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Notation

General notation

u = (uh)h2H Denotes a row-vector, u, defined by its elements,
uh, indexed by h 2 H, where H is some index set.

u = (uh)h2H A row-vector defined by a collection of row-
vectors uh. The notation um = (uh)h2Hm refers
to the vector containing the subset of elements
corresponding to Hm ✓ H. When the index
set is empty, the resulting vector um is a vec-
tor of dimension 0. In cases when there are
two indices, we order the elements of the vec-
tor according to the first index, then the second;
i.e. u = (uh

g)g2G,h2H = ((uh
g)g2G)h2H. Here we

use the convention that for a vector u = (u)h2H
where the elements u do not depend on the in-
dex h and H is some index set, then we repeat u
h-times; i.e. u = (u)h2H = (u, . . . , u)| {z }

h�times

.

U = [ugh]g2G,h2H (square brackets) Denotes a matrix defined by its elements, or sub-
blocks, ugh.

diag(vn, n 2 N) A matrix with diagonal elements {vn, n 2 N},
and all o↵-diagonal elements are zero.

{·}t2I e.g. ({X(t)}t�) Curly braces denote a sequence and the subscript
denote the index set for the sequence. The sub-
script may be omitted in it is not necessary.

x� The left limit at x.
x+ The right limit at x.
0 The transpose of a vector or matrix (e.g. v0 de-

notes the transpose of v).

vii
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⌦,� The Kronecker product and sum, e.g. A⌦B the
Kronecker product of matrices A and B. See Ap-
pendix A.2.

Glossary of Symbols

1(·) The indicator function (equal to 1 when the ar-
gument is true, otherwise equal to 0)

↵
(p) See entry for {Z(p)}.

�(t) =
R t

0

��r'(z)(X(z))
�� dz The total unregulated amount of fluid that has

flowed into or out of the second bu↵er during
[0, t]. See Section 2.4.2.

�X(t) The in-out fluid level (equal to
R t

0

��c'(z)
�� dz). See

Section 2.3.1.
⌘(w) = inf{t > 0 : �(t) = w} The first time the accumulated in-out amount for

the second fluid hits level w. See Section 2.4.2.
⌘X(y) The first hitting time of the in-out process

{�X(t)} on level y � 0. See Section 2.3.1.
"(p) A “small” error term which we get to choose so

long as it tends to zero as p ! 1. This is set

to Var
�
Z(p)

�1/3
in the convergence arguments. It

arises in the application of Chebyshev’s inequal-
ity.

�m, ⌃m The time of the mth down-up and up-down tran-
sition of the QBD-RAP, respectively. See Sec-
tion 5.1.

b�m, b⌃m The time of the mth down-up and up-down tran-
sition of the fluid queue, respectively. See Sec-
tion 5.2.

µ`0(t)(·, j; x0, i) The joint density/mass function of the fluid queue
restricted to level `0. See Section 5.2.

µ`0(t)(·, j; x0, i) The joint density/mass function of the fluid queue
restricted to level `0 partitioned on the event that
there are m down-up or up-down transitions, and
i 2 Sr, j 2 Ss. See Section 5.2.

bµ`0(�)(·, j; x0, i) The Laplace transform with respect to time of
µ`0(t)(·, j; x0, i).

bµ`0(�)(·, j; x0, i) The Laplace transform with respect to time of
µ`0(t)(·, j; x0, i).
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⇡i(y)(E) The stationary density operator of a fluid-fluid
queue. See Equation (2.20).

{�(t)}t�0 The phase variable of the QBD-RAP approxima-
tion to a fluid queue.

�r
k The rth basis function of the DG approximation

scheme on cell k (i.e. the rth basis function of
Wk). See Section 2.5.

�k A row vector of the basis functions on cell k. See
Section 2.5.

{'(t)}t�0 Phase process of the fluid process.
{'⇤(t)}t�0 Phase process of the augmented state space fluid

process. See Section 4.3
 (s) The first-return operator of the second fluid level

which maps initial distributions of the driving
fluid queue, to the distribution of the fluid queue
at the time that the second fluid level first returns
to its initial level. See Section 2.4.3.

 (·) A test function.
 X(�) = [ X(�)]i2S+,j2S�

The Laplace transform of the first return time to
a fluid queue. See Section 2.3.1.

⌧ (p)1 The first orbit restart epoch of the approximating
QBD-RAP. See Section 5.1.

⌧ (p)n The nth orbit restart epoch of the QBD-RAP. See
Section 6.1.

⌧X1 The minimum of the first time the level variable
of the fluid queue hits the cell edges y0, ..., yK+1,
or the fluid queue leaves the boundary. See Sec-
tion 5.1.

⌧Xn . The nth time the level process of the fluid queue
hits y0, ..., yK+1, or leaves the boundary. See Sec-
tion 6.1.

⇣W (E) = inf{t > 0 : Ẇ (t) 2 E} The stopping time which is the first time that the
second fluid level hits the set E.

⇣X(E)
The random variable which is the first hitting
time of {Ẍ(t)} on a set E. See Section 2.3.1.

A The space of initial vectors a 2 A such that
aeSx

s is a valid probability density function. See
Section 2.6.
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{A(t)}t�0 The orbit process of a QBD-RAP (or RAP). See
Section 2.6.

B The generator of a fluid queue. See Section 2.4.1.
B̈ An approximation to the generator of an un-

bounded fluid queue.
B An approximation to the generator of a bounded

fluid queue.
b(p) A bound defined in Lemma 6.7. The dependence

on p may be omitted.
Cm = diag(|ci|, i 2 Sm), m 2 {+,�, 0} A diagonal matrix of the absolute value of rates

of a fluid queue for a subset of phases.

C =

2

4
C+

C�

C0

3

5 A diagonal matrix of the absolute value of rates
of a fluid queue.

bCm = diag(ci, i 2 Sm), m 2 {+,�, 0} A diagonal matrix of fluid queue rates for a subset
of phases.

bC =

2

64
bC+

bC�

bC0

3

75 A diagonal matrix of fluid queue rates.

ci The rate of change (with respect to time) of the
level variable of a fluid queue when the phase vari-
able is i.

D The jump matrix of the QBD-RAP approxima-
tion. See the end of Section 4.2.3.

D(s) The generator of U(y, s).
D�1 = 0 Convenient notation for the approximation cell at

the lower boundary of a bounded fluid queue.
DK+1 = b Convenient notation for the approximation cell at

the upper boundary of a bounded fluid queue.
Dk,i, i 2 S The “cells” of the approximation schemes. Equal

to [yk, yk+1) for i 2 S+[S0 or (yk, yk+1] for i 2 S�.
Dk The kth cell of the approximation scheme, Dk =

[yk, yk+1].
�k The width of approximation cell k. The subscript

k may be dropped when �k is equal for all cells.
e A vector of all ones.
ei A vector of all zeros except there is a 1 in the ith

position.
E� An exponential random variable with rate � > 0.
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F+
i = u 2 [0, b] : ri(u) > 0 The set of values u 2 [0, b] such that the second

fluid rate for phase i 2 S is positive. See Equation
(2.19).

F�

i = u 2 [0, b] : ri(u) < 0 The set of values u 2 [0, b] such that the second
fluid rate for phase i 2 S is negative. See Equa-
tion (2.19).

F0
i = u 2 [0, b] : ri(u) > 0 The set of values u 2 [0, b] such that the second

fluid rate for phase i 2 S is zero. See Equation
(2.19).

Fk,` The flux matrix for the flow of mass from cell k
to cell l 2 {k� 1, k+1}, for the DG scheme. See
Sections 2.5 and 3.3.

fi(x, t) The density of a fluid queue at time t evaluated
at X(t) = (X(t),'(t)) = (x, i).

f(x, t) = (fi(x, t))i2S A vector of density functions of a fluid queue.
f `0,(p)(t)(x, j; x0, i) The QBD-RAP approximation to the joint den-

sity/mass function of the fluid queue restricted to
level `0. See Section 5.1.

f `0,(p)m,r,s (t)(x, j; x0, i) The QBD-RAP approximation to the joint den-
sity/mass function of the fluid queue restricted
to level `0 partitioned on the event that there are
m down-up or up-down transitions, and i 2 Sr,
j 2 Ss. See Section 5.1.

bf `0,(p)(�)(x, j; x0, i) The Laplace transform with respect to time of
f `0,(p)(t)(x, j; x0, i).

bf `0,(p)m,r,s (�)(x, j; x0, i) The Laplace transform with respect to time of
f `0,(p)m,r,s (t)(x, j; x0, i).

g(x), g1, g2, ... Arbitrary functions satisfying Assumptions 5.1.
G A bound on g, g1, g2, .... < G. See Assump-

tions 5.1.
bG A bound on

R
1

x=0 g(x) dx  bG,
R
1

x=0 gk(x) dx 
bG, k = 1, 2, .... See Assumptions 5.1.

Gv, eGv Bounds on closing operators. See Properties 5.2.
Gk The sti↵ness matrix for cell k of the DG scheme.

See Sections 2.5 and 3.3.
H(�, y) = [hij(�, y)]i,j2S+[S�

The Laplace-Stieltjes transform of the time taken
for y amount of fluid to flow in or out of the fluid
queue and to be in phase j at this time, given
the initial level of the fluid queue was 0 and the
initial phase was i. See Section 2.3.1 and 5.3.
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H
mm(�, y) =

⇥
hmm
ij (�, y)

⇤
i,2Sm,j2Sm

,

m 2 {+,�}
The Laplace transform (with respect to time) of
the time taken for the fluid level to shift by an
amount y whilst remaining in phases in Sm[Sm0,
given the phase was initially i 2 Sm. See Sec-
tion 2.3.1 and 5.3.

H
mn(�, y) =

⇥
hmn
ij (�, y)

⇤
i,2Sm[2Sn

,

m, n 2 {+,�},m 6= n

The Laplace transform (with respect to time)
of the time taken for the fluid level to shift
by an amount y whilst remaining in phases in
Sm [ Sm0, after which time the phase instanta-
neously changes to j 2 Sn, given the phase was
initially i 2 Sm. See Section 2.3.1 and 5.3.

k(t) = ↵eSt/(↵eSt
e) A row-vector valued function related to the orbit

process of the QBD-RAP.
K� = {0, 1, ..., K} The index set for the interior cells/intervals for

the approximation schemes.
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Km

i = {k 2 K | l(Dk,i \ Fm
i ) where l is

Lebesgue measure.
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of Fm

i . Then
S

k2Km
i

Dk,i and Fm
i are equal up to a

set of M0,b-measure 0.
Km =

S
i2S
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tion 2.6.

pi(E) The stationary point-mass operator of a fluid-
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{v(p)}p A sequence of closing operators. See Proper-

ties 5.2.
{Ẇ (t)}t�0 The second fluid level of a fluid-fluid queue which

is bounded below at 0.
{Ẅ (t)}t�0 The second fluid level of a fluid-fluid queue which

is unbounded.
{X(t)}t�0 The fluid level of a fluid queue which is bounded

below at 0 and above at b > 0.
{Ẋ(t)}t�0 The fluid level of a fluid queue which is bounded

below at 0 and unbounded above.
{Ẍ(t)}t�0 The fluid level of a fluid queue which is un-

bounded.
{X(t)}t�0 The fluid process X(t) = (X(t),'(t)).
{Y (t)}t�0 = {(L(t),A(t),�(t))}t�0 The QBD-RAP approximation to a fluid queue.

{Y (p)
↵ (n)}n�0,n2Z The process formed by observing the QBD-RAP

at the orbit restart epochs {Y (p)
↵ (n)}n�0,n2Z =

{(L(p)(⌧ (p)n ),'(⌧ (p)n ))}n�0,n2Z.
Z A ME distributed random variable with parame-

ters (↵,S).
Zi A ME distributed random variable with parame-

ters (↵, |ci|S).
{Z(p)}p A sequence of ME random variables with

Var
�
Z(p)

�
! 0 as p ! 1, where each Z(p) has

parameters ↵(p), S(p), s(p).
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Abstract

A Fluid queue is a piecewise-linear stochastic process where the driving process is a
continuous-time Markov chain. Fluid queues provide a model for a single continuous
performance measure of a system in the presence of a random environment. Fluid queues
have found a wide variety of applications including risk processes, telecommunications,
and environmental modelling, among others. A fluid-fluid queue is a stochastic fluid
queue, where the driving process is a fluid queue itself. Given the success of fluid queues
it is plausible that the extension to fluid-fluid queues, which enable us to track two
continuous performance measures of a system, will also find success. Bean & O’Reilly
(2014) provide an analysis of fluid-fluid queues and derive operator-analytic expressions
for the first-return operator, and stationary distribution of a fluid-fluid queue.

This thesis provides approximations to fluid queues so that we can approximate the
operators in Bean & O’Reilly (2014). It investigates three main approximation schemes;
the DG scheme (Chapter 3) which is a popular finite-element scheme, the uniformisation
scheme of Bean & O’Reilly (2013a) which approximates a fluid queue by a continuous-time
Markov chain (specifically, a quasi-birth-and-death-process (QBD)), and the QBD-RAP
scheme which is a generalisation of a QBD to allow matrix exponential inter-event times.
The QBD-RAP scheme is novel; we describe the construction of the scheme in Chapter 4,
and provide an analysis to show that it is convergent in Chapters 5 and 6. We demonstrate
the e↵ectiveness of the approximation schemes in Chapter 7, focussing on problems with
discontinuous solutions. In general, we find that the DG scheme performs remarkably
well for smooth problems, but can produce oscillations solutions and negative probability
estimates in the presence of discontinuities, the QBD-RAP approximation performs well in
the presence of discontinuities, but does not perform as well as the DG scheme for smooth
problems, the uniformisation scheme produces reliable approximations in the presence of
discontinuities, but its numerical convergence is slowest.
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Chapter 1

Introduction

A fluid queue is a two-dimensional stochastic process {X(t)} = {(X(t),'(t))}t�0. The
phase process, also known as the driving process, {'(t)}t�0, is a continuous-time Markov
chain (CTMC) and determines the rate at which {X(t)} moves. The level process,
{X(t)}t�0, is real-valued, continuous, piecewise linear and deterministic given {'(t)}.

Typically, the phase, '(t), represents the underlying operating state or environment
of a system at time t. The level variable, X(t), describes some continuous variable of the
system. Stochastic fluid queues have found a variety of applications such as telecommu-
nications (see Anick et al. (1982), a canonical application in this area), power systems
(Bean et al. 2010), risk processes (Badescu et al. 2005), environmental modelling (Wurm
2020), dam storage (Loynes 1962), and more. For example, Anick et al. (1982) model
a data handling switch in which there are N information sources which asynchronously
switch from ON to OFF, or OFF to ON. The phase process '(t) models the number of
data sources which are ON at time t, and the rate at which data is received from a single
source when the bu↵er is on is assumed to be 1 (without loss of generality). The switch
stores data in a bu↵er and processes the data at rate c, thus the net rate of change of
the bu↵er at time t, when there are r information sources which are ON, is r � c. The
level process, X(t), models the amount of data in the bu↵er at time t, and the rate at
which X(t) changes when '(t) = r is cr = (r � c) ⇥ 1(X(t) > 0). The model described
above could be used to aid in the analysis and design of the data handling switch, for
example, by determining the minimum processing rate c for which the system is stable in
steady state. In practical terms, the minimum processing rate c determines the minimum
processing power of the switch so that it is su�cient to prevent the amount of data in the
bu↵er growing without bound.

The success of fluid queues largely lies in their mix of flexibility, any (finite) number of
phases can be used, and their parsimony and analytic tractability which enables e↵ective
transient and stationary analysis (such as the analyses Ahn et al. (2005), Ahn & Ra-
maswami (2003, 2004), Bean et al. (2005a,b, 2009a,b), da Silva Soares (2005), Latouche &
Nguyen (2019), Bean et al. (2018)). Fluid queues are relatively well studied. Largely, the
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analysis of fluid queues falls into two categories, matrix-analytic methods e.g. Ahn et al.
(2005), Ahn & Ramaswami (2003, 2004), Bean et al. (2005a,b, 2009a,b), da Silva Soares
(2005), Latouche & Nguyen (2019), and di↵erential equation-based methods Anick et al.
(1982), Karandikar & Kulkarni (1995), Bean, Lewis, Nguyen, O’Reilly & Sunkara (2022).

More recently, Bean & O’Reilly (2014) extend fluid queues to so-called stochastic fluid-
fluid queues. In a fluid-fluid queue there is a second level process, {W (t)}t�0 which is itself
driven by a fluid queue, {(X(t),'(t))}t�0, so (X(t),'(t)) determines the rate at which
{W (t)} moves. The addition of the second level process {W (t)} increases the modelling
potential. For example, Bean et al. (2010) describe a fluid queue model for a hydroelectric
power generator which can be operated ‘on design’ and ‘o↵ design’. When the system
operates ‘o↵ design’ the system is less e�cient and there is more wear, but may be used
to optimise overall system performance. Further, maintenance of the generator takes
place periodically to improve its performance and lifespan. The system can plausibly be
modelled as a fluid queue, {('(t), X(t))}, where the state space of {'(t)} consists of states
representing the systems states ‘start’, ‘stop’, ‘on design’, ‘o↵ design’, ‘maintenance’, and
‘idle’. The level variable {X(t)} take values in [0, 1] and represents the deterioration
level of the system with 0 being perfect working order and 1 meaning the system needs
replacement. The second level process {W (t)} could be used to model the revenue of
the power generator, which, logically, should depend on the state of the system, {'(t)}.
Moreover, the revenue could also depend on the deterioration level {X(t)}, as, for example,
when the system is brand new it may operate more e�ciently, and when it is near broken
it may be less e�cient.

The addition of the second level process {W (t)} increases the modelling potential,
however, it comes at a cost to the simplicity of the analysis of the model. For both
fluid-fluid queues and classical fluid queues, performance measures, such as the stationary
distribution or the Laplace-transforms of hitting times and return times, can be derived
in terms of the infinitesimal generator of the modulating process. For fluid queues the
modulating process is a CTMC and the infinitesimal generator is a matrix. Thus, ex-
pressions for the performance measures of fluid queues are matrix expressions which are
readily computable. For fluid-fluid queues the modulating processes is a fluid queue and
the infinitesimal generator is a matrix of di↵erential operators. Thus, expressions for the
performance measures of fluid-fluid queues are matrices of di↵erential operators which,
in all but the simplest of cases, are not readily computable. This thesis investigates
approximations to these di↵erential operator expressions.

The analysis of fluid-fluid queues in Bean & O’Reilly (2014) is, in principle, sim-
ilar to the matrix-analytic methods of Bean et al. (2005b), and derives results about
the second level process {W (t)}t�0 in terms of the generator of the driving fluid queue,
{(X(t),'(t))}t�0. For practical computation of the results of Bean & O’Reilly (2014),
a discretisation of the infinitesimal generator of the fluid queue can be used. To this
end, two discretisations have been suggested. Taking a di↵erential equations-based ap-
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proach, Bean, Lewis, Nguyen, O’Reilly & Sunkara (2022) use the discontinuous Galerkin
(DG) method to discretise the operator, while Bean & O’Reilly (2013a) take a stochastic
modelling approach to approximate the fluid queue by a quasi-birth-and-death (QBD)
process. The QBD approximation of Bean & O’Reilly (2013a) is derived via a uniformisa-
tion argument, so we refer to it as the uniformisation scheme throughout this thesis. Both
approaches are insightful and o↵er di↵erent tools and perspectives with which to anal-
yse the resulting approximations. It turns out that the uniformisation scheme of Bean &
O’Reilly (2013a) is a subclass of the DG scheme; the uniformisation scheme can be viewed
as the simplest DG scheme where cells all have equal width, the operator is projected onto
a basis of piecewise constant functions, and an upwind flux is used to approximate the
flow of mass between cells. This is also equivalent to a finite-volume scheme.

One drawback of the uniformisation scheme is that convergence can be relatively slow
compared to higher-order DG schemes. However, in the context of approximating fluid
queues, one advantage of the uniformisation scheme is that the uniformisation scheme
guarantees probabilities computed from the approximation are positive (Koltai 2011, Sec-
tion 3.3). One justification for the positivity preserving property of the uniformisation
scheme is from its interpretation as a stochastic process.

For higher order DG schemes there is no such interpretation and positivity is not guar-
anteed (Koltai 2011, Section 3.3). Higher-order DG approximation schemes may produce
negative and oscillatory solutions, particularly when discontinuities or steep gradients are
present. This is problematic for probabilistic problems as we know that probabilities must
be positive. Methods to navigate the problem of negative and oscillatory solutions have
been developed, such as filtering and slope limiting (see Cockburn (1999), or Hesthaven
& Warburton (2007), Section 5.6 and references therein). Slope limiting alters the dis-
cretised operator in regions where oscillations are detected and reduces the order of the
approximation to linear in these regions but ensures the solution will be non-negative.
Filtering is a post-hoc method which looks to recover an accurate solution, given an
oscillatory approximation.

Depending on the context, filtering the approximate solution to remove oscillations
may not necessarily guarantee a strictly non-negative approximation, or may result in se-
vere smearing of the solution at discontinuities or regions with steep gradients (Hesthaven
& Warburton 2007, Section 5.6.1). Moreover, filtering requires us to make a trade-o↵ be-
tween filtering enough of the oscillations away while maintaining su�cient accuracy – a
choice which may not be obvious a priori. Slope limiting does guarantee positivity but
reduces the approximation to linear where oscillations in the approximate solution are
detected (Hesthaven & Warburton 2007, Section 5.6.1). Limiting and filtering do not
distinguish between natural oscillations, which are a fundamental feature of the solution,
and spurious oscillations, which are caused by the approximation scheme, and they may
remove both from the approximation. This can lead to an unnecessary loss of accuracy
in the approximation (see (Hesthaven & Warburton 2007), Example 5.8).
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Further, slope limiting is a non-linear operator which means it cannot be represented
as matrices and this hinders its application to fluid-fluid queues. In the process of approx-
imating the first return operator of a fluid-fluid queue we approximate an operator-Riccati
equation with a matrix-Riccati equation by substituting in matrix approximations to the
operators. The operators are related to the generator of the fluid queue and approxi-
mations to them can be constructed via the DG scheme (Bean, Lewis, Nguyen, O’Reilly
& Sunkara 2022). We then solve the matrix-Riccati equation via an iterative procedure
(Bean et al. 2005a, Bean, Lewis, Nguyen, O’Reilly & Sunkara 2022) and the solution is
an approximation to the first-return operator of the fluid-fluid queue. Since the operators
constructed with limiters are non-linear (not matrices) then we cannot apply them in this
case.

The approach described above relies on the intuition that substituting the DG approx-
imation in place of the true operators in the Riccati equation is a reasonable thing to do,
however there is limited theory (to the authors’ knowledge) on why this approach works.
In contrast, for the QBD approximation of Bean & O’Reilly (2013a) the approximate
matrix-Riccati equation is theoretically justified and in it can be derived by considering
the first-return probabilities for a fluid queue driven by the approximating QBD, where
the rates of the fluid are determined by a piecewise constant approximation to ri(x) (Bean
et al. 2005b).

Hence, for the approximation of fluid queues with application to fluid-fluid queues, on
the one hand we can use the DG scheme which can produce high-order approximations
when the problem is smooth, but can display spurious oscillations and result in negative
probability estimates in the presence of discontinuities. On the other hand, we can use the
uniformisation scheme for the approximation which guarantees non-negative probability
estimates and has a sound theoretical justification, but convergence is relatively slower.

Motivated by this, this thesis derives a new approximation to a fluid queue. The
construction of the approximation is inspired by the observation that the Markov chain
approximation of Bean & O’Reilly (2013a) e↵ectively uses Erlang distributed random
variables to approximate the sojourn time of the fluid level in a given interval on the
event that the phase of the fluid is constant. On the event that the phase of the fluid
is constant, the sojourn time in a given interval is a deterministic event. It is known
that the Erlang distribution is the least-variable Phase-type distribution of a given order.
In this sense, in the class of all Phase-type distributions of a given order, an Erlang-
distribution is the best-possible approximation to the distribution of the deterministic
sojourn time. Thus, it appears that the approximation of Bean & O’Reilly (2013a) is the
best-possible Markov chain approximation to a fluid queue. Recently, Horváth, Horváth,
Almousa & Telek (2020) have developed the class of concentrated matrix exponential
distributions which are postulated to be the least-variable matrix exponential distributions
of a given order. Matrix exponential distributions generalise Phase-type distributions;
they have the same functional form, without the restriction that the distribution has an
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interpretation in terms of the absorption time of a continuous-time Markov chain. A class
of stochastic processes, known as quasi-birth-and-death-processes with rational-arrival-
process components (QBD-RAPs) (Bean & Nielsen 2010), extends QBDs, which have
Phase-type inter-event times, to allow matrix-exponentially distributed inter-event times.
Thus, by using concentrated matrix exponential distributions, one aim of this thesis is to
construct a QBD-RAP to approximate a fluid queue with the idea that it will be more
accurate than the QBD approximation in Bean & O’Reilly (2013a), while still retaining a
stochastic interpretation which ensures positivity and aids in the application to fluid-fluid
queues.

As a QBD-RAP has a stochastic interpretation the resulting approximations are guar-
anteed to have non-negative density functions and give non-negative estimates of proba-
bilities. This non-negativity is guaranteed for any initial condition without any further
computation or post-processing. Further, for the application to fluid-fluid queues, the
matrix-Riccati equation that we solve to approximate the first-return distribution can
be derived by considering the first-return probabilities for a RAP-modulated fluid queue
driven by the QBD-RAP (Peralta Gutierrez 2019, Bean et al. 2021) and hence it has a
sound theoretical justification. In addition, the stochastic interpretation can be leveraged
to aid in the analysis of the approximation.

The structure of this thesis is as follows. The next chapter, Chapter 2, is dedicated to
mathematical preliminaries and introduces the main mathematical objects and tools that
we will need. In particular, we go into detail describing operators arising in the analysis
of fluid-fluid queues and introducing them in such a way that makes clear exactly how
the approximations correspond to the theoretical operators. Chapter 2 also introduces
the existing literature and gives more context to this thesis.

Chapter 3 demonstrates a way to use the discontinuous Galerkin method to approxi-
mate certain operators and distributions of fluid and fluid-fluid queues. The DG method
provides an e↵ective tool for approximating performance measures of fluid-fluid queues.
However, it can exhibit oscillations in the presence of discontinuities and these oscillations
can cause approximations to certain probabilities to be negative. This motivates the next
chapter.

In Chapter 4, we develop a new QBD-RAP approximation scheme which, due to
its interpretation as a stochastic process, ensures all estimates of probabilities will be
non-negative. The chapter takes a stochastic modelling approach to developing the ap-
proximation scheme.

Once we have established the new approximation scheme, we then prove its conver-
gence in Chapters 5 and 6. In Chapter 5 we consider the QBD-RAP up until the first orbit
restart epoch (which is the same as a change of level, except in the case that the process
hits a boundary and is reflected). Ultimately, Chapter 5 proves that, on the event that an
orbit restart epoch has not-yet occurred, certain Laplace transforms with respect to time
of the QBD-RAP scheme converge to corresponding Laplace transforms with respect to
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time of the fluid queue. This is a local convergence result as it relates only to convergence
to the fluid queue in an interval.

Chapter 6 then extends the local convergence results of Chapter 5 to a global con-
vergence result on the whole domain of approximation. Chapter 6 uses more traditional
Markov process arguments which rely on properties such as the strong Markov property,
time-homogeneity and the law of total probability. In Chapter 6 we first consider the
discrete-time process which is the process embedded in the QBD-RAP at orbit restart
epochs. We prove that the embedded process converges in distribution to a corresponding
embedded process of the fluid queue. The rest of Chapter 6 proves a global convergence
result. The main result is Theorem 6.12 which states that the QBD-RAP approxima-
tion scheme converges weakly (with respect to the spatial and temporal variables) to the
distribution of the fluid queue.

Once we have established methods for approximating fluid queues, Chapter 7 then
numerically explores some properties of the approximations. Given that the QBD-RAP
scheme was developed so that it guarantees positivity of the approximation, we largely
focus on problems with discontinuities. Chapter 7 can be read independently of Chap-
ters 5 and 6, which are somewhat technical and could be skipped on a first-pass if the
reader wishes. Although the construction of the QBD-RAP and the proof that it con-
verges is somewhat technical, the actual computations involved in Chapter 7 are relatively
straightforward once we have the generator of the QBD-RAP and knowledge of how the
level process of the QBD-RAP corresponds to the level process of the fluid queue.

Finally, Chapter 8 makes concluding remarks.
Some of the more general mathematical background has been reserved for Appendix A.

To help the reader understand the notation used in the DG scheme, we provide a small
toy model example in Appendix B. Appendix C provides a proof that the DG scheme
conserves probability. The rest of the appendices contain technical results relating to
proving the convergence of the QBD-RAP approximation scheme. Appendix D proves
that the closing operators introduced as part of the QBD-RAP scheme have the properties
we claim they do when we are proving convergence in Chapter 5. Appendix E extends
some results from Chapter 5 to a setting which requires slightly less computation. Lastly,
Appendix F provides some algebraic results which help us to manipulate certain Laplace
transforms from Chapter 5.



Chapter 2

The existing literature &
mathematical preliminaries

2.1 Stochastic processes

Following Ross (1996), a stochastic process is a sequence, {X(t)}t2T , of random variables
(or random vectors) indexed by some index set T . In this thesis, in the case that the
index set is T = {0, 1, 2, ...} we say that the process {X(n)}n2T is a discrete-time process,
and we will typically use the dummy variable n for the ‘time’ index. When the index set
is T = [0,1) we say {X(t)}t2T is a continuous-time process, and we will typically use the
dummy variable t for the ‘time’ index. We may omit the index set and write {X(t)} in
place of {X(t)}t2T when it is not explicitly needed, or we may write {X(t)}t�t0 to mean
{X(t)}t2[t0,1). The state space, S, of X(t) is the set of possible values that X(t) can take
at any time t 2 T .

The initial distribution, µ, of a stochastic process is the distribution of X(0). More
generally, for a random variable, Z, we write Z ⇠ ⌫ when Z has the distribution given
by the probability measure ⌫. For the probability that X(t) lies in some measurable set
E ⇢ S given X(0) ⇠ µ, we write P(X(t) 2 E | X(0) ⇠ µ). When µ assigns probability 1
to a single point, x 2 S, say, we write P(X(t) 2 E | X(0) = x).

A stochastic process is stationary if, for any n, t0 < t1 < ... < tn and any t, then
X(tn), X(tn�1), ..., X(t0) andX(tn+t), X(tn�1+t), ..., X(t0+t) have the same distribution.
That is,

P(X(tn) 2 En, X(tn�1) 2 En�1, ..., X(t0) 2 E0)

= P(X(tn + t) 2 En, X(tn�1 + t) 2 En�1, ..., X(t0 + t) 2 E0), (2.1)

for any t, t0, ..., tn 2 T with t0 + t, ..., tn + t 2 T and any E0, ..., En ✓ S.
As in (Bladt & Nielsen 2017, Section 2.1), a random variable, ⌧ taking values in T , is

a stopping time for the stochastic process {X(t)}t2T if {⌧  t} 2 �(X(s), s  t), for all

7
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t 2 T , where �(X(s), s  t) denotes the �-algebra generated by {X(s)}st.
As in (Bladt & Nielsen 2017, Section 1.2), we call {X(n)}n2{0,1,2,... } a discrete-time

Markov chain if S is countable and

P(X(n+ 1) = j | X(n) = i, X(n� 1) = in�1, ..., X(0) = i0)

= P(X(n+ 1) = j | X(n) = i) (2.2)

for all n 2 {0, 1, 2, ...} and i, i0, ..., in�1, j 2 S, and referred to (2.2) as theMarkov property.
The process {X(n)}n2{0,1,2,...} is said to be time-homogeneous if P(X(n+1) = j | X(n) = i)
does not depend on n. The probabilities P(X(n + 1) = j | X(n) = i) =: pij are the
transition probabilities, and P = [pij]i,j2S is the transition matrix, of the Markov chain.
The strong Markov property states that for each stopping time ⌧ of the Markov chain
{X(n)}n2{0,1,2,...}, on the event that {⌧ < 1}, then

P(X(⌧ + 1) = j | �(X(0), X(1), ..., X(⌧))) = P(X(⌧ + 1) = j | X(⌧)). (2.3)

Also, as in (Bladt & Nielsen 2017, Section 1.3), we call {X(t)}t�0 a continuous-time
Markov chain (CTMC) if S is countable and for all tn+1 > tn > tn�1 > ... > t0 � 0 and
i, i0, ..., in�1, j 2 S,

P(X(tn+1) = j | X(tn) = i, X(tn�1) = in�1, ..., X(t0) = i0) = P(X(tn+1) = j | X(tn) = i),
(2.4)

and refer to (2.4) as the Markov property. The process {X(t)}t�0 is said to be time-
homogeneous if P(X(t+s) = j | X(s) = i) does not depend on s. For a time-homogeneous
CTMC, the transition function is the matrix function

P (t) = [P(X(t) = j | X(0) = i)]i,j2S .

The Chapman-Kolmogorov equations state that

P (t+ s) = P (t)P (s).

The infinitesimal generator matrix of a CTMC is

T = [Tij]i,j2S =
d

dt
P (t)

�����
t=0

,

and the elements Tij are the transition rates. A CTMC is said to be honest if P (t)1 = 1
for all t � 0 where 1 is a column vector of ones.

The strong Markov property states that for each stopping time ⌧ of the Markov chain
{X(t)}t�0, on the event that {⌧ < 1}, then

P(X(⌧ + t) = j | �(X(s), s  ⌧)) = P(X(⌧ + t) = j | X(⌧)). (2.5)
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Most generally, we call {X(t)}t�0 a Markov process if for all tn > tn�1 > ... > t0 �
0, tk 2 T , k = 0, ..., n, and E0, ..., En ✓ S

P(X(tn) 2 En, | X(tn�1) 2 En�1, ..., X(t0) 2 E0) = P(X(tn) 2 En | X(tn�1)), (2.6)

and we say that it is time homogeneous if P(X(t+ s) 2 En | X(s)) does not depend on s.
The Chapman-Kolmogorov equations state that

P(X(t+ s) 2 E | X(0) ⇠ µ)

=

Z

x2S

P(X(t+ s) 2 E | X(t) = x)P(X(t) 2 dx | X(0) ⇠ µ). (2.7)

2.2 Some semigroup theory

The evolution of Markov processes can be described by an operator semigroup. Semigroups
also arise in other contexts related to the analysis of fluid queues and fluid-fluid queues
(see, for example, Sections 2.4 and 2.3.1). Semigroups (and therefore Markov processes)
can be characterised by their infinitesimal generator, or generator for short. One of the
aims of this thesis is to approximate the generator of a fluid queue. Here we very briefly
introduce semigroups and their infinitesimal generators. We refer to the reader to Ethier
& Kurtz (1986) for more details (see also Kallenberg (2021), or the more approachable
course notes of Shalizi (2010)).

Operators

Let L be a Banach space. A Banach space is a complete, normed vector space. Complete
means that every Cauchy sequence of points in L has a limit which also lies in L. Normed
means that a norm is defined on L. Intuitively, a norm is a function which tells us the
size of a vector in L, hence we can use a norm to compute a distance between two points
f, g 2 L by computing the norm of f � g.

An operator is a mapping which takes elements of a vector space and sends them to
elements of a vector space (not necessarily the same space). That is, let V and U be
normed vector spaces, then B : D(B) ! U is an operator. The set D(B) ✓ V is the
domain of the operator, and is not necessarily all of V . When specification of the domain
is unnecessary we sometimes write B : V ! U .

Let c 2 R (R is the reals), v 2 V and w 2 U . Then B is a linear operator if B(cv) =

c(Bv) and B(v+w) = Bv+Bw. We define the norm of an operator as ||B|| = supv2V

||Bv||U
||v||V

,

where || · ||V and || · ||U are the norms defined on V and U , respectively. An operator is
said to be bounded if ||B|| < M for some M < 1.
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Semigroups

A family of linear operators is a collection of indexed linear operators {B(i)}i2I where I is
some index set. For each i 2 I, B(i) is a linear operator. A family of operators {T(t)}t�0,
T(t) : L ! L, is said to have the semigroup property if T(t + s) = T(t)T(s). If T(0) = I,
the identity operator, then the family {T(t)t�0} is known as an operator semigroup. If,
for all f 2 L, T(t)f ! f as t ! 0+, then {T(t)}t�0 is said to be strongly continuous. If
||T(t)||  1 for all t � 0 then {T(t)}t�0 is known as a contraction semigroup.

For a bounded linear operator B : D(B) ! D(B), define the operator exponential as

eBt =
P

1

k=0

1

k!
tkBk where, for f 2 D(B), Bkf is defined recursively by Bkf = Bk�1(Bf).

It can be shown that eB(t+s) = eBteBs, and from the definition eB0 = I, which implies

that {eBt : t � 0} is a semigroup. As another example, let B =
d

dx
: C!(R) ! C!(R),

where C!(R) is the class of analytic functions on the whole of R. Then T(t)f(x) =
P

1

k=0

1

k!
tk

dk

dxk
f(x) = f(x � t), and the sum converges since f 2 C!(R); the series rep-

resentation is the Taylor series of f about the point x, and we see that the operator
T(t)f(x) = f(x� t) is the shift operator. The semigroup property follows since

T(t)T(s)f(x) = T(t)f(x� s) = f(x� s� t) = T(t+ s)f(x).

Infinitesimal generators

The infinitesimal generator (or just generator for short) of a semigroup {T(t)} is the
linear operator defined by

Bf = lim
t!0+

1

t
(T(t)f � f),

and the domain, D(B), is the subspace of L for which this limit exists. Note that an
essential part of the definition of the generator is its domain. For this reason it is common
to denote the generator as the pair (B,D(B)).

To determine the generator B we can proceed by either di↵erentiation of the semigroup,

Bf = lim
t!0+

1

t
(T(t)f � f),

or integration; Z
1

t=0

e�stT(t) dt = (sI � B)�1 =: Rs.

The operator Rs is known as the resolvent.
One of the fundamental results of semigroup theory is the Hille-Yosida Theorem which

essentially states that a semigroup is entirely characterised by its generator. This is not
immediately obvious as the generator is defined on a subset of L only, whereas {T(t)} is
defined on all of L.



2.2. Some semigroup theory 11

Markov processes and semigroups

Semigroups arise naturally in Markov processes. Let {X(t) : t � 0} be a Markov process
with state space S. The Markov property states that, given X(t), then for s, t � 0,
X(t+ s) is independent of X(u), 0  u < t. That is,

P(X(t+ s) 2 E | X(t), X(u), 0  u < t) = P(X(t+ s) 2 E | X(t)).

If P(X(t + s) 2 E | X(t)) = P(X(s) 2 E | X(0)), are invariant under translation by t,
then X(t) is said to be time-homogeneous.

Consider the expectation

E[f(X(t)) | X(0) = x] =

Z

y2S

f(y)P(X(t) 2 dy | X(0) = x),

where f is some bounded function, |f | < F . We can think of expectation as an operator
which is acting on the function f . The expectation depends on t and x as these define
the distribution with which we are taking the expectation, hence, let us write

T(t)f(x) = E[f(X(t)) | X(0) = x].

The result of the operator acting on f , T(t)f , is another function (a function of the initial
point x).

By the Markov property, for any s 2 [0, t],

T(t)f(x) =
Z

y2S

f(y)P(X(t) 2 dy | X(0) = x)

=

Z

y2S

Z

z2S

f(y)P(X(t) 2 dy | X(s) = z)P(X(s) 2 dz | X(0) = x)

=

Z

z2S

E[f(X(t)) | X(s) = z]P(X(s) 2 dz | X(0) = x)

=

Z

z2S

E[f(X(t� s)) | X(0) = z]P(X(s) 2 dz | X(0) = x)

=

Z

z2S

(T(t� s)f(z))P(X(s) 2 dz | X(0) = x)

= T(s)(T(t� s)f)(x),

where the third equality holds by time-homogeneity. Hence, {T(t)(·)}t�0 is an operator
semigroup. Moreover, since f is bounded, then T(t)f(x) = E[f(X(t)) | X(0) = x]  F ,
which means that {T(t)} is a contraction semigroup.
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2.3 Fluid queues

An unbounded fluid queue is a two-dimensional stochastic process which we denote by
{Ẍ(t)} = {(Ẍ(t),'(t))}t�0 where {'(t)}t�0 is known as the phase or driving process of
the fluid queue, and {Ẍ(t)}t�0 is known as the level process or bu↵er. The phase process
{'(t)}t�0, is an irreducible continuous-time Markov chain (CTMC) with finite state space,
which we assume to be S = {1, 2, . . . , N}, and infinitesimal generator T = [Tij]i,j2S∗. We
assume that T is conservative and time-homogeneous. Associated with states i 2 S are
real-valued rates ci 2 R which determine the rate at which {X(t)} moves.

Partition the state space S into S+ = {i 2 S | ci > 0}, S� = {i 2 S | ci < 0},
S0 = {i 2 S | ci = 0}, S�1 = {i 2 S | ci  0}, SK+1 = {i 2 S | ci � 0}†. We assume,
without loss of generality, that the generator T is partitioned into sub-matrices

T =

2

4
T++ T+� T+0

T�+ T�� T�0

T0+ T0� T00

3

5 ,

where Tmn = [Tij]i2Sm,j2Sn , m,n 2 {+,�, 0}.
Also define the diagonal matrices

C =

2

4
C+

C�

0

3

5 , C+ = diag(ci, i 2 S+), C� = diag(|ci|, i 2 S�),

and bC = diag(ci, i 2 S), where diag(ai, i 2 I) denotes a diagonal matrix with entries ai
down the diagonal.

Now, back to fluid queues. The level process is given by

Ẍ(t) = Ẍ(0) +

Z t

s=0

c'(s) ds.

∗Let’s clarify some notation. We use the notation u = (uh)h2H to denote a row-vector, u, defined by
its elements, uh, indexed by h 2 H, where H is some index set. Similarly, u = (uh)h2H, is a row-vector
defined by a collection of row-vectors uh. The notation um = (uh)h2Hm refers to the vector containing
the subset of elements corresponding to Hm ✓ H. When the index set is empty, the resulting vector
um is a vector of dimension 0. In cases when there are two indices, we order the elements of the vector
according to the first index, then the second; i.e. u = (uh

g )g2G,h2H = ((uh
g )g2G)h2H. Here we use the

convention that for a vector u = (u)h2H where the elements u do not depend on the index h and H is
some index set, then we repeat u h-times; i.e. u = (u)h2H = (u, . . . , u)| {z }

h�times

. The notation U = [ugh]g2G,h2H

(square brackets) is used to denote a matrix defined by its elements, or sub-blocks, ugh.
†The notation S�1 and SK+1 will make sense later when we introduce the partition into cells for the

approximation schemes into K cells, plus a lower and upper boundary which we represent with indices
�1 and K + 1 respectively.
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Sample paths of {Ẍ(t)} are continuous and piecewise linear, with
d

dt
Ẍ(t) = c'(t), when

Ẍ(t) is di↵erentiable. Given sample paths of {'(t)}, then {Ẍ(t)} is deterministic, and in
this sense, {'(t)} is the only stochastic element of the unbounded fluid queue.

Often, boundary conditions are imposed. We denote a fluid queue bounded below at
0 and unbounded above by {Ẋ(t)} = {(Ẋ(t),'(t))}t�0, and a fluid queue bounded below
at 0 and above at b < 1 by {X(t)} = {(X(t),'(t))}t�0. Here, we consider a mixture of
regulated and reflecting boundary conditions. Some boundary conditions may introduce
a dependence of the phase process, {'(t)}, on the level process {X(t)}. Specifically there
may be a change of phase upon the event that the level process hits a boundary. When
the phase process depends on the level process then the fluid queue is level-dependent,
otherwise it is level independent. For a level-dependent fluid queue the phase process
{'(t)} is not the only random element of the fluid queue.

Upon hitting the lower (upper) boundary we suppose that, with probability qpij, i, j 2
S (bpij, i, j 2 S), the phase process instantaneously transitions from phase i to phase j
(note that we might have i = j i.e. no transition) and if sign(ci) = sign(cj) or sign(cj) =
0 then the process is absorbed in the boundary, otherwise it immediately leaves the

boundary. At the lower boundary, if j 2 S0[S�, then
d

dt
X(t) = 0, and the phase process

continues to evolve according to the sub-generator

T�� T�0

T0� T00

�
,

until such a time that {'(t)} transitions to a phase k 2 S+, at which time {X(t)} leaves

the boundary. Similarly, at the upper boundary if j 2 S0 [ S+, then
d

dt
X(t) = 0 and the

phase process continues to evolve according to the sub-generator

T++ T+0

T0+ T00

�
,

until such a time that {'(t)} transitions to a phase k 2 S� at which time {X(t)} leaves the
boundary. It is without loss of generality that we assume the lower and upper boundaries
(when present) are at x = 0 and x = b > 0, respectively.

In summary, the evolution of the level can be expressed as

d

dt
X(t) =

8
><

>:

c'(t), if X(t) > 0,

max{0, c'(t)}, if X(t) = 0,

min{0, c'(t)}, if X(t) = b.

Let f(x, t) = (fi(x, t))i2S be a row-vector function where fi(x, t) is the density of
P(X(t)  x,'(t) = i | X(0) ⇠ µ), assuming it exists. When a di↵erentiable density
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exists, the system of partial di↵erential equations which describes the evolution of the
densities f(x, t) is

@

@t
f(x, t) = f(x, t)T �

@

@x
f(x, t) bC, (2.8)

on the interior x 2 (0, b), with appropriate boundary conditions (see Section 3.4). The
initial condition is the initial distribution of the fluid queue which, when it has a density,
we write as fi(x, 0). Often a di↵erentiable density function does not exist and therefore
the partial di↵erential equation (2.8) is not well-defined. For example, for a fluid queue
with no upper boundary, if the initial distribution of the fluid queue is a point mass at
any point x0 � 0 and in phase i 2 S+ [ S0, then a density function fi(x, t) will not exist
for any finite t. Specifically, a point mass will persist along the ray x0 + cit, t � 0. In
such situations, it is the weak solution to (2.8) that we seek. A weak solution (ignoring
boundary conditions) satisfies

�
Z b

x=0

Z
1

t=0

f(x, t)
@

@t
 (x, t) dt dx =

Z b

x=0

Z
1

t=0

f(x, t)T (x, t) dt dx

+

Z b

x=0

Z
1

t=0

f(x, t) bC
@

@x
 (x, t) dt dx, (2.9)

for every row-vector of test functions,  (x, t) = ( i(x, t))i2S , which are smooth, have
compact support and  (x, 0) =  (0, t) =  (b, t) = 0 (Borthwick 2016, Chapter 10).

2.3.1 Transient analysis of fluid queues

The transient analysis of fluid queues has been relatively well studied (see, for example,
Ahn & Ramaswami (2004), Bean et al. (2005b), da Silva Soares (2005), Bean et al. (2009b)
which are matrix-analytics-methods-based, and also Rabehasaina & Sericola (2003) which
is di↵erential-equations-based and treats a slightly more complex model than the ones con-
sidered here, but is none-the-less relevant). Given the interest in discontinuous and point-
mass initial conditions, transient analysis of fluid queues rarely relies on solving governing
di↵erential equations numerically, although it is quite possible to do so‡. Instead, expres-
sions for transient distributions of fluid queues are derived in terms of Laplace transforms
with respect to time, and/or moments of the transient distributions are derived (Ahn &
Ramaswami 2004, Bean et al. 2005b, 2009b). Moreover, these techniques often lead to
quantities which have direct probabilistic interpretations which further aids in their anal-
ysis and also applications to other problems (Ahn & Ramaswami 2003, da Silva Soares

‡We have already alluded to some di�culties with di↵erential-equation-based approaches to prob-
lems with discontinuous solutions such as ill-defined PDEs, the need for weak solutions, and oscillatory
approximations with possibly infeasible approximate solutions, for example negative probability approx-
imations.
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2005, Bean et al. 2018) (we also leverage these stochastic interpretations in Chapter 5 to
derive expressions for certain the Laplace transforms of the fluid queue). In some contexts,
the actual transient distributions are not required, and Laplace transforms or moments,
which can be obtained relatively straightforwardly from the Laplace transforms, are all
that are required. In other cases, the Laplace transforms may be inverted using known
methods (Abate & Whitt (2006), or in the case of the discontinuities we might prefer
Horváth, Horváth, Almousa & Telek (2020), which uses the same concentrated matrix
exponential distribution that we do).

One such analysis of fluid queues derives the Laplace transform of the time taken for
the level of an unbounded fluid queue to return to its initial level in a certain phase, given
it started in a phase with positive rate (Bean et al. 2005b). The principles underlying the
derivation of this first return operator are the same as those applied in Bean & O’Reilly
(2014) to derive the first return operator for fluid-fluid queues. Moreover, certain matrices
appearing in the analysis have a stochastic interpretation which we leverage to write down
certain Laplace transforms in Chapter 5 in terms of these matrices. Given its relevance
we briefly recount the analysis of Bean et al. (2005b) here.

Consider an unbounded fluid queue {(Ẍ(t),'(t))}. Let ⇣X(E) be the random variable
which is the first hitting time of {Ẍ(t)} on the set E and define the matrix  X(�) with
elements [ X(�)]ij, i 2 S+, j 2 S�, given by

[ X(�)]ij = E
h
e�⇣X(z)�1(⇣X(z) < 1,'(⇣X(z) = j)) | Ẍ(0) = z,'(0) = i

i
. (2.10)

[ X(�)]ij is the Laplace-Stieltjes transform of the time taken for the fluid queue to first
return to level z and do so in phase j 2 S�, given it started at level z in phase i 2 S+.
Define the in-out fluid level by �X(t) =

R t

0

��c'(z)
�� dz, which is the total amount of fluid

to flow in to or out of the bu↵er {Ẍ(t)} by time t, and also define ⌘X(y) = inf{t > 0 :
�X(t) = y} as the first hitting time of the in-out process {�X(t)} on level y � 0. Further,
let H(�, y) be the matrix with elements hij(�, y), i, j 2 S+ [ S�, given by

E
h
e��⌘X(y)1(⌘X(y) < 1,'(⌘X(y)) = j) | Ẍ(0) = 0,'(0) = i

i
, (2.11)

which is the Laplace-Stieltjes transform of the time taken for y amount of fluid to flow in
or out of the fluid queue and to be in phase j at this time, given the initial level of the
fluid queue was 0 and the initial phase was i.

It turns out that, for fixed � � 0, H(�, y) is a semigroup (with variable y) (Bean et al.
2005b). Bean et al. (2005b) find the infinitesimal generator, Q(�) of H(�, y) and, since
the generator is bounded, we can write H(�, y) = eQ(�)y. The derivation of the generator
Q(�) = [Qij(�)]ij2S+[S� is based on a direct analysis of sample paths of the fluid queue
over an infinitesimal time, u say, and by leveraging the fact that complex sample paths
occur with probability O(u2). As a result, there are only three types of sample paths to
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consider. Further, Bean et al. (2005b) argue that the generator Q(�) can be partitioned
into blocks Qmn(�) = [Qij(�)]i2Sm,j2Sn

, m 2 {+,�}, n 2 {+,�, 0} where

Q+0(�) = C
�1
+ T+0 [�I � T00]

�1 ,

Q�0(�) = C
�1
�

T�0 [�I � T00]
�1 ,

Q++(�) = C
�1
+

�
T++ � �I + T+0 [�I � T00]

�1
T0+

�
,

Q+�(�) = C
�1
+

�
T+� + T+0 [�I � T00]

�1
T0�

�
,

Q��(�) = C
�1
�

�
T�� � �I + T�0 [�I � T00]

�1
T0�

�
,

Q�+(�) = C
�1
�

�
T�+ + T�0 [�I � T00]

�1
T0+

�
.

Bean et al. (2005b) also define the functions

H
++(�, y) =

⇥
h++
ij (�, y)

⇤
i2S+,j2S+[S+0

= eQ++(�)y
⇥
C

�1
+ Q+0(�)

⇤
, (2.12)

H
��(�, y) =

⇥
h��

ij (�, y)
⇤
i2S�,j2S�[S�0

= eQ��(�)y
⇥
C

�1
� Q�0(�)

⇤
, (2.13)

H
+�(�, y) =

⇥
h+�

ij (�, y)
⇤
i2S+, j2S�

= eQ++(�)y
Q+�(�), (2.14)

H
�+(�, y) =

⇥
h�+
ij (�, y)

⇤
i2S�, j2S+

= eQ��(�)y
Q�+(�), (2.15)

for y,� � 0, which have the following stochastic interpretations. The function h++
ij (�, y)

(h��

ij (�, y)) is the Laplace transform (with respect to time) of the time taken for the
fluid level to shift by an amount y whilst remaining in phases in S+ [ S+0 (S� [ S�0),
given the phase was initially i 2 S+ (i 2 S�). The function h+�

ij (�, y) (h�+
ij (�, y)) is the

Laplace transform (with respect to time) of the time taken for the fluid level to shift by
an amount y whilst remaining in phases in S+ [ S+0 (S� [ S�0), after which time the
phase instantaneously changes to j 2 S� (S+), given the phase was initially i 2 S+ (S�)
(Bean et al. 2005b).

Thus, Bean et al. (2005b) are able to characterise, by the above matrix expressions,
segments of sample paths of the fluid queue where the fluid level is non-decreasing and
non-increasing. Bean et al. (2005b) then partition the sample paths which contribute to
 X as those which either, (a) have a single transition from S+ to S� (perhaps via S0),
and, (b) those which have more than one transition from S+ to S� (perhaps via S0). An
expression for Laplace-Stieltjes transform of (a) is

Z
1

y=0

eQ++(�)y
Q+�(�)e

Q��y dy.

For the sample paths (b), there must be at least one point at which the phase process
transitions from S� to S+ (perhaps via S0) before the first return time. Further, one of
the transitions from S� to S+ (perhaps via S0) must occur lower than all others. By
considering the lowest level, y, at which a phase transitions from S� to S+ (perhaps via
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S0) occurs, Bean et al. (2005b) characterise the Laplace transform of the paths (b) by the
expression

Z
1

y=0

eQ++(�)y X(�)Q�+(�) X(�)e
Q��(�)y dy. (2.16)

Adding the expressions for (a) and (b) together, Bean et al. (2005b) state

 X(�) =

Z
1

y=0

eQ++(�)y
Q+�(�)e

Q��y + eQ++(�)y x(�)Q�+(�) X(�)e
Q��(�)y dy, (2.17)

which can be shown to be equivalent to (Bhatia & Rosenthal 1997, Lemma 3 and Theo-
rem 9.2)

Q++(�) X(�) + X(�)Q��(�) X(�) +Q+�(�) + X(�)Q�+(�) X(�) = 0. (2.18)

The key concepts of this argument are; (1) to partition the state space of the driving
process into sets on which the fluid level is increasing, decreasing, or constant; (2) to
characterise the sections of sample paths of the fluid level which are non-decreasing and
non-increasing as semigroups and derive their generators; (3) to partition the sample
paths which comprise  X(�) such that we can write down an expression for  X(�) in
terms of the expressions derived in (2) and  X(�) itself and then to solve the resulting
expression.

2.4 Fluid-fluid Queues

This subsection was largely taken from Sections 2 and 3 of Bean, Lewis,
Nguyen, O’Reilly & Sunkara (2022) with changes, such as notation, so
that this chapter is consistent with the rest of the thesis. I am a co-
author of the paper Bean, Lewis, Nguyen, O’Reilly & Sunkara (2022).

A stochastic fluid-fluid queue (Bean & O’Reilly 2013a) is a Markov process with three
elements, {(Ẅ (t), X(t),'(t))}t�0, where {(X(t),'(t))}t�0 is a classical fluid queue§ and
Ẅ (t) is the second fluid, which varies at rate r'(t)(Ẋ(t)):

Ẅ (t) = Ẅ (0) +

Z t

0

r'(s)(X(s)) ds.

Regulated boundaries may also be included for the second fluid level. To distinguish
between unbounded and bounded processes, we use the notation Ẅ (t) to denote the

§We assume X(t) is doubly-bounded as this results in a finite-dimensional approximation, but this is
not necessary
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unbounded process and Ẇ (t) to denote the second fluid level process with a regulated
lower boundary at 0.

In the following, we assume that Ẇ (t) 2 [0,1) and that there is a boundary at level
0 for both the first and second fluid levels and the first fluid level is also bounded above
at b. Thus, the rates of change of the fluid levels can be summarised as:

d

dt
X(t) = max{0, ci} if X(t) = 0 and '(t) = i,

d

dt
X(t) = min{0, ci} if X(t) = b and '(t) = i,

d

dt
Ẇ (t) = max{0, ri(x)} if Ẇ (t) = 0, X(t) = x and '(t) = i,

for i 2 S = {1, ..., N}. Let R(x) = diag(ri(x))i2S be the diagonal fluid-rate matrix of
functions for {Ẇ (t)}.

For the remainder of this section, we summarise the findings of Bean & O’Reilly (2014)
on the joint limiting distribution of {(Ẇ (t), X(t),'(t))}t�0. The derivation of the limiting
distribution relies on obtaining the operator  which gives the distribution of the process
{(X(t),'(t))} at the time when {Ẇ (t)} first returns to the level 0, given Ẇ (0) = 0.

The concepts leading to the derivation of  for the fluid-fluid queue are much the
same as the derivation of the analogous quantity,  X , for a classical fluid queue. First,
we need the infinitesimal generator of the driving process, {(X(t),'(t))}, which we denote
by B. Then we need to partition B on sets for which {Ẇ (t)} is increasing, decreasing or
constant – these are the sets Fm

i , i 2 S, m 2 {+,�, 0}, below. We can then derive
an operator-Riccati equation for the first return operator for the fluid-fluid queue,  ,
in terms of the partitioned generator and the rates ri(x). The solution to the operator-
Riccati equation is an operator which can be used to obtain the distribution of the driving
process {(X(t),'(t))} at the time when {Ẇ (t)} first returns to 0.

The problem we have is to solve the operator-Riccati equation – something which
is only possible in the very simplest of cases. This is where the methods in this thesis
come in. Here, we approximate B by a finite-dimensional matrix which we then partition
according to the sets Fm

i , i 2 S, m 2 {+,�, 0}. We then substitute the resulting matrices
into the operator-Riccati equation and this gives us a matrix-Riccati equation which we
can then solve using known methods (Bean et al. 2009a).

A key element of the cell-based approximation schemes is the partition of the state
space of {(X(t),'(t))} into sets of the form (Dk,i, i), where Dk,i are intervals are known as
cells. We must choose the cells wisely so that the partition into the sets Fm

i , i 2 S, m 2
{+,�, 0} can be recovered from the partition into cells. This is not terribly di�cult to
do, but does require some notation and explanation. We now proceed to introduce the
work of Bean & O’Reilly (2014) and explain how we can recover the partition into the sets
Fm

i , i 2 S, m 2 {+,�, 0} from the cells as determined by the cell-based approximations.
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For each Markovian state i 2 S, we partition the state space of X(t), [0, b], according
to the rates of change ri(·) for the second fluid {Ẇ (t)}: [0, b] = F+

i [ F�

i [ F0
i , where

F+
i = {u 2 [0, b] : ri(u) > 0},

F�

i = {u 2 [0, b] : ri(u) < 0},
F0

i = {u 2 [0, b] : ri(u) = 0}. (2.19)

For all i 2 S, the functions ri(·) are assumed to be su�ciently well-behaved so that Fm
i ,

m 2 {+,�, 0}, is a finite union of intervals and isolated points.
We assume that the process {(Ẇ (t), X(t),'(t))}t�0 is positive recurrent, in order to

guarantee the existence of the joint limiting distribution. Define limiting operators

⇡i(w)(E) =
@

@y
lim
t!1

P
⇣
Ẇ (t)  w,X(t) 2 E ,'(t) = i

⌘
, w > 0, (2.20)

pi(E) = lim
t!1

P(Ẇ (t) = 0, X(t) 2 E ,'(t) = i]), (2.21)

where E ⇢ [0, b]. Notice that (2.20) assumes a certain di↵erentiability condition on the
limiting distribution. Indeed, it is not always the case that (2.20) will be di↵erentiable
with respect to w (trivially, consider Ẇ (t) = w0 for all t). To the author’s knowledge,
conditions on fluid-fluid queues to ensure that (2.20) will be di↵erentiable with respect
to w are not known, and here we just assume that it is. For further reading, further
theoretical developments and some examples of fluid-fluid queues are analysed in Bean,
O’Reilly & Palmowski (2022).

Now, let ⇡(w) = (⇡i(w))i2S be a vector containing the joint limiting density operators
and p = (pi)i2S be a vector containing the joint limiting mass operators. The deter-
mination of ⇡(w) involves two important matrices of operators, D and  which we now
introduce.

2.4.1 The infinitesimal generator, B, of the driving process

Given the discussion above, if we are to replicate the arguments of Bean et al. (2005b) to
derive the Laplace-Stieltjes transform of the first return operator of a fluid-fluid queue, we
first need an expression for the generator of the driving process. We also need to partition
it according to whether the second fluid is increasing, decreasing or constant.

The generator of a fluid queue is a di↵erential operator and to enable computation of
the first-return operator, approximation methods are needed. The approximation schemes
which we discuss in this thesis are all cell-based methods which discretise the level of
the fluid queue into intervals called cells. Thus, one complexity in approximation is to
reconcile the partition according to whether the second fluid is increasing, decreasing or
constant, and the partition which the approximation method uses.
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The transition semigroup of a fluid queue

Since {(X(t),'(t))}t�0 is a Markov process, the evolution of probability can be described
by a semigroup. Let M(S⇥ [0, b]) be the set of integrable complex-valued Borel measures
on the Borel �-algebra BS⇥[0,b]. For µ 2 M(S ⇥ [0, b]), we can write µ = (µi)i2S . The
measures µi(·) represent an initial distribution, µi(·) = P(X(0) 2 ·,'(0) = i). Let
{V(t)}t�0, V(t) : M(S⇥ [0, b]) 7! M(S⇥ [0, b]) be the semigroup describing the evolution
of probability for {(X(t),'(t))}t�0 structured as a matrix of operators,

⇥
V(t)

⇤
ij
= Vij(t)

where,

µiVij(t)(E) =
Z

x2[0,b]

dµi(x)P(X(t) 2 E ,'(t) = j | X(0) = x,'(0) = i).

Intuitively, the operator V(t) maps an initial measure µ on (X(0),'(0)) to the measure
P(X(t) 2 E ,'(t) = j) =: µj(t)(E). The matrix of operators B = [Bij]i,j2S is the infinites-

imal generator of the semigroup {V(t)} defined by

B =
d

dt
V(t)

�����
t=0

,

with domain the set of measures for which this limit exists. Specifically, the domain of
B is the set of measures, µ = (µi)i2S , for which each µi admits an absolutely continuous
density on (0, b), and can have a point mass at 0 if i 2 S�1 or a point mass at b if i 2 SK+1;
call this set of measures M0,b. The measures µi cannot have a point mass at 0 if i /2 S�1,
nor can they have a point mass at b if i /2 SK+1, nor can they have point masses in (0, b)
for any i 2 S. In the sequel we write vi(x) as the density of µi, and q�1,i and qK+1,i as
the point masses of µi at 0 and b, respectively (if such point masses exist).

A partition with respect to rates of the second fluid

To use the operators {V(t)} and B to analyse the fluid-fluid queue, Bean & O’Reilly (2014)
explicitly track when (X(t),'(t)) 2 (Fm

i , i) for i 2 S, m 2 {+,�, 0} by partitioning the
operators V(t) and B into V

mn
ij and B

mn
ij , for i, j 2 S, m, n 2 {+,�, 0}, where

µi|Fm
i

V
mn
ij (t)(E) =

Z

x2[0,b]

dµi|Fm
i
(x)P(X(t) 2 E \ Fn

j ,'(t) = j | X(0) = x,'(0) = i),

and µi|E is the restriction of µi to E, µi|E (E) = µi(E \ E). Similarly, for B
mn
ij , i, j 2

S, m, n 2 {+,�, 0}.

