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Simple Summary: Prostate cancer is a heterogenous disease in terms of disease aggressiveness
and therapy response, leading to dilemmas in treatment decisions. This heterogeneity reflects
the multifocal nature of prostate cancer and its diversity in cellular and molecular composition,
necessitating spatial molecular approaches. Here in view of the emerging importance of rewired
lipid metabolism as a source of biomarkers and therapeutic targets for prostate cancer, we highlight
recent advancements in technologies that enable the spatial mapping of lipids and related metabolic
pathways associated with prostate cancer development and progression. We also evaluate their
potential for future implementation in treatment decision-making in the clinical management of
prostate cancer.

Abstract: Due to advances in the detection and management of prostate cancer over the past 20 years,
most cases of localised disease are now potentially curable by surgery or radiotherapy, or amenable
to active surveillance without treatment. However, this has given rise to a new dilemma for disease
management; the inability to distinguish indolent from lethal, aggressive forms of prostate cancer,
leading to substantial overtreatment of some patients and delayed intervention for others. Driving
this uncertainty is the critical deficit of novel targets for systemic therapy and of validated biomarkers
that can inform treatment decision-making and to select and monitor therapy. In part, this lack of
progress reflects the inherent challenge of undertaking target and biomarker discovery in clinical
prostate tumours, which are cellularly heterogeneous and multifocal, necessitating the use of spatial
analytical approaches. In this review, the principles of mass spectrometry-based lipid imaging
and complementary gene-based spatial omics technologies, their application to prostate cancer
and recent advancements in these technologies are considered. We put in perspective studies that
describe spatially-resolved lipid maps and metabolic genes that are associated with prostate tumours
compared to benign tissue and increased risk of disease progression, with the aim of evaluating the
future implementation of spatial lipidomics and complementary transcriptomics for prognostication,
target identification and treatment decision-making for prostate cancer.

Keywords: prostate cancer; lipids; biomarkers; mass spectrometry imaging; lipidomics; metabolomics;
MALDI

1. Prostate Cancer Heterogeneity

Prostate cancer (PCa) is a leading cause of cancer mortality and is the second most
common cancer among men in developed countries [1–3]. PCa is a phenotypically and
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molecularly heterogenous disease, which presents challenges for disease diagnosis and
treatment decision-making. Phenotypically, long term follow-up studies have revealed that
the majority of men diagnosed with PCa have an indolent form of disease that does not re-
quire immediate treatment and is amenable to active surveillance strategies, meaning close
monitoring for cancer progression [4]. For patients uncomfortable with active surveillance,
or who display clinical criteria of higher risk disease, potentially curative treatment options
include radical prostatectomy (the surgical removal of the prostate gland) or radiation
therapy, albeit these modalities come with common side effects that seriously affect patients’
quality of life, including incontinence and loss of erectile function [5]. The increasing imple-
mentation of prostate-specific antigen (PSA) testing in the Western world over the past three
decades has led to many more cases being detected but this also contributed significantly
to overtreatment of men with PCa [6]. PSA is also upregulated in non-cancerous disease
states, such as prostatitis, enlarged prostate (benign prostatic hyperplasia) and infection.
Thus, at the time of diagnosis, the tools are still lacking to differentiate between patients
with indolent disease, those who would benefit from standard therapy or patients that
might benefit from a more aggressive than standard intervention [4].

Histopathological diagnosis (classification) of prostate cancer is currently performed
using the Gleason scoring (GS) system, involving assessment of architectural, nuclear, and
luminal features of the prostate tumour tissue. The GS system uses a range from grade 1
(well-differentiated epithelial cells with small-sized nuclei) to grade 5 (poorly differentiated,
enlarged hyperchromatic nuclei). A new grading system by the International Society of
Urological Pathology uses grade groups for disease stratification, where grade group 1
is low risk and grade group 5 is the highest risk disease [7]. This key pathological tool
can be prone to pitfalls, such as incorrect identification of adenocarcinoma from other
mimickers, such as prostatic intraepithelial neoplasia (PIN) [8]. Together with PSA testing
and pathological Gleason grading, the tumour, node, metastasis (TNM) staging system is
employed for clinical decision-making in prostate cancer [9].

The heterogeneity of individual PCa clinical behaviour (i.e., indolent versus aggressive
disease) likely reflects its molecular heterogeneity at a tissue and cellular level. The majority
of PCas are known to be multifocal, meaning that numerous distinct tumour clones can
co-exist within the same primary tumour [4,10,11]. These subpopulations of tumour cells
contain different mutations, copy number variations (CNVs) and gene expression profiles,
leading to the characteristic intra-tumoural heterogeneity of PCa. Spatial heterogeneity
also appears to be a key feature of the tumour microenvironment (TME), with factors
such as cell type, cell shape, cell–cell, and cell–extracellular matrix (ECM) interactions all
being of importance to understand tissue functionality and corresponding pathological
changes [12,13], and is an important determinant in cancer prognosis and susceptibility
of a patient to a certain treatment [14]. Such heterogeneity in the TME requires a spatial
approach to biomarker discovery and biological analysis.

2. Rewired Lipid Metabolism as a Source of Biomarkers and Therapeutic Targets

To minimise the overdiagnosis and overtreatment associated with the current PSA-
based diagnostic tests, there is an acknowledged need for prognostic clinical and molecular
biomarkers to be incorporated in the diagnosis of PCa [4,15]. Omics (e.g., genomics,
transcriptomics, lipidomics, proteomics, epigenomics)-based research has played a very
important role in discovering novel targets and putative biomarkers for prostate and
other cancers. While genomic and transcriptomic analyses have greatly improved the
stratification of patients in other cancer types, despite providing a wealth of molecular
insight in PCa development and progression, these approaches have not led to the same
transformation of clinical diagnostics and disease management in the case of PCa. In
contrast, the ubiquitous cancer-related rewiring of metabolism that in part is driven by
genetic and epigenic changes, holds great promise for the development of metabolite-based
biomarkers as well as the discovery of possible druggable targets [16]. Lipids in particular
appear to hold significant potential and have been studied intensively. The strong interest
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in lipid profiling of PCa stems from the fact that male sex steroid hormones, or androgens,
which promote the development and progression of PCa, are potent regulators of lipid
metabolism [17,18]. PCa cells often exhibit deregulated androgen signalling that enhances
lipid metabolism through the overexpression of key lipid synthetic enzymes [19,20] and
mobilisation of fatty acid uptake from the circulation or from adipose tissue in the TME
by lipolysis [21,22]. Multiple studies have deduced that enhanced fatty acid synthesis
and their utilisation from extracellular sources is a feature of PCa cells that promotes
tumour cell proliferation, bone metastasis, and disease progression [23]. This metabolic
reprogramming, together with the important roles of lipids in a wide array of physiological
functions in health and disease [24], and advances in mass spectrometry based lipidomics
technologies [25,26], has led to increased interest in lipid biomarker research.

3. The Need for Spatial Omics Approaches

Thus far, most omics analyses of PCa tissue, including lipidomics, have been applied
to tissue extracts. Electrospray ionisation technology [27] has played an important role in
the development of conventional lipidomics tools such as shotgun lipidomics [28,29] and
liquid chromatography mass spectrometry (LC–MS) lipidomics for the analysis of lipids
in cell line models [30], patient-derived tissues [31] and plasma [32,33]. Such bulk omics
research has played an important role in identifying novel targets and putative biomarkers
for PCa. However, biomarker detection and functional characterisation in the setting
of multifocal primary prostate tumours remains a significant challenge, as bulk omics
analyses represent an integrated average molecular composition of a tissue, comprising
various cell types. Recent advances in single cell omics approaches have in part alleviated
these issues, but overall lack the spatial information that is critical to capture localised
or histology-restricted changes in cell type composition. It is only relatively recently that
spatial omics approaches have been applied in the context of PCa tissues, but these are
critical in view of the heterogenous nature of the prostate gland [34] and its tumours [35,36],
which arise from multifocal lesions [37]. Moreover, the TME is highly heterogeneous
with a dynamic interplay of several cell types, including fibroblasts, muscular, epithelial,
endothelial and immune cells, each with its own characteristic lipid profile due to cell-
specific enzyme expression and adaptation to a changing local TME. Hence, lipid profiles in
PCa development and progression are dynamic and exhibit a high degree of cell specificity
that are optimally mapped and understood using spatial approaches. Here, we will
summarise the current status of this field, focusing mainly on spatial lipidomics by mass
spectrometry imaging and complementary spatial transcriptomics, as these relate to the
discovery of prognostic and diagnostic markers of prostate cancer.

4. Experimental Approaches in Spatial Lipidomics

The “lipidome” is the comprehensive composite of all lipid classes found in a cell and/or
its subcellular compartments and biological fluids (plasma, serum, saliva). Lipidomics is a
subset of the field of metabolomics and shares similar analytical workflows often centred on
mass spectrometry. Mass spectrometry imaging (MSI) can provide spatial detail of cellular
and compartmental source metabolites in tissues. Now MSI has become an increasingly
popular tool for lipidomics, due to its power to detect perturbations in lipid content within
heterogenous and complex biological samples [38].

