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Abstract: Freezing of gait (FOG) severely incapacitates the mobility of patients with advanced
Parkinson’s disease (PD). An accurate prediction of the onset of FOG could improve the quality
of life for PD patients. However, it is imperative to distinguish the possibility of the onset of FOG
from that of voluntary stopping. Our previous work demonstrated the neurological differences
between the transition to FOG and voluntary stopping using electroencephalogram (EEG) signals. We
employed a timed up-and-go (TUG) task to elicit FOG in PD patients. Some of these TUG tasks had
an additional voluntary stopping component, where participants stopped walking based on verbal
instruction to “stop”. The performance of the convolutional neural network (CNN) in identifying the
transition to FOG from normal walking and the transition to voluntary stopping was explored. To the
best of our knowledge, this work is the first study to propose a deep learning method to distinguish
the transition to FOG from the transition to voluntary stop in PD patients. The models, trained on
the EEG data from 17 PD patients who manifested FOG episodes, considering a short two-second
transition window for FOG occurrence or voluntary stopping, achieved close to 75% classification
accuracy in distinguishing transition to FOG from the transition to voluntary stopping or normal
walking. Our results represent an important step toward advanced EEG-based cueing systems for
smart FOG intervention, excluding the potential confounding of voluntary stopping.

Keywords: freezing of gait; Parkinson’s disease; voluntary stopping; convolutional neural network;
EEGNet; Shallow ConvNet; Deep ConvNet

1. Introduction

Freezing of gait (FOG) is a gait impairment resulting from neurodegeneration in
advanced Parkinson’s disease (PD) patients. Nieuwboer and Giladi [1] defined FOG as
the “inability to deal with concurrent cognitive, limbic and motor inputs, causing an
interruption of locomotion”. This episodic gait difficulty causes the patients to suddenly
experience the feeling that their feet are “stuck to the ground” [2] while walking or initiating
gait. This increases the risk of falling, negatively affecting the patient’s quality of life.

FOG can be triggered by simple activities such as gait initiation, walking through
a doorway, encountering obstacles in the pathway, or even performing a dual-task while
walking [3,4]. Therefore, accurate and timely detection of FOG can significantly enhance
the quality of life for PD patients. An automatic prediction of FOG can provide neurologists
with relevant indicators about the condition and its evolution [5]. Furthermore, freezing
episodes can be mitigated or prevented with external intervention, such as visual or
auditory cues, activated by predicting the onset of FOG.
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FOG detection is still a widely researched topic, with attempts made by several combi-
nations of devices and algorithms. The first automatic detection of FOG was proposed by
Moore et al. [6] using frequency-based features from accelerometer signals. This work was
extended to improve the detection accuracy and developed as a FOG monitoring system
with smartphones and wearable accelerometers [7]. Accelerometers [8,9], gyroscopes [8]
and inertial data [10,11] have been employed for automatic FOG detection [9].

Several researchers attempted the early detection of FOG as it benefits intervention
strategies. Handojoseno et al. [12] detected the onset of FOG based on EEG wavelet energy
and entropy features. The onset of FOG was also detected by a sensor placed on the lower
limb of the patient [13]. Electrocardiogram and skin conductance were used to predict the
onset of FOG [14].

An efficient FOG detection system should not only be able to predict the onset of
FOG, but it should also be able to distinguish involuntary stopping from the transition to
voluntary stopping. The potential of brain dynamics in discerning the onset of freezing in
PD patients has already been established [12]. However, earlier researchers relied on a 5 s
window to discern the transition to freezing from normal walking [15,16].

Recently, we discovered that EEG signatures for transition to FOG are distinct from
the intention to stop [17]. We observed an increase in the delta, theta, and beta power at the
central region during the transition to freezing compared to normal walking. The transition
to voluntary stopping was observed to show increased EEG power at the frontal, central,
parietal, and occipital regions compared to the transition to FOG. Accurate detection of the
transition to FOG from potential confounding transitions to voluntary stopping and normal
walking is still challenging because of the complexity of designing handcrafted features.

In order to determine the differences in brain activity during the transition to freezing
and the transition to stopping, we employed the classical timed up-and-go (TUG) task [18]
in our experiment. The TUG protocol involves the participants starting from a sitting
position to standing before walking towards an identified point and then turning back there
to return to the starting position. This sequence of steps followed in the TUG protocol elicits
freezing episodes, particularly when performed in that order [19]. In order to incorporate
the transition to stopping in our experiment, we included TUG trials with voluntary stop
conditions. In the TUG trials with voluntary stop, the participants were verbally instructed
to “stop”. We contrasted the brain dynamics of the patients while walking normally,
transitioning to freezing, transitioning to voluntary stopping, and during freezing episodes
and voluntarily stopping. Discerning the brain dynamics during the transition to freezing
from normal walking or the transition to voluntary stopping could pave the way towards
improved therapeutics that accurately predict the possibility of freezing while excluding
potentially confounding voluntary stopping instances.