A partition as dictated by the approximation schemes

We claim that numerical schemes are needed to approximate the analytic operator equa-
tions introduced in Bean & O’Reilly (2014). The schemes we choose to use here work by
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first partitioning the state space of the fluid level, {X(t)}, into a collection of intervals,
Dk,i then constructing an approximation to B on each interval. To help elucidate the
connection between the operators {V(t)}, B and their approximate counterparts we take
a slightly di↵erent approach to partitioning these operators than that taken in Bean &
O’Reilly (2014). Rather than partition according to the sets Fm

i , i 2 S, m 2 {+,�, 0},
we use the same partition as that in the construction of the approximation schemes. By
doing so, we can directly correspond elements of the partitioned operators to their approx-
imation counterparts. Since the partition used to construct the approximation schemes is
finer, then we can reconstruct the partition in terms of the sets Fm

i , i 2 S, m 2 {+,�, 0}.
Let us first partition the space [0, b] into D�1,i = D�1 = {0}, i 2 S�1, DK+1,i =

DK+1 = {b}, i 2 SK+1, and non-trivial intervals Dk,i = [yk, yk+1) \ {0}, i 2 S+ [ S0 and
Dk,i = (yk, yk+1] \ {b}, i 2 S�, with y0 = 0, yK+1 = b, yk < yk+1, k 2 K� = {0, 1, 2, ..., K}
and define K = {�1, K + 1} [ K�. For µ 2 M0,b(S ⇥ [0, b]) we write µ = (µk,i)i2S,k2K,
where µk,i(·) = µi(· \ Dk,i), k 2 K. We denote by vk,i(x), x > 0, the density associated
with the measure, µk,i, k 2 K�. For i, j 2 S, k, ` 2 K define the operators

µk,iVk`
ij (t)(E) =

Z

x2Dk,i

dµk,i(x)P(X(t) 2 E \D`,i,'(t) = j | X(0) = x,'(0) = i),

and the matrices of operators Vk`(t) =
⇥
Vk`
ij (t)

⇤
i,j2S

, k, ` 2 K and write

V(t) =

2

666664

V�1,�1(t) V�1,0(t) V�1,1(t) . . . V�1,K+1(t)
V0,�1(t) V0,0(t) V0,1(t) . . . V0,K+1(t)
V1,�1(t) V1,0(t) V1,1(t) . . . V1,K+1(t)

...
...

...
. . .

...
VK+1,�1(t) VK+1,0(t) VK+1,1(t) . . . VK+1,K+1(t)

3

777775
.

Now define B =
d

dt
V(t)

�����
t=0

as the infinitesimal generator of {V(t)}, resulting in the

tridiagonal matrix of operators

B =

2

666664

B�1,�1 B�1,0

B0,�1 B0,0 B0,1

B1,0 B1,1 . . .
. . . . . . BK,K+1

BK+1,K BK+1,K+1

3

777775
,

where the blocks Bk` =
⇥
Bk`
ij

⇤
i,j2S

, k, ` 2 K.¶ The tridiagonal structure arises since, for

|k�`| � 2 it is impossible for {X(t)} to move from Dk,i to D`,j in an infinitesimal amount
of time.

¶We use a blackboard bold font with an overline above the character (e.g. B and V(t)) to represent
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By an appropriate choice of the intervals {Dk,i}, the partition used in Bean & O’Reilly
(2014) can be recovered. Intuitively, we must ensure that each of the boundaries of
Fm

i , i 2 S, m 2 {+,�, 0}, align with a boundary of a cell Dk,i. Then, each set Fm
i , i 2

S, m 2 {+,�, 0}, can be written as a union of cells, Dk,i, k 2 K, sans a collection of
points which have measure zero for all measures in M0,b, and this collection of points is
inconsequential for the purposes of the approximations presented here.

Formally, to recover the partition used in (Bean & O’Reilly 2014) we choose the
intervals Dk,i such that l(Dk,i \ Fm

i ) 2 {l(Dk,i), 0} for all i 2 S, m 2 {+,�, 0}, k 2 K,
for all l 2 M0,b. That is, we choose Dk,i such that it is contained, up to sets of measure
0 with respect to measures in M0,b, within one of the sets Fm

i for m 2 {+,�, 0} and
i 2 S. We assume such a partition for the rest of the thesis. For i 2 S, m 2 {+,�, 0},
let Km

i = {k 2 K | l(Dk,i \ Fm
i ) = l(Dk,i), l 2 M0}, so that

S
k2Km

i

Dk,i and Fm
i are equal

up to a set of M0,b-measure 0. Define Km =
S
i2S

Km
i , m 2 {+,�, 0}.

To recover the partition defined by (2.19) we bundle together the elements of V(t)
which correspond to Fm

i and Fn
j . That is, for m,n 2 {+,�, 0}, define Vmn

ij (t) as the
matrix of operators

Vmn
ij (t) =

⇥
Vk`
ij (t)

⇤
k2Km

i ,`2Kn
j
.

The same construction can be achieved with B.
Let S+

k = {i 2 S | ri(x) > 0, 8x 2 Dk,i}, S0
k = {i 2 S | ri(x) = 0, 8x 2 Dk,i},

S�

k = {i 2 S | ri(x) < 0, 8x 2 Dk,i}, S•

k = {i 2 S | ri(x) 6= 0, 8x 2 Dk,i} for k 2 K�. For
later reference, we need the following constructions. For k, ` 2 K let

Bk` =
⇥
Bk`
ij

⇤
i,j2S

, (2.22)

for i, j 2 S let

Bij =
⇥
Bk`
ij

⇤
k,`2K

, (2.23)

and for m,n 2 {+,�, 0} let

Bmn =
h⇥

Bk`
ij

⇤
i2Sm

k ,j2Sn
`

i

k2Km,`2Kn
, (2.24)

theoretical operators derived in (Bean & O’Reilly 2014) which are constructed using the partition in
(2.19). The operators denoted with an overline play a minor role in the introductory sections of this
thesis, but do not appear again. We use a blackboard font sans overline (e.g. V(t) and B) to represent
the same operators but which are constructed with the finer partition defined by Dk, k 2 K. We use the
letters i, j 2 S to represent states of the phase process, letters m,n,2 {+,�, 0} to refer to the partition
in terms of the sets in Equations (2.19), and the letters k, ` 2 K to refer to the finer partition into sets
{Dk}k. With a slight abuse of notation, whenever we use the dummy variables k, ` without qualification
we imply k, ` 2 K, the dummy variables without qualificationm,n implym,n 2 {+,�, 0} and the dummy
variables i, j without qualification imply i, j 2 S. E.g. Bk`

ij means Bk`
ij , i, j 2 S, k, ` 2 K and Bmn

ij means
Bmn
ij , i, j 2 S,m, n 2 {+,�, 0}.
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Bkn =
h⇥

Bk`
ij

⇤
i2Sm

k ,j2Sn
`

i

`2Kn
for k 2 K, (2.25)

Bm` =
h⇥

Bk`
ij

⇤
i2Sm

k ,j2Sn
`

i

k2Km
for ` 2 K. (2.26)

We persist with the partition Dk,i, k 2 K throughout as this is consistent with the par-
tition used in the approximation schemes considered in this thesis. Note that for all the
operators defined with this partition, the partitioning used in (Bean & O’Reilly 2014) can
always be recovered by the above construction.

Definition of B

When vk is di↵erentiable we can write µk,iBk`
ij (E) in kernel form as

Z

x2Dk,i,y2E

dµk,i(x)Bk`
ij (x, dy).

It is known that

µk,iBkk
ij ( dy) =

Z

x2Dk,i

dµk,i(x)Bkk
ij (x, dy) =

8
<

:

vk,i(y)Tij dy, i 6= j,

vk,i(y)Tii dy � ci
d

dy
vk,i(y) dy, i = j,

(2.27)

on the interior of Dk,i, k 2 K�, (Karandikar & Kulkarni 1995). Intuitively, vk,i(y)Tij dy
represents the instantaneous rate of transition from phase i to j in the infinitesimal interval

dy, vk,i(y)Tii dy represents no such transition occurring, and �ci
d

dy
vk,i(y) dy represents

the drift across the interval dy when the phase is i.
Translating the results of Bean & O’Reilly (2014) to use the partition {Dk,i} we may

state that, for all i, j 2 S, i 6= j, k 2 {1, . . . , K � 1},

µk,iBkk
ij (Dk,i) =

Z

x2Dk,i

vk,i(x)Tij dx,

µk,iBkk
ii (Dk,i) =

Z

x2Dk,i

vk,i(x)Tii dx� civk,i(y
�

k+1)1(ci > 0) + civk,i(y
+
k )1(ci < 0),

where 1(·) is the indicator function and x+ and x� denote the right and left limits at
x. Intuitively, the first expression represents the instantaneous rate of the stochastic
transitions of the phase process {'(t)} from i to j while {X(t)} remains in Dk,i. The
first term in the second expression represents the net rate of transition out of phase i
while {X(t)} remains in Dk,i, while the second and third terms in the second expression
represent the flux out of the right-hand edge of Dk,i when ci > 0 and the flux out of the
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left-hand edge of Dk,i when ci < 0, respectively. Essentially, this is just a rewriting of
(2.27) as an integral equation and including the boundary conditions.

The results of Bean & O’Reilly (2014) also imply that,

µk,iB
k,k+1
ii (Dk+1,i) = civk,i(y

�

k+1)1(ci > 0), for all i 2 S, k 2 {0, 1, 2, ..., K � 1},
µk,iB

k,k�1
ii (Dk�1,i) = �civk,i(y

+
k )1(ci < 0), for all i 2 S, k 2 {1, 2, 3, ..., K}.

Intuitively, the first equation represents the flux from Dk,i to Dk+1,i across the shared
boundary at yk+1 which occurs when ci > 0 only. The second expression represents the
flux from Dk,i to Dk�1,i across the shared boundary at yk which occurs when ci < 0 only.

At the boundary x = 0, the rate at which point masses move between phases is

µ�1,iB
�1,�1
ii = µ�1,i({0})Tii, if ci  0,

µ�1,iB
�1,�1
ij = µ�1,i({0})Tij, if ci  0, cj  0.

The rate at which point mass leaves the boundary is

µ�1,iB
�1,0
ij = µ�1,i({0})Tij, if ci  0, cj > 0.

The rate at which point masses accumulate at the boundary is

µ0,iB
0,�1
ij = �ciqpijv0,i(0+), if ci < 0, cj  0.

In D0,i, if ci < 0 and cj > 0 the phase changes from i to j either from a stochastic jump at
rate Tij, or from {X(t)} hitting the boundary in phase i and transitioning with probability
qpij to phase j, hence

µ0,iB
0,0
ij (D0,i) =

Z

x2D0,i

v0,i(x)Tij dx� civ0,i(0
+)qpij.

Also in D0,i, if i 6= j and ci � 0 or i 6= j, ci < 0 and cj  0, the phase changes from i to j
while {X(t)} remains in D0,i at rate

µ0,iB
0,0
ij (D0,i) =

Z

x2D0,i

v0,i(x)Tij dx,

else, {(X(t),'(t))} leaves (D0,i) at rate

µ0,iB
0,0
ii (D0,i) =

Z

x2D0,i

v0,i(x)Tii dx� civ0,i(y
�

1 )1(ci > 0) + civ0,i(0
+)1(ci < 0).

Similarly, at the boundary x = b, the rate at which point masses move between phases
is

µK+1,iB
K+1,K+1
ii = µK+1,i({0})Tii, if ci � 0,
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µK+1,iB
K+1,K+1
ij = µK+1,i({0})Tij, if ci � 0, cj � 0.

The rate at which point mass leaves the boundary is

µK+1,iB
K+1,K
ij = µK+1,i({0})Tij, if ci � 0, cj < 0.

The rate at which point masses accumulate at the boundary is

µK,iB
K,K+1
ij = cibpijvK,i(0

+), if ci > 0, cj � 0.

In DK,i, if ci > 0 and cj < 0 the phase changes from i to j either from a stochastic
jump at rate Tij, or from {X(t)} hitting the boundary in phase i and transitioning with
probability bpij to phase j,

µK,iB
K,K
ij (DK,i) =

Z

x2DK,i

vK,i(x)Tij dx+ civK,i(b
�)bpij, ci > 0, cj < 0.

If i 6= j and ci  0 or i 6= j, ci > 0 and cj � 0, the phase changes from i to j within DK,i

at rate

µK,iB
K,K
ij (DK,i) =

Z

x2DK,i

vK,i(x)Tij dx,

else, {(X(t),'(t))} leaves (DK,i, i) at rate

µK,iB
K,K
ii (DK,i) =

Z

x2DK,i

vK,i(x)Tii dx+ civK,i(y
+
K)1(ci < 0)� civK,i(b

�)1(ci > 0).

Otherwise, µk,iBk`
ij = 0.

Note that we have not presented B in its full detail here and refer the reader to
(Bean & O’Reilly 2014) for the details. The main goal here is to show how B is used
to construct the limiting distribution of the fluid-fluid queue and to illustrate the link
between the operator B and the approximations of the same object. As we shall see later,
these expressions closely resemble the approximations to the same quantities.

2.4.2 The infinitesimal generator, D, of an in-out process

Let �(t) =
R t

0

��r'(z)(X(z))
�� dz be the total unregulated amount of fluid that has flowed

into or out of the second bu↵er during [0, t], and let ⌘(w) = inf{t > 0 : �(t) = w} be
the first time this accumulated in-out amount hits level w. Note that at the stopping
time ⌘(w) it must be that (X(⌘(w)),'(⌘(w))) 2 (Fm

i , i) for some i 2 S and m 2 {+,�},
i.e. m 6= 0. We define the operators Uk`

ij (w, s) : M0,b(Dk,i \ Fm
i ) 7! M0,b(D`,j \ Fn

j ), for
k 2 K+ [K�, ` 2 K+ [K�, and i 2 S•

k , j 2 S•

` , by

µk,iUk`
ij (w, s)(E)
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=

Z

x2Dk,i

dµk,i(x)E
⇥
e�s⌘(w)1 {X(⌘(w)) 2 E \D`,j, '(⌘(w)) = j} | '(0) = i, X(0) = x

⇤
.

Then, construct the matrix of operators

U(w, s) =
⇥
[Uk`

ij (w, s)]i2S•
k ,j2S

•
`

⇤
k,`2K+[K� .

The matrix of operators D(s) is the infinitesimal generator of the semigroup {U(w, s)}w�0

defined by

D(s) =
d

dw
U(w, s)|w=0,

whenever this limit exists.
Recalling the constructions in Equations (2.22)-(2.26) and using Lemma 4 of Bean &

O’Reilly (2014) gives the following expression for D(s).

Lemma 2.1. For w � 0, s 2 C with Re(s) � 0, i, j 2 S, k 2 K+
i [K�

i , ` 2 K+
j [K�

j ,

Dk`
ij (s) = [Rk(Bk` � sI + Bk0(sI � B00)�1B0`)]ij,

where I is the identity operator, and Rk = diag(Rk
i , i 2 S) is a diagonal matrix of operators

Rk
i given by

µk,iRk
i (E) =

Z

x2E\Dk,i

1

|ri(x)|
dµk,i(x), k 2 K+

i [K�

i .

Also, construct the matrices of operators

Dmn =
h⇥

Dk`
ij

⇤
i2Sm

k ,j2Sn
k

i

k2Km,`2Kn
.

2.4.3 The first-return operator,  (s)

We denote by  (s) the matrix of operators with the same dimensions as D+�, recording
the Laplace-Stieltjes transforms of the time for {Ẇ (t)} to return, for the first time, to the
initial level of zero as introduced in Bean & O’Reilly (2014) but constructed with respect
to the finer partition {Dk,i}. Define the stopping time ⇣W (E) = inf{t > 0 : Ẇ (t) 2 E}
to be the first time {Ẇ (t)} hits the set E, then each component  k`

ij (s) : M0,b(Dk,i) 7!
M0,b(D`,j), i, j 2 S, k 2 K+

i and ` 2 K�

j , is given by

µk,i k`
ij (s)(E)

=

Z

x2Dk,i

dµk,i(x)E
⇥
e�s⇣W ({0})1 (X(⇣W ({0})) 2 E \D`,j, '(⇣W ({0})) = j) | X(0) = x,

Ẇ (0) = 0,'(0) = i
⇤
.

Bean & O’Reilly (2014) Theorem 1 provides the following result which characterises  (s).
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Theorem 2.2. For Re(s) � 0,  (s) satisfies the equation:

D+�(s) +  (s)D�+(s) (s) + D++(s) (s) +  (s)D��(s) = 0.

Furthermore, if s is real then  (s) is the minimal non-negative solution.

2.4.4 Limiting Distribution

Let  =  (0). We define ⇣nW ({0}) = inf{t � ⇣n�1
W ({0}) : Ẇ (t) = 0}, for n � 2, to be

the sequence of hitting times to level 0 of Ẇ (t), with ⇣1W ({0}) := ⇣W ({0}). Consider
the discrete-time Markov process {X(⇣nW ({0})),'(⇣nW ({0}))}n�1, and for i 2 S, k 2 K�

i

define the measures ⇠k,i given by

⇠k,i(E) = lim
n!1

P (X(⇣nW ({0})) 2 E \Dk,i,'(⇣
n
W ({0})) = i) .

By Bean & O’Reilly (2014), the vector of measures ⇠ = (⇠k,i)i2S�
k ,k2K� satisfies the set of

equations

⇥
⇠ 0

⇤✓
�


B�� B�0

B0� B00

�◆�1  B�+

B0+

�
 = ⇠, (2.28)

X

k2K�

X

i2S�
k

⇠k,i(F�

i ) = 1. (2.29)

We reproduce Theorem 2 of Bean & O’Reilly (2014) below, which gives the joint
limiting distribution of {(Ẇ (t), X(t),'(t))}. Recall that the joint limiting density op-
erator ⇡(w) = (⇡i(w))i2S for {(Ẇ (t), X(t),'(t))} and the joint limiting mass operator
p = (pi)i2S are defined by (2.20) and (2.21), respectively. We can partition ⇡ so that

⇡(w) =
⇥
⇡+(w) ⇡�(w) ⇡0(w)

⇤

=
h
(⇡k,i(w))i2S+

k ,k2K+ (⇡k,i(w))i2S�
k ,k2K� (⇡k,i(w))i2S0

k ,k2K
0

i
,

where

⇡k,i(w)(E) = ⇡i(w)(E \Dk,i).

Similarly, we can write

p =
⇥
p� p0

⇤
=
h
(pk,i)i2S�

k ,k2K� (pk,i)i2S0
k ,k2K

0

i
,

where pk,i(E) = pi(E \Dk,i).



28 Chapter 2. The existing literature & mathematical preliminaries

Theorem 2.3. The operator ⇡m(w), for m 2 {+,�, 0} and w > 0, and the probability
mass pm, for m 2 {�, 0}, satisfy the set of equations:

⇡0(w) =
⇥
⇡+(w) ⇡�(w)

⇤  B+0

B�0

� �
�B00

��1
, (2.30)

⇥
⇡+(w) ⇡�(w)

⇤
=
⇥
p� p0

⇤  B�+

B0+

� ⇥
eKw eKw 

⇤  R+ 0
0 R�

�
, (2.31)

⇥
p� p0

⇤
= z

⇥
⇠ 0

⇤✓
�


B�� B�0

B0� B00

�◆�1

, (2.32)

X

m2{+,�,0}

X

i2S

Z
1

w=0

⇡mi (w)(Fm
i ) dw +

X

m2{�,0}

X

i2S

pm
i (Fm

i ) = 1, (2.33)

where K = D++(0) +  D(�+)(0) and z is a normalising constant.

At this point we reiterate that Equations (2.30)-(2.33) are operator equations and are
only amenable to numerical evaluation in the simplest of cases. Sources of this intractabil-
ity come from, for example, the need to find the inverse operator (�B00)�1, and the need
to find the solution,  (s), of the operator equation in Theorem 2.2. There is also the
complexity of the partition of the operators defined by the sets Fm

i , i 2 S, m 2 {+,�, 0}.
Therefore, there is the need for approximation schemes such as those presented in this
thesis.

2.5 Discontinuous Galerkin

The discontinuous Galerkin (DG) method is a general methodology for numerically ap-
proximating solutions to di↵erential equations. The discontinuous Galerkin method is
a finite-element method which approximates di↵erential operators by finite dimensional
matrices. In this thesis we use the discontinuous Galerkin method to approximate the
infinitesimal generator of a fluid queue. Here, we give a very brief introduction to dis-
continuous Galerkin methods in general and refer the reader to Chapter 3 for details on
the application to fluid queues, and to Hesthaven & Warburton (2007) for more details
on the method in general.

Intuitively, the DG method works by first partitioning the spatial domain into cells,
on each cell a basis of (typically polynomial) functions is defined, then the di↵erential
equation is projected onto the basis of polynomials. Thus, the di↵erential equation is
discretised it two ways, by the partition of the state space into cells, then by the projection
onto a finite dimensional basis. Linking the cells together essentially amounts to defining
boundary conditions for each cell. To form the boundary condition for cells adjacent
to the boundary we take the boundary condition defined by the problem we are solving
and discretise it by projecting it onto a set of basis functions. For cells in the interior
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the boundary condition is defined by the solutions on adjacent cells. In the context of
conservation laws (which is what we solve in this thesis), the boundary conditions on
each cell are known as the flux, as they describe the rate, with respect to time, that the
conserved quantity flows across the boundaries of the cells. The flux is discretised and is
known as the numerical flux.

Typically, polynomial functions are used as the basis for the DG method. The main
choices to make in defining the scheme are the grid which defines the cells, the order of
the polynomial basis, and the choice of numerical flux.

Hesthaven & Warburton (2007) claim that the first discontinuous Galerkin finite el-
ement scheme was developed in Reed & Hill (1973) where they use the method to solve
the first order di↵erential equation

�u+r · (au) = f,

in a 2-dimensional spatial domain, where � is a constant, a is a piecewise constant function,
and u is the unknown. The literature has since expanded and includes (but is not limited
to) theory on the convergence rate of the scheme, the choice of numerical flux used (we
will define this later), the choice of spatial discretisation used, and applications to a range
of other problems including higher-order di↵erential equations and to partial di↵erential
equations (PDEs) such as non-linear conservation law. The PDE which describes the
evolution of the distribution of a fluid queue is a conservation law as probability must be
conserved.

In one dimension, linear conservation laws take the form

@u(x, t)

@t
�

@

@x
(c(t)u(x, t)) = 0, x 2 ⌦, (2.34)

u(x, t) = g(x, t), x 2 @⌦ (boundary condition)

u(x, 0) = f(x). (initial condition)

where ⌦ is the region of interest and @⌦ its boundary. Here u is the conserved quantity,
which we will refer to as mass, but it could be any conserved quantity.

To solve conservation laws with the DG method the spatial domain ⌦ is partitioned
into cells (intervals) Dk = [yk, yk+1], k = 0, ..., K � 1. For each cell Dk we choose pk
linearly independent functions {�r

k}
pk
r=1, compactly supported on Dk (i.e. �r

k(x) = 0 for
x /2 Dk). Typically, we take �r

k(x) to be a basis of polynomial functions. The functions
{�r

k}
pk
r=1 span some function space, Uk say, and further form a basis for this space. It is

convenient in this work to take {�r
k}

pk
r=1 as a basis of Lagrange interpolating polynomials

defined by the Gauss-Lobatto quadrature points (Hesthaven & Warburton 2007) (see also
Section A.4). For the sake of illustration, the reader may think of {�r

k}
pk
r=1 as the Lagrange

polynomials. On each cell Dk we approximate

u(x, t) ⇡ uk(x, t) =
pkX

r=1

ark(t)�
r
k(x), x 2 Dk,
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where ark(t) are yet-to-be-determined time-dependent coe�cients. The approximation uk

is referred to as the local approximation on cell k, while the global approximation is given

by
K�1P
k=0

uk on the whole domain ⌦. The whole approximation space is
L
k2Z

Uk, the direct

sum of the spaces Uk, k 2 {0, ..., K � 1}.
Now, consider multiplying (2.34) by the row vector �k(x) = (�1

k(x), ...,�
pk
k (x)) and

integrating by parts over Dk,
Z

x2Dk

@u(x, t)

@t
�k(x) dx+

Z

x2Dk

c(t)u(x, t)
@

@x
�k(x) dx� c(t)[u(x, t)�k(x)]

yk+1
x=yk

= 0.

(2.35)

The term �c(t)[u(x, t)�k(x)]
yk+1
x=yk is known as the flux, and it describes the rate at which

mass flows into and out of the cell Dk. The flux is essentially a boundary condition on
the cell Dk and is specified by the value of the solution on the adjoining cells. When
c(t) is positive (negative) then mass flows into (out of) cell Dk at the left-hand boundary,
and out of (into) cell Dk at the right-hand boundary. Suppose that c(t) is positive.
When u is continuous, then u(y�k , t) = u(yk, t), where y� is the left limit at y, hence
the flux into cell Dk in Equation (2.34) is c(t)u(y�k , t)�k(yk). The flux out of cell Dk is
c(t)u(y�k+1, t)�k(yk+1). Using this, rewrite (2.35)

Z

x2Dk

@u(x, t)

@t
�k(x) dx+

Z

x2Dk

c(t)u(x, t)
@

@x
�k(x) dx

� c(t)[u(y�k+1, t)�k(yk+1)� u(y�k , t)�k(yk)] = 0. (2.36)

We can proceed analogously when c(t) is negative.
Upon substituting the approximations uk and uk�1 into (2.36)

Z

x2Dk

@ak(t)

@t
�k(x)

0
�k(x) dx+

Z

x2Dk

c(t)ak(t)�k(x)
0
@

@x
�k(x) dx

� c(t)[ak(t)�k(y
�

k+1)
0
�k(yk+1)� ak�1(t)�k�1(y

�

k )
0
�k(yk)].

=
dak(t)

dt
Mk + c(t)ak(t)Gk � c(t)[ak(t)F

k,k � ak�1(t)F
k�1,k]

= 0, (2.37)

where

Mk =

Z

x2Dk

�k(x)
0
�k(x) dx, Gk =

Z

x2Dk

�k(x)
0
d

dx
�k(x) dx,

F
k,k = �k(y

�

k+1)
0
�k(yk+1), F

k�1,k = �k�1(y
�

k )
0
�k(yk),

and are known as the mass, sti↵ness and flux matrices. Thus, the approximation has
reduced the problem to a system of ordinary di↵erential equations. One can determine
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the coe�cients ak(t), k = 0, ..., K�1, from the initial condition ak(0), k = 0, ..., K�1, and
integrating over time, perhaps numerically. The initial coe�cients ak(0), k = 0, ..., K�1,
can be found by projecting the initial condition onto the basis of polynomial functions,
{�r

k}k,r.
One subtlety is the choice of numerical flux. We arrived at the numerical flux above

using a continuity argument. However, the approximate solution
PK�1

k=0 uk(x, t) is discon-
tinuous at the points yk. It turns out that the choice of numerical flux is not unique and
there are range of values we may choose from. The numerical flux above is known as the
upwind flux – we use it throughout this thesis and do not explore others.

Other choices we have made to define our discontinuous Galerkin scheme are the basis
functions used and the cell geometries. We refer the reader to (Hesthaven & Warburton
2007) and reference therein for more details.

Typically, DG schemes are used to solve physical problems in 2 or 3 dimensions. The
cell geometries become more complex in higher dimensions and this complicates matters
somewhat, but the underlying principles and intuition is the same. In this thesis we solve
problems with one spatial dimension only.

Two properties which make the DG scheme a natural choice to solve the problem
present in this thesis are: high-order accuracy enabled by the use of basis functions to
model the solution on each cell, and the cell-based structure of the method with cells
related to each other at cell edges only and only to neighbouring cells. Finite di↵erence
methods can achieve high-order accuracy, however they are not cell-based, which makes
them not a natural choice to solve the fluid-fluid queue problems in this thesis. Finite
volume methods are cell-based, but do not have the same high-order accuracy as the DG
method. Further, approximating flux terms with greater accuracy in the finite volume
method can introduce dependencies between cells which are not neighbours and this
creates di�culties when partitioning the approximate operator which we need to do for
our application to fluid-fluid queues.

2.5.1 Time-integration schemes

In this thesis we numerically integrate ODEs of the form

d

dt
a(t) = a(t)Q (2.38)

where a(t) is a vector of coe�cients and Q a matrix, given an initial condition a(0). To
do so, we employ the strong stability preserving Runge-Kutta (SSPRK) scheme of order
4 with 5 stages (Spiteri & Ruuth 2002). SSPRK methods are a family of Runge-Kutta
methods which, to quote Section 5.7 of Hesthaven & Warburton (2007), “...can be used
with advantage for problems with strong shocks and discontinuities, as they guarantee
that no additional oscillations are introduced as part of the time-integration process.”
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In our context, the SSPRK method with s stages has the form

v
(0) = a(t),

v
(`) =

`�1X

k=0

↵`kv
(k) + h�`kv

(k)
Q, ` = 1, . . . , s,

a(t+ h) = v
(s),

where ↵`k and �`k are coe�cients which define the scheme and h is the t-step size. To en-
sure the stability-preserving property the coe�cients ↵`k and �`k are chosen to be positive
so that v

(s) is a convex combination of forward-Euler steps. Moreover, the coe�cients
↵`k and �`k are optimised so that the allowable t-step size is as large as possible. The
maximum allowable t-step size is hRK , and we require

hRK  min
`k

↵`k
�`k

hE,

where hE is the maximum allowable t-step size for the forward-Euler scheme.
The t-step size needs to be chosen to be su�ciently small so that the time integration

is stable. Here, for an order p DG scheme we choose the time step to be less than

max
i2S

|ci| min
r22,...,p+1

(zr � zr�1)
mink�k

2

where zr�1  zr, z1 = �1, zp+1 = 1 and zr, r = 2, ..., p, are the p � 1 zeros of the first
derivative of Pp(x), the order p Legendre polynomial. This follows advice from Hesthaven
& Warburton (2007).

2.5.2 Slope limiters

A well-know problem with DG schemes is that, in the presence of steep gradients or dis-
continuities, spurious oscillations in the approximate solution can occur and positivity is
not guaranteed (see Hesthaven & Warburton (2007) Section 5.6, and Koltai (2011) Sec-
tion 3.3, for example). To rectify this, in some contexts, slope limiting can be used (see
Cockburn (1999), or Hesthaven &Warburton (2007), Section 5.6.2 and references therein).
Slope limiting alters the DG approximation in regions where oscillations are detected to
ensure the approximate solution is non-oscillatory. It does so by reducing the order of
the approximation to linear and then limiting the gradient of the approximation in these
regions. However, limiting does not distinguish between natural oscillations, which are a
fundamental feature of the solution, and spurious oscillations, which are caused by the
approximation scheme. As a result, the limiter may unnecessarily reduce the accuracy of
the scheme in the presence of natural oscillations (see (Hesthaven & Warburton 2007), Ex-
ample 5.8). Furthermore, slope limiting adds an extra computational cost on top of the
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approximation scheme and means that the resultant approximation to certain operators
are no longer linear. This is of consequence in our application to fluid-fluid queues where
we approximate an operator-Riccati equation by a matrix-Riccati equation, which is only
possible when the approximate operators are matrices.

We now describe a simple slope limiter known as the Generalised MUSCL scheme
(Cockburn 1999) (see also (Hesthaven & Warburton 2007), Section 5.6.1). Define the
minmod function

m(a1, a2, a3) =

(
smini2{1,2,3} |ai|, |s| = 1,

0, otherwise,

where s =
1

3

3P
i=1

sign(ai). When all three arguments, a1, a2 and a3 have the same sign,

the minmod function returns the smallest of the three arguments with the correct sign,
otherwise the signs of the three arguments di↵er and the minmod function returns zero.
In the context of DG the three arguments a1, a2 and a3 are the estimates of the average
gradient of the approximate solution near a given cell. When the signs of a1, a2 and a3
di↵er, this suggests an oscillation in the approximate solution.

Now, define uk as the average value of the approximate solution on cell k, then the
slope limited solution on cell k is the linear approximant

⇧lim
k (uk) = uk + (x� yk)m

 
⇧1
@xuk,

uk+1 � uk

�k
,
uk � uk�1

�k

!
,

where ⇧1
@xuk is the slope of the linear projection of uk on cell k and yk = (yk + yk+1)/2 is

the centre of the kth cell.
In non-oscillatory regions of the solution the slope limiter is unnecessary and reduces

accuracy, so we only apply the limiter to cells k where oscillations are detected. To
determine which cells need limiting we compute

vLk = uk �m(uk � uL
k , uk � uk�1, uk+1 � uk),

vRk = uk +m(uk � uR
k , uk � uk�1, uk+1 � uk),

where uL
k and uR

k are the values of the approximate solution on cell k evaluated at the
left-hand and right-hand edges of the cell. We apply the slope limiter to cell k if vLk 6= uL

k

or vRk 6= uR
k , otherwise the approximation on cell k is left unaltered.

2.5.3 Slope limiters and time integration

To use slope limiters within the SSPRK scheme we first project the initial condition on
to U , the set of polynomial basis functions, and apply the slope limiter to the projection



34 Chapter 2. The existing literature & mathematical preliminaries

to determine the initial coe�cients a(0). To find the coe�cients for the approximate
solution to the transient distribution at time t0 we take the (limited) initial condition
a(0) and evolve it forward in time until t0 via numerical integration of the di↵erential
equation (2.38). At each stage of the time-integration we apply the slope limiter, i.e. the
scheme above with a slope limiter is

v
(0) = a(t),

v
(`) = ⇧lim

 
`�1X

k=0

↵`kv
(k) + h�`kv

(k)
Q

!
, ` = 1, . . . , s,

a(t+ h) = v
(s),

where ⇧lim is the slope limiter function which determines on which cells the solution needs
limiting, and if so, applies the limiter ⇧lim

k .
We refer to this (vanilla) application of a limiter to the DG scheme as the DG-lim

scheme.

Consequences of slope limiting We have already mentioned that the Generalised
MUSCL slope limiter reduces the order to linear in regions where oscillatory solutions are
detected. When slope limiting is used in conjunction with a time-integration scheme the
reduction in order may not be local in time and may persist past the time when the limiter
first detected oscillations. For example, consider a problem with an initial condition which
introduces oscillations into the numerical approximation. If the slope limiter is applied
to the initial condition then, in the region around the oscillations, the approximation to
the initial condition will be linear. Even if the slope limiter is not applied (or not needed)
after this point, the initial condition has still been altered, perhaps significantly, from
the original approximation and this can a↵ect the accuracy of transient approximations.
This is not to say that the slope-limited-regions of the approximation will always remain
linear. When no oscillations are detected, the DG scheme can use the full power of the
high-order polynomial basis to approximate the solution, and this is one of the advantages
of generalised slope limiter described. Instead, we want to point out that once the limiter
is applied at one time point, the approximation becomes linear which will a↵ect the
accuracy at subsequent time points.

2.5.4 Another slope limiting scheme

The advantage of the approach above is that, in areas of the approximation where the
solution is smooth, then the high-order accuracy of the method can be retained, while
maintaining positivity where necessary. However, if the problem at hand is dominated
by discontinuities and/or if there are no regions of the solution of interest which are
smooth, then there is no real advantage in the approach above as the limiter will reduce
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the approximate solution to linear in all regions of interest. Hence, we may as well just
use a linear scheme and save on some computation.

Perhaps a better approach would be to use a linear scheme with a smaller cell width
such that the computational work remains approximately the same. For example, for
a DG scheme with 2p basis functions on a cell, Dk, of width �, say, we construct block
matrices of dimension 2p⇥2p (i.e. the mass, sti↵ness and flux matrices, Mk, Gk, and F

k`,
respectively) and compute the approximate solution using these matrices. Alternatively,
consider breaking the cell, Dk, up into p sub-cells of width �/p and using a DG scheme
with 2 basis functions on each sub-cell (i.e. a linear basis on each cell). On each of the p
sub-cells we construct block matrices of size 2 ⇥ 2. To approximate the solution on the
original interval Dk we form the p approximations on each sub-cell into larger matrices
which are of dimension 2p⇥2p, and then use in the same way as before. Thus, the scheme
with 2p basis functions on the cell Dk, and the scheme with a 2 basis functions on each of
the p sub-cell have approximately the same computational cost (the latter scheme results
in a sparser matrix).

If we know a priori that we will apply the slope limiter to cell Dk, then intuitively we
suspect that the latter scheme may be far more accurate; it will approximate the solution
on Dk by a piecewise linear function with p pieces, whereas the DG scheme with 2p basis
functions on cell Dk will, after limiting, represent the solution as a single linear function
on Dk.

We refer to this scheme as the DG-lin-lim scheme, as it is a linear DG scheme with a
limiter.

2.5.5 Briefly, on accuracy

The accuracy of the DG scheme for smooth problems is well-known. For example, in
(Hesthaven & Warburton 2007, Section 5.5) there is the following result.

Theorem 2.4. Consider the one-dimensional scalar conservation law

@u

@t
+
@f

@t
= g,

with x 2 ⌦.
Assume that the flux, f 2 C3, and the exact solution u is su�ciently smooth with

bounded derivatives. Let uh be a piecewise polynomial semidiscrete solution of the discon-
tinuous Galerkin approximation to the one-dimensional scalar conservation law; then

||u(t)� uh(t)||⌦,h  C(t)hN+1,

provided a regular grid of h = maxhk [and an upwind flux] is used. The constant C
depends on u, N and time t, but not on h. [Here, h is the maximum width of the cells
used, N is the order of the polynomial basis and || · ||⌦,h denotes a global ‘broken’ norm
||u||2⌦,h =

PK
k=1

R
Dk

u2 dx where Dk are the non-overlapping elements, or cells.]
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Thus, in the numerical experiments in Chapter 7, for smooth problems, we can expect
accuracy proportional to �p for the DG approximation of the solution, provided the DG
scheme uses a polynomial basis with p functions on each cell, a regular grid of� = max�k,
and a second-order SSPRK method to integrate over time (Hesthaven & Warburton 2007,
Sections 5.5, 5.8, and references therein). However, for the atypical applications of the
DG approximation in Chapter 7, such as determining the first-return operator of the
fluid-fluid queue, the author does know of any rigorous bounds on the accuracy of the
approximation. Although, it seems reasonable to expect to see similar behaviour in the
approximation errors in these cases, provided the solution is su�ciently smooth.

Recall that for the DG-lin-lim scheme in Section 2.5.4, instead of using p basis functions
on each cell, we instead use linear functions on smaller cells with width �/(p/2). Thus,
for the DG-lin-lim scheme we can expect accuracy of order (�/(p/2))2 (the exponent is
2 as the scheme uses linear functions for the approximation on each cell, and the base is
�/(p/2) as that is the reduced grid size) (Hesthaven &Warburton 2007, Sections 5.5, 5.8).

2.6 Quasi-birth-and-death processes with rational ar-
rival process components

One of the approximation schemes we develop in this thesis is based on a suitably
defined quasi-birth-and-death process with rational-arrival-process components (QBD-
RAP). QBD-RAP processes are built from matrix-exponentially distributed inter-event
times. We now introduce the class of matrix exponential distributions (see Bladt &
Nielsen (2017) for a more detailed exposition) and recount some important properties
before introducing the QBD-RAP (see Bean & Nielsen (2010) for more on QBD-RAPs).

2.6.1 Matrix exponential distributions

A random variable, Z, is said to have a matrix exponential distribution if it has a distri-
bution function of the form 1�↵eSx(�S)�1

s, where ↵ is a 1⇥ p initial vector, S a p⇥ p

matrix, and s a p⇥ 1 closing vector, and eSx =
1X

n=0

(Sx)n

n!
is the matrix exponential. The

density function of Z is given by fZ(x) = ↵eSx
s. The only restrictions on the parameters

(↵,S, s) are that ↵eSx
s be a valid density function, i.e. ↵eSx

s � 0, for all x � 0 and
limx!1 1 � ↵eSx(�S)�1

s = 1. In general there is the possibility of an atom (a point
mass) at 0, but here we do not consider this possibility.

The class of matrix exponential distributions is characterised as the class of probability

distributions which have a rational Laplace transform. That is,

Z
1

x=0

e��x↵eSx
s dx is a

ratio of two polynomial functions in �. Matrix exponential distributions are an extension
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of Phase-type distributions, where for the latter, S must be a sub-generator matrix of
a CTMC, s = �Se where e is a 1 ⇥ p vector of ones, and ↵ is a discrete probability
distribution.

A representation of a matrix exponential distribution is a triplet (↵,S, s), and we
write Z ⇠ ME(↵,S, s) to denote that Z has a matrix exponential distribution with this
representation. The order of the representation is the dimension of the square matrix
S, i.e. if S is p ⇥ p, then the representation is said to be of order p. Representations of
matrix exponential distributions are not unique (Bladt & Nielsen 2017). A representation
is called minimal when S has the smallest possible dimension. Throughout this work, we
assume that the representation of any matrix exponential distribution is minimal.

Let ei be a vector with a 1 in the ith position and zeros elsewhere. Throughout
this thesis, unless otherwise stated, we also assume that the closing vectors of matrix
exponential distributions are given by s = �Se, and that (ei,S, s) for i = 1, . . . , p are
representations of matrix exponential distributions. It is always possible to find such a
representation (Bladt & Nielsen 2017, Theorem 4.5.17, Corollary 4.5.18). As such, we
abbreviate our notation Z ⇠ ME(↵,S, s) to Z ⇠ ME(↵,S). Further, given s = �Se

then observe that

Z
1

x=0

eSx
s dx = (�S)�1

s = e.

For a given p ⇥ p matrix S, denote by A ⇢ Rp the space of all possible vectors a

such that (a,S) is a valid representation of a (possibly defective) matrix exponential
distribution.

The condition that ↵eSx
s be a valid density imposes some properties on representa-

tions (↵,S, s). However, in general there is no way to determine whether, a given triplet
(↵,S, s) is a representation of a matrix exponential distribution, or not. Nonetheless,
some properties of a triplet (↵,S, s) are known, such as the following, which is used in
the characterisation of QBD-RAPs.

Theorem 2.5 (Theorem 4.1.3, Bladt & Nielsen (2017)). The density function of a matrix
exponential distribution with representation (↵,S, s) can be expressed in terms of real-
valued constants as

 (x) =
m1X

j=1

pjX

k=1

cjk
xk�1

(k � 1)!
eµjx +

m2X

j=1

qjX

k=1

djk
xk�1

(k � 1)!
e⌘jx cos(�jx)

+
m2X

j=1

qjX

k=1

ejk
xk�1

(k � 1)!
e⌘jx sin(�jx), (2.39)

for integers m1, m2, pj, and qj and some real constants cjk, djk, ejk, µj, ⌘j, and �j. Here
µj, j = 1, . . . ,m1 are the real eigenvalues of S, while ⌘j+i�j, ⌘j�i�j, j = 1, . . . ,m2 denote
its complex eigenvalues, which come in conjugate pairs. Thus, m1+2m2 is the total number

of eigenvalues, while the dimension of the representation is given by p =
m1X

j=1

pj +2
m2X

j=1

qj.
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Theorem 2.6 (Theorem 4.1.4, Bladt & Nielsen (2017)). Consider the non-vanishing
terms of the matrix exponential density (2.39), i.e., the terms for which cjk 6= 0, djk 6= 0,
or ejk 6= 0. Among the corresponding eigenvalues �j, there is a real dominating eigenvalue
, say. That is,  is real,  � Re(�j) for all j, and the multiplicity of  is at least the
multiplicity of every other eigenvalue with real part .

Corollary 2.7 (Corollary 4.1.5, Bladt & Nielsen (2017)). If (↵,S, s) is a representation
for a matrix exponential distribution, then S has a real dominating eigenvalue.

Theorem 2.8 (Theorem 4.1.6, Bladt & Nielsen (2017)). Let Z be a matrix-exponentially
distributed random variable with density (2.39). Then the dominant real eigenvalue  of
Theorem 2.6 is strictly negative.

We define dev(S) to be the real dominating eigenvalue of S, that is dev(S) =  in
Theorem 2.6.

Concentrated matrix exponential distributions

Recently, the class of concentrated matrix exponential distributions (CMEs) has been in-
vestigated (Élteto et al. 2006, Horváth et al. 2016, Élteto et al. 2006, Horváth, Horváth
& Telek 2020, Mészáros & Telek 2021). As the name suggests, concentrated matrix ex-
ponential distributions are matrix exponential distributions with a very low coe�cient
of variation (variance relative to the mean). As the order, p, of the representation in-
creases, the variance of concentrated matrix exponential distributions decreases at rate
approximately O(1/p2). For comparison, the variance of an Erlang distribution, the most
concentrated Phase-type distribution, decreases at rate O(1/p) as the order p increases
(Aldous & Shepp 1987). In this thesis we use CMEs to approximate the distribution of
deterministic events. For a given order, concentrated matrix exponential distributions
have a much lower coe�cient of variation than any Phase-type of the same order, and
therefore a better ability to model determinism.

The class of concentrated matrix exponential distributions (CMEs) is found numeri-
cally in (Horváth, Horváth & Telek 2020) and computationally e�cient expressions for
the density and moments of CMEs are provided therein. We refer the reader to (Horváth,
Horváth & Telek 2020) for the specific parameters of CMEs.

CMEs exist for all orders, however, in our computations we use CMEs with odd orders
only. The justification for considering representations of odd orders only is that the
variance of CME distributions of orders 2p and 2p� 1 are relatively similar and therefore
have similar abilities to model deterministic events (Horváth, Horváth & Telek 2020).
Hence, when we construct our approximations (in Chapter 4) using a representation of
order 2p we expect it to perform only marginally better than an approximation constructed
with a representation of order 2p � 1. However, the computational cost of the latter is
lower, so we opt for the order 2p� 1 representation.
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From the definition of the class of CME distributions, for a given CME with odd order,
p, and representation (↵,S), the matrix S has one real eigenvalue, and p � 1 complex
eigenvalues and all eigenvalues have the same real part (Horváth, Horváth & Telek 2020).

For CMEs the vector function k(t) =
↵eSt

↵eSte
is periodic with period ⇢ = 2⇡/! where

! = mini(|=(�i)|), �i are the eigenvalues of S and =(z) is the imaginary component of
a complex number z. We leverage this fact to simplify some numerical integration in
Chapter 4.

2.6.2 QBD-RAPs

To define a QBD-RAP we first define a Marked (Batch) rational-arrival-process (BRAP),
and to define the BRAP, we first define the rational-arrival-process (RAP). As in (As-
mussen & Bladt 1999) (see also Section 10.5 of Bladt & Nielsen (2017)) let (⌦,F ,P) be a
given probability space, let N be the set of all counting measures on (0,1), let B(N )
be the Borel �-algebra of N and let M (N ) denote the set of finite signed measures on
N . Consider a point process N : ⌦! N , and denote by Y0 = 0 < Y1 < Y2 · · · the event
times of N . Let {N(t)} be the counting process associated with N such that N(t) returns
the number of events by time t, and let ✓t : N ! N be the shift operator defined by

✓tN = {N(t+ s)}s�0 = {N(s)}s�t.

Definition 2.9 (Asmussen & Bladt (1999)). We call a point process N a rational arrival
process if P(N(0,1) = 1) = 1 and there exists a finite dimensional subspace V of M (N )
such that for any t, P(✓tN 2 · | Ft) has a version µ(t, ·) with µ(t,!) 2 V for all ! 2 ⌦.

Now, to define the Batch RAP, let K ⇢ Z be a set of marks. Suppose that associated
with the nth event of N is a mark Mn. For i 2 K , let Ni be simple point processes
associated with events with marks of type i only, and let {Ni(t)}t�0 be the associated
counting processes of events of mark i.

Definition 2.10 (Bean & Nielsen (2010)). We call a marked point process, taking marks
in a countable set K , a batch rational arrival process (BRAP), if for all i 2 K ,

P(Ni(0,1) = 1) = 1

with Ni(0,1) being the total number of marks of type i on the positive half-line, and there
exists a finite dimensional subspace V of M (N ) such that, for any t, P(✓tN 2 · | Ft) has
a version µ(t, ·) with µ(t,!) 2 V for all ! 2 ⌦.

Denote by fN,n(y1,m1, y2,m2, . . . , yn,mn) the joint density, probability mass function
of the first n inter-arrival times, Y1, Y2 � Y1, . . . , Yn � Yn�1, and the associated marks
M1, ...,Mn. From Theorem 1 of Bean & Nielsen (2010) we have the following characteri-
sation of a Marked RAP (analogous to the characterisation of RAPs in Asmussen & Bladt
(1999)).
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Theorem 2.11. A process N is a Marked RAP if there exist matrices S, Di, i 2 K , and
a row vector ↵ such that dev(S) < 0, dev(S +D) = 0, (S +D)e = 0, D =

P
i2K Di,

and

fN,n(y1,m1, y2,m2, . . . , yn,mn) = ↵e
Sy1Dm1e

Sy2Dm2 . . . e
SynDmne. (2.40)

Conversely, if a point process has the property (2.40) then it is a Marked RAP.

Denote such a process N ⇠ BRAP (↵,S,Di, i 2 K ).
Also, from Bean & Nielsen (2010), associated with a Marked RAP is a row-vector-

valued orbit process, {A(t)}t�0,

A(t) =

↵

 
N(t)Q
i=1

eS(Yi�Yi�1)DMi

!
eS(t�YN(t))

↵

 
N(t)Q
i=1

eS(Yi�Yi�1)DMi

!
eS(t�YN(t))e

.

Thus, {A(t)} is a piecewise-deterministic Markov process where, in between events {A(t)}
evolves deterministically according to

A(t) =
A(Y �

N(t))e
S(t�YN(t))

A(Y �

N(t))e
S(t�YN(t))e

,

where A(Y �

N(t)) = limu!0+ A(YN(t) � u). Equivalently, {A(t)} evolves deterministically
according to di↵erential equation

d

dt
A(t) = A(t)S �A(t)Se ·A(t),

between events.
The process {A(t)} can jump at event times of N (the process does not necessarily

jump at these times, but we may still refer to it a ‘jump’ and typically the dynamics
change at this point). At time t the intensity with which {A(t)} has a jump is A(t)De,
i.e. P(N(t) = n,N(t + dt) = n + 1) = A(t)De dt. Upon an event at some time t, the
event is associated with mark i with probability A(t)Die/A(t)De. Upon on an event at
time t with mark i, the new position of the orbit is A(t) = A(t�)Di/A(t�)Die. Thus,
jumps of the orbit process are linear transformations of the orbit process immediately at
the time immediately before the jump.

A key property of Marked RAPs is that the distribution of the process, conditional
on the orbit process up to and including time t, can be expressed in terms of A(t) and
measures v1, ..., vp 2 V which form a basis for the space V ;

µ(t, ·) = P(✓tN 2 · | Ft) = A(t)v(·), (2.41)
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where v = (v1, ..., vp)0 form a basis for V .
Marked RAPs are an extension of Marked Markovian arrival processes to include

matrix exponential inter-arrival times. For Marked MAPs, the vector A(t) is a vector of
posterior probabilities of a continuous-time Markov chain.

Intuitively, A(t) encodes all the information about the event times of the Marked
RAP, and the associated marks up to time t, that is needed to determine the future
behaviour of the point process. Let Ft be the �-algebra generated by N(u), u 2 [0, t].
Then N | Ft ⌘ N | A(t) ⇠ BRAP (A(t),S,Di, i 2 K ). In words, the future of the point
process after time t given all the information about the process up to and including time
t, is distributed as a Marked RAP with initial vector A(t).

Now consider a Marked RAP, N ⇠ BRAP (↵,S,Di, i 2 {�1, 0,+1}). The process
{(L(t),A(t))}t�0 formed by letting L(t) = N+1(t) � N�1(t) is a QBD-RAP. A QBD is a
QBD-RAP where the inter-event times are Phase-type.

2.7 More on relevant literature & the context of the
thesis

In the process of introducing the technical concepts we have already covered some the
relevant literature. Here, we provide some more context for the contributions of this
thesis. The focus of this thesis is on developing numerical approximations of fluid queues
such that we may approximate the operator-analytic analysis of fluid-fluid queues form
Bean & O’Reilly (2014).

Fluid-fluid queues and related models Related to the analysis of fluid-fluid queues
are the works of Miyazawa & Zwart (2012), Latouche et al. (2013), Bean & O’Reilly
(2013b) and Bean, O’Reilly & Palmowski (2022). Miyazawa & Zwart (2012) analyse
related discrete-time multidimensional Markov additive processes and derive operator-
analytic expressions for the limiting distribution. Although markedly di↵erent in their
approach Miyazawa & Zwart (2012), like Bean & O’Reilly (2014), is inspired by a matrix-
analytic approach. The work of Latouche et al. (2013) considers a fluid-fluid queue where
the driving process {(X(t),'(t))} is level-dependent, and derives computable expressions
for the marginal probability distribution of the first level, and bounds for that of the
second level. Their analysis is somewhat specific to the data handling model considered
and only arrives at bounds for the marginal limiting distribution of the second fluid level.
In contrast, the work of Bean & O’Reilly (2014) treats more general models and derives
operator-analytic expressions for the joint limiting distribution. Therefore, compared to
Latouche et al. (2013), the methods of this thesis apply to a more general class of models
and enable to approximation of the joint limiting distribution. However, unlike Latouche
et al. (2013), the analysis of Bean & O’Reilly (2014) does not consider a level-dependent
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driving process. Bean & O’Reilly (2013b) analyse a model which is simple special case of
the fluid-fluid queue. They consider a model where the second level process {Ẇ (t)} has
constant rates which do not depend on Ẍ(t) (but do depend on '(t)), while {(Ẍ(t),'(t))}
is an unbounded fluid queue. They derive matrix-analytic expressions for certain Laplace
transforms, with respect to the position of the first fluid {X(t)} relative to its starting
position X(0), of the probability of certain transient events (such as first return and
draining/filling times) of {Ẇ (t)}. The work of Bean, O’Reilly & Palmowski (2022) treats
a similar model to that of Bean & O’Reilly (2013b), except that the driving process has
a regulated lower boundary at 0; this significantly complicates the analysis. They derive
matrix-analytic expressions for the first return operator of the second fluid given a specific
exponential form of the initial distribution and a certain boundary condition is met.

Returning now to Bean & O’Reilly (2014) which treats the most general form of the
fluid-fluid queue. Their analysis is inspired by the analysis of classical fluid queues in
Bean et al. (2005b) whereby matrix-analytic expressions for the fluid level are derived in
terms of the generator of the driving process. The driving process of a fluid-fluid queue is
a fluid queue. The analysis of Bean & O’Reilly (2014) requires specific expressions about
the transient distribution of the fluid queue which cannot, in general, be obtained from
the existing literature.

Transient analysis of fluid queues The analysis of fluid queues can be classified
broadly into three approaches, matrix-analytic methods (for example, Ahn et al. (2005),
Ahn & Ramaswami (2003, 2004), Bean et al. (2005a,b, 2009a,b), da Silva Soares (2005),
Latouche & Nguyen (2019)), di↵erential equations based approaches (such as Anick et al.
(1982), Karandikar & Kulkarni (1995), Bean, Lewis, Nguyen, O’Reilly & Sunkara (2022))
and analyses based on recurrence relations (for example, Sericola (1998), Sericola & Tu�n
(1999), Sericola (2001)). Often, it is the limiting distribution of the fluid queue which
is of interest. In the context of the analysis of fluid-fluid queues as in Bean & O’Reilly
(2014), however, we require information about the transient distribution of the fluid queue.
Specifically, on the event that the second fluid is non-decreasing (non-increasing), we need
to know the amount of fluid to have flowed into or out of the second level process, the time
(or Laplace transform of time) taken to do so, and the position of the first fluid and phase
at the time when the in-out process of the second fluid reaches a given height. Moreover,
we want the resulting expressions to be readily computable. None of the existing literature
gives exact expressions which have all the aforementioned properties. Even if we consider a
simpler model where the rates ri(x) are constant on intervals Dk, then the existing results
are not satisfactory. Perhaps the closest is the work of Bean et al. (2009b) who compute
expressions for the Laplace transform with respect to the time take for the fluid to exit an
interval, Dk, say, on the even that fluid exits in some phase j, given it started within the
interval at some point x0 and in some phase i. These expressions could perhaps be used
to analyse a fluid-fluid queue where the rates ri(x) = rk for all i 2 S, and x 2 Dk,i. Even
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with this simplified fluid-fluid queue, it is unclear how we could use these expressions to
compute the position of the second fluid.

Approximation methods which are appropriate for the application to fluid-fluid queues
have been proposed. The uniformisation method of Bean & O’Reilly (2013a) approximates
a fluid queue by a discrete-time Markov chain. Bean & O’Reilly (2013a) approximate the
fluid queue {(Ẋ(t),'(t))} by the quasi-birth-and-death-process {(L(t),'(t))}. In both
processes, {'(t)} is the same so there is no approximation in the phase process. The
level process {L(t)} approximates the level process {Ẋ(t)}. Specifically, Bean & O’Reilly
(2013a) derive the level process such that the event that L(t) = k and '(t) = i approx-
imates the event Ẋ(t) 2 Dk,i and '(t) = i, where all the levels {Dk,i}k have the same
width, � = yk+1 � yk. By considering arbitrarily small �, they prove that the distribu-
tion of the quasi-birth-and-death-process {(L(t),'(t))} can be made arbitrarily close to
the distribution of the fluid queue {(Ẋ(t),'(t))}. Replacing the driving process of the
fluid-fluid queue, {(Ẋ(t),'(t))}, by the approximation {(L(t),'(t))} and approximating
the rate functions ri(x) by constants on each interval Dk yields a classical fluid queue
which, intuitively, approximates the fluid-fluid queue. Bean & O’Reilly (2013a) numer-
ically investigate the ability of their approximation to approximate  X . To date, the
uniformisation approximation has not been applied in the context of fluid-fluid queues,
and its ability to approximate transient quantities of fluid queues (other than the afore-
mentioned investigation of  X) has not been well studied. In Chapter 7 we investigate
the numerical performance of the uniformisation approximation and show that it is ef-
fective. Of the methods considered in Chapter 7, the performance of the uniformisation
approximation is the poorest and its rate of convergence is the slowest for the numerical
experiments we conduct.

As mentioned earlier, the uniformisation approximation of Bean & O’Reilly (2013a)
is equivalent to a certain application of the discontinuous Galerkin (DG) method. DG
approximation schemes have found great success for approximating solutions of partial
di↵erential equations, however, to my knowledge, they have not been applied to fluid
queues, or fluid-fluid queue to date (except for our paper Bean, Lewis, Nguyen, O’Reilly
& Sunkara (2022), of which I am a co-author and the relevant parts of that work are
included in this thesis).
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Chapter 3

Approximating fluid queues with the
discontinuous Galerkin method

Apart from Section 3.6, this chapter has been taken from Section 4 and
5 of Bean, Lewis, Nguyen, O’Reilly & Sunkara (2022) with only minor
changes, such as notation, so that this chapter is consistent with the
rest of the thesis. I am a co-author of the paper Bean, Lewis, Nguyen,
O’Reilly & Sunkara (2022).

In this chapter we introduce the discontinuous Galerkin (DG) method applied to fluid
queues to approximate the operator-analytic expressions for fluid-fluid queues in Bean &
O’Reilly (2014).

Discontinuous Galerkin (DG) methods can be used to approximate the solutions to
systems of partial di↵erential equations (PDEs). Here we describe how one can apply the
DG method to approximate fluid queues and fluid-fluid queues. In finite-element methods
we project the partial di↵erential equations onto a set of piecewise polynomial functions.
This projection leads to a new system of equations which represent a weak form of the
original system of PDEs. Next, we approximate the flux operator which moves mass from
one cell to another. This creates a system of ordinary di↵erential equations which is
known as a semi-discrete system (discrete in the spatial variable but continuous in time).
We can solve the semi-discrete system to approximate transient distributions of the fluid
queue or, as we do in Section 3.5, we can extract and manipulate an approximation
to the generator of the fluid queue to approximate performance measures of fluid-fluid
queues. Here we construct the DG approximation to the matrix of operators B which
we use later to construct a DG approximation to D(s) then  (s), and ultimately the
limiting distribution of a stochastic fluid-fluid queue. The DG method is convenient for
approximating stochastic processes as it conserves the total probability of the system (as
shown in Corollary 3.1).

45



46 Chapter 3. Approximating fluid queues with the discontinuous Galerkin method

3.1 The partial di↵erential equation

We start by recalling the PDE (assuming the PDE exists) from which we will extract the
approximation to the generator B.

Let fi(x, t) be the joint density of an unbounded fluid queue (Ẍt,'t) (assuming a
density exists):

fi(x, t) =
@

@x
P (X(t)  x,'(t) = i) , i 2 S,

which satisfies the system of partial di↵erential equations

@

@t
fi(x, t) =

X

j2S

fj(x, t)Tji � ci
@

@x
fi(x, t), i 2 S,

subject to suitable boundary conditions. In matrix form,

@

@t
f(x, t) = f(x, t)T �

@

@x
f(x, t) bC, (3.1)

where f(x, t) = (fi(x, t))i2S is a row-vector.

3.2 Cells, test functions, and weak formulation

To begin with, consider an unbounded fluid queue with fluid level {Ẍt, t � 0}, Ẍt 2
(�1,1). Later, we will use the approximation to the generator of the fluid queue to
approximate performance measures of fluid-fluid queues, but for now, we can consider
just the driving fluid queue. We will eventually truncate the state space, Ẍt 2 (�1,1),
so that we have a finite dimensional approximation; however, this requires a discussion of
boundary conditions which we save for later. Let Dk,i = [yk, yk+1), k 2 Z for i 2 S+ [ S0

and Dk,i = (yk, yk+1], k 2 Z for i 2 S�, yk < yk+1, partition the domain (�1,1). We
call the Dk,i cells and define �k = yk+1 � yk.

For each k 2 Z we choose pk linearly independent functions {�r
k}

pk
r=1, supported on

Dk,i (i.e. �r
k(x) = 0 for x /2 Dk,i) for all i 2 S, to form a basis for the space Uk, in

which we formulate the approximation. Here, as is standard in DG methods (Hesthaven
& Warburton 2007), we take {�r

k}
pk
r=1 to be a basis for the space of polynomials of degree

pk � 1. For the sake of illustration, the reader may think of {�r
k}

pk
r=1 as the Lagrange

polynomials, but any polynomial basis can be used. On each cell Dk,i we approximate

fi(x, t) ⇡ uk,i(x, t) =
pkX

r=1

ark,i(t)�
r
k(x),



3.2. Cells, test functions, and weak formulation 47

where ark,i(t) are yet-to-be-determined time-dependent coe�cients. We refer to uk,i as the
local approximation on cell k, while the global approximation is given by

P
k2Z

uk,i on the

whole domain.
Let Nk = {1, . . . , pk} , k 2 Z. For k 2 Z, define local row-vectors

�k(x) = (�r
k(x))r2Nk

, ak,i(t) = (ark,i(t))r2Nk
, i 2 S.

Note that we will always use the letter r to index the basis function within each cell.
The DG method proceeds by first considering the weak-formulation of the PDE, which

is constructed from the strong-form of the PDE, Equation (3.1). In general, to construct
the weak-form we need a set of test functions, say U . Now, take the strong form of the
PDE, multiply it by some test function  2 U , integrate with respect to x, and apply
integration by parts to get

Z

x2R

@

@t
fj(x, t) (x) dx =

Z

x2R

X

i2S

fi(x, t)Tij (x) dx+

Z

x2R
fj(x, t)cj

d

dx
 (x) dx

� [fj(x, t)cj (x)]
x=1

x=�1
,

(3.2)

for j 2 S. It is convenient to choose U such that  (�1) =  (1) = 0, in which case the
last term on the right is zero.

For the problem at hand, we take the set of test functions to be U =
L
k2Z

Uk, the direct

sum of Uk, where Uk is the domain of the approximation on the interval Dk. Further,
we use the same basis functions for the test-function space and the approximation space.
Proceeding as described above, for all j 2 S, r 2 Nk, k 2 Z, the weak formulation is

Z yk+1

x=yk

@

@t
fj(x, t)�

r
k(x) dx =

Z yk+1

x=yk

X

i2S

fi(x, t)Tij�
r
k(x) dx+

Z yk+1

x=yk

fj(x, t)cj
d

dx
�r
k(x) dx

� [fj(x, t)cj�
r
k(x)]

x=yk+1
x=yk

,

since �r
k is compactly supported on Dk,j. Now, as any function g(x) can be decomposed

as g(x) = gU(x) + g?(x) where gU 2 U and g? 2 U?, the orthogonal complement of U .

Since g? is orthogonal to U ,

Z

x

g?(x)�r
k(x) dx = 0 for r 2 Nk, k 2 Z. Also, note that

d

dx
�r
k(x) 2 U . Using this, we can write

Z yk+1

x=yk

@

@t

�
fU
j (x, t) + f?

j (x, t)
�
�r
k(x) dx =

Z yk+1

x=yk

X

i2S

�
fU
i (x, t) + f?

i (x, t)
�
Tij�

r
k(x) dx

+

Z yk+1

x=yk

�
fU
j (x, t) + f?

j (x, t)
�
cj

d

dx
�r
k(x) dx� [fj(x, t)cj�

r
k(x)]

x=yk+1
x=yk

,
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which reduces to

Z yk+1

x=yk

@

@t
fU
j (x, t)�

r
k(x) dx =

Z yk+1

x=yk

X

i2S

fU
i (x, t)Tij�

r
k(x) dx

+

Z yk+1

x=yk

fU
j (x, t)cj

d

dx
�r
k(x) dx� [fj(x, t)cj�

r
k(x)]

x=yk+1
x=yk

.

(3.3)

Now, fU
j (x, t) 2 U so, on Dk,j, it can be expressed as uk,j(x, t) = ak,j(t)�k(x)0, where the

prime denotes the transpose, which we now substitute into (3.3) and repeat this for all
test functions �r

k(x), r = 1, ..., pk, to get the system of equations,

Z yk+1

x=yk

d

dt
ak,j(t)�k(x)

0
�k(x) dx =

Z yk+1

x=yk

X

i2S

ak,i(t)�k(x)
0Tij�k(x) dx

+

Z yk+1

x=yk

ak,j(t)�k(x)
0cj

d

dx
�k(x) dx� cj[fj(x, t)�k(x)]

x=yk+1
x=yk

, k 2 Z.