MSI is commonly used as an untargeted tool for discovery lipidomics, with MSI
sources coupled to time-of-flight (TOF), quadrupole TOF, Orbitrap, and Fourier transform
ion cyclotron resonance (FT-ICR) mass analysers [39]. MSI is based on the generation of
ions at definite co-ordinate loci across a tissue or inorganic surface [40]. Molecular informa-
tion from multiple mass spectra is then combined to create an ion map akin to chemical
histology [41]. There are multiple MSI technologies currently in use. The most widely used
is matrix-assisted laser desorption ionisation (MALDI) which uses a chemical matrix that
is uniformly applied to the tissue and absorbs the energy from the UV laser. The matrix
ionises biomolecules and conveys them into the gas-phase [42,43]. Initial MALDI-MSI stud-
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ies in the late 1990s were focused on mapping the distribution of intact proteins. This was
expanded to the imaging of lipids in the 2000s [44–46]. Typical spatial resolutions that are
achieved using this technology range between 10 µm and 100 µm, thus slightly above single
cell resolution. With increasing maturation of the technology, MSI is increasingly being
applied to obtaining in situ information on metabolites and lipids in many solid malignan-
cies [38,47,48] including PCa. MALDI-MSI offers a powerful label-free semiquantitative
technique to detect lipids and other biomolecules in tissue (Figure 1). Co-registration or
overlay of MALDI ion maps with histological scan of tissues can link biomolecule presence
and/or abundance to key anatomical and morphological features. Hence, MSI of lipids
has the potential to provide information about disease aggressiveness [49], monitor disease
progression and pharmacodynamic effects of therapeutic agents. In this latter context,
using both MALDI MS/MS imaging and liquid chromatography tandem mass spectrom-
etry (LC–MS/MS), the uptake kinetics of current PCa clinical agent enzalutamide were
detected in patient-derived prostate explants, with the drug ion signal spatially localised to
heterogenous epithelial regions, which were rich in the drug target [50].

Although the majority of the MSI work discussed in this review was produced using
the MALDI method, it is worth noting that other ionisation techniques are also applicable.
Another now-commonly used MSI method is called desorption electrospray ionisation
(DESI) [51,52]. It employs an electrically charged solvent spray that is scanned across the
tissue surface. Analyte molecules are desorbed from the surface, ionised, and entrained
in the spray to be drawn into the mass spectrometer via a transfer capillary [52]. The
absence of a matrix makes DESI imaging data less complex than MALDI imaging data
which can make lipid assignments easier in the absence of matrix ions. There is also the
advantage of doping derivatives, such as Li+ for tandem MS or Ag+ for improved detection
of unsaturated olefins and cholesterol esters [53], but the lateral resolution with DESI is
typically 20–200 µm which compares unfavourably to high-definition MALDI imaging.
Secondary ion mass spectrometry (SIMS) is a long-established ionisation method for the
analysis of solid surfaces by sputtering of the sample with a focused primary ion beam and
collecting the ejected secondary ions [54,55]. SIMS is a matrix-free approach and can achieve
very high spatial resolution of 100 nm, which generates spectra from sub-cellular lipidomes.
It should be noted that SIMS is a much harder ionisation technique than DESI and MALDI
and analyte molecules are often fragmented in source, for instance phosphatidylcholine
(PC) is measured indirectly via the choline headgroup fragment, however more recent
advances in SIMS have shown imaging of intact lipids [56].

Ultimately, the choice of analytical method to unravel lipidomic profiles is guided by
type of sample, availability of instrument, expertise of the user, and the target molecule
(s) required to answer the biological question. Spatially resolved lipidomics is now a
useful addition to the PCa researcher’s arsenal. Some limitations remain, chief of which
are that the technique is usually only semi-quantitative, and that confident identification
of lipids is challenging. Identification is hampered by sample preparation options and
limited choices of orthogonal dimensions of separation. Sample preparation methods that
retain spatial integrity offer very limited ability to reduce sample complexity. Additional
dimensions of separation can only by efficient if they can be applied post-ionisation.
One such method is ion mobility separation, which is discussed in more detail later. A
useful way to compensate for the shortfalls of spatial lipidomics is by combining it with
other bioanalytical measurements performed on the same samples, e.g., transcriptomics,
conventional lipidomics, proteomics, spatial transcriptomics, etc. There is however no
simple way of combining complex data from multiple sources.
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Figure 1. MALDI-MSI of prostate tumours. Tissue morphology (H&E digital scan) of multifocal
disease in prostate tissue and spatial segmentation using clustering in SCiLS Lab and R Cardinal from
a serial imaged section. The associated mass spectra show different m/z features for cancer—red,
normal—blue spectra, stroma—pink, and inflammation—yellow. Average spectra are normalised to
total ion count method.
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5. Spatial Lipidomics Applied to Prostate Cancer

In the field of PCa, MSI has, to date, primarily been applied toward identifying
lipidomic and metabolomic phenotypes related to the presence of malignancy and the
severity of tumour grade, albeit in mostly very small patient cohorts (summarised in
Table 1). Initially, increased abundance of multiple phospholipid (PL) classes in PCa was
reported using MALDI-MSI in a discovery patient set of tissues (n = 14) [57]. In this
study, 14 phosphatidylinositol (PI), 3 phosphatidylethanolamine (PE), and 3 phosphatidic
acid (PA) species were highly abundant in cancer, specifically PI(18:0/18:1), PI (18:0/20:3),
and PI(18:0/20:2) were significantly abundant lipids (p value ≤ 0.05). A validation set
(n = 24) was built using an orthogonal partial least squares discriminant analysis (OPLS-
DA) model that established PI species to have 87.5% sensitivity and 91.7% specificity for
PCa diagnosis [57]. The authors postulated that PI distribution may be related to changes in
acyltransferase activity and PI3K signalling [57]. Following this report, Goto and colleagues
showed using positive ion mode MALDI-IT-TOF imaging, increased levels of lyso-PC (LPC)
(16:0) in benign epithelium compared to cancer, which was prognostic for biochemical
recurrence (increasing serum PSA levels) after radical prostatectomy [58]. The enhanced
LPC levels in normal tissue may reflect increased activity of lysophospholipase D activity
and PC remodelling pathways. Wang and colleagues conducted metabolomic imaging of
prostate tissue (n = 3 patients) by MALDI FT-ICR [59], using LC–MS/MS as a structural
validation tool. In the study, m/z 534.296 PC (16:0) and m/z 740.520 PE (34:1) were abundant
in cancerous regions whilst neutral lipids, m/z 633.485 diglyceride (DG) (34:1), m/z 895.716,
triglyceride (TG) (52:3) and m/z 951.778 TG (56:3) and m/z 769.562 sphingomyelin (SM)
(d36:1) were distributed in non-cancerous regions, although this might have encompassed
stromal adiposity. The 9-aminoacridine (9-AA) matrix afforded the detection of nucleotide
anions in which they argued m/z 505.989 ATP was enhanced in cancerous regions while
m/z 346.056 AMP and m/z 426.022 ADP were diminished consistent with increased ATP
flux that is critical for tumour cell proliferation [59].

In 2019, Randall and colleagues reported a study of 10 PCa specimens with varying
pathological Gleason scores (GS) for analysis by MALDI FT-ICR MSI with α-cyano-4-
hydroxycinnamic acid matrix in positive ion mode [60]. Three additional specimens were
used for MALDI TOF MSI and 4 additional samples for liquid extraction surface analysis
(LESA). They identified 481 m/z features that discriminated between GS (3 + 4) and GS
(4 + 3) tumours with sensitivity and specificity analysis ROC values above a threshold of
0.75. Of fifty-six ions searched against the online Lipid Maps database (www.lipidmaps.
org), tentative identifications of four PC, four PA, eight phosphatidylserine (PS), four
cardiolipins (CL), and five PIs were made. However, none of the ions were classifiers of
either of the two grades, albeit CL were detected more frequently in higher GS disease,
consistent with a previous report [30]. Five additional specimens with tumour grades
consistent with the first data set were used in a validation set by MALDI FT-ICR MSI,
which resulted in similar variation in distribution of lipid m/z features. Despite the small
sample size employed in this study, the investigators demonstrated the ability of MALDI-
MSI to identify tumour-specific lipid markers, palmitoylcarnitine and stearoylcarnitine,
which were detected as discriminant features with high intensity in particular regions of GS
9 and GS 7 tumours, an indication that PCa cells have upregulated mitochondrial uptake
of long chain FA to support ATP-generation by ß-oxidation [60]. Moreover, overexpression
of carnitine transporter (CPT2) has been reported in primary PCa to support mitochondrial
oxidative phosphorylation [61].

DESI imaging has also been applied to compare the relationship between multifocal
prostate cancer lipid fingerprints and pathological grade. A recent DESI-MSI study as-
sessed metabolite markers in prostate needle core biopsies in 35 samples from 18 patients
by defining pathological regions of interest (ROIs) [62]. Metabolite ions (n = 289) were
selected from benign and PCa ROIs, and initially a univariate statistical analysis identi-
fied metabolites enriched in cancer compared to benign ROIs. This identified significant
changes in FA, PE, PI, and PC abundance between the two conditions. Second, metabolites

www.lipidmaps.org
www.lipidmaps.org
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that were differentially abundant between Gleason grade groups were evaluated. Here,
they compared grade group (GG)2 and GG3 ROIs and showed that lyso-PEs (16:0 and
18:0) were more abundant in benign tissue whereas dephosphorylated monounsaturated
PLs (P-38:1 and P-40:1) and reduced polyunsaturated PLs (O-38:2 and O-40:2), were more
prominent with increasing tumour grade. Finally, a logistic regression-based classification
model using training/validation samples was built to identify highly sensitive and specific
lipid features, which achieved overall balanced accuracies of 97% and 85% in the training
and validation sets, respectively.

