
Dissecting Malicious Behaviours of
Mobile Applications

Wei Wang

A thesis submitted for the degree of
MASTER OF PHILOSOPHY

The University of Adelaide

May 11, 2022

iii

Contents

Abstract ix

Declaration of Authorship xi

Acknowledgements xiii

Achievements xv

1 Introduction 1
1.1 Background . 1
1.2 Common Notations . 2
1.3 Thesis Contribution . 2
1.4 Thesis Organization . 3

2 Literature Survey 5
2.1 Introduction . 5
2.2 Existing Literature Surveys and Related Work 6
2.3 Machine Learning-based Malware Detection 7

2.3.1 Feature Extraction . 7
Windows Portable Executable (WinPE) 7
Android Application Package (APK) 8

2.3.2 Malware Detection . 8
Machine Learning Models . 8
Deep Learning . 9
Concept Drift . 9

2.4 Explanation on Machine Learning . 9
2.4.1 Local Explanation . 9
2.4.2 Global Explanation . 11

2.5 Attacks on Machine Learning . 12
2.5.1 Backdoor Attack . 12
2.5.2 Adversarial Evasion & Other Attacks 13

2.6 Conclusion . 14

3 A Semi-Automated Assessment of Android Clipboards 15
3.1 Introduction . 18
3.2 Clipboard Privacy Assessment . 19
3.3 Preliminary Results . 20
3.4 Conclusion and Future Work . 20

4 Explaining and Measuring Functionalities of Malware Detectors 21
4.1 Introduction . 24
4.2 Related Work & Motivation . 25

4.2.1 Related Work and Background 26
4.2.2 Motivating Example . 27

iv

4.3 Threat Model & Problem Definition 28
4.3.1 Threat Model . 29
4.3.2 Problem Definition . 29
4.3.3 Ethical Considerations . 30

4.4 Methodology . 30
4.4.1 Step 1: Feature Selection . 30
4.4.2 Step 2: Adversarial Sample Generator 32
4.4.3 Step 3: Malware Detector Evaluation 34

4.5 Experiment Setup . 34
4.5.1 Experimental Environment . 35
4.5.2 Target Detectors . 35
4.5.3 Datasets and Model Training 35
4.5.4 Benchmark Methods . 36

4.6 Evaluation & Results . 37
4.6.1 Evaluation of Detectors . 38
4.6.2 Transferability Analysis . 40
4.6.3 Generalizability Analysis . 42
4.6.4 Revisiting AMM with Improved Detectors 43

4.7 Case Studies . 45
4.7.1 A Case Study on Evasion Capability 46
4.7.2 A Case Study on Detection Efficiency 47

4.8 Discussion & Limitations . 49
4.9 Conclusion . 50

5 Conclusions and Future Work 51

A Appendix 53
A Structures of WinPE Binaries 53

Bibliography 55

v

List of Figures

1.1 The growth of malware during the past 14 years. 2
1.2 The process of training a machine learning model. 3

2.1 Overview of the Literature Survey. 6

3.1 An overview of the semi-automated assessment method for clipboard
security. 19

4.1 An example of antivirus engine evasion. Code in blue: dummy function
calls. 28

4.2 The overview of our evaluation framework. 29
4.3 Comparison of detection rate among seed samples, adversarial samples

(default AMM-based), adversarial samples (balanced AMM-based) and
adversarial samples (Statistics-based). 37

4.4 Detection rates of manipulating different sizes of feature maps on APK. 39
4.5 AMM values of features in different datasets and models. Each heatmap

contains normalized AMM values of 1,024 features that are selected
according to the adversarial generation model. 41

4.6 Detection rate of proposed adversarial samples generated from LGBM,
SVM and RF against three detectors. 42

4.7 Detection rates of WinPE seed malware and AMM-based adversarial
samples detected by four detectors . 43

4.8 Detection rates of seed malware and AMM-based adversarial samples
detected by models excluding different amount of important features. . 44

4.9 Precisions and detection rates of seed malware Sm, adversarial sam-
ples Sa (AMM-based features) and adversarial samples Si (important
features) on the original model and two updated model mi and ma. . 45

4.10 SAGE and AMM value distributions of important features and AMM-
based features. 46

4.11 SHAP values of two APK samples before and after adversarial genera-
tion. (a) and (b) are the original and adversarial samples of Sample 1 ;
(c) and (d) are of Sample 2. Details of features can be found in Table 4.3. 47

4.12 Decision function values of samples with different numbers of features
manipulated with AMM-based, balanced AMM-based and Statistics-
based strategies . 48

4.13 Distribution of weights of features in SVM models trained by samples
generated from different strategies. 48

A.1 Structure of WinPE files. 54

vii

List of Tables

1.1 Common notations . 3

2.1 Malware Detection Approaches . 7
2.2 Explanation approaches . 10
2.3 Attack Approaches . 12

4.1 Target detectors . 36
4.2 Selected feature numbers of three strategies. 38
4.3 APK feature IDs and their description 45

ix

University of Adelaide

Abstract

Dissecting Malicious Behaviours of Mobile Applications

by Wei Wang

This thesis dissects the behaviours of malicious software and unveils the internal
mechanism of evading the detection by malware detectors. With the popularity of
smartphones, malicious software has been one of the most severe risks to the pub-
lic. Therefore, mobile security has been a critical and hot topic in security research.
Various malware detection and antivirus methodologies have been proposed to de-
fend the rapid evaluation and variation. These malware variants can camouflage
themselves with complicated techniques, such as obfuscation and feature perturba-
tion, to evade the detection by antivirus products. Machine learning-based malware
detection techniques are introduced into these products to address this problem. Ma-
chine learning-based malware detectors leverage features extracted from malicious
and benign software to train detection models to identify malware and its variants
effectively. In this thesis, I will first conduct a literature review of state-of-the-art mal-
ware detection techniques to unveil how these techniques contribute to anti-malware
research. The literature review covers state-of-the-art methodologies, including soft-
ware static and dynamic analysis, malware detection and machine learning. Then,
an explainability-guided measurement approach is proposed to measure malware de-
tectors’ functionalities and guide adversarial sample generation. In this approach, we
introduce a novel measurement concept, Accrued Malicious Magnitude (AMM)
to identify which malware features should be manipulated to maximize the likelihood
of evading detection. The AMM is defined as the product of the magnitude of SHAP
values in each feature and the number of samples that have malicious-oriented values
in the corresponding feature. Compared with SHAP values representing features’ im-
portance to the prediction results, AMM values reflect how much the specific features
can contribute to flipping the prediction result. Finally, I will conclude the thesis and
discuss the future work.

http://www.adelaide.edu.au

xi

Declaration of Authorship
I certify that this work contains no material which has been accepted for the

award of any other degree or diploma in my name, in any university or other tertiary
institution and, to the best of my knowledge and belief, contains no material previously
published or written by another person, except where due reference has been made in
the text. In addition, I certify that no part of this work will, in the future, be used in
a submission in my name, for any other degree or diploma in any university or other
tertiary institution without the prior approval of the University of Adelaide and where
applicable, any partner institution responsible for the joint-award of this degree.

I acknowledge that copyright of published works contained within this thesis re-
sides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on
the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University to
restrict access for a period of time.

I acknowledge the support I have received for my research through the provision
of an Australian Research Council Grant Funded Short Term Scholarship.

Wei Wang

May 2022

xiii

Acknowledgements
I would like to express my most tremendous appreciation to my supervisors, Dr.
Minhui Xue and Assoc. Prof. Markus Wagner. This thesis cannot be fulfilled without
the guidance and help from my supervisors. I would like to thank my supervisor, Dr.
Minhui Xue, for guiding me to conduct research and to think and work as a researcher.
I would like to thank my principal supervisor Assoc. Prof. Markus Wagner, who
allowed me to have a flexible and accessible topic selection with patient guidance and
professional advice. Last, but not the least, I would like to thank my parents, my
partner and all my friends for supporting and helping me in all these years.

xv

Achievements
Publications and expected publications are listed as follows:

• Wei Wang, Ruoxi Sun, Tian Dong, Shaofeng Li, Minhui Xue, Gareth Tyson,
Haojin Zhu. 2021. Explaining and Measuring Functionalities of Malware De-
tectors. arXiv preprint arXiv:2111.10085. (Submitted in January 2022).

• Wei Wang, Ruoxi Sun, Minhui Xue, Damith C. Ranasinghe. 2020. An auto-
mated assessment of Android clipboards. Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, the Late Bricking
Results track. (Published in December 2020).

1

Chapter 1

Introduction

1.1 Background

Malware detection is a hot topic in security-related research. Malware, short for ma-
licious software, refers to harmful computer software that causes system and network
disruption and gains access to sensitive information. Generally, malware can be cate-
gorized as virus, worm, trojan and other malicious programs. Recalling a brief history
of malware, the Creeper program, designed to test self-replicating mechanisms in 1971,
is the earliest one [32]. With over 50 years of battling against malware, modern world
still suffers from the risks and attacks of malware. Figure 1.1 shows the growth of
malware during the past 14 years (i.e. 2008 - 2022) [97]. The number of malware and
potential unwanted application (PUA) increases significantly every year. According
to the statistics [97], over 6.5 million Android malware and 121 million Windows mal-
ware were detected and captured in 2021. Although public app stores (e.g. Google
Play Store, APKPure and AppStore) have integrated malware detection mechanisms,
they are still the dominant malware distribution sources [76].

Malware detection mechanisms involve rule-based, machine learning-based and hy-
brid approaches. Rule-based approaches leverage static rules (e.g. signatures, specific
headers, function calls, network requests and file IO requests) to monitor malicious be-
haviours of malware and their processes. For instance, ClamAV [35], a widely-known
opensource antivirus engine, detect malware by file signatures and YARA [169] rules.
However, the rule-based malware detection mechanism requires maintainers to up-
date rules and signature database frequently, and it is difficult to detect newly devel-
oped malware or variants. Machine learning-based malware detectors extract features
from existing malware dataset to train machine learning models used to predict un-
known potential malware. Feature extraction functions may extract and vectorize
either static information [14, 8], dynamic information [56], or both from application
samples, which are remarkably different from the counterparts of computer visions.
Commercial antivirus products, e.g. AVAST [16] and Kaspersky [71], have integrated
machine learning approaches into their engines [5, 94], making them hybrid malware
detection products. This thesis focuses on security and functionality issues of machine
learning-based malware classification and detection approaches. Machine learning is
a statistic-based computer algorithm that automatically evolves itself through experi-
ence and data.The process of training a machine learning model is shown in Figure 1.2.
First, we extract features from the training samples. Then, these features are used to
train a machine learning model. We use part of samples to evaluate the trained model
and then the evaluation results are used to improve the model training. Finally, we
extract features from input samples to predict their classification by the machine learn-
ing model. Machine learning algorithms are traditionally categorized as supervised
learning, unsupervised learning, semi-supervised learning, and reinforced learning.
Supervised learning algorithms require training input data and corresponding labels

2 Chapter 1. Introduction

Figure 1.1. The growth of malware during the past 14 years.

while training a machine learning model. Semi-supervised learning algorithms do not
require all training data to be labelled. In contrast, unsupervised learning algorithms
do not require labels and cluster data based on commonalities. Reinforcement learning
algorithms are concerned with how algorithms should take actions in an environment
to maximize cumulative rewards. Typical usage of reinforcement learning is training
gaming AI [141]. Deep learning is another class of machine learning based on artificial
neural networks, inspired by information processing and communication mechanisms
among neurons in biological systems.

Although machine learning algorithms can evolve themselves through data, it is
crucial to understand why and how a machine learning model predicts a particular
result since the internal structure of the model is complicated, especially deep learning
neural networks. Therefore, many explaining and interpreting frameworks [91, 122,
59, 59, 37, 33] are proposed to address this issue. These frameworks help researchers
to understand how each feature contributes to the results and to unveil potential risks
(e.g. bias, over-fitting and potential attacks) in machine learning models [152].

Attacks on machine learning algorithms can be divided into two major categories:
backdoor attacks and adversarial attacks. Backdoor attacks embed malicious triggers
in the training dataset and activate in specific circumstances. It requires attackers to
poison training datasets, which are usually public datasets contributed by users, so
that generated models misclassify specific data. Adversarial attacks require attackers
to generate perturbed features applying to the input so that the target model mis-
classifies the manipulated input. Note that malware-based machine learning attacks
should consider the functionalities of original binaries [118, 152]. Therefore, features
cannot be manipulated arbitrarily to fit the pure feature-space attacks.

1.2 Common Notations

The common notations are listed in Table 1.1.

1.3 Thesis Contribution

The contributions of this thesis can be summarised as follows:

1.4. Thesis Organization 3

Figure 1.2. The process of training a machine learning model.

Table 1.1. Common notations

Symbol Description

X,Y, Z variable matrix
x, y, z a variable or a variable vector
xi the i-th value of x
f(x), g(x) functions; f(x) usually refers to a machine learning function

while g(x) is a optimised or generation function of f(x)
E(X) expectation of X

• a synthesized literature survey to understand state-of-the-art research topics on
machine learning-based malware security topics;

• a novel semi-automated static analysis framework to detect privacy-related ma-
licious behaviours and security issues;

• a novel explainability-guided approach to evaluate functionalities and weak-
nesses of malware detectors.

1.4 Thesis Organization

The rest of this theses is organised as follows:

• Chapter 2: this chapter presents a comprehensive literature survey of machine
learning-based malware detection research in three major aspects: detectors,
explanation frameworks and attacks. The survey summarizes the state-of-the-
art malware-related outcomes and helps us to reflect potential breakouts in
security topics.

• Chapter 3: this chapter presents a rule-based static analysis framework to anal-
yse data leakage issues from the clipboard of Android apps. The preliminary

4 Chapter 1. Introduction

evaluation of using this framework shows that some widely-installed Android
apps can potentially leak sensitive data stored in the clipboard.

• Chapter 4: this chapter proposes an explainability-guided and model-agnostic
malware detector measurement framework (Section 4.4). This framework ex-
ploits SHapley Additive exPlanations (SHAP) and introduces the concept of
Accrued Malicious Magnitude (AMM) to guide the feature selection approach
for feature-space manipulation. This chapter further generates adversarial An-
droid malware variants and measures the functionalities and vulnerabilities of
machine learning-based detectors and antivirus engines.

• Chapter 5: this chapter summarises this thesis and presents recommendations
for future work.

5

Chapter 2

Literature Survey

2.1 Introduction

Although cybersecurity technologies have significantly developed and evolved in the
past decades, malware is still not negligible to modern society. Malware developers, or
attackers, rapidly utilize numerous techniques and tricks to evade malware detection.
Meanwhile, they also conduct new attacks by continuously uncovering vulnerabilities
to network systems. Security vendors and researchers update antivirus methodologies
to deal with new attacks; however, we still have challenges to address.

One noteworthy challenge is that malware developers integrate compound tech-
niques, e.g. obfuscation and encryption, to bypass malware detection. Attackers also
leverage feature perturbation and generation techniques to evade malware detection
by machine learning-based detectors. Another challenge is that the evolution of tra-
ditional rule-based malware detection always goes behind the evolution of malware.
Security analysers need to find specific features of new malware or variants and up-
date malware detection strategies, which is time-consuming; meanwhile, attackers can
generate numerous variants in a short time. These challenges give attackers sufficient
time to conduct massive attacks.

This literature survey reviews existing literature where machine learning is applied
to analyse Windows Portable Executives (WinPE) and Android Application Pack-
age (APK) malware. WinPE analysis techniques differ slightly from APKs because
of significant distinctions in operating systems and applications. However, we can
still leverage similar detection algorithms of machine learning to detect malware. In
this literature survey, we focus on three aspects of malware-related security research:
(i) malware detection methodologies based on machine learning techniques; (ii) expla-
nation and interpretation methodologies; and (iii) attacks on machine learning-based
detectors. The first aspect considers machine learning-based detection algorithms on
WinPE and APK malware, which are two dominant operating systems suffering from
malware and ransomware attacks. The second aspect unveils the internal decision
factors of machine learning-based classifiers and how classification results can be ex-
plained. The third aspect illustrates how attackers leverage vulnerabilities of existing
malware detectors and classifiers and how researchers address potential attacks on
existing malware detection mechanisms. These three aspects guide researchers to
discover novel topics in malware security research.

This work includes the following contributions:

• a comparative analysis of the literature on machine learning-based security top-
ics covering malware detection algorithms, explanation methods and attacks;

• reflections of malware related research.

Figure 2.1 illustrates the overview of this chapter. The rest of the chapter is
organised as follows: Section 2.2 describes related literature surveys; Section 2.3

6 Chapter 2. Literature Survey

Figure 2.1. Overview of the Literature Survey.

presents state-of-the-art malware detection methodologies based on machine learn-
ing; Section 2.4 introduces explanation methodologies on machine learning models;
Section 2.5 shows adversarial attacks on machine learning detectors; and finally Sec-
tion 2.6 presents reflections and conclusions of this work.

