
J. Fluid Mech. (2023), vol. 957, A17, doi:10.1017/jfm.2023.43

Inertial focusing of spherical particles in curved
microfluidic ducts at moderate Dean numbers

Brendan Harding1,† and Yvonne M. Stokes2

1School of Mathematics and Statistics, Victoria University Wellington, Wellington 6140, New Zealand
2School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia

(Received 22 February 2022; revised 31 October 2022; accepted 3 January 2023)

We examine the effect of Dean number on the inertial focusing of spherical particles
suspended in flow through curved microfluidic ducts. Previous modelling of particle
migration in curved ducts assumed the flow rate was small enough that a leading-order
approximation of the background flow with respect to the Dean number produces a
reasonable model. Herein, we extend our model to situations involving a moderate
Dean number (in the microfluidics context) while the particle Reynolds number remains
small. Variations in the Dean number cause a change in the axial velocity profile of the
background flow which influences the inertial lift force on a particle. Simultaneously,
changes in the cross-sectional velocity components of the background flow directly affect
the secondary flow induced drag. In keeping the particle Reynolds number small, we
continue to approximate the inertial lift force using a regular perturbation while capturing
the subtle effects from the modified background flow. This approach pushes the limits at
which a regular perturbation is applicable to provide some insights into how variations in
the Dean number influence particle focusing. Our results illustrate that, as the extrema in
the background flow move towards the outside of edge of the cross-section with increasing
Dean number, we observe a similar shift in the stable equilibria of some, but not all,
particle sizes. This might be exploited to enhance the lateral separation of particles by size
in a number of practical scenarios.

Key words: microfluidics, particle/fluid flow

1. Introduction

Inertial focusing of particles suspended in flow through curved and spiral microfluidic
ducts has been studied extensively in the experimental literature, particularly in relation
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to its application to size-based particle/cell separation (Seo, Lean & Kole 2007; Bhagat,
Kuntaegowdanahalli & Papautsky 2008; Di Carlo 2009; Martel & Toner 2012; Warkiani
et al. 2014, 2016; Rafeie et al. 2019). Much is known about the nature of the inertial
lift force in a variety of situations involving a particle suspended in flow between two
plane parallel walls (Saffman 1965; Ho & Leal 1974; Schonberg & Hinch 1989; Hogg
1994; Asmolov 1999). However, the nature of the inertial lift force is very different for
a fully enclosed duct, making these studies of limited use in understanding practical
applications. Sufficiently small particles suspended in flow through straight ducts with
square cross-section are known to focus at one of four equilibria located a small distance
from the centre of each sidewall (Di Carlo et al. 2009; Hood, Lee & Roper 2015).
This is also the case for straight rectangular ducts, although stable equilibria near
the shorter sidewalls attract relatively few particles and disappear entirely for larger
particles (Martel & Toner 2013; Hood 2016). In curved ducts the migration of particles
becomes complicated due to the secondary vortices that are generated as part of the
Dean flow through the duct. The interaction of the drag force from these vortices with
the inertial lift force leads to a wide variety of particle migration dynamics (Gossett
& Di Carlo 2009; Martel & Toner 2014; Ha et al. 2022; Valani, Harding & Stokes
2022).

Our previous study (Harding, Stokes & Bertozzi 2019) conducted a detailed examination
of the migration of neutrally buoyant spherical particles suspended in a sufficiently slow
flow through curved rectangular ducts. An accurate model of particle migration was
developed by coupling the particle motion to a Navier–Stokes model of the fluid flow. By
using a carefully chosen reference frame, and applying a suitable non-dimensionalisation
and perturbation expansion of both the background and disturbance flows, the individual
forces primarily responsible for driving particle migration were separated and then
estimated via numerical simulation. These forces were then re-assembled into a system
of ordinary differential equations to model particle trajectories. It was found that
particles migrated towards stable equilibria whose horizontal locations approximately
collapsed onto a single curve when plotted against the parameter κ = �4/(4a3R),
with � being the duct height, a being the particle radius and R being the bend
radius. It was later shown how non-neutrally buoyant particles could be modelled
by adding suitable perturbations to the neutrally buoyant model (Harding & Stokes
2020).

A key part of the prior modelling was an assumption that the flow rate is small
enough that both Rep = 2Re(a/�)2 and K = εRe2 are small, where ε = �/(2R) and
Re = (ρ/μ)Um(�/2) is the channel Reynolds number with ρ being the fluid density, μ the
fluid viscosity and Um the maximum velocity of the background flow down the main axis.
This allowed us to take the leading-order contribution of each perturbation expansion as a
reasonable approximation. In a typical practical setting, these assumptions are somewhat
limiting as they typically only hold when Re � O(10). In contrast, many microfluidics
experiments in the literature operate at flow rates corresponding to Re = O(100). While
we expect our existing model may still have qualitative value at these flow rates, they are
of less use quantitatively.

Substantially higher flow rates, e.g. Re � O(1000), are of limited practical interest
for a few reasons. The first is that the increasing strength of the Dean flow eventually
inhibits the ability of particles to focus, as seen in the decreasing sharpness factor with
increasing flow rate in the experimental results of Rafeie et al. (2019). Second, there
is a critical Dean number, depending on the specific cross-section, above which the
secondary component of the background flow exhibits multiple vortex pairs (Winters 1987)
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Inertial focusing in curved ducts at moderate flow rate

and this seems generally undesirable for most applications. Third, the high pressures
required to drive such high flow rates through microchannels cause practical difficulties,
including excessive deformation of the channel geometry and difficulty maintaining
connections.

In this paper we incorporate additional terms from the perturbation expansion of the
background flow into the model. This has the effect of increasing the values of the
Dean number K for which our model has quantitative value. Since we continue to use
a leading-order approximation of the disturbance flow, this model does not expand the
applicability in cases where the magnitude of Rep is the limiting factor (e.g. when the
particle is relatively large). Nonetheless, we feel this provides valuable insights and is an
important step towards producing an accurate model applicable to a wide range of physical
set-ups. This work also illustrates how the symmetry associated with a curved duct leads
to a decoupling of axial and secondary components of the leading-order approximation
of the disturbance flow which contribute to distinct inertial lift force components at first
order.

Many of the classical analytical studies of inertial lift have utilised singular
perturbation expansions rather than regular perturbation expansions, particularly those
studies involving large Reynolds number flows. However, these studies have generally
considered much simpler flow geometries, typically unidirectional flow between two plane
parallel walls (Schonberg & Hinch 1989; Asmolov 1999; Matas, Morris & Guazelli
2004), or through a straight cylindrical pipe (Matas, Morris & Guazelli 2009). In these
set-ups, the problem can be reduced to solving a one-dimensional fourth-order ordinary
differential equation. In more complex geometries, even just a straight square duct,
this reduction is not possible. Consequently, the only way forward is a more direct
computation of the outer solution, which needs to be matched appropriately to the inner
solution. Moreover, the singular perturbation approach often requires special treatment
in situations where the particle is not small relative to its separation from the nearest
wall.

Given these challenges in utilising/implementing a singular perturbation based model,
it is worth exploring the limits of what might be achieved with a regular perturbation. We
acknowledge that our use of a regular perturbation expansion to study inertial migration
at moderate Dean numbers is certainly pushing the boundaries of its applicability, but
propose it is worth exploring in an effort to provide insights into how variations in the Dean
number modify the inertial migration of particles. We have taken some care to discuss
potential limitations of our model throughout the article.

The paper is organised as follows. Section 2 describes the general set-up of the problem
and briefly summarises the modelling of forces driving particle migration as developed in
Harding et al. (2019). We also introduce some notation to support the remainder of the text
and remark on the applicability of the Lorentz reciprocal theorem to torque calculations.
Section 3 describes our improved approximation of the background flow which utilises
multiple terms from a perturbation expansion with respect to the Dean number K. Section
4 describes how the new background flow approximation is incorporated into the inertial
lift calculation and ultimately leads to a system of first-order differential equations which
describe particle migration. The limitations of our model are also discussed. Section 5
reports a range of findings obtained from the new model: firstly, we examine how the
horizontal locations of stable equilibria are perturbed by increasing K; secondly, we
examine how varying K influences previously observed trends in the horizontal location of
stable equilibria with respect to ε−1 and κ . Section 6 summarises our findings and remarks
on avenues for future exploration.
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Figure 1. Curved duct with rectangular cross-section containing a spherical particle located at
xp = x(θp, rp, zp). The enlarged view of the cross-section containing the particle illustrates the origin of the
local r, z coordinates at the centre of the duct. The bend radius R is with respect to the centerline of the duct.
Note that we do not consider the flow near the inlet/outlet. Adapted from Harding et al. (2019).

2. Problem set-up and theoretical background

Our curved duct set-up remains identical to that in Harding et al. (2019) and is depicted
in figure 1. The (stationary) laboratory reference frame is x = xi + yj + zk with the duct
bending around the z-axis. The duct domain is most readily described using the cylindrical
coordinate system (r, θ, z) for which

x(r, θ, z) = (R + r) cos(θ)i + (R + r) sin(θ)j + zk, (2.1)

where R is the (constant) bend radius of the duct measured from the origin (of the
laboratory frame) to the centre of the cross-section. The cross-section itself is described by
(r, z) ∈ C (with origin (r, z) = (0, 0) in the centre of the cross-section). The duct interior
is then described by D = {x(θ, r, z) | (r, z) ∈ C}. While our approach can be applied to
any desired cross-section C, this study is concerned with rectangular cross-sections having
width W and height H, thus

C = {(r, z) : |r| ≤ W/2, |z| ≤ H/2} . (2.2)

We take � = min{W, H} to be the characteristic length scale of the duct. Of principal
interest are ducts with W ≥ H, and thus � = H, as these are most common in the
experimental literature.

Steady pressure driven flow through the duct (in the absence of particles) is referred to
as the background flow. The fluid is assumed to be incompressible with constant density ρ

and viscosity μ. The pressure and velocity fields are denoted p̄ and ū, respectively, and are
modelled using the Navier–Stokes equations. We take Um to be a characteristic velocity
of this flow, approximately describing the maximum axial velocity. The channel/duct
Reynolds number is then Re := (ρ/μ)Um(�/2). Additionally, letting ε = �/(2R) denote
the relative curvature, we define the Dean number as K = εRe2 after Dean (1927) and
Dean & Hurst (1959). The nature of the background flow, and its approximation for the
purposes of this study, will be discussed further in § 3. Figure 2 depicts the axial (a)
and secondary (b) components of the background flow, and (c) depicts the competing
secondary drag and inertial lift forces on a particle.

