
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Matiullah Khan,
AIMST University, Malaysia

REVIEWED BY

Sara Pedron,
University of Illinois at Urbana-
Champaign, United States
Demitrios Vynios,
University of Patras, Greece

*CORRESPONDENCE

Lisa M. Butler
Lisa.butler@adelaide.edu.au
Margaret M. Centenera
Margaret.centenera@adelaide.edu.au

SPECIALTY SECTION

This article was submitted to
Cancer Molecular Targets
and Therapeutics,
a section of the journal
Frontiers in Oncology

RECEIVED 30 June 2022
ACCEPTED 18 July 2022

PUBLISHED 10 August 2022

CITATION

Hinneh JA, Gillis JL, Moore NL,
Butler LM and Centenera MM (2022)
The role of RHAMM in
cancer: Exposing novel
therapeutic vulnerabilities.
Front. Oncol. 12:982231.
doi: 10.3389/fonc.2022.982231

COPYRIGHT

© 2022 Hinneh, Gillis, Moore, Butler and
Centenera. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 10 August 2022

DOI 10.3389/fonc.2022.982231
The role of RHAMM in
cancer: Exposing novel
therapeutic vulnerabilities

Josephine A. Hinneh1,2,3,4, Joanna L. Gillis1,3, Nicole L. Moore1,3,
Lisa M. Butler1,2,3* and Margaret M. Centenera1,2,3*

1South Australian Immunogenomics Cancer Institute and Adelaide Medical School, Adelaide,
SA, Australia, 2Freemason’s Centre for Male Health and Wellbeing, The University of Adelaide,
Adelaide, SA, Australia, 3Precision Cancer Medicine, South Australian Health and Medical Research
Institute, Adelaide, SA, Australia, 4Nagoya University Graduate School of Medicine, Nagoya, Japan
Receptor for hyaluronic acid-mediated motility (RHAMM) is a cell surface

receptor for hyaluronic acid that is critical for cell migration and a cell cycle

protein involved in microtubule assembly and stability. These functions of

RHAMM are required for cellular stress responses and cell cycle progression

but are also exploited by tumor cells for malignant progression and metastasis.

RHAMM is often overexpressed in tumors and is an independent adverse

prognostic factor for a number of cancers such as breast and prostate.

Interestingly, pharmacological or genetic inhibition of RHAMM in vitro and in

vivo ablates tumor invasiveness and metastatic spread, implicating RHAMM as a

potential therapeutic target to restrict tumor growth and improve patient

survival. However, RHAMM’s pro-tumor activity is dependent on its

subcellular distribution, which complicates the design of RHAMM-directed

therapies. An alternative approach is to identify downstream signaling

pathways that mediate RHAMM-promoted tumor aggressiveness. Herein, we

discuss the pro-tumoral roles of RHAMM and elucidate the corresponding

regulators and signaling pathways mediating RHAMM downstream events, with

a specific focus on strategies to target the RHAMM signaling network in

cancer cells.

KEYWORDS
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Introduction

The development and progression of cancer is characterized by a number of

hallmarks that include uncontrolled cellular proliferation and aberrant activation of

the host tumor microenvironment (TME) (1). Cell proliferation is normally driven and

regulated by the cell cycle machinery, and is essential for cell growth, DNA replication

and cell division. However, this activity is usurped by tumor cells for uncontrolled
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replicative capacity and metastatic spread (2). In fact, genetic or

pharmacological manipulation of proteins required for cell cycle

progression is currently providing clinically-approved

therapeutic targets to limit tumor growth (2, 3). The TME,

comprising cellular (stroma, fibroblasts, endothelial cells and

infiltrating immune cells) and non-cellular (extracellular matrix)

components, is an important determinant of tumor fate and

metastatic progression (4, 5). Multiple experimental and clinical

studies have indicated that cancer cells control TME factors to

facilitate disease progression, aggressiveness and drug resistance

(4, 5). Of note, inhibition of components of the TME, typified by

the success of anti-PDL1 immunotherapies, has become relevant

for the treatment of cancer (6, 7). Accordingly, proteins with

dual functions in both cancer cells and the TME are attractive

therapeutic targets for cancer management.

One such protein is the Receptor for Hyaluronic Acid

Mediated Motility (RHAMM). RHAMM has both extracellular

and intracellular functions depending on its cellular location (8,

9). Extracellular RHAMM is a well-characterized hyaluronic

acid (HA) receptor that modulates HA-induced cell migration

critical for inflammation and wound healing (8, 10, 11).

Intracellular RHAMM is a cell cycle protein that regulates

mitotic spindle and microtubule formation (9, 12).

Importantly, these physiological functions of RHAMM are

often dysregulated in cancer for growth advantage and disease

progression (11, 13). RHAMM expression in most homeostatic

tissues is relatively low and its expression is induced upon

inflammatory stimuli (11). In contrast, human tumors have

been reported to overexpress extracellular RHAMM, and this

overexpression is commonly associated with metastatic and

aggressive phenotypes, as well as poorer disease outcomes in

prostate, breast and hematological malignancies (13–16).