2.2 Existing Literature Surveys and Related Work

Several academic literature surveys have addressed malware analysis and machine
learning-based detection. Ucci et al. [142] wrote a literature review of machine learning
frameworks for malware analysis. The authors proposed a definition of the taxonomy
to synthesise off-the-shelf WinPE malware detection frameworks based on machine
learning by reviewing 64 papers. The taxonomy of malware analysis techniques con-
sists three dimensions: objective, feature and machine learning algorithm. The objec-
tive includes malware detection, similarity analysis and category detection; the feature
includes feature extraction functions and WinPE feature analysis; and machine learn-
ing algorithm includes supervised, unsupervised and semi-supervised learning. Liu et
al. [89] reviewed machine learning-based Android malware detection. This survey fo-
cuses on essential aspects of Android malware detection, including data processing,
feature selection, machine learning algorithms, and detection evaluation.

Regarding explaining machine learning prediction, Vilone et al. [143] wrote a sys-
tematic review of eXplainable Artificial Intelligence (XAI) as a whole, and they tried to
define the boundaries of the discipline of XAI. This survey reviews XAI method articles
with four main aspects: review articles, theories and notions, methods, and evalua-
tion. Linardatos et al. [88] compared and analyzed machine learning interpretability
methodologies on both white-box and black-box machine learning detectors. They
also tested the best use cases for each interpretability method and provided links to
their programming implementations.

Akhtar et al. [6] wrote a systematic review of adversarial attacks on computer
vision deep learning. They reviewed 12 adversarial attack methodologies on deep
learning classification models. The authors also reviewed attacks on other scopes,
including autoencoders and generative models, deep reinforcement learning, semantic

2.3. Machine Learning-based Malware Detection 7

Table 2.1. Malware Detection Approaches

Authors ML Algorithm Features Type Dataset

Anderson et al. [8] LightGBM [72] parsed values, histogram WinPE EMBER2018 [8]
Harang et al. [61] LightGBM, NN parsed values, histogram WinPE SOREL-20M [61]
Raff et al. [112] MalConv, raw byte codes WinPE Virus Share [147],

Byte n-grams Open Malware [102]
Graziano et al. [56] Logistic Model Tree dynamic features WinPE Anubis Sandbox
Zhang et al. [171] CNN+LSTM API calls WinPE private
Arp et al. [14] SVM 8 sets of static features APK Drebin [14]
Xu et al. [161] SVM AndroidManifest APK Google Play, VirusTotal [148],

Drebin
McLaughlin et al. [99] CNN n-grams features APK Android Malware Genome [9],

from opcode sequences Google Play
Kwong et al. [165] N/A static & dynamic APK Android Malware Genome
Saxe et al. [116] NN strings WinPE VirusTotal
Vinayakumar et al. [145] LSTM static & dynamic APK Android Malware Genome
Naway et al. [100] NN 8 sets of static features APK Drebin

segmentation and object detection, and face attributes [6]. Despite these "ad-hoc"
scenarios, they also reviewed attacks in the real world, including cell-phone cameras,
road signs, 3d objects, cyberspace and robotic vision. Martins et al. [98] reviewed
adversarial attacks on intrusion and malware detectors.

The existing reviews focus on the individual aspect of malware detection, adver-
sarial generation and explanation. This chapter will conduct a comprehensive survey
that links all these aspects together to illustrate a wider picture of malware security
research.

2.3 Machine Learning-based Malware Detection

This section introduces state-of-the-art machine learning-based malware detectors and
classifiers. In this section, we will review two dimensions of machine learning-based
detectors. The first dimension is feature extraction functions used to train machine
learning-based malware detectors for WinPE and APK. In contrast, the second di-
mension covers structures of detectors, including ML models and neural networks.
Papers and methodologies reviewed in this section are listed in Table 2.1.

2.3.1 Feature Extraction

This section addresses the feature extraction functions of samples used to analyse ma-
licious behaviours and train machine learning detectors. The structure and content of
malware features vary due to the significant difference between Windows and Android
systems. Features can be extracted from either static analysis, dynamic analysis, or
a combination of both methods.

Windows Portable Executable (WinPE)

Ember [8] is a WinPE dataset that is widely adopted in academic research [118, 144,
130, 166, 158, 66]. It offers a feature extraction function that extracts 2,351 raw fea-
tures, composed of both parsed values and binary-related histograms, from WinPE
binaries. The parsed values include general and string-related statistical data, section
information, header information, imported and exported function information. The
raw features are extracted and stored in a human-readable format that can be con-
verted to 2,351-dimension feature vectors. Ember provides off-the-shelf raw features
extracted from over 1 million samples. SOREL-20M [61] leverages the same feature

8 Chapter 2. Literature Survey

extraction function and offers features from around 20 million samples with a set of
pre-trained LightGBM models and feed-forward neural networks.

Raff et al. [112] leverage the static feature extraction function based on the byte-
level content of a WinPE binary. They train machine learning models with the raw
bytes of whole binaries, which alleviate a series of issues from other common byte
n-gram approaches [3, 25], e.g. sensitive features and overreliance on the PE-Header.
Generally, an n-gram is a series of n bytes of a binary where features are different
combinations of these n bytes with various strategies. These n-gram features usually
represent the counts of specific combinations existing in a binary.

Graziano et al. [56] introduce network activities as dynamic features, including
statistics on protocols, TCP/UDP ports and network requests. They also capture
file operations executed by WinPE binaries in sandboxes. Their proposed framework
combines dynamic and static features as a whole to train a logistic model tree to
detect malware. Zhang et al. [171] also leverage API calls extracted from dynamic
analysis of WinPE dataset to train a neural network.

Android Application Package (APK)

Drebin [14] is a popular dataset [170, 105, 150] that provides both feature extrac-
tion function and samples. This dataset categorizes static features into eight groups,
including hardware components, requested permissions, app components, filtered in-
tents, restricted API calls, used permissions, suspicious API calls and network ad-
dresses [14]. Features in each group represent the existence of each feature (i.e. 1
represents existence while 0 is absence). The authors trained a Support Vector Ma-
chine (SVM) detector that has over 95% accuracy. Xu et al. [161] leverages Android
manifest elements, including components, explicit intent, implicit intent and intent
filter, as features to train machine learning models.

McLaughlin et al. [99] propose an n-gram based malware detection approach that
leverages the opcode sequences from the entire decompiled source code classes as
features to train a deep neural network. The proposed approach only focuses on 218
opcodes defined by the Android framework, making 218-dimension feature vectors.
This feature extraction function has significantly fewer dimensions than Drebin, of
which the dimension depends on the number of 8 types of features existing in the
training dataset.

Kwong et al. [165] leverage both static analysis and dynamic features in the run-
time. They trace API calls, native instructions, Dalvik instructions and taints as
dynamic features, and analyze decompiled code to find vulnerabilities.

2.3.2 Malware Detection

This section introduces widely adopted machine learning-based malware detection
approaches: regular machine learning models in Section 2.3.2 and deep learning models
in Section 2.3.2.

Machine Learning Models

In the previous section we introduced that Drebin [14] leveraged the Support Vector
Machine (SVM) algorithm to detect malware. SVMs are a set of supervised machine
learning algorithms that are usually used in classification and regression analysis.
Meanwhile, LightGBM [72] is another classification model used in malware detec-
tion [8, 61]. It is a gradient boosting framework based on decision tree learning

2.4. Explanation on Machine Learning 9

algorithms, including variants of gradient boosting algorithms (e.g. GBDT, GBM
and GBRT) and random forest.

Deep Learning

Deep learning is regarded as an evolution of machine learning by leveraging pro-
grammable neural networks to improve accuracy and reduce human interference.
Saxe et al. [116] utilize neural networks to detect malware. They extract strings
and WinPE file characteristics as features to train a neural network with two hidden
layers. McLauhlin et al. [99] trained a convolutional neural network (CNN) with em-
bedding projection to detect WinPE malware. Vinayakumar et al. [145], introduced
long short-term memory (LSTM) into Android malware identification by using fea-
tures extracted from static and dynamic analysis. Naway et al. [100] trained a deep
neural network (DNN) classifier with features similar to Drebin [14]. Zhang et al. [171]
trained sophisticated deep learning neural networks combining multiple gated-CNNs
and a bidirectional long-short term memory (LSTM) networks.

Concept Drift

Although machine learning-based malware detectors can effectively detect malware
based on existing features of dataset, they still face the challenge of concept drift.
Concept drift is an online supervised learning scenario when the target inputs to be
predicted change over time in anticipated manners [54, 122, 117]. Yang et al. [166]
proposed CADE framework to address the challenges from concept drift and comple-
ment existing supervised training-based malware detectors. The proposed framework
introduces contrastive learning to map input data into latent space, and leverages
Median Absolute Deviation [80] to detect concept drift. Jordaney et al. [67] proposed
a concept drift detection framework, Transcend, based on statistically evaluating the
performance of a detector and filtering out unreliable detection results. The authors
applied their framework on DroidScribe [41] to enhance the identification ability of
concept drift [67].

2.4 Explanation on Machine Learning

Understanding why and how a machine learning model predicts a particular result is
crucial as the internal structure of the model is complicated, especially deep learning
neural networks. Researchers proposed various approaches to explain the connections
between features and predictions. Explanation approaches are generally categorized
into two types: local and global explanations. Local explanation interprets how fea-
tures contribute to an individual sample’s prediction result, while global explanation
explains how much a model depends on each feature. However, these two types of
explanation approaches are not strictly discriminated [36]. This section introduces
explanation methodologies on machine learning frameworks, and the major works are
listed in Table 2.2.

2.4.1 Local Explanation

The LIME [114] method interprets and explains individual predictions via local ap-
proximation on the given model around predictions, which is a model-agnostic manner.

10 Chapter 2. Literature Survey

Table 2.2. Explanation approaches

Approach Description

LIME [114] model-agnostic local estimation
DeepLIFT [122] local explanation, designed for Deep Learning
LEMNA [59] local explanation, designed for Deep Learning
SHAP [91] a unified local explanation, model-agnostic & model-specific
TreeExplainer [90] a tree-based explainer for the SHAP framework
CADE [166] concept drift explanation framework
SAGE [37] a model-agnostic global explanation framework
Chen et al. [33] global robustness property-based explanation approach
Ilyas et al. [65] global sensitivity-based explanation approach
Patel et al. [103] differencial-privacy-based explanation approach

Generally, the explanation produced by LIME is obtained by the following:

ξ = argmin
g∈G

L(f, g, πx) + Ω(g), (2.1)

where G is a class of explanation models, L is loss functions, and Ω is complexity
measures.

DeepLIFT [122] is a recursive prediction explanation framework designed for in-
terpreting deep learning neural networks. It interprets the prediction result of a deep
learning neural network via backward propagating the contributions of neurons to
each feature of the input data. Compared with model-agnostic explanation methods,
DeepLIFT has a faster explanation speed and better computation performance on
deep learning neural networks. LEMNA [59] is an explanatory framework that aims
to explain deep learning malware classification results. It is specifically designed to ad-
dress feature dependency on binary analysis and deal with nonlinear local boundaries
to enhance explanation fidelity [59].

SHapley Additive exPlanations (SHAP) [91] is a unified explanation framework
that ensembles multiple explanation approaches into a Shapley value-based coalitional
game theory concept. This framework explains model predictions in either model-
agnostic or model-specific manner by leveraging different explainers. SHAP aims
to calculate the contribution of each feature in predicting the individual result. To
accomplish this task, it generates a surrogate explanation model g of the form:

f(x) = g(x′),

g(x′) = ϕ0 +

M∑
j=1

ϕjx
′
j ,

(2.2)

where f is the original model, x′ is the coalition vector of x. The Shapley value
ϕj ∈ R is the feature attribution for the feature x′j to the sample’s prediction result.
Although the SHAP framework can explain an arbitrary model in a model-agnostic
manner, the explanation process can be boosted via customizing its explainer. The
authors further proposed the TreeExplainer [90] to interpret predictions by decision
tree-based models.

CADE [166] explain concept drift by proposing a Distance-based Explanation,
which is evaluated with the Boundary-based Explanation implemented from these
approaches [24, 40, 50, 51]. Regular machine learning classifiers make predictions

2.4. Explanation on Machine Learning 11

via dicision boundaries; in contrast, the concept drift detection model is based on the
sample’s distance to centroids of distribution clusters of training data [166]. Therefore,
the proposed approach seeks a set of original features that push the drifting sample
input toward the closest centroid.

2.4.2 Global Explanation

SHAP calculates how much each feature contributes to an individual prediction (local
explanation). Shapley Additive Global importancE (SAGE) [37] calculates how much
each feature contributes to the predictive power, i.e. importance, across the whole
dataset (global explanation). The important features, which enhance the model’s
prediction performance, will have large values, while unimportant features will have
small values. To accomplish this task, SAGE defines the restricted model fS that only
a part of the entire features set are chosen as:

fS(xS) = E[f(X) | XS = xS], (2.3)

where XS ≡ {Xi|i ∈ S} and S ⊆ D is a subset of the full features set D. Given a loss
function ℓ, it defines the prediction power vf (S) given a subset of features S:

vf (S) = E[ℓ(f∅(X∅), Y)]︸ ︷︷ ︸
Mean prediction

−E[ℓ(fS(XS), Y)]︸ ︷︷ ︸
Using features XS

,
(2.4)

where vf (S) represents the performance of f given features XS . As well known in
game theory, Shapley values reflect the credit allocation [37] and adopt this framework
to attribute the model’s prediction power on sets of features. Therefore, the expression
is shown as follows:

ϕi(vf) =
1

d

∑
S⊆D\{i}

(
d− 1

|S|

)−1

(vf (S ∪ {i})− vf (S)) , (2.5)

where each Shapley value ϕi(vf) is a weighted average of the incremental changes from
adding i to subsets S ⊆ D\{i}.

Chen et al. [33] define global robustness properties to explain malware detection.
The properties involve five attributes: monotonicity, stability, high confidence, redun-
dancy and small neighborhood. The authors leverage these five properties to explain
domain knowledge about suspicious factors, evasion strategies and the semantics and
dependency among features.

Ilyas et al. [65] proposed the concepts of ρ-useful and γ-robustly features to help
explain global sensitivity of features in machine learning models. The authors claimed
that these useful but non-robust features are the causes of adversarial attacks, which
is evaluated with empirical studies.

Patel et al. [103] proposed an adaptive differential privacy algorithm for expla-
nation methodologies to prevent sensitive information about training datasets from
leakage. The proposed algorithms can be adopted to any explanation approach based
on local queries.

12 Chapter 2. Literature Survey

Table 2.3. Attack Approaches

Authors Type Description

Severi et al. [118] Backdoor a SHAP-guided backdoor attack
Ma et al. [92] Backdoor hiding malformed triggers into neural networks

by leveraging model quantization in embedded frameworks
Li et al. [84] Backdoor a backdoor attack on NLP
Song et al. [127] Adversarial an adversarial attack guided by Reinforcement Learning (RL)
Zhao et al. [172] Adversarial an adversarial attack on Android detectors guided by RL
Li et al. [81] Adversarial an empirical study to evaluate the quality of predictive

uncertainties of Android detectors with adversarial samples
Slack et al. [124] Adversarial fooling LIME and SHAP
Wang et al. [153] Others hidding malare in a neural network
Li et al. [107] Adversarial an adversarial attack on computer vision via active learning
Carlini et al. [21] Others extracting confidential data and secrets

from a deep neural network

2.5 Attacks on Machine Learning

This section will illustrate state-of-the-art attacks on machine learning-based malware
detectors. We generally introduce two dominant attacks: backdoor attacks and ad-
versarial evasion attacks. However, attacks on machine learning are not limited to
these two types. Papers introduced in this section are listed in Table 2.3.

2.5.1 Backdoor Attack

Backdoor attacks embed sophisticated malicious inputs into machine learning models,
which only trigger and cause misclassifications on model inputs containing a specific
activator [156]. Severi et al. [118] conducted a backdoor attack on malware detectors
guided by the explanation approach. The authors proposed two feature selection and
three value selection functions with a Greedy Combined Selection strategy guided
by SHAP [91] to generate manipulable features and values. The proposed backdoor
attack is based on a model-agnostic manner, does not require to access the labelling
process and adopts to restrictive adversarial models, e.g. poisoning a small number
of samples with manipulated features and values.

Ma et al. [92] proposed a novel backdoor attack that leverages model quantization
empowered by commercial machine learning frameworks to hide malformed triggers
into neural networks. Commercial machine learning frameworks, e.g. TensorFlow
Lite [138] and PyTorch Mobile [111], post-quantize a large high-precision model (i.e.
float-32) into a small low-precision model (i.e. int-8) to reduce the computation
resource due to the limitation of embedded devices. The authors utilize such a feature
to hide a sophisticated backdoor into a neural network model. The backdoor can be
triggered when converting the precision of values without being identified by malware
detectors.

Besides malware-related backdoor attacks, Li et al. [84] conducted backdoor at-
tacks on Natural Language Processing (NLP) models by replacing several characters
with mal-formed Unicode characters in training words and sentences. For instance,
they replace the Latin small letter "e" (code 0065) with Cyrillic small letter "e" (code
0435). These backdoor characters are then used in training NLP models and triggered
while processing natural language inputs, e.g. misclassifying or generating malicious
words or sentences.