Another DESI-MSI study investigated the metabolite and lipid composition of 54 fresh–
frozen prostate tissue specimens [63]. This work particularly focused on metabolite ions
between m/z 50–200 range found in the Krebs cycle. A least absolute shrinkage and
selection operator (Lasso) was used to identify classifiers in 36 tissue samples (18 normal vs.
18 PCa) in a training set and the top 54 peaks were further evaluated in a validation set of
18 samples (10 normal vs. 8 PCa). Interestingly, the Lasso tool showed inferior performance
for ions on the lipid m/z 50–1000 range but better accuracy with inclusion of the Krebs
cycle metabolite ions—89% vs. 94% overall agreement. Glucose/citrate ratio was found
to be a biomarker that spatially distinguished benign prostatic hyperplasia (BPH) from
PCa when ion maps were compared to corresponding histopathological scans [63]. Normal
prostatic fluid is rich in citrate [64] and normal prostate cells ostensibly derive citrate from
glucose metabolism [65]. The oxidation rate of citrate for ATP production increases as
PCa transitions from a Warburg-state glycolysis to FA oxidation [66]. Such approaches are
moving towards the clinic; for example, Cook’s group have used DESI-MSI and touch spray
mass spectrometry (TS-MS) ionisation to determine surgical margins in men undergoing
radical prostatectomy (n = 18). DESI-MSI and TS-MSI data had prediction of 97.5% and 96%
in discriminating cancer from normal tissue. TS-MS was further validated with accuracy
of 92.5% of tumour from normal tissue relative to histopathology and they proposed the
technique to be useful for rapid detection of surgical margins [67].

A recent report by Andersen et al. sought to define the metabolomics composition of
the different tissue compartments of heterogeneous PCa [68]. This study had a cohort of
15 patients where 45 consecutive tissue sections were analysed in dual MALDI polarities
using either 2,5-dihydroxybenzoic acid (DHB) and N-(1-naphthyl) ethylenediamine dihy-
drochloride (NEDC) matrices. Multivariate pairwise comparisons of cancer, non-cancer
epithelium and stroma cell types revealed metabolic alterations in carnitine shuttle in-
dicative of known enhanced fatty acid oxidation and de novo lipid synthesis in PCa cells.
Their data also showed reduced levels of metabolites of healthy prostate function (citrate,
aspartate, zinc, and spermine) in tumour tissues whilst stroma exhibited higher levels of
ADP, ATP, and glucose. A key finding was reduced abundance of LPC (16:0) in cancer
compared to non-cancer epithelium consistent with the findings by Goto et al., which
further underpins its potential as a prognostic lipid biomarker.

Butler et al. used quantitative lipidomics analyses to characterise the PL profile of
prostate tumours compared to benign tissues in a matched (n = 21) and independent cohort
(n = 47) of patient samples [69]. In the matched cohort, ESI-MS/MS analysis of bulk tumour
samples revealed multiple PL species across PC, PE, PI, and PS subclasses as significantly
correlated with malignancy and the relative proportions of saturated, monounsaturated and
polyunsaturated fatty acids content in PLs were also significantly different between normal
and tumour patients, most notably featuring increased proportions of monounsaturated
PLs. MALDI-MSI revealed distinct variations of lipid features of benign versus malignant
epithelial regions using multivariate analysis of pathology annotated clinical samples and
was used to validate PE (42:6) and PI (36:4) as positively and negatively correlated with
malignancy status, respectively. Additionally, using a patient-derived tissue culture model
to probe lipid changes in tumour with response to a current clinical agent enzalutamide, this
study further linked phospholipid abundances to ki67 proliferation status where spatial MSI
showed that PC (34:1) was decreased after an ex vivo 48-h androgen inhibition challenge.
Notably, this work showed, for the first-time using clinical material, how combination of
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quantitative and spatial lipidomics approaches uncovered aberrant properties of PCa fatty
acid synthesis, desaturation, and elongation as new therapeutically rational avenues to
control and manage the disease [69].

A novel modification of MALDI-MSI has been the use of ozone to determine the
position of fatty acid unsaturation, allowing for the first time more precise identifications of
a broader range of lipid species and identifying the canonical and non-canonical enzymatic
pathways involved in their production. Young et al. used ozone-induced dissociation
(OzID) to explore the diversity of fatty acids in a small number of prostate tissues, and
revealed a series of previously unreported species incorporated into PLs in distinct tissue
compartments [70]. Importantly, mapping these novel fatty acids across heterogeneous
tissues implies that there is plasticity in the various lipid metabolic enzymatic activities
throughout multifocal prostate tumours and TME.

Table 1. Key studies using MSI as a spatial tool for prostate cancer metabolomics and lipidomics.

Author Method Findings

Butler et al., 2021 ESI-MS/MS
MALDI-MSI

Association of lipid profiles to malignancy status in clinical biopsies and
lipid changes in response to metabolic targeting agents

Young et al., 2021 MALDI-MSI OzID
Isomer-resolved lipidomics detects non-canonical fatty acids (reflecting

different desaturase activities) present in different regions of the PCa TME,
providing support for discrete localisation of desaturase enzymes

Andersen et al., 2021 MALDI TOF MSI

Lipid and metabolite composition was distinct between stromal,
non-cancerous epithelium, and PCa. Lysophospholipids had lower

abundance in PCa versus non-cancerous epithelium, while PE and PI lipids
were higher in PCa.

Randall et al., 2019 MALDI FT-ICR MSI,
MALDI TOF MSI

Prostate tumours can be differentiated using different Gleason grades
based on metabolomic differences

Morse et al., 2019 DESI-MSI Logistic regression and PCA/LDA model of lipid and metabolite classifiers
can reliably identify cancer and distinguish Gleason grade groups

Banerjee et al., 2017 DESI-MSI LASSO model identified glucose and citrate as predictors of PCa and
normal tissue

Wang et al., 2017 MALDI FT-ICR Increased energy charge and low abundance of neutral triglycerides in
cancerous tissue

Goto et al., 2015 MALDI-MSI
LPC (16:0) and SM (d18:1/16:0) were lower in tumour compared to benign

epithelium. LPA (16:0) was an independent predictor of biochemical
recurrence after radical prostatectomy

Goto et al., 2014 MALDI-MSI

PI species were more abundant in cancer compared to benign epithelium:

• PI (18:0/18:1)
• PI (18:0/20:3)
• PI (18:0/20:2)

6. Complementary Spatial Transcriptomics to Map Alterations in Lipid Metabolism
in PCa

Many tumour-related changes in lipid profiles reflect alterations in gene regulatory cas-
cades that in turn are driven by oncogenes and tumour suppressors, epigenetics, and other
adaptive mechanisms. Hence, complementary transcriptomic analysis has the potential to
substantially enrich lipidomic profiles with gene expression data, aiding in the biological
interpretation of lipid metabolic changes and in the delineation of pathogenic pathways
or potential targets for therapy. Since the inception of DNA microarray technologies, this
omics field has evolved dramatically and currently is dominated by next-generation RNA
sequencing. Its classical application on tissue extracts shares similar limitations as bulk
lipidomics and thus provides a mean gene expression profile across cell populations, even
when selected for high tumour content. Single-cell sequencing (scRNA-seq) is a powerful
approach to define gene expression heterogeneity at the level of individual cells and is
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often used as a tool to reveal all cellular subpopulations present in a given tissue [71–73].
However, this method involves the dissociation of cells from their original tissue context
prior to sequencing, leading to the loss of spatial information.

Traditional technologies in molecular biology, such as situ hybridization (ISH) and
immunohistochemistry (IHC), were the first to retain spatial information within tissues
by mapping DNA, RNA, and proteins. However, targeted approaches require preselected
markers limiting the spatial analysis of a subset of genes and proteins at a time [71,73].
Spatial transcriptomics, on the other hand, enables high-resolution assessment of spatial
gene expression across tissue sections, overcoming the limitations associated with tissue
homogenisation. This spatially resolved technology has the ability to query the entire
transcriptome within a single tissue section in an untargeted way [74].

ST is an overarching term for all methods that assign transcriptomics data to the
original location within a tissue region. Based on the size of the tissue that can be examined
and the number of genes that can be probed, ST technologies can be subdivided in two
main categories: (1) next-generation sequencing (NGS)-based technologies and (2) fluo-
rescence imaging-based approaches comprising in situ sequencing (ISS)-based methods
and in situ hybridization (ISH)-based methods. The latter two are targeted techniques and
require a priori knowledge of the genes of interest. ISS-based methods directly read out
the sequence of transcripts within the tissue [75]. It is based on padlock probing [76] for
the revers transcription, followed by rolling-circle amplification [77] and RNA sequenc-
ing [75,76,78]. In general ISS-based methods can reach single-cell resolution, are rather low
in sensitivity and enable high gene throughput [79]. The second group of imaging-based ST
methods are based on ISH technologies, in which a fluorescent imaging probe hybridises
sequentially to a target sequence in the tissue [80–83]. Although ISH-based technologies
were rather limited in throughput, the invention of multiplexed error-robust fluorescence
ISH (MERFISH) [84,85] and sequential fluorescence ISH (seqFISH) [86] enabled substan-
tial multiplexing localising hundreds of genes in intact tissue. In addition, ISH-based
methods allow for subcellular resolution and are highly sensitive [87,88]. In this review,
we will mainly focus on NGS-based approaches, which are unbiased spatially resolved
methods that query the whole transcriptome from tissue sections. These technologies are
well suited for molecular profiling and exploring a new system. Its integration with other
unbiased spatial omics technologies, such as spatial lipidomics, will provide a powerful set
of tools to characterise prostate cancer heterogeneity and disease processes in intact tissue
sections [89].

