
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Elisabeth Marijke Anne Strain,
University of Tasmania, Australia

REVIEWED BY

Patrick Smallhorn-west,
James Cook University, Australia

*CORRESPONDENCE

Dominic McAfee
dominic.mcafee@adelaide.edu.au

SPECIALTY SECTION

This article was submitted to
Marine Conservation and
Sustainability,
a section of the journal
Frontiers in Marine Science

RECEIVED 01 April 2022

ACCEPTED 05 July 2022
PUBLISHED 04 August 2022

CITATION

McAfee D, Reis-Santos P, Jones AR,
Gillanders BM, Mellin C, Nagelkerken I,
Nursey-Bray MJ, Baring R, da Silva GM,
Tanner JE and Connell SD (2022)
Multi-habitat seascape restoration:
optimising marine restoration for
coastal repair and social benefit.
Front. Mar. Sci. 9:910467.
doi: 10.3389/fmars.2022.910467

COPYRIGHT

© 2022 McAfee, Reis-Santos, Jones,
Gillanders, Mellin, Nagelkerken, Nursey-
Bray, Baring, da Silva, Tanner and
Connell. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Perspective
PUBLISHED 04 August 2022

DOI 10.3389/fmars.2022.910467
Multi-habitat seascape
restoration: optimising marine
restoration for coastal repair
and social benefit

Dominic McAfee1,2*, Patrick Reis-Santos1,2, Alice R. Jones1,2,
Bronwyn M. Gillanders1,2, Camille Mellin1,2,
Ivan Nagelkerken1,2, Melissa J. Nursey-Bray2,3, Ryan Baring4,
Graziela Miot da Silva4, Jason E. Tanner1,5

and Sean D. Connell1,2

1School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia, 2Environment
Institute, The University of Adelaide, Adelaide, SA, Australia, 3School of Social Sciences, The
University of Adelaide, Adelaide, SA, Australia, 4College of Science and Engineering, Flinders
University, Adelaide, SA, Australia, 5SARDI Aquatic Sciences, Henley Beach, SA, Australia
Marine ecosystem restoration is fast becoming the primary tool for repairing

the socio-ecological functions and economic benefits of coastal ecosystems.

Healthy seascapes are characterized by many interacting species and

intermingled habitats (e.g., seagrass, kelp, shellfish, sedimentary) that co-

create ecological functions of substantial socio-economic value. These co-

created functions not only build stability and resilience at seascape scales, but

synergistically combine to enhance ecological productivity that is greater than

the sum of the individual habitats. Yet, restoration practice is dominated by

single-habitat approaches underpinned by single-species monocultures,

potentially limiting the range of benefits that restoration can provide. We

propose that for ecosystem restoration to meet its full potential in delivering

socio-ecological benefits that are resilient to environmental change,

restoration practices should plan beyond single-species and single-habitats

to a multi-habitat seascape. Where multiple habitats are co-restored, their

positive interactions mutually benefit each other to stabilize and even

accelerate ecosystem recovery; such as co-restored shellfish and kelp

forests on constructed reefs, which combine to stabilize sediment for

seagrass recovery. As fisheries scientists and managers, food and social

scientists, and ecologists and oceanographers, we describe multi-habitat

marine restoration activities that are readily achievable and provide a vision

for the diverse socio-ecological, economic, and culture benefits that may

emerge from future seascape-level repair.

KEYWORDS

habitat connectivity, landscape ecology, positive interactions, public engagement,
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Introduction

To meet the socio-ecological goals of the United Nation’s

Decade on Ecosystem Restoration (2021-2030), a central focus

should be bringing restoration practice up to speed with current

ecological theory. It is well-known that ecological complexity–

the number of components (e.g., species, habitat types) in a

system and the connections among them (e.g., species

interactions, habitat connectivity, energy flows; Bullock et al.,

2022) – is an essential part of nature; key to the productivity,

function, and stability of ecosystems (Brown et al., 2001;

Angelini et al., 2011; Isbell et al., 2015; Soliveres et al., 2016).