In this study we do not consider the fluid flow in a neighbourhood of the inlet nor
outlet. Ault et al. (2017) studied the entry and exit flows in curved pipes and found that
the entry length, taken to be the axial distance at which the velocity perturbation (from
laminar flow) has decayed by 99 %, was 0.0975Re times the pipe diameter (independent
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Inertial focusing in curved ducts at moderate flow rate

FL
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(b)

(a)

(c)

Figure 2. Cross-sections of a curved rectangular duct depicting (a) the axial component of the background
flow; (b) the secondary component of the background flow consisting of two vertically symmetric
counter-rotating vortices; (c) a spherical particle and the primary cross-sectional forces which drive its
migration. Here, F S is the drag from the secondary component of the background flow, and F L is the
inertial lift force. The magnitude and direction of each vector are for illustration only. Gravitational and
centrifugal/centripetal forces are omitted. The background flow is shown to be skewed towards the outside
wall of the curved duct (here on the right), as is expected at moderate Dean numbers. Adapted from Harding &
Stokes (2020).

of ε). Based on this result, the total angle of the entry and exit regions for our curved ducts
can be estimated as 22Reε degrees. Given typical values of Re = 100 and ε = 1/80 then
the total length of the entry and exit regions works out to be less than 1/12 of complete
revolution. Therefore, we conclude that the background flow is fully developed through
the majority of a curved section that spans (close to) a complete revolution.

Now, consider a single particle suspended in the flow. Specifically, let P := {x : |x −
xp| < a} denote a spherical particle centred at xp(t) (such that P ⊂ D) having radius a and
constant density ρp. The cylindrical coordinates of its centre will be denoted by rp, θp, zp,
each a function of t. The particle travels with a velocity up(t) := dxp/dt and spins freely
about its centre with angular velocity Ωp(t). Thus, each point x ∈ P has instantaneous
velocity up + Ωp × (x − xp). The fluid domain is denoted F := D\P and its boundary
∂F consists of the duct walls ∂D and the particle surface ∂P . The fluid flow is now
described by the pressure and velocity fields p, u, respectively, which are also modelled by
the Navier–Stokes equations, specifically

∇ · σ( p, u) = ρ

(
∂u
∂t

+ u · ∇u − g
)

for x ∈ F , (2.3a)

∇ · u = 0 for x ∈ F , (2.3b)

u = 0 for x ∈ ∂D, (2.3c)

u = up + Ωp × (x − xp) for x ∈ ∂P, (2.3d)

where σ( p, u) is the stress tensor

σ( p, u) := −pI + μ (∇u + ∇uᵀ) . (2.4)

The gravitational body force g is only important for non-neutrally buoyant particles
(ρp /= ρ). In Harding & Stokes (2020) it was demonstrated that with g = −gk the
influence of non-neutral buoyancy can be separated from the migration model and
subsequently treated as an additional perturbation of the force experienced by a neutrally
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buoyant particle. This remains true in this study so we simplify the development
by considering a neutrally buoyant particle (i.e. ρp = ρ) and drop the gravitational
acceleration from (2.3a).

The motion of a suspended neutrally buoyant particle is driven solely by the
hydrodynamic force and torque exerted on it. Specifically

F :=
∫

∂P
(−n) · σ( p, u) dS, (2.5a)

T :=
∫

∂P
(x − xp) × ((−n) · σ( p, u)) dS, (2.5b)

describe the force and torque, respectively, where n is taken to be the normal with respect
to the fluid domain (i.e. pointing in towards the particle centre).

The development of the migration model in Harding & Stokes (2020) may be
summarised as the following sequence of steps:

(i) Introduce a rotating reference frame in which the particle’s angular coordinate is
constant. This frame rotates with angular velocity Θ = Θk where Θ := ∂θp/∂t.
Coordinates in this rotating frame are mapped to the laboratory frame via

x′(r′, θ ′, z′) = (R + r′) cos(θ ′)i′ + (R + r′) sin(θ ′)j′ + z′k (2.6a)

= (R + r′) cos(θ ′ + θp)i + (R + r′) sin(θ ′ + θp)j + z′k, (2.6b)

where i′ := cos(θp)i + sin(θp)j and j′ := − sin(θp)i + cos(θp)j. It follows that in the
rotating frame x′

p = x′(rp, 0, zp), u′ = u − Θ × x, ū′ = ū − Θ × x, and so on.
(ii) Assume the cross-sectional components of up are sufficiently small that the flow in

the rotating frame is approximately stationary and thus acceleration effects may be
neglected (including added mass and Basset/history forces).

(iii) Introduce the disturbance flow q′, v′ which satisfies

p′ = p̄′ + q′, u′ = ū′ + v′. (2.7a,b)

(iv) Non-dimensionalise using the velocity scale Us = (α/2)Um and length scale a,
where α := 2a/�. Most other scales may be derived from these (as per usual for
a viscous flow). The resulting Reynolds number Rep = (ρ/μ)Usa is often called
the particle Reynolds number. The force on the particle is non-dimensionalised via
the scale RepμUsa. Hats are used to describe non-dimensionalised variables, for
example v′ = Usv̂

′.
(v) Apply a perturbation expansion to the disturbance flow with respect to Rep, that is

v̂′ = v0 + Repv1 + O(Re2
p), q̂′ = q0 + Repq1 + O(Re2

p). (2.8a,b)

The force on the particle is expanded in a similar fashion, although the leading term
has order Re−1

p and is denoted F−1 to reflect this, that is

F̂ ′ = Re−1
p F−1 + F 0 + O(Rep), (2.9)

and similarly for the torque. Observe we drop both the hat and prime from variables
upon applying the perturbation expansion to each of q̂′, v̂′, F̂ ′, T̂ ′.

We take a moment to expand on the neglect of acceleration effects. As a particle
migrates within the cross-section it not only has acceleration within this plane, but its
axial velocity must also continuously adapt to that of the background flow. However, this
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Inertial focusing in curved ducts at moderate flow rate

study is primarily interested in the location of particle equilibria within the cross-section
in regions of the duct where the background flow is fully developed. Once fully focused,
the particle velocity and the net hydrodynamic force on the particle will be exactly zero
(in the rotating frame). No acceleration effects can contribute to the force balance at this
stage and, moreover, will be negligible in a neighbourhood of each equilibrium. Thus, such
effects can be neglected for the purpose of locating and classifying equilibria.

Following the steps outlined above one arrives at the following equations governing
q0, v0:

∇ · σ(q0, v0) = 0 for x̂′ ∈ F̂ ′, (2.10a)

∇ · v0 = 0 for x̂′ ∈ F̂ ′, (2.10b)

v0 = 0 for x̂′ ∈ ∂D̂′, (2.10c)

v0 = ûp,0 + Ω̂p,0 × (x̂′ − x̂′
p) − ̂̄u for x̂′ ∈ ∂P̂ ′. (2.10d)

Similarly, one obtains the following equations governing q1, v1:

∇ · σ(q1, v1) = Θ̂0 × v0 + v0 · ∇̂̄u + (v0 + ̂̄u − Θ̂0 × x̂′) · ∇v0 for x̂′ ∈ F̂ ′,
(2.11a)

∇ · v1 = 0 for x̂′ ∈ F̂ ′, (2.11b)

v1 = 0 for x̂′ ∈ ∂D̂′, (2.11c)

v1 = ûp,1 + Ω̂p,1 × (x̂′ − x̂′
p) for x̂′ ∈ ∂P̂ ′. (2.11d)

Lastly, the force and torque terms of principal interest are

F−1 =
∫

∂P̂ ′
(−n) · σ(q0, v0) dS, (2.12a)

T−1 =
∫

∂P̂ ′
(x̂′ − x̂′

p) × ((−n) · σ(q0, v0)) dS, (2.12b)

F 0 = −4π

3
Θ̂0 × (Θ̂0 × x̂′

p) − 8π

3
Θ̂0 × û′

p,0 +
∫
P̂ ′

̂̄u · ∇̂̄u dV

+
∫

∂P̂ ′
(−n) · σ(q1, v1) dS, (2.12c)

T 0 = −8π

15
Θ̂0 × Ω̂p,0 +

∫
P̂ ′

(x̂′ − x̂′
p) × (̂ū · ∇̂̄u) dV

+
∫

∂P̂ ′
(x̂′ − x̂′

p) × [
(−n) · σ(q1, v1)

]
dS. (2.12d)

We refer the interested reader to Harding et al. (2019) for a complete derivation.
Note that in (2.10d) we retain a ûp contribution whereas in Harding et al. (2019) this

was taken to be Θ × x′
p (i.e. the θ component only) with drag coefficients associated with

the cross-sectional components introduced later. Additionally, here we include particle
velocity and spin contributions in (2.11d). Notice these contributions in both (2.10d) and
(2.11d) are expressed in terms of ûp, Ω̂p as viewed in the stationary reference frame. These
minor changes allow us to separate the leading- and first-order contributions to the particle
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motion, and account for inertial lift contributions arising from the secondary component
of the background flow.

It is reasonably well-known that the last term of (2.12c) can be computed without
needing to explicitly calculate q1, v1 via an application of the Lorenz reciprocal theorem.
Thus we only need to consider the solution of (2.10). Before moving on to describe our
improved background flow approximation, we introduce some additional notation and
make a remark about the use of the Lorentz reciprocal theorem.

2.1. Stokes’ flow operators
We introduce the operators Q( f ),V( f ) which map a continuous vector field f defined
on the particle surface ∂P̂ ′ to a pressure and velocity field, respectively, which satisfies the
Stokes’ equations

∇ · σ (Q( f ),V( f )) = 0 for x̂′ ∈ F̂ ′, (2.13a)

∇ · V( f ) = 0 for x̂′ ∈ F̂ ′, (2.13b)

V( f ) = 0 for x̂′ ∈ ∂D̂′, (2.13c)

V( f ) = f for x̂′ ∈ ∂P̂ ′. (2.13d)

Additionally, maps from f to the corresponding hydrodynamic force and torque on the
particle are denoted by the operators

M( f ) :=
∫

∂P̂ ′
(−n) · σ(Q( f ),V( f )) dS, (2.14a)

N ( f ) :=
∫

∂P̂ ′
(x̂′ − x̂′

p) × ((−n) · σ(Q( f ),V( f ))) dS. (2.14b)

When f is a constant unit vector then M( f ) and N ( f ) may be interpreted as force and
torque coefficients, respectively, in the direction of f . Note that all four of these operators
implicitly depend on the location of the particle within the cross-section since the fluid
domain F̂ ′ and particle boundary ∂P̂ ′ depend on r̂p, ẑp. Additionally, there is an implicit
dependence on ε, as this relates to the bend radius of the duct, and α, as this relates to the
size of the non-dimensionalised fluid domain. The implicit dependence on ε is expected
to be very weak for ε < 1/10, as will be illustrated in § 3.

