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SUMMARY
Human brain development is underpinned by cellular andmolecular reconfigurations continuing into the third
decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex
gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative
analyses define the dynamic trajectories of each cell type, revealingmajor gene expression reconfiguration at
the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood
and identifying regulatory networks guiding cellular developmental programs, states, and functions. We un-
cover links between expression dynamics and developmental milestones, characterize the diverse timing of
when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins.
We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using
this reference, we benchmark cell identities and maturation states in organoid models. Together, this
captures the dynamic regulatory landscape of human cortical development.
INTRODUCTION

The human prefrontal cortex (PFC) does not fully mature until

well into adulthood (Molnár et al., 2019; Sydnor et al., 2021), in

a highly protracted process unique among primates (Miller

et al., 2012). Neurological executive functions rely on complex

spatial, electrical, and chemical interactions of diverse neural

cell types that mature through a coordinated process spanning

development from in utero to adulthood (Silbereis et al., 2016).

Essential processes of synaptogenesis, synaptic pruning, myeli-

nation, and plasticity during postnatal development give rise to

the functional complexity and capabilities of the mature brain
4428 Cell 185, 4428–4447, November 10, 2022 ª 2022 The Authors.
This is an open access article under the CC BY license (http://creative
(Silbereis et al., 2016). However, the molecular dynamics

driving the cellular identities and functional changes that emerge

during brain development, in particular postnatally, remain

largely unknown.

Gene expression changes throughout brain development

have been studied using bulk tissue samples (Hernandez et al.,

2012; Kang et al., 2011), and recent studies have analyzed tran-

scriptome and chromatin states at single-cell resolution at early

fetal and adult stages (Morabito et al., 2021; Nowakowski et al.,

2017; Figure S1A; Table S1A). However, there has been no sys-

tematic characterization of gene expression and chromatin

dynamics throughout the entirety of postnatal human brain
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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development. This gap spans major milestones, such as lan-

guage acquisition and development of executive functions.

Consequently, we lack a detailed understanding of the timing

and nature of gene expression and chromatin dynamics that un-

derpin these developmental processes. Here, we characterize at

single-cell resolution the gene expression and chromatin acces-

sibility changes that occur through human PFC development,

from gestation to adulthood. This enables characterization of

active pathways and their dynamics in diverse cortical cell types

throughout development, cell-type-specific maturation timing,

and prediction of the controlling cis-regulatory logic and associ-

ated factors, underpinning molecular dissection of neural cell

developmental processes.

RESULTS

A single-nucleus resolution transcriptome reference of
human brain development
We performed single-nucleus RNA-seq (snRNA-seq) profiling of

26 postmortem PFC samples from individuals spanning fetal,

neonatal, infancy, childhood, adolescence, and adult stages of

development (Figure 1A; Table S1B), providing extensive sam-

pling of stages poorly represented by previous single-cell

studies (neonatal, infant, child, and adolescent). We generated

154,748 single nuclei transcriptome profiles after quality filtering

(Figures S1C–S1F; Table S1C) and assembled an integrated

developmental reference with distinct chronological ordering of

all major neural lineages (Figure 1B). We identified 86 distinct

clusters across all developmental stages (Figure S1G) and anno-

tated them by separating nuclei into either excitatory principal

neurons (PNs), inhibitory interneurons (INs, from medial gangli-

onic eminence [MGE] or caudal ganglionic eminence [CGE]), or

glia, followed by further separation of the major clusters using

layer and subtype-specific marker genes (Figures 1C and S2A;

Tables S2A–S2C). This developmental map revealed systematic

expression changes through postnatal development (Figure 1B)

and temporal changes in cell-type abundance (Figures 1D, S1H,

and S1I), such as expansion of oligodendrocytes (ODCs) from

ODC precursor cells (OPCs) beginning in infancy and progress-

ing to adulthood (Figure 1D; Perlman et al., 2020; van Tilborg

et al., 2018).

We further identified modules representing the organized

coexpression of multiple genes in various subsets of nuclei using

hotspot (DeTomaso andYosef, 2021; Figure 1E; TableS2D). Each

module reflects cell-type-specific transcriptional changes align-
Figure 1. A single-nucleus resolution transcriptome reference of huma

(A) Schematic of developmental stages, sample ages, brain region, profiling me

mental stages: fetal (ga22 to <ga38; ga, gestational age, in weeks), neonatal (Rga

adolescence (R10 to <20 years), and adult (R20 years), as guided by Kang et a

(B) UMAP plot depicting 154,748 nuclei in 18 major clusters. Inset shows UMA

astrocytes; Micro, microglia; ‘‘dev’’ indicates early developing cells.

(C) Expression of marker genes for major cell-type annotations.

(D) Fraction of each cell type/state in each developmental stage.

(E) Hotspot eigengene module scores overlaid onto UMAP embeddings.

(F) Mean scaled and normalized expression for all genes in themodule for each clu

stages from fetal to adult in each cluster.

(G) Top 5 enriched biological process GO terms for each module.

See Tables S1 and S2.
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ing with known cell functions and processes that occur during

brain development (Figures 1E–1G). These coexpression mod-

ules represent the broad cell states and dynamics of the PFC,

capturingmajor cell typesand their functions, developmental pro-

cesses, and cell-type-specific expression changes throughout

brain development.

Cell-type-specific gene expression dynamics during
PFC development
To characterize gene expression changes throughout develop-

ment, we organized the 86 distinct subclusters into cell-type tra-

jectories. Each trajectory contains all the nuclei corresponding to

a particular cell type spanning all profiled stages. Subcluster

assignment into trajectories was based on the known cell type

and developmental markers, as well as cell neighborhoods in

the uniform manifold approximation and projection (UMAP) rep-

resentation over age progression (Figures S2A and S2B;

Table S2B; STAR Methods). We applied a hierarchical annota-

tion strategy by first separating glia, PNs, and INs, followed

by separation into the major known cell types, and then into

sub-trajectories. Our marker-based cell and cluster assignment

to trajectories was also supported by RNA velocity vector fields

(Bergen et al., 2020) and cellular trajectory reconstruction

analysis using gene counts and expression (CytoTRACE) (Gulati

et al., 2020) scores (Figure S3A; STAR Methods).

In total, 45 distinct sub-trajectories were defined that encom-

pass development into terminal cell types (Figures S2B and S2C;

Table S2B; STAR Methods). To facilitate interpretability, we

aggregated related cell trajectories into 15major cell-type trajec-

tories for further analyses (4 PN, 6 IN, 4 glial, and 1 vasculature;

Figures 2A and S2C; Table S2C). We performed differential

expression testing over development for each major trajectory

while adjusting for covariates (Law et al., 2016; Figure S4A;

STARMethods) and validated the result robustness (Figure S3C;

STAR Methods). In total, we identified 14,984 unique develop-

ment-associated differentially expressed genes (devDEGs, false

discovery rate [FDR] <5%) within at least one major trajectory

(Figures 2B and S3B; Table S3; see online browser). We identi-

fied robust markers of neural cell maturity and immaturity that

show widespread, large, and extended expression dynamics

over development (Figure S3E): KCNH1 and ARHGAP26, which

encode a voltage-gated potassium channel and a Rho GTPase

activating protein, increase progressively to become highly ex-

pressed throughout neurons, and in some glia; and BHLHE22,

encoding a transcription factor (TF) involved in embryonic neural
n PFC development

thods, and libraries generated in this study. Ages used to define the develop-

38 to <2months), infancy (R2months to <1 year), childhood (R1 to <10 years),

l. (2011).

P with each nucleus colored by the arcsinh transformation of its age. Astro,

ster and developmental stage. x axis depicts major clusters and developmental
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cell fate determination and differentiation (Dennis et al., 2019), is

abundant in fetal PNs and decreases rapidly after birth. These

genes more effectively represent dynamic markers of neural

cell maturity and immaturity than the commonly used markers

SOX2 and RBFOX3 (encoding NeuN) (Figure S3E). devDEG dy-

namics were consistent with developmental changes in expres-

sion detected for these markers by RNAscope in situ hybridiza-

tion (Figures 2D, S3D, and S3E), and for larger sets of dynamic

genes identified in a previous developmental RNA-seq study of

bulk PFC tissue (Li et al., 2018; Figure S3F).

To examine the absolute rate of change in expression over

development, we fit trends to the devDEGs using a generalized

additive model (GAM) (Trapnell et al., 2014). This revealed rapid

rate changes from the prenatal period to 1 year of age, before

tapering off into childhood (Figure 2C), similar across all cell

types and consistent with bulk PFC tissue analyses (Colantuoni

et al., 2011; Kang et al., 2011). Acceleration of expression peaks

at birth for all cell types (Figure 2C), indicating that an increase in

rates of change in expression coincides with this major event.

Regularization of spacing between ages, to account for dispa-

rate timescales (days versus years), revealed that ODCs exhibit

an increase in the rate of change peaking in childhood, which ta-

pers off in early adolescence (Figure S3G), corresponding well to

established timelines for cortical synaptogenesis (Huttenlocher

and Dabholkar, 1997).

The human brain continues to mature into the 3rd decade of

life; however, the timing of when each cell type attains an

adult-like transcriptional state is unknown. Therefore, for each

cell-type developmental sub-trajectory, we determined the

timing of the cumulative acquisition of an adult-like gene expres-

sion state by approximating the maturity of each nucleus based

on the portion of its nearest neighbors that were from adult sam-

ples (Figure 2E; STAR Methods). This revealed surprising diver-

sity in maturation timing across cell types. PNmaturation mirrors

the inside-out developmental pattern of the cortex, with the

development starting with deep-layer neurons and ending with

upper-layer neurons (Agirman et al., 2017). PNmaturation timing

clustered into three timeline categories, with waves of matura-

tion starting in infancy, childhood, and adolescence (Figure 2F).

Deep-layer L5/6-TLE4 subtypes and L4-RORB-MME show

acquisition of adult-like features starting in infancy, potentially

reflective of their roles in forming early sensory-related circuits

with thalamic axons (Kostovi�c and Judas, 2010). L5/6-THEMIS

subtypes and L4-RORB-LRRK1 display an increase in matura-

tion in childhood coinciding with a transition in neural networks

from local intra-cortical connections to more distal inter-regional
Figure 2. Cell-type-specific gene expression and maturation dynamics

(A) UMAP plot with each nucleus colored by the arcsinh transformation of its don

(B) Number of devDEGs detected in each major trajectory.

(C) Absolute mean rates of change over development of devDEGs (top) and acc

(D) RNAscope in PFC tissue for four ages spanning maturation (left), detecting: ma

marked by BHLHE22 (gray). DAPI counterstain (blue, nuclei). Pseudo-bulked sn

markers (right).

(E) Heatmap of scaled (0–1) cumulative sum of proportion of nearest neighbors t

(F) As per (E), but for PN sub-trajectories only, with rows hierarchically clustered

(G) Scaled (0–1) expression of the devDEGs clustered into 14 ‘‘gene trends.’’ Fa

devDEGs in the trend. Gene trends are grouped into four general classes. Bar plo

trend. Selected enriched GO terms and major trajectories they are enriched in ar

4432 Cell 185, 4428–4447, November 10, 2022
connections (Supekar et al., 2009). Lastly, layer L2/3 and L4-

RORB-MMT begin maturation in adolescence during a period

of increased cortical myelination (Arain et al., 2013; Guillery,

2005). Unlike PNs, INs reach adult-like identities in an order

that does not reflect their birthdate, where MGE neurogenesis

precedes CGE (Miyoshi et al., 2010). Despite broad similar-

ities among sub-trajectories within MGE and CGE cell types,

differing maturation timescales are evident. For example, the

parvalbumin-expressing (PV)-somatostatin-expressing (SST)

sub-trajectory acquires adult-like features later than its MGE

peers, and vasoactive intestinal polypeptide-expressing (VIP)-

DPP6 neurons show accelerated maturation within the CGE

sub-trajectories.

To further investigate the diversity and timing of expression

dynamics over development, we clustered the devDEGs into

14 ‘‘gene trends’’ (Figure 2G; STAR Methods). We also catego-

rized these into four general developmental gene trends:

up, transiently up, transiently down, and down (Figure 2G;

Table S3). These gene trends reveal complex and diverse

expression dynamics from gestation to adulthood, associated

with different cell types and processes critical for brain develop-

ment and function (Figure 2G; Table S4).

Although all cell types showed similar rates of change (Fig-

ure 2C), we posited that divergent dynamics could exist within in-

dividual processes relevant to distinct neural cell functionalities.

Thus, we calculated the weighted average of expression dy-

namics throughout development (the ‘‘eigentrend’’) of devDEGs

enriched in manually curated gene ontologies for each major cell

trajectory. This revealed diverse cell-type-specific develop-

mental dynamics of genes involved in key neural function and

development processes (Figure 3A).

The ‘‘neuron migration’’ eigentrend peaks during the third

trimester before declining at birth (Figure 3A), concordant with

the known timeline of IN migration (Arshad et al., 2016). ID2

INs show expression through to adulthood, longer than other

cell types (Figure 3A), suggesting ID2 INsmay undergo extended

migration beyond infancy (p value % 1.8 3 10�11; Table S2E).

This could represent a longer migration of these IN subtypes

than was previously shown, where a subset of indeterminate

INs migrate until at least 5 months postnatally (Paredes

et al., 2016).

Two distinct programs of ‘‘neuron projection development’’

are evident for PNs (Figure 3A). L4-RORB and L5/6-TLE4 PN

eigentrends peak in fetal development, coinciding with known

timing of thalamic axons reaching the cortical plate of the

neocortex and forming early sensory-related circuits (Kostovi�c
across PFC development

or age. Arrows indicate the major trajectories.

eleration of expression of devDEGs (bottom), for each major trajectory.

ture cells marked by KCNH1 (green) and ARHGAP26 (red), and immature cells

RNA-seq log2 counts per million (CPM) expression trend across ages for the

hat are nuclei from the adult developmental stage across sample ages.

.

int lines show the individual devDEGs, and bold line is the average across all

ts indicate the percentage of devDEGs from each major trajectory in each gene

e shown.
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Figure 3. Neurodevelopmental processes and milestones with distinct cell-type-specific dynamics

(A) Eigentrend values for devDEGs in selected GO terms over development in different cell-type trajectories.

(B) Log2 CPM expression of FGF13 in major trajectories for each developmental stage, and log2 CPM expression of NDNF in each major trajectory (right) and for

each developmental stage for ID2 neurons (bottom).

(legend continued on next page)
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and Judas, 2010; Kostovi�c et al., 2019). In contrast, L2/3-CUX2

and L5/6-THEMIS show maximum eigentrend values after birth,

reflecting the increasing concentration of local projections at this

time (Kostovi�c et al., 2019). The ‘‘synapse organization’’ eigen-

trends also suggest earlier activity in L4 and L5/6-TLE4 than in

L2/3 and L5/6-THEMIS neurons (Figure 3A; Table S2E; p value

% 8.6 3 10�7).

As ID2 INs show expression through later postnatal stages for

‘‘neuron migration,’’ ‘‘neuron projection development,’’ and

‘‘synapse organization,’’ which share 35 genes. Of these, we

identified FGF13, a factor critical for neuronal migration, polari-

zation, and development of axons (Wu et al., 2012). FGF13 is

highly expressed in the early postnatal (P7) cerebral cortex in

mice, significantly lower by P14, and markedly reduced by early

adulthood (P60) (Wu et al., 2012). Surprisingly, we found that

FGF13 is highly expressed in a subset of human cortical neurons

through to adulthood, in particular in several IN subtypes,

including ID2, LAMP5-NOS1, PV-SCUBE3, and PV (Figure 3B).

To validate this protracted FGF13 expression, we focused on

NDNF+ ID2s, as these ID2 neurons can be unambiguously de-

tected based on NDNF expression throughout development

(Figure 3B). RNAscope confirmed that NDNF+ ID2 neurons ex-

pressing FGF13 are detectable in the human PFC throughout

development, including into adulthood (Figure 3C), potentially

reflecting ongoing plasticity in a subset of neurons.

