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Abstract: Clusterin is a glycoprotein present at high concentrations in many extracellular fluids,
including semen. Its increased expression accompanies disorders associated with extracellular
amyloid fibril accumulation such as Alzheimer’s disease. Clusterin is an extracellular molecular
chaperone which prevents the misfolding and amorphous and amyloid fibrillar aggregation of a wide
variety of unfolding proteins. In semen, amyloid fibrils formed from a 39-amino acid fragment of
prostatic acid phosphatase, termed Semen-derived Enhancer of Virus Infection (SEVI), potentiate HIV
infectivity. In this study, clusterin potently inhibited the in vitro formation of SEVI fibrils, along with
dissociating them. Furthermore, clusterin reduced the toxicity of SEVI to pheochromocytoma-12 cells.
In semen, clusterin may play an important role in preventing SEVI amyloid fibril formation, in
dissociating SEVI fibrils and in mitigating their enhancement of HIV infection.
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1. Introduction

Numerous debilitating and incurable human disorders are associated with extracel-
lular depositions of protein aggregates in a variety of organs and tissues, including the
brain (e.g., Alzheimer’s disease), skeletal tissues and joints (e.g., haemodialysis-related
amyloidosis) and the liver, spleen and heart (e.g., systemic amyloidosis) [1–3]. The protein
aggregates are rope-like, highly structured, β-sheet-containing entities termed amyloid
fibrils. They arise when a specific protein or protein fragment loses its native conformation
(whether that be folded or unstructured), subsequently aggregates and forms insoluble
deposits. The trigger for misfolding may be stresses such as elevated temperature, low
pH, infection, the presence of reactive oxygen species or inherited mutations [4]. The
intermediately folded proteins that result expose greater hydrophobic region(s) to solution
which encourages their misfolding, mutual association and hence aggregation [3].

Proteostasis is a term that describes the various mechanisms by which correct protein
levels in vivo are regulated intra- and extracellularly, including the inhibition of inappro-
priate protein aggregation. Proteostatic mechanisms include protein quality control and
degradation processes and the production of molecular chaperones. Molecular chaperones
are a large group of proteins whose function is to interact with destabilized proteins to
prevent protein aggregation and, in some cases, facilitate proteins to fold into their correct
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structure. The majority of known molecular chaperones are found intracellularly. However,
many amyloid fibrillar aggregates accumulate in extracellular space [3,5]. Extracellular
molecular chaperones have been identified; they include clusterin [3,6], haptoglobin [7],
α2-macroglobulin [8] and αS- and β-casein [9,10]. Recently, neuroserpin, transthyretin,
vitronectin and plasminogen activator inhibitor-3 have been identified as extracellular chap-
erones [11,12]. The first-described and most well-characterized extracellular chaperone is
clusterin [3,5,6].

Clusterin is a glycoprotein found in a variety of tissues whose expression shows
tissue-specific patterns [13]. Clusterin is present at relatively high levels in plasma
(0.035–0.105 mg/mL) [14] and semen (0.5–3.5 mg/mL) [15]. In vivo, clusterin is bound
to many disparate proteins. As a result, it has been ascribed a diverse range of func-
tions from being a regulator of apoptosis to a lipid transporter and a regulator of comple-
ment [3,16]. Elevated clusterin levels in serum are associated with rapid clinical progression
in Alzheimer’s disease and accordingly, it has been identified as a candidate biomarker
of the disease [17]. We have shown that clusterin has chaperone activity with the ability
to prevent the amorphous and amyloid fibrillar aggregation of a broad range of pro-
teins [2,3,5,6,18,19]. Clusterin stabilizes amorphously aggregating proteins under stress
conditions, e.g., elevated temperature, by sequestering them into soluble high-molecular-
weight complexes and interacts transiently with amyloid fibril-forming proteins to prevent
their aggregation [20].