Observe that the operators Q,V,M,N are linear and therefore we may write

q0 = Q(ûp,0) + Q(Ω̂p,0 × (x̂′ − x̂′
p)) − Q(̂ū), (2.15a)

v0 = V(ûp,0) + V(Ω̂p,0 × (x̂′ − x̂′
p)) − V (̂ū), (2.15b)

F−1 = M(ûp,0) + M(Ω̂p,0 × (x̂′ − x̂′
p)) − M(̂ū), (2.15c)

T−1 = N (ûp,0) + N (Ω̂p,0 × (x̂′ − x̂′
p)) − N (̂ū). (2.15d)

The linearity will be further exploited in § 4. Appendix B describes when various
components of these coefficients are zero due to the axisymmetry of our domain.
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Inertial focusing in curved ducts at moderate flow rate

2.2. A note on reciprocal theorems
A variant of the Lorentz reciprocal theorem can be applied to show that∫

∂P̂ ′
(−n) · σ(q1, v1) dS = M(ûp,1) + M(Ω̂p,1 × (x̂′ − x̂′

p))

−
∑

e∈{i′, j′, k}
e
∫
F̂ ′

V(e) · I0 dV, (2.16)

where I0 is the right side of (2.11a), that is

I0 := Θ̂0 × v0 + v0 · ∇̂̄u + (v0 + ̂̄u − Θ̂0 × x̂′) · ∇v0. (2.17)

This application of the Lorentz reciprocal theorem to the calculation of the inertial lift
force is reasonably well known. Perhaps less well known is that it can also be applied to
the calculation of the torque terms. Specifically, the third term of T 0 in (2.12d) can be
calculated via∫

∂P̂ ′
(x̂′ − x̂′

p) × (−n · σ(q1, v1)) dS = N (ûp,1) + N (Ω̂p,1 × (x̂′ − x̂′
p))

−
∑

e∈{i′,j′,k}
e
∫
F̂ ′

V(e × (x̂′ − x̂′
p)) · I0 dV.

(2.18)

Notice that the M and N terms in (2.16) and (2.18), respectively, encapsulate the
contributions from the boundary conditions (2.11d), while the remaining volume integrals
are the result of the reciprocal theorem applied to capture the contribution of I0. For
completeness, a proof of the reciprocal theorems that give rise to (2.16) and (2.18) is
provided in Appendix A.

3. Improved approximation of the background flow

The background flow p̄, ū is a steady solution of the Navier–Stokes equations

∇ · σ(p̄, ū) = ρū · ∇ū x ∈ D, (3.1a)

∇ · ū = 0 x ∈ D, (3.1b)

ū = 0 x ∈ ∂D. (3.1c)

The resulting velocity field may be decomposed into its axial component ūa and secondary
component ūs. A perturbation expansion may be applied to each component with respect
to K = εRe2 which converges provided K � 212 (Harding 2019d). Specifically

ūa = Um

∞∑
i=0

Kiūθ,ieθ , (3.2a)

ūs = UmεRe
∞∑

i=0

Ki(ūr,ier + ūz,iez), (3.2b)

where ūθ,i, ūr,i, ūz,i are the (dimensionless) components of ū in the θ, r, z directions,
respectively, and are each independent of θ .
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ūθ|2

Φ̄|2

0.01
10−4 10−3 10−2

ε
10−1

0

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e 
L 2

 e
rr

o
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Figure 3. The relative L2 error of truncated perturbation approximations of ūθ and Φ̄ vs (a) the Dean number
K ∈ [1, 200], (b) the relative curvature ε ∈ [10−4, 0.25] and (c) the cross-section aspect ratio W/H ∈ [1, 5].
(d) Shows the change in the average of ūθ and |(ūr, ūz)| vs K ∈ [0, 200]. Parameters are: (a) W/H = 2 and
ε = 0.01; (b) W/H = 2 and K = 100; (c) K = 100 and ε = 0.01; (d) W/H = 2 and ε = 0.01.

Our previous model used only the leading-order terms ūθ,0, ūr,0, ūz,0 to model
inertial migration in curved ducts based on an assumption that K is suitably small
(Harding et al. 2019). In this study we extend the use of (3.2) to accurately model particle
migration for values of K up to O(100). Specifically, we use the three leading terms
i = 0, 1, 2 to construct a model of particle migration which is quadratic in K. Upon
non-dimensionalising with respect to the shear velocity scale (Us = (α/2)Um = (a/�)Um)
our model may be expressed as

̂̄u ≈ 2α−1(ūa,0 + Kūa,1 + K2ūa,2) + κRep(ūs,0 + Kūs,1 + K2ūs,2), (3.3)

where ūa,i := ūθ,ieθ and ūs,i := ūr,ier + ūz,iez for each i. Notice in (3.3) we have used the
fact that 2α−1εRe = κRep (recalling κ = �4/(4a3R)).

We illustrate the accuracy of our improved model of the background flow in figure 3.
We use the streamfunction Φ̄, for which ūr = −(1 + εr)−1∂Φ̄/∂z and ūz = (1 +
εr)−1∂Φ̄/∂r, for the purpose of evaluating the accuracy of the secondary components.
Figure 3(a) illustrates the accuracy of our quadratic model over the range 1 ≤ K ≤ 200
using a fixed aspect ratio W/H = 2 and curvature parameter ε = 0.01. Here, the notation
ūθ |i, Φ̄|i indicates the approximation (3.2) is truncated beyond the i′th term. In each case
the relative L2 error is proportional to Ki+1. Observe that the approximations ūθ |1, Φ̄|1
and ūθ |2, Φ̄|2 are significant improvements over ūθ |0, Φ̄|0 for K = O(10). Additionally, for
K = O(100) the approximation ūθ |2, Φ̄|2 offers a marginal improvement over ūθ |1, Φ̄|1.
When K = 100 the relative errors are 0.95 % for ūθ |2 and 2.05 % for Φ̄|2. This illustrates
that the first three terms are a reasonable trade-off between computational cost and
achieving a reasonably accurate model for K = O(100).
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Inertial focusing in curved ducts at moderate flow rate

For the remainder of the discussion we take ūθ = ūθ |2 and similarly Φ̄ = Φ̄|2.
Figure 3(b) shows how the model error changes with respect to the ε parameter, using fixed
K = 100 and aspect ratio W/H = 2. It is evident that the accuracy of the approximation
is roughly the same across all ducts having a fixed bend radius for which ε < 1/10. In
other words, the model accuracy is insensitive to ε provided it is not too large. Figure 3(c)
shows the variation in model error with respect to aspect ratio of the cross-section, using
fixed K = 100 and ε = 0.01. While there is some dependence of the model error on the
aspect ratio, the case W/H = 2 is near the peak for aspect ratios W/H ≥ 1 and is therefore
a reasonable choice of reference value.

We take a moment to elaborate on the choice of characteristic velocity Um used in
this study. The pressure gradient which drives flow through the curved duct increases
super-linearly with the flow rate and also has a (weak) dependence on the bend radius.
Given a K > 0, determining the pressure gradient which produces the required flow rate
becomes a nonlinear optimisation problem. The nonlinearity is weak over the range of
K considered in this study and therefore it will be convenient to avoid the nonlinear
optimisation. To this end, we specify the characteristic velocity Um to be the maximum
velocity of a laminar flow through a straight duct having an identical cross-section.
This is equivalent to non-dimensionalising with respect to the driving pressure gradient,
since straight duct flow satisfies Stokes’ equation and therefore does not depend on
the Reynolds number, that is Um = cCG�2/μ, where G is the pressure gradient down
the main flow axis and cC is a constant depending only on the cross-section C. This
choice makes it straightforward to compare results across different duct bend radii and
incorporate K as a new parameter in our inertial migration model. Figure 3(d) illustrates
how the average of the non-dimensional ūθ and Φ̄ varies as a function of K for our
specific non-dimensionalisation, with fixed ε = 0.01 and W/H = 2. The average of ūθ

is approximately constant over this range of K indicating that our specific choice of
characteristic velocity is easily translated to an average axial flow rate if desired.

Figure 4 illustrates the difference in features of the fields ūθ , Φ̄ between K = 0 to
K = 100. Note that K = 0 should be interpreted as the limit K → 0 as a result of a
decaying flow rate Um. While the physical magnitude of the secondary vortices decays
to zero as Um → 0 our specific non-dimensionalisation of ūs, via the scaling UmεRe in
(3.2b), ensures that the magnitude of the secondary vortices remains finite. Observe in
figure 4 a shift of local maxima and minima towards the outside/right wall when K = 100.
This is due to the increased rotational inertia of the fluid and is not captured by the
leading-order approximation of the background flow used in Harding et al. (2019). This
shift becomes more pronounced with further increases in K. Lastly, we point out that the
Dean numbers K � 200 considered herein are significantly smaller than the critical Dean
number after which there exist four vortex solutions (Winters 1987).

4. The extended particle migration model

Here, we incorporate the improved approximation of the background flow (3.3) into
the model so that we may efficiently approximate particle trajectories for any desired
0 ≤ K � 200. We start by decomposing the leading-order disturbance flow q0, v0 further
than was previously done in Harding et al. (2019). Doing so reveals how the axial
and secondary components of the background flow influence all six components of
ûp, Ω̂p at both leading and first order. Additionally, we illustrate that the decomposition
admits a decoupling which can be exploited to more efficiently compute all the
non-zero forces and torques. Finally, we summarise the complete model and its
limitations.
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Figure 4. The fields (a,c) ūθ and (b,d) Φ̄ for (a,b) K = 0 and (c,d) K = 100. In each case ε = 0.01 and
W/H = 2. The colour bars have been fixed across the pairs (a,c) and (b,d) for comparison.

4.1. Further decomposition and application of symmetry
Utilising the operator V , and expanding further on (2.15), observe that v0 can be
decomposed as

v0 = up,0,rV(i′) + up,0,θV(j′) + up,0,zV(k)

+ Ωp,0,rV(i′ × (x̂′ − x̂′
p)) + Ωp,0,θV(j′ × (x̂′ − x̂′

p)) + Ωp,0,zV(k × (x̂′ − x̂′
p))

− 2α−1[V(ūa,0) + KV(ūa,1) + K2V(ūa,2)]

− κRep[V(ūs,0) + KV(ūs,1) + K2V(ūs,2)], (4.1)

where ûp,0 = (up,0,r, up,0,θ , up,0,z) and Ω̂p,0 = (Ωp,0,r, Ωp,0,θ , Ωp,0,z). This expansion
extracts all of the key parameters from the leading disturbance solution making it a linear
superposition of Stokes flow solutions.

Notice that the last line of (4.1) has a factor Rep and could therefore be placed in
v1 (which would be equivalent to moving the appropriate component of the boundary
condition in (2.10d) to (2.11d)). However, in many practical situations κ 
 1 and thus
κRep may not be small. Consequently, it will be convenient to keep these terms in v0. An
expansion identical to (4.1) is obtained for each of q0, F−1 and T−1 by replacing each V
with Q, M and N , respectively.