In 2016, Salmén et al. developed a protocol which combined histological haematoxylin
and eosin (H&E) staining with spatially resolved RNA-sequencing which is applicable to
fresh-frozen mammalian tissue [71]. Key in this protocol is a micro-array slide, each com-
prised of 1000 unique barcoded spots (100 µm spot diameter with 200 µm centre-to-centre
distance) enabling unbiased investigation of a large tissue area without selecting a specific
region or, importantly, a set of genes of interest [90]. Recently, 10X Genomics released the
Visium platform, which is an improved version of the technology with increased sensitivity
(more than 10,000 transcripts per spot) and resolution (55 µm spot diameter with 100 µm
centre-to-centre distance). In the first step, a thin (10 µm) tissue section from fresh-frozen
tissue is cut with a cryostat and placed on top of the microarray slide. Then, the tissue
is H&E stained and imaged in order for the pathologist to make annotations based on
tissue morphology. Following a permeabilisation step, the released mRNA transcripts are
spatially captured by hybridisation to the oligo-deoxythymidine (oligo-dT) region of the
surface probes and subsequently transcribed to cDNA. After cDNA fragment collection,
library preparation and sequencing, an unbiased map of expressed transcripts across the
tissue slide is achieved. The spatial transcriptome can then be visualised relative to the
histological images [71,73,91].

Currently, there are several commercial systems on the market. For most of these
systems, the current lateral resolution of spatial transcriptomics is limited to 50–100 µm,
meaning that this method does not produce data on a single-cell level and that the observed
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expression profile at a given position originates from a potentially heterogenous mixture of
adjacent cells, including distinct cell types. The spatial transcriptomic data will provide the
location of mRNA transcripts but not the cell types that produced them, while scRNA-seq
data characterises each cell type’s expression profile but loses information regarding their
position. Therefore, scRNA-seq data are used to deconvolute the spots down to the single
cell level, which results in the identification of the cell type population generating the gene
expression values within a specific spatial location [71,92]. Thus, a combination of both
scRNA-seq and ST data modalities from the same sample can achieve a higher spatial
resolution enabling more in-depth tissue analysis.

Applied to the field of PCa, Berglund et al. were the first to measure spatial gene
expression profiles using ST technology [11]. Briefly, the pathologist annotated the prostate
tissue samples based on cell morphology in its different components, such as stroma,
normal and prostatic intraepithelial neoplasia (PIN) glands, immune cells, and cancer. In
the ST procedure, read counts of every gene per spot were measured and used to generate
a set of factors (cell types), each with a unique expression profile. To identify interactions
between the different factors, hierarchical clustering was performed resulting in three main
groups. Surprisingly, the inflammatory cells ended up in the same group as PIN and cancer,
separated from normal glands. This suggests that inflammation plays an important role
in tumour progression. Moreover, an upregulated expression of SPINK1 was found in
the cancer region. This finding is consistent with another study revealing that SPINK1
upregulation elicits epithelial-mesenchymal-transition and potentiates cellular-plasticity
in patients suffering from androgen receptor (AR)-independent PCa following androgen-
deprivation therapy (ADT) [93]. Importantly, some sections annotated as ‘cancer’ by the
pathologist belonged to ‘normal or PIN glands’ according to their gene expression profile.
Furthermore, it was also observed that some cancer expression regions extended beyond
the boundaries of annotated tumour areas. This indicates that a transcriptome-based
clinical evaluation could highlight ‘high risk’ areas for the pathologist to pay extra attention
to. Finally, this study also provided new insights in pathways with an altered activation
in the centre core vs. the periphery of the tumour. Previous studies already revealed
that adjacent tissue represents an intermediate state between normal and cancer tissue,
but until this study it was never confirmed with spatially resolved data. Berglund et al.
found that the tumour centre is dominated by enriched pathways linked to altered cellular
metabolism, while the activated pathways in the periphery are mainly related to stress and
inflammation [11].

In another study, Ruzzo and Wang assessed the spatially-resolved metabolic networks
of the TME in PCa. Metabolic reprogramming is a hallmark of all cancers and is highly
influenced by the surrounding environment, such as the presence of blood vessels for
nutrients and oxygen. Consequently, heterogenous distributions of blood vessels lead to
spatial heterogeneity in the altered metabolism of the TME. It is important to untangle this
heterogeneity in order to develop new drug targets for PCa. In this study, ST data were
used to identify genes and pathways that where differentially expressed across separate
regions of the same primary tumour. Importantly, some of the identified metabolic genes
can be targeted with small molecule compounds that are already FDA-approved. Among
these was the fatty acid desaturase SCD1, which requires molecular oxygen to perform
its function. Hypoxia is a key feature of the TME and therefore these cells need to adapt
their metabolism to bypass SCD1, for example by using FADS2 desaturation of fatty acids.
However, spatial transcriptomic data in this study revealed that both SCD1 and FADS2
were depleted in the tumour region indicating its dependency on the exogenous uptake of
unsaturated fatty acids. Accordingly, a possible way to selectively kill the hypoxic cancer
cells would be by pharmacologically inhibiting SCD1 while simultaneously depleting
the exogeneous source of unsaturated fatty acids. A second identified target was the
prostaglandin transporter SLCO2A1. Prostaglandin is known to have an important function
in both angiogenesis and immunomodulation, so inhibiting SLCO2A1 with suramin could
be a valuable treatment [14].
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7. Challenges and New Developments in Spatial Lipidomics and Combined Spatial
Omics Approaches

Imaging technologies enabling spatial lipidomics as well as complementary spatial
omics approaches are evolving rapidly and are pushing the limits encountered with cur-
rent platforms. These limits include the sensitivity of detection, unambiguous species
annotation, quantification and spatial resolution. Some of these issues are being solved
by combining spatial and bulk omics approaches, providing a deeper coverage of lipid
profiles.

A critical technical issue in MALDI-MSI is the need to image lowly abundant metabo-
lites and lipids without loss of sensitivity whilst maintaining appreciable spatial resolution.
For instance, lipid spectra are typically dominated by signals of high abundant or easily
ionisable lipids such as PCs, while other PLs such as PE are hardly detectable. MALDI-2
is a new technique that has been shown to improve ionisation of compounds that pose
a challenge in conventional MALDI. In this method, molecules desorbed by the MALDI
process are post-ionised by a second pulsed UV laser orthogonally to the direction of the
plume created by a first laser. Soltwisch et al. showed that several classes of lipids that
are difficult to image with conventional MALDI-MSI appear in the MALDI-2 spectra with
signal intensities by up to two orders of magnitude higher [94,95].

Another challenge relates to the small mass range of lipids in complex samples,
resulting in the presence of isobaric species, i.e., lipid isotopes with identical or near
identical m/z. This issue can be solved in part using high mass resolution instruments
and/or by molecular fragmentation (MS/MS). An interesting complimentary approach is
the addition of ion mobility separation, which is a post-ionisation separation technique that
distinguishes between ions based on their collisional cross section (CCS) area. This method
is one of the few separation techniques that is compatible with surface desorption [96,97].
New additions to these approaches include trapped ion mobility (TIMS) or cyclic ion
mobility (CIM). In TIMS [98], ions generated from a single laser shot are accumulated,
trapped, and eluted without any loss. In a CIM cell, after multiple passes, the mobility
resolution of ions increases allowing ions to be selected for detection. So far, this technology
has been applied to separate three distinct isomeric pentasaccharides each with different
anomeric configurations (glycosidic linkages) [99]. Both TIMS and CIM devices greatly
improve the confidence of metabolomics identification when coupled to high resolution
accurate mass MS analysers. This portends unprecedented scales of lipidomics data where
ion identity can be ascertained based on retention time, m/z, MS/MS structural fragments
and CCS values. Matched together with the latest processing computer hardware, software
and bioinformatics tools, these new MS capabilities are promising to contribute to the
discovery of accurate metabolomics markers of PCa and supplement traditional and recent
PCa screening and prognosis platforms.

Another challenge relates to the highly complex multidimensional data sets that are
generated by spatial omics requiring advanced computational bioinformatics systems
and considerable computing power [41]. Many commercial platforms do not have all
the necessary statistical tools contained in a single program [100,101], although recently a
new program called Lipostar has incorporated spatial metabolomics data analysis [102].
Multi-omics (e.g., transcriptomics, lipidomics, proteomics) should ideally be applied to
the same or consecutive tissue slides in order to truly grasp the complexity, heterogene-
ity, intracellular signalling, and pathophysiological processes underlying prostate cancer
progression. For example, in order to validate the findings of spatial transcriptomics, the
concordance between gene expression and staining of the corresponding proteins can be
assessed in the same tissue regions [11,13]. Furthermore, models that are only based on
spatial transcriptomics data are not a direct reflection of metabolic activities, emphasis-
ing the need to incorporate other spatially resolved omics techniques, such as lipidomics
or proteomics [14]. The combination of spatial omics techniques is also challenged by
the different spatial resolutions of the various techniques and need for integration with
bulk omics data such as bulk lipidomics and single nuclei RNA-sequencing. Further de-
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velopments in technological and computational analyses will revolutionise research by
providing high-resolution mapping of expression profiles and biomolecules. As a result, it
will allow researchers to study in detail how tumour cells interact with adjacent cells or
its surrounding ECM. A current stumbling block hindering the progress of spatial omics
platforms into clinical settings is that these methods remain relatively low-throughput,
expensive, technically challenging, and still may benefit from higher spatial resolution [13].
An enduring challenge that is common to all multi-omics approaches is that advanced
methods are needed to effectively integrate data across different modalities to improve
both diagnostics and therapy.

8. Conclusions

Emerging knowledge on the rewiring of lipid metabolism in PCa, along with recent
developments in spatial omics approaches to map lipid profiles at a near single cell level
in intact tissue, provide hitherto unseen insights into the spatial heterogeneity of PCa
that likely underlies differential disease progression and therapy response. The resulting
molecular mapping of the tumour ecosystem generates unique insight into altered cellular
functions and interactions in situ with the potential to identify novel disease-specific targets
and biomarkers. The rapid adoption of spatial omics approaches in the clinical pathological
setting and the cost-effectiveness of lipid-based MS imaging compared to other spatial
omics approaches has the potential to transform and refine routine clinical decision-making,
resulting in better and more personalised patient outcomes.

