective cohort analysis comparing pTNT over a 3-year 

period to a historical cohort of randomised control trial patients who had extended chemotherapy in 

the wait period (xCRT) or standard long course Chemoradiotherapy (sCRT) was conducted.   

 

The two meta-analyses determined that deep learning assessment of LNs demonstrated the greatest 

potential for assessment of LN without the need for surgery, with MRI for rectal cancer and CT in 

colon cancer providing the greatest accuracy. Our clinical studies demonstrated that radiological 

assessment remains the most effective preoperative method of staging LNs, with histology 

considered the gold standard. Deep learning assessment using a ResNet-50 framework is limited to 

very low accuracy and specificity in detecting abnormal LNs when compared to the radiologist’s 

assessment. It is likely that the poor performance of the deep learning model is attributed to the lack 

of features extracted from the CT scans.  

 

The meta-analysis found that deep learning segmentation models can accurately predict sarcopenia 

using CT scans. However, sarcopenia was not found to be a predictor of pCR in patients with 

LARC. The clinical predictors of good tumour response after neoadjuvant therapy for rectal cancer 

were found to be a clinical T2 stage and Body Mass Index (BMI) ≥25kg/m2. Pre-treatment 

biochemical markers were not predictive of tumour response after neoadjuvant therapy for rectal 

cancer. 

 

Our research found that over 40% of the patients who underwent pTNT for the treatment of 

advanced rectal cancer demonstrated a complete response in the primary tumour (pCR and/or cCR) 
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resulting in a high rate of organ preservation. Furthermore, 45% of the patients with stage M1 

disease achieved a complete M1 response. Compliance with chemotherapy was over 95% and 

toxicity was lower than expected. When comparing a pTNT approach with xCRT or sCRT in 

patients with LARC, there was a significant difference in complete response and cCR rate favouring 

the pTNT group compared to the xCRT and sCRT groups. 

 

In conclusion, these results suggest that a deep learning model with a ResNet-50 framework does 

not serve as a reliable staging tool for the prediction of LN status using preoperative staging CT in 

patients with colon cancer. Despite a large volume of research, the ability to predict which patients 

are likely to achieve a complete response by measuring pre-treatment sarcopenia, clinical and 

biochemical markers remains elusive. Early results of a pTNT approach tailoring sequencing of 

neoadjuvant chemotherapy to disease risk at presentation are encouraging and compare favourably 

to xCRT and sCRT in patients with advanced rectal cancer. 

  



XV 
 

STATEMENT OF DECLARATION 

 

I certify that this work contains no material which has been accepted for the award of any other 

degree or diploma in my name, in any university or other tertiary institution and, to the best of my 

knowledge and belief, contains no material previously published or written by another person, 

except where due reference has been made in the text. In addition, I certify that no part of this work 

will, in the future, be used in a submission in my name, for any other degree or diploma in any 

university or other tertiary institution without the prior approval of the University of Adelaide and 

where applicable, any partner institution responsible for the joint award of this degree. 

 

I acknowledge that the copyright of published works contained within this thesis resides with the 

copyright holder(s) of those works. 

 

I also give permission for the digital version of my thesis to be made available on the web, via the 

University’s digital research repository, the Library Search and also through web search engines, 

unless permission has been granted by the University to restrict access for a period of time. 

 

I acknowledge the support I have received for my research through the provision of an Australian 

Government Research Training Program Scholarship. 

  



XVI 
 

DEDICATION 

 

 

 

 

 

To my wife Danielle Bedrikovetski and son Kayden whose love and endless sacrifice gave me the 

strength to keep going. Thank you for enduring this process. 

 

To my parents Dr Themis Carageorgos and Prof Pavel Bedrikovetski who inspired me to pursue my 

academic goals and always wanted me to be happy.  

  



XVII 
 

ACKNOWLEDGEMENTS 

 

I would like to thank my supervisors Associate Professor Tarik Sammour and Mr James W Moore, 

without whose encouragement, support and guidance I could have never completed my research. I 

have been very lucky to have worked for both of them and by taking a little bit of their invaluable 

knowledge and academic excellence with me, I have achieved more than I could have ever 

imagined. 

 

To my dearest colleagues and research fellows Dr Luke Traeger, A/Prof Hidde M Kroon, Dr Tracy 

Fitzsimmons, Dr Warren Seow, Dr Nagendra N Dudi-Venkata, whose company, exchange of ideas 

and daily coffees were the highlight of my PhD journey. 

 

I also would like to thank A/Prof Ryash Vather for his constant support, enthusiasm and expertise 

has greatly improved my interest in clinical research. To Ms Joanne Perry, whose door I could 

knock on anytime for help and her easy-going approach has contributed to a comfortable working 

environment. 

 

Finally, I wish to extend my sincere gratitude to the nurses and clinicians of the Colorectal Unit at 

the Royal Adelaide Hospital, who provided me with access to their facilities and patients, as well as 

the administrative staff at the University of Adelaide’s Graduate Research Centre, which provided 

me with constant support. 

 

  



XVIII 
 

PUBLICATIONS ARISING FROM THESIS 

 

Original Research 

Bedrikovetski, S., Dudi-Venkata, N. N., Maicas Suso, G., Kroon, H. M., Seow, W., Carneiro, G., 

Sammour, T. (2021). Artificial intelligence for the diagnosis of lymph node metastases in patients 

with abdominopelvic malignancy: a systematic review and meta-analysis. Artificial Intelligence in 

Medicine, 113, 1-11. 

 

Bedrikovetski, S., Dudi-Venkata, N. N., Kroon, H. M., Seow, W., Vather, R., Carneiro, G., 

Sammour, T. (2021). Artificial intelligence for pre-operative lymph node staging in colorectal 

cancer: a systematic review and meta-analysis. BMC Cancer, 21(1), 1058-1-1058-10. 

 

Bedrikovetski, S., Seow, W., Kroon, H. M., Traeger, L., Moore, J. W., & Sammour, T. (2022). 

Artificial intelligence for body composition and sarcopenia evaluation on computed tomography: A 

systematic review and meta-analysis. European Journal of Radiology, 149, 110218. 

 

Bedrikovetski, S., Dudi‐Venkata, N. N., Kroon, H. M., Traeger, L. H., Seow, W., Vather, R., 

Sammour, T. A prospective study of diagnostic accuracy of multidisciplinary team and radiology 

reporting of preoperative colorectal cancer local staging. Asia-Pac J Clin Oncol. 2022; 1- 8. 

https://doi.org/10.1111/ajco.13795 

 

Bedrikovetski, S., Fitzsimmons, T., Perry, J., Vather, R., Carruthers, S., Selva-Nayagam, S., 

Thomas, M.L., Moore, J.W. and Sammour, T. (2022), Personalized total neoadjuvant therapy 

(pTNT) for advanced rectal cancer with tailored treatment sequencing based on clinical stage at 

presentation. ANZ Journal of Surgery. https://doi.org/10.1111/ans.18021 

 

https://doi.org/10.1111/ajco.13795
https://doi.org/10.1111/ans.18021


XIX 
 

Bedrikovetski S, Traeger L, Vather R, Sammour T, Moore JW. Does sarcopenia predict local 

response rates after chemoradiotherapy for locally advanced rectal cancer?. Dis Colon Rectum. 

(Forthcoming) 10.1097/DCR.0000000000002451 

 

Bedrikovetski S, Traeger L, Fitzsimmons T, Perry J, Vather R, Moore JW, Sammour T. 

Personalized total neoadjuvant therapy versus chemotherapy during the 'wait period' versus 

standard chemoradiotherapy for locally advanced rectal cancer. ANZ J Surg. 2022 Dec 27. doi: 

10.1111/ans.18229. Epub ahead of print. PMID: 36573638. 

 

Bedrikovetski, S, Traeger, L, Vather, R, Moore, JW, Sammour, T. Clinical and biochemical 

predictors of tumor response after neoadjuvant therapy in rectal cancer. Asia-Pac J Clin 

Oncol. 2022; 1- 9. https://doi.org/10.1111/ajco.13877 

 

Other publications related to the thesis 

Glaser, S., Maicas Suso, G., Bedrikovetski, S., Sammour, T., & Carneiro, G. (2020). Semi-

supervised multi-domain multi-task training for metastatic colon lymph node diagnosis from 

abdominal CT. In Proceedings of the IEEE 17th International Symposium on Biomedical Imaging 

(ISBI 2020) Vol. 2020-April (pp. 1478-1481). Iowa City, Iowa, USA: IEEE. 

 

 

 

 

 

 

 

https://doi.org/10.1111/ajco.13877


XX 
 

LIST OF ABSTRACTS AND PRESENTATIONS 

 

Bedrikovetski S, Traeger L, Fitzsimmons T, Vather R, Moore JW, Sammour T. Total Neoadjuvant 

Therapy vs chemotherapy during the ‘wait period’ vs standard chemoradiotherapy for locally 

advanced rectal cancer. Royal Australasian College of Surgeons 2022 Annual Scientific Congress, 

Brisbane, Australia (Oral presentation).  

 

Bedrikovetski S, Dudi-Venkata N, Kroon HM, Seow W, Vather R, Cairneiro G, Moore JW, 

Sammour T. Artificial intelligence for lymph node assessment on preoperative staging in colorectal 

cancer: a systematic review and meta-analysis. Royal Australasian College of Surgeons 2021 

Annual Scientific Congress, Melbourne, Australia (Oral presentation).  

 

Bedrikovetski S, Dudi-Venkata N, Maicas G, Kroon HM, Seow W, Cairneiro G, Moore JW, 

Sammour T. Artificial intelligence for the diagnosis of lymph node metastases in patients with 

abdominopelvic malignancy: a systematic review and meta-analysis. Royal Australasian College of 

Surgeons 2021 Annual Scientific Congress, Melbourne, Australia (Oral presentation).  

 

Bedrikovetski S, Dudi-Venkata N, Maicas G, Kroon HM, Seow W, Cairneiro G, Moore JW, 

Sammour T. Artificial intelligence for the diagnosis of lymph node metastases in patients with 

abdominopelvic malignancy: a systematic review and meta-analysis. European Society of Surgical 

Oncology 2020 Conference (Oral presentation). 

 

Bedrikovetski S, Dudi-Venkata N, Maicas G, Kroon HM, Seow W, Cairneiro G, Moore JW, 

Sammour T. Artificial intelligence for the diagnosis of lymph node metastases in patients with 

abdominopelvic malignancy: a systematic review and meta-analysis. European Society of 

Coloproctology 2020 Conference (Poster Presentation).  



XXI 
 

 

Bedrikovetski S, Dudi-Venkata N, Kroon HM, Seow W, Vather R, Cairneiro G, Moore JW, 

Sammour T. Artificial intelligence for lymph node assessment on preoperative staging in colorectal 

cancer: a systematic review and meta-analysis. Tripartite Colorectal Meeting 2022, Auckland, New 

Zealand (Poster Presentation).  

 

Bedrikovetski S, Traeger L, Vather R, Sammour T, Moore JW. Does sarcopenia predict local 

response rates after chemoradiotherapy for rectal cancer? Tripartite Colorectal Meeting 2022, 

Auckland, New Zealand (Poster Presentation). 

 

Bedrikovetski S, Dudi-Venkata N, Kroon HM, Traeger L, Seow W, Vather R, Moore JW, 

Sammour T. A prospective study of diagnostic accuracy of multidisciplinary team and radiology 

reporting of pre-operative colorectal cancer local staging. Tripartite Colorectal Meeting 2022, 

Auckland, New Zealand (Poster Presentation). 

 

Bedrikovetski S, Traeger L, Fitzsimmons T, Vather R, Moore JW, Sammour T. Total Neoadjuvant 

Therapy vs chemotherapy during the ‘wait period’ vs standard chemoradiotherapy for locally 

advanced rectal cancer. Tripartite Colorectal Meeting 2022, Auckland, New Zealand (Poster 

Presentation). 

 

Bedrikovetski S, Dudi-Venkata N, Kroon HM, Traeger L, Seow W, Vather R, Moore JW, 

Sammour T. A prospective study of diagnostic accuracy of multidisciplinary team and radiology 

reporting of pre-operative colorectal cancer local staging. Royal Australasian College of Surgeons 

2022 Annual Scientific Congress, Brisbane, Australia (Poster Presentation).  

 



XXII 
 

Bedrikovetski S, Traeger L, Vather R, Sammour T, Moore JW. Does sarcopenia predict local 

response rates after chemoradiotherapy for rectal cancer? Royal Australasian College of Surgeons 

2022 Annual Scientific Congress, Brisbane, Australia (Poster Presentation). 

 

Bedrikovetski S, Zhang J, Seow W, Traeger L, Moore JW, Verjans J, Carneiro G, Sammour T. 

Deep learning to predict lymph node status on pre-operative staging CT in patients with colon 

cancer. 2022 SA, NT & WA Annual Scientific Meeting, Royal Australasian College of Surgeons, 

Adelaide, Australia (Invited Speaker). 

  



XXIII 
 

RESEARCH FUNDING AND SCHOLARSHIPS RECEIVED 

 

2021  Colorectal Surgical Society of Australia and New Zealand (CSSANZ)  

Supplementary Scholarship, Adelaide, South Australia, Australia 

 

2019  eHealth Innovation Grant Program  

eHealth systems, SA Health, Government of South Australia, Adelaide, South 

Australia, Australia 

 

2019-2022  Faulty of Health and Medical Science Divisional Scholarship 

  University of Adelaide, Adelaide, South Australia, Australia   

 

 

 

 

 

 

  



XXIV 
 

 LIST OF TABLES  

 

Table 1 Search Strategy ...................................................................................................... 68 

Table 2 Formulas ................................................................................................................ 71 

Table 3 Characteristics of individual studies........................................................................ 75 

Table 4 Assessment of bias risk (BR) and applicability concerns (AP) of included studies using 

the QUADAS-2 tool ............................................................................................................ 81 

Table 5 Summary estimates for AUCs per surgical specialty ................................................ 85 

Table 6 Results of individual studies .................................................................................... 86 

Table 7 Comparison between radiomics and radiologist in included studies ......................... 88 

Table 8 Pooled results of per-patient and per-node diagnosis from deep learning, radiomics 

and radiologists ................................................................................................................ 106 

Table 9 Results for deep learning radiomics models and radiologist in accuracy to detect 

lymph node metastasis ...................................................................................................... 108 

Table 10 Baseline characteristics of colorectal cancer patients ........................................... 124 

Table 11 Diagnostic results of MDT and CT report compared with pathological N staging for 

colon cancer...................................................................................................................... 126 

Table 12 Accuracy of clinical report and MDT tumour staging versus pathologic tumour 

stage in the early surgery subgroup for rectal cancer ......................................................... 129 

Table 13 Clinicopathological characteristics of patients with colon cancer ......................... 146 

Table 14 Diagnostic performance of the LN metastasis model for the assessment of LN 

metastasis in the validation and testing cohorts ................................................................. 149 

Table 15 Study Characteristics.......................................................................................... 163 



XXV 
 

Table 16 DSC and JSC of AI segmentation models ............................................................ 167 

Table 17 Pooled DSC and JSC of segmentation DL models ................................................ 169 

Table 18 Demographics and clinical findings ..................................................................... 192 

Table 19 Operative findings .............................................................................................. 195 

Table 20 Pathological findings........................................................................................... 197 

Table 21 Univariate regression analysis ............................................................................. 199 

Table 22 Clinicopathological characteristics ...................................................................... 214 

Table 23 Pre-treatment biochemical factors compared for TRG response and complete 

response. .......................................................................................................................... 217 

Table 24 Univariable and multivariable logistic regression analysis to identify predictors of 

TRG response and complete response. .............................................................................. 219 

Table 25 Patient characteristics ......................................................................................... 240 

Table 26 Treatment delivery, compliance and toxicity ....................................................... 242 

Table 27 Response to treatment ........................................................................................ 246 

Table 28 Surgical and pathological characteristics ............................................................. 247 

Table 29 Baseline patient and tumour characteristics ........................................................ 265 

Table 30 Response to treatment ........................................................................................ 267 

Table 31 Surgical and pathological outcomes .................................................................... 270 

 

  



XXVI 
 

LIST OF FIGURES 

 

Figure. 1 Organisation of lymph nodes in the colon and rectum. Lymph nodes (coloured in 

green) surround the vasculature (coloured in red). .............................................................. 37 

Figure. 2 Diagram illustrating subdivisions of artificial intelligence. .................................... 43 

Figure. 3 Artificial Intelligence approaches. Differences between machine learning, radiomics 

and deep learning approaches for classification of LNs from abdominopelvic CT scans........ 45 

Figure. 4 Measurement of psoas muscle area in a CT image at the L3 vertebral body. .......... 51 

Figure. 5 Total Neoadjuvant Therapy.................................................................................. 53 

Figure. 6 Study Selection Process ........................................................................................ 73 

Figure. 7 Forest plots per surgical speciality ........................................................................ 78 

Figure. 8 The quality assessment of 21 included studies by QUADAS-2 tool ......................... 80 

Figure. 9 Funnel plot of the area under the receiver operating characteristic (AUC) in 17 

studies ................................................................................................................................ 83 

Figure. 10 PRISMA flow chart outlining the selection of studies for review. ....................... 102 

Figure. 11 Summary of QUADAS-2 assessments of included studies. ................................. 104 

Figure. 12 Forest plots of per-patient area under the receiver operating characteristic curve 

(AUROC). (a) Deep learning in rectal cancer, (b) radiomics in rectal cancer, (c) radiomics in 

colorectal cancer, (d) radiologist in rectal cancer and (e) radiologist in colorectal cancer. ... 110 

Figure. 13 Patient selection................................................................................................ 123 

Figure. 14 Receiver operating characteristic (ROC) curves comparing staging at MDT versus 

radiology report for (A) N stage in the colon cancer, (B) T-stage in the rectal cancer early 

surgery subgroup, (C) N-stage in the rectal cancer early surgery subgroup ........................ 127 

Figure. 15 ResNet-50 ......................................................................................................... 142 

Figure. 16 Segmentation model ......................................................................................... 143 

Figure. 17 Classification model ......................................................................................... 144 



XXVII 
 

Figure. 18 Patient selection ............................................................................................... 147 

Figure. 19 The Area Under the Receiver Operating Characteristic Curves (AUROCs) derived 

from the deep learning model for lymph node staging in the validation and 2 training cohorts.

 ......................................................................................................................................... 150 

Figure. 20 PRISMA flow chart of literature sear ............................................................... 162 

Figure. 21 Forest plots of included studies that assessed the performance of body composition 

segmentation using deep learning models. Legend: DSC, dice similarity coefficient; JSC, 

Jaccard similarity coefficient. (A) DSC of skeletal muscle, (B) DSC of subcutaneous adipose 

tissue, (C) DSC of visceral adipose tissue, (D) DSC of bone and (E) JSC of skeletal muscle. 170 

Figure. 22 Funnel plots for meta-analysis of (A) skeletal muscle, (B) subcutaneous adipose 

tissue and (C) visceral adipose tissue. ................................................................................ 172 

Figure. 23 CLAIM items of the 24 included studies expressed as percentage of the ideal score 

according to the six key domains. CLAIM, Checklist for Artificial Intelligence in Medical 

Imaging ............................................................................................................................ 174 

Figure. 24 Assessment of total psoas area index (TPAI). TPAI was assessed by measuring the 

longest anterior to posterior and transverse diameter (green lines) of the right and left psoas 

muscle on an axial computed tomography (CT) slice at the level of the 3rd lumbar vertebrae 

and normalized for the patients’ height squared. ............................................................... 188 

Figure. 25 Patient selection flowchart. ............................................................................... 191 

Figure. 26 Neoadjuvant chemoradiotherapy regimens used in this study. ........................... 210 

Figure. 27 Patient selection flowchart. ............................................................................... 213 

Figure. 28 Receiver operating characteristic curves (ROC) for (A) TRG response and (B) 

complete response. AUC, area under the curve. ................................................................. 221 

Figure. 29 Personalised total neoadjuvant therapy sequencing. TME, total mesorectal 

excision. ............................................................................................................................ 236 

Figure. 30 Patient flowchart. ............................................................................................. 239 



XXVIII 
 

Figure. 31 Schema of the four neoadjuvant therapy approaches. sCRT, standard long-course 

chemoradiotherapy; xCRT, extended chemotherapy; pTNT, personalised total neoadjuvant 

therapy. ............................................................................................................................ 261 

Figure. 32 Patient flowchart. ............................................................................................. 264 

Figure. 33 Kaplan-Meier estimates of (A) disease-free survival and (B) overall survival in 

different study groups. ...................................................................................................... 268 

 

  



XXIX 
 

ABBREVIATIONS 

 

Symbols  

%   Percentage 

I2  Inconsistency (Index of Heterogeneity) 

GY  Gray 

k  Cohen’s Kappa 

kw  Weighted Kappa 

 

A  

 AI  Artificial Intelligence 

APR   Abdominoperineal Resection 

ASA   American Society of Anaesthesia 

AUROC Area Under the Receiver Operating Characteristic Curve 

AUC  Area Under the Receiver Operating Characteristic Curve  

AJCC  American Joint Committee on Cancer 

ANOVA Analysis of Variance 

 

B  

BMI   Body Mass Index 

C  

CR  Complete Response 

 cCR  Clinical Complete Response 

 CEA  Carcinoembryonic antigen 

CALHN  Central Adelaide Local Health Network 

CI   Confidence Interval  



XXX 
 

CD   Clavien-Dindo 

CNN  Convolutional Neural Network 

CT   Computed Tomography 

CRC  Colorectal Cancer 

CRS   Colorectal Surgery 

CSSANZ  Colorectal Surgical Society of Australia and New Zealand 

CV  Cross-validation 

CLOS  Classification based on Level of Suspicion 

CRM  Circumferential Resection Margin 

CLAIM Checklist for Artificial Intelligence in Medical Imaging 

CAPOX Capecitabine and Oxaliplatin 

 

D  

d   Days 

DNA  Deoxyribonucleic acid 

DFS  Disease-free Survival 

DSC   Sørensen–Dice Similarity Coefficient 

DRM  Distal Resection Margin 

E  

eGFR   Estimated Glomerular Filtration Rate  

ERUS  Endorectal Ultrasound 

EMVI  Extramural Vascular Invasion 

ECOG  Eastern Cooperative Oncology Group Performance Status 

 

F 

 5-FU  5-Fluorouracil 



XXXI 
 

 FP  False Positive 

 FN  False Negative 

 

G  

  

GI   Gastrointestinal 

 

H  

HAR  High Anterior Resection 

 HREC   Human Research Ethics Committee 

 

I 

 IV   Intravenous  

 

J 

 JSC  Jaccard Similarity Coefficient  

L 

 LARC  Locally Advanced Rectal Cancer 

LAR  Low Anterior Resection 

 LASSO Least Absolute Shrinkage and Selection Operator 

 LOS  Length of Stay or Length of Hospital Stay  

LN  Lymph Node 

LPLN  Lateral Pelvic Lymph Node 

LV  Lumbar Vertebra 

LDH  Lactate Dehydrogenase 

M 

 Min   Minutes  



XXXII 
 

 MRI  Magnetic Resonance Imaging 

MDT  Multidisciplinary Team Meeting 

mFOLFOX6 5-Fluorouracil, Leucovorin, and Oxaliplatin 

 

N 

 N  Condition Negative 

nCRT   Long Course Neoadjuvant Chemoradiotherapy 

 NOM  Non-operative management 

  

NPV  Negative Predictive Value 

 

O 

 OR   Odds Ratio  

 OS  Overall Survival 

 oCR  Overall Complete Response 

 

P 

 P  Condition Positive 

 pCR  Pathological Complete Response 

 PET  Positron Emission Tomography 

 pTNT   Personalised Total Neoadjuvant Therapy 

 PPV  Positive Predictive Value 

 PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

PACS  Picture Archiving and Communication System 

 

Q 



XXXIII 
 

 QUADAS-2 Quality Assessment of Diagnostic Accuracy Studies 

 

R 

 RAH   Royal Adelaide Hospital 

 RT  Radiotherapy 

RCT   Randomised Controlled Trial 

 ResNet  Residual Network 

RISRAS Radiation-Induced Skin Reaction Assessment Scale 

 

S 

 SD   Standard Deviation 

SE  Standard Error 

SM   Skeletal Muscle 

SAT  Subcutaneous Adipose Tissue 

 SVM  Support Vector Machine 

SWE  Shear-wave Elastography  

SCRT  Short Course Radiotherapy 

sCRT  Standard Chemoradiotherapy 

STAT  Skin Toxicity Assessment Tool 

STROBE  Strengthening the Reporting of Observational Studies in Epidemiology 

STARD Standards for Reporting of Diagnostic Accuracy 

 

T 

 TNT  Total Neoadjuvant Therapy 

 TME  Total Mesorectal Excision 

 TNM  Tumour Node Metastasis 



XXXIV 
 

 T test   Students T test 

 TP  True Positive 

 TN  True Negative 

 TRG  Tumour Regression Grade 

 TPA  Total Psoas Area 

 TPAI  Total Psoas Area Index 

 

U 

 ULAR  Ultra-low Anterior Resection  

US  United States 

 

V 

 VAT   Visceral Adipose Tissue 

 

W 

WCC  White Cell Count 

 

X 

xCRT  Extended Chemoradiotherapy 



35 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER 1: INTRODUCTION 

 

 

  



36 
 

1.1 Colorectal cancer  

Colorectal Cancer (CRC) is the second leading cause of cancer mortality worldwide, accounting for 

an estimated 935,000 deaths annually. It is also the third most diagnosed cancer globally, with 1.9 

million cases in 2020.1 Over the past two decades, CRC incidence in Australia has progressively 

increased and as a result, prevention and new treatment programs for CRC are actively being 

evaluated and implemented.2 

 

1.2 Abdominal and pelvic lymph nodes  

Lymph Nodes (LNs) play a critical role in the human immune system by filtering the blood for 

pathogens and abnormal cells (blood-lymph loop). This also makes LNs a location for neoplastic 

cells to reside/accumulate.3 The tumour cells enter lymphatic vessels and travel to the LNs along 

lymphatic drainage pathways, which often accompany the arteries supplying or veins draining a 

primary organ. The presence of local lymphadenopathy in patients with colorectal cancer is an 

essential determinant of prognosis and guides treatment options (surgical and medical).4 The most 

common nodal groups involved are the mesenteric and mesorectal groups which can extend to the 

retroperitoneal and pelvic sidewall compartments.5 

 

Metastases to LNs generally follow the nodal stations in a stepwise direction as seen in Figure 1.6 

The primary tumour cells travel to nodal stations that are closest to the primary tumour and then 

progress farther away but within the lymphatic circulation.7 Metastases to a nodal station farther 

from the primary tumour without involving the nodal station close to the primary tumour (skip 

metastases) are infrequent, although haematogenous spread to distant organs like the liver and the 

lung is more common.8 
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Figure. 1 Organisation of lymph nodes in the colon and rectum. Lymph nodes (coloured in green) 

surround the vasculature (coloured in red). 

 

1.3 Imaging a patient with a diagnosis of CRC  

Initial colon cancer staging investigations involve a contrast-enhanced Computed Tomography 

(CT) of the chest, abdomen and pelvis with intravenous and oral contrast.9 A radiologist reports the 

details of this scan including; the location, size and extent of the primary lesion, invasion of 

adjacent structures, tumour factors that may affect the operation, visceral and peritoneal metastases 

and locoregional LNs (pericolic and local drainage) as well as metastatic LNs (mesenteric, 

retroperitoneal, pelvic and inguinal).10 

 

In patients with colon cancer treated with curative intent, post-surgical resection LNs are inspected 

for metastasis by specialist pathologists allowing further decisions about adjuvant therapy. This is 

due to the inaccuracy of preoperative LN staging on cross sectional imaging (~70% accuracy) based 

on published prospective data.11,12 In addition, the process of assessing every individual LN on a CT 

scan is time consuming and becomes an expensive process due to salary costs. As a result, LNs are 
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typically commented on incidentally on radiology reports and in multidisciplinary team meetings. 

Unlike in rectal cancer, LN status on preoperative imaging is not typically used to determine 

neoadjuvant treatment in patients with colon cancer. In rectal cancer the presence of abnormal local 

mesorectal or adjacent iliac lymphadenopathy is assessed preoperatively using high resolution 

Magnetic Resonance Imaging (MRI).13 Pelvic MRI is somewhat more accurate than abdominal CT 

in determining nodal status, but rectal cancer anatomy is also somewhat distinct from colon cancer 

with other important local staging parameters such as circumferential margins used to determine 

requirement for neoadjuvant therapy.14 

 

1.4 Neoadjuvant and Adjuvant Therapy 

Patients with a new diagnosis of CRC are stratified into different treatment pathways, based upon 

preoperative tumour location and radiological staging after each case is discussed at a 

Multidisciplinary Team Meeting (MDT). The use of preoperative neoadjuvant therapy is not 

generally recommended in patients with stage I - III colon adenocarcinoma. Presently, the optimal 

treatment strategy remains surgical resection.15 Following surgery, LN status on pathological 

assessment is used in determining if adjuvant chemotherapy is recommended (stage III and high-

risk stage II patients). The FOxTROT trial investigated the potential efficacy of neoadjuvant 

chemotherapy administered to colon cancer patients with metastatic LNs.16 The results presented at 

the 2019 American Society of Clinical Oncology Annual Meeting showed no significant difference 

in 2-year failure rate (defined as either relapse or persistent disease). There was, however, a 

significant reduction in incomplete tumour resection (R1 or R2) and pathological staging.17 

Although final results of this trial are yet to be published, preliminary data demonstrate that 

accurate preoperative detection of metastatic LNs may become a more factor in the treatment of 

colon cancer patients in future. 
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In contrast to colon cancer, neoadjuvant therapy is recommended for patients with newly diagnosed 

rectal adenocarcinoma with locally advanced clinical stage T3 or T4, and/or LN positive disease, 

Extramural Vascular Invasion (EMVI) or threatened Circumferential Resection Margin (CRM) on 

preoperative pelvic MRI.18 Neoadjuvant Chemoradiotherapy (nCRT) followed by Total Mesorectal 

Excision (TME) and adjuvant chemotherapy is the accepted standard of care. Neoadjuvant therapy 

may consist of either Short Course Radiotherapy (SCRT; 25GY radiation over 5 days) or long 

course nCRT (variation around 50 Gy radiation over 5 weeks combined with 5 Fluorouracil [5-FU] 

based chemotherapy).19 Radiotherapy plays a significant role in downstaging or downsizing rectal 

tumours in the neoadjuvant setting, resulting in a lower rates of local recurrence after surgery.20 

Following the completion of nCRT, patients traditionally undergo curative TME surgery 6-12 

weeks later, irrespective of treatment response.21 The goal of colorectal cancer surgery is en-bloc 

resection of the tumour, major vascular pedicles and the draining LNs with the aim of reducing 

local and distant recurrence rates.22 However, surgery also exposes patients increased morbidity and 

mortality, as well as specific risks including but not limited to; anastomotic leak, the potential for a 

permanent stoma and impairment of bowel, bladder and sexual function.23-25 

 

Approximately 15-20% of patients undergoing nCRT, develop a pathological Complete Response 

(pCR) defined as complete regression with an absence of residual cancer cells in both the primary 

tumour and mesorectal nodes.19,26 However, not every patient responds well to radiation. 

Treatment-related toxicity can also occur, which often negatively impacts patients’ overall health 

and quality of life.27 Additionally, neoadjuvant radiotherapy can cause excessive tissue oedema and 

fibrosis that can compromise surgical planes, posing a significant surgical challenge especially in 

the narrow male pelvis.28 

 

In the adjuvant setting, commonly prescribed chemotherapy agents for both colon and rectal cancer 

include 5-FU and Oxaliplatin.29 These agents act to restrict tumour cell division. 5-FU prevents the 
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formation of essential nucleosides,30 and Oxaliplatin acts via the formation of Deoxyribonucleic 

Acid (DNA) platinum adducts which deprive tumour cells of the essential building blocks for cell 

replication.19,31 The goal of adjuvant therapy is to eradicate systemic micro-metastatic disease.32 

 

With respect to rectal cancer, neoadjuvant therapy and surgical technique have improved 

oncological outcomes, reducing 5-year local recurrence rates to 5-10 per cent over the last 20 

years.33,34 However, the risk of distant relapse remains high at 30% in 10 years and is the leading 

cause of mortality in rectal cancer patients.35 This is attributed to the lack of adjuvant chemotherapy 

compliance. More than half of eligible patients do not receive their full adjuvant chemotherapy due 

to delay in treatment, compliance issues, and postoperative complications.36 As a result, research 

efforts have focussed on ways to improve the delivery of chemotherapy by administering the 

chemotherapy in the preoperative period. Total Neoadjuvant Therapy (TNT) for rectal cancer has 

been developed as a result, whereby all systemic therapy is delivered before surgery to address the 

limitations of adjuvant treatment.37  

 

1.5 Cost related to Neoadjuvant therapy  

Treatment recommendations differ between colon and rectal cancers, as well as by disease stage, 

resulting in different cost estimates.38 Most recent Australian data shows the cost of early-stage 

disease has not substantially changed over time with costs ranging from AUD$34,337-AUD$43,776 

per patient, as surgery alone is the main expense involved in treatment. However, neoadjuvant and 

adjuvant therapy for advanced disease is expensive. For example, the addition of Oxaliplatin, which 

is now standard of care for advanced colorectal cancer has significantly driven up costs to 

AUD$71,156 per patient.39 Recent data from the US has shown cost-effectiveness for TNT at 

US$40,708 per life-year, versus USD$44,248 per life-year for conventional therapy.40 This is largely 

because TNT can result in a clinical Complete Response (cCR), with patients avoiding surgery 

entirely. Recently the results of the OPRA randomised phase II trial assessed the outcomes of 324 



41 
 

patients with Locally Advanced Rectal Cancer (LARC) treated with TNT. The trial concluded that 

organ preservation was achievable in half of the patients with LARC treated with TNT. In turn, 

patients with a cCR would save the cost of TME, approximately USD$11,800.41,42 This data and 

recent trends suggest that the treatment of later stages of colorectal cancer will involve more therapy 

being administered preoperatively in the neoadjuvant rather than adjuvant setting. However, this 

approach is fundamentally reliant on accurate LN staging to enable optimal targeting of neoadjuvant 

therapy. 

 

1.6 Artificial Intelligence in Medical Imaging and its application to CRC 

The number of patient scans performed and the ability to store them digitally has been steadily 

increasing over time. Artificial Intelligence (AI) has gained significant interest in the medical 

imaging field due to continual improvement in all aspects of image interpretation from detection, 

classification and automated image segmentation, to extraction of radiomic features and 

biomarkers.43 AI in health care offers a substantial opportunity to improve patient outcomes while 

improving system efficiencies and reducing costs.44 Human cognitive capability to effectively 

manage large sets of information is limited, and AI is likely to have an important and 

complementary role in this regard. 

 

AI, machine learning, radiomics and deep learning are terms commonly used interchangeably 

despite being distinctly defined and this can create some misunderstanding in the field. AI 

encompasses deep learning and radiomics which are both subsets of machine learning that aid in 

pattern recognition for different data types (Figure 2).45,46 Machine learning models are grouped 

into either supervised or unsupervised models. Supervised models rely on annotated data. The type 

of annotation depends on the task the model seeks to perform. In classification tasks where the 

focus is to identify the presence or absence of a disease, images are labelled in a binary fashion 

(disease positive or negative). For instance, in a study conducted by Glaser et al., a database 
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consisting of 123 CT scans of patients with colon cancer had each scan labelled as LN positive or 

LN negative.47 As the exact location of the LN is not provided within the image, this is referred to 

as a weakly annotated database. Although the annotation does not specify the exact location of the 

LNs, the model might still automatically learn to predict if patients with colon cancer are LN 

positive or negative. The next level of annotation is drawing boundary boxes on each of the CT 

scans indicating the region of interest. This strategy is referred to as sparse annotation. The highest 

level of annotation is termed segmentation which consists of delineating or contouring the region of 

interest on each image. Segmenting the region of interest is a tedious and time-consuming process 

but it allows for more precise algorithms to be built. Alternatively, unsupervised machine learning 

models do not involve manual annotations and are used for clustering where the aim is to group 

data into homogeneous subgroups (e.g., identifying different CRC phenotypes). More recently, 

semi-supervised methods have been developed that combine annotated and non-annotated data 

together. A typical example of semi-supervised learning is reinforcement learning, in which the AI 

model gradually learns through better exploration of non-annotated data.48,49  
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Figure. 2 Diagram illustrating subdivisions of artificial intelligence. 

Radiomics is a field of research that relies on traditional machine learning methods, with some 

recent developments expanding further into deep learning methods. Radiomics can extract large 

amounts of data that are invisible to the human eye from medical images, uncovering advanced 

features that can characterise tumours and lymph nodes non-invasively through data analysis.46 

Radiomics can extract more complex features categorised as: morphological features (eg. shape, 

volume, diameter, image features), first order (eg. histogram, kurtosis, mean values, and textural 

features) or higher order features (eg. co-occurrence of patterns and filter response).49 These 

features can be extracted from any imaging modality such as CT, Positron Emission Tomography 

(PET), or MRI. To choose the most prominent features according to the task, the algorithm will use 

different techniques such as random forest, least absolute shrinkage and selection operator 

(LASSO), support vector machine (SVM), logistic regression and others. It has been shown for the 

task of predicting lymphadenopathy, radiomics will create a unique phenotypic atlas for each 

tumour or LN and if paired with clinical data, this atlas enables the identification of new, 

reproducible, image-based biomarkers which have already been used to predict preoperative LN 

metastasis in patients with CRC.50,51  

 

Deep learning refers to deep neural networks that do not necessarily require manually extracted 

features. The architecture is designed in a way that automatically recognises and extracts features, 

avoiding the need to manually define them (Figure 3). Deep learning models are composed of 

multiple layers where each layer learns a set of hidden features, which in most cases cannot be 

identified by a radiologist. The features in each layer are non-linear compositions of the features in 

the previous layer. This allows the model to first learn very simple features in the first layers, which 

are then merged to form more complex features for each layer.52 In radiology, there are several 

architectures used to build deep learning models, one of which includes Convolutional Neural 

Networks (CNNs).53 The main idea behind CNNs is the simple features in a small area of an image 
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can be analysed independently to their position and the rest of the image.54 Hence, the image can be 

separated into small feature maps with each feature map being analysed in the same way and 

independently of the other feature maps. The information of each feature map can then be combined 

to generate a more abstract representation of the image. This relies on the succession of two 

different steps: convolution and sub-sampling. In a convolutional step a feed forward neural 

network (neural network where information moves unidirectionally) is applied to small regions of 

the image, creating several maps of hidden features.54 In the sub-sampling step, the size of the 

feature map is reduced, this is done by transforming the neighbourhood of features to a single value. 

This reduction is accomplished by representing the neighbourhood of features with the maximum or 

the average value as a single value. These two steps are then merged into a deep network with 

several layers seen in the deep learning part of Figure 2. Deep learning models using CNN 

architectures have demonstrated excellent diagnostic performance in medical imaging detection of 

Alzheimer’s disease, and breast and lung cancer.55-57 In turn, with the success of CNNs, many other 

architectures have been introduced, including AlexNet, ResNet-50, ResNet-101, VGG16, and 

VGG19.58,59 In particular, a ResNet architecture is shown to be used in recent studies to predict 

nodal staging on both radiological and pathological images from patients with CRC.60,61ResNet-50 

as the name suggests is a 50-layer CNN, it consists of 1-maxpool layer, 1-average pool layer and 48 

convolutional layers.62,63 ResNet architecture makes use of residual blocks which in simpler terms 

are “ identity shortcut connection” that skips one or more layers to improve the accuracy of the 

models.64 
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Figure. 3 Artificial Intelligence approaches. Differences between machine learning, radiomics and 

deep learning approaches for classification of LNs from abdominopelvic CT scans. 

 

Developing an AI model successfully relies on the quality of the dataset on which it is trained, and 

it is often more important than the learning model itself.65 This ensures that the model will perform 

equally well on unseen cases as it will on training cases. In radiology, AI models need to be 

generalisable to be used in multiple sites.49 Thus it is important to have a dataset that represents the 

disease and different acquisition protocols.66 A model for LN staging classification should be 

trained using a dataset reflecting the heterogeneity of lymphadenopathy patterns along with CT 

scans acquired from different scanner manufacturers. If the training dataset only contains a unique 

lymphadenopathy pattern (eg. All patients with colon cancer are node positive) or acquisitions are 

all performed using the same CT scanner, the model runs the risk of being poorly generalisable. 
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Datasets are usually divided into training, validation, and testing cohorts. During the training phase, 

the model’s network is fed training data and tasked with making predictions at the output layer that 

match the known ground truth annotations, each component of the network produces an expedient 

representation of its input. Training a neural network means changing its parameters to optimise the 

outputs of the network.66 Once the model has been trained, its performance is evaluated on the 

validation cohort. The model with the best performance in the validation cohort is further evaluated 

in the testing cohort.49 

 

A recent report suggests that AI assisted diagnosis in areas such as cardiology, ophthalmology, 

pathology and oncology can potentially improve patient outcomes by 30-40%.67 The financial 

benefits of AI are evident with estimates of up to USD $150 billion annual savings for the US 

health care system by 2026.68 Considering the drastic improvements in patient outcomes and cost 

savings associated with AI, the only question remaining is which AI approach is most suitable for 

LN staging. Deep learning algorithms are typically better suited to handle data classification 

problems (i.e. lymph node being malignant or benign) with studies showing a substantial 

performance gain compared to traditional machine learning methods.45,69 Despite the success of 

applying deep learning to medical imaging, currently, there is no evidence that deep learning can 

accurately predict LNs on preoperative staging CT in patients with colon cancer.  

 

1.7 Predicting local response to neoadjuvant therapy in rectal cancer 

The prediction of local response to nCRT in patients with LARC has been thoroughly discussed for 

many years. There have been excellent reviews published in 2015 and 2022 reassessing the current 

literature and highlighting the importance of this topic.70,71 A number of parameters including 

clinical features such as the tumour stage according to the Tumour Node Metastasis (TNM) 

classification, tumour size and location within the rectum have been identified as predictors of 
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response to nCRT.70,72,73 Moreover, several histopathological parameters were identified from 

tumour intrinsic features such as tumour budding and grade of tumour differentiation.74,75 Lastly, 

biochemical factors have become increasingly attractive as predictors of local response to nCRT. 