RHAMM overexpression is also an independent prognostic

factor in many cancers (17–19).

Given that RHAMM is chronically overexpressed in cancer,

and has multiple functional roles in cancer development and

progression, it has significant potential as a therapeutic target for

cancer. Thus, the discovery of agents that interfere with the

expression of RHAMM in tumors could provide novel

therapeutic strategies to limit tumor growth. However, the

current incomplete understanding of RHAMM functions and

its varied cellular distribution restricts the development of

effective RHAMM-targeted therapies. Herein, we (i) discuss

the importance of RHAMM as a potential oncogene and (ii)

examine the regulators and signaling pathways activated by

RHAMM, with the aim of highlighting new therapeutic avenues.
Structure and functions of RHAMM

RHAMM (also known as CD168) is a helical glycoprotein

encoded by the geneHMMR, located on chromosome 5 (5q33.2-
Frontiers in Oncology 02
qter) in humans, with 18 exons and 2 start codons as depicted in

Figure 1A (10, 20, 21). The full-length human RHAMM protein

has a molecular weight of 84kDa and is made up of 725 amino

acids (22, 23). Turley et al. first isolated and characterized

RHAMM as part of the hyaluronic acid receptor complex

(HARC) system from sub-confluent chick heart fibroblast cells

(10, 24). Subsequent to this study, several RHAMM variants

have been identified and are reported to occur via alternate gene

splicing or the use of multiple start codons (10, 21, 23, 25). The

best-characterized variant of RHAMM is the intracellular

dominant exon 4 deficient variant (v3) (Figure 1A). RHAMM

v3 is reported to localize with microtubules and induce

oncogenic transformation when overexpressed in fibroblasts

(23, 26). Additionally, RHAMM v3 is frequently detectable in

cancer cells compared to normal tissues and has been shown to

promote metastatic progression of tumors in vivo (23, 27). But

why cancer cells express this particular variant is yet to be

fully understood.

RHAMM is a supercoiled-coil hydrophilic protein with three

main functional domains, namely the amino-terminal domain

(about 163 amino acids), the rod-like middle supercoiled-coil

domain (made up of 5 coils) and the carboxyl-terminal domain

(about 11 amino acids) (10, 20, 22, 23). Figure 1B is a pictorial

description of the RHAMM protein, identifying the key features

and various functional domains. The supercoiled-coil domain is

a feature responsible for mediating protein-protein interactions

(12, 23, 28). RHAMM is known to interact with cell surface

receptors such as CD44, and platelet derived growth factor

receptor (PDGFR) to mediate cell migration (29–31).

RHAMM also interacts with intracellular proteins such breast

cancer gene 1 (BRCA1), targeting protein for Xklp2 (TPX2) and

extracellular signal-regulated kinase 1/2 (ERK1/2) to regulate

mitotic spindle formation and stability (28, 32, 33).

Despite being an HA-binding protein, RHAMM lacks the

classic HA-binding motif (proteoglycan tandem repeat) and

instead interacts with HA via a basic amino acid-rich domain

denoted by B(X7)B, where B is a lysine or arginine and the X is a

non-acidic amino acid (aa) located on aa635-646 and 657-666

(10, 20). This region has also been shown to overlap with a

carboxyl basic leucine zipper motif responsible for the

interaction with centrosomes during mitosis (12). The N-

terminal domain (aa 40-59 and 76-90) and exon 4 encoded

region localize with microtubules during interphase (12, 23, 26).

Physiologically, RHAMM is transiently upregulated in

response to injury in fibroblast cells and it also promotes

neural development by enhancing neuroprogenitor cell

division (34–36). Consequently, in vivo studies in RHAMM

null mice have demonstrated defective wound closure after

injury and neurodevelopment abnormalities such as

megalocephaly (34–37). In homeostatic adult human tissues,

RHAMM is expressed in the testes, thymus and placenta, with

very low expression levels in the lungs and pancreas (13, 38).
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Extracellular functions of RHAMM

RHAMM as an extracellularly expressed protein is

predominantly in the lamellipodia at the leading edge of

migrating cells (39, 40). As a well-characterized HA

receptor, extracellular RHAMM modulates HA-induced cell

migration (8, 10, 24). HA is an extracellular matrix (ECM)

glycosaminoglycan, produced by hyaluronan synthases (HAS1-

3) and undergoes fragmentation by chemical stress or enzymatic

degradation to generate lower molecular weight fragments (11,

41). The size of the HA polymer is often predictive of its

physiological function (11). The native high molecular weight

HA, the most abundant in normal tissues, provides hydration

and resistance to mechanical stress and further exhibits anti-

migratory and anti-proliferative effects (11, 41). In contrast, low

molecular weight HA (LMWHA), which preferentially interacts

with RHAMM, promotes cell proliferation and migration in

response to injury or tumor cell death (11, 41). Despite being

extracellularly expressed, RHAMM lacks the signal peptide

necessary for canonical ER-golgi export, hence it is speculated

that RHAMM may be exported by some uncharacterized

unconventional pathway(s) (42, 43). Surprisingly, no study to

date has evaluated the exact mechanisms by which RHAMM is

exported into the extracellular space, therefore studies focused in

this direction may help unravel this aspect of RHAMM function

and reveal therapeutic opportunities.
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RHAMM lacks a transmembrane domain and therefore