Previously, we demonstrated that fibrils formed by a 39-amino acid fragment of
Prostatic Acid Phosphatase (PAP248–286), referred to as Semen-derived Enhancer of Virus
Infection (SEVI), are toxic to pheochromocytoma (PC)-12 cells [21]. When present, SEVI
enhances HIV infection by up to five orders of magnitude by assisting HIV to attach to
cells [22]. The concentration of SEVI in semen can be high as the amount of PAP248–286
produced in semen is approximately 1–2 mg/mL [22]. In aqueous solution, PAP248–286
adopts an unstructured, intrinsically disordered conformation, i.e., it exhibits no preferred
secondary structure [21,23]. In the presence of SDS micelles, however, PAP248–286 adopts
a partial (albeit nascent) helical conformation in two short regions of the peptide, the longer
one being in the centre of the peptide [24]. In addition, PAP248–286 interacts weakly with
the surface of the micelle [24]. In the presence of the membrane-mimicking solvent, 50% v/v
trifluoroethanol/water, however, PAP248–286 adopts an amphipathic α-helical structure
along most of its length that is very similar to its conformation in intact prostatic acid
phosphatase [23]. Contrastingly, PAP248–286 undergoes a major structural rearrangement
upon aggregation and conversion to an amyloid fibrillar structure to form SEVI, with its
polypeptide chain arranged in a highly ordered, cross β-sheet array [22].

In this study, we investigated whether clusterin (i) inhibits the formation of SEVI
amyloid fibrils in vitro, (ii) is capable of dissociating SEVI fibrils, and (iii) prevents SEVI
fibril-associated cytotoxicity.

2. Materials and Methods
2.1. SEVI Amyloid Fibril Formation

PAP248–286 peptide (>95% purity by HPLC) was custom synthesized by Mimo-
topes, The Peptide Company, Melbourne, Australia. For aggregation studies, PAP248–286
(2 mg/mL; 439 µM) was dissolved in 200 mM phosphate buffer, pH 7.2. Clusterin was
also dissolved in the same phosphate buffer and added to PAP248–286 at 0, 3, 20, 40 and
200 µg/mL; 0, 0.050, 0.333, 0.666 and 3.33 µM clusterin monomer respectively). Samples
were incubated at 37 ◦C with shaking (700 rpm) for two days to allow fibril formation.
Samples were removed from solution every 8 h and snap frozen at −20 ◦C.

2.2. Clusterin

Clusterin was isolated from human blood serum, as outlined previously [5,6].
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2.3. Thioflavin T Fluorescence Assay

Samples that were frozen as outlined above were defrosted and 10 µL of each sample
was added to 25 µL of thioflavin T (ThT) (0.5 mM in phosphate buffer) and made to a final
volume of 200 µL with 200 mM phosphate buffer, pH 7.2. The fluorescence intensity of
each sample was measured with excitation and emission wavelengths set at 440 nm and
490 nm, respectively, in triplicate wells of a 96 well plate using FLUOstar and POLARstar
Optima microplate readers (BMG Labtechnologies, Melbourne, Australia).

2.4. Transmission Electron Microscopy

2 µL of aggregate samples from the ThT assays was added to formavar and carbon-
coated nickel grids (SPI supplies, West Chester, PA, USA) for 2 min. The grids were washed
three times with 10 µL of water and negatively stained with 10 µL uranyl acetate (2% w/v).
Excess stain was removed with filter paper and the grids were air dried and viewed using
a Tecnai G2 Spirit transmission electron microscope (Philips, Eindhoven, The Netherlands)
at 10,000× magnification.

2.5. Cellular Toxicity

Pheochromocytoma (PC)-12 cells were grown in Dulbecco’s Modified Eagle’s Medium
(DMEM, Gibco, Victoria, Australia) containing 5% v/v fetal calf serum, 1% w/v glutamate,
non-essential amino acids and penicillin and streptomycin in 75 mL flasks at 37 ◦C in an
incubator with 95% air and 5% carbon dioxide. Cells were passaged every 2–3 days into
fresh medium. The cells were plated into a 96 well plate at a density of 2 × 104 cells/well
and incubated for 24 h. The cells were then treated with samples of SEVI with varying
clusterin concentrations (six replicates per treatment) and incubated for 48 h. Cell viabil-
ity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay.