Given the ease of blood sample collection and low cost, it would be convenient if these factors were 

found to reflect aspects of tumour biology. Despite the growing interest in predictors for local 

response to nCRT, no factors have yet reached clinical and external validation in large cohorts.   

 

1.7.1 Clinical predictors of response to nCRT 

Several clinical features have been identified as predictors of local response to nCRT in patients 

with LARC, including tumour size, tumour differentiation, clinical stage, and tumour distance from 

the anal verge.73,76,77 Retrospective studies reported pre-treatment tumour diameter to be associated 

with treatment response in LARC. Bitterman et al. demonstrated that pre-treatment tumour diameter 

<3cm was an independent predictor of CR following nCRT in patients with locally unresectable T1-

2 tumours and LARC.78 Similar results have been shown in a larger population-based study 

showing that patients with tumour diameter <3cm are more likely to achieve a pCR after nCRT or 

SCRT regardless of their pre-treatment clinical stage.79 There is recent evidence showing that pre-

treatment tumour diameter is also a predictor of cCR in rectal cancer.80 The authors also identified 

clinical Tumour stage (cT) to be associated with cCR, which has been a more comprehensive 

predictor of response.80,81 Several studies comprising of large patient cohorts found a lower pCR 

rate in cT4 LARC and a higher cCR/pCR rate in patients with cT1-2 tumours after nCRT.77,79,82,83 

LN status was also found to be an independent predictor of local response.72 Accordingly, patients 

with clinical node positive LARC were associated with significantly lower rates of pCR or cCR.78  

 

Controversy remains between the association of tumour location and response to nCRT. In a 

retrospective study comprising of 173 patients with LARC, a distance from the anal verge of <5cm 

was significantly associated with pCR.84 Similarly, a positive correlation of tumours located <3cm 
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from the anal verge with CR was also reported.78 Conversely, Restivo et al, demonstrated that a 

distance from the anal verge of >5cm was a predictor of pCR in their cohort of 260 LARC 

patients.85 Interestingly, a prospective study by Patel et al. found patients with low tumours (<4cm) 

and higher tumours (>8cm), were less likely to have a pCR.86 Accordingly, exact reason for the 

association between the tumour distance from the anal verge and local response to nCRT remains 

undetermined. 

 

Despite many studies reporting promising results, clinical predictors of local response to nCRT in 

LARC show poor sensitivity and specificity and have been contradicted in other studies.76,87,88  

 

1.7.2 Biochemical predictors of response to nCRT 

The correlation between local response of LARC to nCRT and biochemical markers in blood 

samples has been investigated. A Brazilian review has reported haemoglobin, Carcinoembryonic 

Antigen (CEA), C-Reactive Protein (CRP), White Cell Count (WCC), and several biochemical 

ratios as common predictors of pCR with consistency in the literature.89 Higher level of 

preoperative haemoglobin were associated with higher rates of pCR and revealed a benefit in 

Overall Survival (OS).90 CEA is well established as the recommended biomarker for CRC 

monitoring.91 Patients who present with elevated CEA levels pre-nCRT are less likely to achieve a 

pCR.92,93 Focussing on CRP, Aires et al. demonstrated low pre-nCRT CRP levels predicted a good 

response to treatment based on a cohort of 171 LARC patients. A multicentred Korean study 

showed that a reduction in pre-treatment WCC ratio during nCRT predicts good tumour response 

and is significantly associated with increased recurrence free survival.94 Looking at further markers 

of inflammation, particularly relevant as a hallmark of cancer biology, an elevated pre-nCRT 

neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio are associated with lower rates of 

pCR and poor prognosis.90,95-97 In addition, patients with a low pre-treatment lymphocyte-to-

monocyte ratio had lower pCR rates and significantly worse disease free survival (DFS) and OS 
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after nCRT.98,99 With regards to the smaller subgroup of patients that achieve complete response, 

recent evidence by Mbanu et al. revealed several clinical (pre-treatment tumour diameter, cT stage, 

total radiotherapy depths) and biochemical factors (haemoglobin, alkaline phosphate, neutrophil-to-

lymphocyte ratio, neutrophil-monocyte to lymphocyte ration, lymphocyte count, albumin) 

associated with cCR.80 Nevertheless, results vary between studies and very few have investigated a 

large number of biomarkers together.100-102 

 

To date, no biochemical features have demonstrated an ability to predict local response with 

adequate sensitivity or specificity to reliably guide clinical practice. Given the limitations 

mentioned above, more studies including a variety of common pre-treatment biochemical factors 

are required to further explore the association between biochemical factors and the local response of 

patients with LARC to nCRT. 

 

1.7.3 Sarcopenia 

Sarcopenia is a disorder characterised by loss of skeletal muscle mass, leading to reduced strength 

and function.103 While the prevalence of sarcopenia in healthy individuals increases with age, the 

rate of sarcopenia is further increased in patients with CRC, with incidence up to 60%.104 General 

risk factors include age, gender, Body Mass Index (BMI), reduced level of physical activity, and the 

presence of chronic disease and comorbidities such as diabetes.105 Causes of sarcopenia include 

physiological aging, skeletal muscle disuse, systemic inflammatory processes, endocrine changes, 

chronic alcohol consumption, malnutrition and insulin resistance.106 While ageing naturally disturbs 

skeletal muscle integrity, changing the balance between hypertrophy and regeneration, sarcopenia is 

a multifactorial disorder that involves muscle changes attributed to both cellular and molecular 

pathways.107 Acute and chronic diseases have detrimental effects on metabolism, speeding up 

catabolic processes, and there is growing interest in understanding the role of sarcopenia and its 

association with cancer and outcomes. Cancer patients commonly experience weight loss and 
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muscle degradation which can be exacerbated during treatment. Some evidence suggests that 

tumour mass in cancer patients is responsible for molecular dysregulation, ultimately resulting in 

muscle atrophy.104,108 

 

The challenge in clinical practice is the lack of a quick and reliable measurement tool for 

sarcopenia, hence routine assessment is not typically performed in clinical practice. In the tertiary 

care setting, clinicians and surgeons commonly use the subjective “eye-ball end of the bed” test to 

diagnose sarcopenia. Contrast-enhanced CT scans are routinely conducted in the pre-treatment 

staging of patients with CRC, and medical image analysis is recognised as one method of 

quantifying skeletal muscle mass. Measurements taken at the third lumbar vertebra (L3) is validated 

as the standard for body composition. Estimates of skeletal muscle size at this level can provide a 

surrogate marker for sarcopenia using formulas accounting for patient height and gender.109 

However, these measurements are limited by inter-observer variability, fat infiltration resulting in 

overestimation of muscle mass, and practical considerations including time restrictions impacting 

health service efficiencies, limiting their use in practice (Figure 4). 

 

The etiological factors of sarcopenia in cancer including systemic inflammatory processes, 

endocrine changes and dysregulation of cellular and molecular pathways are also observed in 

oncological treatment strategies. 
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Figure. 4 Measurement of psoas muscle area in a CT image at the L3 vertebral body. 

 

Cancer therapies such as surgery, chemotherapy and radiotherapy, often cause vomiting, loss of 

appetite, fatigue and pain, potentially leading to further muscle atrophy.110 Sarcopenia increases 

susceptibility to chemotherapy toxicity among metastatic CRC patients.111 Sarcopenic patients have 

a lower muscle mass compared to non-sarcopenic patients. The occurrence of chemotherapy 

overdose in sarcopenic CRC patients may potentially be due to the altered ratio between muscle 

mass and chemotherapy dosage. More importantly, since sarcopenia diagnosis is rarely considered 

in oncological treatment, necessary reductions in dose delivery are not identified and ultimately 

patients are treated inadequately.112 The severity of adverse reactions and complications to 

oncological treatment strategies can impact hospital stay and readmissions, increasing the cost 

burden to the healthcare system and patient.38,113 
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Sarcopenia is known to have a negative association with not only chemotherapy toxicity but also 

postoperative complications, quality of life and overall survival.114 Up to a third of patients suffer a 

postoperative complication following colorectal resection with rates of 17% in colon cancer and 

30% for rectal cancer in Australia and New Zealand.115 Sarcopenic CRC patients experience a 

significant increase in infection rates, increased inflammatory response, physical disability, delayed 

recovery and in those with advanced staging have worse DFS and OS.108,116,117 Moreover, 

sarcopenia is reported to be associated with an increased risk of anastomotic leak, high grade 

complications (Clavien-Dindo Grade 3-4), longer hospital length of stay and higher hospitalisation 

costs.108,109,118,119 

 

Sarcopenia places a substantial economic burden on the healthcare system.120 The total estimated 

cost of hospitalisations in individuals with sarcopenia in the United States is US$40.4 billion with 

an average cost per person of US$260.121 Recent evidence suggests that sarcopenic CRC patients 

have significantly higher total hospital related costs in comparison to non-sarcopenic patients.122 

Sarcopenia is associated with postoperative infection and longer hospital stay for CRC surgical 

resection (6.6 vs 5.4 days; P=0.03).123 Patients experiencing other post-operative complications stay 

approximately 10 days longer and have over seven times the risk of in-hospital death than those 

without complications. The presence of an adverse event increases the cost of each admitted 

episode by AU$6,826 after adjusting for age and comorbidity.124 The most recent Australian data 

indicates the total cost of adverse events was AU$460.3 million, representing 15.7% of the total 

expenditure on direct hospital costs, equating to an additional 18.6% of the total inpatient hospital 

budget.115,124  

 

Although this would be biologically plausible, it is unclear whether there is any correlation between 

sarcopenia and tumour response to neoadjuvant treatment in rectal cancer. It would stand to reason 
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that because of increased susceptibility to treatment-related toxicity, tolerance to and compliance 

with treatment would be adversely affected, but this has not been formally investigated. 

 

1.8 TNT for rectal cancer 

Studies have highlighted potential drawbacks of adjuvant chemotherapy in patients with LARC and 

several ongoing clinical trials are assessing different therapeutic strategies to improve oncologic 

outcomes with nCRT. TNT is a promising new strategy that attempts to optimise the delivery of 

trimodal therapy with the incorporation of chemotherapy before or after nCRT or SCRT and prior 

to surgery. The two approaches are: (1) chemotherapy first (as induction therapy), followed by 

SCRT or nCRT then surgery and (2) SCRT or nCRT first followed by chemotherapy (as 

consolidation therapy), then surgery (Figure 5). The relative merit of these two schemas is an active 

area of investigation.71 

 

 

Figure. 5 Total Neoadjuvant Therapy. 

 

The rationale behind the use of TNT is to improve compliance to treatment, enhance treatment 

tolerability, increase tumour downstaging, facilitate organ preservation through Non-Operative 

Management (NOM) in select patients, offer earlier treatment of micro-metastases to improve DFS 
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and decrease the interval from ileostomy to reversal.125 There are some potential disadvantages to 

TNT which include delay to resection (potentiating tissue fibrosis which, in theory, can increase the 

surgical difficulty) and development of chemotherapy toxicity that may impact the possibility of 

definitive resection or lead to decline in performance and nutritional status. Due to inaccuracies in 

pre-operative staging, some patients may also be over-treated with this strategy. 

 

The phase II TIMING trial investigated whether adding cycles of mFOLFOX6 between nCRT and 

surgery patients with LARC would increase the pCR rates in a four-arm design.126 The pCR rate 

tended to significantly increase with the number of added chemotherapy cycles during the waiting 

period (P=0.004). The pCR rate was highest (38%) with the group who received 6 cycles of 

mFOLFOX6 and the longest interval to surgery (20 weeks) after nCRT and lowest (18%) in the 

group who received no cycles and had the shortest time to surgery after nCRT (6 weeks). Long-

term data of the TIMING trial revealed that adding neoadjuvant consolidation chemotherapy after 

nCRT lead to increases in treatment compliance and DFS, however no significant change was 

observed in regard to OS or surgical complications (Clavien-Dindo graded ≥3).127,128 The strategy 

of administering consolidation chemotherapy in the interval between SCRT and surgery to further 

increase rates of pCR has also been tested and compared with conventional nCRT in the POLISH II 

trial.129 The trial included patients with poor prognosis such as cT3/4 tumours, with approximately 

half of these tumours located in the lower rectum. Trial results showed no significant difference in 

7-year DFS and OS between the two groups. 

 

More recently, the phase III RAPIDO trial compared SCRT followed by 18 weeks of consolidation 

chemotherapy then TME, to conventional nCRT and reported improved rates of pCR (28% vs 14%, 

P<0.0001) in addition to improved disease-related treatment failure (23.7% vs 30.4%, P=0.019) 

after a 4-year follow up.130 There were no significant differences in the severity of adverse events 

between the two treatment arms (38% vs 34%). In the experimental arm, 85% of patients completed 
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neoadjuvant chemotherapy, although 37% of patients who started adjuvant therapy in the nCRT 

group prematurely stopped chemotherapy due to poor compliance. The phase III trial PRODIGE 23 

investigated whether induction chemotherapy (mFOLFIRINOX) before nCRT followed by TME 

and adjuvant therapy improved DFS compared with conventional nCRT in patients with resectable 

non-metastatic LARC. The trial reported significantly higher pCR rates (11.7% vs 27.5%, 

P<0.001), 3-year DFS (68.5% vs 75.7%, P=0.034) and 3-year metastasis free survival (71.7% vs 

78.8%, P<0.02) in the TNT arm without any difference in surgical complications in comparison 

with the conventional nCRT arm. However, neither the PRODIGE 23 nor RAPIDO trials have 

shown an OS advantage in the TNT arms. 

 

In contrast, CAO/ARO/AIO-12 had TNT in both arms which consisted of 3 cycles over 6 weeks of 

induction or consolidation chemotherapy (FOLFOX) with nCRT. The consolidation arm achieved a 

higher pCR (25%) compared to the induction arm (17%). Notably, the radiotherapy related severe 

adverse event rate was lower and compliance was higher in the consolidation chemotherapy group 

with upfront radiation. Conversely, the chemotherapy induced severe adverse event rate was lower 

and compliance was higher in the induction chemotherapy group with upfront chemotherapy. This 

suggests that the treatment modality given first within TNT will have better compliance and lower 

toxicity rates and vice versa. Comparable to CAO/ARO/AIO-12 is the OPRA Trial which used 4 

months of induction or consolidation FOLFOX or CAPOX chemotherapy with nCRT with a 

primary aim to detect a 10% improvement in DFS in either treatment arm compared to a 75% 

historical rate.42 Patients who achieved a cCR or near-cCR were offered NOM and the remainder 

underwent surgery. Although OPRA reported no improvement in DFS in either group, they found a 

significantly higher 3-year organ preservation rate in the consolidation chemotherapy group 

compared to induction chemotherapy group (53% vs 41%, P<0.01). Unfortunately, the OPRA trial 

failed to report adverse events induced by nCRT and chemotherapy separately, however the authors 
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reported no difference in the overall rate of adverse events between treatment groups (41% vs 

34%). In addition, while organ preservation was reported, rates of cCR were not. 

Until now, most neoadjuvant treatment protocols have been designed for the “average patient” with 

LARC based on RCT inclusion criteria which reflect this. As a result of this “one-size-fits-all” 

approach, neoadjuvant treatments can be very successful for some patients but not for others. 

Personalised TNT (pTNT), one the other hand, is an innovative approach developed locally in 

South Australia that considers the patient’s clinical stage at presentation to determine the sequence 

of preoperative chemotherapy (induction chemotherapy versus consolidation chemotherapy) before 

or after nCRT.131 The hypothesis behind the pTNT approach for advanced rectal cancer is that 

patients with the need for systemic control should undergo induction chemotherapy to reduce the 

risk of distant failure and patients with the need for local control should undergo consolidation 

chemotherapy to reduce the risk of local relapse.132-134 It is important to note, the lack of data 

throughout the literature supporting a personalised treatment approach over the standard of care 

treatment in patients with advanced rectal cancer.  

 

1.9 Summary 

Among the metastatic pathways of colon cancer, LN metastasis is the least well characterised pre-

operatively owing to limitations in medical imaging and interpretation. LN metastases determine 

prognosis, and the potential benefit of neoadjuvant chemotherapy in select patients with colon 

cancer. To improve the performance of preoperative LN staging in colon, several image-based 

models have been proposed. Radiomics models derived from CT or MRI images are predominant, 

however deep learning seems to lead to a higher diagnostic accuracy. To date, no studies have 

attempted to use deep learning for predicting lymph node status on preoperative staging CT in 

patients with colon cancer.  
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At present the management of LARC includes nCRT followed by TME and adjuvant chemotherapy 

if indicated. nCRT results in downstaging in approximately two-thirds and cCR in one-fifth of 

patients. In the select group of patients that achieve a cCR, some authors have proposed advocating 

for organ preservation, forgoing surgery will eliminate the associated morbidity and mortality. 

Despite a large volume of studies reporting some promising results, no clinical, radiological, or 

biochemical features have demonstrated an ability to predict response with adequate sensitivity or 

specificity to guide treatment. Consequently, more robust data on sarcopenia, clinical and 

biochemical predictors of response is required to accurately assess which patients are likely to 

sustain a pCR.  

 

Lastly, studies have highlighted potential drawbacks of adjuvant chemotherapy in rectal cancer 

including treatment delays and poor compliance. As a results of these challenges, several trials have 

advocated for systemic chemotherapy to be given preoperatively (TNT). Results of these advanced 

phase trials have shown that TNT can increase rates of cCR and pCR and improve DFS. Although 

therapy associated toxicities were more frequently observed in the TNT arm of these trials, this 

does not result in difference in compliance, surgical management and postoperative complications 

when compared to conventional nCRT. While TNT has increased in popularity, a major question 

relating to treatment sequencing remains unsolved. It is unclear whether consolidation 

chemotherapy is better than induction chemotherapy in all LARC patients or whether treatment 

sequencing should be tailored towards clinical stage at presentation. 
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CHAPTER 2: PRECIS  
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The work in this thesis is presented in three parts.  

 

Part 1: Artificial intelligence assessment of nodal status on pre-operative imaging for 

colorectal cancer. 

This part of the thesis describes the potential of using AI to predict the presence or absence of 

metastatic disease in local lymph nodes in CRC. In this section, we ask whether AI can improve on 

the current 70% accuracy of radiologists in nodal staging using the same imaging modality.  

 

Chapter 3 presents a systematic review and meta-analysis aiming to determine the accuracy of 

deep learning algorithms and radiomics models compared with radiologist assessment in the 

diagnosis of lymphadenopathy in patients with abdominopelvic malignancies. Chapter 4 is a 

systematic review and meta-analysis that updates the available evidence on the accuracy of deep 

learning algorithms and radiomics models compared with radiologist assessment in the diagnosis of 

lymphadenopathy solely focused on patients with CRC. To establish a baseline accuracy of 

preoperative lymph node staging in colon cancer based on local experience, in Chapter 5, a 

prospective cohort study was conducted at the Royal Adelaide Hospital and St Andrews Hospital to 

assess the diagnostic accuracy of multidisciplinary team and radiology reporting of pre-operative 

CRC local staging. Chapter 6 describes the development and assessment of a deep learning model 

used to diagnose local lymph nodes on preoperative staging CT scans in a cohort of 1201 patients 

with colon cancer. Using pathological confirmation from surgery as the gold standard, allowed us to 

classify patients into LN positive or LN negative. This study was designed from the beginning to 

address the knowledge gap identified in the previous chapters. Given the negative findings in a 

large cohort of patients and the failure of the deep learning model to outperform the radiologist’s 

assessment of lymph nodes on preoperative staging CT, we shifted the focus towards the potential 

application of AI in sarcopenia diagnosis on CT imaging. Chapter 7 is a systematic review and 
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meta-analysis aimed to assess the performance of CT-based AI segmentation models used for body 

composition analysis and sarcopenia diagnosis.  

 

Part 2: Prediction of local response to chemoradiation in locally advanced rectal cancer. 

The second part of this thesis focuses on predictors of response following neoadjuvant therapy for 

patients with LARC. We evaluated sarcopenia, clinical and biochemical factors to determine if they 

could predict local response after neoadjuvant therapy.   

 

In Chapter 8, a retrospective cohort study was conducted to investigate the association between 

sarcopenia and tumour response after nCRT in patients with LARC. Chapter 9 presents a 

retrospective cohort study relating to clinical and biochemical predictors of tumour response after 

neoadjuvant therapy in rectal cancer.  

 

Part 3: Outcomes of a personalised Total Neoadjuvant Therapy (pTNT) protocol for the 

treatment of advanced rectal cancer. 

In the last part of this thesis, we investigate whether Total Neoadjuvant Therapy sequencing should 

be tailored to clinical stage at presentation rather than a uniform protocol for all patients with 

advanced rectal cancer.  

 

Chapter 10 examines short-term outcomes of a personalised Total Neoadjuvant Therapy (pTNT) 

protocol with treatment sequencing based on clinical stage at presentation. The protocol consisted 

of two-schema based on clinical stage, patients with distant failure risk received induction 

chemotherapy before nCRT and patients with locoregional failure risk received nCRT followed by 

consolidation chemotherapy. Finally, Chapter 11 includes a multicentred retrospective comparative 

analysis between pTNT versus extended chemotherapy in the wait period (xCRT) versus standard 

Chemoradiotherapy (sCRT) in patients with LARC.  
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PART 1: ARTIFICIAL INTELLIGENCE ASSSESSMENT OF NODAL STATUS ON PRE-

OPERATIVE IMAGING FOR COLORECTAL CANCER. 
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CHAPTER 3: ARTIFICIAL INTELLIGENCE FOR THE DIAGNOSIS OF LYMPH NODE 

METASTASES IN PATIENTS WITH ABDOMINOPELVIC MALIGNANCY: A 

SYSTEMATIC REVIEW AND META-ANALYSIS. 
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3.1 Abstract 

Introduction: Accurate clinical diagnosis of lymph node metastases is of paramount importance in 

the treatment of patients with abdominopelvic malignancy. This review assesses the diagnostic 

performance of deep learning algorithms and radiomics models for lymph node metastases in 

abdominopelvic malignancies. 

 

Methodology: Embase (PubMed, MEDLINE), Science Direct and IEEE Xplore databases were 

searched to identify eligible studies published between January 2009 and March 2019. Studies that 

reported on the accuracy of deep learning algorithms or radiomics models for abdominopelvic 

malignancy by CT or MRI were selected. Study characteristics and diagnostic measures were 

extracted. Estimates were pooled using random-effects meta-analysis. Evaluation of risk of bias was 

performed using the QUADAS-2 tool. 

 

Results: In total, 498 potentially eligible studies were identified, of which 21 were included and 17 

offered enough information for a quantitative analysis. Studies were heterogeneous and substantial 

risk of bias was found in 18 studies. Almost all studies employed radiomics models (n=20). The 

single published deep-learning model out-performed radiomics models with a higher AUROC (0.912 

vs 0.895), but both radiomics and deep-learning models outperformed the radiologist’s interpretation 

in isolation (0.774). Pooled results for radiomics nomograms amongst tumour subtypes demonstrated 

the highest AUC 0.895 (95%CI, 0.810 - 0.980) for urological malignancy, and the lowest AUC 0.798 

(95%CI, 0.744 - 0.852) for colorectal malignancy.  

 

Conclusion: Radiomics models improve the diagnostic accuracy of lymph node staging for 

abdominopelvic malignancies in comparison with radiologist’s assessment. Deep learning models 

may further improve on this, but data remain limited. 
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3.2 Introduction 

The most recent U.S. mortality data estimates suggest that 264,420 deaths per year are attributed to 

abdominopelvic malignancy.135 For the majority of these tumours, particularly with the 

adenocarcinoma subtypes, the most likely initial sites of metastases are to locally draining Lymph 

Nodes (LN). Therefore, the status of these nodes remains a key factor in determining patient staging, 

treatment strategy, and survival.7,136,137 For this reason, all national guidelines commonly recommend 

treatment options based directly on preoperative staging in this setting.138-141 

 

Despite advances in medical imaging technology, the accurate clinical prediction of LN status 

remains difficult. Non-invasive imaging modalities such as Computed Tomography (CT) and 

Magnetic Resonance Imaging (MRI) have been widely used for the evaluation of LN status with 

mixed results. As diagnostic accuracy of LN metastases depends largely on the level of training and 

experience of the radiologist, and the quality of the scanner itself, sensitivity and specificity may vary 

among studies. CT has reported accuracy rates as low as 60-78%% for determining LN metastases142, 

along with sensitivity rates of 47% and specificity rates of 71%.11 Similarly, the quality of 

preoperative LN staging using MRI in terms of sensitivity and specificity are 77-86% and 67-71%, 

respectively.143-145 

 

Artificial Intelligence (AI) may have a promising role in this area, potentially overcoming some 

human limitations in diagnostic accuracy.69,146 Radiomics models and deep-learning algorithms have 

shown promising results integrating CT and MRI for detection of LN metastases for selected 

indications.147-149 However, despite numerous breakthrough studies demonstrating expert level 

diagnosis by AI models, currently there are no studies systematically assessing and summarising data 

on AI for abdominopelvic LN detection from source CT or MRI. 
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The purpose of this study is to conduct a systematic review and meta-analysis of published data on 

diagnostic accuracy of deep-learning algorithms and radiomics models for primary LN staging in 

patients with abdominopelvic malignancies.  

 

3.3 Methods 

3.3.1 Search strategy 

A systematic search in Embase (PubMed, MEDLINE), Science Direct and IEEE Xplore Digital 

library was performed using Preferred Reporting Items for Systematic Reviews and Meta-analysis 

(PRISMA) guidelines.150 All potentially relevant studies from January 1, 2009 to March 31 2019 

were identified. The following MeSH terms were used: “Artificial intelligence”, “machine learning”, 

“deep learning”, “convolutional neural network”, “automatic detection”, “computer-aided”, 

“Radiomic”, “Radiomics”, “CT”, “MRI”, “images”, “diagnostic imaging”, “radiology”, “lymph 

node”, “lymph nodes”, “lymph node detection” (Table 1). Additional studies were identified from 

hand-searching reference lists of all relevant articles. 
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Table 1 Search Strategy 

Literature 

sources 

Search in Limits Search terms 

Science Direct Advanced search Research 

articles, 

years 

(2009-2019) 

(“Artificial intelligence” OR “deep learning” 

OR “convolutional neural network” OR 

“automatic detection” OR “Radiomic” OR 

“Radiomics”) AND (“CT” OR “MRI”) AND 

(“Lymph node” OR “lymph node detection”) 

Embase, 

(PubMed, 

MEDLINE) 

Advanced search N/A ('artificial intelligence'/exp OR 'artificial 

intelligence' OR 'machine learning'/exp OR 

'machine learning' OR 'deep learning'/exp OR 

'deep learning' OR 'convolutional neural 

network'/exp OR 'convolutional neural 

network' OR 'automatic detection' OR 

'computer-aided' OR ‘Radiomic’ OR 

‘Radiomics’) AND ('ct'/exp OR 'ct' OR 

'mri'/exp OR 'mri' OR 'images' OR 'diagnostic 

imaging'/exp OR 'diagnostic imaging' OR 

'radiology'/exp OR 'radiology') AND ('lymph 

node*' OR 'lymph node detection') AND 

([article]/lim OR [article in press]/lim) AND 

[english]/lim AND [2009-2019]/py 

IEEE Xplore 

Digital Library 

Journals & 

Magazines 

Years 

(2009-2019) 

(“Artificial intelligence” OR “machine 

learning” OR “deep learning” OR 

“convolutional neural network” OR 

“automatic detection” OR “computer-aided” 

OR “segmentation” OR “Radiomic” OR 

“Radiomics”) AND (“CT” OR “MRI” OR 

“images” OR “diagnostic imaging” OR 

“radiology”) AND (“Lymph node*” OR 

“lymph node detection”) 
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3.3.2 Selection criteria 

All original studies assessing radiomics models or deep-learning algorithms to analyse CT or MRI 

images with the purpose of detecting LN metastases in patients with abdominopelvic organ 

malignancy were included. Abdominopelvic organs were defined as: liver, gallbladder, kidneys, 

spleen, pancreas, stomach, small bowel, colon, rectum, bladder, and internal reproductive organs. The 

search was limited to studies published in English language. Studies focused on segmentation and 

feature extraction methods only, case reports, editorials, letters, meta-analysis, comments, mini-

reviews, book chapters and all conference which did not include complete data were excluded. 

 

Titles and abstracts were then screened after removing duplicates, for eligibility by three independent 

reviewers (S.B., N.N.DV. and G.M.) using Covidence systematic review software, Veritas Health 

Innovation, Melbourne, Australia (available at www.covidence.org). Discrepancies regarding 

inclusion and exclusion of specific studies were discussed and resolved by consensus. 

 

3.3.3 Data extraction and quality assessment 

The full texts of all eligible studies were then reviewed for reporting on the type of radiomics or deep-

learning model, study characteristics and outcome measures. The following data was then extracted 

from each study: study type, total patient number, sample size for diagnostic accuracy, target area, 

image modality, reference gold standard, additional clinicopathological features and diagnostic 

endpoint. To obtain diagnostic accuracy data, we extracted True Positive (TP), False Positive (FP), 

True Negative (TN), False Negative (FN), and Area Under the receiver operating Curve (AUC) along 

with other parameters. The primary outcome of interest was AUC; other statistical measures of 

algorithmic performance such as sensitivity and specificity were evaluated separately. Two 

independent reviewers (S.B and N.N.DV) performed a quality assessment of selected studies by using 

the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) criteria.151 
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3.3.4 Statistical Analysis 

For the quantitative meta-analysis, the testing set results of studies that presented absolute numbers 

for AUC and their 95% confidence intervals, TP, FP, TN, FN or those that provided enough 

information to extract/derive the numbers manually. If results were not reported in an independent 

test set, cross validation results are reported. When different AI models were tested within the same 

paper, the proposed model in the paper with the highest diagnostic performance was used for analysis. 

Additionally, a sub-analysis was performed to estimate the accuracy of the radiologist’s assessment 

derived from studies that reported this. The corresponding AUCs, sensitivities and specificities of 

radiologists were extracted in the same way as described above. 

 

Two software packages MedCalc for Windows, version 16.4.3 (MedCalc Software, Ostend, Belgium) 

and RevMan, version 5.3.152 were utilised for statistical analysis. Missing data were computed using 

formulas derived from a confusion matrix (Table 2) with the help of the above software packages. 

Forest plots were generated from pooling sensitivity, specificity and AUC data using random-effects 

model to incorporate the variability between studies.153 To assess heterogeneity between studies the 

inconsistency index (I²) was used. I2 values below 50% indicated low heterogeneity, while values 

above 50% indicated substantial heterogeneity.154 A funnel plot was also constructed to visually 

assess publication bias.  
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P, condition positive; N, condition negative; FN, false negative; FP, false positive; TN, true negative 

and TP, true positive; PPV, positive predictive value; NPV, negative predictive value; Upper limit, 

upper limit of confidence interval; Lower limit, lower limit of confidence interval; SE, standard error 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Formulas 

Number Formula Summary 

1 
𝑇𝑃

𝑃
 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Sensitivity 

2 
𝑇𝑁

𝑁
=  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Specificity 

3 
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 Accuracy 

4 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 PPV 

5 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 NPV 

6 
(𝑈𝑝𝑝𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 − 𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑚𝑖𝑡)

3.92
 SE 
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3.4 Results 

3.4.1 Study selection 

The initial search identified 498 studies after duplicates were removed, and of these 414 studies were 

excluded based on screening of titles and abstracts, resulting in 58 studies for full-text review. A total 

of 21 articles met the inclusion criteria and were considered eligible for systematic review (Figure. 

6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

 

 

Figure. 6 Study Selection Process 
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3.4.2 Study characteristics 

The characteristics of radiomics and deep-learning studies are summarized in Table 3. All included 

studies were published between 2011 and 2019. Of the 21 included studies, 17 had sufficient data for 

meta-analysis of AUC (Figure. 7), the patient cohorts were comprised of colorectal malignancies (4 

studies), gynaecological malignancies (5 studies), hepatobiliary malignancies (2 studies), upper 

gastrointestinal malignancies (4 studies) and urological malignancies (2 studies). Reference standards 

were consistent across most malignancies and the modality of imaging being used. Most studies used 

pathology as the gold standard (20/21), only one study assigned a level of suspicion for each lymph 

node decided by a MD researcher and a radiologist to determine its reference standard.  
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Table 3 Characteristics of individual studies 

First 

author  

Year  Study type Total 

Patients, 

n 

Sample 

size for 

diagnostic 

accuracy, n 

Target 

Area  

Image modality  Reference 

Standard 

Additional 

Clinicopathological 

features 

Diagnostic 

endpoint 

Colorectal 

Meng155  2019 Retrospective 345 148 
Rectal 

cancer 
MRI Pathology 

Age, sex, CEA level 
Patient 

Lu147 2018 Prospective 765 414 
Rectal 

cancer 
MRI Pathology - 

Lymph 

Node 

Chen156 2018 Prospective 115 33 
Rectal 

cancer 
ERUS,CT,SWE Pathology 

Age, gender, smoking 

history and laboratory 

tests 

Patient 

Huang148 2016 Retrospective 326 200 
Colorectal 

cancer 
CT Pathology 

CEA level, cN, 

histologic grade 
Patient 

Cai157 2012 Prospective 228 

Avg of 

leave-one-

out CV 

Rectal 

cancer 
CT Pathology - 

Lymph 

Node 

Tse158 2012 Retrospective 17 

Avg of 

leave-one-

out CV 

Rectal 

Cancer 

MRI 

      
Pathology - 

Lymph 

Node 

(n=43) 

Cui159 2011 Prospective 228 

Avg of 

leave-one-

out CV 

Rectal 

cancer 
CT Pathology - 

Lymph 

Node 

(n=220) 

Gynaecology 

Wang149  2019 Retrospective 96 29 
Cervical 

cancer 
MRI Pathology 

Age, histopathologic 

grade, cN 
Patient 

Kan160 2019 Retrospective 143 43 

Uterine 

Cervical 

cancer 

MRI Pathology 

- 

Patient 

Yu161 2019 Retrospective 153 51 
Cervical 

cancer 
MRI Pathology 

Clinical stage, tumour 

diameter, cLN, grey-

level 

Patient 
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non-uniformity 

Wu162 2019 Retrospective 189 63 
Cervical 

cancer 
MRI Pathology 

T2tumour+peri + cN 

 
Patient 

Kim163 2011 Retrospective 143 

Avg of 

leave-one-

out CV 

Uterine 

cervical 

cancer 

MRI Pathology - 

Lymph 

Node 

(n=680) 

Hepatobiliary  

Ji164 2019 Retrospective 247 70 

Biliary 

Tract 

cancer 

CT Pathology 

cN 

Patient 

Ji165 
2019 

a 
Retrospective 155 52 

Biliary 

Tract 

cancer 

CT Pathology 

CA 19-9 ≥ 1000 U/ml 

Patient 

Upper GI 

Jiang166 2019 Retrospective 1689 1017 
Gastric 

cancer 
CT Pathology 

cT stage and cN stage, 

differentiation status 

and CA199 level 

Patient 

Feng167  2019 Retrospective 490 164 
Gastric 

cancer 
CT Pathology - Patient 

Zhou168 2013 Retrospective 175 
Avg of 5-

fold CV 

Gastric 

cancer 
CT Pathology - Patient 

Zhang169 2011 Retrospective 175 
Avg of 5-

fold CV 

Gastric 

cancer 
CT Pathology - Patient 

Urology 

Wu170  2018 Retrospective 103 34 
Bladder 

cancer 
MRI Pathology 

cN 
Patient 

Wu171  2017 Retrospective 118 38 
Bladder 

cancer 
CT Pathology 

cN 
Patient 

Debats172 2011 Prospective 146 

Avg of 

leave-one-

out CV 

Prostate 

cancer 
MRI CLOS - 

Lymph 

Node 

(n=2347) 
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CV, cross-validation; CT, computed tomography; MRI, magnetic resonance imaging; ERUS, endorectal ultrasound; SWE, shear-wave elastography; 

CEA, carcinoembryonic antigen; CLOS= classification based on level of suspicion  
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Figure. 7 Forest plots per surgical speciality 
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3.4.3 Quality Assessment 

According to the QUADAS-2 tool, overall risk of bias in patient selection was high in 15 (71%) 

studies and low in six (29%) studies. Risk of bias in the index test was high in 12 studies (57%) and 

low in nine (43%). Risk of bias in the reference standard test was high in one study (4.8%) and low 

in 20 studies (95.2%). Flow and timing had all 21 studies with unclear risk of bias. Overall 

applicability concerns were low; however, three studies were judged to have high applicability 

concerns (Figure. 8). Individual evaluation of the risk of bias and applicability are shown in Table 4.  
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Figure. 8 The quality assessment of 21 included studies by QUADAS-2 tool 
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Table 4 Assessment of bias risk (BR) and applicability concerns (AP) of included studies 

using the QUADAS-2 tool 

Study ID Patient 

Selection 

(BR) 

Index 

Test 

(BR) 

Reference 

Standard 

(BR) 

Flow 

and 

Timing 

(BR) 

Patient 

Selection 

(AP) 

Index 

Test 

(AP) 

Reference 

Standard 

(AP) 

Lu147 Low Low Low Unclear Low Low Low 

Jiang166 High High Low Unclear Low Low Low 

Ji164 High Low Low Unclear Low Low Low 

Ji165 High Low Low Unclear Low Low Low 

Wang149  High High Low Unclear Low Low Low 

Feng167  High Low Low Unclear Low Low Low 

Meng155  High High Low Unclear Low High Low 

Kan160 Low Low Low Unclear Low Low Low 

Yu161 High High Low Unclear Low Low Low 

Wu162 High High Low Unclear Low Low Low 

Chen156 Low Low Low Unclear Low Low Low 

Wu170  High Low Low Unclear Low Low Low 

Wu171  High High Low Unclear Low Low Low 

Huang148 High High Low Unclear Low Low Low 

Zhou168 High Low Low Unclear Low Low Low 

Cai157 Low High Low Unclear Low High Low 

Tse158 High High Low Unclear Low Low Low 

Cui159 Low High Low Unclear Low Low Low 

Debats172 Low High High Unclear Low High Low 

Kim163 High High Low Unclear Low Low Low 

Zhang169 High Low Low Unclear Low Low Low 
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3.4.4 Publication bias 

To assess publication bias of the studies, a funnel plot of diagnostic AUC was constructed. The shape 

of the funnel plot revealed asymmetry within included studies (Figure. 9), supporting information). 

The funnel plot indicates between study heterogeneity and small study effects.  
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Figure. 9 Funnel plot of the area under the receiver operating characteristic (AUC) in 17 studies  
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3.4.5 Diagnostic Accuracy 

Table 5 presents analysis of AUC achieved by the AI models and their performance in various 

surgical specialties. The one study using deep learning achieved the highest diagnostic accuracy with 

an AUC of 0.912 in urological malignancy. Based on the 17 studies that were included in the 

quantitative analysis, the highest AUC overall was seen in urological malignancy (AUC 0.895, 

95%CI, 0.810 - 0.980), followed by gynaecological malignancy (AUC 0.893, 95%CI, 0.847 - 0.939). 

Hepatobiliary and upper gastrointestinal malignancies had similar AUCs of 0.851 (95%CI, 0.761 - 

0.940) and 0.825 (95%CI, 0.789 - 0.860), respectively. It should be noted that the two hepatobiliary 

malignancy studies used their entire cohort from the training phase to test their radiomics model 

during the testing phase, likely overestimating the pooled AUC. Colorectal malignancies had the 

lowest AUC with a pooled value of 0.798 (95%CI, 0.744 - 0.852).  