Myelination is vital for brain function, allowing fast transmission

of electrical signals along axons (Duncan et al., 2021; Williamson

and Lyons, 2018). Analysis of the ‘‘ensheathment of neurons’’

eigentrend identified expression linked to myelination processes

through development to adulthood, and more evident in deep-

layer PNs as observed in neuroimaging studies (Whitaker et al.,

2016) (Figure 3A). ODCs and multiple neuronal subtypes (L5/6-

TLE, L5/6-THEMIS, and PV) exhibit increased ensheathment of

neurons values spanning childhood to adulthood, suggesting co-

ordinated gene expression in these cell types underpinning the

increased myelination during adolescence (Figure 3A). Because

myelination requires adaptive cell-to-cell communication be-

tween neurons and ODCs, we investigated cell-cell communica-

tion networks through development (Hou et al., 2020). We found

that the expression of ligands for ODCs and respective receptors

in PNs begins in the neonatal stage and increases through to

adulthood, indicating reinforcement of communication through

changes in regulatory networks (Figure S3H). Through develop-

ment,weobservedifferential expressionof genesencoding inter-

acting cell adhesion receptors and their cognate ligands in ODCs

and PNs, such as PTPRD and NTRK3 (Figure S3I).

Eigentrends for ‘‘ion transport’’ show peak values during early

infancy for most PNs, coincidingwith synaptogenesis (Figure 3A;

Huttenlocher and Dabholkar, 1997). Later onset during child-

hood is seen in L2/3 PNs and extends into adolescence in

some CGE-derived INs (VIP, ID2), but not in MGE-derived INs

(SST, PV), which resemble PNs from deep cortical layers. The

difference between MGE- and CGE-derived INs could stem
(C) RNAscope of NDNF (red) and FGF13 (green) in PFC sections of representativ

(D)Expressiondynamicsofgenes linked tomilestonesofhumanbraindevelopment a

milestone onset/development. Individual plots show expression of genes (log2 CPM

types, supported as per Table S1G.

4434 Cell 185, 4428–4447, November 10, 2022
from known differences in developmental timing of migration

patterns or their role in PN regulation (Molnár et al., 2019).

Further analysis of ion transporter expression dynamics revealed

enrichment of general gene trends for different types of ion trans-

porters, with potassium ion transporters following an up gene

trend for a majority of neurons starting from the neonatal period

(Figure S3J).

We next explored the dynamics of genes linked to cellular and

functional milestones of human brain development (Figure 3D).

Inspecting genes linked to developmental and cognitive abilities,

we identified neuronal subtypes in which gene upregulation

temporally coincides with emergence of these capabilities (Fig-

ure 3D). For example, expression of GRM8, linked to response

inhibition (Bauer and Covault, 2020), peaks in subtypes including

some SSTs and L2/3s, coincident with the development of this

capability from �2 to 8 years.

Together, these analyses identify diverse expression

dynamics associated with known cellular and developmental

processes in all cell types, spanning gestation to adulthood.

Interneuron emergence, dynamics, and specialization
through development
MGE- and CGE-derived INs exhibit diversity in transcriptional

programs and function (Lim et al., 2018; Zecevic et al., 2011).

Our profiling enabled detailed exploration of the origins, emer-

gence, dynamics, and specialization of IN subtypes throughout

human development. We identified 31 distinct IN subtypes/

states (Figure 4A), with clusters expressing known IN subtype-

specific markers (Figures 4B–4D). MGE- and CGE-derived sub-

types exhibited distinct transcriptional profiles in adults, with

MGE subtypes showing greater heterogeneity between each

other than adult CGE subtypes (Figure 4E). We also identified

rare GABAergic IN populations, including an NPY- and NOS1-

expressing SST population (SST-NPY), representing only �1%

of INs, which we validated by RNAscope (Figures 4A and 4C).

In mice, NPY-, NOS1-, and SST-expressing neurons project to

other neocortical regions and are active during sleep (Lim

et al., 2018). We also identified and independently validated

another rare cell population that shares characteristics of both

PV and SST subtypes (PV-SST) (Figures 4A and 4D). In mice,

multipolar bursting interneurons with characteristics of PV and

SST subtypes have been observed that exhibit narrow action po-

tentials, such as fast spiking PV, but have a preference for den-

dritic postsynaptic targets, such as SST (Blatow et al., 2003;

Thomson and Lamy, 2007).

To visualize the development of sub-trajectories, we overlaid

the UMAP with scVelo velocity vector fields (Bergen et al.,

2020). Although vectors largely agree with age progression,

some disjunct patterns are visible (Figure S4B). To more explic-

itly compare transition vectors and development, we introduce

UMAP of maturation (UMAT), which limits UMAP neighbor selec-

tion to cells from adjacent developmental stages (Figures 4F and

S4C). UMAT vector field overlays agree with age progression
e ages of each developmental stage. DAPI counterstain (blue, nuclei).

ndcognition.Horizontal timelinesandgraphshading indicateapproximateageof

; dot: individual sample; line: GAM fit) linked to specific milestones in select cell
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and allow visualization of developmental trajectories of the

diverse IN subtypes.

Neurogliaform cells (NGFCs), marked by LAMP5 expression,

are found throughout the cortex and likely refine cortical circuits;

however, the developmental origins of human cortical NGFCs

are not well understood (Overstreet-Wadiche and McBain,

2015). UMAT-based sub-trajectory analysis suggests that an

MGE-derived LAMP5+ population (NOS1) exists and differs in

its origin from the other two LAMP5+ populations (CGE-derived

CCK and NDNF; Figures 4A and 4F). Moreover, transition prob-

abilities calculated from CellRank scVelo and CytoTRACE ker-

nels indicate a high transition probability from developing MGE

cells (MGE dev) to LAMP5-NOS1, and from developing CGE

cells (CGE dev) to LAMP5-CCK, supporting distinct develop-

mental origins and trajectories (Figures 4G, S4D, and S4E). Dif-

ferential expression analysis of TFs between NOS1 and CCK

sub-trajectory populations revealed TFs known to be specifically

expressed in MGE- versus CGE-derived neurons (Figure 4H;

Table S2F; Long et al., 2009), supporting their independent

developmental origins. Finally, RNAscope demonstrated the ex-

istence of LAMP5+ cells co-staining for classical MGE (LHX6)

and CGE (ADARB2) markers (Figures 4B and 4I).

Vector field projections also suggest convergence of the

NOS1 and CCK subtypes at the adult stages (Figures 4F and

S4D), potentially due to shared environmental cues and func-

tion. Molecular convergence of these subtypes is illustrated in

several ways. Initially disparate expression of the MGE-derived

cortical IN marker NXPH1 and mineralocorticoid receptor

NR3C2 becomes similar postnatally (Figure 4J). Furthermore,

given the ion transport eigentrend differences between MGE-

and CGE-derived INs (Figure 3A), we further analyzed these

in the NGFC sub-trajectories. In NOS1 INs, the ion transport ei-

gentrend begins earlier than in other subtypes (Figure S4F),

likely due to earlier migration of MGE- than CGE-derived INs

(Lim et al., 2018). However, from infancy onward the eigen-

trends are similar, further supporting subtype convergence.

Finally, based on gene expression, adult NOS1 and CCK pop-

ulations are more similar to MGE-derived IN populations,

whereas NDNF are more similar to other CGE-derived popula-
Figure 4. Interneuron emergence, dynamics, and specialization throug

(A) UMAP plot of 27,561 IN nuclei annotated with 31 cell subtype labels, based on

of entire dataset. Red boxes indicate cell populations featured in (C)–(J).

(B) UMAP plot annotated by major IN cell states/types. Normalized expression o

(C) Expression (ln CPM) of SST-NPY population markers in SST subtypes (left).

tecting: NPY (green), NOS1 (red), and TACR1 (gray). DAPI counterstain (blue, nu

(D) Expression (ln CPM) of marker genes for the PV-SST population (left). RNAsc

staining SST INs, and KIAA1199 (red) and FAM19A4 (gray) staining PV INs. PV-SS

SST neurons (SST+ KIAA1199+ FAM19A4+); green, SST (SST+); red, PV (KIA119

(E) Pearson correlation between gene expression of IN subtypes in the adult stag

(F) UMAP of maturation (UMAT) overlaid by the arcsinh age of each nucleus (left),

right). scVelo vector fields projected onto UMATs with colorations of LAMP5-NO

(G) Probability mass flow plots from a CellRank velocity kernel for outflows to

combined CGE-dev and ID2-dev clusters (top) and MGE-dev cluster (bottom).

(H) Expression differences (log2 CPM fold change) between TFs in LAMP5-NOS1 a

TFs are displayed.

(I) RNAscope validation of a LAMP5+ cell population expressing both MGE- and

(green) and LAMP5 (red); MGEmarker LHX6 (gray). DAPI (blue, nuclei). Arrowhead

cells; yellow, ADARB2+ LAMP5+ cells. Right: selected magnified examples of the

(J) Expression (log2 CPM) of NXPH1 and NR3C2 across development. Dot: samp
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tions (Figure 4E). MGE-derived NGFCs are implicated in mem-

ory consolidation during non-REM sleep (Valero et al., 2021).

Based on devDEG similarities, including ion channel expression

and sub-trajectory analysis, we speculated that these subtypes

could share a similar function. DEGs between the adult cells of

each subtype (NOS1 and CCK) compared with all other IN sub-

types are enriched in memory-related processes in the adult

NOS1 and CCK subtypes (Table S2G), suggesting that the

CGE-derived population may have a similar function in memory

consolidation. In contrast, the NDNF subtype likely corre-

sponds to canopy cells located in L1 based on marker expres-

sion (Figures S4H and S4I; Hodge et al., 2019; Schuman et al.,

2019) and shows localization at the edge of cortical sections

(Figure S4G).

Together, this provides a detailed molecular characterization

of human postnatal cortical IN development, revealing subtype

features and possible functional convergence of NGFC subtypes

with different origins.

A single-nucleus resolution chromatin accessibility map
of human PFC development
To investigate the cis-regulatory elements (CREs) that govern

the expression dynamics underpinning PFC development, we

performed single-nucleus chromatin accessibility profiling (snA-

TAC-seq) of 17 postmortem PFC samples (16 matching the

snRNA-seq samples) from the same developmental stages

(Figure 1A; Tables S1B and S1E). We generated chromatin

accessibility profiles for 87,339 individual nuclei after quality

filtering (Table S1E), which clustered into 12 major cell states

over development using label transfer from the snRNA-seq

(Figures 5A and S5A–S5F). UMAP representation revealed

chronological ordering within neuronal cell types, representing

progression of regulatory programs across development (Fig-

ure 5A inset), and age-related cell-type proportion changes

(Figures 5B and S5E).

As described for the snRNA-seq, we grouped cell types/states

into trajectories spanning development and identified 252,606

open chromatin regions (OCRs) across all trajectories, revealing

extensive cell-type- and developmental-stage-specific OCRs.
h development

gene expression. Inset shows the location of IN nuclei in UMAP representation

f well-established IN subtype markers projected onto IN UMAP embedding.

RNAscope validation (right) of the SST-NPY population in 2-day-old PFC, de-

clei). Dotted box indicates magnified example shown below.

ope validation of the PV-SST population in 6-year-old PFC (right): SST (green)

T neurons show all three markers. DAPI (blue, nuclei). Arrowheads: yellow, PV-

9+ FAM19A4+). Middle panel shows magnification of colored boxes on right.

e.

and UMAT overlaid by select subcluster colorations (CGE-dev and MGE-dev,

S1 and LAMP5-CKK subclusters.

LAMP5-NOS1 or LAMP5-CCK clusters across developmental stages from

nd LAMP5-CCK populations within the infancy to adult stages. Only significant

CGE-population markers in 8-year-old PFC, detecting: CGE markers ADARB2

s: orange, nuclei co-staining for all 3 markers; white, LHX6+ cells; red, LAMP5+

section locations indicated by dashed boxes and roman numerals on the left.

le; line: GAM fit.
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For example, MYRF, encoding a TF required for myelination,

has a promoter OCR with high accessibility in ODCs starting in

childhood, coinciding with myelination and MYRF expression

(Figures 5C and S5G; Bujalka et al., 2013). OCRs overlap most

strongly with predicted ENCODE brain enhancers (39%–50%)

(Ernst and Kellis, 2017) but show negligible intersection

(<0.1%) with predicted heterochromatin (Figures 5D and S5H)

and are enriched in promoters (10%), introns (55%), and exons

(10%; Figure S5I), supporting the OCR validity.

OCR accessibility trends over development for all major cell

trajectories are similar to those in the snRNA-seq (Figure 5E).

Neuronal trajectories show the greatest change in accessibility

between neonatal and infancy stages, and to a lesser extent be-

tween infancy and childhood. In contrast, accessibility changes

in ODCs are most pronounced between childhood and adoles-

cence (Figure 5E), supporting the protracted myelination

processes observed by snRNA-seq (Figure 3).

We matched snATAC-seq nuclei to their nearest neighbor in

the snRNA-seq data, enabling identification of putative CREs

where the change in accessibility and expression of a nearby

gene (<250-kb distance; Figure 5F) are correlated (Granja et al.,

2019). Across the trajectories, we identified 304,741 CRE-gene

pairs that represent potential regulatory interactions, with a me-

dian of 5 unique CREs linked to each gene, a long-tailed distribu-

tion of link number (Figure S5K), and 84% of CREs located >1 kb

from their respective gene (Figure 5G). ClusteringCRE-gene pairs

into groups by CRE accessibility similarity revealed seven groups

specific to neuronal cell types at different developmental stages

(Figure 5H). For example, a mature PN group (C9) is linked to pro-

cesses including learning andmemory, cognition, and potassium

ion transport, supporting the importance of such transporter up-

regulation for mature PNs. CREs in this group are enriched for

motifs of TFs involved in cell survival, such as SP1 and SP3 (Fig-

ure S5L; Gao et al., 2009; Liang et al., 2013).

As CREs are identified mainly by variation across cell types,

we assessed whether changes in CRE accessibility reflected

gene expression dynamics. For all snRNA-seq gene trends, we
Figure 5. A single-nucleus resolution chromatin accessibility map of h
(A) UMAP of 87,339 nuclei based on chromatin accessibility (snATAC-seq), ann

donor age.

(B) Percentages of cell types/states for each developmental stage.

(C) snATAC-seq signal at MYRF for each trajectory and developmental stage.

promoter.

(D) Proportion of peaks overlapping chromHMM-predicted enhancers, heteroch

(E) First principal component of accessibility in OCRs for each trajectory across

(F) CRE identification strategy: pseudo-bulks of matching snRNA-seq and snA

transcriptional start sites (TSSs, <250 kb) of respective gene.

(G) Distribution of the distance between CREs to the nearest TSS of their linked ge

(>1,000 bp).

(H) Heatmap of CRE accessibility (right) and expression (left) of linked CRE-gene

clustered into groups. CRE-gene pairs assigned to only one group are shown (n

charts for selected groups.

(I) Average of normalized snATAC-seq Tn5 insertions per kilobase per million read

in each gene trend.

(J) Enrichment of TF motif similarity modules in CREs linked to devDEGs in each s

TF motif similarity modules enriched in <5 gene trends are displayed. Bias correc

binding site (bottom).

(K) Enrichment of TF motifs in CREs linked to devDEGs in the ion transporter GO

similarity modules (motif family indicated on x axis). Color represents adjusted p
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observed that their linked CRE accessibility recapitulated their

expression trend over development (Figure 5I). To predict tran-

scriptional regulators of these expression dynamics, we tested

for TF motif enrichment in CREs linked to particular gene trends

(Figure 5J; Table S5C). Genes with slowly decreasing trends

(G11–13, ‘‘down’’) are enriched in developmental TF motifs,

such as POU2F1. Further trajectory-specific analysis showed

that POU2F1 enrichment is restricted to neurons (Figure S6A;

Table S5D), mirroring findings in early human fetal development

(Domcke et al., 2020). STAT3, a TF involved in neurite outgrowth

(Ihara et al., 1997), is enriched in transiently up gene trends in

all major trajectories (Figure 5J). Gene trends with rapidly

increasing expression through development (G4, ‘‘up’’) are en-

riched for TFs in the CCAAT/CEBP family, which plays an essen-

tial role in memory (re)consolidation (Arguello et al., 2013),

whereas other members, such as TEF, have been associated

with major depressive disorder (Hua et al., 2014). TF footprinting

analyses further supported the presence of these TFs at the pu-

tative CREs (Figure 5J). We used the predicted TF binding sites

to construct cell type- and stage-specific regulatory networks

(Figure S5M), revealing a central role for NTRK3 in PNs for

ensheathment of neurons during infancy and adolescence.

