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Abstract: Flooding in coastal areas is a major global hazard, made worse during compound flood
events, which occur when multiple flood-drivers, such as tide, sea surge, and fluvial and pluvial flood-
ing, coincide. We use 12 sea-level, 2065 rainfall, and 81 river-flow records to assess the dependence of
(1) extreme skew-surge and extreme rainfall (pluvial/surface runoff) and (2) extreme skew-surge and
extreme river-flow (fluvial discharge) in New Zealand. We found that (1) skew-surge and rainfall
and (2) skew-surge and river-flow are significantly, but not strongly, correlated in NZ. When spatially
averaged to within 30 km of sea-level gauge location, the correlation was generally significant and
positive, but weak with Kendall’s rank correlation coefficient τ < 0.3. We identify the weather types
driving regional patterns of dependence. Trough weather types were the dominant driver of individ-
ual and coincident extreme events. Blocking weather types were associated with the highest extreme
skew-surge and rainfall events along the northeast coast of the North Island and, consequently, were
associated with a high proportion of coincident skew-surge/rainfall and skew-surge/river-flow
events there. These findings have important implications for flood management, emergency response,
and the insurance sector because impacts and losses may be correlated in space. Our findings add to
a growing understanding of compound flooding worldwide for different geographical and meteoro-
logical settings. The positive dependence observed suggests that more attention to compound event
probabilities is warranted when undertaking localized coastal-flood modelling.

Keywords: coastal flooding; compound flooding; sea level; storm surge

1. Introduction

Flooding in coastal areas is a major global hazard with historical events killing 100,000s
of people and causing billions of dollars of damages, e.g., [1–3]. Millions of people are
exposed to a 1 in 100-year flood from the sea, e.g., [4–7]. In New Zealand, this includes
1.5% of the population [8] and billions of dollars of critical infrastructure [8].

Flooding in coastal areas can result from combinations of high coastal water levels
(combinations of tides, surge, and waves) and freshwater runoff (high rainfall or river-flow).
Events where both coastal and freshwater processes combine are known as compound
flooding events and can result in greater flood impact than either coastal or freshwater
flooding alone [9–13]. There is increasing recognition of the importance to better understand
compound events that lead to extreme impacts, e.g., [14–16].

Research has quantified the dependence between coastal and freshwater flood-hazard
drivers at national [11,17–21] and international [22] scales. Most studies quantifying de-
pendence have focused on two (bivariate) variables: (1) sea surge and (2) either (a) rain-
fall [18–20] or (b) freshwater runoff [9,11,21,22]. Nasr et al. [17] quantified the dependence
between several pairs of hazard drivers: storm surge, waves, fluvial (excessive river dis-
charge), and pluvial (surface runoff). Place-based studies have been used to quantify
impacts [9–13,21]—these studies show that there is typically a seaward zone of mainly
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coastal influence, an inland zone of freshwater-only influence, and a complex intermediary
zone of compound influence which depends on the geographical setting and the nature of
the compound event (e.g., relative size of coastal and freshwater drivers). Some studies
have related the compound events to meteorological conditions [18,19].

Here, we investigate the dependence of meteorologically-driven coastal-hazard drivers
as a first step toward understanding compound coastal flooding events in New Zealand.
We use available sea-level, rainfall, and river-flow measurements to assess the dependence
of (1) extreme skew-surge and extreme rainfall (pluvial/surface runoff) and (2) extreme
skew-surge and extreme river-flow (fluvial discharge) in New Zealand. We identify the
weather types driving regional patterns of dependence. This is the first comprehensive
analysis of dependence between oceanographic, fluvial, and pluvial flooding drivers in New
Zealand and contributes to a growing understanding of compound flooding worldwide
for different geographical and meteorological settings. During this process, we identify
regional patterns in dependence which could lead to compound flood events, and the
weather types that cause them, which could inform early-warning tools via meteorological
forecasts. Knowledge of regional patterns of flood-hazard dependence can show where
more detailed compound flood impact modelling should be undertaken.