Upon setting F−1 = 0 and T−1 = 0, one obtains six equations which are linear
with respect to the six components of up,0, Ωp,0. Applying the symmetry properties
described in Appendix B allows the 6 × 6 system to be decoupled into two distinct
3 × 3 systems. One of these describes the equilibrium attained by the particle parameters
up,0,θ , Ωp,0,r, Ωp,0,z in relation to the axial motion of the background flow

Aa ·
⎡⎣up,0,θ

Ωp,0,r
Ωp,0,z

⎤⎦ = 2α−1

⎡⎢⎣
[M(ūa,0) + KM(ūa,1) + K2M(ūa,2)

] · j′[N (ūa,0) + KN (ūa,1) + K2N (ūa,2)
] · i′[N (ūa,0) + KN (ūa,1) + K2N (ūa,2)
] · k

⎤⎥⎦ , (4.2)
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Inertial focusing in curved ducts at moderate flow rate

where

Aa :=

⎡⎢⎣M(j′) · j′ M(i′ × (x̂′ − x̂′
p)) · j′ M(k × (x̂′ − x̂′

p)) · j′

N (j′) · i′ N (i′ × (x̂′ − x̂′
p)) · i′ N (k × (x̂′ − x̂′

p)) · i′

N (j′) · k N (i′ × (x̂′ − x̂′
p)) · k N (k × (x̂′ − x̂′

p)) · k

⎤⎥⎦ . (4.3)

The diagonal elements of Aa are negative and generally the matrix is diagonally dominant.
Recall that each M and N term implicitly depends on ε, α and the cross-sectional
coordinates of the particle (r̂p, ẑp). Solving (4.2) therefore yields an expression for each of
up,0,θ , Ωp,0,r, Ωp,0,z which depend only on the parameters r̂p, ẑp, ε, α, K.

The remaining 3 × 3 system describes the equilibrium attained by the particle
parameters up,r, up,z, Ωp,θ in relation to the secondary motion of the background flow

As ·
⎡⎣ up,0,r

up,0,z
Ωp,0,θ

⎤⎦ = κRep

⎡⎢⎣
[M(ūs,0) + KM(ūs,1) + K2M(ūs,2)

] · i′[M(ūs,0) + KM(ūs,1) + K2M(ūs,2)
] · k[N (ūs,0) + KN (ūs,1) + K2N (ūs,2)

] · j′

⎤⎥⎦ , (4.4)

where

As :=

⎡⎢⎣M(i′) · i′ M(k) · i′ M(j′ × (x̂′ − x̂′
p)) · i′

M(i′) · k M(k) · k M(j′ × (x̂′ − x̂′
p)) · k

N (i′) · j′ N (k) · j′ N (j′ × (x̂′ − x̂′
p)) · j′

⎤⎥⎦ . (4.5)

Similar to Aa, the diagonal elements of As are negative and generally the matrix is
diagonally dominant.

We now consider the balance of force and torque at the next order of Rep by setting
F 0 = 0 and T 0 = 0. The symmetries that lead to (4.2) and (4.4) analogously lead to

Aa

⎡⎣up,1,θ

Ωp,1,r
Ωp,1,z

⎤⎦ =

⎡⎢⎢⎢⎣
8π

3
Θ0up,0,r

−8π

15
Θ0Ωp,0,θ

0

⎤⎥⎥⎥⎦ −

⎡⎢⎢⎢⎢⎢⎢⎣
j′ ·

∫
P̂ ′

̂̄u · ∇̂̄u dV

i′ ·
∫
P̂ ′

(x̂′ − x̂′
p) × (̂ū · ∇̂̄u) dV

k ·
∫
P̂ ′

(x̂′ − x̂′
p) × (̂ū · ∇̂̄u) dV

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

∫
F̂ ′

V(j′) · I0 dV∫
F̂ ′

V(i′ × (x̂′ − x̂′
p)) · I0 dV∫

F̂ ′
V(k × (x̂′ − x̂′

p)) · I0 dV

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.6)
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B. Harding and Y.M. Stokes

and similarly

As

⎡⎣ up,1,r
up,1,z
Ωp,1,θ

⎤⎦ =

⎡⎢⎢⎢⎣
−4π

3
Θ2

0 (R̂ + r̂p)

0
8π

15
Θ0Ωp,0,r

⎤⎥⎥⎥⎦ −

⎡⎢⎢⎢⎢⎢⎢⎣
i′ ·

∫
P̂ ′

̂̄u · ∇̂̄u dV

k ·
∫
P̂ ′

̂̄u · ∇̂̄u dV

j′ ·
∫
P̂ ′

(x̂′ − x̂′
p) × (̂ū · ∇̂̄u) dV

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

∫
F̂ ′

V(i′) · I0 dV∫
F̂ ′

V(k) · I0 dV∫
F̂ ′

V(j′ × (x̂′ − x̂′
p)) · I0 dV

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.7)

Here, R̂ = R/a and Θ0 = (R̂ + r̂p)up,0,θ (such that Θ0k = Θ0). In previous studies
the corrections up,1,θ , Ωp,1 and off-diagonal elements of Aa, As were ignored. The net
contribution from the first two vectors on the right side of each of (4.6) and (4.7)
is typically small and can be ignored, however, they have been included here for
completeness.

4.2. The completed model
Using the result of the four equations (4.2), (4.4), (4.6) and (4.7) our complete migration
model is

dr̂p

dt̂
= up,0,r + Repup,1,r, (4.8a)

dẑp

dt̂
= up,0,z + Repup,1,z, (4.8b)

dθp

dt̂
= up,0,θ + Repup,1,θ

R̂ + r̂p
, (4.8c)

Ω̂p,r = Ωp,r,0 + RepΩp,r,1, (4.8d)

Ω̂p,z = Ωp,z,0 + RepΩp,z,1, (4.8e)

Ω̂p,θ = Ωp,θ,0 + RepΩp,θ,1. (4.8f )

Appendix C describes further simplifications that can be made to (4.6) and (4.7) owing
to symmetries about the plane θ ′ = 0. These result in the alternative equations (C4) and
(C5) which provide additional insight into the interplay between axial and secondary flow
components and their influence on the first-order terms up,1 and Ωp,1.

Given the spherical symmetry of the particle we do not need to calculate the specific
angle of rotation which has occurred about its centre. However, the rate of rotation
Ωp is needed as it influences the disturbance of the surrounding fluid and the Ωp,0
components are needed in order to calculate the up,1 components. Observe that the
Ωp,1 components are weakly coupled to up,1 through the typically small, but non-zero,
off-diagonal components of the matrices Aa, As.
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Inertial focusing in curved ducts at moderate flow rate

For a given cross-section and fixed α, ε, K, then any r̂p, ẑp pair for which both the
equations (4.8a) and (4.8b) are equal to zero will be referred to as an equilibrium. The
remaining equations remain constant at an equilibrium. Determining the location and
stability of equilibrium is fundamental to understanding the migration of particles within
the cross-section.

Taken as a model for particle trajectories, the first-order ordinary differential equation
(ODE) system (4.8) assumes that the particle instantly attains terminal velocity with
respect to its current position as it migrates within the cross-section. This is not an
unreasonable assumption in regimes where the particle migrates sufficiently slowly
towards or away from an equilibrium. Since this necessarily will be the case in a
neighbourhood of equilibria, the model is suitable for locating and classifying equilibria.
A suitable criterion more generally might be obtained via a variant of the Stokes number
which compares the time scale over which the background flow locally changes around
the particle (due to the particle moving in the cross-section) with its relaxation time.
Obviously, this model fails to capture effects due to the acceleration of the particle and/or
the surrounding fluid. As such we do not expect it produce accurate predictions of entire
particle trajectories. Rather, when combined with an analysis of the equilibria, we can
obtain a good qualitative understanding of trajectories. The development of an efficient
second-order model which captures acceleration effects is the subject of ongoing work
and is beyond the scope of this study.

5. Results

For rectangular ducts having aspect ratios 2 and 4 it was noted in Harding et al. (2019)
that there exists a pair of stable equilibria (with vertical symmetry about z = 0) for all
of the values α ∈ {1/20, 2/20, 3/20, 4/20} over the range of ε−1 ∈ [40, 1280] that was
considered. Herein, as we increase the Dean number K, this generally continues to be
the case. Thus, it will be useful to restrict our study to the horizontal location of the
stable equilibrium pair and consider how this changes with respect to different parameters,
especially K.

The model is applicable to any particle size, provided Rep remains suitably small.
Additionally, it is desirable that α < 1/2 so that each particle can lie entirely in one half
of the vertically symmetric Dean flow. This restriction also reduces the chance of particles
jamming and obstructing the flow in practice. In this study we consider two larger particle
sizes α = 5/20, 6/20 in addition to those of the previous study. Many computations are
required for each particle size, we have chosen these specific samples as they cover the
range of sizes typically observed in experimental work and are sufficiently distinct to
highlight different focusing behaviour. The validity of the model for the larger particle
sizes will be restricted by the magnitude of Rep.

We first illustrate how the flow rate modifies the horizontal focusing location for two
fixed duct bend radii corresponding to ε−1 = 80, 160. Lastly, we examine whether the
parameter κ continues to characterise the horizontal focusing location of particles for
increasing Dean number.

The computations required to compute the coefficient fields described in § 4 were
conducted using the open source finite element software FEniCS (Logg, Mardal & Wells
2012; Alnaes et al. 2015). The background flow was estimated over the appropriate
two-dimensional cross-section by solving the equations described in Harding (2019d).
Third-order Lagrange finite elements were used for this calculation over a triangular
mesh having roughly 500 000 elements so that the relative error is expected to be much
less than 10−6. A finite difference code was used for validation of the background

957 A17-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.43


B. Harding and Y.M. Stokes

0

50

100K

r∗
p r∗

p

150

200

0

50

100

150

200

–2.0 –1.5 –1.0 –0.5 0 0.5 1.0 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0

α = 0.05

α = 0.10

α = 0.15

α = 0.20

α = 0.25

α = 0.30

(b)(a)

Figure 5. Lateral particle focusing as a function of the Dean number K for a cross-section with aspect ratio 2
and bend radii (a) ε−1 = 80 and (b) ε−1 = 160. The horizontal focusing location, r∗

p , is non-dimensionalised
with respect to �/2. Six particles are shown with radius indicated by the shading around the solid line denoting
the location of the stable equilibrium. Note the horizontal axis has been restricted to [−2, 1] (from [−2, 2]).
For the larger particle sizes, a horizontal dashed line shows where Rep = 1.

flow approximation and is available at Harding (2019b). For the three-dimensional
computations of the disturbance flow, Taylor–Hood elements were used with tetrahedral
meshes which were refined around the particle and typically had from 500 000 to 1 000 000
cells over the duct section. A convergence analysis of the code was conducted in Harding
(2019a) from which we are confident that the relative error in the computed coefficients is
typically less than 10−3. The required coefficient fields were estimated via 1000 to 2000
samples within the cross-section (depending on aspect ratio and particle size) and bivariate
cubic interpolation was used for the purpose of sampling these fields within standard ODE
solvers. A Python class for accessing the computed coefficients in the case of small Dean
number is available at Harding (2019c) and has been updated to include data for moderate
Dean numbers.