We leveraged our devDEG gene trends (Figure 2) to investigate

trajectory-specific TF enrichment in CREs for devDEGs linked to

ion transport (Figure 5K). This identified bZIP family TFs, in partic-

ular FOS and JUN that dimerize to form the AP-1 complex (Shau-

lian and Karin, 2002), as potential regulators of transcriptional pro-

gramswith increasingexpressionoverdevelopment inall neuronal

trajectories (Figure 5K). FOS and JUN function in activity-depen-

dent transcriptional control of neural circuitry form and function

and support higher cognitive functions (Yap and Greenberg,

2018). Although the predicted regulators of developmentally upre-

gulated ion transporter expression programs showed substantial

commonality inMGEandupper-layer PN trajectories, theCGE tra-

jectory appears to be governed by TF regulatory networks shared

with deeper layer PN trajectories (Figure 5K), supporting differ-

ences observed by snRNA-seq. Collectively, this validates our
uman PFC development
otated by cell type/state. Inset UMAP depicts nuclei colored by their sample

Peaks in boxes exemplify stage- and trajectory-specific dynamics. Red box:

romatin, and promoters across fetal and adult human tissues.

developmental stages.

TAC-seq nuclei used to correlate expression and accessibility in peaks near

nes, and proportion classified as genic (0 bp), proximal (1–1,000 bp), and distal

pairs (rows) across 400 pseudo-bulks of snRNA-seq and snATAC-seq nuclei,

= 707). Enriched GO terms and cell-type and stage composition shown in pie

s mapped (IPKM) across developmental stages for all CREs linked to devDEGs

nRNA-seq gene trend. Color indicates summarized adjusted p value (top). Only

ted ATAC-footprints for SOX10, POUF21, and TEF centered around the motif-

term for general gene trends and major trajectories. TF motifs are summarized

value.
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Figure 6. Cell-type- and dynamics-resolved brain-related disease associations and their regulatory drivers

(A) Enrichment of known disease genes for neurological and psychiatric disorders and three control diseases (DisGeNet) in general gene trends across cell type

trajectories. Color represents the adjusted p value.

(B) Enrichment of TF motifs in linked CREs for significant combinations of general gene trend and disease. TF motifs are summarized to the TF motif similarity

modules. Color represents adjusted p value. TF motif family indicated on the x axis.

(C) TF binding regions: average of normalized snATAC-seq Tn5 IPKM (snATAC-seq reads) in L5/6 trajectory nuclei over development in CREs with a FOS/JUND

motif linked to genes from up gene trends, and that are associated with bipolar disorder. Expression: log2 CPM ofMCTP1 over development in L5/6 neurons (dot:

sample; line: GAM fit). CRE region: snATAC-seq signal at a CRE with FOS/JUND motifs (indicated by vertical gray bar) and linked toMCTP1. Browser: snATAC-

seq signal over developmental stages at MCTP1, with linked CRE highlighted.
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observations from the snRNA-seq and reveals cell-type-specific

regulatory programs of postnatal brain development.

Cell-type- and dynamics-resolved disease associations
and their regulatory drivers
Symptoms for many neurological and psychiatric diseases

manifest or worsen at distinct ages, suggesting the involvement
of dynamically regulated cellular processes in development.

To test for cell type and developmental dynamics contribution

to disease, we used our atlas to explore developmental dis-

ease-gene associations. Assessing enrichment of brain-dis-

ease-associated genes with devDEGs enabled us to identify

potentially causative cell types and predict expression dynamics

that may indicate when their dysregulation is relevant to disease.
Cell 185, 4428–4447, November 10, 2022 4439
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Of the 23 diseases analyzed, all show associations with cell-

type-specific gene expression trends, except for three blood dis-

orders included as negative controls (Figure 6A). The majority

(80%) of associated expression trends have up or transiently

up dynamics, demonstrating that developmental upregulation

of these disease-gene functions is important. The dynamics of

individual genes potentially indicates the developmental timing

of their dysfunction relevant to diseasemanifestation (Figure 6A).

Enrichment for the analyzed neurodevelopmental diseases

covers all general gene expression trends and almost all cell

types. For example, autism spectrum disorder (ASD) shows

enrichment for most cell types and dynamics, reflecting the dis-

ease complexity (Figure S6B). Multiple disorders that typically

occur later in life (dementia, mild cognitive disorder, amnesia,

and Huntington’s disease) are enriched predominantly for genes

transiently upregulated during postnatal development in PN and

IN subtypes (Figure 6A) and highly enriched for roles in synaptic

signaling (Table S5G). This suggests that disruption of synaptic

functions refined during postnatal brain maturation is linked to

cognitive disorders of later life.

TFs may play an important role in mediating the temporally

defined onsets of these diseases through their regulation of

disease-linked genes. For the significant disease associations,

we predicted TFs regulating the developmental expression

changes by motif enrichment analysis in the CREs linked to the

known disease genes of the relevant gene trend (Figure 6B;

Table S5F). Perturbation of regulatory activities of such TFs

may cause cell-type- and developmental stage-specific dysregu-

lation leading to disease. This revealed a potential role of the AP1/

1 and CREB/AFT/1 TF motif families, which includes FOS and

JUN, in many brain diseases (Figure 6B). Especially interesting

is the association of FOS and JUNwith impaired cognition across

multiple PNs, as these TFs have been linked to learning andmem-

orymechanisms (Gass et al., 2004). Further analysis revealed that

genes associated with bipolar disorder are upregulated during

development in L5/6 PNs and linked to CREs enriched for the

binding motif of FOS and JUND (Figures 6A and 6B), which are

known to be regulated by common bipolar medications (Gao

et al., 2021). For example, the bipolar-associated gene MCTP1

(Scott et al., 2009) is upregulated after birth in L5/6 PNs, has an
Figure 7. A reference for cell developmental analysis in health, diseas

(A) UMAP plot overlaid with sample nuclei age (left) and cell type labels (right).

(B) Distributions of age prediction for query astrocyte and L2/3 PN nuclei from con

443 days).

(C) Projection onto reference of nuclei from snRNA-seq of ga39, and 261- and 44

D and F).

(D) Projection of glioblastoma snRNA-seq nuclei.

(E) Microscopic images of human cerebral organoids cultured for 9 months, sho

dendrites (MAP2+, red) on top left, and detailed views on right. RNAscope in 3-

DAPI counterstain (blue, nuclei). Scale bars, 100 mm.

(F) Projection onto reference of nuclei from snRNA-seq of human cerebral organ

(G) Projection of all organoid snRNA-seq indicating location of PNs reaching po

expressed gene (DEG) analysis between postnatally mature (purple) and immatu

(bottom). See also Table S6C.

(H) Projection of all organoid snRNA-seq indicating location of postnatally mature

(top left). Volcano plot: DEG analysis between postnatally mature PNs in normal b

brain PNs (bottom left). Ranking of TFs upregulated in brain PNs by z score of n

dicates if TF is a devDEG of an indicated general gene trend. TF family specified

See also Table S6E.
intronic linked CRE that gains accessibility from infancy onward,

and contains a FOS/JUND-binding motif (Figure 6C). This exem-

plifies how our atlas of PFC development can yield insights into

regulatory drivers and implicated cell types in brain disorders.

A reference for cell developmental analysis in health,
disease, and organoid models of maturation
We also leveraged our atlas to enhance interpretation of

additional snRNA-seq analyses of the PFC and its in vitro

models, modifying a transfer learning strategy (Lotfollahi et al.,

2022) to stably integrate additional snRNA-seq datasets into

our reference. We first integrated neurotypical control samples

from snRNA-seq characterization of the PFC in ASD (Velmeshev

et al., 2019), correctly predicting the original cell-type assign-

ment (>86% accuracy; Figures 7A, S7A, and S7B). We next

investigated whether this strategy would enable prediction of

developmental state, restricting predictions to astrocytes or

L2/3 PNs as they represent the most well-captured develop-

mental trajectories (Figure 1D; Table S3O). For the 4–22 years

Velmeshev et al. (2019) samples, predicted ages and actual

ages correlate well (Spearman correlation = 0.77 for astrocytes,

0.59 for L2/3 PNs; Figure 7B). We also generated and integrated

three additional PFC samples (Table S1B), from donors 261 and

443 days of age and gestational age (ga, in weeks) 39. We

correctly estimated their developmental stages using predicted

astrocyte nuclei ages (Figure 7B), whereas using L2/3 PNs we

predicted that the ga39 sample was neonatal (Figures 7B and

7C). Our strategy shows improved age prediction accuracy

and technical variability robustness (Figures S7C and S7D), al-

lowing confident assessment of maturity.

We also explored prediction of cell type and developmental

age for contextualizing disease states by integrating an adult

glioblastoma snRNA-seq dataset, identifying mesenchymal,

neuronal, astrocyte-like, and ODC-like populations (Figure 7D).

Around 18% of nuclei align with fetal astrocytes and OPCs (Fig-

ure S7E; Table S6A) and likely correspond transcriptomically to

progenitor cells and functionally to pluripotent apical glioma

stem cells (Couturier et al., 2020), based on higher expression

of embryonic stem cell network and cell-cycle pathway genes

(Figure S7G).
e, and organoid models of maturation

trol samples (Velmeshev et al., 2019) and our PFC samples (ga39, and 261 and

3-day samples. Density of points indicated by orange contour lines (as also in

wing astrocytes (GFAP+, white), neuronal nuclei (NeuN+, green), and neuronal

and 9-month-old organoids, detecting BHLHE22 (gray) and ARHGAP26 (red).

oids cultured for 5, 9, or 12 months.

stnatal maturity versus those that do not (top left). Volcano plot: differentially

re (green) PNs. Enriched GO terms for upregulated and downregulated DEGs

PNs versus matched nearest neighbors in snRNA-seq data of normal PFC cells

rain (blue) and organoids (purple). Enriched GO terms for upregulated DEGs in

etwork connectivity with other upregulated non-TF genes. Left side of plot in-

in parentheses.
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We next sought to identify the distribution of cell states and

their developmental ages in an in vitro model of cortical devel-

opment, by generating cerebral organoids cultured for 5, 9, or

12 months (Iefremova et al., 2017) and profiling them by

snRNA-seq (Figures 7E, 7F, and S7E). These organoids con-

tained the expected major cell types (astrocytes, OPCs, PNs,

and INs; Figure 7F). With 12-month organoids, we identified

non-neuronal nuclei mapping to mature ODCs and vascula-

ture-associated cells, confirming the emergence of these cells

with increased culture time (Kanton et al., 2019; Ormel et al.,

2018). Organoid neurons mapped to most cortical layers for

PNs and both CGE- and MGE-clusters for INs (Figures 7F

and 7G). Strikingly, most organoid nuclei align with early fetal

populations; however, with increasing organoid age more

nuclei show signatures of early postnatal neurons, in particular

for PNs and astrocytes, with 2% of PNs at 5 months aligned to

early postnatal stages, compared with 15% for the 9- and

12-month organoids (Figures 7F and S7E). Based on this eval-

uation of molecular equivalence using a real brain development

reference, most organoid PNs remain immature. Notably, the

less numerous mature PNs could not be discerned using tradi-

tional analysis methods in the absence of our reference map

(Figure S7H).

To identify genes associated with increased maturity in in vitro

neuronal development, we conducted differential expression

analysis between organoid PNs classified as postnatally mature

versus those that are not. Consistent with the temporal changes

uncovered in our developmental reference, we found several

potassium ion channels (e.g., KCNB2, KCNMA1) and neuro-

transmitter receptors (e.g., GABRB1, GRIA4) that are also upre-

gulated during normal postnatal development (Figure 7G;

Table S6B). Furthermore, upregulated DEGs show a high overlap

with devDEGs in up gene trends and are enriched in pathways

that are hallmarks of neuronal and brain functional development,

whereas downregulated DEGs are enriched in early differentia-

tion and developmental processes (e.g., neuronal precursor

cell proliferation, stem cell population maintenance; Figures 7G

and S7I; Table S6C).

By matching the mature PNs in organoids to their nearest

neighbor nuclei in our developmental reference, we identified

genes and their programs that are dysregulated in the postnatal

maturity organoid PNs compared with their closest brain equiv-

alents (Figure 7H; Table S6D). We detected downregulation of

many genes (n = 7,497) enriched in canonical pathways for syn-

aptic organization, structure, activity, and regulation (Table S6E).

Similar to the previous analysis, this included several potassium

ion channels (e.g.,KCND2,KCNQ5) and neurotransmitter recep-

tors (e.g.,GRIN2B,GRIA1). Using network approaches based on

estimated CREs in PNs and TF motif-binding sites, we ranked

TFs by their likelihood of regulating these differences. Many of

the highly ranked TFs (n = 31) correspond to devDEGs upregu-

lated in normal brain development (Figure 7H) and were identi-

fied as regulators ofmaturation-induced changes in ion transport

in PNs (Figure 5K). Together, this suggests that organoids lack

the synaptic networks to achieve PN maturation (Figure 7H)

and highlights regulators that may be manipulated in the future

to overcome these in vitro deficiencies. Overall, these integration

analyses exemplify the value of our developmental map as a
4442 Cell 185, 4428–4447, November 10, 2022
reference for gauging cellular development in normal, disease,

and in vitro contexts.

DISCUSSION

Here, we provide a thorough characterization of gene expression

and chromatin accessibility dynamics throughout human PFC

development at single-cell resolution, allowing the molecular

investigation of critical developmental events, some previously

only described using neuroimaging and microscopy studies

(Sydnor et al., 2021). Although past studies of gene expression

in bulk brain tissue showedmajor expression changes at the pre-

natal-to-postnatal transition, it was not possible to determine

whether they reflected differences in cell-type-specific tran-

scriptional regulation or changes in cellular composition. Our

atlas reveals that individual brain cell types respond with sub-

stantial and specific transcriptional changes to the transition

from fetal to postnatal environment, unique to this early stage.

Characterizing the timing of when each neural cell subtype rea-

ches an adult-like transcriptional state reveals surprising diver-

sity in maturation timing across cell types, which will inform

future efforts to link subtype-specific functions to the emergence

of brain activities during development. By linking molecular dy-

namics of key genes to the known timing of functional milestones

they are associated with, we demonstrate the value of these

maps for exploring molecular processes of brain development.

Our analyses provide detailed characterization of postnatal

cortical IN development andmaturation, unveiling the complexity

of the neural subtypes and their development. By charting IN

emergence, dynamics, and specialization, detecting poorly

described neuronal subtypes, and resolving previously unknown

developmental origins, these findings significantly extend our

knowledge of human cortical IN maturation and composition.

This developmental map provides a powerful resource for

improving our understanding of brain-related disorders, including

causative cell types, developmental windows of dysregulation,

and regulators for multiple disorders. Our reference and stable

integration technique enable investigation of cell-type-specific

acceleration of maturation. Applying this approach to cerebral or-

ganoids, which are increasingly used tomodel brain development

and disorders (Sidhaye and Knoblich, 2021; Tian et al., 2020),

suggests that in their current state these may be unsuitable to

model postnatal onset disorders. Prediction of TFs that regulate

neuronal maturation processes that are dysregulated in brain or-

ganoids indicates regulatory pathways that may be pivotal in

advancing neuronal maturity. Collectively, this reference consti-

tutes an important advance in the understanding of brain cell

states and dynamics in health and disease.