Author Contributions: Conceptualization, S.M.M., X.S., J.V.S. and L.M.B.; writing—original draft
preparation, S.M.M. and X.S.; writing—review and editing, P.J.T., M.F.S., L.M.B. and J.V.S.; funding
acquisition, J.V.S. and L.M.B. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was supported by The Movember Foundation/Prostate Cancer Foundation
of Australia (MRTA3); the Australian Cancer Research Foundation (Centre for Integrated Cancer
Systems Biology); the University of Adelaide; the South Australian Health and Medical Research
Institute; and grants from the Fund for Innovative Cancer Research of the KU Leuven Cancer
Institute, KU Leuven C1, Interreq V-A EMR23 EURLIPIDS, Kom op Tegen Kanker and Stichting
tegen Kanker. S.M.M. was supported by a University of Adelaide PhD scholarship. X.S. is a research
fellow supported by the Belgian Research Council (FWO). L.M.B. is supported by a Principal Cancer
Research Fellowship (PRF1117) awarded by Cancer Council’s Beat Cancer project on behalf of its
donors, the state government through the Department of Health, and the Australian Government
through the Medical Research Future Fund.

Acknowledgments: The authors acknowledge the support by the KU Leuven Opening the Future
campaign.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Baade, P.D.; Youlden, D.R.; Krnjacki, L.J. International epidemiology of prostate cancer: Geographical distribution and secular

trends. Mol. Nutr. Food Res. 2009, 53, 171–184. [CrossRef] [PubMed]
2. Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Cancer statistics, 2010. CA A Cancer J. Clin. 2010, 60, 277–300. [CrossRef] [PubMed]
3. Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent Global Patterns in Prostate Cancer Incidence and

Mortality Rates. Eur. Urol. 2020, 77, 38–52. [CrossRef]
4. Tonry, C.; Finn, S.; Armstrong, J.; Pennington, S.R. Clinical proteomics for prostate cancer: Understanding prostate cancer

pathology and protein biomarkers for improved disease management. Clin. Proteom. 2020, 17, 41. [CrossRef] [PubMed]
5. McCullough, A.R. Sexual dysfunction after radical prostatectomy. Rev. Urol. 2005, 7 (Suppl. 2), S3–S10. [PubMed]
6. Zhang, E.; Zhang, M.; Shi, C.; Sun, L.; Shan, L.; Zhang, H.; Song, Y. An overview of advances in multi-omics analysis in prostate

cancer. Life Sci. 2020, 260, 118376. [CrossRef] [PubMed]
7. Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A.; Grading, C. The 2014 International Society of

Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns
and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [CrossRef]

8. Bostwick, D.G.; Qian, J. High-grade prostatic intraepithelial neoplasia. Mod. Pathol. 2004, 17, 360–379. [CrossRef]

http://doi.org/10.1002/mnfr.200700511
http://www.ncbi.nlm.nih.gov/pubmed/19101947
http://doi.org/10.3322/caac.20073
http://www.ncbi.nlm.nih.gov/pubmed/20610543
http://doi.org/10.1016/j.eururo.2019.08.005
http://doi.org/10.1186/s12014-020-09305-7
http://www.ncbi.nlm.nih.gov/pubmed/33292167
http://www.ncbi.nlm.nih.gov/pubmed/16985895
http://doi.org/10.1016/j.lfs.2020.118376
http://www.ncbi.nlm.nih.gov/pubmed/32898525
http://doi.org/10.1097/PAS.0000000000000530
http://doi.org/10.1038/modpathol.3800053


Cancers 2022, 14, 1702 13 of 16

9. Buyyounouski, M.K.; Choyke, P.L.; McKenney, J.K.; Sartor, O.; Sandler, H.M.; Amin, M.B.; Kattan, M.W.; Lin, D.W. Prostate
cancer—Major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA A Cancer J. Clin.
2017, 67, 245–253. [CrossRef]

10. Rycaj, K.; Cho, E.J.; Liu, X.; Chao, H.P.; Liu, B.; Li, Q.; Devkota, A.K.; Zhang, D.; Chen, X.; Moore, J.; et al. Longitudinal tracking of
subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target
the PSA-/lo castration-resistant cells. Oncotarget 2016, 7, 14220–14240. [CrossRef]

11. Berglund, E.; Maaskola, J.; Schultz, N.; Friedrich, S.; Marklund, M.; Bergenstrahle, J.; Tarish, F.; Tanoglidi, A.; Vickovic, S.; Larsson,
L.; et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat. Commun. 2018, 9,
2419. [CrossRef] [PubMed]

12. Yoosuf, N.; Navarro, J.F.; Salmén, F.; Ståhl, P.L.; Daub, C.O. Identification and transfer of spatial transcriptomics signatures for
cancer diagnosis. Breast Cancer Res. 2020, 22, 6. [CrossRef] [PubMed]

13. Bingham, G.C.; Lee, F.; Naba, A.; Barker, T.H. Spatial-omics: Novel approaches to probe cell heterogeneity and extracellular
matrix biology. Matrix Biol. 2020, 91–92, 152–166. [CrossRef] [PubMed]

14. Wang, Y.; Ma, S.; Ruzzo, W.L. Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and
selective vulnerabilities. Sci. Rep. 2020, 10, 3490. [CrossRef]

15. Drake, R.R.; Angel, P.M.; Wu, J.; Pachynski, R.K.; Ippolito, J.E. How else can we approach prostate cancer biomarker discovery?
Expert Rev. Mol. Diagn. 2020, 20, 123–125. [CrossRef]

16. Gao, B.; Lue, H.W.; Podolak, J.; Fan, S.; Zhang, Y.; Serawat, A.; Alumkal, J.J.; Fiehn, O.; Thomas, G.V. Multi-Omics Analyses Detail
Metabolic Reprogramming in Lipids, Carnitines, and Use of Glycolytic Intermediates between Prostate Small Cell Neuroendocrine
Carcinoma and Prostate Adenocarcinoma. Metabolites 2019, 9, 82. [CrossRef]

17. Corona, G.; Baldi, E.; Maggi, M. Androgen regulation of prostate cancer: Where are we now? J. Endocrinol. Investig. 2011, 34,
232–243. [CrossRef]

18. Swinnen, J.V.; Van Veldhoven, P.P.; Esquenet, M.; Heyns, W.; Verhoeven, G. Androgens markedly stimulate the accumulation of
neutral lipids in the human prostatic adenocarcinoma cell line LNCaP. Endocrinology 1996, 137, 4468–4474. [CrossRef]

19. Swinnen, J.V.; Vanderhoydonc, F.; Elgamal, A.A.; Eelen, M.; Vercaeren, I.; Joniau, S.; Van Poppel, H.; Baert, L.; Goossens, K.;
Heyns, W.; et al. Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int. J. Cancer 2000, 88, 176–179.
[CrossRef]

20. Heemers, H.; Maes, B.; Foufelle, F.; Heyns, W.; Verhoeven, G.; Swinnen, J.V. Androgens Stimulate Lipogenic Gene Expression
in Prostate Cancer Cells by Activation of the Sterol Regulatory Element-Binding Protein Cleavage Activating Protein/Sterol
Regulatory Element-Binding Protein Pathway. Mol. Endocrinol. 2001, 15, 1817–1828. [CrossRef]

21. Swinnen, J.V.; Heemers, H.; van de Sande, T.; de Schrijver, E.; Brusselmans, K.; Heyns, W.; Verhoeven, G. Androgens, lipogenesis
and prostate cancer. J. Steroid Biochem. Mol. Biol. 2004, 92, 273–279. [CrossRef] [PubMed]

22. Zaidi, N.; Lupien, L.; Kuemmerle, N.B.; Kinlaw, W.B.; Swinnen, J.V.; Smans, K. Lipogenesis and lipolysis: The pathways exploited
by the cancer cells to acquire fatty acids. Prog. Lipid Res. 2013, 52, 585–589. [CrossRef] [PubMed]

23. Butler, L.M.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and cancer:
Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev. 2020, 159, 245–293. [CrossRef]

24. van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol.
2008, 9, 112–124. [CrossRef] [PubMed]

25. Bandu, R.; Mok, H.J.; Kim, K.P. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. Mass Spectrom. Rev. 2018,
37, 107–138. [CrossRef] [PubMed]

26. Perrotti, F.; Rosa, C.; Cicalini, I.; Sacchetta, P.; Del Boccio, P.; Genovesi, D.; Pieragostino, D. Advances in Lipidomics for Cancer
Biomarkers Discovery. Int. J. Mol. Sci. 2016, 17, 1992. [CrossRef] [PubMed]

27. Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray ionization for mass spectrometry of large
biomolecules. Science 1989, 246, 64–71. [CrossRef]

28. Han, X.; Gross, R.W. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids.
Proc. Natl. Acad. Sci. USA 1994, 91, 10635–10639. [CrossRef]

29. Han, X.; Gross, R.W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass
spectrometry: A bridge to lipidomics. J. Lipid Res. 2003, 44, 1071–1079. [CrossRef]

30. Sapandowski, A.; Stope, M.; Evert, K.; Evert, M.; Zimmermann, U.; Peter, D.; Page, I.; Burchardt, M.; Schild, L. Cardiolipin
composition correlates with prostate cancer cell proliferation. Mol. Cell. Biochem. 2015, 410, 175–185. [CrossRef]

31. Ren, S.; Shao, Y.; Zhao, X.; Hong, C.S.; Wang, F.; Lu, X.; Li, J.; Ye, G.; Yan, M.; Zhuang, Z.; et al. Integration of Metabolomics and
Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in Prostate Cancer. Mol. Cell. Proteom.
2016, 15, 154–163. [CrossRef] [PubMed]