 

In terms of radiologist performance, the highest pooled AUC was again seen in urological malignancy 

(AUC 0.774, 95%CI, 0.672 - 0.875), followed by gynaecological (AUC 0.749, 95%CI, 0.656 - 0.842) 

and upper gastrointestinal (AUC 0.740, 95%CI, 0.712 - 0.767) malignancy. The lowest two AUCs 

were seen in colorectal malignancy (AUC 0.636, 95%CI, 0.586 - 0.686) and hepatobiliary malignancy 

(AUC 0.633, 95%CI, 0.549 - 0.716). Heterogeneity among radiologist assessment pooling was low 

with an I2 value of 0%. Detailed assessment measures of deep learning, radiomics models and 

radiologists reported by individual studies are available in Table 6 and Table 7.   
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Table 5 Summary estimates for AUCs per surgical specialty 

Variable  Studies 

(n) 

Patients 

(n) 

Summary Estimate 

(95%CI) 

Heterogeneity 

(I2, %) 

Heterogeneity 

P Value 

 

Deep learning 

 

Colorectal 1 765 0.912 - - 

 

Radiomics  

Colorectal  4 607 
0.798  

(0.744 - 0.852) 
77.0 0.005 

Gynaecology  5 220 
0.893  

(0.847 - 0.939) 
41.8 0.143 

Hepatobiliary  2 402 
0.851 

(0.761 - 0.940) 
48.3 0.164 

Upper GI 4 1531 
0.825 

(0.789 - 0.860) 
42.5 0.156 

Urology  2 72 
0.895 

(0.810 - 0.980) 
0 0.918 

 

Radiologist  

 

Colorectal 2 181 
0.636 

(0.586 - 0.686) 
0 0.650 

Gynaecology 2 144 
0.749 

(0.656 - 0.842) 
0 0.566 

Hepatobiliary  2 402 
0.633 

(0.549 - 0.716) 
0 0.945 

Upper GI 1 1017 
0.740 

 (0.712 - 0.767) c 
- - 

Urology  2 72 
0.774 

(0.672 - 0.875) 
0 0.4327 

AUC, area under the receiver operating characteristic; CI, confidence interval; GI, gastrointestinal  
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Table 6 Results of individual studies 

First 

author 

P N TP F

P 

TN F

N 

PP

V 

,% 

NPV 

,% 

Sensitivity 

,% 

Specificity 

,% 

Accuracy 

,% 

AUC 95%CI Standard 

Error c 

Colorectal 

Meng155 63 83 46 c 
36 

c 

47 
c 

17 
c 

56.1 
c 

73.4 c 73.0 56.6 63.7 
0.697 

 
0.612 - 0.781 0.0431 

Lu147 - - - - - - - - - - - 0.912 - - 

Chen156 14 19 - - - - - - - - - 
0.857 

 
0.726 - 0.989 0.0671 

Huang14

8 
101 99 - - - - - - - - - 

0.788 

 
0.779 - 0.797 0.0046 

Cai157 - - - - - - - - 89 82 88 - - - 

Tse158  39 4 - - - - - - - - 91.0 - - - 

Cui159 75 153 
67 

c 

28 
c 

125 
c 

8 c 
70.7 

c 
93.8 c 89 82 88 0.855 c 0.803 - 0.898 c 0.0242 

Gynaecology 

Wang149 - - - - - - - - - - - 
0.922 

 
0.825 - 1 0.0446 

Kan160 b 14 29 
10 

c 
8 c 

21 
c 

4 c 
55.6 

c 
84.0 c 71.4 72.4 72.1 

0.754 

 
0.584 - 0.924 0.0867 

Yu161  
15 

c 

36 
c 

13 
c 

9 c 
27 

c 
2 c 59.1 93.1 86.7 75.0 78.4 

0.870 

 
0.747 - 0.948 0.0513 

Wu162 14 49 
14 

c 

15 
c 

34 
c 

0 c 
48.2 

c 

100.0 
c 

100.0 69.3 76.2 0.847 c 0.734 - 0.925 c 0.0487 

Kim163 
70 

c 

610 
c 

59 85 525 11 41 c 98 c 84 86 86 0.924 0.901-0.943 0.0107 

Hepatobiliary 

Ji164  
125 

a 

122 

a 
90 a 

29 

a 
93 a 

35 

a 

75.6 

a 
72.7 a 72.0 a 76.2 a 74.1 c 

0.800 

 
0.700 - 0.900 0.0510 

Ji165  68 a 87 a 59 a 
23 

a 
64 a 9 a 

72.0 

a 
87.8 a 86.8 a 73.6 a 79.4 c 

0.892 

 
0.810 - 0.975 0.0421 

Upper GI 
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Jiang 166 696 321 - - - - - - - - - 
0.829 

 
0.810 - 0.847 0.0094 

Feng167 - - - - - - 82.0 50.0 72.6 68.1 71.3 
0.764 

 
0.699 - 0.833 0.0342 

Zhou168 134 41 
120 

c 
8 c 

33 
c 

14 
c 

93.6 
c 

70.0 c 89.5 80.0 87.4 0.829 0.747 - 0.911 c 0.0418 

Zhang16

9 
134 41 

119 
c 

9 c 
32 

c 

15 
c 

93 c 67.6 c 88.5 78.5 86.2 c 0.876 0.804 to 0.948 c 0.0366 

Urology 

Wu170 12 22 - - - - - - - - - 
0.890 

 
0.744 - 1 0.0653 

Wu171 7 31 - - - - - - - - - 
0.899 

 
0.761 - 0.990 0.0584 

Debats17

2 
- - - - - - - - - - - 0.935 - - 

a Values extracted from testing set comprised of full cohort.   

b Values extracted from radiomic signature. 

c Manually calculated values using eq. (1,2,3,4,5,6) 

P, condition positive; N, condition negative; FN, false negative; FP, false positive; TN, true negative and TP, true positive; PPV, positive predictive 

value; NPV, negative predictive value; AUC, area under the receiver operating characteristic; CI, confidence interval 

 

 

 

 



88 
 

 

 

 

 

 

 

 

 

 

 

 

 

AUC, area under the receiver operating characteristic; CI, confidence interval 

 

 

Table 7 Comparison between radiomics and radiologist in included studies 

First 

Author  
Radiomics models Radiologist P Value 

 Sensitivity,

% 

Specificity, 

% 
AUC 95%CI 

Sensitivity,

% 

Specificity, 

% 
AUC 95%CI  

Colorectal 

Meng155 73.0 56.6 
0.697 

 
0.612 - 0.781 70.4 55.9 0.632 c 0.578 - 0.683 c - 

Chen156 - - 
0.857 

 
0.726 - 0.989 - - 0.671 0.511 - 0.831 0.012 

Gynaecology 

Yu161  86.7 75.0 
0.870 

 
0.747 - 0.948 - - 0.772 0.633 - 0.878 - 

Wu162 100.0 69.3 0.847 0.749 - 0.945 c 43.1 100.0 0.717 0.574 - 0.859 c - 

Hepatobiliary 

Ji164  72.0 a 76.2 a 
0.800 

 
0.700 - 0.900 43.2 a 83.6 a 0.630 0.520 - 0.740 - 

Ji165  86.8 a 73.6 a 
0.892 

 
0.810 - 0.975 - - 0.636 0.507 - 0.764 - 

Upper GI 

Jiang 166 - - 
0.829 

 
0.810 - 0.847 77.9 c 70.1 c 0.740c 0.712 - 0.767 c - 

Urology 

Wu170 - - 
0.890 

 
0.744 - 1 - - 0.727 0.573 - 0.882 - 

Wu171 - - 
0.899 

 
0.761 - 0.990 71.4 c 90.3 c 0.809 c 0.649 - 0.918 c - 
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3.5 Discussion 

Due to the widespread application of AI in medical imaging in recent times, radiomics and deep-

learning models are now being actively evaluated for LN staging in a variety of malignancy types. 

To our knowledge, this is the first systematic review of AI system performance in the diagnosis of 

metastatic regional LN in abdominopelvic malignancy. Our review demonstrates variability in the 

accuracy depending on tumour type, but a promising improvement upon radiologist’s interpretation, 

which is the current standard of care. In addition, it is possible that deep learning methods will further 

improve upon existing radiomics models. 

 

Radiomics is a set of hand-design features/characteristics that are automatically computed from the 

image. These features are then used by a classifier/algorithm to produce a diagnosis. Radiomics 

models, better known as nomograms, incorporate the radiomics signature with clinical variables to 

enable superior prediction by improving pre-test probability.148 On the contrary, deep-learning 

models, such as Convolutional Neural Networks (CNNs) are a relatively new type of algorithm that 

can produce the diagnosis by automatically learning the optimal features for producing such 

diagnosis, without human defined parameters.173 Deep learning models have been shown to perform 

relatively well in many tasks and to outperform radiomics models. However they require large data 

sets to achieve a competitive performance.174,175 

 

Most included studies investigating the use of AI in LN detection for abdominopelvic malignancies 

employed radiomics (n=20), with only one study using deep learning. There were few prospective 

studies (n=5), with the majority being retrospective with clinical data collected from case notes, and 

radiology and pathology reports. Several radiomics studies have critical limitations typical of 

diagnostic studies, such as limited sample size, lack of external validation and potential overfitting. 

Moreover, radiomics models developed using imaging obtained from a single scanner may produce 

a lack of generalizability and selection bias. Image acquisition from multiple scanner types is 
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preferable when developing an AI model for the general population. Significantly, several studies 

failed to address the disproportionate sample size between node positive and node negative patients 

and did not discuss how this imbalance may have affected the analysis. The reproducibility and 

clinical value of the AI model should be tested using an independent cohort. However, two of the 

radiomics studies used their entire cohort from the training phase during the testing phase of their 

model, rather than using a new cohort of patients.164,165 This probably meant that both studies would 

have over-optimistic AUCs, as their proposed models would re-identify the same imaging features 

seen in the training phase as in the testing phase. There was high heterogeneity among studies in both 

the radiomics models and radiology subgroups. The high heterogeneity observed among subgroups 

may have been attributed to differences in population and the small sample sizes in each included 

study. 

 

The use of an appropriate label for the presence or absence of lymphadenopathy in the development 

of radiomics and deep learning models is another issue to be considered. Both models typically 

incorporated the radiologist’s diagnosis into the algorithm and failed to designate the pathological or 

surgical diagnosis as the ground truth when labelling their training cohort. Therefore, model accuracy 

tended to bias towards the radiologist’s assessment, which is a problem since for many 

abdominopelvic malignancies radiologist assessment accuracy has historically been quite 

limited.11,142 In the future, we suggest labelling the training cohort with pathological staging, this 

alternative may help newly developed deep learning algorithms to outperform existing algorithms 

training with radiological staging.  

 

The current review found 11 studies that reported on diagnostic performance of the radiologist. Most 

studies approached the assessment of radiomics or deep learning models in isolation, but two studies 

specifically compared radiomics with the radiologist’s assessment and found a significant difference 

favouring the radiomics model.176,177 A recent meta-analysis performed by Liu and Faes et al. found 



91 
 

diagnostic performance of deep-learning models to be equivalent to that of health-care professionals 

for rectal cancer staging.155 However, evidence comparing deep-learning versus radiologists for LN 

metastases detection in abdominopelvic malignancies remains scarce, which limits our ability to 

extrapolate the diagnostic benefit of these systems in healthcare delivery. 

 

This meta-analysis has several limitations. Firstly, the analysis was not separated between per-patient 

and per-nodal basis, which could potentially have skewed the data in favour of a higher pooled AUC 

(by artificially increasing the n). Secondly, there were a substantial number of studies in which some 

of the required test performance measures were not published and subsequently the value was 

calculated manually. The variability between different patient populations, scanner technology, and 

criteria for LN metastases may also have affected the accuracy of the results. Lastly, due to the high 

heterogeneity of studies, the pooled estimated of the quantitative results must be interpreted with 

caution.  

 

3.6 Conclusion 

Radiomics models improve the diagnostic accuracy of lymph node staging for abdominopelvic 

malignancies in comparison with radiologist’s assessment. Deep learning models may further 

improve on this, but data remain limited. 
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CHAPTER 4: ARTIFICIAL INTELLIGENCE FOR PRE-OPERATIVE LYMPH NODE 

STAGING IN COLORECTAL CANCER: A SYSTEMATIC REVIEW AND META-

ANALYSIS.   
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4.1 Abstract 

Introduction: Artificial Intelligence (AI) is increasingly being used in medical imaging analysis. 

We aimed to evaluate the diagnostic accuracy of AI models used for detection of lymph node 

metastasis on pre-operative staging imaging for colorectal cancer. 

 

Methods: A systematic review was conducted according to PRISMA guidelines using a literature 

search of PubMed (MEDLINE), EMBASE, IEEE Xplore and the Cochrane Library for studies 

published from January 2010 to October 2020. Studies reporting on the accuracy of radiomics 

models and/or deep learning for the detection of lymph node metastasis in colorectal cancer by 

CT/MRI were included. Conference abstracts and studies reporting accuracy of image segmentation 

rather than nodal classification were excluded. The quality of the studies was assessed using a 

modified questionnaire of the QUADAS-2 criteria. Characteristics and diagnostic measures from 

each study were extracted. Pooling of area under the receiver operating characteristic curve 

(AUROC) was calculated in a meta-analysis.  

 

Results: Seventeen eligible studies were identified for inclusion in the systematic review, of which 

12 used radiomics models and five used deep learning models. High risk of bias was found in two 

studies and there was significant heterogeneity among radiomics papers (73.0%). In rectal cancer, 

there was a per-patient AUROC of 0.808 (0.739-0.876) and 0.917 (0.882-0.952) for radiomics and 

deep learning models, respectively. Both models performed better than the radiologists who had an 

AUROC of 0.688 (0.603 to 0.772). Similarly in colorectal cancer, radiomics models with a per-

patient AUROC of 0.727 (0.633-0.821) outperformed the radiologist who had an AUROC of 0.676 

(0.627-0.725). 
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Conclusion: AI models have the potential to predict lymph node metastasis more accurately in 

rectal and colorectal cancer, however, radiomics studies are heterogeneous and deep learning 

studies are scarce. 
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4.2 Introduction 

Colorectal Cancer (CRC) is the second most common malignancy and the third leading cause of 

cancer-related mortality in the world, accounting for 862,000 deaths annually.178 CRC nodal 

metastases play a pivotal role in disease-free survival and in determining appropriate adjuvant and 

neoadjuvant treatment.179 As a result of the application of preoperative staging MRI in patients with 

rectal cancer, neoadjuvant chemoradiation has become the standard of care in locally advanced 

tumours, resulting in improved local control and resectability. Owing to the lower accuracy of 

lymph node staging in colon cancer at diagnosis, neoadjuvant treatment is not as commonly 

recommended.15,139 However, this may change following the results of the recent Fluoropyrimidine, 

Oxaliplatin and Targeted Receptor Pre-Operative Therapy (FOXTROT) trial showing the safety and 

efficacy of neoadjuvant chemotherapy in patients with locally advanced colon cancer.180 Therefore, 

improved accuracy in clinical nodal staging at diagnosis may become critical in surgical planning 

and targeting effective neoadjuvant treatment for these patients.181,182  

 

Clinical staging of CRC is typically performed by radiologists assessing contrast enhanced 

Computer Tomography (CT) images in patients with colorectal cancer, and in addition, Magnetic 

Resonance Imaging (MRI) in patients with rectal cancer. The staging accuracy of CT and MRI is 

affected by multiple factors, such as equipment performance, standardised imaging protocols, the 

reporting radiologist’s experience, and patient-specific factors. Overall, published series have 

reported a 70% accuracy of diagnosing lymph node metastasis on CT, and 69% on MRI using 

standard criteria.11,183  

 

Current staging paradigms with its limited diagnostic and staging accuracy may be able to 

overcome by using Artificial Intelligence (AI) models. AI-enabled radiomics involves the 

extraction of a large number of investigator defined features from medical images using advanced 

computational algorithms.184 While radiomics models have been used to predict lymph node 
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metastasis in CRC with partial success, previous studies by Ding et al. and Wang et al. demonstrate 

that deep learning algorithms have the potential to identify more subtle patterns that may elude 

conventional radiological and statistical methods.185-187 Deep learning is a technique that involves 

the use of convolutional neural networks to self-educate an algorithm based on useful 

representations of images, thus bypassing the step of extracting manually designed features.66 In 

recent years, radiomics nomograms and deep learning models have started to make a meaningful 

contribution to radiological diagnoses.188 

 

The aim of this systematic review and meta-analysis is to evaluate the accuracy of AI models in 

diagnosing lymph node metastasis on CT and/or MRI in colorectal cancer patients. 

 

4.3 Methods 

4.3.1 Search Strategy 

This systematic review and meta-analysis was performed according to the recommendations of the 

Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines and 

was registered with the International Prospective Register of Systematic Reviews with an analysis 

plan prior to conducting the research. A systematic search of the Cochrane Library, PubMed 

(MEDLINE), EMBASE and IEEE Xplore databases was performed for studies published between 

January 1st 2010 and October 1st 2020. The following search terms were used: artificial intelligence, 

deep learning, convolutional neural network, machine learning, automatic detection, radiomics, 

radiomic, CT/MRI, lymph node, lymph node metastasis, colon, rectal, colorectal (Appendix B: 

Table 1). Reference lists of articles retrieved were also searched manually to identify additional 

eligible studies. 

  

4.3.2 Study Selection 
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Articles were included if they met the following criteria: (1) included patients with 

histopathological diagnosis of CRC; (2) developed or used a radiomics or deep learning algorithm 

to assess CT or MRI pre-operative lymph node metastasis detection and (3) published in English 

language. Exclusion criteria were (1) case reports, review articles, editorials, letters, comments, and 

conference abstracts; (2) studies focusing on segmentation or feature extraction methods only and 

(3) animal studies. After removing duplicates, titles and abstracts were reviewed for eligibility by 

two independent reviewers (SB and NNDV) using Covidence systematic review software (Veritas 

Health Innovation, Melbourne, Australia, available at www.covidence.org). Any disagreements 

were resolved by consensus arbitrated by a third author (TS). 

 

4.3.3 Data Extraction 

Data from selected full-text articles were reviewed for reporting on the type of radiomics or deep 

learning model, study characteristics and outcome measures. The extracted data included the first 

author, year of publication, country, study type, number of patients, sample size for diagnostic 

accuracy, age, imaging modality, type of malignancy, AI model, and referenced standard. Data 

related to the accuracy of the radiologists’ assessment derived from studies using clinical nodal 

staging or clinical nomograms solely based on N-staging was also collected.  To obtain diagnostic 

accuracy data of AI models and radiologists’ assessment, two-by-two contingency tables, 

sensitivity, specificity, accuracy, and Area Under the Receiver Operating Characteristic Curve 

(AUROC) were extracted or reconstructed. The primary endpoint was AUROC, secondary 

endpoints included sensitivity, specificity, and accuracy. 

 

4.3.4 Quality Assessment and Publication Bias 

The modified version as proposed by Sollini et al. of the Quality Assessment of Diagnostic 

Accuracy Studies (QUADAS-2) tool was used to access the methodological quality of the included 

studies.189 Minimum criteria for fulfilling each QUADAS-2 item were discussed by two reviewers 
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(SB and NNDV) and disagreements were resolved by consensus. Publication bias was assessed 

using the Egger regression test and is presented as a funnel plot of diagnostic AUROC. 

 

4.3.5 Statistical Analysis 

Meta-analysis was performed using testing set results of studies that presented absolute numbers for 

AUROC and 95% confidence intervals, contingency tables or provided sufficient information to 

derive the numbers manually. If results were not reported in an independent test set, cross validation 

or full test sample results are presented in this review. When results of different AI algorithms were 

reported in one article, the proposed algorithm with the highest diagnostic performance was 

analysed.  

 

Three software packages, MedCalc for Windows, version 16.4.3 (MedCalc Software, Ostend, 

Belgium), RevMan, version 5.3.21 and Meta-DiSc version 1.4, were utilised for statistical analysis. 

Missing data were computed using confusion matrix calculator or manually derived using formulas 

in Appendix B: Table 2. Pooling sensitivity, specificity and AUROC data was conducted using the 

Mantel-Haenszel method (fixed-effects model) and the DerSimonian Laird method (random-effects 

model).190,191 To assess heterogeneity between studies, the inconsistency index (I²) was used.192 

Heterogeneity was quantified as low, moderate, and high, with upper limits of 25%, 50% and 75% 

for I2, respectively. Forrest plots were drawn to show AUROC estimates in each study in relation to 

the summary pooled estimate. A funnel plot was constructed to visually assess publication bias. 

 

4.4 Results 

4.4.1 Study Selection 

A total of 68 studies were identified and 53 remained after removing duplicates. Review of titles 

and abstracts left 25 studies for full-text review. Finally, 17 studies were included in the systematic 
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review, 12 of which could be used in the meta-analysis and five studies were excluded due to 

insufficient information (Figure 10).47,157,185,186,193-205 
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Figure. 10 PRISMA flow chart outlining the selection of studies for review. 
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4.4.2 Study Characteristics 

Twelve studies used radiomics models and five used deep learning models (Appendix B: Table 3). 

All included studies were published between 2011 and 2020. Study design was retrospective in 11 

and prospective in six studies. Fourteen studies were single-center and three were multi-center. 

Patients were predominantly male with a median age of 60 years (54 - 64). Eight studies used MRI 

and nine used CT to train their algorithm. The type of malignancy was colorectal in three studies, 

colon only in two, and rectal only in 12. Eleven studies used per-patient diagnostic output (the 

patient is node positive or negative) and 6 studies used per-nodal diagnostic output of lymph node 

metastasis (each individual node analysed separately). Fifteen studies used the postoperative 

pathology report as reference standard, and one study used a radiology report as the reference 

standard. The reference standard for the one remaining study was not reported.   

 

4.4.3 Quality Assessment and Publication Bias 

The methodologic quality of included studies is summarized in Figure 11. As per the QUADAS-2 

tool, risk of bias in patient selection was low in 15 (88%) studies and high in two (12%) studies. 

Risk of bias in the index test was high in one study (6%) and low in 16 (94%). Risk of bias in the 

reference standard test was low in 15 (88%), high in one study (6%) and unclear in one study (6%). 

Flow and timing had all 17 studies with unclear risk of bias. Overall applicability concerns were 

low (Additional file 1: Table S4). Funnel plot assessment (Appendix B: Figure 1) showed no 

significant publication bias (Egger’s intercept 1.11, 95%CI -1.22 to 3.42, p=0.313). 
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Figure. 11 Summary of QUADAS-2 assessments of included studies. 
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4.4.4 Diagnostic Accuracy 

For the 12 studies that could be included in the quantitative analysis, 10 used radiomics and two 

used deep learning. For each outcome, summary estimates of sensitivity, specificity and AUROC 

were produced with 95% confidence intervals on a per-patient and per-nodal basis (Table 8). Pooled 

colorectal and rectal, per-patient and per-node detailed diagnostic measures reported by individual 

studies are shown in Table 9. The data for radiomics models in rectal cancer showed high 

heterogeneity with the exception of per-node AUROC and sensitivity. On a per-patient basis, 

radiomics in rectal cancer pooled AUROC was 0.808 (95%CI 0.739-0.876; Figure. 12) and pooled 

sensitivity and specificity were 0.776 (95%CI 0.685-0.851) and 0.676 (95%CI 0.608-0.739), 

respectively. On a per-nodal basis radiomics in rectal cancer pooled AUROC was 0.846 (95%CI 

0.803-0.890) and pooled sensitivity and specificity were 0.896 (95%CI 0.834-0.941) and 0.743 

(95%CI 0.665-0.811), respectively. On a per-patient basis radiomics in CRC pooled AUROC was 

0.727 (95%CI 0.633-0.821). The radiologist per-patient assessment in rectal cancer pooled AUROC 

was 0.688 (95%CI 0.603 to 0.772), sensitivity was 0.678 (95%CI 0.628-0.726) and specificity was 

0.701 (95%CI 0.667-0.733). Further, the radiologists per-patient assessment in CRC pooled 

AUROC was 0.676 (95%CI 0.627-0.725), sensitivity was 0.641 (95%CI 0.577-0.702) and 

specificity was 0.657 (95%CI 0.597-0.713). The deep learning data demonstrated low heterogeneity 

(I2=0.00%, p=0.829), and on a per-patient basis, deep learning models outperformed radiomics and 

radiologist assessment in rectal cancer with an AUROC of 0.917 (95%CI 0.882-0.952). Deep 

learning sensitivity and specificity were reported in a single study as 0.889 and 0.935, respectively 

(Table 9).      
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Table 8 Pooled results of per-patient and per-node diagnosis from deep learning, radiomics and 

radiologists 

Variable  Studies 

analysed  

Type of 

malignancy 

No. of 

studies 

Pooled 

results 

(95% 

CI) 

Heterogeneity 

(I2, %) 

Heterogeneity 

P Value 

Deep learning 

AUROC 

per-patient 185,186 

Rectal 2 0.917 

(0.882-

0.952) 

0.00 0.829 

Radiomics 

Sensitivity 

per-patient 

195,197,198 Rectal 3 0.776 

(0.685-

0.851) 

0.00 0.368 

Sensitivity 

per-node 

199,204 Rectal 2 0.896 

(0.834-

0.941) 

0.00 0.393 

Specificity 

per-patient 

 

195,197,198 Rectal 3 0.676 

(0.608-

0.739) 

75.4 0.017 

Specificity 

per-node 

 

199,204 Rectal 2 0.743 

(0.665-

0.811) 

87.8 0.004 

AUROC 

per patient 

194,203 Colorectal 2 0.727 

(0.633-

0.821) 

94.1 <0.0001 

AUROC 

per patient 

195-198,202 Rectal 5 0.808 

(0.739-

0.876) 

63.3 0.028 

AUROC 

per node 

199,204 Rectal 2 0.846 

(0.803-

0.890) 

0.00 0.433 

Radiologist 

Sensitivity 

per-patient 

194,203 Colorectal 2 0.641 

(0.577-

0.702) 

70.9 0.064 

Specificity 

per-patient 

 

194,203 Colorectal 2 0.657 

(0.597-

0.713) 

11.1 0.289 

Sensitivity 

per-patient 

195-198 Rectal 4 0.678 

(0.628-

0.726) 

57.5 0.070 

Specificity 

per-patient 

 

195-198 Rectal 4 0.701 

(0.667-

0.733) 

97.8 <0.0001 

AUROC 

per-patient 

194,203 Colorectal 2 0.676 

(0.627-

0.725) 

58.4 0.121 
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AUROC 

per-patient 

195-198,202 Rectal 5 0.688 

(0.603 

to 

0.772) 

93.4 <0.0001 

AUROC, area under the receiver operating characteristic; CI, confidence interval 
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Table 9 Results for deep learning radiomics models and radiologist in accuracy to detect lymph 

node metastasis 

First 

author 

T

P 

F

P 

T

N 

F

N 

PP

V, 

% 

NP

V, 

% 

Sensiti

vity 

,% 

Specifi

city 

,% 

Accur

acy, 

% 

AUR

OC 

95%CI Stand

ard 

Error 

c 

Deep learning 

Per-patient 

Ding 186 - - - - - - - - - 0.920  
0.876-

0.964 

0.022

4 

Wang185 40 4 58 5 
90.

9 

92.

1 
88.9 93.5 91.6 

0.912 

c 

0.842-

0.958 

0.029

6 

Glaser47 a - - - - - - - - - 0.860 - - 

Per-node 

Lu200 - - - - - - - - - 0.912 - - 

Li201 - - - - - - - - 94.4 - - - 

Radiomics 

Per-patient 

Eresen193 
29 

c 
6 c 

33 

c 

1

0 

c 

82.

8 c 

76.

7 c 
74.36 84.62 79.49 0.825 

0.778-

0.872 

0.024

0 

Li194 
69 

c 

44 

c 

12

8 c 

6

7 

c 

61.

06 

65.

64 
50.74 74.42 63.96 0.650 

0.583–

0.713 

0.033

1 

Yang195 
13 

c 
5 c 

21 

c 

2 

c 

73.

2 c 

90.

5 c 
85.0 82.0 83.0 0.780 

0.630-

0.920 

0.074

0 

Nakanish

i196 
- - - - - - - - - 0.900 

0.800-

0.990 

0.048

5 

Zhou197 
24 

c 

27 

c 

74 

c 

5 

c 

47.

1 

93.

7 
82.8 73.3 75.4 0.818 

0.731-

0.905 

0.044

4 

Meng 198 
46 

c 

36 
c 

47 
c 

1

7 
c 

56.

1 c 

73.

4 c 
73.0 56.6 63.7 

0.697 

 

0.612-

0.781 

0.043

1 

Chen202 - - - - - - - - - 
0.857 

 

0.726-

0.989 

0.067

1 

Huang203 - - - - - - - - - 
0.788 

 

0.779-

0.797 

0.004

6 

Per-node 

Zhu199 
18 

c 

21 

c 

32 

c 

1 

c 

46.

2 

97.

0 
94.7 60.4 69.4 c 0.812 

0.703−0

.895 

0.049

0 

Cai157 - - - - - - 89 82 88 - - - 

Tse205 - - - - - - - - 91.0 - - - 

Cui204 
11

1 c 

17 

c 

78 

c 

1

4 

c 

86.

7 c 

85.

0 c 
89 82 88 

0.855 

c 

0.801-

0.898 c 

0.024

7 

Radiologist 
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Per-patient 

Li194 d 
94 

c 

63 

c 

10

9 c 

4

2 

c 

59.

9 

72.

2 
69.1 63.4 65.9 0.708 

0.645–

0.765 

0.030

6 

Eresen193 
33 

c 

23 

c 

16 

c 

6 

c 

58.

9 c 

72.

7 c 
84.6 41.0 62.8 0.772 

0.718-

0.825 

0.027

3 

Yang195 41 41 43 
1

4 

50.

0 

75.

4 
74.6 51.2 60.4 

0.629 

c 

0.543-

0.709 c 

0.042

3 

Nakanish

i196 b 
71 0 

14

7 

2

9 

100

.0 

83.

5 
71.0 100.0 88.3 c 

0.855 

c 

0.805-

0.896 c 

0.023

2 

Zhou197 b 49 89 
21

5 

3

8 

35.

5 

85.

0 
56.3 70.7 67.5 0.635 

0.585-

0.683 

0.025

0 

Meng198 b 
88 

c 

96 

c 

12

4 c 

3

7 

c 

47.

8 c 

77.

0 c 
55.9 70.4 61.3 

0.632 

c 

0.578-

0.683 c 

0.026

8 

Chen202 - - - - - - - - - 0.671 
0.511-

0.831 

0.081

6 

Huang203 
58 

c 

30 

c 

69 

c 

4

3 

c 

65.

9 c 

61.

6 c 
57.4 c 69.7 c 63.5 c 

0.636 

c 

0.565-

0.702 c 

0.034

9 

Per-node  

Cui204 
39 

c 

10

1 c 

52 

c 

3

6 

c 

27.

7 c 

59.

1 c 
52 c 34 c 39.9 c 

0.430 

c 

0.365-

0.497 c 

0.033

7 

a Values extracted from training set.   

b Values extracted from total cohort. 

c Manually derived/reconstructed values using formulas from Additional file 1: Table S2 

d Values extracted from clinical models 

FN, false negative; FP, false positive; TN, true negative and TP, true positive; PPV, positive 

predictive value; NPV, negative predictive value; AUROC, area under the receiver operating 

characteristic; CI, confidence interval 
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Figure. 12 Forest plots of per-patient area under the receiver operating characteristic curve 

(AUROC). (a) Deep learning in rectal cancer, (b) radiomics in rectal cancer, (c) radiomics in 

colorectal cancer, (d) radiologist in rectal cancer and (e) radiologist in colorectal cancer. 
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4.5 Discussion 

To our knowledge, this is the first systematic review and meta-analysis of deep learning and 

radiomics performance in the assessment of lymph node metastasis in rectal and CRC patients. The 

results demonstrate a very high AUROC of 0.917 (95%CI, 0.882-0.952) when a deep learning 

model is used as a diagnostic tool compared with a radiomics model (AUROC 0.808, 95%CI 0.739-

0.876). The diagnostic performance of both deep learning and radiomics models surpassed that of 

the radiologist assessment with an AUROC of 0.688 (95%CI, 0.603 to 0.772).  

 

A number of research studies have already suggested AI has the potential to transform the 

healthcare sector particularly in areas where image recognition can be applied.206-208 In terms of 

colorectal diseases, AI has been applied to colonic polyps, adenomas, colorectal cancer, ulcerative 

colitis and intestinal motility disorders.209-212 Owing to the rapid development of AI technology, AI 

is bound to continually play an important role in the field of colorectal diagnosis and treatment.213 

Furthermore, the increase in computing power paired with the availability of large imaging 

databases offer the opportunity to develop more accurate AI algorithms.(10) At present, 

applications of deep learning to medical imaging are in vogue. However, deep learning models have 

several drawbacks, including variability in the images, large sample size, poor generalization and 

extensive computing resources. These models tend to rely on superficial data patterns and often fail 

when external factors such as different imaging acquisition parameters and types of scanners cause 

a distribution shift. 214 

 

In this review, most studies used radiomics (n=12), rather than deep learning methodology (n=5) 

largely owing to deep learning technology being more recent, but also because it requires specific 

expertise. This limits the ability to draw definitive comparisons between the two AI models as one 

is somewhat over-represented in the data. Additionally, most studies were retrospective in design, 

making them prone to confounding and selection bias. Several studies focused on the technical 
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aspects of the algorithm and did not address key limitations such as input variation, absence of 

clinical information (age, tumour site, patient history) and potential data overfitting often caused by 

noise in the data, overcomplicated models, and small sample sizes. Another issue, particularly 

common in deep learning studies, is the failure to report contingency tables or sufficient detail to 

enable reconstruction. We had to exclude five (29%) studies from the meta-analysis due to 

incomplete data. Most studies were conducted at a single-center and used internal verification or 

resampling methods (cross validation). Internal validation, however, tends to overestimate the 

AUROC due to the model’s lack of generalizability, limiting the integration of AI models into the 

clinical setting.215 Therefore, external validation prediction models using images from different 

hospitals are required to create reliable estimates on the level of performance at other sites.216 The 

number of studies diagnosing lymph node metastasis on a per-nodal basis in this meta-analysis is 

small. This is understandable, given that lymph node metastasis is staged on a per-patient basis in 

the clinical setting. Interestingly, five studies on rectal cancer extracted radiomics features from CT 

despite MRI being the gold standard imaging modality for lymph node detection in clinical practice.  

 

This meta-analysis has some limitations that merit consideration. Firstly, a relatively small number 

of deep learning studies were available for inclusion. This, along with the heterogeneity seen in 

radiomics studies, means that the summary estimates of AUROCs have to be interpreted with 

caution. Secondly, because of incomplete reporting of results by several studies, estimates of 

diagnostic performance were calculated using limited data. Thirdly, given the majority of the 

included studies originate from China, there is a potential for geographical bias. Lastly, the wide 

range of scanner types, imaging protocols, and criteria for lymph node metastasis used may have 

affected accuracy of results. Results for radiomics and the radiologist assessment were highly 

heterogenous, which may be attributed to the different imaging modalities and small sample sizes. 

In the future, diagnostic AI models will have to be rigorously evaluated on their clinical benefit in 

comparison to current standard of care, as not all are suitable for clinical practice. Therefore, studies 
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comparing AI with the clinicians’ performance are most valuable and are more likely to ensure safe 

and effective implementation of AI technology into daily practice.217,218   

 

4.6 Conclusion 

AI models have the potential to predict lymph node metastasis more accurately on a per-patient basis 

in colorectal cancer than the radiologists’ assessment, however, radiomics studies are heterogeneous 

and deep learning studies are scarce. With further development and refinement, AI models capable 

of accurately predicting nodal stage may represent a significant advance in pre-operative staging of 

colorectal cancer to better inform clinician and patient. 
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CHAPTER 5: A PROSPECTIVE STUDY OF DIAGNOSTIC ACCURACY OF 

MULTIDISCIPLINARY TEAM AND RADIOLOGY REPORTING OF PRE-OPERATIVE 

COLORECTAL CANCER LOCAL STAGING. 
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5.1 Abstract 

Introduction: The aim of this study was to correlate and assess diagnostic accuracy of preoperative 

staging at Multidisciplinary Team Meeting (MDT) against the original radiology reports and 

pathological staging in colorectal cancer patients. 

 

Methods: A prospective observational study was conducted at two institutions. Patients with 

histologically proven colorectal cancer and available preoperative imaging were included. 

Preoperative tumour and nodal staging (cT and cN) as determined by the MDT and the radiology 

report (CT and/or MRI) were recorded. Kappa statistics were used to assess agreement between 

MDT and the radiology report for cN staging in colon cancer, cT and cN in rectal cancer, and 

Tumour Regression Grade (TRG) in patients with rectal cancer who received neoadjuvant therapy. 

Pathological report after surgery served as the reference standard for local staging, and AUROC 

curves were constructed to compare diagnostic accuracy of the MDT and radiology report. 

 

Results: A total of 481 patients were included. Agreement between MDT and radiology report for 

cN stage was good in colon cancer (k=0.756, CI95% 0.686-0.826). Agreement for cT and cN and in 

rectal cancer was very good (kw=0.825, CI95% 0.758-0.892) and good (kw=0.792, CI95% 0.709-

0.875), respectively. In the rectal cancer group that received neoadjuvant therapy, agreement on 

TRG was very good (kw=0.919, CI95% 0.846-0.993). AUROC curves using pathological staging 

indicated no difference in diagnostic accuracy between MDT and radiology reports for either colon 

or rectal cancer. 

 

Conclusion: Preoperative colorectal cancer local staging was consistent between specialist MDT 

review and original radiology reports, with no significant differences in diagnostic accuracy 

identified. 
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5.2 Introduction 

Colorectal cancer is the third most frequently diagnosed cancer in the world, with 1.9 million new 

cases in 2020. It is also the second leading cause of cancer-related death, accounting for an 

estimated 935,000 deaths annually.1 Modern preoperative radiologic staging modalities, such as 

Computer Tomography (CT) and Magnetic Resonance Imaging (MRI), allow for fairly accurate 

pre-operative staging, and inform selection of the most appropriate management strategy for each 

patient. 

 

In rectal cancer, pelvic MRI preoperative staging provides essential information on tumour depth 

infiltration and perirectal nodal metastasis.219 These factors determine the need for neoadjuvant 

therapy and extent of surgical treatment. The role of preoperative CT imaging in colon tumours is to 

identify adjacent organ infiltration (T4b stage) and distant metastasis. Locoregional staging (T and 

N stage) is of marginal clinical utility given neoadjuvant therapy is not standard of care.220 

However, there is growing interest in administering neoadjuvant chemotherapy to decrease the risk 

of disease recurrence in locally advanced colon cancers.17 In view of this, accurate preoperative 

staging for both colon and rectal cancer assists patient selection for neoadjuvant therapy and 

surgical planning.11 

 

Most colorectal cancer guidelines state that all patients should be discussed at a Multidisciplinary 

Team Meeting (MDT);221,222 a collaborative forum for decision making attended ideally by 

surgeons, radiologists, pathologists, and medical and radiation oncologists.223 At the MDT, 

accurately documented preoperative staging assists decision making.224 In rectal cancer, for 

instance, discussion in the MDTs have shown to increase the proportion of patients receiving 

neoadjuvant treatment, resulting in better local disease control and higher curative surgery 

rates.225,226  
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Previous studies in this field have shown inconsistencies in staging documentation and 

demonstrated that preoperative staging accuracy with MDT recommendation to be significantly 

higher compared to the radiology report alone.227,228 However, most reports come from small and 

single-centre retrospective studies. Prospective data on the agreement and accuracy of MDT and 

radiology report in colorectal cancer are lacking, and in our context, with high quality specialised 

colorectal cancer staging reporting, it remains unclear whether the MDT discussion was upgrading 

or downgrading patient stage. Therefore, we aimed to prospectively investigate the level of 

agreement in preoperative staging between MDTs and radiology reports and to determine the 

accuracy of these modalities for diagnostic decision making in colorectal cancer.  

 

5.3 Materials and methods 

This prospective cohort study is reported according to the STARD statement229 and was approved 

by the Central Adelaide Local Health Network Human Research Ethics Committee 

(HREC/19/CALHN/73) and the Ethics Committee of a private tertiary care center (#116). This 

study was conducted in accordance with the Helsinki Declaration. The requirement for informed 

consent was waived given the low or negligible risk to patients.  

 

5.3.1 Patient selection 

Consecutive patients with histologically proven colon or rectal adenocarcinoma at two tertiary care 

centers (both in Adelaide, Australia) who were discussed at the weekly colorectal MDTs between 

March 1st 2019, and March 04th 2022, were considered for the study. Patients without available 

reports from CT/MRI of preoperative stages from MDT and radiology or cases where the reporting 

radiologist was also a member of the colorectal MDT were excluded. 
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5.3.2 Imaging and pathological evaluation 

Preoperative imaging for colon and rectal cancer included abdominopelvic CT with oral and 

intravenous contrast or water as a negative contrast. Rectal cancers underwent high resolution 

multiparametric MRI. Rectal cancer patients receiving neoadjuvant therapy underwent restaging 

MRI 8-10 weeks following completion of their chemoradiotherapy.21,230 All scans were reported by 

a specialist radiologist or junior radiologist supervised by a specialist radiologist at both institutions 

prior to MDT discussion. Reporting was performed in a standardised manner using the Cancer 

Council Australia recommended proforma.231 Staging at MDT was determined by one of three 

specialist radiologists with specific experience in gastrointestinal and pelvic MRI and oncologic 

imaging, colorectal surgeons, medical and radiation oncologists, and pathologists. At the MDT 

meeting, CT or MRI scans were reviewed against the radiology report by specialist radiologists in 

combination with the treating team. Patients were recorded as node negative during data collection 

if there was no mention of abnormal nodes in the radiology report. Tumours above the peritoneal 

reflection were defined as colon cancers. Agreement of preoperative staging and restaging Tumour 

Regression Grade (TRG)232 between MDT and radiology report for rectal cancer was also assessed. 

As previous studies have described227,233, patients with rectal cancer were divided into “early 

surgery” or “neoadjuvant therapy” subgroups. The early surgery group underwent surgery after 

diagnosis or received short-course radiotherapy without a wait period (thus had pathological staging 

that could be used as the reference standard). The neoadjuvant therapy group received Total 

Neoadjuvant Therapy (TNT), or standard long course Chemoradiotherapy (CRT), or short course 

radiotherapy with a wait period (thus had significant tumour downstaging and the pathological 

staging could not be used to determine pre-operative clinical staging accuracy). 

 

Tumours were grouped based on the presence or absence of tumour invasion through the muscularis 

propria into the surrounding mesorectum. Lymph node metastasis were defined as any visible node 

≥ 9mm on the short axis, nodes with mucinous signal characteristics, nodes 5-9mm with two 



121 
 

additional morphologically suspicious features (round shape, irregular borders or heterogenous 

contrast enhancement) and nodes >5mm with all three features present were considered to be 

positive.234 The presence of extramural vascular invasion (EMVI) was considered positive if tumour 

signal extends into an adjacent vascular structure from the primary tumour or involved lymph 

nodes, expanding and disrupting the vessel borders. A positive Circumferential Resection Margin 

(CRM) for upper and mid rectal tumours was defined as involvement of the mesorectal fascia or 

within 1mm of the mesorectal fascia. In low rectal tumours, tumour involving or within 1mm of 

inter-sphincteric plane or levator ani muscle was considered as involved CRM.231 For colon cancer, 

MDT and radiology reported cN-stage were compared with the pN-stage. In the rectal cancer: early 

surgery group, MDT and MRI reported cT and cN-stage were compared with the pT and pN-stages. 

For imaging and pathological staging, the 8th edition of the American Joint Committee on Cancer 

(AJCC) TNM staging was used.26  

 

5.3.3 Statistical analysis 

Descriptive statistics were used to describe baseline characteristics. Agreement between MDT and 

radiology report for clinical colon cancer Nodal (cN) staging was evaluated using Cohen’s kappa 

(k). A weighted Cohen’s Kappa (kw) was applied for matrices larger than 2x2 quadratic in the 

agreement evaluation for clinical Tumour stage (cT), cN staging, CRM and EMVI for all rectal 

cancers, and radiological TRG (TRG 1-5) criteria proposed by Patel et al.235 on restaging for the 

neoadjuvant therapy subgroup. A kappa and weighted-kappa values of <0.20 was considered 

‘Poor’, 0.21–0.40 as ‘Fair’, 0.41–0.60 as ‘Moderate’, 0.61–0.80 as ‘Good’, and 0.81–1.00 as ‘Very 

good’.236 The Fisher’s exact test was used for statistical analysis. Alpha was set at p<0.05. 