Limitations of the study
Although our study spans gestation to adulthood, the scarcity of

biobanked samples, particularly in the third trimester, makes

complete temporal coverage and controlling for inter-sample

variability challenging, limiting interpretation of cell-type abun-

dance changes. Although sex differences play a role in PFC

maturation, with males typically developing executive functions

later than females, we were unable to account for this due to

sample availability limitations. We acknowledge that our
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application of velocity-based trajectory methods is outside the

implied theory, where the robustness of velocity is untested.
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Antibodies

mouse anti-MAP-2 Millipore Cat# AB5622; RRID: AB_91939

rabbit anti-GFAP Dako Cat# ZO33429-2; RRID: AB_10013482

APC-linked mouse anti-NeuN Novus Biologicals Cat# NBP1-92693APC; RRID: AB_2894834

AlexaFluor 555, goat anti-mouse IgG (H&L) Abcam Cat# ab150114; RRID: AB_2687594

AlexaDluor 647, donkey anti-rabbit IgG (H&L) Abcam Cat# ab150063; RRID: AB_2687541

Chemicals, peptides, and recombinant proteins

Essential 8 medium Thermo Fisher Cat# A1517001

Y-27632 2HCl Selleckchem Cat# S1049

DMEM/F12 medium Thermo Fisher Cat# 11320033

Neurobasal medium Thermo Fisher Cat# 21103049

N2 MAX Media Supplement (100x) R&D Systems Cat# AR009

MACS NeuroBrew-21 Miltenyi Biotec Cat# 130-093-566

MEM Non-Essential Amino

Acids Solution (100x)

Thermo Fisher Cat# 11140050

GlutaMAX Supplement Thermo Fisher Cat# 35050061

Penicillin-Streptomycin (10,000 U/ml) Thermo Fisher Cat# 15140122

Heparin Sigma Cat# H3149

LDN-193189 Cayman Chemical Cat# 19396

A83-01 Cayman Chemical Cat# 9001799

IWR-1-endo Adooq Bioscience Cat# A12737

Cultrex 3D RGF BME R&D Systems Cat# 3445-005-001

MACS NeuroBrew-21 w/o Vitamin A Miltenyi Biotec Cat# 130-097-263

Insulin solution human Sigma Cat# I9278

DAPI Cayman Chemical Cat# 14285

RNAsin Plus RNAse inhibitor Promega Cat# N2615

Critical commercial assays

Chromium Single cell 30 GEM,

Library & Gel Bead Kit v3

10x Genomics PN: 1000075

ATAC-seq NextGEM kit 10x Genomics PN: 1000175

Experimental models: Cell lines

Human: Passage 40 H9 ES

cells (WA09 cell line)

WiCell RRID: CVCL_9773

Deposited data

snRNA-seq, snATAC-seq This study GEO: GSE168408

Bulk RNA-seq Li et al., 2018 http://development.psychencode.org

scRNA-seq data Velmeshev et al., 2019 https://autism.cells.ucsc.edu

Software and algorithms

Original code used for data analysis This paper https://doi.org/10.5281/zenodo.7113422

ImageJ (Fiji) Schindelin et al., 2012 https://imagej.net/software/fiji

Genome assembly Genome Reference

Consortium

https://www.ncbi.nlm.nih.gov/grc/human

(hg19/GrChr37.p13)

Gene annotation Harrow et al., 2012 https://www.gencodegenes.org/

human/release_19.html
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Cell Ranger 10x Genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

downloads/3.1

Cell Ranger-ATAC 10x Genomics https://support.10xgenomics.com/single-

cell-atac/software/downloads/1.2

scanpy Wolf et al., 2018 https://pypi.org/project/scanpy/1.6.0

anndata Wolf et al., 2018 https://pypi.org/project/anndata/0.7.4

scrublet Wolock et al., 2019 https://pypi.org/project/scrublet/0.2.2

Harmony Korsunsky et al., 2019 https://pypi.org/project/harmonyTS/0.1.4

BBKNN Pola�nski et al., 2020 https://pypi.org/project/bbknn/1.5.1

Hotspot DeTomaso and Yosef, 2021 https://github.com/yoseflab/Hotspot/

tree/0.9.1_release

loompy Linnarsson Lab https://pypi.org/project/loompy/3.0.6

scVelo Bergen et al., 2020 https://pypi.org/project/scvelo/0.2.2

CytoTRACE via CellRank Gulati et al., 2020 https://pypi.org/project/cellrank/1.5.1

edgeR Bioconductor;

Robinson et al., 2010

https://bioconductor.org/packages/

3.12/bioc/html/edgeR.html (v3.31.4)

Glimma Bioconductor; Su et al., 2017 https://bioconductor.org/packages/

3.13/bioc/html/Glimma.html (v2.2.0)

pyGAM Servén et al., 2018 https://pypi.org/project/pygam/0.8.0

scipy Virtanen et al., 2020 https://pypi.org/project/scipy/1.7.1

connectomeDB2020 Human Connectome Project https://www.humanconnectome.org/

software/connectomedb

gProfiler Raudvere et al., 2019 https://biit.cs.ut.ee/gprofiler_archive3/

e102_eg49_p15/gost

TransportDB Ren et al., 2007 http://www.membranetransport.org/

transportDB2/index.html

fgsea Bioconductor;

Korotkevich et al., 2016

https://bioconductor.org/packages/

3.13/bioc/html/fgsea.html (v1.17.1)

SpatialLIBD Maynard et al., 2021 https://bioconductor.org/packages/

release/data/experiment/html/

spatialLIBD.html (v1.0)

Symphony Kang et al., 2021) https://CRAN.R-project.org/

package=symphony (v1.0)

DisGeNET Piñero et al., 2020 https://www.disgenet.org/ (v7)

disgenet2r Piñero et al., 2020 https://bitbucket.org/ibi_group/

disgenet2r/src/master/r (v0.99.2)

scvi-tools Lopez et al., 2018 https://pypi.org/project/scvi-tools/0.11.0

reticulate RStudio, Tomasz Kalinowski https://github.com/rstudio/reticulate/

tree/release/1.20

UMAP via uwot McInnes et al., 2018 https://cran.r-project.org/src/contrib/

Archive/uwot (v0.1.10)

Seurat Hao et al., 2021 https://github.com/satijalab/seurat/

releases/tag/v4.0.3

FNN CRAN https://CRAN.R-project.org/

package=FNN (v1.1.3)

scran Bioconductor; Lun et al., 2016 https://bioconductor.org/packages/

3.12/bioc/html/scran.html (v1.18.5)

ArchR Granja et al., 2021 https://github.com/GreenleafLab/

ArchR/tree/release_1.0.1
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MACS2 Zhang et al., 2008 https://pypi.org/project/MACS2/2.2.7.1

IDR Li et al., 2011 https://anaconda.org/bioconda/idr (v2.0.4)

sklearn Buitinck et al., 2013 https://pypi.org/project/scikit-learn/0.24.0

JASPAR TF motifs Khan et al., 2018 https://jaspar2018.genereg.net/

TF motif cluster Vierstra et al., 2020 https://www.vierstra.org/resources/

motif_clustering (v1.0)

igraph CRAN https://CRAN.R-project.org/

package=igraph (v1.2.6)

CellRank Lange et al., 2020 https://pypi.org/project/cellrank/1.5.1

RRHO2 Bioconductor; Cahill et al., 2018 https://www.bioconductor.org/packages/

2.13/bioc/html/RRHO.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Ryan Lister

(ryan.lister@uwa.edu.au).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single-nuclei RNA-seq and single-nuclei ATAC-seq data have been deposited at GEO under accession number GEO:

GSE168408 and are publicly available as of the date of publication. Accompanying interactive browsers for this study are avail-

able at http://brain.listerlab.org. All data for the Velmeshev et al. study is publicly available through the Sequence Read Archive,

accession number PRJNA434002, and all data for Li et al. (2018) is publicly available through http://development.

psychencode.org.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact (RL) upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Commercial human embryonic stem cell line H9 was purchased from WiCell and authenticated by the provider. H9 cells were culti-

vated in E8 media (Gibco) and passaged using EDTA (Sigma).

Human subjects
De-identified human prefrontal cortex (PFC) samples from neurotypical individuals of various ages from mid-gestation through to

adulthood and one individual with ASD were obtained through collaboration with NIH NeuroBioBank in the United States and

analyzed under a protocol approved by the University of Western Australia Human Research Ethics Committee (RA/4/20/6394).

Samples were standardized as best as possible through brain region and age. Brain regions include Brodmann area 8 (BA8), Brod-

mann area 9 (BA9), Brodmann area 10 (BA10), and Brodmann area 46 (BA46), corresponding regions of the dorsolateral and

medial PFC in the left and right hemispheres (see Table S1B). Age, developmental stage, and sex of each sample is detailed

in Table S1B.

Note, it was not possible to source samples between gestational ages (ga) ga24 and ga34, largely corresponding to the 3rd

trimester where samples could not be obtained due to major ethical, practical, and regulatory challenges. Nonetheless, we were

able to infer broad trends across development, which includes this period. The primary glioblastoma sample was resected from

an adult female and was obtained through the Australian Genomics and Clinical Outcomes of High Grade Glioma (AGOG) biobank

under protocols approved by the Northern Sydney Local Health District Human Research Ethics Committee (0809-198M) and Sir

Charles Gairdner and Osborne Park Health Care Group Human Research Ethics Committee (2008-094), and analyses approved

by the University of Western Australia Human Research Ethics Committee (RA/4/20/5615). Organoid experiments and derivation
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from established embryonic stem cell lines were approved by the University ofWestern Australia Human Research Ethics Committee

(2021/ET000182).

METHOD DETAILS

Data reporting
This study complies with the MINSEQE guidelines for reporting high throughput sequencing experiments. No statistical methods

were used to predetermine sample size. The experiments were not randomized and investigators were not blinded to allocation dur-

ing experiments and outcome assessment. No replication study was performed, but key results were validated using complementary

techniques. Subjects were excluded when records indicated that the individual suffered from brain disorders or diseases.

Generation of cerebral organoids
Cerebral organoids were generated from H9 embryonic stem (ES) cells following an established protocol (Iefremova et al.,

2017). In brief, ES cells were dissociated into single cells and plated in U-shaped ultra low attachment 96-well plates (Corning)

at a density of 9,000 cells per well in E8 media (Gibco) with 50 mM Y-27632 (Selleckchem). Media was changed to only E8

2 days later and to a neural induction media another 2 days later when embryoid bodies were transferred to ultra low attach-

ment 24 well plates (Corning). Neural induction media contained DMEM/F12 and Neurobasal (both Gibco) at a 50:50 ratio with

1:200 N2 supplement (R&D Systems), 1:100 Neurobrew supplement (Miltenyi), 1:200 non essential amino acids (Gibco), 1:100

Glutamax (Gibco), 1:100 Pen/Strep (Gibco), 10 mg/ml Heparin (Sigma), 200 nM LDN-193189 (Cayman Chemical), 500 nM A83-

01 (Cayman Chemical), and 2 mM IWR-1 (Adooq Bioscience). After 4 days, LDN-193189, A83-01 and IWR-1 were removed from

the media, and organoids were embedded in a 20 ml volume of Cultrex 3D RGF BME (R&D Systems) on day 12. Media was

switched to Maintenance media contained of DMEM/F12 and Neurobasal 50:50 ratio with 1:200 N2 supplement, 1:100 Neuro-

brew supplement without vitamin A (Miltenyi), 1:100 Glutamax, 1:100 Pen/Strep, 1:2,500 human Insulin solution (Sigma), and

1:350,000 beta-Mercaptoethanol (Sigma). After 6 days, Neurobrew in the media was switched to the vitamin A containing

variant and organoids were moved to an orbital shaker (Instrument Choice) for constant agitation at 75 rpm with media changes

every 3 days until analysis.

Histology and imaging
Organoids were fixed in 4% PFA in PBS for 1 h at room temperature (RT) and incubated in 30% sucrose (Sigma) in PBS at 4�C over-

night before being frozen at -80�C and embedded in OCT compound (VWR) for cryosectioning at 20 mm. Sections were recovered on

Superfrost glass slides (Menzel) and stored at -80�C until processed for immunostaining. Sections were blocked in PBS with 2%

FCS (Gibco), 1%BSA, 0.1% Triton X-100, and 0.05% Tween-20 (all Sigma) for 2 h at RT and incubated with primary antibodies over-

night at 4�C. After two washes with PBS, secondary antibodies were incubated for 2 h at RT before being counterstained with DAPI

(1 mg/ml, Cayman Chemical) after 3 additional washes. Sections were mounted with fluorescence mounting medium (Agilent) and

imaged on a Nikon C2+ confocal microscope. Primary antibodies: GFAP (Dako ZO33429-2) used 1:750, MAP-2 (Millipore

AB5622) used 1:400. Conjugated antibody: NeuN (Novus Biologicals NBP1-92693APC) used 1:500. Secondary antibodies: anti-

mouse (Abcam 150114) used 1:1,000, anti-rabbit (Abcam ab150063) used 1:1,000.

RNAscope in-situ hybridization
Flash-frozen brain tissue or organoids were sectioned at 20 mm using a Leica CM3050S cryostat and frozen overnight on SuperFrost

Plus glass slides (Thermo Scientific). Sections were fixated with 4%PFA for 15 minutes and further processed following the standard

protocol for RNAscope Multiplex Fluorescent Reagent Kit v2 Assay (Advanced Cell Diagnostics), using Opal Polaris 480, Opal 570,

and Opal 650 dyes (Akoya Biosciences) with the following RNAscope 2.5 probes (all Advanced Cell Diagnostics): Hs-ADARB2-C3,

Hs-ARHGAP26, Hs-BHLHE22-C3, Hs-CEMIP-C2, Hs-FGF13, Hs-KCNH1-C2, Hs-LAMP5-C2, Hs-LHX6, Hs-NDNF-C3, Hs-NOS1-

C2, Hs-NPY-O1, Hs-SST-C3, Hs-TACR1-C3, Hs-TAFA4-C1. Sections were counterstained with DAPI, mounted with ProLong

Gold Antifade (Thermo Scientific) and imaged on a Nikon C2+ confocal microscope.

Sample preparation
Nuclei isolation for single nucleus RNA-seq (snRNA-seq) using fluorescence-activated nuclei sorting (FANS)

A single nuclei suspension was obtained following an established protocol for nuclei isolation from small amounts of tissue (Deni-

senko et al., 2020). Briefly, tissue samples were lysed in a 2.5 ml lysis buffer (10 mM Tris-HCl, 1% Nonident P40, 3 mM MgCl2,

and 10mMNaCl) with 0.2 U/ml RNasin Plus RNase Inhibitor (Promega) for 17min on ice. After lysis, 2.5 ml of ice-cold PBSwas added

to the lysis buffer and sample for a final volume of 5 ml. Tissue was homogenized using a Pasteur pipette until no large pieces were

visible. The homogenate was then filtered through a 30 mm filter (Miltenyi) and centrifuged at 2,000 x g for 5 minutes at 4�C.
Supernatant was removed and the pellet was resuspended in 400 ml wash buffer (1x PBS with 1% BSA) containing DAPI at a

1:10,000 dilution and with 0.2 U/ml RNasin Plus RNase Inhibitor (Promega). DAPI-positive nuclei were isolated by sorting using a

BD Influx to obtain a final concentration of 500 - 800 nuclei/ml in wash buffer with 0.2 U/ml RNasin Plus RNase Inhibitor (Promega)

(Figure S1B).
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Nuclei isolation for snRNA-seq using sucrose gradient isolation

Nuclei from two samples, ga39 and the 14 year old ASD sample, were isolated with a sucrose gradient method. Briefly, tissue sam-

ples were lysed in 400 ml of lysis buffer (10 mM Tris-HCl, 1%Nonident P40, 3 mMMgCl2, and 10mMNaCl) with 0.2 U/ml RNasin Plus

RNase Inhibitor (Promega) in 1.5 ml tubes and broken down with a pellet pestle. Tissue was dissociated by passing through a

polished silanized Pasteur pipette 3-4 times then incubated on ice for 10 min. Dissociation with a Pasteur pipette was repeated at

5 min and 10 min. After incubation, the dissociated tissue was added to 2.5 ml of wash buffer (1x PBS with 1%BSA) in a 15 ml falcon

tube. The sample was then passed through a 30 mmcell strainer (Miltenyi) into a 50ml falcon tube and centrifuged for 5minutes at 500

x g at 4�C in a swinging bucket centrifuge. Following centrifugation, the supernatant was removed and the tissue was resuspended in

100 ml of wash buffer for every 30 mg of tissue used. Using only 100 ml of the resuspended sample, 180 ml of 1.8 M sucrose solution

(Nuclei PURE kit, Sigma) was added to the sample and homogenized using a P1000 micropipette. 1 ml of 1.3 M sucrose solution

(Nuclei PURE kit, Sigma) was placed at the bottom of a 2ml Eppendorf tube and the 280 ml of the nuclei suspension mixed with

1.8M sucrose was slowly layered on top of the 1.3 M sucrose solution. The sucrose gradient was centrifuged for 10 minutes at

3000 x g at 4�C in a swinging bucket centrifuge. After centrifugation, the debris from the top of the sucrose gradient was removed

with a Kimwipe wrapped around a spatula. The remaining supernatant was removed with a P1000 micropipette. Nuclei were resus-

pended in 50 ml of wash buffer. 10 ml of the suspension was stained with DAPI (1:10,000) and used to count the nuclei concentration.