(3.4)

3.3 Mass, sti↵ness, and flux matrices

Recall, for k 2 Z, we defined local mass and sti↵ness matrices Mk and Gk by

Mk =

Z

x2Dk

�k(x)
0
�k(x) dx, Gk =

Z

x2Dk

�k(x)
0
d

dx
�k(x) dx.

We can write (3.4) as

d

dt
ak,j(t)Mk =

X

i2S

ak,i(t)MkTij + cjak,j(t)Gk � cj[fj(x, t)�k(x)]
x=yk+1
x=yk

. (3.5)

It remains to approximate the flux, fj(x, t) at the cell edges yk, k 2 Z, so that we may
evaluate the terms [fj(x, t)�r

k(x)]
x=yk+1
x=yk , r = 1, ..., pk, k 2 Z. The flux is the instantaneous

rate (with respect to time) at which density moves across the boundaries yk, k 2 Z. There
are di↵erent choices for the numerical flux, and we refer the reader to (Cockburn 1999,
Hesthaven & Warburton 2007), and references therein, for some discussion of the topic.
Here, we choose the upwind scheme, which, as we shall see, closely resembles the flux
terms from the generator B. The approximate flux, also known as the numerical flux, is
given by

f ⇤

j (x, t) = sign(cj) lim
"!0+

uj(x� "cj, t),

at each x = yk, k 2 Z. Intuitively, the upwind flux takes the value of the density
immediately on the upwind side of each yk.
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Denote by x� and x+ the left and right limits at x, respectively. Assume first cj > 0,
then

�cj[fj(x, t)�
r
k(x)]

x=yk+1
x=yk

⇡ �cj[f
⇤

j (x, t)�
r
k(x)]

x=yk+1
x=yk

= �cjf
⇤

j (yk+1, t)�
r
k(yk+1) + cjf

⇤

j (yk, t)�
r
k(yk)

= �cjuj(y
�

k+1, t)�
r
k(yk+1) + cjuj(y

�

k , t)�
r
k(yk)

= �cjuk,j(y
�

k+1, t)�
r
k(yk+1) + cjuk�1,j(y

�

k , t)�
r
k(yk)

= �cjak,j(t)�k(y
�

k+1)
0�r

k(yk+1) + cjak�1,j(t)�k�1(y
�

k )
0�r

k(yk).

In matrix form,

�cj[fj(x, t)�k(x)]
x=yk+1
x=yk

⇡ �cj[f
⇤

j (x, t)�k(x)]
x=yk+1
x=yk

= �cjak,j(t)�k(y
�

k+1)
0
�k(yk+1) + cjak�1,j(t)�k�1(y

�

k )
0
�k(yk)

= cjak,j(t)F
k,k
j + cjak�1,j(t)F

k�1,k
j ,

where, for j 2 S with cj > 0, we define F
k,k
+ = F

k,k
j = ��k(y

�

k+1)
0
�k(yk+1), k 2 Z and

F
k�1,k
j = �k�1(y

�

k )
0
�k(yk), k 2 Z.

Now proceed similarly for cj < 0 to get the approximation

�cj[fj(x, t)�k(x)]
x=yk+1
x=yk

⇡ �cj[f
⇤

j (x, t)�k(x)]
x=yk+1
x=yk

= �cjak+1,j(t)�k+1(y
+
k+1)

0
�k(yk+1) + cjak,j(t)�k(y

+
k )

0
�k(yk)

= cjak+1,j(t)F
k+1,k
j + cjak,j(t)F

k,k
j ,

where, for j 2 S with cj < 0, we define F
k+1,k
j = ��k+1(y

+
k+1)

0
�k(yk+1), k 2 Z, and

F
k,k
� = F

k,k
j = �k(y

+
k )

0
�k(yk), k 2 Z.

The matrices F
k�1,k
j , F k,k

j , and F
k+1,k
j are the local flux matrices. For convenience,

we also define the matrices F k,k+1
j = 0 for j 2 S� and F

k,k�1
j = 0 for j 2 S+, k 2 Z.

To write this out as a global system, define the row-vectors

ak(t) = (ak,i(t))i2S , a(t) = (ak(t))k2Z,

and the doubly-infinite block-tridiagonal matrix

B̈ =

2

64

. . . . . . . . .

B̈
k,k�1

B̈
k,k

B̈
k,k+1

. . . . . . . . .

3

75 ,

where, for k 2 Z,

B̈
kk =

2

666664

T11I + c1(F kk
1 +Gk)M

�1
k T12I T1NI

T21I

...
. . .

...
TN�1,NI

TN1I TN,N�1I TN,NI + cN(F kk
N +Gk)M

�1
k

3

777775
,
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B̈
k,k+1 =

2

64
c1F

k,k+1
1 M

�1
k+1

. . .

cNF
k,k+1
N M

�1
k+1

3

75 ,

B̈
k,k�1 =

2

64
c1F

k,k�1
1 M

�1
k�1

. . .

cNF
k,k�1
N M

�1
k�1

3

75 .

The global system of equations is

d

dt
a(t) = a(t)B̈. (3.6)

3.4 Boundary conditions

To enable computation, the numerical approximation has to take place on a finite interval,
which means we must consider a bounded domain and specify boundary conditions. Recall
that we wish to impose lower and upper boundaries at 0 and b, respectively. On the
interior of the space, the PDE (3.1) (assuming it exists) still describes the evolution of
the distribution of the fluid queue. Regarding the approximation, the constructions above
can still be used to approximate the evolution of the fluid queue on the interior of the
space. The imposition of boundary conditions amounts to truncating the operator B̈,
adding boundary elements to the system and describing how mass moves between the
boundary and the elements adjacent to the boundary.

Let [0, b] be the domain of the approximation, where b < 1. We partition the space
[0, b] into D�1 = {0}, DK+1 = {b}, and K non-trivial intervals, Dk,i = [yk, yk+1) \ {0}, i 2
S+ [ S0,Dk,i = (yk, yk+1] \ {0}, i 2 S�, yk < yk+1, k 2 K�, y0 = 0, yK+1 = b and define
�k = yk+1 � yk.

For states with ci  0, there is the possibility of point mass accumulating at the
boundary at 0. Denote these point masses by q�1,i(t) for i 2 S�1. For states with ci > 0
there is no possibility of a point mass at 0. Similarly, for ci � 0 there is the possibility
of a point mass at b. Denote these point masses by qK+1,i(t), for i 2 SK+1. For states
with ci < 0 there is no possibility of a point mass at b. Let q�1(t) = (q�1,i(t))i2S�1 and
qK+1(t) = (qK+1,i(t))i2SK+1 and fm(x, t) = (fi(x, t))i2Sm , m 2 {+,�, 0}.

Let us first consider the boundary at Xt = 0. The boundary conditions that describe
the evolution of probability/density of a stochastic fluid queue with a boundary at 0 are;

d

dt
q�1(t) = q�1(t)T�1,�1 + f�(0, t)C�P�,�1, (3.7)

f�(0
+, t)C�P�,+ + q�1(t)T�1,+ = f+(0, t)C+, (3.8)
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where P�,+ = [qpij]i2S�,j2S+
, P�,�1 = [qpij]i2S�,j2S�1

and qpij is the probability of instanta-
neous transition of the phase process from Phase i to Phase j upon the process hitting the
lower boundary. Equation (3.7) states that point mass moves between phases according
to the sub-generator matrix T�1,�1, and that the flux of probability density into the point
masses is f�(0, t)P�,�1C�1. Substituting the DG approximation for f�(0, t) into (3.7)
gives, for j 2 S�1,

d

dt
q�1,j(t) =

X

i2S�1

q�1,i(t)Tij �
X

i2S�

a0,i(t)�0(0
+)0qpijci.

Equation (3.8) describes the reflection of process at 0, plus the flux of probability mass to
density upon a transition from a phase in S�1 to a phase in S+. Thus, the flux into the
left-hand edge of D0,j in phase j 2 S+ is,

P
i2S�1

q�1,i(t)Tij. Therefore, we can now evaluate

� cj[fj(x, t)�0(x)]
x=y0
x=0

= �cjfj(y
�

0 , t)�0(y0) + cjfj(0
+, t)�0(0)�

X

i2S�

cifi(0
+, t)qpij�0(0)

⇡ �cjf
⇤

j (y0, t)�0(y0) +
X

i2S�1

q�1,i(t)Tij�0(0)�
X

i2S�

ciqpija0,i(t)�0(0)
0
�0(0)

= cja0,j(t)F
0,0
j +

X

i2S�1

q�1,i(t)Tij�0(0)�
X

i2S�

ciqpija0,i(t)F
0,0
j ,

for j 2 S+.
Thus, the DG approximation of the flux into point masses q�1,j(t) is

�
X

i2S�

a0,i(t)�0(0)
0p�1

ij ci, j 2 S�,

the rate of transition of point mass within q�1(t) is T�1,�1, the DG approximation of
the transition of point mass to density is

P
i2S�1

q�1,i(t)Tij�0(0), j 2 S+, and the DG

approximation to density reflected at the lower boundary is
P

i2S�
ciqpija0,i(t)F

0,0
j .

Similarly, for the upper boundary at b the boundary conditions are

d

dt
qK+1(t) = qK+1(t)TK+1,K+1 + f+(b, t)C+P+,K+1,

f+(b
�, t)C+P+,� + qK+1(t)TK+1� = f�(b, t)C�,

where P+,� = [bpij]i2S+,j2S�
, P+,K+1 = [bpij]i2S+,j2SK+1

and bpij is the probability of instan-
taneous transition of the phase process from Phase i to Phase j upon the process hitting
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the lower boundary. Using the same arguments as above,

d

dt
qK+1,j(t) =

X

i2SK+1

qK+1,i(t)Tij +
X

i2S+

aK,i(t)�K(b)
0bpijci,

�cj[fj(x, t)�K(x)]
x=b
x=yK

⇡ cjaK,j(t)F
K,K
j +

X

i2SK+1

qK+1,i(t)Tij�K(b)

�
X

i2S+

cibpija0,i(t)F
0,0
j

for j 2 S�.
Thus, the DG approximation of the flux into the point mass qK+1,j(t) is

X

i2S+

aK,i(t)�K(0)
0bpijci,

j 2 S+, the rate of transition of point mass within qK+1(t) is TK+1,K+1, the DG approxi-
mation of the transition of point mass to density is

P
i2SK+1

qK+1,i(t)Tij�K(b), j 2 S� and the

approximation to reflection of density at the upper boundary is �
P

i2S+
cibpija0,i(t)F

0,0
j .

To include the behaviour in the DG generator we truncate the doubly-infinite matrix
B̈ at k = 0 and k = K, then append |S�1| rows and columns to the top and left, and
|SK+1| rows and columns to the bottom and right. These represent the point masses
q�1(t) and qK+1(t), respectively. Given the discussion above, the truncated matrix is

B =

2

6666666664

T�1,�1 B
�1,0

B
0,�1

B
0,0

B
0,1

B
1,0

B
1,1

B
1,2

. . . . . . . . .
B

K�1,K�2
B

K�1,K�1
B

K�1,K

B
K,K�1

B
K,K

B
K,K+1

B
K+1,K

TK+1,K+1

3

7777777775

,

where

B
k,` = B̈

k,`, for k 2 K�, ` 2 {k � 1, k, k + 1}, k = `, k, ` /2 {0, K},
B

0,0 = B̈
0,0 � [ciqpij1(ci < 0, cj > 0)]i2S,j2S ⌦ F

0,0
� ,

B
K,K = B̈

K,K + [ciqpij1(ci > 0, cj < 0)]i2S,j2S ⌦ F
0,0
+ ,

B
�1,0 = T�1,+ ⌦ �0(0),

B
0,�1 = � [ciqpij1(ci < 0)]i2S,j2S�1

⌦ �0(0)0,

B
K+1,K = TK+1,� ⌦ �K(b),
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B
K,K+1 = [cibpij1(ci > 0)]i2S,j2SK+1

⌦ �K(b)0,

and ⌦ is the Kronecker product.
For future reference, we also define the matrices B

k,`
ij for k 2 {2, . . . , K � 1}, ` 2

{k � 1, k}, i, j 2 S, by

B
k,k
ij =

(
TijIpk + ci(F

k,k
i +Gk)M

�1
k i = j,

TijIpk i 6= j,

B
k,`
ij =

(
ciF

k,`
i M

�1
` i = j,

0 i 6= j,
` 2 {k � 1, k}

and

B
0,0
ij =

(
TijIpk + ci(F

0,0
i +G0)M

�1
0 i = j,

TijIpk � 1(ci < 0, cj > 0)ciqpijF 0,0
i M

�1
0 i 6= j,

B
K,K
ij =

(
TijIpk + ci(F

K,K
i +GK)M

�1
K i = j,

TijIpK + 1(ci > 0, cj < 0)cibpijFK,K
i M

�1
K i 6= j.

After the addition of the boundary conditions, the system of ODEs (3.6) can now be
written as

d

dt

⇥
q�1(t) a(t) qK+1(t)

⇤
=
⇥
q�1(t) a(t) qK+1(t)

⇤
B. (3.9)

Approximations Bmn
ij , Bij, and B

mn to Bmn
ij , Bij, and Bmn, i, j 2 S, m, n 2 {+,�, 0},

are constructed from the block-matrices Bk`
ij , i, j 2 S, k, ` 2 K, as

B
mn
ij =

⇥
B

k`
ij

⇤
k2Km

i ,`2Kn
j
, i, j 2 S, m, n 2 {+,�, 0},

Bij =
⇥
B

k`
ij

⇤
k,`2K

, i, j 2 S,

B
mn =

h⇥
B

k`
ij

⇤
i2Sm

k ,j2Sn
`

i

k2Km,`2Kn
, m, n 2 {+,�, 0}.

We prove the following result in Appendix C.

Corollary 3.1. The approximate generator B conserves probability. That is, for all
t � 0,

X

i2S�1

q�1,i(t) +
X

i2SK+1

qK+1,i(t) +
X

i2S

Z

x2[0,b]

ui(x, t) dx

=
X

i2S�1

q�1,i(0) +
X

i2SK+1

qK+1,i(0) +
X

i2S

Z

x2[0,b]

ui(x, 0) dx.
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3.5 Application to a fluid-fluid queue

Given our approximation B to the generator B we now follow the recipe from Bean &
O’Reilly (2014), replacing the actual generator B with its approximation B, to construct
approximations, ⇡ and p, to the limiting operators, ⇡ and p.

It may be convenient to think of our approximations in terms of approximations
of kernels. Recall that the operators in (Bean & O’Reilly 2014) can be thought of
in terms of kernels. That is, for some function g = (gi(x))i2S , we can write µBg0 =
X

k,`2K

X

i,j2S

Z

x,y

dµi(x)Bk`
ij (x, dy)gj(y) where Bk`

ij (x, dy) is the kernel of the operator Bk`
ij .

Let a�1(t) = q�1(t) and aK+1(t) = qK+1(t), and define basis functions ��1(x) =
�1
�1(x) = �(x) and �K+1(x) = �1

K+1(x) = �(x � b), where � is the Dirac delta, p�1 =
pK+1 = 1, and N�1 = NK+1 = {1}. Also define M�1 = I|S�1|, MK+1 = I|SK+1|

, the
block-diagonal matrix M = diag(Mk, k 2 K), and row-vectors

�(x) = (�k(x))k2K, ai(t) = (ak,i(t))k2K, i 2 S.

To pose the approximation B in kernel form let ai�(x)0 2 U, i 2 S be the initial
density of the process, and �(x)b0i 2 U, i 2 S be a test function. Observe that, from our
DG construction earlier and the definition of M ,

X

i,j2S

Z

x,y2[0,b]

ai�(x)
0
�(x) dxM�1

Bij�(y)
0
�(y)bj dy =

X

i,j2S

aiBijMbj.

Thus, we can think of
�(x)M�1

Bij�(y)
0 dy,

as an approximation to the kernel Bij(x, dy). This concept can be extended to all the
approximations of operators considered in this work.

3.5.1 Approximating the operator R

Recall the operator Rk from Lemma 2.1. Essentially, the operator Rk takes an initial
measure µk and multiplies each element by 1/|ri(x)| on cells Dk where ri(x) 6= 0. In the
context of DG the initial distribution is given by ai�(x)0 2 U, i 2 S. Thus, for k 2 K
such that ri(x) 6= 0 on Dk, we have

ak,i�k(x)
0Rk

i =
ak,i�k(x)0

|ri(x)|
.

Decompose the right-hand side into a component which lies in U and another orthogonal
to U :

ak,i�k(x)0

|ri(x)|
= ⇢k,i�k(x)

0 + g?i (x),
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where ⇢k,i�k(x)0 2 U , g?i 2 U?. Now, multiply by test functions {�r
k(x)}

pk
r=1 and integrate

over [0, b]:

ak,i

Z

x2[0,b]

�k(x)0�k(x)

|ri(x)|
dx = ⇢k,i

Z

x2[0,b]

�k(x)
0
�k(x) dx+

Z

x2[0,b]

g?i (x)�k(x) dx

= ⇢k,i

Z

x2[0,b]

�k(x)
0
�k(x) dx = ⇢k,iMk,

since gi(x)? 2 U?. Define the matrix M
r
k =

Z

x2[0,b]

�k(x)0�k(x)

|ri(x)|
dx, then ak,iM

r
k =

⇢k,iMk, which implies ⇢k,i = ak,iM
r
kM

�1
k . Thus, we have the approximation

ak,i�k(x)
0Rk

i =
ak,i�k(x)0

|ri(x)|
⇡ ak,iM

r
kM

�1
k �k(x)

0.

Since ak,i is arbitrary, we see that we approximate Rk,i by Rk,i = M
r
kM

�1
k , and Rk by

R
k = diag(Rk,i, i 2 S•

k).
In practice, we implement a Gauss-Lobatto quadrature approximation to compute the

elements of M r
k .

Remark 3.2. We could also use interpolation to approximate R.

3.5.2 Approximating the operator D and the Riccati equation

Recalling Lemma 2.1 and replacing the operators Rk and B`m, by their approximations
we have the following approximation to Dmn(s)

D
mn(s) =

h
R

m
⇣
B

mn � sI +B
m0

�
B

00 � sI
��1

B
0n
⌘i

, m, n 2 {+,�}.

Let �k(x)M
�1
k  

k`
ij (s)�`(y)

0 dy, i, j 2 S, k 2 K+
i , ` 2 K�

j be a finite-dimensional
approximation of the operator kernel  k`

ij (s)(x, dy), where  
k`
ij (s) is a matrix of constants

for a given s. Construct an approximation to  (s)(x, dy) by

�
+(x)M�1

+  (s)��(y)0 dy = �+(x)M+

h⇥
 k`

ij

⇤
i2S+

k ,j2S�
`

i

k2K+,`2K�
�

�(y)0 dy

where �+(x) = (�k(x))i2S+
k ,k2K+ and ��(y) = (�k(y))i2S�

k ,k2K� are row-vectors,  (s) is

a matrix of constants for a given s with the same size as D+�, and Mm, m 2 {+,�, 0} is
a block diagonal matrix Mm = diag (Mk, i 2 Sm

k , k 2 Km), m 2 {+,�, 0}. Now replace
the theoretical kernels in Theorem 2.2 by their DG approximations to get

�
+(x)M�1

+ D
+�(s)��(y)0 dy
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+

Z

z1,z2

�
+(x)M�1

+  (s)��(z1)
0
�

�(z1)M
�1
�

D
�+(s)�+(z2)

⇥ �+(z2)M
�1
+  (s)��(y)0 dz1 dz2 dy

+

Z

z1

�
+(x)M�1

+ D
++(s)�+(z1)

0
�

+(z1)M
�1
+  (s)��(y)0 dz1 dy

+

Z

z1

�
+(x)M�1

+  (s)��(z1)
0
�

�(z1)M
�1
�

D
��(s)��(y)0 dz1 dy = 0.

Multiplying on the left by �+(x)0 and on the right by ��(y), integrating over both x and
y, then post-multiplying by M

�1
� gives the matrix Riccati equation

D
+�(s) + (s)D�+(s) (s) +D

++(s) (s) + (s)D��(s) = 0. (3.10)

Thus, we may find (s) by solving (3.10), using one of the methods in (Bean et al. 2009a).
Here, we use Newtons method.

Remark 3.3. Given the stochastic interpretation of  (0) we know that µ+ (0)([0,1)) =
1 for every vector of measures µ

+ such that µ+([0,1)1 = 1, when a fluid-fluid queue is
recurrent. It appears that this result carries over to the matrix  (0) giving the property

that

Z

y2[0,b]

 (0)��(y)0 dy = 1. However, we have only observed this numerically and

have no proof of this property.

3.5.3 Putting it all together: constructing an approximation to
the limiting distribution

We find an approximation to the limiting distribution by replacing the theoretical opera-
tors in Theorem 2.3 with their approximations. Table 3.1 defines the notation we use for
the DG approximations to limiting operators.

With the notation in Table 3.1 define row-vectors

⇠k = (⇠k,i)i2S�
k
, k 2 K�

i ,

⇠ = (⇠k)k2K� ,

p
m
k = (pk,i)i2Sm

k
, k 2 Km, m 2 {�, 0},

p
m = (pm

k )k2Km , m 2 {�, 0},
p = (pm)m2{�,0},

⇡
k
m(y) = (⇡k,i(y))i2Sm

k
, k 2 K, m 2 {+,�, 0},

⇡
m(y) = (⇡k

m(y))k2Km , m 2 {+,�, 0},
⇡(y) = (⇡m(y))m2{+,�,0}.
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Exact Operator indices
Approximation

notation
Approximations

⇠k,i i 2 S�

k , k 2 K�
⇠k,i = (⇠rk,i)r2Nk

⇠k,i( dx) ⇡ ⇠k,i�k(x)0 dx,

pk,i

i 2 S�

k [ S0
k ,

k 2
S

m2{�,0}

Km pk,i = (prk,i)r2Nk
pk,i( dx) ⇡ pk,i�k(x)0 dx

⇡k,i(y)
i 2 S,
k 2 K ⇡k,i(y) = (⇡r

k,i(y))r2Nk
⇡k,i(y)( dx) ⇡ ⇡k,i(y)�k(x)0 dx

Table 3.1: Notation for the approximation of the limiting operators of a fluid-fluid queue.
The first column contains the operators which we are approximating, the second column
contains indices for which the operators are defined, the third column defines the notation
we use for the coe�cients of the approximation, and the last column defines how the
coe�cients and basis functions are used to approximate the operators.

Proceeding similarly to the derivation of the Riccati equation (3.10), we can argue
that the coe�cients ⇠ are the solution to the matrix system

⇥
⇠ 0

⇤✓
�

B

��
B

�0

B
0�

B
00

�◆�1 
B

�+

B
0+

�
 (0) = ⇠,

Z

x2[0,b]

⇠


�

�(x)0

�
0(x)0

�
dx1 = 1.

Essentially, we replace the theoretical operators in (2.28) and (2.29) with their DG coun-
terparts.

Similarly, the coe�cients p are given by

⇥
p
�

p
0
⇤
= Z

⇥
⇠ 0

⇤✓
�

B

��
B

�0

B
0�

B
00

�◆�1

, (3.11)

where Z is a normalising constant. The coe�cients ⇡(y) are given by

⇡
0(y) =

⇥
⇡

+(y) ⇡
�(y)

⇤  B
+0

B
�0

� �
�B

00
��1

, (3.12)

⇥
⇡

+(y) ⇡
�(y)

⇤
=
⇥
p
�

p
0
⇤  B

�+

B
0+

� ⇥
eKy eKy (0)

⇤  R
+ 0
0 R

�

�
, (3.13)

X

i2S

X

k2K

Z
1

y=0

Z

x2[0,b]

⇡k,i(y)�k(x)
0 dx dy (3.14)

+
X

i2S

X

`2{�,0}

X

k2K`
i

Z

x2[0,b]

pk,i�k(x)
0 dx = 1, (3.15)
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where K = D
++(0) + (0)D(�+)(0), and z is a normalising constant.

To assist the reader in understanding these constructions and the notation we provide
an explicitly worked toy-example in Appendix B.

3.6 Other problems we can solve with cell-based ap-
proximation schemes

The utility of the DG scheme (or any of the approximation schemes considered in this
thesis, for that matter) for fluid queues is not limited to approximating the first return
and limiting operators of fluid-fluid queues. For example, we can use a DG scheme to
approximate the transient distribution of the fluid queue at time t, which requires us
to find the coe�cients

⇥
q�1(t) a(t) qK+1(t)

⇤
, given an initial condition, typically by

numerically integrating (3.9). An approximation to the limiting distribution of the fluid
queue can be found by solving

bB = 0,

b1 = 1,

for the coe�cients b. We can also approximate first hitting times. For example, given
an initial condition on cell k, we first find the initial coe�cients ak(0), then approxi-
mate the probability that the level process first hits {yk, yk+1} after time t0 by finding
ak(0)eB

kkt0
R yk+1

yk
�k(x) dx where the coe�cients ak(t0) can be found by integrating the

di↵erential equation
d

dt
ak(t) = ak(t)B

kk,

over time.
Indeed, the DG scheme has the potential to answer many mathematical questions for

fluid queues. However, one reason DG schemes may not have found such widespread use
in the context of fluid queues is the di�culties surrounding discontinuous solutions, which
is something we often want to consider. Moreover, there are sometimes other techniques
which can give exact solutions, for example exact expressions for transient quantities are
derived in Rabehasaina & Sericola (2003), Ahn & Ramaswami (2004), Bean et al. (2005b,
2009b), and for the limiting distribution are derived in Ahn et al. (2005), da Silva Soares
(2005), Latouche et al. (2013), Sonenberg (2017). Nonetheless, the DG scheme can be
used to answer a very broad range of questions about fluid queues (such as transient
distributions, hitting times on complex geometries, and of course analysis of fluid-fluid
queues) which have no exact, readily computable solution.



Chapter 4

A stochastic modelling approach to
approximating fluid queues

One issue with the DG scheme is that discontinuities can introduce spurious oscillations
causing the approximation to take infeasible values which, in the most serious of cases, may
result in probability estimates outside the interval [0, 1]. In this chapter we develop a new
discretisation of a fluid queue using a quasi-birth-and-death process with rational arrival
process components (QBD-RAP). Due to its stochastic interpretation, the QBD-RAP dis-
cretisation ensures that all approximations to probabilities will be valid probabilities. The
QBD-RAP discretisation is inspired by the QBD of Bean & O’Reilly (2013a) which also
ensures estimates of probabilities are valid due to its stochastic interpretation. However,
the convergence of the QBD of Bean & O’Reilly (2013a) can be slow. Here we attempt
to construct a new stochastic approximation of a fluid queue which converges faster than
that of Bean & O’Reilly (2013a). In Chapters 5 and 6 we prove the scheme converges
weakly to the distribution of the fluid queue.

To improve upon the discretisation of Bean & O’Reilly (2013a), we argue that the
shift from QBD to QBD-RAP is necessary. We may view the QBD of Bean & O’Reilly
(2013a) as using Erlang distributions to approximate certain deterministic events of the
fluid queue. Specifically, the deterministic time that the fluid queue spends in an interval
on the event that the phase of the fluid queue is constant, is approximated by an Erlang
distributed time. It is well known that the Erlang distribution is the least variable distri-
bution of Phase-type (has the smallest coe�cient of variation) of a given order (Aldous &
Shepp 1987). In this sense, an Erlang distributed random variable is the best Phase-type
approximation to a deterministic event, and therefore we argue that the QBD construc-
tion of Bean & O’Reilly (2013a) is also the best possible (or at least close to). Thus, if
we are to improve upon Bean & O’Reilly (2013a) we must look past QBD processes.

Concentrated matrix exponential distributions are matrix exponential distributions
with very low variance (relative to the mean) for a given order. As the order, p, of the
representation increases the variance of the concentrated matrix exponential distributions
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decreases at rate approximately O(1/p2) (Horváth, Horváth & Telek 2020). The variance
of the most-concentrated Phase-type distribution, the Erlang distribution, decreases at
rate O(1/p) as the order p increases (Aldous & Shepp 1987). Therefore, the variance of
concentrated matrix exponential distributions decreases at a faster rate than the variance
of Phase-type distributions as order increases, and we claim that this means concentrated
matrix-exponential distributions have a superior ability to model determinism than any
Phase-type distribution. To improve upon the QBD of Bean & O’Reilly (2013a) this
chapter constructs a QBD-RAP from concentrated matrix exponential distributions. We
show in Chapters 5 and 6 that, by using a matrix exponential distribution with su�ciently
small variance in the construction of the QBD-RAP, the approximation can be made
arbitrarily accurate.

The structure of this chapter is as follows. Section 4.1 motivates the idea using the
QBD approximation of Bean & O’Reilly (2014). Sections 4.2 and 4.3 describe the mod-
elling of certain events of the fluid queue with matrix exponential distributions to ul-
timately construct the behaviour of the QBD-RAP on the event that the QBD-RAP
remains in a given level. Section 4.4 describes the dynamics of the orbit process and con-
structs the level process of the QBD-RAP. Section 4.5 models behaviour at the boundaries.
Section 4.6 describes how to model initial conditions of the fluid queue. Section 4.7 in-
troduces the concept of a closing operator which maps the state space of the QBD-RAP
to estimates of the density of the fluid queue.

4.1 Inspiration and motivation

The inspiration for the approach in the chapter stems from the QBD discretisation of
Bean & O’Reilly (2013a), which they derive via uniformisation arguments. Recall that
a QBD is a two-dimensional CTMC, {(L(t),�(t))}t�0, where {L(t)} is the discrete level
process, and {�(t)} is the phase process. In Bean & O’Reilly (2013a) the process {�(t)}
of the fluid queue and the QBD approximation are the same, thus they are able to capture
the dynamics of the phase process exactly. To approximate the level process of the fluid
queue, Bean & O’Reilly (2013a) e↵ectively discretise the state space of the fluid level into
small intervals of width �. Their approximation supposes that when L(t) = k, �(t) = i,
then X(t) ⇡ k�, '(t) = i.

The dynamics of their approximation are as follows. Let T = [Tij]i,j2S be the gen-
erator, and ci, i 2 S be the associated rates, of the fluid queue to be approximated.
When the approximating QBD is in level k > 1 and phase i, the QBD sees events at rate
|Tii|+ |ci|�. Upon an event, with probability Tij/(|Tii|+ |ci|�) a change of phase from i to
j occurs, and the approximation remains in level k; with probability |ci|�/(|Tii|+ |ci|�)
a change of level occurs, to k+1 if ci > 0, or k� 1 if ci < 0. The generator of their QBD



4.1. Inspiration and motivation 61

approximation (for an unbounded fluid queue) is

B =

2

6664

. . .
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5 . (4.1)

Bean & O’Reilly (2013a) show that when we take � ! 0, then the approximation con-
verges weakly to the fluid queue. For a given discretisation level, �, when the phase of
the QBD is i and on the event of no change of phase, the sojourn time in a given level
has an exponential distribution with rate |ci|�. The corresponding sojourn time of the
fluid queue is deterministic: given X(t) = x 2 Dk, then {X(t)} will leave Dk in exactly
((k + 1)� � x)/|ci| units of time if ci > 0, and (x � k�)/|ci| units of time if ci < 0, on
the event that the phase does not change before this time. At a first glance it may seem
that we should be able to do better than Bean & O’Reilly (2013a), which approximates
a deterministic event with an exponential random variable. However, on closer inspec-
tion it seems that this is the best we can do if we want to keep the interpretation of the
approximation as a QBD. We now elaborate on this point.

In an attempt to extend the QBD model of Bean & O’Reilly (2013a) to model this
determinism more accurately, consider using Erlang distributions of order 2 and mean �,
rather than exponential distributions with mean �, to approximate the sojourn time of
the fluid level in the intervals Dk. Skipping over the details about what happens when
there is a change of phase, we might arrive at the QBD with generator
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. . . . . . . . .
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Intuitively, the transposition of the Erlang sub-blocks,


�2� 2�
0 �2�

�
, in negative phases

relative to positive phases is due to “reversing” the progression of the jump process asso-
ciated with the Erlang variables in negative phases relative to positive phase. However,
the approximation in (4.2) and (4.3) is the same discretisation we would get if we were to
use intervals of width �/2 in the QBD approximation of Bean & O’Reilly (2013a), with
the rows/columns of the generator reordered. The same arguments show that the QBD
approximation with intervals of width �/p is equivalent constructing a QBD from Erlang
distributions of order p to approximate the behaviour of the fluid queue over the intervals
Dk. Since the Erlang distribution is the least variable Phase-type distribution, it appears
the best we can do is the QBD approximation of Bean & O’Reilly (2013a). This motivates
the extension to QBD-RAPs, whereby we can find more concentrated distributions than
any Phase-type and also retain some stochastic interpretation and matrix-analytic tools.

Recall from Section 2.6.2 that a QBD-RAP is a two-dimensional process {(L(t),A(t))}
where {L(t)} is the level and A(t) is the orbit process. In this chapter we choose
to use an equivalent, but slightly di↵erent, representation of the QBD-RAP, we write
{(L(t),A(t),�(t))}t�0, where we refer to {�(t)} as the phase process of the QBD-RAP.
Such a representation does not always exist for a QBD-RAP. However, for the specific
QBD-RAP introduced in this thesis such a representation does exist, by construction.
The advantage of this representation is that it elucidates the connection between the
phase processes of the QBD-RAP and the fluid queue. Under certain conditions we can
even show that the phase processes of the QBD-RAP and fluid queue have the same
distribution.

The construction of the approximating QBD-RAP is developed intuitively from a
stochastic modelling perspective. The key observation is that, on the event that {'(t)}
is constant {X(t)} moves deterministically. Upon discretising the state space of the level
process into intervals of width�, on the event that {'(t)} remains in the same phase, then
the distribution of time it takes for {X(t)} to leave a given interval is deterministic, given
the starting point of the fluid level. We start by modelling this deterministic behaviour
approximately by concentrated matrix exponential distributions.

Next, we argue how the orbit process {A(t)} must evolve upon a change of phase,
and then upon a change of level. It turns out that the value of orbit process A(t) can be
used to approximate how far X(t) is from the left of a given interval when the phase is
in S+, or how far from the right of the interval X(t) is when the phase is in S�. Thus,
we must determine, on the event of a transition from S+ to S� (perhaps via S0) or S� to
S+ (perhaps via S0), how must A(t) jump to retain this information about where X(t)
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is within a given interval. We also would like a way to use the orbit position, A(t), to
obtain an approximation for the density of X(t) within a given level. Answers to both
problems can be derived from the residual time of a matrix exponential random variable.

Finally, we construct a level process for the QBD-RAP and map it to a discretisation
of the level process of the fluid queue. This is similar to Bean & O’Reilly (2013a) where
the level process of their QBD corresponds a discretisation of the fluid level, however,
unlike Bean & O’Reilly (2013a), here we do not take � ! 0. Rather, we suppose that
the variance of the concentrated matrix exponential distributions we use to approximate
deterministic events gets small.

4.2 Time to exit an interval

For simplicity, first consider a fluid queue with S0 = ;. Consider partitioning the state
space of the level of a fluid queue, [0, b], into K + 1 intervals of width � = b/(K + 1),
specifically Dk,i = [k�, (k + 1)�) if i 2 S+ and Dk,i = (k�, (k + 1)�] if i 2 S�, k 2
{0, 1, ..., K} =: K�. The distinction between Dk,i for i 2 S+ and S� is a technical one and
will be discussed later. For now, one reason we might want to specify the discretisation
in this way is because it ensures the stochastic process

(
X

k2K

X

i2S

k1(X(t) 2 Dk,i)

)

t�0

(4.4)

is right-continuous with left limits (cádlág). The expression (4.4) is the discrete process
of the fluid-queue which the level process of the QBD-RAP will approximate.

To model the phase process of the fluid queue, {'(t)}, we will use the phase process
of the QBD-RAP, {�(t)}. When the phase process of the QBD-RAP is i we suppose that
changes of phase occur at the constant rate �Tii and, upon a change of phase, a change
to phase j occurs with probability �Tij/Tii. This choice is convenient as, when there are
no boundaries for the fluid queue or QBD-RAP approximation, then the distribution of
{'(t)} and {�(t)} will be the same.

Let yk = k�, k = 0, . . . , K + 1 and Dk = [yk, yk+1]. We now look to model the
behaviour of {X(t)} on an interval Dk over the time [t, t + u] on certain events of the
phase process over this time.

4.2.1 Modelling the residual time to exit on no change of phase

First consider no change of phase in the time interval [t, t + u] and suppose that '(t) =
i 2 S+ and X(t) = x 2 Dk,i. On the event that there is no change of phase then
'(t+ s) = i and X(t+ s) = x+ cis, s 2 [0, u]. Thus, provided that u is su�ciently large,
u > (yk+1 � x)/ci, the level process of the fluid queue, {X(t)}, leaves the interval Dk,i at
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exactly time t+(yk+1�x)/ci. Similarly, for '(t) = i 2 S�, {X(t)} leaves the interval Dk,i

at exactly time t+ (x� yk)/|ci| on the event that there is no change of phase in [t, t+ u]
for u > (x� yk)/|ci|.

To approximate the deterministic behaviour above, consider a matrix exponential
distribution Z ⇠ ME(↵,S, s) with mean � and low variance. As we shall see later,
the assumption that Z has low variance will allow us to claim that Z will approximate
deterministic behaviour. Let Zi ⇠ ME(↵,Si, si) where Si = |ci|S, si = �Sie, i 2 S.
The random variable Zi has mean �/|ci|.

Suppose first that X(t) = yk (we will build up to X(t) = x0 2 Dk eventually, but
for now assume X(t) = yk) and '(t) = i 2 S+. In this case, {X(t)} will leave Dk,i

in exactly �/|ci| units of time, on the event that the phase process remains in i for at
least �/|ci| amount of time. A sensible approximation of the time until this deterministic
event is Zi. Thus, consider that at time t the value of the orbit process is A(t) = ↵

and on the event that the phase does not change by time t the orbit evolves according
to A(t + s) = ↵eSis/↵(t)eSise, s 2 [0, u] until there is an event. With this choice, the
distribution of time until the next event of the QBD-RAP, on the event that the phase
process remains constant, will be the distribution of Zi which will be concentrated around
�/|ci|. To see this, observe that

P(Zi 2 ((�� ")/|ci|, (�+ ")/|ci|)) = P(Z 2 (�� ",�+ "))

� 1�
Var(Z)

"2
,

since, by Chebyshev’s inequality, P(Z 2 (� � ",� + ")) � 1 �
Var(Z)

"2
. Choosing " =

Var(Z)1/3, then

P(Zi 2 ((�� ")/|ci|� u, (�+ ")/|ci|)) � 1� Var(Z)1/3 ⇡ 1,

when Var(Z) is small. Hence, when the variance of Z (equivalently Zi) is low, then with
high probability the time until the next event of the QBD-RAP, on the event that phase
process remains constant, will be approximately �/|ci|.

For the fluid queue, after u 2 [0,�/|ci|) amount of time has elapsed and on the event
that the phase has not changed, '(t+ s) = i, for all s 2 [0, u), then X(t+u) = yk + ciu 2
Dk,i. If the phase remains i for a further �/|ci| � u amount of time, then {X(t)} will
leave Dk,i in exactly �/|ci|� u amount of time.

For the QBD-RAP, at time t + u and on the event that are no events of the QBD-
RAP (no changes of phase or level), then the orbit position of the QBD-RAP will be
↵eSiu/↵(t)eSiue, and the time until the next event of the QBD-RAP will be Ri(u), where
Ri(u) is the residual time, Ri(u) = (Zi � u)1{Zi � u > 0}, i 2 S. The distribution of the
residual time, Ri(u), given Zi > u, has density

fRi(u)(r) =
↵eSi(u+r)

si

↵eSiue
= A(t+ u)eSirsi.
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Here, the event Zi > u approximates the event X(t+ u) 2 Dk,i, and we want the residual
time, Ri(u), to approximate the time until {X(t)} leaves Dk,i. That is, we want Ri(u) to
approximate a deterministic random variable at �/|ci|� u. To this end, we observe that
for " > 0 and u < (�� ")/|ci|, then

P(Ri(u) 2 ((�� ")/|ci|� u, (�+ ")/|ci|� u))

= P(Zi 2 ((�� ")/|ci|, (�+ ")/|ci|))
= P(Z 2 (�� ",�+ "))

� 1�
Var(Z)

"2
.

Choose " = Var(Z)1/3 (similar to the choice of " in the proof of Theorem 4 of Horváth,
Horváth, Almousa & Telek (2020)). Since we use Chebyshev’s inequality to obtain the
bound, which is general and likely to be far from sharp, we expect that the choice of " is
not important. All we require is that when Var(Z) is small, then Var(Z)/"2 is also small.
With this choice of ", then

P(Ri(u) 2 ((�� ")/|ci|� u, (�+ ")/|ci|)) � 1� Var(Z)1/3 ⇡ 1,

when Var(Z) is small. That is, when the variance of Z (equivalently Zi) is low, the
residual time Ri(u) will be concentrated around �/|ci|� u, as required. Figure 4.1 gives
an example of a density function of a concentrated matrix exponential random variable
Zi with mean � = 1 and ci = 1, as well as the density function of Ri(0.3) conditional on
Zi > 0.3 and Ri(0.6) conditional on Zi > 0.6, for comparison. Observe how the density of
the residual life Ri(0.3) conditional on Zi > 0.3 is concentrated around ��0.3 = 0.7 and,
similarly the density of the residual life Ri(0.6) conditional in Zi > 0.6 is concentrated
around �� 0.6 = 0.4.

For notational convenience, define the row-vector-valued function k(t) : R ! A,

k(t) =
↵eSt

↵eSte
, (4.5)

for any a 2 A.
From the discussion above, we interpret the position of the orbit k(|ci|u) as corre-

sponding to X(t + u) being |ci|u units from the left-hand boundary of the interval Dk,i

when i 2 S+. This gives a heuristic argument as to how we can model the sojourn times in
a given interval Dk,i on the event that the phase does not change. We can apply analogous
arguments to heuristically develop a model for the sojourn time of the fluid queue in an
interval, Dk,i, i 2 S�, on the event that the phase does not change. For i 2 S�, the orbit
position A(t+u) = k(|ci|u) is interpreted as corresponding to X(t) being |ci|u units from
the right-hand boundary of the interval Dk,i, yk+1.
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In summary, when '(t) = i 2 S+ andX(t) = yk, the orbit position should beA(t) = ↵
and, on the event of no change of phase, should evolve according toA(t+u) = k(|ci|u) until
an event occurs. At time u < �/|ci| the time until the next event of the QBD-RAP, on the
event of no change of phase, is Ri(u) which is concentrated around�/|ci|�u. Accordingly,
the orbit position A(t+ u) = k(|ci|u) corresponds to fluid level X(t) = yk + ciu.

Similarly, when '(t) = i 2 S� and X(t) = yk+1, the orbit position should be A(t) = ↵
and, on the event of no change of phase, should evolve according toA(t+u) = k(|ci|u) until
an event occurs. At time u < �/|ci| the time until the next event of the QBD-RAP, on the
event of no change of phase, is Ri(u) which is concentrated around�/|ci|�u. Accordingly,
the orbit position A(t+ u) = k(|ci|u) corresponds to fluid level X(t) = yk+1 + ciu.

This gives us the dynamics of the QBD-RAP on the event that the phase is constant.
We now develop the dynamics of the QBD-RAP on the event of a change of phase.

4.2.2 The residual time on a change of phase from i 2 S+ to
j 2 S+

Above we argued that the orbit position

A(t+ u) = k(|ci|u) =
↵eSiu

↵eSiue
. (4.6)

corresponds to the position of the fluid queue which is ciu units from the left-hand edge
of Dk. If, at time t+ u there is a change of phase from i 2 S+ to j 2 S+, then we need to
map the orbit position A(t+u�) = k(|ci|u) to an orbit position which corresponds to the
being ciu units from the left-hand edge of Dk in phase j. Call this mapping D(i, j)(·).

As noted in Section 2.6.2, the mapping must be linear, D(i, j)(a) = aD(i, j), a 2 A,
for some matrix D(i, j). So that the process is a QBD-RAP, the matrix D(i, j) must have
the property that, for any a 2 A, (aD(i, j),S) is a representation of a matrix exponential
distribution. We would also like the matrix D(i, j) to have the property D(i, j)e = e

as this will mean that the rate at which a change of phase from i to j of the QBD-RAP
occurs proportional to

A(t+ u)D(i, j)e = 1,

which is constant and therefore the distribution of time until a change from phase i to j
is exponential. The last property is convenient as we can use it to show that, for certain
models, the distribution of the phase process of the fluid queue and the distribution of
the phase process of the QBD-RAP are the same. We now describe a choice for what the
matrix D(i, j) should be.

An orbit position which corresponds to the level process of the fluid queue being ciu
units to the right of yk in phase j 2 S+ is

↵eSj(|ci|u/|cj |)

↵eSj(|ci|u/|cj |)e
.
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To see this, consider the event that at time t the orbit process of the QBD-RAP is
A(t) = ↵, the phase process is �(t) = j 2 S+, and there are no events of the QBD-RAP
before time t+ |ci|u/|cj|. On this event, the orbit position at time t+ |ci|u/|cj| will be

A(t+ |ci|u/|cj|) =
↵eSj(|ci|u/|cj |)

↵eSj(|ci|u/|cj |)e
.

Correspondingly, on the event that at time t the level process of the fluid queue is X(t) =
yk, the phase is '(t) = j and there are no changes of phase by time t + |ci|u/|cj|, then
X(t + u) = yk + cj|ci|u/|cj| = yk + ciu. That is, X(t + u) is ciu units from the left-hand
edge of Dk.

Now, observe
↵eSj(|ci|u/|cj |)

↵eSj(|ci|u/|cj |)e
=
↵eSiu

↵eSiue
= k(|ci|u),

which is exactly (4.6). Hence, a reasonable choice is D(i, j) = I.
Moreover, the residual time Rj(|ci|u/|cj|) has density

fRj(|ci|u/|cj |)(r) =
↵eSiu

↵eSiue
eSjrsj,

and

P(Rj(|ci|u/|cj|) 2 ((�� |ci|u� ")/|cj|, (�� |ci|u+ ")/|cj|))
= P(Zj 2 ((�� ")/|cj|, (�+ ")/|cj|)) (4.7)

= P(Z 2 (�� ",�+ ")) (4.8)

� 1� Var(Z)1/3 ⇡ 1. (4.9)

Hence, when the variance of Z is low, the residual time, Rj(|ci|u/|cj|), is concentrated
around (�� |ci|u)/|cj|, as required.

Analogous arguments suggest that the same applies for changes of phase from i 2 S�

to j 2 S�.

4.2.3 The residual time on a change of phase from i 2 S+ to
j 2 S�

Now suppose X(t) = yk, '(t) = i 2 S+, and the phase remains in state i until there is a
change of phase from i 2 S+ to j 2 S� at time t+ u, u 2 [0,�/|ci|). As before, we need
to find a matrix D(i, j) to map the orbit position from

A(t+ u�) = k(|ci|u�),
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to

A(t+ u) =
k(u�)D(i, j)

k(u�)D(i, j)e
=
↵eSiuD(i, j)

↵eSiuD(i, j)e

when there is a change of phase from i 2 S+ to j 2 S�. The result
k(u�)D(i, j)

k(u�)D(i, j)e
should

correspond to the fluid level being a distance of |ci|u from yk in phase j 2 S�, in some
sense.

Again, the matrix D(i, j) is a modelling choice. We first discuss how we might choose
the matrix D(i, j) for when the matrix exponential Z is a Phase-type distribution.

The Phase-type case If Z ⇠ ME(↵,S) is chosen to be a Phase-type random variable
then Z has the interpretation as the time until absorption of a finite-state continuous-
time Markov chain with transient states {1, . . . , p} and a single absorbing state. The
sub-generator matrix describing the dynamics of the Markov chain on transient states is
S, and ↵ is an initial probability distribution over the transient states. Let {J(t)} be the
Markov chain associated with the Phase-type distribution.

In the discussions above, we have relied on the relationship between the event that
there are no jumps of the QBD-RAP and the orbit position k(|ci|u). The relationship
allows us to associate this orbit position with the level of the fluid queue. For Phase-type
distributions the vector k(|ci|u) is the vector of posterior probabilities

(P(J(u) = k | J(0) ⇠ ↵, Z > u))k2{1,...,p} .

We can use this vector of posterior probabilities in the same way as we use the orbit
process for QBD-RAPs. However, the orbit interpretation forgoes the presence of the
phase process {J(t)}. Here, we will use the phase process {J(t)} to derive a choice of
D(i, j).

Earlier, we used the orbit process to determine the time until the next change of level
of the QBD-RAP, on the event that the phase is constant. For the Phase-type case, we
can use the value of the process {J(t)} instead of the orbit process to determine the
time until the next change of level. Given the phase of the Phase-type distribution is
k 2 {1, ..., p}, the distribution of the residual time is

P(Ri  r | phase = k) = 1� eke
Sire.

Notice that the residual time is independent of the time since the Phase-type distri-
bution was initialised. We call the time since the Phase-type distribution was initialised
the age, which is a random variable. This is in contrast to before where the value of the
orbit process essentially determined the age. Earlier, we used the orbit position and the
residual time to correspond the approximation a position of the fluid queue. Now, for
Phase-types, we can use the age, the position of the process {J(t)} and the residual time
to correspond the approximation to the fluid queue.
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As noted by Hautphenne et al. (2017), the distribution of the age, given the phase
of the Phase-type is k 2 {1, ..., p}, depends on the sampling scheme which determines
the observation time. Here the observation time occurs at a change of phase from i,
therefore, the observation time occurs after an exponential amount of time with rate
�Tii. Proposition 4.1, Hautphenne et al. (2017) states that the distribution function
of the age, given the phase of the Phase-type is k and the process is observed after an
exponential time with rate �Tii is

P(age  u | phase = k) = 1�
↵e(Si+TiiI)u(�(Si + TiiI))�1

ek

↵(�(Si + TiiI))�1ek
.

Let bSi(Tii) = diag(⌫)�1
S

0

idiag(⌫), where ⌫ = ↵(�(Si + TiiI))�1/(↵(�(Si + TiiI))�1
e).

Algebraic manipulations show

1�
↵e(Si+TiiI)u(�(Si + TiiI))�1

ek

↵(�(Si + TiiI))�1ek
= 1� e

0

ke
( bSi(Tii)+TiiI)ue, (4.10)

which is of Phase-type.
We associate phase k 2 {1, ..., p} of {J(t)} with being a random distance to the right

of yk where this distance has the age distribution

1� e
0

ke
( bSi(Tii)+TiiI)ue. (4.11)

Now, on the event that there are no changes of level, upon the event that the first
change of phase of the QBD-RAP is from i 2 S+ to j 2 S� and occurs at time t + u, it
seems reasonable to want the distribution of time until the next event of the QBD-RAP
to be

1� e
0

ke
( bSi(Tii)+TiiI)|cj |u/|ci|+TjjIue. (4.12)

The distribution in (4.12) is the distribution of the minimum of the age with distribution
(4.11) and the time until the next change of phase of the QBD-RAP, which is exponential
with rate �Tjj. The factor |cj|u/|ci| arises as a conversion between the speed at which
the fluid level moves in phase j compared to phase i.

While this does achieve what we want, it is not quite satisfactory for the purpose of
our approximation scheme due to dependence on the sample path of {�(t)}. Specifically,
the evolution of the QBD-RAP from time t+u until the next event depends on the phase
immediately before the change of phase at time t + u, �(t + u�) = i. This increases the
size of the approximating QBD-RAP as we need a separate model for each �(t+u�) 2 S+.
Furthermore, we have not yet considered how to model any further changes from S� to
S+ or beyond, which further complicates matters.

A solution is to suppose that, rather than observing the Phase-type random variable
at an exponential time with rate �Tii, we instead observe the process uniformly randomly
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on the lifetime of length Zi. Let ⇧ = diag (⇡), where
⇥
⇡k
⇤
k2{1,...,p}

=: ⇡ = ↵(�S)�1/m

and m = ↵(�S)�1
e. There is a time-reverse representation of a Phase-type distribution

given by (e↵, eS, es), where e↵ = ms
0⇧, eS = ⇧�1

S
0⇧ and es = ⇧�1

↵
0/m (Asmussen 2008,

Page 91). In the case where the phase is observed randomly on the lifetime of Zi, the
distribution function of the age, given the phase is k is (Hautphenne et al. 2017, Lemma
3.1)

P(age  u | phase = k) = 1�
↵eSiu(�Si)�1

ek

↵(�Si)�1ek
= 1� eke

eSiue. (4.13)

We now associate phase k 2 {1, ..., p} of {J(t)} with being a random distance, with
distribution (4.13), to the right of yk.

Therefore, on the event that there are no changes of level, upon the event that the
first change of phase of the QBD-RAP is from i 2 S+ to j 2 S� and occurs at time t+ u,
a reasonable model for the time until the next event of the QBD-RAP has distribution

1� eke
eSiu|cj |/|ci|+TjjIue = 1� eke

eSju+TjjIue, (4.14)

which is independent of i.
The expression (4.14) suggests that, at a jump from S+ to S�, the state of {J(t)} does

not change, but begins to evolve according to the time-reverse generator eSj. Since the

time-reverse of eS is S, then upon a jump back to S+ from S�, the phase of the Phase-type
random variable remains k but begins to evolve according to S. This suggests that we use
the representation (↵,S) when in phases in S+, and use the time-reverse representation
(e↵, eS) when in phases in S�. The matrices D(i, j) = I for all i, j 2 S.

With this construction, and choosing Z ⇠ Erlang(p,�/p), we recover the discretisa-
tion of Bean & O’Reilly (2013a) with discretisation parameter �/p.

The matrix exponential case For matrix exponential distributions we cannot rely
on the phase process {J(t)} as we did in the Phase-type case (because {J(t)} does not
exist for matrix exponential distributions). Recall that we want to find a matrix D(i, j)
to map the orbit position from A(t+ u�) = k(|ci|u), to

A(t+ u) =
k(|ci|u)D(i, j)

k(|ci|u)D(i, j)e
=
↵eSiuD(i, j)

↵eSiuD(i, j)e

when there is a change of phase from i 2 S+ to j 2 S� at time t+ u.
Given our interpretation of the orbit position, k(x), a solution would be to find a

linear map which takes k(x) and maps it directly to

k(�� x) =
↵eS(��x)

↵eS(��x)e
.
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However, we have been unsuccessful in finding such a mapping with the main hurdle being
that the map must be linear. Instead, we approximate as follows.

Recall that we use Ri(u) to approximate the distance of the fluid level to the left of
yk+1. Suppose we are given Ri(u) = r which corresponds, approximately, to the fluid level
being |ci|r units to the left of yk+1. The position of the orbit process which corresponds to
a distance of |ci|r to the left of yk+1 in phase j is k(|ci|r). Hence, on the events Ri(u) = r,
there are no events of the QBD-RAP before time t + u, A(t) = ↵, �(t) = i, and on
the event that a change of phase from i 2 S+ to j 2 S� occurs at time t + u, the orbit
position should jump from k(|ci|u) to k(|ci|r). However, at time t+ u, Ri(u) is a random
variable about the future of the process and therefore not known, so instead, we take the
expectation

E [k(|ci|Ri(u))] =

Z
1

r=0

↵eSiu

↵eSiue
eSirsik(|ci|r) dr =

↵eSiu

↵eSiue

Z
1

r=0

eSirsi

↵eSir

↵eSire
dr.

After a change of variables x = |ci|r we get

↵eSiu

↵eSiue

Z
1

x=0

eSx|ci|s
↵eSx

↵eSxe
dx/|ci| = A(t+ u�)

Z
1

x=0

eSx
s
↵eSx

↵eSxe
dx,

since at time t+ u�, the orbit position is A(t+ u�) = ↵eSiu/↵eSiue. Thus, we find

D(i, j) =

Z
1

x=0

eSx
sk(x) dx =: D.

Observe that De =

Z
1

x=0

eSx
sk(x) dxe =

Z
1

x=0

eSx
s dx = e, since k(x)e = 1 for all

x � 0. Further, since A is closed and convex (Bladt & Nielsen 2017), then (aD,S, s) is
a representation of a matrix exponential distribution for any a 2 A.

We pose the choice of the matrix D as a modelling choice. Other choices are possible,

for example, D =

Z �

x=0

eSx
sk(x) dx +

Z
1

x=�

eSx
s↵ dx, or D =

Z �

x=0

v(x)k(x) dx, where

v(x) is a closing operator as introduced later in Section 4.7. It may also be possible to
construct other matrices D, perhaps via geometric arguments. We do not investigate
other choices of D in this thesis.

Computing D In practice, we use the class of concentrated matrix exponential distri-
butions (CMEs) found numerically in (Horváth, Horváth & Telek 2020). Recall that we
take the index p to be the order of the representation of the CME and consider p odd.
Also recall that for a given CME with odd order, p, and representation (↵,S), the matrix
S has one real eigenvalue, and p � 1 complex eigenvalues and all eigenvalues have the
same real part. Further, the vector function k(t) is periodic with period ⇢ = 2⇡/! where
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! = mini(|=(�i)|), �i are the eigenvalues of S and =(z) is the imaginary component of a
complex number z.

We numerically evaluate the matrix D where

D =

Z
1

t=0

eSt
s · k(t) dt

using a trapezoidal rule as follows. Let f(t) = eSt
s. Then f(t)e��t, where � = <(�i) is

the real part of the eigenvalues of S, (they all share the same real part), is also periodic
with the period ⇢. Hence, we can simplify the integral to;

D =

Z
1

t=0

f(t) · k(t) dt

=
1X

k=0

Z (k+1)⇢

k⇢

e�te��tf(t) · k(t) dt

=
1X

k=0

Z ⇢

0

e�(k⇢+t)e��(k⇢+t)
f(k⇢+ t) · k(k⇢+ t) dt, (4.15)

which is finite. By periodicity, then e��(k⇢+t)
f(k⇢+ t) · k(k⇢+ t) = e��tf(t) · k(t), hence

(4.15) is equal to

1X

k=0

(e�⇢)k
Z ⇢

0

e�te��tf(t) · k(t) dt =
1

1� e�⇢

Z ⇢

0

f(t) · k(t) dt, (4.16)

where the sum converges as it is a geometric series and � < 0, ⇢ > 0.
To approximate (4.16) numerically, we first partition [0, ⇢) intoN equal-width intervals

[tn, tn+1), where tn = (n � 1)⇢/N , n = 1, 2, ..., N + 1. On [tn, tn+1) we approximate the

orbit k(t) by a constant k(t) ⇡ kn =
1

2
(k(tn) + k(tn+1)) , t 2 [tn, tn+1). Substituting this

approximation into the expression for D gives

D ⇡
1

1� e�⇢

NX

n=1

Z tn+1

tn

f(t) · kn dt

=
1

1� e�⇢

NX

n=1

⇥
eStn+1 � eStn

⇤
e · kn.

This approximation preserves the property that De = e.
Computationally e�cient expressions for eSt

e and k(t) are provided in (Horváth,
Horváth & Telek 2020).
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4.2.4 Upon exiting the interval Dk,i

So far we have only considered the QBD-RAP before any changes of level. We now
consider what happens at changes of level. For the fluid queue, suppose that upon exiting
Dk,i at time t the phase is '(t) = i 2 S+. At this exit time X(t) = yk+1 which is the
left-hand endpoint of Dk+1,i and since the fluid queue is homogeneous, the sojourn in the
interval Dk+1,i is identical to the sojourn in Dk,i. Hence, for the QBD-RAP approximation,
we restart the approximation of the sojourn time with the initial condition A(t) = ↵ in
phase i.

Similarly, upon exiting Dk,i at time t in phase '(t) = i 2 S�, then X(t) = yk, which
is the right-hand endpoint of Dk,i, and so we restart the QBD-RAP approximation of the
sojourn time with the initial condition A(t) = ↵ in phase i.

4.3 The association of j 2 S0 with S+ or S�

So far we have assumed S0 = ;. We now remove this assumption and describe how we
can include phases in S0 into the approximation. To do so, we can associate phases j 2 S0

with either S+ or S�.

Let X(0) = y` and consider the event where {'(t)} transitions from j0 ! j1 ! j2
where j0 2 S+, j1 2 S0 and j2 2 S�, before there is a change of level, i.e.

'(t) =

8
><

>:

j0 t 2 [0, t1) ,

j1 t 2 [t1, t2) ,

j2 t 2 [t2, t3) ,

and X(t) 2 D`, t 2 [0, t3). To approximate the fluid queue, we suppose that the initial
orbit position is A(0) = ↵, the initial phase is �(0) = j0 and that '(t) = �(t), t 2 [0, t3].
The sample path of the orbit process on t 2 [0, t3), is

A(t) =

8
>>>>>>>><

>>>>>>>>:

↵e(Sj0+Tj0j0I)t

↵e(Sj0+Tj0j0I)te
t 2 [0, t1) ,

↵e(Sj0+Tj0j0I)t1D(j0, j1)eTj1j1 (t�t1)

↵e(Sj0+Tj0j0I)t1D(j0, j1)eTj1j1 (t�t1)e
t 2 [t1, t2) ,

↵e(Sj0+Tj0j0I)t1D(j0, j1)eTj1j1 (t2�t1)D(j1, j2)e(Sj2+Tj2j2I)(t�t2)

↵e(Sj0+Tj0j0I)t1D(j0, j1)eTj1j1 (t2�t1)D(j1, j2)e(Sj2+Tj2j2I)(t�t2)e
t 2 [t2, t3) ,
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=

8
>>>>>>>><

>>>>>>>>:

↵eSj0 t

↵eSj0 te
t 2 [0, t1) ,

↵eSj0 t1D(j0, j1)

↵eSj0 t1D(j0, j1)e
t 2 [t1, t2) ,

↵eSj0 t1D(j0, j1)D(j1, j2)eSj2 (t�t2)

↵eSj0 t1D(j0, j1)D(j1, j2)eSj2 (t�t2)e
t 2 [t2, t3) ,

for some matricesD(j0, j1) andD(j1, j2). We want to find sensible choices for the matrices
D(j0, j1) and D(j1, j2). Notice that {A(t)} is constant on t 2 [t1, t2). For t 2 [t2, t3) the
matrix product D(j0, j1)D(j1, j2) exists to capture the ultimate change in direction due
to the net change from S+ to S�. Hence, D(j0, j1)D(j1, j2) should be equal to D. These
types of sample paths are the reason we need to associate states j1 2 S0 with either S+

or S�.
Associating j1 with S+, amounts to choosing D(j0, j1) = I and D(j1, j2) = D; asso-

ciating j1 with S�, amounts to choosing D(j0, j1) = D and D(j1, j2) = I.
There are some consequences of this choice. Let k2 2 S+. Consider an event where

the phase process of the fluid queue transitions from j0 ! j1 ! k2 and there is no change
of level. If j1 is associated with S+, then D(j0, j1) = D(j1, k2) = I and the corresponding
orbit process, given A(0) = ↵, is

A(t) =

8
>>>>>>><

>>>>>>>:

↵eSj0 t

↵eSj0 te
t 2 [0, t1) ,

↵eSj0 t1

↵eSj0 t1e
t 2 [t1, t2) ,

↵eSj0 t1eSk2
(t�t2)

↵eSj0 t1eSk2
(t�t2)e

t 2 [t2, t3) .

Notice that there is no matrix D in this expression.
Compare this with the situation where j1 is associated with S�. In this caseD(j0, j1) =

D(j1, k2) = D and the corresponding orbit process of the approximation, given A(0) = ↵
and on the event that there are no changes of level in [t1, t3), is

A(t) =

8
>>>>>>><

>>>>>>>:

↵eSj0 t

↵eSj0 te
t 2 [0, t1) ,

↵eSj0 t1D

↵eSj0 t1De
t 2 [t1, t2) ,

↵eSj0 t1DDeSk2
(t�t2)

↵eSj0 t1DDeSk2
(t�t2)e

t 2 [t2, t3) .

Ideally D
2 = I, however this is not the case here. Recall that a jump according to D

corresponds to approximating the residual life by an expectation. With this interpretation
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as an approximation, it suggests that we might want to minimise the number of jumps
according to D which occur. Therefore, for j1 2 S0, if transitions S+ ! j1 ! S+ occur
with high probability compared to transition S� ! j1 ! S�, then this suggests we might
want to associate j1 with S+. Which association is chosen will depend on the parameters
of the fluid queue and perhaps also on which aspects of the model we wish to approximate
best.

Augmented state space schemes

Another way to approach the problem is to augment the state space of the phase process
by duplicating S0 and associating one copy of S0 with S+ and one copy of S0 with S�.
Let {'⇤(t)} be the augmented CTMC with state space S⇤ and generator T ⇤. Let S+ and
S� be as before and Sm0 = {(m, i) | i 2 Sm}, m 2 {+,�}, then S⇤ = S+[S�[S+0[S�0.
The generator of '⇤(t) can be written as

T
⇤ =

2

664

T++ T+0 T+� 0
T0+ T00 T0� 0
T�+ 0 T�� T�0

T0+ 0 T0� T00

3

775 .