couples with a number of membrane-spanning receptors such

as recepteur d’origine nantais (RON), CD44, PDGFR and

transforming growth factor b1 (TGF-b1) to activate

intracellular signaling pathways involved in cell migration (24,

29, 44, 45). For example, RHAMM couples with either CD44 in

breast cancer cells or PDGFR in fibroblast cells to activate ERK1/

2, in mediating cell migration (24, 29, 31, 44). HA and RHAMM

interaction (HA : RHAMM) also activates other intracellular

signaling pathways such as RHO-ROCK and b-catenin through

other unknown cell surface partner proteins (46–51).
Intracellular functions of RHAMM

RHAMM was first identified as a novel microtubule

associated protein (MAP) that interacted directly with

interphase and mitotic microtubules by Assman and co-

workers using confocal microscopy, an observation later

confirmed by Maxwell et al. (12, 23, 26). Similar to other

MAPs, both full length and RHAMM v3 decorated the entire

length of microtubules in multiple cell lines and were also found

to localise with centrosomes and interact with other centrosomal

proteins during mitosis (12, 23, 26, 28, 32). Functionally,

RHAMM regulates mitotic spindle integrity and progression of

cells through the G2/M phase of the cell cycle. Consequently,
B

A

FIGURE 1

RHAMM gene and protein structure. HMMR, the gene encoding RHAMM is located on chromosome 5 and is made of 18 exons. Figure 1A is a
representation of full-length HMMR and the most commonly occurring isoform, the exon 4 deficient variant (v3). Figure 1B is a diagrammatic
representation of the protein structure of full length human RHAMM indicating the major functional domains. Five coils make up the supercoiled coiled
domain with each separated by a 3-28 amino acid sequence with the exception of coil II and III, which are separated by a 21 amino acid sequence. The
leucine-rich basic HA binding domain is located in coil IV and V close to the carboxyl terminal of the protein. Generated with BioRender.com.
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inhibition of RHAMM results in the formation of multipolar

spindles and loss of spindle integrity whilst overexpression of

RHAMM produces large centrosomes with a resultant

metaphase block that leads to cell death (12, 26, 52).

RHAMM interacts with a number of MAPS and

centrosomal proteins in regulating microtubule dynamics.

RHAMM binds to dynein motor complex, a cargo protein,

during mitosis to correctly localize RHAMM to the minus end

of spindle poles where it is involved in maintaining spindle

stability by crosslinking centrosomal microtubules (Figure 2)

(12, 52, 53). Additionally, RHAMM may contribute to

microtubule formation indirectly by stabilizing and correctly

positioning TPX2 for the effective activation of aurora kinase A

(AURKA) at microtubule forming centers as depicted in

Figure 2 (28). During cell cycle progression, RHAMM is

regulated by the BRCA1-BRAD1 E3 ubiquitin ligase system

(54). RHAMM also acts as an adaptor protein to correctly

position and direct ERK1/2 to mitotic spindle forming centers

and this has been demonstrated to partly modulate RHAMM

associated microtubule functions (12, 26, 55–58). Intracellular

RHAMM also acts as a transcriptional co-activator to modulate

the transcription of target genes involved in migration (59, 60).

For example, RHAMM serves as a co-activator for the E2F1

transcription factor to mediate the transcription offibronectin in

melanoma cells (59).

Whilst RHAMM performs disparate extracellular and

intracellular roles, it is becoming more apparent that these

roles may be somewhat linked. The observation that HA
Frontiers in Oncology 04
expression increases during mitosis and the ability of

exogenous HA to modify RHAMM : TPX2 binding affinity

and alter AURKA activity, further demonstrates that HA :

RHAMM interactions may contribute in part to RHAMM

intracellular functions (61, 62). A detailed understanding of

the RHAMM interactome may yield further insights into the

factors linking its intra- versus extracellular actions.
Molecular signaling pathways
regulated by RHAMM

Interaction between HA : RHAMM is known to regulate a

number of downstream signaling pathways; the most

predominant are the ERK1/2 and RHO-ROCK pathways (29,

31, 36, 63). It was first reported that H-ras transformed cells

exhibited characteristics similar to RHAMM overexpressing

cells, and that loss-of-function mutation of RHAMM resulted

in decreased ERK1/2 activation in Ras mutant cells (31, 64).

Subsequent studies demonstrated that RHAMM overexpressing

cells exhibit high basal ERK1/2 activation while RHAMM null

fibroblasts showed reduced ERK1/2 phosphorylation with no

change in total ERK1/2 levels (31, 36). RHAMM has been shown

to co-localize with ERK1/2 in breast cancer cells, but the exact

mechanism by which RHAMM activates ERK1/2 is currently

unknown (29).