2.5. Attacks on Machine Learning 13

2.5.2 Adversarial Evasion & Other Attacks

Adversarial evasion attacks aim to manipulate malicious samples targeting specific
models so that the manipulated samples are misclassified by the models. Reinforce-
ment learning (RL) is a field of machine learning that focuses on the concept of how
an intelligent agent should behave in an environment to maximize cumulative reward.
Compared with the machine learning models mentioned above, RL does not require
labelled data as input; instead, it focuses on finding a balance between exploration
and exploitation [69]. Therefore, many researchers leverage RL to conduct adver-
sarial attack on malware detectors. Song et al. [127] proposed an adversarial attack
approach based on reinforcement learning. The proposed framework targets both ma-
chine learning detectors and commercial AV engines. It addresses the action selection
problem with three processes: (i) converting the generation process to a stateless pro-
cess, (ii) reusing successfully evaded payloads in modelling and (iii) minimising the
changes on adversarial examples to assign rewards correctly. The framework’s action
minimiser can figure out ineffective actions for adversarial sample generation and only
change minimal features, explaining the reason for evasion attacks.

Zhao et al. [172] also leverages RL to generate Android adversarial samples. The
proposed approach maps graph modifications in vectors to semantic code-level ma-
nipulations on apps to generate final adversarial APK samples. Specifically, graph
modifications include inserting and removing nodes and edges, while code-level ma-
nipulations include adding and removing methods, adding call relations and rewriting
code instructions.

Li et al. [81] conducted an empirical study to evaluate the quality of predictive
uncertainties of Android malware detectors with adversarial samples. They redesign
24 state-of-the-art Android malware detectors and measure their functionalities with
nine methods, three of which address the data imbalance issue. Adversarial samples
are generated via feature perturbation, which leverages PGDs+GDKDE attack and
the Mimicry attack that are borrowed from vision-based feature perturbation methods,
and obfuscation techniques.

Explanation approaches explains which features contribute to the classification,
learned from the previous section. Therefore, explanation frameworks can be used
on adversarial attacks. Slack et al. [124] conducted adversarial attacks based on
LIME [114] and SHAP [91] and demonstrated how they can be defeated. The authors
generate adversarial examples via perturbing features based on explanation frame-
works to attack original biased detectors. Then they generate an unbiased detector,
which may fool the explanation frameworks but can detect the distribution distances
of inputs to training samples, to detect whether the input is adversarial examples.
Such an approach can effectively defend adversarial attacks based on explanation
methods; however, it can also be a target to exploit and decrease the accuracy of
malware detection.

Despite adversarial attacks on machine learning-based malware detectors, Wang et
al. [153] proposed an attack on deep neural networks by embedding malware in neu-
rons. From the evaluation, the malware embedded in the neural networks can success-
fully evade the detection of antivirus detectors in VirusTotal, and the neural networks
have around 1% accuracy loss. Li et al. [107] conducted a black-box adversarial at-
tack on computer vision classifiers via active learning. Carlini et al. [21] proposed a
framework to detect and extract confidential data and secrets by leveraging memoriza-
tion mechanism in training a deep neural network. These research exposes different
weaknesses of existing machine learning classifiers and detectors. Sun et al. [134]
unveiled mobile advertisement fraud via assessing network traffics. Hu et al. [64]

14 Chapter 2. Literature Survey

evaluated TableGAN-MCA and discovered that GAN-synthesized table releasing can
potentially leak privacy data. Many research[19, 26, 106, 46, 38, 129, 23, 160, 159, 93]
evaluated data leakage and attacks in deep learning neural networks. Wen et al. [155]
evaluated poisoning attacks on logistic regression models. Li et al. [85, 86] also evalu-
ated backdoor attacks on deep learning models. Zhou et al. [173] evaluated profiling
attacks on federal learning. Zhu et al. [174] unveiled clicking fraud attacks on Android
apps. Much research [136, 27, 119] evaluated attacks on mobile systems and apps.
Wen et al. [154] evaluated poisoning attacks and defenses for linear regression models.

2.6 Conclusion

This chapter conducts a comparative analysis of existing literature of malware-related
security topics. Similar machine learning-based malware detection and classification
algorithms can be applied on both WinPE and APK malware. However, feature
extraction functions have significant differences between the two types of malware
due to the differences in runtime and binary structures between Windows and An-
droid systems. In addition, feature extraction functions may cover different aspects of
malware binaries, e.g. static and dynamic features, which may lead to coverage and
concept drift issues. Explanation methods expose the inner decision factors of machine
learning classifiers, which guides attackers and researchers to discover vulnerabilities
of malware detectors. Meanwhile, explanation frameworks also help researchers to
address security issues and eliminate potential attacks. Existing adversarial attack
methodologies highly relies on feature perturbation based on either explanation or re-
inforcement learning approaches, which consume remarkable computation resources.
From existing literature, we try to find efficient approaches to attack malware de-
tectors that are effective, explainable and economic. In the following chapters, we
discuss how to discover privacy-related malicious behaviours and security issues via
static analysis and propose an approach to explain and measure functionalities of
malware detectors.

15

Chapter 3

A Semi-Automated Assessment of
Android Clipboards

Statement of Authorship
Title of Paper

Publication Status Published Accepted for Publication

Submitted for Publication
Unpublished and Unsubmitted w ork w ritten in
manuscript style

Publication Details

Principal Author

Name of Principal Author (Candidate)

Contribution to the Paper

Overall percentage (%)

Certification: This paper reports on original research I conducted during the period of my Higher Degree by
Research candidature and is not subject to any obligations or contractual agreements with a
third party that would constrain its inclusion in this thesis. I am the primary author of this paper.

Signature Date

Co-Author Contributions
By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author

Contribution to the Paper

Signature Date

Name of Co-Author

Contribution to the Paper

Signature Date

Please cut and paste additional co-author

An Automated Assessment of Android Clipboards

X

Wei Wang, Ruoxi Sun, Minhui Xue, and Damith C. Ranasinghe

Wei Wang

Performed experiments, analysed all samples, interpreted data and wrote manuscript

85%

06/03/2022

Ruoxi Sun

Minhui Xue

Helped in data interpretation and manuscript editing and evaluation

09/03/2022

09/03/2022

Supervised development of work, helped in manuscript editing and
evaluation

Damith C. Ranasinghe

Supervised development of work, helped in manuscript editing and
evaluation

11/03/2022

18 Chapter 3. A Semi-Automated Assessment of Android Clipboards

3.1 Introduction

A clipboard is a temporary buffer to allow short-term storage and data transfer within
and between applications. It is regarded as a fundamental component of most operat-
ing systems and can be accessed either by users or by applications. Additionally, the
functionality of the clipboard, such as copy and paste, is by default not constrained
by the mobile operating system itself.

In June 2020, Apple published its most recent version of the iOS system, iOS 14.
This version introduces a new privacy strategy: it prompts notifications while an app
is attempting to access the clipboard. Consequently, numerous highly-used apps that
access user clipboard data are exposed; Tik-Tok has been revealed to grab the contents
of the clipboard every 1-3 keystroke(s), while LinkedIn has been shown to copy the
contents of the clipboard every keystroke [157]. In contrast to iOS 14, the Android
system does not include such a feature to inform its users of clipboard accesses. Hence,
apps can monitor changes of the clipboard in both foreground and background without
any user acknowledgement or consent.

Although, in 2019, Android 10 no longer allowed apps to access the clipboard in
the background [110], the input method editor (IME) was excluded; such a restriction
alone is too weak to protect user privacy. Malicious programs can arbitrarily read
sensitive data from the clipboard and transfer the data to a remote service, hence,
users are still exposed to severe threats from private and confidential data leaks.
For example, since the wallet address of cryptocurrencies, e.g., Ethereum [48] and
Bitcoin [18], is usually long and hard to memorize, users copy the payee’s address and
paste it into the wallet app when making a transaction. Recently, it was substantiated
that a malicious application found in the Google Play Store monitors the clipboard,
obtains the private keys and seeds, and then forwards the data to the attacker’s
Telegram account to steal a user’s cryptocurrency [2]. Recent work has proposed
research related to privacy policy [133] and privacy leakage [83, 28, 132, 168, 62,
29, 151, 31] of mobile apps, but our work focuses on the problem of clipboard data
leakage—the transfer of private user data to backend servers without user consent.

In order to distinguish privacy leakage behaviours from normal clipboard use, we
define the analysis criteria as (i) programs read from and write to the clipboard,
data, without user notifications or consent; and (ii) clipboard content is directly sent
to backend services. This study, to the best of our knowledge, performs the first
security and privacy investigation of the clipboard access on Android apps. Our key
contributions are as follows:

• We analyze the mechanism of clipboard access in an Android system and develop
an approach to determine whether an app obtains data from the clipboard and
detect the data acquisition behaviour, e.g., the timing and frequency of clipboard
access.

• We architect the framework for a first tool, to the best of our knowledge, to
identify potential privacy leakage emanating from the transfer of data from
Android clipboards to backend servers and implement a preliminary version
that combines manual and automated methods. The detection approach utilizes
static taint analysis to expose the data flow from clipboard to risky sinks and
integrates call graph backtracking to determine clipboard data leakages.

• We conduct our preliminary experiments on a popular app, i.e., Sogou Input.
The experimental results illustrate the effectiveness of our method by revealing
potential clipboard privacy leakage, i.e., direct data uploads to a backend server.

3.2. Clipboard Privacy Assessment 19

Figure 3.1. An overview of the semi-automated assessment method
for clipboard security.

3.2 Clipboard Privacy Assessment

An overview of our semi-automated clipboard privacy analysis methodology is shown
in Figure 3.1. To assess the clipboard privacy of Android apps, we perform (i) static
code analysis to identify clipboard access; (ii) dynamic analysis to detect the access
timing and frequency; and (iii) data flow analysis to determine privacy leaks (through
a manual process). To assess the tool, we focus our study on the popular e.g., Sogou
Input [126], with more than 10 million downloads in the Google Play store and 1.5
billion in the Tencent App Store.

Clipboard access identification. After decompiling the Android Packages (APKs),
we scan the source code of each app to detect the function calls of ClipBoardMan-
ager.getPrimaryClip() and ClipData.Item.getItemAt(int), in order to determine
whether an app accesses the clipboard or not. Once a clipboard-related function call
is detected in an app, we will further investigate its clipboard access behaviour by
dynamic analysis, and assess the privacy leakage through further static analysis.

Clipboard access behaviour detection. After clipboard access methods are iden-
tified in the source code, we run the corresponding app on a rooted device where a
dynamic instrumentation framework, Frida [52], is installed. Using Frida, we are
able to monitor the app’s status, hook system APIs, change the app’s behaviours, and
trace a function call path through injecting JavaScript scripts which can be executed
with full access to device memory [53]. To detect clipboard access behaviour, we hook
and track the ClipboardManager.getPrimaryClip() method during run-time and
extract the timing and frequency of the method calls from output logs.

Privacy leakage determination. From the Android clipboard API, we identify
methods that access the clipboard, e.g., ClipboardManager.getPrimaryClip() and
ClipData.Item.getItemAt(int), as sensitive Sources. These Sources acquire the
sensitive data from the clipboard, and then they are transferred to Sinks that leak the
data outside of the app. For example, the Sink OkHttpClient.new-
Call() leaks Sources to the backend service via OkHttp [101] library, and another Sink
Writer.write(String) writes the Sources into either local files or HTTP connections.
Then, we use FlowDroid [15] to conduct a taint analysis on the apps identified of
clipboard access to screen out high risk privacy leakages. The output of taint analysis
are data flows from Sources to Sinks, which will be further analysed using call graph
analysis.

In our call graph analysis, we apply AndroGuard [10] to track method invoca-
tions from Entry Points to Sources. We define the app code from the Android frame-
work that directly or indirectly invokes Sources, e.g., View.OnClickListener.onClick()
and Activity.onResume(), as an Entry Point. By concatenating the call graph re-
sults with the data flows previously obtained, we are able to backtrack data flows
from Sinks to Entry Points. If an Entry Point indicates a user-originated event, e.g.,

20 Chapter 3. A Semi-Automated Assessment of Android Clipboards

a click event which is not an abuse of clipboard functionalities, we remove it and store
the remaining results for manual inspection.

3.3 Preliminary Results

We evaluate the effectiveness of assessment method using a popular app abusing clip-
board data.

Sogou Input is the most widely-used Chinese input method editor (IME) app with
over 10 million downloads in Google Play and 1.5 billion in Tencent App Store. Al-
though the Android system has restricted apps from accessing the clipboard in the
background since Android 10, it still allows the app configured as a default input
editor to monitor the clipboard [87].

We discovered that the cyj.onPrimary-CLipChanged() method monitors clip-
board changes in the background and transfers clipboard contents to CopyTrans-
lateResultActivity, and then it transfers the clipboard data to the backend server.
Moreover, once users invoke the app’s main screen, Sougou-IMEHomeActivity, the
app copies the clipboard data and sends it to the backend server. This is a clear case
of a user privacy breach whilst using this IME app as it acquires and sends clipboard
data to remote servers whenever it is running in foreground or background, without
any user consent.

3.4 Conclusion and Future Work

Since cross-platform development has become widely accepted in recent years, privacy
data leakage more likely happens among apps, and its detection will be more com-
plicated. Based on our preliminary findings, we plan to further extend our work to
large-scale assessment in order to validate our clipboard privacy tool.

21

Chapter 4

Explaining and Measuring
Functionalities of Malware
Detectors

Statement of Authorship
Title of Paper

Publication Status Published Accepted for Publication

Submitted for Publication
Unpublished and Unsubmitted w ork w ritten in
manuscript style

Publication Details

Principal Author

Name of Principal Author (Candidate)

Contribution to the Paper

Overall percentage (%)

Certification: This paper reports on original research I conducted during the period of my Higher Degree by
Research candidature and is not subject to any obligations or contractual agreements with a
third party that would constrain its inclusion in this thesis. I am the primary author of this paper.

Signature Date

Co-Author Contributions
By signing the Statement of Authorship, each author certifies that:

i. the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author

Contribution to the Paper

Signature Date

Name of Co-Author

Contribution to the Paper

Signature Date

Please cut and paste additional co-author panels here as required.

Explaining and Measuring Functionalities of Malware Detectors

x

Wei Wang, Ruoxi Sun, Tian Dong, Shaofeng Li, Minhui Xue, Gareth Tyson,
Haojin Zhu

Wei Wang

Preformed experiments, analysed all samples, interpreted data and wrote
manuscript.

70%

06/03/2022

Ruoxi Sun

Tian Dong

Helped in model training and manuscript editing

Helped in data interpretation and manuscript editing and evaluation.

08/03/2022

09/03/2022

Shaofeng Li

Minhui Xue

Gareth Tyson

Haojin Zhu

Supervised development of work, helped in manuscript editing
and evaluation

Helped in model training and manuscript editing

Helped in manuscript editing and evaluation

Supervised development of work. Helped in manuscript
evaluation

09/03/2022

09/03/2022

10/03/2022

11/03/2022

24 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

4.1 Introduction

Malware continues to be one of the most pressing security issues that users face today.
Recent research has shown that the total number of malware infections has been rising
for the last decade (2009 to 2018) [39]. In 2018, the number of malware infections
was 812.6 million across mobile phones and computers, while during the first nine
months of 2019, at least 7.2 billion malware attacks and 151.9 million ransomware at-
tacks were reported. Thomas et al. [139] presents the risks of stolen credentials raised
by malware, suggesting that 7–25% of exposed passwords match a victim’s Google
account. Furthermore, the attack rate has hit a new high during the COVID-19 pan-
demic [128]. These figures suggest that traditional signature-based methods cannot
keep up with the rampant growth of novel malware. Hence, commercial antivirus
companies have started using machine learning [4, 137] to enable detection without
the need for signatures. However, research has demonstrated that attackers can evade
machine learning-based detectors by manipulating the malware features that such de-
tectors use [44, 45, 96, 108, 164, 167]. Because of this, commercial antivirus systems
are susceptible to adversarial attacks [123]. Although there has been several works [55,
22, 49] looking at adversarial attacks in computer vision (where adversaries change
specific pixels), adversarial attacks on malware are far less understood.

For the purposes of this chapter, we divide such attacks into two broad categories.
The first group relies on problem-space obfuscation. Here we consider the problem
space as a domain containing real-world objects (e.g. malware code, images, audio).
Obfuscations in the problem-space change the semantic meanings of code snippets and
further obfuscate the malicious signatures or patterns, thereby fooling rule-based mal-
ware detectors. Researchers have proposed a variety of such obfuscation techniques
to generate adversarial malware that can evade detection by manipulating this do-
main [12, 149, 146, 68, 75, 113]. These include approaches such as hiding the control
flow, inserting dummy code, and manipulating variable names.