Decades of research have demonstrated the productivity benefits

and positive interactions of intermingled species (Bertness and

Callaway, 1994; Tilman et al., 1996). Yet, restoration practice

remains fixated on single-habitat approaches underpinned by

single-species monocultures (Silliman et al., 2015) that rely upon

inherently uncertain successional processes to recover

complexity. Joining calls from terrestrial ecologists to diversify

plantings to ensure restorations are multi-functional and

resilient (Messier et al., 2021, Bullock et al., 2022), marine

researchers have increasingly demonstrated the benefits of co-

seeding multiple species to enhance and accelerate restorations

(e.g., Angelini et al., 2015; Derksen-Hooijberg et al., 2018;

Thomsen et al., 2022). These typically small-scale marine

efforts provide evidence to embrace a multi-species, multi-

habitat restoration approach, but it is now time to work at

larger scales (McAfee et al., 2021a).

Coastal marine habitat-forming species (e.g., seagrass

meadows, kelp forests, shellfish reefs, mangrove forests,

saltmarsh) have experienced considerable and ongoing losses

(Jackson et al., 2001; Beck et al., 2011; Goldberg et al., 2020;

Dunic et al., 2021). These losses manifest in the exponential

decay of the marine goods and services on which society depends

(Worm et al., 2006), undermining our goals for a sustainable

socio-ecological future (e.g., United Nation’s SDG 14). But

recognition of ecosystem losses provide contemporary

opportunities for widespread ecological repair. In many cases,

the ecological foundations for rapid ecosystem recovery still exist

(Duarte et al., 2020). And many of these lost habitats naturally

co-occur (e.g., seagrass and bivalves, saltmarshes and

mangroves) to provide divergent functions that synergistically

benefit each habitat (Angelini et al., 2011; Thomsen et al., 2018;

Gagnon et al., 2020). Consequently, restoration practices that

prioritise the natural synergy of co-occurring habitats may

enhance the ecological complexity and function that augments

ecosystem services (Benayas et al., 2009; Renzi et al., 2019,

Bullock et al., 2022).

In this perspective, we advocate for multi-habitat seascape

restoration by describing its practical, ecological, and potential

socio-economic benefits. We describe multi-habitat restorations

that aim to restore mosaics of functionally-diverse habitats over
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tens of hectares, and provide a visionary perspective of the socio-

ecological benefits that may emerge from successful multi-

habitat restorations. Our restoration case-studies from South

Australia, show how constructed boulder reefs provide

opportunities to co-restore multiple habitats (shellfish, kelp,

seagrass) that facilitate and synergise each other’s recovery

(e.g., McAfee et al., 2021b). Similarly, we describe how re-

introducing tidal flows into tidally-restricted areas (e.g., via

tidal gates, sea walls) provides opportunity to restore mosaics

of connected intertidal habitats (seagrass, mangrove, saltmarsh).

From our experiences, we suggest that a multi-habitat approach

may be particularly achievable where restorations involve new

infrastructure (e.g., boulder reefs) or removal of obstructive

infrastructure (e.g., tidal barriers). Such restoration activities

are naturally collaborative, requiring diverse expertise across

research, management, regulatory, and conservation

organisations. We propose that a multi-habitat restoration

approach is readily achievable, and may help ecosystem

restoration meet its potential in delivering socio-ecological

benefits that are resilient to environmental change.
Multi-habitat reef restoration:
a case-study

A multi-habitat restoration is underway along South Australia’s

most urbanised coastline (Adelaide’s metropolitan coast). Over the

last 200 years, this coastline’s seafloor has experienced considerable

re-structuring (Tanner, 2005); overfishing eradicated oyster reefs

from 1,500 km of coastline (Alleway and Connell, 2015), and

extensive seagrass meadows (6,200 ha) and kelp forests (70 km)

were lost due to anthropogenic nutrient inputs (Connell et al., 2008;

Tanner et al., 2014). In recent decades, water quality improvements

have resulted in net recovery of 11,000 ha of seagrass in water deeper

than 10 m (Fernandes et al., 2022). However, little-to-no near-shore

seagrass (<10 m depth) has recovered as hysteresis effects mean that

once seagrasses are lost, they cannot recover in hydrodynamically

active environments due to sediment mobility (Cabaço et al., 2008;

Infantes et al., 2009). Similarly, no oyster reefs have recovered due to

the loss of the hard substratum (shell) required for their natural

recovery (McAfee and Connell, 2020). To kickstart recovery in the

hydrodynamically active nearshore, restoration efforts have focused

on providing stable substrate for oysters (boulder reefs) and

seagrasses (hessian bags; Tanner et al., 2014). These restoration

efforts are now being combined with kelp transplants to facilitate

positive interactions for their multi-habitat recovery.