Also define a fluid level {X⇤(t)} using {'⇤(t)}, with rates c⇤i = ci for i 2 S+ [ S� and
c⇤(m,i) = 0 for (m, i) 2 S+0 [ S�0. The process {'(t)} is embedded within {'⇤(t)} and is
recovered by marginalising over S+0 and S�0. On the event X⇤(0) = X(0), the fluid levels
X⇤(t) and X(t) match exactly. Hence, by approximating {(X⇤(t),'⇤(t))}, we can recover
an approximation to {(X(t),'(t))}. This construction removes the problem of having to
choose how to associate states j 2 S0 with either S+ or S�

4.4 The dynamics of the QBD-RAP approximation

We now have all the elements we need to describe the dynamics of the QBD-RAP ap-
proximation. Let {Y (t)}t�0 = {(L(t),A(t),�(t))}t�0 be the QBD-RAP approximation
of a fluid queue, where {L(t)} is the level, {A(t)} is the orbit process and {�(t)} is the
phase process.

We will show later that �(t) captures the phase dynamics of the fluid queue exactly,
provided the phase process is independent of the fluid level {X(t)}. The level L(t) = `
approximates which band, D`, that X(t) is in at time t, and the orbit A(t) can be used
to obtain an approximation of where X(t) is within the interval D`.

We now proceed to describe the evolution of the orbit and phase processes, before
introducing the level variable later.
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The dynamics of the orbit process and phase On �(t) = i, we suppose that
between event epochs the process {A(t)} evolves deterministically according to the dif-
ferential equation

d

dt
A(t) = A(t)(Si + TiiI)�A(t)(Si + TiiI)e ·A(t). (4.17)

The ODE (4.17) describes the movement of the orbit process on the event that the phase
and level are constant. This implies that the diagonal blocks of the generator of the
QBD-RAP will be the matrices Si � TiiI.

We now argue that the ODE (4.17) is a reasonable model given our discussions about
using the residual time to model the distance from the cell edges and given our assumptions
on the phase dynamics.

Let a 2 A be arbitrary. On the events that no jumps or changes of phase occur
between time u and u+ v, A(u) = a 2 A and �(u) = i, the solution to (4.17) states that
A(u+ v) evolves deterministically according to

A(u+ v) =
ae(Si+TiiI)v

ae(Si+TiiI)ve
=

aeSiv

aeSive
.

Thus, when a = ↵ the orbit position is A(u+ v) = aeSiv/aeSive and therefore residual
time until the next change of level on the event that there is no change of phase models
the distance from the cell edges as we discussed in Section 4.2.1.

At time t, the distribution of time until the next event is the minimum of the time
until a change of phase and a matrix exponential random variable ME(A(t),Si). At time
t an event occurs at rate

A(t)(Si � TiiI)e = A(t)si � Tii.

More precisely, an event corresponding to a change in phase for �(t) occurs at rate

�A(t)TiiIe = �Tii

which is constant as is required for phase transitions to be Markovian, and an event
corresponding to a change of level occurs at rate

�A(t)Sie = A(t)si.

Later, we will make clear why we say that the latter event corresponds to a change of
level. Upon an event occurring at time t, with probability �Tii/(�Tii +A(t�)si) the
event corresponds to a change of phase and with probability A(t�)si/(�Tii +A(t�)si)
the event corresponds a change of level.

Note that a change of level may only occur if the phase is in S+ or S�. Upon an event
corresponding to a change of level occurring at time t we suppose that the process {A(t)}
jumps to A(t) = ↵ and that the phase remains constant.
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Upon an event corresponding to a change of phase from i to j 6= i occurring at time t,
there are two possibilities; either sign(ci) = sign(cj), or sign(ci) 6= sign(cj). As discussed
earlier, for states i 2 S0 we must specify some association with either S+ or S�. Here we
choose the augmented state space approach and duplicate S0 and associate one copy with
i 2 S+ and one copy with S�; call these S+0 and S�0, respectively. We take sign(ci) = +
for i 2 S+0 and sign(ci) = � for i 2 S�0. In the case

1. sign(ci) = sign(cj): at the time, t, of the event, {A(t)} is unchanged but immediately
begins to evolve according to (4.17) with i replaced by j, while {�(t)} jumps from
�(t�) = i to �(t) = j. Since the orbit is unchanged upon these events, the matrix
which maps the position of the orbit before the jump to the position of the orbit
after the jump is the identity, I. Thus, the diagonal blocks of the generator of the
QBD-RAP which describe its motion among the phases Sm [ Sm0, m 2 {+,�} are


Cm ⌦ S + Tmm ⌦ I Tm0 ⌦ I

T0m ⌦ I T00 ⌦ I

�
.

The matrix Cm ⌦S is block diagonal with blocks |ci|S = Si and Tmn ⌦ I are block
matrices with blocks TijI.

2. sign(ci) 6= sign(cj): at the time, t, of the event, {A(t)} the orbit jumps from A(t�)
to

A(t) =
A(t�)TijD

A(t�)TijDe
=

A(t�)TijD

Tij
= A(t�)D,

assuming De = e, and then immediately proceeds to evolve according to (4.17)
with i replaced by j, and {�(t)} jumps from �(t�) = i to �(t) = j. Since we are
assuming the augmented state space model, then jumps out of Sm [ Sm0 can only
jump to phases j 2 Sn, m, n 2 {+,�}, m 6= n, by construction. The o↵-diagonal
block matrices in the generator of the QBD-RAP which describe the movement of
the process while the level remains constant, but the phase jumps from Sm [ Sm0

to Sn [ Sn0, m, n 2 {+,�}, m 6= n, are the matrices

Tmn ⌦D 0
T0n ⌦D 0

�
.

The level process To event epochs of {(A(t),�(t))}t�0 we associate marks {�1, 0,+1}
in the following way.

• To event epochs corresponding to a change of phase of �(t) we associate the mark
0.

• To event epochs at time t which correspond to a change in level and for which
�(t�) = i 2 S� we associate the mark �1.
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• To event epochs at time t which correspond to a change in level and for which
�(t�) = i 2 S+ we associate the mark +1.

Now define N+(t) (N�(t)) as the simple point process which counts the number of event
epochs with marks +1 (�1) which have occurred in the time up to and including time t.
The level process of the QBD-RAP is given by L(t) = N+(t)�N�(t) and is skip-free, by
construction. The process {(L(t),A(t),�(t))}t�0 forms a QBD with RAP components.

Since the phase remains constant on a change of level and the instantaneous rate at
which a change of level occurs at time t in phase i is A(t)si, then the block matrix of the
generator which describes the rate at which a change of level occurs when �(t) 2 S+ is

2

664

C+ ⌦ (s↵)
0

0
0

3

775 ,

and when �(t) 2 S� is
2

664

0
0

C� ⌦ (s↵)
0

3

775 ,

where Cm ⌦ (s↵), m 2 {+,�}, is block-diagonal with blocks |ci|s↵.

The generator of the QBD-RAP Assuming we have used the augmented state-space
representation of the fluid queue described in Section 4.3 and that there are no boundaries,
the generator of the approximating QBD-RAP {(L(t),A(t),�(t))}, is

B =

2

6664

. . . . . . . . .
B�1 B0 B+1

B�1 B0 B+1

. . . . . . . . .

3

7775
, (4.18)

where,

B0 =


B++ B+�

B�+ B��

�
(4.19)

B�1 =

2

664

0
0

C� ⌦ (s↵)
0

3

775 , B+1 =

2

664

C+ ⌦ (s↵)
0

0
0

3

775 , (4.20)
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and

B++ =


C+ ⌦ S + T++ ⌦ I T+0 ⌦ I

T0+ ⌦ I T00 ⌦ I

�
,B+� =


T+� ⌦D 0
T0� ⌦D 0

�
, (4.21)

B�+ =


T�+ ⌦D 0
T0+ ⌦D 0

�
,B�� =


C� ⌦ S + T�� ⌦ I T�0 ⌦ I

T0� ⌦ I T00 ⌦ I

�
. (4.22)

The tridiagonal structure is a generator arises from the skip-free nature of the level process
and the sub-blocks and parameters are as described above.

The following result states that {�(t)} has the same distribution as {'(t)} when the
fluid queue is unbounded, the latter being the phase process of the fluid queue.

Theorem 4.1. Let ⇥i be the time at which the first jump of the phase process of the
unbounded QBD-RAP, {�(t)}, occurs, given �(0) = i. For any initial orbit a 2 A, then
⇥i has an exponential distribution with rate parameter |Tii|. Furthermore, given �(t)
leaves state i, it jumps to state j with probability Tij/|Tii|. Hence, �(t), the phase process
of the QBD-RAP, and '(t), the phase process of the fluid queue, have the same probability
law.

Proof. Let {⌧n}n�0 with ⌧0 = 0 and ⌧n the time of the n-th change of level of the QBD-
RAP. Consider partitioning {⇥i > t} with respect to {⌧n�1 < t  ⌧n} , n = 1, 2, . . .. For
n = 1, by (2.41) and Theorem 2.11, we can write

P(⇥i > t, ⌧0 < t  ⌧1 | A(0) = a) = ae(Si+TiiI)te

and since TiiI commutes with Si and eTiit is a scalar, then this is equal to

aeSiteTiiIte = aeSiteeTiit = P(⌧0 < t  ⌧1)e
Tiit.

For n > 1, again using (2.41) and Theorem 2.11, by partitioning on the times of the first
n� 1 level changes, ⌧1, . . . , ⌧n, we get

P(⇥i > t, ⌧n�1 < t  ⌧n | A(0) = a)

=

Z t

t1=0

Z t

t2=t1

. . .

Z t

tn�1=tn�2

P(⇥i > t, t  ⌧n, ⌧n�1 2 dtn�1, . . . , ⌧1 2 dt1 | A(0) = a)

=

Z t

t1=0

Z t

t2=t1

. . .

Z t

tn�1=tn�2

ae(Si+TiiI)t1si

 
n�1Y

k=2

↵e(Si+TiiI)(tk�tk�1)si

!

⇥↵e(Si+TiiI)(t�tn�1)e dtn�1 dtn�2 . . . dt1. (4.23)

Since TiiI commutes with Si, eTiitk , k = 1, ..., n� 1 are scalars, and since t1 + (t2 � t1) +
. . .+ (tn�1 � tn�2) + (t� tn�1) = t, then (4.23) is equal to

Z t

t1=0

Z t

t2=t1

. . .

Z t

tn�1=tn�2

aeSit1si

 
n�1Y

k=2

↵eSi(tk�tk�1)si

!
↵eSi(t�tn�1)e⇥ eTiit dtn�1 . . . dt1
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= P(⌧n�1 < t  ⌧n)e
Tiit.

Hence, by the law of total probability,

P(⇥i > t) =
1X

n=1

P(⇥i > t, ⌧n�1 < t  ⌧n)

=
1X

n=1

P(⌧n�1 < t  ⌧n)e
Tiit

= eTiit,

and therefore ⇥i has an exponential distribution with rate |Tii|.
Upon leaving state i at time t, �(t) transitions to state j with probability

0

BB@
A(t)D1(sign(ci)6=sign(cj))TijeX

j2S

A(t)D1(sign(ci)6=sign(cj))Tije+A(t)si

1

CCA

0

BB@

X

j2S

A(t)D1(sign(ci)6=sign(cj))Tije

X

j2S

A(t)D1(sign(ci)6=sign(cj))Tije+A(t)si

1

CCA

=
A(t)eTijX

j2S

A(t)eTij

=
Tij

�Tii
.

Therefore, the process {�(t)} has the same probability law as {'(t)}.

Remark 4.2. The same result can be shown for a regulated boundary. For boundary
conditions which interact with the phase dynamics, such as a reflecting boundary, the
result does not hold. The cause is the fact that the phase dynamics are level dependent –
we may see a forced change of phase upon a boundary being hit – and the QBD-RAP can
only approximate the level process of the fluid queue. However, until a boundary is hit (by
either the fluid queue or QBD-RAP) then the phase processes match. We show later that,
in the limit as the variance of the matrix exponential distribution used in the construction
of the QBD-RAP goes to zero, then the dynamics of the level process of the fluid queue,
X(t), are captured by the QBD-RAP, and boundary behaviour which interacts with the
phase dynamics can be captured too.

4.5 Boundary conditions

In the study and practical application of fluid queues, regulated, reflecting, sticky, or a
mixture of these boundary conditions may be imposed. We now present the intuition
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as to how one may include such boundary conditions in the QBD-RAP approximation
scheme.

Without loss of generality, assume that there is a boundary for the fluid level at y0 = 0.
This boundary can only be hit from above in phases i 2 S�. Suppose that, upon hitting
the boundary in phase i 2 S�, the phase jumps from i to j 2 S with probability qpij. If
j 2 S� [ S0 the process remains at the boundary and the phase process evolves among
states in S�[S0 until the first transition to a state in S+, at which point the level {X(t)}
immediately leaves the boundary – we will call this a sticky boundary. If j 2 S+ the
process immediately leaves the boundary – we will call this a reflecting boundary. We
collect the probabilities qpij into the matrices qP�+ = [qpij]i2S�,j2S+ , qP�0 = [qpij]i2S�,j2S0 ,

and qP�� = [qpij]i2S�,j2S� .
Adjacent to the boundary at y0 = 0 is the band D0 = [0,�] which corresponds to

level 0 for the QBD-RAP. We denote the boundary of the QBD-RAP as level �1, which
corresponds to {0} for the fluid queue. Modelling the behaviour of the fluid queue at
boundaries can be broken down into three components.

1. Modelling the time and phase when the fluid level hits the boundary.

2. Modelling the phase whilst the fluid level remains at the boundary.

3. Modelling the fluid level and phase at the exit from the boundary.

We claim that the event {L(t) = `,�(t) = i} models the event {X(t) 2 D`,i,'(t) = i}
and further, that instants u with L(u�) 6= L(u),�(u) = i model the events {X(u�) 2
D`,i, X(u) /2 D`,i,'(u) = i}. With this in mind, the event that the fluid level {X(t)} hits
the boundary at 0 is approximated by the event that the QBD-RAP is in level 0 in a
phase i 2 S� and there is a change of level. Analogously, if there is an upper boundary at
yK+1, the event that the fluid level {X(t)} hits the boundary at yK+1 is approximated by
the event that the QBD-RAP is in level K in a phase i 2 S+ and there is a change of level.
We refer to this as the QBD-RAP hitting the boundary also. We show later that, using
matrix exponential distributions with su�ciently small variance in the construction of
the QBD-RAP, then the distribution of time until the QBD-RAP first hits the boundary
approximates the time until the fluid level hits the boundary. This addresses component
1).

For a sticky lower boundary at 0, given the fluid level reaches zero at time u in phase
i 2 S�, then the phase transitions to some phase j 2 S�[S0 with probability qpij, and the
distribution of the phase �(t) (on the event that the process has not left the boundary at
or before time t > u) is given by the elements of the vector

qpijej exp

✓
T�� T�0

T0� T00

�
(t� u)

◆
.
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The distribution for the time until {X(t)} leaves {0} for the first time after u is

1� qpijej exp

✓
T�� T�0

T0� T00

�
(t� u)

◆
e.

Therefore, in the case of a sticky boundary, we can capture the behaviour of the process at
the boundary exactly. For a reflecting boundary there is no time spent at the boundary.
This addresses component 2) of the modelling problem.

For both sticky and reflecting boundaries, given the QBD-RAP is in the correct phase
at the instant upon which it hits the boundary, then upon exiting the boundary the phase
can be captured exactly too. For a sticky boundary, given the fluid/QBD-RAP hits the
boundary in phase i 2 S� at time t, it then jumps to phase j 2 S+ [ S0 and exits the
boundary in phase k 2 S+ at time (t� u) with density

qpijej exp

✓
T�� T�0

T0� T00

�
(t� u)

◆
T�+

T0+

�
ek.

For a reflecting boundary, given the boundary is hit in phase i 2 S�, the phase upon
leaving the boundary is j 2 S+ with probability qpij. Upon leaving the boundary, the
appropriate orbit position for the QBD-RAP is ↵, as this corresponds to the fluid level 0.

To summarise, at time t the rate at which probability mass accumulates at the sticky
boundary in phase j 2 S� [ S0 and level �1, upon hitting the boundary in phase i 2 S�

and level 0, is

ciqpijA(t)s.

The rate at which density from phase i 2 S� and level 0 transitions to density in phase
j 2 S+ and level 0 upon hitting a boundary (a reflection event) is

ciqpijA(t)s,

and upon this transition, the orbit jumps to ↵. The rate at which mass leaves the sticky
boundary from phase i 2 S� [ S0 and level �1 into phases j 2 S+ and level 0 is

Tij,

and upon leaving the boundary the orbit is ↵.

This information can be inscribed in the generator of the QBD-RAP. For example,
using the augmented state space scheme to account for phases S0, the generator of the
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QBD-RAP described above has boundary conditions included as

2

6666666666664

T�� T0� T�+ ⌦↵ 0 0 0
T�0 T00 T0+ ⌦↵ 0 0 0
0 0

qB0 B+1
0 0

(C�
qP��)⌦ s (C�

qP�0)⌦ s

0 0
. . .

B�1 B0

. . . . . .

3

7777777777775

, (4.24)

where

qB0 =

2

664

C+ ⌦ S + T++ ⌦ I T+0 ⌦ I T+� ⌦D

T0+ ⌦ I T00 ⌦ I T0� ⌦D

(C�
qP�+)⌦ s↵+ T�+ ⌦D C� ⌦ S + T�� ⌦ I T�0 ⌦ I

T0+ ⌦D T0� ⌦ I T00 ⌦ I

3

775 . (4.25)

The top-left block of the generator contains the rates at which probability moves between
the point masses at the sticky boundary. The block below that in the generator contains
the approximation to the rates that the density of the fluid queue transitions into point
masses at the sticky boundary. This can only occur from phases in S�, which is the third
sub-block, hence only the third row of block matrices is non-zero. The block to the right
of the top-left block of the generator contains the rates that point masses transition into
density as the fluid process leaves the boundary. These transitions only occur to phases in
S+ so only the first sub-block-column of this block is non-zero. The term (C�

qP�+)⌦ s↵

which has been added in qB0 incorporates the reflecting boundary behaviour.
Upper boundaries can be included in an analogous manner ad we denote the transition

probabilities upon hitting a boundary by bpij and define the matrices bP+� = [bpij]i2S+,j2S� ,
bP+0 = [bpij]i2S+,j2S0 , and bP++ = [bpij]i2S+,j2S+ .

The orbit process {A(t)} is not required to model the behaviour at the sticky boundary.
However, we suppose that A(t) =

⇥
1
⇤
at the boundaries. This choice purely for notational

convenience and is arbitrary, but allows us to generalise some notation later when we
are describing the evolution of the QBD-RAP. Further, for boundaries at y0 = 0 and
yK+1 = (K+1)�, we let the level process take the value L(t) = �1 at the lower boundary,
and L(t) = K + 1 at the upper boundary. Denote the set of levels, including boundary
levels, by K = {�1, 0, . . . , K,K +1} and without boundary levels by K� = {0, 1, . . . , K}.

Remark 4.3. It may be possible to extend the QBD-RAP approximation to model jumps
into and out of the boundary, provided that the jumps into/out of the boundary happen at
an intensity which can be described by a matrix exponential distribution.



4.6. Initial conditions 85

Furthermore, it may be possible to model more general boundary behaviours which can
be approximated by a limit of matrix exponential distributions. For example, a boundary
condition where the fluid queue spends a deterministic time at the boundary.

4.6 Initial conditions

We argued earlier that we can think of the orbit k(x) = ↵eSx/(↵eSx
e) as corresponding to

the fluid being a distance of x from the left boundary of an interval when i 2 S+, or from
the right boundary of an interval when i 2 S�. With this interpretation, an approximation
to the initial condition X(0) = (X(0),'(0)) = (x0, i), x0 2 D`,i, i 2 S+[S+0 is to set the
initial orbit to k(x0 � y`) and the initial phase to �(0) = i. Similarly, an approximation
to the initial condition X(0) = (x0, i), x0 2 D`,i, x0 6= y`+1, i 2 S� [ S�0 is to set the
initial orbit position to k(y`+1 � x0) and the initial phase to �(0) = i.

We use the notation a`,i(x0) = a`,+(x0) = k(x0 � y`) for the initial orbit position
corresponding to x0 when the initial phase is i 2 S+ and x0 2 D`,i. Similarly, for i 2 S�

and x0 2 D`,i define the notation a`,i(x0) = a`,�(x0) = k(y`+1 � x0).
More generally, given an initial measure µi(·) = P(X(0) 2 ·,'(0) = i), an approxima-

tion to this initial condition is to set the orbit to

Z

x2D`,i

a`,i(x) dµi, for i 2 S, ` 2 K�.

Initial conditions for phases i 2 S0 While the augmented state space scheme de-
scribed above is convergent, the analysis of the QBD-RAP scheme is greatly simplified if
we only allow initial conditions which allocate zero probability to phases in i 2 S+0[S�0.
To see why initial mass in S+0 [ S�0 might introduce further complexity, consider a sam-
ple path with �(0) = k 2 S+0 and A(0) = a 2 A. On �(u) 2 S+0, for u 2 [0, t), then
A(u) = a is constant. Upon the phase leaving S+0, at time t, say, the phase will either
jump to S+ or S�. If �(t) jumps to i 2 S+, the orbit process at time t will be A(t) = a

and the process evolve from time t as if it has started in phase i 2 S+ with initial orbit
a – there are no major issues in this case. If, however, �(t) jumps to i 2 S�, then the
orbit process will jump to A(t) = aD at time t. From time t onward the QBD-RAP
process will evolve as if it has started in phase i 2 S� with initial orbit aD. With the
way we have structured the proof of convergence, we have to complete two analyses of the
QBD-RAP process – one for the initial condition a and another for the initial condition
aD.

A solution to this problem is to augment a set of ephemeral states to the QBD-RAP
which capture the initial sojourn in S0 only. Suppose we wish to approximate a fluid
queue with the initial condition µk, k 2 S0, where µk has mass 1. Let us denote the
set of ephemeral states by S⇤,k

0 and each state in S⇤,k
0 by i⇤. Each state i⇤ 2 S⇤,k

0 is
a copy of i 2 S0, and, in S⇤,k

0 the phase process has the same phase dynamics as it
does in S0. At time 0, we start the QBD-RAP in the ephemeral set of states S⇤,k

0 in
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phase k⇤ 2 S⇤,k
0 . While in S⇤,k

0 , the phase process evolves between phases according
to the generator T00 and the orbit remains constant. Upon exiting the ephemeral set
S⇤,k
0 at time t, given the phase at t� is j⇤ 2 S⇤,k

0 , the QBD-RAP process jumps to
L(t) = `, A(t) =

R
D`,i

a`,i(x) dµk, �(t) = i, where ` 2 K, i 2 S+ [ S� with probability

Z

D`,i

a`,i(x) dµke
Tj⇤i

�Tj⇤j⇤
.

The level and orbit process are constant during the sojourn in S⇤,k
0 as all information

about the level and orbit during this time is contained within the initial condition µk,
and the only thing that changes is the phase.

To include the ephemeral states within the generator of the QBD-RAP we can write,

B =

2

666664

T00 B
⇤,k
�1 B

⇤,k
0 B

⇤,k
1 B

⇤,k
2 . . .

qB0
qB+1

qB�1 B0 B+1

B�1 B0 B+1

. . . . . . . . .

3

777775
,

where

B
⇤,k
�1 =

⇥
T0�µk({0}) 0

⇤
B

⇤,k
` =

⇥
T0+ ⌦ a

+
` 0 T0� ⌦ a

�

` 0
⇤
, ` = 0, 1, 2, ...,

and

a
r
` =

Z

D`,r

a`,r(x) dµk, ` 2 K�, r 2 {+,�}.

The blocks qB�1, qB0, qB+1, B�1, B0, B+1, are as before. In the top-left block of B is the
block T00 which contains the rates at which the process moves between phases in S⇤,k

0 .
The block B

⇤,k
` contains the rates that the phase changes from S⇤,k

0 to S+ or S� and also
contains the information about where the orbit position is after these transitions.

Since a`,i(x) 2 A for all x � 0 and µk is a probability measure, then a
r
` =

R
D`,i

a`,i(x) dµk 2
A is a convex combination of vectors in A and, since A is convex, so a

r
` 2 A. There-

fore, the orbit after the transition out of the ephemeral set S⇤,k
0 is in A and therefore the

QBD-RAP with the additional ephemeral states is a valid QBD-RAP.

In general, we need to augment a set of states S⇤,k
0 to the QBD-RAP for each initial

phase, k 2 S0 such that µk has positive mass.
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4.7 Recovering intra-level approximations to the dis-
tribution of X(t) using A(t) – some intuitive ideas

The level process {L(t)} of the QBD-RAP approximates the process
(
X

k2K

X

i2S

k1(X(t) 2 Dk,i)

)

t�0

. (4.26)

This may be of interest in its own right. However, for some applications, this approxima-
tion may be too coarse – the level process tells us nothing about where in the intervals
Dk,i the fluid level might be. The purpose of this section is to introduce the idea of closing
operators v(x) which are used to extract intra-level approximations to the distribution
of X(t) using A(t) and also to describe some intuition about how we might construct
v(x). The intra-level approximation obtained using A(t) and v(x) is entirely post-hoc in
the sense that it does not a↵ect the dynamics of the QBD-RAP itself, we only take the
information contained in E[A(t)1(L(t) = `,�(t) = i)] and rewrite it in a descriptive way.

Suppose that the QBD-RAP is in level L(t) = `, phase �(t) = j 2 S+ [ S+0, and the
orbit is A(t) = a. If the QBD-RAP remains in phase j, the QBD-RAP approximation
will transition out of level ` in the infinitesimal time interval [t + u, t + u + du] with
probability ae|cj |Su|cj|s du. At the time of the change of level we estimate the position
of X(t + u) by X(t + u) ⇡ y`+1. Tracing this back to time t, we estimate the position
of X(t) as X(t) ⇡ y`+1 � |cj|u. Reverse engineering this logic, the approximation to the
probability of X(t) 2 dx is ae|cj |S(y`+1�x)/|cj ||cj|s dx/|cj|, since dx = |cj| du where dx is
an infinitesimal in space and du is an infinitesimal with respect to time.

Similarly, for j 2 S� [ S�0, if the QBD-RAP remains in phase j then the QBD-RAP
approximation will transition out of level ` in the infinitesimal time interval [t+u, t+u+du]
with probability ae|cj |Su|cj|s du. At the time of the transition of level, we estimate the
position of X(t + u) by X(t + u) ⇡ y`. Tracing this back to time t, we estimate the
position of X(t) as X(t) ⇡ y` + |cj|u. Reverse engineering this logic, the approximation
to the probability X(t) 2 dx is ae|cj |S(x�y`)/|cj ||cj|s dx/|cj|, since dx = |cj| du. ∗

This reasoning leads to an approximation of the distribution of the fluid at time t,

P(X(t) 2 (E, j) | X(0) = (x0, i)),

for measurable sets E, as
Z

x2E

Z

a2A

P(Y (t) 2 (`, da, j) | Y (0) = y0)ae
Sz`,j(x)s dx, (4.27)

∗Here we have assumed we are dealing with the augmented state space model. If the non-augmented
state space model is used, for phases j 2 S0, if phase j is associated with S+, we use the same approx-
imation as if j 2 S+, and if phase j 2 S0 is associated with S�, we use the same approximation as if
j 2 S�.
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where E ✓ D`,j, x0 2 D`0,i, y0 = (`0,a`0,i(x0), i), and

z`,j(x) =

(
x� y` j 2 S�,

y`+1 � x j 2 S+.

While the estimate (4.27) is appealing, it is, however, defective – it does not integrate
to 1 for any finite-order matrix exponential distribution. To see this, compute

X

`2K

X

j2S

Z

x2D`,j

Z

a2A

P(Y (t) 2 (`, da, j) | Y (0) = y0)ae
Sz`,j(x)s dx

=
X

`2K

X

j2S

Z

a2A

P(Y (t) 2 (`, da, j) | Y (0) = y0)(1� aeS�
e)

= (1� aeS�
e)

< 1,

since aeSu
e > 0 for any u > 0. The problem is that the triple (a,S, s) defines a distribu-

tion on x 2 [0,1), however, it only makes sense to take x 2 [0,�) in the approximation
scheme.

To partially rectify this we can instead approximate P(X(t) 2 ( dx, j) | X(0) = (x0, i))
by

Z

a2A

P(Y (t) 2 (`, da, j) | Y (0) = y0)au`,j(x) dx, (4.28)

where

u`,j(x) =

(�
eS(y`+1�x)

s+ eS(2��(y`+1�x))
s
�
, j 2 S+,�

eS(x�y`)s+ eS(2��(x�y`))s
�
, j 2 S�.

(4.29)

Intuitively, we take the density function aeSx
s on x 2 [0, 2�), and ‘fold’ it back on itself

around �, to create a density function on [0,�),

aeSx
s+ aeS(2��x)

s, x 2 [0,�).

The missing mass is now proportional to

aeS2�
e,

which is less than the quantity aeS�
e from the approximation scheme (4.27). The choice

of truncating at 2� in this construction is convenient as in naturally leads to a density
on x 2 [0,�).
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A third option is to approximate P(X(t) 2 ( dx, j) | X(0) = (x0, i)) byZ

a2A

P(Y (t) 2 (`, da, j) | Y (0) = (`0,a`0,i(x0), i))av`,j(x) dx, (4.30)

where

av`,j(x) =

(
a
�
eS(y`+1�x) + eS(2��(y`+1�x))

� ⇥
I � eS2�

⇤�1
s, j 2 S+,

a
�
eS(x�y`) + eS(2��(x�y`))

� ⇥
I � eS2�

⇤�1
s, j 2 S�.

(4.31)

Here, we take the density function aeSx
s, defined on [0,1), and map it to a density

function on [0,�) by �� |(x mod 2�)��|. The resulting density function is

v(x) =
1X

m=0

a
�
eS(x+2�m) + eS(2��x+2�m)

�
s

= a
�
eSx + eS(2��x)

� 1X

m=0

eS2�m
s

= a
�
eSx + eS(2��x)

� ⇥
I � eS2�

⇤�1
s.

The di↵erence between the approximation schemes is the way in which the vector a
is used. We generalise this idea with the concept of closing operators which is a linear
operator v(x) : A ! R, for each x 2 [0,�). For example, the closing operator in Equations
(4.27) is the operator v(x), x 2 [0,�) such that for any a 2 A,

av(x) = aeSx
s. (4.32)

Similarly, in (4.28)

av(x) = a
�
eSx

s+ eS(2��x)
s
�
, (4.33)

and in (4.30)

av(x) = a
�
eSx

s+ eS(2��x)
� ⇥

I � eS2�
⇤�1

s. (4.34)

We will use the notation

v`,j(x) =

(
v(y`+1 � x) j 2 S+ [ S0+,

v(x� y`) j 2 S� [ S0�.
(4.35)

In this section we have established some intuitive ideas about how to extract an ap-
proximation to the density ofX(t) from the orbitA(t) using the idea of a closing operator,
v(x). As we shall see, given certain properties of v(x) we can prove that the approxima-
tion scheme converges, and ensures positivity. In the cases above, all the closing operators
(4.32)-(4.33) lead to an approximation which converges and, due to their interpretation
as probability densities, ensure positivity. Numerical experiments are used to investigate
the closing operator from this section in Chapter 7.

We close this section with some commentary on the importance of linearity for closing
operators.
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Comments on linearity and normalisation We considered taking the closing oper-
ators to be

av(x) =
a
�
eSx

s+ eS(2��x)
s
�

1� aeS2�e
, (4.36)

which also ensures that the solution always preserves mass (the result of integrating (4.36)
over [0,�) is 1). However, (4.36) is not a linear operator. The importance of this fact is
that for a linear operator,

E[A(t)v(x)] = E[A(t)]v(x),

thus, the computation of E[A(t)v(x)] can be achieved by first computing E[A(t)] and
then applying v(x) to the result. In this sense, E[A(t)] contains all the information about
the history of the process up to time t needed to compute E[A(t)v(x)].

When v(x) is not linear then, in general,

E[A(t)v(x)] 6= E[A(t)]v(x).

For example, with (4.36),

E[A(t)v(x)] =

Z

a2A

P(A(t) 2 da)
a
�
eSx

s+ eS(2��x)
s
�

1� aeS2�e
. (4.37)

While the calculation in (4.37) is theoretically possible, practically it is not. The seemingly
innocuous integral over a 2 A actually amounts to an integral over all possible sample
paths of the QBD-RAP (i.e. all possible events and event times of the QBD-RAP before
time t) and in general, there is no ‘nice’ way to do this computation.

In the linear case, computation of

E[A(t)] =

Z

a2A

P(A(t) 2 da)a,

amounts to a matrix exponential calculation.
In practice, we may use

E [A(t)]
�
eSx

s+ eS(2��x)
s
�

1� E [A(t)] eS2�e
(4.38)

as a normalised version of (4.33), and this seems to work well. However, this is not the
same as using the closing operator (4.36).



Chapter 5

Convergence of the QBD-RAP
before the first orbit restart epoch, ⌧1

This chapter details a convergence of the approximation scheme constructed in Chapter 4
on the event the first orbit restart epoch is yet to occur. Unless the QBD-RAP hits a
boundary and is immediately reflected, an orbit restart epoch corresponds to a change of
level. If the process hits a boundary and is immediately reflected, then there is no change
of level, but the orbit process does ‘restart’ at this time. We will define orbit restart epochs
more precisely, later. From the stochastic interpretation in Chapter 4, the orbit restart
epochs approximate the hitting times of the fluid queue on the points {y`} when the fluid
level is not at a boundary, or the exit times of the boundaries when sticky boundaries are
present and the fluid queue is at the boundary. Thus, this chapter proves a convergence of
the QBD-RAP scheme to the fluid queue in each of the sets {0},D0,D1, . . . ,DK , {yK+1}.

In Chapter 6, we use the main results of this chapter to prove further convergence
results for the QBD-RAP scheme, and ultimately provide a global result. Conceptually
Chapter 6 stitches together the convergence on each of the sets {0},D0, . . . ,DK , {yK+1}
proved in this chapter to claim the global convergence. Chapters 5 and 6 di↵er some-
what in their proof techniques: Chapter 5 relies more heavily on concentrated-matrix-
exponential-specific arguments whereas Chapter 6 uses more traditional arguments such
as the Markov property, time-homogeneity and the law of total probability. We now state
the QBD-RAP scheme with which we will work throughout this chapter.

Recall that the QBD-RAP is constructed using matrix exponential distributions to
model, approximately, the sojourn time of the fluid queue in a given interval. This
chapter shows a type of convergence under the assumption that the variance of the matrix
exponential distribution(s) used in the construction tends to 0. The result applies to any
sequence of matrix exponential distributions such that the variance tends to zero. The
generality of the result is necessitated by the fact that, in practice, we use the class of
concentrated matrix exponential distributions found numerically in (Horváth, Horváth &
Telek 2020), for which there are relatively few known properties.
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In this chapter we work exclusively with the augmented state space model to model
phases with rates ci = 0 as described in Section 4.3.

Further, to model an initial condition, '(0) = k 2 S0, we use the ephemeral set of
phases S⇤,k

0 as described in Section 4.6. Approximating the initial condition '(0) = k 2 S0

in this way greatly simplifies some results in this chapter. In Appendix E we provide
results which prove convergence of the approximation without the need to model the
initial condition '(0) = k 2 S0 by an ephemeral set of phases. Appendix E relies on the
fact that a`0,i(��x0) and a`0,i(x0)D are ‘close’, in some sense, then leverages the results
of this chapter to prove various bounds which ultimately show convergence. Beyond that,
Appendix E provides limited further insight into the QBD-RAP process, it is also long
and somewhat tedious, hence why it is in an appendix.

In this chapter we analyse the distribution of the QBD-RAP scheme up to the first
orbit restart epoch. The structure of the analysis is to first partition the distribution of
the QBD-RAP at time t (where t is before the first orbit restart epoch) on the number of
changes of phase from S+[S+0 to S� or S�[S�0 to S+. We will refer to changes of phase
from S+[S+0 to S� as up-down transitions and changes of phase from S�[S�0 to S+ as
down-up transitions. Next, for each term in the partition we take the Laplace transform
with respect to time. This is convenient as it enables algebraic manipulations which allow
us to separate the Laplace transforms into one factor solely about the orbit process of
the QBD-RAP and one expression about the phase process and associated rates. Once
we have established a convenient algebraic form, we then turn our attention to bounds
and convergence, establishing bounds for the di↵erence between the Laplace transforms
of the QBD-RAP just described and corresponding Laplace transforms of the fluid queue.
Thus, we establish a convergence result for the Laplace transforms with respect to time
for each of the distributions in the partition. We then wish to ‘undo’ the partitioning on
the event of a given number of up-down and down-up transitions before the first orbit
restart epoch to establish a convergence result for the Laplace transform on the event
that the first orbit restart epoch is yet to occur. To ‘undo’ the partitioning, we use the
Dominated Convergence Theorem.

The main steps of the convergence result of this chapter are listed below.

1. Define the partition on the number of up-down and down-up transitions and the
collections sample paths of the QBD-RAP and fluid queue with which we will work.
Describe the distributions of the processes on these sample paths and compute their
Laplace transforms with respect to time. (Sections 5.1, 5.2 and 5.3).

2. Establish error bounds for the di↵erence between the Laplace transforms of the
QBD-RAP and the fluid queue for each term in the partition. (Section 5.4).

3. Establish a geometric domination condition so that we may apply the Dominated
Convergence Theorem to ‘undo’ the partitioning and hence prove convergence of
the Laplace transforms. (Section 5.5).
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First we give some preliminaries and some technical assumptions we will use in the
proofs.

Preliminaries

Suppose we have a sequence, {Z(p)}p�1, of matrix exponential random variables with
Z(p) ⇠ ME(↵(p),S(p), s(p)), such that E[Z(p)] = � and Var

�
Z(p)

�
! 0 as p ! 1. For no-

tational convenience we suppose that p is the order of the representation (↵(p),S(p), s(p)),
but strictly speaking, this is not necessary. We use the superscript (p) to denote de-
pendence on the underlying choice of matrix exponential distribution that is used in the
construction of the QBD-RAP scheme. To simplify notation, we will omit the superscript
(p) when it is not necessary.

In the following we establish error bounds for an arbitrary parameter " > 0. However,
keep in mind the ultimate intention is to establish convergence, for which we choose

this parameter to be "(p) = Var
�
Z(p)

�1/3
. Notation for functions of Z(p) and which

therefore also implicitly depend on p, are ↵(p), S(p), s(p), S(p)
i , s(p)i , D(p), A(p), Y (p)(t) =

(L(p)(t),A(p)(t),�(p)(t)), y(p)
0 .

In the following we establish various results which involve integrating a function g, or a
sequence of functions g1, g2, . . .. We make the following assumptions about such functions.

Assumptions 5.1. Let g be a function g : [0,1) ! [0,1) which is
(i) non-negative,

g(x) � 0 for all x � 0,

(ii) bounded,
g(x)  G < 1 for all x � 0,

(iii) integrable, Z
1

x=0

g(x) dx  bG < 1,

(iv) and Lipschitz continuous

|g(x)� g(u)|  L|x� u| for all x, u � 0, 0 < L < 1.

We also need a sequence of closing operators which we denote by v
(p). For the con-

vergence results, we require the following properties of the closing operators v(p)(x), x 2
[0,�).

Properties 5.2. Let g be a function satisfying the Assumptions 5.1 and {v(p)(x)}p�1 be
a sequence of closing operators such that;
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(i) v(p)(x) can be decomposed into v
(p)(x) = w

(p)(x) + ew(p)(x), where
(ii) for x 2 [0,�), u, v � 0.

↵
(p)eS

(p)(u+v)(�S
(p))�1 ew(p)(x)  ↵(p)eS

(p)u(�S
(p))�1 ew(p)(x).

(iii) for x 2 [0,�), u � 0,

↵
(p)eS

(p)u(�S
(p))�1 ew(p)(x) = eG(p)

v ! 0, as p ! 1.

(iv) for x 2 [0,�), u � 0,

↵
(p)eS

(p)u(�S
(p))�1

w
(p)(x)  ↵(p)eS

(p)u
eGv,

for some 0  Gv < 1 independent of p for p > p0 where p0 < 1.
(v) for a 2 A, u � 0,

Z

x2[0,�)

a
(p)eS

(p)u
v
(p)(x) dx  a

(p)eS
(p)u

e.

(vi) for u  �� "(p), v 2 [0,�), then
�����

Z
1

x=0

↵
(p)eS

(p)(u+x)

↵(p)eS(p)ue
v
(p)(v)g(x) dx� g(�� u� v)1(u+ v  �� "(p))

����� = |r(p)v (u, v)|,

where Z �

u=0

��r(p)v (u, v)
�� du  R(p)

v,1 ! 0

and Z �

v=0

��r(p)v (u, v)
�� dv  R(p)

v,2 ! 0,

as Var(Z(p)) ! 0.

In Appendix D we provide results which show that the closing operators (4.32) - (4.34)
satisfy Properties 5.2.

Though it is an abuse of notation, for convenience, let us write
Z

x2E

g(x)P(Y (t) 2 (`, dx, j) | Y (0) = y0)

where g is some function, in place of
Z

x2E

g(x)

Z

a2A

P(Y (t) 2 (`, da, j) | Y (0) = y0)av`,j(x) dx (5.1)
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where v`,j(x) is a closing operator as defined in Section 4.7. Expression (5.1) is an ap-
proximation to

P(X(t) 2 ( dx, j) | X(0) = (x0, i)), (5.2)

x 2 D`,j, x0 2 D`0,i. Further, let us write

P(Y (t) 2 (`, E, j) | Y (0) = y0)

in place of
Z

x2E

Z

a2A

P(Y (t) 2 (`, da, j) | Y (0) = y0)av`,j(x) dx (5.3)

for some measurable set E ✓ D`,j.
Ultimately, in Chapter 6, we will apply the Extended Continuity Theorem for Laplace

transforms (Feller 1957, Chapter XIII, Theorem 2a) to claim convergence. The Extended
Continuity Theorem for Laplace transforms requires us to show convergence of the Laplace
transform pointwise with respect to the transform parameter, �, on the set � 2 R, � > 0.
Therefore, we can fix � 2 R, � > 0 in the following.

5.1 Describing the distribution of the QBD-RAP be-
fore ⌧1

In this chapter we are interested in the QBD-RAP up to the first orbit restart epoch,
which we denote by ⌧ (p)1 , which is the random (stopping) time at which the QBD-RAP
changes level, or is reflected upon hitting a boundary, for the first time. More precisely,

⌧ (p)1 = inf
�
t > 0 | L(p)(t) 6= L(p)(0), or (L(p)(t),A(p)(t),�(t)) is reflected at a boundary

 
.

At time ⌧ (p)1 , the orbit process is restarted at the initial value A(p)(⌧ (p)1 ) = ↵(p), unless the
QBD-RAP hits a sticky boundary and is temporarily absorbed, in which case the orbit
process is restarted at the value A

(p)(⌧ (p)1 ) = 1.∗

For the fluid queue, let ⌧X1 be the minimum of the time at which {X(t)} hits a
boundary, or exits a boundary, or exits D`0 , where X(0) = x0 2 D`0 . More precisely,

⌧X1 = min

8
<

:

inf {t > 0 | X(t) = y`, ` 2 K} ,
inf {t > 0 | X(t) 6= 0, X(0) = 0} ,

inf {t > 0 | X(t) 6= yK+1, X(0) = yK+1}

9
=

; .

∗Recall from the discussion in Section 4.5 in the paragraph above Remark 4.3, that the orbit process
is not actually required to model the behaviour at the boundary. We set it to be A(t) = 1 for all times t
when the QBD-RAP is at the boundary for notational convenience.
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Consider the initial condition y
(p)
0 = (L(p)(0),A(p)(0),�(0)) = (`0,a

(p)
`0,i

(x0), i), where
`0 2 K�, and i 2 S. Recalling the discussions in Section 4.2, the value y0 is such that the
distribution of the time for {(L(p)(t),A(p)(t),�(t))} to exit level `0 in a given phase j, say,
is an approximation to the distribution of time taken for {X(t)} to exit the interval D`0

in phase j, given the initial condition X(0) = (x0, i). We are interested in the quantity,

f `0,(p)(t)(x, j; x0, i) dx

given by

Z

a2A(p)

P
⇣
A

(p)(t) 2 da,�(t) = j, t < ⌧ (p)1 | Y (p)(0) = y
(p)
0

⌘
av

(p)
`0,j

(x) dx

= (ei ⌦ a
(p)
`0,i

(x0))e
B

(p)
0 t(e0

j ⌦ v
(p)
`0,j

(x)) dx, (5.4)

where

B
(p)
0 =

"
B

(p)
++ B

(p)
+�

B
(p)
�+ B

(p)
��

#

and

B
(p)
++ =


C+ ⌦ S

(p) + T++ ⌦ I T+0 ⌦ I

T0+ ⌦ I T00 ⌦ I

�
,B(p)

+� =


T+� ⌦D

(p) 0
T0� ⌦D

(p) 0

�
,

B
(p)
�+ =


T�+ ⌦D

(p) 0
T0+ ⌦D

(p) 0

�
,B�� =


C� ⌦ S

(p) + T�� ⌦ I T�0 ⌦ I

T0� ⌦ I T00 ⌦ I

�
.

The expression (5.4) is the QBD-RAP approximation to the distribution

P(X(t) 2 ( dx, j), t < ⌧X1 | X(0) = (x0, i)).

For now consider �(0) = i 2 S+ [ S�. As we shall see, certain Laplace transform
expressions for phases i⇤ 2 S⇤,k

0 with rate ci⇤ = 0 can be written as a linear combination
of certain Laplace transform expressions for phases in S+ [ S�.

Now, introduce a partition on the number of up-down and down-up transitions of the
sample paths. Denote by {⌃m}m�1 the sequence of (stopping) times at which {�(t)} has
an up-down transition (i.e. jumps from S+[S+0 to S�). Denote by {�m}m�1 the sequence
of (stopping) times at which {�(t)} has a down-up transition (i.e. jumps from S� [ S�0

to S+). More precisely, for sample paths with �(0) 2 S+, let �0 = 0, then for m � 1,

⌃m = inf{t > �m�1 | �(t) 2 S�}, (5.5)

�m = inf{t > ⌃m | �(t) 2 S+}. (5.6)
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For sample paths with �(0) 2 S�, let ⌃1 = 0, then for m � 1,

�m = inf{t > ⌃m�1 | �(t) 2 S+}, (5.7)

⌃m+1 = inf{t > �m+1 | �(t) 2 S�}. (5.8)

For times t such that �m  t < ⌃m+1, then �(t) 2 S+ [ S+0. For times t such that
⌃m+1  t < �m+1, then �(t) 2 S� [ S�0.

With these stopping times, we form a partition of the sample paths of the QBD-RAP
by the number of up-down and down-up transitions. By doing so we can express f `0,(p)(t)

as a sum of terms, f `0,(p)m,q,r (t), wherem = 0, 1, ..., is related to the number of up-down/down-
up transitions, q 2 {+,�} denotes that the initial phase is in Sq and r 2 {+,�} denotes
that the phase at time t is in Sr [ Sr0.

Let x0 2 D`0,i, x 2 D`0,j, t � 0, `0 2 K�, m � 0 and define

f `0,(p)m,+,+(t)(x, j; x0, i)

=

Z

a2A(p)

P
⇣
A

(p)(t) 2 da,�(t) = j, t < ⌧ (p)1 ,�m  t < ⌃m+1 | Y (p)(0) = y
(p)
0

⌘
av

(p)
`0,j

(x),

for i 2 S+, j 2 S+ [ S+0,

f `0,(p)m+1,+,�(t)(x, j; x0, i)

=

Z

a2A(p)

P
⇣
A

(p)(t) 2 da,�(t) = j, t < ⌧ (p)1 ,⌃m+1  t < �m+1 | Y (p)(0) = y
(p)
0

⌘
av

(p)
`0,j

(x)

for i 2 S+, j 2 S� [ S�0,

f `0,(p)m+1,�,+(t)(x, j; x0, i)

=

Z

a2A(p)

P
⇣
A

(p)(t) 2 da,�(t) = j, t < ⌧ (p)1 ,�m+1  t < ⌃m+2 | Y (p)(0) = y
(p)
0

⌘
av

(p)
`0,j

(x),

for i 2 S�, j 2 S+ [ S+0, and

f `0,(p)m,�,�(t)(x, j; x0, i)

=

Z

a2A(p)

P
⇣
A

(p)(t) 2 da,�(t) = j, t < ⌧ (p)1 ,⌃m+1  t < �m+1 | Y (p)(0) = y
(p)
0

⌘
av

(p)
`0,j

(x),

for i 2 S�, j 2 S� [ S�0.
The following result gives expressions for the functions f `0,(p)m,q,r (t)(x, j; x0, i).

Lemma 5.3.

f `0,(p)m,+,+(t)(x, j; x0, i)
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=

Z t

�1=0

(ei ⌦ a
(p)
`0,i

(x0))e
B

(p)
++�1B

(p)
+�

Z t

�1=�1

eB
(p)
��(�1��1)B

(p)
�+ . . .

Z t

�m=�m

eB
(p)
��(�m��m)

B
(p)
�+

⇥ eB
(p)
++(t��m)

⇣
e
0

j ⌦ v
(p)
`0,j

(x)
⌘
d�m d�m . . . d�1 d�1, (5.9)

for i 2 S+, j 2 S+ [ S+0,

f `0,(p)m+1,+,�(t)(x, j; x0, i)

=

Z t

�1=0

(ei ⌦ a
(p)
`0,i

(x0))e
B

(p)
++�1B

(p)
+�

Z t

�1=�1

eB
(p)
��(�1��1)B

(p)
�+ . . .

Z t

�m+1=�m

eB
(p)
++(�m+1��m)

⇥B
(p)
+�e

B
(p)
��(t��m+1)

⇣
e
0

j ⌦ v
(p)
`0,j

(x)
⌘
d�1 d�1 . . . d�m d�m d�m+1 (5.10)

for i 2 S+, j 2 S� [ S�0,

f `0,(p)m+1,�,+(t)(x, j; x0, i)

=

Z t

�1=0

(ei ⌦ a
(p)
`0,i

(x0))e
B

(p)
���1B

(p)
�+

Z t

�2=�1

eB
(p)
++(�2��1)B

(p)
+� . . .

Z t

�m+1=�m+1

eB
(p)
��(�m+1��m+1)

⇥B
(p)
�+e

B
(p)
++(t��m+1)

⇣
e
0

j ⌦ v
(p)
`0,j

(x)
⌘
d�1 d�2 . . . d�m d�m+1 d�m+1 (5.11)

for i 2 S�, j 2 S+ [ S+0, and

f `0,(p)m,�,�(t)(x, j; x0, i)

=

Z t

�1=0

(ei ⌦ a
(p)
`0,i

(x0))e
B

(p)
���1B

(p)
�+

Z t

�2=�1

eB
(p)
++(�2��1)B

(p)
+� . . .

Z t

�m+1=�m

eB
(p)
++(�m+1��m)

B
(p)
+�

⇥ eB
(p)
��(t��m+1)

⇣
e
0

j ⌦ v
(p)
`0,j

(x)
⌘
d�m+1 d�m . . . d�2 d�1, (5.12)

for i 2 S�, j 2 S� [ S�0, where ek is a row-vector of zeros except the kth position which
is a 1.

Proof. The results hold by Theorem 1 of Bean & Nielsen (2010) and the specific param-
eterisation of the approximating QBD-RAP.

Now, for q, r 2 {+,�}, q 6= r, define

f `0,(p)q,q (t)(x, j; x0, i) =
1X

m=0

f `0,(p)m,q,q (t)(x, j; x0, i) i 2 Sq, j 2 Sq [ Sq0,

f `0,(p)q,r (t)(x, j; x0, i) =
1X

m=1

f `0,(p)m,q,r (t)(x, j; x0, i) i 2 Sq, j 2 S0 [ Sr0,
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so that

f `0,(p)(t)(x, j; x0, i) =

(
f `0,(p)q,q (t)(x, j; x0, i) i 2 Sq, j 2 Sq [ Sq0,

f `0,(p)q,r (t)(x, j; x0, i) i 2 Sq, j 2 Sr [ Sr0.
(5.13)

Thus, for i 2 S+[S�, we have written f `0,(p)q,q (t)(x, j; x0, i) as a sum of terms f `0,(p)m,q,r (t)(x, j; x0, i).
We have not-yet addressed the case when the initial phase is in S0. Recall, in this

chapter we suppose the QBD-RAP approximation uses ephemeral states S⇤,k
0 to model

the fluid queue whenever the phase starts in S0. In general, for r 2 {+,�}, m � 0, we
define

f `0,(p)m,0,r (t)(x, j; x0, k) =
X

q2{+,�}

X

i2Sq

Z t

t0=0

eke
T00t0T0if

`0,(p)
m+1(q 6=r),q,r(t� t0)(x, j; x0, i) dt0

(5.14)

and then, on the event that �(0) = k 2 S⇤,k
0 and ⌧ (p)1 has not-yet occurred, then approxi-

mating density function is

f `0,(p)(t)(x, j; x0, k) = f `0,(p)0,r (t)(x, j; x0, k)k 2 S⇤,k
0 , j 2 Sr [ Sr0, r 2 {+,�}. (5.15)

Upon taking the Laplace transform of (5.14), by The Convolution Theorem and since
the sums are finite, then the convolutions become products. Hence, the Laplace transform
of f `0m,0,r(t)(x, j; x0, k) is a linear combination of the Laplace transforms of f `0,(p)m+1(q 6=r),q,r(t�
t0)(x, j; x0, i) which are given by (5.9)-(5.12). Thus, once we show convergence for the
Laplace transforms of (5.9)-(5.12) we get convergence of the Laplace transform for starting
in S⇤,k

0 too.

5.2 Describing the distribution of the fluid queue be-
fore ⌧1

Consider the measures on the Borel sets of D`0,j given by

µ`0(t)(·, j; x0, i) = P(X(t) 2 (·, j), t < ⌧X1 | X(0) = (x0, i)), (5.16)

`0 2 K�, x0 2 D`0,i, i, j 2 S, t � 0. This is the distribution of the fluid queue at time t
on the event that the fluid level remains within D`0 up to and including time t and is in
phase j at time t, given that it started at X(0) = x0 2 D`0,i in phase i.

I do not know of any simple expression for (5.16). There are expressions for the
Laplace transform of (5.16) with respect to time. One is in terms of the first return
matrices  (�) and ⌅(�) (Bean et al. 2009b). Here we opt for another expression for the
Laplace transform which is obtained by partitioning as follows.
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As before, we define the sequence of up-down transition times, {b⌃m}m�1, and the
sequence of down-up transition times, {b�m}m�1, to partition sample paths of the fluid
queue. For sample paths with '(0) 2 S+, let b�0 = 0, then for m � 1,

b⌃m = inf{t > b�m�1 | '(t) 2 S�}, (5.17)

b�m = inf{t > b⌃m | '(t) 2 S+}. (5.18)

For sample paths with '(0) 2 S�, let b⌃1 = 0, then for m � 1,

b�m = inf{t > b⌃m�1 | '(t) 2 S+}, (5.19)

b⌃m+1 = inf{t > b�m+1 | '(t) 2 S�}. (5.20)

The events {b�m  t < b⌃m+1}, and {b⌃m+1  t < b�m+1}, m � 0, partition the sample
paths of (5.16) into periods where the fluid is either non-decreasing or non-increasing,
respectively; see Figure 5.1.

For m � 0, i 2 S+, j 2 S+ [ S+0 define

µ`0m,+,+(t)(·, j; x0, i) = P(X(t) 2 (·, j), t < ⌧X1 , b�m  t < b⌃m+1 | X(0) = (x0, i)), (5.21)

for i 2 S+, j 2 S� [ S�0 define

µ`0m+1,+,�(t)(·, j; x0, i) = P(X(t) 2 (·, j), t < ⌧X1 , b⌃m+1  t < b�m+1 | X(0) = (x0, i)),
(5.22)

for i 2 S�, j 2 S+ [ S+0 define

µ`0m+1,�,+(t)(·, j; x0, i) = P(X(t) 2 (·, j), t < ⌧X1 , b�m+1  t < b⌃m+2 | X(0) = (x0, i)),
(5.23)

and for i 2 S�, j 2 S� [ S�0 define

µ`0m,�,�(t)(·, j; x0, i) = P(X(t) 2 (·, j), t < ⌧X1 , b⌃m+1  t < b�m+1 | X(0) = (x0, i)). (5.24)

Furthermore, for q, r 2 {+,�}, q 6= r, let

µ`0q,q(t)(·, j; x0, i) =
1X

m=0

µ`0m,q,q(t)(·, j; x0, i) i 2 Sq, j 2 Sq [ Sq0, (5.25)

µ`0q,r(t)(·, j; x0, i) =
1X

m=1

µ`0m,q,r(t)(·, j; x0, i) i 2 Sq, j 2 Sr [ Sr0. (5.26)

Then we can write (5.16) as

µ`0(t)(·, j; x0, i) =

(
µ`0q,q(t)(·, j; x0, i) i 2 Sq, j 2 Sq [ Sq0,

µ`0q,r(t)(·, j; x0, i) i 2 Sq, j 2 Sr [ Sr0,
(5.27)



5.2. Describing the distribution of the fluid queue before ⌧1 101

x

y`0 +�

y`0

b�0
b⌃1

b�1 ⌃2

x

y`0 +�

y`0

b⌃1
b�1

b⌃2
b�2

b⌃3

Figure 5.1: Sample paths and times of up-down and down-up transitions for '(0) 2 S+

(top) and '(0) 2 S� (bottom).
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For states k 2 S0, and r 2 {+,�}, j 2 Sr [ Sr0, m � 0, then

µ`0m,0,r(t)(x, j; x0, k) =
X

q2{+,�}

X

i2Sq

Z t

t0=0

eke
T00t0T0iµ

`0
m+1(q 6=r),q,r(t� t0)(x, j; x0, i) dt0.

(5.28)

5.3 Laplace transforms of the distributions before ⌧1

In this section we take the Laplace transform with respect to time† of the densities
f `0,(p)m,q,r (t)(x, j; x0, k), and measures µ`0m,q,r(t)(x, j; x0, k), q 2 {+,�, 0}, r 2 {+,�}. The
Laplace transform is convenient as it allows us to manipulate the expressions for the
QBD-RAP into one component related to the orbit process and one component related
to the phase process and the rates ci, i 2 S.

The following matrices play a key role in the analysis of fluid queues (see, for example,
Bean et al. (2009b)). Here, they appear in the Laplace transforms of the QBD-RAP and
the fluid queue. Define matrices

Q+0(�) = C
�1
+ T+0 [�I � T00]

�1 ,

Q�0(�) = C
�1
�

T�0 [�I � T00]
�1 ,

Q++(�) = C
�1
+

�
T++ � �I + T+0 [�I � T00]

�1
T0+

�
,

Q+�(�) = C
�1
+

�
T+� + T+0 [�I � T00]

�1
T0�

�
,

Q��(�) = C
�1
�

�
T�� � �I + T�0 [�I � T00]

�1
T0�

�
,

Q�+(�) = C
�1
�

�
T�+ + T�0 [�I � T00]

�1
T0+

�
.

The (i, j)th element of the matrix [�I � T00]�1 is the expected amount of the time that
a (defective) CTMC with generator T00 and phases S0 spends in state j before either
exiting S0 or an exponential random variable with rate � occurs, whichever is first, given
it started in phase i. An interpretation for Qmm(�) also exists. Consider a (defective)
CTMC, {M(t)}t�0, with phases Sm [ Sm0 and generator


C

�1
m Tmm C

�1
m Tm0

T0m T00

�
.

Given the phase process of the fluid queue, {'(t)}, starts in Sm [ Sm0, then {M(t)} is
the same as {'(t)} up to the first time it leaves Sm [Sm0 at which time {M(t)} is killed.

Now let {cM(t)} be {M(t)} observed when it is in states Sm only. Then Qmm(0) is the

generator of {cM(t)}. {cM(t)} is also a killed process as it must be killed at or before the

†Throughout this chapter we take Laplace transforms with respect to the time variable only. When-
ever we say Laplace transform we actually mean Laplace transform with respect to the time variable.
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time that {M(t)} is killed. Further, in addition to the possibility of {M(t)} being killed
at the first time it leaves Sm [ Sm0, if we also allow {M(t)} to be killed after a random
time with an exponential distribution with rate �, then Qmm(�) is the generator of the
killed process observed only in phases in Sm.

Also define the matrix functions

H
++(�, x) =

⇥
h++
ij (�, x)

⇤
i2S+,j2S+[S+0

= eQ++(�)x
⇥
C

�1
+ Q+0(�)

⇤
, (5.29)

H
��(�, x) =

⇥
h��

ij (�, x)
⇤
i2S�,j2S�[S�0

= eQ��(�)x
⇥
C

�1
� Q�0(�)

⇤
, (5.30)

H
+�(�, x) =

⇥
h+�

ij (�, x)
⇤
i2S+, j2S�

= eQ++(�)x
Q+�(�), (5.31)

H
�+(�, x) =

⇥
h�+
ij (�, x)

⇤
i2S�, j2S+

= eQ��(�)x
Q�+(�), (5.32)

for x,� � 0. The function h++
ij (�, x) (h��

ij (�, x)) is the Laplace transform of the time
taken for the fluid level to shift by an amount x whilst remaining in phases in S+ [ S+0

(S�[S�0), given the phase was initially i 2 S+ (i 2 S�) (Bean et al. 2005b). The function
h+�

ij (�, x) (h�+
ij (�, x)) is the Laplace transform of the time taken for the fluid level, {X(t)}

to shift by an amount x whilst remaining in phases in S+ [ S+0 (S� [ S�0), after which
time the phase instantaneously changes to j 2 S� (S+), given the phase was initially
i 2 S+ (S�) (Bean et al. 2005b).

Consider taking the Laplace transform of (5.21);

Z
1

t=0

e��tµ`0m,+,+(t)(·, j; x0, i) dt = bµ`0m,+,+(�)(·, j; x0, i) (5.33)

Throughout, we use the hatbnotation to denote Laplace transforms. The following lemma
gives expressions for (5.33).

Lemma 5.4. For `0 2 K�, i 2 S+, j 2 S+ [ S+0, x, x0 2 D`0 , and � > 0,

bµ`00,+,+(�)( dx, j; x0, i) = h++
ij (�, x� x0)1(x � x0) dx,

and for m > 0,

bµ`0m,+,+(�)( dx, j; x0, i) =

Z ��(x0�y`0 )

x1=0

eiH
+�(�,�� (x0 � y`0)� x1)

"
m�1Y

r=1

Z ��x2r�1

x2r=0

H
�+(�,�� x2r � x2r�1) dx2r�1

Z ��x2r

x2r+1=0

H
+�(�,�� x2r+1 � x2r) dx2r

#

Z ��x2m�1

x2m=0

H
�+(�,�� x2m�1 � x2m) dx2m�1H

++(�,�� x2m � (y`0+1 � x))e0

j

1(�� x2m � (y`0+1 � x) � 0) dx2m dx. (5.34)
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t

x0

y`0+1

y`0

x0 � y`0

�0

x1

�1

z1

x2

�2

z2

Figure 5.2: A sample path contributing to the integrand of the Laplace transform (5.35)
for fixed x1, x2. z1 = �� x1 � (x� y`0), z2 = �� x2 � x1.

Proof. First consider m = 0. In this case there are no change of phase from S+ [ S+0

to S� and x � x0 as the fluid level is non-decreasing. In fact, bµ`0m,+,+(�)( dx, j; x0, i) is
just the Laplace transform of the time taken for the fluid level to increase by x� x0 and
hence, by the physical interpretation of (5.29), we have

bµ`00,+,+(�)( dx, j; x0, i) = h++
ij (�, x� x0)1(x � x0) dx.

Now consider m > 0 and suppose, for simplicity, that `0 = 0 so y`0 = 0, y`0+1 = �,
and x0, x 2 [0,�). Sample paths which contribute to bµ`00,+,+(�)( dx, j; x0, i) have m up-
down and m down-up transitions. Suppose, for now, that the nth up-down transition,
n = 1, 2, ...,m, occurs when the fluid level is at ��x2n�1 2 (x2n�2,�) and the nth down-
up transition, n = 1, 2, ...,m, occurs when the level is at x2n 2 (0, x2n�1). Figure 5.2
shows an example of such a sample path.

The distance travelled by the fluid level between the (n� 1)th down-up and nth up-
down transitions is therefore z2n�1 = � � x2n�1 � x2(n�1). Upon the fluid level hitting
�� x2n�1 the phase instantaneously changes from a phase in S+ [ S+0 to a phase in S�.
The Laplace transform of the time taken for the fluid level to travel z2n�1 while remaining
in phases in S+ [ S+0 and then instantaneously transitioning to S� upon the fluid level
hitting �� x2n�1 in phase j, given the phase started in i, is exactly the (i, j)th element
of H+�(�, z2n�1).