However, studies have suggested that RHAMMmay activate

ERK1/2 pathways by partnering with a number of cell surface
FIGURE 2

Overview of the role of RHAMM during cell cycle. RHAMM is a cell cycle gene localized at spindle assembly points where it associates with
other MAPs such TPX2 to regulate spindle dynamics and microtubule stability. Like most cell cycle proteins, RHAMM mediated microtubule
functions are regulated by BRCA1/BRAD1 complex which tags RHAMM for ubiquitination and subsequent proteasomal degradation, an event
nullified by activation of AURKA. Generated with BioRender.com.
frontiersin.org
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proteins in response to HA stimulation (26, 62). RHAMM has

been shown to co-localize with CD44, another well-

characterized receptor for HA, in aggressive MDA-MB-231

breast cancer cells to maintain the activity of ERK1/2 (29).

Additionally, RHAMM may co-activate ERK1/2 by partnering

with upstream activators such as PDGFR and epidermal growth

factor receptor (EGFR) in mesenchymal and fibroma cells

respectively to promote cell motility (36, 62). Once activated,

ERK1/2 facilitates cell motility by either activating the focal

adhesion pathway (FAK) pathway or by mediating transcription

of motogenic genes such as MMP9 in a RHAMM dependent

manner (46, 47, 60).

HA : RHAMM interaction is also reported to activate the

RHO-ROCK signaling pathway in prostate cancer cells,

ultimately leading to the phosphorylation of translation

initiation factor eIF4E, an observation that was associated with

treatment resistance (65). Functionally, HA : RHAMM

interaction promoted cell proliferation, metastasis and

invasion of androgen independent PC3 prostate cancer cells,

and this observation was abrogated by a ROCK inhibitor

(50, 65).

Stimulation of RHAMM by HA has also been shown to

activate less reported pathways such as b-catenin to up-regulate

the expression of the oncogene c-MYC which promoted tumour

growth and proliferation in fibrosarcoma cells (51). Figure 3 is a

summary of the RHAMM signaling pathway.
Role of RHAMM in oncogenesis

RHAMM plays an important role in the development and

progression of a number of cancers (11). The oncogenic

potential of RHAMM is attributed to its intracellular function

in cell cycle progression, specifically mitotic spindle formation

and stability and extracellular functions in cell migration. In

cancer, RHAMM overexpression has been reported in breast,

prostate, leukemia, pancreatic, lung cancers, and glioblastoma,

with strongest expression in metastatic tumors (38, 64, 66–71).

The significance of RHAMM in cancer is documented below and

tabulated in Table 1 is a summary of the role of RHAMM

reported in various malignancies.
Role of RHAMM in cell proliferation

The critical role of RHAMM in the cell cycle means that

overexpression or downregulation of RHAMM results in the

accumulation of cells at G2/M phase (67, 96–98). Levels of

RHAMM mRNA and protein have both been reported to

increase during G2/M phase, but the exact mechanism

mediating transcriptional upregulation of RHAMM during cell

cycle progression remains unknown (98). Multiple independent

studies have reported that downregulation of RHAMM
Frontiers in Oncology 05
suppresses cell proliferation in cancer cells and that

overexpression of RHAMM is transforming (64, 97, 99). One

mechanism by which RHAMMmay promote cell proliferation is

by augmenting the activity of M phase promoting factor Cdc2/

cyclin B currently known as the Cdk1/cyclin B kinase activity

through stabilisation of Cdc2 mRNA levels in an HA dependent

manner (80, 97). Cdk1/cyclin B complex regulates mitotic entry

by phosphorylating a number of spindle associated proteins such

as importin to control effective microtubule formation and

chromosomal segregation (100). Therefore, RHAMM

overexpression may facilitate premature mitotic entry resulting

in genetic alterations that favour tumour growth through an

increase in Cdk1/cyclin B activity.

In regulating cell cycle progression, RHAMM is reported to

associate with other MAPs to regulate mitotic spindle assembly.

RHAMM interacts with TPX2 during mitosis to correctly

localize TPX2 to the minus end of microtubules for AURKA

phosphorylation and activation (28, 101). Activation of AURKA

promotes centrosome nucleation and maturation for mitotic

progression (28). Cancer cells overexpressing RHAMM exhibit

increased AURKA activation, hence increased mitotic

progression and proliferation. As a result, knockdown of

RHAMM increased the sensitivity of malignant peripheral

nerve sheath tumors to the AURKA inhibitor MLN8237 (102).

Similar to most cell cycle proteins, RHAMM activity is

regulated by the BRCA1-BRAD1 E3 ubiquitin ligase complex,

which targets it for degradation during cell cycle progression

(54). Thus, RHAMM overexpression (in BRCA1 competent

cells) has been shown to induce phenotypic changes similar to

BRCA1 deficient cells, which are characterized by polyploidy,

formation of micronuclei, centrosomal amplification and

chromosomal mis-segregation; genomic events associated with

DNA damage and mutations (72). In the event of RHAMM

overexpression, which is indeed the case for most cancers, cancer

cells may mimic BRCA1 deficient phenotypes that facilitate

genomic instability and hence promote tumorigenesis (32, 72).