2. Methods
2.1. Dependence Measure

Following Wahl et al. [18], we used Kendall’s rank correlation coefficient τ [23] to
reliably measure dependence between the two variables. Whereas Pearson’s correlation
coefficient captures linear, normally-distributed relationships between variables, Kendall’s
τ measures the monotonic relationship, is non-parametric, and is a statistic of dependence
between two variables. Kendall’s τ is based on counting the number of (i,j) pairs, for
i < j, that are concordant—that is, for which xi−xj have the same sign (Equation (1)).
Let (x1, y1), . . . , (xn, yn) be a set of observations of the joint random variables X and Y,
such that all the values of xi and y1 are unique. Any pair of observations (xi, yi) and (xj, yj),
where i < j are said to be concordant if the sort order of (xi, xj) and (yi, yj) agrees: that is, if
either both xi > xj and yi > yj holds or both xi < xj and yi < yj; otherwise they are said to be
discordant. The statistical significance of the correlation was determined using a p-value
of ≤0.05.

Equation (1). Kendall’s rank correlation coefficient: where x and y represent the two
variables whose correlation is being compared and n = the number of observations:

τ =
2

n(n − 1) ∑
i<j

sign
(
xi − xj

)
sign

(
yi − yj

)
2.2. Data selection and Processing

Kendall’s τ was calculated using overlapping timeseries of daily maximum skew-
surge, daily cumulative rainfall, and daily maximum river flow.

To obtain skew-surge, we analyzed a subset of the same 30 hourly sea-level records
analyzed by Stephens, et al. [24]. Skew-surge was calculated as the absolute difference
between the maximum recorded sea level and the predicted maximum astronomical tidal
level for each ~12.5-h tidal cycle [25,26]—every high tide has an associated skew-surge.
Skew-surge is a relevant metric of surge in tidally dominant locations such as NZ, e.g., [27],
because the extreme sea level and resulting flooding exposure usually occurs for a few
hours around the high tide [24,27]. The daily maximum skew-surge was extracted from the
skew-surge records.

Tsunamis affect sea-levels, but are not meteorologically derived. Coincident events
were removed from the records on the following days because of tsunami: 28 February
2010 and 29 September 2009. Tsunami events were observed in the sea-level records on
other dates, but did not coincide with extreme rainfall or river flow.
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Sufficient overlap in surge/rainfall or surge/river-flow records is needed to deter-
mine statistically significant correlations. Only record pairs that satisfied skew-surge and
rainfall/river-flow ≥ 20-years overlap at ≥75% annual completion were included in the
analysis. The sole exception was the inclusion of the Jackson Bay sea-level record (Site 18,
Figure 1), where 15-years overlap was accepted because it filled a geographical gap on
the South Island west coast. This resulted in 12 sea-level, 2065 rainfall, and 81 river-flow
records being used (Figure 1).
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Figure 1. Location of rainfall (blue), river flow (green), and sea level (red) records used. Sea level
recorder locations 1–12 are labelled.

Kendall’s τ and p-value were calculated for four cases of dependence, as described in
Table 1; for example, skew-surge and rainfall with rainfall conditional on extreme skew-
surge (SS/R|SS)—meaning that extreme skew-surge events are identified and for each
extreme skew-surge a search is conducted to find extreme rainfall events within a time
window of the skew-surge event.