Nuclei isolation for single nucleus assay for Transposase-Accessible chromatin using sequencing (snATAC-seq)

Nuclei were isolated following the sucrose gradient isolation described above for snRNA-seq, with the addition of 0.01% digitonin

added to the lysis buffer and incubated for 3 minutes after the final dissociation step.

Library preparation
snRNA-seq

Single nuclei suspensions were loaded on 10X Genomics Chromium Chip B (10x Genomics) to generate single-cell GEMs. Single-

nuclei RNA-Seq libraries were prepared using the Chromium Single Cell 3’ Reagents kit as per the manufacturer’s instructions. The

protocol was followed as outlined in the user guide, with the exception of performing 18 cycles for cDNA amplification and a

capture target of �10,000 nuclei per sample. Library size distribution and abundance was assessed with aD1000 ScreenTape (Agi-

lent) and their concentration quantitated on a C1000/CFX96 qPCR system (Bio-Rad) using Luna Universal qPCR mix (NEB) and Tru-

seq PCR primers (Illumina). Libraries were sequenced on either a NextSeq 550 or a NovaSeq 6000 (Illumina) in paired-end mode

(read1: 28 cycles, read 2: 91 cycles, index1: 8 cycles) to generate approximately 200 M reads per sample.

snATAC-seq

Single nuclei suspensions were loaded on 10X Genomics Chromium Chip E (10x Genomics) to generate single-cell GEMS. Single-

nuclei ATAC-seq libraries were prepared using the Chromium Single Cell ATAC v1 Reagents kit as per the manufacturer’s instruc-

tions, with a capture target of �10,000 nuclei per sample. Library size distribution and abundance was assessed with a D5000

ScreenTape (Agilent) and their concentration quantitated on a C1000/CFX96 qPCR system (Bio-Rad) using Luna Universal qPCR

mix (NEB) and Truseq PCR primers (Illumina). Libraries were sequenced on a NovaSeq 6000 (Illumina) in paired-end mode (read1:

50 cycles, read2: 49 cycles, index1: 8 cycles, index2: 16 cycles) to generate approximately 250 M reads per sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed in R v4.0.5 or Python v3.8.

snRNA-seq analysis
Sequence Alignment and UMI counting

Cellranger (v3.1.0) analysis pipeline, with default parameters, was used to process raw reads. Briefly, Cellranger mkfastq was used to

convert raw base call (BCL) files of the snRNA-seq libraries into FASTQ files. A pre-mRNA transcriptomewas built using the cellranger

mkref command starting with the refdata-cellranger-hg19-3.0.0 transcriptome as per the instructions provided by 10x Genomics.

The Cellranger count command was used for alignment, filtering, barcode counting, and unique molecular identifier counting

(Tables S1C and S1D).

Nuclei and gene quality control

Filtered count matrices from each sample were combined into a scanpy (v1.6.0) anndata (v0.7.4) object for processing and filtering,

and unless noted otherwise, default parameters were used (Wolf et al., 2018). Genes not observed in R5 nuclei across all batches

were removed and potential nuclei doublets were removed using scrublet (v0.2.2) with 10 principal components for each batch

individually (Wolock et al., 2019). On a per sample basis, nuclei with gene counts <3 median absolute deviations (MADs) and

<300 gene counts were removed. Nuclei with ribosomal or mitochondrial gene count percentages >20 percent or >3 per sample

MADs were removed (Table S1C). Highly expressed MALAT1 gene and ribosomal and mitochondrial genes were removed. Finally,

we investigated the relationship between sample quality and PMI and found them to be uncorrelated (Figure S1F).

Data integration for dimension reduction and clustering

A developmental reference was integrated by downsampling to 1,000 Unique Molecular Identifier counts (UMIs) per nucleus to re-

move sampling bias from differing sequencing depths between batches. Downsampling was carried out by randomly sampling,
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without replacement, 1,000 UMIs from the total UMIs for a given nucleus, and nuclei with less than 1,000 total UMIs were removed.

The 1,000 UMIs cutoff was selected to limit the number of nuclei removed and to include enough counts per nuclei to be informative,

which was previously shown to be at 1,000 UMIs when the accuracy of cell type classification plateaus (Heimberg et al., 2016).

Analysis was also performed with nuclei with less than 1,000 UMIs included. When included, these nuclei cluster together, exhibit

no apparent age-related progression, and resemble a spectrum of cell states from a mixture of cell types (Figure S1E), making

them difficult to categorize for further analysis and warranting removal. Downsampled data was used for dimension reduction

and clustering, while the full count matrix was used for all other analyses unless noted otherwise.

Post downsampling, the count matrix was scaled to Counts Per Million (CPM), natural log plus one transformed, andmatrices from

all batches were combined. Five thousand Highly Variable Genes (HVGs) were selected, and data dimensions were reduced via prin-

cipal component analysis (PCA) to components explaining 50% of the variance. A neighborhood graph was constructed using

scanpy preprocessing neighbors function with 25 neighbors on the reduced components, and a 2-dimensional Uniform Manifold

Approximation and Projection (UMAP) embedding was generated (McInnes et al., 2018). Subclusters were generated via scanpy Lei-

den clustering at a resolution of 7.0 with the neighborhood graph serving as the basis (Traag et al., 2019). At the whole-tissue level, 63

Leiden clusters were identified. Inhibitory interneuron (IN) subclustering was performed using the same workflow but with 4,000

HVGs and a Leiden clustering resolution of 5.0. There were 36 IN Leiden clusters identified, replacing 13 IN whole-tissue clusters

and bringing the total Leiden cluster count to 86.

Alternative batch correction methods

Harmony (v0.1.0) (Korsunsky et al., 2019) and BBKNN (v1.5.1) (Pola�nski et al., 2020) were also investigated as possible batch cor-

rections.While thesemethods resulted in integrated batches, the integrations lacked a clear progression of age-related development

(Figure S6C). These corrections also fully integrated the poor quality nuclei that our downsampling approach readily differentiated.

Harmony and BBKNN were run using default parameters within the scanpy external application programming interface. Except for

the downsampling of UMIs and removal of nuclei under 1,000 UMIs, the data was processed using the same pipeline outlined in

nuclei and gene quality control and data integration for dimension reduction and clustering.

Cluster annotation

PNwere classified based on the expression of marker genesCUX2, RORB, THEMIS, and TLE4, while IN were classified based on the

expression of marker genes PVALB, SST, VIP, and ID2. Using this approach, we identified 18 major clusters, including 5 PN major

clusters (immature principal neurons [PN-dev], layer 2 and 3 [L2/3-CUX2], layer 4 [L4-RORB], and layer 5 and 6 [L5/6-THEMIS, L5/6-

TLE4]), 6 IN major clusters (early developing MGE [MGE-dev], early developing CGE [CGE-dev], inhibitor of DNA binding

2-expressing [ID2], vasoactive intestinal polypeptide-expressing [VIP], somatostatin-expressing [SST], and parvalbumin-expressing

[PV]), astrocytes [Astro], MBP+ oligodendrocyte precursor cells and mature oligodendrocytes [Oligo], oligodendrocyte precursor

cells [OPCs], microglia [Micro], and vasculature [Vas] (which encompasses endothelial, pericytes, fibroblast-like, and pericytes/

smooth muscle cells) (Figure 1B). In cases where several subclusters within a major cluster could be grouped based on additional

common markers, these were given a common subcluster name. For example, using this strategy, L5/6-THEMIS PNs could be

further subclustered into L5/6-THEMIS-NTNG2 and L5/6-THEMIS-CNR1 (Figure S2A). Membership of Leiden subclusters in each

major cluster is listed in Tables S2A–S2C.

Principal neuron annotation

Immature principal neurons (PNs). PN-developing (PN dev) (subcluster 13). Marker Genes - MEIS2 (Bayatti et al., 2008; Hoerder-

Suabedissen and Molnár, 2015), UNC5D (Cooper, 2014; Miyoshi and Fishell, 2012), FOXG1 (Cooper, 2014; Miyoshi and Fishell,

2012), LINC01158 (Fan et al., 2018), EIF1B (Bayatti et al., 2008; Hoerder-Suabedissen and Molnár, 2015), MEF2C (Cooper, 2014),

DCX (Herrero-Navarro et al., 2021).

Principal neurons L2-3. Immature. L2/3_CUX2_dev-1 (subcluster 11), L2/3_CUX2_dev-2 (subcluster 15), L2/3_CUX2_dev-3

(subcluster 22), L2/3_CUX2_dev-4 (subcluster 32), L2-3_CUX2_dev-5 (subcluster 36), L2/3_CUX2_dev-6 (subcluster 43), L2/

3_CUX2_dev-fetal (subcluster 46). Marker Genes - SATB2 (Alcamo et al., 2008; Britanova et al., 2008), FAM19A2 (Fan et al.,

2018), CUX2 (Fan et al., 2018), FGF13 (Puranam et al., 2015; Wu et al., 2012), MEF2C (Leifer et al., 1997), STMN2 (Colantuoni

et al., 2011; Tomita et al., 2012). Mature. L2_CUX2_LAMP5 (subcluster 8), L2_CUX2_LAMP5_dev (subcluster 34),

L3_CUX2_PRSS12 (subcluster 31). Marker Genes - CUX2 (Cubelos et al., 2015), CAMK2A (Tochigi et al., 2008).

Principal neurons L4. Immature. L4_RORB_dev-1 (subcluster 57), L4_RORB_dev-2 (subcluster 10), L4_RORB-fetal (subcluster 18).

Marker Genes – RORB (Oishi et al., 2016), SATB2 (Britanova et al., 2008), FOXP2 (Ferland et al., 2003), FOXP1 (Ferland et al., 2003).

Mature. L4_RORB_LRRK1 (subcluster 17), L4_RORB_MET (subcluster 28), L4_RORB_MME (subcluster 44). Marker Genes - FOXP2

(Baker et al., 2018; Brunjes and Osterberg, 2015), RORB (Lake et al., 2018).

Principal neurons L5/6 THEMIS. Immature. L5/6_THEMIS_dev-1 (subcluster 21), L5/6_THEMIS_dev-2 (subcluster 25). Marker

Genes – THEMIS (Hodge et al., 2019), SATB2 (Britanova et al., 2008), FOXP1 (Ferland et al., 2003). Mature. L5/6_THEMIS_CNR1

(subcluster 40), L5/6_THEMIS_NTNG2 (subcluster 55). Marker Genes - THEMIS (Hodge et al., 2019).

Principal neurons L5/6 TLE4. Immature. L5/6_TLE4_dev (subcluster 24). Marker Genes - SOX5 (Galazo et al., 2016), TLE4 (Galazo

et al., 2016), FOXP2 (Ferland et al., 2003), NFIB (Galazo et al., 2016), BCL11B (Britanova et al., 2008), HS3ST4 (Hodge et al., 2019),

TUBA1A (Aiken et al., 2017).

Mature. L5/6_TLE4_SCUBE1 (subcluster 26), L5/6_TLE4_SORCS1 (subcluster 27), L5/6_TLE4_HTR2C (subcluster 45).
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Marker Genes - TLE4 (Galazo et al., 2016), FOXP2 (Galazo et al., 2016), NFIB (Galazo et al., 2016), BCL11B (Aiken et al., 2017),

HS3ST4 (Lake et al., 2018).

Inhibitory interneuron annotation

IN prefix to Leiden cluster identifiers indicates cluster was identified with GABAergic interneuron clustering described in data

integration for dimension reduction and clustering.

Immature GABA interneurons. MGE_dev-1 (subcluster IN6), MGE_dev-2 (subcluster IN23), CGE_dev (subclusters IN8). Marker

Genes - LHX6 (Fan et al., 2018; Hu et al., 2017), SOX6 (Hu et al., 2017), DLX1 (Fan et al., 2018; Hu et al., 2017), DLX2 (Fan et al.,

2018; Hu et al., 2017), DCX (Herrero-Navarro et al., 2021), GAD1 (Lake et al., 2018).

GABA PVALB. PV_WFDC2 (subcluster IN0), PV_dev (subcluster IN7), PV_SULF1 (subcluster IN18), PV_SULF1_dev (subcluster

IN29). Marker Genes - LHX6 (Hu et al., 2017), SOX6 (Hu et al., 2017), PVALB (Ferguson and Gao, 2018), SLIT2 (Andrews et al., 2008).

GABA PVALB SCUBE3. PV_SCUBE3 (subcluster IN21), PV_SCUBE_dev (subcluster IN30). Marker Genes - SCUBE3 (Hodge

et al., 2019).

GABA SST. SST_TH (subcluster IN31), SST_B3GAT2 (subcluster IN10), SST_STK32A (subcluster IN12), SST_BRINP3 (subcluster

IN28), SST_NPY (subcluster IN35), SST_ADGRG6 (subcluster IN5), SST_ADGRG6_dev (subcluster IN15), SST_CALB1 (subcluster

IN14), SST_CALB1_dev (subcluster IN12), PV_SST (subcluster IN27). Marker Genes - SST (Tasic et al., 2018), LHX6, SOX6 (Hu

et al., 2017), ERBB4 (Vullhorst et al., 2009), RELN (Lake et al., 2018).

GABA ID2. LAMP5_CCK (subcluster IN4), LAMP5_NDNF (subcluster IN11), CCK_SORCS1 (subcluster IN17), ID2_CSMD1

(subcluster IN22), CCK_RELN (subcluster IN26), CCK_SYT6 (subcluster IN32), ID2_dev (subcluster IN25). Marker Genes - RELN

(Overstreet-Wadiche and McBain, 2015), SV2C (Boldog et al., 2018), KIT (Mickelsen et al., 2019), CXCL14 (Boldog et al., 2018),

LAMP5 (Mickelsen et al., 2019), CCK (Lake et al., 2018).

LAMP5_NOS1. LAMP5_NOS1 (subcluster IN13). Marker Genes - NOS1 (Tricoire et al., 2010), CA1 (Hodge et al., 2019).

GABA VIP. VIP_HS3ST3A1 (subcluster IN2), VIP_CHRM2 (subcluster IN3), VIP_KIRREL3 (subcluster IN19), VIP_CRH (subcluster

IN9), VIP_ADAMTSL1 (subcluster IN20), VIP_ABI3BP (subcluster IN16), VIP_DPP6 (subcluster IN24), VIP_PCDH20 (subcluster 34),

VIP_dev (subcluster IN33). Marker Genes - GAD1 (Lake et al., 2018), VIP (Tremblay et al., 2016), CALB2 (Darmanis et al., 2015).

Glial cell annotation

Astrocytes. Immature. Astro_dev-1 (subcluster 2), Astro_SLC1A2_dev (subcluster 14), Astro_dev-2 (subcluster 19), Astro_dev-3

(subcluster 54), Astro_dev-4 (subcluster 56), Astro_dev-5 (subcluster 60). Marker Genes - MEIS2 (Fan et al., 2018), LINC01158

(Fan et al., 2018), EIF1B (Fan et al., 2018), SLC1A3 (Batiuk et al., 2020), SLC1A2 (Jolly et al., 2019).

Mature. Astro_SLC1A2 (subcluster 1), Astro_GFAP (subcluster 16). Marker Genes - AQP4 (Batiuk et al., 2020), SLC1A2 (Jolly et al.,

2019), SLC1A3 (Batiuk et al., 2020).

Oligodendrocyte precursor cells (OPCs). OPC (subcluster 0), OPC_dev (subcluster 38). Marker Genes - PDGFRA (Rivers et al.,

2008), OLIG1 (Zhou and Anderson, 2002), OLIG2 (Zhou and Anderson, 2002).