The second group of adversarial attacks relies on feature-space manipulation. This
is performed on feature vectors that a detector induces from the problem-space. For
example, a malware detector may induce a feature vector representing the control
flow of malware code. This, however, means an attacker must know exactly how
to change the problem-space (e.g. code) to result in a specific change to the feature
space. Such attacks are becoming more prominent because machine learning-based
detectors have reduced the efficacy of problem-space attacks. This occurs when a
problem-space modification does not influence the projected feature space, thereby
negating its impact on the malware detector.

Despite this, feature-space manipulation is more difficult than arbitrary code mod-
ification. This is because, after manipulating the feature space, it is necessary to map
the modification onto the malware’s code. However, a single byte change can break
the program or damage the malware’s original purpose. As a result, adversaries usu-
ally cannot directly modify the raw bytes of the program file. Instead, feature-space
manipulation requires finding the correct action(s) on the problem-space that will
influence the feature values (but without changing run-time functionality). These
actions could be, for example, adding a redundant section (e.g. adding a new code
section without linking its address in the section table) or injecting dead code that is
unreachable (e.g. adding a file I/O request under an always-false condition, so that the
dummy code will never be executed). Note, we are not the first to explore this topic.
Similar techniques have been implemented by Demetrio et al. [43] in a black-box opti-
mization of adversarial Windows malware. However, they focus on the problem-space,
instead of feature-space manipulation.

4.2. Related Work & Motivation 25

With the above challenge in mind, we focus on exploring how to guide feature-space
manipulations and how to invert them back to the problem space. We do this with the
explicit goal of evaluating functionalities of state-of-the-art malware detectors to iden-
tify malware with specific manipulations. Since most commercial malware detectors
are not open-source, this must be done in a detector-agnostic manner (i.e. decoupling
the attack strategy from the specifics of the detector). With this in mind, we design a
detector-agnostic evasion attack which conducts feature-space manipulation and con-
verting back to problem space to generate new adversarial sample binaries. We then
evaluate it against various state-of-the-art malware detectors. In contrast to prior
research, we further propose a novel method to explain the root cause of an attack’s
ability to work across different detectors (i.e. its “transferability”). Our research helps
security researchers to better understand evasion attacks and provides insights on how
to improve malware defence strategies. The main contributions of this chapter are
three-fold:

• We propose an explainability-guided and model-agnostic malware detector mea-
surement framework (Section 4.4). Our framework generates adversarial malware
while preserving the malicious functions of the malware. We exploit SHapley Ad-
ditive exPlanations (SHAP) and introduce the concept of Accrued Malicious
Magnitude (AMM) to guide the feature selection approach for feature-space ma-
nipulation. We further project the manipulated feature back to problem-space with
a binary builder that generates adversarial samples.

• We use AMM to measure the performance of state-of-the-art malware detectors
protecting against adversarial attacks (Section 4.6.1). We show that commercial
antivirus engines are vulnerable to AMM-based adversarial samples, while a de-
tector with multiple different feature extraction functions reduces the impact of
the adversarial attacks in a certain degree. Experimental results indicate that our
approach has significant evasion capability, which decreases the detection rates of
seven malware detectors by 56.47%, and bypasses an average of 25 out of the 60
antivirus engines in VirusTotal (VT). We also present the generalizability of our
AMM approach by applying it on WinPE malware detectors (Section 4.6.3).

• We explain how manipulations trained on one detector can work on another detec-
tor (i.e. transferability) through our explainability-guided approach (Section 4.6.2).
Our explainability-guided approach shows that the transferability relies on the over-
laps of features with large AMM values between different machine learning models.

• We further explore the effectiveness of our proposed attack on improved machine
learning-based detectors that exclude important features while training (Section 4.6.4).
Results show that AMM values can effectively measure the importance of fea-
tures and the capability of flipping classification results. We suggest that machine
learning-based AV products should consider using the AMM values to improve their
performance.

To the best of our knowledge, this is the first paper to systematically evaluate the
weaknesses of malware detectors in a way that combines feature-space and problem-
space with semantic explainability.

4.2 Related Work & Motivation

In this section, we introduce state-of-the-art research in malware detection and ma-
chine learning model explanation domains, followed by an motivating example.

26 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

4.2.1 Related Work and Background

Malware detectors. Many modern antivirus engines utilize rule-based analysis,
such as signature matching, static unpacking, heuristics matching, and emulation
techniques [74, 63]. However, rule-based antivirus engines rely heavily on expert
knowledge. With the advantage of feature extraction derived from machine learning
techniques, there is a flurry of work that integrates machine learning models into
malware detectors [14, 74, 73, 163, 162]. We focus our evaluation on detectors that
use static features due to their prevalence in providing pre-execution detection and
prevention for many commercial endpoint protection solutions, such as Kaspersky [71],
Avast [16], and ESET [11].

A few studies have explored the effect of obfuscations on anti-malware products,
utilizing off-the-shelf tools. Maiorca et al. [96] and Pomilia [109] evaluated several
anti-malware products using code obfuscation by a single tool. Hammad et al. [60]
conducted a large-scale empirical study that evaluates the effectiveness of the top anti-
malware products, including 7 open-source, academic, and commercial obfuscation
tools. Several studies [119, 30, 131] have evaluated machine learning-based malware
classifier models with the adversarial samples generated by generative adversarial
networks (GANs) or automated poisoning attacks. Chen et al. [34, 33] studied machine
learning classifiers with global robustness properties. Barbero et al. [17] proposed a
method to cope with concept drift which may lead to performance degradation of
malware detectors. Li et al. [82] conducted an empirical study to detect dataset shift
and adversarial examples in Android malware detectors. Compared to the evaluation
conducted in this chapter, the scope of these studies only covers either the rule-based
products or the machine learning-based models in isolation (rather than both).
Evasion attacks against malware detectors. The goal of the evasion attacks is
to generate a small perturbation for a given malware sample that results in it being
misclassified. This type of attack has been extensively explored in computer vision,
and previous research efforts have also investigated the applicability of such techniques
to malware classification. Xu et al. [164] proposed a genetic programming-based ap-
proach to perform a directed search for evasive variants for PDF malware. Demetrio et
al. [42] demonstrated that genetic programming based adversarial attacks are appli-
cable to portable executable (PE) malware classifier. Two recent works [7, 127] also
applied deep reinforcement learning to generate adversarial samples for Windows PE
malware to bypass machine learning models.
SHapley Additive exPlanations (SHAP). Research into explainable machine
learning has proposed multiple systems to interpret the predictions of complex models.
In this chapter, we rely on SHAP [91] (based on the coalitional game theory concept
of Shapley values). Hence, we briefly describe its operation. The SHAP framework
subsumes several earlier model explanation techniques together, including LIME [115]
and Integrated Gradients [135]. SHAP has the objective of explaining the final value
of a prediction by attributing a value to each feature based on its contribution to the
final result. To accomplish this task, the SHAP frameworks train a surrogate linear
explanation model g of the form:

f(x) = g(x′),

g(x′) = ϕ0 +
M∑
j=1

ϕjx
′
j ,

(4.1)

where f is the original model, x is the input sample to be attributed, x′ is the coalition

4.2. Related Work & Motivation 27

vector of x. For each entry of x′, its value is 1 if the corresponding feature is “present”
and 0 if “absent”. ϕ0 = EX(f(X)) is the average prediction of the original model on
sampled dataset X. The Shapley value ϕj ∈ R is the feature attribution for the jth

feature x′j to the model’s decision. Summing the effects of all feature attributions
approximates the difference of prediction for x and the average of the original model.
Further, the SHAP framework connects LIME and Shapley values to fit Equation 4.1
and explains any machine learning-based model without internal knowledge.

LIME uses a linear explanation model g(x′) to locally approximate the original
model, where locality is measured in the simplified binary input space, i.e. x′ ∈
{0, 1}M . To find ϕ, LIME minimises the following objective function:

ξ = argmin
g∈G

L(f, g, πx) + Ω(g), (4.2)

where L is the squared loss over a set of samples in the simplified input space weighted
by the kernel function πx, and Ω penalizes the complexity of g ∈ G where G is hypoth-
esis space. Therefore, based on the input feature vectors and the output predictions
of the model, we can use the model’s coefficients to approximate the importance of
each feature.
Shapley Additive Global importancE (SAGE) SHAP calculates the contribution
of each feature to an individual prediction (local interpretability). Shapley Additive
Global importancE (SAGE) [37] summarizes each feature’s importance based on the
predictive power it contributes across whole dataset (global interpretability). The
features that are most critical for the model to make good predictions will have large
values, while unimportant features will have small values. To accomplish this task,
SAGE defines the restricted model fS that only a part of the entire features set are
chosen as:

fS(xS) = E[f(X) | XS = xS], (4.3)

where XS ≡ {Xi|i ∈ S} and S ⊆ D is a subset of the full features set D. Given a loss
function ℓ, it defines the prediction power vf (S) given a subset of features S:

vf (S) = E[ℓ(f∅(X∅), Y)]︸ ︷︷ ︸
Mean prediction

−E[ℓ(fS(XS), Y)]︸ ︷︷ ︸
Using features XS

,
(4.4)

where vf (S) represents the performance of f given features XS . As well known in
game theory, Shapley values are the unique credit allocation scheme [120], and adopt
this framework to attribute the model’s prediction power on sets of features, we have
the expression as follows:

ϕi(vf) =
1

d

∑
S⊆D\{i}

(
d− 1

|S|

)−1

(vf (S ∪ {i})− vf (S)) , (4.5)

where each Shapley value ϕi(vf) is a weighted average of the incremental changes from
adding i to subsets S ⊆ D\{i}.

4.2.2 Motivating Example

To motivate our adversarial attack, we analyze a sequence of source code decompiled
from an Android malware, which is tagged as malicious by 39/67 detectors from

28 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

Figure 4.1. An example of antivirus engine evasion. Code in blue:
dummy function calls.

VirusTotal (VT) [148]. From the source, we find a snippet of malicious code shown in
the top part of Figure 4.1. As shown in lines 3 and 4, the malware executes a native
scripts via root permissions by su -c ./script1 command.

In order to bypass machine learning-based detectors, we must perturb its API-
call-based feature space towards ‘benign’. Hence, we insert several function calls with
always-false condition closure (e.g. time<0) to ensure they are unreachable during
run-time, preserving the original (malicious) functionality. These function calls are
randomly selected from benign features, which involve a list of function calls extracted
from benign apps, provided by an Android dataset, Drebin [14]. The inserted code
is marked as blue in the middle part of Figure 4.1. After rebuilding the source code,
the modified binary is identified by 33 scanners – 6 fewer than the originally, and it
bypasses the machine-learning detector provided by Drebin. The remainder of this
chapter develops an explainability-guided feature-space manipulation framework and
problem-space rebuilding tool.

4.3 Threat Model & Problem Definition

In this section, we define the threat model and take a deep dive into our research
problem.

4.3. Threat Model & Problem Definition 29

Figure 4.2. The overview of our evaluation framework.

4.3.1 Threat Model

We follow the methodology by Carlini et al. [20] and describe the threat model of
evasion attacks against malware detectors from three aspects: the adversary’s goals,
capabilities, and knowledge.
Adversary goal. The adversary’s goal is to manipulate malware samples to evade
the detection of malware detectors, including white-box, grey-box and black-box de-
tectors. The type of malware we consider in this study is Android APKs. We will also
discuss Windows Portable Executive (WinPE) malware. In the evaluation, we only
use binary detectors which determine if the software under test is benign or malicious.
The goal of attackers in this work is to cause the malicious samples to be misclassified
as benign.
Adversary capability. We assume that the adversary does not have access to the
training phase or the model of the machine learning-based detectors. For instance,
the adversary cannot inject poisoned data in the training dataset or manipulate any
code or output of detectors. However, they will still have some basic knowledge about
machine learning-based detectors, e.g. the access to open-source datasets, features
extraction methods [118], or off-the-shelf machine-learning detectors. In addition, we
introduce black-box detectors whose feature extraction functions and internal archi-
tecture are kept unknown to the adversary.
Adversary knowledge. In this work, we assume that an attacker has full knowl-
edge of one machine learning-based malware detector, including its feature extraction
functions, architecture, and training dataset. Such a white-box model will be used as
the source of adversarial sample generator. For the target detectors, the adversary
has no knowledge about the detectors’ training dataset, inner structure, or detection
mechanism. We will evaluate the target detectors in two scenarios, i.e. the attacker
knows (grey-box) or does not know the feature extraction method (black-box).

4.3.2 Problem Definition

Our goal is to evaluate the efficacy of evasion attacks against malware detectors using
generated adversarial samples. Considering a malware detector mapping a software
sample x ∈ X to a classification label l ∈ {0, 1} (where 0 represents benign and 1
represents malicious), the goal of evasion attack can be summarized as:

30 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

F (x) = 1, xa = Gen(x), F (xa) = 0, (4.6)

where F could be either a trained machine learning model or an antivirus engine. x is
the original malware sample, and Gen is the sample generator that is able to generate
adversarial sample xa while keeping its malware functionality the same as x.

To ensure the reproducibility and coverage of our evaluation, we have several
criteria on the selection of evasion attack and adversarial sample generation strategies:

• Easy-to-obtain. We only utilize open-source and off-the-shelf tools, instead of
proposing any new attack technique ourselves.

• Compatible. We combine multiple evasion attacks, which we believe will put greater
stress on the detectors and make the evaluation as comprehensive as possible.

• Explainable. An explainable approach is preferred as it will help us to analyze the
evaluation results and find out potential weaknesses in malware detectors.

To establish such an evaluation strategy, we consider generating adversarial sam-
ples through perturbation the feature space (e.g. manipulating values in feature vec-
tors) and converting the manipulation back to the problem space (e.g. modifying
malware source code and rebuild the binary). To achieve our goal, the problem can
be split into two sub-problems: (i) generating adversarial samples and (ii) evaluating
them against malware detectors, both of which are detailed in Section 4.4.

4.3.3 Ethical Considerations

Our research is concentrated on the defence scope that explains the adversarial eva-
sion attacks and determines the potential weaknesses of current malware detection
methodologies. Hence, we declare: (i) the motivating example we presented is only a
code snippet without actual functionality; (ii) all tools and datasets involved in our
experiment are publicly available, and we also anonymize the antivirus engines with
a simple serial number label; (iii) considering the potential security issues, we will
not release the source code of the proposed attack and any adversarial samples, as
well as the information of commercial antivirus involved in our evaluation, except for
academic uses approved by our ethical committee.

4.4 Methodology

Our research methodology consists of three key components (see Figure 4.2): (i)
explainability-guided feature selection, to select the feature manipulation; (ii) an ad-
versarial sample generator, to generate the evasive samples; and (iii) an evasion attack
evaluation, to evaluate the proposed evasion attacks against four different machine-
learning detectors, three antivirus engines and VirusTotal [148], to explain their trans-
ferability and the impact of important features on the accuracy. Note, transferability
refers to the performance of evasion attacks when generating adversarial samples for
one machine-learning model and then applying them to different detectors; important
features refer to a set of features that a machine-learning model depends on the most.

4.4.1 Step 1: Feature Selection

In the first step of our methodology, we utilize SHapley Additive exPlanations (SHAP)
to create an explainability-guided adversarial example. SHAP calculates how much

4.4. Methodology 31

one feature contributes to an individual prediction. In this step we generate SHAP
values of the input dataset. The workflow of the explainability-guided feature selection
is illustrated in Algorithm 1. For a set of seed malware, S, we aim to generate a
corresponding adversarial sample set, A, such that they evade the target model only
by modifying features.
Pre-processing. We extract features from the training samples X of a trained
machine learning model m (line 2). Then the vectorized samples, X ′, and the model
are input to shap() to calculate the SHAP value matrix M (line 3). The matrix is
then used to select the most evasive features and the most benign-oriented values.
Feature selection. To select the feature that has largest malicious magnitude,
we propose the concept of Accrued Malicious Magnitude (AMM). The AMM
is defined as the product of the magnitude of SHAP values in each feature and the
number of samples that have malicious-oriented values in the corresponding feature.
By calculating AMM values, we select the feature that has the largest modifiable
capability and has the most samples to be modified as the adversarial examples.
Specifically, starting from the getRange(M) line 5, we first calculate the range of
SHAP values in each feature and store the results in a one-dimension vector D. D
indicates the potential magnitude we can modify on each feature, i.e. each di ∈ D
presents the difference between the maximum SHAP value and the minimum SHAP
value of feature fi. Next, for each feature, we count how many samples have SHAP
value larger than the mean SHAP value of that feature (the countLarge(M) in line 6).
Note that in our experiments, we labeled malicious as 1 and benign as 0. Therefore,
a larger ci ∈ C means that, for feature fi, there are more samples that have a SHAP
value towards malicious, such that more samples can be manipulated towards benign.
Therefore, we select the most evasive feature according to the AMM values, denoting
the dot product of the range of SHAP values (D) and the number of SHAP values
greater than mean (C) (line 7).
Value selection. Once we have identified the feature f to compromise, the next step
is to choose the value for the selected feature to guide the manipulation. Then we
select the most benign-oriented value, v, in the problem space. This corresponds to
the most negative value in M [f], the SHAP values of feature f (line 9).
Update feature patch. After obtaining a pair of (f, v), if the selected feature f
is manipulable, we add the pair into map P as the Feature Patch to be used in the
feature-space manipulation (line 11). Although the SHAP framework can find features
that impact the decision boundary, some of them cannot be manipulated directly.
For example, consider the feature that counts the size of a binary, when we modify
the value of another feature, the former will be modified indirectly. Therefore, the
features and values we select to be manipulated follow two principles employed by the
previous literature [118, 58, 57]. These principles are: (i) features are manipulable in
the original problem space; and (ii) selected features have no dependencies or cannot
be affected by other features.
Greedy strategy. After obtaining feature-value pairs, we conduct a greedy strategy,
removing samples that have the same value, v, for feature f from the dataset (lines 12
to 16). We do this to make sure that the same feature-value pair will not be selected
again. The procedure repeats until we find N feature-value pairs. These N pairs are
then used in the next stage to generate the adversarial malware samples.
Statistics-based Feature Selection Algorithm 2 illustrates the process of feature
selection. First, after vecterizing the dataset, X ′ is divided into malicious set M ′

and benign set B′. Then we summarize all feature values across the samples by
feature, representing the number of existence of each feature Msum and Bsum. Then
we choose the top and bottom 10% summary value as the threshold of majority and

32 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

Algorithm 1: AMM-based Feature-Space Selection

Input: Machine learning model m, dataset X, and the number of features to
be selected N .