Since 2017, boulder reefs have been constructed to restore

South Australia’s lost oyster reefs (Ostrea angasi; 193 boulder

reefs [L × W × H: <30 × 14 × 1 m] over 30 ha to date). Bringing

diverse research and management expertise together to inform

these reef restorations (McAfee et al., 2022) helped realise the

opportunities for recovering multiple lost habitats. For example,
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these reefs provide suitable substrata to also recover lost kelp

forests (Ecklonia radiata; Connell et al., 2008), and they reduce

hydrodynamic energy and stabilize sediment around the reef

base, providing conditions for seagrass recovery. Such

hydrodynamic dampening likely underpins the positive

interaction between seagrass and oyster reefs commonly

observed at restorations elsewhere (e.g., Milbrandt et al., 2015;

Sharma et al., 2016; Figure 1).

To co-restore seagrass among the constructed reefs, we

placed hessians bags leeward of reefs to provide attachment

substrata for naturally recruiting seagrass seedlings (Amphibolis

antarctica). Hessian bags are a cost-effective technique that can

be used for large-scale restoration (Tanner et al., 2014), provided

hydrodynamic energy is sufficiently low for seedling attachment
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and to avoid resuspension. Despite the high energy of our study

area’s near-shore environment, A.antarctica seedlings

successfully recruited to the bags in the hydrological shadow

of the reefs, where high rates of sediment depositation (relative

to no-reef controls) indicate conditions for restoration success

(McGlathery et al., 2012). It is hoped that, like previous

restorations using hessian bags (Tanner et al., 2014), these A.

antarctica patches will facilitate other seagrasses (Posidonia

australis) and coalesce to create resilient meadows that

eventually expand beyond the reef footprint. Although it is too

early to measure the synergies of co-restored oysters and

seagrass at these new restorations (constructed 2020 and

2021), evidence suggests the seagrass will benefit from oyster

filter-feeding (improved water clarity, nutrient-rich deposits;
FIGURE 1

Restoration practice commonly focuses on (a) single-species approaches to habitat restoration, such as constructing reefs to restore oysters,
whereas a (b) multi-habitat approach could utilise constructed reefs to recover multiple lost habitat-types (oysters, seagrass, kelp). Examples of
multi-habitat restoration in practice demonstrate the facilitative benefits of co-restoration, including (c) constructed oyster reefs that buffer
hydrodynamics and stabilise sediments to promote seagrass recovery (adapted from Milbrandt et al., 2015 with permission from Elsevier), and
(d) kelp transplants atop constructed reefs that maintain substrata free of turfing algae to facilitate understory oyster recruitment (South
Australia).
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Wall et al., 2008; Peterson and Hick, 2001), while the oysters

may benefit from oxygen production by seagrass (Gagnon et al.,

2020; Figure 1).

Ecological synergies are also anticipated from co-restoring

oysters and kelp. Co-culturing oysters and kelp can create water

chemistry that mutually benefits each other’s growth (Han et al.,

2017), and they may also maintain conditions favourable for

each other’s recruitment. For example, kelp canopies maintain

exposed rocky substrate by shading and physically abrading

their understory habitat (Connell, 2003; Irving and Connell,

2006), keeping it free of turf-forming algae that otherwise

competitively excludes kelp and oyster recruits (Gorman and

Connell, 2009; Figure 1). We utilised this function of kelp by

transplanting kelp from healthy donor populations to form

forests (8 plants/m2) atop our restoration reefs, attaching

transplanted individuals to reef boulders (following Layton

et al., 2021). Beneath our kelp transplants, oyster recruitment

has increased by orders of magnitude (McAfee et al., 2021b),

likely a function of the suppressed turf algae, as witnessed

elsewhere (Shelamoff et al., 2019). Conversely, as the oyster

habitat grows, the provision of shell substratum may facilitate

kelp attachment (Lang and Buschbaum, 2010). Overall, multi-

habitat restoration allows practitioners to radily generate these

kinds of positive feedbacks between foundation species as

restorations commence. This may be invaluable for steering

restorations on the desired trajectory of recovery, especially

during the rapid succession of multiple species witnessed on

newly constructed reefs.
Prioritising ecological synergies in
restoration practice