Diagnostic measures using pathological were assessed using Area Under the Receiver 

Characteristic Curve (AUROC), accuracy, sensitivity, specificity, Positive Predicted Value (PPV) 

and Negative Predicted Value (NPV). SPSS Statistics for Windows, version 27 (SPSS Inc., 



122 
 

Chicago, Ill., USA) and MedCalc for Windows, version 16.4.3 (MedCalc Software, Ostend, 

Belgium) were used for analysis.  

 

5.4 Results 

5.4.1 Baseline Characteristics 

A total of 481 patients were included (Figure. 13). Junior radiologists overseen by a specialist 

radiologist reviewed the scans of 151 (31%) patients, the remaining 330 (69%) patients had their 

scans reviewed by a specialist radiologist. The median age was 70 years (range 29-95) and 58% 

were male. Of these patients, 346 (72%) presented with colon cancer and 135 (28%) with rectal 

cancer. In rectal cancer, 55 (41%) received TNT, 10 (7%) received long-course CRT, 12 (9%) 

received short-course radiotherapy and 58 (43%) did not receive neoadjuvant treatment. The 

median number of resected lymph nodes for all resections was 18 (range, 1-124). Other 

demographics are summarized in Table 10.  
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Figure. 13 Patient selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 176 patients were ineligible for diagnostic 

testing  

• 68 neoadjuvant therapy subgroup 

• 54 palliative 

• 26 unresectable stage IV disease 

• 14 transanal endoscopic microsurgery 

• 6 high operative risk  

• 4 referred to other hospital   

• 2 non-compliant 

• 2 deceased prior to surgery 
 

 

Patients eligible for 

correlation analysis 

n=481 

 

57 Excluded patients       

• 9 clinical staging not discussed at MDT 
meeting  

• 48 reporting radiologist was also a 
member of the colorectal MDT 
 

 

Colon cancer 

 n=270 

Patients eligible for 

diagnostic testing 

 n=305 

Early surgery rectal 

cancer subgroup 

 n=35 

Identified colorectal cancer 

patients 

n=538 
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Table 10 Baseline characteristics of colorectal cancer patients 

Variable Value 

Age, median (range), y 70 (29-97) 

Sex, n (%)  

Male 281 (58) 

Female 200 (42) 

Tumour location  

Caecum  49 (10) 

Ascending colon 73 (15) 

Transverse colon 88 (18) 

Descending colon 19 (4) 

Sigmoid colon 117 (24) 

Rectum 135 (28) 

Neoadjuvant therapy †, n (%)  

TNT  55 (41) 

Long course CRT 10 (7) 

Short course RT 12 (9) 

None 58 (43) 

Operation  

Extended/Right hemicolectomy  153 (44) 

Left hemicolectomy 8 (2) 

Subtotal or total colectomy 19 (6) 

High anterior resection 66 (19) 

Low anterior resection 20 (6) 

Ultra-low anterior resection 20 (6) 

Hartmann's operation 32 (9) 

Abdominoperineal resection 10 (3) 

Proctocolectomy 3 (1) 

Pelvic exenteration  12 (4) 

Ileocolic resection 2 (1) 

No. of harvested LNs 18 (1-124) 

No. of positive LNs 0 (0-31) 

TNT, total neoadjuvant therapy; CRT, chemoradiotherapy; RT, radiotherapy; LNs, lymph nodes 

† Rectal cancer only 
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5.4.2 Agreement between MDT and radiology report 

In 346 colon cancer patients, agreement between MDT and radiology report for cN stage was good 

(k=0.756, CI95% 0.686-0.826, p<0.001). In 135 rectal cancer patients (total cohort), agreement for 

cT and cN was very good (kw=0.825, CI95% 0.758-0.892, p<0.0001) and good (kw=0.792, CI95% 

0.709-0.875, p<0.0001), respectively. In addition, the agreement for CRM and EMVI was very 

good (k=0.920, CI95% 0.851-0.989, p<0.0001) and very good (k=0.814, CI95% 0.740-0.914, 

p<0.0001), respectively. Out of 68 patients in the neoadjuvant therapy subgroup, 64 patients 

underwent re-staging MRI. The correlation of TRG between MDT and radiology report was very 

good (kw=0.919, CI95% 0.846-0.993, p<0.0001). 

 

5.4.3 Diagnostic accuracy: cN stage in colon cancer 

Diagnostic measures were calculated for 270 colon cancer patients with available histopathology 

(Table 11, Figure. 14). The AUROC showed no significant difference between the MDT and 

radiology report (0.667 vs. 0.667, p=1.00). The MDT had similar accuracy (69% vs. 70%), 

sensitivity (56% vs. 52%), PPV (63% vs. 65%) and specificity (78% vs. 81%) compared with the 

radiology report. The NPV was 72% in both the MDT and radiology report. 
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Table 11 Diagnostic results of MDT and CT report compared with pathological N staging for 

colon cancer 

N-stage pN P-value 

MDT cN pN0 pN1-2  

cN0 126 48 <0.0001 

cN1-2 36 60  

Report cN     

cN0 132 52 <0.0001 

cN1-2 30 56  

    

 MDT cN Report cN  

AUROC 0.667 (95%CI 0.607-0.723) 0.667 (95%CI 0.607-0.723) 1.00 

Accuracy (%) 69 (95%CI 63-74) 70 (95%CI 64-75)  

Sensitivity (%) 56 (95%CI 46-65) 52 (95%CI 42-62)  

Specificity (%) 78 (95%CI 71-84) 81 (95%CI 75-87)  

PPV (%) 63 (95%CI 54-70) 65 (95%CI 56-73)  

NPV (%) 72 (95%CI 68-77) 72 (95%CI 67-76)  

MDT, multidisciplinary team meeting; AUROC, area under the receiver operating characteristic 

curve, PPV, positive predictive value; NPV, negative predictive value. 
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Figure. 14 Receiver operating characteristic (ROC) curves comparing staging at MDT versus 

radiology report for (A) N stage in the colon cancer, (B) T-stage in the rectal cancer early surgery 

subgroup, (C) N-stage in the rectal cancer early surgery subgroup. 
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5.4.4 Diagnostic accuracy: cT and cN in early surgery rectal cancer subgroup 

Diagnostic measures were calculated for 35 early surgery rectal patients (Table 12, Figure. 14). 

MDT could differentiate low-risk (cT0-T2) from high-risk tumours (cT3-T4) with an 71% vs. 66% 

accuracy, 67% vs. 72% sensitivity, 76% vs. 59% specificity, 75% vs. 65% PPV, 68% vs. 67% NPV 

compared to the radiology report. The AUROC was not significantly different (AUROC 0.716 vs. 

0.655, p=0.273). The MDT differentiated between node positive (cN1-2) from node negative (cN0) 

tumours with an 77% vs. 74% accuracy, 45% vs. 55% sensitivity, 92% vs. 83% specificity, 71% vs. 

60% PPV, 79% vs. 80% NPV, compared to the radiology report. The AUROC was not significantly 

different (AUROC 0.686 vs. 0.689, p=0.944). 
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Table 12 Accuracy of clinical report and MDT tumour staging versus pathologic tumour 

stage in the early surgery subgroup for rectal cancer 

T stage pT P Value 

MDT cT T0-2 T3-4  

cT0-2 13 6 0.018 

cT3-4 4 12  

Report cT    

cT0-2 10 5 0.068 

cT3-4 7 13  

    

N Stage pN  

MDT cN N0 N1-2  

cN0 22 6 0.021 

cN1-2 2 5  

Report cN    

cN0 20 5 0.041 

cN1-2 4 6  

    

 MDT cT Report cT  

AUROC 0.716 (95%CI 0.538-

0.855) 

0.655 (95%CI 0.476-0.807) 0.273 

Accuracy (%) 71 (95%CI 54-85) 66 (95%CI 48-81)  

Sensitivity (%) 67 (95%CI 41-87) 72 (95%CI 47-90)  

Specificity (%) 76 (95%CI 50-93) 59 (95%CI 33-82)  

PPV (%) 75 (95%CI 55-88) 65 (95%CI 50-78)  

NPV (%) 68 (95%CI 52-81) 67 (95%CI 46-82)  

 MDT cN Report cN  

AUROC 0.686 (95%CI 0.507-

0.831) 

0.689 (95%CI 0.511-0.834) 0.944 

Accuracy (%) 77 (95%CI 60-90) 74 (95%CI 57-88)  

Sensitivity (%) 45 (95%CI 17-77) 55 (95%CI 23-83)  

Specificity (%) 92 (95%CI 73-99) 83 (95%CI 63-95)  

PPV (%) 71 (95%CI 36-92) 60 (95%CI 35-81)  

NPV (%) 79 (95%CI 68-86) 80 (95%CI 67-89)  

MDT, multidisciplinary team meeting; AUROC, area under the receiver operating characteristic 

curve, PPV, positive predictive value; NPV, negative predictive value. 
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5.5 Discussion 

This is the first study to prospectively compare diagnostic agreement between a specialised 

colorectal cancer MDT and the radiology report for colorectal cancer patients. Our results 

demonstrate a good level of diagnostic agreement between MDT and radiology report in the setting 

of colorectal cancer, and no statistically significant difference in diagnostic accuracy.  

 

In line with a meta-analysis and a Danish population-based study, we found that it remains 

challenging to correctly identify patients with nodal involvement. The meta-analyses of 13 studies 

found summary estimates for sensitivity and specificity concerning nodal involvement of 71% and 

67%, respectively,237 and the Danish study including 4834 patients found a sensitivity of 57%, 

specificity of 66% and an accuracy of 63% in predicting nodal involvement by the MDT.238 Similar 

results are observed in the current study, with a 56% sensitivity, 78% specificity and 69% accuracy. 

A recent study by Koh et al., in which nodal staging was assessed by an expert radiologist issuing 

formal CT reports, found a sensitivity and specificity of 85% and 40%, respectively.239 The 

differences in sensitivity and specificity between the current study and their findings can likely be 

attributed by their low sample size (n=23). Moreover, Hong et al. reported the radiologist diagnostic 

AUROC for malignant nodal status of 0.663 using the largest measured short-axis diameter of 

lymph node and presence of internal heterogeneity when combined.240 Our results demonstrate a 

similar AUROC of 0.667 for colon cancer nodal involvement staged on MDT and radiology report. 

This diagnostic difficulty likely arises from CT being unable to detect micrometastasis and 

distinguishing benign node enlargement secondary to peritumoral inflammation from those with 

metastatic disease. Considering the limited clinical significance of preoperative nodal staging in 

colon cancer and the concordance between MDT review and the radiology report found in our 

study, preoperative nodal staging during MDT could be avoided. Nevertheless, it is clear that MDT 

is still to be recommended to make clinical management decisions in general, and perhaps less 
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focus on repeat nodal staging would increase MDT efficiency and allow more cases to be discussed 

with that goal in mind. 

  

Preoperative rectal cancer staging is important for the choice of treatment and prognosis of the 

patient, as the cT and cN stage are key factors to determine whether a patient is best treated by 

immediate surgery or could benefit from neoadjuvant therapy first. In our study, the sensitivity, 

specificity and AUROC assessment of advanced T stage (T0-2 vs. T3-4) in the MDT (67% 

sensitivity, 76% specificity and AUROC 0.716) and radiology report (72% sensitivity, 59% 

specificity and AUROC 0.655) were lower than in the meta-analysis by Zhang et al. (pooled 

sensitivity 87%, specificity 73% and AUROC 0.918).241 This disparity in diagnostic AUROCs 

could be due to the different interpretation of perirectal tissue invasion, which, as pointed out by 

Zhang, could have an effect on diagnostic accuracy. In comparison with retrospective data from 

Australia and New Zealand, the accuracy of extramural tumour involvement on MDT staging was 

higher in our cohort (71% vs. 51% vs. 52%). 143,242  

 

The diagnosis of mesorectal Nodal involvement (cN) by MDT and radiology report in the early 

surgery rectal cancer subgroup drew mixed results compared to the pooled results of radiologists’ 

staging from Al-Sukhni et al. meta-analysis.144 Our sensitivity on radiology reporting compares 

poorly to their pooled result (55% vs 77%), while our specificity for the radiology report is much 

higher that reported in this meta-analysis (83% vs 71%). Similarly, when comparing our MDT and 

radiology report results to those reported by Park et al., they reported a higher sensitivity (78%) and 

lower specificity (83%).233 The sensitivity and specificity when adopting morphological and signal 

criteria to assess malignant nodes remains an area of controversy.243-245 Nevertheless, our study and 

Park et al. both used size and nodal characteristics to identify suspicion of nodal metastasis. The 

poor sensitivity in our cohort could be attributed to a small sample size, selection bias in the early 

surgery subgroup and by a higher size criterion (nodal short-axis diameter) being applied by the 
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radiologist. Individual colorectal unit thresholds also matter for calibration. It maybe that due to the 

high adoption of TNT at the two hospitals in questions, identification of true negatives has taken on 

relatively more importance than identification of true positives. 

 

There are several limitations to this study. Firstly, since rectal cancer patients with metastatic nodes 

undergo neoadjuvant treatment, selection bias is expected in the early surgery rectal cancer 

subgroup. Therefore, we are uncertain to what degree our findings can be generalized to patients 

with more advanced disease. Secondly, due to the small number of patients in the early surgery 

rectal cancer group, staging accuracy could not completely be assessed. Finally, given our small 

sample size, our findings need to be verified with a larger population study. MDT remains 

important for the discussion of management strategies and overall co-ordination of cancer care. 

 

5.6 Conclusion 

Preoperative colorectal cancer local staging was consistent between specialised MDT and original 

radiology reports, with no significant differences in diagnostic accuracy identified 

between MDT and the radiology report in nodal staging in colon cancer and tumour and nodal 

staging in the early surgery rectal cancer. 

 

 

 

 

 

 

 

 

 



133 
 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6: DEEP LEARNING TO PREDICT LYMPH NODE STATUS ON PRE-

OPERATIVE STAGING CT IN PATIENTS WITH COLON CANCER. 
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6.1 Abstract 

Introduction 

Lymph Node (LN) metastases are an important determinant of survival in patients with colon 

cancer, but remain difficult to accurately diagnose on preoperative imaging. This study aimed to 

develop and evaluate a deep learning model to predict LN status on preoperative staging Computed 

Tomography (CT). 

 

Methods 

In this ambispective diagnostic study, a deep learning model using a ResNet-50 framework was 

developed to predict LN status based on preoperative staging CT. Patients with a preoperative 

staging abdominopelvic CT who underwent surgical resection for colon cancer were enrolled. Data 

were retrospectively collected from February 2007 to October 2019 and randomly separated into 

training, validation, and testing cohort 1. To prospectively test the deep learning model, data for 

testing cohort 2 was collected from October 2019 to July 2021. Diagnostic performance measures 

were assessed by the Area Under the Receiver Operating Characteristic Curve (AUROC).  

 

Results 

A total of 1201 patients (median [range] age, 72 [28-98 years]; 653 [54.4%] male) fulfilled the 

eligibility criteria and were included in the training (n=401), validation (n=100), testing cohort 1 

(n=500) and testing cohort 2 (n=200). The deep learning model achieved an AUROC of 0.619 

(95%CI 0.507-0.731) in the validation cohort. In testing cohort 1 and testing cohort 2 the AUROC 

was and 0.542 (95%CI 0.489-0.595) and 0.486 (95%CI 0.403-0.568), respectively.  

 

Conclusion 

A deep learning model based on a ResNet-50 framework does not predict LN status on preoperative 

staging CT in patients with colon cancer.  
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6.2 Introduction 

Colon cancer is the fifth most diagnosed cancer amongst men and women worldwide. In 2020, over 

one million newly diagnosed cases and 576,858 deaths were attributed to this disease.1 The standard 

curative treatment remains complete resection of the primary tumour with regional Lymph Nodes 

(LN) and adjuvant chemotherapy in higher risk patients.246 The presence of LN metastasis is a 

vitally important determinant of prognosis and treatment options.15,247 Currently, these LNs are 

examined by specialist pathologists, with decisions about adjuvant therapy only possible after 

resection in patients without distant metastatic disease.248 In clinical practice, knowledge of 

preoperative LN involvement is rarely used given that neoadjuvant chemotherapy is typically only 

administered in patients with stage IV disease. Recently the Foxtrot trial revealed that neoadjuvant 

chemotherapy can be delivered safely with potential for pathological downstaging.17 However, this 

study included patients with a wide range of colon cancer staging. The limited diagnostic accuracy 

of pre-operative LN staging currently precludes the possibility of stratifying patients for 

neoadjuvant treatment. 

 

Computed Tomography (CT) is the most common imaging modality used in the preoperative 

staging of colon cancer. Despite excellent performance for the assessment of distant metastasis, the 

accuracy of preoperative assessment of LNs remains low; ranging from 54% to 64% using current 

diagnostic criteria based on size (LNs >1cm).11,249,250 Several studies have attempted to apply 

different diagnostic criteria based on size, signal intensity, and morphology. However, the results of 

these studies are varied, and to date, there are no validated imaging criteria for the preoperative 

assessment of metastatic LNs.237,251,252 

 

Artificial intelligence has demonstrated excellent diagnostic performance on preoperative LN 

staging in a variety of abdominopelvic malignancies.187 Deep learning as a subset of artificial 

intelligence is emerging as a more effective way to extract information from medical images in 
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comparison with traditional models. Deep learning has the advantage of automatically and 

adaptively learning spatial hierarchies of features through its convolutional neural layers.58 

However, evidence regarding the use of deep learning for predicting LN staging in patients with 

colon cancer is scarce. Therefore, this study aimed to develop and evaluate a deep learning model to 

predict LN status on preoperative staging CT in patients with colon cancer. 

 

6.3 Materials and methods 

6.3.1 Study design 

This ambispective diagnostic cohort study is reported using the Artificial Intelligence in Medical 

Imaging (CLAIM) guidelines.253 The study protocol was approved by the Central Adelaide Local 

Health Network Human Research Ethics Committee (HREC/19/CALHN/73) and St Andrew's 

Hospital Human Research Ethics Committee (#116). This study was conducted in accordance with 

the principles of the Declaration of Helsinki. Informed consent was waived for all study 

participants.The goal of this study was to develop and evaluate a deep learning model used to 

predict LN status based on preoperative staging abdominopelvic CT in patients with colon cancer.  

 

6.3.2 Data 

Patients diagnosed with colonic adenocarcinoma who underwent surgical resection with regional 

lymphadenectomy treated/referred to the Royal Adelaide Hospital or St. Andrews Hospital, South 

Australia were eligible for inclusion. All included patients underwent standard unenhanced or 

contrast-enhanced CT preoperatively. As a result, some of the preoperative staging CT scans 

originated from the referring hospitals. The training cohort, validation cohort, and testing cohort 1 

comprised of 401, 100, and 500 retrospectively included patients treated between February 2007 

and October 2019, respectively. Testing cohort 2 comprised of 200 prospectively included patients 

treated between October 2019 and July 2021 with the same enrollment criteria. Exclusion criteria 

consisted of patients whose original CT scans were corrupted or not available, received neoadjuvant 
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chemotherapy, or had missing pathological N stage. Baseline clinicopathological data including 

age, sex, tumour location, procedure type, and pathological TNM stage were extracted from a 

prospectively collected colorectal cancer database. 

 

6.3.3 Ground Truth 

The ground truth for N stage was determined on pathology assessment of the surgical specimen. 

Staging was based on the 8th edition of the American Joint Committee on Cancer (AJCC) TNM 

staging criteria.26 

 

6.3.4 CT image acquisition and processing 

All patients underwent 0.5mm-7mm slice, standard unenhanced or post-intravenous contrast-

enhanced preoperative CT of the abdomen and pelvis, with oral contrast or water as a negative 

contrast. We primarily analysed the portal venous phase CT images because of the clarity by which 

the LNs can be seen, however, we also analysed the few selected cases where only an arterial 

contrast-enhanced CT was available. A standard unenhanced CT was performed for patients with 

renal impairment or allergic to the intravenous contrast. Preoperative CT scans were exported from 

the Picture Archiving and Communication System (Carestream), or, through InteleViewerTM 

(Intelerad Medical Systems Inc) for CT scans performed in private imaging centers. Details 

regarding the CT systems are presented in Appendix C: Table 1. Axial plane sequences were 

isolated from the remainder of the CT images and anonymised using MicroDicom viewer (version 

3.2.7; www.microdicom.com). Each axial plane CT sequence was assigned a binary label based on 

the ground truth (pN0 vs pN1-2).    

 

Manual segmentation of regional LNs on axial slices was conducted by a science postgraduate 

student (S.B.) and a junior medical officer (W.S) trained and supervised by a senior colorectal 

surgeon (T.S.) who ensured the correct segmentation of the regional LNs during surgery using the 

http://www.microdicom.com/
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ITK-SNAP software (version 3.6.0; www.itksnap.org) (Appendix C: Figure. 1).254 Regional LNs 

were segmented according to the anatomical location of the primary tumour. For right sided 

tumours, segmentation included the mesenteric LNs around the ileocolic vessels (blood supply to 

the cecum and proximal ascending colon), right colic vessels (blood supply to the mid-distal 

ascending colon), and middle colic vessels (blood supply to the proximal to the mid-transverse 

colon) arising from the superior mesenteric vessels. For left-sided tumours, mesenteric LNs were 

segmented around the left colic vessels (blood supply to the distal third of the transverse colon, the 

splenic flexure, and descending colon) and sigmoid vessels (blood supply to the sigmoid colon) 

arising from the inferior mesenteric vessels. Manual LN segmentation was performed in the training 

and validation cohorts (n=501) (Appendix C: Table 2). 

 

6.3.5 Deep learning model 

We proposed a convolutional neural network consisting of a segmentation ResNet-50 model and a 

classification ResNet-50 model to predict LN metastasis based on CT imaging.255 The ResNet-50 

model consisted of 48 convolution layers, 1 MaxPool, and 1 Average Pool layer. In the 

segmentation task, the ResNet-50 (Figure. 15) was used as the encoder of the segmentation model, 

and the several transposed convolutions were followed by the residual blocks in the decoder 

(Figure. 16). We used the bilinear interpolation in the last layer to restore the feature map to the 

original resolution. The segmentation model played an assistant role in classification. We used the 

segmentation model to predict the positive slices in each volume which would be inputted into the 

classification model for diagnosis. The backbone (encoder) of the segmentation model was used to 

initialize the classification model. The ResNet-50 model, which has the same architecture as the 

segmentation encoder, was used in the classification task. The backbone was initialized by using the 

segmentation pre-trained weights. The pre-trained segmentation model was utilised for each volume 

to segment lymph nodes and select 40 slices as the candidates for diagnosis. These candidates 

shared the same semantic label as the volume. The classification model took these slices as input to 

http://www.itksnap.org/
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make the final decision. We used the binary cross-entropy loss to optimize the classification model 

(Figure. 17).  
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Figure. 15 ResNet-50 
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Figure. 16 Segmentation model 
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Figure. 17 Classification model 
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6.3.6 Performance evaluation 

The prediction model was assessed by measuring the Area Under the Receiver Operating 

Characteristic curve (AUROC), accuracy, sensitivity, specificity, Positive Predictive Value (PPV), 

and Negative Predictive Value (NPV).  

 

6.3.7 Statistical analysis 

The parametricity of continuous measures was determined using the Shapiro-Wilk test. Normally 

distributed data were expressed as mean (standard deviation) and nonparametric data as median 

(range). Categorical measures were presented as frequencies and percentiles. A comparison of 

groups was performed using Pearson’s chi-squared test concerning categorical data. Exact or Monte 

Carlo methods were used for calculations depending on the table type and data count. One-way 

ANOVA or Kruskal-Wallis test was performed with respect to continuous data. A P value less than 

0.05 was considered statistically significant. Statistical analysis was performed using IBM SPSS 

Statistics for Macintosh, version 28 (IBM Corp., Armonk, N.Y., USA) and MedCalc for Windows, 

version 20.027 (MedCalc Software, Ostend, Belgium). 

 

6.4 Results 

6.4.1 Baseline characteristics 

A total of 1201 patients (median (range) age, 72 (28-98) years; 653 (54.4%) male) were included in 

the study (Figure. 18). The clinicopathological characteristics for the training  cohort (n=401), 

validation cohort (n=100), training cohort 1 (n=500) and testing cohort 2 (n=200) are listed in Table 

13. A significant difference was found between gender, tumour location, operation, pathological T 

stage and N stage, the total number of LN harvested, and the total number of positive LNs. A 

significant difference was also found in the types of scanners and the thickness of CT scan slices 

(Supplementary Table S1-2). 
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Table 13 Clinicopathological characteristics of patients with colon cancer 

Variables Training 

Cohort 

(n=401) 

Validation 

Cohort 

(n=100) 

Testing 

Cohort 1 

(n=500) 

Testing 

Cohort 2 

(n=200) 

P-value 

Age, median (range), y 74 (28-97) 75 (30-91) 71 (29-98) 72 (29-94) 0.26 

Gender     0.03 

Male 241 (60.1) 54 (54.0) 251 (50.2) 107 (53.5)  

Female 160 (39.9) 46 (46.0) 249 (49.8) 93 (46.5)  

Tumor location      <0.001 

Right 222 (55.4) 83 (83.0) 302 (60.4) 118 (59.0)  

Left 179 (44.6) 17 (17.0) 198 (39.6) 82 (41.0)  

Operation     <0.001 

Right 

hemicolectomy 

186 (46.4) 43 (43.0) 237 (47.4) 91 (45.5)  

Extended 

right/transverse 

colectomy  

32 (8.0) 29 (29.0) 56 (11.2) 22 (11.0)  

Left 

hemicolectomy 

12 (3.0) 5 (5.0) 12 (2.4) 3 (1.5)  

HAR 130 (32.4) 8 (8.0) 148 (29.6) 48 (24.0)  

Hartmann’s  9 (2.2) 3 (3.0) 12 (2.4) 15 (7.5)  

Subtotal or total 

colectomy 

26 (6.5) 10 (10.0) 34 (6.8) 16 (8.0)  

Proctocolectomy 5 (1.2) 0 (0.0) 1 (0.2) 2 (1.0)  

Other a 1 (0.2) 2 (2.0) 0 (0.0) 3 (1.5)  

pT stage     0.003 

T0/Tis 8 (2.0) 2 (2.0) 17 (3.4) 4 (2.0)  

T1 49 (12.2) 8 (8.0) 59 (11.8) 26 (13.0)  

T2 36 (9.0) 5 (5.0) 83 (16.6) 20 (10.0)  

T3 220 (54.9) 55 (55.0) 244 (48.8) 94 (47.0)  

T4 88 (21.9) 30 (30.0) 97 (19.4) 56 (28.0)  

pN stage     0.004 

N0 261 (65.1) 47 (47.0) 324 (64.8) 117 (58.5)  

N1/2 140 (34.9) 53 (53.0) 176 (35.2) 83 (41.5)  

Total no. of LNs 

harvested, median 

(range) 

16 (1-154) 18 (1-60) 18 (1-51) 20 (1-124) <0.001 

No. of positive LNs, 

median (range) 

0 (0-18) 1 (0-32) 0 (0-18) 0 (0-12) 0.001 

LNs, Lymph nodes; HAR, high anterior resection 

Data are presented as number (percentage) of patients unless otherwise indicated. 

a Other: ileocolic resections and total pelvic exenterations 

 

 



147 
 

 

 

Figure. 18 Patient selection 
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6.4.2 Performance of the deep learning model 

In the validation cohort, the deep learning model achieved an AUROC of 0.619 (95%CI 0.507-

0.731) (Figure. 19). The deep learning model achieved a 96.2% (95%CI 87.0-99.5) sensitivity, 

12.8% (95%CI 48.3-25.7) specificity, 57.0% (95%CI 46.7-66.9) accuracy, 55.4% (95%CI 52.4-

58.4) PPV and 75.0% (38.9-93.4) NPV. For testing, the deep learning model yielded AUROC 

values of 0.542 (95%CI 0.489-0.595) in testing cohort 1 and 0.486 (95%CI 0.403-0.568) in testing 

cohort 2. The deep learning model showed high sensitivities of 96.6% (95%CI 92.7-98.7) and 

91.6% (95%CI 83.4-96.5), low specificities of 5.2% (95%CI 3.1-8.3) and 6.0% (95%CI 2.4-11.9) 

and low accuracies of 37.4% (95%CI 33.1-41.8) and 41.5% (95%CI 34.6-48.7) in the testing cohort 

1 and testing cohort 2, respectively. Of note, the model had PPVs of 35.6% (95%CI 34.8-36.5) and 

40.9% (95%CI 39.0-42.8) and NPVs of 73.9% (95%CI 53.2-87.6) in the 2 testing cohorts, 

respectively (Table 14). 
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Table 14 Diagnostic performance of the LN metastasis model for the assessment of LN metastasis 

in the validation and testing cohorts 

Cohort AUROC 

(95%CI) 

Accuracy 

(95%CI) 

Sensitivity 

(95%CI) 

Specificity 

(95%CI) 

PPV 

(95%CI) 

NPV 

(95%CI) 

Validation 

cohort 

0.619 

(0.507-

0.731) 

57.0 

(46.7-66.9) 

96.2 

(87.0-99.5) 

12.8 

(48.3-25.7) 

55.4 

(52.4-58.4) 

75.0 

(38.9-93.4) 

Testing 

cohort 1 

0.542 

(0.489-

0.595) 

37.4 

(33.1-41.8) 

96.6 

(92.7-98.7) 

5.2 

(3.1-8.3) 

35.6 

(34.8-36.5) 

73.9 

(53.2-87.6) 

Testing 

cohort 2 

0.486 

(0.403-

0.568) 

41.5 

(34.6-48.7) 

91.6 

(83.4-96.5) 

6.0 

(2.4-11.9) 

40.9 

(39.0-42.8) 

50.0 

(26.7-73.3) 

AUROC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, 

negative predictive value 
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Figure. 19 The Area Under the Receiver Operating Characteristic Curves (AUROCs) derived from 

the deep learning model for lymph node staging in the validation and 2 training cohorts. 
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6.5 Discussion 

In this ambispective diagnostic study, we attempted to develop a deep learning model to predict LN 

status on preoperative staging CT in patients with colon cancer. Our deep learning model showed a 

low predictive ability and reproducibility across validation and two different testing cohorts. 

Moreover, while the model had high sensitivity, it had very low specificity for malignant lymph 

nodes. To our knowledge, this is the largest diagnostic study to use deep learning for the prediction 

of LN staging on preoperative CT imaging for patients with colon cancer. 

 

Recently, two meta-analyses have shown that most artificial intelligence models used to predict LN 

staging in colorectal cancer are radiomics-based signatures.187,256 However, this approach relies on 

predefined handcrafted features that carry inherent observer bias which may cause relevant 

information contained in the image to be missed or removed.46 Consequently, we developed a deep 

learning model to try to overcome this problem by automatically learning from LN segmentations 

and CT images, a model that might uncover subtle relations between LNs characteristics and 

metastatic potential.52,257  

 

Somewhat surprisingly, our preliminary deep learning model predicted the LN stage in patients 

with colon cancer with a higher AUROC (0.860 vs 0.486) than the present study.47 The discrepancy 

in diagnostic performance can be attributed to weak points of the preliminary study which included 

a smaller sample size (123 versus 1201 in the present study) and differences in deep learning 

architecture (DenseNet258 versus ResNet-50 in the present study). Compared with a recent 

radiomics study, the model in this study achieved a worse diagnostic performance with lower 

AUROC (0.486 vs 0.825), specificity (6% vs 86%), and accuracy (42% vs 79%).51 Importantly, the 

present study included only patients with colon cancer, however, our meta-analysis reported a 

higher diagnostic performance by radiomics models in comparison with the present study (AUROC 

0.727 vs 0.486). Moreover, the significant difference in patient characteristics across cohorts may 
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have affected the model’s performance, however reports suggest that datasets with diverse patient 

cohorts mitigate bias of AI models.259,260 Taken together, these results suggest that a radiomics-

based approach using CT images is potentially more effective in predicting LN staging when 

compared to deep learning. 

 

In clinical practice, the advantages of using a deep learning model over routine preoperative 

radiological LN staging include saving the substantial cost of radiology reporting and potentially 

improved accuracy leading to better targeting of treatment options. In comparison with previous 

studies, the sensitivity of our deep learning model may be higher but the model achieved 

consistently lower AUCs, accuracy, and specificities.237,252,261 This finding suggests that radiologists 

have a higher diagnostic capability in staging regional LNs on CT imaging in patients with colon 

cancer compared to the deep learning model in this study.  

 

Several limitations of this study should be noted. First, segmentation of LNs was done manually, 

which inherently leads to interobserver and intraobserver variability. Variability in segmenting LNs 

might lead to inconsistency in the extracted imaging features and subsequently influence the 

classification of LNs. In the future, this could be addressed with the use of automated segmentation 

tools which are rather less time-consuming and remove interobserver variability. Second, CT 

images were collected from different scanners, resulting in wide heterogeneity in imaging hardware 

and acquisition protocols. Regardless, selecting a single imaging protocol is an unrealistic reflection 

of daily clinical practice and would have made the results non-generalizable. Third, the results of 

this study were from two institutions, so multicentre validation is required to assess reproducibility.  

 

6.6 Conclusion 

This study suggests a deep learning ResNet-50 model is not reliable in comparison with the current 

clinical standard in predicting LN status on preoperative staging CT in patients with colon cancer.  
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7.1 Abstract 

Introduction: Tracing muscle groups manually on CT to calculate body composition parameters 

and diagnose sarcopenia is costly and time consuming. Artificial Intelligence (AI) provides an 

opportunity to automate this process. In this systematic review, we aimed to assess the performance 

of CT-based AI segmentation models used for body composition analysis. 

 

Method: We systematically searched PubMed (MEDLINE), Embase, Web of Science and Scopus 

for studies published from January 1, 2011, to May 27, 2021. Studies using AI models for 

assessment of body composition and sarcopenia on CT scans were included. Excluded were studies 

that used muscle strength, physical performance data, DXA and MRI. Meta-analysis was conducted 

on the reported Dice Similarity Coefficient (DSC) and Jaccard Similarity Coefficient (JSC) of AI 

models. 

 

Results: 284 studies were identified, of which 24 could be included in the systematic review. 

Among them, 15 were included in the meta-analysis, all of which used deep learning. Deep learning 

models for Skeletal Muscle (SM) segmentation performed with a pooled DSC of 0.941 (95%CI 

0.923-0.959) and a pooled JSC of 0.967 (95%CI 0.949-0.986). Additionally, a pooled DSC of 0.967 

(95%CI 0.958-0.978), 0.963 (95%CI 0.957-0.969) and 0.970 (95%CI 0.944-0.996) was observed 

for segmentation of Subcutaneous Adipose Tissue (SAT), Visceral Adipose Tissue (VAT), and 

bone, respectively. SM studies suffered from significant publication bias, and heterogeneity among 

the included studies was considerable. 

 

Conclusions: CT-based deep learning models can facilitate the automated segmentation of body 

composition and aid in sarcopenia diagnosis. More rigorous guidelines and comparative studies are 

required to assess the efficacy of AI segmentation models before incorporating these into clinical 

practice. 
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7.2 Introduction 

Progressive loss of muscle mass sets in at approximately 50 years of age and is the primary body 

composition change associated with aging.105 Sarcopenia, characterised by the progressive and 

generalised loss of skeletal muscle mass and strength, is of particular clinical interest. 

Approximately 24% of adults aged 65-70 years old develop sarcopenia, largely attributed to 

reduced nutritional intake, physical inactivity and altered metabolic response.262,263 Sarcopenic 

patients have a higher risk of complications, longer hospital stay and mortality after surgery.264-266 

Sarcopenia and changes in body composition have also been identified as risk factors for poor 

clinical outcomes in patients with cancer, such as chemotherapy toxicity and worse overall 

survival.267-270  

 

Preoperative diagnosis of sarcopenia, by using body composition analysis, can therefore help 

clinicians to predict the patient’s fitness and assist in better triaging and targeting of treatments, as 

well as in obtaining appropriate risk assessment for informed consent.271 The standard approach to 

assess body composition is to measure the quantity and distribution of body fat and lean muscle 

mass.114,272 While several imaging techniques are available to measure body composition, Computer 

Tomography (CT) is used most commonly due to accuracy and wide availability. Since CT is a 

routine part of staging for most cancers, relevant images are available for most patients at relevant 

time points.273,274 However, despite the availability of CT, body composition parameters are not 

routinely calculated in clinical practice. This is, in part, due to the lack of readily available 

automated measuring tools, making body composition calculations burdensome, time consuming, 

and costly. In addition, manual segmentation analysis is limited by inter-observer variability, fat 

infiltration which results in overestimation of muscle mass, and practical considerations such as 

time restrictions that impact health service efficiencies.109  
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Artificial Intelligence (AI) has the potential to automate this labour-intensive task.275 Radiomics is a 

subset of AI and consists of models based on large scale quantitative analyses of hand-designed 

image features. Radiomics is most commonly used for classification and segmentation tasks.276 

However, radiomics hand-designed features are based on traditional metrics and do not have self-

learning possibility, limiting the future potential of these models. Deep learning models can 

overcome this by learning hierarchical features in a self-taught manner277 and have shown 

promising results in skeletal muscle and body composition segmentation on CT scans from cancer 

patients.278 In particular, deep Convolutional Neural Networks (CNNs) are able extract and select 

features jointly with classification within the optimization of the same architecture, hence allowing 

the performance to be calibrated in a systemic fashion.279 In the era of precision medicine, AI 

segmentation models capable of evaluating body composition could be integrated into daily clinical 

practice by streamlining sarcopenia diagnosis and providing additional data to examinations 

performed for various clinical indications. With routine accurate measurement of body composition, 

clinicians may have the added information required to prevent or delay adverse outcomes with a 

more tailored treatment plan, ultimately improving the care of sarcopenic patients.280 This review 

aims to assess the performance of CT-based AI segmentation models used for body composition 

analysis and sarcopenia diagnosis. 

 

7.3 Materials and methods 

This systematic review and meta-analysis was performed in accordance with the Preferred 

Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines.281 The protocol 

was registered a priori with the international prospective register of systematic reviews 

(PROSPERO; CRD42021257540). 
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7.3.1 Search Strategy 

We systematically searched PubMed (MEDLINE), Embase, Web of Science and Scopus for studies 

published between 1 January 2011 and 27 May 2021. The following search terms were used: 

artificial intelligence, deep learning, convolutional neural network, machine learning, automatic 

detection, vector machine, radiomics, radiomic, CT, age-related sarcopenia, body composition, 

dynapenia, myopenia, sarcopenic obesity, sarcopenia (Appendix D: Table 1). Reference lists of 

articles retrieved were searched manually to potentially identify additional eligible studies.  

 

7.3.2 Selection of studies 

Studies were included if they reported on the use of AI models to predict sarcopenia and/or estimate 

body composition from segmentation. The studies also included if they reported classification from 

CT scans at the level of C1-S5. Studies that used muscle strength, physical performance data, Dual-

Energy X-ray Absorptiometry (DXA), Bioelectrical Impedance Analysis (BIA) or Magnetic 

Resonance imaging (MRI) modalities were excluded. Case reports, editorials, letters, reviews, 

comments, autopsy studies, book chapters and conference abstracts as well as studies that were not 

written in English were also excluded. 

 

7.3.3 Data Extraction and quality assessment 

Two investigators (SB and WS) with more than 2 years’ experience in AI radiology research 

screened the studies on title, abstract and full text independently. Any disagreements were resolved 

by consensus or discussion with a third reviewer (TS) with over 10 years’ experience in surgery and 

clinical research. Information was extracted by the same two investigators (SB and WS) included 

first author, year of publication, total number of patients, testing sample, population, gender, age, 

segmented region, tissues, AI model and segmentation performance metrics (Dice similarity 

coefficient and Jaccard index). The quality of the included studies was independently assessed by 

the two investigators (SB and WS) using the CLAIM checklist based on a previous review 
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(Appendix D: Table 2).253,282 In case of uncertainty regarding a specific parameter a third reviewer 

(TS) was consulted to reach final consensus. 

 

7.3.4 Statistical Analysis 

All statistical analyses were conducted using StatsDirect software (Version 3.3, Stats Direct Ltd., 

Altrincham, UK). To estimate the overall performance of AI segmentation models, a random-

effects model meta-analysis was conducted, due to an observed high heterogeneity between 

included studies.192 To be included in the meta-analysis, studies needed to have reported the mean 

Dice similarity coefficient (DSC) and/or the Jaccard similarity coefficient (JSC), in combination 

with a Standard Deviation (SD), Standard Error (SE) or 95% Confidence Interval (95%CI). In 

studies where 95%CI was not reported, the values were manually derived using total sample size, 

sample mean and SD.283   

 

DSC and JSC are similarity measures used to quantify the accuracy of image segmentation 

methods. Both measures range from 0.0 (no overlap) to 1.0 (complete overlap) between automated 

and manual segmentations.284 In this meta-analysis a good overlap was considered when the DSC or 

JSC >0.8 and a poor overlap when DSC or JSC <0.5. Using the summary meta-analysis function, 

pooled estimates of the DSC and JSC were obtained. Data were presented as weighted mean 

[95%CI]. The effect of heterogeneity was assessed through the Higgins I2 metric. The Higgins I2 

test measures the degree of inconsistency between studies, where a value >75% indicates 

considerable heterogeneity and a value of <40% indicates low heterogeneity.283 Publication bias 

was determined on both Egger’s test and funnel plots.285 
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7.4 Results 

7.4.1 Study Characteristics 

A total of 24 studies were eligible for systematic review, from which 15 were eventually included 

for meta-analysis. The remaining 9 studies did not provide sufficient data (Figure. 20). Twenty-

three studies (96%) were retrospective, and one study had a prospective design (4%). There were 13 

(54%) single-centre and 11 (46%) multicentre studies. Nine studies (38%) comprised of oncological 

patients including lymphatic, head and neck, breast, lung, gastric, pancreatic, renal, ovarian and 

colorectal cancer. Four studies (17%) comprised of patients with benign conditions including 

COPD, risk of cardiac disease, liver cirrhosis, lumbar degeneration and four (17%) studies 

comprised of a mixture of oncologic and non-oncologic patients. The remining seven (29%) studies 

did not report their patient population. Of the studies that reported baseline characteristics, all were 

mixed gender studies with a predominant male population with an average age between 31 to 83 

years. Twenty-two studies (92%) measured body composition within the region of the L3 vertebrae. 