Likewise, the distance travelled by the fluid level between the nth up-down and nth
down-up transition is z2n = ��x2n�1�x2n and upon the fluid level hitting ��x2n�1 the
phase instantaneously changes from a phase in S+ [ S+0 to a phase in S�. The Laplace
transform of the time taken for the fluid level to travel z2n while remaining in phases in
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S� [ S�0 and then instantaneously transitioning to S+ upon the fluid level hitting x2n in
phase j, given the phase started in i, is exactly the (i, j)th element of H�+(�, z2n).

After the mth down-up transition the phase remains in S+ [ S+0 until the fluid level
hits x. The mth down-up transition occurs at x2m, hence, the distance travelled between
the mth down-up transition until the fluid level hits x is z2m+1 = x � x2m. The Laplace
transform of the time taken for the fluid level to travel z2m+1 while remaining in phases
in S+ [ S+0 until the fluid level hits x in and does so in phase j, given the phase started
in i, is exactly the (i, j)th entry of H++(�, z2n+1).

Now, the total time taken for the fluid queue to do m up-down and m down-up
transitions then to hit x is the sum of the times taken between the m up-down and down-
up transition, followed by a down-up and up-down transition, plus the time after the mth
down-up transition until the level process hits x. This is a sum of random times, so the
distribution of the total time taken for the fluid queue to do m up-down and m down-up
transitions then to hit x is the convolution of the distributions of the components. By
The Convolution Theorem, the Laplace transform of the total time for the fluid queue to
do m up-down and m down-up transitions then to hit x is thus the product of the Laplace
transforms of the time to do m up-down and m down-up transitions then to hit x. That
is, the Laplace transform of the total time for the fluid queue to do m up-down and m
down-up transitions then to hit x and to do so in phase j, given it started in phase i, is

eiH
+�(�,�� (x0 � y`0)� x1)

"
m�1Y

r=1

H
�+(�,�� x2r � x2r�1)H

+�(�,�� x2r+1 � x2r)

#

H
�+(�,�� x2m�1 � x2m)H

++(�,�� x2m � (y`0+1 � x))e0

j.

Upon translating the argument above to any level `0 and upon integrating over all
possible values of x1, x2, ..., x2m, then we have shown

bµ`0m,+,+(�)( dx, j; x0, i) =

Z ��(x0�y`0 )

x1=0

eiH
+�(�,�� (x0 � y`0)� x1)

"
m�1Y

r=1

Z ��x2r�1

x2r=0

H
�+(�,�� x2r � x2r�1) dx2r�1

Z ��x2r

x2r+1=0

H
+�(�,�� x2r+1 � x2r) dx2r

#

Z ��x2m�1

x2m=0

H
�+(�,�� x2m�1 � x2m) dx2m�1H

++(�,�� x2m � (y`0+1 � x))e0

j

1(�� x2m � (y`0+1 � x) � 0) dx2m dx (5.35)

for m � 1.

Analogously, we can write down similar expressions for the Laplace transforms of
(5.21)-(5.24) (omitted).

The case where the phase starts in k 2 S0 is a direct corollary of Lemma 5.4



106 Chapter 5. Convergence of the QBD-RAP before the first orbit restart epoch, ⌧1

Corollary 5.5. For `0 2 K�, r 2 {+,�}, k 2 S0, i 2 Sr [ Sr0, x, x0 2 D`0 , and m � 0,

bµ`0m,0,r(�)( dx, j; x0, k) =
X

q2{+,�}

X

i2Sq

ek

⇥
�I � T00

⇤�1
T0ibµ`0m+1(q 6=r),q,r(�)( dx, j; x0, i).

(5.36)

Proof. The result follows from Lemma 5.4 by taking the Laplace transform of, and then
applying The Convolution Theorem to, the expression in (5.28).

Having derived expressions for the fluid queue, we now turn our attention to the
QBD-RAP. Consider the Laplace transforms

Z
1

t=0

e��tf `0,(p)m,q,r (t)(x, j; x0, i) dt = bf `0,(p)m,q,r (�)(x, j; x0, i), (5.37)

q, r 2 {+,�}, where we use bf `0,(p)m,q,r (�)(x, j; x0, i) to denote the Laplace transform of

f `0,(p)m,q,r (t)(x, j; x0, i). The following lemma gives expressions for (5.37).

Lemma 5.6. For `0 2 K, q, r 2 {+,�}, i 2 Sq, j 2 Sr [ Sr0, x, x0 2 D`0 , m � 0 and
� > 0,

bf `0,(p)m,+,+(�)(x, j; x0, i) =

Z
1

x1=0

· · ·
Z

1

x2m+1=0

eiM
m
++(�, x1, . . . , x2m+1)e

0

j

⇥ a
(p)
`0,i

(x0)N
2m+1,(p)(�, x1, . . . , x2m+1)v

(p)
`0,j

(x) dx2m+1 . . . dx1,

bf `0,(p)m+1,�,+(�)(x, j; x0, i) =

Z
1

x1=0

· · ·
Z

1

x2m+2=0

eiM
m+1
�+ (�, x1, . . . , x2m+2)e

0

j

⇥ a
(p)
`0,i

(x0)N
2m+2,(p)(�, x1, . . . , x2m+2)v

(p)
`0,j

(x) dx2m+2 . . . dx1,

bf `0,(p)m+1,+,�(�)(x, j; x0, i) =

Z
1

x1=0

· · ·
Z

1

x2m+2=0

eiM
m+1
+�

(�, x1, . . . , x2m+2)e
0

j

⇥ a
(p)
`0,i

(x0)N
2m+1,(p)(�, x1, . . . , x2m+1)v

(p)
`0,j

(x) dx2m+2 . . . dx1,

bf `0,(p)m,�,�(�)(x, j; x0, i) =

Z
1

x1=0

· · ·
Z

1

x2m+1=0

eiM
m
��

(�, x1, . . . , x2m+1)e
0

j

⇥ a
(p)
`0,i

(x0)N
2m+1,(p)(�, x1, . . . , x2m+1)v

(p)
`0,j

(x) dx2m+1 . . . dx1,

where

M
m
++(�, x1, . . . , x2m+1) =

mY

r=1

H
+�(�, x2r�1)H

�+(�, x2r)H
++(�, x2m+1),

M
m+1
�+ (�, x1, . . . , x2m+2) =

mY

r=1

H
�+(�, x2r�1)H

+�(�, x2r)H
�+(�, x2m+1)H

++(�, x2m+2),
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M
m+1
+�

(�, x1, . . . , x2m+2) =
mY

r=1

H
+�(�, x2r�1)H

�+(�, x2r)H
+�(�, x2m+1)H

��(�, x2m+2),

M
m
��

(�, x1, . . . , x2m+1) =
mY

r=1

H
�+(�, x2r�1)H

+�(�, x2r)H
��(�, x2m+1),

for m � 0, and

N
n,(p)(�, x1, . . . , xn) =

n�1Y

r=1

eS
(p)xrD

(p)eS
(p)xn ,

for n � 1. By convention, we take a product over an empty set to be 1.

Proof. Consider bf `0,(p)m+1,�,+(�)(x, j; x0, i). First, notice that the integrals in (5.9) are con-
volutions. Hence, by repeated application of The Convolution Theorem, the Laplace
transform of (5.9) is

bf `0,(p)m,+,+(�)(x, j; x0, i)

= (ei ⌦ a
(p)
`0,i

(x0))

Z
1

t1=0

e��t1eB
(p)
++t1 dt1B

(p)
+�

Z
1

t2=0

e��t2eB
(p)
��t2 dt2B

(p)
�+

. . .

Z
1

t2m=0

e��t2meB
(p)
��t2m dt2mB

(p)
�+

Z
1

t=0

e��teB
(p)
++t dt

⇣
e
0

j ⌦ v
(p)
`0,j

(x)
⌘
. (5.38)

Analogous expressions can be computed for the Laplace transforms of (5.10)-(5.12).
In Corollary F.3 in Appendix F, we show that

⇥
Ip|Sm| 0p|Sm|⇥p|S0|

⇤ Z 1

t=0

e��teB
(p)
mmt dtB(p)

mn

=

Z
1

x=0

H
mn(�, x)⌦ eS

(p)x
D

(p) dx
⇥
Ip|Sn| 0p|Sn|⇥p|S0|

⇤
, (5.39)

for m,n 2 {+,�}, m 6= n. Before we can apply this result, observe that, since i 2 S+, we
can write the initial vector in (5.38) as

(ei)1⇥|S+[S+0| ⌦ a
(p)
`0,i

(x0) =
⇥
(ei)1⇥|S+| 01⇥|S+0|

⇤
⌦ a

(p)
`0,i

(x0)

=
h
(ei)1⇥|S+| ⌦ a

(p)
`0,i

(x0) 01⇥p|S+0|

i

= ((ei)1⇥|S+| ⌦ a
(p)
`0,i

(x0))
⇥
Ip|S+| 0p|S+|⇥p|S+0|

⇤
, (5.40)

where the sizes of the vectors (ei) and 0 are explicit in their subscripts. With this
observation, applying (5.39) to the first integral in (5.38) transforms the expression to

(ei ⌦ a
(p)
`0,i

(x0))

Z
1

x1=0

⇣
H

+�(�, x1)⌦ eS
(p)x

D
(p)
⌘
dx1

⇥
Ip|S�| 0p|S�|⇥p|S0|

⇤
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Z
1

t2=0

e��t2eB
(p)
��t2 dt2B

(p)
�+ . . .

Z
1

t2m=0

e��t2meB
(p)
��t2m dt2mB

(p)
�+

Z
1

t=0

e��teB
(p)
++t dt

⇣
e
0

j ⌦ v
(p)
`0,j

(x)
⌘
. (5.41)

We may now apply (5.39) to the second integral, after which we can apply (5.39) to the
third integral and so on. Ultimately, after applying (5.39) to all the integrals in (5.38),
we get

(ei ⌦ a
(p)
`0,i

(x0))

✓Z
1

x1=0

H
+�(�, x1)⌦ eS

(p)x1D
(p) dx1

◆

"
m�1Y

r=1

✓Z
1

x2r=0

H
�+(�, x2r)⌦ eS

(p)x2rD
(p) dx2r

◆

✓Z
1

x2r+1=0

H
+�(�, x2r+1)⌦ eS

(p)x2r+1D
(p) dx2r+1

◆#

✓Z
1

x2m=0

H
�+(�, x2m)⌦ eS

(p)x2mD
(p) dx2m

◆

✓Z
1

x2m+1=0

H
++(�, x2m+1)⌦ eS

(p)x2m+1 dx2m+1

◆⇣
e
0

j ⌦ v
(p)
`0,j

(x)
⌘

=

Z
1

x1=0

· · ·
Z

1

x2m+1=0

eiM
m
++(�, x1, . . . , x2m+1)e

0

j

⇥ a
(p)
`0,i

(x0)N
2m+1,(p)(�, x1, . . . , x2m+1)v

(p)
`0,j

(x) dx2m+1 . . . dx1, (5.42)

by the Mixed Product Rule (Appendix F).

The arguments for bf `0,(p)m,q,r (�)(x, j; x0, i), q, r 2 {+,�}, for the cases with q and r not
both + are analogous and are omitted.

The relation (5.39) is key to the analysis. It allows us to factorise the integrand of the
Laplace transform (5.42) into one factor related solely to the orbit process {A(p)(t)},

a
(p)
`0,i

(x0)N
2m+1,(p)(�, x1, . . . , x2m+1)v

(p)
`0,j

(x)

and another factor related solely to the fluid queue,

eiM
m
++(�, x1, . . . , x2m+1)e

0

j.

The next result extends Lemma 5.6 to cases where the initial phase is in S0.

Corollary 5.7. For k 2 Sk,⇤
0 , q, r 2 {+,�}, and m � 0,

bf `0m,0,r(�)(x, j; x0, k) =
X

q2{+,�}

X

i2Sq

ek

⇥
�I � T00

⇤�1
T0i

bf `0m+1(q 6=r),q,r(�)(x, j; x0, i). (5.43)
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Proof. The result follows from Lemma 5.6 after taking the Laplace transform of, and then
applying The Convolution Theorem to, the expression (5.14).

In Section 5.4 we establish that bf `0,(p)m,q,r (�)(x, j; x0, k) dx ! bµ`0m,q,r(�)( dx, j; x0, k), q 2
{+,�, 0}, r 2 {+,�}. To do so we use the fact that the functions hqq

ij (�, x), h
qr
ij (�, x),

q, r 2 {+,�}, i 2 Sq, j 2 Sr [ Sr0 and � > 0 satisfy Assumptions 5.1 as functions of x.
To this end, we observe bounds, which follow from the stochastic interpretation of the
functions. Let cmin = mini2S�[S+ |ci| and recall that we fix � 2 R,� > 0. For all � > 0,
there is some 0  G < 1 such that, for q, r 2 {+,�}, q 6= r,

0  hqq
ij (�, x)  max {1/cmin, 1}  G, i 2 Sq, j 2 Sq [ Sq0,

0  hqr
ij (�, x)  max

k,`
[Qqr(0)]k,`  G, i 2 Sq, j 2 Sr.

Furthermore, there exists some 0  bG < 1 such that,
Z

1

x=0

hqq
ij (�, x) dx 

Z
1

x=0

hqq
ij (0, x) dx =

⇥
�Qqq(0)�1

Cq �Qqq(0)�1
Qq0(0)

⇤
ij
 bG,

Z
1

x=0

hqr
ij (�, x) dx 

Z
1

x=0

hqr
ij (0, x) dx =

⇥
�Qqq(0)

�1
Qqr(0)

⇤
ij
 bG.

Moreover, since hqq
ij (�, x) and hqr

ij (�, x), are matrix exponential functions with exponent
which is a sub-generator matrix, then for every � > 0, hqq

ij (�, x) and hqr
ij (�, x) is Lipschitz

continuous with respect to x on x 2 [0,1). Therefore, there exists some 0 < L < 1 such
that

��hqq
ij (�, x)� hqq

ij (�, y)
��  L|x� y| and

��hqr
ij (�, x)� hqr

ij (�, y)
��  L|x� y|.

5.4 Convergence on a fixed number of up-down/down-
up transitions before ⌧1

The main result of this chapter is the following theorem.

Theorem 5.8. Let  : R ! R, be bounded, | |  F . As p ! 1, for m � 1, q 2
{+,�, 0}, r 2 {+,�}, and for m = 0, q = 0, r 2 {+,�}, and for m = 0, q = r,
q, r 2 {+,�}, then

Z

x2D`0

bf `0,(p)m,q,r (�)(x, j; x0, k) (x) dx !
Z

x2D`0

bµ`0m,q,r(�)( dx, j; x0, k) (x). (5.44)

The proof of Theorem 5.8 is at the end of this section. It is the result of numerous other
sub-results, which we now proceed to show. Notice that the convergence in Theorem 5.8
is weak as we integrate the spatial variable, x, against test functions  . This is necessary
due to the discontinuity at x = x0 in terms with m = 0.
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Let � = E[Z] be the mean of the matrix exponential random variable, Z. The con-
vergence results rely on the fact that integrating a function, g say, against the density
function of a matrix exponential random variable conditional on the ME-life-time surviv-
ing until some time u < ��", approximates integrating said function against a Kronecker
delta situated at �� u, provided the variance of the ME is su�ciently low.

The next result is used to prove convergence on the event that there are no up-down
or down-up transitions before the first orbit restart epoch, ⌧1.

Lemma 5.9. Let  : [0,�) ! R be bounded,  (x)  F . Then, for x0 2 D`0,i, x 2 D`0,j,
`0 2 K�, � > 0, q 2 {+,�},

�����

Z

x2D`0,j

bf `0,(p)0,q,q (�)(x, j; x0, i) (x� y`0) dx�
Z

x2D`0,j

µ`00,q,q(�)( dx, j; x0, i) (x� y`0)

�����


⇣
R(p)

v,2 + "(p)G
⌘
F, (5.45)

where

Z �

v=0

r(p)v (u, v)  R(p)
v,2 ! 0,

"(p) = Var
�
Z(p)

�1/3
,

and
|hqq

ij |  G,

where r(p)v (u, v) and R(p)
v,2 are as in Properties 5.2, and |hqq

ij | is defined in (5.29)-(5.30).

Proof. Let us write x0 = y`0 + u, for u 2 [0,�). Recalling

bf `0,(p)0,+,+(�)(v, j; y`0 + u, i) =

Z
1

x1=0

↵
(p)eS

(p)(u+x1)

↵(p)eS(p)ue
v
(p)
`0,j

(x)h++
ij (�, x1) dx1,

and
bµ`00,+,+(�)( dv, j; y`0 + u, i) = h++

ij (�,�� u� x)1(u+ x < �) dv,

then (5.45) is equal to

�����

Z

x2D`0,j

Z
1

x1=0

↵
(p)eS

(p)(u+x1)

↵(p)eS(p)ue
v
(p)
`0,j

(x)h++
ij (�, x1) dx1 (x� y`0) dx

�
Z

x2D`0,j

h++
ij (�,�� u� x)1(�� u� x � 0) (x� y`0) dx

�����
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Z

x2D`0,j

�����

Z
1

x1=0

↵
(p)eS

(p)(u+x1)

↵eS(p)ue
v
(p)
`0,j

(x)h++
ij (�, x1) dx1

� h++
ij (�,�� u� x)1(u+ x < �)

�����F dx


Z

x2D`0,j

�����

Z
1

x1=0

↵
(p)eS

(p)(u+x1)

↵(p)eS(p)ue
v
(p)
`0,j

(x)h++
ij (�, x1) dx1

� h++
ij (�,�� u� x)1(u+ x < �� ")

�����F dx

+

Z

x2D`0,j

��h++
ij (�,�� u� x)1(�� "  u+ x < �)

��F dx, (5.46)

by the triangle inequality and since  is bounded. By Property 5.2(vi), then
�����

Z
1

x1=0

↵
(p)eS

(p)(u+x1)

↵(p)eS(p)ue
v
(p)
`0,j

(x)h++
ij (�, x1) dx1 � h++

ij (�,�� u� x)1(u+ x < �� ")

����� dx

 |rv(u, x)| . (5.47)

Hence, (5.46) is less than or equal to
Z

x2D`0,j

|r(p)v (u, x)|F dx+

Z

x2D`0,j

��h++
ij (�,�� u� x)1(�� "  u+ x < �)

��F dx

 R(p)
v,2F + "GF,

since |h++
ij |  G. Thus, we have shown (5.45) for q = +.

Using analogous arguments we can show (5.45) for q = �.

Upon choosing "(p) = Var(Z(p))1/3, then the bounds in (5.45) tend to 0.
Next, we proceed to show results needed to prove convergence on the event that there

are one or more up-down or down-up transitions before the first orbit restart epoch. We
wish to demonstrate convergence of expressions of the form

wn(x0, x)

=

Z
1

x1=0

g1(x1)k(x0)e
Sx1 dx1D

"
n�1Y

k=2

Z
1

xk=0

gk(xk)e
Sxk dxkD

#Z
1

xn=0

gn(xn)e
Sxn dxnv(x),

(5.48)

where n � 2, v(x) is a closing operator with the Properties 5.2, {gk} are functions
satisfying Assumptions 5.1 and k(x0) = ↵eSx0/↵eSx0e.
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We now introduce some notation we will use in the sequel. Define the column vectors

Im,k(uk) =

"
k�1Y

`=m

Z
1

x`=0

g`(x`)e
Sx` dx`D

#Z
1

xk=0

gk(xk)e
Sxk dxke

Suks (5.49)

for m, k 2 {1, 2, . . . }, m  k, where a product over an empty set is equal to 1. Notice
that Im,k(uk) can be written as

Im,k(uk) =

Z
1

xm=0

gm(xm)e
Sxm dxmDIm+1,k(uk). (5.50)

Define the row vectors

Jk+1,k+1(uk, xk+1) = gk+1(xk+1)
↵eSuk

↵eSuke
eSxk+1 , (5.51)

and

Jk+1,n(uk, xk+1) = gk+1(xk+1)
↵eSuk

↵eSuke
eSxk+1D

"
n�1Y

m=k+2

Z
1

xm=0

gm(xm)e
Sxm dxmD

#

⇥
Z

1

xn=0

gn(xn)e
Sxn dxn (5.52)

for k, n 2 {0, 1, 2, . . . }, k + 1 < n. The vectors Jk+1,n(uk, xk+1) can also be written
recursively,

Jk+1,n(uk, xk+1) = Jk+1,n�1(uk, xk+1)D

Z
1

xn=0

gn(xn)e
Sxn dxn. (5.53)

Also define D(b) =

Z b

u=0

eSu
s
↵eSu

↵eSue
du.

We prove that (5.48) converges by writing it as

Z
1

x1=0

g1(x1)k(x0)e
Sx1 dx1D(�� ")

"
n�1Y

k=2

Z
1

xk=0

gk(xk)e
Sxk dxkD(�� ")

#

⇥
Z

1

xn=0

gn(xn)e
Sxn dxnv(x) +

n�1X

k=1

Z
1

xk+1=0

Z
1

uk=��"

k(x0)I1,k(uk)Jk+1,n(uk, xk+1)v(x).

(5.54)

We show that each of the terms in the last summation in (5.54) is bounded by something
which can be made arbitrarily small upon choosing the variance of the distribution (↵,S)
to be su�ciently small. Then we show that the di↵erence between the first term in (5.54)
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and the corresponding expression for the fluid queue is also bounded by something which
can be made arbitrarily small. The decomposition in (5.54) is advantageous since in the

first term, the matrices D(��") are the integrals
Z ��"

u=0

eSu
s
↵eSu

↵eSue
du, so the variable of

integration never exceeds �� ". As a result, we can use Chebyshev’s inequality to bound
the denominator in the integrand of D(�� ") near 1.

Our next result shows a bound for the terms in the last summation in (5.54).
Recall the row vector function k(x) : [0,1) ! A ⇢ Rp,

k(x) =
↵eSx

↵eSxe
.

Corollary 5.10. Let g1, g2, . . . , be functions satisfying the Assumptions 5.1 and let v(x)
be a closing operator with the Properties 5.2, then, for k, n 2 {1, 2, . . . }, k + 1  n,

Z
1

xk+1=0

Z
1

uk=��"

k(x0)I1,k(uk)Jk+1,n(uk, xk+1)v(x)


1

↵eSx0e

  
2"+

Var(Z)

"

!
G2 bGn�2Gv +G bGn eGv

!
=: |r1(n)|. (5.55)

The structure of the proof is as follows. First, recall that we can decompose v(x) =
w(x) + ew(x), by Property 5.2(i), hence we can decompose the left-hand side of (5.55)
into

Z
1

xk+1=0

Z
1

uk=��"

k(x0)I1,k(uk)Jk+1,n(uk, xk+1)w(x)

+

Z
1

xk+1=0

Z
1

uk=��"

k(x0)I1,k(uk)Jk+1,n(uk, xk+1) ew(x). (5.56)

Next, we bound k(x0)I1,k(uk) and Jk+1,n(uk, xk+1)w(x). With these two bounds we can
derive a bound for the first term in (5.56). A bound on the second term of (5.56) follows
from the bound on k(x0)I1,n�1(un�1) along with Properties 5.2(ii) and 5.2(iii) of ew.

Proof. Step 1: Show the bound

k(x0)I1,k(uk) 
1

↵eSx0e
G bGk�1

↵eSuke. (5.57)

Recall the definition of D =

Z
1

u=0

eSu
s
↵eSu

↵eSue
du and substitute it into the left-hand side

of (5.57),

k(x0)I1,k(uk) = k(x0)

Z
1

x1=0

g1(x1)e
Sx1 dx1DI2,k(uk)
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= k(x0)

Z
1

x1=0

g1(x1)e
Sx1 dx1

Z
1

u1=0

eSu1s
↵eSu1

↵eSu1e
du1I2,k(uk). (5.58)

Since |g1|  G, then (5.58) is less than or equal to

k(x0)

Z
1

x1=0

GeSx1 dx1

Z
1

u1=0

eSu1s
↵eSu1

↵eSu1e
du1I2,k(uk). (5.59)

Computing the integral with respect to x1 in (5.59) gives

Gk(x0)(�S)�1

Z
1

u1=0

eSu1s
↵eSu1

↵eSu1e
du1I2,k(uk)

=
G

↵eSx0e

Z
1

u1=0

↵eS(x0+u1)e
↵eSu1

↵eSu1e
du1I2,k(uk), (5.60)

since (�S)�1 and eSt commute, s = �Se and eS(t+u) = eSteSu. Since ↵eS(x0+u1)e 
↵eSu1e, then (5.60) is less than or equal to

G
1

↵eSx0e

Z
1

u1=0

↵eSu1e
↵eSu1

↵eSu1e
du1I2,k(uk) = G

1

↵eSx0e

Z
1

u1=0

↵eSu1 du1I2,k(uk),

where we have cancelled the terms ↵eSu1e on the numerator and denominator.‡

Now integrate with respect to u1 and use the facts that (�S)�1 and eSx commute,
and s = �Se, to get

G
1

↵eSx0e
↵(�S)�1I2,k(uk) (5.61)

= G
1

↵eSx0e
↵(�S)�1

Z
1

x2=0

g2(x2)e
Sx2 dx2

Z
1

u2=0

eSu2s
↵eSu2

↵eSu2e
du2I3,k(uk)

= G
1

↵eSx0e

Z
1

x2=0

g2(x2)↵e
Sx2 dx2

Z
1

u2=0

eSu2e
↵eSu2

↵eSu2e
du2I3,k(uk) (5.62)

Since ↵eSx2eSu2e  ↵eSu2e, then (5.62) is less than or equal to

G
1

↵eSx0e

Z
1

x2=0

g2(x2) dx2

Z
1

u2=0

↵eSu2e
↵eSu2

↵eSu2e
du2I3,k(uk)

= G
1

↵eSx0e

Z
1

x2=0

g2(x2) dx2

Z
1

u2=0

↵eSu2e du2I3,k(uk), (5.63)

‡The cancellation of terms is important as, for u1 > �, then ↵(p)
e
S(p)u1e becomes small as p ! 1.
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where we have cancelled the terms ↵eSu2e on the numerator and denominator.§

Now, since

Z
1

x2=0

g2(x2) dx2  bG, then (5.63) is less than or equal to

G
1

↵eSx0e

bG
Z

1

u2=0

↵eSu2 du2I3,k(uk) = G
1

↵eSx0e

bG↵(�S)�1I3,k(uk). (5.64)

Repeating the arguments which got us from (5.61) to (5.64) another k� 2 times gives the
result.

Step 2: Show the bound

Jk+1,n(uk, xk+1)w(x)  gk+1(xk+1) bGn�k�2GGv. (5.65)

The argument is much the same as that we used to bound (5.57).
Starting with the left-hand side, upon substituting D,

Jk+1,n(uk, xk+1)w(x)

= Jk+1,n�1(uk, xk+1)D

Z
1

xn=0

gn(xn)e
Sxn dxnw(x)

= Jk+1,n�1(uk, xk+1)

Z
1

un�1=0

eSun�1s
↵eSun�1

↵eSun�1e
dun�1

Z
1

xn=0

gn(xn)e
Sxn dxnw(x)

 Jk+1,n�1(uk, xk+1)

Z
1

un�1=0

eSun�1s
↵eSun�1

↵eSun�1e
dun�1

Z
1

xn=0

GeSxn dxnw(x), (5.66)

since |gn|  G. By Property 5.2(iv) of w(x), ↵eSun�1

Z
1

xn=0

eSxnw(x) dxn  ↵eSun�1eGv,

hence (5.66) is less than or equal to

Jk+1,n�1(uk, xk+1)

Z
1

un�1=0

eSun�1s
↵eSun�1e

↵eSun�1e
dun�1GGv

= Jk+1,n�1(uk, xk+1)

Z
1

un�1=0

eSun�1s dun�1GGv (5.67)

where the terms ↵eSun�1e cancel from the numerator and denominator.¶

§As I mentioned in the previous footnote, this is important as, for uk > �, then ↵(p)
e
S(p)uke becomes

small as p ! 1. Deriving a bound in such a way that this cancellation occurs is one of the main challenges
with this proof – in retrospect it is somewhat obvious once we accept that g1 is bounded and gk, k > 1,
are integrable.

¶Once again, this cancellation is important. In this case Property 5.2(iv) of w(x) and that gn is
bounded are key the deriving an expression where this term cancels.
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Computing the integral with respect to un�1 in (5.67), gives

Jk+1,n�1(uk, xk+1)eGGv = Jk+1,n�2(uk, xk+1)

Z
1

un�2=0

eSun�2s
↵eSun�2

↵eSun�2e
dun�2

⇥
Z

1

xn�1=0

gn�1(xn�1)e
Sxn�1 dxn�1eGGv. (5.68)

Since ↵eS(xn�1+un�2)e  ↵eS(un�2)e, then (5.68) is less than or equal to

Jk+1,n�2(uk, xk+1)

Z
1

un�2=0

eSun�2s
↵eSun�2e

↵eSun�2e
dun�2

Z
1

xn�1=0

gn�1(xn�1) dxn�1GGv

= Jk+1,n�2(uk, xk+1)

Z
1

un�2=0

eSun�2s dun�2

Z
1

xn�1=0

gn�1(xn�1) dxn�1GGv (5.69)

where ↵eSun�2e cancels in the numerator and denominator.� Since

Z
1

xn�1=0

gxn�1 dxn�1 

bG, then (5.69) is less than or equal to

Jk+1,n�2(uk, xk+1)

Z
1

un�2=0

eSun�2s dun�2
bGGGv = Jk+1,n�2(uk, xk+1)e bGGGv. (5.70)

This is of the same form as the left-hand side of (5.68), hence repeating the same arguments
which took us from (5.68) to (5.70) another n� k � 3 more times gives

Jk+1,n(uk, xk+1)w(x)  Jk+1,k+1(uk, xk+1)e bGn�k�2GGv

= gk+1(xk+1)
↵eS(uk+xk+1)

↵eSuke
e bGn�k�2GGv

 gk+1(xk+1) bGn�k�2GGv.

Step 3: Combine the bounds on k(x0)I1,k(uk) and Jk+1,n(uk, xk+1)w(x) to bound the
first term in (5.56).

First consider k + 1 < n. With the bounds (5.57) and (5.65), the first term of (5.56)
is less than or equal to

1

↵eSx0e
G bGk�1

Z
1

xk+1=0

Z
1

uk=��"

↵eSukegk+1(xk+1) duk dxk+1
bGn�k�2GGv


1

↵eSx0e
G bGk�1

Z
1

uk=��"

↵eSuke duk
bG bGn�k�2GGv. (5.71)

�In this case the fact that the gk are integrable helps us cancel these terms.
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Now, observe that

Z
1

uk=��"

↵eSuke duk =

Z �+"

uk=��"

P(Z > uk) duk +

Z
1

uk=�+"

P(Z > uk) duk


Z �+"

uk=��"

duk +

Z
1

uk=�+"

Var(Z)

(uk ��)2
duk

= 2"+
Var(Z)

"
, (5.72)

where in the second integrand we have used Chebyshev’s inequality to bound the tail
probability,

P(Z > uk)  P(|Z ��| > |uk ��|) 
Var(Z)

(uk ��)2
,

for uk � �+ ". Hence, (5.71) is less than or equal to

1

↵eSx0e
G bGk�1

 
2"+

Var(Z)

"

!
bGn�k�1GGv.

Now consider k + 1 = n. By the bound (5.57), the first term of (5.56),

Z
1

xk+1=0

Z
1

uk=��"

k(x0)I1,n�1(un�1)gn(xn)
↵eSun�1

↵eSun�1e
eSxnw(x) (5.73)


1

↵eSx0e
G bGk�1

Z
1

xk+1=0

Z
1

uk=��"

↵eSukegk+1(xk+1)
↵eS(uk+xk+1)

↵eSuke
w(x) duk dxk+1. (5.74)

Since gk+1  G, and upon integrating over xk+1, then (5.74) is less than or equal to

1

↵eSx0e
G2 bGk�1

Z
1

uk=��"

↵eSuk(�S)�1
w(x) duk 

1

↵eSx0e
G2 bGk�1

Z
1

uk=��"

↵eSukeGv duk,

(5.75)

where we have used Property 5.2(iv) to get the upper bound on the right-hand side of
(5.75). Using (5.72) again, then (5.75) is less than or equal to

1

↵eSx0e
G bGn�2GGv

 
2"+

Var (Z)

"

!
. (5.76)

Thus, we have shown the desired bound.
Step 4: Bound the second term in (5.56).
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To bound the second term in (5.56) we instead bound
Z

1

xk+1=0

Z
1

uk=0

k(x0)I1,k(uk)Jk+1,n(uk, xk+1) ew(x)

=

Z
1

xk+1=0

Z
1

u=0

I1,n(u)
↵eSu

↵eSue

Z
1

xn=0

gn(xn)e
Sxn dxn ew(x) (5.77)

which is the same as the second term in (5.56) except that in (5.77) the integral with
respect to uk is over a larger interval. Using the bound in (5.57), then (5.77) is less than
or equal to

1

↵eSx0e
G bGn�1

Z
1

u=0

↵eSu
e
↵eSu

↵eSue
du

Z
1

xn=0

gn(xn)e
Sxn dxn ew(x).

Integrating over u gives

1

↵eSx0e
G bGn�1

↵(�S)�1

Z
1

xn=0

gn(xn)e
Sxn dxn ew(x)


1

↵eSx0e
G bGn�1

↵(�S)�1

Z
1

xn=0

gn(xn) dxn ew(x),

where the inequality holds by Property 5.2(ii). Integrating over xn, gives

1

↵eSx0e
G bGn

↵(�S)�1 ew(x) =
1

↵eSx0e
G bGn eGv, (5.78)

by Property 5.2(iii).
Combining all the bounds proves the result.

Next we wish to prove a bound on the di↵erence between the first term in (5.54) and
g⇤1,n(x0, x), where we define

g⇤1,n(x0, x) =

Z ��x0

u1=0

g1(�� u1 � x0)g
⇤

2,n(u1, x) du1, (5.79)

and

g⇤2,n(u1, x) =

Z ��u1

u2=0

g2(�� u2 � u1) du1 . . .

Z ��un�2

un�1=0

gn�1(�� un�1 � un�2) dun�2

gn(�� x� un�1)1(�� x� un�1 � 0) dun�1. (5.80)

The expression g⇤1,n has the same functional form as bµ`0n,q,r(�) in (5.35) except, where in
g⇤1,n the functions g1, ..., gn are scalar functions, in (5.35) they are the matrix-functions
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H
mn(�, x), m,n 2 {+,�}. Therefore, the functions bµ`0n,q,r(�) can be written as a linear

combination of terms with the form g⇤1,n. Hence, by bounding g⇤1,n, we also establish a
bound for bµ`0n,q,r(�).

To establish a bound on g⇤1,n we first establish a bound on the di↵erence between the
first term in (5.54) and the expression

g⇤,"1,n(x0, x) =

Z ��"�x0

u1=0

g1(�� u1 � x0)

Z ��"�u1

u2=0

g2(�� u2 � u1) du1

. . .

Z ��"�un�2

un�1=0

gn�1(�� un�1 � un�2) dun�2gn(�� x� un�1)1(�� x� un�1 � ").

(5.81)

We then establish a bound on the di↵erence between g⇤,"1,n(x0, x) and g⇤1,n(x0, x) which can
be made arbitrarily small by choosing " su�ciently small.

Recall that the first term in (5.54) looks like

Z
1

x1=0

g1(x1)k(x0)e
Sx1 dx1D(�� ")

"
n�1Y

k=2

Z
1

xk=0

gk(xk)e
Sxk dxkD(�� ")

#

⇥
Z

1

xn=0

gn(xn)e
Sxn dxnv(x) (5.82)

which, upon substituting D(�� ") =

Z ��"

u=0

eSu
s
↵eSu

↵eSue
du, can be written as

Z ��"

u1=0

Z
1

x1=0

↵eS(x0+x1+u1)s

↵eSx0e
g1(x1) dx1

"
n�1Y

k=2

Z ��"

uk=0

Z
1

xk=0

↵eS(uk�1+xk+uk)s

↵eSuk�1e
gk(xk) dxk duk�1

#

⇥
Z

1

xn=0

↵eS(un�1+xn)

↵eSun�1e
v(x)gn(xn) dxn dun�1. (5.83)

The last integral in (5.83) (with respect to xn) is close to gn(� � x � un�1) by Prop-
erty 5.2(vi).

Also, appearing in (5.83) are integrals of the form
Z

1

x`=0

↵eS(u`�1+x`+u`)s

↵eSu`�1e
g`(x`) dx`. (5.84)

Intuitively, if the variance of Z is su�ciently small and � is the expected value of Z, then
the distribution of Z will be concentrated around � and the integral in (5.84) should be
approximately equal to g`(�� u` � u`�1), provided u`�1  �� ". Our first step towards
showing a bound for the di↵erence between the first term in (5.54) and the expression
g⇤,"1,n(x0, x) is to prove this intuition. We start with a result about with a simpler integral
than that in (5.84), from which the result we require follows as a corollary.
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Lemma 5.11. Let g be a function satisfying Assumptions 5.1, then, for u  �� ",
Z

1

x=0

g (x)↵eS(x+u)
s dx = g (�� u) + r2, (5.85)

where

|r2|  2G
Var (Z)

"2
+ 2L".

The proof follows closely that of (Horváth, Horváth & Telek 2020, Appendix A, The-
orem 4). The idea of the proof is to recognise that (assuming the variance of Z is small)
the largest contribution to the integral on the left-hand side of (5.85) will come from
integrating over the interval x 2 (� � u � ",� � u + "). Since g is non-negative and
bounded, then the rest of the integral is bounded by

Z

x2[0,1)
x/2(��u�",��u+")

G↵eS(x+u)
s dx,

which can be shown to be small by Chebyshev’s inequality provided the variance of Z is
small.

Proof. With a change of variables,

����
Z

1

x=0

g (x)↵eS(x+u)
s dx� g (�� u)

����

=

����
Z

1

x=u

g (x� u)↵eSx
s dx� g (�� u)

����

=

�����

Z
1

x=u

g (x� u)↵eSx
s dx�

Z
1

x=u

g (�� u)↵eSx
s dx� g (�� u)

�
1�↵eSu

e
�
�����.

By the triangle inequality this is less than or equal to
����
Z

1

x=u

(g (x� u)� g (�� u))↵eSx
s dx

���� +
��g (�� u)

�
1�↵eSu

e
���

=

����
Z

1

x=u

(g (x� u)� g (�� u))↵eSx
s dx

����+
����
Z u

x=0

g (�� u)↵eSx
s dx

����

 d1 + d2

where

d1 =

����
Z u

x=0

g (�� u)↵eSx
s dx

����+
����
Z ��"

x=u

(g (x� u)� g (�� u))↵eSx
s dx

����
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+

����
Z

1

x=�+"

(g (x� u)� g (�� u))↵eSx
s dx

���� ,

d2 =

����
Z �+"

x=��"

(g (x� u)� g (�� u))↵eSx
s dx

���� .

By the triangle inequality for integrals, d2 is less than or equal to
Z �+"

x=��"

|g (x� u)� g (�� u)|↵eSx
s dx 

Z �+"

x=��"

2L"↵eSx
s dx

= 2L"P(Z 2 (�� ",�+ "))

 2L",

where we have used the Lipschitz property of g from Assumption 5.1(iv) in the first line.
Applying the triangle inequality to d1,

d1 
Z ��"

x=u

|g (x� u)� g (�� u)|↵eSx
s dx+

Z
1

x=�+"

|g (x� u)� g (�� u)|↵eSx
s dx

+

����
Z u

x=0

g (�� u)↵eSx
s dx

����

 2G

 Z ��"

x=u

↵eSx
s dx+

Z
1

x=�+"

↵eSx
s dx+

Z u

x=0

↵eSx
s dx

!
= 2GP (|Z ��| > ") ,

where the second inequality holds since |g (x) |  G. By Chebyshev’s inequality,

2GP (|Z ��| > ")  2G
Var (Z)

"2
. (5.86)

Hence, there is some r2 such that
����
Z

1

x=0

g (x)↵eS(x+u)
s dx� g (�� u)

���� = |r2|  2G
Var(Z)

"2
+ 2L",

and this completes the proof.

Corollary 5.12. Let g be a function satisfying the Assumptions 5.1. For u  � � ",
v � 0,

Z
1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx = g(�� u� v)1(u+ v  �� ") + r3(u+ v), (5.87)

where

|r3(u+ v)| 

8
>>><

>>>:

3G� + 2L" u+ v  �� ",

G u+ v 2 (�� ",�+ "),

G
�

1� �
u+ v � �+ ".

,
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and � =
Var(Z)

"2
.

Proof. First consider u+v  ��". Observe that, since u  ��", Chebyshev’s inequality
gives

↵eSu
e = P (Z > u)

� P (|Z ��|  ")

� 1�
Var (Z)

"2

=: 1� �,

thus we have a bound for the denominator in the integrand on the left-hand side of (5.87).
Now, since 1� �  ↵eSu

e  1, then

Z
1

x=0

↵eS(x+u+v)
sg(x) dx 

Z
1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx  1

1� �

Z
1

x=0

↵eS(x+u+v)
sg(x) dx.

By Lemma 5.11

g(�� u� v) + r2 
Z

1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx  g(�� u� v) + r2

1� �
.

Multiplying by 1� �, then subtracting g(��u�v) and adding

Z
1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx�

gives

r2(1� �)� g(�� u� v)� +

Z
1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx�


Z

1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx� g(�� u� v)

 r2 +

Z
1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx�.

The last line is bounded above by

r2 +

Z
1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx�  r2 +G�.

The first line is bounded below by

r2(1� �)� g(�� u� v)� +

Z
1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx� � r2(1� �)� g(�� u� v)�.
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Therefore,

Z
1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx = g(�� u� v) + r3, (5.88)

where

|r3|  max (|r2|(1� �) + g(�� u� v)�, |r2|+G�)

 |r2|+G�

 3G� + 2L", (5.89)

as required.
For u+ v 2 (�� ",�+ "),

Z
1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx  GP(Z > u+ v | Z > u)  G. (5.90)

For u+ v � �+ ",

Z
1

x=0

↵eS(x+u+v)
s

↵eSue
g(x) dx  G

P(Z > u+ v)

P(Z > u)
 G

Var(Z)/"2

1� Var(Z)/"2
. (5.91)

The error term r(p)3 depends on p, as it is defined by Z(p) and "(p), but we have omitted
the superscript p here. Choosing " = Var(Z(p))1/3 then, outside the vanishingly small

interval u 2 (�� "(p),�+ "(p)), the error term |r(p)3 (u)| is bounded by O
⇣
Var

�
Z(p)

�1/3⌘
,

which tends to 0 as p ! 1. On u 2 (��"(p),�+"(p)) the error term |r(p)3 (u)| is bounded
by a constant which does not tend to 0 as p ! 1. However, when we integrate a bounded
function against r(p)3 (u), then the resulting integral tends to 0, i.e. for | (x)|  F, M <

1,

Z M

0

 (u)|r(p)3 (u)| du  F�(3G�(p) + 2L") + 2GF"(p) + (M � �)GF �(p)/(1� �(p)) =

O
⇣
Var

�
Z(p)

�1/3⌘ ! 0 as p ! 1. This is the context in which we apply Corollary 5.12

and thus the error bound is su�cient.
We are now in a position to prove the desired bound on the di↵erence between the

first term in (5.54) and g⇤1,n(x0, x).

Lemma 5.13. Let g1, g2, . . . , be functions satisfying the Assumptions 5.1 and let v(x) be
a closing operator with the Properties 5.2. Then, for n � 2,

Z
1

x1=0

g1(x1)k(x0)e
Sx1 dx1D(�� ")

"
n�1Y

k=2

Z
1

xk=0

gk(xk)e
Sxk dxk

#
D(�� ")
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⇥
Z

1

xn=0

gn(xn)e
Sxn dxnv(x)

= g⇤1,n(x0, x) + r4(n) + r5(n), (5.92)

where |r4(n)| and |r5(n)| are error terms satisfying

|r4(n)| = O

 
max

(
�, ",

�

1� �
, Rv,1

)!
,

|r5(n)|  "n�1Gn�1,

and O(·) is the usual big-O notation.

Proof. Rewriting the left-hand side of (5.92) as in (5.83), we see that we can apply Corol-
lary 5.12 to all the integrals over xk, k = 1, . . . , n� 1 and use Property 5.2(vi) of v(x) for
the integral over xn, to get

Z ��"

u1=0

[g1(�� u1 � x0)1(u1 + x0  �� ") + r3(u1 + x0)]

⇥
Z ��"

u2=0

[g2(�� u2 � u1)1(u2 + u1  �� ") + r3(u2 + u1)] du1

. . .

Z ��"

un�1=0

[gn�1(�� un�1 � un�2)1(un�1 + un�2  �� ") + r3(un�1 + un�2)] dun�2

⇥ [gn(�� un�1 � x)1(un�1 + x  �� ") + rv(un�1, x)] dun�1

= g⇤,"1,n(x0, x) + r4(n)

where r4(n) is an error term. The leading terms of r4(n) are of the form

Z ��"�x0

u1=0

g1(�� u1 � x0)

Z ��"�u1

u2=0

g2(�� u2 � u1) du1

. . .

Z ��"�uk�2

uk�1=0

gk�1(�� uk�1 � uk�2) duk�2

Z ��"

uk=0

r3(uk + uk�1) duk�1

⇥
Z ��"�uk

uk+1=0

gk+1(�� uk+1 � uk) duk . . .

Z ��"�un�2

un�1=0

gn�1(�� un�1 � un�2) dun�2

⇥ gn(�� un�1 � x)1(un�1 + x  �� ") dun�1 (5.93)

or
Z ��"�x0

u1=0

g1(�� u1 � x0)

Z ��"�u1

u2=0

g2(�� u2 � u1) du1
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. . .

Z ��"�un�2

un�1=0

gn�1(�� un�1 � un�2) dun�2rv(un�1, x) dun�1, (5.94)

whichever is larger. Since |g`|  G, ` � 1, then (5.94) and (5.93) are less than or equal to

Gk�1�k�2

Z ��"

uk�1=0

Z ��"

uk=0

r3(uk + uk�1) duk duk�1G
n�k�n�k�1,

and

Gn�1�n�2

Z ��"

un�1=0

rv(un�1, x) dun�1,

respectively.
Recall that we have a bound on |r3| which is piecewise constant. Breaking up the

integral of |r3| above into three intervals over which the bound is constant and using the
triangle inequality, then

�����

Z ��"

uk�1=0

Z ��"

uk=0

r3(uk + uk�1) duk duk�1

�����


Z ��"

uk�1=0

"Z ��"

uk=uk�1

|r3(uk)| duk +

Z min(�+",��"+uk�1)

uk=��"

|r3(uk)| duk

+

Z ��"+uk�1

uk=�+"

|r3(uk)| duk1(uk�1 > 2")

#
duk�1. (5.95)

Using the piecewise upper bounds on |r3| then, in the square brackets in (5.95), the first
integral is less than or equal to

(�� "� uk�1)(3G�+ 2L"),

the second integral is less than or equal to
Z �+"

uk=��"

|r3(uk)| duk  2"G

and the third integral is less than or equal to

G
�

1� �
(uk�1 � 2")1(uk�1 > 2").

With these bounds (5.95) is less than or equal to
"Z ��"

uk�1=0

(�� "� uk�1)(3G� + 2L") + 2"G+G
�

1� �
(uk�1 � 2")1(uk�1 > 2")

#
duk�1
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 1

2
�2(3G� + 2L") + 2�"G+

1

2
�2G

�

1� �

= O

 
�, ",

�

1� �

!
.

Thus, (5.93) is, at worst, O

 
�, ",

�

1� �

!
.

As for (5.94), by Property 5.2(vi),
Z ��"

un�1=0

|rv(un�1, x)| dun�1  Rv,1,

hence (5.94) is O(Rv,1).

Therefore, the error term |r4(n)| = O

 
max

(
�, ",

�

1� �
, Rv,1

)!
.

Now,
�����g

⇤,"
1,n(x0, x)� g⇤1,n(x0, x)

�����

=

Z ��x0

u1=��"�x0

g1(�� u1 � x0)

Z ��u1

u2=��"�u1

g2(�� u2 � u1) du1

. . .

Z ��un�2

un�1=��"�un�2

gn�1(�� un�1 � un�2) dun�2gn(�� x� un�1)

⇥ 1(�� x� un�1 � 0) dun�1


Z ��x0

u1=��"�x0

G

Z ��u1

u2=��"�u1

G du1 . . .

Z ��un�2

un�1=��"�un�2

G dun�2G dun�1

= "n�1Gn,

where the inequality holds since |g`| are bounded. Therefore, the left-hand side of (5.92)
is equal to

g⇤,"1,n(x0, x) + r4(n) + r5(n),

where r5(n) = g⇤1,n(x0, x)� g⇤,"1,n(x0, x)  "n�1Gn.

Combining the results obtained so far in this chapter we have a bound on the di↵erence
between wn(x0, x) and g⇤1,n(x0, x) which we state formally as the following corollary.

Corollary 5.14. Let g1, g2, . . . , be functions satisfying Assumptions 5.1 and let v(x),
x 2 [0,�), be a closing operator with Properties 5.2. Then, for n � 2, x0 2 [0,�),

��wn(x0, x)� g⇤1,n(x0, x)
��  (n� 1)|r1(n)|+ |r4(n)|+ |r5(n)|, (5.96)
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Proof. Substitute the expression for wn(x0, x) in (5.54) into the left-hand side of (5.96),
apply the triangle inequality and Corollary 5.10 and Lemma 5.13 to get the result.

A direct corollary is the following.

Corollary 5.15. Let g1, g2, . . . , be functions satisfying Assumptions 5.1,  : [0,�) ! R
be bounded, | |  F , and let v(x), x 2 [0,�), be a closing operator with Properties 5.2.
Then, for n � 2, x0 2 [0,�),

����
Z �

x=0

wn(x0, x) (x)� g⇤1,n(x0, x) (x) dx

����  ((n� 1)|r1(n)|+ |r4(n)|+ |r5(n)|)�F.

(5.97)

Proof. The left-hand side of (5.97) is less than or equal to

Z �

x=0

��wn(x0, x)� g⇤1,n(x0, x)
�� | (x)| dx. (5.98)

Applying Corollary 5.14, and since | |  F , then (5.98) is less than or equal to

Z �

x=0

((n� 1)|r1(n)|+ |r4(n)|+ |r5(n)|)F dx = ((n� 1)|r1(n)|+ |r4(n)|+ |r5(n)|)�F

which is the desired result.

We have assumed throughout this section that the functions g and {gk} are scalar
functions, however, we are ultimately interested in expressions of the form (5.42), which
contain matrix functions. Conveniently, the matrix-function expression (5.42) can be
written as a linear combination of the scalar case. Hence, we can obtain a bound for the
matrix-function case from the scalar case, which we state in the following result.

Lemma 5.16. Let Gk(x), k 2 {1, 2, ...}, be matrix functions with dimensions Nk⇥Nk+1,
and let  : [0,�) ! R be bounded, | |  F . Further, suppose the scalar function [Gk(x)]ij,
i 2 {1, ..., Nk}, j 2 {1, ..., Nk+1}, k 2 {1, 2, ...} satisfy Assumptions 5.1. Then,

�����

Z �

x=0

Z
1

x1=0

G1(x1)⌦ k(x0)e
Sx1D(x1) dx1

"
n�1Y

k=2

Z
1

xk=0

Gk(xk)⌦ eSxk dxkD

#

Z
1

xn=0

Gn(xn)⌦ eSxn dxnv(x) (x) dx

�
Z �

x=0

Z ��x0

u1=0

G1(�� u1 � x0)

"
n�1Y

k=2

Z ��uk�1

uk=0

Gk(�� uk � uk�1) duk�1

#
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Gn(�� x� un�1)1(�� x� un�1 � 0) dun�1 (x) dx

�����

 ((n� 1)|r1(n)|+ |r4(n)|+ |r5(n)|)�F
nY

k=2

Nk, (5.99)

where the inequality is an element-wise inequality. Moreover, choosing " = Var(Z), then,
for each n, the bound (5.99) is O(Var(Z)1/3).

Proof. Consider the (i, j)th element of the integrand in the first term on the left-hand
side of (5.99)

eiG1(x1)⌦ k(x0)e
Sx1D(x1)

"
n�1Y

k=2

Gk(xk)⌦ eSxkD

#
Gn(xn)e

0

j ⌦ eSxnv(x) (x)

=
�
eiG1(x1) . . .Gn(xn)e

0

j

�
⌦
�
k(x0)e

Sx1D . . . eSxn�1DeSxnv(x) (x)
�

= [G1(x1) . . .Gn(xn)]i,j
�
k(x0)e

Sx1D . . . eSxn�1DeSxnv(x) (x)
�

(5.100)

where the first equality holds by the Mixed Product Rule and the second equality recog-
nises that the matrices which we are taking the Kronecker product of are 1x1i, i.e. scalars.
Writing the matrix products in (5.100) out explicitly as sums

Z �

x=0

Z
1

x1=0

· · ·
Z

1

xn=0

N2X

j1=1

[G1(x1)]i,j1

N3X

j2=1

[G2(x2)]j1,j2 · · ·
NnX

jn�1=1

[Gn(xn)]jn�1,j

k(x0)e
Sx1D . . . eSxn�1DeSxn dxn . . . dx1v(x) (x) dx, (5.101)

elucidates that (5.101) is a linear combination of the scalar function case in Corollary 5.15.
Applying the bound for the scalar case, Corollary 5.15, to each term in the linear combi-
nation then summing the bounds obtained gives the bound (5.99).

The fact that the error bound is O(Var(Z)1/3) follows by substituting " = Var(Z)1/3

into each term and observing that each term is at most O(Var(Z)1/3).

Finally, we are in a position to prove the main result of this section.

Proof of Theorem 5.8. Cases q = r 2 {+,�} and m = 0. Lemma 5.9 bounds the absolute
di↵erence

�����

Z

x2D`0

bf `0,(p)0,r,r (�)(x, j; x0, k) (x) dx�
Z

x2D`0

bµ`00,r,r(�)( dx, j; x0, k) (x)

����� .

Since the bounds from Lemma 5.9 are O(Var(Z(p))1/3) then, as we take p ! 1, the
bounds becomes arbitrarily small which gives the required convergence.
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Cases q, r 2 {+,�}, and m � 1. Given the properties of the functions hu,v
ij , u, v 2

{+,�}, then
R
x2D`0

bf `0,(p)0,q,r (�)(x, j; x0, k) (x) dx satisfies the assumptions of Lemma 5.16.

To see this, let q0 be the opposite sign to q, i.e. q0 2 {+,�}, q 6= q0. Then, in Equa-
tion (5.99), take n = 2m + 1(q = r), G1(x1) = eiH

qq0(�, x1), G2k(x2k) = H
q0q(�, x2k),

G2k+1(x2k) = H
qq0(�, x2k+1), k = 1, . . . ,m�1; if q 6= r then takeG2m(x2m) = H

rr(x2m)e0

j,

otherwise, takeG2m(x2m) = H
q0r(x2m) andG2m+1 = H

rr(�, x2m+1)e0

j. Thus, Lemma 5.16,
establishes a bound on (5.44) which isO(Var(Z(p))1/3), thus taking p ! 1 gives the stated
convergence.

Cases q = 0, r 2 {+,�} and m � 0. Since

bf `0m,0,r(�)(x, j; x0, k) dx =
X

q2{+,�}

X

i2Sq

ek

⇥
�I � T00

⇤�1
T0i

bf `0m+1(r 6=q),q,r(�)(x, j; x0, i) dx,

(5.102)

is a linear combination of terms which are treated in the two cases above, then (5.102)
converges to

bµ`0m,0,r(�)( dx, j; x0, k) =
X

q2{+,�}

X

i2Sq

ek

⇥
�I � T00

⇤�1
T0ibµ`0m+1(r 6=q),q,r(�)( dx, j; x0, i),

(5.103)

as required.

5.5 Convergence before the first orbit restart epoch,
⌧1

Recall that the goal in this chapter is to show a convergence of

bf `0,(p)q,r (�)(x, j; x0, i) dx ! bµ`0q,r(�)( dx, j; x0, i),

where

bf `0,(p)(�)(x, j; x0, i) =

Z
1

t=0

1X

m=0

e��tf `0,(p)m+1(p 6=q),q,r(t)(x, j; x0, k) dt.

Since f `0,(p)m+1(p 6=q),q,r are positive, as is e��t, then we can use the Fubini-Tonelli Theorem to
justify a swap of the integral and infinite sum to get

bf `0,(p)(�)(x, j; x0, i) =
1X

m=0

bf `0,(p)m+1(p 6=q),q,r(�)(x, j; x0, k). (5.104)
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Similarly, we can write

bµ`0(�)( dx, j; x0, i) =
1X

m=0

bµ`0m+1(p 6=q),q,r(�)( dx, j; x0, k).

The previous section proved that the Laplace transforms

bf `0,(p)m,q,r (�)(x, j; x0, k) dx ! bµ`0m,q,r(�)( dx, j; x0, k),

for q 2 {+,�,+0,�0}, r 2 {+,�}. Thus, all we need to show is that, upon taking the
limit of (5.104), we can swap the limit and the summation. Here we apply the Dominated
Convergence Theorem to justify the swap. To this end, we show a domination condition
in Lemma 5.17 below.

Recall cmin = min
i2S+[S�

|ci|, and let E� be an independent exponential random variable

with rate � and � = maxi2S+[S� �Tii/|ci|.

Lemma 5.17. For all M � 0, x 2 D`0,j, x0 2 D`0,i, `0 2 K, � > 0, r 2 {+,�},
j 2 Sr [ Sr0, and either q 2 {+,�}, i 2 Sq, or q = 0, i 2 S⇤

0 , for any bounded function
 , | | < F ,

1X

m=M+1

�����

Z

x2D`0

bf `0,(p)m,q,r (�)(x, j; x0, i) (x) dx�
Z

x2D`0

bµ`0m,q,r(�)( dx, j; x0, i) (x)

�����  rM6

(5.105)

where

rM6 = F (�G+ bG)

✓
�

� + �

◆2M+1+1(q=r)
 
1�

✓
�

� + �

◆2
!�1

.

Note that the bound rM6 is independent of p.
We prove the result for q = r = + first, with the proof for the other cases q, r 2

{+,�} following analogously. The proof for q = 0, i 2 S⇤

0 , follows after noting that the

Laplace transforms bf `0,(p)m,0,r (�)(x, j; x0, i) and bµ`0m,0,r(�)( dx, j; x0, i) are linear combinations

of bf `0,(p)m,q,r (�)(x, j; x0, i) and bµ`0m,q,r(�)( dx, j; x0, i) for q 2 {+,�}, respectively.
Essentially, the result for q = r = + follows from noting the probabilistic interpretation

of the Laplace transforms bf `0m,+,+(�)(x, j; x0, i), as the probability that,

• there are m up-down and down-up transitions,

• the orbit process {A(t)} evolves accordingly,

• and an independent exponential random variable with rate �, E�, has not yet oc-
curred,
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• before the first orbit restart epoch.

We obtain an upper bound by ignoring the behaviour of the orbit process {A(t)}, then, by
a uniformisation argument, we bound the probability that there arem up-down and down-
up transitions before E� occurs, by the event that there are m independent exponential
events before an E� occurs.

Similarly, the stochastic interpretation of the Laplace transforms bµ`0m,+,+(�)( dx, j; x0, i),
is the probability that,

• there are m up-down and down-up transitions,

• the fluid level X(t) remains in D`0 ,

• and an independent exponential random variable with rate �, E�, has not yet oc-
curred,

• before the first orbit restart epoch.

We obtain an upper bound by removing the requirement that the fluid level X(t) remain
in D`0 , then applying the same uniformisation argument as we do for bf `0m,+,+(�)(x, j; x0, i).

Proof. The same arguments and results apply for all p, so let us drop the dependence on
p.

Consider i 2 S+, j 2 S+ [ S+0. By the triangle inequality,

1X

m=M+1

�����

Z

x2D`0

bf `0m,+,+(�)(x, j; x0, i) (x) dx�
Z

x2D`0

bµ`0m,+,+(�)( dx, j; x0, i) (x)

�����


1X

m=M+1

Z

x2D`0

bf `0m,+,+(�)(x, j; x0, i)| (x)| dx

+
1X

m=M+1

Z

x2D`0

bµ`0m,+,+(�)( dx, j; x0, i)| (x)|,

since all terms are non-negative.

Consider

Z

x2D`0

bf `0m,+,+(�)(x, j; x0, i)| (x)| dx, which is given by

Z

x2D`0

ei

"
mY

r=1

Z
1

x2r�1=0

H
+�(�, x2r�1)

Z
1

x2r=0

H
�+(�, x2r)

#Z
1

x2m+1=0

H
++(�, x2m+1)e

0

j

a`0,i(x0)N
2m+1(�, x1, . . . , x2m+1)v`0,j(x) dx2m+1 . . . dx1 (x) dx


Z

x2D`0

ei

"
mY

r=1

Z
1

x2r�1=0

H
+�(�, x2r�1)

Z
1

x2r=0

H
�+(�, x2r)

#Z
1

x2m+1=0

H
++(�, x2m+1)e

0

j
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a`0,i(x0)N
2m+1(�, x1, . . . , x2m+1)v`0,j(x) dx2m+1 . . . dx1 dxF (5.106)

since | |  F . To bound the last-line of (5.106) we first observe that for a 2 A,

a

Z

x2D`0

DeSx2m+1v`0,j(x) = a

Z

x2D`0

Z
1

u=0

eSu
s
↵eSu

↵eSue
eSx2m+1v`0,j(x) du dx

 a

Z
1

u=0

eSu
s
↵eSu

↵eSue
eSx2m+1e du

= aDeSx2m+1e du, (5.107)

where the inequality holds from Property 5.2(v). By definition, the last-line of (5.106) is
Z

x2D`0

a`0,i(x0)N
2m+1(�, x1, . . . , x2m+1)v`0,j(x) dx2m+1 . . . dx1

=

Z

x2D`0

a`0,i(x0)e
Sx1DeSx2D . . . eSx2mDeSx2m+1v`0,j(x). (5.108)

Now, using (5.107), then (5.108) is less than or equal to

a`0,i(x0)e
Sx1DeSx2D . . . eSx2mDeSx2m+1e

= a`0,i(x0)e
Sx1DeSx2D . . . eSx2m

Z
1

u=0

eSu ↵e
Su

↵eSue
dueSx2m+1e

 a`0,i(x0)e
Sx1DeSx2D . . . eSx2m

Z
1

u=0

eSu ↵e
Su

↵eSue
due

= a`0,i(x0)e
Sx1DeSx2D . . . eSx2me.

Repeating m more times gives the bound a`0,i(x0)e = 1.∗∗ Hence, we have the bound

a`0,i(x0)e
Sx1DeSx2D . . . eSx2mDeSx2m+1e  1.

Therefore, (5.106) is less than or equal to

ei

"
mY

r=1

Z
1

x2r�1=0

H
+�(�, x2r�1)

Z
1

x2r=0

H
�+(�, x2r)

#Z
1

x2m+1=0

H
++(�, x2m+1)e

0

j

dx2m+1 . . . dx1F. (5.109)

Now, for any row-vector of non-negative numbers b, since the elements of H++ are
non-negative and integrable, then

b

Z
1

x2m+1=0

H
++(�, x2m+1) dx2m+1e

0

j  be
0

j
bG  be bG.

∗∗In fact, this bound holds for any initial vector a 2 A.
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Observing that

ei

"
mY

r=1

Z
1

x2r�1=0

H
+�(�, x2r�1)

Z
1

x2r=0

H
�+(�, x2r)

#
dx2m . . . dx1

is a row-vector non-negative numbers, then (5.109) is less than or equal to

ei

"
mY

r=1

Z
1

x2r�1=0

H
+�(�, x2r�1)

Z
1

x2r=0

H
�+(�, x2r)

#
e dx2m . . . dx1

bGF (5.110)

The stochastic interpretation of the ith element of the vector H
+�(�, x)e is that it

is the probability density of an up-down transition at the time when the in-out fluid has
increased by dx and before an exponential random variable with rate � occurs, given
the phase is initially i. There may be multiple changes of phase within S+ [ S+0 before
the first up-down transition. The first change of phase occurs at rate (with respect to
the in-out level) �Tii/|ci| and this is the lowest in-out fluid level at which it may be
possible to see an up-down transition. Consider a uniformised version of the in-out fluid
process with uniformisation parameter � = max

i2S+[S�
�Tii/|ci|. Then the first event of the

phase process of the uniformised version of the in-out fluid process occurs at rate � and
occurs at, or before, the first change of phase of the uniformised process. Therefore,
the first uniformisation event occurs at, or before, the first up-down transition of the
uniformised version of the in-out process. Hence, the first uniformisation event occurs
at, or before, the first up-down transition of the original process (since they are versions
of each other). This gives the bound H

+�(�, x)e  �e�(�+�)x
e where the inequality is

understood elementwise. Similarly, for H�+(�, x)e  �e�(�+�)x
e.