The scientific literature abounds with examples of interspecific

foundation species combining to boost productivity, biodiversity,

habitat growth, and to alleviate physical stressors and predation

pressure (e.g., reviews by Renzi et al., 2019; Gagnon et al., 2020;

Zabin et al., 2022). The co-produced functions and complexity

created by interacting foundation species can help enhance the

recovery (Lang’at et al., 2013), stability (Angelini et al., 2015) and

resilience of multi-habitat ecosystems (Zabin et al., 2022), with

productivity that far exceeds single-species habitats (Thomsen et al.,

2018; Thomsen et al., 2022). Consequently, calls are increasing for

restoration practice to utilise positive species interactions to restore

seagrass meadows (Gagnon et al., 2020; Zhang et al., 2021), kelp

forests (Eger et al., 2020), oyster reefs (Reeves et al., 2020, McAfee

et al., 2021b), mangroves (Gedan and Silliman, 2009; Renzi et al.,

2019) and saltmarsh (Derksen-Hooijberg et al., 2018).

It is our view that we should extend the benefits of co-species

plantings to a multi-habitat approach focused on restoring

mosaics of interacting habitats (Figure 1). In time, at scales

beyond present capacity, this could involve designs to recover
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interconnected habitats across the land-to-seascape continuum, re-

establishing energy flows between saltmarsh and mangrove

communities to near- and off-shore seagrass meadows, kelp

forests, and coral and shellfish reefs. Such a vision may not yet be

economically realistic, but we can now embrace multi-habitat

restoration to create localised mosaics as building blocks for

widespread seascape connectivity. Similar to our case-study,

multi-habitat restorations have involved localised plantings of

adjacent patches of interacting oyster reefs, saltmarsh, and

mangroves (Milbrandt et al., 2015; Donnelly et al., 2017; Walters

et al., 2017). Alternatively, planted foundation species have been

associated with hard substrata provided to facilitate associated

communities (e.g., artificial reefs for oyster recruitment; Sharma

et al., 2016; McAfee et al., 2021b; Pinnell et al., 2021). Such

restorations create ‘living shorelines’ where co-occurring species

generate structural and biological feedbacks that reduce

hydrodynamic and shear stress, thus promoting sediment

accretion and propagules to settle (Smith et al., 2020; Figure 1).

Additionally, multi-habitat approaches are shown to enhance the

resilience of restored plots to natural disturbances (Zabin et al.,

2022) and to accelerate natural succession processes beyond those

of single-species restorations (McAfee et al., 2021b; Pinnell

et al., 2021).
Promoting productivity
through connectivity

Mosaics of interacting habitats are a defining feature of

healthy coastal seascapes that connect habitats from intertidal

(e.g., saltmarsh, mangroves) to subtidal settings (e.g., kelp

forests, seagrass, shellfish reefs). Across the land-to-sea

continuum, habitats are hydrologically and functionally

connected by ontogenetic movements of animals, fluxes of

nutrients and organic matter, and predator-prey interactions

that support many economical ly important species

(Nagelkerken et al., 2015; Sheaves et al., 2015). Habitat

mosaics provide conditions for enhanced growth and survival

(e.g., abundant food and shelter from predators) of numerous

fish, crab, and other invertebrates species (Nagelkerken, 2009),

and are well recognized nursery areas where juveniles mature

before moving to adult populations to replenish fisheries (Reis-

Santos et al., 2013, Nagelkerken et al., 2015; Lefcheck et al.,

2019). This nursery function is strongly influenced by the quality

and spatial setting of the surrounding seascape (Olson et al.,

2019), as many fish use different habitats during their larval,

juvenile, and adult life stages. Therefore, to safeguard nursery

function, restorations should aim to promote linkages among

fragmented seascapes and maximise the synergy of multiple

interacting habitats (Crook et al., 2015; Gilby et al., 2018). In this

context, single-species restorations may limit our ability to

repair the connectivity of diverse habitats.
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Multi-habitat restoration may allow us to replicate naturally