32. Lin, H.M.; Mahon, K.L.; Weir, J.M.; Mundra, P.A.; Spielman, C.; Briscoe, K.; Gurney, H.; Mallesara, G.; Marx, G.; Stockler, M.R.;
et al. A distinct plasma lipid signature associated with poor prognosis in castration-resistant prostate cancer. Int. J. Cancer 2017,
141, 2112–2120. [CrossRef] [PubMed]

33. Kiebish, M.A.; Cullen, J.; Mishra, P.; Ali, A.; Milliman, E.; Rodrigues, L.O.; Chen, E.Y.; Tolstikov, V.; Zhang, L.; Panagopoulos, K.;
et al. Multi-omic serum biomarkers for prognosis of disease progression in prostate cancer. J. Transl. Med. 2020, 18, 10. [CrossRef]
[PubMed]

http://doi.org/10.3322/caac.21391
http://doi.org/10.18632/oncotarget.7303
http://doi.org/10.1038/s41467-018-04724-5
http://www.ncbi.nlm.nih.gov/pubmed/29925878
http://doi.org/10.1186/s13058-019-1242-9
http://www.ncbi.nlm.nih.gov/pubmed/31931856
http://doi.org/10.1016/j.matbio.2020.04.004
http://www.ncbi.nlm.nih.gov/pubmed/32416243
http://doi.org/10.1038/s41598-020-60384-w
http://doi.org/10.1080/14737159.2019.1665507
http://doi.org/10.3390/metabo9050082
http://doi.org/10.1007/BF03347072
http://doi.org/10.1210/endo.137.10.8828509
http://doi.org/10.1002/1097-0215(20001015)88:2&lt;176::AID-IJC5&gt;3.0.CO;2-3
http://doi.org/10.1210/mend.15.10.0703
http://doi.org/10.1016/j.jsbmb.2004.10.013
http://www.ncbi.nlm.nih.gov/pubmed/15663990
http://doi.org/10.1016/j.plipres.2013.08.005
http://www.ncbi.nlm.nih.gov/pubmed/24001676
http://doi.org/10.1016/j.addr.2020.07.013
http://doi.org/10.1038/nrm2330
http://www.ncbi.nlm.nih.gov/pubmed/18216768
http://doi.org/10.1002/mas.21510
http://www.ncbi.nlm.nih.gov/pubmed/27276657
http://doi.org/10.3390/ijms17121992
http://www.ncbi.nlm.nih.gov/pubmed/27916803
http://doi.org/10.1126/science.2675315
http://doi.org/10.1073/pnas.91.22.10635
http://doi.org/10.1194/jlr.R300004-JLR200
http://doi.org/10.1007/s11010-015-2549-1
http://doi.org/10.1074/mcp.M115.052381
http://www.ncbi.nlm.nih.gov/pubmed/26545398
http://doi.org/10.1002/ijc.30903
http://www.ncbi.nlm.nih.gov/pubmed/28741687
http://doi.org/10.1186/s12967-019-02185-y
http://www.ncbi.nlm.nih.gov/pubmed/31910880


Cancers 2022, 14, 1702 14 of 16

34. Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.;
Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [CrossRef]

35. Uhlen, M.; Zhang, C.; Lee, S.; Sjostedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A pathology
atlas of the human cancer transcriptome. Science 2017, 357, eaan2507. [CrossRef]

36. Thul, P.J.; Akesson, L.; Wiking, M.; Mahdessian, D.; Geladaki, A.; Ait Blal, H.; Alm, T.; Asplund, A.; Bjork, L.; Breckels, L.M.; et al.
A subcellular map of the human proteome. Science 2017, 356, eaal3321. [CrossRef]

37. Bostwick, D.G.; Cheng, L. (Eds.) Urologic Surgical Pathology. In Urologic Surgical Pathology; Elsevier Health Sciences: Philadelphia,
PA, USA, 2020; pp. 415–525.e42.

38. Holzlechner, M.; Eugenin, E.; Prideaux, B. Mass spectrometry imaging to detect lipid biomarkers and disease signatures in cancer.
Cancer Rep. 2019, 2, e1229. [CrossRef]

39. Trim, P.J.; Snel, M.F. Small molecule MALDI MS imaging: Current technologies and future challenges. Methods 2016, 104, 127–141.
[CrossRef]

40. McCombie, G.; Staab, D.; Stoeckli, M.; Knochenmuss, R. Spatial and spectral correlations in MALDI mass spectrometry images by
clustering and multivariate analysis. Anal. Chem. 2005, 77, 6118–6124. [CrossRef]

41. Gessel, M.M.; Norris, J.L.; Caprioli, R.M. MALDI imaging mass spectrometry: Spatial molecular analysis to enable a new age of
discovery. J. Proteom. 2014, 107, 71–82. [CrossRef]

42. Karas, M.; Kruger, R. Ion formation in MALDI: The cluster ionization mechanism. Chem. Rev. 2003, 103, 427–440. [CrossRef]
[PubMed]

43. Knochenmuss, R. Ion formation mechanisms in UV-MALDI. Analyst 2006, 131, 966–986. [CrossRef] [PubMed]
44. Rujoi, M.; Estrada, R.; Yappert, M.C. In Situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal. Chem.

2004, 76, 1657–1663. [CrossRef] [PubMed]
45. Sun, G.; Yang, K.; Zhao, Z.; Guan, S.; Han, X.; Gross, R.W. Matrix-assisted laser desorption/ionization time-of-flight mass

spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte—Matrix interactions.
Anal. Chem. 2008, 80, 7576. [CrossRef] [PubMed]

46. Trim, P.J.; Atkinson, S.J.; Princivalle, A.P.; Marshall, P.S.; West, A.; Clench, M.R. Matrix-assisted laser desorption/ionisation mass
spectrometry imaging of lipids in rat brain tissue with integrated unsupervised and supervised multivariant statistical analysis.
Rapid Commun. Mass Spectrom. 2008, 22, 1503–1509. [CrossRef]

47. Ucal, Y.; Durer, Z.A.; Atak, H.; Kadioglu, E.; Sahin, B.; Coskun, A.; Baykal, A.T.; Ozpinar, A. Clinical applications of MALDI
imaging technologies in cancer and neurodegenerative diseases. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 795–816.
[CrossRef]

48. Agar, N.Y.; Yang, H.W.; Carroll, R.S.; Black, P.M.; Agar, J.N. Matrix solution fixation: Histology-compatible tissue preparation for
MALDI mass spectrometry imaging. Anal. Chem. 2007, 79, 7416–7423. [CrossRef]

49. Cimino, J.; Calligaris, D.; Far, J.; Debois, D.; Blacher, S.; Sounni, N.E.; Noel, A.; De Pauw, E. Towards lipidomics of low-abundant
species for exploring tumor heterogeneity guided by high-resolution mass spectrometry imaging. Int. J. Mol. Sci. 2013, 14,
24560–24580. [CrossRef]

50. Mutuku, S.M.; Trim, P.J.; Prabhala, B.K.; Irani, S.; Bremert, K.L.; Logan, J.M.; Brooks, D.A.; Stahl, J.; Centenera, M.M.; Snel, M.F.;
et al. Evaluation of Small Molecule Drug Uptake in Patient-Derived Prostate Cancer Explants by Mass Spectrometry. Sci. Rep.
2019, 9, 15008. [CrossRef]

51. Girod, M.; Shi, Y.; Cheng, J.X.; Cooks, R.G. Desorption electrospray ionization imaging mass spectrometry of lipids in rat spinal
cord. J. Am. Soc. Mass Spectrom. 2010, 21, 1177–1189. [CrossRef]

52. Takats, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass spectrometry sampling under ambient conditions with desorption
electrospray ionization. Science 2004, 306, 471–473. [CrossRef] [PubMed]

53. Duncan, K.D.; Fang, R.; Yuan, J.; Chu, R.K.; Dey, S.K.; Burnum-Johnson, K.E.; Lanekoff, I. Quantitative Mass Spectrometry
Imaging of Prostaglandins as Silver Ion Adducts with Nanospray Desorption Electrospray Ionization. Anal. Chem. 2018, 90,
7246–7252. [CrossRef] [PubMed]

54. Griffiths, J. Secondary ion mass spectrometry. Anal. Chem. 2008, 80, 7194–7197. [CrossRef] [PubMed]
55. Piehowski, P.D.; Davey, A.M.; Kurczy, M.E.; Sheets, E.D.; Winograd, N.; Ewing, A.G.; Heien, M.L. Time-of-flight secondary ion

mass spectrometry imaging of subcellular lipid heterogeneity: Poisson counting and spatial resolution. Anal. Chem. 2009, 81,
5593–5602. [CrossRef] [PubMed]

56. Samfors, S.; Fletcher, J.S. Lipid Diversity in Cells and Tissue Using Imaging SIMS. Annu. Rev. Anal. Chem. 2020, 13, 249–271.
[CrossRef] [PubMed]

57. Goto, T.; Terada, N.; Inoue, T.; Nakayama, K.; Okada, Y.; Yoshikawa, T.; Miyazaki, Y.; Uegaki, M.; Sumiyoshi, S.; Kobayashi,
T.; et al. The expression profile of phosphatidylinositol in high spatial resolution imaging mass spectrometry as a potential
biomarker for prostate cancer. PLoS ONE 2014, 9, e90242. [CrossRef]