2.6. MTT Assay

A 0.60 mM solution of MTT was prepared (3 mg of MTT (Sigma Aldrich, Sydney,
Australia) dissolved in 12 mL of serum-free DMEM). The media was aspirated from the
96 well plate and 100 µL of MTT-containing media was added to each well. The plate was
incubated for three hours at 37 ◦C. The MTT-containing media was aspirated and 100 µL
of DMSO was added to each well. Formazan absorption was measured at 560 nm using a
BMG Polarstar microplate reader (BMG Labtechnologies, Offenburg, Germany). The mean
of the absorbances of the six replicates per treatment was taken in each 96 well plate, and
cell viability was calculated by dividing the average absorption readings of treated wells
with average absorption readings of the six replicate untreated wells (phosphate buffer
only). Three independent experiments were conducted.

3. Results
3.1. The Effect of Clusterin on the Aggregation and Amyloid Fibril Formation of PAP248–286

In vitro, clusterin potently inhibits amyloid fibril formation of a variety of peptides and
proteins including the Amyloid-β (Aβ) peptide [25–27], a fragment of prion protein, PrP
(106–126) [28], and apolipoprotein C-II (apoC-II) [29]. We sought to determine whether the
chaperone (anti-aggregation) activity of clusterin also applies to the inhibition of PAP248–
286 aggregation and SEVI fibril formation. A ThT fluorescence assay was used to monitor
the aggregation of 2 mg/mL PAP248–286 in the presence of varying concentrations of
clusterin at 37 ◦C for 48 h. In the presence of increasing clusterin, a concentration-dependent
decrease in SEVI-associated ThT fluorescence occurred (Figure 1). After 48 h of incubation,
3 µg/mL clusterin decreased the ThT fluorescence to 54 ± 4% of its value in the absence
of clusterin, while 200 µg/mL clusterin reduced ThT fluorescence levels to background,
implying complete inhibition of fibril formation. Under these conditions, clusterin potently
inhibited PAP248–286 aggregation at a molar ratio of 132:1 PAP248–286:clusterin monomer.
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Clusterin exhibits similar sub-stoichiometric ability in preventing the aggregation of a
variety of amorphous and fibril-forming target proteins [5,6,13].
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Figure 1. Amyloid fibril formation of 2 mg/mL PAP248–286 peptide (439 µM) with varying con-
centrations of clusterin (0.050, 0.333, 0.666 and 3.33 µM clusterin monomer, and hence molar ratios
of PAP248–286:clusterin monomer of 8788:1, 1318:1, 659:1 and 132:1 respectively) upon incubation
for two days at 37 ◦C and pH 7.2. Also plotted are the results of an experiment in which 2 mg/mL
solution of preformed SEVI fibrils was incubated under the same conditions with 200 µg/mL clusterin
(3.33 µM). The data shown are means ± SD of triplicates. Some error bars are smaller than the size of
the individual data points. Clusterin does not bind ThT in its native state, nor does it form amyloid
fibrils in vitro under physiological conditions, and over the time course of this experiment [29].

To determine whether clusterin could disaggregate SEVI fibrils, 200 µg/mL of clusterin
was added to preformed 2 mg/mL SEVI fibrils and incubated at 37 ◦C with samples taken
every 8 h over a 48 h period. After this time, ThT fluorescence decreased by 77 ± 3% of its
initial value implying a significant reduction in the presence of amyloid fibrils. Furthermore,
clusterin incubated alone did not change its ThT fluorescence with time, indicating that
clusterin does not form fibrils under these conditions, as observed previously [29].

3.2. Transmission Electron Microscopic Analysis of the Effect of Clusterin on SEVI Amyloid
Fibril Formation

The effect of clusterin on SEVI fibril morphology (using samples from the ThT assays
after 48 h of incubation) was assessed by TEM (Figure 2). In accordance with the ThT assay,
the SEVI sample formed in the absence of clusterin exhibited long fibrillar aggregates of
dimensions characteristic of amyloid fibrils (Figure 2a). The fibrils were of very similar
density and morphology to those observed previously for SEVI [21]. The morphology of
SEVI fibrils formed in the presence of 3 µg/mL clusterin (Figure 2b) was similar to the
dense, long fibrils of SEVI formed in the absence of clusterin. In contrast, SEVI formed
in the presence of clusterin at 20 µg/mL (Figure 2c) and 40 µg/mL (Figure 2d) produced
scattered short fibrils, the latter shorter than the former. At 200 µg/mL clusterin (Figure 2e),
amorphous aggregates, not fibrils, were observed.