Our aim is to perform automatic feature learning and distinguish between normal gait,
transition to FOG, and transition to voluntary stopping. Deep learning (DL) methods are
feature learning methods that are not constrained by the engineering ability of handcrafted
features or the complexity of the data representation. ConvNets are a type of feed-forward
deep neural network, which typically combines convolutional layers with traditional dense
layers to reduce the number of weights composing the model. The proposed system
eliminates the need to extract features and feature selection manually. We evaluated three
classical convolutional neural network (CNN) models: EEGNet [20], Shallow ConvNet [21],
and Deep ConvNet [21] to detect FOG.

2. Materials and Methods
2.1. Subjects

Seventeen patients from the Parkinson’s Disease Research Clinic at the Brain and
Mind Centre, University of Sydney, participated in this study. The University of Sydney
Ethics Committee provided ethics approval for this experiment (HREC approval number:
2014/255). All participants for the study were chosen based on the score for the third item
on the self-reported FOG questionnaire and assessment of a clinical specialist. The mean
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age of the participants was 64 ± 7.25 years, and none had any depression or dementia, as
assessed by neurologist Simon J. G. Lewis using the DSM-IV criteria. Furthermore, the
participants had a Mini-Mental State Examination (MMSE) score ≥ 24 and fulfilled the UK
Parkinson’s Disease Society Brain Bank (UKPDSBB) criteria [15,17]. Furthermore, these
participants had a varying severity and frequency of freezing and, when in their practically
defined off period, having withdrawn PD medications overnight, had an MDS Unified
Parkinson’s Disease Rating Scale III stage of 40.10 ± 12.21 and a Hoehn and Yahr stage of
2.34 ± 0.73.

2.2. Experimental Design

The patients were in their off state, having had no medications for at least 12 h when
they participated in this study. They performed the TUG task, starting with the participants
seated. The participants were instructed to stand up and walk towards a target location in
a large corridor. The target location was marked on the floor using a box with dimensions
of 0.6 m × 0.6 m, positioned 6 m away from the starting position to allow for multiple FOG
episodes. The participants were instructed to turn within the marked box. In the TUG
tasks, the participants were asked to perform either a 180° or a 540° turn. Turning within
a box elicits freezing episodes in PD patients. The researcher initially demonstrated the
task and the direction to turn within the box, and the participants followed the researcher’s
example. The experiment was video recorded and reviewed by two clinical researchers to
identify freezing episodes.

As described in [17], we considered two variants of the TUG task: the classical TUG
task and the TUG task with a voluntary stopping element. As shown in Figure 1A, the
classical TUG task was employed as it elicits freezing in PD patients [19]. We considered
two seconds immediately preceding the freezing episode as the transition to freezing. The
period of two seconds before this transition period was regarded as normal walking.

In the TUG tasks with the voluntary stopping element (Figure 1B), the researcher
guided the participant in the voluntary stopping by providing verbal instructions such
as “stop” and “walk”. In these TUG trials, the target box was located 10 m away from the
starting position. The box was located 10 m from the starting position in these TUG tasks so
as to prevent participants from anticipating exactly when they might receive the instruction
to stop walking. Furthermore, verbal instructions to stop walking were generally provided
to the participants while they were walking back to the chair after turning inside the box.
The participants were required to stop as soon as they heard the researcher say “stop”, and
they resumed walking when the researcher said “walk”, usually in 5–10 s. We defined
two seconds when the researcher said “stop” and the participants were preparing to stop
walking as the transition to voluntary stop. We also considered two seconds before the
“stop” instruction as normal walking. The participants were randomly asked to perform
a standard TUG task or TUG task with voluntary stopping to avoid any habituation effects.

Even though we strived to have an equal number of normal walking, transition to FOG,
and voluntary stopping, this was not accomplished. The well-being of the patients was
given the top priority, and we stopped the experiment for any PD patients who expressed
difficulty in continuing with the experiment. Hence, we could not collect an equal number
of trials for normal walking, transitions to FOG, or voluntary stopping. Table 1 shows the
number of normal walking trials, the number of transitions to FOG, and the transitions to
voluntary stopping for each participant.
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Figure 1. Experimental paradigm of (A) standard TUG task. (B) TUG task with verbal instructions to
“stop” and “walk” to facilitate voluntary stopping. TF denotes the transition to FOG, and TS denotes
the transition to voluntary stopping.