5.1. Influence of Dean number on lateral focusing and size-based separation
We investigate how the Dean number K influences the focusing of particles. Let r∗

p denote
the lateral location of a stable equilibrium pair from an experiment with fixed values of
α, ε, K and cross-sectional aspect ratio. Figures 5 and 6 illustrate how r∗

p changes as K
is varied for curved ducts with rectangular cross-sections having aspect ratios 2 and 4,
respectively. Observe that the value of r∗

p when K = 0 is consistent with the findings from
our previous model, while the observed changes and trends for K > 0 are obtained using
the new model. Notice that the particle Reynolds number is related to the Dean number
via Rep = α2/2

√
K/ε, so these results could also be interpreted in the context of varying

Rep.
First, we consider a duct with aspect ratio 2 and dimensionless bend radius ε−1 = 80.

Figure 5(a) illustrates a small degree of separation of the different particle sizes when
K = 0 (interpreted as the behaviour in the limit K → 0 as a result of a decaying flow rate).
As K increases, the particles with α = 0.05, 0.15 become increasingly separated from the
others. The stable equilibrium pair for α = 0.15 initially has r∗

p ≈ −1, and initially shifts
slightly towards the centre as K increases before swinging back towards the left/inside
wall. The stable equilibrium pair for α = 0.05 begins with r ≈ −0.16 and steadily shifts
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Figure 6. Lateral particle focusing as a function of the Dean number K for a cross-section with aspect ratio 4
and bend radii (a) ε−1 = 80 and (b) ε−1 = 160. The horizontal focusing location, r∗

p , is non-dimensionalised
with respect to �/2. Six particles are shown with radius indicated by the shading around the solid line denoting
the location of the stable equilibria (for α = 0.05 this is barely perceptible). Note the horizontal axis has been
restricted to [−4, 1] (from [−4, 4]). For the larger particle sizes, a horizontal dashed line shows where Rep = 1.

towards the right (outside wall), up to r ≈ 0.67. In contrast, the remaining particle sizes
begin with centre between the other two and shift towards slightly right of centre without
spreading significantly. Interestingly, the α = 0.10 particle experiences a relatively rapid
shift toward the outside wall around K = 150, enough to give it some small separation
from the α = 0.20 particle. The relative ordering between the neighbouring particle sizes
at small flow rates is explained by the approximate collapse of focusing location when
plotted against κ = �4/(4a3R) (Harding et al. 2019). This ordering remains consistent over
the range of K considered and is explored further in § 5.4.

Figure 5(b) illustrates the case with the larger bend radius ε−1 = 160. The α =
0.10, 0.15 particles begin separated from the others when K = 0. As K increases, so does
the separation between the two groups. Moreover, the α = 0.10 particle becomes slightly
separated from that with α = 0.15 for K > 150 as it shifts towards the inside wall, similar
to the ε−1 = 80 case, the α = 0.05 particle becomes slightly separated from the other
group as it more rapidly shifts towards the outside wall. From a practical perspective it is
useful that the clear separation between the initial two groups of particles is maintained
for increasing K in this particular case.

We now examine the results for a duct with aspect ratio 4 shown in figure 6. With ε−1 =
80, the α = 0.10, 0.15, 0.20 particles are closer to the inside wall than the others at K = 0.
This separation increases for increasing K, largely due to r∗

p for those α = 0.05, 0.25, 0.30
particles shifting towards the outside wall. Additionally, each of the α = 0.05, 0.25, 0.30
particles attains a small degree of separation from each other for K approaching 200.
The α = 0.15 particle also achieves some separation from the α = 0.10, 0.20 particles
over the entire range of K, with maximum separation when K ≈ 125. For α = 0.05, as
K approaches 200 there is a bifurcation that leads to a second pair of stable equilibria in
the half of the duct nearer to the outside wall. This is not evident in the figure as we have
truncated the horizontal axis to r = 1 to provide a clearer view of the region where most
particles focus. A discussion surrounding this second pair of stable equilibria is deferred
to § 5.2.

With ε−1 = 160, there are three distinct groups when K = 0, namely α = 0.10, 0.15,
α = 0.05, 0.20 and α = 0.25, 0.30 ordered from the inside wall to the outside wall.
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The separation between the three groups is maintained for increasing K, with the first
group becoming increasingly separated from the latter two.

All together, these results suggest several significant trends. First, clear separation
between the stable equilibria of groups of different particle sizes at a low flow rate is not
adversely affected as the Dean number increases. Second, particle sizes which focus near
the left wall when K = 0 do not move significantly for increasing K and, as a consequence,
become increasingly separated from the other particle sizes which shift towards the outside
wall. Third, the α = 0.05 particle tends to focus near the larger particles but can achieve
some separation for large enough K. The α = 0.15 particle appears to be well separated
from the remainder of the particles most consistently across these results.

5.2. Trajectory illustrations
We provide illustrations of particle trajectories towards stable equilibria for some selected
values of α, ε−1, K. It should be emphasised that our model does not necessarily provide
an accurate approximation of trajectories away from equilibria due to the neglect of
acceleration effects. However, they do help to illustrate several things. First, if a particle
were momentarily held in a specific location within the cross section (while still travelling
down the main axis at some equilibrium velocity and spin), our illustrations show the
direction it would go when released. Second, we see where unstable and saddle equilibria
are located relative to the stable focusing positions. Third, in many cases we observe
heteroclinic orbits joining a saddle equilibrium and a stable equilibrium onto which
particles are initially attracted. Often, the heteroclinic orbit constitutes a slow manifold
and the migration along the orbit may be sufficiently slow that the neglect of acceleration
effects in our model is reasonable. Consequently these heteroclinic orbits are likely to
be reasonably accurate trajectories. Put together, these observations help to elucidate the
effect of increasing Dean number on the migration dynamics of particles and assist with
the interpretation of the results from § 5.1.

Figure 7 illustrates trajectories of two distinct particle sizes at three different Dean
numbers in a curved duct with aspect ratio 2 and dimensionless bend radius ε−1 = 80.
The stable equilibrium pair for the α = 0.10 particle shifts to the right as K increases
(as also evident in figure 5a) and the trajectories deform accordingly. Conversely, the
equilibrium pair of the slightly larger α = 0.15 particle shifts very little over this range
of K. For increasing K, particles starting near the inside (left) wall migrate further to
the right before making their way back to a stable equilibrium along the slow manifold.
Additionally, when K = 200 we observe a slight deformation of the slow manifold, evident
as a pinch near its centre. Observe that the horizontal location of the stable equilibrium
pair for the two particle sizes has only a small degree of separation when K = 1 (compare
7(a) and 7(d)) but increases with increasing K (compare 7(c) and 7( f )).

Figure 8 similarly illustrates trajectories of two distinct particle sizes at three different
Dean numbers in a curved duct with aspect ratio 2, but with the dimensionless bend radius
ε−1 = 160. The stable equilibrium pair for the α = 0.10 particle does not shift much
as K increases (as also evident in figure 5b), but particles starting near the inside (left)
wall migrate further to the right before making their way back to a stable equilibrium
along the slow manifold. Additionally, when K = 200 we again observe a slight pinching
deformation of the slow manifold. This is much like the behaviour when α = 0.15 and
ε−1 = 80 from figure 7. For the larger α = 0.20 particle, the stable equilibrium pair
shifts to the right with increasing K but with only subtle changes to the trajectories as
a whole. Again we observe that the horizontal separation of stable equilibria between the
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(a) (b) (c)

(d) (e) ( f )

Figure 7. Trajectories of particles towards stable equilibria in a curved rectangular duct with aspect ratio 2 and
dimensionless bend radius ε−1 = 80. The particle has size (a–c) α = 0.10 and (d–f ) α = 0.15, and the Dean
number has values (a,d) K = 1, (b,e) K = 100 and (c, f ) K = 200. The left side is the inside wall of the curved
duct. Stable equilibria are green, saddle equilibria are yellow and unstable equilibria are red. The marker size
reflects the size of the particle.

(a) (b) (c)

(d) (e) ( f )

Figure 8. Trajectories of particles towards stable equilibria in a curved rectangular duct with aspect ratio 2
and dimensionless bend radius ε−1 = 160. The particles have sizes (a–c) α = 0.10 and (d–f ) α = 0.20, and
the Dean number has values (a,d) K = 1, (b,e) K = 100 and (c, f ) K = 200. The left side is the inside wall of
the curved duct. Stable equilibria are green, saddle equilibria are yellow and unstable equilibria are red. The
marker size reflects the size of the particle.

two particle sizes increases with increasing K, however, in this case, it is the larger particle
that shifts towards the outer wall, unlike the case in figure 7.

Figure 9 illustrates trajectories of two distinct particle sizes at three different Dean
numbers in a curved duct with aspect ratio 4 and dimensionless bend radius ε−1 = 80.
For the larger α = 0.20 particle there is almost no perceptible change in the migration
dynamics over this range of K values. In contrast, the stable equilibrium pair for the smaller
α = 0.05 particle shifts to the right with increasing K and the spiral trajectories become
increasingly elongated. For K = 200 there is an additional pair of stable equilibria located
nearer to the outer wall and, although not easily seen in the figure, this pair captures more
of the particles than the stable pair located closer to the centre. It is unclear if this would
be observed in practice for several reasons. The first is that small particles generally do
not have sufficient time/distance to fully focus, e.g. as is often evident by wide bands in
fluorescent streak images (Rafeie et al. 2019). Another is that some degree of pre-focusing
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(a) (b)

(c) (d)

(e) ( f )

Figure 9. Trajectories of particles towards stable equilibria in a curved rectangular duct with aspect ratio 2 and
dimensionless bend radius ε−1 = 80. The particle size is (a,c,e) α = 0.05 and (b,d, f ) α = 0.20, and the Dean
number has values (a,b) K = 1, (c,d) K = 100 and (e, f ) K = 200. The left side is the inside wall of the curved
duct. Stable equilibria are green, saddle equilibria are yellow and unstable equilibria are red. The marker size
reflects the size of the particle.

within the inlet regions may pre-select one of the equilibrium pairs, e.g. as is suspected
to occur with straight rectangular ducts in which small particles have a stable equilibrium
near the sidewalls which is rarely observed (Harding et al. 2019). Lastly, at K = 200 our
background flow model is near the limit of its applicability where the accuracy is O(10)%,
so we cannot rule out this second pair being a model error.

Figure 10 illustrates trajectories of two distinct particle sizes at three different Dean
numbers in a curved duct with aspect ratio 4, but with dimensionless bend radius ε−1 =
160. We observe the dynamics of the smaller α = 0.10 particle changes very little over
this range of K. The stable equilibrium pair for the larger α = 0.20 particle shifts towards
the centre along the slow manifold for increasing K but with almost no perceptible change
in the dynamics of trajectories otherwise. Note that the horizontal separation between the
larger and smaller particle again increases with K.