Additionally, overexpression of RHAMM is linked to increased

AURKA activation, which corresponds to decreased BRCA1

ubiquitin activity, thereby providing a BCRA1 deficient

environment necessary for genomic instability (103). A more

recent study has demonstrated that loss of BRCA1 and

overexpression of HMMR promotes AURKA activation which

results in ARPC2-mediated decreased mitotic cortex stability

and subsequently genomic instability (104). Thus, RHAMM has

been linked with increased breast cancer susceptibility in BRCA1

mutation carriers (32, 67, 104).
Role of RHAMM in cell
migration/metastasis

RHAMM influences cell motility in two ways, first by

influencing mechanical changes in the cell that impacts
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unidirectional movements, and second by enhancing epithelial-

to-mesenchymal transition (EMT). These functions are linked to

RHAMM’s extracellular activity, which is achieved through

coupling with transmembrane protein partners to activate

intracellular signaling pathways, particularly ERK1/2 (29, 31).

The role of ERK1/2 in cell motility has been well documented

over the years and reviewed by Tanimura et al. (105).

Relevant to RHAMM is that ERK1/2 regulates the

association between FAK and paxillin, a focal adhesion

(FA) adaptor protein, by ensuring a phosphorylation/

dephosphorylation feedback loop that influences FA assembly

and disassembly during cell migration (46, 106, 107). Activation

of the ERK1/2 pathway by HA : RHAMM interaction increased

tyrosine phosphorylation of FAK with a resultant increase in FA

turnover and consequently cell migration (46, 47). In regulating

FAK signaling, RHAMM has also been reported to co-activate

the E2F1 transcription factor to increase the transcription of

fibronectin, which promoted integrin-b1-FAK induced motility

in melanoma cells (59). RHAMM induced ERK1/2 activation

also exerts control on mechanotaxis by regulating the activity of

proteins involved in protrusion and matrix adhesion, therefore

aiding detachment and polarized movement (105).
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In terms of EMT, RHAMM mediated ERK1/2 activation

facilitates that nuclear translocation and activation of yet to be

identified transcription factors that mediate the transcription of

EMT genes such as MMP9 (60), hence promoting the

development of the mesenchymal phenotype (105). Indeed,

inhibition of RHAMM using a mimetic peptide, P15-1,

coincided with decreased myofibroblast differentiation and

expression of mesenchymal markers such as vimentin and N-

cadherin, resulting in decreased migration of fibroblast and

prostate cancer cells (108). Similarly, inhibition of HA :

RHAMM interaction suppresses TGF-b1 (a potent regulator of

EMT) mediated cell migration (45, 109, 110). RHAMM-

mediated decreased TGF-b1 activity was associated with

decreased mesenchymal transformation and ultimately a

decrease in cell migration (45, 108). It is still quite unclear

how RHAMM modulates TGF-b1 induced cell migration and

therefore future studies focused on understanding this

phenomenon would provide better insights for effective

targeting of this pathway.

HA : RHAMM interactions can also influence cytoskeletal

changes of migratory cells by activating the RHO-ROCK

pathway to mediate actin polymerization and promotion of
FIGURE 3

Signaling pathways mediating RHAMM oncogenic effects. Cell surface HA : RHAMM interaction may co-localize with transmembrane receptors/
proteins to activate intracellular signaling pathways that result in the phosphorylation of ERK1/2, the key RHAMM modulated protein. pERK1/2
influences cell migration by regulating cell adhesion dynamics through FAK or is translocated into the nucleus to activate unknown transcription
factors that enhance the transcription of mitogenic and motogenic genes. Alternatively, pERK1/2 may influence mitotic entry by regulating
mitotic spindle formation needed for effective progression through mitosis. Activation of RHAMM may also result in the translation of growth-
promoting and motogenic genes through the ROCK-eIF4E pathways. Similarly, RHAMM augments the stability of b-catenin by inhibiting the
b -catenin degradation complex and hence promotes nuclear translocation and activation of transcription factors which enhance transcription
of the oncogene c-MYC with a resultant increase in cell proliferation. Generated with BioRender.com.
frontiersin.org
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unidirectional movement at the leading edge of the cell (50, 65,

111, 112). Overexpression of RHAMM in prostate cancer cells

increased phosphorylation of ROCKII and coflin with an

accompanying increase in filopodia formation and EMT
Frontiers in Oncology 07
markers, vimentin and N-cadherin, and a decrease in E-

cadherin (50). The RHAMM-ROCK pathway is commonly

hyperactivated in castration-resistant prostate cancer and

associated with metastatic disease progression (50, 65).
TABLE 1 A summary of the oncogenic role of RHAMM in various cancers.