Fifteen studies reported different combinations of body composition comprising of Skeletal Muscle 

(SM), Subcutaneous Adipose Tissue (SAT), Visceral Adipose Tissue (VAT) and bone. The 

remaining nine studies measured only one component of body composition. Twenty-three studies 

(96%) used a deep learning model, and one study used radiomics as method for automating 

segmentation (Table 15). 
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Figure. 20 PRISMA flow chart of literature sear

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers). 
**If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools. 
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Table 15 Study Characteristics 

Author, 

year 

Study 

design 

Single/

Multi 

centre 

Patie

nts 

(testi

ng 

coho

rt)  

Populati

on 

Gender, 

Male/Fe

male 

Age, 

years 

Regi

on 

Tissu

es 

AI 

model 

Kroll et 

al., 

2021286 

Retrospe

ctive 

Single 

centre 

966 

(100) 

Healthy 

individua

ls with 

increased 

cardiac 

risk 

334/632 59.3±

9.6  

T4-

T9 

SAT, 

SM 

DL 

Borrelli 

et al., 

2021287  

Retrospe

ctive 

Multi 

centre 

124 

(74) 

Lympho

ma 

32/18 61 

(41-

81) 

L3 SAT, 

SM 

DL 

Amarasi

nghe et 

al., 

2021288 

Retrospe

ctive 

Multi 

centre 

66 

(42) 

NSCLC 42/24 66.94

±9.81 

L3 SM DL 

Ackerm

ans et 

al., 

2021289 

Retrospe

ctive 

Multi 

centre 

3413 

(233) 

Colorecta

l cancer, 

Ovarian 

cancer, 

Pancreati

c cancer, 

Polytrau

ma 

patients 

156/77a 74 

(10-

88)a 

L3 SAT, 

VAT

, SM  

DL 

Magudia 

et al., 

2021 290 

Retrospe

ctive 

Multi 

centre 

604 

(89) 

Pancreati

c cancer 

5192/693

6 

52±17 L3 SAT, 

VAT

, SM 

DL 

Zopfs et 

al., 2020 
291 

Retrospe

ctive 

Multi 

centre 

62  - 34/28 61.8±

15.7, 

62.1±

15 

T10 

– S5 

SAT, 

VAT  

DL 

Burns et 

al., 2020 
275 

Retrospe

ctive 

Single 

centre 

102 

(51) 

- 49/53 66.7±

5.8 

L1 – 

5  

SM DL 

Koitka 

et al., 

2020 292 

Retrospe

ctive 

Single 

centre 

40 

(10) 

- - - L3 SAT, 

SM, 

Bone 

DL 

Park et 

al., 

2020293 

Retrospe

ctive 

Multi 

centre 

946 

(479) 

Gastric 

cancer, 

Pancreati

c cancer, 

Sepsis, 

Healthy 

individua

ls 

571/375 56.1±

13.9, 

56.6±

14.2, 

61.1±

11.1 

L3 SAT, 

VAT

, SM 

DL 
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Liu et 

al., 

2020294 

Retrospe

ctive 

Single 

centre 

38 

(75) 

Minimall

y 

abnormal

, cancer 

25/13 31-83 L3 SAT, 

VAT

, SM 

DL 

Paris et 

al., 

2020295 

Retrospe

ctive 

Multi 

centre 

893 

(89) 

Renal 

and liver 

donors, 

Critically 

ill, 

Liver 

cirrhosis, 

Pancreati

c cancer, 

Renal 

cell 

carcinom

a 

46/43a 53.9±

15.6a 

L3 SAT, 

VAT

, SM 

DL 

Hemke 

et 

al.,20202

96 

Retrospe

ctive 

Single 

centre 

200 

(20) 

- 102/98 49.9±

17.7 

C1 – 

S4 

SAT, 

SM, 

Bone 

DL 

Blanc-

Durand 

et al., 

2020297 

Retrospe

ctive 

Multi 

centre 

1025 

(500) 

- - - L3 SM DL 

Nowak 

et al., 

2020298  

Retrospe

ctive 

Single 

centre 

1143 

(171) 

Cardiac 

comorbid

ities, 

Liver 

cirrhosis 

584/559 77±11 L3 SAT, 

VAT

, SM, 

Bone 

DL 

Dong et 

al.,20192

99 

Retrospe

ctive 

Single 

centre 

99 

(30) 

NSCLC 63/36 52.7±

12.3 

L3 SM Radio

mics 

Graffy 

et 

al.,20193

00 

Retrospe

ctive 

Single 

centre 

8037 

(9310

) 

- 3555/448

2 

57.1±

7.8 

L3 SM DL 

Barnard 

et 

al.,20193

01 

Retrospe

ctive 

Multi 

centre 

2084 

(209) 

Lung 

cancer 

1336/748 70-74 L3 SM DL 

Hashimo

to et 

al.,20193

02 

Prospecti

ve 

Single 

centre 

100 Healthy 

individua

ls, 

Degenera

tive 

lumbar 

disease 

36/64 51±5.

8, 

53.5±

7 

L4 VAT DL 

Dabiri et 

al.,20192

78 

Retrospe

ctive 

Multi 

centre 

3774 

(1327

) 

Colorecta

l cancer, 

- - L3  SAT, 

VAT

, SM 

DL 
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Breast 

cancer, 

Head, 

neck, and 

lung 

cancer 

Weston 

et al., 

2019303 

Retrospe

ctive 

Single 

centre 

1429 

(270) 

Pancreati

c cancer, 

Renal 

cell 

cancer, 

Transitio

nal cell 

carcinom

a, 

GI 

cancer, 

Liver 

cancer 

878/551 66.5±

11 

L3 SAT, 

VAT

, SM, 

Bone 

DL 

Liu et 

al., 

2019304 

Retrospe

ctive 

Single 

centre 

216 

(115) 

- - - L3 SM DL 

Gonzale

z et al. 

2018305 

Retrospe

ctive 

Multi 

centre 

3000 

(1000

) 

COPD - - T4 SAT, 

SM 

DL 

Wang et 

al., 

2017306 

Retrospe

ctive 

Single 

centre 

40 

(20) 

Ovarian 

cancer 

- - L3 SAT, 

VAT 

DL 

Lee et 

al., 

2017307 

Retrospe

ctive 

Single 

centre 

400 

(150) 

Lung 

cancer 

200/200 63±12 L3 SM DL 

 

NSCLC, non-small cell lung cancer, COPD, chronic obstructive pulmonary disease DL, deep 

learning; SM, Skeletal muscle, SAT, Subcutaneous adipose tissue; VAT, Visceral adipose tissue 

a Data extracted from testing sample. 
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7.4.2 Pooled performance using the DSC 

Fourteen studies assessed the performance of SM segmentation in deep learning models (Table 

16).278,288,290,293-295,297,298,300,301,303-305,307 Meta-analysis showed a pooled weighted mean DSC of 

0.941% (95%CI: 0.927-0.947). Eight studies assessed the performance of SAT segmentation in 

deep learning models.290,293-295,298,303,305,306 Meta-analysis pooled analysis showed a weighted mean 

DSC of 0.967 (95%CI: 0.958-0.978). Seven studies assessed performance of VAT segmentation 

deep learning models.290,293-295,298,303,306 The meta-analysis pooled weighted mean DSC was 0.963 

(95%CI: 0.957-0.969). Three studies suitable for meta-analysis assessed the performance of bone 

segmentation deep learning models.294,298,303 The weighted mean DSC was found to be 0.970 

(95%CI: 0.944-0.996) (Table 17, Figure. 21). 
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Table 16 DSC and JSC of AI segmentation models 

Author, year DSC 

SM 

(mean 

±SD) 

95%CI SAT 

(mean 

±SD) 

95%CI VAT 

(mean 

±SD) 

95%CI Bone 

(mean 

±SD) 

95%CI 

Kroll et al., 

2021286 

0.960 - 0.970 - - - - - 

Borrelli et al., 

2021287 

0.940 - 0.960 - - - - - 

Amarasinghe et 

al., 2021288 

0.92 ± 

0.06 

0.902 to 

0.938 

- - - - - - 

Ackermans et 

al., 2021289 

- - - - - - - - 

Magudia et al. 

2021290 

0.97 ± 

0.03 

0.964 to 

0.976 

0.98 ± 

0.02 

0.976 to 

0.984 

0.95 ± 

0.10 

0.929 to 

0.971 

- - 

Zopfs et al. 

2020291 

0.95 - - - - - - - 

Burns et al. 

2020275  

0.940 - - - - - - - 

Koitka et al. 

2020292 

0.9334 - 0.9623 - 0.973 - 0.9423 - 

Park et al. 

2020293 

0.96 ± 

0.02 

0.958 to 

0.962 

0.97 ± 

0.03 

0.968 to 

0.972 

0.97 ± 

0.01 

0.969 to 

0.971 

- - 

Liu et al. 

2020294 

0.928 

± 

0.038 

0.919 to 

0.937 

0.975 

± 

0.020 

0.970 to 

0.980 

0.943 

± 

0.032 

0.936 to 

0.950 

0.968 

± 

0.024 

0.963 to 

0.973 

Paris et al. 

2020295 

0.983 

± 

0.013 

0.98 to 

0.986 

0.986 

± 

0.016 

0.983 to 

0.989 

0.979 

± 

0.019 

0.975 to 

0.983 

- - 

Hemke et al. 

2020296 

0.96 - 0.97 - - - 0.93 - 

Blanc-Durand 

et al. 2020297 

0.93 ± 

0.03  

0.927 to 

0.933 

- - - - - - 

Nowak et al. 

2020298 

0.948 

± 

0.022 

0.945 to 

0.951 

0.979 

± 

0.014 

0.977 to 

0.981 

0.962 

± 

0.037 

0.956 to 

0.968 

0.992 

± 

0.005 

0.991 to 

0.993 

Dong et al. 

2019299 

0.870 - - - - - - - 

Graffy et al. 

2019300 

0.938 

± 

0.028 

0.937 to 

0.939 

- - - - - - 

Barnard et al. 

2019301 

0.94 ± 

0.04 

0.935 to 

0.945 

- - - - - - 

Dabiri et 

al.,2019 278 

0.9912 

±0.01 

0.991 to 

0.992 

- - - - - - 

Weston et al. 

2019303 

0.88 ± 

0.07 

0.872 to 

0.888 

0.93 ± 

0.06 

0.923 to 

0.937 

0.97 ± 

0.02 

0.968 to 

0.972 

0.95 ± 

0.05 

0.944 to 

0.956 

Liu et al. 

2019304 

0.9172 

± 

0.1325 

0.893 to 

0.941 

- - - - - - 
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Gonzalez et al. 

2018305 

0.928 

± 

0.051a 

0.925 to 

0.931 

0.942 

± 

0.070b 

0.938 to 

0.946 

- - - - 

Wang et al. 

2017306 

- - 0.9797 

± 

0.0145 

0.973 to 

0.986 

0.9150 

± 

0.0624 

0.888 to 

0.942 

- - 

Lee et al. 

2017307 

0.93 ± 

0.02 

0.927 to 

0.933 

- - - - - - 

 JSC 

Dabiri et 

al.,2019278 

0.9827

±0.018

8 

0.982 to 

0.984 

- - - - - - 

Weston et al. 

2019303 

0.92 ± 

0.04 

0.915 to 

0.925 

0.96 ± 

0.04 

0.955 to 

0.965 

0.90 ± 

0.13 

0.885 to 

0.915 

0.97 ± 

0.03 

0.966 to 

0.974 

Liu et al. 

2019304 

0.9986 

± 

0.0029 

0.998 to 

0.999 

- - - - - - 

DSC, Dice similarity coefficient; JSC, Jaccard similarity coefficient; SM, Skeletal muscle; SAT, 

Subcutaneous adipose tissue; VAT, Visceral adipose tissue;  

a Data extracted from right pectoralis muscle. 

b Data extracted from left subcutaneous fat. 
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Table 17 Pooled DSC and JSC of segmentation DL models 

 Reference

s of 

studies 

meta-

analysed  

Pooled 

estimate, 

weighted 

mean 

95%CI I2, % Egger’

s bias 

Egger’s 

95%CI 

Egger’s P-

value 

DSC 

SM 278,288,290,29

3-

295,297,298,30

0,301,303-

305,307 

0.941  0.923 to 

0.959 

99.9 -23.34 -44.16 to -2.52 0.031 

SAT 290,293-

295,298,303,30

5,306 

0.967  0.958 to 

0.978 

99.0 -7.15 -24.9 to 10.6 0.363 

VAT 290,293-

295,298,303,30

6 

0.963 0.957 to 

0.969 

94.0 -2.92 -8.03 to 2.18 0.201 

Bone 294,298,303 0.970 0.944 to 

0.996 

99.0 N/Aa N/Aa N/Aa 

JSC 

SM 278,303,304 0.967 0.949 to 

0.986 

99.9 N/Aa N/Aa N/Aa 

DSC, Dice similarity coefficient; JSC, Jaccard similarity coefficient 

a Egger could not be calculated given the low number of studies. 
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Figure. 21 Forest plots of included studies that assessed the performance of body composition segmentation using deep learning models. Legend: 

DSC, dice similarity coefficient; JSC, Jaccard similarity coefficient. (A) DSC of skeletal muscle, (B) DSC of subcutaneous adipose tissue, (C) DSC of 

visceral adipose tissue, (D) DSC of bone and (E) JSC of skeletal muscle.
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7.4.3 Performance using the JSC 

Three studies provided sufficient information to evaluate the SM segmentation performance of deep 

learning models using JSC (Figure. 21).278,303,304 Overall, the JSC was found to be 0.967 (95%CI: 

0.949-0.986).  

 

7.4.4 Publication bias 

Funnel plots for SM, SAT and VAT deep learning segmentation studies assessed in the meta-

analysis are shown in Figure. 22. Egger’s regression test on SM funnel plot showed a significant 

publication bias (SM intercept= -23.34 (95%CI: -44.16 to -2.52), P=0.031). SAT and VAT funnel 

plots yielded similar outcomes, although did not show a publication bias (SAT intercept= 0.363 

(95%CI: -24.9, 10.6), P=0.363; VAT intercept =-2.92 (95%CI: -8.03, 2.18), P=0.201) (Table 3). 

Egger’s bias in DSC bone and JSC SM could not be calculated due to low number of studies. 
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Figure. 22 Funnel plots for meta-analysis of (A) skeletal muscle, (B) subcutaneous adipose tissue 

and (C) visceral adipose tissue. 
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7.4.5 CLAIM adherence 

The CLAIM items of the 24 studies expressed as a percentage of the idea score according to the six 

key sections are shown in Figure. 23. In the Title/Abstract section, 83.3% of studies clarified the AI 

methodology in the title and performed a well-structured abstract. The remaining 16.7%, the AI 

method was unclear in the title, or the journal did not require a structured abstract. In the 

Introduction section, almost all studies (98%) clearly addressed the scientific and clinical 

background, howbeit 2% of studies had insufficient information on the clinical role of the AI 

approach. In the Methods section, 69.6% of studies described the study’s methodology in a 

thorough and clear manner, enabling reader to reproduce the experiments described and 26.4% of 

studies failed to report specific items in the methodology. A few items such as selection of data 

subsets, how missing data were handled and ensembling techniques were not applicable in 4% of 

studies. In the Results section, 55.8% of studies presented the results in sufficient detail, conversely 

44.2% of studies missed the demographic and clinical characteristics, 95% confidence intervals 

when displaying DSC/JCC and failure analysis of incorrectly classified cases was rare. In the 

Discussion section, 95.8% of studies discussed limitations and the implications of segmentation 

models in the clinical setting.  
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Figure. 23 CLAIM items of the 24 included studies expressed as percentage of the ideal score 

according to the six key domains. CLAIM, Checklist for Artificial Intelligence in Medical Imaging 
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7.5 Discussion 

This systematic review and meta-analysis summarizes the existing evidence on the performance of 

CT-based AI models for body composition and sarcopenia assessment. The principal finding was 

that despite substantial heterogeneity among the included studies, deep learning models had a good 

DSC and JSC for SM segmentation and a good DSC for SAT, VAT and bone segmentation.  

 

The criteria used to define sarcopenia is varied and may depend on measurement level, anatomy 

measured, software used and targeted population.308,309 In early 2018, the European working Group 

on Sarcopenia in Older People (EWGSOP) defined sarcopenia by low levels of measures for three 

parameters, (1) muscle strength, (2) muscle quality/quantity and (3) physical performance as an 

indicator of severity.310 Sarcopenia is of significant clinical importance, as the loss of skeletal 

muscle mass and strength leads to worse outcomes for patients with either malignant or benign 

disease. Diagnosis of sarcopenia requires CT imaging to account for total skeletal muscle cross-

sectional area at standardised lumbar vertebrae levels.274,311 Also at this level, adipose tissue and 

bone compartments can be assessed simultaneously. However, robust measures of body 

composition are difficult to obtain routinely in clinical practice due to cost, time and the training 

required.312 Our findings show that with current advances, AI models are able to perform automated 

body composition analysis using CT imaging quite effectively. Thus, detecting sarcopenia using 

CT-based AI models might prove valuable in identifying patients with such conditions not only 

when undergoing CT for the purpose of sarcopenia detection, but virtually on any CT scan 

regardless of the clinical indication. Moreover, incidental findings are frequently seen on routine 

CT examinations in sarcopenic patients and while most unexpected anomalies are unlikely to be 

clinically relevant, occasionally such a finding can be beneficial and even lifesaving.313-315  

 

This review does also highlight several methodological weaknesses within current literature 

describing the use of AI for body composition analysis. Most studies (96%) were retrospective in 
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design with an inherent risk of selection bias. A further 54% of studies were single-centred and 

limited by a small sample size and lack of adequate external validity. The use of different CT 

acquisition protocols (intravenous contrast, field of view, slice thickness, image quality, radiation 

dose protocols and scanner manufacturer) and geographically and ethnically diverse patient 

populations may have attributed to the heterogeneity observed. The combination of the use of 

varying imaging protocols in diverse patient populations may display different body composition 

phenotypes and muscle density, potentially leading to biases during training in some of the included 

studies, which may degrade overall segmentation accuracy. On the other hand, a small number of 

studies reported a patient population that skewed towards older and overweight patients often with 

substantial pathology. In these instances, a larger and more diverse sample would be required to 

create a more generalizable AI model.301 

 

The deep learning approach used in all studies included in the meta-analysis appeared to achieve 

high accuracy by using large manually segmented CT datasets fed into neural networks to learn 

image features and performs well segmenting lean muscle and adipose tissue.316 However, the high 

variability in sample size among included studies can lead to overfitting because certain subgroups 

may not be represented in small sample sizes, or underfitting given the low variance and high bias 

in large sample sizes. Most studies predominantly relied on manual extraction of each CT slice at a 

specific abdominal region in order to train the neural network architecture.295,298,301 However, recent 

studies using CNN based models have shown promising results with automatically selecting CT 

slices at L3 vertebral level.275,286,290,292,295,300,306,317-319 This could enable a more streamlined 

approach for muscle segmentation on CT imaging. Furthermore, to better assess muscle depletion, 

future studies may benefit from using multiple CT slices from different anatomical areas, to provide 

more detail on skeletal muscle mass.290,296 
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Current methods of AI body composition analysis, including sarcopenia and visceral adiposity, 

provide a binary result of whether the patient has the condition or not. This largely ignores baseline 

characteristics and complex parameters (e.g., grip strength and gate speed) that provide additional 

practical details for the diagnosis and severity of the condition. Also, AI segmentation models 

included in this review were tested on the assumption that the segmented slices were not affected by 

motion artefact, imperfect vertebral bodies, arms/hands in the field of view and/or surgical metal 

artefacts. All these factors, commonly encountered in patients, are known to negatively affect 

segmentation quality.298 Further refinements to the deep learning segmentation model will therefore 

be required to account for these artefacts. 

 

Lastly, several AI segmentation models can overestimate SM or VAT. Overlapping adjacent 

internal organs with SM due to similar CT Hounsfield units, can lead to a degree of 

misclassification.275,288,289,291  Similarly, every voxel (volume element of the patient’s tissue) with 

HU matching fat intensity is incorrectly counted as VAT, and should be excluded. This inability to 

distinguish VAT from fat within organs, reduces the accuracy of AI models.292 This suggests that 

current deep learning models have not been trained with CT images that fully represent the 

variability of SM or VAT areas. 

 

This review itself also has some limitations. Firstly, the pooled DSC and JSC of deep learning 

segmentation models should be interpreted with caution, as significant heterogeneity between the 

studies could have skewed the results. Secondly, body composition measures were extracted from 

different anatomical regions, thus the models would have extracted different semantic information 

within these regions, which may have affected the model’s performance across the studies. Thirdly, 

the present review focused on CT-based AI segmentation models only, while dual-energy X-ray 

absorptiometry, ultrasound and magnetic resonance imaging were not investigated. Lastly, although 
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we used the CLAIM checklist to score studies, this is not yet classed as a validated assessment tool 

to determine quality of studies. 

 

7.6 Conclusions 

CT-based deep learning models can facilitate the automated segmentation of body composition and 

aid in sarcopenia diagnosis. More rigorous guidelines and comparative studies are required to assess 

the efficacy of AI segmentation models before incorporating these into clinical practice. 
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PART 2: PREDICTION OF LOCAL RESPONSE TO CHEMORADIATION IN LOCALLY 

ADVANCED RECTAL CANCER 
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CHAPTER 8: DOES SARCOPENIA PREDICT LOCAL RESPONSE RATES AFTER 

CHEMORADIOTHERAPY FOR LOCALLY ADVANCED RECTAL CANCER? 
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8.1 Abstract 

Background: The predictive value of sarcopenia for tumour response to neoadjuvant 

chemoradiotherapy is unclear.  

Objective: This study investigates the association between sarcopenia and pathological tumour 

regression grade after neoadjuvant chemoradiotherapy in patients with locally advanced rectal 

cancer. 

Design: Retrospective cohort study from a prospectively collected database. Univariate logistic 

regression was performed to assess the association between sarcopenia and tumour response.  

Settings: This study was conducted at two tertiary care centres. 

Patients: Patients undergoing neoadjuvant chemoradiotherapy for locally advanced rectal cancer 

(T3/4, N0/+) between 2007-2018. 

Intervention(s): Sarcopenia was diagnosed using gender-specific cut-offs of lean muscle mass. 

Using the initial staging computed tomography, lean muscle mass was estimated using the cross-

sectional area of the psoas muscle at the level of the third lumbar vertebra, normalized for patient 

height. 

Main Outcome Measures: The primary endpoint was pathological tumour regression grade, 

defined as good (Tumour regression grade 0/1) vs poor (Tumour regression grade 2/3).  

Results: The study included 167 locally advanced rectal cancer patients with a median age of 60 

years (20-91), 132 in the non-sarcopenia group and 35 in the sarcopenia group. Eighty nine percent 

were stage III. Six patients (5.4%) had a sustained complete clinical response, one patient did not 

respond to treatment and opted for non-operative management, the remaining 157 (94.0%) 

proceeded to surgery. Pathological data revealed no significant difference between good tumour 

regression grade patients in the sarcopenia group compared with the non-sarcopenia group. 

Univariate analysis revealed BMI≥ 25 kg/m2 to be risk factors for good tumour regression grade 

(P=0.002). 

Limitations: This study was limited by its retrospective design and small sample size. 
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Conclusion: Sarcopenia is not a predictor of poor neoadjuvant chemoradiotherapy response in 

locally advanced rectal cancer patients. Increasing BMI was associated with good tumour 

regression grade. Future multicentred studies are warranted to validate this finding. 
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8.2 Introduction 

The current standard of care for patients with Locally Advanced Rectal Cancer (LARC) consists of 

a multimodal approach with neoadjuvant Chemoradiotherapy (nCRT) followed by Total Mesorectal 

Excision (TME) and adjuvant chemotherapy.320 This approach results in approximately 10 – 15% of 

patients achieving a pathological Complete Response (pCR) and offers most patients improved 

loco-regional control.35,321 As a result, a significant shift in focus has been placed towards 

predicting tumour response given the higher rate of 5-year disease-free survival and overall survival 

for these patients.322 A recent meta-analysis has shown patients with pCR are more likely to be 

older, have smaller and lower tumours, no clinical lymph node involvement and a wait time of more 

than 8 weeks prior to TME.323 Hence, this subset of patients may potentially avoid a morbid 

operation by adopting a ‘watch and wait’ treatment strategy, which has demonstrated similar 

survival results but better functional outcomes.324,325  

 

Despite its benefits nCRT, like many cancer therapies, often leads to adverse side effects such as 

loss of appetite, fatigue, vomiting and pain. This can cause significant weight loss and muscle 

degradation.326 This reduction of lean muscle mass is termed sarcopenia, and is also associated with 

aging and advanced disease.107 In 35% of gastrointestinal cancers, patients have cancer cachexia, a 

syndrome that includes sarcopenia alongside low Body Mass Index (BMI).327,328 Recently, 

sarcopenia has been demonstrated to predict poorer immediate post-operative and long term 

outcomes following colorectal cancer and other malignancy related surgery.116,329,330 Sarcopenia is 

also associated with increased toxicity and poor response rates to chemotherapy.331 Computed 

Tomography (CT) is routinely performed during the preoperative staging of cancer. To quantify 

lean muscle mass, the cross sectional area of the psoas on a single CT slice mid-lumbar vertebrae 

serves as convenient tool.114,332 Until now, only a single small study has examined the role of 

sarcopenia as a predictive factor for response to neoadjuvant chemoradiotherapy in LARC.333 More 
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studies are required to understand the relationship of sarcopenia with treatment response. This study 

aimed to assess the role of sarcopenia as a predictor of response to nCRT in LARC patients. 

 

8.3 Material and Methods 

This retrospective study is reported according to the STROBE (Strengthening The Reporting 

Observational studies in Epidemiology) statement334 and was approved by the Central Adelaide 

Local Health Network Human Research Ethics Committee (HREC/19/CALHN/73) and the St. 

Andrews Hospital Ethics Committee (#116). A waiver of consent for low-risk studies was obtained. 

 

8.3.1 Patients 

Patients diagnosed with LARC, treated with nCRT between 2007 and 2018 were retrospectively 

identified from the Royal Adelaide Hospital and St. Andrews Hospital prospectively collected 

colorectal cancer database. The decision to offer nCRT was made following appropriate 

Multidisciplinary Team (MDT) discussion. All patients included in this study were treated 

according to the protocol with nCRT and no patient received Total Neoadjuvant Therapy (TNT). 

Patients were excluded if tumour height was not recorded, or if they had not undergone staging CT 

accessible by our local Picture Archiving and Communication System (PACS) or InteleViewer™ 

Australia. The nCRT protocol during the study period consisted of 50.4Gy/25 fractions over 5 

weeks, with an option for dose escalation to 54Gy/27 fractions. Patients concurrently received 

either continuous infusional 5-fluorouracil (5-FU) or capecitabine orally 5 days per week. Surgery 

was scheduled 8-10 weeks after the radiotherapy for patients who did not achieve a clinical 

Complete Response (cCR) as assessed at flexible sigmoidoscopy +/- MRI at 8 weeks post 

completion of nCRT.  

 

Medical records were reviewed to collect demographic information, clinical and pathological 

outcomes and postoperative complications. Specific characteristics included age, gender, height, 
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weight, BMI, body composition, post-treatment sarcopenia, American Society of Anaesthesiologists 

(ASA) score, tumour location, clinical stage and cCR. Operative findings included operation type, 

surgical approach, postoperative outcomes, return to theatre, 30-day readmission and 30-day 

mortality. Pathological stage was established based on the 8th edition of the American Joint 

Committee on Cancer (AJCC)81 Colon and Rectal staging manual. Tumour Regression Grade (TRG 

on pathological assessment) was classified based on the AJCC/Modified Ryan Scheme.335 

 

8.3.2 Sarcopenia assessment 

To diagnose pre-treatment sarcopenia, lean muscle mass was measured on the pre-treatment staging 

CT scans based on the protocol defined by Jones et al. (2014).114 In the diagnosis of post-treatment 

sarcopenia, lean muscle mass was calculated using restaging CT scans. An investigator was trained 

by a consultant surgeon to identify the psoas muscle at the third lumbar vertebrae on CT. Using the 

PACS or InteleViewer measuring ruler the cross-sectional of the psoas muscle at this level was 

measured. Total Psoas Area (TPA) was calculated by multiplying the longest anterior to posterior 

and transverse muscle diameters (Figure. 24). TPA was normalized for the patient’s height squared 

(TPAmm2/m2) to calculate Total Psoas Area Index (TPAI). Sarcopenia was defined by using 

previously validated gender-specific cut-off points: <385 mm2/m2 in females and <545 mm2/m2 in 

males.328 Patients were further classified based on level of severity. Cut-offs for severe sarcopenia 

were <300mm2/m2 for females and <420mm2/m2 for males. Mild sarcopenia cut-off values were 

between 300≤TPAI<385 mm2/m2 for females and 420≤TPAI<545 mm2/m2 for males.336  
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Figure. 24 Assessment of total psoas area index (TPAI). TPAI was assessed by measuring the longest anterior to posterior and transverse diameter 

(green lines) of the right and left psoas muscle on an axial computed tomography (CT) slice at the level of the 3rd lumbar vertebrae and normalized for 

the patients’ height squared. 
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8.3.3 Endpoints 

The primary endpoint was TRG on pathology, defined as good (TRG 0/1) or poor (TRG 2/3).337 

Secondary endpoints included pathological Complete Response (pCR) and assumed Complete 

Response (CR), based on surgical resection specimen assessment or, in cases achieving cCR, the 

absence of local regrowth at 2 years follow-up (assumed CR).  

 

8.3.4 Statistical analysis 

Parametricity was determined using the Shapiro-Wilk test. Normally distributed data was expressed 

as mean  standard deviation and nonparametric data as median (range). Categorical data was 

expressed as numbers and percentages. Continuous data was compared using a student’s t test or the 

Mann-Whitney U-test depending on the type of distribution. Univariate logistic regression analysis 

included binary variables age (<61 or ≥ 61 years), BMI (<25 or ≥25kg/m2), presence of sarcopenia 

(yes or no) and sarcopenia severity (normal, mild sarcopenia, severe sarcopenia) as potential 

predictors of TRG. Categorical data was compared using chi-square test or Fisher’s exact test. A P-

value <0.05 was considered statistically significant. All statistical analysis was performed with 

SPSS 28.0 (IBM Corporation, Armonk, NY, USA). 

 

8.4 Results 

A total of 714 patients had a diagnosis of rectal cancer between 2007 and 2018, from which 167 

LARC patients who underwent nCRT were eligible for inclusion in this study. A total of 384 

patients were excluded for not receiving neoadjuvant treatment, 98 had short course radiotherapy, 

20 were palliative due to metastasis, six were referred to another hospital, one declined surgery and 

38 for not having height recorded or a preoperative CT scan to analyse (Figure. 25). The median 

age was 60 years (20-91) and 66.5% were male. There were 35 (21.0%) sarcopenic patients and 132 

(79.0%) were non-sarcopenic. The median BMI was significantly higher in the non-sarcopenic 

group (NSG) than in the sarcopenic group (SG) (27.38 vs. 24.54 kg/m2, P<0.003). The mean TPA 
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and mean TPAI were both significantly higher in the NSG compared to the SG (1947.50 vs. 

1163.42mm2, P<0.001; 647.73 vs. 379.02mm2/m2, P<0.001; respectively). Tumours were 

predominantly low rectal tumours (64.7%), 74.3% were cT3 and 89.8% were clinically node 

positive (cN+). Of the 167 LARC patients, one did not achieve a cCR and declined surgery, nine 

(5.4%) had cCR (and entered a watch and wait program) of which three local recurrences at 2 years 

were seen in the SG. Overall, six patients achieved a sustained cCR and 157 (94.0%) patients had 

surgical resection. Demographics and clinical findings are summarized in Table 18. 
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Figure. 25 Patient selection flowchart. 
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Table 18 Demographics and clinical findings 

Variables Total (n=167) Sarcopenic 

(n=35) 

Non-

sarcopenic 

(n=132) 

P value 

Age (years) 60 (20-91) 60 (20-91) 60 (23-84) 0.33 

Gender    0.19 

Male 111 (66.5) 20 (57.1) 91 (68.9)  

Female 56 (33.5) 15 (42.9) 41 (31.1)  

BMI (kg/m2) 26.87 (12.57-

56.64) 

24.54 (12.57-

34.20) 

27.38 (15.42-

56.64) 

0.003 

Body composition     

TPA (mm2) 1778.00 

(616.88-

3979.07) 

1163.42 (616.88-

1703.00) 

1947.50 

(930.00-

3979.070 

<0.001 

TPAI (mm2/m2) 605.15 (240.97-

1393.18) 

379.02 (240.97-

540.40) 

647.73 (387.61-

1393.18) 

<0.001 

Post-treatment 

sarcopenia 

   N/A 

Yes N/A N/A 5 (3.8)  

No N/A N/A 42 (31.8)  

Missing N/A N/A 85 (64.4)  

ASA    0.52 

1-2 91 (56.9) 21 (61.8) 70 (55.6)  

3-4 69 (43.1) 13 (38.2) 56 (44.4)  

Tumour location    0.95 

Upper (>12 cm) 10 (6.0) 2 (5.7) 8 (6.1)  

Mid (8-12 cm) 49 (29.3) 11 (31.4) 38 (28.8)  

Low (<8 cm) 108 (64.7) 22 (62.9) 86 (65.2)  

Clinical T stage    1.00 

cT2 8 (4.8) 1 (2.9) 7 (5.3)  

cT3 124 (74.3) 27 (77.1) 97 (73.5)  

cT4 35 (21.0) 7 (20.0) 28 (21.2)  
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Clinical N stage    0.13 

N0 17 (10.2) 6 (17.1) 11 (8.3)  

N+ 150 (89.8) 29 (82.9) 121 (91.7)  

cCR  9 (5.4) 2 (5.7) 7 (5.3) 1.00 

Sustained cCR 6 (3.6) 1 (2.9) 5 (3.8) 1.00 

Values are given as n (%) or median (range) 

BMI, body mass index; TPA, total psoas area; TPAI, total psoas area index; ASA, American 

Society of Anaesthesiologists; cCR, complete clinical response 
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Operative findings are summarized in Table 19. There was no significant difference between the 

groups in procedure, surgical entry, postoperative complications, return to theatre, 30-day 

readmission, 30-day mortality and length of hospital stay.  
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Table 19 Operative findings 

Variables Total  

(n=157) 

Sarcopenic 

(n=33) 

Non-sarcopenic 

(n=124) 

P value 

Procedure    0.22 

Hartmann’s 8 (5.1) 3 (9.1) 5 (4.0)  

LAR 10 (6.4) 4 (12.1) 6 (4.8)  

ULAR 79 (50.3) 12 (36.4) 67 (54.0)  

APR 52 (33.1) 13 (39.4) 39 (31.5)  

Proctocolectomy 5 (3.2) 1 (3.0) 4 (3.2)  

Exenteration 3 (1.9) 0 (0.0) 3 (2.4)  

Surgical entry    0.34 

Open 145 (92.4) 31 (93.9) 114 (91.9)  

Laparoscopic 4 (2.5) 1 (3.0) 3 (2.4)  

Hybrid 2 (1.3) 1 (3.0) 1 (0.8)  

Robotic 6 (3.8) 0 (0.0) 6 (4.8)  

Postoperative 

complications 

    

Anastomotic leaka 3 (3.4) 0 (0.0) 3 (4.1) 1.00 

Prolonged ileus 41 (26.1) 10 (30.3) 31 (25.0) 0.54 

Wound infection 7 (4.5) 1 (3.0) 6 (4.8) 1.00 

Overall complications  81 (51.6) 14 (42.4) 67 (54.0) 0.24 

Return to theatre 14 (9.0) 3 (9.1) 11 (8.9) 1.00 

30-day readmission 7 (4.5) 0 (0.0) 7 (5.7) 0.35 

30-day mortality 2 (1.3) 1 (3.0) 1 (0.8) 0.38 

Length of hospital 

stay (days) 

10 (4-93) 10 (5-44) 10 (4-93) 0.96 

LAR, low anterior resection; ULAR, ultra-low anterior resection; APR, Abdominoperineal 

resection  

a Anastomotic leak was calculated including only patients with an anastomosis in the denominator. 
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Pathological data revealed a good TRG in 9 (27.3%) patients in the SG compared to 54 (43.5%) in 

the NSG, although the difference was not significantly different (P=0.09). pCR was seen in 4 

(12.1%) patients in SG and in 18 (14.5%) patients in the NSG, but this did not reach significance 

(P=1.00). Assumed CR was found in 5 (14.3%) patients in the SG and 23 (17.4%) patients in the 

NSG, however there was no significant difference between the groups (P=0.66). There was no 

significant difference between the groups with respect to pathological T, N, M stage and AJCC 

stage (Table 20). Univariate analysis revealed BMI≥ 25 kg/m2 to be the only factor affecting good 

TRG (P=0.002). Age, BMI, presence of sarcopenia and level of sarcopenic severity were not found 

to increase the likelihood of pCR and assumed CR (Table 21). 
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Table 20 Pathological findings 

Variables Total  

(n=157) 

Sarcopenic 

(n=33) 

Non-sarcopenic 

(n=124) 

P value 

Pathologic T stage    0.87 

ypT0 23 (14.6) 4 (12.1) 19 (15.3)  

ypT1 5 (3.2) 1 (3.0) 4 (3.2)  

ypT2 25 (15.9) 4 (12.1) 21 (16.9)  

ypT3 83 (52.9) 18 (54.5) 65 (52.4)  

ypT4 21 (13.4) 6 (18.2) 15 (12.1)  

Pathological N stage    0.91 

ypN0 89 (56.7) 19 (57.6) 70 (56.5)  

ypN1-2 68 (43.3) 14 (42.4) 54 (43.5)  

Pathological M stage    0.95 

Mx 13 (8.3) 2 (6.1) 11 (8.9)  

M0 110 (70.1) 24 (72.7) 86 (69.4)  

M1 34 (21.7) 7 (21.2) 27 (21.8)  

Pathologic AJCC stage    0.85 

0 22 (14.0) 4 (12.1) 18 (14.5)  

1 20 (12.7) 3 (9.1) 16 (12.9)  

2 36 (22.9) 10 (30.3) 28 (22.6)  

3 45 (28.7) 9 (27.3) 36 (29.0)  

4 34 (21.7) 7 (21.2) 27 (21.8)  

TRG    0.09 

TRG 0/1 63 (40.1) 9 (27.3) 54 (43.5)  

TRG 2/3 94 (59.9) 24 (72.7) 70 (56.5)  

pCR    1.00 

Yes 22 (14.0) 4 (12.1) 18 (14.5)  

No 135 (86.0) 29 (87.9) 106 (85.5)  

Assumed CR a    0.66 
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Yes 28 (16.8) 5 (14.3) 23 (17.4)  

No 139 (83.2) 30 (85.7) 109 (82.6)  

Values are given as n, n (%) or median (range) 

AJCC, American Joint Committee on Cancer; pCR, pathological complete response; TRG, tumour 

regression grade  

a The denominator was 167 patients for the total cohort, 33 patients for SG and 124 for the NSG. 
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Table 21 Univariate regression analysis 

Variables Parameter Category Odds ratio (95% CI) P value 

TRG Age <61 years Reference - 

  ≥ 61 years 0.835 (0.441-1.582) 0.58 

 BMI <25 (kg/m2) Reference - 

  ≥ 25 (kg/m2) 3.080 (1.501-6.321) 0.002 

 Sarcopenia No Reference - 

  Yes 0.486 (0.209-1.131) 0.09 

 Severity of 

sarcopenia 

   

  Non-sarcopenic Reference - 

  Mild sarcopenic 0.897 (0.357-2.254) 0.82 

  Severe sarcopenic 8.024e-10 (0.000) 0.99 

pCR Age <61 years Reference - 

  ≥ 61 years 1.510 (0.605-3.768) 0.38 

 BMI <25 (kg/m2) Reference - 

  ≥ 25 (kg/m2) 3.000 (0.963-9.350) 0.06 

 Sarcopenia No Reference - 

  Yes 0.812 (0.255-2.588) 0.73 

 Severity of 

sarcopenia 

   

  Non-sarcopenic Reference - 

  Mild sarcopenic 1.309 (0.397-4.315) 0.66 

  Severe sarcopenic 3.645 e-9 (0.000) 0.99 

Assumed CR Age <61 years Reference - 

  ≥ 61 years 1.433 (0.632-3.250) 0.39 

 BMI <25 (kg/m2) Reference - 

  ≥ 25 (kg/m2) 2.401 (0.915-6.299) 0.08 

 Sarcopenia No Reference - 

  Yes 0.790 (0.277-2.253) 0.66 
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 Severity of 

sarcopenia 

   

  Non-sarcopenic Reference - 

  Mild sarcopenic 1.247 (0.422-3.683) 0.69 

  Severe sarcopenic 2.93e-9 (0.000) 0.99 

TRG, tumour regression grade; pCR, pathological complete response 
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8.5 Discussion 

This is the largest study to evaluate whether sarcopenia is a predictor of TRG, pCR and assumed 

CR in LARC patients undergoing nCRT. The results of this study suggest that sarcopenia was not 

associated with TRG, pCR and assumed CR. However, BMI≥ 25 kg/m2 was associated with a good 

TRG.  