5.3. Comparison with an experimental study
Rafeie et al. (2019) studied particle focusing in a spiral duct with rectangular cross-section
having aspect ratio 4 (designated design R3). For backward flow (going from the innermost
to the outermost turn) ε−1 ≈ 180 near the outlet, while for forward flow (from the
outermost to the innermost turn) ε−1 ≈ 74 near the outlet. These two values are reasonably
close to the two values ε−1 = 160, 80 presented in our study. They experimented with
three particle sizes α ≈ 0.04, 0.067, 0.1 and used flow rates from 0.5 to 9.0 ml min−1

in steps of 0.5 ml min−1 (corresponding to Dean numbers from K ≈ 2 up to 840 at the
innermost turn). Their results suggest the smallest particle remains unfocused for both
flow directions, and appears to be distributed more uniformly for larger flow rates. On the
other hand, the larger two particle sizes start focused near the inside wall at low flow rates
and shift significantly towards the outside wall as the flow rate increases.

Bearing in mind that K = 200 only covers up to a flow rate of approximately
5.0 ml min−1 for this specific device (with K measured on the innermost turn), we observe
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(a) (b)

(c) (d)

(e) ( f )

Figure 10. Trajectories of particles towards stable equilibria in a curved rectangular duct with aspect ratio 2
and dimensionless bend radius ε−1 = 160. The particle size is (a,c,e) α = 0.10 and (b,d, f ) α = 0.20, and the
Dean number has values (a,b) K = 1, (c,d) K = 100 and (e, f ) K = 200. The left side is the inside wall of
the curved duct. Stable equilibria are green, saddle equilibria are yellow and unstable equilibria are red. The
marker size reflects the size of the particle.

that the shifting of the two larger particle sizes towards the outside wall is qualitatively
similar behaviour to our predictions for a α = 0.05 particle. Curiously, our α = 0.10
results suggest this particle stays near the inside wall, something that is not observed
in the experiments for this particle size. In the case of the smaller particles in the
experiment (α ≈ 0.04 and α ≈ 0.067) the wide spread of streaks suggests the particle
has had insufficient time/distance to fully focus. In § 5.2, and specifically figure 10(c),
our model suggests that particles will slowly spiral in towards a stable equilibrium, which
is consistent with the wide streaks observed prior to focusing being achieved. It is also
evident that any small perturbations vertically away from the stable equilibrium will force
the particle back onto a wide spiral path. Thus, these stable equilibria might be particularly
difficult to observe in the presence of experimental noise. We must also consider that our
model may not accurately predict trajectories in these specific cases due to the neglect of
acceleration effects.

5.4. Approximate collapse of horizontal focusing location
In Harding et al. (2019) it was demonstrated that at low flow rates the horizontal location
of stable equilibrium pairs approximately collapses when plotted against κ . The local
minimum in this curve helps to explain the specific focusing order of different size
particles within the cross-section. Here we investigate whether this remains the case when
the Dean number increases.

In figure 11 we plot the horizontal focusing location of stable equilibria, denoted r̃∗
p ,

for the three Dean numbers K = 50, 100, 150 in the case of a duct cross-section with
aspect ratio 2. To facilitate comparison between different particle sizes, here, r̃∗

p has been
non-dimensionalised with respect to half of the duct height. Panels (a,c,e) show the change
in r∗

p vs ε−1 which is of practical interest when different size particles are suspended in
flow through a duct having a specific bend radius. Panels (b,d,f ) show the change in r∗

p vs
κ and illustrates how this parameter characterises the focusing behaviour.
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Figure 11. Horizontal location of stable equilibria r̃∗
p vs (a,c,e) ε−1 and (b,d,e) κ , for the Dean numbers

(a,b) K = 50, (c,d) K = 100 and (e, f ) K = 150. The duct cross-section has aspect ratio 2 and r̃∗
p is

non-dimensionalised with respect to �/2. The light shaded area illustrates the region occupied by a stable
orbit which occurs only when α = 0.05 for K � 100.

Panels (a,b) illustrate the case K = 50 which is similar to the low flow rate results of
Harding et al. (2019), with just a slight shift towards the outside wall (r̃ = 2) of stable
equilibria which focus near the centre (r̃ = 0). We also include two additional particle
sizes α = 0.25, 0.30 here. Panels (c,d) show the case of K = 100 and, qualitatively, the
results are very similar. The main difference is that the increased flow rate shifts stable
equilibria located near the centre (most noticeably those with |r̃| ≤ 1/2) further towards
the outside wall (r̃ = 2). Additionally, for a narrow range of ε−1, we observe that α = 0.05
particles no longer focus to stable equilibria but, instead, onto small stable orbits around
unstable equilibria. Panels (e,f ) show the case of K = 150. A more pronounced shift in
centrally focused equilibria is seen and there are subtle qualitative changes, particularly in
relation to how sharply r̃∗

p changes for larger κ values. Additionally, the stable orbits that
occur for the particle size α = 0.05 now exist over a larger range of ε−1 and cover a larger
portion of the cross-section.

The approximate collapse of focusing behaviour against κ is preserved remarkably well
as the Dean number K is increased to a moderate size. This result is significant in that it
indicates that sized based separation of particles via inertial focusing should be reasonably
robust to changes in flow rate. Moreover we observe that particles focused closer to the
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Figure 12. Horizontal location of stable equilibria r̃∗
p vs (a,c,e) ε−1 and (b,d,e) κ , for the Dean numbers

(a,b) K = 50, (c,d) K = 100 and (e, f ) K = 150. The duct cross-section has aspect ratio 4 and r̃∗
p is

non-dimensionalised with respect to �/2. The light shaded area illustrates the region occupied by a stable
orbit which occurs only when α = 0.05 for K � 100.

centre of the duct shift towards the outer wall as the flow rate increases whereas those that
are focused closer to the inside wall do not move quite so much. This results in a slightly
deeper trough in the plots of r∗

p against κ and further supports the previous observation
that separation is typically improved with increased flow rate.

As discussed in Harding et al. (2019), the tail of data points where α = 0.05 and κ <

10 is due to stable equilibria appearing near the centre of the inside and outside walls.
These occur for large ε−1 as the duct becomes straighter and secondary flow drag becomes
negligible in comparison with the inertial lift force such that the equilibria of a straight
rectangular duct are attained. Similar stable equilibria near the centre of the inside wall
exist for α = 0.10 and κ < 10, although we expect these to ultimately disappear again in
the limit κ → 0 (as a straight duct has no such equilibria). The basin of attraction of these
particular equilibria is very small and so it is reasonable to ignore them from a practical
viewpoint (although they were included here for completeness).

We briefly remark on the existence of stable orbits when α = 0.05 for sufficiently
large K. For these parameters there are no stable equilibria but instead a vertically
symmetric pair of unstable (spiral) equilibria and around each of these there is a reasonably
tight stable orbit. These stable orbits occur over a relatively small parameter space for
rectangular ducts in comparison with the case of square ducts whose dynamics is studied in
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Ha et al. (2022). In this instance the required bend radius is O(1000) times the duct height
which is unlikely to occur in a practical setting. Moreover, we expect that experimental
noise would impact the stability of such orbits thereby making them difficult to observe
experimentally.

Figure 12 shows r∗
p against ε−1 and κ for a cross-section with aspect ratio 4 and with

Dean numbers K = 50, 100, 150. The main observation is that again centrally located
equilibria shift closer to the outside wall with increasing K which ultimately means
separation can occur across a larger portion of the duct width. The approximate collapse
of the focusing curves against κ for κ < 10 is incredibly well preserved as K increases.
The wider aspect ratio duct does not feature any stable equilibria appearing near the centre
of the inside or outside wall, and stable orbits are very small where they do occur, thereby
making the wider aspect ratio duct more attractive for size-based separation.

6. Conclusions

We have extended our model of inertial migration of neutrally buoyant spherical particles
in curved microfluidic ducts to moderate Dean number by incorporating further terms of a
suitable perturbation approximation of the background flow. This approach is particularly
powerful as the computed coefficient arrays can be cheaply re-assembled to model
particle trajectories at any desired flow rate for which the model is applicable. We have
demonstrated a smooth shift in stable equilibria with respect to the Dean number K, up
to O(100), and observed that increasing K can enhance the separation of particles by
size. Moreover, we illustrate that the approximate collapse of the horizontal location of
equilibria when plotted against κ appears to be robust with respect to increasing K.

There are, of course, some limitations to the present model. One limitation is that the
model may not produce an accurate estimate of trajectories when cross-section migration
is fast enough that acceleration of the particle and surrounding fluid becomes important.
More research is required to determine suitable criteria to distinguish when this might be
an issue, and more still to produce a model which can accurately account for acceleration
related effects. Another limitation is that while we have accounted for changes in the
background/Dean flow with increasing K, we have not accounted for nonlinear feedback
in the disturbance flow beyond the first-order terms. It is presently unknown up to what
Rep the regular perturbation expansion of the disturbance flow remains valid. One way to
estimate this might be via direct comparisons with the full solution of the Navier–Stokes
equation (2.3) over suitable samples of the parameter space. Investigating precisely when
the regular perturbation fails and finding a suitable alternative approach for complex duct
geometries remains the subject of ongoing work. Despite these limitations, our model
provides, at least, some qualitative insight into how the flow rate modifies particle focusing
in curved microfluidic ducts.

Non-neutrally buoyant particles could easily be incorporated into this model by adding
the appropriate perturbations as described in Harding & Stokes (2020). We chose to focus
on neutrally buoyant particles in this work to simplify the presentation and because our
previous study concluded that small variations in buoyancy have negligible effect on the
particle dynamics.

A natural question going forwards is to understand how particle migration is perturbed
by higher flow rates. This poses several challenges to the approach used herein. First,
the regular perturbation expansion of the background flow (3.3) fails to converge for K
values larger than roughly 212 (Harding 2019d). Thus, another suitable approximation
will be required, or the background flow will need to be computed/estimated more directly.
Second, Rep cannot remain suitably small without the particle size becoming unreasonably
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small (taking the fluid properties to be fixed). Therefore, either additional terms in the
perturbation expansion of the disturbance flow may need to be incorporated, or else a
singular perturbation may be required. In either case, this significantly changes how one
can implement the model and poses new computational challenges. As mentioned above,
this might also have some relevance to the moderate Dean numbers considered herein.
Third, it may no longer be appropriate to neglect the effects of particle acceleration,
particularly if one is interested in modelling complete particle trajectories. Each of these
challenges will be considered going forwards as we continue to expand and improve the
modelling of inertial migration in curved ducts.
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resources provided by the Rāpoi HPC Cluster at Victoria University of Wellington and the Phoenix HPC service
at the University of Adelaide were employed.

Declaration of interests. The authors report no conflicts of interest.