As mentioned above, in vitro clusterin suppresses amyloid fibril formation of a broad
range of peptides and proteins [2,5,26–30]. In doing so, clusterin interacts with prefib-
rillar species rather than the monomeric peptide/protein or mature fibrils [5,13]. Hat-
ters et al. [29] proposed that clusterin inhibits apoC-ll amyloid fibril formation by inter-
acting stoichiometrically with amyloidogenic precursors (nuclei) of apoC-II, leading to
dissociation of the nuclei back to monomer thereby inhibiting fibril growth. Using single
molecule techniques, Narayan et al. [31] showed that clusterin interacts with a range of
oligomeric forms of Aβ thereby inhibiting further growth to fibrils, or dissociates the
oligomers to monomers.
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Figure 2. TEM micrographs of the effect of different concentrations of clusterin on SEVI fibril
formation. Samples were taken at the end of a two-day incubation with either PAP248–286 or
preformed fibrils of SEVI. PAP248–286 was at 2 mg/mL with varying concentrations of clusterin:
(a) 0, (b) 3, (c) 20, (d) 40, (e) 200 µg/mL; (f) Preformed 2 mg/mL SEVI fibrils with 200 µg/mL of
added clusterin; (g) Preformed 2 mg/mL SEVI fibrils PAP248–286 incubated for three days without
clusterin. The results are representative of three or more individual experiments. The scale bars
represent 1 µm.

In this study, the highest concentration of clusterin tested (200 µg/mL), i.e., a PAP248–
286:clusterin monomer ratio of 132:1, completely inhibited the formation of SEVI fibrils,
as measured by both ThT fluorescence and TEM. At lower concentrations of clusterin
(20 and 40 µg/mL), clusterin reduced fibril formation (as assessed by the ThT assay), and
those fibrils that were formed were shorter in length (as monitored by TEM). The TEM
images of the effect of 200 µg/mL clusterin on preformed SEVI fibrils were similar to those
in which SEVI was formed in the presence of 40 µg/mL clusterin (compare Figure 2d,f,
i.e., some fibrillar species, of smaller size, than those formed in the absence of clusterin
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(Figure 2a) were present. As the preformed fibrils incubated with clusterin appeared to
undergo significant dissociation, the effects of a longer incubation (three days) and a higher
concentration of clusterin (400 µg/mL) on SEVI fibril morphology was examined. After
three days of incubation of SEVI with 200 µg/mL clusterin, no further dissociation of fibrils
was noted. Furthermore, higher concentrations of clusterin (400 µg/mL) dissociated the
fibrils but did not remove all of them (results not shown). As a control, a 2 mg/mL sample
of preformed SEVI fibrils incubated for three days without clusterin (Figure 2g) exhibited
significantly more fibrils than in the presence of clusterin (Figure 2f).

Thus, the combined results of ThT and TEM analysis show that, at impressive sub-
stoichiometric levels, clusterin prevents fibril formation of SEVI. In addition, clusterin
dissociates preformed SEVI fibrils to smaller species. The ability of clusterin to prevent
SEVI fibril formation at a sub-stoichiometric level is consistent with the notion that clusterin
is a potent generic inhibitor of amyloid fibril and amorphous aggregation [2,3,5,6,29]. The
TEM images indicate that the chaperone action of clusterin at higher concentration leads to
the formation amorphous aggregates of PAP248–286 (Figure 2e).