Oligodendrocytes (ODCs). OPC_MBP (cluster 49), Oligo_mat (subcluster 3), Oligo-1 (subcluster 4), Oligo-2 (subcluster 6), Oligo-3

(subcluster 9), Oligo-4 (subcluster 35), Oligo-5 (subcluster 50), Oligo-6 (subcluster 61), Oligo-7 (subcluster 62). Marker Genes -MAG

(Valério-Gomes et al., 2018), MOG (Valério-Gomes et al., 2018), PLP1 (Turnescu et al., 2018).

Microglia. Micro (subcluster 5), Micro_out (subcluster 53). Marker Genes - C1QA (Fonseca et al., 2017).

Vasculature. Vas_TBX18 (cluster 51), Vas_PDGFRB (subcluster 58), Vas_CLDN5 (subcluster 59). Marker Genes – Pericytes and

smooth muscle cells: PDGFRB (Vanlandewijck et al., 2018), Endothelial cells: CLDN5 (Vanlandewijck et al., 2018), Fibroblast-like

cells: TBX18 (Vanlandewijck et al., 2018).

Identification of poor quality cells (subcluster 42)

As has been previously noted, we identified a subcluster with high expression of NRNG and THY1 (Velmeshev et al., 2019;

Figure S6F). We additionally observed high mitochondrial percentages per nuclei within this subcluster, potentially indicating the

cluster contained nuclei of poor quality (Figure S4J). In order to assess the quality of the nuclei in this cluster versus potential contam-

ination from background reads, pseudo-cells were generated by sub-sampling from a pseudo-bulked count matrix. More specif-

ically, each batch’s unfiltered count matrix (containing both called and uncalled cells) from 10x Genomics Cell Ranger (v3.1.0)

was summed along the gene axis. Pseudo-bulked genes were removed to match genes post preprocessing (see nuclei and gene

quality control), and pseudo-bulked counts were randomly sub-sampled, without replacement, to 1,000 UMIs. Quantity and batch

origin were selected to replicate cells in the labeled poor-quality subcluster. Pseudo-cells were then incorporated into the pipeline

used for whole tissue clustering (see data integration for dimension reduction and clustering), and resulting clusters were checked for

overlapping memberships of previously called cell types (Figures S6D and S6E). Using this method, we observed that the previously

identified subcluster high in NRGN and THY1 now contained most of the pseudo-cells, indicating the quality of these nuclei is similar

to background or ambient RNA. Previous studies have reported this population of nuclei as a new PN population relevant to autism

(Velmeshev et al., 2019) and schizophrenia (Ruzicka et al., 2020). However, these studies also reported high expression of mitochon-

drial genes and similar gene expression profiles as our study, suggesting these nuclei may also represent mostly ambient RNA.

Hotspot analysis of gene coexpression

Hotspot (v0.9.1) is a tool for identifying highly correlated gene modules in a single-cell dataset (DeTomaso and Yosef, 2021). Hotspot

computes gene modules by finding informative genes with high local autocorrelation, evaluating the pairwise correlation between

genes, and clustering the results in a gene-gene affinity matrix. The Hotspot depth-adjusted negative binomial model was run using
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the full countmatrix with the 5,000 downsampledHVGs and downsampled principal components explaining 50%of the variation (see

data integration for dimension reduction and clustering). The Hotspot computed a weighted K-nearest-neighbors (KNN) graph with

25 neighbors, and 187 genes with an autocorrelation false discovery rate (FDR) greater than 0.05 were removed. Genemodules were

created by agglomerative clustering with the minimum number of genes per module set to 65. 14 modules were identified, and 922

genes were not assigned to a module (Table S2D). Hotspot eigengene module scores were calculated by first centering the UMIs

using the depth-adjusted negative binomial model. The centered values were then smoothed using the weighted average of their

25 nearest neighbors. These smoothed valueswere thenmodeledwith PCA using the first principal component, and the cell-loadings

reported as the model scores.

Trajectories

Subclusters containing cells from a majority of adult samples were classified as mature, and major and sub-trajectories inferred to

give rise to thesemature subclusters over development weremanually assembled based on age progression of adjacent subclusters

and shared expression of markers. For example, distinct layers 2/3 and layer 4 PN sub-trajectories (L2/3-CUX2, L4-RORB) were

defined that share cells of early developmental stages but subsequently differentiate into distinct terminal cell types (Figures S2A

and S2C; Table S2B). 45 sub-trajectories were collapsed into 15 major trajectories for further analysis based on major clusters.

scVelo velocity analysis

Spliced and unspliced read counts were generated from FASTQ files (see sequence alignment and UMI counting) using loompy

(v3.0.6) mapped to hg19-3.0.0 (La Manno et al., 2018). As above (see data integration for dimension reduction and clustering), a

neighborhood graph [n_neighbors=50] was constructed from the normalized downsampled count matrix on the reduced compo-

nents. Spliced and unspliced reads were filtered and normalized using scVelo (v0.2.2) (Bergen et al., 2020) filter_and_normalize func-

tion [min_shared_counts=5, n_top_genes=1500 (500 for INs)]. Velocity scores were calculated using the scVelo stochastic model of

transcriptional dynamics. Single nucleus velocities were then projected into UMAP and UMAT embeddings (see UMAP of maturation

and data integration for dimension reduction and clustering). Nucleus-to-nucleus transition probabilities were calculated using a

CellRank velocity kernel.

CytoTRACE

Cellular Trajectory Reconstruction Analysis using gene Counts and Expression (CytoTRACE, v0.3.3) is a computation framework

based on the observation that the number of genes expressed in a cell decreases during differentiation (Gulati et al., 2020). More

specifically, the geometric mean of the 200 most correlated genes with gene counts has been shown to predict a nucleus’ differen-

tiation state accurately. To calculate the CytoTRACE values, we first KNN imputed our log normalized downsampled data (see data

integration for dimension reduction and clustering) with 25 neighbors. We then utilized the CellRank (Lange et al., 2020) implemen-

tation of CytoTRACE to calculate the value for each nucleus, where a low CytoTRACE value corresponds to an earlier developmental

state and a higher value to a later state. Finally, within a CellRank kernel, CytoTRACE scores and the KNN graph were used to

compute directed nucleus-to-nucleus transition probabilities.

Mass flow analysis

A transition matrix representing nucleus-to-nucleus transition probabilities was generated from each CellRank kernel (Lange et al.,

2020) (see scVelo velocity analysis andCytoTRACE). A transition matrix was used to calculate the probability of mass flows from one

cluster to the others at each developmental stage. These mass flows were summarized in vein plots using a CellRank re-implemen-

tation of Mittnenzweig et al. (2021), where total flows between clusters at subsequent developmental stages is one. The total

frequency of each cluster per stage is represented by veins with changing width proportional to the frequency of that cluster.

Outflows between nuclei types are visualized by edges connecting clusters whose width is proportional to flow magnitude. Flows

between clusters were simplified by eliminating low-magnitude flows with a threshold of 0.05.

Pseudo-bulked trajectory data

Batcheswith at least ten nuclei in eachmajor trajectory were pseudo-bulked by summing theUMI counts of all genes. Pseudo-bulked

counts were then normalized by the trimmed mean of M-values (TMM) (Robinson and Oshlack, 2010) and scaled to log2 CPM, and

lowly expressed genes were removed with edgeR (v3.31.4) (Robinson et al., 2010) filterByExpr function.

Differential expression analysis of genes over development

Differential expression analysis was carried out with the limma-voompipeline (Law et al., 2014) from the edgeR (Robinson et al., 2010)

package following a published workflow (Law et al., 2016). Briefly, using pseudo-bulked trajectory data, potential confounding fac-

tors were screened using multi-dimensional scaling (MDS) scatter plots (Figure S4A), where samples that cluster by a given factor

suggests the factor contributes to expression differences and is worth including in the analysis and factors that show little or no effect

may be left out of the downstream analysis. Of those screened, donor sex, 10x chemistry, and library prep lot number were deemed

worth including (Figure S4A). These factors were used along with developmental stages to establish a design matrix, and contrasts

were set up for pairwise comparisons between stages. Linear modeling was carried out using limma lmFit and contrasts.fit functions,

and empirical Bayes moderation was carried out to obtain more precise estimates of gene-wise variability. Assumptions for this

model were checked using exploratory visualizations, such as biological coefficient of variation plots. Differentially expressed genes

(DEGs) were defined as those with an FDR <5% (Table S3). Interactive mean-difference plots (http://brain.listerlab.org) were

produced via Glimma (v2.2.0) (Su et al., 2017) glMDPlot function. Note that results pertaining to major clusters are presented here

to maximize statistical power and facilitate interpretability, but results on all sub-trajectories are also available at http://brain.

listerlab.org.
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Rank-rank hypergeometric overlap analysis

We conducted a leave-one-out analysis for differential gene expression analysis between different developmental stages for the

L2/3-CUX2 major trajectory. We implemented our devDEG strategy, including pseudo-bulking and correction for confounding

factors, but removed each sample once. Rank-rank hypergeometric overlap (RRHO2) (Cahill et al., 2018) was used to compare

ranked DEGs lists between the two independent gene profiling experiments. Each pairwise comparison resulted in a RRHO2 plot

showing the strength and pattern of the correlation between the DEGs found when a sample was left out and the DEGs found by

the original analysis.

Fitting and clustering gene trends

Trend curves were fit to all development-associated differentially expressed genes (devDEGs, see differential expression analysis of

genes over development), allowing for analysis of continuous expression changes across development, even where age gaps may

exist. Rather than the raw data, clustering trend curves produce more coherent clusters and sharper kinetic trends, allowing analysis

of a more assorted set of patterns (Trapnell et al., 2014). To fit the trends, we fit a Generalized Additive Model (GAM) to the pseudo-

bulked trajectory data using the pyGAM python package (v0.8.0) (Servén et al., 2018). More specifically, GAM was fit with pyGAM’s

LinearGAM function, which uses an identity link function, a Normal error distribution, and a cubic smoothing function. Once a GAM

was fit to a gene, a response curve, or trend fit, was produced using 100 evenly spaced grid points. Gene trends on a stage scale were

fit to pseudo-bulked trajectory gene expression binned by developmental stages and set at six even intervals, while trends on an age

scale were fit to pseudo-bulked trajectory gene expression scaled to regularize the spacing between ages while maintaining a

grounding in time. Age scaling was performed by first dividing ages in years by a cofactor of 0.55 and then arcsinh transformed.

The cofactor was chosen to optimally linearize the spacing between samples in our dataset.

Gene trends set on the stage scale were scaled zero to one and hierarchical clustered using scipy (v1.7.1) python package (Virta-

nen et al., 2020) with a Ward linkage and Euclidean distance metric. The hierarchical tree was cut at a height of 90 using the scipy

cut_tree function, resulting in 14 clusters or gene trends. The height of the tree cut was selected to maximum distinctiveness and to

limit the redundancy of the gene trends.

snRNA-seq pseudo-bulked trend comparison to Li et al. bulk study

We analyzed an independent bulk RNA-seq dataset consisting of 40 samples from the dorsolateral prefrontal cortex (DFC) spanning

8 PCW to 40 yr, published by Li et al. (2018), restricting the analysis to 28 samples matching our age range, 19 PCW (21 ga) to 40 yr.

We limited the gene comparisons to those with either similar or dissimilar expression profiles across the major cell trajectories of our

study. We defined genes with similar expression profiles as those occupying the same trend class (i.e. up or down) in enough major

trajectories to account for 75% of all nuclei in the same trend class, thereby selecting a set of genes that show similar developmental

expression dynamics in a large fraction of all analyzed cell types. Genes with dissimilar profiles were defined as those with >35% of

nuclei in both up and down trend classes, thereby selecting a set of genes that have opposite developmental dynamics between

groups of cell types. Selected genes were GAM fit to both our pseudo-bulked data and the selected published DFC data (see manu-

script methods fitting and clustering gene trends). Both trend sets were normalized zero to one, and the difference measured using

euclidean distance.

Genes with similar expression dynamics in our major trajectories have similar expression changes over development when

comparing our pseudo-bulked snRNA-seq data to the bulk RNA-seq data (Figure S3F). Genes that demonstrate very different dy-

namic trends between major trajectories in our snRNA-seq data tend to disagree with the bulk data, as would be expected when

comparing pseudo-bulked data to bulk data for genes that show divergent dynamics in different cell types of the analyzed tissue.

Rates of change analysis

The rate of change analysis was performed on a per major trajectory basis by taking themean of the absolute rate of change devDEG

trend fits. Whilst the rate of change analyses on a day scale suggest only small scale changes beyond infancy, disparate time scales

(days for early development versus years for older ages) could mask rate changes occurring over larger time intervals. Therefore, we

calculated the difference between time points on two scales to highlight changes occurring at different time intervals. In both cases,

the grid points from the GAM fit to the arcsinh transformed ages were used. The GAM grid points were left evenly distributed on the

arcsinh transformed ages to highlight protracted differences between ages (Figure S3G), and the rate of change was calculated by

taking the difference between gene trend values at subsequent grid points. The rate of change on a year scale was calculated by first

transforming the arcsinh scaled grid points back to a year scale by transforming with the sinh function and multiplying by the 0.55

cofactor. The rate of change was then calculated by taking the difference between trend expression values at subsequent grid points

and dividing by the difference of grid points on the year scale. Similarly, acceleration of expression was calculated by taking the dif-

ference in the rate of change values at subsequent grid points and dividing by the difference of grid points on the year scale.

Nearest neighbor acquisition of adult-like identities

KNN graphs were constructed for all nuclei and separately for INs using the scanpy preprocessing neighbors function with 25 neigh-

bors as described in data integration for dimension reduction and clustering. For each sub-trajectory age, the sum of the number of

nuclei whose nearest neighbor is an adult nucleus and the number of adult nuclei whose nearest neighbor is within the query age is

calculated. The sum of adult neighbors is normalized by sample size, the product of the number of nuclei in the query age and the

number of adult nuclei within a sub-trajectory. The cumulative sum of the adult neighbor proportions is taken across the ages of

development and scaled from zero to one. PN sub-trajectories in Figure 1F were hierarchically clustered using a Ward linkage.

The 40yr sample was omitted from this analysis to avoid any potential detection of aging effects, and sub-trajectories with <30 adult
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nuclei were not included. This analysis was robust to the number of nearest neighbors, showing little change in maturity patterns with

as few as 15 and as many as 100 nearest neighbors.

Eigentrends

To inspect the expression dynamics of a set of genes linked to brain development and function processes, we calculated the eigen-

trend of devDEGs enriched in Gene Ontologies (GO) for eachmajor trajectory (see Enrichment). In order to calculate the eigentrends,

we first quantile normalized the devDEG stage fit trends (see Fitting and clustering gene trends) from all major trajectories as a com-

bined group. Next, the intersection of devDEGs for each major trajectory and the enriched GO term gene set was taken. For each

major trajectory, PCA, without zero-centering, was performed on the quantile normalized trends of the intersected geneswith respect

to the stage-scaled GAM grid points, and the eigentrend was taken as the first principal component scaled from zero to one.

Statistical testing of comparisons between eigentrend values was performed with a one-sided Wilcoxon signed-rank test.

Cell-to-cell communication of ensheathment genes

Starting with the connectomeDB2020 database of 2293 manually curated ligand-receptor pairs with literature support (Hou et al.,

2020), we filtered ligand-receptor pairs to those contained in the gene ontology term "neuron ensheathment" (Raudvere et al.,

2019). For each major trajectory, only pairs where both the ligand and receptor are DEGs over development were considered.

From pseudo-bulked trajectory data, the mean gene expression of batches within a developmental stage was used to calculate

the product of expression for each ligand-receptor pair.

Umap of MATuration (UMAT)

To visualize developmental sub-trajectories we overlaid the UMAP with velocity vector fields derived from nucleus-to-nucleus

transition probabilities (Bergen et al., 2020). While vector fields largely agree with age progression, some disjunct developmental pat-

terns are visible (Figure S4B), potentially indicating a paucity of some intermediate cell states. To more explicitly compare transition

probabilities and development, we introduce Umap of MATuration (UMAT), which limits UMAP neighbor selection to cells from adja-

cent developmental stages (Figures 4F and S4C).