Output: Feature patch P .
1 P = map(Feature, V alue);
2 X ′ ← vectorize(X);
3 M ← shap(X ′,m);
4 while size(P) < N do
5 D ← getRange(M);
6 C ← countLarge(M);
7 AMM ← D · C;
8 f ← argmax(AMM);
9 v ← argmin(M [f]);

10 if isManipulatable(f) then
11 P ← P ∪ (f, v);
12 for each x′ ∈ X ′ do
13 if x′[f] ̸= v then
14 idx← getIndex(X ′, x′);
15 M ←M \M [idx];
16 X ′ ← X ′ \ x′;
17 return P ;

minority feature in benign and malicious dataset. Finally, we traverse M ′ and B′ to
find benign and malicious-oriented features B and N . In feature manipulating phase,
benign-oriented features will be set as 1 in a sample while malicious ones will be set
to 0.

4.4.2 Step 2: Adversarial Sample Generator

In the next step, the adversarial sample generator applies features manipulation from
previous steps and generate adversarial samples. Explainability-guided feature-space
manipulation involves changing features selected by Algorithm 1 to mislead the de-
tector.
Feature-space manipulation. To train a machine learning model, the first step
is to convert input data into vectors of features (i.e. the feature extraction process).
In an evasion attack, we manipulate features to induce misclassifcations. However,
not every feature has equal influence on the result of the detector, so the question
becomes: how can we gain insight into a model’s decision in a generic, model-agnostic
way? Thus, we rely on SHAP to understand which features drive the model towards
a benign classification. Guided by SHAP, we can manipulate the malware sample and
cause a misclassification. Importantly, we must ensure the malware functionality is
preserved. Equation 4.7 summarizes the feature-space manipulation:

x′ = vectorize(x),

a′ = manipulateFeature(x′, P),

Gen′(x) = buildSample(a′, x),

(4.7)

where x′ is the result of applying feature extraction on sample x using vectorize().
The SHAP value matrix, M , is obtained through shap(), the SHAP algorithm. m

4.4. Methodology 33

Algorithm 2: Statistics-based Feature-Space Selection

Input: Dataset X, labels Y and the number of benign- and
malicious-oriented features to be selected N .

Output: Benign-oriented features B and malicious-oriented features M .
1 B = {};
2 M = {};
3 X ′ ← vectorize(X);
4 M ′, B′ ← devideDataset(X ′, Y);
5 Msum ← sum(M ′, axis = 0);
6 Bsum ← sum(B′, axis = 0);
7 Msort ← sortDescend(Msum, value > 0);
8 Bsort ← sortDescend(Bsum, value > 0);
9 mtop = Msort[len(M

′) ∗ 0.1];
10 mbottom = Msort[len(M

′) ∗ 0.9];
11 btop = Msort[len(B

′) ∗ 0.1];
12 bbottom = Msort[len(B

′) ∗ 0.9];
13 d = X ′.columns;
14 for i in [0...d] do
15 if Bsum[i] ≥ btop & Msum[i] ≤ mbottom & size(B) < N then
16 B ← B ∪ (i);
17 if Msum[i] ≥ mtop & Bsum[i] ≤ bbottom & size(M) < N then
18 M ←M ∪ (i);
19 return M , B;

represents the machine learning model. manipulateFeature() manipulates the sample
in feature-space guided by SHAP. Note that, the sample generator Gen′() will take the
manipulated feature-space sample a′ and the original sample x as input, and imple-
ment the changes in feature-space back to problem-space to generate the adversarial
sample, while keeping its malware functionality.

Note that, due to the strong semantic restrictions of the binaries, we cannot simply
choose any arbitrary pairs of feature and values for our evasion attack. Instead, we re-
strict the feature-space manipulation to only features and values that are independent
and can be modified with original functionalities preserved. Therefore, we design a
binary builder to implement the inverting of features, and mapping the manipulation
back to the problem space.
Binary builder. In order to evaluate adversarial samples on malware detectors and
AV engines, feature-space manipulation needs to be applied to problem-space binaries.
To ensure that no loss of functionality is inadvertently introduced as a side effect of
feature manipulation, we only apply these changes to unreachable area of binaries
so that these changes will never be executed during run-time. Then, we apply these
changes on seed binaries with the help of open-source binary builders.

We take an Android APK as an example. Since features are a vector of boolean
values representing the existence of a feature, proposed by Drebin [14], the feature
value could only be modified from 0 (absence) to 1 (presence) to preserve original func-
tionalities. We first leverage Apktool [13] to decompile an APK file into smali [125]
code, a structured assembly language. API calls and network URLs are transformed
to smali instruction code, which is wrapped by an unreachable disclosure, e.g. an
always-false condition closure. The smali code is then inserted into the smali file of
the main activity. Features representing Android manifest components are inserted

34 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

into AndroidManifest.xml file directly. Finally, we utilize Apktool to assemble all
decompiled and manipulated files into an adversarial APK sample. If a feature ma-
nipulation cannot be implemented in this way, we skip it and continue with the next
most important feature.

4.4.3 Step 3: Malware Detector Evaluation

After the adversarial samples are generated, we conduct a series of evaluations aiming
to explain and measure the functionalities of malware detectors.
Evaluation of detector performance. The method of detector performance is
straightforward. We first input the seed malware into each detector under test and
collect their detection rate of malware as baselines. Next, the adversarial samples
generated from the white-box model will be input to the detectors (including the
white-box model itself). We then compare difference on the detection rate of seed
and adversarial samples to measure whether the detector is vulnerable to adversarial
samples, i.e. whether the manipulation on AMM features leads to the flipping of
detector results.
Transferability analysis. Considering that machine learning-based detectors may
use a same or similar feature extraction method, it is possible that multiple detectors
focus on the same features; further, it is also likely that, when different feature extrac-
tion methods are used or even when the detectors only use problem-space information,
different detectors may still rely on features overlapped with each other. Therefore, we
assume that such overlapping may exist among detectors and let the evasion attacks
transfer from the generation model to other models, i.e. transferability.

Specially, in machine learning, the adversarial examples generated from one ma-
chine learning model are very likely to remain effective on other models that are trained
on the same data distribution due to the similarity of decision boundaries. More pow-
erful transferability an adversarial sample has, more effective the adversarial samples
are in other different detectors. To evaluate the transferability of adversarial sam-
ples generated by our AMM-based approach, we will generate samples from different
models and apply them onto different models. If such transferability exists, we will
further investigate the feature-space overlaps among models to identify the root cause
of transferability.
Evaluation of improved detectors. Inspired by recent research [65], a detec-
tion model can be improved by removing important features from the training phase,
where the important features refer to the ones that are sensitive to the model predic-
tion accuracy. Shapley Additive Global importancE [37] (SAGE) is a framework that
measures how much a feature contributes to the prediction accuracy of a model. We
utilize SAGE to improve the detection models and evaluate their performance against
adversarial samples. Specifically, we first calculate SAGE values of each feature. Since
the most important features are the ones with largest SAGE values, we sort the fea-
tures by SAGE values in a descending order and select the top features. Then we
remove the top features from samples and generate a new training set. Finally, an
improved model m′ is trained with the new training set. To establish a thorough com-
parison, we train another model that excludes top AMM-based features to compare
and explain the performance of improved models.

4.5 Experiment Setup

In this section, we describe the setup of our experiment including the experiment envi-
ronment, the datasets and model training, how we extract features, how we implement

4.5. Experiment Setup 35

the binary builder, and how we obfuscate the sample.

4.5.1 Experimental Environment

Our experimental environment is a PC workstation with 64GB RAM, AMD Ryzen
3750X 8-core CPU and Linux Mint 20.1 Cinnamon installed with 256GB swap parti-
tion. The script running environment is Python 3.9.9.

4.5.2 Target Detectors

During the evaluation, we evaluate the performance of malware detectors using the
proposed AMM approach, including 4 machine learning-based detectors, 3 open-
sourced commercial antivirus engines, and 60 antivirus engines available at Virus-
Total [148]. The detectors are summarized in Table 4.1.

To follow the convention of the prior studies [118, 14], we select 4 off-the-shelf
machine learning-based malware detectors.

• LightGBM (LGBM) [72] is a free and open source distributed gradient boosting
framework, based on the decision tree algorithm, originally developed by Microsoft.

• Support Vector Machine (SVM) is a set of supervised learning methods used
for classification, regression and outliers detection.

• Random Forests (RF) is an ensemble learning method that combines a multitude
of decision trees to provide classification.

• Deep Neural Network (DNN). In addition, we introduce a simple-structured
DNN with one input layer and three fully-connected hidden layers that followed by
ReLU activation function (the last one ends with a Softmax function).

In our threat model, the adversary has full knowledge to one machine learning-
based detector. Here we set LGBM as this white-box detector. Note that any machine
learning-based detector could serve this role as our approach is model-agnostic.

We utilize the feature extraction function from Drebin [14] to train LGBM, SVM
and RF, and we reference the feature extraction function from recent work [99] to train
DNN. As the adversary knows the feature extraction function of LGBM, the SVM and
RF match the grey-box scenario and the DNN model fits the black-box scenario.

For antivirus engines, AV1 is an open-source antivirus engine while AV2 and AV3
are commercial antivirus products. VirusTotal is an online service that provides over
70 antivirus scanners to detect malicious files and URLs. Our experiment found that
60 scanners are always available in malware detection while others are not stable, i.e.
sometimes available and sometimes not. Therefore, we leverage these 60 scanners as a
benchmark. All antivirus engines fall into the black-box scenario as the attacker has
no specific knowledge about them.

4.5.3 Datasets and Model Training

In our experiments, we conduct evaluations on an Android dataset and machine
learning-based detectors. The Android Application Package (APK) is the package
file format used by the Android operating system for distribution of mobile apps.
We use the well-studied Drebin [14] dataset which contains features extracted from
5,560 malicious and 123,453 benign samples. These features are represented by over
545,000 dimension Boolean vectors indicating whether a feature exists in an applica-
tion or not. Features are categorized to 8 logical subsets representing hardware com-
ponents, requested permissions, app components, filtered intents, restricted API calls,

36 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

Table 4.1. Target detectors

Name Type Description

LGBM White-box LightGBM, a tree-based classifier.
SVM Grey-box A linear support vector machine classifier.
RF Grey-box A random forest classifier.
DNN Black-box A feed-forward neural network with 3 hidden layers.
AV1 Black-box An open-source antivirus engine.
AV2 Black-box A commercial antivirus engine.
AV3 Black-box A commercial antivirus engine.

VT Black-box VirusTotal, a free online service that integrates
over 70 antivirus detectors. We use 60 of them.

permissions used in the source codes, suspicious API calls, and network addresses, re-
spectively. Since the ratio of malicious and benign apps is biased, we randomly select
5,560 benign samples, making up 11,120 samples with 76,889 feature dimension, to
balance the dataset. Further, we create a random 50:20:30 split of samples for train-
ing, validation, and testing set respectively to train a LightGBM model. We will
discuss different models with the same dataset in Section 4.6.2. In our experiment,
we evaluate adversarial samples on four machine learning models, shown in Table 4.1.

To train ML models mentioned above, we employ Androguard [10] to extract raw
features from APK samples. Androguard is a python tool to analyze and manipulate
Android files. It disassembles an APK file and converts its byte code and resource
files into a readable and structured format. We further extract the first four types
of features from the manifest file and the rest four from the Dalvik Executable (dex)
file, and then these features are used to train and evaluate the machine learning based
detectors mentioned above.

4.5.4 Benchmark Methods

In order to evaluate the performance of evasion attacks guided by AMM values, we
introduce an intuitive statistics-based feature selection strategy according to the APK
dataset in Section 4.5.3. In this feature selection strategy, we aim to find features
(i) set as 1 in a major amount among benign samples but a minor amount among
malicious samples; and (ii) set as 1 in a significant amount in malicious samples but a
minority of benign samples. Features in the former represent benign-oriented features
while those in the latter represent malicious-oriented features.

Basic Iterative Method [77] (BIM) and C&W [22] are two white-box setting adver-
sarial attacks that require to access the gradients of machine learning models. They
have outstanding performance of adversarial attacks in computer vision. However,
they are not capable in the malware detection domain, because adversarial samples
cannot be generated by perturbing each feature arbitrarily with noise, and thus the
objective function of those attacks may not successfully converge. In addition, our
evaluation aims to generate runnable adversarial malware samples that are effective on
both machine learning-based detectors and antivirus engines. However, for antivirus
engines, the attacker can only query the models without accessing the gradients of
models. Therefore, we exclude BIM and C&W attacks from the evaluation.

4.6. Evaluation & Results 37

Figure 4.3. Comparison of detection rate among seed samples, ad-
versarial samples (default AMM-based), adversarial samples (balanced

AMM-based) and adversarial samples (Statistics-based).

4.6 Evaluation & Results

We next employ our pipeline to evaluate the efficacy of our evasion techniques, as
well as test the susceptibility of the detectors to adversarial attacks. Specifically, we
compare the detection rates between original samples and the adversarial samples
generated by our proposed strategy.

In APK machine-learning model training, the feature vector involves a sequence
of 1 and 0, representing whether a specific feature exists or not. To find how SHAP-
guided features affect the evasion result, we conducted another experiment to compare
the detection rate of manipulating 10, 25, 50, 75, 100, 125 and 150 features on 20 sets
of 100 seed samples, 2,000 samples in total. The result is shown in Figure 4.4. By
manipulating more features, the detection rate decreases. The turning point of the
trending comes to 75 features with 5.1% adversarial samples detected; by contrast,
the rates of 100 features comes only 2.1% lower than that of 75 features. Therefore,
we choose N as 75 in Algorithm 1 for APK binaries.

According to the experiment, the number of AMM-based features to manipulate
is 75. However, the distribution of each feature set is not balanced, i.e. S3 has the

38 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

Table 4.2. Selected feature numbers of three strategies.

Sets Descriptions
of Features Selected

AMM
(Default)

AMM
(Balanced)

Statistics

S1 Hardware Components 1 7∗ 1
S2 Requested Permissions 15 10 3
S3 App Components 5 10 94
S4 Filtered Intents 10 10 11
S5 Restricted API calls 7 10 5
S6 Used Permissions 4 10 2
S7 Suspicious API calls 10 10 0
S8 Network Addresses 23 10 183

∗ Only 7 S1 features are found from top 1000 AMM features.

largest amount of patching features as shown in Table 4.2. Therefore, to compare the
performance of proposed evasion attacks, we introduce two different feature selection
functions and generate three types of adversarial samples: (i) patching 75 features
guided by the top AMM values (i.e. default AMM-based strategy); (ii) patching bal-
anced 73 features guided by the top AMM values (i.e. balanced AMM-based strategy);
and (iii) patching 300 statistics-based features(i.e. Statistics-based strategy).

Note that three strategies have different time consumption of feature selection. In
our experiment, both default and balanced AMM-based strategies consumed around
6 hours in generating a SHAP value matrix from 11,200 samples with 76,889 features.
After generating the SHAP matrix, both strategies took about 30 seconds to select
features. Meanwhile, the statistics-based strategy only consumed around 10 seconds
to select features. This is because the AMM-based strategy requires complex matrix
computation and iteration while the statistics-based strategy simply sums up the
feature matrix and iterates the value list once.