58. Goto, T.; Terada, N.; Inoue, T.; Kobayashi, T.; Nakayama, K.; Okada, Y.; Yoshikawa, T.; Miyazaki, Y.; Uegaki, M.; Utsunomiya, N.;
et al. Decreased expression of lysophosphatidylcholine (16:0/OH) in high resolution imaging mass spectrometry independently
predicts biochemical recurrence after surgical treatment for prostate cancer. Prostate 2015, 75, 1821–1830. [CrossRef]

http://doi.org/10.1126/science.1260419
http://doi.org/10.1126/science.aan2507
http://doi.org/10.1126/science.aal3321
http://doi.org/10.1002/cnr2.1229
http://doi.org/10.1016/j.ymeth.2016.01.011
http://doi.org/10.1021/ac051081q
http://doi.org/10.1016/j.jprot.2014.03.021
http://doi.org/10.1021/cr010376a
http://www.ncbi.nlm.nih.gov/pubmed/12580637
http://doi.org/10.1039/b605646f
http://www.ncbi.nlm.nih.gov/pubmed/17047796
http://doi.org/10.1021/ac0349680
http://www.ncbi.nlm.nih.gov/pubmed/15018564
http://doi.org/10.1021/ac801200w
http://www.ncbi.nlm.nih.gov/pubmed/18767869
http://doi.org/10.1002/rcm.3498
http://doi.org/10.1016/j.bbapap.2017.01.005
http://doi.org/10.1021/ac071460e
http://doi.org/10.3390/ijms141224560
http://doi.org/10.1038/s41598-019-51549-3
http://doi.org/10.1016/j.jasms.2010.03.028
http://doi.org/10.1126/science.1104404
http://www.ncbi.nlm.nih.gov/pubmed/15486296
http://doi.org/10.1021/acs.analchem.8b00350
http://www.ncbi.nlm.nih.gov/pubmed/29676905
http://doi.org/10.1021/ac801528u
http://www.ncbi.nlm.nih.gov/pubmed/18754672
http://doi.org/10.1021/ac901065s
http://www.ncbi.nlm.nih.gov/pubmed/19530687
http://doi.org/10.1146/annurev-anchem-091619-103512
http://www.ncbi.nlm.nih.gov/pubmed/32212820
http://doi.org/10.1371/journal.pone.0090242
http://doi.org/10.1002/pros.23088


Cancers 2022, 14, 1702 15 of 16

59. Wang, X.; Han, J.; Hardie, D.B.; Yang, J.; Pan, J.; Borchers, C.H. Metabolomic profiling of prostate cancer by matrix assisted laser
desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry imaging using Matrix Coating Assisted by
an Electric Field (MCAEF). Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 755–767. [CrossRef]

60. Randall, E.C.; Zadra, G.; Chetta, P.; Lopez, B.G.C.; Syamala, S.; Basu, S.S.; Agar, J.N.; Loda, M.; Tempany, C.M.; Fennessy, F.M.;
et al. Molecular Characterization of Prostate Cancer with Associated Gleason Score Using Mass Spectrometry Imaging. Mol.
Cancer Res. 2019, 17, 1155–1165. [CrossRef]

61. Iglesias-Gato, D.; Wikstrom, P.; Tyanova, S.; Lavallee, C.; Thysell, E.; Carlsson, J.; Hagglof, C.; Cox, J.; Andren, O.; Stattin, P.; et al.
The proteome of primary prostate cancer. Eur. Urol. 2016, 69, 942–952. [CrossRef]

62. Morse, N.; Jamaspishvili, T.; Simon, D.; Patel, P.G.; Ren, K.Y.M.; Wang, J.; Oleschuk, R.; Kaufmann, M.; Gooding, R.J.; Berman,
D.M. Reliable identification of prostate cancer using mass spectrometry metabolomic imaging in needle core biopsies. Lab.
Investig. 2019, 99, 1561–1571. [CrossRef] [PubMed]

63. Banerjee, S.; Zare, R.N.; Tibshirani, R.J.; Kunder, C.A.; Nolley, R.; Fan, R.; Brooks, J.D.; Sonn, G.A. Diagnosis of prostate cancer by
desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids. Proc. Natl. Acad. Sci. USA 2017,
114, 3334–3339. [CrossRef] [PubMed]

64. Costello, L.C.; Franklin, R.B. Prostatic fluid electrolyte composition for the screening of prostate cancer: A potential solution to a
major problem. Prostate Cancer Prostatic Dis. 2009, 12, 17–24. [CrossRef] [PubMed]

65. Bader, D.A.; Hartig, S.M.; Putluri, V.; Foley, C.; Hamilton, M.P.; Smith, E.A.; Saha, P.K.; Panigrahi, A.; Walker, C.; Zong, L.; et al.
Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nat. Metab. 2019, 1,
70–85. [CrossRef] [PubMed]

66. Balaban, S.; Nassar, Z.D.; Zhang, A.Y.; Hosseini-Beheshti, E.; Centenera, M.M.; Schreuder, M.; Lin, H.M.; Aishah, A.; Varney, B.;
Liu-Fu, F.; et al. Extracellular Fatty Acids Are the Major Contributor to Lipid Synthesis in Prostate Cancer. Mol. Cancer Res. 2019,
17, 949–962. [CrossRef]

67. Kerian, K.S.; Jarmusch, A.K.; Pirro, V.; Koch, M.O.; Masterson, T.A.; Cheng, L.; Cooks, R.G. Differentiation of prostate cancer
from normal tissue in radical prostatectomy specimens by desorption electrospray ionization and touch spray ionization mass
spectrometry. Analyst 2015, 140, 1090–1098. [CrossRef]

68. Andersen, M.K.; Høiem, T.S.; Claes, B.S.R.; Balluff, B.; Martin-Lorenzo, M.; Richardsen, E.; Krossa, S.; Bertilsson, H.; Heeren,
R.M.A.; Rye, M.B.; et al. Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI. Cancer Metab. 2021, 9,
9. [CrossRef]

69. Butler, L.M.; Mah, C.Y.; Machiels, J.; Vincent, A.D.; Irani, S.; Mutuku, S.M.; Spotbeen, X.; Bagadi, M.; Waltregny, D.; Moldovan, M.;
et al. Lipidomic profiling of clinical prostate cancer reveals targetable alterations in membrane lipid composition. Cancer Res.
2021, 81, 4981–4993. [CrossRef]

70. Young, R.S.E.; Bowman, A.P.; Williams, E.D.; Tousignant, K.D.; Bidgood, C.L.; Narreddula, V.R.; Gupta, R.; Marshall, D.L.; Poad,
B.L.J.; Nelson, C.C.; et al. Apocryphal FADS2 activity promotes fatty acid diversification in cancer. Cell Rep. 2021, 34, 108738.
[CrossRef]

71. Salmén, F.; Ståhl, P.L.; Mollbrink, A.; Navarro, J.F.; Vickovic, S.; Frisén, J.; Lundeberg, J. Barcoded solid-phase RNA capture for
Spatial Transcriptomics profiling in mammalian tissue sections. Nat. Protoc. 2018, 13, 2501–2534. [CrossRef]

72. Ståhl, P.L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.; Huss,
M.; et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016, 353, 78–82.
[CrossRef] [PubMed]

73. Moncada, R.; Barkley, D.; Wagner, F.; Chiodin, M.; Devlin, J.C.; Baron, M.; Hajdu, C.H.; Simeone, D.M.; Yanai, I. Integrating
microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas.
Nat. Biotechnol. 2020, 38, 333–342. [CrossRef] [PubMed]

74. Larsson, L.; Frisen, J.; Lundeberg, J. Spatially resolved transcriptomics adds a new dimension to genomics. Nat. Methods 2021, 18,
15–18. [CrossRef] [PubMed]

75. Ke, R.; Mignardi, M.; Pacureanu, A.; Svedlund, J.; Botling, J.; Wahlby, C.; Nilsson, M. In Situ sequencing for RNA analysis in
preserved tissue and cells. Nat. Methods 2013, 10, 857–860. [CrossRef] [PubMed]

76. Chen, X.; Sun, Y.C.; Church, G.M.; Lee, J.H.; Zador, A.M. Efficient in situ barcode sequencing using padlock probe-based
BaristaSeq. Nucleic Acids Res. 2018, 46, e22. [CrossRef]

77. Ali, M.M.; Li, F.; Zhang, Z.; Zhang, K.; Kang, D.K.; Ankrum, J.A.; Le, X.C.; Zhao, W. Rolling circle amplification: A versatile tool
for chemical biology, materials science and medicine. Chem. Soc. Rev. 2014, 43, 3324–3341. [CrossRef]

78. Wang, X.; Allen, W.E.; Wright, M.A.; Sylwestrak, E.L.; Samusik, N.; Vesuna, S.; Evans, K.; Liu, C.; Ramakrishnan, C.; Liu, J.; et al.
Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 2018, 361. [CrossRef]

79. Nagarajan, M.B.; Tentori, A.M.; Zhang, W.C.; Slack, F.J.; Doyle, P.S. Spatially resolved and multiplexed MicroRNA quantification
from tissue using nanoliter well arrays. Microsyst. Nanoeng. 2020, 6, 51. [CrossRef]

80. Femino, A.M.; Fay, F.S.; Fogarty, K.; Singer, R.H. Visualization of single RNA transcripts in situ. Science 1998, 280, 585–590.
[CrossRef]