Cancer
type

Expression
(Protein,
RNA)

Major findings Associated
Pathways

References

Breast Cancer overexpressed Highly expressed in metastatic tumors.
Overexpression is associated with poorer overall, disease free and metastatic free survival.
Linked with increased tumor grade.
RHAMM overexpression increased migration of breast cancer cells.
Associated with increased breast cancer risk in BRCA1 mutation carriers

MAPK (ERK1/
2) Pathway
Mevalonate-
Hippo
pathway

(29, 32, 33, 48,
66, 67, 72, 73)

Hematological
cancers

overexpressed Overexpressed in Chronic myeloid leukemia (CML), acute myeloid leukemia (AML) and
multiple myeloma (MM).
Overexpression of full length and v3 are associated with poorer overall survival and disease
progression but more pronounced with v3.
RHAMM was identified as an antigenic target with subsequent development of RHAMM-R3
peptide for phase I and II clinical trials.

(16, 38, 52, 74–
77)

Prostate
Cancer

overexpressed Overexpression is associated with biochemical recurrence, increased Gleason score and poorer
prognosis.
RHAMM expression is increased in metastatic tumors and mediates cell migration in prostate
cancer cells.
Androgen and Retinoblastoma regulated gene.
RHAMM activates ROCK pathway to promote the development of castration resistance.
RHAMM expression increases with the duration of ADT therapy.
Potential biomarker for disease progression.
HMMR is a hypoxia induced gene.

ROCK-eIF4E
pathway

(15, 19, 49, 65,
68, 78, 79)

Lung Cancer overexpressed Overexpression is with associated decreased overall survival, poorer disease outcome and
disease progression.
Increased expression in metastatic tumors and cell lines.
HMMR knockdown increased miR34a (a tumor suppressor) expression and prevented
establishment of H2030-BrM3 lung cancer cells in vivo

(18, 69, 80–85)

Bladder
Cancer

overexpressed Overexpression is with associated with poorer disease specific and overall survival and increased
mortality.
Higher expression in invasive and higher grade tumors.
In a UPII-SV40Tag progressive bladder cancer model, HMMR was associated with early stage
bladder cancer development.
HMMR knockdown resulted in decreased proliferation in bladder cancer tumor xenograft
model.

(86–89)

Colorectal
Cancer

overexpressed Independent prognostic marker.
Poorer overall survival
Overexpression is associated with aggressive and metastatic tumor phenotypes.
HMMR knockdown in J82 colorectal cancer cell line decreased cell proliferation, invasion and
metastasis in vitro and in vivo and this was associated with G2/M cell cycle arrest

MAPK (ERK1/
2)

(17, 90–93)

Pancreatic
Cancer

overexpressed Independent prognostic marker.
Associated with poorer overall survival
Full length and RHAMM variant 3 (RHAMM B) were overexpressed in metastatic tumors with
RHAMM B being more expressed. HMMR B corresponded with worse prognosis.
RHAMM B overexpression increased metastasis of BON1-TGL pancreatic neuroendocrine cells
in vivo whilst full length RHAMM had no effect.
EGFR activation was partially responsible for RHAMM B mediated metastasis in vivo
HMMR knockout generates RHAMM (exon 8-16) deficient variant which promotes PDAC
invasiveness.

EGFR (25, 27, 70)

Glioblastoma overexpressed Upregulated in Glioblastoma stem cells GSC relative neural stem cells.
Associated with poorer overall survival in mesenchymal glioblastoma patients.
Knockdown of HMMR repressed proliferation of GSC and reduced their ability to form
neurospheres.
Downregulation of HMMR reduced the expression of stem cell markers and transcription
factors.
HMMR knockdown in GSC cells had reduced ability to form tumors compared to HMMR
competent cells in vivo.

(71, 94, 95)
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Collectively, these findings suggest a critical role for RHAMM in

cell migration and more importantly metastasis of cancer cells

and further underscores the relevance of targeting RHAMM in

advanced cancers.
Regulators of RHAMM expression

RHAMM is transcriptionally regulated by a number of

factors that either activate or repress its expression (Figure 4).

HA is a potent transcriptional up-regulator of RHAMM in both

normal and transformed cells (36, 113, 114). Expression of

HMMR was significantly increased when fibroblast, HUVEC

and breast cells were stimulated with HA (45, 114, 115).

Mechanistically, HA induced RHAMM gene and protein

expression by activating CD44/protein kinase Cd (PKCd)
pathway (115). Activation of the CD44/PKCd complex

induced c-fos and c-jun nuclear translocation, resulting in

increased RHAMM transcription, an effect rescued by the

inhibition of PKCd (115).

Stimulation of fibroblasts with TGF-b1 markedly increased

both HMMR transcription and cell surface expression of

RHAMM (45, 109). TGF-b1-induced RHAMM transcription

was mediated through a SMAD3-YAP dependent pathway

(110). The increase in RHAMM expression enhanced TGF-b1-
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induced cell migration, and this effect was partially ablated by

the addition of RHAMM blocking antibodies (45, 110, 115). Also

mediated via YAP, but through prenylation of RhoA,

mevalonate treatment of breast cancer cells induced both

RHAMM protein and mRNA expression (48). These

observations were nullified by the inhibition of YAP or

treatment with simvastatin, a mevalonate inhibitor, and this

consequently resulted in decreased cell migration in an ERK1/2

driven manner (48).