4.6.1 Evaluation of Detectors

We start by evaluating our proposed evasion attack with three strategies against four
machine learning-based detectors and VirusTotal (VT). As our performance metric,
we focus on the difference in detection rates between the original samples and the
adversarial samples. Figure 4.3 illustrates the detection rates of each strategy against
each detector. The y-axis refers to the detection rates of samples, whereas each
detector is presented on the x-axis. In our evaluation, we generate APK adversarial
samples from the LGBM model with three strategies, listed in Table 4.2, and evaluate
adversarial samples on four machine learning-based detectors, three antivirus engines
and VT. All four machine learning-based detectors have reasonable accuracy (above
90%). Note that the detection rate of VT in Figure 4.3 represents the rate of how
many detectors on average mark one sample as malicious out of 60 detectors in VT.
Performance against AMM-based Strategy. This strategy selects 75 features
purely based on top AMM values. Comparing with the detection rate of seed malware,
adversarial samples have a significant evasion performance on LGBM, SVM and RF,
with detection rates of 14.36%, 0.00% and 45.67%. However, DNN, as a black-box
detector with an absolutely different feature extraction function, detected 90.12%
adversarial samples. Comparing with seed malware detection rate, the DNN detector

4.6. Evaluation & Results 39

10 25 50 75 100 125 150
Feature Amount

0

20

40

60

80

De
te

ct
io

n
Ra

te
 (%

)

Figure 4.4. Detection rates of manipulating different sizes of feature
maps on APK.

is not remarkably impacted by the adversarial attack with different feature extraction
function.
Performance against Balanced AMM-based Strategy. The default AMM-
based strategy selects an unbalanced amount of features in eight feature sets. Ta-
ble 4.2 shows that very few features in S1, S3 and S6 are selected. Therefore, we
choose the top 10 features of each set from the top 1000 AMM features to compare
the performance of AMM features with balanced number in different sets. However,
only 7 features were found from S1, making up 73 features in total.

Figure 4.3 illustrates that LGBM and RF detect fewer adversarial samples com-
paring with the default AMM-based strategy. The LGBM detects 13.61% adversarial
samples while RF detects 44.66%. Meanwhile, SVM and DNN have a similar detec-
tion rate of the default AMM-based strategy (0.00% by SVM and 90.11% by DNN).
The balanced AMM-based strategy has a slightly lower detection rate of adversarial
samples comparing with the default AMM-based strategy.
Performance against Statistics-based Strategy. According to Algorithm 2, we
select 300 features to manipulate and generate adversarial samples. From Figure 4.3,
statistics-based adversarial samples have a significantly higher detection rate (47.59%)
by LGBM comparing with the counterparts of other two strategies. However, RF can
detect 39.99% statistics-based adversarial samples, fewer than other two counterparts.
SVM and DNN detect a similar number of statistics-based adversarial samples com-
pared with the other two strategies. Therefore, the statistics-based strategy has a
better evasion performance on RF but worse on LGBM.

AV3 has the best performance on adversarial samples, with above 95% detection
rates while AV1 and AV2 perform poorly. According to the scanning logs, AV3 scanned
dalvik codes, manifest files, embedded resources and inner structures of native libraries
while other two antivirus engines scanned the first three. This indicates that AV1
and AV2 can be impacted by our proposed adversarial strategies while AV3 may

40 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

concentrate on aspects of malware other than what we have manipulated.
The average detection rate of seed malware is 56.15%, i.e. on average, 33.69

VT detectors mark a sample as malicious. In contrast, 37.25% of detectors mark
AMM-based adversarial samples as benign, while balanced AMM-based and statistics
based adversarial samples are 37.91% (23.31 detectors) and 37.32% (22.82 detectors),
respectively. This result indicates that not all detectors in VT are reliable — our
adversarial generation strategies effectively bypass their malware detection.

Note that we evaluated samples with simply reordering the items in their An-
droidManifest.xml files, and found that their scores decreased by 6 by average. It
means that many antivirus detectors do not exactly focus on malicious behaviours of
input samples.
Summary. From the experimental results above, both white-box (LGBM) and grey-
box (SVM and RF) detectors can be sufficiently evaded by adversarial samples from
all three strategies. In contrast, the black-box (DNN) detector is not impacted by
feature manipulation due to different feature extraction functions. This indicates that
malware detectors can leverage multiple feature extraction functions and architectures
to reduce the impact of adversarial evasion attacks. Noticeably, SVM has the poorest
detection ability on adversarial samples, none of which are detected.

Takeaway 1:

• Both white-box and grey-box detectors are vulnerable to adversarial evasion
attacks guided by AMM-based strategies.

• A detector with multiple different feature extraction functions can defend the
adversarial attacks in a certain degree.

• Malware detectors in VirusTotal can be attacked by adversarial samples.

4.6.2 Transferability Analysis

Transferability is the ability for an attack to be effective against multiple learning-
based detectors. To study this, we next generate AMM-based adversarial samples
from SVM and RF and evaluate them on LGBM, SVM and RF, which have the same
feature extraction functions. Here, we seek to understand how a manipulation guided
by one detector performs against the other detectors. To unveil what causes the
transferability, we evaluate LGBM, SVM and RF, since they share the same feature
extraction functions.

We observe the earlier results in Figure 4.3 and find that the AMM-guided ap-
proaches have a notable performance of evading detection across LGBM, SVM and
RF. Recall that, according to Algorithm 1, we select the features with highest AMM
values as the most evasive features to conduct feature-space manipulation. In this
section, we analyze how the attack transfer to other detectors in two aspects: feature
overlaps and detection rates.
Feature overlap. To explore the reason why our proposed attack can transfer across
detectors, we present the AMM values of the top features across each dataset in a
heatmap, shown in Figure 4.5. As the number of features differs across each dataset,
we only display the top 1024 features that have the highest AMM values in LGBM,
the generation model. In each sub plot, we present the 1024 features as 32 rows
by 32 columns of dots (normalized to [0, 1]), where the darker dots indicate higher
values of AMM (which indicates a greater possibility to be selected a feature to be
manipulated). Further, we sort the features in the original dataset according to the
AMM values in descending order. Therefore, darker dots scattered in the upper zone

4.6. Evaluation & Results 41

0

15

31

LG
BM

0

15

31

SV
M

0 15 31
LGBM

0

15

31

RF

0 15 31
SVM

0 15 31
RF

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
AM

M
 V

al
ue

s

Figure 4.5. AMM values of features in different datasets and models.
Each heatmap contains normalized AMM values of 1,024 features that

are selected according to the adversarial generation model.

of the nine subplots indicate that there are more features having been selected across
detectors.

From the heatmap we can observe that (i) large AMM values of LGBM (dark
dots) overlap with most of the counterparts of SVM; (ii) many large AMM values of
RF are out of the scope of the counterparts of LGBM. The overlaps resonates with
the main study results — the transferability from LGBM to SVM outperforms the
transferability from LGBM to RF. Thus, the overlaps explains why the evasion attack
can transfer across learning-based detectors. Simply put, if we manipulate enough
features across different learning-based models (i.e. feature overlaps), the evasion
attack can be transferred.
Detection rate. We can also evaluate transferability of adversarial samples generated
by inspecting the detection rates. In this experiment, we generated default AMM-
based adversarial samples generated from LGBM, SVM and RF models. Figure 4.6
shows the detection rates of adversarial samples across machine learning detectors.
The y-axis represents each dataset with three generating models, and the x-axis shows
the target detectors. In the figure, a darker color indicates a higher detection rate
(representing lower transferability).

Figure 4.6 shows that adversarial samples generated from LGBM and RF can
effectively transfer the evasion attacks across three detectors. Adversarial samples
from SVM have poor performance on the RF detector. Overall the SVM detector
has the worst detection performance on adversarial samples (i.e. 0.00% of adversarial
samples are detected), while the RF detector performs the best.

42 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

LGBM SVM RF

LGBM

SVM

RF

Ge
ne

ra
tio

n
M

od
el

s
14.36 0.00 45.67

28.69 0.00 83.75

26.78 0.00 39.25

Machine Learning Detectors

0

50

100

De
te

ct
io

n
Ra

te
 (%

)

Figure 4.6. Detection rate of proposed adversarial samples generated
from LGBM, SVM and RF against three detectors.

Takeaway 2: The evasion attack transferability depends on the overlaps of fea-
tures with large Accrued Malicious Magnitude (AMM) values between different
learning-based models.

4.6.3 Generalizability Analysis

To examine if our evasion attack can generalize to other operating systems, we next
test how effective our evasion attack is on Windows Portable Executable (WinPE).
WinPE. The Portable Executable (PE) format is the standard file format for executa-
bles, object code, and Dynamic Link Libraries (DLLs) used in 32- and 64-bit versions
of the Windows operating systems. We use SOREL-20M [61] as the WinPE dataset in
our experiment. SOREL-20M is a representative public dataset of malicious and be-
nign WinPE samples used for malware classification, consisting of 2,381-dimensional
feature vectors extracted from 9,470,626 benign and 9,919,251 malicious samples, as
well as corresponding malicious binaries. It leverages the feature extraction function
from Ember [8] and provides larger dataset. We randomly choose 10,000 benign and
10,000 malicious samples to train LGBM, SVM, RF and DNN with the same feature
extraction function.
Feature manipulation. Previous work [118] shows that only 17 features can be mod-
ified directly and indirectly to preserve the functionality of WinPE binaries. Hence, we
leverage LIEF [140] to extract features, and pefile [104] to apply feature manipulation
on the WinPE binaries.
Results. In the experiment, we only evaluate the default AMM-based strategy. This
is because the WinPE has fewer features to manipulate, and its feature structures
are different from APK features in Drebin. The results are shown in Figure 4.7. Our
proposed strategy has a remarkable evasion performance on LGBM, SVM and RF
detectors. Since most WinPE features correlate with each other, the method of parsing
and generating WinPE binaries (i.e. directly modifying values and adding empty
sections) may negatively affect the performance of our proposed attack, illustrated

4.6. Evaluation & Results 43

in DNN. In a nutshell, the test result shows that our proposed evasion attack is also
effective on Windows.

LGBM SVM RF DNN0

25

50

75

100

De
te

ct
io

n
Ra

te
 (%

) 94
.1

6

60
.4

3

93
.7

9

77
.8

4

66
.9

8

8.
61

31
.1

8

99
.9

6

Seed Malware SHAP-based

Figure 4.7. Detection rates of WinPE seed malware and AMM-based
adversarial samples detected by four detectors

4.6.4 Revisiting AMM with Improved Detectors

We next seek to build on the lessons learnt above, to expand our attack. We first show
how we can improve detector performance before, in turn, exploring how adversarial
attacks could be improved. In addition, we compare the capability of improving
detectors between AMM and SAGE.
Improving detectors. Our evaluation shows that machine learning-based detectors
are vulnerable to adversarial attacks guided by AMM values. Therefore, we seek to
improve the performance of existing detector so that adversarial samples can be iden-
tified. We follow the methodology in Section 4.4.3 and generate an improved LGBM
detector mi by excluding SAGE-based important features in the training phase. The
improved model mi aims to evaluate AMM-based adversarial samples Sa. In order
to measure the effectiveness of AMM-based and SAGE-based features, we also gen-
erate another improved detector ma by excluding AMM-based features and generate
adversarial samples Si by applying SAGE-based important features.

To understand how many important features can noticeably improve the detection
ability against adversarial samples, we generated new machine learning detectors with
different number of important features excluded from the training set. The result is
shown in Figure 4.8. The y-axis refers to the model accuracy and detection rates of
seed malware and AMM-based samples, whereas the numbers of features excluded
from models are presented on the x-axis. From the result, we found that excluding
220 important features allows the new detector to perform similar detection rates of
original malware (80.56%) and adversarial samples (80.56%). Therefore, we employ
220 important features in the following experiment.
Measuring detectors. Considering the ability for detectors to improve their accu-
racy by removing features, we next experiment with two new evasion attacks based
on removing features using AMM: (i) manipulating the top AMM-based features to

44 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

0 50 100 150 200 250 300
of Important Features Excluded

0%

50%

100%
De

te
ct

io
n

Ra
te

Improved model

Seed Malware AMM-based

Figure 4.8. Detection rates of seed malware and AMM-based ad-
versarial samples detected by models excluding different amount of

important features.

generate adversarial samples Sa, and generating an improved LGBM detector mi by
excluding important features; (ii) manipulating the top important features to generate
adversarial sample Si, and generating an improved LGBM detector ma by excluding
AMM-based features. To evaluate AMM and SAGE in the same conditions, we use
the same parameters: the top 75 features for adversarial samples and the top 220
features for improved detectors. Meanwhile we introduce the seed samples Sm and
the original LGBM detector as a benchmark. In the experiment, we leverage 5,459
seed malwares to generate adversarial samples where we randomly select 300 samples
for 20-round tests on each detector.

Figure 4.9 presents box plots of the detection rate and prediction rate. Recall, the
prediction value defines the confidence that a sample is malware. We present results
for three malware datasets: seed malware Sm, adversarial sample Sa and Si. We
define a sample as malicious when the prediction value is greater than or equals to
0.5. On the original detector, less than 15% of samples in both Sa and Si are classified
as malicious. On mi, the average detection rate of the Sa samples increase to 67.3%
while their prediction values range from 0.23 to 0.82. In contrast, the detection rates
of Si on ma are around 78.2%, while their prediction values range from 0.69 to 0.91,
which means that ma can detect more adversarial samples than mi.

This result indicates that AMM-based features have better evasion capability than
SAGE-based important features. Meanwhile, improved detectors guided by AMM
values has better performance on adversarial detection.
Comparison of AMM and SAGE. Next, we compare how AMM-based and im-
portant features impact the detection. Figure 4.10 illustrates the feature distribution
of AMM and SAGE values and the amount of evaded samples manipulating the cor-
responding features. The X-axis indicates normalized AMM values; the Y-axis is
normalized SAGE values. As shown in the figure, AMM-based features are more cen-
trally located on low SAGE-value area while important features are more likely to
have small AMM values. They have a big portion of common features, most of which
have small SAGE values but with large AMM values. This result indicates that evaded
samples are more likely to have modified features with large AMM values. In addition,
these features have small SAGE values so that they are less likely to downgrade the
performance of detectors but more to flip prediction labels.
Summary. The results show that our proposed AMM framework can guide us to

4.7. Case Studies 45

Figure 4.9. Precisions and detection rates of seed malware Sm, ad-
versarial samples Sa (AMM-based features) and adversarial samples
Si (important features) on the original model and two updated model

mi and ma.

better select effective features, generating adversarial samples and improving machine
learning detectors than SAGE. This is because AMM values explain the capability of
features that can flip classification results, and guide the way to improve the detection
performance. In contrast, SAGE values reflect the importance of features, explaining
how much the feature contributes to accuracy of a machine learning detector.

Takeaway 3:

• AMM values measure the importance of features and the capability of flip-
ping classification results, while SAGE values measure how much a feature
contributes to the prediction accuracy.

• Machine learning-based AV products should consider using the AMM values to
improve their detectors.

Table 4.3. APK feature IDs and their description

Feature ID Description

46227 receiver::com.google.android.apps.analytics.AnalyticsReceiver
40271 call::Landroid/media/MediaPlayer;->reset()V
39950 api_call::Landroid/app/Service;->getSystemService(Ljava/lang/String;)Ljava/lang/Object;
40960 intent::android.intent.action.VIEW
43959 url::maps.google.com

4.7 Case Studies

In this section, we conduct two case studies to understand: (i) why some adversarial
samples cannot evade detection; and (ii) why the SVM implementation seldom detects
an adversarial sample.

46 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

0.0 0.2 0.4 0.6 0.8 1.0
AMM Values (normalized)

0.2

0.4

0.6

0.8

1.0

SA
GE

 V
al

ue
s (

no
rm

al
ize

d)

AMM-based Features Important Features Overlap Features

Figure 4.10. SAGE and AMM value distributions of important fea-
tures and AMM-based features.

4.7.1 A Case Study on Evasion Capability

Our prior results have shown that not all adversarial samples can evade the detection.
The reason could be either that the number of manipulated features is not enough
to invert the prediction, or that the manipulated features have a limited impact on
the prediction. To explore the reason, we choose two seed malicious APK examples,
Sample 1 and Sample 2, to generate their adversarial samples. We then test their
evasion capability. The adversarial sample of Sample 1 inverts its prediction as benign,
and that of Sample 2 remains malicious.

First we use Sample 1 and Sample 2 to manipulate different numbers of features
(guided by Algorithm 1) and compare their prediction values. We consider a sample
malicious when its prediction value is larger than 0.5 (benign otherwise). Initially,
the prediction values of Sample 1 and Sample 2 are 0.99975447 and 0.9997253, and
raw scores given by LGBM are 8.31183171 and 8.19956212. After manipulating 75
selected features, the prediction value of Sample 1 turns to 0.28416445 (i.e. benign)
with a raw score of -0.92389732 . In contrast, the prediction value of Sample 2 remains
positive (i.e. malicious) at 0.91948969 with raw score 2.43543351.