This requires a definition of “extreme” skew-surge, rainfall, and river-flow in order
to select the significantly large events for analysis. One option is to apply a block maxima
approach such as using the annual maximum, but because this only uses the single highest
value in a year, this eliminates genuinely large events when more than one per year oc-
curs [28]. Therefore, we applied a more inclusive peaks-over-threshold (POT) approach [28].
A generalized Pareto distribution (GPD) is a statistically robust method for modelling the
frequency and magnitude of extreme values using POT data [28]. An appropriate threshold
to fit the GPD is the lowest threshold where the shape and scale parameters of the GPD are
approximately constant within 95% confidence intervals of the GPD fit. We determined
these thresholds for each skew-surge, rainfall, and river-flow record. Values above these
thresholds were used in the analysis, with the over-threshold maxima being separated by a
minimum of 3 days, since separate meteorological systems generally pass over NZ within
4–7 days of each other.
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For the analysis of dependence, paired timeseries were created as follows (e.g., Figure 2):

• For each skew-surge, rainfall, and river-flow record, identify all daily maxima ≥thresholds.
• Then, using each (skew-surge, rainfall, and river-flow) variable in turn as the con-

ditional variable, we extract time-series of the other variable using time-lags from
−5 to +5 days, and also (maximum within) ±1-day. For example, for SS/R|SS, we
identify POT values of skew-surge, and then select corresponding rainfall with time
lags of −5, −4, −3, −2, −1, 0, +1, +2, +3, +4, +5, and (maximum within) ±1 days.

• For each lagged timeseries, we then calculate and record τ and p-value.
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lated for the SS/R|SS case (τ = 0.19 and p-value < 0.05). This example shows maximum daily-
Figure 2. Example of a single timeseries of skew-surge and rainfall for which Kendall’s τ was
calculated for the SS/R|SS case (τ = 0.19 and p-value < 0.05). This example shows maximum daily-
accumulated rainfall within ±1-day (lag). (A) Location of sea-level record (site 5, Auckland, Figure 1),
plotted in the red triangle, and rainfall record, plotted in the blue circle. (B) Timeseries of skew-surge
peaks-over-threshold (red triangles) and matching maximum daily-accumulated rainfall within
±1-day (blue circles). The rainfall record does not span the full duration of the sea-level record.
(C) Scatter plot of the matched skew-surge and rainfall (for the period of overlap). (D) Scatter plot of
the matched skew-surge and rainfall using log-log axes.

Regional patterns of dependence were assessed using spatial averages of Kendall’s
rank correlation coefficient within 30 km of sea-level gauge for SS/R and SS/F using a
± 1-day window. We trialed larger averaging radii of up to 100 km (not shown) and
found that the dependence reduced as the sampling radius increased. A 100 km radius
was used at Jackson Bay due to the low rainfall and river-flow sampling density near the
Jackson Bay sea-level recorder. The spatial averaging was performed by averaging the τ
already calculated between individual gauge timeseries pairs—not by combining rainfall
or river-flow records before calculating τ. Only τ significant at p-value ≤ 0.05 were used
for the spatial averages.

We used the Kidson [29] weather regimes (Figure 3) to investigate the weather regimes
driving spatial patterns of dependence between skew-surge, rainfall, and river-flow. Kid-
son [29] identified 12 “typical” daily weather pattern types for the New Zealand region.
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Each of these patterns looks realistic, in the sense that they might be recognized in daily
weather maps. Cluster analysis of the monthly frequencies of these patterns led to the
definition of three weather “regimes”, characterized by: (i) frequent low-pressure troughs
crossing the country, (ii) high-pressure systems to the north with strong zonal flow to the
south of the NZ, and (iii) blocking patterns with high-pressure systems more prominent in
the south (Figure 3). The Kidson [29] types and weather regimes are widely cited, having
been shown to influence spatial patterns of atmospheric vapor transport [30], precipitation
and temperature anomalies [31], atmospheric circulation patterns during large snowfall
events [32], extreme rainfall [33], and extreme skew-surge [24], for example.