co-occurring coastal habitats in planned mosaics (Milbrandt

et al., 2015), enhancing the network of available habitats and the

overall seascape carrying capacity (Gilby et al., 2018). Creating

localised habitat mosaics increases the probability that diverse

species will recruit (e.g., those preferentially settling on reef, in

kelp, or seagrass), enhancing the diversity and abundance of fish

assemblages and other fisheries species. Importantly, this

enhances the abundance of harvestable species through gains

in fisheries productivity, rather than from attraction processes

(Gilby et al., 2021). Attraction processes readily boost fish

abundance and diversity on constructed reefs, as witnessed on

our new reef restorations (unpublished data). As these

restorations mature, it will be important to disentangle the

boosted productivity attributable to multi-habitat restorations.

Such knowledge would inform spatial and temporal frameworks

for optimising multi-habitat restorations to support increased

biodiversity and functional connectivity that extend beyond the

fringes of restored habitats (Olds et al., 2016; Pittman

et al., 2021).
Supporting quality seafood

Restored nursery habitats can enhance fish productivity and

diversity (e.g., oyster reefs; Zu Ermgassen et al., 2016). Yet, few

species utilise just one nursery habitat (Bostrom et al., 2011) and

productive seascape nurseries involve functionally-connected

habitat mosaics (Nagelkerken et al., 2015). We believe that once

mature, multi-habitat restorations could benefit human health

with more productive fisheries that may foster new market

opportunities. Seafood is rich in essential nutrients (e.g., iron,

zinc, vitamin A) and omega-3 fatty acids that are essential to

human health (Thilsted et al., 2016; Hicks et al., 2021). One

million premature deaths are annually linked to deficiencies in

these essential nutrients (Calder, 2015; Haddad et al., 2016), so it is

no wonder that sustainable fisheries are key to promoting global

human health (HLPE, 2014). Fish obtain their omega-3 content

from diet, particularly from primary producers (phytoplankton,

macrophytes) whose nutritional content reflects the quality of

their surrounding environment (Galloway and Winder, 2015).

Whereas ecological degradation threatens nutritional quality

(Robinson et al., 2022), restoration offers potential to improve

the conditions underlying seafood quality through repair of multi-

habitat mosaics. However, quantifying linkages between seafood

quality and multi-habitat restorations will require decadal-scale

monitoring (e.g., >15 years) that far exceeds typical monitoring

programs (Bayraktarov et al., 2016).

Where restoration repairs functional seascapes, it could

enhance access to nutrit ional seafood through two

mechanisms: (i) through higher nutritional content of the

primary producers that can propagate up food webs to

harvestable fish (Galloway and Winder, 2015), and (ii) by
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diets that provide more nutritional benefit (i.e., diverse

micronutrient profiles; Bernhardt and O’Connor, 2021;

Robinson et al., 2022). Technological advances allow

increasingly accurate tracing of the geographic origin (seafood

provenance) and nutritional quality of seafood, helping create

new seafood markets and maximising the socio-economic

benefits of restored seascapes (Gopi et al., 2019). Validating

seafood provenance to healthy habitats helps promote the

certification of sustainably sourced high-quality seafood, and

empowers managers, authorities, and consumers to champion

sustainable production. Our vision is that where restored

seascapes bolster productivity and fisheries, seafood

provenancing could certify production to create local added

value products that connect consumers and sustainable

commerical fisheries to restoration programs.
Blue carbon opportunities

Conservation and restoration of blue carbon habitats

(seagrass, mangroves, saltmarsh) are considered key nature-

based solutions to provide climate mitigation through carbon

sequestration (Barbier, 2019; Macreadie et al., 2021). Habitat

connectivity is critical to the carbon sequestration function of

blue carbon ecosystems because a large proportion of carbon is

externally derived and deposited by tides, waves, or terrestrial

run-off (Geraldi et al., 2019). Therefore, the successful

restoration of blue carbon abatement functions depends on

connectivity between organic carbon sources and sink habitats

(Hyndes et al., 2014; Smale et al., 2018). Single-species

restorations can sequester carbon (e.g., seagrass; Greiner et al.,

2013) and be used to repair connectivity among existing habitats.