We further generate SHAP values of the original and adversarial samples (with
N = 75 features selected) of Sample 1 and Sample 2 to analyze the impact of the
manipulated features. The results are shown in Figure 4.11. The subfigures labeled
(A) and (B) indicate the original and adversarial samples of Sample 1, respectively.
Further, (C) and (D) show results for for Sample 2. The X-axis indicates the prediction
value; the Y-axis is the feature ID. f(x) and f(xa) are raw scores of the original and
adversarial samples given by the LGBM detector. We use red bars to indicate postive
SHAP values, and blue bars to highlight negative SHAP values of each feature (ϕj in
Equation 4.1). Feature IDs shown in the figure are parts of manipulated features that
had the greatest impact on Sample 1.

Figure 4.11(b) shows that the SHAP values of manipulated features change sig-
nificantly towards negative (blue bars), thereby pushing the output, f(xa), towards
negative. In contrast, the SHAP values of the features of Sample 2, shown in Fig-
ure 4.11(d), change far less. Specifically, only features 46227, 40271, 39950 and 73533

4.7. Case Studies 47

Figure 4.11. SHAP values of two APK samples before and after
adversarial generation. (a) and (b) are the original and adversarial
samples of Sample 1 ; (c) and (d) are of Sample 2. Details of features

can be found in Table 4.3.

are manipulated towards negative while 40960 is not. This means that we cannot ma-
nipulate enough features to force the decision making towards benign for Sample 2.
This result indicates that the manipulated features have limited impact on Sample 2
to invert the result from malicious to benign. If we increase the number of selecting
features to 290, Sample 2 is then identified as benign. Therefore, the detection result
depends on how many features have malicious-oriented values that we can manipulate
in the sample. However, infinitely increasing the number of selecting features would
also lead to heavily computational load and decrease the efficiency of attack.

Takeaway 4: The evasion capability of a manipulated sample depends on the
number of its features with malicious-oriented values that can be manipulated.

4.7.2 A Case Study on Detection Efficiency

In previous experiments, the SVM detector could not detect adversarial samples from
all three generation strategies. The previous case study has shown that Sample 2 is
still unable to evade detection from LGBM. Therefore, we utilize Sample 2 to conduct
a case study to unveil the detection efficiency of SVM.

48 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

0 10 20 30 40 50 60 70 80

6

4

2

0

2

De
cis

io
n

Fu
nc

tio
n

Va
lu

es

of Manipulated Features
Default AMM-based Balance AMM-based Statistics-based

Figure 4.12. Decision function values of samples with different num-
bers of features manipulated with AMM-based, balanced AMM-based

and Statistics-based strategies

Default AMM Balanced AMM Statistic
0.5

0.0

0.5

W
ei

gh
ts

 o
f F

ea
tu

re
s

Figure 4.13. Distribution of weights of features in SVM models
trained by samples generated from different strategies.

First we generate adversarial samples by manipulating from 1 to 80 features. We
then calculate their decision function values from the SVM. The decision function
value represents whether a predicted sample by the classifier occupies the side of and
the distance to the Hyperplane. We still use features selected from LGBM and val-
idate them on SVM. Results are shown in Figure 4.12, where the Y-axis represents
the decision function values of samples guided-by AMM-based, Balanced AMM-based
and Statistics-based strategies. The X-axis shows the number of features manipu-
lated. Positive decision function values represent malicious results while negative
ones represent benign results.

The result shows that adversarial samples with AMM-based and balanced AMM-
based strategies invert their prediction results while manipulating from 13 to 16 fea-
tures. The statistics-based adversarial sample is predicted as benign when manipu-
lating 62 features. This result indicates that a small amount (i.e. from 13 to 16) of
features selected by top AMM values can invert the detection result of Sample 2 by
SVM.

From the result, we speculate that AMM-guided features occupy large weights of
SVM classification. To verify this, we export the weights to each feature in the SVM

4.8. Discussion & Limitations 49

detector and compare weight values of selected features. Figure 4.13 illustrates weight
values of selected features, where the y-axis represents the weight of each feature, and
the x-axis shows the indexes of selected features. We can see that most weight values
of features selected by the statistics-based strategy are close to 0, while most weight
values of features selected by other two strategies have relatively large negative values,
making the prediction decision values to be negative (i.e. benign). We also compared
selected features from LGBM with SVM features from top AMM values and found
that most of LGBM selected features has large AMM values in SVM, which matches
the result in Figure 4.5.

This case study confirmes that features selected from LGBM occupy large negative
weights in the SVM, making the prediction result of the adversarial sample benign.

Takeaway 5: The transferability of adversarial attacks arises because AMM-
guided features selected from one model have determinate weights in another.

4.8 Discussion & Limitations

This section discusses challenges to our work, as well as limitations and how they
might be addressed in the future.
Learning models. Our experiments are conducted on three existing models followed
by the prior research [118, 14], including SVM, LightGBM and a feed-forward neural
network. These models, however, are trained with the default configuration and pa-
rameters from each dataset. This does not preclude the possibility that alternative
models and configurations may gain superior performance.
Adaptive defenses. Existing defenses against adversarial generation, for exam-
ple, adversarial training [95] and differential privacy (DP) [1, 47, 79], may not be
effective against our proposed evasion attack. For adversarial training, it is because
that our attack is based on the transferability of important features among differ-
ent learning-based detectors, in lieu of optimization tricks, e.g. FGSM [55]. On the
other hand, DP-based robust machine learning techniques cannot defend against our
attacks, because unbounded random perturbations may break the generated sam-
ples’ functionality. One possible adaptive defense is to analyze feature distribution
of queries before we carry out de facto malware detection. For example, Slack et
al. [124] propose an adversarial classification approach to fool explanation methods,
e.g. SHAP and LIME. They offer a different classifier, e.g. an extremely biased one,
along with the original one to the input according to the perturbation distribution.
However, this classification approach can be an attack target and cannot always boost
the detection accuracy.
Dynamic detection. Dynamic feature detection can be a practical defence against
our evasion attack since we only insert static unreachable instructions into the mal-
ware. Feature-space manipulation and problem-space obfuscation rely on static syn-
tactic and structural modification. These modifications can bypass static machine
learning-based detectors and rule-based antivirus engines. However, the malicious
behaviours will still be exposed during run-time and identified by the detectors that
adopt dynamic analysis. That said, dynamic feature detection consuming more re-
sources to monitor this approach may be impractical on a large scale.

50 Chapter 4. Explaining and Measuring Functionalities of Malware Detectors

4.9 Conclusion

This chapter has proposed an explainability-guided malware detector measurement
framework, Accrued Malicious Magnitude (AMM), to guide the feature selec-
tion approach for adversarial attacks and model improvement. We also developed a
binary builder to apply feature-space manipulation on problem-space binaries. We
use AMM to measure the performance of state-of-the-art malware detectors protect-
ing against adversarial attacks Our research includes the following key findings: (i)
commercial antivirus engines are vulnerable to AMM-based adversarial samples, while
a detector with multiple feature extraction functions reduces the impact in a certain
degree; (ii) the transferability of adversarial attack relies on the overlaps of features
with large AMM values between different machine learning models; (iii) AMM val-
ues can effectively measure the importance of features and explain the capability of
flipping classification results. According to our findings, we suggest that machine
learning-based AV products should consider using the AMM values to improve their
performance. Exploring the latter constitutes our key line of future work, as we believe
this could prompt a new approach to defending against evasion attacks.

51

Chapter 5

Conclusions and Future Work

This thesis focuses on researching malware-related security issues, including mali-
cious behaviours and bypassing detection by mobile malware. This thesis reviews
three major topics of machine learning-based malware detection research, introduces
a semi-automatic static analysis framework and proposes an explainability-guided
adversarial malware variants generation and detector measurement approach. The
semi-automatic static analysis framework unveiled potential privacy leakage issues of
Android clipboard data. The explainability-guided approach offers the concept of Ac-
crued Malicious Magnitude (AMM) to find the most vulnerable features for machine
learning-based detectors, which can guide both adversarial attacks and functionality
assessment.

The research finds that current malware detection approaches still remain unex-
plainable issues. For instance, the issues include how classifiers cluster malware sam-
ples into specific classes and find the attributes representing specific classes. Recent
computer vision research has proposed style-based approaches to generate adversarial
examples and conduct adversarial attacks [70, 78, 121]. However, due to the significant
differences between computer vision and malware detection, it is difficult to apply a
style-based approach on malware-related research directly. Due to the limited candi-
dature time for the master’s degree, this research remains a preliminary study. This
thesis has already guided future research that a style-based explanation and feature
perturbation approach is available in malware-related research.

53

Appendix A

Appendix

A Structures of WinPE Binaries

Figure A.1 illustrates the structure of a WinPE binary. Specifically, a WinPE binary
involves five parts:

• DOS Header is a legacy header from DOS era to maintain compatibility with
legacy Windows systems.

• PE Header involves general information including the target architecture, number
of sections and symbols, timestamp, and the header size.

• Optional Header contains detailed information required by the system to load,
such as the entry-point address, dll characteristics, size of file, and version infor-
mation.

• Section Table is a list of section headers storing the section name, address, relo-
cations, and other general information.

• Sections contains contiguous chunks of bytes hosting the real content of the ex-
ecutable. For example, .text stores the code, .data stores global variables, and
.rdata stores read-only constants and counting.

54 Appendix A. Appendix

Figure A.1. Structure of WinPE files.

55

Bibliography

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. “Deep learning with differential privacy”. In: Pro-
ceedings of the ACM SIGSAC Conference on Computer and Communications
Security. 2016.

[2] Lawrence Abrams. First CryptoCurrency Clipboard Hijacker Found on Google
Play Store. 2019. url: https://www.bleepingcomputer.com/news/security
/first-cryptocurrency-clipboard-hijacker-found-on-google-play-st
ore/.

[3] Mansour Ahmadi, Dmitry Ulyanov, Stanislav Semenov, Mikhail Trofimov, and
Giorgio Giacinto. Novel Feature Extraction, Selection and Fusion for Effective
Malware Family Classification. 2016. arXiv: 1511.04317 [cs.CR].

[4] AI and machine learning. url: https://www.avast.com/en-us/technology
/ai-and-machine-learning.

[5] AI and Machine Learning | AVAST. url: https://www.avast.com/technolo
gy/ai-and-machine-learning#mac.

[6] Naveed Akhtar and Ajmal Mian. “Threat of adversarial attacks on deep learn-
ing in computer vision: A survey”. In: IEEE Access (2018).

[7] Hyrum S Anderson, Anant Kharkar, Bobby Filar, David Evans, and Phil Roth.
“Learning to evade static PE machine learning malware models via reinforce-
ment learning”. In: arXiv preprint arXiv:1801.08917 (2018).

[8] Hyrum S Anderson and Phil Roth. “Ember: An open dataset for training static
PE malware machine learning models”. In: arXiv preprint arXiv:1804.04637
(2018).

[9] Android Malware Genome Project. url: http://www.malgenomeproject.org
/.

[10] Anthony Desnos and Geoffroy Gueguen and Sebastian Bachmann. AndroGuard.
url: https://github.com/androguard/androguard.

[11] Antivirus and Internet security | ESET. url: https://www.eset.com/.

[12] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo.
“Obfuscapk: An open-source black-box obfuscation tool for Android apps”. In:
SoftwareX (2020).

[13] Apktool - A tool for reverse engineering Android APK files. url: https://ib
otpeaches.github.io/Apktool/.

[14] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Kon-
rad Rieck. “Drebin: Effective and explainable detection of Android malware in
your pocket”. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS). 2014.

https://www.bleepingcomputer.com/news/security/first-cryptocurrency-clipboard-hijacker-found-on-google-play-store/
https://www.bleepingcomputer.com/news/security/first-cryptocurrency-clipboard-hijacker-found-on-google-play-store/
https://www.bleepingcomputer.com/news/security/first-cryptocurrency-clipboard-hijacker-found-on-google-play-store/
https://arxiv.org/abs/1511.04317
https://www.avast.com/en-us/technology/ai-and-machine-learning
https://www.avast.com/en-us/technology/ai-and-machine-learning
https://www.avast.com/technology/ai-and-machine-learning#mac
https://www.avast.com/technology/ai-and-machine-learning#mac
http://www.malgenomeproject.org/
http://www.malgenomeproject.org/
https://github.com/androguard/androguard
https://www.eset.com/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/

56 Bibliography

[15] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
“Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for Android apps”. In: ACM SIGPLAN Notices (2014).

[16] Avast. url: https://www.avast.com.

[17] Federico Barbero, Feargus Pendlebury, Fabio Pierazzi, and Lorenzo Caval-
laro. “Transcending transcend: Revisiting malware classification with conformal
evaluation”. In: Proceedings of the IEEE Symposium on Security and Privacy
(SP). 2022.

[18] Bitcoin - open source P2P money. url: https://bitcoin.org/en/.

[19] Olivia Byrnes, Wendy La, Hu Wang, Congbo Ma, Minhui Xue, and Qi Wu.
“Data hiding with deep learning: A survey unifying digital watermarking and
steganography”. In: arXiv preprint arXiv:2107.09287 (2021).

[20] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Ku-
rakin. “On evaluating adversarial robustness”. In: arXiv preprint arXiv:1902.06705
(2019).

[21] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song.
“The secret sharer: Evaluating and testing unintended memorization in neural
networks”. In: Proceedings of the 28th USENIX Security Symposium (USENIX
Security 19). 2019, pp. 267–284.

[22] Nicholas Carlini and David Wagner. “Towards evaluating the robustness of neu-
ral networks”. In: Proceedings of the IEEE Symposium on Security and Privacy
(SP). 2017.

[23] Alvin Chan, Lei Ma, Felix Juefei-Xu, Yew-Soon Ong, Xiaofei Xie, Minhui Xue,
and Yang Liu. “Breaking neural reasoning architectures with metamorphic
relation-based adversarial examples”. In: IEEE Transactions on Neural Net-
works and Learning Systems (2021).

[24] Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud.
“Explaining image classifiers by counterfactual generation”. In: arXiv preprint
arXiv:1807.08024 (2018).

[25] Lingwei Chen, Tao Li, Melih Abdulhayoglu, and Yanfang Ye. “Intelligent mal-
ware detection based on file relation graphs”. In: Proceedings of the 2015 IEEE
9th International Conference on Semantic Computing (IEEE ICSC 2015). IEEE.
2015, pp. 85–92.

[26] Liuqiao Chen, Hu Wang, Benjamin Zi Hao Zhao, Minhui Xue, and Haifeng
Qian. “Oriole: Thwarting privacy against trustworthy deep learning models”.
In: Proceedings of the Australasian Conference on Information Security and
Privacy. Springer. 2021.

[27] Sen Chen, Lingling Fan, Chunyang Chen, Minhui Xue, Yang Liu, and Lihua
Xu. “Gui-squatting attack: Automated generation of android phishing apps”.
In: IEEE Transactions on Dependable and Secure Computing (2019).

[28] Sen Chen, Lingling Fan, Guozhu Meng, Ting Su, Minhui Xue, Yinxing Xue,
Yang Liu, and Lihua Xu. “An empirical assessment of security risks of global
android banking apps”. In: arXiv preprint arXiv:1805.05236 (2018).

https://www.avast.com
https://bitcoin.org/en/

Bibliography 57

[29] Sen Chen, Ting Su, Lingling Fan, Guozhu Meng, Minhui Xue, Yang Liu, and
Lihua Xu. “Are mobile banking apps secure? What can be improved?” In: Pro-
ceedings of the 2018 26th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering.
2018.

[30] Sen Chen, Minhui Xue, Lingling Fan, Lei Ma, Yang Liu, and Lihua Xu. “How
can we craft large-scale Android malware? An automated poisoning attack”. In:
Proceedings of the International Workshop on Artificial Intelligence for Mobile
(AI4Mobile). 2019.

[31] Sen Chen, Minhui Xue, Zhushou Tang, Lihua Xu, and Haojin Zhu. “Storm-
droid: A streaminglized machine learning-based system for detecting Android
malware”. In: Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security. 2016, pp. 377–388.

[32] Thomas M Chen and Jean-Marc Robert. “The evolution of viruses and worms”.
In: Statistical methods in computer security (2004).

[33] Yizheng Chen, Shiqi Wang, Yue Qin, Xiaojing Liao, Suman Jana, and David
Wagner. “Learning security classifiers with verified global robustness proper-
ties”. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 2021.

[34] Yizheng Chen, Shiqi Wang, Dongdong She, and Suman Jana. “On training ro-
bust {PDF} malware classifiers”. In: Proceedings of the 29th USENIX Security
Symposium (USENIX Security 20). 2020, pp. 2343–2360.

[35] ClamAVNet. url: https://www.clamav.net/.

[36] Ian Covert. Explaining machine learning models with SHAP and SAGE. url:
https://iancovert.com/blog/understanding-shap-sage/.

[37] Ian Covert, Scott Lundberg, and Su-In Lee. Understanding Global Feature
Contributions With Additive Importance Measures. 2020. arXiv: 2004.00668
[cs.LG].

[38] Matthew Crawford, Wei Wang, Ruoxi Sun, and Minhui Xue. “Statically De-
tecting Adversarial Malware through Randomised Chaining”. In: arXiv preprint
arXiv:2111.14037 (2021).