Author ORCIDs.
Brendan Harding https://orcid.org/0000-0002-6755-9998;
Yvonne M. Stokes https://orcid.org/0000-0003-0027-6077.

Appendix A. Application of the reciprocal theorem to calculating hydrodynamic
force and torque

For completeness we begin by recalling the Lorentz reciprocal theorem for Stokes flow in
its most general form and then revisit its application to the calculation of the force on a
portion of the boundary of the fluid domain. Following this we illustrate how it can also
be applied to the calculation of the torque about a desired reference point over a portion of
the boundary of the fluid domain.

THEOREM. Let p, u and q, v be the solution of

∇ · (−pI + μ (∇u + ∇uᵀ)) = f , ∇ · (−qI + μ (∇v + ∇vᵀ)) = g in Ω, (A1a)

∇ · u = 0, ∇ · v = 0 in Ω, (A1b)

u = a, v = b on ∂Ω, (A1c)

where a, b, f , g are suitably smooth vector fields over their respective domains, then∫
∂Ω

b · [
n · (−pI + μ (∇u + ∇uᵀ))

]
dS

=
∫

∂Ω

a · [
n · (−qI + μ (∇v + ∇vᵀ))

]
dS +

∫
Ω

v · f − u · g dV, (A2)

where n denotes the outward pointing normal vector with respect to Ω .

Proof . Observe that (A1) implies that

v · [∇ · (−pI + μ (∇u + ∇uᵀ)) − f
] = 0, (A3a)

u · [∇ · (−qI + μ (∇v + ∇vᵀ)) − g
] = 0, (A3b)
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over Ω . In general, given a differentiable tensor field S, one has ∇ · (v · S) = v · (∇ ·
S) + ∇v : S where : is the tensor double dot product. Therefore (A3) can be written as

∇ · [
v · (−pI + μ (∇u + ∇uᵀ))

] − ∇v : (−pI + μ (∇u + ∇uᵀ)) = v · f , (A4a)

∇ · [
u · (−qI + μ (∇v + ∇vᵀ))

] − ∇u : (−qI + μ (∇v + ∇vᵀ)) = u · g. (A4b)

Subtracting the second equation from the first, then noting ∇v : pI = p(∇ · v) = 0 and
∇u : qI = q(∇ · u) = 0, and additionally ∇u : ∇v = ∇v : ∇u and ∇u : ∇vᵀ = ∇uᵀ :
∇v = ∇v : ∇uᵀ, then

∇ · [
v · (−pI + μ (∇u + ∇uᵀ))

] − ∇ · [
u · (−qI + μ (∇v + ∇vᵀ))

] = v · f − u · g.

(A5)

It remains to integrate this equation over Ω and apply the divergence theorem to the left
hand side. The result is then straightforward to re-arrange to obtain (A2). �

Now we consider the reciprocal theorem applied to the calculation of the hydrodynamic
force from a flow p, u on a subset of ∂Ω , e.g. denoting the surface of a particle. In
particular, we consider calculating the component of the force∫

Γ

(−n) · (−pI + μ (∇u + ∇uᵀ)) dS, (A6)

on the surface Γ ⊂ ∂Ω in the direction of a constant unit vector e∗.

COROLLARY. Let p, u and q, v satisfy (A1) with a = 0 over ∂Ω , g = 0 over Ω , b = e∗
is a constant vector on Γ ⊂ ∂Ω and b = 0 over the remainder of ∂Ω\Γ . Then

e∗ ·
∫

Γ

(−n) · (−pI + μ (∇u + ∇uᵀ)) dS = −
∫

Ω

v · f dV. (A7)

Proof . Immediately, due to a = 0 and g = 0, one obtains from (A2) the result∫
∂Ω

b · [
n · (−pI + μ (∇u + ∇uᵀ))

]
dS =

∫
Ω

v · f dV. (A8)

Since v = b = e∗ is constant over Γ (and is zero elsewhere) it follows that

e∗ ·
∫

Γ

n · (−pI + μ (∇u + ∇uᵀ)) dS =
∫

Ω

v · f dV. (A9)

One simply needs to multiply both sides by −1 to obtain the desired hydrodynamic force
in the direction e∗. �

Observe that in the corollary v could be written as V(e∗) using the operator V
introduced in § 2.1, taking Γ = ∂P̂ ′. Now, we wish to apply the reciprocal theorem again
to the calculation of the torque∫

Γ

(x − xc) × [
(−n) · (−pI + μ (∇u + ∇uᵀ))

]
dS, (A10)

about a (fixed) reference point xc, e.g. the centre of mass of a particle.
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Inertial focusing in curved ducts at moderate flow rate

COROLLARY. Let p, u and q, v satisfy (A1) with a = 0 over ∂Ω , g = 0 over Ω ,
b = e∗ × (x − xc) on Γ ⊂ ∂Ω where e∗ is constant, and b = 0 over the remainder
∂Ω\Γ . Then

e∗ ·
∫

Γ

(x − xc) × [
(−n) · (−pI + μ (∇u + ∇uᵀ))

]
dS = −

∫
Ω

v · f dV. (A11)

Proof . This time (A2) yields the result∫
Γ

(e∗ × (x − xc)) · [
n · (−pI + μ (∇u + ∇uᵀ))

]
dS =

∫
Ω

v · f dV. (A12)

Applying the triple product shift rule (x × y) · z = (y × z) · x to the integrand on the
left-hand side produces∫

Γ

(
(x − xc) × [

n · (−pI + μ (∇u + ∇uᵀ))
]) · e∗ dS =

∫
Ω

v · f dV. (A13)

The dot product with e∗ can be safely pulled outside the integral (as e∗ is constant).
Multiplying both sides by −1 then yields the desired component of torque in the e∗
direction, i.e. (A11). �

Observe that using the operators introduced in § 2.1 we can write v = V(e∗ × (x − xc))

within this corollary, taking Γ = ∂P̂ ′.

Appendix B. Symmetries associated with Stokes flow around a spherical particle in a
curved duct

Here, we describe a variety of quantities which are zero due to symmetries associated with
our problem. Specifically, in the rotating frame the fluid domain F ′ is symmetric about
θ ′ = 0 and many fields of interest relating to solutions of (2.13) are either odd or even with
respect to θ ′. Specifically, the following are odd with respect to θ ′:

V(i′) · j′, V(j′) · i′, V(j′) · k,

V(k) · j′, V(i′ × (x̂′ − x̂′
p)) · i′, V(i′ × (x̂′ − x̂′

p)) · k,

V(j′ × (x̂′ − x̂′
p)) · j′, V(k × (x̂′ − x̂′

p)) · i′, V(k × (x̂′ − x̂′
p)) · k,

Q(j′), Q(i′ × (x̂′ − x̂′
p)), Q(k × (x̂′ − x̂′

p)),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(B1)

while the following are even with respect to θ ′:

V(i′) · i′, V(i′) · k, V(j′) · j′,

V(k) · i′, V(k) · k,V(i′ × (x̂′ − x̂′
p)) · j′,

V(j′ × (x̂′ − x̂′
p)) · i′, V(j′ × (x̂′ − x̂′

p)) · k,V(k × (x̂′ − x̂′
p)) · j′,

Q(i′), Q(k), Q(j′ × (x̂′ − x̂′
p)).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(B2)
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These parities can be used to show

N (i′) · i′ = 0, M(i′) · j′ = 0, N (i′) · k = 0,

M(j′) · i′ = 0, N (j′) · j′ = 0, M(j′) · k = 0,

N (k) · i′ = 0, M(k) · j′ = 0, N (k) · k = 0,

M(i′ × (x̂′ − x̂′
p)) · i′ = 0, N (i′ × (x̂′ − x̂′

p)) · j′ = 0, M(i′ × (x̂′ − x̂′
p)) · k = 0,

N (j′ × (x̂′ − x̂′
p)) · i′ = 0, M(j′ × (x̂′ − x̂′

p)) · j′ = 0, N (j′ × (x̂′ − x̂′
p)) · k = 0,

M(k × (x̂′ − x̂′
p)) · i′ = 0, N (k × (x̂′ − x̂′

p)) · j′ = 0, M(k × (x̂′ − x̂′
p)) · k = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B3)

Moreover, given a sufficiently smooth function f (r′, z′), i.e. which is independent of θ ′,
then each of

V( f (r′, z′)i′) · j′, V( f (r′, z′)j′) · i′, V( f (r′, z′)j′) · k,

V( f (r′, z′)k) · j′, Q( f (r′, z′)j′),

}
(B4)

are odd with respect to θ ′, and each of

V( f (r′, z′)i′) · i′, V( f (r′, z′)i′) · k, V( f (r′, z′)j′) · j′,

V( f (r′, z′)k) · i′, V( f (r′, z′)k) · k, Q( f (r′, z′)i′), Q( f (r′, z′)k),

}
(B5)

are even with respect to θ ′. Consequently, one can show

N ( f (r′, z′)er) · i′ = 0, M( f (r′, z′)er) · j′ = 0, N ( f (r′, z′)er) · k = 0,

M( f (r′, z′)eθ ) · i′ = 0, N ( f (r′, z′)eθ ) · j′ = 0, M( f (r′, z′)eθ ) · k = 0,

N ( f (r′, z′)k) · i′ = 0, M( f (r′, z′)k) · j′ = 0, N ( f (r′, z′)k) · k = 0.

⎫⎪⎬⎪⎭ (B6)

Of particular interest is when f (r′, z′) describes appropriate components of the background
flow velocity field ū, as described in § 3.

Appendix C. Further application of symmetry in the model

Similar to Harding et al. (2019), we can further expand I0 to determine which terms
contribute to and are most significant in (4.6) and (4.7). First, the decomposition leading
to (4.2) and (4.4) suggests that v0 be split into two distinct parts, namely v0 = v0,a + v0,s
where

v0,a = up,0,θV(j′) + Ωp,0,rV(i′ × (x̂′ − x̂′
p)) + Ωp,0,zV(k × (x̂′ − x̂′

p))

− 2α−1[V(ūa,0) + KV(ūa,0) + K2V(ūa,0)], (C1a)

v0,s = up,0,rV(i′) + up,0,zV(k) + Ωp,0,θV(j′ × (x̂′ − x̂′
p))

− κRep[V(ūs,0) + KV(ūs,1) + K2V(ūs,2)]. (C1b)
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Subsequently, we can similarly decompose I0 into two distinct components, specifically
I0 = I0,a + I0,s where

I0,a = Θ0 × v0,a + v0,a · ∇(2α−1(ūa,0 + Kūa,1 + K2ūa,2))

+ (v0,a + 2α−1(ūa,0 + Kūa,1 + K2ūa,2) − Θ0 × x̂′) · ∇v0,a

+ v0,s · ∇(κRep(ūs,0 + Kūs,1 + K2ūs,2))

+ (v0,s + κRep(ūs,0 + Kūs,1 + K2ūs,2)) · ∇v0,s, (C2a)

I0,s = Θ0 × v0,s + v0,s · ∇(2α−1(ūa,0 + Kūa,1 + K2ūa,2))

+ (v0,s + κRep(ūs,0 + Kūs,1 + K2ūs,2)) · ∇v0,a

+ v0,a · ∇(κRep(ūs,0 + Kūs,1 + K2ūs,2))

+ (v0,a + 2α−1(ūa,0 + Kūa,1 + K2ūa,2) − Θ0 × x̂′) · ∇v0,s. (C2b)

Using the symmetries described in Appendix B it can be shown that I0,a · V(j′) is odd
with respect to θ such that∫

F̂ ′
V(j′) · I0 dV =

∫
F̂ ′

V(j′) · I0,s dV. (C3)

Analogous simplifications can be made for a number of other volume integrals involving
a dot product between a V term and I0.