Table 1. Participant-based count of normal walking, transition to FOG, and transition to volun-
tary stopping.

Subject No. No. of Normal
Walking Epochs

No. of Transition to
FOG Epochs

No. of Transition
Voluntary Stopping

Epochs

1 11 8 3
2 12 8 4
3 1 1 0
4 33 33 0
5 5 2 3
6 8 5 3
7 7 1 6
8 15 11 4
9 8 8 0
10 23 23 0
11 5 0 5
12 30 24 6
13 3 0 3
14 15 15 0
15 33 26 7
16 7 1 6
17 17 12 5

2.3. Equipment

The EEG data were collected from the participants using a 32-channel BioSemi Active-
Two system (Biosemi Systems, Amsterdam, The Netherlands). The placement of the
electrodes was per the International 10–20 system. The patient’s skin was prepared by
washing with 70% isopropyl alcohol, and data were recorded at a 500 Hz sampling rate.
The clinical researchers used ELAN tagging software [22] to tag the precise time of each
freezing episode, and the events’ information was later imported to EEG manually.
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2.4. EEG Processing

The EEGLAB toolbox [23] was used for processing EEG data, as shown in Figure 2.
The raw EEG was band-pass filtered between 1 and 30-Hz to eliminate low- and high-
frequency noises. The line noise was removed with the pop_cleanline function in EEGLAB.
Further, channels with at least three seconds of flatlines were corrected with clean_flatlines
functions, and all channels were cleaned with clean_channels. There were 3 ± 0.5 channels
removed on average, and these channels were interpolated. Afterwards, normal walking,
transition to FOG, and transition to voluntary stopping trials were extracted to provide
input to the deep learning models.

Figure 2. EEG preprocessing and feature extraction for DL models.

In this study, a total of 178 trials of transition to FOG episodes, 55 transitions to
voluntary stopping, and 233 trials of normal walking were extracted from the continuous
EEG data of 17 subjects. These transitions to FOG were extracted from both standard TUG
and TUG tasks for voluntary stopping based on the occurrence of FOG episodes, and each
trial was 2 seconds in length. These data were reformatted to a matrix with the shape
number of trials × time points × number of channels format (466 × 1000 × 30) before
providing it to the DL models.

We also performed two-class classifications with the transitions to FOG and the tran-
sition to voluntary stopping. This matrix was with the shape number of trials × time
points × number of channels format (233 × 1000 × 30) before providing to the DL models.

We performed a grid search to select the optimal hyperparameters for the three CNN
models: EEGNet, Shallow ConvNet, and Deep ConvNet. The data were shuffled and
randomly divided into three separate sets, the training (60%), validation (20%), and testing
sets (20%). The performances of these models were obtained by 5-fold cross-validation.
We also performed leave-one-subject-out cross-validation to evaluate the performance of
these models.

3. Results and Discussion
Classification Performance

For two-class classification, all models achieved acceptable performances with high
sensitivity and specificity, as shown in Table 2. Leave-one-subject-out (LOSO) classification
results for the transition to FOG vs. transition to voluntary stopping are shown in Table 3.
The undesirable coh-kappa values might be due to the unbalanced classes. Further, all
models achieve acceptable performance for three-class classification with high sensitivity
and specificity, as shown in Table 4. LOSO classification results for the three-class problem
are shown in Table 5.

Our models were trained with a relatively small dataset with an unbalanced number
of trials in the three classes, which might have adversely affected the performance of these
data-hungry models. Deep ConvNet performed better than EEGNet or Shallow ConvNet
because of its greater depth, while EEGNet and Shallow ConvNet might have been more
susceptible to noise from the raw EEG data, as they are compact and shallower, degrading
the features and resulting in poorer performance.

In earlier works, the period of four seconds prior to freezing was considered as the
transition to freezing [15]; however, we considered a shorter window for the transition to
freezing [17]. This shorter transition period might have more clinical practicality as brain
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dynamics dynamically change within a short period. Therefore, by employing a sliding
window of two seconds, our results demonstrate that we might be able to identify the
transition to freezing from normal walking or the transition to voluntary or intentional
stopping. Further, we considered the raw EEG data with minimal data processing to
allow for real-time prediction of the onset of FOG. However, employing sophisticated
advancements in EEG analysis methods might further improve classification accuracies.

We employed CNN models to detect the transition to FOG or the onset of FOG from the
potential confounding intention to stop and normal walking conditions. The distinct brain
dynamics during the transitions to FOG and voluntary stopping episodes were exploited
in a system design. These classification models are valuable in developing compensatory
systems that preserve and advance alternate neural pathways to assist gait in PD patients.
Therefore, with an accurate and reliable prediction of freezing, cueing strategies to redirect
attention or prompt movement can help alleviate gait impairment in PD patients [24].