The dependence analysis was performed for the four cases described in Table 1,
which provides a useful way to rank the dependence using Kendall’s rank correlation
coefficient. However, ranking the variables like this (e.g., choosing extreme events for
one variable and then taking the matching daily value for the other variable) does not
ensure that both variables are extreme at the same time. Therefore, for the Kidson-type
analysis, we identified composite events where both skew-surge and rainfall were both
above their respective 95% thresholds. We used a 90% threshold for the skew-surge and
river-flow analysis to capture more events, due to the lower spatial density of river-flow
records relative to rainfall records. We obtained a database of daily Kidson types from
Dr. James Renwick [34]. We matched each composite weather event with its Kidson type
and weather regime.
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Figure 3. The twelve Kidson weather types, shown as average patterns of 1000 hPa geopotential
height (analogous to mean sea-level pressure). Contours mark 1000 hPa geopotential height anomaly
in hPa. Names for the types are indicated in the top right of each panel. Source: Ackerley, et al. [35]
distributed under the Creative Commons Attribution 3.0 License. The three regimes are indicated at
the left: the top row is the trough regime, the first three in the second row are the zonal regime, and
the rest form the blocking regime. See Kidson [29] for further details.
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Table 1. Description of the four dependence cases analyzed.

Symbol Description

SS/R|SS Skew-surge and rainfall, with rainfall conditional on extreme skew-surge.

SS/R|R Skew-surge and rainfall, with skew-surge conditional on extreme rainfall.

SS/F|SS Skew-surge and river-flow, with river-flow conditional on extreme skew-surge.

SS/F|F Skew-surge and river-flow, with skew-surge conditional on extreme river-flow.

3. Results
3.1. Spatial Patterns of Dependence

We found that (1) skew-surge and rainfall and (2) skew-surge and river-flow are
significantly, but not strongly, correlated in NZ. The spatial average of τ within 30 km
of the sea-level gauge location showed that correlations were sometimes significant (at
p-value < 0.05) and were generally weakly positive (|τ| < 0.3) (Figure 4). Correlations
between skew-surge and river-flow were significant at fewer sea-level record sites than
for skew-surge and rainfall (Figure 4). Other than the SS/R|R case, spatially-averaged
correlations appear to be insignificant in the center of New Zealand (lower North and
upper South Islands) (Figure 4).
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Spatial patterns in dependence were noticeable. Here, we focus on paired observa-
tions within ±1-day of an extreme event for the four longest sea-level records: Auckland
(Figure 5), Wellington (Figure 6), Lyttelton (Figure 7), and Dunedin (Figure 8)—these four
sites also span a large north-south range for New Zealand. It can be seen that spatial
patterns of dependence are generally similar between (1) skew-surge and rainfall and
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(2) skew-surge and river-flow, e.g., if rainfall is positively correlated with surge near a
sea-level recorder site, then river-flow also tends to be positively correlated with surge.
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with rainfall conditional on extreme skew-surge; (B) τ for skew-surge and rainfall, with skew-surge
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Skew-surge measured along the northeast coast of the North Island tended to be
positively correlated with rainfall and river-flow in north and east of the North Island and
the east and especially the northeast coast of the South Island, but tended to be negatively
or uncorrelated with rainfall or river-flow in the south and west of the South Island and
the southwest of the North Island (Figure 5). These patterns were reflected in both the
skew-surge rainfall/river-flow pairs and for both conditional cases (rainfall/river-flow
conditional on a skew-surge event and vice versa). Figure 5 illustrates these patterns using
the Auckland sea-level gauge as an example.

Rainfall and river-flow tended to be negatively correlated with skew-surge at Welling-
ton when rainfall or river-flow were conditional on extreme skew-surge (SS/R|SS and
SS/F|SS), but were positively correlated when skew-surge was conditional on either rainfall
or river-flow (SS/R|R and SS/F|F) (Figure 6).

Skew-surge at Lyttelton was positively correlated with local rainfall and also with
rainfall in the lower North and upper South Islands (conditional on either skew-surge or
rainfall). This pattern is not noticeable in the river-flow data because the correlations were
insignificant at p-value < 0.05 (Figure 7), although if significance is ignored, the underlying
correlations have a generally similar pattern (not shown).
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Figure 6. Kendall’s rank correlation coefficient τ (color scale) calculated between skew-surge mea-
sured at Wellington and individual rainfall and river-flow records. (A) τ for skew-surge and rainfall,
with rainfall conditional on extreme skew-surge; (B) τ for skew-surge and rainfall, with skew-surge
conditional on extreme rainfall, (C) τ for skew-surge and river-flow, with river-flow conditional
on extreme skew-surge, (D) τ for skew-surge and river-flow, with skew-surge conditional on ex-
treme river-flow.