3.3. Clusterin Inhibits the Cytotoxicity of SEVI

Several studies have shown that clusterin either enhances [27,30] or suppresses [3] the
cytotoxicity of Aβ but each of the studies used different conditions. Since human semen
contains relatively high concentrations of both clusterin and PAP248–286, we investigated
the effect of clusterin on the cytotoxicity of SEVI fibrils. Samples from the ThT assay, after
48 h of incubation, were added to PC-12 cells and the toxicity of samples with clusterin was
compared to that of SEVI without clusterin present. SEVI (2 mg/mL) caused a reduction
in cell viability of 34 ± 4% while PAP248–286 samples incubated with 3 and 20 µg/mL
of clusterin had no significant alteration in cell viability compared to SEVI (30 ± 2% and
31 ± 6% reduction, respectively, Figure 3). 40 µg/mL of clusterin provided some protection
with cell viability reduction of 25 ± 6%, whereas total suppression of SEVI toxicity was
observed at 200 µg/mL of clusterin (108 ± 9% viability of control, p < 0.01, Figure 3).
Clusterin (200 µg/mL) added to preformed SEVI fibrils (which are toxic to cells) had no
significant impact on cytotoxicity (28 ± 6% reduction, Figure 3), despite being able to
dissociate the long fibrillar species into smaller fibrillar species (as demonstrated in the
TEM images in Figure 2f). However, the ThT-monitored dissociation, TEM appearance and
degree of cell death were similar for experiments in which 40 µg/mL clusterin was added
simultaneously and 200 µg/mL clusterin was added to preformed fibrils (25 ± 6% versus
28 ± 6% reduction, respectively; Figures 1 and 3, and compare Figure 2d,f). Thus, it is not
clear if the smaller SEVI fibrillar species produced in the presence of clusterin (Figure 2f)
are cytotoxic or if smaller SEVI oligomers not visible by TEM are cytotoxic. However, these
results are consistent with the findings of Narayan et al. [31] who showed that amyloid β

1–40 (Aβ1–40) fibril disaggregation in the presence of clusterin results in binding of Aβ1–40
oligomers released from fibrils with clusterin to form stable clusterin-oligomer complexes
that are toxic to cells. The addition of clusterin alone to the cell culture did not have
significant effect on cell viability, consistent with previous studies [31]. Thus, clusterin has
a significant protective effect on the cytotoxicity of SEVI towards PC-12 cells. The effect is
concentration dependent, with higher concentrations of clusterin (at a sub-stoichiometric
level) offering greater protection.
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Figure 3. Effect of clusterin on the toxicity towards PC-12 cells of 2 mg/mL (439 µM) PAP248–286.
The peptide was dissolved in 200 mM phosphate buffer, pH 7 and incubated at 37 ◦C for 48 h with
different concentrations of clusterin (3, 20, 40 and 200 µg/mL corresponding to 0.050, 0.333, 0.666
and 3.33 µM, and hence molar ratios of PAP248–286:clusterin monomer of 8788:1, 1318:1, 659:1 and
132:1 respectively). In a separate experiment, 200 µg/mL of clusterin was added to preformed SEVI
fibrils and incubated for 48 h (200+Fibrils). Samples were then added to the culture media of PC-12
cells and incubated for 48 h. The MTT assay was used to assess cell viability and values are presented
as percentage of cell survival compared to control. Results are expressed as mean ± standard error of
three independent experiments. (** One-way ANOVA, p < 0.01).