From the stochastic interpretation above, (5.110) is less than or equal to

eiH
+�(�, x1) dx1

Z
1

x2=0

H
�+(�, x2)e dx2 . . .

Z
1

x2m=0

�e(����)x2m dx2m
bGF
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1

x1=0

�e(����)x1 dx1

Z
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x2=0

�e(����)x2 dx2 . . .

Z
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x2m=0

�e(����)x2m dx2m
bGF

=

 
�

� + �

!2m

bGF. (5.111)

Note, for the cases with q 6= r then the equivalent bound to (5.111) is
⇣

�
�+�

⌘2m�1 bGF as

there is one less factor in the expression.
Hence,

1X

m=M+1

Z

x2D`0

bf `0m,+,+(�)(x, j; x0, i)| (x)| dx  bGF
1X

m=M+1

 
�

� + �

!2m
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.

(5.112)

Now consider bµ`0m,+,+(�)( dx, j; x0, i) which is given by

Z ��(x0�y`0 )

x1=0

eiH
+�(�,�� (x0 � y`0)� x1)

Z ��x1

x2=0

H
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· · ·
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=

Z �
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eiH
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H
�+(�,�� x2) dx1 . . .
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H
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j dx2m�1 dx2m dx.

(5.113)

Using the bound H
++(�, xm+1)  G elementwise, then (5.113) is less than or equal to

Z �

x1=(x0�y`0 )

eiH
+�(�,�� x1)
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x2=x1

H
�+(�,�� x2) dx1

· · ·
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H
�+(�,�� x2m) dx2m�1 dx2meG dx. (5.114)

The expression (5.114) di↵ers from (5.110) only by a constant factor and that the integrals
in the (5.114) are finite, hence we may bound it in the same way. Therefore,
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(5.115)

Once again, for q 6= r the bound on
R
x2D`0

bµ`0m,+,+(�)( dx, j; x0, i)| (x)| is ( �
�+�)

2m�1 as

there is one less factor.
Analogous arguments show the same bounds for any i 2 Sq, j 2 Sr [ Sr0, where

q 2 {+,�}, r 2 {+,�}.
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The result for q = 0, i 2 S⇤

0 , j 2 Sr [ Sr0, r 2 {+,�} holds after noting that

bf `0m,0,r(�)(x, j; x0, i) dx =
X

q2{+,�}
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k2Sq

ei

⇥
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(5.116)

bµ`0m,0,r(�)( dx, j; x0, i) =
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T0kbµ`0m+1(r 6=q),q,r(�)( dx, j; x0, k),

(5.117)

are a linear combination of terms which are treated the cases above, hence we may use
the bounds we have established above. First, use the triangle inequality to write,
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Upon substituting (5.116) and (5.117) into (5.118) we get
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(5.119)

where the swap of the sums and integrals is justified by Tonelli’s Theorem. Now, using
the bounds we found earlier, then (5.119) is less than or equal to

X

q2{+,�}

X

k2Sq

ei

⇥
�I � T00

⇤�1
T0kF bG

✓
�

� + �

◆2M+2
 
1�

✓
�

� + �

◆2
!�1



136 Chapter 5. Convergence of the QBD-RAP before the first orbit restart epoch, ⌧1

+
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X
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ei

⇥
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since

X

q2{+,�}

X

k2Sq

ei

⇥
�I � T00

⇤�1
T0k =

X

q2{+,�}

X

k2Sq

ei

Z
1

t=0

e(T00��I)t dtT0k


X

q2{+,�}

X

k2Sq

ei

Z
1

t=0

eT00t dtT0k

=
X

q2{+,�}

X

k2Sq

ei(�T00)
�1
T0k

= ei(�T00)
�1(�T00)e

0

= 1.

Combining the domination in Lemma 5.17 and the convergence in Theorem 5.8 via
the Dominated Convergence Theorem gives the following result.

Lemma 5.18. For all x 2 D`0,j, x0 2 D`0,i, i, j 2 S, `0 2 K, � > 0,
�����

Z

x2D`0

bf `0,(p)(�)(x, j; x0, i) (x) dx�
Z

x2D`0

bµ`0(�)( dx, j; x0, i) (x)

����� ! 0 (5.120)

as p ! 1.

Remark 5.19. For a fixed � > 0, convergence of
��� bf `0,(p)(�)(x, j; x0, i) dx� bµ`0(�)( dx, j; x0, i)

��� (5.121)

actually holds pointwise for each `0 2 K�, and each i, j 2 S, x0 2 D`0,i, x 2 D`0,j except at
the set of points where x = x0. Specifically, the lack of pointwise convergence at this point



5.6. Convergence at the time of the first orbit restart epoch, ⌧1 137

occurs due to terms with the index m = 0, that is, terms where there are no up-down or
down-up transitions. On these sample paths the relevant Laplace transforms of the fluid
queue are discontinuous at this point. For example,

bµ`00,+,+(�)( dx, j; x0, i) = h++
ij (�, x� x0)1(x � x0) dx,

is discontinuous at x = x0.

5.6 Convergence at the time of the first orbit restart
epoch, ⌧1

We conclude this chapter with a statement about a convergence of the QBD-RAP to the
fluid queue at the time of the first orbit restart epoch, ⌧ (p)1 .

Corollary 5.20. Recall y(p)
0 = (`0,a

(p)
`0,j

(x0), i). For `0 2 K x0 2 D`0,i, i 2 S+ [ S� [ S⇤

0 ,
j 2 S+ [ S�,

P(L(p)(⌧ (p)1 ) = `(`0, j),�(⌧
(p)
1 ) = j, ⌧ (p)1  E� | Y (p)(0) = y

(p)
0 )

! P(X(⌧X1 ) = (y`(`0,j)+1(j2S�), j), ⌧
X
1  E� | X(0) = (x0, i)) (5.122)

where `(`0, j) can take values

`(`0, j) =

8
><

>:

`0 � 1, if `0 2 {0, 1, . . . , K + 1}, j 2 S�

`0, if `0 = 0, j 2 S+, or `0 = K, j 2 S�,

`0 + 1, if `0 2 {�1, 0, 1, . . . , K}, j 2 S+.

Proof. The proof follows the same structure as the proof of Theorem 5.8 however, changes
are required in all the results used in the proof, as here we do not need to integrate a
function  . We give an outline of the proof only.

At a boundary we can model the fluid queue exactly, hence (5.122) holds for `0 = �1
and `0 = K + 1.

Now consider i 2 S+, j 2 S+ and assume that ⌧ (p)1 is not the first time that the
boundary is hit. Partition the probability (5.122) on the times {⌃n}n�1 and {�n}n�1 and,
specifically, partition on the event that there are exactly m events {⌃n}mn=1 and exactly
m events {�n}mn=1. The resulting partitioned probabilities are

Z
1

x1=0

⇣
eiH

+�(�, x1)⌦ a
(p)
`0,i

(x0)e
S(p)x1D

(p)
⌘
dx1

"
m�1Y

r=1

Z
1

x2r=0

⇣
H

�+(�, x2r)⌦ eS
(p)x2rD

(p)
⌘
dx2r
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Z
1

x2r+1=0

⇣
H

+�(�, x2r+1)⌦ eS
(p)x2r+1D

(p)
⌘
dx2r+1

#

Z
1

x2m=0

⇣
H

�+(�, x2m)⌦ eS
(p)x2mD

(p)
⌘
dx2m

Z
1

x2m+1=0

⇣
H

++(�, x2m+1)e
0

j ⌦ eS
(p)x2m+1s

(p)
⌘
dx2m+1. (5.123)

To show that the terms (5.123) converge to

P(X(⌧X1 ) = (y`0+1, j), ⌧
X
1  E�, b�m  ⌧X1 < b⌃m+1, | X(0) = (x0, i)) (5.124)

we can use the bounds from Corollary 5.12 and Corollary 5.14. For m = 0 we recognise
(5.123) as the same form as that appearing in Corollary 5.12 upon choosing v = 0. For
m � 1, choose the closing operator to be v(x) = eSx

s and set x = 0 in Corollary 5.14.
Now take the bound from Corollary 5.14 and extend it to the case of matrix functions in
the same way we extended Corollary 5.15 to the matrix case in Lemma 5.16. In this way,
we have a bound for (5.123) which tends to 0 as p ! 1. Analogous arguments give the
convergence for all terms i 2 S+ [S� [S⇤

0 , j 2 S+ [S+0 [S� [S�0 on a given number of

up-down/down-up transitions. Further, if ⌧ (p)1 is the first time the boundary is hit, then
all that changes is that (5.123) is multiplied by a constant (one of the probabilities bpjk or
qpjk), so we have also covered this case too.

What remains is a domination condition so that we may apply the Dominated Conver-
gence Theorem to claim that the sum over the number of up-down and down-up transition
converges (i.e. the sum overm in (5.123) converges). After algebraic manipulation, (5.123)
is

ei

"
mY

r=1

Z
1

x2r�1=0

H
+�(�, x2r�1)

Z
1

x2r=0

H
�+(�, x2r)

#Z
1

x2m+1=0

H
++(�, x2m+1)e

0

j

a`0,i(x0)N
2m(�, x1, . . . , x2m)DeSx2m+1s dx2m+1 . . . dx1 (5.125)

Now, since [H++(�, x2m+1)]ij  G and

ei

"
mY

r=1

Z
1

x2r�1=0

H
+�(�, x2r�1)

Z
1

x2r=0

H
�+(�, x2r)

#

is a row-vector of positive numbers, then (5.125) is less than or equal to

ei

"
mY

r=1

Z
1

x2r�1=0

H
+�(�, x2r�1)

Z
1

x2r=0

H
�+(�, x2r)

#Z
1

x2m+1=0

eG

a`0,i(x0)N
2m(�, x1, . . . , x2m)DeSx2m+1s dx2m+1 . . . dx1.
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Integrating with respect to x2m+1 gives

ei

"
mY

r=1

Z
1

x2r�1=0

H
+�(�, x2r�1)

Z
1

x2r=0

H
�+(�, x2r)

#
eG

a`0,i(x0)N
2m(�, x1, . . . , x2m)De dx2m . . . dx1

 ei

"
mY

r=1

Z
1

x2r�1=0

H
+�(�, x2r�1)

Z
1

x2r=0

H
�+(�, x2r)

#
eG dx2m . . . dx1 (5.126)

the last inequality holds since, De = e, and a`0,i(x0)N 2m(�, x1, . . . , x2m)e  1, as we
claimed previously in the discussion after (5.109) in the proof of Lemma 5.17. Equa-
tion (5.126) is of a similar form to (5.110) (they di↵er only by a constant), hence the
same arguments used to bound (5.110) can be applied to get the desired domination
result.

Analogous arguments give a suitable geometric bound for i, j 2 S+ [ S�. For i 2 S⇤

0 ,
the left-hand side of (5.122) can be written as a linear combination of the left-hand side
of (5.122) for initial phases in S+ [ S�. Hence, a bound follows along similar arguments
to those used to prove the case i 2 S⇤

0 in Lemma 5.17.
Ultimately, we can apply the Dominated Convergence Theorem to prove that the sum

of the partitioned probabilities (5.123) converges as p ! 1. The sum of the limits is

P(X(⌧X1 ) = (y`0+1, j), ⌧1  E� | X(0) = (x0, i)).
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Chapter 6

Global convergence results

In this chapter we prove convergence results which build on the main results of Chapter 5.
We consider the discrete-time embedded processes formed by observing the QBD-RAP
at the orbit restart epochs and by observing the fluid queue at the hitting times of the
level process on the points {y`}, which are the boundaries of the intervals {D`}. In
Corollary 6.2 we prove that the transition probabilities of the embedded process of the
QBD-RAP converge those of the embedded process of the fluid queue. In Corollary 6.3 we
prove that the distribution of the sojourn time of the QBD-RAP in a given level converges
to the distribution of the sojourn time of the fluid queue in the corresponding interval.
In Theorem 6.12, we state global results on the weak convergence (in space and time) of
the QBD-RAP approximation scheme to the fluid queue.

In this chapter we work with the augmented state space scheme to model phases with
rates ci = 0 as described in Section 4.3. The results of this chapter rely on results of
Chapter 5 and therefore apply to the QBD-RAP scheme which uses ephemeral states
to model a fluid queue which starts in a phase with rate 0, as described in Section 4.6.
However, supplementing the results of Chapter 5 with the results from Appendix E and
using the same arguments from this chapter with only slight modifications, then the results
of this chapter can be extended to the augmented state space QBD-RAP scheme without
the initial ephemeral phases.

6.1 Convergence of an embedded process

Consider the embedded process formed by observing the QBD-RAP at the orbit restart
epochs. Let ⌧ (p)0 = 0, and

⌧ (p)n = inf
n
t � ⌧ (p)n�1 | L(p)(t) 6= L(p)(⌧ (p)n�1), or {Y (t)} hits a boundary

o
,

be orbit restart epochs. These are the (stopping) times at which the level process
of the QBD-RAP, {L(p)(t)}, changes, or the boundary is hit, or, if the process is at

141
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the boundary, the process leaves the boundary. To simplify notation, we may drop
the superscript p where it is not explicitly needed. Further, let {Y (p)

↵ (n)}n�0,n2Z =

{(L(p)(⌧ (p)n ),�(⌧ (p)n ))}n�0,n2Z be the level and phase of the discrete-time process embedded

at the orbit restart epochs. The subscript ↵ refers to the fact that A
(p)(⌧ (p)n ) = ↵

(p)

for n � 1, unless the process is temporarily absorbed in a sticky boundary, in which
case A

(p)(⌧ (p)n ) = 1. The process {Y (p)
↵ (n)}n�0 is a discrete-time Markov chain, which is

time-homogeneous for n � 1.
Let {⌧Xn }n�0, be the sequence of (stopping) times with ⌧X0 = 0, and

⌧Xn+1 = min

8
<

:

inf
�
t > ⌧Xn | X(t) = y`, ` 2 K

 
,

inf
�
t > ⌧Xn | X(t) 6= 0, X(⌧Xn�1) = 0

 
,

inf
�
t > ⌧Xn | X(t) 6= yK+1, X(⌧Xn�1) = yK+1

 

9
=

; ,

for n � 0. For n � 1, ⌧Xn is the time at which X(t) either changes band, or hits a
boundary, or leaves a boundary, for the nth time. The embedded process {X(⌧n)} is a
discrete-time Markov chain which is time-homogeneous for n � 1.

We have the following result on the convergence of the embedded processes {Y (p)
↵ (n)}

and {X(⌧Xn )}, which we also will utilise later to prove a global result.

Lemma 6.1. For `0 2 K, x0 2 D`0,i, i 2 S, then

P(Y (p)
↵ (1) = (`(`0, j), j), ⌧

(p)
1  E� | Y (p)(0) = (`0,a

(p)
`0,i

(x0), i))

! P(X(⌧X1 ) = (y`(`0,j)+1(j2S�), j), ⌧
X
1  E� | X(0) = (x0, i)), (6.1)

and for n � 1,

P(Y (p)
↵ (n+ 1) = (`(`0, j), j), ⌧

(p)
n+1  E� | Y (p)

↵ (n) = (`0, i), ⌧
(p)
n  E�)

! P(X(⌧Xn+1) = (y`(`0,j)+1(j2S�), j), ⌧
X
n+1  E� | X(⌧Xn ) = (y`0+1(i2S�), i), ⌧

X
n  E�).

(6.2)

where `(`0, j) can take values

`(`0, j) =

8
><

>:

`0 � 1, `0 2 {0, 1, . . . , K + 1}, j 2 S�

`0, `0 = 0, j 2 S+, or `0 = K, j 2 S�,

`0 + 1, `0 2 {�1, 0, 1, . . . , K}, j 2 S+.

(6.3)

Proof. The convergence for `0 2 {�1, K + 1} holds trivially as the QBD-RAP and fluid
queue have the same behaviour at the sticky boundary.

The case for n = 0 is a direct result of Corollary 5.20.
All that is left is to prove (6.2). For n � 1, consider the transition probabilities of the

embedded process from the QBD-RAP,

P(Y (p)
↵ (n+ 1) = (`(`0, j), j), ⌧

(p)
n+1  E� | Y (p)

↵ (n) = (`0, i), ⌧
(p)
n  E�)
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= P(Y (p)
↵ (1) = (`(`0, j), j), ⌧

(p)
1  E� | Y (p)(0) = (`0,↵, i)), (6.4)

since the QBD-RAP is time-homogeneous and the exponential random variable E� is
memoryless. Applying Corollary 5.20 to (6.4) then

P(Y (p)
↵ (n+ 1) = (`(`0, j), j), ⌧

(p)
n+1  E� | Y (p)

↵ (n) = (`0, i), ⌧
(p)
n  E�)

! P(X(⌧X1 ) = (y`(`0,j)+1(j2S�), j), ⌧
X
1  E� | X(0) = (y`0+1(i2S�), i)). (6.5)

Since the fluid queue is time-homogeneous, and E� memoryless, then (6.5) is equal to

P(X(⌧X1 ) = (y`(`0,j)+1(j2S�), j), ⌧
X
1  E� | X(⌧X1 ) = (y`0+1(i2S�), i))

= P(X(⌧Xn+1) = (y`(`0,j)+1(j2S�), j), ⌧
X
n+1  E� | X(⌧Xn ) = (y`0+1(i2S�), i), ⌧

X
n  E�),

(6.6)

which proves the result.

A direct corollary of Lemma 6.1 is the convergence of the transition probabilities of
the embedded process.

Corollary 6.2. For `0 2 K, x0 2 D`0,i, i 2 S, then

P(Y (p)
↵ (1) = (`(`0, j), j) | Y (p)(0) = (`0,a

(p)
`0,i

(x0), i))

! P(X(⌧X1 ) = (y`(`0,j)+1(j2S�), j) | X(0) = (x0, i)). (6.7)

and for n � 1,

P(Y (p)
↵ (n+ 1) = (`(`0, j), j) | Y (p)

↵ (n) = (`0, i))

! P(X(⌧Xn+1) = (y`(`0,j)+1(j2S�), j) | X(⌧n) = (y`0+1(i2S�), i)). (6.8)

Proof. Since ⌧ (p)1 < 1 almost surely, as is ⌧X1 , then taking � ! 0 in Lemma 6.1 yields
the result.

Corollary 6.2 states that the transition probabilities of the embedded processes con-
verge. Thus, the finite-dimensional distributions of {Y (p)

↵ (n)} converge, and if the space

K ⇥ S is finite, then the sequence of distributions of {Y (p)
↵ (n)} is tight. Thus, by Theo-

rem A.5, we establish convergence in distribution of {Y (p)
↵ (n)} and {X(⌧Xn )}.

Another direct corollary of Corollary 5.20 is the convergence in distribution of the
random variables {⌧ (p)1 }p�1 to ⌧X1 .

Corollary 6.3. The random variables {⌧ (p)1 }p�1 converge in distribution to ⌧X1 .
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Proof. By Corollary 5.20 the probabilities

P(Y (p)
↵ (1) = (`(`0, j), j), ⌧

(p)
1  E� | Y (p)(0) = y0)

! P(X(⌧X1 ) = (y`(`0,j)+1(j2S�), j), ⌧
(p)
1  E� | X(0) = (x0, i)).

By the law of total probability and the convergence above,

P(⌧ (p)1  E� | Y (p)(0) = y0)

=
X

`2{`0�1,`0,`0+1}\K

X

j2S

P(Y (p)
↵ (1) = (`, j), ⌧ (p)1  E� | Y (p)(0) = y0)

!
X

`2{`0,`0+1}\{0,1,...,K+1}

X

j2S

P(X(⌧X1 ) = (y`, j), ⌧
(p)
1  E� | X(0) = (x0, i)).

= P(⌧X  E� | X(0) = (x0, i)). (6.9)

Thus, the Laplace transform of ⌧ (p)1 converges to the Laplace transform of ⌧X1 . By the
Continuity Theorem for Laplace transforms (Feller 1957, Chapter XIII, Theorem 2a),

then {⌧ (p)1 } converges in distribution to ⌧X1 .

6.2 Convergence of the QBD-RAP scheme

This section is dedicated to proving a global convergence results of the QBD-RAP ap-
proximation scheme to the fluid queue. Ultimately, we prove the weak convergence (in
space and time) of the QBD-RAP approximation scheme to the distribution of the fluid
queue. This is done in stages. First, by considering the Laplace transform with respect
to time of the distribution of the QBD-RAP at the time of the nth orbit restart epoch, ⌧n.
Second, considering the Laplace transform with respect to time of the distribution of the
QBD-RAP between the nth and (n + 1)th orbit restart epoch. Third, summing over the
number of orbit restart epochs, n, and using the Dominated Convergence Theorem, we
establish a convergence of the Laplace transforms with respect to time of the QBD-RAP
and fluid queue. Lastly, we apply the Extended Continuity Theorem for Laplace trans-
forms (Feller 1957, Chapter XIII, Theorem 2a) to establish a weak convergence (in space
and time) of the QBD-RAP approximation scheme to the fluid queue.

6.2.1 At the nth orbit restart epoch

The idea for the analysis of the QBD-RAP at the nth orbit restart epoch is to partition the
distribution of the QBD-RAP on the phase and level at the times ⌧ (p)1 and ⌧ (p)2 , ..., ⌧ (p)n�1 and
then use the strong Markov property to write the expression in terms of the distributions of
the QBD-RAP at time ⌧ pk given the distribution of the QBD-RAP at time ⌧ (p)k�1, k = 1, ..., n.
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The distribution at time ⌧ (p)1 depends on the initial condition, so we treat it separately and
use Corollary 5.20 to establish convergence to the fluid queue. By time-homogeneity, the
distributions of the QBD-RAP at times ⌧ pk given the position of the QBD-RAP at time

⌧ (p)k�1 is equal to the distribution of the QBD-RAP at time ⌧ (p)1 given an initial distribution
of the QBD-RAP. Hence, we may also use Corollary 5.20 to establish convergence to the
fluid queue for each of these distributions. Putting all the elements together yields the
convergence at the nth orbit restart epoch.

Formally, for n � 1, consider the Laplace transform
Z

1

t=0

e��tP(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n 2 dt | Y (p)(0) = y

(p)
0 ) dt

= P(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n  E� | Y (p)(0) = y

(p)
0 ), (6.10)

which is the Laplace transform of the time until the nth orbit restart epoch of the QBD-
RAP on the event that the level and phase at the nth orbit restart epoch are ` and jn,
respectively, given that the initial level and phases are `0 and i, respectively, and the
initial orbit is a(p)

`0,i
(x0). Partitioning on the time of the first orbit restart epoch, ⌧1, and

the level and phase at this time, then (6.10) is equal to
X

j12S

X

`12{`0+1,`0,`0�1}\K

P(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n  E� | Y (p)

↵ (1) = (`1, j1), ⌧
(p)
1  E�)

⇥ P(Y (p)
↵ (1) = (`1, j1), ⌧

(p)
1  E� | Y (0) = y

(p)
0 ). (6.11)

An application of Corollary 5.20 to the expression on the second line of (6.11) states,

lim
p!1

P(Y (p)
↵ (1) = (`1, j1), ⌧

(p)
1  E� | Y (p)(0) = y

(p)
0 )

! P(X(⌧X1 ) = (y`+1(j12S�), j1), ⌧
X
1  E� | X(0) = (x0, i)) (6.12)

for i 2 S, j1 2 S+ [ S�, `0 2 K, x0 2 D`0 .
We now turn our attention to the first factor in the summands of (6.11). For a given

j1 2 S+ [ S� and `1 2 K, consider

P(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n  E� | Y (p)

↵ (1) = (`1, j1), ⌧
(p)
1  E�)

= P(Y (p)
↵ (n� 1) = (`, jn), ⌧

(p)
n�1  E� | Y (0) = (`1,↵, j1)) (6.13)

by the time-homogeneous property of the QBD-RAP and the memoryless property of the
exponential distribution.

Let

Pn
`0,`n =

(
(`1, . . . , `n�1) 2 Kn�1

�����
`r�1 = `r = 0 or `r�1 = `r = K
or |`r�1 � `r| = 1, r = 1, . . . , n

)
. (6.14)
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The set Pn
`0,` contains all the possible values which {L(⌧m)}n�1

m=2 may take on a sample
path which starts in level `0, ends in level ` and has n orbit restart epochs.

Partitioning on the phases and the levels at the times ⌧m, m = 2, . . . , n� 1, and using
the strong Markov property of the QBD-RAP, then (6.13) is

X

j2,...,jn�12S

(`2,...,`n�1)2P
n�1
`1,`

nY

m=2

P(Y (p)
↵ (m) = (`m, jm), ⌧

(p)
m  E� | Y (p)

↵ (m� 1) = (`m�1, jm�1),

⌧ (p)m�1  E�)

=
X

j2,...,jn�12S

(`2,...,`n�1)2P
n�1
`1,`

nY

m=2

P(Y (p)
↵ (1) = (`m, jm), ⌧

(p)
1  E� | Y (p)(0) = (`m�1,↵, jm�1)), (6.15)

by the time-homogeneity property of the QBD-RAP and the memoryless property of E�

and where we define `n = ` for notational convenience. We can apply Corollary 5.20 to
the factors of the summands in (6.15) and conclude

P(Y (p)
↵ (1) = (`m, jm), ⌧

(p)
1  E� | Y (p)(0) = (`m�1,↵, jm�1))

! P(X(⌧X1 ) = (y`m+1(jm2S�), jm), ⌧
X
1  E� | X(0) = (y`m�1+1(jm�12S�), jm�1)). (6.16)

By the time-homogeneous property of the fluid queue and the memoryless property of
the exponential distribution, (6.16) is equal to

P(X(⌧Xm ) = (y`m+1(jm2S�), jm), ⌧
X
m  E� | X(⌧m�1) = (y`m�1+1(jm�12S�), jm�1),

⌧Xm�1  E�). (6.17)

Thus, returning to (6.15), taking the limit as p ! 1, and using the convergence
established in (6.12) and (6.17), we see that

lim
p!1

X

j2,...,jn�12S

(`2,...,`n�1)2P
n�1
`1,`

nY

m=2

P(Y (p)
↵ (1) = (`m, jm), ⌧

(p)
1  E� | Y (p)(0) = (`m�1,↵, jm�1))

=
X

j2,...,jn�12S

(`2,...,`n�1)2P
n�1
`1,`

nY

m=2

lim
p!1

P(Y (p)
↵ (1) = (`m, jm), ⌧

(p)
1  E� | Y (p)(0) = (`m�1,↵, jm�1)),

(6.18)

where we may swap the limit and the sums as they are finite, and we can swap the limit
and the product since all the limits exist and the product is finite. Substituting the limits



6.2. Convergence of the QBD-RAP scheme 147

(6.17) into (6.18) gives

X

j2,...,jn�12S

(`2,...,`n�1)2P
n�1
`1,`

nY

m=2

P(X(⌧Xm ) = (y`m+1(jm2S�), jm), ⌧
X
m  E� |

X(⌧Xm�1) = (y`m�1+1(jm�12S�), jm�1), ⌧
X
m�1  E�),

= P(X(⌧Xn ) = (y`+1(jn2S�), jn), ⌧
X
n  E� | X(0) = (y`1+1(j12S�), j1), ⌧

X
1  E�), (6.19)

by the strong Markov property of the fluid queue and the Law of Total Probability.
Returning now to (6.11) and taking the limit as p ! 1,

lim
p!1

X

j12S

X

`12{`0+1,`0,`0�1}\K

P(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n  E� | Y (p)

↵ (1) = (`1, j1), ⌧
(p)
1  E�)

P(Y (p)
↵ (1) = (`1, j1), ⌧

(p)
1  E� | Y (p)(0) = y

(p)
0 )

=
X

j12S

X

`12{`0+1,`0�1}\K

lim
p!1

P(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n  E� | Y (p)

↵ (1) = (`1, j1), ⌧
(p)
1  E�)

lim
p!1

P(Y (p)
↵ (1) = (`1, j1), ⌧

(p)
1  E� | Y (p)(0) = y

(p)
0 )

=
X

j12S

X

`12{`0+1,`0�1}\K

P(X(⌧Xn ) = (y`+1(jn2S�), jn), ⌧
X
n  E� | X(⌧X1 ) = (y`1+1(j12S�), j1),

⌧X1  E�)P(X(⌧X1 ) = (y`1+1(j12S�), j1), ⌧
X
1  E� | X(0) = (x0, i))

= P(X(⌧Xn ) = (y`+1(jn2S�), jn), ⌧
X
n  E� | X(0) = (x0, i)) (6.20)

where the swapping of limits and sums in the first equality is justified as the sums are
finite, the swapping limits and products in the first equality is justified as the product is
finite and all limits exist, and the last equality is the Law of total probability.

Hence, we have proved the following result

Lemma 6.4. For all `, `0 2 K, i, jn 2 S, x0 2 D`0,i, n � 1, then, as p ! 1,

P(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n  E� | Y (p)(0) = y

(p)
0 ),

! P(X(⌧Xn ) = (y`+1(jn2S�), jn), ⌧
X
n  E� | X(0) = (x0, i)). (6.21)

Lemma 6.4 is what is required to proceed with the proof of convergence of the QBD-
RAP scheme. However, at this point we also point out the following corollary, which may
be of interest in other contexts.

Corollary 6.5. The random variables {⌧ (p)n }p�1 converge in distribution to ⌧Xn .

Proof. The proof follows the same arguments as the proof of Corollary 6.3. In Lemma 6.4
sum over ` and jn, then apply the Extended Continuity Theorem (Feller 1957, Chapter
XIII, Theorem 2a).
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6.2.2 Between the nth and (n+ 1)th orbit restart epochs

In the last section we proved a convergence of the QBD-RAP to the fluid queue at the
nth orbit restart epoch. However, we ultimately want to make a convergence statement
about the QBD-RAP scheme at any time. The next step is to show a convergence of the
QBD-RAP to the fluid queue between the nth and (n + 1)th orbit restart epoch, after
which we sum over n to prove a convergence result independent of the number of orbit
restart epochs.

The idea is to partition the distribution of the QBD-RAP between time ⌧ (p)n and ⌧ pn+1

on the position of the QBD-RAP at time ⌧ (p)n , then use the strong Markov property
to write the distribution of the QBD-RAP between time ⌧ (p)n and ⌧ pn+1 in terms of the

distribution of the QBD-RAP at time ⌧ (p)n given the initial position of the QBD-RAP,
and the distribution of the QBD-RAP at between time ⌧ (p)n and ⌧ (p)n+1 given the position

of the QBD-RAP at time ⌧ (p)n . In the previous section we showed convergence of the
distribution of the QBD-RAP at time ⌧ (p)n given the initial position of the QBD-RAP.
By a time-homogeneity argument, the distribution of the QBD-RAP between time ⌧ (p)n

and ⌧ (p)n+1 given the position of the QBD-RAP at time ⌧ (p)n is equal to the distribution

of the QBD-RAP before time ⌧ (p)1 given an initial condition on the QBD-RAP. Thus,
Theorem 5.8 establishes the convergence of this term. Together, we have convergence of
the QBD-RAP between the nth and (n+ 1)th orbit restart epoch.

More formally, let T (p)
n = (⌧ (p)n , ⌧ (p)n+1] and T X

n = (⌧Xn , ⌧Xn+1]. Consider the Laplace
transform

Z
1

t=0

e��t
Z

x2D`,j

P(Y (p)(t) = (`, dx, j), t 2 T (p)
n | Y (p)(0) = y

(p)
0 ) (x) dt, (6.22)

where  : R ! R is a bounded function.
Partitioning (6.22) on the time of the nth orbit restart epoch and the phase and level

at this time gives

Z
1

t=0

e��t
Z

x2D`,j

Z t

un=0

X

jn2S

P(Y (p)(t) = (`, dx, j), t 2 (un, ⌧
(p)
n+1] | Y (p)

↵ (n) = (`, jn),

⌧ (p)n = un) (x)P(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n 2 dun | Y (p)(0) = y

(p)
0 ) dt

=
X

jn2S

Z

x2D`,j

Z
1

t=0

e��tP(Y (p)(t) = (`, dx, j), t 2 T (p)
0 | Y (0) = (`,↵, jn)) dt (x)

P(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n  E� | Y (p)(0) = y

(p)
0 ) (6.23)

by the time homogenous property of the QBD-RAP, the memoryless property of the expo-
nential distribution, and the convolution theorem of Laplace transforms. The exponential
random variable in the last line of (6.23) appears due to the interpretation of the Laplace
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transform as probability that ⌧ (p)n occurs before and exponential random variable, E�.
The swap of integrals and sums is justified by the Fubini-Tonelli Theorem. We recognise
the probability

P(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n  E� | Y (p)(0) = y

(p)
0 ) (6.24)

as that appearing in Lemma 6.4, hence (6.24) converges to

P(X(⌧Xn ) = (y`+1(jn2S�), jn), ⌧
X
n  E� | X(0) = (x0, i)) (6.25)

as p ! 1.
Now consider the expression
Z

x2D`,j

Z
1

t=0

e��tP(Y (p)(t) = (`, dx, j), t 2 T (p)
0 | Y (0) = (`,↵, jn)) dt (x) (6.26)

which appears as part of (6.23). We can rewrite (6.26) as

Z

x2D`,j

Z
1

t=0

e��tP(Y (p)(t) = (`, dx, j), t 2 T (p)
0 | Y (p)

↵ (0) = (`, jn)) dt (x)

=

Z

x2D`,j

bf `,(p)(�)(x, j; y`+1(jn2S�), jn) (x) dx. (6.27)

Applying Theorem 5.8, then (6.27) converges to

Z

x2D`,j

bµ`(�)( dx, j; y`+1(jn2S�), jn) (x)

=

Z

x2D`,j

Z
1

t=0

e��tP(X(t) 2 ( dx, j), t 2 T X
0 | X(0) = (y`+1(jn2S�), jn)) (x). (6.28)

Since the fluid queue is time-homogeneous and E� memoryless, then (6.28) is equal to

Z

x2D`,j

Z
1

t=0

e��tP(X(t) 2 ( dx, j), t 2 T X
n | X(⌧Xn ) = (y`+1(jn2S�), jn), ⌧

X
n  E�) (x).

(6.29)

Therefore, we have shown (6.26) converges to (6.29) as p ! 1.
Returning to the right-hand side of (6.23), taking the limit as p ! 1, and recalling

the limits in (6.25) and (6.29), then

lim
p!1

X

jn2S

Z

x2D`,j

Z
1

t=0

e��tP(Y (p)(t) = (`, dx, j), t 2 T (p)
0 | Y (0) = (`,↵, jn)) dt (x)
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P(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n  E� | Y (p)(0) = y

(p)
0 )

=
X

jn2S

lim
p!1

Z

x2D`,j

Z
1

t=0

e��tP(Y (p)(t) = (`, dx, j), t 2 T (p)
0 | Y (0) = (`,↵, jn)) dt (x)

lim
p!1

P(Y (p)
↵ (n) = (`, jn), ⌧

(p)
n  E� | Y (p)(0) = y

(p)
0 )

=
X

jn2S

Z

x2D`,j

Z
1

t=0

e��tP(X(t) 2 ( dx, j), t 2 T X
n | X(⌧Xn ) = (y`+1(jn2S�), jn), ⌧

X
n  E�)

 (x)P(X(⌧Xn ) = (y`+1(jn2S�), jn), ⌧
X
n  E� | X(0) = (x0, i))

=

Z
1

t=0

e��t
Z

x2D`,j

P(X(t) 2 ( dx, j), t 2 T X
n | X(0) = x0,'(0) = i) (x) dt, (6.30)

where the first equality holds since the sum is finite and the limits exist, and the last
equality holds from the law of total probability.

Hence, we have shown

Lemma 6.6. For `, `0 2 K, i, j 2 S, n � 0, then, as p ! 1,

Z
1

t=0

e��t
Z

x2D`,j

P(Y (p)(t) = (`, dx, j), t 2 T (p)
n | Y (0) = y0) (x) dt

!
Z

1

t=0

e��t
Z

x2D`,jn

P(X(t) 2 ( dx, j), t 2 T X
n | X(0) = (x0, i)) (x) dt. (6.31)

6.2.3 Intermezzo: A domination condition

Our aim is to prove convergence of

Z
1

t=0

e��t
Z

x2D`,j

P(Y (p)(t) = (`, dx, j) | Y (0) = y0) (x) dt

=

Z
1

t=0

e��t
Z

x2D`,j

1X

n=0

P(Y (p)(t) = (`, dx, j), t 2 T (p)
n | Y (0) = y0) (x) dt

=
1X

n=0

Z
1

t=0

e��t
Z

x2D`,j

P(Y (p)(t) = (`, dx, j), t 2 T (p)
n | Y (0) = y0) (x) dt (6.32)

where the swap of the integrals and sums is justified by the Fubini-Tonelli Theorem. Now,
(6.32) is an infinite sum of terms appearing in Lemma 6.6. Hence, upon taking the limit
of (6.32), if we can justify the swap of the sum and the limit, we will obtain the desired
result. To this end, we show a domination condition in Corollary 6.9 so that we may apply
the Dominated Convergence Theorem. First, we need a couple of intermediate results.
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Lemma 6.7. For all i 2 S+ [ S�, and n � 2,

P(⌧n  E� | �(⌧n�1) = i, ⌧n�1  E�)  b, (6.33)

where

b = max

(
1� e��(�+")

⇥
1� e�"���/|cmin|

⇤
+

Var(Z)

"2
+ |r2|,

�

� + �

)
,

|r2|  2G
Var (Z)

"2
+ 2L",

and � = maxi2S+[S� �Tii/|ci|.

Note that b and r1 depend on p which has been suppressed to simplify notation. When
explicitly needed, we use a superscript p to denote this dependence.

Proof. For the QBD-RAP, orbit restart epochs can only occur when i 2 S+ [ S�.
Suppose that the phase at time ⌧n�1 is i 2 S+ and that at time ⌧n�1 the QBD-RAP

is not at a boundary. The arguments for an initial phase i 2 S� are analogous. For an
orbit restart epoch to occur, either;

1. the QBD-RAP remains in phase i until the orbit restart epoch occurs, or

2. the QBD-RAP changes phase before there is an orbit restart epoch, after which the
orbit restart epoch occurs eventually.

Hence, for sample paths which contribute to the Laplace transform, one of two things
must happen, either;

a) the phase remains i until there is an orbit restart epoch and E� does not occur
before the orbit restart epoch, or,

b) the phase changes before there is an orbit restart epoch and E� does not occur
before the orbit restart epoch.

The probability of a) is

Z
1

x=0

↵eSx
se(Tii��)x/|ci| dx = e(Tii��)�/|ci| + r2, (6.34)

by Lemma 5.11.
The probability of b) is

Z
1

x=0

↵eSx
ee(Tii��)x/|ci|(�Tii/|ci|) dx =

Z �+"

x=0

↵eSx
ee(Tii��)x/|ci|(�Tii/|ci|) dx
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+

Z
1

x=�+"

↵eSx
ee(Tii��)x/|ci|(�Tii/|ci|) dx. (6.35)

Now, since ↵eSx
e  1 for x  � + " then the first term on the right-hand side of (6.35)

is less than or equal to

Z �+"

x=0

e(Tii��)/|ci|x(�Tii/|ci|) dx 
Z �+"

x=0

eTii/|ci|x(�Tii/|ci|) dx = 1� eTii/|ci|(�+").

By Chebyshev’s inequality, ↵eSx
e 

Var(Z)

"2
for x > �+ ", hence the second term on the

right-hand side of (6.35) is less than or equal to

Z
1

x=�+"

Var(Z)

"2
e(Tii��)x/|ci|(�Tii/|ci|) dx 

Var(Z)

"2
.

Putting these together, then the right-hand side of (6.35) is less than or equal to

1� eTii(�+")/|ci| +
Var(Z)

"2
. (6.36)

Combining (6.34) and (6.36), then P(⌧n  E� | �(⌧n�1) = i, ⌧n�1  E�) is less than or
equal to

e(Tii��)�/|ci| + |r2|+ 1� eTii(�+")/|ci| +
Var(Z)

"2

= 1� eTii(�+")/|ci|
⇥
1� e(�Tii"���)/|ci|

⇤
+

Var(Z)

"2
+ |r2|

= 1� e��(�+")
⇥
1� e�"���/|cmin|

⇤
+

Var(Z)

"2
+ |r2|, (6.37)

since �Tii/|ci|  � and ��/|ci|  ��/cmin for all i 2 S+ [ S�.
Now consider the QBD-RAP at a boundary. To leave the boundary there must be

at-least one change of phase before E�. By a uniformisation argument, the probability of
at-least one change of phase before E� is less than or equal to �/(� + �).

Lemma 6.8. For n � 2, i 2 S+ [ S�,

P(⌧n  E� | �(⌧1) = i, ⌧1  E�)  bn�1. (6.38)

Proof. The proof is by induction.
For the base case, set n = 2 and apply Lemma 6.7.
Now, assume the induction hypothesis P(⌧n�1  E� | �(⌧1) = i, ⌧1  E�)  bn�2 for

arbitrary n � 3.
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Since {⌧n�1  E�} is a subset of {⌧n  E�}, then

P(⌧n  E� | �(⌧1) = i, ⌧1  E�) = P(⌧n  E�, ⌧n�1  E� | �(⌧1) = i, ⌧1  E�). (6.39)

Now partition (6.39) on the phase and level at time ⌧n�1,

X

`n�12K

X

jn�12S

P(⌧n  E�, ⌧n�1  E�, L(⌧n�1) = `n�1,�(⌧n�1) = jn�1 | �(⌧1) = i, ⌧1  E�)

=
X

`n�12K

X

jn�12S

P(⌧n  E� | L(⌧n�1) = `n�1,�(⌧n�1) = jn�1, ⌧n�1  E�)

⇥ P(L(⌧n�1) = `n�1,�(⌧n�1) = jn�1, ⌧n�1  E� | �(⌧1) = i, ⌧1  E�), (6.40)

by the strong Markov property of the QBD-RAP and the fact that A(⌧n�1) = ↵.
By Lemma 6.7 (6.40) is less than or equal to

X

`n�12K

X

jn�12S

bP(L(⌧n�1) = `n�1�(⌧n�1) = jn�1, ⌧n�1  E� | �(⌧1) = i, ⌧1  E�)

= bP(⌧n�1  E� | �(⌧1) = i, ⌧1  E�)

 b · bn�2, (6.41)

by the induction hypothesis, and this completes the proof.

Corollary 6.9. For y0 = (`0,a`0,i(x0), i), � > 0, `0, ` 2 K, i, j 2 S and any bounded
function   F , then

�����

Z
1

t=0

e��t
Z

x2D`,j

P(Y (t) 2 (`, dx, j), t 2 Tn | Y (0) = y0) (x) dt

����� 
Fbn�1

�
. (6.42)

Proof. First, since | (x)|  F , then the left-hand side of (6.42) is less than or equal to
Z

1

t=0

e��t
Z

x2D`,j

P(Y (t) 2 (`, dx, j), t 2 Tn | Y (0) = y0)F dt

=

Z
1

t=0

e��tP(Y (t) 2 (`,D`,j, j), t 2 Tn | Y (0) = y0)F dt. (6.43)

Partitioning on the time of the first orbit restart epoch, ⌧1, and the phase and level at
time ⌧1, and using the strong Markov property, (6.43) is equal to

Z
1

t=0

e��t
Z t

u1=0

X

j12S
`12{`0+1,`0,`0�1}\K

P(Y (t) 2 (`,D`,j, j), t 2 Tn | Y↵(1) = (`1, j1), ⌧1 = u1)

P(Y↵(1) = (`1, j1), ⌧1 2 du1 | Y (0) = y0)F dt
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=

Z
1

t=0

e��t
Z t

u1=0

X

j12S
`12{`0+1,`0,`0�1}\K

P(Y (t) 2 (`,D`,j, j), t� u1 2 Tn�1 | Y (0) = (`1,↵, j1))

P(Y↵(1) = (`1, j1), ⌧1 2 du1 | Y (0) = y0)F dt, (6.44)

by the time-homogeneous property of the QBD-RAP. By the convolution theorem for
Laplace transforms, (6.44) is equal to

X

j12S
`12{`0+1,`0,`0�1}\K

Z
1

t=0

e��tP(Y (t) 2 (`,D`,j, j), t 2 Tn�1 | Y (0) = (`1,↵, j1)) dt

⇥
Z

1

u1=0

e��u1P(Y↵(1) = (`1, j1), ⌧1 2 du1 | Y (0) = y0)F

=
X

j12S
`12{`0+1,`0,`0�1}\K

Z
1

t=0

e��tP(Y (t) 2 (`,D`,j, j), t 2 Tn�1 | Y (0) = (`1,↵, j1)) dt

⇥ P(Y↵(1) = (`1, j1), ⌧1  E� | Y (0) = y0)F. (6.45)

Since {Y (t) 2 (`,D`,j, j), t 2 Tn} ✓ {t 2 Tn}, the expression
Z

1

t=0

e��tP(Y (t) 2 (`,D`,j, j), t 2 Tn | Y (0) = (`1,↵, j1)) dt


Z

1

t=0

e��tP(⌧n  t | Y (0) = (`1,↵, j1)) dt

 bn�1

Z
1

t=0

e��t dt

= bn�1 1

�
, (6.46)

where the second inequality holds by Lemma 6.8.
Using the bound (6.46) in (6.45) gives

X

j12S

X

`12{`0+1,`0�1}\K

bn�1 1

�
P(Y↵(1) = (`1, j1), ⌧1  E� | Y (0) = y0)F  bn�1 1

�
F, (6.47)

by the law of total probability. This concludes the proof.

6.2.4 Global convergence

Finally, we combine the convergence result of Lemma 6.6 and the domination condition
from Corollary 6.9 via the Dominated Convergence Theorem to establish convergence of
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the Laplace transform of the QBD-RAP given by
Z
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t=0

e��t
Z

x2D`,j

P(Y (p)(t) = (`, dx, j) | Y (p)(0) = y
(p)
0 ) (x) dt. (6.48)

We start by partitioning (6.48) on the number of orbit restart epochs by time t to get
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0 ) dt (x). (6.49)

We can justify the swap of the sum and integrals since
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so the Fubini-Tonelli Theorem applies.
By Lemma 6.6, each term in the sum (6.49) converges. Furthermore, for n � 1,

each term is dominated by
�
b(p)

�n�1
F/�, from Corollary 6.9. The dominating terms�

b(p)
�n�1

F/� depend on p and may not be summable. However, for p su�ciently large,
there exists a p0 < 1 and a B with B < 1 such that b(p) < B for all p > p0. Hence, we
can apply the Dominated Convergence Theorem to (6.49) and establish
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where Lemma 6.6 gives the limits of the terms in the sum. Swapping the sum and integrals
and by the law of total probability, then (6.50) is equal to
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=
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The swap of the sum and integrals is justified as
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so the Fubini-Tonelli Theorem applies.
Thus, we have shown the following result.

Lemma 6.10. For all `0, ` 2 K, i, j 2 S, x0 2 D`0,i, as p ! 1,
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Lemma 6.10 establishes a convergence for a given interval D`, ` 2 K, and phase j 2 S.
We now formally extend this to a global result. To do so, we find it convenient to re-write
the problem in terms of expectations.

Let R(L(t),A(t),�(t)) be the random variable with density function A(t)vL(t),�(t)(x),
x 2 DL(t),�(t), then
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and the terms in the last line are those in Lemma 6.10.
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Corollary 6.11. Let  : R⇥ S ! R be an arbitrary, bounded function with | (·, ·)|  F .
For each i 2 S, `0 2 K, x0 2 D`0,i,
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Proof. Consider the left-hand side
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(6.53)

where the swap of the summations and integrals is on the last line justified since  is
bounded and by the Fubini-Tonelli Theorem. By Lemma 6.10, for each ` 2 K, j 2 S, the
terms
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If K is finite, we are done upon taking the limit of (6.53) as p ! 1 and swapping the
limit and the sums.

If K is countably infinite, then for a given k 2 K, since  is bounded,
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= F
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0 ) dt
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|`�`0|

 E� | Y (p)(0) = y
(p)
0 ), (6.54)

observing that, to be in level ` after starting in level `0, there must be at least |`0�`| orbit
restart epochs. By Lemma 6.8 (6.54) is bounded by

�
b(p)

�|`�`0|�1
for |`� `0| � 2 and by 1

otherwise. Now, choose p0 su�ciently large so that b(p) < B < 1 for all p > p0. Therefore,
for all p > p0, the terms in (6.53) are dominated by F min{B|`�`0|�1, 1}. Moreover,
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min{B|`�`0|�1, 1}  2
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Bn�1 + 1 =
2

1� B
+ 1 < 1,

hence the dominating terms are summable. Hence, we may apply the Dominated Conver-
gence Theorem to swap the necessary limits and sums, from which the result follows.

Theorem A.7, The Extended Continuity Theorem for Laplace transforms, can now be
used to establish weak convergence of the QBD-RAP approximation scheme (in space and
time) to the fluid queue.

Theorem 6.12. For all y(p)
0 = (`,a(p)

`0,i
(x0), i), `0 2 K, x0 2 D`0,i, i 2 S, and any bounded

function  : R ⇥ S ! R, then
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weakly in t as p ! 1.

Proof. Combine Theorem A.7 with the convergence of Laplace transforms in Corollary 6.11.

Ideally, we would like to obtain a point-wise convergence result in the variable t.
However, to date, this has eluded me. Although

E [ (X(t)) | X(0) = (x0, i)]

is a continuous function of t (it is a Feller semigroup), and, for p < 1,
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need not be continuous in t. Nonetheless, we can claim that
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for almost all t � 0. At such values of t, since  is arbitrary and bounded, then The
Portmanteau Theorem A.4 states that the QBD-RAP approximation scheme converges
in distribution to the fluid queue.

A su�cient condition to upgrade the convergence from weak to point-wise (in the
variable t) is to show that for t � 0
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equicontinuous in t. That is, for every " > 0 there exists a �(t, ") > 0 and a p0(t, ") such
that |t� u| < �(t, ") implies that
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for all p � p0(t, ").

6.3 Extension to arbitrary (but fixed) discretisation
structures

To conclude this chapter we include some remarks on how to extend the convergence
results to arbitrary discretisation structures.

Throughout, we have assumed that all intervals are of width �, i.e. |y`+1 � y`| = �,
and that on every interval the dynamics of the fluid queue are modelled based on the
same matrix exponential representation (↵,S, s). These assumptions are, in fact, not
necessary, but they do serve to simplify the presentation slightly. The convergence results
can be extended to use di↵erent sequences of matrix exponential representations on each
interval, provided that for each sequence of matrix exponential distributions, the variance
tends to 0. Moreover, we can extend the results to intervals of arbitrary width, provided
that the width of the intervals is not arbitrarily small. Here we describe how one would
prove such results.
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The arguments which prove Theorem 5.8 are independent of all other levels/intervals,
that is the hypotheses of the theorem depend only on the interval/level `0, and the se-
quence of matrix exponential distributions used to model the behaviour of the fluid queue
on this interval/level, and not on any other interval/level. Thus, Lemma 5.8 holds inde-
pendently on each interval, as does Corollary 5.20.

Let the width of interval `0 be �`0 = y`0+1 � y`0 and suppose that sequence of matrix
exponential random variables used to model the dynamics of the fluid queue on the
interval `0 is Z(p)

`0
. Regarding the domination condition in Lemma 6.7, we can extend

it the following version,

Lemma 6.13. Assume inf`0 �`0 > 0 and sup`0 Var(Z`0) < 1. Then, for all i 2 S+ [ S�,
`0 2 K�, and n � 2,
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Hence, for all i 2 S+ [ S�, and n � 2,
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and sup`0 b
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< 1 for p su�ciently large.

Proof. For the proof of (6.55) follow the same arguments as in the proof of Lemma 6.7.
The bound in (6.56) follows by the assumptions in the statement of the lemma, since

P(⌧ (p)n  E� | �(p)(⌧ (p)n�1) = i, ⌧ (p)n�1  E�)
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.

Now, let p`0 be such that b(p)`0 < 1 for all p � p`0 and let p⇤ = sup`0 p`0 . Since K� has

finitely many elements, then p⇤ is finite and therefore sup`0 b
(p)
`0

< 1 for all p � p⇤.
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Given Lemma 6.13, then an equivalent of Lemma 6.8 remains true, the proof of which
follows verbatim except with the use of Lemma 6.7 replaced by Lemma 6.13. Corollary 6.9
remains true without modification. Lemma 6.10 and Corollary 6.11 remain true without
modification provided that lim

p!1

Var(Z(p)
` ) ! 0 for all `.

Remark 6.14. I suspect that the convergence results can also be extended to approximat-
ing so-called multi-layer fluid queues, as described in Bean & O’Reilly (2008).
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Chapter 7

Numerical investigations

We have now established multiple schemes for approximating fluid queues which are suit-
able for approximating the performance measures of fluid-fluid queues derived in Bean &
O’Reilly (2014). This chapter investigates, numerically, various aspects of the approxi-
mation schemes. Throughout, we compare the QBD-RAP scheme (from Chapter 4), the
discontinuous Galerkin scheme (as described in Chapter 3, with and without slope lim-
iting), and the spatially-coherent uniformisation scheme introduced by Bean & O’Reilly
(2013a).

The performance of the discontinuous Galerkin scheme has been well-studied in some
contexts (Cockburn (1999), Hesthaven & Warburton (2007) Section 5.5), and it is well-
known that the discontinuous Galerkin scheme performs remarkably well on problems
with smooth solutions. Here, we mostly focus on investigating the numerical performance
of the schemes on problems with non-smooth solutions. The purpose is to emphasise the
probabilistic interpretation and positivity-preserving properties of the QBD-RAP scheme.
In the stochastic modelling community it is common to have problems with discontinuities,
such as non-smooth initial conditions, hence the type of problems we investigate in this
chapter are of relevance. As we will see (in Section 7.5), even if a fluid-queue is initialised
with a smooth initial density, the boundary dynamics may induce transient discontinuities
or non-smooth behaviour into the problem. A very specific set of conditions on the initial
density and point masses must hold for the transient distribution to remain continuous as
it evolves over time (Bean & O’Reilly 2014, Bean, O’Reilly & Palmowski 2022). Further,
it is possible that discontinuities are present in the performance measures of fluid-fluid
queues (see, for example, Section 7.7). Limiting distributions of fluid queues are smooth,
however.

The experiments demonstrate that the DG scheme can perform extremely well when
the true solution is su�ciently smooth. However, when discontinuities are present in the
true solution, the DG scheme can lead to approximate solutions which are oscillatory
and this may lead to approximate solutions which violate the axioms of probability, such
as approximations to PDFs which take negative values (equivalently, approximations to

163



164 Chapter 7. Numerical investigations

CDFs which are non-increasing), and in the worst cases, approximations to CDFs which
take values outside [0, 1]. Hence, there is a need for schemes which ensure the axioms of
probability are maintained.

By design, the QBD-RAP scheme, uniformisation scheme, and DG schemes with slope
limiting, produce approximations which obey the axioms of probability, i.e. produce
approximations to PDFs which are non-negative, and CDFs which are non-decreasing,
and [0, 1]-valued.

We implement two slope limited DG schemes, the DG-lim and DG-lin-lim scheme,
which we describe in more detail in the next section. The numerical experiments demon-
strate that the DG-lim scheme does not lead to a viable approximation scheme in the
presence of discontinuities, while the DG-lin-lim scheme results in a relatively performant
approximation scheme for the discontinuous problems considered here. In general, the
QBD-RAP scheme performs similarly to the DG-lin-lim scheme, while the uniformisation
scheme is a viable approximation method, but produces larger errors than the QBD-RAP
and DG-lin-lim scheme, for the examples considered here. When slope limiting is used,
the resultant approximation is at best linear around discontinuities. Moreover, there is
a computational cost in applying a limiter (or filter), which could be significant, partic-
ularly if many initial conditions are to be considered. In contrast, for the uniformisation
and QBD-RAP, the approximate solution is guaranteed to produce positive probabilities
without any post-processing or extra computation.

Although we have been unable to supply a rigorous argument to show that we can
use the DG approximation to the generator of a fluid queue to approximate performance
measures of fluid-fluid queues, such as the operator  , we can rely on the intuition that
substituting the DG approximation for the true operator should give reasonable results,
and further, assume that the resulting approximations are polynomial.

On the other hand, using the stochastic approximations (QBD-RAP or uniformisa-
tion), results in rigorously defined operators as proved in Bean et al. (2021).

In summary, the QBD-RAP and uniformisation schemes are the only two schemes
which result in rigorously defined approximations, preserve the axioms of probability,
and, of the two, the numerical experiments demonstrate that the QBD-RAP method is
superior.

7.1 Preliminaries

Before presenting the results of the experiments, we need to describe some aspects of the
approximation schemes in more detail, which we now proceed to do.

The main focus of the numerical experiments is on the error as the number of basis
functions per cell is increased. In the numerical experiments the number of basis functions
used to approximate the solutions is the same on all cells and the number of basis functions
on a cell (and hence all cells) is referred to as the dimension of the scheme. For the



7.1. Preliminaries 165

discontinuous Galerkin scheme, the dimension of the scheme means is the number of
polynomial basis functions used to approximate the solution within each cell. For example,
if we use 3 basis functions in the discontinuous Galerkin scheme, we approximate the
solution by 3 linearly independent quadratics on each cell and hence the approximation is a
quadratic on each cell. For the QBD-RAP scheme, the dimension of the scheme is the order
of the CME distribution used to construct the scheme. To make a comparable equivalent
for the uniformisation scheme, we divide each cell into smaller sub-cells over which we
approximate the solution. That is, for a dimension p uniformisation scheme we divide
each cell into p sub-cells. Equivalently, we may think of a dimension p uniformisation
scheme as using p piecewise constant functions to approximate the solution on each cell.
For all schemes (DG, QBD-RAP and uniformisation), if we construct a dimension p
approximation, there are K cells, N phases and ci 6= 0 for all i 2 S, then the resulting
approximation to the generator B is a square matrix of dimension pKN+N .∗ In this sense
each approximation scheme leads to matrices of the same order (although not necessarily
the same number of non-zero elements).

We investigate two slope-limited schemes. In the scheme we refer to the DG-lim
scheme, we use a DG scheme of dimension p and apply the Generalised MUSCL slope
limiter as described in Section 2.5.2. In the DG-lin-lim scheme, we follow the construction
described in Section 2.5.4, which is e↵ectively a DG scheme with cells of width 2�/(p+1),
for p = 1, 3, 5, ..., 21, and a basis of dimension 2 (linear) on each cell, with an upwind flux,
and we apply the Generalised MUSCL limiter. Thus, the DG-lin-lim scheme uses p + 1
basis functions to represent the solution on each of the original cells Dk, and we define
the dimension of the scheme to be p+1. In the presence of discontinuities, slope-limiting
forces the approximation to be linear, i.e. an order 1 polynomial, around the discontinuity.
For DG schemes of dimension greater than 2 with a slope limiter and in the presence of
discontinuities, the ability of the scheme to represent higher-order polynomials is not
well-utilised as the slope limiter forces the solution to be linear anyway. The DG-lin-lim
scheme recognises this and instead of using higher-order polynomials, uses piecewise-linear
functions and smaller cell widths to approximate the solution.

To keep the content of this chapter contained, we do not investigate all aspects of the
schemes. For each numerical experiment we keep the number of cells, K (equivalently, the
cell size, �), fixed for the DG and QBD-RAP schemes. As part of deriving a discontinuous
Galerkin scheme, one needs to choose the numerical flux which is used to approximate
the transition of density from one cell to the next (Hesthaven & Warburton 2007). We
investigate schemes with an upwind flux only. We do not investigate filtering for the DG
scheme.

For schemes which require us to integrate over time we do not investigate the stabil-

∗There are pK basis functions for each phase which approximate the solution on the interior of the
domain, hence pKN basis functions in total, plus an additional N dimensions to capture boundary
conditions.
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ity of the schemes with respect to the t-step-size, or the time-integration scheme itself
(where required). Instead, we fix the time-integration step size for each numerical experi-
ment at a suitably small value to obey a certain stability criterion (a CFL-like condition,
(Hesthaven & Warburton 2007, Section 4.8)). Moreover, we always implement the strong
stability preserving Runge-Kutta method of order 4 with 5 stages (Spiteri & Ruuth (2002),
Hesthaven & Warburton (2007) Section 5.7, see also Section 2.5.1), which is claimed to
introduce no more oscillations into the solution as we integrate over time.

Where a slope limiter is implemented, we implement the Generalised MUSCL limiter
(Cockburn (1999), Hesthaven & Warburton (2007) Section 5.6.2, see also Section 2.5.2).

In this chapter, all the error plots are on a log10-log10 scale. If the error function takes
the form error = �⇤

0p
�1 , where p is the dimension of the scheme, then the log10-log10 will

show a linear trend since log10(error) = �0 + �1 log10(p), where �0 = log10(�
⇤

0). Where
relevant, to estimate the asymptotic rate of convergence, �1, we estimate the slope of the
line log10(error) = �0 + �1 log10(p) using ordinary least squares and the last eight data
points of each line. The estimated linear trends are plotted and the slope of the line is
displayed to the right of the plot.

The structure of this chapter is as follows. In Section 7.2 we compute approximations
to various initial conditions for the di↵erent schemes and observe their performance which
allows us to investigate the performance of the reconstruction methods without consid-
ering a specific model or any dynamics. In Section 7.3 we investigate travelling wave
problems with various initial conditions. For the travelling wave problem the dynamics
are deterministic, which means that the solution is known, and we do not need to resort
to simulation as a ground-truth. Furthermore, the travelling wave problems allow us to
investigate the ability of the schemes to approximate the flow of probability across cells
without any stochastic dynamics. Next, we investigate a simple fluid queue with two
phases. Section 7.4 investigates approximations to the limiting distribution of the queue,
Section 7.5 investigates approximations to the transient distribution of the queue for two
initial conditions, and Section 7.6 investigates approximations the first hitting time of the
fluid level on the set {0, 1}. Lastly, we apply the approximation methods to a fluid-fluid
queue in Section 7.7, compute approximations to  and ultimately, approximate the dis-
tribution of {(X(⇣W ({0})),'(⇣W ({0})))} at time ⇣W ({0}) at which {Ẇ (t)} first returns
to 0.

On the application of the QBD-RAP approximation to approximating opera-
tors of fluid-fluid queues. A few remarks about applying the QBD-RAP approxima-
tion to approximate fluid queues and operators of fluid-fluid queues from Bean & O’Reilly
(2014) are in order.

Despite the construction of the QBD-RAP in Chapter 4 and the proof of conver-
gence to the fluid queue spanning Chapters 5 and 6 being relatively technical, the actual
computations involved are relatively simple once we have the generator of the QBD-RAP.
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Construction of the generator matrix of the QBD-RAP, B, is a matter of obtaining the
parameters ↵, S and s of a concentrated matrix exponential distribution from Horváth,
Horváth & Telek (2020), computing the matrix D as in the last part of Section 4.2.3,
then assembling the parameters into the block-tridiagonal form of the generator as in
(4.18)-(4.22) and including boundary conditions as in (4.24)-(4.25). The initial vector of
the QBD-RAP, a = (ak,i)i2S,k2K, can be constructed as discussed in Section 4.6, perhaps
using numerical integration depending on the choice of initial condition. This completes
the construction of the QBD-RAP.

Having constructed the QBD-RAP generator and initial condition, approximations to
the fluid queue can be obtained relatively easily. In fact, from this point onward, the
computations for the QBD-RAP approximation and the uniformisation approximation
are essentially the same. For example, to approximate the transient distribution of the
fluid queue at time t the expected orbit positions in each phase and level, E[A(t)1(L(t) =
`,�(t) = i)], can be found by computing

(E[A(t)1(L(t) = `,�(t) = i)])i2S,`2K = a exp(Bt),

which we compute numerically via the SSPRK integration scheme in Section 2.5.1. For
the QBD-RAP approximation, the approximation to the transient density of the fluid
queue can then be obtained from E[A(t)1(L(t) = `,�(t) = i)] as discussed in Section 4.7.

To approximate operators of fluid-fluid queues with the QBD-RAP we need to approx-
imate the operator R, defined in Lemma 2.1. Recall from Section 3.5.1, in the context of
the DG scheme we could approximate R as a projection. In the context of the QBD-RAP
scheme it is less clear how one can approximate R, in general. If the rate functions ri(x)
are piecewise constant with ri(x) = rki on cell Dk,i, then a suitable approximation for Rk

i is
1/|rki |Ip, a diagonal matrix with 1/|rki | down the diagonal – this is the case in the numer-
ical experiments in Chapter 7. For more general cases we could consider approximating
ri(x) by a piecewise constant function, then apply the method above.