Despite the long duration of the Dunedin sea-level record, there were relatively few
significantly (at p-value < 0.05) correlated rainfall and river-flow records near to the sea-level
recorder site (Figure 8). This makes it hard to generalize. Nevertheless, the rainfall/river-
flow conditional on an extreme skew-surge tended to show few positive correlations, but
the skew-surge conditional on an extreme rainfall or river-flow event tended to show more
positive correlations, albeit with some variability.

Our analysis focuses mainly on paired observations within ± 1-day of an extreme
event, based on the assumption that correlations are likely to be strongest within a relatively
short time window of an extreme event. This is generally true for skew-surge and rainfall
(SS/R). It is also generally true for skew-surge and river-flow (SS/F), but analyses of variables
lagged by ±5 days indicated that dependence measures were often higher when peak river-
flow lagged peak skew-surge by about 2 days for the SS/F|SS case, or higher when peak
skew-surge preceded peak river-flow by about 2 days for the SS/F|F case. This is obvious
in the example shown in Figure 9 for Auckland, although the dependence within the
±1-day analysis is similarly strong to the 2-day analysis, but the −2-day analysis is much
weaker (SS/F|SS case). This is intuitive because meteorological events may cause coincident
skew-surge and rainfall, but rainfall will take time to find its way into the rivers, and so
river-flow peaks may be delayed compared to the skew-surge. Dependence measures for
daily lags from −5: +5 days are presented in the Supplementary Figures.
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Figure 7. Kendall’s rank correlation coefficient τ (color scale) calculated between skew-surge mea-
sured at Lyttelton and individual rainfall and river-flow records. (A) τ for skew-surge and rainfall,
with rainfall conditional on extreme skew-surge; (B) τ for skew-surge and rainfall, with skew-surge
conditional on extreme rainfall, (C) τ for skew-surge and river-flow, with river-flow conditional
on extreme skew-surge, (D) τ for skew-surge and river-flow, with skew-surge conditional on ex-
treme river-flow.

3.2. Weather Types Driving Patterns of Dependence

Figure 10 shows the distribution of Kidson (2000) weather types (Figure 3) associated
with coincident skew-surge and rainfall, and skew-surge and river-flow events. Over much
of New Zealand, trough weather regimes are the most common extreme event drivers
(Figure 10). Troughs that cause extreme skew-surge events are associated with storm
centers that tracked eastwards across NZ, usually across or south of the South Island and
always south of the northernmost tip of NZ [24].

Coincident events located on the northeast coast of the North Island were associated
with a higher proportion of blocking weather types (Figure 3). Blocking weather types
are low-pressure systems that track from north of NZ and intensify next to a blocking
high-pressure system lying east of NZ [29].

Table 2 provides information on site location, Kendall’s τ for the four dependence
cases analyzed (Figure 4), and dominant weather types (Figure 10) at each sea-level recorder
location. Although we have only plotted significant correlations (p-value ≤ 0.05) in the
figures of the paper, for completeness, we have included τ in Table 2 even where the
significance of the Kendall’s rank correlations did not meet the significance criterion. In
this way, we can determine a more complete spatial relationship between τ and weather
type. Significant correlations are given in underlined font and vice versa. Furthermore, for
SS/F cases where no correlations could be identified within 30 km of the sea-level gauge
location (no close river-flow records), we also extended the sampling radius to 100 km to
complete the table (shown in italics font).
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Figure 8. Kendall’s rank correlation coefficient τ (color scale) calculated between skew-surge mea-
sured at Dunedin and individual rainfall and river-flow records. (A) τ for skew-surge and rainfall,
with rainfall conditional on extreme skew-surge; (B) τ for skew-surge and rainfall, with skew-surge
conditional on extreme rainfall, (C) τ for skew-surge and river-flow, with river-flow conditional
on extreme skew-surge, (D) τ for skew-surge and river-flow, with skew-surge conditional on ex-
treme river-flow.