Scanpy neighbors function was used to iteratively populate the connectivity and distancematrices so that the nearest neighbors of

a nucleus were limited to nuclei within the same developmental stage or adjacent stages. For example, nuclei in the neonatal stage

could only select neighbors from the fetal or infancy stages. Once fully populated, the connectivity and distance matrices were used

as the basis for UMAP embedding. The same preprocessing procedures and parameters described in Data integration for dimension

reduction and clustering were used within the Umap of MATuration (UMAT) workflow.

Enrichment analyses

Gene set enrichment analysis of GO terms was performed with gProfiler (Raudvere et al., 2019) with default parameters (adjusted

p-values <0.05), and results were limited to enrichment in GO molecular function and GO biological processes. Enrichment for Hot-

spot gene modules (Table S2D) and devDEGs (Table S3) for each major trajectory was done with a background consisting of genes

with a least one UMI in the downsampled count matrix, while, for each major trajectory, enrichment of devDEGs within a gene trend

was run with a background consisting of all genes expressed within the major trajectory.

For the enrichment analysis across different types of ion transporters, the TransportDB database (Ren et al., 2007) was subsetted

to transporters relevant in the brain. Next, for eachmajor gene trend andmajor trajectory using the function fora in the fgsea package

(v1.17.1) we determinedwhether therewas enrichment for a particular ion transporter type (Korotkevich et al., 2016). The background

was set to be all devDEGs in the respective trajectory. P-values were then adjusted for multiple testing using FDR and enrichment

was deemed present when adjusted p-value <0.05.

Disease enrichment analysis

To investigate enrichment of known neurological and psychiatric disease genes in major trajectory-specific gene trends, gene-dis-

ease associations defined in the DisGeNET database (Piñero et al., 2020) were used (v7, accessed via R package disgenet2r v0.99.2).

We focused on the DisGeNet database, as it represents one of the largest publicly available andmost regularly updated collections of

genes associated with human diseases (Piñero et al., 2020). The function fora in the fgsea package was used to calculate a p-value

regarding the statistical significance of enrichment over a background set of genes (Korotkevich et al., 2016). The background set of

genes was set to include all genes that were expressed inR5% of the cells of the relevant cell type. p-values were then adjusted for

multiple testing using FDR. Diseases were deemed enriched where the adjusted p-value was smaller than 0.05.

Stable integration into the reference atlas

Integrating query datasets and organoid samples onto the reference dataset was performed using the scArches approach from scVI

(scvi-tools v0.11.0) (Lopez et al., 2018), via the R package reticulate (v1.20). Raw count data from the reference was downsampled to

a maximum of 1,000 UMIs per cell, as well as for query datasets. Features were then reduced to the highly variable genes in the

reference that are also present in the query dataset to be integrated. A model is trained using a variational autoencoder to produce

a latent space, distributing cells among 30 latent variables. This trained model informs the distribution of cells in the query dataset

into the same low-dimensional space as the reference. Parameters were initialized in accordance with the scArches optimization

(use_layer_norm = ‘both’, use_batch_norm = ‘none’, encodec_covariates = TRUE, dropout_rate = 0.2, n_layers =2).

Once both reference and query are represented in the same latent space, we first verify the validity of their integration in a screening

check called a partial initialisation. The partial initialisation employs the uwot package (v0.1.10) to create a UMAP visualization of the

query dataset aligned to the reference, but allows the reference structure to change in shape (McInnes et al., 2018). The latent rep-

resentations of the query and reference are combined together, and a nearest neighbor graph using 25 neighbors is constructed.
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Then, point (nuclei) locations are initialized as follows: reference nuclei are initialized to the UMAP coordinates of the original refer-

ence embedding, and query nuclei are randomly distributed over this coordinate range (only the reference nuclei receive a specific

initialisation, hence the name ‘partial initialisation’). The UMAP is then optimized over 50 epochs to produce a final visualization of the

partial initialisation of the query and reference.

The partial initialisation is applied to determine whether query datasets are aligning to the reference, or largely forming their own

isolated clusters. Because the later stable integration forces query nuclei onto the reference clusters and can thus result in misclas-

sification of cell types, this preliminary testing is important to confirm that integrations are valid and sensible. A qualitative approach

can be taken, where query datasets observed to form their own clusters in the partial initialisation are not considered for stable inte-

gration, as their expression is too different to align to any reference cluster. However, understanding the context of the query samples

is also important, as disease and cerebral organoid models may not completely recapitulate neurotypical brain nuclei expression and

thus not align well, but will elicit meaningful results from a subsequent stable integration. Furthermore, the Partition-based graphical

abstraction algorithm (PAGA) from the scanpy package can be used to calculate the strength of connections between partitions of a

dataset, comparing observed interedges between expected number of interedges assuming random connections (Wolf et al., 2019).

Leiden clusters are created to form partitions of the partial initialisation. Few strong connections (weight >0.15) between query-domi-

nated and reference-dominated clusters suggest poor integration that may be inappropriately forced onto the reference, whereas

abundant and diverse connections suggest a well-aligned integration. This method demonstrated that our organoid samples have

abundant connections to astrocyte and neuronal clusters in the reference, regions they integrate onto heavily in the reference. In

contrast, very few connections were inferred between non-neuroectoderm snRNA-seq datasets and our reference map, and corre-

sponded to poor-quality nuclei, microglia, and vasculature, in line with expectations of minimal similarity between these datasets

(Figure S7F). The glioblastoma sample shows a connectivity level between non-neuroectoderm samples and organoids, with few

connections to vasculature and astrocyte populations (data not shown). As glioblastoma represents a non-neurotypical landscape,

its lack of alignment during the partial initialisation step is understandable; and further, it reinforces our assignment of nuclei to be

astrocyte-like, rather than astrocytic cells.

Oncewe have confirmed the validity of the partial initialisation, the uwot package can be utilized to regain the UMAP visualization of

our reference (McInnes et al., 2018). A nearest neighbor graph using 25 neighbors is constructed from the latent variable represen-

tation of the reference. Point (cell) locations are initialized to the UMAP coordinates of the original reference embedding, with zero

epochs to prevent changes to the structure. The query data points are then fitted to the reference using the umap_transform function.

Nearest neighbors of the latent representations of query cells are located in the reference, which informs initial positioning of the

query points onto the UMAP axes. Points are then fitted to the reference embedding through 50 epochs to approach their final

location on the visualization. We also applied two similar methods. This included a method by Hao et al. (2021) utilizing canonical

correlation analysis (CCA) as available in Seurat (v4.0.3), and Symphony (v1.0) by Kang et al. (2021), which incorporates soft cluster

assignment. These algorithms receive the initial PCA of the reference dataset to inform their integration, and thus create dimensional

embeddings equal to the number of principal components leveraged (365). For direct comparison, the Velmeshev dataset was inte-

grated with the scArches parameterisation, but with 365 latent variables instead of 30. Comparison to both methods in terms of cell

type prediction accuracy showed comparable performance (Figures S7B and S7C), but substantial improvement in age prediction,

primarily using astrocytes (average Spearman correlation improvement = 0.52 for Velmeshev et al. samples). Note that one of the

additional samples used to test the integration method (ga39) used a sucrose nuclei isolation method.

Age and cell type prediction

Predicting the cell type from integrated datasets involves KNN cluster prediction with 10 nearest neighbors within the integrated

UMAP space. The KNN function of the FNN package (v1.1.3) facilitated this. Query cells were assigned the cell type most common

among their 10 nearest neighbors in the reference dataset. For samples that supplied original cell annotations, these were used to

measure the accuracy of the cluster prediction, indicating the accuracy of the integration. Accuracy was given as the percentage of

cells in the dataset that had their cell type correctly predicted, relative to their original annotation. For age prediction, a KNN

regression was performed using FNN’s knn.reg function, with 10 nearest neighbors. Cell ages were estimated from the arcsinh trans-

formation of the reference ages, taking the mean of its neighbors. An estimation of sample age was calculated by taking the largest

mode of the density of age distributions for that sample. If the density had two similarly large modes, both were considered. Alter-

native predictions using k=50, 70, and 200 had little effect on age and cell type predictions. Finally, we also tested whether organoids

were exhibiting higher levels of metabolic stress than postmortem brain samples that could interfere with our ability to predict cell

types. Inspection of expression levels of genes involved in metabolic stress response and glycolysis (data not shown) demonstrated

this was not the case, and is in line with recently reported results (Uzquiano et al., 2022).

Differential expression comparing immature and mature PNs in organoids

Using the R package scran (v1.18.5) (Lun et al., 2016), we identified DEGs between PNs predicted to be of fetal age (immature PNs)

and PNs predicted to be non-fetal (mature PNs) using a t-test with a blocking effect indicating the nucleus organoid of origin. P-values

were corrected for multiple testing using FDR. Additionally, a permutation analysis was performed to confirm that the results could

not be produced when randomly shuffling the mature and immature labeling.
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snATAC-seq analysis
Sequence alignment and UMI counting

Reads were demultiplexed by sample index using the cellranger-atac (v1.2.0) mkfastq command. Fastq files were aligned to the

human (hg19) genome, cell barcodes were demultiplexed, and UMIs corresponding to genes were counted using the cellranger-

atac count command and default parameters. Some samples were excluded based on indicators of low quality, such as high doublet

score or low fraction of fragments overlapping called peaks (Table S1F).

ArchR preprocessing

ArchR (v1.0.1) is an R package for processing and analyzing snATAC-seq data (Granja et al., 2021). Using the function createArrow-

Files the fragments files produced by cellranger-atac were loaded into R, excluding sex chromosomes and restricting the output to

contain only barcodes for valid cells as defined by cellranger-atac. ArchR then was used for doublet removal, resulting in the removal

of 6.69% of nuclei on average (Table S1E). Next, we excluded any nuclei that did not have sufficient TSS enrichment in a sample

adaptive fashion by excluding any nuclei with TSS enrichment lower than median TSS enrichment in the sample minus 1 standard

deviation. This resulted in the removal of 6,011 nuclei across all samples (Table S1E).

Dimension reduction and clustering

In order to cluster the data, features were transformed using term frequency that has been depth normalized to a constant (10,000)

followed by normalization with the inverse document frequency and then log transformation (log(TF-IDF)). Next, iterative latent

semantic indexing available in ArchR using the 50,000 most variable features and 20 dimensions was applied. Four iterations

were performed, each time sampling 10,000 cells with 10 random starts at a resolution of 4. To combat batch effects Harmony

was applied to the dataset. Using the Harmony-corrected dimension reduction, the data were clustered into 73 subclusters

(Korsunsky et al., 2019). This constitutes overclustering, which was addressed during the annotation step.

Cluster annotation

The annotation of subclusters was driven by the snRNA-seq data. To this end, canonical correlation analysis (CCA) was used to

match each nuclei in the snATAC-seq data to its closest neighbor in the snRNA-seq data (Butler et al., 2018). Note that for this anal-

ysis the union of the 2,000 most variable genes in each modality. Subcluster labels were transferred from the snRNA-seq nuclei to

their matched snATAC-seq nuclei. Subclusters were then annotated according to their most prevalent major cluster label as well as

by manual inspection of known marker genes (as previously described in Cluster Annotation for snRNA-seq). At this stage, several

clusters were removed due to high doublet score (Figure S5A). Further clusters that could not be confidently assigned to one cell

type and probably constitute doublets or poor quality nuclei were identified. All these subclusters were labeled ‘‘Poor Quality’’

(constituting 4,281 nuclei) and removed from further analysis.

Using the reduced dataset, dimension reduction, clustering and annotation were repeated. This resulted in 67 subclusters, which

were labeled as 12 major cell types: Astrocytes, Oligodendrocytes, Oligodendrocyte Precursor Cells, Microglia, Vasculature

(which encompass endothelial, fibroblast-like, and pericytes/smooth muscle cells), L2/3, L4, L5/6, PN developing (PN dev), IN

developing (IN dev), MGE derived (MGE der, includes SST and PV populations), CGE derived (CGE der, includes VIP and ID2

populations).

Peak calling

Major cell types were first combined into the following trajectories, which match major trajectories used in the snRNA-seq analysis:

Oligodendrocytes (Oligodendrocyte Precursor Cells, Oligodendrocytes), Astrocytes, Microglia, Vasculature, L2/3 (PN dev, L2/3), L4

(PN dev, L4), L5/6 (PN dev L5/6), MGE der (IN dev, MGE der), CGE der (IN dev, CGE der). Peaks were called using a modified

ENCODE ATAC-seq pipeline with default parameters (Trevino et al., 2021). Fragments were first combined from nuclei according

to their sample of origin and trajectory assignment. Additionally, fragments from nuclei were combined according to their trajectory

assignment, ignoring their sample of origin. For each of these newly created fragment files, two pseudo replicate fragment files were

created, one containing fragments from randomly sampled half the nuclei and the second containing fragments from the other half.

Note that fragment files with <40 nuclei were removed from this analysis. Furthermore, sex chromosomes, the mitochondrial chro-

mosome, and blacklisted regions were removed.MACS2 (v2.2.7.1) was then used to call peaks in both the pseudo replicate fragment

files as well as the complete fragment files (Zhang et al., 2008). Peaks were filtered out that did not meet the significance threshold of

0.05 as well as an Irreproducible Discovery Rate (IDR, v2.0.4) of 0.05, which was calculated with the help of the pseudo replicate

fragment files (Li et al., 2011). This was done in order to select for a more consistent and confident peak set. Next, the function

nonOverlappingGR in ArchR was used to obtain peak sets that were non-overlapping and prevent daisy-chaining.

Next, to obtain even more reliable peak sets that ensure decent replication across samples, the following procedure was applied.

For each sample and cell type peak set, all peaks were removed that did not show a 50%overlap with peaks in the peak set called for

the corresponding trajectory. Additionally, peaks that were smaller than 300 bp or larger than 30 kb were filtered out. All peaks had to

show in at least two samples Insertions Per Kilobase perMillion readsmapped (IPKM) values above 2. This resulted in finding 152,329

peaks for L2/3, 181,948 peaks for L4, 128,135 peaks for L5/6, 74,202 forMGE-der, 80,411 for CGE-der, 72,263 for Oligodendrocytes,

45,453 for Microglia, 75,411 for Astrocytes, and 16,385 peaks for Vasculature.

For each trajectory, the mean of IPKM values in each peak in a stage was also used to find the first PC. This analysis is robust with

regards to the different number of nuclei across trajectories due to pseudo-bulking.
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ChromHMM overlap and peak annotation

Identified peaks were intersected with Encode chromHMM annotations specific for humans (ENCODE Project Consortium et al.,

2020) using a variety of different tissues and developmental stages (Sarropoulos et al., 2021). The fraction of identified peaks that

overlapped Encode-annotated enhancers (‘‘E’’), promoters (‘‘P’’), and heterochromatin (‘‘H’’) elements by at least one base pair

was determined.

Identification of Cis Regulatory Elements (CREs)

Using a correlation-based approach, peak-to-gene links were identified by applying pseudo-bulking of counts from nuclei of

matched scATAC-seq and snRNA-seq (Di Bella et al., 2021; Trevino et al., 2020). This approach has recently been validated using

single multiome technology that measures ATAC and RNA from the same cell (Trevino et al., 2021). To this end, 400 nuclei from the

entire scATAC-seq dataset were randomly sampled using geosketch to preserve rarer cell types. Using the R package FNN, these

400 seed nuclei were combined with their respective 50 nearest neighbor nuclei (PCA space), such that each pseudo-bulk sample

comprised 51 cells in total. Pseudobulk ATAC insertion counts for peaks were obtained by summing peak insertion counts across the

respective single-nuclei members. Matching RNA nuclei were obtained by selecting the 50 nearest neighbors of scRNA nuclei

matched to seed nuclei as determined by Seurat’s FindIntegrationAnchors and IntegrateData (Butler et al., 2018). Similar to the

ATAC nuclei groups, the counts for each group of 51 scRNA nuclei were summed. Each matched pseudo-bulk sample was anno-

tated with the majority cluster and age assignments of its contingent ATAC nuclei respectively.