Yet, we see the benefit of a multi-habitat approach in generating

close connectivity between carbon source and sink habitats (e.g.,

adjacent kelp forests and seagrass, respectively), such as in the

near-shore environment of our case-study. Furthermore, our

case-study shows that a multi-habitat approach can introduce

blue carbon benefits into restorations that may not otherwise

draw down carbon, such as the restoration of oyster reefs in

isolation (Fodrie et al., 2017).

Restoring multiple, interconnected coastal habitats that

resemble natural spatial mosaics is likely to enhance organic

carbon transfer and burial, maximising the carbon sequestration

potential of restoration activities (Smale et al., 2018). Other than

active plantings, this may be achieved by focusing actions on

restoring the hydrodynamic conditions required to support tidal

wetland habitat complexes. For example, re-introducing tidal

flows to previously cut-off/reclaimed coastal land, which is the

focus of Australia’s recently announced blue carbon crediting

method for the national Emissions Reduction Fund (Lovelock

et al., 2022). In South Australia, case-studies re-introducing tidal

flows have demonstrated successful restoration of wetland
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habitat mosaics (intermingled saltmarsh, mangrove, and

intertidal seagrass) that resemble those of undisturbed

environments (Dittmann et al., 2019). In time, this approach

could re-connect intertidal habitats to the broader seascape

through combination with near-shore subtidal restorations

(e.g., shellfish reefs, seagrass) that are connected to deeper

water habitats (e.g., kelp forests). Such projects could restore

multiple, interconnected coastal habitats concurrently,

enhancing carbon abatement functions by connecting donor

and receiver habitats (Smale et al., 2018).
Cultural seascapes

Coastlines are cultural places of significance to community

well-being, both in terms of the spiritual connections and economic

livelihoods they support (McNiven, 2004, Clarke et al., 2013,

Nardini, 2019). Coasts are places to socialise, recreate, experience

nature, andmakea living, and therefore embody a range ofdifferent

values and personal relationships people have with the sea (Grice

et al., 2012; Kobryn et al., 2018). Encouragingly, this socio-cultural

complexity is increasingly incorporated into restoration planning,

as social engagement provides a foundation for project success

(DeAngelis et al., 2020; Clarke et al., 2021; McAfee et al., 2021c).

Incorporating the diversity of socio-cultural values and uses of

coastlines can encourage cultural stewardship (Lyver et al., 2016)

and may assist policy makers to identify potential sources of

conflict, as well as the socio-cultural compatability of suggested

restorations (Brown and Raymond, 2014).We believe that over the

coming decades, marine restoration has the potential to play an
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even greater role in shaping people’s perspectives and stewardship

of the sea.Contemporarymarine restoration isa youngconcept, but

recent momentum (i.e. UN Decade on Ecosystem Restoration)

suggests restoration efforts will continue to grow and engage

people in coastal stewardship. Here, we provide a brief vision of

the potential socio-ecological and economic benefits (Figure 2) that

could emerge from successful seascape restorations, benefits that

are not limited to multi-habitat restorations.

The restoration and conservation of functional seascapes has

the potential to generate considerable socio-cultural benefits

beyond their long discussed ecological services (e.g., Costanza

et al., 1997). Restorations can repair the elements of nature that

provide value to people either directly or indirectly (i.e., natural

capital; Blignaut et al., 2014), and can therefore support human

well-being in a variety of ways (Smith et al., 2017). For example,

restorations provide diverse opportunities for hands-on public

participation, such as volunteer-led planting or monitoring,

collecting or growing propagules, or bagging oyster shell

(Tanner et al., 2014, Walters et al., 2017). Such stewardship

can provide important well-being benefits through increased

interaction and sense of attachment to nature, and by fostering

community agency to protect nature (Kibler et al., 2018). Once

restored, enhanced cultural services from multi-habitat mosaics

may include more aesthetic appeal (ecological diversity; Smith

et al., 2017) and enriched recreation experiences, including

improved fishing and eco-tourism (e.g., kayaking, SCUBA

diving, wildlife viewing; Ruiz-Frau et al., 2013). Other cultural

services could include new education (e.g., living laboratories,

school engagement) and tourism opportunities that support

local livelihoods (Brancalion et al., 2014; Figure 2).
FIGURE 2

A vision of the broad socio-ecological and economic benefits that could emerge where restorations support healthy functional seascapes. Note
that all nodes within each of the four sectors are related, and that many more linkages between sector nodes are likely.
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Additionally, engagement with cultural knowledge, including

Indigenous knowledge about the coastal restoration sites, can

enrich historical narratives and assist in site and species selection

for restoration (Thurstan et al., 2020; Reyes-Garcıá et al. 2018).