4. Discussion

From the results presented in this study, clusterin potently inhibits SEVI amyloid
fibril formation in vitro, reduces and prevents the cytotoxicity of SEVI to PC-12 cells, and
acts on preformed SEVI fibrils to induce their dissociation. With reference to the first
point, SEVI fibrils are present in fresh ejaculate [32,33] implying that clusterin chaperone
action does not inhibit SEVI fibril formation completely in vivo. The presence of SEVI
in semen implies that SEVI has a functional role under normal physiological conditions,
and that SEVI fibril production and localization are regulated tightly in vivo to minimize
its potential cytotoxicity. With reference to the third point, the probably oligomeric SEVI
species (with clusterin bound) cause cytotoxicity at a comparable level to that of preformed
SEVI fibrils (Figure 3). The clusterin-induced dissociation of SEVI fibrils may facilitate the
time-dependent degradation of semen amyloid fibrils into smaller peptide fragments via
protease action [34]. In semen, this protease-induced degradation of SEVI and other semen
amyloid fibrils (e.g., those derived from semenogelin proteins) is most likely responsible
for negating the cytotoxicity and HIV-binding capability of the oligomeric SEVI species.
Coupled with this, other extracellular chaperones [7–12] could associate with the oligomeric
SEVI species, for example to prevent their binding to HIV, as has been observed with Hsp104
via association into amorphous-type aggregates [33,35], and when 200 µg/mL of clusterin
was incubated with 2 mg/mL PAP248–286 to produce amorphous aggregates (Figure 2e).
Furthermore, in semen, efficient extracellular mechanisms are likely to exist to dispose
of clusterin-SEVI and other chaperone-SEVI complexes such as macrophage uptake of
chaperone-SEVI complexes followed by their intracellular lysosomal degradation [15].
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To our knowledge, clusterin is the first extracellular protein (in this case a molecular
chaperone) which has been shown to inhibit SEVI fibril formation. As with many other
aggregating target proteins [5,6], clusterin is very efficient at preventing the aggregation of
PAP248–286 in vitro. In addition to clusterin, a diversity of smaller, non-protein natural
products and synthetic molecules inhibit or modulate SEVI fibril formation in vitro and
affect HIV infectivity in cell culture. They include: (i) polyhydroxylated antioxidants, i.e.,
phenols (gallic acid [36], (-)-epigallocatechin-3-gallate (EGCG) [37] and myricetin [38]) and
ascorbic acid [39], (ii) polyanions (ADS-J1 [40]), and (iii) hydrophobic nanoparticles [41].
They interact with PAP248–286 and SEVI fibrils via hydrogen bonding, electrostatic or
hydrophobic interactions, or combinations thereof. From NMR spectroscopic experiments,
the interaction of EGCG with PAP248–286 has been localised to K251-R257 and N269-
I277 via mainly positively charged lysine residues [37]. From molecular modelling and
molecular dynamics calculations, the binding site of myricetin, ascorbic acid and ADS-J1 to
PAP248–286 has been localised to the central fibril-forming region of the peptide [38–40].
Furthermore, ADS-J1 disaggregates SEVI fibrils [40], and myricetin and hydrophobic
nanoparticles remodel SEVI fibrils via reduction in their β-sheet content [38,41]. Myricetin,
ascorbic acid and hydrophobic nanoparticles decrease semen-mediated enhancement of
HIV infection in cell culture assays [38,39,41]. The generic ability of hydroxylated small
molecules, including polyphenolics, to inhibit amyloid fibril formation, and reduce the
associated cell toxicity of peptides and proteins, has been demonstrated in many studies,
for example to inhibit amyloid fibril formation of α-synuclein and κ-casein [42–45]. On the
basis of the similarity in the manner of inhibition of SEVI fibril formation by these small,
non-protein molecules and clusterin, it is feasible that clusterin interacts with PAP248–
286 similarly, including with the central region of the peptide, to inhibit its amyloid
fibril formation.

Since clusterin has broad specificity and is a potent extracellular chaperone [5,13,31], it
is likely that clusterin will inhibit amyloid fibril formation of other fibril-forming species in
semen that enhance HIV infectivity, for example SEM peptides derived from semenogelin
proteins [34]. On the basis of the above discussion, it is reasonable to propose that clusterin,
on its own or in concert with other extracellular chaperones and/or small molecule in-
hibitors of SEVI fibril formation, could be utilized therapeutically to prevent HIV infection.

PAP248–286 has a positive charge of +6 at neutral pH which results in a very high pI
value of 10.2 for the peptide [33]. The positive charge is localised to the N- and C-terminal
regions of the unstructured peptide, i.e., G248-R257: +4 and K272-Y286: +3, which is
slightly modulated by the negative charge at E266 within the peptide’s central region. The
central region of PAP248–286, G260-H270, encompasses the amyloid fibril-forming region
of the peptide [21]. The presence of fibril-forming regions in the central region of the amino
acid sequence of fibril-forming peptides and proteins is common, particularly for those that
are unstructured or intrinsically disordered [46]. It has been proposed that the presence of
unstructured, dynamic flanking regions (which often are charged, or at least very polar)
provides protection for the peptide from fibril formation by inhibiting contact of the central
region with the same region of other peptides, and therefore the potential for co-association
leading to oligomer formation [46].

Furthermore, the high positive charge on SEVI fibrils may be utilized in an antibiotic
role in semen. SEVI fibrils are proposed to have an indirect antibiotic activity within the
female reproductive tract by binding to the negatively charged lipid surfaces of bacteria in
a charge-dependent manner to enable their degradation by macrophages via phagocyto-
sis [33]. Other fibril-forming peptides, including those present in semen, have antibiotic
activity [33]. Some of these are well-characterised antimicrobial peptides [47–50]. The
putative antibiotic activity of SEVI implies that it operates as a functional amyloid in
semen [51]. Future studies will investigate this possibility and the role of clusterin and
other extracellular molecular chaperones in regulating PAP248–286 aggregation and SEVI
fibril formation.
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