Candidate peak-gene pairs were obtained by associating peaks with a genomic distance between 1 and 250 kb to the TSS of the

respective gene. For each candidate peak-gene pair the Pearson correlation coefficient of CPM-normalized counts of accessibility

and gene expression data as well as adjusted p-values for these coefficients based on their t-statistic were computed. To further

ensure selection of real CREs, we additionally determined a cut-off for the Pearson correlation coefficient value. For this, a previously

described method (Sarropoulos et al., 2021) based on computing interchromosomal correlations to obtain an empirical null distribu-

tion and identify a biologically meaningful correlation cut-off was adapted. For each gene, 10 randomly chosen regions located on

chromosomes different to the gene were considered. We then proceeded as described above to find the Pearson correlation coef-

ficient. Using this data, we then identified the 5% threshold (two-tailed) as the cut-off (Figure S5J). Regions that passed both FDR and

Pearson correlation coefficient cut-off were considered CRE. This resulted in the identification of 304,741 trajectory-specific CREs

(Table S5A).

Clustering CREs

NonnegativeMatrix Factorization (NMF) implemented via Python package sklearn (v0.24) was used to groupCREs into groups based

on their CPM value across pseudo-bulk samples (Li et al., 2020). Integral to a successful decomposition of a matrix into a basis and

coefficient matrix is the choice of the rank. The rank was optimized with the help of twomeasurements, sparseness and entropy, with

the idea that an optimal solution would show sparsity in both resulting matrices and low entropy in the basis matrix. Average values

were calculated from 10 times for NMF runs at each given rank with random seed, which will ensure the measurements are stable.

Rank 31 produced the best combination of sparseness and low entropy.

Next, the normalized coefficient matrix was used to associate groups with distinct pseudo-bulk samples. Since the values in the

normalized matrix indicate weight of pseudo-bulk samples in a group, we assigned each pseudo-bulk sample to its respective maxi-

mally weighted group. In addition, each group was associated with CREs using the basis matrix. For each CRE and each group, the

basis coefficient score and feature score via the ‘‘Kim method’’ (Kim and Park, 2007), which give an indication of distinctness of as-

sociation between a specific CRE and cluster, were derived. CREs that had a feature score smaller than themedian feature score plus

3 standard deviations or a basis coefficient score smaller than its median over the whole matrix were filtered. This resulted in 1,968

CREs that were distinctly associated with a small number of groups.

For plotting, the CPM value of CREs associated with the same gene were combined. Both CRE accessibility and associated gene

expression were normalized by their row mean.

Plotting CREs trends

To identify CRE accessibility trends over development, gene trends identified from the snRNA-seq datawere linked to theCRE via the

devDEG. The mean IPKM of the number of Tn5 insertions across all samples for each stage was then determined. To visualize

whether CREs show similar gene trends, the IPKM value across stages of each CRE was normalized to a scale from 0 to 1 and

then averaged over all CREs belonging to the same gene trend.

Motif enrichment

Motif enrichment was performed using the JASPAR2018 catalog (Khan et al., 2018). Promoter regions were removed from this anal-

ysis in order to focus on enhancer regulation. Utilizing the ArchR addMotifAnnotations function, peaks were annotated with known

motifs. Appropriate GCmatched background peaks for each peakwere next determined using getBgdPeak. Using the internal ArchR

computeEnrichment function then allowed determination of enriched motifs in chosen sets of regions over their respective back-

ground peaks. TFs not expressed as determined via the snRNA-seq data were removed. If multiple sets of regions were tested,

FDR corrections to account for multiple testing were used. Finally, motifs for the gene trend analysis were grouped into larger motif

families based on their sequence similarity as described in Vierstra et al. (2020). P-values were combined using the Fisher method.

Footprinting analysis

To obtain Tn5 bias-corrected footprints, the ArchR function getFootprints is used. Pseudo-bulk footprints are created for the CREs

regions with enriched TF motifs associated with particular gene trends across major trajectories.
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Construction of networks

To construct networks we adapted an approach from Kamimoto et al. (2020). The approach has the following steps: 1) For every

trajectory, motif binding sites located in the CREs were identified and used to establish potential connections between TFs and

the genes associated with the CREs. These connections between target genes and TFs serve as the base networks, which are

the input for the machine learning process conducted with the snRNA-seq data in the next step. 2) A relatively simple machine

learning model was fitted that predicts a target gene expression based on the gene expression of the potential regulatory TFs as

determined by the base network. Note that only cells of a particular cell type of interest are used in order to ensure that the described

process represents indeed a linear relationship and is in fact cell type-specific. The linear models were fitted with a Bayesian Ridge

model using a non-informative prior via sklearn. 3) Utilizing the ability to easily calculate p-values for the coefficients associated with

the TFs with the help of the posterior, we were able to establish connections between TFs and their targets by removing non-signif-

icant connections. 4) The resulting network could then be interrogated for the relative importance of each member via the hub score

and betweenness measure (igraph v1.2.6).

Ranking of TFs

To rank TFs that were upregulated in a differential expression analysis between mature PNs in organoids and their closest matched

nuclei in the reference brain atlas, we employed a strategy based on the inferred base network described inConstruction of networks.

For each TF, we counted the number of potential connections with other upregulated non-TF genes. We then transformed this num-

ber into a z-score to rank the TFs according to their likelihood of regulating genes that are differentially expressed.

ADDITIONAL RESOURCES

An accompanying website for this study provides all code as well as interactive browser tools for interrogation of multiple datasets,

available at http://brain.listerlab.org.
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Figure S1. Construction of a snRNA-seq map of the human PFC during development, related to Figure 1

(A) Number of human PFC sc/snRNA-seq and sc/snATAC-seq samples generated in previous studies and the sample ages. Brain samples not from the PFCwere

included for fetal stages. ga, gestational age, in weeks.

(B) Nuclei were stainedwith DAPI and gated to discriminate intact single nuclei using area plots of forward scatter (FSC Par) versus side scatter (SSC). Nuclei were

sorted for DAPI+ events.

(C) UMAP of snRNA-seq data overlaid with donor origin for each nucleus (left). Bar plot of number of single nuclei transcriptome profiles for each sample after

stringent quality filtering (right).

(D) Distribution of number of genes detected per nucleus (log10 transformed, top) and number of UMI counts per nucleus (log10 transformed, bottom), for each

sample prior to stringent quality filtering. Dotted line on plot of UMI counts per nucleus indicates threshold of the minimum number of UMIs for a nucleus to be

included in subsequent analyses.

(E) UMAPs, Leiden clustering (left) and UMI counts (right), of downsampled snRNA-seq prior to removal of nuclei with <1,000 UMIs (STAR Methods).

(F) PMI and common quality measures (nuclei counts, UMI counts, and collection year) for all snRNA-seq samples, colored by stage.

(G) UMAP of snRNA-seq data with each of the 86 clusters represented by a distinct color.

(H) Number of nuclei per stage.

(I) Proportion of each major cell type/state in each sample.
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Figure S2. Identification of developmental trajectories in the snRNA-seq human PFC map, related to Figures 1 and 2

(A) Hierarchical cluster naming strategy for all nuclei. Bold outlines indicate major trajectories.

(B) UMAP representation of 40 of the 45 identified sub-trajectories, with nuclei that are members of each trajectory indicated in orange. The 5 remaining major

trajectories are indicated by a red outline in (B).

(C) UMAP representation of 15 major trajectories, including vasculature-associated cells, with nuclei that are members of each trajectory indicated in orange.
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Figure S3. Robustness of trajectories and analyses, related to Figures 1, 2, and 3

(A) UMAP overlaid with CytoTRACE scores (left) and vector fields derived from scVelo stochastic model (right).

(B) Number of nuclei versus number of devDEGs in each trajectory.

(legend continued on next page)
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(C) RRHO2 plots comparing L2/3-CUX2 trajectory devDEGs for every stage contrast from the original analysis with the one where the indicated sample in the

empty square was removed. Each such pairwise comparison results in a plot showing the strength and pattern of the correlation between the DEGs found when a

sample was left out and the DEGs found by the original analysis. Negative log10 p values represent the correlation strength, and low p values in the upper right and

lower left quadrants represent concordant up and down gene regulation, respectively.

(D) RNAscope in PFC tissue for six further representative ages (for additional ages see Figure 2D), detecting: postnatally mature cells marked by KCNH1 (green)

and ARHGAP26 (red), and immature cells marked by BHLHE22 (gray). DAPI counterstain (blue, nuclei).

(E) Bar plot of proportion of PNs with non-zero expression with a line plot of average PN log2 CPM expression (left) and UMAP overlaid with log2 CPM expression

(right) of new (BHLHE22, ARHGAP26, KCNH1) and conventional (SOX2, RBFOX3/NeuN) markers.

(F) Euclidean distances between scaled gene expression trends of pseudo-bulked snRNA-seq data from this study and dorsolateral PFC (DFC) bulk RNA-seq

from Li et al. (2018), for devDEGS identified in this study that exhibit either similar or dissimilar expression profiles across different PFC cell types (see STAR

Methods).

(G) Absolute mean rates of change of devDEGs calculated on arcsinh age scale.

(H) Selected ligand-receptor pair expression (product of mean ligand expression 3 mean receptor expression) between PNs and ODCs across developmental

stages.

(I) Expression (log2 CPM; dot: individual sample; line: GAM fit) of receptor PTPRD and corresponding ligand NTRK3 across development. Points represent

expression levels in individuals with R10 nuclei in the trajectory.

(J) Enrichment, indicated by p value and number of intersecting genes, of investigated ion transporter types (calcium [Ca], potassium [K], sodium [Na],

neurotransmitter [NT]) in general gene trends in cell types where significant enrichments were detected.

See also Tables S2 and S4.
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Figure S4. Emergence and maturation of LAMP5+ subtypes, related to Figures 1, 3, and 4

(A) Multi-dimensional scaling log2 CPM scatterplots investigating correlation with potential confounders, including brain region, cause of death, 10x chemistry

version, collection year, donor sex, ethnicity, library prep lot number, and post-mortem interval (PMI), in the pseudo-bulked snRNA-seq dataset.

(B) UMAP overlaid by the arcsinh age of each nucleus and vector fields derived from scVelo stochastic model.

(C) UMAP of maturation (UMAT) overlaid by the arcsinh age of each nucleus.

(D) UMAT overlaid by select subcluster colorations (CGE-dev and MGE-dev), and vector fields derived from scVelo projected onto a UMAT embedding with

colorations of select subclusters (LAMP5-NOS1 and LAMP5-CKK).

(E) Probability mass flow plots from a CellRank CytoTRACE kernel for outflows to LAMP5-NOS1 or LAMP5-CCK clusters across developmental stages from

combined CGE-dev and ID2-dev clusters (top) and MGE-dev cluster (bottom). The width of horizontal veins is proportional to nuclei type frequency at each

developmental stage and the width of edges between nuclei types is proportional to flow probability.

(F) Eigentrend values of devDEGs in the ion transport GO-term across development for different LAMP5 subtypes.

(G) RNAscope in PFC tissue sections from 8-year-old (left) and 2-year-old (right) individuals, showing the location of LAMP5-NDNF nuclei positive for NOS1 (red)

and NDNF (gray), but negative for NPY (green) at the edge of the cortical sections. Sections counterstained with DAPI (blue).

(H and I) (H) Log2 CPM expression in nuclei of LAMP5+ populations from this study, and (I) mean scaled log2 CPM expression (scaled per gene) in all IN sub-

clusters from this study, for previously identified marker genes for layer 1 canopy cells from Schuman et al. (2019) (NDNF+ NPY�) and the layer 1 LAMP5-NDNF

population from Hodge et al. (2019) (LAMP5+ SST+ NMBR+ ).

(J) Percentage of mitochondrial reads per cell state.
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Figure S5. Construction of a chromatin accessibility reference of the human PFC over development, related to Figure 5

(A) UMAP of unfiltered snATAC-seq dataset colored by annotation of different cell types/states and poor quality nuclei (left). UMAPs colored by TSS enrichment

and doublet score for each nucleus (right).

(B) UMAP of snATAC-seq nuclei colored by donor origin (left). Number of high quality nuclei per sample (right).

(C) UMAP overlaid with all 65 identified subclusters.

(D) Number of fragments, reads in peaks, fraction of reads in peaks (FRIPs), TSS enrichment, reads in promoters, and fraction of reads in promoters per sample.

(E) Proportion of cell types/states in each sample (left), using the (A) cell type color key. UMAPs overlaid with matched cell type/state labels for each nucleus,

derived from matched snRNA-seq data (right).

(F) Number of nuclei in each stage.

(G) Expression (log2 CPM; dot: individual sample; line: GAM fit) of MYRF across development in ODCs.

(H) Proportion of peaks in different cell types from this study overlapping chromHMM predicted enhancers, heterochromatin, and promoters identified across a

series of human tissues and developmental stages (Ernst and Kellis, 2017).

(I) Proportion of peaks of particular types of genomic regions, and the observed versus expected frequency.

(J) Density plot of Pearson correlation coefficients between CRE accessibility and gene activity in ±250 kb windows considered for the real target assignment

(teal) and in different chromosomes used as background (red).

(K) Number of CREs associated with each gene.

(L) Enrichment of TFmotifs in various CREmodules; color represents enrichment. Only significant enrichments found in <3 CREmodules are displayed. TFmotifs

are summarized to TF motif similarity modules.

(M) Scatterplots of hub score versus betweenness of networks of interactions between genes in ensheathment of neurons GO term and TFs in L4 PNs in infancy

and adolescence. Networks were constructed using motif binding sites in CRE elements, as estimated from the snATAC-seq, and co-expression of genes and

TFs, as estimated from snRNA-seq (STAR Methods). Scatterplots for other PNs showed similar results.
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Figure S6. Enrichment of TFmotifs in CREs linked to devDEGs for different general gene trends andmajor trajectories and devDEG stability

assessment, related to Figures 1 and 5

(A) CREs linked to devDEGs in general gene trends across different major trajectories were tested for enrichment of TF binding motifs. TF motifs are summarized

to TF motif similarity modules. Color represents adjusted p value for enrichment.

(B) Heatmap of expression (snRNA-seq) of syndromic ASD genes (Simons Foundation Autism Research Initiative) across development in 10 major trajectories.

(C) UMAP of Harmony (left) and BBKNN (right) corrected snRNA-seq data, with nuclei colored by the donor age.

(D) UMAP of Leiden clustering when synthetic low-quality nuclei are included in snRNA-seq data.

(E) UMAP of snRNA-seq data including synthetic low-quality nuclei; also marked is the population of poor quality nuclei identified in the dataset.

(F) UMAPs overlaid with normalized expression of NRGN (left) and THY1 (right).
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Figure S7. Establishing stable integration and age prediction, related to Figure 7
(A) Projection of stably integrated nuclei from snRNA-seq data of PFC from 14 control individuals from Velmeshev et al. (2019), ranging from 4 to 22 years of age.

Density of points is indicated by orange contour lines.

(B) Cluster prediction accuracy for each cell type for Seurat (Hao et al., 2021), Symphony (Kang et al., 2021), and modified scArches.

(C) Distributions of age prediction for nuclei from snRNA-seq data from neurotypical control PFC samples (Velmeshev et al., 2019), and our ga39, and 261- and

443-day PFC samples, using only astrocytes of L2-3 PNs for Seurat (left) and Symphony (right).

(D) Distributions of age prediction for nuclei from our snRNA-seq of the ASDPFC sample prepared by two different nuclei isolationmethods (FANS versus sucrose

gradient nuclei purification).

(E) Distributions of age prediction for nuclei from snRNA-seq profiling of the glioblastoma and cerebral organoid samples.

(F) Cell type identities of clusters connected to query-dominated clusters. For all partition-based graphical abstraction algorithm (PAGA) connections between

query-dominated and reference-dominated Leiden clusters, the weight or strength of these connections (y axis) is plotted for each sample, colored by any cell

type with over 100 nuclei present in the reference-dominated cluster. Where multiple cell types are prevalent within a single cluster, multiple points are plotted at

the same weight. The red dashed line represents the filtering weight of 0.15.

(G) snRNA-seq UMAP outline overlaid with projection of nuclei from the glioblastoma snRNA-seq in hexbin format colored by average G2MPhase Score (top) and

Stem Cell Core Network Score (Ang et al., 2011) (bottom).

(H) UMAP of snRNA-seq of each cerebral organoid sample, annotated by their cell type labels (top row) and stage prediction (bottom row) as determined by

developmental snRNA-seq reference integration. Note that the points are transparent to allow overlaid points to be visible.

(I) Proportion overlap between gene trends and the DEGs from the analysis of immature organoid PNs versus mature organoid PNs of brain organoids.
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