Such engagement with Indigenous interests and input provides

opportunities to build Indigenous agency and social justice into

restoration projects (Kamelamela et al., 2022).
Discussion

Theory suggests that multi-habitat restorations will achieve

ecological functions, productivity, and resilience that are greater

than the sum of their individual parts. Multi-habitat restoration

provides opportunities to create ecologically complex habitat

mosaics, thus augmenting the recruitment of biodiverse

communities, and habitat connectivity that supports seascape-

level functionality. Prioritising ecological heterogeneity has been

likened to the risk management of investment portfolios, whereby

diversifying the ecological assets of restorations makes them more

resilient to change and sudden impacts (e.g., extreme climate

events; Zabin et al., 2022). Consequently, a multi-habitat

approach provides a means of incorporating ecological resilience

and adaptive capacity into restoration efforts (e.g., Donaher et al.,

2021), while generating the valuable cultural services and

opportunities for public participation that stem from restoration

and conservation initiatives (Figure 2).

Our multi-habitat restoration case-studies were enabled by

bringing together and leveraging thediverse restorationexpertise in

the State of South Australia. In bringing practitioners, researchers,

and regulators together across multiple institutes, the project

accessed diverse expertise in reef building, oceanography,

restoration ecology, and coastal management (McAfee et al.,

2021a). This increased the operational capacity and socio-

ecological vision of the restoration, transitioning it from a

shellfish restoration to a multi-habitat approach with expanded

goals (e.g., carbon sequestration) and stakeholders. In time, it is

hoped that this expanded visionwill increase the project’s returnon

investment, which will require long-term monitoring. But in the

short term, our multi-habitat approach has boosted the local

‘restoration economy’ by feeding diverse material supply chains

(BenDor et al., 2015) and generated opportunities for public

participation through seagrass seedling collection and oyster shell

cleaning. Such socio-economic benefits are likely important for

maintaining local support and social licence for future restorations.

Otherwise, marine restorations may be ‘out of sight, out of mind’,

risking the legitimacy for governments to invest (McAfee et al.,

2020). There is little doubt that to leave a positive environmental

legacy, ongoing public engagement is needed to ensure the cultural

benefits (Figure 2) and sustainability of restoration activities.

Of course, practitioners will need to evaluate their restoration

goals against the pros and cons of adopting a multi-habitat

approach, many of which are yet to be quantified. Depending on
Frontiers in Marine Science 07
the environmental context and goals of the project, a multi-habitat

approach may be unnecessary (e.g., where single-species

restorations can leverage existing connectivity), or even

detrimental; where a multi-habitat approach could limit funding

dedicated to individual habitats, potentially reducing the area and

monitoring of restorations. Additionally, introducing habitat

connectivity does not always yield positive or clear outcomes

(Geraldi et al., 2009; Gilby et al., 2019) as organismal responses

are highly complex and challenging to monitor. Funding for long-

term monitoring is a major challenge for marine restorations

(Bayraktarov et al., 2016), and the ecological and social benefits of

a multi-habitat approach may not emerge for some time and

require expensive and logistically challenging long-term

monitoring programs.
Conclusion

Over a quarter-century ago, Naveh (1994) wrote on the vital

roleof restoration in creatingahuman-nature symbiosis tourgently

repair the environment. To achieve this, Naveh (1994) warned that

restorationists must “broaden their spatial and conceptual scales

from the restoration of small, degraded nature islands to the

restoration of large, open landscapes with their natural and

cultural patterns and processes”. This Decade on Ecosystem

Restoration provides new opportunity to embrace larger scales

and new methodologies to advance restoration practice, including

multi-habitat approaches. Evidence abounds on the natural

synergises created by co-occurring habitats and the critical role of

habitat connectivity to ensure that seascapes functionally benefit

society, regulate climate, and boost ecological stability. Now is the

time to bring people together to plan for such large-scale repair.
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