Coincident skew-surge and rainfall events were dominantly associated with blocking
weather types on the northeast coast of the North Island and with trough weather types
elsewhere. Nelson is also quite strongly influenced by blocking weather patterns, with
47% dominance (not shown). Coincident skew-surge and river-flow events showed a
similar pattern, although trough weather types were also dominant in three of five locations
on the northeast coast of the North Island, but only weakly so (<60%), and so were nearly
equally matched by the occurrence of blocking weather types (not shown).

The median τ (all locations) was greater for coincident skew-surge and rainfall than
coincident skew-surge and river-flow cases. The results in Table 2 are based on ± 1-day
lag—it makes intuitive sense that correlations between skew-surge and rainfall would be
higher than those between skew-surge and river-flow within a ± 1-day lag, since both
skew-surge and rainfall may be driven by coincident weather systems, and river-flow can
be expected to peak with some lag after a rainfall event.

The median τ correlation strength was higher during blocking weather types for
rainfall and river-flow conditional on pre-existing extreme skew-surge cases (SS/R|SS,
SS/F|SS), but was higher during trough weather types when skew-surge was conditional
on pre-existing extreme rainfall or river-flow cases (SS/R|R, SS/F|F) (Table 2).

These patterns are consistent with our expectations of the synoptic types included in
each regime. The trough group includes patterns which would bring wet, cool, and cloudy
conditions to much of the country. The blocking group has anomalous northerly flow over
much of the country, leading to milder conditions, whereas the NE and R classes (Figure 3)
would bring strong winds and precipitation to the north and east of the North Island [29].
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Figure 9. Lagged analysis Kendall’s rank correlation coefficient τ (color scale) calculated be-
tween skew-surge measured at Auckland and individual river-flow records. (A) SS/F|SS river-flow
within ± 1-days of extreme skew-surge event; (B) SS/F|SS river-flow 2-days before extreme skew-
surge event; (C) SS/F|SS river-flow 2-days after extreme skew-surge event; (D) SS/F|F skew-surge
within ± 1-days of extreme river-flow event;€) SS/F|F skew-surge 2-days before extreme river-flow
event; (F) SS/F|F skew-surge 2-days after extreme river-flow event.
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Figure 10. Pie charts showing weather type causing composite skew-surge, rainfall, and river-
flow events. Skew-surge and rainfall events, >95th percentile. Skew-surge and river-flow events,
>90th percentile. Colors refer to Kidson type: red = trough, green = zonal, and blue = blocking.
Rainfall and coincident events chosen within 30 km of one another. (A) Coincident skew-surge and
rainfall, (B) Coincident skew-surge and river-flow.
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Table 2. Spatially-averaged Kendall’s τ for the four dependence cases analyzed using ± 1-day lag
(Table 1, Figure 4) at each sea-level recorder location, and dominant weather types. Kendall’s τ: bold
underlined = significant at p-value ≤ 0.05 using rainfall or river-flow records within 30 km radius of
sea-level gauge; underlined not bold = significant at p-value ≤ 0.05 using river-flow records within
100 km radius; normal font = insignificant (p-value > 0.05); italics = insignificant (p-value > 0.05)
and using river-flow records within 100 km. B = dominance of blocking weather type (including
percentage of coincident events during blocking weather types), and T = dominance of trough
weather type (including percentage of coincident events during trough weather types).