Upon applying these symmetry properties to (4.6) and (4.7) we arrive at

Aa

⎡⎣up,1,θ

Ωp,1,r
Ωp,1,z

⎤⎦ =

⎡⎢⎢⎢⎢⎣
8π

3
Θ0up,0,r

−8π

15
Θ0Ωp,0,θ

0

⎤⎥⎥⎥⎥⎦ −

⎡⎢⎢⎢⎢⎢⎢⎣
j′ ·

∫
P̂ ′

ūa · ∇ūs + ūs · ∇ūa dV

i′ ·
∫
P̂ ′

(x̂′ − x̂′
p) × (ūa · ∇ūs + ūs · ∇ūa) dV

k ·
∫
P̂ ′

(x̂′ − x̂′
p) × (ūa · ∇ūs + ūs · ∇ūa) dV

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

∫
F̂ ′

V(j′) · I0,s dV∫
F̂ ′

V(i′ × (x̂′ − x̂′
p)) · I0,s dV∫

F̂ ′
V(k × (x̂′ − x̂′

p)) · I0,s dV

⎤⎥⎥⎥⎥⎥⎥⎦ , (C4)

and similarly

As

⎡⎣ up,1,r
up,1,z
Ωp,1,θ

⎤⎦ =

⎡⎢⎢⎢⎣
−4π

3
Θ2

0 (R̂ + r̂p)

0
8π

15
Θ0Ωp,0,r

⎤⎥⎥⎥⎦ −

⎡⎢⎢⎢⎢⎢⎢⎣
i′ ·

∫
P̂ ′

ūa · ∇ūa + ūs · ∇ūs dV

k ·
∫
P̂ ′

ūa · ∇ūa + ūs · ∇ūs dV

j′ ·
∫
P̂ ′

(x̂′ − x̂′
p) × (ūa · ∇ūa + ūs · ∇ūs) dV

⎤⎥⎥⎥⎥⎥⎥⎦
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+

⎡⎢⎢⎢⎢⎢⎢⎣

∫
F̂ ′

V(i′) · I0,a dV∫
F̂ ′

V(k) · I0,a dV∫
F̂ ′

V(j′ × (x̂′ − x̂′
p)) · I0,a dV

⎤⎥⎥⎥⎥⎥⎥⎦ . (C5)

This decomposition illustrates a clear separation in how different parts of the leading-order
disturbance flow solution contribute to the hydrodynamic force generated by the first-order
disturbance flow correction. In (C4) and (C5), the ūa should be interpreted as ūa,0 +
Kūa,1 + K2ūa,2 and similarly for ūs. Both v0,a, v0,s from (C1) can be substituted into
I0,a, I0,s in (C2), and subsequently the volume integrals over F̂ ′ in (C4) and (C5)
can be expressed as a polynomial function of up,0, Ωp,0, Θ0, κ, Rep, K with variable
coefficients depending on rp, zp, ε, α. By sampling the coefficient fields over a suitable
range of rp, zp, ε, α and interpolating appropriately, we can efficiently estimate the values
of up,1, Ωp,1 given any value of up,0, Ωp,0, Θ0, κ, Rep, K (assuming Rep and K are small
enough that the regular perturbation expansion is valid).

REFERENCES

ALNAES, M.S., BLECHTA, J., HAKE, J., JOHANSSON, A., KEHLET, B., LOGG, A., RICHARDSON, C.,
RING, J., ROGNES, M.E. & WELLS, G.N. 2015 The FEniCS project version 1.5. Archive of numerical
Software 3.

ASMOLOV, E.S. 1999 The inertial lift on a spherical particle in a plane poiseuille flow at large channel
Reynolds number. J. Fluid Mech. 381, 63–87.

AULT, J.T., RALLABANDI, B., SHARDT, O., CHEN, K.K. & STONE, H.A. 2017 Entry and exit flows in
curved pipes. J. Fluid Mech. 815, 570–591.

BHAGAT, A.A.S., KUNTAEGOWDANAHALLI, S.S. & PAPAUTSKY, I. 2008 Continuous particle separation in
spiral microchannels using dean flows and differential migration. Lab on a Chip 8, 1906–1914.

DEAN, W.R. 1927 Note on the motion of fluid in a curved pipe. Lond. Edinb. Dublin Philos. Mag. J. Sci.
4 (20), 208–223.

DEAN, W.R. & HURST, J.M. 1959 Note on the motion of fluid in a curved pipe. Mathematika 6 (1), 77–85.
DI CARLO, D. 2009 Inertial microfluidics. Lab on a Chip 9, 3038–3046.
DI CARLO, D., EDD, J.F., HUMPHRY, K.J., STONE, H.A. & TONER, M. 2009 Particle segregation and

dynamics in confined flows. Phys. Rev. Lett. 102, 094503.
GOSSETT, D.R. & DI CARLO, D. 2009 Particle focusing mechanisms in curving confined flows. Anal. Chem.

81 (20), 8459–8465.
HA, K., HARDING, B., BERTOZZI, A.L. & STOKES, Y.M. 2022 Dynamics of small particle inertial migration

in curved square ducts. SIAM Dyn. Syst. (accepted).
HARDING, B. 2019a Convergence analysis of inertial lift force estimates using the finite element method.

In Proceedings of the 18th Biennial Computational Techniques and Applications Conference (ed. B.
Lamichhane, T. Tran & J. Bunder), ANZIAM J., vol. 60, pp. C65–C78.

HARDING, B. 2019b Curved duct flow Python class. GitHub: https://github.com/brendanharding/CDFC.
HARDING, B. 2019c Inertial lift force helper Python class. GitHub: https://github.com/brendanharding/ILFHC.
HARDING, B. 2019d A Rayleigh–Ritz method for Navier–Stokes flow through curved ducts. ANZIAM J.

61, 1–22.
HARDING, B. & STOKES, Y.M. 2020 Inertial focusing of non-neutrally buoyant spherical particles in curved

microfluidic ducts. J. Fluid Mech. 902, 1–29.
HARDING, B., STOKES, Y.M. & BERTOZZI, A.L. 2019 Effect of inertial lift on a spherical particle suspended

in flow through a curved duct. J. Fluid Mech. 875, 1–43.
HO, B.P. & LEAL, L.G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows.

J. Fluid Mech. 65 (2), 365–400.
HOGG, A.J. 1994 The inertial migration of non-neutrally buoyant spherical particles in two-dimensional shear

flows. J. Fluid Mech. 272, 285–318.

957 A17-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://github.com/brendanharding/CDFC
https://github.com/brendanharding/ILFHC
https://doi.org/10.1017/jfm.2023.43


Inertial focusing in curved ducts at moderate flow rate

HOOD, K., LEE, S. & ROPER, M. 2015 Inertial migration of a rigid sphere in three-dimensional poiseuille
flow. J. Fluid Mech. 765, 452–479.

HOOD, K.T. 2016 Theory of particle focusing in inertial microfluidic devices. PhD thesis, University of
California, Los Angeles.

LOGG, A., MARDAL, K.-A. & WELLS, G.N., ed. 2012 Automated Solution of Differential Equations by the
Finite Element Method. Lecture Notes in Computational Science and Engineering, vol. 84. Springer.

MARTEL, J.M. & TONER, M. 2012 Inertial focusing dynamics in spiral microchannels. Phys. Fluids 24 (3),
032001.

MARTEL, J.M. & TONER, M. 2013 Particle focusing in curved microfluidic channels. Sci. Rep. 3, 3340.
MARTEL, J.M. & TONER, M. 2014 Inertial focusing in microfluidics. Annu. Rev. Biomed. Engng 16 (1),

371–396.
MATAS, J.-P., MORRIS, J.F. & GUAZELLI, É. 2004 Inertial migration of rigid spherical particles in Poiseuille

flow. J. Fluid Mech. 515, 171–195.
MATAS, J.-P., MORRIS, J.F. & GUAZELLI, É. 2009 Lateral force on a rigid sphere in large-inertia laminar

pipe flow. J. Fluid Mech. 621, 59–67.
RAFEIE, M., HOSSEINZADEH, S., TAYLOR, R.A. & WARKIANI, M.E. 2019 New insights into the physics

of inertial microfluidics in curved microchannels. I. Relaxing the fixed inflection point assumption.
Biomicrofluidics 13 (3), 034117.

SAFFMAN, P.G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2), 385–400.
SCHONBERG, J.A. & HINCH, E.J. 1989 Inertial migration of a sphere in poiseuille flow. J. Fluid Mech.

203, 517–524.
SEO, J., LEAN, M.H. & KOLE, A. 2007 Membraneless microseparation by asymmetry in curvilinear laminar

flows. J. Chromatogr. A 1162 (2), 126–131.
VALANI, R.N., HARDING, B. & STOKES, Y.M. 2022 Bifurcations and dynamics of particles in inertial

focusing in curved ducts with rectangular cross-section. SIAM Dyn. Syst. (in review).
WARKIANI, M.E., et al. 2014 Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating

tumor cells. Lab on a Chip 14, 128–137.
WARKIANI, M.E., KHOO, B.L., WU, L., TAY, A.K.P., BHAGAT, A.A.S., HAN, J. & LIM, C.T. 2016

Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat. Protoc.
11 (1), 134–148.

WINTERS, K.H. 1987 A bifurcation study of laminar flow in a curved tube of rectangular cross-section. J. Fluid
Mech. 180, 343–369.

957 A17-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.43

	1 Introduction
	2 Problem set-up and theoretical background
	2.1 Stokes' flow operators
	2.2 A note on reciprocal theorems

	3 Improved approximation of the background flow
	4 The extended particle migration model
	4.1 Further decomposition and application of symmetry
	4.2 The completed model

	5 Results
	5.1 Influence of Dean number on lateral focusing and size-based separation
	5.2 Trajectory illustrations
	5.3 Comparison with an experimental study
	5.4 Approximate collapse of horizontal focusing location

	6 Conclusions
	Appendix A. Application of the reciprocal theorem to calculating hydrodynamic force and torque
	Appendix B. Symmetries associated with Stokes flow around a spherical particle in a curved duct
	Appendix C. Further application of symmetry in the model
	References