 

The search for risk factors affecting pCR assumes importance given the excellent survival rates for 

LARC patients with a pCR after nCRT.325 Several studies have reported on the adverse effects of 

sarcopenia on overall survival in LARC patients, however the rate of pCR to nCRT has not been 

adequately examined.338,339 To date, only one study has described the relationship between 

sarcopenia and pCR in LARC patients. Olmez et al. showed that sarcopenia along with age, interval 

time to surgery and level of CEA had a significant effect on pCR. They reported a significantly 

higher pCR rate in the NSG compared to SG (21.4% vs 3%, P=0.025). In contrast, the pCR rate in 

our cohort was 14.5% in the NSG compared to 12.1% in the SG, however this was not significantly 

different (P=1.00). Moreover, on univariate analysis Olmez et al. reported that obesity (BMI≥ 25 

kg/m2) was not a risk factor affecting pCR (P=0.189). Similarly, obesity was not a risk factor 

affecting either pCR (P=0.06) or assumed CR (P=0.08). The lower rate of stage 3 patients (67.3% 

vs 89.8%) and smaller sample size (n=61 vs n=167) may have accounted for the discrepancies 

between Olmez et al. and our findings.  

 

A few studies have reported on the association between obesity and local cancer treatment. 

Controversy remains as to whether obesity has a harmful effect on pCR rates in LARC 

patients.340,341 Our results concur with the findings by Kelady et al. and Olmez et al., where both 

studies found no significant association between BMI and pCR.88,333 Nevertheless, we found 

obesity to have a statistically significant effect on good TRG (P=0.002). We theorise that patients 

with a higher BMI withstand the weight loss caused by nCRT, whilst underweight patients do not 
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have an adipose reserve, increasing their risk of complications due to the weight loss. Another 

possible reason is obesity can result in a state of chronic inflammation which may alter the tumour 

microenvironment and lead to an increased response to nCRT. Nonetheless, further studies are 

warranted to investigate the hidden relationship between obesity and improved oncological 

outcomes.  

 

Several limitations of our study may warrant further investigation. First, the retrospective design 

and the relatively small sample size may have accounted for some of the observed results. 

Nevertheless, it remains the largest series to investigate the association between sarcopenia and 

chemotherapy response in LARC patients. Second, variables such as walking speed, grip strength 

and fatigue that are synonymous with sarcopenia were not evaluated. Thirdly, 64.4% of non-

sarcopenic patients did not have a restaging CT scan making it difficult to draw conclusions 

regarding the development of post-treatment sarcopenia. Lastly, the recent paradigm shift towards 

neoadjuvant chemotherapy in TNT type protocols, may further change the parameters and influence 

the relative importance of sarcopenia in this patient population. 

 

8.6 Conclusion 

Sarcopenia is not a predictor of poor nCRT response in LARC patients. Increasing BMI was 

associated with good TRG in patients with LARC. However, a multicentred study is warranted to 

validate these findings.  
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CHAPTER 9: CLINICAL AND BIOCHEMICAL PREDICTORS OF TUMOUR RESPONSE 

AFTER NEOADJUVANT THERAPY IN RECTAL CANCER. 
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9.1 Abstract 

Introduction: Patients who have a good clinical and/or pathologic response to neoadjuvant 

Chemoradiotherapy (nCRT) for rectal cancer have better long-term outcomes and can potentially be 

spared morbid surgery. This study aimed to identify pre-treatment clinical and biochemical 

predictors of response to neoadjuvant treatment for rectal cancer. 

 

Methods: Patients undergoing neoadjuvant therapy for rectal cancer between 2007-2022 were 

retrospectively included. Those patients who achieved a complete clinical response were offered a 

non-operative management strategy and the remaining patients underwent surgical resection. The 

primary endpoint was Tumour Regression Grade (TRG) based on radiological imaging (mrTRG) or 

pathology (pTRG). Patient response was classified as good (mrTRG 1-2 or pTRG 0-1) vs. poor 

(mrTRG 3-4 or pTRG 2-3). Logistic regression was performed to determine predictors of TRG. 

 

Results: A total of 984 patient with rectal cancer were identified of which 274 met the inclusion 

criteria. Out of 274 patients, 228 (83%) underwent surgical resection. A good TRG response was 

observed in 119 (41%) patients and a complete response was achieved in 53 (17%) patients. On 

univariable and multivariable logistic regression, clinical T2 stage and body mass index of 

≥25kg/m2 were significant predictors of a good TRG. Clinical T2 stage and a personalised Total 

Neoadjuvant Therapy (pTNT) regimen were significant predictors of complete response.  

 

Conclusion: Clinical T2 stage and a BMI≥25kg/m2 were predictors of good response to 

neoadjuvant therapy for rectal cancer. Future prospective studies are required to confirm these 

findings and evaluate their potential use in better targeting of nCRT. 
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9.2 Introduction 

The standard treatment for Locally Advanced Rectal Cancer (LARC) involves neoadjuvant 

Chemoradiotherapy (nCRT) followed by Total Mesorectal Excision (TME). This therapeutic 

strategy has proven to be effective in reducing local recurrence, with potential for organ 

preservation in the 8-20% of patients who achieve a complete response.342 However, patients who 

have a poor response to nCRT, have worse disease free survival, as well as significant long-term 

morbidity from TME such as urinary and faecal incontinence, and sexual dysfunction.343,344 Over 

the last decade, there has been a paradigm shift towards moving the delivery of chemotherapy 

preoperatively, also referred to as Total Neoadjuvant Therapy (TNT). This approach has 

significantly higher clinical Complete Response (cCR) and pathological Complete Response (pCR) 

rates when compared to standard nCRT.42,130,345  

 

Determining features that are associated with patient response to nCRT would better inform 

clinicians and patients the individual prognosis. Several studies have reported clinical factors such 

as tumour size and type, distance from the anal verge and clinical T and N stage to be predictive of 

pCR.71 However, since a pro-inflammatory state has been linked with poor pathological response, 

studies have begun to investigate haematological and biochemical markers as predictors of 

response.346,347 Pre-treatment Carcinoembryogenic Antigen (CEA), neutrophil-lymphocyte, platelet-

lymphocyte, lymphocyte-monocyte ratio’s and total White Cell Count (WCC) have been associated 

with cCR after nCRT in rectal cancer.80,89 However, studies in this area vary considerably with 

respect to methodology including the number of selected biochemical markers, sample size and 

definition of outcome variables. Consequently, dependable biochemical factors that allow patients 

to be counselled in their likelihood of response to neoadjuvant therapy have not yet been adopted 

into clinical practice. 

 



208 
 

Given a lack of consensus, and the need for more data, we aim to identify pre-treatment clinical and 

biochemical variables that predict tumour response to neoadjuvant therapy for rectal cancer in our 

population using simple and clearly defined measures of response. 

 

9.3 Methods 

This retrospective cohort study is reported according to the STROBE (Strengthening The Reporting 

Observational studies in Epidemiology) statement and was approved by the Central Adelaide Local 

Health Network Human Research Ethics Committee (HREC/19/CALHN/73) and the St. Andrews 

Hospital Ethics Committee (#116).348 This study was conducted in accordance with the principles 

of the Declaration of Helsinki. Informed consent was waived for all study participants. 

 

9.3.1 Patients 

Patients with biopsy proven rectal adenocarcinoma who received neoadjuvant therapy between 

January 2007 and August 2022 were retrospectively identified from the Royal Adelaide Hospital 

and St. Andrews Hospital in South Australia prospectively collected colorectal cancer database. The 

decision to offer neoadjuvant therapy was made following Multidisciplinary Team (MDT) 

discussion. Patients treated with palliative intent, received short course radiotherapy, undergoing 

surgery at other hospitals, non-compliant (did not complete minimum required dose of neoadjuvant 

therapy) and patients who did not have neoadjuvant therapy were excluded.  

 

9.3.2 Treatment 

Two neoadjuvant therapy protocols were used in our institution for the study period (Figure 26). 

From 2019 onwards, personalized TNT (pTNT) was offered to all rectal cancer patients (induction 

or consolidation based on initial risk staging). Patients with a need for systemic control (to mitigate 

risk of distant failure) received induction chemotherapy in the form of 8 cycles 5-Fluorouracil, 

Leucovorin, and Oxaliplatin (mFOLFOX6) over 16 weeks, or 6 cycles Capecitabine and 
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Oxaliplatin (CAPOX) over 18 weeks. Following induction chemotherapy, patients received long-

course nCRT. The neoadjuvant radiotherapy regimen consisted of 50Gy/25 fractions over 6 weeks 

delivered to the pelvis (rectum and surrounding lymph nodes at risk) with an option for dose 

escalation to 54Gy/27 fractions using Intensity-Modulated Radiation Therapy (IMRT) and 

Volumetric Modulated Arc Therapy (VMAT). Upon completion of nCRT, patients underwent a 10 

week wait period during which oligometastatic resection was performed if indicated. At the end of 

the wait period patients were restaged with a CT chest/abdo/pelvis, MRI pelvis, and flexible 

sigmoidoscopy. Patients underwent surgical resection at 10 weeks unless cCR was achieved in 

which case non operative management was offered. Patients who had loco-regional risk at time of 

diagnosis, received long course nCRT over 6 weeks, followed by a 2 week wait period. Following 

this, patients received consolidation chemotherapy over 16 weeks in the form of 8 cycles 

mFOLFOX6, or 6 cycles CAPOX over 18 weeks. Upon completion of consolidation chemotherapy, 

patients were restaged with a CT chest/abdo/pelvis, MRI pelvis, and flexible sigmoidoscopy. 

Patients underwent surgical resection at 4 weeks unless cCR was achieved in which case non 

operative management was offered.  

 

Prior to 2019, traditional long course nCRT consisted of 45Gy/25 fractions followed by a localized 

boost of 5.4Gy delivered to the pelvis (rectum and surrounding lymph nodes at risk) over five 

weeks using IMRT or 3D Conformal Radiation Therapy (3DCRT). Patients concurrently received 

either continuous infusion of 5-fluorouracil (5-FU) or capecitabine orally five days per week. 

Surgery was scheduled 8-10 weeks following the radiotherapy for patients who did not achieve a 

clinical Complete Response (cCR). This was assessed at flexible sigmoidoscopy ± Magnetic 

Resonance Imaging (MRI) at 8 weeks post completion of nCRT. Following surgery, patients 

underwent 16 weeks of adjuvant chemotherapy.  
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Figure. 26 Neoadjuvant chemoradiotherapy regimens used in this study. 
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9.3.3 Data collection 

The following clinicopathologic variables were obtained from our database: age, gender, Body 

Mass Index (BMI), sarcopenia (diagnosed using the method proposed by Jones et al.114), rectal 

tumour site, clinical T stage (cT) and N (cN) stage, American Joint Committee on Cancer (AJCC) 

stage, neoadjuvant therapy regimen, radiotherapy dosage and operation. Race and ethnicity data 

were not available in our database and are not reported in this study. Biochemical variables were 

retrospectively collected from routine blood tests were taken from the date closest to the day of 

diagnosis. Haemoglobin, WCC, platelet, neutrophil, lymphocytes, sodium, potassium, anion gap, 

glucose, urea, creatine, corrected calcium, albumin, total protein, Lactate Dehydrogenase (LDH) 

and estimated Glomerular Filtration Rate (eGFR) were collected for each patient. Pathological stage 

was reported based on the 8th edition of the AJCC Colon and Rectal staging manual.26 

 

9.3.4 Outcomes measures 

The primary outcome was Tumour Regression Grade (TRG). TRG is a composite measure of MRI 

tumour regression grade (mrTRG) in non-operative patients and TRG on pathology (pTRG) for 

operative patients. mrTRG was reported according to the ordinal scale mrTRG 1-5 developed by 

Patel et al. to assess response on restaging MRI.232 pTRG was classified based on the AJCC 

TRG.349 TRG was categorized based on restaging MRI (mr stage) and / or pathologic assessment of 

the operative specimen (p stage). A binary classification was defined as good: mrTRG 1-2 and/or 

pTRG 0-1, or poor: mrTRG 3-5 and /or pTRG 2-3.337  Patients with a post-treatment response of 

mrTRG2 and pTRG2 with a long interval (more than 7 weeks) between MRI and surgery were 

classified as good and those with a short interval (less than 7 weeks) were classified as poor.350 

Secondary outcomes included clinical Complete Response (cCR), pathological Complete Response 

(pCR), and a composite measure of Complete Response (CR) which included all patient with pCR 

and cCR with the absence of local regrowth at 2 years follow-up. Patients without a 2-year follow-

up were excluded from CR analysis.  
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9.3.5 Statistical analysis 

All analyses were performed using SPSS (IBM, Armonk, NY, USA) version 28. A p-value <0.05 

was considered statistically significant. Parametricity was determined using the Shapiro-Wilk test. 

Normally distributed data were expressed as mean ± SD and nonparametric data as median ± range. 

Categorical variables were analysed using the Pearson chi-square or Fisher’s exact test, where 

appropriate. Nonparametric continuous variables were analysed with the Mann-Whitney U test, and 

parametric continuous variables were analysed using the Student’s t-test. Missing values were 

handled using pairwise deletion. Univariable and multivariable logistic regression analysis were 

used to identify the significant predictors of TRG and CR to neoadjuvant therapy. Receiver 

Operator Characteristics (ROC) curves were constructed and the Area Under the Curve (AUC) 

calculated for the combined statistically significant clinical predictors of TRG response and CR.   

 

9.4 Results 

9.4.1 Patient characteristics 

The study included 254 rectal cancer patients with clinical stage I-IV who underwent neoadjuvant 

treatment (Figure 27). The median age was 62 (18-96) years old and 65% were male. Patients were 

commonly non-sarcopenic (74.8%). The tumour was located distally (<8cm on initial staging MRI) 

in most cases (65.3%), 92% were cT3-4 and 81.4% were clinically node positive (cN+). A total of 

193 (70.4%) patients received long-course CRT and 81 (29.6%) patients received pTNT. Patient 

characteristics for each cohort are summarised in Table 22. 

 

 

 

 



213 
 

 

Figure. 27 Patient selection flowchart. 
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Table 22 Clinicopathological characteristics  

Variable Total 

(n=274) 

TRG Complete response 

(sustained cCR + pCR) 

  Good 

(n=119) 

Poor 

(n=155) 

P Yes 

(n=53) 

No 

(n=200) 

P 

Age, years 62 (18-

96) 

60 (23-

91) 

63 (18-

96) 

0.101 61 (27-

91) 

61 (18-

96) 

0.575 

Gender    0.491   0.888 

Male 178 

(65.0) 

80 (67.2) 98 (63.2)  35 

(66.0) 

130 

(65.0) 

 

Female 96 (35.0) 39 (32.8) 57 (36.8)  18 

(34.0) 

70 

(35.0) 

 

BMI 26 (13-

57) 

27 (17-

57) 

25 (13-

44) 

<0.001 27 (17-

57) 

26 (13-

44) 

0.242 

Sarcopenia †    0.010   0.265 

Yes 62 (25.2) 18 (17.0) 44 (31.4)  8 (17.0) 44 

(24.7) 

 

No 184 

(74.8) 

88 (83.0) 96 (68.6)  39 

(83.0) 

134 

(75.3) 

 

Tumour location    0.424   0.309 

High (>12 cm) 19 (6.9) 6 (5.0) 13 (8.4)  3 (5.7) 13 (6.5)  

Medium (8-12cm) 76 (27.7) 31 (26.1) 45 (29.0)  11 

(20.8) 

62 

(31.0) 

 

Low (<8cm) 179 

(65.3) 

82 (68.9) 97 (62.6)  39 

(73.6) 

125 

(62.5) 

 

cT stage    0.004   <0.001 

T2 22 (8.0) 16 (13.4) 6 (3.9)  10 

(18.9) 

9 (4.5)  

T3/4 252 

(92.0) 

103 

(86.6) 

149 

(96.1) 

 43 

(81.1) 

191 

(95.5) 

 

cN stage    0.963   0.750 

N0 51 (18.6) 22 (18.5) 29 (18.7)  10 

(18.9) 

34 

(17.0) 

 

N+ 223 

(81.4) 

97 (81.5) 126 

(81.3) 

 43 

(81.1) 

166 

(83.0) 

 

AJCC Stage    0.419   0.493 

I-II 45 (16.4) 22 (18.5) 23 (14.8)  10 

(18.9) 

30 

(15.0) 

 

III- IV 229 

(83.6) 

97 (81.5) 132 

(85.2) 

 43 

(81.1) 

170 

(85.0) 

 

Neoadjuvant 

therapy regimen 

   0.451   0.007 

Long-course CRT 193 

(70.4) 

81 (68.1) 112 

(72.3) 

 33 

(62.3) 

160 

(80.0) 

 

pTNT 81 (29.6) 38 (31.9) 43 (27.7)  20 

(37.7) 

40 

(20.0) 

 

RT dosage    0.043   0.194 

Received planned 

RT dose 

265 

(96.7) 

112 

(94.1) 

153 

(98.7) 

 51 

(96.2) 

198 

(99.0) 

 

RT boost (≥54Gy) 9 (3.3) 7 (5.9) 2 (1.3)  2 (3.8) 2 (1.0)  
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Operation‡    0.140   0.901 

Hartmann’s 17 (7.5) 3 (3.3) 14 (10.2)  2 (6.1) 15 (7.7)  

LAR/ULAR 178 

(78.1) 

77 (84.6) 101 

(73.7) 

 29 

(87.9) 

149 

(76.4) 

 

APR 12 (5.3) 4 (4.4) 8 (5.8)  1 (3.0) 11 (5.6)  

Proctocolectomy 4 (1.8) 2 (2.2) 2 (1.5)  0 (0.0) 4 (2.1)  

Exenteration 16 (7.0) 4 (4.4) 12 (8.8)  1 (3.0) 15 (7.7)  

TEM 1 (0.4) 1 (1.1) 0 (0.0)  0 (0.0) 1 (0.5)  

ypT stage‡    <0.001   <0.001 

T0 31 (13.6) 30 (33.0) 1 (0.7)  31 

(93.9) 

0 (0.0)  

T1 7 (3.1) 3 (3.3) 4 (2.9)  0 (0.0) 7 (3.6)  

T2 36 (15.8) 19 (20.0) 17 (12.4)  0 (0.0) 36 

(18.5) 

 

T3 123 

(53.9) 

37 (40.7) 86 (62.8)  2 (6.1) 121 

(62.1) 

 

T4 31 (13.6) 2 (2.2) 29 (21.2)  0 (0.0) 31 

(15.9) 

 

ypN stage‡    <0.001   <0.001 

N0 142 

(62.3) 

69 (75.8) 73 (53.3)  32 

(97.0) 

110 

(56.4) 

 

N+ 85 (37.3) 21 (23.1) 64 (46.7)  1 (3.0) 84 

(43.1) 

 

N/A 1 (0.4) 1 (1.1) 0 (0.0)  0 (0.0) 1 (0.5)  

Data are number of patients (%) for categorical variables and mean ± SD/median (range) for 

continuous variables. 

cCR, complete clinical response; pCR, pathological complete response; cT, clinical tumour stage; 

cN, clinical lymph node stage; BMI, body mass index; CRT, chemoradiotherapy; pTNT, 

personalized total neoadjuvant therapy; RT, radiotherapy; AJCC, American Joint Committee on 

Cancer; TEM, Transanal endoscopic microsurgery; LAR, low anterior resection; ULAR, ultra-low 

anterior resection; APR, abdominoperineal resection; N/A, not applicable.  

† Missing sarcopenia measurement n=28 

‡ Denominator n= 228 
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9.4.2 TRG and complete response 

A good TRG was seen in 119 (43.4%) patients and 155 (56.6%) patients had a poor TRG. There 

were 53 (20.9%) who achieved CR and 200 (79.1%) did not achieve CR. On comparative analysis 

of clinicopathological factors, there was a significant difference between patients classified as 

having a good TRG from those with a poor TRG in BMI, sarcopenia, cT stage and RT dosage. The 

factors found to be significantly different between patients that achieved a complete response and 

those who did not were cT stage and neoadjuvant therapy regimen (Table 22). Table 23 

demonstrates biochemical factors for the TRG and complete response groups. Patients with a good 

TRG were found to have significantly higher median pre-treatment haemoglobin, sodium and 

albumin levels, along with significantly lower median pre-treatment anion gap and glucose levels. 

Mean pre-treatment lymphocytes and urea levels were observed to be significantly higher in 

patients that achieved CR.  
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Table 23 Pre-treatment biochemical factors compared for TRG response and complete response. 

Variable  TRG Response  Complete response 

(sustained cCR +pCR) 

 Good 

(n=119) 

Poor 

(n=155) 

P Yes 

(n=53) 

No 

(n=200) 

P 

Haemoglobin, g/L 136 (70-

180) 

130 (73-

173) 

0.016 132 (78-180) 133 (70-173) 0.773 

WCC, x109/L 7.54 (2.68-

16.30) 

7.80 (1.60-

23.30)  

0.232 7.60 (3.14-

12.32) 

7.70 (1.60-

23.30) 

0.540 

Platelet, x109/L 284 (70-

614) 

285 (84-

912) 

0.596 275 (70-549) 285 (84-912) 0.623 

Neutrophils, 

x109/L 

4.83 (0.23-

14.40) 

5.28 (1.00-

20.26) 

0.095 4.58 (2.25-

9.18) 

5.18 (1.00-

20.26) 

0.190 

Lymphocytes, 

x109/L 

1.87 (0.22-

4.81) 

1.74 (0.23-

6.61) 

0.099 2.06 (0.22-

4.61) 

1.76 (0.23-

6.61) 

0.038 

Sodium, mmol/L 140 (132-

146) 

139 (126-

146) 

0.017 140 (133-

146) 

140 (126-

146) 

0.288 

Potassium, 

mmol/L 

4.2 (2.9-6.0) 4.2 (2.8-6.3) 0.985 4.1 (3.0-5.3) 4.2 (2.8-6.3) 0.250 

Anion gap, 

mmol/L 

13 (5-23) 14 (4-29) 0.027 12 (5-22) 13 (4-29) 0.129 

Glucose, mmol/L 5.2 (4-16) 5.6 (2-15) 0.021 5.2 (4-16) 5.4 (2-15) 0.340 

Urea, mmol/L 5.3 (1.1-

23.8) 

5.0 (1.4-

20.2) 

0.080 5.9 (1.5-23.8) 5.0 (1.1-20.2) 0.005 

Creatinine, 

µmol/L 

74 (41-687) 74 (24-657) 0.207 74 (41-687) 74 (24-657) 0.161 

Corrected 

calcium, mmol/L 

2.41 ± 0.13 2.42 ± 0.13 0.393 2.42 ± 0.13 2.42 ± 0.13 0.854 

Albumin, g/L 38 (24-46) 36 (13-49) 0.009 37 (24-46) 37 (13-49) 0.597 

Total protein, g/L 71 (48-87) 71 (40-86) 0.205 72 (51-83) 71 (40-87) 0.167 

LDH, U/L 181 (118-

399) 

186 (87-

520) 

0.530 192 (118-

311) 

181 (87-520) 0.383 

eGFR, 

mL/min/1.73m2 

  0.721   0.728 

>90 41 (34.5) 44 (28.8)  14 (26.4) 61 (30.7)  

60-89 69 (58.0) 93 (60.8)  34 (64.2) 119 (59.8)  

30-59 8 (6.7) 13 (8.5)  4 (7.5) 16 (8.0)  

15-29 0 (0.0) 2 (1.3)  0 (0.0) 2 (1.0)  

<15 1 (0.8) 1 (0.7)  1 (1.9) 1 (0.5)  

Data are number of patients (%) for categorical variables and mean ± SD/median (range) for 

continuous variables. 

pCR, pathological complete response; eGFR, estimated glomerular filtration rate; WCC, white cell 

count; LDH, lactate dehydrogenase 
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9.4.3 Univariable and multivariable logistic regression analysis 

Variables with statistical differences on comparative analysis were included in the univariable 

logistic regression (Table 24). Univariable logistic regression analysis revealed that pre-treatment 

BMI, sarcopenia, cT-stage, haemoglobin, sodium, glucose, anion gap and albumin levels were 

significantly associated with good TRG. Clinical T-stage, neoadjuvant therapy regimen and urea 

levels were found to be significantly associated with achieving CR. Multivariable logistic 

regression analysis revealed BMI≥25kg/m2 (OR: 1.98; 95%CI: 1.09-3.62; P=0.026) and cT2 (OR: 

5.46; 95%CI: 1.62-18.46; P=0.006) to be significantly associated with good TRG. Additional 

findings from the multivariable logistic regression analysis revealed cT2 (OR: 3.77; 95%CI: 1.38-

10.30; P=0.010) and pTNT (OR: 2.10; 95%CI: 1.06-4.15; P=0.034) were significantly associated 

with achieving CR.  
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Table 24 Univariable and multivariable logistic regression analysis to identify predictors of TRG 

response and complete response. 

Variables Univariable analysis Multivariable analysis 

 OR (95% CI) P Adjusted OR (95% 

CI) 

P 

TRG Response 

BMI (kg/m2), ≥25 vs. <25 2.35 (1.38-4.01) 0.002 1.98 (1.09-3.62) 0.026 

Sarcopenia 

Yes vs. No 

0.45 (0.24-0.83) 0.011 0.68 (0.34-1.37) 0.279 

cT stage, cT2 vs. cT3/4 3.86 (1.46-10.19) 0.006 5.46 (1.62-18.46) 0.006 

RT dosage, boost vs. planned 4.78 (0.98-23.45) 0.054   

Haemoglobin  1.02 (1.00-1.03) 0.011 1.01 (0.99-1.03) 0.196 

Sodium 1.10 (1.01-1.20) 0.028 1.02 (0.91-1.13) 0.791 

Anion gap 0.93 (0.87-0.99) 0.030 0.937 (0.87-1.02) 0.111 

Glucose 0.86 (0.76-0.98) 0.019 0.91 (0.79-1.05) 0.193 

Albumin 1.07 (1.02-1.12) 0.003 1.03 (0.96-1.10) 0.459 

Complete Response 

cT stage, cT2 vs. cT3/4 4.94 (1.89-12.88) 0.001 3.77 (1.38-10.30) 0.010 

Neoadjuvant therapy regimen, 

pTNT vs. nCRT  

2.42 (1.26-4.67) 0.008 2.10 (1.06-4.15) 0.034 

Lymphocytes 1.21 (0.87-1.68) 0.249   

Urea 1.12 (1.01-1.24) 0.028 1.10 (0.99-1.22) 0.087 

OR, odds ratio; TRG, tumour regression grade; cT, clinical tumour stage; cN, clinical lymph node 

stage; BMI, body mass index 
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9.4.4 Multivariable clinical prediction model 

Variables with significant predictive values in both univariable and multivariable analysis were 

combined and evaluated using a ROC analysis (Figure 28). The predictive model based on cT- 

stage and BMI resulted in an AUC of 0.63 (95%CI 0.56-0.70) for TRG response. The predictive 

model based on cT- stage and neoadjuvant therapy regimen resulted in an AUC of 0.62 (95%CI 

0.53-0.72) for CR. 
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Figure. 28 Receiver operating characteristic curves (ROC) for (A) TRG response and (B) complete 

response. AUC, area under the curve. 
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9.5 Discussion 

This study investigated a broad range of clinical and biochemical predictors of tumour response in 

rectal cancer treated with neoadjuvant therapy at two tertiary centres in Australia. Clinical T2 stage 

and a BMI ≥25kg/m2 were found to be significant clinical predictors for a good TRG, with an AUC 

of 0.63. Clinical T2 stage and pTNT were predictive of a CR, with an AUC of 0.62. Interestingly, 

no pre-treatment biochemical factors were identified on multivariable analysis to be significantly 

predictive of TRG and CR. 

 

Complete response to neoadjuvant therapy in rectal cancer is associated with excellent long-term 

outcomes.342,351 Given this, identifying predictive factors associated with tumour response remain 

crucial in order to avoid undertreatment in potential responders or overtreating potential non-

responders. Fischer et al. evaluated the predictors of pathological response in 164 patients with 

stage 1-3 rectal cancer.352 They found low cT stage was associated with good TRG, but not pCR 

most likely due to their limited sample size. More recently the TRG Snapshot Study Group reported 

similar results in a cohort of 689 patients with LARC.353 This study confirms their findings that a 

low cT stage at diagnosis is associated with a good TRG. The present study found lower cT stage 

was also associated with an increased CR rate, which is consistent with several previous 

studies.80,82,83,354  

 

A BMI cut-off point of ≥25kg/m2 was used to categorize obesity in our cohort, which is also 

consistent with prior studies.340,355,356 Recently, a meta-analysis has shown specifically in rectal 

cancer, patients with a BMI≥ 25 were found to have significantly better overall survival compared 

to patients with a BMI<25.357 In our cohort, patients with a BMI≥25 achieved a good TRG, and on 

univariable and multivariable logistic regression it was found to be an independent predictor of 

good TRG. Consistent with our findings, Lee et al. also showed a BMI≥25 was predictive of pCR in 

rectal cancer.340 Nevertheless, it remains unclear why obesity is associated with a good response to 
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neoadjuvant treatment. One possible reason is excess body fat promotes inflammation and immune 

cell infiltration, and the interaction between obesity and immune response might alter tumour 

microenvironment, increasing neoadjuvant treatment response.358 Another possibility is the hidden 

mechanism between obesity and molecular signalling pathways, studies have reported that obese 

patients who expressed nuclear β-catenin were associated with better overall survival.359 

Conversely, recent studies have suggested a BMI≥25 is predictive of poor TRG and pCR to 

treatment352,356, with other studies suggesting that BMI was not a predictive factor for pCR.360,361 

Given patients receiving neoadjuvant therapy may have some degree of weight gain or reduction 

during treatment, BMI can fluctuate during a patients treatment.352 Regarding the impacts of BMI 

on treatment adherence and toxicity, Diefenhardt et al. reported that obese patients had worse 

treatment adherence but less acute organ toxicity if compared to non-obese patients. In their study 

only 64.4% of obese patients received complete nCRT, seemingly paradoxical given the low 

toxicity rates, howbeit the data showed dose miscalculation contributed significantly to decreased 

adherence.355 Moreover, studies examining the effects of obesity on local recurrence in patients 

with rectal cancer have published inconsistent results. Some studies have shown obesity leads to 

increased local recurrence rates due to higher technical difficulty compromising sufficient resection, 

whereas others failed to confirm this finding.355,362,363  Given the variety of findings, limited 

conclusions can be made about the impact of BMI on nCRT outcomes. Furthermore, clinicians 

should also consider the negative impact a higher BMI has on surgical outcomes.364 

 

Studies have highlighted potential shortcomings associated with the administration of adjuvant 

chemotherapy including poor compliance and no clear survival benefit.365 pTNT aims to address 

these challenges by tailoring chemotherapy sequencing to disease risk at presentation which may 

offer the optimal balance between local and distant disease control whilst improving compliance 

and tolerability to treatment effects and facilitating organ preservation in select patients.366 This 

may explain why in this patient cohort, the CR rate for patients receiving pTNT was 33% compared 



224 
 

with just 17% for those who received nCRT (Table 1; P=0.007). Univariable and multivariable 

regression analysis confirms this association, with pTNT, there is about a two-fold increase in the 

odds of achieving a CR in comparison with nCRT. This result corroborates those of previous phase 

III clinical trials which reported significantly higher rates of CR in the TNT arm in comparison to 

nCRT arm in patients with LARC.42,130,345  

 

It is noteworthy that all patients in our cohort with cCR following neoadjuvant therapy were offered 

non-operative management. While this is still not considered standard practice in some centres, it is 

considered a reasonable alternative for rectal cancer patients achieving a cCR after nCRT with 

similar survival outcomes but superior organ preservation rate as compared to surgery.324,367,368 

Furthermore, prospective data on organ preservation with TNT were recently made available. The 

OPRA trial showed organ preservation is achievable in 50% of patients with a cCR or near CR with 

no detriment in survival rates.42 Ultimately, our non-operative management policy in patients with 

rectal cancer who had a cCR is feasible, provided patients provide informed consent, and are 

willing to undergo surveillance as per protocol.366 

 

The important limitations of our study include its retrospective design, as well as the relatively 

small sample size derived from two tertiary centres. Although some missing data could not be 

avoided, the final dataset was above >98% complete. Over the 13-year period of our study, there 

has been variability in the neoadjuvant treatment employed, in particular the paradigm shift towards 

administering pTNT routinely in the latter part of the study. Future prospective studies with larger 

numbers of patients are required to confirm our findings.  
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9.6 Conclusion 

Clinical T2 stage and a BMI≥25kg/m2 were predictors of good response to neoadjuvant therapy for 

rectal cancer. Clinical T2 stage and a pTNT regimen were predictors of CR. Future prospective 

studies are required to confirm these findings and evaluate their potential use in better targeting of 

nCRT. 
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PART 3: ADOPTION OF A PERSONALISED TOTAL NEOADJUVANT THERAPY 

PROTOCOL FOR THE TREATMENT OF ADVANCED RECTAL CANCER 
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CHAPTER 10: PERSONALISED TOTAL NEOADJUVANT THERAPY (PTNT) FOR 

ADVANCED RECTAL CANCER: A PROSPECTIVE COHORT STUDY WITH 

TAILORED TREATMENT SEQUENCING BASED ON CLINICAL STAGE AT 

PRESENTATION. 
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10.1 Abstract 

Introduction  

This study aimed to assess short-term outcomes of a personalised Total Neoadjuvant Treatment 

(pTNT) protocol, with treatment sequencing based on clinical stage at presentation. 

 

Methods 

A multidisciplinary pTNT protocol was implemented across two metropolitan hospitals. This 

consists of two-schema based on clinical stage: patients with distant failure risk were offered 

induction chemotherapy before Chemoradiation (nCRT), and patients with locoregional failure risk 

received nCRT followed by consolidation chemotherapy. Patients underwent surgical resection 

unless a clinical Complete Response (cCR) was achieved, in which case Non-Operative 

Management (NOM) was offered. A prospective cohort analysis of all patients with rectal cancer 

who underwent pTNT with curative intent between Jan 2019 and Aug 2022 was performed. 

 

Results 

Of 270 patients referred with rectal cancer, 102 received pTNT with curative intent and 79 have 

completed their treatment thus far. Thirty-three patients (41.8%) received induction chemotherapy 

and 46 (58.2%) received consolidation chemotherapy per protocol. The percentage of patients with 

EMVI, resectable M1 disease, cT4 disease, and positive lateral lymph nodes were 54.4%, 36.7%, 

27.8% and 15.2%, respectively. Overall, 32 (40.5%) patients had cCR and 4 (5.1%) pCR, and 40 

(50.6%) patients had non-operative management. Grade 3 toxicity was reported in 10.1% of 

patients and only three patients (3.8%) experienced Grade 4 chemotherapy-related toxicity, with no 

treatment related mortality. 

 

Conclusion 
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Early results with a defined two-schema pTNT protocol are encouraging and suggest that tailoring 

sequencing to disease risk at presentation may represent the optimal balance between local and 

distant disease control, as well as treatment toxicity. 
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10.2 Introduction 

The standard of care for patients with Locally Advanced Rectal Cancer (LARC) treated with 

curative intent consists of neoadjuvant long course chemoradiotherapy or short course radiotherapy 

(nCRT) followed by radical surgery with or without adjuvant chemotherapy.369,370 This multimodal 

approach has significantly reduced local recurrence rates from over 30% to approximately 5% over 

the last several decades.371 However, rates of distant recurrence have remained relatively 

recalcitrant, with up to 30% of patient developing distant metastases. This remains the leading 

cause of rectal cancer-related death.372 Several trials evaluating the role of adjuvant chemotherapy 

demonstrated little to no improvement in distant control or survival in LARC patients.371,373 

Notably, only half of eligible patients receive their planned full course adjuvant chemotherapy due 

to poor compliance, postoperative complications and treatment-related toxicity.374,375 

 

Accordingly, there has been a recent shift towards the delivery of chemotherapy pre-operatively, 

either before (induction) or after (consolidation) nCRT. This is referred to as Total Neoadjuvant 

Therapy (TNT).21 This treatment regimen has the potential to improve disease-free survival and 

reduce the risk of distant failure by improving overall compliance with chemotherapy.376 

Additionally, TNT has the potential to significantly increase pathological Complete Response 

(pCR) and clinical Complete Response (cCR) rates, with the latter allowing for greater possibility 

of Non-Operative Management (NOM) and organ preservation.376,377 

 

While multiple recent randomised trials have provided supporting data for the safety and 

effectiveness of TNT,42,130,345,376,378 the data remain inconclusive regarding optimal sequencing of 

chemotherapy and radiotherapy. Furthermore, it is unclear whether one form of TNT is suitable for 

all patients with advanced rectal cancer or whether a risk-adapted treatment strategy based on 

clinical staging (distant or locally advanced) is more appropriate.379,380 The aim of this prospective 
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study was to assess short term outcomes of a personalised Total Neoadjuvant Treatment (pTNT) 

protocol, with tailored treatment sequencing based on clinical stage at presentation. 

 

10.3 Methods 

This prospective cohort study is reported using the Strengthening the Reporting of Observational 

Studies in Epidemiology (STROBE) statement381 and was approved by the Central Adelaide Local 

Health Network Human Research Ethics Committee (HREC Reference number: 

HREC/15/RAH/186) and St. Andrew’s Hospital Research and Ethics Committee (#117). This study 

was conducted in accordance with the principles of the Declaration of Helsinki. Informed consent 

was provided by each patient. 

 

10.3.1 Patient Selection 

All patients with advanced rectal adenocarcinoma within 15cm from the anal verge treated at the 

Royal Adelaide Hospital (RAH) or St Andrew’s Hospital (SAH) from January 1st 2019 to Aug 09st 

2022, were prospectively identified. Patients treated who underwent pTNT with curative intent 

were included in the analysis. The decision to recommend pTNT for advanced rectal cancer was 

made at a weekly colorectal cancer Multidisciplinary Team meeting (MDT) and followed criteria 

outlined in a multi-disciplinary protocol designed and implemented a priori (Appendix E) and 

previously reported.379,382 Patients diagnosed with early stage rectal cancer (T1 or T2, N0, M0) were 

offered pTNT as an alternative option only if they declined surgery. Patients treated with palliative 

intent, and those that declined pTNT or were unfit for chemotherapy were excluded. Clinical 

staging was performed by pelvic Magnetic Resonance Imaging (MRI) and a contrast-enhanced 

chest-abdomen-pelvis Computed Tomography (CT) as per standard of care practices.  
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10.3.2 Treatment 

The pTNT protocol consists of two distinct treatment schemas, where the sequencing of 

neoadjuvant treatment was tailored according to patient disease risk based on clinical staging at 

presentation (Figure. 29). Patients with a high risk of distant failure and a need for prioritisation of 

systemic disease control (including those with liver or lung metastases, Extramural Vascular 

Invasion (EMVI) or abnormal mesorectal or lateral pelvic lymph nodes) received induction 

chemotherapy. This consisted of 8 cycles mFOLFOX6 (5-Fluorouracil [5FU], leucovorin, and 

oxaliplatin), fortnightly for 16 weeks or 6 cycles of CAPOX (capecitabine and oxaliplatin) for 18 

weeks. At the midpoint of induction chemotherapy, a restaging CT was performed and discussed at 

MDT to identify cases with poor response or disease progression. Following completion of 

induction chemotherapy and a 2 week wait period, patients received long-course nCRT (50 Gy, 25 

fractions) with concurrent 5FU or capecitabine, over 6 weeks. Upon completion of nCRT, patients 

underwent a 10 week wait period during which oligometastatic resection was performed if 

indicated. At the end of the wait period patients were restaged with a CT chest/abdo/pelvis, MRI 

pelvis, and flexible sigmoidoscopy, with a Positron Emission Tomography (PET) scan performed in 

selected cases. Surgery was performed at 10 weeks if this was indicated based on further MDT 

discussion. 

 

Patients with a high risk of locoregional failure and a need for local control (including bulky local 

disease, T4 extension and low tumours) and patients with early-stage disease who declined upfront 

surgery received consolidation chemotherapy. This involved long-course nCRT administration over 

6 weeks, followed by a 2 week wait period. Following this, patients received consolidation 

chemotherapy for 16 weeks (8 cycles mFOLFOX6, fortnightly for 16 weeks or 6 cycles CAPOX 

for 18 weeks). At the midpoint of consolidation chemotherapy, a restaging CT was performed and 

discussed at MDT to identify cases with poor response or disease progression. Upon completion of 

consolidation chemotherapy, patients were restaged with a CT chest/abdo/pelvis, MRI pelvis, and 
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flexible sigmoidoscopy with a PET scan performed in selected cases. Surgery was performed at 4 

weeks if this was indicated based on further MDT discussion. 

 

In cases with both distant and locoregional failure risk, induction chemotherapy was favoured 

however this was assessed on a case-by-case basis. Patients underwent surgical resection unless 

cCR was achieved or patients declined surgery and NOM was offered.  
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Figure. 29 Personalised total neoadjuvant therapy sequencing. TME, total mesorectal excision. 
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10.3.3 Endpoints 

All data were prospectively collected. The primary endpoint was Complete Response (CR) rate 

defined as the proportion of patients who achieved either a clinical Complete Response (cCR) or 

pathological Complete Response (pCR). cCR was defined as the absence of a palpable tumour on 

digital rectal exam, no visible tumour and the presence of a white scar via flexible sigmoidoscopy, 

and Tumour Regression Grade (TRG) 1 or 2 on restaging MRI without evidence of abnormal lymph 

nodes or EMVI.235 Pathological CR was defined as no residual viable tumour cells detected 

pathologically (ypT0N0) after surgery.26,349 Secondary endpoints included distant disease (M1) 

response defined as complete M1 response, partial M1 response, or progressive M1 disease 

assessed by specialist radiology review on CT re-staging at MDT. Other secondary endpoints 

included acute toxicity, compliance, and pathological outcomes. Chemotherapy-related toxicity was 

graded according to the Common Terminology Criteria for Adverse Events (version 5).383 Skin 

toxicity from radiotherapy was graded by the physician according to the Skin Toxicity Assessment 

Tool (STAT, scale 0-5) and patient using a Patient Symptom Scale (graded as 1 [not at all], 2 [a 

little], 3 [quite a bit], 4 [very much]) according to the Radiation Induced Skin Reaction Assessment 

Scale (RISRAS).384,385 Race and ethnicity data are not routinely collected at our institutions. 