Site Location τ
SS/R|SS

τ
SS/F|SS

τ
SS/R|R

τ
SS/F|F

Coincident
Skew-Surge
and Rainfall

Coincident
Skew-Surge and

River-Flow

1. Opua North Is northeast coast 0.22 0.23 0.20 0.03 B (77%) B (57%)
2. Marsden Point North Is northeast coast 0.25 0.19 0.23 0.08 B (77%) B (63%)

3. Auckland North Is northeast coast 0.18 0.22 0.10 0.19 B (62%) T (53%)
4. Tararu North Is northeast coast 0.17 0.21 0.11 0.17 B (50%) T (54%)

5. Moturiki North Is northeast coast 0.40 0.08 0.13 0.17 B (59%) T (57%)

6. Taranaki North Is west coast 0.01 −0.03 0.26 0.07 T (65%) T (86%)
7. Nelson South Is north coast 0.19 0.17 0.17 0.11 T (51%) T (72%)

8. Wellington North Is south coast −0.07 0.02 0.16 0.05 T (77%) T (92%)
9. Lyttelton South Is east coast 0.25 −0.03 0.18 0.22 T (89%) T (90%)

10. Jackson Bay South Is west coast 0.14 0.16 0.16 0.18 T (51%) T (61%)
11. Dunedin South Is east coast 0.04 0.00 −0.05 0.14 T (64%) T (74%)

12. Dog Island South Is south coast 0.06 0.04 0.08 0.09 T (68%) T (62%)

Median τ, all weather types 0.17 0.12 0.16 0.12
Median τ, blocking weather type dominance 0.22 0.21 0.13 0.06
Median τ, trough weather type dominance 0.06 0.06 0.16 0.15

4. Discussion

The trough, zonal, and blocking groups account for 38%, 25%, and 37% of synoptic
situations, respectively [29], but we found most coincident extreme events to be dominated
by trough and blocking patterns. These observations are consistent with other studies.
Griffiths [33] found that blocking weather types dominated extreme rainfall on the north
and east coasts of New Zealand, and trough weather systems elsewhere (Figure 3) [33].
These findings are like those of Stephens et al. [24] for skew-surge. Given these observations
for the individual drivers, it makes sense that blocking weather types were over-represented
in coincident events on the northeast coast of New Zealand, and trough weather types
elsewhere (Figure 10).

A synoptic climatological approach used to be largely of qualitative value, in that it
helps the interpretation of why particularly climatic anomalies have been observed over the
course of a month or season [29]. However, the statistical characterization of weather-types
has more recently been used to create hindcasts of wave [36] and storm surge [37] conditions,
and to simulate climate change projections of extreme storm surge [37]. Furthermore,
knowledge of the spatial clustering of extreme skew-surge and rainfall or river-flow events
is useful [24]—to understand and manage their risk exposure, central government agencies,
environmental and emergency managers, and the insurance and financial sectors all require
knowledge of the likely frequency and magnitude of extreme weather-related events and
their clustering in time and space [24]. For example, our results show that emergency
managers on the northeast coast of New Zealand or near Nelson should pay particular
attention to forecasts of blocking weather types, knowing that these weather types drive
coincident extreme skew-surge and rainfall/river-flow events.

We considered the dependence of meteorologically-driven coastal-hazard drivers as
a first step toward understanding compound coastal flooding events. Our results show
that the dependence between extreme skew-surge and river-flow is relatively weak in New
Zealand compared to some locations internationally. For example, [22] identified several



J. Mar. Sci. Eng. 2022, 10, 1818 13 of 16

locations where the dependence between annual maxima of discharge and skew-surge
had τ > 0.4, although many locations had no significant dependence. For New Zealand,
we found very few locations with τ > 0.3 (e.g., Figures 4 and 5) for any of the four cases
analyzed (Table 1).