Next, the approximation  is computed by solving the matrix Riccati equation

D
+� + D

�+ +D
++ + D

�� = 0, (7.1)

where
D

mn = R
m(Bmn +B

m0(B00)�1
B

0n), m, n 2 {+,�},

and B
mn, m, n 2 {+,�, 0} are matrices of parameters extracted from the QBD-RAP

which approximate Bmn. For example, B+� is obtained by extracting all the elements of
B which correspond to starting in phase i in level k and ending in phase j in level ` and
have ri(x) > 0 for x 2 Dk,i and rj(x) < 0 for x 2 D`,j. Given the stochastic interpretation
of the QBD-RAP scheme, and assuming the rate functions ri(x) are piecewise constant
with ri(x) = rki on each cell Dk,i, the QBD-RAP approximation of the fluid-fluid queue
forms a RAP-modulated fluid process (Peralta Gutierrez 2019, Bean et al. 2021). Hence,
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the approximation  has a stochastic interpretation in terms of the first-return operator
of the RAP-modulated fluid process. This is important. Equation (7.1) determines, but
does not define  . When we use the DG scheme to approximate  we still solve (7.1)
(with the DG approximation to the generator B), however, this does not define what the
solution means in terms of the fluid-fluid queue (other than it is the solution to (7.1)).
In comparison, there is a rigorous definition of  when the QBD-RAP scheme is used in
the approximation (Peralta Gutierrez 2019, Bean et al. 2021).

By Proposition 4.3 of Peralta Gutierrez (2019), for the QBD-RAP scheme the ap-
proximation  has the property  1 = 1 as long as the event that level process of the
RAP-modulated fluid returns to 0 in finite time occurs with probability 1.

Third, note that unlike the positivity preserving DG schemes which use slope limiting
which are not linear operators in the presence of oscillations, the operator obtained via
the QBD-RAP approximation scheme is linear.

Lastly, a comment on expected accuracy of the QBD-RAP scheme. For p odd,
Horváth, Horváth & Telek (2020) estimate that the variance of the class of CMEs de-
creases at order 1/p2.14 asymptotically. Hence, we might expect the rate of convergence
of the QBD-RAP scheme to be approximately order 1/p2 for certain problems. This is in
line with the positivity preserving DG scheme mentioned in 2.5.4.

7.2 Function approximation/reconstruction

We start our investigation by looking at how well the schemes perform at approximating
an initial condition. By approximating the initial condition only, we aim to investigate
the performance of the approximation schemes without any dynamics.

For the discontinuous Galerkin method, we project the initial condition on to the
set of polynomial basis functions which define the scheme, for the spatially-coherent uni-
formisation scheme, we look at the sub-cell averages of the initial condition, and for the
QBD-RAP scheme, we compute the initial vector for the approximation, then reconstruct
the solutions as described in Sections 4.6 and 4.7. For the purposes of approximation
and reconstruction for the QBD-RAP scheme we must orientate the initial condition in
a positive or negative direction; here we suppose that the initial conditions belong to
a positive phase. First we investigate the three closing vectors from Section 4.7 which
we can use for the reconstruction in the QBD-RAP scheme. From the investigation, we
decide to use the closing vector (4.34) throughout the rest of the chapter.

In this section we consider approximating initial conditions over a single cell of width
� = 1. To numerically evaluate integrals arising in the approximation step (inner products
and cell averages) we use a trapezoidal rule with 10,001 function evaluations. Similarly,
we use 10,001 function evaluations to approximate Lp errors, and also as a finite set of
points over which to compute the Kolmogorov-Smirnov (KS) statistics.
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7.3 Travelling wave problems

Here we investigate the performance of the di↵erent schemes for approximating transient
distributions of one-dimensional travelling wave problems with various initial conditions.
Consider a (trivial) fluid queue with one phase, generator T = [0] and rate c = 1. The
PDE (if/when it exists) which describes this system is

@

@t
f(x, t) = �

@

@x
f(x, t),

where f(x, t) is the density (if/when it exists) at time t. Given an initial condition, f(x, 0),
solutions to this problem are given by

f(x, t) = f(x� t, 0)

so the solution at time t is just a shift in the initial condition t units to the right. We
suppose that the fluid queue is bounded, with a lower boundary x = 0 and upper boundary
x = 10. This example is convenient as it has a known solution and no stochastic dynamics,
hence we can investigate the ability of the schemes to approximate the flow of mass,
without any stochastic dynamics.

We use the QBD-RAP, uniformisation and DG schemes to discretise the solution in
space and discretising the interval [0, 10] into 10 cells, each of width 1. We use 10, 001
points to approximate the integrals which appear in the construction of the initial con-
ditions, to approximate the integrals appearing in the error metrics, and also as a set
of discrete points on which to evaluate the CDFs to approximate the KS metric. Fur-
thermore, we use the SSPRK4 method to integrate over time with a t-step size of 0.005,
and we evolve the system until time t = 4.‡ For the DG scheme we also implement the
Generalised MUSCL slope limiter in the form of the DG-lim and DG-lin-lim schemes (see
also Section 2.5.2).

To investigate the performance of the schemes without the need to reconstruct the
function within each cell we use the cell-wise error metric obtained by computing

10X

`=1

|P(X(4) 2 D`,1,'(4) = 1 | X(0) = 0.5,'(0) = 1)� p(4, `, 1)|

+ |P(X(4) 2 {10},'(4) = 1 | X(0) = 0.5,'(0) = 1)� p(4, 11, 1)| (7.2)

where

P(X(4) 2 {10},'(4) = 1 | X(0) = 0.5,'(0) = 1) (7.3)

is the mass at the boundary, p(4, `, 1) is an approximation to P(X(4) 2 D`,1,'(4) = 1 |
X(0) = 0.5,'(0) = 1), and p(4, 11, 1) is an approximation to P(X(4) 2 {10},'(4) = 1 |
X(0) = 0.5,'(0) = 1).
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Figure 7.14: Reconstructed PDFs using the DG (top row), uniformisation (second row),
DG-lim (third row), QBD-RAP (fourth row) and DG-lin-lim schemes (fifth row), for
dimension 1, 3, 5, and 7 (columns) for the travelling wave problem in Example 7.9. The
true density function is 1(4  x < 5).

1(x � 0.5), i.e. a point mass of 1 at 0.5. The exact solution at time t = 4 is therefore a
point mass at 4.5. No PDF exists for the true distribution, so instead we compare the
CDFs. Also recall that, when we analysed reconstruction of this initial condition we saw
that using the KS metric may be uninformative due to the lack of point-wise convergence
at the discontinuity, so for this example, we measure errors by looking at the L1 error
between the CDFs (the area between the CDFs) instead, and also with the cell-wise error
from (7.2)-(7.3).

Figure 7.15 (left) plots the L1 error between the true and approximated CDFs. The
L1 metric tells a similar story to the previous analysis: the DG-lim scheme does not
perform well, the other three positivity preserving schemes (the uniformisation, DG-lin-
lim and QBD-RAP schemes) appear to converge, with the QBD-RAP and DG-lin-lim
schemes performing similarly and better than the uniformisation scheme. The DG scheme
performs the best. However, if we plot the approximations to the CDFs from the DG
scheme (not shown) we once again see an oscillating, non-monotonic function.

Another interesting observation is to compare the performance of the uniformisation
and QBD-RAP schemes with respect to the L1 metric on the CDFs in Figure 7.15 (left)















7.3. Travelling wave problems 189

0

1

0

1

0

1

0

1

0 2 4 6 8 10
0

1

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

D
G

U
ni

f.
D

G
 li

m
Q

-R
D

G
 li

n 
lim

Dim. 1 Dim. 3 Dim. 5 Dim. 7

Figure 7.21: Approximate transient PDFs at time t = 4 for Example 7.12 using the DG
(top row), uniformisation (second row), DG-lim (third row), QBD-RAP (fourth row), and
DG-lin-lim (fifth row) schemes of dimensions 1, 3, 5, and 7 (columns). The true density
function is e�(x�4)1(x < 4).

This section is the first step in analysing the ability of the approximation schemes to
capture the dynamics fluid queues. This section demonstrates that, although the QBD-
RAP scheme may have certain deficiencies for solution reconstruction (as demonstrated
in Section 7.2), it can resolve the movement of probability between cells better than
the uniformisation scheme, and similarly compared DG-lin-lim scheme. In the following
sections we consider more complicated fluid queue dynamics by introducing some simple
stochastic phase changes.
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7.5 Transient distributions

Once again we consider Model 7.13 and use the same spatial discretisation as described
in Section 7.4 (ten cells with width � = 1). Two initial conditions are considered, a point
mass with mass 1 at 0 in Phase 1, and the initial distribution with PDF

1

2
e�x/(1� e�10) (7.10)

in Phases 1 and 2, with no mass at the boundaries. We numerically integrate over time
until time t = 2.0 using the SSPRK4 method with t-step size 0.005.� Here we use the DG
scheme without a limiter and the DG-lin-lim scheme. Error plots for the DG-lim scheme
are included for completeness, but we do not comment on them in detail in this section
due to their poor performance for discontinuous problems which we noted previously.

To obtain a ground truth 5⇥ 1010 realisations of the fluid queue were simulated until
t = 2, then the empirical CDF and the masses within each cell were computed from the
simulations. We denote the empirical probability distribution by Psim. We then compute
the KS and L1 error metrics between the approximated and simulated CDFs, as well as
the cell-wise error metric, given as follows.

X

j2{1,2}

10X

`=1

|Psim(X(2) 2 D`,j,'(2) = j | X(0) = 0.5,'(0) = 1)� p(2, `, j)|

+ |Psim(X(2) 2 {10},'(2) = 4 | X(0),'(0))� p(2, 11, 4)|
+ |PsimX(2) 2 {0},'(2) = 3 | X(0),'(0))� p(2, 0, 3)| (7.11)

where p(2, `, j) is an approximation to Psim(X(2) 2 D`,j,'(2) = j | X(0),'(0)), p(2, 11, 4)
is an approximation to Psim(X(2) 2 {10},'(2) = 4 | X(0),'(0)), and p(2, 0, 3) is an
approximation to Psim(X(2) 2 {0},'(2) = 3 | X(0),'(0)).

To account for possible Monte-Carlo error, we used a bootstrap with 1,000 bootstrap
samples. For the bootstrap we sample 5⇥1010 realisations of the fluid queue with replace-
ment from the original 5⇥ 1010 samples, then compute error metrics with the resampled
data. We resample 1,000 times, resulting in 1,000 estimates of the errors. Via the boot-
strap, we report the 5th and 95th percentile of the sampling distribution of the errors.

To evaluate error metrics, we use a grid of 10,001 evenly spaced points for each phase.
To approximate the point mass initial condition we compute the initial coe�cients for

each scheme exactly. For the exponential initial condition in (7.10) we compute the initial
coe�cients via Gauss-Lobatto quadrature for the DG scheme, by using the mid-point rule
for the uniformisation scheme, and by using a trapezoidal rule with 2,001 points on each
cell for the QBD-RAP scheme.

�The t-step size must be chosen to ensure that numerical integration over time is stable up to dimen-
sion 21, adhering to a CFL-like condition (Hesthaven & Warburton 2007, Section 4.8).
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7.6 Hitting times

We can gain further insight into the approximation schemes by investigating how they
perform approximating hitting times of fluid queues. This is also an important aspect
to consider if we wish to apply the schemes to approximate operators from the analysis
fluid-fluid queues. Recall, in the analysis of fluid-fluid queues in Section 2.4, we partition
sample paths of the second fluid into periods where it is either increasing, decreasing,
or constant. The position of (X(t),'(t)) determines the rate at which the second fluid
moves, hence the hitting times on the boundaries of the sets F+

i ,F�

i , and F0
i determine

the periods of time when the second fluid is either increasing, decreasing, or constant.
Once again we consider Model 7.13. Let ⇣X({0, 1}) = {inf t > 0 | X(t) = 0, or X(t) =

1}, be the first hitting time of {X(t)} on the set {0, 1}. The distribution of the hitting
time in phase i 2 {1, 2} is

P(⇣X({0, 1}) < t,'(t) = i | X(0) ⇠ µ), (7.12)

for some initial distribution µ. We look at two initial conditions; an exponential with
equal mass in each phase,

P(X(0) 2 dx,'(0) = i) =
1

2

e�x

(1� e�1)
, i 2 {1, 2},

and a point mass at X(0) = 0 in phase '(0) = 1.
We partition the interval [0, 1] into three intervals of width 1/3. To capture the mass

which has hit the set {0, 1}, we suppose that when the process hits {0} or {1} it is absorbed
forever and remains in the phase in which the process first hit {0} or {1}. We integrate
the schemes until time t = 10 using the SSPRK4 method with t-step size 0.005/3.†† We
use the DG scheme with and without a slope limiter during the time-integration and
implement both the DG-lim and DG-lin-lim schemes. At each time-step of the numerical
integration, we record the amount of mass at the absorbing boundaries in each phase,
which gives us an approximation of the cumulative distribution function of the hitting
time in each phase, up to time t = 10.

As a ground truth we simulate 5⇥ 1010 realisations and record the hitting time on the
set {0, 1} and the phase at the time of hitting. We then compute the empirical CDF of
the hitting probabilities

P(⇣X({0, 1}) < t,'(t) = i | X(0) ⇠ µ),

for t = 0.005/3⇥ k, k = 0, ..., 6000.

††Since we use a smaller cell-width in this example than in previous examples we need to reduce the
t-step size accordingly to ensure that numerical integration is stable for schemes up to dimension 21,
adhering to a CFL-like condition (Hesthaven & Warburton 2007, Section 4.8).
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Figure 7.31 demonstrates oscillations in the DG approximation, though the PDF is not
negative in this case. All schemes seem to capture the discontinuity at t = 1 relatively
well. There is an interesting artefact in the QBD-RAP approximation around t = 0 where
the scheme has generated an oscillation. Let us investigate this artefact further.

Intuitively, most sample paths which exit near t = 0 start near a boundary, they see
a change of phase shortly after t = 0, then remain in that phase until hitting {0, 1}.
Consider such a sample path which starts at x0 = 0 in Phase 1 and exits at time v with a
single change of phase at time u 2 (0, v). For the fluid queue, u = v/2, and we want the
QBD-RAP scheme to approximate this. The QBD-RAP approximation to this sample
paths has density‡‡

↵e(S�I)u
De(S�1.1I)(v�u)

s = ↵eSu
DeS(v�u)

se�1.1v+0.1u. (7.13)

We want (7.13) to approximate a point mass at v = 2u. To see that this is the case, recall
that we can approximate a point mass at u by

k(�� u)eSx
s, (7.14)

where k(z) =
↵eSz

↵eSze
, and recall that the matrix D is an approximation;

↵eSu
D = E [k(Z � u)1(Z > u)]

⇡ P(Z > u)k(�� u), (7.15)

where Z ⇠ ME(↵,S) and Z is concentrated around �.
Thus, (7.13) is approximately

e�1.1v+0.1uP(Z > u)k(�� u)eS(v�u)
s,

which approximates a point mass at v � u = u, or 2u = v. Retracing our arguments,
sources of error in this approximation come from the approximation in (7.15) and from the
approximation of a point mass by (7.14), which we commented on in Section 7.2.1 where
we conducted numerical experiments about the unnormalised closing operator given by
v(x) = eSx

s. Indeed, we saw in Example 7.4 that the unnormalised closing operator
performed poorly for the exponential initial condition. The phenomenon discussed above
is also related to Example 7.2, where the reconstructions for the QBD-RAP scheme failed
to capture mass near the right-hand edge of the interval.

In Figure 7.31 there is another small oscillation present in the QBD-RAP approxima-
tion around t = 0.35 in both phases. The cause of this oscillation is likely related to the
discussion above. Consider a sample path which starts at x = 0.34, just to the right of

‡‡One significant advantage of the QBD-RAP and uniformisation approaches is that, from their
stochastic interpretation, we can use sample-path arguments to analyse the scheme.
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k = 1, 2. Thus, the infinitesimal generator T for '(t) is given by

T =

2

664

�(�1 + �2) �2 �1 0
�2 �(�1 + �2) 0 �1
�1 0 �(�2 + �1) �2
0 �1 �2 �(�1 + �2)

3

775 .

The net rates of change for X(t), denoted ci, are given by

(c11, c10, c01, c00) = (�1 � ✓1, �1 � ✓1, �✓1, �✓1),

and the net rates of change for Ẇ (t), denoted ri, are as follows

(r11, r10, r01, r00) =

8
>><

>>:

(�2 � , �, �2 � , �) if Xt = 0,

(�2 � ✓2, �✓2, �2 � ✓2, �✓2) if Xt 2 (0, x⇤),

( �2, 0, �2, 0) if Xt � x⇤.

For our numerical experiments, we use the parameter choices given in (Latouche et al.
2013):

�1 = 11, �1 = 1, �1 = 12.48, ✓1 = 1.6,  = 2.6, (7.17)

�2 = 22, �2 = 1, �2 = 16.25, ✓2 = 1.0, x⇤ = 1.6. (7.18)

We consider the initial distribution which is a point mass at W (0) = 0, X(0) = 5, '(0) =
01.

While the true problem has an unbounded domain [0,1), the approximations require
the domain of approximation to be a finite interval. Here we choose an upper bound
of b = 48 and place a regulated boundary at the upper boundary. The e↵ect of this
truncation can be partly quantified by evaluating lim

t!1

P (X(t) > 48) ⇡ 5.83⇥ 10�9.

We obtain approximations to the generator of the fluid queue {(X(t),'(t))} via the
DG, QBD-RAP and uniformisation schemes. We do not apply slope limiting in this case as
slope limiting results in a non-linear operator which means slope limiting schemes cannot
be used to approximate the operator-Riccati equation by a matrix-Riccati equation. All
the discretisations use a cell width of � = 0.4. The approximate generator matrix is then
used to approximate the first-return operator  (s) as discussed in Section 2.4.3. As in
Section 2.4.3, let Bm,n, m,n 2 {+,�, 0} be an approximation to Bm,n, m, n 2 {+,�, 0}
of dimension p, and recall that Dn,m, m, n 2 {+,�} is given by

D
m,n = R

m(Bm,n +B
m,0(B0,0)�1

B
0,n), m, n 2 {+,�},
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where R
m is a diagonal matrix with diagonal blocks 1/rki Ip, i 2 Sm

k , k 2 Km, where rki
is the (constant) value of ri on cell k. Then  , an approximation to  , is given by the
solution to the matrix-Ricatti equation

D
+� + D

�+ +D
++ + D

�� = 0. (7.19)

Due to the stochastic interpretation of the uniformisation and QBD-RAP schemes the
approximations to  (s) have a stochastic interpretation as the first-return probabilities
of a fluid queue driven by a CTMC and QBD-RAP, respectively (see (Peralta Gutierrez
2019, Chapter 7) and Bean et al. (2021) for details on the latter). For the DG scheme
the approximation of  (s) is not as well-understood. Here, we assume that it is given by
the solution to (7.19) and is a polynomial approximation.

Ultimately, we approximate the first-return distribution

P(X(⇣W ({0}))  x,'(⇣W ({0})) = i | X(0) ⇠ µ), (7.20)

where we recall ⇣W (E) = inf{t > 0 | Ẇ (t) 2 E} is the first hitting time of {Ẇ (t)} on the
set E. For Model 7.14, it is only possible for the process Ẇ (t) to return to 0 at time t
when (X(t),'(t)) 2 [0, 1.6)⇥{10, 00}, so we evaluate the approximations over this region
only. We use a grid of 10,001 points on which we evaluate the approximations of the CDF
in each phase.

For a ‘ground truth’ comparison, we simulated 5 ⇥ 1010 realisations of the fluid-fluid
queue and recorded the value of {X(t)} and {'(t)} at the time of first return of the
second fluid, {Ẇ (t)}. The empirical approximation of (7.20) was then constructed, and
error metrics for the di↵erence between the empirical CDF and the approximations were
computed. To account for Monte-Carlo errors we used a bootstrap with 1,000 bootstrap
samples to construct 1,000 bootstrap samples of the error estimates and ultimately esti-
mated the 5th and 95th percentiles of the error distribution. Each of the 1,000 bootstrap
samples was constructed by resampling the original 5 ⇥ 1010 realisations 5 ⇥ 1010 times
with replacement.

In Figures 7.34 and 7.35 we plot the error metrics for the approximations to the
distribution (7.20). The DG scheme performs best converging rapidly until the error
in the approximation scheme is swamped by other numerical (simulation) errors§§. The
QBD-RAP scheme is second best and the uniformisation scheme appears to be the slowest
to converge. Here, the first return distribution appears to be smooth, hence we might
expect the DG scheme to perform well. The initial condition, however, is not smooth

§§There are a significant number of other sources of error here; the largest contribution to error is
simulation, but also machine precision errors, errors in solving the matrix Riccati equation to approximate
 (s), errors from approximating error metrics (numerical integration/finding KS statistic), errors from
approximating the initial condition and truncation errors. Furthermore, for the QBD-RAP, since the
parameters ↵, S, s and D are found numerically, then there is another source of error from this.
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7.8 Discussion

In this chapter we have numerically investigated some properties of the QBD-RAP ap-
proximation scheme and compared it to existing schemes; the uniformisation scheme of
Bean & O’Reilly (2013a) and the discontinuous Galerkin scheme. In general, the numeri-
cal experiments show that the smoother the problem is, the better the performance of the
DG scheme, and it emphatically outperforms the other two schemes for smooth problems.
However, for problems with discontinuities the DG approximation can exhibit oscillations
and result in illegitimate approximations to probability distributions which violate the
axioms of probability. The QBD-RAP and uniformisation approximations are guaranteed
to produce legitimate distributions and, of the two, the QBD-RAP scheme almost always
produces lower errors.

To avoid the problems of oscillations we can sometimes employ a slope limiter with
the DG scheme which reduces the scheme to linear in the regions where oscillations are
detected. We implemented two slope-limited DG schemes, the DG-lim scheme which
takes a high order DG scheme and limits the solution as necessary, and the DG-lin-lim,
which is a linear approximation on a finer grid designed to use approximately the same
computational resources as the other schemes considered. The numerical experiments
demonstrate a significant loss of accuracy in the approximation when a DG-lim scheme
is used for discontinuous problems. We conclude that the DG-lim scheme is not a viable
scheme for the discontinuous problems considered here. The numerical experiments sug-
gest that the DG-lin-lim scheme can perform well, and is similar to the performance of
the QBD-RAP scheme, in the presence of discontinuities.

As a first step, in Section 7.2, we examined the ability of each scheme to approximate
various initial conditions. For the DG scheme, this is equivalent to a projection of the
initial condition on to a set of basis polynomials, for the uniformisation scheme this is
equivalent to projecting the initial condition on to a basis of constant functions, and for
the QBD-RAP scheme the approximation of the initial condition is as described in Sec-
tions 4.6 and 4.7. Section 7.2.2 demonstrates that the DG scheme (projection) can result
in oscillations and negative regions in the approximation when the initial condition is dis-
continuous. The uniformisation and QBD-RAP schemes avoid this, but appear to have
higher errors and the QBD-RAP scheme appears to have the largest errors. For discon-
tinuous initial conditions the rates of convergence are comparable for all three schemes.
When the initial condition to be approximated is su�ciently smooth, then the DG ap-
proximation is superior. The QBD-RAP scheme performed the poorest for the examples
considered.

Next, in Section 7.3, we investigated the performance of approximations for a simple
travelling wave model with various initial conditions. The travelling wave model is useful
as it allows us to investigate the ability of the schemes to capture the flow of probabil-
ity without stochastic dynamics and, since the solution is known, there is no need for
simulation. With the travelling wave model we demonstrate that, for problems with dis-
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continuities, the DG scheme can display oscillations and violate the axioms of probability,
while the other schemes (DG-lim, DG-lin-lim, uniformisation and QBD-RAP schemes)
avoid oscillations. For discontinuous problems the rates of convergence of the QBD-RAP
and DG-lin-lim schemes is similar. Interestingly, even though the QBD-RAP scheme per-
formed worst for approximating initial conditions in the previous section, it outperformed
the uniformisation scheme for this model, demonstrating that the QBD-RAP scheme can
capture the dynamics of the flow of probability better than the uniformisation scheme.
For smooth problems the DG scheme is superior.

We then investigated the performance of the approximations on a simple fluid queue
with two phases. First, in Section 7.4, we looked at the limiting distribution, which is
known to be smooth. Since the problem is smooth, then the DG scheme was superior as
expected. Of the uniformisation and QBD-RAP schemes, the QBD-RAP scheme gives
more accurate solutions.

In Section 7.5 we turned our attention to approximating transient distributions for
the same model and considered two di↵erent initial conditions, a point-mass and an
exponential initial condition. The discontinuous initial condition results in a discontinuous
transient distribution. As for the exponential initial condition, this example demonstrates
that, even if the initial condition appears ‘nice’, it can still result in non-smooth (i.e. non-
di↵eretiable) solutions. The numerical evidence suggests that the lack of smoothness in
the problem with the exponential initial condition is not problematic for the DG scheme,
however, the DG scheme exhibits severe oscillations for the problem with the discontinuous
initial condition. For both initial conditions, the DG-lim scheme detects oscillations
and reduces the approximation to linear which renders the scheme not viable for these
problems. Of the uniformisation, DG-lin-lim and QBD-RAP schemes, the latter two
perform similarly, and better than the uniformisation scheme. Of the DG-lin-lim and
QBD-RAP schemes the QBD-RAP scheme performed better in the presence of a point
mass while the DG-lin-lim scheme performed better with the exponential initial condition.

Section 7.6 investigated the performance of the schemes for approximating the hitting
time distribution for the same fluid queue with two initial conditions, an exponential ini-
tial condition and a point-mass. For this problem there is never any in-flow of mass at
the boundaries of the interval and so, for a solution to be continuous, the initial condition
needs to be chosen carefully, otherwise discontinuities in the transient distribution may
result, as was the case for both initial conditions considered here. The numerical results
suggest that, due to discontinuities in the problems, the DG scheme may display oscil-
lations and violate the axioms of probability. Since the uniformisation, DG-lin-lim, and
QBD-RAP schemes can handle discontinuities, they perform suitably, with the QBD-RAP
and DG-lin-lim schemes performing similarly and better than the uniformisation.

Lastly, we applied the DG, uniformisation and QBD-RAP schemes to two simple fluid-
fluid queues in Section 7.7. In the first fluid-fluid queue, which appears to have a smooth
first return distribution, the DG scheme performs very well (however, the initial condition
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for the DG scheme displayed oscillations). Of the two positivity preserving schemes
considered, the QBD-RAP scheme performs better than the uniformisation scheme. In the
second example, which has a discontinuity in the first return distribution, the DG scheme
produces the lowest errors, but exhibits oscillations in the solution. The QBD-RAP and
uniformisation schemes do not produce oscillations and, of the two, the QBD-RAP scheme
performs best. Moreover, when computing approximations to the first-return operator of
a fluid-fluid queue in Section 7.7, the QBD-RAP and uniformisation schemes lead to an
algorithm that is theoretically justified. In contrast, to-date there no theory surrounding
the DG approximation to the same operator (let alone any positivity preserving variants
of the DG scheme).

In conclusion, when the problem is known to be smooth, the DG scheme is very likely
to produce excellent results. However, for discontinuous problems, the scheme can show
oscillations and may lead to illegitimate approximations to distribution functions which
violate the axioms of probability. The slope limiter overcomes this, but reduces the ac-
curacy of the DG scheme to linear near discontinuities, sometimes severely a↵ecting the
quality of the approximation. A piecewise-linear DG scheme with a limiter, such as the
DG-lin-lim scheme considered here, can produce satisfactory results for some problems.
The uniformisation and QBD-RAP schemes are other alternative approximation schemes
which avoid oscillatory solutions and guarantee a legitimate approximation to distribu-
tions of fluid queues. Of the uniformisation and QBD-RAP schemes, the latter often
produced lower errors and performed similarly to the DG-lin-lim scheme. Moreover, the
uniformisation and QBD-RAP schemes have stochastic interpretations which can aid in
their analysis. For the application to fluid-fluid queues in this chapter the stochastic in-
terpretation is important as it justifies (and defines) an approximation to the first return
operator. For the DG scheme there is no such theory (that the author is aware of) and
this means that the approximation to the first return operator using the DG scheme is
not a rigorously defined object. On a similar note, the uniformisation and QBD-RAP
schemes result in operators which are linear, whereas the DG-lim and DG-lin-lim schemes
do not result in linear operators. When approximating the Riccati equation for the first
return operator this is necessary as the uniformisation and QBD-RAP schemes result in
a matrix-Riccati equation which can be easily solved in software, whereas slope-limited
DG schemes do not lead to matrix formulations as they are non-linear. In summary,
the QBD-RAP and DG-lin-lim schemes perform similarly and guarantee solutions which
obey the axioms of probability, however approximating operators of fluid-fluid queues is
justified when using the QBD-RAP scheme, it is not justified for the DG-lin-lim (or DG
schemes in general).
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Conclusion

A fluid-fluid queue is a stochastic fluid queue, where the driving process is a fluid queue
itself. Fluid queues provide a model for a single continuous performance measure of a sys-
tem in the presence of a random environment. Fluid queues have found a wide variety of
applications including risk processes, telecommunications, and environmental modelling,
among others. Given the success of fluid queues it is plausible that the extension to
fluid-fluid queues, which enable us to track two continuous performance measures of a
system, will also find success. Bean & O’Reilly (2014) provide an analysis of fluid-fluid
queues and derive operator-analytic expressions for the first-return operator, and limit-
ing distribution of a fluid-fluid queue. Motivated by the computation of the theoretical
operators for stochastic fluid-fluid queues in Bean & O’Reilly (2014), this thesis inves-
tigates approximations method for the generator of stochastic fluid queues. Cell-based
approximation methods are particularly useful as they allow flexible partitioning of the
approximate operators, which is required in the analysis of fluid-fluid queues.

In Chapter 3 we introduced a discontinuous Galerkin (DG) scheme for the approx-
imation of the generator of a fluid queue and show how to approximate the operators
from Bean & O’Reilly (2014). High-order DG schemes are known to perform well for
smooth problems, but problems, such as negative probability estimates, can occur in the
presence of discontinuities. In some contexts, slope limiting can be used to rectify this,
but they result in approximations to operators which are non-linear which complicates
the computation of the operators in Bean & O’Reilly (2014). The uniformisation scheme
of Bean & O’Reilly (2013a), which is equivalent to the simplest DG scheme, does not
give erroneous approximations in the presence of discontinuities but can converge slowly
compared to high-order DG schemes.

In Chapter 4, we introduce a new approximation to a fluid queue. Inspired by the
uniformisation scheme (which is a QBD process) and its ability to handle discontinuous
solutions, we construct a new discretisation of a fluid queue in the form of a QBD-RAP.
Chapter 4 describes the construction of the approximation and the intuition behind it.

In Chapters 5 and 6 we prove that the QBD-RAP approximation scheme converges
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weakly (in the spatial and temporal variables) to the distribution of the fluid queue.
Chapters 5 uses matrix-exponential-specific arguments in its proof and ultimately proves
the convergence of the QBD-RAP scheme to the fluid queue when the latter remains
within a given interval. Chapter 6 uses more traditional Markov process arguments to
prove a global convergence result for the approximation scheme.

Chapter 7 investigates, via numerical experiments, the performance of the DG, QBD-
RAP, and uniformisation schemes. In some contexts, we also implement two positivity
preserving DG schemes which utilise a limiter. For smooth problems the DG scheme was
superior, however, for discontinuous problems, the DG scheme exhibited oscillations and
produced negative probability estimates. One of the slope limited DG schemes, in which
a slope limiter is applied to a high-order DG scheme (which we title the DG-lim scheme),
performed very poorly due to the limiter reducing the order of the scheme to linear near
discontinuities. The QBD-RAP scheme performed similarly to the linear DG approxima-
tion on a finer grid with a slope limiter (the DG-lin-lim scheme). However, unlike the
slope limited DG-lin-lim scheme, the QBD-RAP scheme constructs an approximation to
the generator of the fluid queue which is linear and this is advantageous for the applica-
tion to fluid-fluid queues. The uniformisation scheme performed better than the DG-lim
scheme but worse than all the others.

In summary, this thesis investigated three main computational frameworks for the
analysis of fluid queues and fluid-fluid queues, namely, the uniformisation, DG, and QBD-
RAP schemes. The DG method is well known, but its application to fluid and fluid-fluid
queues has not been well-studied. The QBD-RAP scheme is a novel approach which over-
comes some known issues of the DG scheme, and converges faster than the uniformisation
scheme. Analysis of the QBD-RAP scheme proves that it is convergent. Numerical exper-
iments demonstrate the e↵ectiveness of the approximation schemes for various problems.
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Mathematical background

A.1 Laplace Transforms

The Laplace transform is an important tool in many areas of mathematics, and is par-
ticularly useful in the analysis of fluid queues and fluid-fluid queues. Furthermore, in
Chapters 5 and 6 we work with Laplace transforms to prove convergence of the QBD-
RAP scheme.

For a measure µ, defined on the Borel sets of [0,1), we define the Laplace transform
of µ to be

bµ(�) = L(µ)(�) =
Z

1

t=0

e��t dµ,

where the region of convergence is the set of values of � 2 R such that the integral is
finite. When µ has a density, v, then the Laplace transform is

bµ(�) = bv(�) = L(v)(�) =
Z

1

t=0

e��tv(x) dx.

When µ is the probability measure associated with a random variable, Z, say, then we
may write

bµ(�) = E[e��Z ],

and the region of convergence is at least [0,1). Further, letting E� be an exponentially
distributed random variable with rate � and noting that P(E� > t) = e��t, then

bµ(�) = P(Z < E�),

which gives a probabilistic interpretation of the Laplace transform. That is, the Laplace
transform with parameter � > 0 is the probability that Z occurs before E�, an indepen-
dent random exponential time with rate �, occurs.

A convenient property of the Laplace transform which we utilise is the Convolution
Theorem.
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Theorem A.1 (Convolution Theorem). Let f, g : [0,1) ! R be integrable functions,
then

L
✓Z t

u=0

f(u)g(t� u) du

◆
(�) = L (f) · L (g) .

The Convolution Theorem states that the Laplace transform of the convolution, given

by

Z t

u=0

f(u)g(t� u) du, is equal to the product of the Laplace transform of f and g.

The Laplace transform is unique in the sense that, if µ and ⌫ are two measures on the
Borel sets of [0,1) and

bµ(�) = b⌫(�)

for all � > a with a < 1, then µ and ⌫ are the same. In terms of functions, f, g : [0,1) !
R, if

L(f)(�) = L(g)(�),

for all � > a with a < 1, and f and g are continuous, then f(t) = g(t) for all t � 0.
Without knowing f and g are continuous, then we can only claim that f(t) = g(t) for all
t � 0, t /2 N , where N is a null set with respect to Lebesgue measure.

A.2 Kronecker products and related results

Here we describe Kronecker products and sums and some of their properties (see Bladt
& Nielsen (2017), and also Appendix A.4, for further details). We use the results in this
section to manipulate certain matrix expressions in Chapter 5.

Let

A =

2

4
a11 . . . a1m
. . . . . .
an1 . . . anm

3

5 B =

2

4
b11 . . . b1m0

. . . . . .
bn01 . . . bn0m0

3

5

be matrices with dimensions n ⇥ m and n0 ⇥ m0, respectively. The operator ⌦ is the
Kronecker product of two matrices;

A⌦B =

2

4
a11B . . . a1mB
. . . . . .

an1B . . . anmB

3

5 ,

which is an nn0 ⇥mm0 matrix.
Let C,D be matrices with dimensions m⇥k and m0⇥k0. A property of the Kronecker

Product is

(A⌦B) (C ⌦D) = AC ⌦BD. (Mixed Product Rule)
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If A and B are invertible matrices, then

(A⌦B)�1 = A
�1 ⌦B

�1. (A.1)

Let A and B be n ⇥ n and m ⇥m matrices, respectively. The Kronecker sum of A
and B is denoted by � and defined as

A�B = A⌦ Im + In ⌦B.

The exponential of a square matrix B is

eB =
1X

n=0

1

n!
B

n.

A property of the Kronecker sum is

eA�B = eA ⌦ eB. (A.2)

Lemma A.2. Let T and C be n ⇥ n, square matrices with C diagonal and invertible;
let S be a p ⇥ p matrix. Further, suppose [T ⌦ I +C ⌦ S � �I] is invertible for � > 0.
Then

Z
1

t=0

e��te(T⌦I+C⌦S)t dt =

Z
1

x=0

eC
�1(T��I)x ⌦ eSx dx (C ⌦ I)�1 . (A.3)

Proof. Computing the integral on the left-hand side and then factorising the result and
using the Mixed Product Rule multiple times gives
Z

1

t=0

e��te(T⌦I+C⌦S)t dt = � [T ⌦ I +C ⌦ S � �I]�1

= � [T ⌦ I + (C ⌦ I) (I ⌦ S)� �I]�1

= �
⇥
(C ⌦ I)

�
(C ⌦ I)�1 (T ⌦ I) + I ⌦ S � (C ⌦ I)�1 �I

�⇤�1
.

(A.4)

By Equation (A.1) and since C is invertible, (A.4) is equal to

�
⇥
(C ⌦ I)

��
C

�1 ⌦ I
�
(T ⌦ I) + I ⌦ S �

�
C

�1 ⌦ I
�
�I
�⇤�1

. (A.5)

Using the Mixed Product Rule and algebraic manipulation, (A.5) is equal to

�
⇥
(C ⌦ I)

��
C

�1
T
�
⌦ I + I ⌦ S �

�
C

�1�I
�
⌦ I

�⇤�1

= �
⇥
(C ⌦ I)

��
C

�1 (T � �I)
�
⌦ I + I ⌦ S

�⇤�1

= �
⇥�
C

�1 (T � �I)
�
⌦ I + I ⌦ S

⇤�1
(C ⌦ I)�1
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= �
⇥�
C

�1 (T � �I)
�
� S

⇤�1
(C ⌦ I)�1 , (A.6)

by definition of the Kronecker sum.

Now, for an invertible matrix A we can write �A
�1 =

Z
1

x=0

eAx dx. Therefore, (A.6)

is

�
⇥�
C

�1 (T � �I)
�
� S

⇤�1
(C ⌦ I)�1 =

Z
1

x=0

e(C
�1(T��I)x)�Sx dx (C ⌦ I)�1 .

Using the rule in Equation (A.2) gives

Z
1

x=0

e(C
�1(T��I))x ⌦ eSx dx (C ⌦ I)�1 ,

which is the result.

A.3 Convergence theorems

We use the following convergence theorems to help us prove that the QBD-RAP scheme
converges weakly to the distribution of the fluid queue. The first result we state, the
Portmanteau Theorem, is a sweeping statement about convergence of measures. First,
let’s define the notion of weak convergence. We follow Billingsley (1999).

Let S be a metric space and let S be the Borel �-algebra generated by the open sub-
sets of S. A probability measure, P , is a function which maps elements of S (elements of
S are sets) to real numbers in the interval [0, 1], with P (S) = 1. Further, P is countably-
additive, which means that for any countable collection of disjoint sets A1, A2, ... 2 S,
then

P

 
1[

n=1

An

!
=

1X

n=1

P (An) .

Define the notation Pf =
R
S f dP where f : S ! R is a function. Let P1, P2, ..., be a

sequence of probability measures. For a given function f , the sequence P1f, P2f, ..., is
simply a sequence of real numbers. The sequence of probability measures P1, P2, ...., is
said to converge weakly to P if Pnf ! Pf for every bounded continuous real function f .
Billingsley (1999) uses the notation Pn ) P to denote this weak convergence.

We need a few more definitions before stating The Portmanteau Theorem. A set A 2 S
is said to be a P -continuity set if @A (the boundary of the set A) satisfies P (@A) = 0.
Define the limit inferior and limit superior of a sequence of real numbers x1, x2, ..., as

lim inf
n!1

xn = lim
n!1

✓
inf
m�n

xm

◆
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and

lim sup
n!1

xn = lim
n!1

✓
sup
m�n

xm

◆
,

respectively.

Theorem A.3 (Portmanteau Theorem I, Theorem 2.1 of Billingsley (1999)). These five
conditions are equivalent.

(i) Pn ) P .

(ii) Pnf ! Pf for all bounded, uniformly continuous f .

(iii) lim supn PnF  PF for all closed [sets] F .

(iv) lim infn PnG  PG for all open [sets] G.

(v) PnA ! PA for all P -continuity sets F .

Some authors, such as Klenke (2014), also include the following equivalent condition
in the Portmanteau Theorem.

Theorem A.4 (Portmanteau Theorem II, Theorem 13.16 of Klenke (2014)).

(vi) Pnf ! Pf for all bounded, Lipschitz continuous f .

Recall that a stochastic process is a sequence of random variables {X(t)}t2T . The
finite-dimensional distributions of {X(t)}t2T are the joint distributions of the random
vector (X(t1), X(t2), ..., X(tn)), where t1, t2, ..., tn 2 T is a finite collection of times.

Key concepts in establishing weak convergence of stochastic processes are the notions
tight and relatively compact. Again, we follow Billingsley (1999). A probability measure
P is said to be tight if for each " there exists a compact set K such that P (K) > 1� ". A
family of probability measures, ⇧, is said to be tight if for every " there exists a compact
set K such that P (K) > 1 � " for every probability measure P in ⇧. The family ⇧
is relatively compact if every sequence of elements of ⇧ contains a subsequence which
converges weakly.

Let P1, P2, ..., and P be probability measures of stochastic processes. Billingsley (1999)
provides the following result.

Theorem A.5. If {Pn} is relatively compact and the finite-dimensional distributions of
Pn converge weakly to those of P , then Pn )n P .

Further, the condition that {Pn} is relatively compact can be replaced by tightness
due Prohorov’s Theorem (Billingsley 1999).
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Theorem A.6. If ⇧ is tight, then it is relatively compact.

Another tool we can use to show convergence of measures is to show that the Laplace
transforms converge, as stated in the following theorem.

Theorem A.7 (Extended Continuity Theorem, Feller (1957), Theorem 2a). For p =
1, 2, ..., let Up be a measure with Laplace transform ⇣p. If ⇣p(�) ! ⇣(�) for � > a � 0,
then ⇣ is the Laplace transform of a measure U and Up ! U [weakly].

Conversely, if Up ! U [weakly] and the sequence {⇣p(a)} is bounded, then ⇣p(�) ! ⇣(�)
for � > a.

In Chapters 5 and 6 we use the Dominated Convergence Theorem to aid our conver-
gence arguments. In applied probability we often want to prove convergence of certain
expressions. An approach which can simplify matters is to partition the expression on
certain events where we have a simpler characterisation, thereby enabling us to prove
convergence on each element in the partition. The original expression can be written as
an integral over the partition. To establish the convergence result we initially desired, we
can use the convergence of each element of the partition and the Dominated Convergence
Theorem. I have taken the following from Theorem 1.13 Stein & Shakarchi (2009). Stein
& Shakarchi (2009) use the notation

Z
f =

Z
f dx =

Z
f dm(x),

where m denotes Lebesgue measure, to denote the Lebesgue integral.

Theorem A.8 (Dominated Convergence Theorem). Suppose {fn} is a sequence of mea-
surable functions such that fn(x) ! f(x) almost everywhere with respect to x, as n tends
to infinity. If |fn(x)|  g(x), where g is integrable, then

Z
|fn � f | ! 0 as n ! 1,

and consequently Z
fn !

Z
f as n ! 1.

Also in Chapters 5 and 6 we want to manipulate infinite sums or integrals and rearrange
the order of summation or integration. However, things can go awry when we swap the
order of integration/summation if we are not careful. The next few results give some
conditions under which we have equality under before and after swapping the order of
summation/integration. Once again, we follow Stein & Shakarchi (2009) quoting their
Theorem 2.13. If f is a function in Rd = Rd1 ⇥Rd2 , the slice of f corresponding to y 2 Rd2

is the function f y of the x 2 Rd1 variable, given by

f y(x) = f(x, y).

Similarly, the slice of f for a fixed x 2 Rd1 is fx(y) = f(x, y).
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Theorem A.9 (Fubini’s Theorem). Suppose f(x, y) is integrable on Rd1 ⇥ Rd2. Then for
almost every y 2 Rd2:

• The slice f y is integrable on Rd1.

• The function defined by
R
Rd1

f y(x) dx is integrable on Rd2.

Moreover:

(iii)

Z

Rd2

✓Z

Rd1

f(x, y) dx

◆
dy =

Z

Rd

f.

Stein & Shakarchi (2009) then state

“Clearly, the [Fubini] theorem is symmetric in x and y so that we also may
conclude that the slice fx is integrable on Rd2 for almost every x. Moreover,R

Rd2
fx(y) dy is integrable and

Z

Rd1

✓Z

Rd2

f(x, y) dy

◆
dx =

Z

Rd

f.

In particular, Fubini’s theorem states that the integral of f on Rd can be
computed by iterating lower-dimensional integrals, and that the iterations
can be taken in any order

Z

Rd2

✓Z

Rd1

f(x, y) dx

◆
dy =

Z

Rd1

✓Z

Rd2

f(x, y) dy

◆
dx =

Z

Rd

f.”

It is this last statement which is most powerful. E↵ectively, if either
Z

Rd2

✓Z

Rd1

|f(x, y)| dx
◆

dy < 1,

or Z

Rd1

✓Z

Rd2

|f(x, y)| dy
◆

dx < 1,

then we can swap the order of integration.
A closely related theorem which is often used alongside Fubini’s Theorem is Tonelli’s

Theorem. Define the extended Lebesgue integral of an extended valued (it can take the
value +1) non-negative function f by

Z
f(x) dx = sup

g

Z
g(x) dx.

Theorem A.10 (Tonelli’s Theorem). Suppose f(x, y) is a non-negative measurable func-
tion on Rd1 ⇥ Rd2. Then for almost every y 2 Rd2:
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• The slice f y is integrable on Rd1.

• The function defined by
R
Rd1

f y(x) dx is integrable on Rd2.

Moreover:

(iii)

Z

Rd2

✓Z

Rd1

f(x, y) dx

◆
dy =

Z

Rd

f(x, y) dx dy in the extended sense.

Once again, we note that the theorem is symmetric in x and y, so we can establish
that we may swap the order of integration provided that f is non-negative. Tonelli’s
Theorem allows us to exchange the order of integration for any non-negative extended
real-valued function, and includes the case where the value of the integral is infinite. In
contrast, Fubini’s Theorem allows us to exchange the order of integration for any real-
valued function, provided that the integral is finite.

Collectively, we refer to Theorems A.9 and A.10 together as the Fubini-Tonelli The-
orem, but they are otherwise known collectively as just Fubini’s Theorem. Often, they
are used in conjunction. Since |f | is a non-negative function, then we may use Tonelli’s
Theorem and compute (or bound) the integral

R
|f | via computing an iterated integral.

If this is found to be finite, then Fubini’s Theorem applies so f is integrable, and we may
evaluate

R
f via an iterated integral.

In the context of probability, the function f which we are integrating is often positive,
so Tonelli’s Theorem is all that is required to justify a swap of iterated integrals.

A.4 Sundry mathematical concepts

Polynomials

The discontinuous Galerkin method involves projecting the operator equation onto a
basis of functions, typically polynomials. A convenient basis with which to work is the
interpolating Lagrange polynomials. The order p � 1 Lagrange polynomials are defined
by a set of points, ⇠i, i = 1, ..., p, (the ⇠i’s must be distinct), and are given by

`i(r) =
pY

j=1
j 6=i

r � ⇠j
⇠i � ⇠j

, i = 1, ..., p.

A convenient property of the Lagrange polynomials is

li(⇠j) =

(
1 if i = j,

0 otherwise.

Sometimes it is more convenient to work with orthogonal polynomials. Two functions
f and g are orthogonal on a set D if

R
x2S f(x)g(x) dx = 0. Let U be a vector space
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of functions (for example, the space of polynomials of order p � 1). The orthogonal
complement of U , denoted U?, is the set of functions f such that f is orthogonal to every
g 2 U ,

R
x2D f(x)g(x) dx. Any function h(x) can be decomposed into h(x) = hU(x)+h?(x)

where hU 2 U and h? 2 U?, the orthogonal complement of U .
The Legendre polynomials are a set of orthogonal polynomial which are defined recur-

sively by

P0(x) = 1,

P1(x) = x,

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)� nPn�1(x),

and are orthogonal on [�1, 1].
The zeros of (1� x2)P 0

n(x) define the Legendre-Gauss-Lobatto points, which are used,
among other things, for numerically approximating integrals via quadrature.

Numerical integration

To numerically approximate integrals in the discontinuous Galerkin schemes in this thesis
we can use Gauss-Lobatto quadrature. Consider the integral of some function f over the
interval [�1, 1]. Quadrature approximates the integral by evaluating the function on a
set of points, xi, i = 1, ..., p, and computing the weighted sum

Z 1

�1

f(x) dx ⇡
pX

i=1

f(xi)wi,

where wi are weights. There are various quadrature schemes which one can use.
For the discontinuous Galerkin method, Gauss-Lobatto quadrature is convenient as

in both we evaluate the function at the end points of the interval. For Gauss-Lobatto
quadrature, the nodes, xi, i = 1, ..., p is the zero of (1 � x2)P 0

n(x) where Pn is the nth
Legendre polynomial, the weights are given by

w1 = 1,

wi =
2

n(n� 1)[Pn�1(xi)]2
, i 6= 1, p,

wp = 1.

Gauss-Lobatto quadrature is accurate for polynomials up to degree 2p � 3. An integral
over the interval [a, b] can be approximated by

Z b

a

f(x) dx ⇡
b� a

2

pX

i=1

f

 
b� a

2
xi +

a+ b

2

!
wi.
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We also use a trapezoidal integration rule at times. Consider the integral
R b

a f(x) dx.
A trapezoidal rule with p evenly spaced grid-points approximates the integral via

Z b

a

f(x) dx ⇡
pX

i=2

f(xi�1 + f(xi))

2
�,

where xi = a+ (i� 1)�, i = 1, ..., p, and � =
b� a

p� 1
.

Measuring the di↵erence between distributions

In the numerical investigations in this thesis we evaluate approximation schemes by com-
paring the resulting approximations they produce with a ground truth. For comparing
distributions we use Lp norms and the Kolmogorov-Smirnov distance. The Lp norm of a
function f is given by ✓Z

|f(x)|p dx
◆1/p

.

The Kolmogorov-Smirnov distance between two distribution functions, F1, F2 is

sup
x

|F1(x)� F2(x)|.



Appendix B

DG applied to a toy example

This appendix has been taken from Appendix 2 of Bean, Lewis, Nguyen,
O’Reilly & Sunkara (2022) with only minor changes, such as notations,
so that this chapter is consistent with the rest of the thesis. I am a co-
author of the paper Bean, Lewis, Nguyen, O’Reilly & Sunkara (2022).

Here we include a small toy example to show how we construct a DG approximation and
to help clarify the notation.

Consider a process {(Ẇ (t), X(t),'(t))}t�0 with two phases, '(t) 2 S = {1, 2} and
generator matrix T . Let b = 1.8, and the cell edges be w0 = 0, w1 = 1, w2 = 1.8. We
choose a basis of Lagrange polynomials of order 1 to define our approximation space.
That is,

�1
0(x) = 1� x, �2

0(x) = x, x 2 (0, 1),

�1
1(x) =

1.8� x

0.8
, �2

1(x) =
x� 1

0.8
, x 2 (1, 1.8).

The mesh and basis functions are shown in Figure 1. We can verify that the matrices M
and G are given by

M =


M1 0
0 M2

�
=

2

664

1/3 1/6 0 0
1/6 1/3 0 0
0 0 4/15 4/30
0 0 4/30 4/15

3

775 ,

G =


G1 0
0 G2

�
=

2

664

�1/2 1/2 0 0
�1/2 1/2 0 0
0 0 �1/2 1/2
0 0 �1/2 1/2

3

775 .
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x
D0 D1x0 = 0 x1 = 1 x2 = 1.8

1 �1
0(x) �2

0(x) �1
1(x) �2

1(x)

Figure 1: A mesh with nodes w0 = 0, w1 = 1 and w2 = 1.8. There are two basis functions
on each cell. Boundaries are located at w0 = 0 and w2 = 1.8.

Let c1 = 1 and c2 = �2. Then the cells are D0,1 = (0, 1), D1,1 = [1, 1.8), D0,2 =
(0, 1], D1,2 = (1, 1.8) and the flux matrices are given by

F1 =


F

00
1 F

01
1

0 F
11
1

�
=

2

664

0 0 0 0
0 �1 1 0
0 0 0 0
0 0 0 �1

3

775 ,

F2 =


F

00
2 0

F
10
2 F

11
2

�
=

2

664

�1 0 0 0
0 0 0 0
0 1 �1 0
0 0 0 0

3

775 .

Suppose that r1(x) > 0 on D0,1 = F+
1 and r1(x) < 0 on D1,1 [ {1.8} = F�

1 , and
further, that r2(x) < 0 on {0} [D0,2 = F�

2 and r2(x) > 0 on D1,2 = F+
2 . Specifically, let

r1(x) =

(
1 x 2 (0, 1),

�1 x 2 [1, 1.8],
r2(x) =

8
><

>:

�1 x = 0,

�2 x 2 (0, 1],

1 x 2 (1, 1.8).

Then, constructing B we get
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�1 D0 D2 K + 1
F�

2 F+
1 F�

2 F�

1 F+
2 F�

1

q�1,0 a10,1 a20,1 a10,2 a20,2 a11,1 a21,1 a11,2 a21,2 qK+1,12

666666666666664

3

777777777777775

T22 4T21 �2T21 0 0 0 0 0 0 0
0 T11 � 3 3 T12 0 0 0 0 0 0
0 �1 T11 � 1 0 T12 5 �2.5 0 0 0
2 T21 0 T22 � 2 �2 0 0 0 0 0
0 0 T21 6 T22 � 6 0 0 0 0 0
0 0 0 0 0 T11 � 15

4
15
4 T12 0 0

0 0 0 0 0 �5
4 T11 � 5

4 0 T12 1
0 0 0 �4 8 T21 0 T22 � 5

2 �5
2 0

0 0 0 0 0 0 T21
15
2 T22 � 15

2 0
0 0 0 0 0 0 0 �2T12 4T12 T11

.

We also have sub-matrices

B
++
11 =


T11 � 3 3
�1 T11 � 1

�
, B+�

11 =


0 0 0
5 �2.5 0

�
,

B
��

11 =

2

4
T11 � 15

2
15
2 0

�5
2 T11 � 5

2 1
0 0 T11

3

5 ,B+�

12 =


0 T12 0
0 0 T12

�
,

B
�+
12 =

2

4
T12 0
0 T12

�2T12 4T12

3

5 , B+�

21 =


T21 0 0
0 T21 0

�
,

B
�+
21 =

2

4
4T21 �2T21

T21 0
0 T21

3

5 , B++
22 =


T22 � 5

2 �5
2

15
2 T22 � 15

2

�
,

B
+�

22 =


0 �4 8
0 0 0

�
, B��

22 =

2

4
T22 0 0
2 T22 � 2 �2
0 6 T22 � 6

3

5 ,

and B
�+
11 = 03⇥2, B

++
12 = 02⇥2, B

��

12 = 02⇥3, B
++
21 = 02⇥2, B

��

21 = 03⇥3, B
�+
22 = 03⇥2,

where 0n⇥m denotes an n⇥m matrix of zeros. Furthermore,

B
++ =

2

664

T11 � 3 3 0 0
�1 T11 � 1 0 0
0 0 T22 � 5

2 �5
2

0 0 15
2 �15

2

3

775 ,
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B
+� =

2

664

0 T12 0 0 0 0
0 0 T12 5 �2.5 0
0 �4 8 T21 0 0
0 0 0 0 T21 0

3

775 ,

B
�+ =

2

6666664

4T21 �2T21 0 0
T21 0 0 0
0 T21 0 0
0 0 T12 0
0 0 0 T12

0 0 �2T12 4T12

3

7777775
,

B
�� =

2

6666664

T22 0 0 0 0 0
2 T22 � 2 �2 0 0 0
0 6 T22 � 6 0 0 0
0 0 0 T11 � 15

4 �15
4 0

0 0 0 �5
4 T11 � 5

4 1
0 0 0 0 0 T11

3

7777775
.

Since r1(x) and r2(x) are constant on each cell then R
+ and R

� take a particularly
simple form. We have

R
+ =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3

775 , R
� =

2

6666664

1 0 0 0 0 0
0 1/2 0 0 0 0
0 0 1/2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3

7777775
.

The DG approximations Dmn(s), m, n 2 {+,�} can now be constructed as

D
mn(s) =

(
R

m (Bmm � sI) n = m,

R
m
B

mn n 6= m.

For a given value of s, we construct and solve the matrix Riccati equation,

D
+�(s) + (s)D�+(s) (s) +D

++(s) (s) + (s)D��(s) = 0,

for the matrix  (s) using, for example, Newtons method (Bean et al. 2009a). To obtain
the stationary distribution we require  (0).

Now, to find ⇠, we solve the linear system in Equations (2.28)-(2.29). The result is a
vector which we denote,

⇠ =
⇥
⇠�1,2 ⇠10,2 ⇠20,2 ⇠11,1 ⇠21,1 ⇠K+1,1

⇤
,
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where ⇠�1,2 is an approximation to lim
n!1

P (X(✓n) = 0,'(✓n) = 2) and ⇠K+1,1 is an approx-

imation to the artificial point mass lim
n!1

P (X(✓n) = 1.8,'(✓n) = 1). For x 2 D0,2 an ap-

proximation to the density of lim
n!1

P (X(✓n) 2 dx,'(✓n) = 2), is constructed as ⇠00,2�
1
0(x)+

⇠00,2�
1
0(x). For x 2 D1,1 an approximation to the density of lim

n!1

P (X(✓n) 2 dx,'(✓n) = 1),

is constructed as ⇠11,1�
1
1(x) + ⇠21,1�

2
1(x).

Next, given a value of w, we solve the system (3.11)-(3.15) to find p = p
� and ⇡(w).

For the point masses we have

p
� =

⇥
p�1,2 p10,2 p20,2 p11,1 p21,1 pK+1,1

⇤
,

where p�1,2 is an approximation to lim
t!1

P
⇣
Ẇ (t) = 0, X(t) = 0,'t = 2

⌘
and pK+1,1 is an

approximation to the artificial point mass lim
t!1

P
⇣
Ẇ (t) = 0, X(t) = 1.8,'(t) = 1

⌘
. For

x 2 D0,2, an approximation to the density of lim
t!1

P
⇣
Ẇ (t) = 0, X(t) 2 dx,'(t) = 2

⌘
, is

constructed as p10,2�
1
0(x) + p20,2�

2
0(x). For x 2 D1,1, an approximation to the density of

lim
t!1

P
⇣
Ẇ (t) = 0, X(t) 2 dx,'(t) = 1

⌘
, is constructed as p11,1�

1
1(x) + p21,1�

2
1(x).

Similarly, for ⇡�(w), we have

⇡
�(w) =

⇥
⇡�1,2(w) ⇡1

0,2(w) ⇡2
0,2(w) ⇡1

1,1(w) ⇡2
1,1(w) ⇡K+1,1(w)

⇤
,

where ⇡�1,2(w) is an approximation to lim
t!1

P
⇣
Ẇ (t) 2 dw,X(t) = 0,'(t) = 2

⌘
and ⇡K+1,1(w)

is an approximation to the artificial point mass lim
t!1

P
⇣
Ẇ (t) 2 dw,X(t) = 1.8,'(t) = 1

⌘
.

For x 2 D0,2 an approximation to the density of lim
t!1

P
⇣
Ẇ (t) 2 dw,X(t) 2 dx,'(t) = 2

⌘
,

is constructed as ⇡1
0,2(w)�

1
0(x)+⇡

2
0,2(w)�

2
0(x). For x 2 D1,1 an approximation to the density

of lim
t!1

P
⇣
Ẇ (t) 2 dw,X(t) 2 dx,'(t) = 1

⌘
, is constructed as ⇡1

1,1(w)�
1
1(x)+⇡

2
1,1(w)�

2
1(x).

For ⇡+(w), we have

⇡
+(w) =

⇥
⇡1
0,1(w) ⇡2

0,1(w) ⇡1
1,2(w) ⇡2

1,2(w)
⇤
.

For x 2 D0,1 an approximation to the joint density of lim
t!1

P
⇣
Ẇ (t) 2 dw,Xt 2 dx,'(t) = 1

⌘

is constructed as ⇡1
0,1(w)�

1
0(x)+⇡

2
0,1(w)�

2
0(x). For x 2 D1,2 an approximation to the density

of lim
t!1

P
⇣
Ẇ (t) 2 dw,X(t) 2 dx,'(t) = 2

⌘
is constructed as ⇡1

1,2(w)�
1
1(x)+⇡

2
1,2(w)�

2
1(x).

In summary, for i 2 S, a global approximation of the joint stationary distribution is

lim
t!1

P
⇣
Ẇ (t) 2 dw,X(t) 2 dx,'(t) = i

⌘
⇡

X

r2{1,2},k2{0,1}

⇡r
i,k(w)�

r
k(x) dx dw,
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for x 2 (0, 1.8), w > 0, and

lim
t!1

P
⇣
Ẇ (t) = 0, X(t) 2 dx,'(t) = i

⌘
⇡

X

r2{1,2},k2{0,1}

prk,i�
r
k(x) dx, x 2 (0, 1.8),

lim
t!1

P
⇣
Ẇ (t) 2 dw,X(t) = 0,'(t) = i

⌘
⇡ ⇡�1,i(w) dw, w > 0,

lim
t!1

P
⇣
Ẇ (t) = 0, X(t) = 0,'(t) = i

⌘
⇡ p�1,i,

lim
t!1

P
⇣
Ẇ (t) 2 dw,X(t) = 1.8,'(t) = i

⌘
⇡ ⇡K+1,i(w) dw, w > 0,

lim
t!1

P
⇣
Ẇ (t) = 0, X(t) = 1.8,'(t) = i

⌘
⇡ pK+1,i.
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Properties of the DG operator B

In this section we prove that the DG approximation B conserves probability.
Recall that the coe�cients ak,i(t) can be used to construct an approximate solution to a

di↵erential equation at time t as uk,i(x, t) = ak,i(t)�k(x)0. For i 2 S, k 2 K, r 2 {1, ..., pk},

define ↵r
k,i(t) = ark,i(t)

Z yk+1

x=yk

�r
k(x) dx, and row-vectors ↵k,i(t) = (↵r

k,i(t))r2{1,...,pk}. Mo-

tivated by the fact that we may be interested in approximations of the probabilities
P(X(t) 2 Dk,i,'(t) = i) rather than the function uk,i itself, we can pose the problem
equivalently in terms of the integrals

P (X(t) 2 Dk,i,'(t) = i) ⇡ ak,i(t)

Z

x2Dk,i

�k(x)
0 dx = ↵k,i(t)1.

Define

↵k(t) = (↵k,i(t))i2S , and ↵(t) = (↵k(t)))k2K,

and matrices

Pk = diag

✓Z yk+1

x=yk

�r
k(x) dx

◆

r2{1,...,pk}

, k 2 K�,

P =

2

64
IN ⌦ P0

. . .
IN ⌦ PK

3

75 .

By choosing the basis {�r
k}r2{1,...,pk},k2K� such that

R yk+1

x=yk
�r
k(x) dx 6= 0 for all r, k, then

P is invertible. This is the case for the Lagrange polynomials, but not, for example,
for the Legendre polynomials. We can (loosely) interpret the new coe�cients ↵r

k,i(t) as
representing the amount of probability captured by the basis function �r

k(x) in phase i.

231
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The di↵erential equation (3.9) can be equivalently expressed as
d

dt
↵(t) = ↵(t)B,

where

B =

2

4
I|S�1|

P
�1

I|SK+1|

3

5B

2

4
I|S�1|

P

I|SK+1|

3

5 .

Let

B�10 = T�1+ ⌦
�
�0(0)M

�1
0 P0

�
,

B0�1 = � [ciqpij1(ci < 0)]i2S,j2S�1
⌦ P

�1
0 �0(0)

0,

BK+1K = TK+1� ⌦
�
�K(b)M

�1
K PK

�

BKK+1 = [cibpij1(ci > 0)]i2S,j2SK+1
⌦ P

�1
K �K(b)

0,

Bkk
ij =

(
TiiIpk + ciP

�1
k (F kk

i +Gk)M
�1
k Pk i = j,

TijIpk i 6= j,
for k = 1, 2, . . . K � 1,

B00
ij =

(
TiiIp0 + ciP

�1
0 (F 00

i +G0)M
�1
0 P0 i = j,

TijIp0 � ciqpij1(ci < 0)F 00
i M

�1
0 P0 i 6= j,

BKK
ij =

(
TiiIpK + ciP

�1
K (FKK

i +GK)M
�1
K PK i = j,

TijIpK + cibpij1(ci > 0)P�1
K F

KK
i M

�1
K PK i 6= j,

Bk,k+1
ij =

(
ciP

�1
k F

k,k+1
i M

�1
k+1Pk+1 i = j,

0pk i 6= j,
for k = 0, 1, . . . K � 1,

Bk�1,k
ij =

(
ciP

�1
k F

k,k�1
i M

�1
k�1Pk�1 i = j,

0pk i 6= j,
, for k = 2, . . . K,

Bkk =:

2

64
Bkk

11 . . . Bkk
1N

...
. . .

...
Bkk

N1 . . . Bkk
N,N

3

75 , for k 2 K�,

Bk,k+1 =:

2

64
Bk,k+1

1,1 . . . Bk,k+1
1,N

...
. . .