 

10.3.4 Statistical Analysis 

Data analysis was performed on an intention-to-treat basis using IBM SPSS Statistics for 

Macintosh, Version 28.0 (IBM Corp, Armonk, NY, USA). Continous variable parametricity was 

tested using Shapiro-Wilk test and results are presented as mean ± SD for parametric data and 

median (range) for nonparametric data. 
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10.4 Results 

10.4.1 Patient characteristics 

A total of 270 patients presented with rectal cancer in the 3.7-year study period and 114 were 

eligible for pTNT after MDT discussion (Figure. 30). Of the 114 patients, 9 refused chemotherapy, 

two died prior to treatment starting and one the oncologist did not administer the treatment, leaving 

102 patients who underwent pTNT. Of these, 79 patients have now completed treatment and 

restaging (with the rest pending completion). The median follow-up from first MDT date until 

database lock on August 9th, 2022, was 24 months (range 4-48). The mean age of patients was 60.0 

years, with a larger proportion of male patients (65.8%). The median tumour distance from the anal 

verge was 5.9cm (range 0-14). Approximately one third of patients had potentially resectable stage 

IV disease at presentation (36.7%). The percentage of patients who had radiological evidence of 

cT4a, cT4b, EMVI, positive lateral lymph nodes, were 11.4%, 16.5%, 54.4%, 15.2%, respectively 

(Table 25). 
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Figure. 30 Patient flowchart. 
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Table 25 Patient characteristics 

Variable N=79 † 

Age, years, mean (SD) 60.0 (14.7) 

Gender  

Male 52 (65.8) 

Female 27 (34.2) 

Tumour  

Primary 73 (92.4) 

Recurrent  6 (7.6) 

ECOG  

0 26 (32.9) 

1 28 (35.4) 

2 24 (30.4) 

3 1 (1.3) 

cT stage  

cT2 13 (16.5) 

cT3 44 (55.7) 

cT4a 9 (11.4) 

cT4b 13 (16.5) 

cN stage  

cN0 27 (34.2) 

cN1 38 (48.1) 

cN2 14 (17.7) 

cM stage  

M0 50 (63.3) 

M1 29 (36.7) 

AJCC Stage  

I 8 (10.1) 

II 14 (17.7) 

III 28 (35.4) 

IV 29 (36.7) 

Distance to anal verge, cm, median 

(range) 

5.9 (0.0-14.0) 

EMVI +ve 43 (54.4) 

LPLN +ve 12 (15.2) 
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ECOG, Eastern Cooperative Oncology Group performance status; AJCC, American Joint 

Committee on Cancer; LPLN, Lateral Pelvic Lymph Nodes a Data are number of patients (%) unless 

otherwise indicated. 

 

10.4.2 Treatment delivery 

Of the 79 patients, 33 (41.8%) received induction chemotherapy and 46 (58.2%) received 

consolidation chemotherapy (Table 26). Seventy-five patients (94.9%) received long-course nCRT, 

3 (3.8%) received short-course nCRT, and one patient did not receive any consolidation 

chemotherapy due to toxicity during nCRT. Fourty-four (55.7%) patients received CAPOX, 28 

(35.4%) received mFOLFOX6, and 7 (8.9%) received other tailored treatment regimens including 

FOLFIRI, TOMOX, Bevacizumab, Pembrolizumab and Panitumumab. TOMOX was used in one 

patient with severe coronary artery vasospasm and Bevacizumab / Pembrolizumab / Panitumumab 

were used as tailored treatment in patients with borderline resectable metastatic disease. Most 

patients completed the planned number of cycles (73.4%) with a further 24.1% receiving 4 or more 

cycles of chemotherapy. Only 2 patients (2.5%) received less than 4 cycles due to chemotherapy 

induced toxicity. Full dose radiotherapy was applied in 74 (93.7%) patients, 3 (3.8%) patients 

received less than 50Gy and two (2.5%) patients did not receive radiotherapy at all. 
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Table 26 Treatment delivery, compliance and toxicity 

Variable N=79 a 

pTNT  

Induction  33 (41.8) 

Consolidation  46 (58.2) 

Chemoradiotherapy  

Long course 75 (94.9) 

Short course 3 (3.8) 

No chemotherapy 1 (1.3) 

Chemotherapy regimen  

mFOLFOX6 28 (35.4) 

CAPOX 44 (55.7) 

Other 7 (8.9) 

Compliance with chemotherapy  

Completed planned cycles 58 (73.4) 

≥4 cycles 77 (97.5) 

<4 cycles 2 (2.5) 

Compliance with radiotherapy  

Received total dose of radiotherapy  74 (93.7)  

Radiotherapy discontinuation (total dose 

<50Gy) 

3 (3.8) 

No radiotherapy 2 (2.5) 

Worst chemotherapy toxicity grade  

No adverse events 10 (12.7) 

Grade 1 26 (32.9) 

Grade 2 32 (40.5) 

Grade 3 8 (10.1) 

Grade 4 3 (3.8) 

Worst radiotherapy skin toxicity grade  

Physician assessment (scale 0-5)  

No adverse events 39 (49.4) 

Grade 1 11 (13.9) 

Grade 2 13 (16.5) 

Grade 3 11 (13.9) 

Grade 4 4 (5.0) 
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Grade 5 1 (1.3) 

Patient assessment (scale 1-4)  

Grade 1 53 (67.1) 

Grade 2 12 (15.2) 

Grade 3 13 (16.5) 

Grade 4 1 (1.3) 

pTNT, personalised total neoadjuvant therapy,  

 † Data are number of patients (%) unless otherwise indicated. 
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10.4.3 Clinical and pathological response 

Overall, 32 (40.5%) patients had cCR and 4 (5.1%) pCR (Table 27). A total of 40 patients (50.6%) 

opted for non-operative management, 32 of whom achieved a cCR and 8 of whom declined surgery 

after completing pTNT despite having residual clinical disease. Organ preservation was achieved in 

25 (35.2%) out of 71 patients. A total of 38 patients (48.1%) have undergone surgery thus far 

(Table 28), with a complete locoregional resection (R0) achieved in 89.5%. All patients who 

underwent surgery had negative distal margins and 4 (10.5%) had positive circumferential margins. 

Among the 4 patients who had positive circumferential margins, the clinical staging was cT3N0M0, 

cT3N1M1, cT4bN1M1, cT4bN2M1 and on pathological examination the disease type was found to 

be ypT3N0 and ypT4bN1 for the remaining 3 patients, respectively. Among the 32 patients in 

whom cCR was achieved, 6 patients (18.8%) experienced regrowth during the study period and all 

underwent successful salvage surgery (Table 27). Among the 29 patients who had stage IV disease 

at presentation, 13 (44.8%) achieved complete M1 response to induction chemotherapy, 6 (20.7%) 

had a partial M1 response and 10 (34.5%) progressed on treatment. There were 13 patients noted to 

have a complete response at distant sites, of whom 11 had no detectable lesions on imaging and 2 

underwent resection of presumed oligometastatic disease in the wait period with no viable tumour 

in the specimen. Out of the overall group, 6 have recurred with 3 undergoing oligometastic 

resection. Currently, 7 patients are currently disease free under surveillance. Among the 50 patients 

who had stage I-III disease at presentation, 27 (54.0%) achieved a local CR (pCR and / or cCR), 23 

(46.0%) had a local partial response and no patients had distal progression.  

 

Among the 9 patients with cT4a disease, 4 achieved a cCR, 3 proceeded to radical resection, 1 

declined surgery, and 1 died as a result of progression on treatment. Among the 13 patients with 

cT4b disease, 3 achieved a cCR, 8 underwent pelvic exenteration procedures, 1 declined surgery, 

and 1 was deemed medically unfit for surgery. There were 12 patients with clinical LPLN 
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involvement, of whom 10 completely responded on MRI, 2 did not respond to treatment and 

underwent LPLN dissection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



246 
 

Table 25 Response to treatment 

Variable N=79† 

CR (pCR and / or cCR)  

Yes 35 (44.3) 

No 43 (54.4) 

N/A 1 (1.3) 

cCR   

Yes 32 (40.5) 

No 46 (58.2) 

N/A 1 (1.3) 

M1 Response‡  

Complete 13 (44.8) 

Partial 6 (20.7) 

Progressed 10 (34.5) 

NOM  

Yes 40 (50.6) 

No 39 (49.4) 

Regrowth§  

Yes 6 (18.8) 

No 26 (81.2) 

CR, complete response; cCR, clinical CR; NOM, non-operative management 

† Data are number of patients (%) unless otherwise indicated. 

‡ M1 response was calculated including only patients with distant metastasis in the denominator.  

§ Regrowth was calculated including only patients with cCR in the denominator.  
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Table 26 Surgical and pathological characteristics 

Variable N=38† 

Type of surgery  

Hartmanns 6 (15.8) 

LAR/ULAR 15 (39.5) 

APR 4 (10.5) 

Proctocolectomy 1 (2.6) 

Pelvic Exenteration 11 (28.9) 

Defunctioning colostomy 1 (2.6) 

Completeness of tumour resection   

R0 34 (89.5) 

R1 2 (5.3) 

R2 2 (5.3) 

Mesorectal grade  

1 1 (2.6) 

2 2 (5.3) 

3 33 (86.8) 

N/A 2 (5.3) 

CRM <1mm 4 (10.5) 

DRM <1mm 0 (0.0) 

ypT stage  

ypT0 5 (13.2) 

ypT1 1 (2.6) 

ypT2 6 (15.8) 

ypT3 20 (52.6) 

ypT4a 1 (2.6) 

ypT4b 4 (10.5) 

N/A 1 (2.6) 

ypN Stage  

ypN0 26 (68.4) 

ypN1 8 (21.1) 

ypN2 3 (7.9) 

N/A 1 (2.6) 

pCR  

Yes 4 (10.5) 
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No 34 (89.5) 

Stoma  

End colostomy 21 (55.3) 

Loop Ileostomy 16 (42.1) 

End ileostomy 1 (2.6) 

Loop ileostomy closure‡  

Yes 13 (81.3) 

No 3 (18.7) 

Months to ileostomy closure, Mean (SD) 3.9 (1.2) 

LAR, low anterior resection; ULAR, ultra-low anterior resection; APR, abdominoperineal 

resection; CRM, circumferential resection margin; DRM, distal resection margin; pCR, pathological 

complete response 

† Data are number of patients (%) unless otherwise indicated. 

‡ Loop ileostomy closure was calculated including patients with a loop ileostomy in the 

denominator. 
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10.4.4 Toxicity 

Chemotherapy-related toxicity was experienced by 87.3% of patients with the majority being Grade 

1 (32.9%) and 2 (40.5%, Table 26). Grade 3 toxicity was reported by 10.1% of patients and only 

three patients (3.8%) suffered Grade 4 chemotherapy-related toxicity (severe enterocolitis in one 

and febrile neutropenia in two patients). Radiotherapy-related toxicity was reported in 50.6% and 

32.9% of physician and patient reporting measures, respectively. Four patients (5.0%) were 

assessed by the treating physician as having Grade 4 and one (1.3%) patient as having Grade 5 

radiotherapy-related toxicities (all skin related). Only one patient (1.3%) reported Grade 4 

radiotherapy-related toxicity (skin tenderness) as assessed on the Patient Symptom Scale. Six 

patients (7.6%) died as a result of advanced rectal cancer during the study period. 

 

10.5 Discussion 

In this study, we report early results of a tailored TNT protocol for advanced rectal cancer, with 

treatment sequencing based on clinical staging at presentation. Over 40% of all patients 

demonstrated complete response in the primary tumour site, with a resulting high rate of organ 

preservation despite an at-risk patient population and advanced disease at baseline. Additionally, 

complete M1 response was observed in just under half of patients with resectable stage IV disease, 

and these patients avoided oligometastatic resection. The toxicity profile was better than expected 

compliance with chemotherapy was high, and there was no treatment related mortality. To our 

knowledge, this is the first study reporting outcomes from a two-schema personalised TNT 

protocol, and the first Australian study reporting short term outcomes of TNT. 

 

The current findings are consistent with previous publications demonstrating relatively high rates of 

primary tumour response and compliance with chemotherapy for TNT in comparison with standard 

neoadjuvant treatment.386-388 At the time of introduction of our protocol there was a paucity of level 

1 evidence for TNT, given the four randomised controlled trials had not been published in full 
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yet.130,345,378,389 To account for this, we employed an integrated approach across disciplines with 

justification based on level 2 data, ethics committee approval, and rigorous prospective data 

collection with frequent reporting of outcomes. 

 

There are now multiple published randomised controlled trials investigating TNT.130,345,378,389 

Rapido and PRODIGE 23 randomised patients to consolidation TNT vs standard long course neo-

adjuvant nCRT (short course TNT in the former, and long course TNT in the latter).345,389 Both 

studies mandated surgery regardless of response and demonstrated significantly higher rates or pCR 

and improved disease-free survival with TNT without significantly increased in toxicity. 

Importantly, compliance with chemotherapy was high (85% in Rapido, and 92% in PRODIGE23) 

but with relatively high rates of grade 3-4 toxicity (48% in RAPIDO and 46% in 

PRODIGE23).390,391 Undoubtedly, excess toxicity is a consideration with TNT. However, it is 

argued that a substantial number of patients treated with standard pathways do not receive their 

adjuvant chemotherapy (92% TNT group versus 75% standard care group in PRODIGE23). The 

standard care group in PRODIGE23 experienced more serious adverse events during adjuvant 

therapy than the neoadjuvant chemotherapy group. Also importantly, most randomised phase III 

trials conducted in rectal cancer have shown little to no benefit for adjuvant chemotherapy.392 Taken 

together, these data indicate that delivering systemic chemotherapy pre- rather than post-operatively 

not only improves oncological outcomes, but also allows us to spare patients from unnecessary 

toxicities derived from ineffective postoperative therapies.393 

 

Chemotherapy related toxicity appears to be lower with induction compared with consolidation 

protocols, at the expense of lower primary response rates. The CAO/ARO/A10-12 study 

randomised 306 patients to receive induction or consolidation chemotherapy and all underwent 

surgery regardless of tumour response.378 Patients treated with consolidation chemotherapy had 

higher pCR rates (25% vs 17%) but suffered more grade 3-4 toxicity (37% vs 27%) and lower rates 
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of compliance with chemotherapy (85% vs 92%, respectively). Conversely, compliance with 

radiotherapy was better in the consolidation arm (97% vs 91%). The limitations of CAO/ARO/A10-

12 study are that only 3 cycles of FOLFOX were given pre-operatively, and that oxaliplatin was 

routinely used as a radiosensitiser with long course radiotherapy (not routine practice in most 

centers).387,394 The more recent OPRA trial, randomised 324 patients to induction or consolidation 

chemotherapy followed by either TME or a selective NOM approach on the basis of tumour 

response.42 The was no difference in the rate of 3-year disease free survival between treatment 

groups. Patients treated with consolidation had higher organ preservation rates (60% vs 47%), but 

lower rates of compliance with chemotherapy (94% vs 99%) and higher rates of compliance with 

radiotherapy (98% vs 93%, respectively) consistent with results of the CAO/ARO/AIO-12 trial. 

Chemotherapy toxicity rates were not reported separately, but these results suggest that compliance 

with components of TNT is better with whatever treatment is give first (chemotherapy or 

radiotherapy) further supporting the idea that the most important treatment should be prioritised 

based on disease risk profile.  

 

It is clear from the data above that, compared with standard care, TNT offers better rates of primary 

tumour response, organ preservation and disease free survival in patients with locally advanced 

rectal cancer.378,389,391,395 However, while optimal treatment sequencing is yet undefined, 

consolidation chemotherapy likely offers improved primary response rates but at the expense of 

increased chemotherapy toxicity (and therefore compliance).378,380 Therefore, it may be rational to 

tailor the order of TNT to disease biology.133,134 In the current study, a two-schema approach to 

TNT treatment addresses sequence administration by considering tumour biology and patient 

disease risk profile at presentation and attempts to prioritise compliance with the most vital 

component of TNT treatment. Despite inclusion of a broad, unselected group of real-world patients 

with high-risk disease, we found a relatively lower rate of toxicity than previously reported with 

TNT, and equivalent outcomes in terms of compliance and response.378,389,391,395 
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Local regrowth rate is an important concern in patients with cCR who undergo the NOM approach. 

However, salvage surgery is appropriate and based on current evidence appears to achieve similar 

rates of DFS and OS as upfront surgery.396,397 The local regrowth rate in this study was consistent 

with previous studies and all patients were salvageable with radical resection.396,398 Although some 

studies currently suggest local excision, TME remains the treatment of choice in our unit in the case 

of local regrowth.87,399  

 

The current study is limited by the short duration of follow-up, and long-term data is required to 

confirm safety and efficacy of this tailored approach. This will be the subject of further analysis on 

data maturity. The current study design included all patients with advanced rectal cancer treated 

with curative intent, including those with resectable oligometastatic disease. This limits 

comparisons to previously published data (including all four RCTs that only included stage II/III 

patients). However, the authors feel that this population better reflects of the reality of TNT 

administration in practice and provides a more comprehensive insight into the merits of induction 

chemotherapy as part of a risk adapted TNT treatment strategy. Furthermore, it is not clear that a 

single liver metastasis, for example, represents higher risk than extensive EMVI, with both 

representing high risk of distant failure with standard treatment paradigms. The study did not 

include a comparison group, but again we intend this to be the subject of a future study using a 

matched historical cohort with standard care once there are enough patients included for such a 

study to be adequately powered. 

 

10.6 Conclusion 

Early results with a defined two-schema pTNT protocol are encouraging and suggest that tailoring 

sequencing to disease risk at presentation may represent optimal balance between local and distant 

disease control. Long-term data are required to determine the effect of pTNT on disease-free, local 

recurrence and overall survival rates. 
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11.1 Abstract 

Background: This study aimed to compare current treatment response rates with personalised Total 

Neoadjuvant Therapy (pTNT), against extended chemotherapy in the ‘wait period’ (xCRT) and 

standard Chemoradiotherapy (sCRT) with adjuvant chemotherapy for rectal cancer. 

 

Methods: This was a multicentre retrospective cohort analysis. Consecutive patients with rectal 

cancer treated with pTNT over a 3.9-year period were compared to a historical cohort of patients 

treated with xCRT or sCRT as part of the published WAIT Trial. pTNT patients received 8 cycles 

mFOLFOX6 or 6 cycles CAPOX in the neoadjuvant setting (no adjuvant treatment). Patients in the 

WAIT Trial received either 3 cycles 5-FU/LV during the 10-week wait period after 

chemoradiotherapy or standard chemoradiotherapy, followed by adjuvant chemotherapy. The 

primary endpoint was overall Complete Response (oCR) rate defined as the proportion of patients 

who achieved either clinical Complete Response (cCR) or pathological Complete Response (pCR). 

 

Results: Of 284 patients diagnosed with rectal cancer during the 3.9-year period, 107 received 

pTNT. Forty of these were matched with 49 patients from the WAIT Trial (25 received xCRT and 

24 received sCRT). There was a significant difference in oCR between the groups (pTNT n=21, 

xCRT n=6, sCRT n=7, P=0.043). Of the patients that underwent surgery, pCR occurred in 13 

patients with no significant difference between groups (P=0.415). There were no significant 

differences in 2-year disease-free survival or overall survival. 

 

Conclusion: Compared with sCRT and xCRT, pTNT results in a significantly higher complete 

response rate which may facilitate organ preservation. 
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11.2 Introduction 

The current standard treatment regimen for patients with Locally Advanced Rectal Cancer (LARC) 

consists of neoadjuvant Chemoradiotherapy (sCRT) followed by surgical resection with Total 

Mesorectal Excision (TME) and adjuvant chemotherapy.320 While this multimodal approach has 

significantly reduced local recurrence from 30% to less than 5%, distant recurrence occurs in 

approximately 30% of patients and remains the leading cause of cancer-related death in LARC 

patients.35,400,401 The role of adjuvant chemotherapy remains controversial, as studies have not 

demonstrated a significant improvement in Disease Free Survival (DFS) or Overall Survival (OS). 

This is likely due to poor compliance, delays from time of diagnosis to commencement of adjuvant 

chemotherapy and suboptimal chemotherapy dosing.375,402 A 4-week delay in adjuvant treatment 

has been associated with a 14% decrease in OS.403,404 

 

Total Neoadjuvant Therapy (TNT) is a relatively new treatment paradigm, where the chemotherapy 

is brought forward to the neoadjuvant period, either prior to sCRT (induction) or after sCRT 

(consolidation), with the aim of treating micrometastasis prior to definitive surgery. This protocol 

has the potential to increase compliance to systemic chemotherapy and DFS. Recently, two 

Randomised Controlled Trials (RCT) reported higher pathological Complete Response (pCR) rates 

and a lower distant recurrence rate with TNT compared to sCRT.130,345 Additionally, TNT has been 

shown to increase the proportion of patients achieving a clinical Complete Response (cCR) 

allowing for Non-Operative Management (NOM) and organ preservation.42,387 Despite the potential 

advantages of TNT, it remains unclear if TNT benefits all patients with LARC, if it improves 

overall survival, or whether treatment sequencing should be tailored towards risk for developing 

local or distant recurrence at presentation.133  

 

In 2019, two metropolitan hospitals in Adelaide, South Australia adopted a personalised TNT 

(pTNT) protocol comprising a risk-adapted treatment strategy based on clinical staging (distant or 
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locally advanced) at presentation whereby those at risk of distant failure (EMVI +ve, cN+ve, M1) 

underwent induction chemotherapy while those at risk of local failure (cT3/4) underwent 

consolidation chemotherapy.132 Prior to this, a locally run randomised control trial (WAIT trial) 

evaluated the addition of three cycles of 5-fluorouracil/leucovorin during the 10 week wait period 

after sCRT and reported similar pCR rates to sCRT alone in patients with LARC.405 Here, we aim 

to compare current treatment response rates with pTNT versus extended chemoradiotherapy 

(xCRT) in the ‘wait period’ or sCRT. 

 

11.3 Materials and Methods 

This multicentre retrospective cohort analysis is reported using the Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) statement and was approved by the Central 

Adelaide Local Health Network Human Research Ethics Committee (HREC Reference number: 

HREC/15/RAH/186) and St. Andrew’s Hospital Research and Ethics Committee (#117). Informed 

consent was provided by all patients according to the ethical standards of the Helsinki Declaration 

of 1975. 

 

11.3.1 Patient Selection 

Prospective data of patients with LARC who underwent pTNT from January 2019 to October 2022 

were compared to a historical cohort of patients who received xCRT or sCRT from April 2012 to 

June 2014 in the WAIT trial.131,405 Analysis was limited to patients in the pTNT cohort who met the 

eligibility criteria for the WAIT trial. This included patients diagnosed with LARC located within 

12cm from the anal verge, defined as clinical stage T3/4 or any node positive disease. Local staging 

was determined based on pelvic Magnetic Resonance Imaging (MRI) and contrast-enhanced chest-

abdomen-pelvis Computed Tomography (CT) evaluated distant disease. Patients were excluded if 

they were <18 or >80 years old, had Metastatic disease (M1) at presentation, or did not undergo 

neoadjuvant treatment. 
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11.3.2 Treatment 

Groups were determined based on the neoadjuvant treatment regimen received (Figure. 31). From 

2019 onwards, pTNT was offered to all rectal cancer patients (induction or consolidation based on 

risk of locoregional or distant failure) without adjuvant treatment. Patients at risk of distant failure 

(including those with liver or lung metastases, Extramural Vascular Invasion (EMVI) or abnormal 

mesorectal or lateral pelvic lymph nodes) received induction chemotherapy. This consisted of 8 

cycles mFOLFOX6 (5-Fluorouracil [5-FU], leucovorin, and oxaliplatin), fortnightly for 16 weeks 

or 6 cycles of CAPOX (capecitabine and oxaliplatin) for 18 weeks. Following completion of 

induction chemotherapy and a 2 week wait period, patients received long-course CRT consisting of 

50Gy/25 fraction (option for dose escalation 50.4Gy/27 fractions) with concurrent intravenous 5FU 

or oral capecitabine, over 6 weeks. After completion of CRT, patients underwent a 10-week wait 

period in which oligometastatic resection was performed if indicated. At the end of the wait period 

patients were restaged with a CT, MRI, and flexible sigmoidoscopy. 

 

Patients with a high risk of locoregional failure (including bulky local disease, T4 extension and 

low tumours), received long course CRT over 6 weeks, followed by consolidation chemotherapy 

over 16 weeks consisting of 8 cycles mFOLFOX6, or 6 cycles CAPOX over 18 weeks. Upon 

completion of consolidation chemotherapy, patients were restaged with a CT, MRI, and flexible 

sigmoidoscopy. Patients who achieved a cCR were offered NOM, the remaining proceeded to 

surgical resection. In cases with both distant and locoregional failure risk, induction chemotherapy 

was favoured however this was assessed on a case-by-case basis. 

 

Between 2012-2014 as part of the WAIT trial, all patients underwent long-course CRT consisting of 

45Gy/25 fractions (option for dose escalation to 50.4Gy/28 fractions) with concurrent intravenous 

5-FU, over five weeks. For patients in the sCRT group, no further neoadjuvant chemotherapy was 

administered. Patients in the xCRT group received further chemotherapy comprising of 3 cycles of 
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bolus 5-FU with leucovorin on each of 3 days, 3 weekly. Surgery was scheduled 10 weeks after 

completion of radiotherapy with the addition of adjuvant chemotherapy if clinically indicated. 

During this time, NOM was not included in the treatment protocol for patients who achieved a cCR 

within the participating hospitals. 
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Figure. 31 Schema of the four neoadjuvant therapy approaches. sCRT, standard long-course chemoradiotherapy; xCRT, extended chemotherapy; 

pTNT, personalised total neoadjuvant therapy.   
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11.3.3 Endpoints 

The primary endpoint was overall Complete Response (oCR) defined as the proportion of patients 

who achieved either a cCR or pCR. pCR was defined as no residual tumour cells in the surgical 

specimen.26,349 In the pTNT group, cCR was routinely assessed at the end of treatment and defined 

as the absence of a palpable tumour on digital rectal exam, no visible tumour and the presence of a 

white scar via flexible sigmoidoscopy, as well as Tumour Regression Grade (TRG) 1 or 2 on 

restaging MRI without evidence of abnormal lymph nodes or EMVI.235 In the sCRT and xCRT 

groups, cCR was assessed if there was absence of macroscopic tumour at the primary tumour site 

on digital rectal exam and endoscopy. Secondary endpoints included 2-year DFS, 2-year OS, 

pathological and surgical outcomes as well as 30-day postoperative complications, graded 

according to the Clavien-Dindo (CD) classification.406 The quality of mesorectal excision was 

assessed by pathologists using Quirke’s method and Tumour Regression Grade (TRG on 

pathological assessment) was classified based on the American Joint Committee on Cancer 

(AJCC).26,406,407 

 

11.3.4 Statistical Analysis 

Parametricity was determined using the Shapiro-Wilk test. Normally distributed variables were 

expressed as mean (standard deviation) and nonparametric variables as median (range). Categorical 

variables were presented as frequencies and percentages. Continuous variables were compared 

using ANOVA or Kruskal-Wallis test depending on the type of distribution. Categorical variables 

were compared using χ2 or Fisher’s exact test. DFS and OS were analysed separately using the 

Kaplan-Meier method and log-rank tests. A P-value <0.05 was considered statistically significant. 

Statistical analysis was performed using IBM SPSS Statistics for Macintosh, version 28 (IBM 

Corp., Armonk, N.Y., USA). 
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11.4 Results 

11.4.1 Patient characteristics 

Between January 2019 and September 2022, 284 patients presented with rectal cancer and 107 

underwent pTNT. Of these, 40 patients fulfilled the inclusion criteria, and were compared with 49 

patients from the WAIT Trial (25 received xCRT and 24 received sCRT) (Figure 32). Baseline 

patient demographics and tumour characteristics are listed in Table 29. Although baseline patient 

and tumour characteristics were largely similar, there were some notable differences among the 

groups. The percentage of patients in the pTNT group with cN0 and American Society of 

Anaesthesiologists grade 3-4 were significantly higher compared with xCRT and sCRT groups 

(30.0% vs 0% vs 8.3%, P<0.001; 73.9% vs 28% vs 20.8%, P=0.0003), respectively.  
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Figure. 32 Patient flowchart.    
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Table 29 Baseline patient and tumour characteristics 

 sCRT  

N= 24 

xCRT 

N=25 

pTNT 

N=40 

P-value 

Age, years (Mean±SD) 60.412.5 59.710.1 59.213.0 0.937 

Gender (Male: Female)  18:6 18:7 26:14 0.970 

BMI (kg/m2) 26.84.3 26.03.5 28.810.3 0.367 

Distance from anal 

verge (cm) 
6.02.6 6.62.6 5.73.0 0.435 

Clinical stage     

cT2 1 (4.2) 0 (0.0) 2 (5.0) 0.236 

cT3 18 (75.0) 24 (96.0) 31 (77.5)  

cT4 5 (20.8) 1 (4.0) 7 (17.5)  

cN0 2 (8.3) 0 (0.0) 12 (30.0) <0.001 

cN1 7 (29.2) 6 (24.0) 23 (57.5)  

cN2 15 (62.5) 19 (76.0) 5 (12.5)  

CRM    0.350 

Clear 12 (50.0) 10 (40.0) 15 (37.5)  

Threatened 4 (16.7) 8 (32.0) 6 (15.0)  

Involved 8 (33.3) 7 (28.0) 19 (47.5)  

EMVI    0.676 

Positive  8 (33.3) 11 (44.0) 22 (55.0)  

Negative 16 (66.7) 14 (56.0) 18 (45.0)  

ASA score†    0.0003 

1-2 19 (79.2) 18 (72.0) 6 (26.1)  

3-4 5 (20.8) 7 (28.0) 17 (73.9)  

ASA, American Society of Anaesthesiologists; BMI, body mass index; CRM, circumferential radial 

margin; EMVI, extramural vascular invasion.  

a 23 out of 40 patients underwent surgery in the pTNT group 
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11.4.2 Response to treatment and survival outcomes 

The oCR (cCR and/or pCR) rate was significantly higher in the pTNT group compared with xCRT 

and sCRT (52.5% vs 24.2% vs 29.2%, P=0.043; Table 30). In addition, cCR rate in the pTNT group 

was significantly increased compared to xCRT and sCRT groups (47.5% vs 12% vs 8.3%, 

P<0.001). There was no significant difference in pCR rate between the groups (pTNT n=3 (13.0%), 

xCRT n=4 (16.0%), sCRT n=6 (25.0%), P=0.553). There were no significant differences in 2-year 

DFS rates between the groups (pTNT n=22 (91.7%), xCRT n=19 (76%), sCRT n=19 (79.2%), 

P=0.249). The 2-year OS also did not differ between the groups (pTNT n=23 (95.8%), xCRT n=21 

(84.0%), sCRT n=23 (95.8%), P=0.182) (Figure 33). 
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Table 30 Response to treatment 

 sCRT  

N= 24 

xCRT 

N=25 

pTNT 

N=40 

P-value 

oCR (pCR and / or cCR)  7 (29.2) 6 (24.2) 21 (52.5) 0.043 

cCR 2 (8.3) 3 (12.0) 19 (47.5) <0.001 

pCR† 6 (25.0) 4 (16.0) 3 (13.0) 0.553 

oCR, overall complete response; cCR, complete clinical response; pCR, pathological complete 

response 

a 23 out of 40 patients underwent surgery in the pTNT group 
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Figure. 33 Kaplan-Meier estimates of (A) disease-free survival and (B) overall survival in different study groups. 
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11.4.3 Surgical and pathological outcomes 

Overall, 23 (57.5%) of 40 patients in the pTNT group, 25 (100%) in the xCRT group and 24 

(100%) patients in the sCRT group proceeded to surgery (Table 31). The remaining 17 (42.5%) 

patients in the pTNT group have so far preserved their rectum. The median (range) interval between 

completion of radiotherapy and surgery was significantly longer in the pTNT group compared with 

xCRT and sCRT groups (172 days [76-616] vs 114 days [100-140] vs 112 days [98-134], P<0.001). 

No differences were noted in operative time (P=0.249), type of surgical approach (P=0.080) or type 

of resection (P=0.173). The proportion of patients with complete (R0) resection was high (91.7-

95.7%) and similar across the three groups. There were no significant differences in the rate of 

anastomotic leak, 30-day postoperative complications according to the CD classification and length 

of hospital stay. There was no mortality within 30-day postoperative period. The quality of 

mesorectal resection was significantly higher in the pTNT group compared to xCRT and sCRT 

groups (91.3% vs 60% vs 58.3, P=0.049). There was no significant difference between the groups 

with respect to pathological T or N stage and TRG. 
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Table 31 Surgical and pathological outcomes 

 sCRT  

N= 24 

xCRT 

N=25 

pTNT 

N=23 

P-value 

Days from completion of 

radiotherapy to surgery 

112 (98-134) 114 (100-

140) 

172 (76-616) <0.001 

Operative time, mins 274 (191-

393) 

246 (180-

400) 

246 (112-540) 0.249 

Type of surgical approach    0.080 

Laparoscopic 8 (33.3) 4 (16.0) 11 (47.8)  

Laparoscopic converted 2 (8.3) 1 (4.0) 0 (0.0)  

Open 14 (58.3) 20 (80.0) 12 (52.2)  

Type of resection†    0.173 

Restorative 12 (50.0) 18 (72.0) 11 (47.8)  

Non-restorative 12 (50.0) 7 (28.0) 12 (52.2)  

Anastomotic leak‡ 1 (8.3) 0 (0.0) 0 (0.0) 0.363 

30-day postoperative 

complications (Clavien-

Dindo grade) 

   0.675 

None 14 (58.3) 12 (48.0) 14 (60.9)  

1 and 2 6 (25.0) 7 (28.0) 8 (34.8)  

3 3 (12.5) 5 (20.0) 1 (4.3)  

4 1 (4.2) 1 (4.0) 0 (0.0)  

Length of stay 8 (4-42) 9 (5-39) 7 (4-27) 0.295 

Mesorectal grade     0.049 

1 2 (8.3) 3 (12.0) 1 (4.3)  

2 8 (33.3) 7 (28.0) 1 (4.3)  

3 14 (58.3) 15 (60.0) 21 (91.3)  

Resection status    1.000 

R0> 1mm 22 (91.7) 23 (92.0) 22 (95.7)  

R1≤ 1mm 2 (8.3) 2 (8.0) 1 (4.3)  

ypT stage    0.985 
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ypT0 6 (25.0) 5 (20.0) 3 (13.0)  

ypT1 2 (8.3) 1 (4.0) 1 (4.3)  

ypT2 4 (16.7) 5 (20.0) 6 (26.1)  

ypT3 11 (45.8) 13 (52.0) 12 (52.2)  

ypT4 1 (4.2) 1 (4.0) 1 (4.3)  

ypN stage    0.207 

ypN0 19 (79.2) 16 (64.0) 20 (87.0)  

ypN1 2 (8.3) 5 (20.0) 3 (13.0)  

ypN2 3 (12.5) 4 (16.0) 0 (0.0)  

TRG    0.874 

0 6 (25.0) 4 (16.0) 3 (13.0)  

1 10 (41.7) 11 (44.0) 8 (34.8)  

2 5 (20.8) 5 (20.0) 7 (30.4)  

3 3 (12.5) 5 (20.0) 5 (21.7)  

TRG, tumour regression grade 

a Restorative procedures consisted of ultra-low or low anterior resections and non-restorative 

procedures consisted of abdominoperineal resections, Hartmann’s, proctocolectomies and pelvic 

exenterations.  

b Anastomotic leak was calculated including only patients with an anastomosis in the  

denominator.  
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11.5 Discussion 

In this study, we found patients with LARC receiving pTNT have a significantly higher rate of oCR 

compared with those receiving xCRT or sCRT, but no significant difference in DFS and OS. 

Additionally, in the pTNT group, the cCR rate was approximately double that in the xCRT or sCRT 

groups, increasing the opportunity for NOM in patients seeking organ preservation. To our 

knowledge, this is the first multicentred study to compare treatment responses rates in patients with 

LARC treated with pTNT, xCRT or sCRT. 

 

Previous studies by Habr-Gama et al. and Garcia-Aguilar et al. showed that sCRT followed by 2-3 

cycles of consolidation chemotherapy has the potential to increase in pCR without severe adverse 

side effects compared to sCRT in patients with LARC.408,409 Consequently, the WAIT randomised 

trial proceeded to test this hypothesis and found xCRT does not improve the pCR rate in patients 

with LARC. The authors of the WAIT trial however, acknowledged that the trial was underpowered 

to detect small differences in pCR between groups. Furthermore, Garcia-Aguilar et al. conducted 

the TIMING trial and reported a stepwise increase in pCR rates from 25% to 38% with the addition 

of more chemotherapy cycles.126 This finding is also consistent with the results of the present study, 

that demonstrated a higher CR rate in patients who were administered an increased number of 

chemotherapy cycles and experienced a longer time interval between completion of radiotherapy 

and surgery (sCRT 112 vs xCRT 114 vs pTNT 172 days). The CAO/ARO/AIO-12 trial, which 

randomised patients to either induction or consolidation chemotherapy in the form of 3 cycles of 

FOLFOX before or after oxaliplatin based CRT followed by TME, demonstrated a much lower CR 

rate when compared with the current study (28% vs 52.5%).410 Given these results, dose escalation 

in the form of 6 or more neoadjuvant chemotherapy cycles, and beyond the wait period interval, are 

expected to increase the CR rate. 
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Recent evidence suggests that TNT improves the pCR rate and may contribute to better disease-free 

survival for patients with LARC. Cercek et al. observed higher oCR rates and successful NOM with 

induction chemotherapy followed by CRT in comparison to sCRT.387 The recently released results 

of the RAPIDO trial compared neoadjuvant short-course radiotherapy followed by 6 cycles of 

consolidation CAPOX or 9 cycles of FOLFOX4 followed by TME to sCRT, achieving a pCR rate 

of 28% and a significant reduction in the probability of distant metastasis in the TNT arm.130 

Additionally, the PRODIGE23 study comparing induction mFOLFIRINOX before CRT and TME 

followed by adjuvant chemotherapy to sCRT, also achieving a pCR rate of 28% and a significant 

improvement in DFS.345 Further, there was no difference in surgical morbidity or compliance of 

CRT following induction chemotherapy.345 In our study, no significant improvements were 

recorded in 2-year DFS or 2-year OS rates between the treatment groups. We attribute this result to 

the limited number of patients in each group and the short follow-up period. In the recently 

published OPRA trial, patients with LARC were randomised to receive induction or consolidation 

chemotherapy in the form of FOLFOX or CAPOX, followed by NOM for patients with cCR or near 

cCR.42 Organ preservation at 3-years was achieved in 53% of the patients treated with consolidation 

TNT without compromising DFS when compared with sCRT. The pTNT group examined in the 

current study is a closer representation of both arms of the OPRA trial than previous RCTs 

assessing TNT. The baseline demographics of both studies were similar with clinical tumour and 

nodal staging together with treatment methodology in terms of chemotherapy agents and dosing and 

amount of chemoradiotherapy administered. These similarities may explain the similar cCR rates 

(47.5% vs 42.2%) between the OPRA trial and the present data. Whether a risk-adapted treatment 

strategy based on clinical staging at presentation (induction for distant failure risk and consolidation 

for local control), or a one size fits all approach (either induction or consolidation for everyone) is 

better remains to be clarified with data on this question still pending. 
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It is noteworthy that diagnostic criteria for cCR differed between the patient group undergoing 

pTNT and those in the WAIT trial. Strict criteria currently define cCR, and this mandates formation 

provided by three assessment modalities: clinical examination, endoscopic, and MRI.411 However, 

radiological confirmation of cCR after CRT was not required during the WAIT trial, since surgery 

was mandated regardless of response. Therefore, although some patients in the WAIT trial were 

macroscopically diagnosed as having had cCR, for a subset of these patients, clinically undetectable 

residual tumour could have been present at the time of restaging. Thus, we speculate that the cCR 

rate may have been overestimated in the WAIT trial and suggest that the difference in response with 

pTNT could have been even more pronounced. 

 

The current study has several other limitations. The small sample size which was limited through 

matching current prospective data (pTNT) to that of the WAIT Trial. Secondly, the period of time 

expired from completion of the WAIT trial to the adoption of pTNT may have introduced 

confounding bias, although other aspects of clinical care for LARC have not altered much in that 

time. Additionally, a common concern of TNT is acute toxicity to chemotherapy. While prospective 

toxicity data for the pTNT patients are available, they were not recorded as part of the WAIT trial, 

making comparisons difficult.131 Lastly, variations in tumour response between the groups could be 

attributed to differences in treatment plans, patient characteristics and time intervals from 

completion of radiotherapy to surgery. 

 

11.6 Conclusion 

Compared with sCRT and xCRT, pTNT results in a significantly higher complete response rate 

which may facilitate organ preservation. No difference was noted in the 2-year DFS rates or 2-year 

OS rates between the three treatment groups. Long-term follow-up is required to determine whether 

pTNT impacts DFS or OS outcomes. 
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This thesis provides novel insights into the following three questions: 

1. Can a deep learning AI model be used to predict LN status on preoperative staging CT in 

patients with colon cancer? 

2. Are clinical and biochemical factors, including sarcopenia, predictive of local response 

following neoadjuvant therapy in patients with LARC? 

3. Is it feasible to tailor the sequencing of TNT according to clinical stage at presentation rather 

than applying a single standard regimen for all patients with advanced rectal cancer? 

In the introduction, a brief overview of the incidence and mortality associated with CRC is 

discussed. The lymphatic metastatic pathway and relevant radiological imaging modalities are 

discussed primarily focusing on the challenge of accurately staging LNs and the implications for 

neoadjuvant and adjuvant therapy with their associated costs. Following this, a detailed section is 

presented on AI and how it can potentially improve the current method of staging LNs on 

preoperative imaging. The introduction then shifts towards clinical and biochemical predictors of 

local response to nCRT. The lack of accurate and reliable predictors is an issue that continues to 

court controversy and debate among surgeons and oncologists. Additionally, the introduction 

reviews the role of sarcopenia specifically, focusing on aetiology, diagnosis, association with 

negative oncological and postoperative outcomes in patients with CRC. In patients with LARC who 

undergo nCRT, distant metastasis rates have remained recalcitrant, owing to poor compliance to 

adjuvant chemotherapy. Accordingly, the last section of the introduction describes TNT, outlining 

the latest clinical trials and what questions still need to be answered.  