Ward et al. [22] found that the highest dependence (τ) over all time-lags (from −5 to
+5 days) was higher than for the 0-day time-lag. Our dependence analysis has focused
mainly on paired observations within ± 1-day of an extreme event, based on the assumption
that the driver peaks will be closely spaced in time. This was generally found to be true,
particularly for the skew-surge/rainfall (SS/R) situation. However, in the skew-surge/river-
flow (SS/F) case, the dependence was often stronger when river-flow peak lagged skew-
surge peak by about 2 days (Figure 9 and Supplementary Figures). Storm surge events are
relatively short-lived (≤24 h) in New Zealand [24], so a lag of >1 day could substantially
reduce compound flooding from coastal and fluvial events. This study has focused on the
dependence between meteorological drivers, but not the mechanisms of coastal flooding,
for which lags will be important along with local topographic characteristics that control
how skew-surge and river-flow interact.

In addition, the tide is another important driver of coastal flooding. In New Zealand,
the high-tide range is larger than skew-surge height, and the tide plays an important role
in the timing of extreme storm-tide sea levels (storm-tide = tide + surge [24,38]). The tide is
uncorrelated with skew-surge, rainfall, or river-flow, and so dependence measures between
storm-tide sea levels and rainfall or river-flow are likely to be lower than for skew-surge.
Therefore, fluvial flooding coinciding with very high tides—irrespective of surge—may be
a stronger driver of compound flooding events in New Zealand and in other parts of the
world. Nevertheless, we note that there was often significant positive dependence between
SS/F pairs within ±1-day in close proximity to the sea-level gauge (Figures 4–8). This
implies that if a high tide should coincide with a large skew-surge, there is a statistically
significant probability of a large river-flow also (and vice versa), leading to a compound
flooding event. This is a topic for further investigation in NZ and elsewhere.

The positive dependence observed between skew-surge/rainfall and skew-surge/river-
flow indicates that more attention to compound events is warranted when undertaking
coastal-flood modelling in New Zealand. Compound flooding effects are highly locally
dependent on the geometry of the estuary and the timing of the surge with respect to peak
river discharge [12], and the prediction of compound flood impacts generally requires
calibrated hydrodynamic models [9,10,12]. Boundary-condition scenarios to force the mod-
els can be derived from joint-probability models, e.g., [39–41], and meta-models can be
trained to obtain the computational efficiency required to assess impacts from a multitude
of compound event combinations, e.g., [42–44].

5. Conclusions

We used sea-level, rainfall, and river-flow measurements to assess the dependence
of (1) extreme skew-surge and extreme rainfall and (2) extreme skew-surge and extreme
river-flow in New Zealand. We identified the weather types driving regional patterns of
dependence. The dependence was measured using Kendall’s rank correlation coefficient
(τ) and was considered significant for p-value ≤ 0.05.

We found that (1) skew-surge and rainfall and (2) skew-surge and river-flow are
significantly, but not strongly, correlated in NZ. When spatially averaged to within 30 km
of the sea-level gauge (skew-surge) location, the correlation was generally significant and
positive, but weak (τ < 0.3). This implies that compound events do occur in New Zealand,
but with variability in the relative magnitudes of the drivers—very large skew-surges
do not always coincide with very large rainfall or river-flow (and vice versa), but there is
some correlation.

Trough weather types were the dominant driver of individual and coincident extreme
events. Blocking weather types were associated with the highest extreme skew-surge
and rainfall events along the northeast coast of the North Island and, consequently, were
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associated with a high proportion of coincident skew-surge/rainfall and skew-surge/river-
flow events there. These findings have important implications for flood management,
emergency response, and the insurance sector because impacts and losses may be spatially
correlated—damage could be reduced by early preparation in specific locations in response
to forecasts of particular weather types.

We focused on meteorologically-forced coastal-hazard drivers, but flooding impacts
will also depend on the tidal height, which is uncorrelated with skew-surge, rainfall, or
river-flow. The high-tide range is larger than skew-surge height in New Zealand, and
so storm-tide sea levels are likely to have reduced dependence measures with rainfall or
river-flow dependence—this is a topic for future research both in New Zealand and globally.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse10121818/s1, Supplementary Materials: Skew-surge and
rainfall (SS/R).
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