Further, the advances in wearable technology have made it possible to deliver a com-
fortable cueing system for PD patients [25,26]. However, despite the development of
several FOG prediction models [14–16], accurately and reliably detecting the onset of freez-
ing remains an open challenge. It is also crucial to avoid the confounding transitions to
voluntarily stopping or normal walking to ensure a robust prediction of freezing onset.

Our findings demonstrated the potential of EEG data in distinguishing FOG onset
from normal gait or initiation of voluntary stopping. Our results will pave the way toward
therapeutic prediction and mitigation of freezing in PD patients. Further, these results aid
and promote investigations of intentional stopping during gait, as a reliable prediction of
intention could be valuable for motor rehabilitation.

Table 2. Five-fold classification performance for transition to FOG vs. transition to voluntary stopping.

Model Accuracy F1-Score Coh-Kappa Sensitivity Specificity

EEGNet 88.09 ± 4.25% 80.09 ± 4.62% 68.30 ± 2.50% 94.42 ± 4.65% 96.21 ± 3.52%
Shallow

ConvNet 89.9 ± 2.31% 89.21 ± 3.94% 70.11 ± 3.91% 96.49 ± 2.97% 94.36 ± 3.60%

Deep
ConvNet 92.28 ± 2.70% 93.02 ± 2.03% 72.94 ± 2.27% 96.89 ± 2.04% 96.91 ± 2.09%

Table 3. LOSO classification performance for transition to FOG vs. transition to voluntary stopping.

Model Accuracy F1-Score Coh-Kappa Sensitivity Specificity

EEGNet 87.28 ± 5.89% 87.61 ± 5.53% 69.19 ± 4.37% 84.89 ± 5.72% 84.16 ± 4.71%
Shallow

ConvNet 87.92 ± 4.3% 82.16 ± 3.02% 71.14 ± 4.84% 86.23 ± 3.71% 85.55 ± 4.62%

Deep
ConvNet 87.83 ± 5.35% 84.81 ± 5.86% 70.6 ± 5% 86.37 ± 3.31% 84.72 ± 2.49%

Table 4. Five-fold classification performance for transition to FOG vs. transition to voluntary stopping
vs. normal walking.

Model Accuracy F1-Score Coh-Kappa Sensitivity Specificity

EEGNet 71.92 ± 5.64% 69.49 ± 5.38% 52.57 ± 4.63% 87.8 ± 5.90% 84.02 ± 4.06%
Shallow

ConvNet 73.68 ± 3.87% 73.53 ± 3.76% 57.14 ± 4.53% 89.28 ± 4.59% 86.2 ± 3.37%

Deep
ConvNet 75.43 ± 1.48% 72.52 ± 1.44% 58.11 ± 1.64% 92.85 ± 1.70% 75.86 ± 1.75%
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Table 5. LOSO Classification performance for transition to FOG vs. transition to voluntary stopping
vs. normal walking.

Model Accuracy F1-Score Coh-Kappa Sensitivity Specificity

EEGNet 70.85 ± 3.25% 70.79 ± 3.86% 52.54 ± 5.89% 83.83 ± 5.65% 82.80 ± 4.13%
Shallow

ConvNet 73.45 ± 3.69% 72.84 ± 3.61% 54.43 ± 4.92% 88.91 ± 5.08% 86.34 ± 5.62%

Deep
ConvNet 74.65 ± 4.19% 71.54 ± 4.7% 57.52 ± 3.42% 91.18 ± 5.04% 74.46 ± 4.79%

4. Conclusions

In this study, we investigated the application of CNN to an end-to-end classification
of transitions to FOG, voluntary stopping, and normal walking. The model automatically
learns the discriminative features for classifying normal walking, transitions to FOG, and
voluntary stop. Furthermore, the convolutional neural network approach removed the need
for feature extraction and selection. This research is the first of its kind, and the reported
classification model could pave the way to detecting the onset of FOG precisely and
effectively. As the transitions to FOG can be accurately distinguished from the transition
to voluntary stopping with just a two-second window, this could enable appropriate
interventions (e.g., cueing) to help the patient avoid freezing. Further, a larger dataset
can improve the performance of the models, and future studies should investigate the
real-time FOG detection performance. This work will expedite the development of future
therapeutic interventions that can reliably predict freezing episodes in PD patients. Future
interventions for FOG must diligently eliminate all false positives from the confounding
voluntary stopping.
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