 

The relevant questions are interrogated further in body of the thesis. Chapter 3 systematically 

reviewed and meta-analysed the current AI methods in LN prediction on preoperative staging CT 

and MRI in patients with abdominopelvic malignancies. A total of 21 studies were included, 17 of 

whom were eligible for meta-analysis. This study highlighted the lack of deep learning studies 

(n=1) with the majority employing radiomics models (n=20). Heterogeneity and substantial risk of 
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bias were also noted in most studies. While radiomics models improve diagnostic accuracy of LN 

staging for abdominopelvic malignancies in comparison with radiologists, there remains insufficient 

data available on the accuracy of deep learning models for conducting a meta-analysis.  

 

Chapter 4 focused on AI for pre-operative lymph node staging in colorectal cancer. A second 

systematic review and meta-analysis was performed. Seventeen studies were included, of which 

twelve used radiomics and five employed deep learning. In rectal cancer the accuracy of a deep 

learning model in a per-patient lymphadenopathy diagnosis was higher than radiomics, and both 

models performed better than radiologists. There was significant heterogeneity between studies. 

Data on the diagnostic accuracy of deep learning models in CRC remain scarce, thus limiting our 

ability to perform a meta-analysis. Overall, this study showed a potential role for deep learning 

models to be used as a diagnostic tool for staging lymph nodes on preoperative imaging, however, 

higher quality studies with larger sample sizes are required. 

 

Chapter 5 established the baseline accuracy of nodal staging in colon cancer and tumour and nodal 

staging in rectal cancer at our institutions. We prospectively evaluate the diagnostic agreement 

between MDT review and radiology reports. Of 346 eligible patients with colon cancer, 270 

patients had available histopathology which served as the ground truth to measure diagnostic 

accuracy. This study showed no significant differences in local CRC staging between MDT review 

and original radiology reports. It further shows that the accuracy of preoperative nodal staging was 

70% in patients with colon cancer which is in line with the nodal accuracy observed historically. 

Moreover, the results of this study served as a baseline accuracy of the radiologist assessment of 

LNs that could later be compared to the accuracy of the deep learning model.  

 

Chapter 6 describes an original study to develop a deep learning model to identify nodal disease 

based on preoperative staging CT using larger numbers of patients and with more robust 
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methodology than in the literature identified in the reviews. A ResNet-50 framework was used that 

integrates a segmentation model with a classification model. The combination of the two models 

allowed to transfer the learned features from segmentations across to the classifier. Of a total of 

1201 patients, 401 were allocated to the training, 100 to validation, 500 to retrospective testing and 

200 to prospective testing. On prospective testing the ResNet-50 deep learning model predicted the 

presence or absence of metastatic disease in local lymph nodes poorly with an AUROC of 0.486. 

Ultimately, we show that a ResNet-50 framework is unable to accurately stage lymph nodes on 

preoperative CT imaging in patients with colon cancer. 

 

Despite rigorous modelling and a large sample size, the deep learning model developed in Chapter 

6 had limited accuracy and a low AUROC thereby suggesting that the deep learning model did not 

predict lymph node status. Consequently, we shifted towards another existing area in need of more 

research which is the role of AI for body composition and sarcopenia evaluation on CT. Chapter 7 

was a systematic review and meta-analysis conducted to summarise the available CT- based AI 

segmentation models able to determine body composition and to assess the performance of these 

models. Twenty-four studies were systematically reviewed, of those 15 studies were meta-analysed. 

CT-based deep learning segmentation models demonstrated excellent performance in body 

composition and sarcopenia measurement. Although more comparative data is needed before 

incorporating these models into clinical practice, it is unnecessary to develop new deep learning 

segmentation models given the available models demonstrated over 90% overlap between the 

prediction output and the ground truth. 

 

The second part of this thesis focusses on predictors of response to neoadjuvant treatment. Chapter 

8 investigated if sarcopenia could predict local response after nCRT in patients with LARC. Pre-

treatment sarcopenia was diagnosed using total psoas index calculated from staging CT scans. The 

primary outcome used was pathological tumour regression grade defined as good (tumour 
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regression grade 0/1) versus poor (tumour regression grade 2/3). Secondary outcomes were pCR 

and assumed CR (cCR + pCR). Of 167 included patients with LARC, 157 proceeded to surgery. 

There was no significant difference between good tumour regression grade, pCR and assumed CR 

patients in the sarcopenia group compared with the non-sarcopenia group. This study showed that 

sarcopenia is not a predictor of poor nCRT response in patients with LARC. Further multicentre 

studies are required to explore the mechanism of the relationship between sarcopenia and pCR to 

nCRT. In Chapter 9 we explored clinical and biochemical predictors of local response after 

neoadjuvant therapy in patients with rectal cancer. The primary outcomes were tumour regression 

grade based on radiological imaging (mrTRG) or pathology (pTRG). Patients were classified as 

good (mrTRG 1-2 or pTRG 0-1) versus poor TRG (mrTRG 3-4 or pTRG 2-3). Out of 274 included 

patients with rectal cancer, 228 proceeded to surgery. On regression analysis clinical T2 stage and 

BMI≥25kg/m2 were significant predictors of a good TRG and clinical T2 stage and a pTNT 

regimen were predictors of achieving a CR. The diagnostic AUC for the regression models were 

0.63 for good TRG and 0.62 for achieving a CR. Together, these findings suggest that a clinical T2 

stage and BMI≥25kg/m2 were predictors of good response to neoadjuvant therapy in patients with 

rectal cancer. After external validation, this information can potentially improve standard of care by 

more accurately stratifying patients to neoadjuvant therapy and help patients improve their 

outcome. 

 

In the third part of this thesis, the role of personalised sequencing of TNT was interrogated. 

Chapter 10 presents a prospective evaluation short term outcomes of a personalised Total 

Neoadjuvant Treatment (pTNT) protocol, with treatment sequencing based on clinical stage at 

presentation. Of 270 patients referred with rectal cancer, 102 received pTNT with curative intent 

and 79 have completed their treatment thus far. Thirty-three patients (41.8%) received induction 

chemotherapy and 46 (58.2%) received consolidation chemotherapy per protocol. Overall, a cCR 

was observed in 40.5% of patients and organ preservation was possible in 35.2% of patients treated 
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with pTNT. Of the 29 patients with distant disease, a complete M1 response was observed in 44.8% 

of patients. Preliminary results suggest pTNT may provide the optimal balance between local and 

distant disease control and treatment toxicity for patients with advanced rectal cancer. Long-term 

data to examine recurrence and survival rates are required and pending. 

 

Lastly, in Chapter 11 we compared treatment response rates with pTNT versus chemotherapy in 

the ‘wait period’ (xCRT) or standard Chemoradiotherapy (sCRT). Prospective data of all patients 

with rectal cancer considered for pTNT over a 3.9-year period was matched to a historical cohort of 

patients treated with xCRT or sCRT. We found that oCR was significantly higher in patients treated 

with pTNT which consisted of 8 cycles mFOLFOX6 or 6 cycles CAPOX without adjuvant therapy 

than in those treated with either 3 cycles 5-FU/LV during the 10-week wait period after 

chemoradiotherapy or standard chemoradiotherapy, followed by adjuvant chemotherapy. We found 

no significant difference in 2-year DFS rates or 2-year OS rates between the three treatment groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 



281 
 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



282 
 

Based on the collective research presented in this thesis, a few conclusions can be drawn. 

 

Firstly, there is a considerable heterogeneity among studies using AI for LN staging on preoperative 

MRI and CT in CRC. There is also a lack of studies using deep learning to predict LN stage on 

preoperative CT imaging, specifically in colon cancer. In the only study published to date, and with 

the inclusion of a large number of patients and a robust model, we were unable to demonstrate that 

a deep learning model using a ResNet-50 framework can accurately stage lymph nodes in patients 

with colon cancer. 

 

We therefore pivoted to examine which markers can be correlated with tumour response to nCRT. 

We identified clinical T2 stage and a BMI≥25kg/m2, are significant predictors of a good TRG 

response after neoadjuvant therapy in patients with rectal cancer, but that sarcopenia was not 

predictive. 

 

Thirdly, we showed that a defined two schema pTNT protocol tailoring treatment sequencing to 

disease risk at presentation may represent optimal balance between local and distant disease control. 

We also found that compared with sCRT and xCRT, pTNT results in a significantly higher 

complete response rate which may facilitate organ preservation. 
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The first part of this thesis has outlined the current evidence in the diagnostic accuracy of AI 

models in predicting LN status on preoperative imaging in abdominopelvic malignancies and CRC 

and has established a baseline rate that can be achieved by the radiologist. While the ResNet-50 

deep learning model was unable to accurately stage LNs on preoperative CT imaging in colon 

cancer, radiomics is the logical next step in uncovering the distinguishing features between 

malignant and benign LNs. Creating a reliable radiomics model that can accurately stage regional 

LNs in patients with CRC could potentially give clinicians the ability to more accurately tailor 

patient’s treatment, maximise tumour response, reduce chemotherapy dosage or avoid unnecessary 

treatment and improve overall outcome and quality of life. 

 

The second part of this thesis has shown that in patients with LARC, sarcopenia does not predict 

local response after nCRT, however clinical T2 stage and a BMI≥25kg/m2 were shown to be 

predictors of good response. Nevertheless, the diagnostic accuracy of the multivariable regression 

model based on the predictors of good TRG was not high enough to be implemented in the clinical 

setting. A larger multicentre prospective study conducted with a factorial, pragmatic design could 

add power and external validation of the results.  

 

The third part of this thesis has demonstrated increased rates of cCR and CR with a pTNT protocol 

in patients with advanced rectal cancer. Recently, Cercek et al. conducted a phase II study 

investigating Programmed Death (PD1) blockade in mismatch repair-deficient LARC.412 Results of 

their study showed a cCR in 100% of patients. Although a phase III study is required to confirm the 

success of immunotherapy in this subpopulation of LARC, the future of TNT lies in exploring 

novel therapies that target individual mutations in genetic sequencing pathways including 

KRAS/NRAS, BRAF, HER amplification and gene fusion. Adding new more targeted therapeutic 

agents to an existing pTNT platform may further improve response rates and reduce toxicity. 
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APPENDIX – A: SUPPEMENTARY MATERIAL FOR ARTIFICIAL INTELLIGENCE 

FOR THE DIAGNOSIS OF LYMPH NODE METASTASES IN PATIENTS WITH 

ABDOMINOPELVIC MALIGNANCY: A SYSTEMATIC REVIEW AND META-

ANALYSIS.
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Appendix 1. Prisma checklist150 

Section/topic  # Checklist item  
Reported on 
page #  

TITLE   

Title  1 Identify the report as a systematic review, meta-analysis, or both.  1 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility 
criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions 
and implications of key findings; systematic review registration number.  

2 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of what is already known.  3 

Objectives  4 Provide an explicit statement of questions being addressed with reference to participants, interventions, 
comparisons, outcomes, and study design (PICOS).  

4 

METHODS   

Protocol and 
registration  

5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide 
registration information including registration number.  

N/A 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, 

language, publication status) used as criteria for eligibility, giving rationale.  
4 

Information sources  7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify 
additional studies) in the search and date last searched.  

4 

Search  8 Present full electronic search strategy for at least one database, including any limits used, such that it could be 
repeated.  

5 

Study selection  9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, 
included in the meta-analysis).  

6 

Data collection 
process  

10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any 
processes for obtaining and confirming data from investigators.  

6 

Data items  11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and 
simplifications made.  

7 

Risk of bias in 
individual studies  

12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was 
done at the study or outcome level), and how this information is to be used in any data synthesis.  

6 
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Summary measures  13 State the principal summary measures (e.g., risk ratio, difference in means).  6 

Synthesis of results  14 Describe the methods of handling data and combining results of studies, if done, including measures of 

consistency (e.g., I2) for each meta-analysis.  
7 

Risk of bias across 
studies  

15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective 
reporting within studies).  

6 

Additional analyses  16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, 
indicating which were pre-specified.  

7 

RESULTS  
   

Study selection  17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions 
at each stage, ideally with a flow diagram.  

9,10 

Study characteristics  18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) 
and provide the citations.  

11,12 

Risk of bias within 
studies  

19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).  15,16,17 

Results of individual 
studies  

20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each 
intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.  

23,24,25 

Synthesis of results  21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.  20,21 

Risk of bias across 
studies  

22 Present results of any assessment of risk of bias across studies (see Item 15).  16,17,18,19 

Additional analysis  23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).  22 

DISCUSSION  
   

Summary of 
evidence  

24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance 
to key groups (e.g., healthcare providers, users, and policy makers).  

26 

Limitations  25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of 
identified research, reporting bias).  

28 

Conclusions  26 Provide a general interpretation of the results in the context of other evidence, and implications for future 
research.  

28 
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FUNDING  
   

Funding  27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for 
the systematic review.  

30 
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290 
 

Table 1. Search Strategy 

 

 

  

Sources Search 

in 

MeSH terms Limits Search 

results 

Cochrane 

Library 

Search 

manager 

("Artificial intelligence" OR "deep 

learning" OR "convolutional neural 

network" OR "machine learning" OR 

"automatic detection" OR "radiomics" 

OR "radiomic") AND ("CT" OR 

"MRI") AND ("Lymph node" OR 

"lymph node metastasis") AND 

("colon" OR "rectal" OR "colorectal") 

None 3 

PubMed, 

(MEDLINE) 

N/A ("Artificial intelligence" OR "deep 

learning" OR "convolutional neural 

network" OR "machine learning" OR 

"automatic detection" OR "radiomics" 

OR "radiomic") AND ("CT" OR 

"MRI") AND ("Lymph node" OR 

"lymph node metastasis") AND 

("colon" OR "rectal" OR "colorectal") 

Research 

articles, 

years 

(2010-

2020) 

14 

EMBASE Quick 

search  

('artificial intelligence'/exp OR 

'artificial intelligence' OR 'deep 

learning'/exp OR 'deep learning' OR 

'convolutional neural network'/exp OR 

'convolutional neural network' OR 

'machine learning'/exp OR 'machine 

learning' OR 'automatic detection' OR 

'radiomics'/exp OR 'radiomics' OR 

'radiomic') AND ('ct'/exp OR 'ct' OR 

'mri'/exp OR 'mri') AND ('lymph 

node'/exp OR 'lymph node' OR 'lymph 

node metastasis'/exp OR 'lymph node 

metastasis') AND ('colon'/exp OR 

'colon' OR 'rectal' OR 'colorectal') 

None 45 

IEEE Xplore 

Digital 

Library 

N/A (“Artificial intelligence” OR “machine 

learning” OR “deep learning” OR 

“convolutional neural network” OR 

“automatic detection” OR “computer-

aided” OR “segmentation” OR 

“Radiomic” OR “Radiomics”) AND 

(“CT” OR “MRI” OR “images” OR 

“diagnostic imaging” OR “radiology”) 

AND (“Lymph node*” OR “lymph 

node detection”) 

None 3 
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Table 2. Diagnostic accuracy measures 

Measure Formula 

Sensitivity 
𝑇𝑃

𝑃
 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity 
𝑇𝑁

𝑁
=  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

PPV 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

NPV 
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

SE 
(𝑈𝑝𝑝𝑒𝑟 𝐿𝑖𝑚𝑖𝑡 − 𝐿𝑜𝑤𝑒𝑟 𝐿𝑖𝑚𝑖𝑡)

3.92
 

95% Confidence Interval 𝑏𝑒𝑠𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 +/−(1.96) ∗ (𝑆𝐸) 
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Table 3.  Selected characteristics of included studies. 

First 

Author 

Country Year Study design Patients 

(% 

female 

patients)  

Sample size 

for 

diagnostic 

accuracy, n 

Mean or 

Median age 

(SD; 

range), 

years* 

Imaging 

modality 

Type of 

malignancy 

AI model (Per-

patient /per-

node 

diagnostic 

output) 

Reference 

standard 

Ding 186 China 2020 Prospective 

single-center 

545 (38%) 183 58.6 (12.6) MRI Rectal  Deep learning 

(per-patient) 

Pathology 

Eresen193 USA 2020 Retrospective 

single-center 

390 (47%) 78 62.1 

(±13.25) LN 

(+), 62.56 

(±14.17) LN 

(-)  

CT Colon  Radiomics (per-

patient) 

Pathology 

Li194 China 2020 Prospective 

single-center 

766 (45%) 308 59.0 

(±12.03;19-

87) 

CT Colorectal Radiomics (per-

patient) 

Pathology 

Yang195 China 2020 Retrospective 

single-center 

139 (35%) 41 64 (34-86) MRI Rectal  Radiomics (per-

patient) 

Pathology 

Nakanishi19

6 

Japan 2020 Retrospective 

Multi-center 

247 (34%) 72 61 (51.3–

72.8) 

CT Rectal Radiomics (per-

patient) 

Pathology 

Zhou197 China 2020 Retrospective 

Single-center 

391 (29%) 130 53.7 ± 11.7 MRI Rectal Radiomics (per-

patient) 

Pathology 

Glaser47 Australia 2020 Retrospective 

Single-center 

123 23 - CT Colon Deep learning 

(per-patient) 

Pathology 

Meng 198 China 2019 Retrospective 

Single-center   

 

345 (38%) 148 61.1 (±12.4) MRI Rectal Radiomics (per-

patient) 

Pathology 

Wang185 China 2019 Retrospective 

single-center 

107 - - CT Rectal Deep learning 

(per-patient) 

- 
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AI, artificial intelligence; Avg, average; CV, cross validation

Zhu199 China 2019 Retrospective 

Single-center   

215 (39%) 72 58.6 (±10.3) MRI Rectal Radiomics (per-

node) 

Pathology 

Lu200 China 2018 Prospective 

multi-center 

765 414 - MRI Rectal Deep learning 

(per-node) 

Pathology 

Li201 China 2018 Retrospective 

single center   

619 - - MRI Colorectal Deep learning 

(per-node) 

Radiology 

Chen202 China 2018 Prospective 

Single-center  

115 (43%) 33 57 (± 14;30–

79) LN (+), 

62 (± 14;29–

85) 

 

ERUS, 

CT, 

SWE 

Rectal  Radiomics (per-

patient) 

Pathology 

Huang203 China 2016 Retrospective 

Single-center 

326 (35%) 200 61.2 

(±13.9), 

60.0 (±13.5) 

LN (+), 64.9 

(±11.8) LN 

(-) 

CT Colorectal Radiomics (per-

patient) 

Pathology 

Cai157 China 2012 Prospective 

Single-center 

228 (39%) Avg of 

leave-one-

out CV 

58 (19-86) CT Rectal  Radiomics (per-

node) 

Pathology 

Tse205 UK 2012 Retrospective 

Multi-center  

17 Avg of 

leave-one-

out CV 

- MRI Rectal Radiomics (per-

node) 

Pathology 

Cui204 China 2011 Prospective 

Single-center 

 

228 Avg of 

leave-one-

out CV 

- CT Rectal Radiomics (per-

node) 

Pathology 
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Table 4. Quality assessment of studies included in systematic review, according to the Quality Assessment of Diagnostic Accuracy Studies-2 

(QUADAS-2) Tool adapted with signalling questions by Sollini et al.  

(Sollini M, Antunovic L, Chiti A, Kirienko M: Towards clinical application of image mining: a systematic review on artificial intelligence and 

radiomics. Eur J Nucl Med Mol Imaging 2019, 46(13):2656-2672.) 

Source RISK OF BIAS APPLICABILITY 

CONCERNS 

PATIENT SELECTION INDEX TEST REFERE

NCE 

STANDA

RD 

FLOW 

AND 

TIMIN

G 

PATIEN

T 

SELECTI

ON 

 

IND

EX 

TES

T 

REFERE

NCE 

STANDA

RD 

Was the 

statistical 

managemen

t adequate? 

Were the 

inclusion

/exclusio

n criteria 

specified

? 

Was the 

type of 

study 

(retrospe

ctive or 

prospecti

ve) 

specified

? 

Were the 

imaging 

acquisitio

n protocol 

and the 

segmentat

ion 

method(s) 

detailed? 

Was the 

image 

processi

ng 

approac

h 

detailed

? 

Was the 

validatio

n 

independ

ent (i.e., 

no 

internal)? 

Was the 

reference 

standard 

adequate? 

Was 

there an 

appropri

ate 

interval 

between 

index 

test 

and 

referenc

e 

standard

? 

   

Ding et al 

2020 186 

yes yes yes yes yes no yes unclear yes yes yes 

Eresen et al 

2020 193 

yes yes yes yes yes no yes unclear yes yes yes 

Li et al 

2020 194 

yes yes yes yes yes no yes unclear yes yes yes 
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Yang et al 

2020 195 

yes yes yes yes yes no yes unclear yes yes yes 

Nakanishi 

et al 

2020196  

yes yes yes yes yes yes yes unclear yes yes yes 

Zhou et al 

2020 197 

yes yes yes yes yes no yes unclear yes yes yes 

Glaser et al 

2020 47 

yes no yes yes yes no yes unclear yes yes yes 

Meng et al 

2019 198 

yes yes yes yes yes no yes unclear yes yes yes 

Wang et al 

2019 185 

yes no yes yes no no unclear  unclear yes yes unclear 

Zhu et al 

2019 199 

yes yes yes yes yes no yes unclear yes yes yes 

Lu et al 

2018 200 

yes yes yes yes yes yes yes unclear yes yes yes 

Li et al 

2018 201 

yes yes yes yes yes no no unclear yes yes yes 

Chen et al 

2018202  

yes yes yes yes yes no yes unclear yes yes yes 

Huang et al 

2016 203 

yes yes yes yes yes no yes unclear yes yes yes 

Cai et al 

2012 157 

yes yes yes yes yes no yes unclear yes yes yes 

Tse et al 

2012 205 

yes yes yes yes yes no yes unclear yes yes yes 

Cui et al 

2011 204 

yes yes yes yes yes no yes unclear yes yes yes 
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Figure. 1 Publication bias presentation using funnel plot of included studies. 
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APPENDIX – C: SUPPEMENTARY MATERIAL FOR DEEP LEARNING TO PREDICT 

LYMPH NODE STATUS ON PRE-OPERATIVE STAGING CT IN PATIENTS WITH 

COLON CANCER.
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Table 1. Scanner types 

Manufacturer Type Year 

Philips Brilliance 16-Slice 2007-2009 

Toshiba  Aquilion 32 2011 

GE LightSpeed VCT 2007-2019 

GE Optima 2012-2019 

Siemens SOMATOM Single and 

Dual Source series 

2007-2019 

Philips 5000 Ingenuity  2011-2019 

Siemens  SOMATOM Definition AS 2019 

Toshiba Aquilion ONE 2019 

Siemens SOMATOM Force 2019 

Siemens  SOMATOM  256 2012-2019 

Siemens SOMATOM Perspective 2019 
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Table 2. CT scan characteristics 

Variables Training 

Cohort 

(n=401) 

Validation 

Cohort 

(n=100) 

Testing 

Cohort 1 

(n=500) 

Testing 

Cohort 2 

(n=200) 

P-value 

LN segmentation  401 (100.0) 100 (100.0) n/a n/a n/a 

Contrast-enhanced 

CT 

    0.361 

Yes 373 (93.0) 91 (91.0) 475 (95.0) 189 (94.5)  

No 28 (7.0) 9 (9.0) 25 (5.0) 11 (5.5)  

CT scan slice 

thickness  

    <0.001 

0.5 mm 5 (1.2) 2 (2.0) 5 (1.0) 3 (1.5)  

1 mm 38 (9.5) 12 (12.0) 19 (3.8) 65 (32.5)  

1.25 mm 51 (12.7) 5 (5.0) 33 (6.6) 1 (0.5)  

1.5mm 3 (0.7) 3 (3.0) 3 (0.6) 0 (0.0)  

2 mm 105 (26.2) 41 (41.0) 30 (6.0) 1 (0.5)  

2.5 mm 50 (12.5) 8 (8.0) 47 (9.4) 18 (9.0)  

3 mm 118 (29.4) 24 (24.0) 282 (56.4) 109 (54.5)  

5 mm 26 (6.5) 4 (4.0) 78 (15.6) 3 (1.5)  

7 mm 5 (1.2) 1 (1.0) 3 (0.6) 0 (0.0)  

CT, computed tomography; LN, lymph node; n/a, not applicable 
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Figure. 1 Regional lymph nodes are segmented in red around the colonic veins segmented in blue 

(colonic veins are segmented for illustrative purposes only). (A) Ileocolic nodes. (B) Right colic 

nodes. (C) Middle colic nodes. (D) Left colic nodes. (E) Sigmoid nodes.  
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APPENDIX – D: SUPPEMENTARY MATERIAL FOR ARTIFICIAL INTELLIGENCE 

FOR BODY COMPOSITION AND SARCOPENIA EVALUATION ON COMPUTED 

TOMOGRAPHY: A SYSTEMATIC REVIEW AND META-ANALYSIS  
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Table 1. Search Strategy 

Sources Search in MeSH terms Limit Res

ults 

PubMed, 

(MEDLINE) 

N/A (“Artificial intelligence” OR “deep learning” 

OR “convolutional neural network” OR 

“machine learning” OR “automatic 

detection” OR “vector machine” OR 

"radiomics" OR "radiomic") AND (“CT” 

OR “computed tomography”) AND (“age-

related sarcopenia” OR “body composition” 

OR “dynapenia” OR “myopenia” OR 

“sarcopenic obesity” OR “sarcopenia”) 

10yrs 56 

EMBASE Quick 

search  

(“Artificial intelligence” OR “deep learning” 

OR “convolutional neural network” OR 

“machine learning” OR “automatic 

detection” OR “vector machine” OR 

"radiomics" OR "radiomic") AND (“CT” 

OR “computed tomography”) AND (“age-

related sarcopenia” OR “body composition” 

OR “dynapenia” OR “myopenia” OR 

“sarcopenic obesity” OR “sarcopenia”) 

None 104 

Web of 

Science 

Basic 

search 

(“Artificial intelligence” OR “deep learning” 

OR “convolutional neural network” OR 

“machine learning” OR “automatic 

detection” OR “vector machine” OR 

"radiomics" OR "radiomic") AND (“CT” 

OR “computed tomography”) AND (“age-

related sarcopenia” OR “body composition” 

OR “dynapenia” OR “myopenia” OR 

“sarcopenic obesity” OR “sarcopenia”) 

10yrs 55 

Scorpus Abstract 

title, 

Abstract, 

keywords 

TITLE-ABS-KEY ((“Artificial intelligence” 

OR “deep learning” OR “convolutional 

neural network” OR “machine learning” OR 

“automatic 

detection"  OR  “vector  AND machine”  O

R  "radiomics"  OR  "radiomic" )  AND  ( "

CT"  OR  "computed 

tomography" )  AND  ( "sarcopenia"  OR  “b

ody  AND composition” ) )  

 

None 24 
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Table 2. Checklist for Artificial Intelligence in Medical Imaging (CLAIM) 

Section / Topic No. Item 

TITLE / 

ABSTRACT 

  

 1 Identification as a study of AI methodology, specifying the category 

of technology used (e.g., deep learning) 

 2 Structured summary of study design, methods, results, and 

conclusions  

INTRODUCTION   

 3 Scientific and clinical background, including the intended use and 

clinical role of the AI approach 

 4 Study objectives and hypotheses 

METHODS   

Study Design 5 Prospective or retrospective study 

 6 Study goal, such as model creation, exploratory study, feasibility 

study, non-inferiority trial 

Data 7 Data sources 

 8 Eligibility criteria: how, where, and when potentially eligible 

participants or studies were identified (e.g., symptoms, results from 

previous tests, inclusion in registry, patient-care setting, location, 

dates) 

 9 Data pre-processing steps  

 10 Selection of data subsets, if applicable 

 11 Definitions of data elements, with references to Common Data 

Elements 

 12 De-identification methods 

 13 How missing data were handled 

Ground Truth 14 Definition of ground truth reference standard, in sufficient detail to 

allow replication 

 15 Rationale for choosing the reference standard (if alternatives exist) 

 16 Source of ground-truth annotations; qualifications and preparation 

of annotators 

 17 Annotation tools 

 18 Measurement of inter- and intrarater variability; methods to mitigate 

variability and/or resolve discrepancies 

Data Partitions 19 Intended sample size and how it was determined 

 20 How data were assigned to partitions; specify proportions 

 21 Level at which partitions are disjoint (e.g., image, study, patient, 

institution) 
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Model 22 Detailed description of model, including inputs, outputs, all 

intermediate layers and connections 

 23 Software libraries, frameworks, and packages 

 24 Initialization of model parameters (e.g., randomization, transfer 

learning) 

Training 25 Details of training approach, including data augmentation, 

hyperparameters, number of models trained 

 26 Method of selecting the final model 

 27 Ensembling techniques, if applicable 

Evaluation 28 Metrics of model performance 

 29 Statistical measures of significance and uncertainty (e.g., confidence 

intervals) 

 30 Robustness or sensitivity analysis 

 31 Methods for explainability or interpretability (e.g., saliency maps), 

and how they were validated 

 32 Validation or testing on external data 

RESULTS   

Data 33 Flow of participants or cases, using a diagram to indicate inclusion 

and exclusion 

 34 Demographic and clinical characteristics of cases in each partition 

Model performance 35 Performance metrics for optimal model(s) on all data partitions 

 36 Estimates of diagnostic accuracy and their precision (such as 95% 

confidence intervals) 

 37 Failure analysis of incorrectly classified cases 

DISCUSSION   

 38 Study limitations, including potential bias, statistical uncertainty, 

and generalizability 

 39 Implications for practice, including the intended use and/or clinical 

role  

OTHER 

INFORMATION 

  

 40 Registration number and name of registry 

 41 Where the full study protocol can be accessed 

 42 Sources of funding and other support; role of funders 
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Table 3. CLAIM individual scoring per study per rater 

Rater 1: 

Study 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

2

6 

2

7 

2

8 

2

9 

3

0 

3

1 

3

2 

3

3 

3

4 

3

5 

3

6 

3

7 

3

8 

3

9 

4

0 

4

1 

4

2 

Kroll et al., 

2021
286

 

1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 0 n/

a 

0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 

Borrelli et 

al., 2021
287

  

1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 n/

a 

1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 

Amarasing

he et al., 

2021
288

 

1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 

Ackermans 
et al., 

2021
289

 

1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 n/
a 

1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

Magudia et 

al., 2021 
290

 

1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 n/

a 

1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 

Zopfs et al., 

2020 
291

 

1 1 1 1 1 1 1 1 1 1 1 0 n/

a 

1 1 1 1 1 0 1 1 1 1 1 1 0 n/

a 

1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 

Burns et al., 

2020 
275

 

1 1 1 1 1 1 1 1 1 n/

a 

1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 n/

a 

0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 

Koitka et 
al., 2020 
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1 1 1 1 1 0 1 1 1 n/
a 

0 0 n/
a 

1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 

Park et al., 
2020

293
 

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 n/
a 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

Liu et al., 

2020
294

 

1 1 1 1 1 0 1 0 1 n/

a 

1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 

Paris et al., 

2020
295

 

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 n/

a 

1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 

Hemke et 

al.,2020
296

 

1 1 1 1 1 0 1 1 1 n/

a 

1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 n/

a 

1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 

Blanc-

Durand et 

al., 2020
297

 

1 1 1 1 1 0 1 1 1 n/

a 

0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 

Nowak et 
al., 2020

298
  

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 

Dong et al., 

2019
299

 

1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 n/

a 

1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 

Graffy et 

al.,2019
300

 

1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 n/

a 

1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 

Barnard et 

al.,2019
301

 

1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 n/

a 

1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 

Hashimoto 

et 

al.,2019
302

 

1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 n/

a 

1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 

Dabiri et 
al.,2019

278
 

0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 n/
a 

1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 

Weston et 

al., 2019
303

 

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 n/

a 

1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 

Liu et al., 

2019
304

 

1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 n/

a 

1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 

Gonzalez et 

al. 2018
305

 

0 0 0 1 1 0 1 0 0 0 1 0 n/

a 

1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 

Wang et al., 

2017
306

 

1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 n/

a 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 

Lee et al., 

2017
307

 

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 n/

a 

1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 

Rater 2: 

Kroll et al., 

2021
286

 

1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0 1 1 1 1 n/

a 

0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 
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Borrelli et 

al., 2021
287

  

1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 n/

a 

1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 

Amarasing
he et al., 

2021
288

 

1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 

Ackermans 

et al., 
2021

289
 

1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 n/

a 

1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 

Magudia et 

al., 2021 
290

 

1 1 1 1 0 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 n/

a 

1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

Zopfs et al., 

2020 
291

 

1 1 1 1 1 1 1 1 1 1 1 0 n/

a 

1 1 1 1 1 0 1 1 1 1 1 1 0 n/

a 

1 1 0 1 0 0 0 1 1 0 1 1 1 1 1 

Burns et al., 

2020 
275

 

1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 n/

a 

0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 

Koitka et 
al., 2020 

292
 

1 1 1 1 1 1 1 1 1 0 0 0 n/
a 

1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 

Park et al., 
2020

293
 

1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 n/
a 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

Liu et al., 

2020
294

 

1 1 1 1 1 0 0 0 1 n/

a 

1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 

Paris et al., 

2020
295

 

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 n/

a 

0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 

Hemke et 

al.,2020
296

 

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 n/

a 

1 0 0 0 0 0 0 1 1 0 1 1 0 0 1 

Blanc-

Durand et 

al., 2020
297

 

1 1 1 1 1 0 1 1 1 n/

a 

0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 

Nowak et 
al., 2020

298
  

1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 

Dong et al., 

2019
299

 

1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 n/

a 

1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 

Graffy et 

al.,2019
300

 

1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 n/

a 

1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 

Barnard et 

al.,2019
301

 

1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 n/

a 

1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 

Hashimoto 

et 

al.,2019
302

 

1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 n/

a 

1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 

Dabiri et 
al.,2019

278
 

0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 n/
a 

1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 

Weston et 

al., 2019
303

 

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 n/

a 

0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 

Liu et al., 

2019
304

 

1 0 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 n/

a 

1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 

Gonzalez et 

al. 2018
305

 

1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0  1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

Wang et al., 

2017
306

 

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 n/

a 

1 1 1 1 1 1 1 0 1 0 1 1 0 0 1 

Lee et al., 

2017
307

 

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 n/

a 

1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 

Rater 1 and Rater 2: 

Kroll et al., 

2021
286

 

1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1 0 n/

a 

0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 

Borrelli et 

al., 2021
287

  

1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 n/

a 

1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 

Amarasing

he et al., 

2021
288

 

1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 

Ackermans 

et al., 

2021
289

 

1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 n/

a 

1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 

Magudia et 
al., 2021 

290
 

1 1 1 1 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 n/
a 

1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 
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Zopfs et al., 

2020 
291

 

1 1 1 1 1 1 1 1 1 1 1 0 n/

a 

1 1 1 1 1 0 1 1 1 1 1 1 0 n/

a 

1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 

Burns et al., 
2020 

275
 

1 1 1 1 1 1 1 1 1 n/
a 

1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 n/
a 

0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 

Koitka et 
al., 2020 

292
 

1 1 1 1 1 0 1 1 1 n/
a 

0 0 n/
a 

1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 

Park et al., 

2020
293

 

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 n/

a 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

Liu et al., 

2020
294

 

1 1 1 1 1 0 1 0 1 n/

a 

1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 

Paris et al., 

2020
295

 

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 n/

a 

1 1 1 1 0 0 1 1 1 0 1 1 0 0 1 

Hemke et 

al.,2020
296

 

1 1 1 1 1 0 1 1 1 n/

a 

1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 n/

a 

1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 

Blanc-
Durand et 

al., 2020
297

 

1 1 1 1 1 0 1 1 1 n/
a 

0 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 1 

Nowak et 

al., 2020
298

  

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 

Dong et al., 

2019
299

 

1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 n/

a 

1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 

Graffy et 

al.,2019
300

 

1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 1 1 1 n/

a 

1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 

Barnard et 

al.,2019
301

 

1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 n/

a 

1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 

Hashimoto 

et 

al.,2019
302

 

1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 n/

a 

1 0 0 1 1 0 0 1 0 1 1 1 0 0 0 

Dabiri et 
al.,2019

278
 

0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 n/
a 

1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 

Weston et 

al., 2019
303

 

1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 n/

a 

1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 

Liu et al., 

2019
304

 

1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1 1 n/

a 

1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 

Gonzalez et 

al. 2018
305

 

0 0 0 1 1 0 1 0 0 0 1 0 n/

a 

1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 

Wang et al., 

2017
306

 

1 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 n/

a 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 

Lee et al., 
2017

307
 

1 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 n/
a 

1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 
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APPENDIX – E: SUPPLEMENTARY MATERIAL FOR PERSONALISED TOTAL 

NEOADJUVANT THERAPY (PTNT) FOR ADVANCED RECTAL CANCER: A 

PROSPECTIVE COHORT STUDY WITH TAILORED TREATMENT SEQUENCING 

BASED ON CLINICAL STAGE AT PRESENTATION
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Personalised Total Neoadjuvant Therapy (pTNT) for Rectal Cancer – Royal Adelaide Hospital Protocol 
 
All patients who undergo TNT must be entered into a prospective database with local ethics approval to 
monitor compliance and measure patient outcomes. 
 
 
Distant failure risk (need for systemic control) 
Patients with liver / lung metastases, EMVI, abnormal mesorectal or lateral pelvic nodes on MRI. 

• Induction Chemotherapy 16 weeks 

o 8 cycles mFOLFOX6, second weekly for 16 weeks (or 6 cycles CAPOX for 18 weeks). 

o Oxaliplatin, 85 mg/m2 IV infusion, Calcium Folinate (Leucovorin) 50mg IV bolus, Fluorouracil 
400 mg/m2 IV and 2400 mg/m2 CIV via pump over 46 hours. 

o CT chest/abdo/pelvis halfway (after 4 cycles): if poor local response or progression ➔ 
consider accelerating to CRT early (rediscuss at MDT). 

• Wait 2 weeks after completion of all chemotherapy doses 

• Long course CRT 6 weeks 

o 50.4 Gy external beam modulated radiation in 25 fractions over 5 weeks.  

o Consider dose escalation to 54 Gy in 27 fractions for those who wish to push for cCR (e.g. 
when functional outcomes unacceptable). 

o 5FU infusion via pump for the period, or capecitabine orally 5 days per week 

• Wait 10 weeks 

o Liver resection in wait period if indicated 

o CT C/A/P near conclusion of wait (around 8 weeks) to assess distant disease 

o Flex sig near conclusion of wait (around 8 weeks) to assess clinical response. 

▪ If cCR suspected => repeat MRI to complete cCR assessment 

▪ If no cCR => proceed to surgery  

 
 
Loco-regional failure risk (need for local control) 
Patients with bulky local disease, T4 extension, low tumours. 
(This may also include patients with earlier stage disease who decline upfront surgery). 

• Long course CRT 6 weeks 

o 50.4 Gy external beam modulated radiation in 25 fractions over 5 weeks.  

o Consider dose escalation to 54 Gy in 27 fractions for those who wish to push for cCR (e.g. 
when functional outcomes unacceptable). 

o 5FU infusion via pump for the period, or capecitabine orally 5 days per week 

• Wait 2 weeks after completion of radiotherapy 

• Consolidation Chemotherapy 16 weeks 

o 8 cycles mFOLFOX6, second weekly for 16 weeks (or 6 cycles CAPOX for 18 weeks). 
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o Oxaliplatin, 85 mg/m2 IV infusion, Calcium Folinate (Leucovorin) 50mg IV bolus, Fluorouracil 
400 mg/m2 IV and 2400 mg/m2 CIV via pump over 46 hours 

o CT chest/abdo/pelvis halfway (after 4 cycles): if poor local response or progression ➔ 
consider accelerating to surgical resection (rediscuss at MDT) 

• Wait 4 weeks 

o Flex sig near conclusion of wait (around 2 weeks) to assess clinical response. 

▪ If cCR suspected => repeat MRI to complete cCR assessment 

▪ If no cCR => proceed to surgery 

 
 
Distant and loco-regional failure risk 

• Favour induction chemotherapy, but decision on a case-by-case basis. 
 
 
Non-Operative Management (NOM) Protocol (“Watch and Wait”) 
 
 
This is offered to patients who achieve complete clinical response (cCR). 
 
Diagnosis of cCR 

• Rectal exam: No palpable tumour (when one was initially palpable) 

• Flexible sigmoidoscopy: 

o No visible tumour AND White scar 

o (negative biopsies from scar not mandatory) 

• MRI pelvis: TRG 1 or 2 

o Substantial downsizing with no residual tumour 

o OR residual fibrosis only 

o OR residual wall thickening due to oedema with fibrosis 

o AND No suspicious lymph nodes / EMVI 

 
Active surveillance for 5 years (with patient consent) 

• Rectal exam, flexible sigmoidoscopy, and CEA every 3 months for the first 2 years, then every 6 
months for a total of 5 years (scar biopsy not required unless suspicion of regrowth). 

• MRI pelvis every 3 months for 1 year, and then 6 monthly for 5 years. 

• CT chest/abdomen every 12 months for 5 years 

 

• Colonoscopy at 1 year (then 6 and 11 years as per usual colorectal cancer surveillance) 
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Appendix 
 
Protocol Authors 

• Michelle Thomas (HOU, Colorectal Unit, RAH) 

• James Moore (Clinical Director, Dept of Surgery, RAH) 

• Tarik Sammour (Colorectal surgeon, RAH) 

• Matthew Lawrence (Colorectal surgeon, RAH) 

• Mark Lewis (Colorectal surgeon, RAH) 

• Andrew Hunter (Colorectal surgeon, RAH) 

• Sid Selva (Medical oncologist, RAH) 

• Scott Carruthers (Radiation oncologist, RAH) 

 
Aim 

• Maximise chemotherapy compliance in patients with advanced rectal cancer. 

• Improve disease free survival and potential for organ preservation. 

• Bring practice in line with current evidence on rectal cancer treatment. 

 
Rationale 

• Biological plausibility that administering systemic treatment upfront may maximise DFS / OS in 
patients with high risk of distant failure. 

• Biological plausibility that administering additional treatment in the neoadjuvant setting will 
increase the rates of complete clinical response of the primary rectal cancer, and potential for 
organ preservation. 

• Recent level 1 (abstract) and level II evidence which supports the above (see references below). 
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