RHAMM is also transcriptionally up-regulated by DHT

treatment in LNCaP prostate cancer cells (49, 116). Whilst the

exact mechanism (s) underpinning DHT-induced RHAMM

expression is currently unknown, it was reported that this

could be a DHT-mediated mTORC1 activation of the SRF

transcription factor which directly binds to the promoter

region of HMMR in LNCaP cells (116). Further studies are

required to fully clarify the direct association between the

androgen receptor (AR) and mTOR pathways in regulating

HMMR expression given that crosstalk between mTOR and

AR is complex and context-dependent (117, 118).

Transcriptional downregulation of RHAMM has been

achieved through activation of tumor suppressors p53 and

retinoblastoma (RB) (50, 98, 119). Induction of p53 in D53wt

ovarian cancer derived cells significantly repressed both full

length and v3 RHAMM gene and protein expressions, likely
FIGURE 4

Regulators of RHAMM expression. This figure enumerates the transcriptional regulators of RHAMM activation (on the left) and repression (on the right) in
cancer and normal cells. Activation of CD44, mevalonate, TGF-b1 or the androgen receptor (AR) signaling pathways induces transcriptional upregulation
of HMMR. On the contrary, p53 and RB activation results in decreased transcription of HMMR. Generated with BioRender.com.
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through an indirect mechanism since no putative p53 binding

site was observed on the HMMR gene transcript (98). Further

studies are needed to provide insights into how p53 represses

HMMR expression transcriptionally during cell cycle

progression. Similarly, RB regulates RHAMM gene and

protein expressions through the E2F1 transcription factor,

which binds directly to the promoter region of RHAMM as

observed in prostate and lung cancer cells (50). RNA sequencing

of RB deficient cells identified HMMR as one of the most

significantly upregulated genes promoting cell migration in

response to RB-loss (50). Accordingly, drugs that induce or

augment p53 or RB activity such as Nutlin-3 and CDK4/CDK6

inhibitors respectively, repressed RHAMM expression (50, 98).
Therapeutic approaches to
target RHAMM

Immunological targeting of RHAMM

RHAMM was first identified as a tumor associated antigen

in multiple myeloma and chronic myeloid leukemia (CML) and

that overexpression was associated with poor prognosis in these

patients (16, 38). This discovery stimulated preclinical

immunogenic targeting of RHAMM in mouse glioma and

melanoma models wherein mice received either dendritic cells

pulsed with HMMR mRNA or a DNA-based xenopus RHAMM

(xRHAMM), respectively (120, 121). In both studies, RHAMM

vaccination significantly reduced tumor burden and increased

infiltration of RHAMM specific cytotoxic T cells (120, 121).

Following these discoveries, the RHAMM-R3 peptide vaccine

was developed and evaluated in Phase I and II clinical trials (122,

123). In the first study, six chronic lymphocytic leukemia

patients were vaccinated and about 80% of the patients

produced significant numbers of CD8+ T cells with a 20%

decrease in white blood cells (122). To further expand the

therapeutic scope of the peptide vaccine, Greiner in that same

year evaluated a high dose of RHAMM-R3 peptide in patients

with acute myeloid leukemia (AML), multiple myeloma and

myelodysplastic syndrome, where 4 out of nine patients showed

an increase in CD8+ T cells and 3 showed positive clinical

response (74). It was later reported that the RHAMM-R3 vaccine

when co-administered with chemotherapy or stem cell

transplantation in leukemic patients may delay relapse and

ensure patients remained in remission (123).

Despite these promising initial clinical reports, RHAMM-R3

peptide is yet to receive clinical approval. To understand the

therapeutic limitations of RHAMM-R3 peptides, Snauwaert and

co-workers showed that for AML patients, RHAMM expression

on normal hematopoietic cells were similar to that of leukemic

stem cells and that expression was cell cycle dependent. Thus,

they proposed that the lack of specificity of RHAMM expression
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limits its therapeutic application in AML (124). But for reasons

not unique to the RHAMM vaccine, cancer vaccine development

in general has encountered substantial setbacks due to immune

tolerance and immunosuppressive factors in the tumor

microenvironment (125, 126). A potential alternative approach

would be to combine RHAMM vaccines with immune

checkpoint inhibitors as a mechanism to evade these

immunosuppressive factors (127).
Targeting RHAMM signaling

The dependence of extracellular RHAMM on HA for effective

signaling coupled with the oncogenic nature of LMWHA

(RHAMM specific HA fragments), proffers HA as an effective

target for limiting RHAMM downstream signaling activities.