...
Bk,k+1

N,1 . . . Bk,k+1
N,N

3

75 , for k = 0, 1, . . . K � 1,

Bk,k�1 =:

2

64
Bk,k�1

1,1 . . . Bk,k�1
1,N

...
. . .

...
Bk,k�1

N,1 . . . Bk,k�1
N,N

3

75 , for k = 1, 2, . . . K.
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Then

B =

2

6666666664

T�1,�1 B�10

B0�1 B00 B01

B10 B11 B12

. . . . . . . . .
BK�1,K�2 BK�1,K�1 BK�1,K

BK,K�1 BK,K BK,K+1

BK+1,K
TK+1,K+1

3

7777777775

.

Remark C.1. One may recognise the structure of B as the structure of a quasi-birth-and-
death process (QBD), with levels k 2 K�. This raises whether B is indeed a representation
of the generator matrix of a QBD, or QBD-like process. In the case of a constant basis
function on each cell, i.e. pk = 1 and �1

k(x) / 1, k 2 K�, then B is the generator of
a QBD: it has zero row-sums, negative diagonal entries, and non-negative o↵-diagonal
entries, the QBD-phase variable is {'(t)} and the level is k 2 K. In fact, if �k is the
same for every k 2 K�, then this is the same QBD discretisation of a stochastic fluid
process analysed by Bean & O’Reilly (2013a). However, for higher-degree polynomials B
is not necessarily the generator of a QBD process. We conjecture that, using polynomial
basis functions, then pk = 1 and �1

k(x) / 1, k 2 K� is the only DG approximation which
has an interpretation as a QBD-like process – not even as a QBD-RAP (Bean & Nielsen
2010).

For simplicity, define Dk = [yk, yk+1]. In the following lemma, we use the follow-
ing properties of the Lagrange interpolating polynomials defined by the Gauss-Lobatto
quadrature nodes.

Property 1
pkX

s=1

�s
k(x) =

(
1 x 2 Dk,

0 x /2 Dk.

For k 2 K�, let ek
n be a row-vector of length pk with a 1 in the nth position and zeros

elsewhere.

Property 2 At the cell edges, �k(yk) = e
k
1 and �k(yk+1) = e

k
pk
, k 2 K�.

Lemma C.2. If {�r
k(x)}r2{1,...,pk}, are chosen as the Lagrange interpolating polynomials

on Dk, k 2 K�, then the matrix B has zero row-sums.

Proof. First we make numerous algebraic observations. Let 1 and 0 be column vectors of
ones and zeros, respectively, with an appropriate length depending on the context. Using
Property 1, observe that

Mk1 =

 
pkX

s=1

Z

x2Dk

�r
k(x)�

k
s(x) dx

!0

r2{1,...,pk}
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=

 Z

x2Dk

�r
k(x)

pkX

s=1

�k
s(x) dx

!0

r2{1,...,pk}

=

✓Z

x2Dk

�r
k(x) dx

◆0

r2{1,...,pk}

= Pk1,

hence M
�1
k Pk1 = 1. Also,

GkM
�1
k Pk1 = Gk1 =

 
pkX

s=1

Z

x2Dk

�r
k(x)

d

dx
�s
k(x) dx

!0

r2{1,...,pk}

=

 Z

x2Dk

�r
k(x)

d

dx

pkX

s=1

�s
k(x) dx

!0

r2{1,...,pk}

=

 Z

x2Dk

�r
k(x)

d

dx
1 dx

!0

r2{1,...,pk}

= 0,

where we have again used Property 1. Consider ci > 0 and let b and d be arbitrary
row-vectors of length pk and pk+1, respectively. By Property 2, for k 2 K�,

F
kk
i b = ��k(yk+1)

0
�k(yk+1)b

= �(ek
pk
)0ek

pk
b

= �bpk(e
k
pk
)0,

F
k,k+1
i d = �k(yk+1)

0
�k+1(yk+1)d

= (ek
pk
)0ek+1

1 d

= d1(e
k
pk
)0.

Hence, observe that

P
�1
k F

kk
i M

�1
k Pk1 = P

�1
k �k(yk)

01 = �P
�1
k F

k,k+1
i M

�1
k Pk1 = �P

�1
k (ek

pk
)0,

for k = 0, 1, . . . , K � 1. Similarly, for ci < 0,

P
�1
k F

kk
i M

�1
k Pk1 = P

�1
k �k(yk+1)

01 = �P
�1
k F

k,k�1
i M

�1
k Pk1 = �P

�1
k (ek

1)
0,

for k = 1, . . . , K.
Now, with the above observations made, we first claim that, for ci > 0, and k =

0, 1, ..., K � 1,
X

j2S

Bkk
ij 1+Bkk+1

ij 1 =
X

j2S

TijIpk1+ ciP
�1
k (F kk

i +Gk)M
�1
k Pk1+ ciP

�1
k F

k,k+1
i M

�1
k Pk1
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= 0.

The first sum is zero since T is a generator of a continuous-time Markov chain. This
leaves the other two terms, which, using our observations, we get

ciP
�1
k (F kk

i +Gk)M
�1
k Pk1+ ciP

�1
k F

k,k+1
i M

�1
k+1Pk+11

= ciP
�1
k F

kk
i M

�1
k Pk1+ ciP

�1
k GkM

�1
k Pk1+ ciP

�1
k F

k,k+1
i M

�1
k+1Pk+11

= 0.

For ci > 0 and k = K,
X

j2S

BKK
ij 1+BKK+1

ij 1

=
X

j2S

TijIpK1�
X

j2S�

cibpijP�1
K F

KK
i M

�1
K PK1�

X

j2SK+1

cibpijP�1
K �K(0)

01

+ ciP
�1
K (FKK

i +GK)M
�1
K PK1

= �
X

j2S�

cibpijP�1
K F

KK
i M

�1
K PK1

�
X

j2SK+1

cibpijP�1
K F

KK
i M

�1
K PK1+ ciP

�1
K F

KK
i M

�1
K PK1

+ ciP
�1
K GKM

�1
K PK1

= �ciP
�1
K F

KK
i M

�1
K PK1+ ciP

�1
K F

KK
i M

�1
K PK1+ ciP

�1
K GK1

= 0.

Similarly, for ci < 0 and k = 1, ..., K, using the same arguments as before we have
X

j2S

Bkk
ij 1+Bkk�1

ij 1 =
X

j2S

TijIpk1+ ciP
�1
k (F kk

i +Gk)M
�1
k Pk1+ ciP

�1
k F

k,k�1
i M

�1
k Pk1

= 0.

For ci < 0 and k = K,
X

j2S

B00
ij 1+B0�1

ij 1 =
X

j2S

TijIp01�
X

j2S+

ciqpijP�1
0 F

00
i M

�1
0 P01�

X

j2S�1

ciqpijP�1
0 �0(0)

01

+ ciP
�1
0 (F 0,0

i +G0)M
�1
0 P01

= 0.

This just leaves the boundaries. For the lower boundary,

B�1,�11+B�101 = T�1,�11+
⇥
T�1+ ⌦

�
�0(0)M

�1
0 P0

�⇤
1.
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Swapping the order of summation and recalling M
�1
k Pk1 = 1 then this is equal to

T�1,�11+
⇥
T�1+ ⌦

�
�0(0)M

�1
0 P0

�
1
⇤
1 = T�1,�11+

⇥
T�1+ ⌦ e

0
11
⇤
1

= T�1,�11+ [T�1+ ⌦ 1]1

= T�1,�11+ T�1+1

= 0.

For the upper boundary,

BK+1,K+11+BK+1K1 = TK+1,K+11+ [TK+1� ⌦ (�K(b)M
�1
K PK)]1.

Swapping the order of summation and recalling M
�1
k Pk1 = 1 then this is equal to

TK+1,K+11+ [TK+1� ⌦ (�K(b)M
�1
K PK)1]1 = TK+1,K+11+ [TK+1� ⌦ e

K
pK
1]1

= TK+1,K+11+ [TK+1� ⌦ e
K
pK
]1

= TK+1,K+11+ TK+1�1

= 0.

Combining all the above we have shown that the row sums of B are zero.

Corollary C.3. The DG approximation to the generator B conserves probability. That
is, for all t � 0,

X

i2S�1

q�1,i(t) +
X

i2SK+1

qK+1,i(t) +
X

i2S

Z

x2(0,b)

ui(x, t) dx

=
X

i2S�1

q�1,i(0) +
X

i2SK+1

qK+1,i(0) +
X

i2S

Z

x2(0,b)

ui(x, 0) dx.

Proof. Let { r
k(x)}r2{1,...,pk},k2K� , be a basis for span(�r

k(x), r 2 {1, ..., pk}, k 2 K�),
where {�r

k(x)}r2{1,...,pk},k2K� are the Lagrange polynomials. Also define  �1
1 (x) = �(x)

and  K+1
1 (x) = �(x � b) to capture the point masses at the boundaries. Let us use

the same vector notation for the basis  r
k(x) as we do for �r

k(x). For k 2 K�, since
{ r

k(x)}r2{1,...,pk} and {�r
k(x)}r2{1,...,pk} have the same span, then there is a matrix V

k

such that  k(x)0 = V
k
�k(x)0. Trivially, this also holds for k = �1, K + 1.

Let

W =

2

4
I|S�1|

P

I|SK+1|

3

5
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and

V =

2

666664

I|S�1|

V
0

. . .
V

K

I|SK+1|

3

777775
.

For a DG approximation, B, constructed from the basis { r
k}r2{1,...,pk},k2K, it can be shown

that B is similar to B with similarity matrix, V W , such that

Bij = V WBijW
�1
V

�1, i, j 2 S.

Therefore,

Z

x2(0,b)

Bij (x)
0 dx = V WBijW

�1
V

�1

Z

x2(0,b)

V �(x)0 dx

= V WBijW
�1
W1

= V WBij1,

since

Z

x2(0,b)

�(x)0 dx = W1. The row sums of B are 0, hence

Z

x2(0,b)

X

j2S

Bij (x)
0 dx = V W

X

j2S

Bij1 (C.1)

= V W0 (C.2)

= 0. (C.3)

Let  ai(t), i 2 S denote the coe�cients related to the DG approximation constructed
with the basis { r

k}r2{1,...,pk},k2K (to distinguish them from a and ↵ used above). The DE
constructed by the DG method is

d

dt

�
 
aj(t)

�
 (x)0 =

X

i2S

�
 
ai(t)

�
Bij (x)

0.

Integrating over x 2 (0, b) and summing over j 2 S we get

Z

x2(0,b)

X

j2S

d

dt

�
 
aj(t)

�
 (x)0 dx =

Z

x2(0,b)

X

j2S

X

i2S

�
 
ai(t)

�
Bij (x)

0.
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Exchanging the order of operations gives

d

dt

X

j2S

�
 
aj(t)

� Z

x2(0,b)

 (x)0 dx =
X

i2S

�
 
ai(t)

� Z

x2(0,b)

X

j2S

Bij (x)
0 dx = 0, (C.4)

where the right-hand side is 0 due to Equation (C.1). This holds for all t � 0. The
left-hand side of (C.4) is the rate of change (with respect to time) of the total mass of the
system. Since this is 0 for all t � 0, there is no change in the total mass of the system
and thus probability is conserved.



Appendix D

Properties of closing operators

This appendix is dedicated to proving that the closing operators in (4.32)-(4.34) have the
Properties 5.2, which we recall below, for convenience.

Properties 5.2. Let {v(p)(x)}p�1 be a sequence of closing operators such that they may
be decomposed into v

(p)(x) = w
(p)(x) + ew(p)(x), where;

(i) for x 2 [0,�), u, v � 0,

↵
(p)eS

(p)(u+v)(�S
(p))�1 ew(p)(x)  ↵(p)eS

(p)u(�S
(p))�1 ew(p)(x).

(ii) for x 2 [0,�), u � 0,

↵
(p)eS

(p)u(�S
(p))�1 ew(p)(x) = eG(p)

v ! 0, as p ! 1.

(iii) for x 2 [0,�), u � 0,

↵
(p)eS

(p)u(�S
(p))�1

w
(p)(x)  ↵(p)eS

(p)u
eGv,

for some 0  Gv < 1 independent of p for p > p0 where p0 < 1.
(iv) for a 2 A, u � 0,

Z

x2[0,�)

a
(p)eS

(p)u
v
(p)(x) dx  a

(p)eS
(p)u

e.

(v) Let g be a function satisfying the Assumptions 5.1. For u  �� "(p), v 2 [0,�), then
�����

Z
1

x=0

↵
(p)eS

(p)(u+x)

↵(p)eS(p)ue
v
(p)(v)g(x) dx� g(�� u� v)1(u+ v  �� "(p))

����� = |r(p)v (u, v)|,

where Z �

u=0

��r(p)v (u, v)
�� du  R(p)

v,1 ! 0
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and Z �

v=0

��r(p)v (u, v)
�� dv  R(p)

v,2 ! 0

as Var(Z(p)) ! 0.

D.1 The closing operator v(x) = eSxs

For the closing operator v(x) = eSx
s we may set ew(x) = 0, so Properties 5.2(ii)

and 5.2(iii) hold trivially.

Lemma D.1. The closing operator v(x) = eSx
s has Property 5.2(iv).

For any valid orbit, a 2 A, x, u � 0,
Z

1

xn=0

aeS(xn+u)
s = aeS(u)

e.

Proof. For any valid orbit, a 2 A,

aeS(x+u)
e = P(Z > x+ u)  P(Z > u) = aeSu

e.

Corollary D.2. The closing operator v(x) = eSx
s has Property 5.2(v).

For a 2 A, u � 0,

Z �

x=0

aeSu
v(x) dx =

Z �

x=0

aeSueSx
s dx  aeSu

e.

Proof. Z �

x=0

aeSueSx
s dx = aeSu

e� aeS(u+�)
e  aeSu

e,

since 0  aeS(u+�)
e as it is a probability.

Corollary D.3. The closing operator v(x) = eSx
s has Property 5.2(vi).

Let g be a function satisfying the Assumptions 5.1 and consider the closing operator
v(x) = eSx

s. For u  �� ", v � 0,

Z
1

x=0

↵eS(u+x)

↵eSue
v(v)g(x) dx = g(�� u� v)1(u+ v  �� ") + rv(u, v),

where

Rv,1 =

Z ��"

u=0

|rv(u, v)|,
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Rv,2 =

Z �

u=0

|rv(u, v)| du,

and

Rv,1, Rv,2  r2�+ 2"G+�G
Var(Z)/"2

1� Var(Z)/"2
.

Proof. By Corollary 5.12,
Z

1

x=0

↵eS(u+x)

↵eSue
v(v)g(x) dx = g(�� u� v)1(u+ v  �� ") + r3(u+ v),

so rv(u, v) = r3(u+v). All that remains to be shown are the bounds. To this end, observe

Rv,1 =

Z �

u=0

|r3(u+ v)| du


Z ��"

u=0

|r3(u)| du+

Z �+"

u=��"

|r3(u)| du+

Z 2�+"

u=�+"

|r3(u)| du


Z ��"

u=0

|r2| du+

Z �+"

u=��"

G du+

Z 2�+"

u=�+"

G
Var(Z)/"2

1� Var(Z)/"2
du

 |r2|�+ 2"G+�G
Var(Z)/"2

1� Var(Z)/"2
.

Similarly,

Rv,2 =

Z �

v=0

|r3(u+ v)| dv  r2�+ 2"G+�G
Var(Z)/"2

1� Var(Z)/"2
.

D.2 The closing operator bv(x) =
�
eSx + eS(2��x)

�
s

Let bv(x) be the closing operator,

bv(x) =
�
eSx

s+ eS(2��x)
s
�
,

for x 2 [0,�).
For the closing operator bv(x) we may set ew(x) = 0, so Properties 5.2(ii) and 5.2(iii)

hold trivially.

Lemma D.4. The closing operator bv(x) has the Property 5.2(iv).
For x 2 [0,�), u � 0,

aeSu(�S)�1
u(x)  2aeSu

e.
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Proof. Let a 2 A be arbitrary. By definition

aeSu(�S)�1
u(x) = aeSu(�S)�1

�
eSx

s+ eS(2��x)
s
�

= aeSu
�
eSx

e+ eS(2��x)
e
�

since (�S)�1 and eSx commute and s = �Se. Since aeSx
e is decreasing this is less than

or equal to

aeSu (e+ e) = 2aeSu
e. (D.1)

Lemma D.5. The closing operator bv(x) has the property 5.2(v).
For a 2 A, u � 0, Z �

x=0

aeSubv(x) dx  aeSu
e

Proof. Z �

x=0

aeSubv(x) dx = aeSu
e� aeS(u+2�)

e  aeSu
e.

Corollary D.6. The closing operator bv(x) has the Property 5.2(vi).
Let g be a function satisfying the Assumptions 5.1. For u  �� ", v 2 [0,�),

Z
1

x=0

↵eS(u+x)

↵eSue
bv(v)g(x) dx = g(�� u� v)1(u+ v  �� ") + rbv(u, v),

where
|rbv(u, v)|  r3(u+ v) + r3(u+ 2�� v).

Furthermore,

Rbv,1 =

Z �

u=0

|rbv(u, v)| du,

Rbv,2 =

Z �

v=0

|rbv(u, v)| du,

where

Rbv,1, Rbv,2  2

 
�r2 + 2"G+�

Var(Z)/"2

1� Var(Z)/"2

!
.
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Proof. By the definition of the operator bv(x),

Z
1

x=0

↵eS(u+x)

↵eSue
bv(v)g(x) dx =

Z
1

x=0

↵eS(u+x)

↵eSue
eSv

sg(x) +
↵eS(u+x)

↵eSue
eS(2��v)

sg(x) dx. (D.2)

By Corollary 5.12

Z
1

x=0

↵eS(u+x)

↵eSue
eSv

sg(x) dx = g(�� u� v)1(u+ v  �� ") + r3(u+ v), (D.3)

Z
1

x=0

↵eS(u+x)

↵eSue
eS(2��v)

sg(x) dx = r3(u+ 2�� v). (D.4)

Therefore, (D.2) is,

g(�� u� v)1(u+ v  �� ") + r3(u+ v) + r3(u+ 2�� v). (D.5)

Now,

Ru,1 
Z �

u=0

|ru(u, v)| du


Z �

u=0

r3(u+ v) + r3(u+ 2�� v) du


Z 2�

u=0

2r3(u+ v) du

 2

 
�r2 + 2"G+�

Var(Z)/"2

1� Var(Z)/"2

!
.

Similarly,

Ru,2 
Z �

v=0

|ru(u, v)| dv

=

Z �

v=0

r3(u+ v) + r3(u+ 2�� v)

 2

 
�r2 + 2"G+�

Var(Z)/"2

1� Var(Z)/"2

!
.
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D.3 The closing operator v(x)

Let v(x) be the closing operator

v(x) =
�
eSx + eS(2��x)

� ⇥
I � eS2�

⇤�1
s,

for x 2 [0,�). Notice that

av(x) = a
�
eSx + eS(2��x)

� 1X

n=0

eS2n�
s.

We decompose the closing operator v(x) = w(x) + ew(x), where w(x) = bv(x) and

ew(x) =
�
eSx + eS(2��x)

� 1X

n=1

eS2n�
s.

Lemma D.7. The closing operator v(x) has Property 5.2(ii).
For a 2 A, u � 0,

aeS(u+v)(�S)�1
v(x)  aeSu(�S)�1

v(x).

Proof.

aeS(u+v)(�S)�1
v(x) dx =

1X

n=0

aeS(x+u+v+2n�)
e+ aeS(2��x+u+v+2n�)

e


1X

n=0

aeS(x+u+2n�)
e+ aeS(2��x+u+2n�)

e

= aeSu(�S)�1
v(x) dx,

where the inequality holds since aeSx
e is decreasing.

Lemma D.8. The closing operator v(x) has Property 5.2(iii).
For x 2 [0,�), u � 0,

↵eSu(�S)�1 ew(x) 
Var(Z)

�2

⇡2

4
. (D.6)

Proof. The expression on the left-hand side of (D.6) is

↵eSu(�S)�1
�
eSx + eS(2��x)

� 1X

n=1

eS2n�
s
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= ↵eSu
�
eSx + eS(2��x)

� 1X

n=1

eS2n�
e

=
1X

n=1

P(Z > u+ x+ 2n�) + P(Z > u+ 2�� x+ 2n�)

 2
1X

n=1

P(Z > 2n�).

By Chebyshev’s inequality, P(Z > 2n�) 
Var(Z)

�2(1 + 2(n� 1))2
. Therefore,

2
1X

n=1

P(Z > 2n�)  2
Var(Z)

�2

1X

n=0

1

(1 + 2n)2
. (D.7)

Now, consider the sum

1X

n=1

1

n2
=

1X

n=1

1

(2n)2
+

1X

n=0

1

(1 + 2n)2
=

1

4

1X

n=1

1

n2
+

1X

n=0

1

(1 + 2n)2
. (D.8)

The solution to the Basel problem states that
1X

n=1

1/n2 = ⇡2/6. Hence,

⇡2

6
=

1

4

⇡2

6
+

1X

n=0

1

(1 + 2n)2

and therefore
1X

n=0

1

(1 + 2n)2
=
⇡2

8
.

Thus, (D.7) is less than or equal to

Var(Z)

�2

⇡2

4
.

Since w(x) = bv(x) then, from the results of the previous section, v(x) has Prop-
erty 5.2(iv).

Lemma D.9. The closing operator v(x) has Property 5.2(v).
For a 2 A, u � 0, Z �

x=0

aeSu
v(x) dx = aeSu

e.
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Proof.

Z �

x=0

aeSu
v(x) dx = aeSu(S)�1

�
eS� � I + eS2� � eS�

� ⇥
I � eS2�

⇤�1
s

= aeSu(�S)�1
s

= aeSu
e.

Corollary D.10. The closing operator v(x) has Property 5.2(vi).
Let g be a function satisfying the Assumptions 5.1. For u  �� ", v 2 [0,�),

Z
1

x=0

↵eS(u+x)

↵eSue
v(v)g(x) dx = g(�� u� v)1(u+ v  �� ") + rv(u, v),

where

|rv(u, v)|  rbv(u, v) +
G"2⇡2

4�2
.

Furthermore,

Rv,1 =

Z �

u=0

|rv(u, v)| du  Rbv,1 +
G"2⇡2

4�
,

and

Rv,2 =

Z �

v=0

|rv(u, v)| du  Rbv,2 +
G"2⇡2

4�
.

Proof. By the definition of the operator v(v),

Z
1

x=0

↵eS(u+x)

↵eSue
v(v)g(x) dx

=

Z
1

x=0

↵eS(u+x)

↵eSue
bv(v)g(x) dx+

Z
1

x=0

↵eS(u+x)

↵eSue

�
eSv + eS(2��v)

� 1X

n=1

eS2n�
sg(x) dx. (D.9)

By Lemma D.6 the first term is g(��u�v)1(u+v  ��")+rbv(u, v), where |rbv(u, v)| 
r3(u+ v) + r3(u+ 2�� v).

Since g  G, the second term in (D.9) is less than or equal to

G

Z
1

x=0

↵eS(u+x)

↵eSue

�
eSv + eS(2��v)

� 1X

n=1

eS2n�
s dx = G

↵eSu

↵eSue

�
eSv + eS(2��v)

� 1X

n=1

eS2n�
e.
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By similar arguments to those used in the proof of Lemma D.8 we can show that this is
less than or equal to

G

↵eSue

Var(Z)

�2

⇡2

4
.

Now, as u  �� ", then ↵eSu
e � Var(Z)/"2 by Chebyshev’s inequality, hence

G

↵eSue

Var(Z)

�2

⇡2

4


G

Var(Z)/"2
Var(Z)

�2

⇡2

4
=

G"2⇡2

4�2
.

Putting it all together, we have shown

Z
1

x=0

↵eS(u+x)

↵eSue
v(v)g(x) dx = g(�� u� v)1(u+ v  �� ") + rv(u, v) (D.10)

where

|rv(u, v)| 

�����rbv(u, v) +
G"2⇡2

4�2

����� .

Lastly, observe

Rv,1 =

Z �

u=0

|rv(u, v)| du 
Z �

u=0

|rbv(u, v)|+

�����
G"2⇡2

4�2

����� du

= Rbv,1 +
G"2⇡2

4�

and similarly,

Rv,2 =

Z �

v=0

|rv(u, v)| dv  Rbv,2 +
G"2⇡2

4�

where we have used Lemma D.6.
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Appendix E

Convergence without ephemeral
phases

For completeness, we include here results needed to prove a convergence of the QBD-RAP
scheme to the fluid queue without the need for the ephemeral initial states. Note that
we only need to prove convergence up to, and at, the time of the first change of level of
the QBD-RAP, then we can use the results from Chapter 6 to obtain global convergence
results.

For �(0) = k 2 S�0 (or �(0) = k 2 S+0) the added complexity comes from the fact,
upon the phase process first leaving S�0 (S+0), that it is possible the phase transitions
to a state in S+ (S�). Since the orbit of the QBD-RAP is constant on �(t) 2 S�0

(�(t) 2 S+0), then upon a first transition out of S�0 (S+0) and into S+ (S�) the orbit

jumps to a
(p)
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(x0)D(p). For k 2 S�0, m � 0, the corresponding Laplace transform of the
QBD-RAP is
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The Laplace transform of the fluid queue corresponding to (E.1) is

bµ`0m,�0,+(�)( dx, j; x0, k) =
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T0ibµ`0m+1,�,+(�)( dx, j; x0, i), (E.2)
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m � 0.
The second term of (E.1) is a linear combination of bf `0,(p)m+1,�,+(�)(x, j; x0, k) dx which

converges to bµ`0m,�,+(�)( dx, j; x0, i), so there are no issues here. The first term of (E.1)
creates significantly more work. Essentially, we need to derive more bounds, analogous
to the results from Chapter 5, but with the initial vector a`0,i(x0)D.

Analogously, for k 2 S�0, m � 0, we also have
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For k 2 S+0, m � 0, we have
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and
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In general, for q 2 {+,�}, q0 2 {+,�}, m � 0,

bµ`0m,q0,q0(�)( dx, j; x0, k) =
X

r2{+,�}

X
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⇥
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Remark E.1. For technical reasons we should not have point masses at x0 2 y`0 , y`0+1

when �(0) 2 S+0 [ S�0. Intuitively, if �(0) = k 2 S+0 and x0 = y`0 then, upon exiting
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S+0, if the phase process transitions to S� then the fluid queue will instantaneously leave
the interval D`0 upon this transition. On the same event, the orbit of the QBD-RAP will
be ↵(p)

D
(p) at the instant of the transition to S�. Roughly speaking D

(p) maps ↵(p) to

approximately
↵

(p)eS
(p)�

↵(p)eS(p)�e
(asymptotically). Our asymptotic arguments rely on Cheby-

shev’s inequality, in the form of a bound in terms of the distance of the random variable
Z(p) ⇠ ME(↵(p),S(p)) from its mean �. However, we cannot use such a technique to

bound terms such as
↵

(p)eS
(p)�

↵(p)eS(p)�e
eS

(p)z
s
(p).

In practice, it may be possible to avoid this issue by choosing the intervals {D`} so
that the boundaries do not align with any point masses. Another option is to append an
ephemeral class of phases to the fluid queue as previously stated.

Theorem E.2 below is analogous to Theorem 5.8 and proves a certain convergence of
the QBD-RAP scheme to the fluid queue in the case that �(0) 2 S+0[S�0. Like the proof
of Theorem 5.8, the proof of Theorem E.2 relies on technical bounds which we establish
with the remainder of this Appendix.

Theorem E.2. As p ! 1, for (q, r) 2 {(+0,�), (�0,+)}, r 2 {+,�} and m = 0,
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For q 2 {+0,�0}, r 2 {+,�} and m � 1,
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Proof. Cases (q, r) 2 {(+0,�), (�0,+)}, and m = 0. First, take q = �0 and r = +, then
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The second term is a linear combination of
R
x2Dk

bf `0,(p)1,�,+(�)(x, j; x0, i) (x) dx terms, each

of which converge to
R
x2Dk

bµ`0,(p)1,�,+(�)( dx, j; x0, i) (x), by Theorem 5.8. As for the first
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term, it is a linear combination of terms
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Lemma E.3, below, proves that such terms converge to
R
x2Dk

bµ`00,+,+(�)( dx, j; x0, i) (x).
Therefore, (E.5) is a finite linear combination of terms, each of which converge, hence
(E.5) converges and converges to
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which is bµ`00,�0,+(�)( dx, j; x0, k). This proves the result for r = + and q = �0. Analogous
arguments prove the result for r = � and q = +0.

Cases q 2 {+0,�0}, r 2 {+,�} and m � 1. First, take q = +0 and r = +, then
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The second term is a linear combination of
R
x2Dk

bf `0,(p)m+1,�,+(�)(x, j; x0, i) (x) dx terms,

each of which converge to
R
x2Dk

bµ`0,(p)m+1,�,+(�)( dx, j; x0, i) (x). As for the first term, it is
a linear combination of terms
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v
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`0,j

(x) (x) dx2m+1 . . . dx2 dx1 dx,

which satisfies the assumptions of Lemma E.8. To see this take n = 2m + 1, G1(x1) =
eiH

+�(�, x1), G2k(x2k) = H
�+(�, x2k), G2k+1(x2k) = H

+�(�, x2k+1), k = 1, . . . ,m � 1,
G2m(x2m) = H

�+(x2m) and G2m+1 = H
++(�, x2m+1)e0

j in Equation (E.45). By the
remarks following Lemma E.8, this gives the required convergence for this case. Analogous
arguments prove the result for the remaining combinations of (q, r).

E.1 Technical results

As we did in Chapter 5, we treat the cases of m = 0, and m � 1, up-down/down-up
transitions separately. We start with the m = 0 case. The following result is analogous
to Lemma 5.9, though the proof is somewhat more tedious.

Lemma E.3. Let  : D`0 ! R be bounded | (x)|  F and let � > 0. For i 2 S�, j 2
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as p ! 1. Similarly, for i 2 S+, j 2 S+ [ S+0
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Proof. Assume, for simplicity and without loss of generality, that `0 = 0 so D`0 = [0,�].
In the following we choose "(p) = Var(Z(p))1/3 which tends to 0 as p ! 1. Therefore,
assume p is su�ciently large so that x0 2 (2",� � "). Such a p < 1 always exists since
x0 2 (0,�), by assumption.

Now, upon substituting the definition of D and exchanging the order of integration
(justified by the Fubini-Tonelli Theorem), the di↵erence between the left and right-hand
sides of (E.8) is
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254 Appendix E. Convergence without ephemeral phases

We wish to apply Property 5.2(vi) to the integral over x1, however, to do so requires that
u  �� ". Breaking up the integral with respect to u, then (E.10) is equal to
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where

|d1| =
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We show later that |d1| can be made arbitrarily small by choosing Z with su�ciently small
variance. For now, let us focus on the first absolute value in (E.12). By Property 5.2(vi)
and swapping the order of integration (justified by the Fubini-Tonelli Theorem) the first
absolute value in (E.12) is
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We show later that |d2| can be made arbitrarily small by choosing Z with su�ciently
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small variance. The remaining term in (E.13) can be written as
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Intuitively, when the variance of Z is low, we expect a significant contribution to the
integral with respect to u in (E.14) to come from the portion of the integral over the
interval (�� x0 � ",�� x0 + "). Although, the integral with respect to u only contains
this interval when x is su�ciently small. Breaking up the integral with respect to u in
(E.14) into an integral over the interval (� � x0 � ",� � x0 + ") and integrals over the
rest, then applying the triangle inequality, (E.14) is less than or equal to
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We show later that |d3|, |d4| and |d5| can be made arbitrarily small by choosing Z with
su�ciently small variance.

In the first integral with respect to x in (E.15), since x0 2 (2",� � "), then we can
absorb the indicator function into the limits of the integral which results in
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With this, and breaking up the integral over h��

ij , we can write the first absolute value in
(E.15) as
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where

|d6| =
����
Z x0

x=x0�2"

h��

ij (�, x0 � x) (x) dx

���� .

We show later that |d6| can be made arbitrarily small by choosing Z with su�ciently
small variance.

Now, since probability densities integrate to 1, then we can write
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We show later that |d7| can be made arbitrarily small by choosing Z with su�ciently
small variance.

Since h��

ij is Lipschitz and |(��u�x)�(x0�x)|  2" for all u 2 (��x0�",��x0+"),
then the first absolute value of (E.18) is less than or equal to

Z ��x0+"

u=��x0�"

k(x0)e
Su
s du2L"

Z x0�2"

x=0

| (x)| dx. (E.19)

Now,

Z ��x0+"

u=��x0�"

k(x0)e
Su
s du  1 as it is a probability, and

Z x0�2"

x=0

| (x)| dx  F� as

| |  F and x0 2 (2",�� "). Therefore, (E.19) is less than or equal to 2"LF�.
What remains is to bound the terms |d`|, ` = 1, . . . , 7.
Since | |  F then

|d1| 
����
Z

1

u=��"

k(x0)e
Su
s

Z �

x=0

Z
1

x1=0

k(u)eSx1v(x)h��

ij (�, x1) dx1 dx du

����F. (E.20)

From Property 5.2(v), (E.20) is less than or equal to

����
Z

1

u=��"

k(x0)e
Su
s

Z
1

x1=0

k(u)eSx1eh��

ij (�, x1) dx1 du

����F


����
Z

1

u=��"

k(x0)e
Su
s

Z
1

x1=0

k(u)eh��

ij (�, x1) dx1 du

����F

=

����
Z

1

u=��"

k(x0)e
Su
s

Z
1

x1=0

h��

ij (�, x1) dx1 du

����F, (E.21)

since k(u)eSx1e is decreasing in x1 and k(u)e = 1. Now, as h��

ij (�, x1) is integrable withR
1

x1=0 h
��

ij (�, x1) dx1  bG, then (E.21) is less than or equal to

����
Z

1

u=��"

k(x0)e
Su
s du

���� bGF = P(Z > x0 +�� " | Z > x0) bGF
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Var(Z)/"2

1� Var(Z)/"2
bGF,

by Chebyshev’s inequality, since x0 2 (2",�� ").
Since | (x)|  F , then

|d2| 
����
Z �

x=0

Z ��"

u=0

k(x0)e
Su
srv(u, x) du dx

����F (E.22)


����
Z ��"

u=0

k(x0)e
Su
s du

����Rv,2F (E.23)

 Rv,2F, (E.24)

where the first inequality holds from Property 5.2(vi), and the last inequality holds sinceR ��"

u=0 k(x0)eSu
s du = P(Z 2 (x0, x0 +�� ") | Z > x0)  1.

Since | (x)|  F and h��

ij (�,�� u� x)  G, then

|d3| 
Z min(��x0�",��x�")

u=0

k(x0)e
Su
s du�GF (E.25)

 P(Z  �� " | Z > x0) du�GF


Var(Z)/"2

1� Var(Z)/"2
�GF,

where the last inequality holds from Chebyshev’s inequality.
Similarly, since | (x)|  F and h��

ij (�,�� u� x)  G, then

|d4| 
Z x0�2"

x=0

Z ��x�"

u=��x0+"

k(x0)e
Su
s du dxGF

=

Z x0�2"

x=0

P(Z 2 [�+ ",�� x� "+ x0] | Z > x0) dxGF


Z x0�2"

x=0

P(Z 2 [�+ ",�� "+ x0] | Z > x0) dxGF

 P(Z 2 [�+ ",�� "+ x0] | Z > x0)�GF


Var(Z)/"2

1� Var(Z)/"2
�GF.

Since | (x)|  F and h��

ij (�,�� u� x)  G, then

|d5| 
Z ��"

x=0

Z ��x�"

u=��x0�"

k(x0)e
Su
s du1(x 2 [x0 � 2", x0)) dxGF (E.26)
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Z ��"

x=0

1(x 2 [x0 � 2", x0)) dxGF

= 2"GF,

where the second inequality holds since
R ��x�"

u=��x0�"
k(x0)eSu

s du  1.

Since | (x)|  F and h��

ij (�,�� u� x)  G, then

|d6| 
Z x0

x=x0�2"

dxGF

= 2"GF. (E.27)

Since | (x)|  F and h��

ij (�,�� u� x)  G then

|d7|  P(|Z ��| > " | Z > x0)�GF (E.28)


Var(Z)/"2

1� Var(Z)/"2
�GF (E.29)

Convergence follows after setting "(p) = Var(Z(p))1/3 and observing that all the bounds
|d1|, . . . , |d7| tend to 0, as does the bound on (E.19), given by 2"(p)LF�, as p ! 1.

Now we show bounds for certain Laplace transform expressions which arise when the
QBD-RAP starts in phases in S+0 [S�0 and there is more than one up-down or down-up
transition before the first change of level. These expressions have the form

Z
1

x1=0

g1(x1)k(x0)DeSx1 dx1D

"
k�1Y

n=2

Z
1

xn=0

gn(xn)e
Sxn dxnD

#Z
1

xn=0

gn(xn)e
Sxn dxnv(x).

(E.30)

Here, we ultimately wish to show that (E.30) converges to g⇤1,n(�� x0, x). We do not do
this directly, instead, we show that (E.30) is ‘close’ to wn(� � x0, x), then rely on the
results from Chapter 5 to get the desired convergence.

Observe that by substituting the first matrix D in the expression above for its integral
expression, then (E.30) is equal to

Z
1

x1=0

g1(x1)k(x0)

Z
1

z0=0

eSz0s
↵eSz0

↵eSz0e
dz0e

Sx1 dx1D

"
k�1Y

n=2

Z
1

xn=0

gn(xn)e
Sxn dxnD

#
(E.31)

⇥
Z

1

xn=0

gn(xn)e
Sxn dxnv(x)

= k(x0)

Z
1

z0=0

eSz0swn(z0, x) dz0. (E.32)
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Intuitively, when the variance of Z is low, we expect that the integral in (E.32) above
will be approximately equal to wn(� � x0, x). Indeed, we proved in Lemma 5.11 that
this is the case for functions g satisfying the Assumptions 5.1. However, here we do not
immediately have that wn(x0, x) is Lipschitz in x0, which we would need for it to satisfy
Assumptions 5.1. Instead, we can show a Lipschitz-like condition in x0 for wn(x0, x),
which su�ces.

For later use, observe that

g⇤2,n(u1, x) =

Z ��u1

u2=0

g2(�� u2 � u1) du1 . . .

Z ��un�2

un�1=0

gn�1(�� un�1 � un�2) dun�2

gn(�� x� un�1)1(�� x� un�1 � 0) dun�1

 Gn�1

Z ��u1

u2=0

du1 . . .

Z ��un�2

un�1=0

dun�1

 Gn�1�n�2 = G⇤

n. (E.33)

Corollary E.4. For x0, x 2 [0,�), n � 2,

|wn(x0, x)� wn(z0, x)|  2|r5(n)|+ 2|r6(n)|+ 2(n� 1)|r4(n)|+ |x0 � z0|G⇤

n(G+ L�).
(E.34)

Proof. Assume, without loss of generality x0 < z0. By adding and subtracting bothZ ��x0

u1=0

g1(� � u1 � x0)g
⇤

2,n(u1, x) du1 and

Z ��z0

u1=0

g1(� � u1 � z0)g
⇤

2,n(u1, x) du1, we can

write the left-hand side of (E.34) as

�����wn(x0, x)�
Z ��x0

u1=0

g1(�� u1 � x0)g
⇤

2,n(u1, x) du1

� wn(z0, x) +

Z ��z0

u1=0

g1(�� u1 � z0)g
⇤

2,n(u1, x) du1

+

Z ��x0

u1=0

g1(�� u1 � x0)g
⇤

2,n(u1, x) du1 �
Z ��z0

u1=0

g1(�� u1 � z0)g
⇤

2,n(u1, x) du1

�����

which, by the triangle inequality, is less than or equal to

�����wn(x0, x)�
Z ��x0

u1=0

g1(�� u1 � x0)g
⇤

2,n(u1, x) du1

�����

+

�����wn(z0, x)�
Z ��z0

u1=0

g1(�� u1 � z0)g
⇤

2,n(u1, x) du1

�����
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+

�����

Z ��x0

u1=0

g1(�� u1 � x0)g
⇤

2,n(u1, x) du1 �
Z ��z0

u1=0

g1(�� u1 � z0)g
⇤

2,n(u1, x) du1

�����.

(E.35)

By Corollary 5.14, the first two terms of (E.35) are less than or equal to

|r5(n)|+ |r6(n)|+ (n� 1)|r4(n)|.

As for the last term, adding and subtracting
R ��z0
u1=0 g1(�� u1 � x0)g⇤2,n(u1, x) du1 gives

=

�����

Z ��x0

u1=0

g1(�� u1 � x0)g
⇤

2,n(u1, x) du1 �
Z ��z0

u1=0

g1(�� u1 � x0)g
⇤

2,n(u1, x) du1

�
Z ��z0

u1=0

(g1(�� u1 � z0)� g1(�� u1 � x0))g
⇤

2,n(u1, x) du1

�����



�����

Z ��x0

u1=��z0

g1(�� u1 � x0)g
⇤

2,n(u1, x) du1

�����

+

Z ��z0

u1=0

|g1(�� u1 � z0)� g1(�� u1 � x0)|g⇤2,n(u1, x) du1

 GG⇤

n|x0 � z0|+
Z ��z0

u1=0

L|x0 � z0|G⇤

n du1, (E.36)

since g1 is Lipschitz by Assumption 5.1(iv), and g⇤2,n  G⇤

n. Bounding the integral over
u1 by �, then (E.36) is less than or equal to

GG⇤

n|x0 � z0|+�L|x0 � z0|G⇤

n. (E.37)

Corollary E.5. Let g1, g2, . . . , be functions satisfying Assumptions 5.1 and let v(x),
x 2 [0,�), be a closing operator with Properties 5.2. For x0, x 2 [0,�), n � 2,

����k(x0)

Z
1

z0=0

eSz0swn(z0, x) dz0 � wn(�� x0, x)

���� = r8(n),

where

|r8(n)|  (2|r5(n)|+ 2|r6(n)|+ 2(n� 1)|r4(n)|+ "G⇤

n(G+ L�))

+ 2 bGn�2GGv

Var(Z)/"2

1� Var(Z)/(�� x0)2
.
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Proof. Consider
����k(x0)

Z
1

z0=0

eSz0swn(z0, x) dz0 � wn(�� x0, x)

����

=

����k(x0)

Z
1

z0=0

eSz0s(wn(z0, x)� wn(�� x0, x)) dz0

����

 k(x0)

Z
1

z0=0

eSz0s |wn(z0, x)� wn(�� x0, x)| dz0

= k(x0)

Z ��"�x0

z0=0

eSz0s |wn(z0, x)� wn(�� x0, x)| dz0

+ k(x0)

Z
1

z0=�+"�x0

eSz0s |wn(z0, x)� wn(�� x0, x)| dz0

+ k(x0)

Z �+"�x0

z0=��"�x0

eSz0s |wn(z0, x)� wn(�� x0, x)| dz0. (E.38)

Using Equations (5.57), (5.65) and (5.78) we can claim

|wn(x0, x)| 
1

↵eSx0e
G2 bGn�2

Z
1

uk=0

↵eSuke dukGv +
1

↵eSx0e
G bGn eGv

=
1

↵eSx0e
G2 bGn�2Gv +

1

↵eSx0e
G bGn eGv

=: Wn. (E.39)

Therefore, the sum of the first two terms in (E.38) is less than or equal to

2Wn

✓Z ��"�x0

z0=0

k(x0)e
Sz0s dz0 +

Z
1

z0=�+"�x0

k(x0)e
Sz0s dz0

◆

= 2W
P(|Z ��| > ")

P(Z > x0)

 2Wn

Var(Z)/"2

1� Var(Z)/(�� x0)2
(E.40)

by Chebyshev’s inequality. As for the last term in (E.38), we can use Corollary E.4 to
bound the integrand so that the last term is less than or equal to

k(x0)

Z �+"�x0

z0=��"�x0

eSz0s
�
2|r5(n)|+ 2|r6(n)|+ 2(n� 1)|r4(n)|+ "Gn�1�n�2(G+ L�)

�
dz0


�
2|r5(n)|+ 2|r6(n)|+ 2(n� 1)|r4(n)|+ "Gn�1�n�2(G+ L�)

�
, (E.41)

since k(x0)

Z �+"�x0

z0=��"�x0

eSz0s dz0  1. Thus, (E.38) is bounded by (E.41).
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Corollary E.6. Let g1, g2, . . . , be functions satisfying Assumptions 5.1 and let v(x),
x 2 (0,�), be a closing operator with Properties 5.2. For x0, x 2 (0,�), n � 2

����k(x0)

Z
1

z0=0

eSz0swn(z0, x) dz0 � g⇤1,n(�� x0, x)

����

 |r8(n)|+ |r5(n)|+ |r6(n)|+ (n� 1)|r4(n)|. (E.42)

Proof. Adding and subtracting wn(�� x0, x) within the absolute value on the left-hand
side of (E.42)
����k(x0)

Z
1

z0=0

eSz0swn(z0, x) dz0 � wn(�� x0, x) + wn(�� x0, x)� g⇤1,n(�� x0, x)

����


����k(x0)

Z
1

z0=0

eSz0swn(z0, x) dz0 � wn(�� x0, x)

����+
��wn(�� x0, x)� g⇤1,n(�� x0, x)

��

where the first absolute value is less than or equal to |r8(n)| by Corollary E.5 and the
second absolute value is less than or equal to |r5(n)| + |r6(n)| + (n � 1)|r4(n)| by Corol-
lary 5.14.

Corollary E.7. Let  be bounded and Lipschitz, let g1, g2, . . . , be functions satisfying
Assumptions 5.1 and let v(x), x 2 (0,�), be a closing operator with Properties 5.2. For
x0, x 2 (0,�), n � 2

����
Z

x2[0,�)

k(x0)

Z
1

z0=0

eSz0swn(z0, x) dz0 (x) dx�
Z

x2[0,�)

g⇤1,n(�� x0, x) (x) dx

����

 (|r8(n)|+ |r5(n)|+ |r6(n)|+ (n� 1)|r4(n)|)F�. (E.43)

Proof. The left-hand side of (E.43) is less than or equal to
Z

x2[0,�)

����k(x0)

Z
1

z0=0

eSz0swn(z0, x) dz0 � g⇤1,n(�� x0, x)

���� | (x)| dx. (E.44)

Now, using | (x)|  F and Corollary E.6 then (E.44) is less than or equal to

(|r8(n)|+ |r5(n)|+ |r6(n)|+ (n� 1)|r4(n)|)�F.

We now extend the previous results to the matrix case.

Lemma E.8. Let Gk(x), k 2 {1, 2, ...}, be matrix functions with dimensions Nk ⇥Nk+1.
Further, suppose the scalar functions [Gk(x)]ij, k 2 {1, 2, ...} satisfy Assumptions 5.1.
Then,

�����

Z

x2[0,�)

Z
1

x1=0

G1(x1)⌦ k(x0)DeSx1 dx1D

"
n�1Y

k=2

Z
1

xk=0

Gk(xk)⌦ eSxk dxkD

#



264 Appendix E. Convergence without ephemeral phases

⇥
Z

1

xn=0

Gn(xn)⌦ eSxn dxnv(x) (x) dx

�
Z

x2[0,�)

Z x0

u1=0

G1(x0 � u1)

"
n�1Y

k=2

Z ��uk�1

uk=0

Gk(�� uk � uk�1) duk�1

#

Gn(�� x� un�1)⇥ 1(�� x� un�1 � 0) dun�1 (x) dx

�����

 (|r8(n)|+ |r5(n)|+ |r6(n)|+ (n� 1)|r4(n)|)F�
nY

k=2

Nk. (E.45)

Moreover, choosing " = Var(Z), then, for fixed n, the bound is O(Var(Z)1/3).

Proof. The proof is the same as the proof of Lemma 5.16, with Corollary E.7 replacing
Corollary 5.15.

Lemma E.8 e↵ectively shows that, as p ! 1, then

Z

x2[0,�)

Z
1

x1=0

G1(x1)⌦ k
(p)(x0)D

(p)eS
(p)x1 dx1D

(p)

"
n�1Y

k=2

Z
1

xk=0

Gk(xk)⌦ eS
(p)xk dxkD

(p)

#

⇥
Z

1

xn=0

Gn(xn)⌦ eS
(p)xn dxnv

(p)(x) (x) dx

!
Z

x2[0,�)

Z x0

u1=0

G1(x0 � u1)

"
n�1Y

k=2

Z ��uk�1

uk=0

Gk(�� uk � uk�1) duk�1

#

Gn(�� x� un�1)⇥ 1(�� x� un�1 � 0) dun�1 (x) dx.

The technical results in this section are enough to prove Theorem E.2.

E.1.1 More results

We are not quite done yet. If we want to use Theorem E.2 to prove convergence before
the first orbit restart epoch, we need a domination condition like that in Lemma 5.17.

Lemma E.9. For all M � 0, x 2 D`0,j, x0 2 D`0,i, `0 2 K, � > 0, q 2 {+0,�0},
r 2 {+,�}, i 2 Sq, j 2 Sr [ Sr0, and for any bounded function  , | | < F ,

1X

m=M+1

�����

Z

x2D`0

bf `0,(p)m,q,r (�)(x, j; x0, i) (x) dx�
Z

x2D`0

bµ`0m,q,r(�)( dx, j; x0, i) (x)

�����  rM6

(E.46)
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where

rM6 = F (G�+ bG)

✓
�

� + �

◆2M+2
 
1�

✓
�

� + �

◆2
!�1

.

Proof. The proof follows the same arguments as the proof for the case q = 0, i 2 S⇤

0 in
the proof of Lemma 5.17.

The last thing we need to prove is convergence at the first change of level. Since the
result in Corollary E.6 is pointwise in x, choosing the closing operator as eSx

s and setting
x = 0, then we get convergence at the first change of level, on the event that are m > 0
up-down or down-up transitions. The only things that remain are to show convergence at
the first change of level on the event that there is no up-down or down-up transitions, and
a domination condition so that we may sum over the number of up-down and down-up
transitions ad prove convergence at the time of the first orbit restart epoch (analogous to
the domination condition in the proof of Lemma 5.20). Regarding the former, we have
the following lemma.

Lemma E.10. Let g satisfy the Assumptions 5.1 and x0 2 (2",�� "). Then

����
Z

1

x=0

k(x0)DeSxg(x)s dx� g(x0)

���� 
Var(Z)/"2

1� Var(Z)/(�� x0)2
4G+ 3L"+ 6G

Var(Z)

"2
.

(E.47)

Proof. First rewrite the left-hand side as
����
Z

1

x=0

k(x0)DeSx(g(x)� g(x0))s dx

���� 
Z

1

x=0

k(x0)DeSx|g(x)� g(x0)|s dx. (E.48)

Substituting in the expression for D gives,

Z
1

x=0

k(x0)

Z
1

u=0

eSu
s
↵eSu

↵eSue
dueSx|g(x)� g(x0)|s dx

=

Z
1

x=0

k(x0)

Z ��"

u=0

eSu
s
↵eSu

↵eSue
dueSx|g(x)� g(x0)|s dx

+

Z
1

x=0

k(x0)

Z
1

u=��"

eSu
s
↵eSu

↵eSue
dueSx|g(x)� g(x0)|s dx. (E.49)

Since g is bounded, the second term is less than or equal to

Z
1

x=0

k(x0)

Z
1

u=��"

eSu
s
↵eSu

↵eSue
dueSx

s dx2G = k(x0)

Z
1

u=��"

eSu
s
↵eSu

↵eSue
due2G
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= k(x0)

Z
1

u=��"

eSu
s du2G

=
P(Z � x0 +�� ")

P(Z > x0)
2G. (E.50)

For x0 2 (2",�� "), then (E.50) is less than or equal to

Var(Z)/"2

1� Var(Z)/(�� x0)2
2G.

As for the first term in (E.49), it can be written as

Z
1

x=0

k(x0)

Z u=��x0+"

u=��x0�"

eSu
s
↵eSu

↵eSue
dueSx|g(x)� g(x0)|s dx

+

Z
1

x=0

k(x0)

Z ��x0�"

u=0

eSu
s
↵eSu

↵eSue
dueSx|g(x)� g(x0)|s dx

+

Z
1

x=0

k(x0)

Z ��"

u=��x0+"

eSu
s
↵eSu

↵eSue
dueSx|g(x)� g(x0)|s dx. (E.51)

Since g is bounded, then the last two terms in (E.51) are

2G

 Z
1

x=0

k(x0)

Z ��x0�"

u=0

eSu
s
↵eSu

↵eSue
dueSx

s dx

+

Z
1

x=0

k(x0)

Z ��"

u=��x0+"

eSu
s
↵eSu

↵eSue
dueSx

s dx

!

= 2G

 
k(x0)

Z ��x0�"

u=0

eSu
s
↵eSu

↵eSue
e du+ k(x0)

Z ��"

u=��x0+"

eSu
s
↵eSu

↵eSue
e du

!

= 2G
P(Z > x0, Z /2 (�� ",�+ "))

P(Z > x0)

 2G
Var(Z)/"2

1� Var(Z)/(�� x0)2
. (E.52)

Exchanging the order of integration for the first term in (E.51) (justified by the Fubini-
Tonelli Theorem)

Z u=��x0+"

u=��x0�"

k(x0)e
Su
s

Z
1

x=0

↵eSu

↵eSue
eSx|g(x)� g(x0)|s dx du, (E.53)
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from which we see that we can apply Corollary 5.12 with v = 0 to the integral over x,
implying that (E.53) is less than or equal to

Z u=��x0+"

u=��x0�"

k(x0)e
Su
s (|g(�� u)� g(x0)|+ r3(u)) du. (E.54)

Noting that sup |r3(u)|  |r2| for u  � � ", and since g is Lipschitz, then (E.54) is less
than or equal to

Z u=��x0+"

u=��x0�"

k(x0)e
Su
s (L"+ |r2|) du  L"+ |r2|. (E.55)

Putting all the bounds together proves the result.

We conclude this appendix but stating the convergence results formally.

Lemma E.11. For all x 2 D`0,j, x0 2 D`0,i, i 2 S0+[S0� , j 2 S, `0 2 K, � > 0,
�����

Z

x2D`0

bf `0,(p)(�)(x, j; x0, i) (x) dx�
Z

x2D`0

bµ`0(�)( dx, j; x0, i) (x)

����� ! 0 (E.56)

as p ! 1.

Proof. The convergence in Theorem E.2, the domination condition in Lemma E.9, and
the Dominated Convergence Theorem can be used to obtain the result.

Corollary E.12. Recall y(p)
0 = (`0,a

(p)
`0,j

(x0), i). For `0 2 K x0 2 D`0,i, i 2 S+0 [ S0�,
j 2 S+ [ S�,

P(L(p)(⌧ (p)1 ) = `(`0, j),�
(p)(⌧ (p)1 ) = j, ⌧ (p)1  E� | Y (p)(0) = y

(p)
0 )

! P(X(⌧X1 ) = (y`(`0,j)+1(j2S�), j), ⌧
X
1  E� | X(0) = (x0, i)) (E.57)

where `(`0, j) can take values

`(`0, j) =

8
><

>:

`0 � 1, if `0 2 {0, 1, . . . , K + 1}, j 2 S�

`0, if `0 = 0, j 2 S+, or `0 = K, j 2 S�,

`0 + 1, if `0 2 {�1, 0, 1, . . . , K}, j 2 S+.

Proof. An analogue of the domination condition required in the proof of Lemma 5.20 can
be established by extending Lemma E.9 in the same way we extended Lemma 5.17 in the
proof of Lemma 5.20.

With the aforementioned domination condition, the point-wise convergence in Corol-
lary E.6, the convergence in Lemma E.10, and the Dominated Convergence Theorem we
can prove the result.
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Appendix F

Algebraic manipulations of certain
Kronecker products

Lemma F.1 (Latouche & Nguyen (2015)). Let B be the block-partitioned matrix

B =


B11 B12

B21 B22

�

where B11 and B22 are matrices of order m1 and m2, respectively. Denote by H11(t) the
top-left quadrant of order m1 of eBt:

H11(t) =
⇥
Im1⇥m1 0

⇤
eBt


Im1⇥m1

0

�
.

The matrix H11(t) is the solution of

H11(t) = eB11t +

Z t

v=0

Z t

u=v

eB11(t�u)
B12e

B22(u�v)
B21H11(v) du dv. (F.1)

Proof. See Latouche & Nguyen (2015).

Let H12(t) be the top-right quadrant of eBt of size m1 ⇥m2, i.e.

H12(t) =
⇥
Im1⇥m1 0

⇤
eBt


0

Im2⇥m2

�
. (F.2)

Denote by cH11(�) =

Z
1

t=0

e��tH11(t) dt and by cH12(�) =

Z
1

t=0

e��tH12(t) dt, the Laplace

transforms of H11(t) and H12(t), respectively. Using Lemma F.1 we can show the follow-
ing result.
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Lemma F.2. Assuming � > 0 and �I �B22 is invertible, then

cH11(�) =

Z
1

x=0

e(B11��Im1⇥m1+B12(�Im2⇥m2�B22)�1B21)x dx, (F.3)

cH12(�) =

Z
1

x=0

e(B11��Im1⇥m1+B12(�Im2⇥m2�B22)�1B21)x
B12(�Im2⇥m2 �B22)

�1 dx. (F.4)

Proof. First we show the result for cH11(�). Taking the Laplace transform of (F.1) shows

that cH11(�) is equal to

Z
1

t=0

Z t

v=0

Z t

u=v

e��(t�u)eB11(t�u)
B12e

��(u�v)eB22(u�v)
B21e

��v
H11(v) du dv

+ (�Im1⇥m1 �B11)
�1

= (�Im1⇥m1 �B11)
�1 + (�Im1⇥m1 �B11)

�1
B12(�Im2⇥m2 �B22)

�1
B21

cH11(�), (F.5)

by the convolution theorem for Laplace transforms. This implies
⇥
Im1⇥m1 � (�Im1⇥m1 �B11)

�1
B12(�Im2⇥m2 �B22)

�1
B21

⇤ cH11(�)

= (�Im1⇥m1 �B11)
�1,

and therefore

cH11(�)

=
⇥
Im1⇥m1 � (�Im1⇥m1 �B11)

�1
B12(�Im2⇥m2 �B22)

�1
B21

⇤�1
(�Im1⇥m1 �B11)

�1

=
⇥
(�Im1⇥m1 �B11)

�
Im1⇥m1 � (�Im1⇥m1 �B11)

�1
B12(�Im2⇥m2 �B22)

�1
B21

�⇤�1

=
⇥
�Im1⇥m1 �B11 �B12(�Im2⇥m2 �B22)

�1
B21

⇤�1

=

Z
1

t=0

e(B11��Im1⇥m1+B12(�Im2⇥m2�B22)�1B21)t dt,

which is (F.3).
Now, to show (F.4), di↵erentiate (F.2)

d

dt
H12(t) =

⇥
Im1⇥m1 0

⇤
eBt


B11 B12

B21 B22

� 
0

Im2⇥m2

�

=
⇥
Im1⇥m1 0

⇤
eBt


B12

B22

�

= H11(t)B12 +H12(t)B22. (F.6)

Now take the Laplace transform

�cH12(�)�H12(0) = cH11(�)B12 + cH12(�)B22. (F.7)
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Since H12(0) = 0 and after rearranging we get

cH12(�) = cH11(�)B12(�Im2⇥m2 �B22)
�1, (F.8)

which gives (F.4) upon substituting (F.3).

Now, recall the matrix-functions

Q++(�) = C
�1
+

�
T++ � �I + T+0 [�I � T00]

�1
T0+

�
,

Q+�(�) = C
�1
+

�
T+� + T+0 [�I � T00]

�1
T0�

�
,

Q��(�) = C
�1
�

�
T�� � �I + T�0 [�I � T00]

�1
T0�

�
,

Q�+(�) = C
�1
�

�
T�+ + T�0 [�I � T00]

�1
T0+

�
,

from Chapter 5.

Corollary F.3. For m 2 {+,�} the top-left quadrant of size m1 ⇥m1 = |Sm|p ⇥ |Sm|p
of eBmmt,

⇥
I|Sm|p⇥|Sm|p 0|Sm|p⇥|S0|p

⇤ Z 1

t=0

e��t exp

⇢
Tmm ⌦ I +Cm ⌦ S Tm0 ⌦ I

T0m ⌦ I T00 ⌦ I

�
t

�
dt (F.9)

⇥

I|Sm|p⇥|Sm|p

0|S0|p⇥|Sm|p

�
,

is given by
Z

1

x=0

eQmm(�)x ⌦ eSx dx(C�1
m ⌦ I). (F.10)

For m 2 {+,�} the top-right quadrant of size m1 ⇥m2 = |Sm|p⇥ |S0|p of eBmmt,

⇥
I|Sm|p⇥|Sm|p 0|Sm|p⇥|S0|p

⇤ Z 1

t=0

e��t exp

⇢
Tmm ⌦ I +Cm ⌦ S Tm0 ⌦ I

T0m ⌦ I T00 ⌦ I

�
t

�
dt

(F.11)

⇥

0|Sm|p⇥|Sm|p

I|S0|p⇥|S0|p

�
,

is given by
Z

1

x=0

eQmm(�)x ⌦ eSx dx((C�1
m Tm0(�I � T00)

�1)⌦ I). (F.12)

Also,

⇥
I|Sm|p⇥|Sm|p 0|Sm|p⇥|S0|p

⇤ Z 1

t=0

e��teBmmt dtBmn (F.13)
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=

Z
1

x=0

H
mn(�, x)⌦ eSx

D dx
�⇥
I|Sn|p 0|Sn|p⇥|S0|p

⇤�
, (F.14)

for m,n 2 {+,�}, m 6= n.

Proof. From Lemma F.1 the top-left quadrant of size m1 ⇥ m1 = |Sm|p ⇥ |Sm|p of the
integral with respect to t on the left-hand side of (F.10) is

Z
1

t=0

e(Tmm⌦I+Cm⌦S��I+(Tm0⌦I)(�I�T00⌦I)�1(T0m⌦I))t dt. (F.15)

By Lemma A.2, (F.15) is equal to
Z

1

x=0

eC
�1
m (Tmm��I+Tm0(�I�T00)�1T0m)x ⌦ eSx dx(Cm ⌦ I)�1

=

Z
1

x=0

eQmm(�)x ⌦ eSx dx(Cm ⌦ I)�1, (F.16)

from the definition of Qmm(�). This proves (F.10).
Now, from Lemma F.1 the top-right quadrant of size m1 ⇥m2 = |Sm|p⇥ |S0|p of the

integral with respect to t on the left-hand side of (F.12) is
Z

1

t=0

e(Tmm⌦I+Cm⌦S��I+(Tm0⌦I)(�I�T00⌦I)�1(T0m⌦I))t(Tm0 ⌦ I)(�I � T00 ⌦ I)�1

⇥ (T0m ⌦ I) dt. (F.17)

By Lemma A.2, (F.17) is equal to
Z

1

x=0

eQmm(�)x ⌦ eSx dx(Cm ⌦ I)�1(Tm0 ⌦ I)(�I � T00 ⌦ I)�1(T0m ⌦ I). (F.18)

Now,

(�I � T00 ⌦ I)�1 =

Z
1

u=0

e�(�I�T00⌦I)u du

=

Z
1

u=0

e��ue(T00⌦I)u du

=

Z
1

u=0

e��ueT00u ⌦ I du,

by (??). Using this and the Mixed Product Rule we can write

(Cm ⌦ I)�1(Tm0 ⌦ I)(�I � T00 ⌦ I)�1(T0m ⌦ I)

= (C�1
m ⌦ I)(Tm0 ⌦ I)

Z
1

u=0

e��ueT00u ⌦ I du(T0m ⌦ I)
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=
�
C

�1
m Tm0(�I � T00u)

�1
T0m

�
⌦ I). (F.19)

Substituting (F.19) into (F.18) completes the proof of (F.12).
Now, using (F.10) and (F.12) we can write

⇥
I|Sm|p⇥|Sm|p 0|Sm|p⇥|S0|p

⇤ Z 1

t=0

e��teBmmt dtBmn

=
⇥
I|Sm|p⇥|Sm|p 0|Sm|p⇥|S0|p

⇤ Z 1

t=0

e��teBmmt dt


Tmn ⌦D 0
T0n ⌦D 0

�

=

Z
1

x=0

eQmm(�)x ⌦ eSx dx(C�1
m (Tmn + Tm0(�I � T00)

�1
T0n)

⇥
I|Sn|⇥|Sn| 0|Sn|⇥|S0|

⇤
⌦D)

=

Z
1

x=0

eQmm(�)x ⌦ eSx dx
��
Qmn(�)

⇥
I|Sn| 0|Sn|⇥|S0|

⇤�
⌦D

�

=

Z
1

x=0

�
H

mn(�, x)
⇥
I|Sn| 0|Sn|⇥|S0|

⇤�
⌦ eSx

D dx,

=

Z
1

x=0

H
mn(�, x)⌦ eSx

D dx,
⇥
I|Sm|p⇥|Sn|p 0|Sn|p⇥|S0|p

⇤
, (F.20)

for m,n 2 {+,�}, m 6= n which is (F.14), where the last line holds from the Mixed
Product Rule.
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