81. Raj, A.; van den Bogaard, P.; Rifkin, S.A.; van Oudenaarden, A.; Tyagi, S. Imaging individual mRNA molecules using multiple
singly labeled probes. Nat. Methods 2008, 5, 877–879. [CrossRef]

http://doi.org/10.1016/j.bbapap.2016.12.012
http://doi.org/10.1158/1541-7786.MCR-18-1057
http://doi.org/10.1016/j.eururo.2015.10.053
http://doi.org/10.1038/s41374-019-0265-2
http://www.ncbi.nlm.nih.gov/pubmed/31160688
http://doi.org/10.1073/pnas.1700677114
http://www.ncbi.nlm.nih.gov/pubmed/28292895
http://doi.org/10.1038/pcan.2008.19
http://www.ncbi.nlm.nih.gov/pubmed/18591961
http://doi.org/10.1038/s42255-018-0002-y
http://www.ncbi.nlm.nih.gov/pubmed/31198906
http://doi.org/10.1158/1541-7786.MCR-18-0347
http://doi.org/10.1039/C4AN02039A
http://doi.org/10.1186/s40170-021-00242-z
http://doi.org/10.1158/0008-5472.CAN-20-3863
http://doi.org/10.1016/j.celrep.2021.108738
http://doi.org/10.1038/s41596-018-0045-2
http://doi.org/10.1126/science.aaf2403
http://www.ncbi.nlm.nih.gov/pubmed/27365449
http://doi.org/10.1038/s41587-019-0392-8
http://www.ncbi.nlm.nih.gov/pubmed/31932730
http://doi.org/10.1038/s41592-020-01038-7
http://www.ncbi.nlm.nih.gov/pubmed/33408402
http://doi.org/10.1038/nmeth.2563
http://www.ncbi.nlm.nih.gov/pubmed/23852452
http://doi.org/10.1093/nar/gkx1206
http://doi.org/10.1039/c3cs60439j
http://doi.org/10.1126/science.aat5691
http://doi.org/10.1038/s41378-020-0169-8
http://doi.org/10.1126/science.280.5363.585
http://doi.org/10.1038/nmeth.1253


Cancers 2022, 14, 1702 16 of 16

82. Crosetto, N.; Bienko, M.; van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 2015, 16, 57–66.
[CrossRef] [PubMed]

83. Teves, J.M.; Won, K.J. Mapping Cellular Coordinates through Advances in Spatial Transcriptomics Technology. Mol. Cells 2020,
43, 591–599. [CrossRef] [PubMed]

84. Chen, K.H.; Boettiger, A.N.; Moffitt, J.R.; Wang, S.; Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA
profiling in single cells. Science 2015, 348, aaa6090. [CrossRef] [PubMed]

85. Moffitt, J.R.; Hao, J.; Wang, G.; Chen, K.H.; Babcock, H.P.; Zhuang, X. High-throughput single-cell gene-expression profiling
with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 2016, 113, 11046–11051. [CrossRef]
[PubMed]

86. Lubeck, E.; Coskun, A.F.; Zhiyentayev, T.; Ahmad, M.; Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat.
Methods 2014, 11, 360–361. [CrossRef]

87. Xia, C.; Fan, J.; Emanuel, G.; Hao, J.; Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compart-
mentalization and cell cycle-dependent gene expression. Proc. Natl. Acad. Sci. USA 2019, 116, 19490–19499. [CrossRef]

88. Liu, Y.; Yang, M.; Deng, Y.; Su, G.; Enninful, A.; Guo, C.C.; Tebaldi, T.; Zhang, D.; Kim, D.; Bai, Z.; et al. High-Spatial-Resolution
Multi-Omics Sequencing via Deterministic Barcoding in Tissue. Cell 2020, 183, 1665–1681. [CrossRef]

89. Dries, R.; Chen, J.; Del Rossi, N.; Khan, M.M.; Sistig, A.; Yuan, G.C. Advances in spatial transcriptomic data analysis. Genome Res.
2021, 31, 1706–1718. [CrossRef]

90. Jemt, A.; Salmen, F.; Lundmark, A.; Mollbrink, A.; Fernandez Navarro, J.; Stahl, P.L.; Yucel-Lindberg, T.; Lundeberg, J. An
automated approach to prepare tissue-derived spatially barcoded RNA-sequencing libraries. Sci. Rep. 2016, 6, 37137. [CrossRef]

91. Fernández Navarro, J.; Lundeberg, J.; Ståhl, P.L. ST viewer: A tool for analysis and visualization of spatial transcriptomics
datasets. Bioinformatics 2019, 35, 1058–1060. [CrossRef]

92. Andersson, A.; Bergenstråhle, J.; Asp, M.; Bergenstråhle, L.; Jurek, A.; Fernández Navarro, J.; Lundeberg, J. Single-cell and spatial
transcriptomics enables probabilistic inference of cell type topography. Commun. Biol. 2020, 3, 565. [CrossRef] [PubMed]

93. Tiwari, R.; Manzar, N.; Bhatia, V.; Yadav, A.; Nengroo, M.A.; Datta, D.; Carskadon, S.; Gupta, N.; Sigouros, M.; Khani, F.; et al.
Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nat. Commun. 2020,
11, 384. [CrossRef] [PubMed]

94. Bowman, A.P.; Bogie, J.F.J.; Hendriks, J.J.A.; Haidar, M.; Belov, M.; Heeren, R.M.A.; Ellis, S.R. Evaluation of lipid coverage and
high spatial resolution MALDI-imaging capabilities of oversampling combined with laser post-ionisation. Anal. Bioanal. Chem.
2020, 412, 2277–2289. [CrossRef] [PubMed]

95. Soltwisch, J.; Kettling, H.; Vens-Cappell, S.; Wiegelmann, M.; Muthing, J.; Dreisewerd, K. Mass spectrometry imaging with
laser-induced postionization. Science 2015, 348, 211–215. [CrossRef] [PubMed]

96. Trim, P.J.; Henson, C.M.; Avery, J.L.; McEwen, A.; Snel, M.F.; Claude, E.; Marshall, P.S.; West, A.; Princivalle, A.P.; Clench, M.R.
Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body
tissue sections. Anal. Chem. 2008, 80, 8628–8634. [CrossRef]

97. Snel, M.F. Ion mobility separation mass spectrometry imaging. In Comprehensive Analytical Chemistry; Elsevier: Oxford, UK, 2019;
Volume 83, pp. 237–257.

98. Spraggins, J.M.; Djambazova, K.V.; Rivera, E.S.; Migas, L.G.; Neumann, E.K.; Fuetterer, A.; Suetering, J.; Goedecke, N.; Ly, A.;
Van de Plas, R.; et al. High-Performance Molecular Imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) Mass
Spectrometry. Anal. Chem. 2019, 91, 14552–14560. [CrossRef] [PubMed]

99. Ujma, J.; Ropartz, D.; Giles, K.; Richardson, K.; Langridge, D.; Wildgoose, J.; Green, M.; Pringle, S. Cyclic Ion Mobility Mass
Spectrometry Distinguishes Anomers and Open-Ring Forms of Pentasaccharides. J. Am. Soc. Mass Spectrom. 2019, 30, 1028–1037.
[CrossRef]

100. Palmer, A.; Phapale, P.; Chernyavsky, I.; Lavigne, R.; Fay, D.; Tarasov, A.; Kovalev, V.; Fuchser, J.; Nikolenko, S.; Pineau, C.; et al.
FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 2017, 14, 57–60. [CrossRef]

101. Race, A.M.; Bunch, J. Optimisation of colour schemes to accurately display mass spectrometry imaging data based on human
colour perception. Anal. Bioanal. Chem. 2015, 407, 2047–2054. [CrossRef]

102. Tortorella, S.; Tiberi, P.; Bowman, A.P.; Claes, B.S.R.; Scupakova, K.; Heeren, R.M.A.; Ellis, S.R.; Cruciani, G. LipostarMSI:
Comprehensive, Vendor-Neutral Software for Visualization, Data Analysis, and Automated Molecular Identification in Mass
Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 2020, 31, 155–163. [CrossRef]

http://doi.org/10.1038/nrg3832
http://www.ncbi.nlm.nih.gov/pubmed/25446315
http://doi.org/10.14348/molcells.2020.0020
http://www.ncbi.nlm.nih.gov/pubmed/32507771
http://doi.org/10.1126/science.aaa6090
http://www.ncbi.nlm.nih.gov/pubmed/25858977
http://doi.org/10.1073/pnas.1612826113
http://www.ncbi.nlm.nih.gov/pubmed/27625426
http://doi.org/10.1038/nmeth.2892
http://doi.org/10.1073/pnas.1912459116
http://doi.org/10.1016/j.cell.2020.10.026
http://doi.org/10.1101/gr.275224.121
http://doi.org/10.1038/srep37137
http://doi.org/10.1093/bioinformatics/bty714
http://doi.org/10.1038/s42003-020-01247-y
http://www.ncbi.nlm.nih.gov/pubmed/33037292
http://doi.org/10.1038/s41467-019-14184-0
http://www.ncbi.nlm.nih.gov/pubmed/31959826
http://doi.org/10.1007/s00216-019-02290-3
http://www.ncbi.nlm.nih.gov/pubmed/31879798
http://doi.org/10.1126/science.aaa1051
http://www.ncbi.nlm.nih.gov/pubmed/25745064
http://doi.org/10.1021/ac8015467
http://doi.org/10.1021/acs.analchem.9b03612
http://www.ncbi.nlm.nih.gov/pubmed/31593446
http://doi.org/10.1007/s13361-019-02168-9
http://doi.org/10.1038/nmeth.4072
http://doi.org/10.1007/s00216-014-8404-5
http://doi.org/10.1021/jasms.9b00034

	Prostate Cancer Heterogeneity 
	Rewired Lipid Metabolism as a Source of Biomarkers and Therapeutic Targets 
	The Need for Spatial Omics Approaches 
	Experimental Approaches in Spatial Lipidomics 
	Spatial Lipidomics Applied to Prostate Cancer 
	Complementary Spatial Transcriptomics to Map Alterations in Lipid Metabolism in PCa 
	Challenges and New Developments in Spatial Lipidomics and Combined Spatial Omics Approaches 
	Conclusions 
	References