Using phage technology, Tolg and colleagues first identified

a number of HA binding peptides, worthy of note is Peptide 15-1

(P15-1), which exhibited substantial anti-migratory effects on

fibroblasts in a dose-dependent manner and specifically served

as a decoy for LMWHA (108). Subsequent to this discovery,

these peptides have been evaluated in a number of preclinical

cancer models and have shown significant effects on

proliferation, angiogenesis, metastasis and invasion (15, 50,

108, 128). Mechanistically, P15 treatment markedly reduced

the expression of TGF-b1, and suppressed the FAK pathway

as identified in a pathway analysis from a microarray study of

P15-1 treated fibroblasts (108). Additionally, a number of

tubulin derived HA targeting peptides have also been

developed against RHAMM-specific HA activities (129). A

unique feature of these peptides was that they were

internalised by breast and prostate cancer cells, suggestive of

an inherent ability of these peptides to possibly interfere with

RHAMM’s intracellular functions, although this requires

experimental substantiation (129). These peptides present a

burgeoning area of research worth exploring for the effective

development of RHAMM specific anticancer therapies.

However, the clinical use of peptides as therapeutics are

limited by their unfavourable physicochemical properties

(130). Whilst the identification of specific RHAMM therapies

have mainly focused on identifying peptides that interfere with

RHAMM function, their application have been restricted to in

vitro assays with limited in vivo efficacy studies. Currently, the

use of peptidomimetics (compounds that mimic a natural

peptide in their ability to bind to specific receptors but with

improved physicochemical properties) are becoming widely

used alternatives in clinical therapeutics (131). Therefore,

future studies focused on identifying and evaluating RHAMM

peptidomimetics may accelerate the in vivo use of these peptides

and potentially facilitate its clinical application.

Alternatively, therapeutic approaches focused on inhibiting

HA synthesis 4-Methylubel l i ferone (4-MU) or HA
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fragmentation by hyaluronidase (O-sulphated HA) have been

explored as anti-cancer therapies (132–134). These HA targeted

therapies additionally downregulate RHAMM expression,

making them attractive alternatives for modulating RHAMM

signaling. These pharmacological agents regulate cancer

promoting pathways such PI3K/AKT, EGFR and ERK1/2/

MAPK to promote apoptosis and repress proliferation,

migration, angiogenesis and invasion of cancer cells (132–134).

4-MU is a clinically approved drug sold under the brand name

Hymercromone for use as an anti-spasmodic on the biliary tract

in Europe and some parts of Asia (135). Despite multiple studies

extensively showing the anti-cancer effects of 4-MU, it is yet to

be evaluated in any clinical trials for its anti-cancer effects.
Conclusion and future directions

There has been a growing appreciation of the role of RHAMM

in cancer over the last three decades. A plethora of recent studies,

incorporating cell and animal models as well as patient samples,

have delved into the mechanisms associated with the individual

identified roles of RHAMM in an attempt to understand the

significance of this protein in cancer. More importantly, efforts

have been made to explore the therapeutic potential of targeting

RHAMM and to this end, much progress has been made with

respect to preclinical evaluations, but the translation of these

observations into patients has not yet materialised.

To fully expedite the translation of all these preclinical data into

clinical use, it will first of all be important to clearly define the

diverse compartmental functions of RHAMM. Whilst a lot of

information exists on the intracellular and extracellular functions

of RHAMM, much more insight is needed to decipher whether

these functions are independent of each other or if there is some

form of crosstalk between these identified roles. By employing

computational biology approaches to existing transcriptomic and

proteomic data, a RHAMM interactome can be developed to

identify all RHAMM associated genes and proteins involved in

cell cycle and migration and how these proteins are interconnected.

This may also help identify functional nodes within these networks

which are targetable by drugs. Additionally, different variants of

RHAMM have been identified and are reported to play functional

roles in oncogenic transformation, but current knowledge about

how these isoforms are generated and their specific roles in

RHAMM-mediated cancer development and progression are yet

to be fully stratified. More in vitro and in vivo studies should be

conducted to identify the mechanisms of generating these isoforms

and with the aid of omics, proteins and genes associated with these

isoforms may be identified to subsequently provide more insight

into which RHAMM specific role they regulate.

It has been reported that RHAMM is exported to the

extracellular space by yet to be identified mechanisms, where it

associates with transmembrane proteins to activate intracellular

signaling pathways. Shedding light on these mechanism(s) may
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of RHAMM, hence providing treatment alternatives for the

management of advanced disease. Also, RHAMM co-localizes

with other transmembrane proteins to activate intracellular

signaling pathways due to the lack of a transmembrane domain.

Although some transmembrane partners have been identified, there

are a number yet to be discovered, and even for the identified cell

surface partners, the mechanism by which RHAMMmodifies their

activity is largely unknown. Therefore, identifying and further

clarifying these interactions using affinity purification and in silico

protein-protein interaction models, may provide mechanistic

insights and also reveal indirect therapeutic targets for cancer and

other inflammatory related diseases.

Taken together, RHAMM is a vital driver of cancer

progression and metastasis, and by addressing some of the

knowledge gaps identified in this review article, more specific

and effective RHAMM-targeted therapies can be developed for

the management of cancer.
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