[39] Cyber security statistics. url: https://purplesec.us/resources/cyber-se
curity-statistics/.

[40] Piotr Dabkowski and Yarin Gal. “Real time image saliency for black box clas-
sifiers”. In: Proceedings of the International Conference on Neural Information
Processing Systems. NIPS. 2017.

[41] Santanu Kumar Dash, Guillermo Suarez-Tangil, Salahuddin Khan, Kimberly
Tam, Mansour Ahmadi, Johannes Kinder, and Lorenzo Cavallaro. “Classifying
android malware based on runtime behavior”. In: Proceedings of the 2016 IEEE
Security and Privacy Workshops. 2016.

[42] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro
Armando. “Efficient black-box optimization of adversarial windows malware
with constrained manipulations”. In: arXiv preprint arXiv:2003.13526 (2020).

[43] Luca Demetrio, Battista Biggio, Giovanni Lagorio, Fabio Roli, and Alessandro
Armando. “Functionality-preserving black-box optimization of adversarial win-
dows malware”. In: IEEE Transactions on Information Forensics and Security
(2021).

https://www.clamav.net/
https://iancovert.com/blog/understanding-shap-sage/
https://arxiv.org/abs/2004.00668
https://arxiv.org/abs/2004.00668
https://purplesec.us/resources/cyber-security-statistics/
https://purplesec.us/resources/cyber-security-statistics/

58 Bibliography

[44] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp,
Konrad Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. “Yes, machine
learning can be more secure! A case study on Android malware detection”. In:
IEEE Transactions on Dependable and Secure Computing (2017).

[45] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista
Biggio, Alina Oprea, Cristina Nita-Rotaru, and Fabio Roli. “Why do adversarial
attacks transfer? Explaining transferability of evasion and poisoning attacks”.
In: Proceedings of the 28th USENIX Security Symposium (USENIX Security).
2019.

[46] Bao Gia Doan, Minhui Xue, Shiqing Ma, Ehsan Abbasnejad, and Damith C
Ranasinghe. “TnT Attacks! Universal Naturalistic Adversarial Patches Against
Deep Neural Network Systems”. In: arXiv preprint arXiv:2111.09999 (2021).

[47] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. “Cal-
ibrating noise to sensitivity in private data analysis”. In: Proceedings of the
Theory of Cryptography, Third Theory of Cryptography Conference (TCC).
2006.

[48] etherum.org. url: https://ethereum.org/en/.

[49] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. “Robust
physical-world attacks on deep learning visual classification”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

[50] Ruth Fong, Mandela Patrick, and Andrea Vedaldi. “Understanding deep net-
works via extremal perturbations and smooth masks”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2019.

[51] Ruth C Fong and Andrea Vedaldi. “Interpretable explanations of black boxes
by meaningful perturbation”. In: Proceedings of the 2017 IEEE international
conference on computer vision. 2017.

[52] Frida - Dynamic instrumentation toolkit for developers, reverse-engineers, and
security researchers. url: https://frida.re/.

[53] Frida Overview. url: https://frida.re/docs/home/.

[54] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdel-
hamid Bouchachia. “A survey on concept drift adaptation”. In: ACM computing
surveys (CSUR) (2014).

[55] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
harnessing adversarial examples”. In: International Conference on Learning
Representations (2015).

[56] Mariano Graziano, Davide Canali, Leyla Bilge, Andrea Lanzi, and Davide
Balzarotti. “Needles in a Haystack: Mining Information from Public Dynamic
Analysis Sandboxes for Malware Intelligence”. In: Proceedings of the 24th USENIX
Security Symposium (USENIX Security 15). 2015.

[57] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. “Adversarial examples for malware detection”. In: Proceed-
ings of the European Symposium on Research in Computer Security. 2017.

[58] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and
Patrick McDaniel. “Adversarial perturbations against deep neural networks for
malware classification”. In: arXiv preprint arXiv:1606.04435 (2016).

https://ethereum.org/en/
https://frida.re/
https://frida.re/docs/home/

Bibliography 59

[59] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing.
“LEMNA: Explaining Deep Learning Based Security Applications”. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’18. 2018.

[60] Mahmoud Hammad, Joshua Garcia, and Sam Malek. “A large-scale empirical
study on the effects of code obfuscations on Android apps and anti-malware
products”. In: Proceedings of the International Conference on Software Engi-
neering. 2018, pp. 421–431.

[61] Richard Harang and Ethan M. Rudd. “SOREL-20M: A large scale bench-
mark dataset for malicious PE detection”. In: arXiv preprint arXiv:2012.07634
(2020).

[62] Yongzhong He, Xuejun Yang, Binghui Hu, and Wei Wang. “Dynamic privacy
leakage analysis of Android third-party libraries”. In: Journal of Information
Security and Applications (2019).

[63] How anti-virus software works. url: https://cs.stanford.edu/people/ero
berts/cs201/projects/viruses/anti-virus.html.

[64] Aoting Hu, Renjie Xie, Zhigang Lu, Aiqun Hu, and Minhui Xue. “TableGAN-
MCA: Evaluating Membership Collisions of GAN-Synthesized Tabular Data
Releasing”. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’21. 2021.

[65] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon
Tran, and Aleksander Madry. “Adversarial examples are not bugs, they are
features”. In: Advances in neural information processing systems (2019).

[66] Chani Jindal, Christopher Salls, Hojjat Aghakhani, Keith Long, Christopher
Kruegel, and Giovanni Vigna. “Neurlux: Dynamic Malware Analysis without
Feature Engineering”. In: Proceedings of the 35th Annual Computer Security
Applications Conference. 2019.

[67] Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Davide Papini,
Ilia Nouretdinov, and Lorenzo Cavallaro. “Transcend: Detecting concept drift
in malware classification models”. In: Proceedings of the 26th USENIX Security
Symposium (USENIX Security 17). 2017.

[68] Jinho Jung, Chanil Jeon, Max Wolotsky, Insu Yun, and Taesoo Kim. “AVPASS:
Leaking and bypassing antivirus detection model automatically”. In: Black Hat
USA Briefings (Black Hat USA). 2017.

[69] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement Learning: A
Survey. 1996. arXiv: cs/9605103 [cs.AI].

[70] Tero Karras, Samuli Laine, and Timo Aila. “A style-based generator architec-
ture for generative adversarial networks”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2019, pp. 4401–4410.

[71] Kaspersky cyber security solutions for home & business. url: https://www.k
aspersky.com.au/.

[72] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. “LightGBM: A highly efficient gradient boosting
decision tree”. In: Advances in Neural Information Processing Systems (2017).

[73] TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer, and Eul Gyu Im. “A
multimodal deep learning method for Android malware detection using various
features”. In: IEEE Transactions on Information Forensics and Security (2018).

https://cs.stanford.edu/people/eroberts/cs201/projects/viruses/anti-virus.html
https://cs.stanford.edu/people/eroberts/cs201/projects/viruses/anti-virus.html
https://arxiv.org/abs/cs/9605103
https://www.kaspersky.com.au/
https://www.kaspersky.com.au/

60 Bibliography

[74] Dhilung Kirat and Giovanni Vigna. “MalGene: Automatic extraction of mal-
ware analysis evasion signature”. In: Proceedings of the ACM SIGSAC Confer-
ence on Computer and Communications Security. 2015.

[75] Kiteshield. url: https://github.com/GunshipPenguin/kiteshield.

[76] Platon Kotzias, Juan Caballero, and Leyla Bilge. “How did that get in my
phone? unwanted app distribution on android devices”. In: Proceedings of the
2021 IEEE Symposium on Security and Privacy (SP). IEEE. 2021, pp. 53–69.

[77] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in
the physical world. 2017. arXiv: 1607.02533 [cs.CV].

[78] Oran Lang, Yossi Gandelsman, Michal Yarom, Yoav Wald, Gal Elidan, Avinatan
Hassidim, William T Freeman, Phillip Isola, Amir Globerson, Michal Irani, et
al. “Explaining in Style: Training a GAN to explain a classifier in StyleSpace”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion. 2021, pp. 693–702.

[79] Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman
Jana. “Certified robustness to adversarial examples with differential privacy”.
In: Proceedings of the IEEE Symposium on Security and Privacy (SP). 2019.

[80] Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent
Licata. “Detecting outliers: Do not use standard deviation around the mean,
use absolute deviation around the median”. In: Journal of experimental social
psychology (2013).

[81] Deqiang Li, Tian Qiu, Shuo Chen, Qianmu Li, and Shouhuai Xu. “Can We
Leverage Predictive Uncertainty to Detect Dataset Shift and Adversarial Ex-
amples in Android Malware Detection?” In: Proceedings of the Annual Com-
puter Security Applications Conference. 2021, pp. 596–608.

[82] Deqiang Li, Tian Qiu, Shuo Chen, Qianmu Li, and Shouhuai Xu. “Can we
leverage predictive uncertainty to detect dataset shift and adversarial examples
in Android malware detection?” In: Annual Computer Security Applications
Conference (ACSAC) (2021).

[83] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick
McDaniel. “Iccta: Detecting inter-component privacy leaks in android apps”.
In: Proceedings of the 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering. Vol. 1. IEEE. 2015, pp. 280–291.

[84] Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao Zhao, Minhui Xue, Haojin
Zhu, and Jialiang Lu. “Hidden backdoors in human-centric language models”.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Com-
munications Security. 2021.

[85] Shaofeng Li, Shiqing Ma, Minhui Xue, and Benjamin Zi Hao Zhao. “Deep
learning backdoors”. In: arXiv preprint arXiv:2007.08273 (2020).

[86] Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu, and Xinpeng
Zhang. “Invisible Backdoor Attacks on Deep Neural Networks Via Steganog-
raphy and Regularization”. In: IEEE Transactions on Dependable and Secure
Computing (2021).

[87] Limited access to clipboard data - Privacy Changes in Android 10. url: https
://developer.android.com/about/versions/10/privacy/changes#clipbo
ard-data.

https://github.com/GunshipPenguin/kiteshield
https://arxiv.org/abs/1607.02533
https://developer.android.com/about/versions/10/privacy/changes#clipboard-data
https://developer.android.com/about/versions/10/privacy/changes#clipboard-data
https://developer.android.com/about/versions/10/privacy/changes#clipboard-data

Bibliography 61

[88] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. “Ex-
plainable ai: A review of machine learning interpretability methods”. In: En-
tropy (2021).

[89] Kaijun Liu, Shengwei Xu, Guoai Xu, Miao Zhang, Dawei Sun, and Haifeng
Liu. “A Review of Android Malware Detection Approaches Based on Machine
Learning”. In: IEEE Access (2020). doi: 10.1109/ACCESS.2020.3006143.

[90] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin,
Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee.
“From local explanations to global understanding with explainable AI for trees”.
In: Nature machine intelligence (2020).

[91] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model
predictions”. In: Proceedings of the International Conference on Neural Infor-
mation Processing Systems. 2017.

[92] Hua Ma, Huming Qiu, Yansong Gao, Zhi Zhang, Alsharif Abuadbba, An-
min Fu, Said Al-Sarawi, and Derek Abbott. “Quantization Backdoors to Deep
Learning Models”. In: arXiv preprint arXiv:2108.09187 (2021).

[93] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun
Zhao. “Deepct: Tomographic combinatorial testing for deep learning systems”.
In: Proceedings of the 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE. 2019, pp. 614–618.

[94] Machine Learning in Cybersecurity | Kaspersky. url: https://www.kaspersk
y.com/enterprise-security/wiki-section/products/machine-learning-
in-cybersecurity.

[95] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. “Towards deep learning models resistant to adversarial at-
tacks”. In: Proceedings of the International Conference on Learning Represen-
tations. 2018.

[96] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Gi-
acinto. “Stealth attacks: An extended insight into the obfuscation effects on
Android malware”. In: Computers & Security (2015).

[97] Malware Statistics & Trends Report | AV-ATLAS. url: https://www.av-tes
t.org/en/statistics/malware/.

[98] Nuno Martins, José Magalhães Cruz, Tiago Cruz, and Pedro Henriques Abreu.
“Adversarial machine learning applied to intrusion and malware scenarios: a
systematic review”. In: IEEE Access (2020).

[99] Niall McLaughlin, Jesus Martinez del Rincon, BooJoong Kang, Suleiman Yer-
ima, Paul Miller, Sakir Sezer, Yeganeh Safaeisemnani, Erik Trickel, Ziming
Zhao, Adam Doupé, and Gail Joon Ahn. “Deep Android Malware Detection”.
In: Proceeding of the ACM Conference on Data and Applications Security and
Privacy (CODASPY) 2017. 2016.

[100] Abdelmonim Naway and Yuancheng LI. Using Deep Neural Network for An-
droid Malware Detection. 2019. arXiv: 1904.00736 [cs.CR].

[101] OkHttp. url: https://square.github.io/okhttp/.

[102] Open Malware. url: http://openmalware.org/.

[103] Neel Patel, Reza Shokri, and Yair Zick. “Model explanations with differential
privacy”. In: arXiv preprint arXiv:2006.09129 (2020).

https://doi.org/10.1109/ACCESS.2020.3006143
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://arxiv.org/abs/1904.00736
https://square.github.io/okhttp/
http://openmalware.org/

62 Bibliography

[104] pefile. url: https://github.com/erocarrera/pefile.

[105] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. “DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems”. In: Proceedings of the
26th Symposium on Operating Systems Principles. 2017.

[106] Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Haojin Zhu, and Minhui
Xue. “Fingerprinting Deep Neural Networks Globally via Universal Adversarial
Perturbations”. In: arXiv preprint arXiv:2202.08602 (2022).

[107] Li Pengcheng, Jinfeng Yi, and Lijun Zhang. “Query-efficient black-box attack
by active learning”. In: Proceedings of the 2018 IEEE International Conference
on Data Mining (ICDM). IEEE. 2018.

[108] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro.
“Intriguing properties of adversarial ML attacks in the problem space”. In:
Proceedings of the IEEE Symposium on Security and Privacy (SP). 2020.

[109] Matteo Pomilia. “A study on obfuscation techniques for Android malware”. In:
Sapienza University of Rome (2016).

[110] Privacy changes in Android 10. url: https://developer.android.com/abou
t/versions/10/privacy/changes#data-ids.

[111] PyTorch. url: https://pytorch.org/mobile/home/.

[112] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan Catanzaro,
and Charles Nicholas. “Malware detection by eating a whole EXE”. In: arXiv
preprint arXiv:1710.09435 (2017).

[113] RelocBonus. url: https://github.com/nickcano/RelocBonus.

[114] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I
Trust You?": Explaining the Predictions of Any Classifier”. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’16. 2016.

[115] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ““Why should I trust
you?”: Explaining the predictions of any classifier”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2016.

[116] Joshua Saxe and Konstantin Berlin. “Deep neural network based malware de-
tection using two dimensional binary program features”. In: Proceedings of the
2015 10th international conference on malicious and unwanted software (MAL-
WARE). IEEE. 2015.

[117] Jeffrey C Schlimmer and Richard H Granger. “Incremental learning from noisy
data”. In: Machine learning (1986).

[118] Giorgio Severi, Jim Meyer, Scott Coull, and Alina Oprea. “Explanation-Guided
Backdoor Poisoning Attacks Against Malware Classifiers”. In: Proceedings of
the 30th USENIX Security Symposium (USENIX Security 21). 2021.

[119] Maryam Shahpasand, Len Hamey, Dinusha Vatsalan, and Minhui Xue. “Adver-
sarial attacks on mobile malware detection”. In: Proceedings of the International
Workshop on Artificial Intelligence for Mobile (AI4Mobile). 2019.

[120] Lloyd S Shapley. 17. A value for n-person games. Princeton University Press,
2016.

https://github.com/erocarrera/pefile
https://developer.android.com/about/versions/10/privacy/changes#data-ids
https://developer.android.com/about/versions/10/privacy/changes#data-ids
https://pytorch.org/mobile/home/
https://github.com/nickcano/RelocBonus

Bibliography 63

[121] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. “Interpreting the latent
space of gans for semantic face editing”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 9243–9252.

[122] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning impor-
tant features through propagating activation differences”. In: Proceedings of the
International Conference on Machine Learning. 2017.

[123] SkyLight. Cylance, I kill you! url: https://skylightcyber.com/2019/07/1
8/cylance-i-kill-you/.

[124] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju.
“Fooling LIME and SHAP: Adversarial attacks on post hoc explanation meth-
ods”. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society.
2020.

[125] Smali. url: https://github.com/JesusFreke/smali.

[126] Sogou Input Editor - Google Play. url: https://play.google.com/store/ap
ps/details?id=com.sohu.inputmethod.sogou.

[127] Wei Song, Xuezixiang Li, Sadia Afroz, Deepali Garg, Dmitry Kuznetsov, and
Heng Yin. “MAB-Malware: A reinforcement learning framework for attack-
ing static malware classifiers”. In: ACM ASIA Conference on Computer and
Communications Security (ASIACCS) (2021).

[128] Sonicwall research malware attacks 2019. url: https://www.msspalert.com
/cybersecurity-research/sonicwall-research-malware-attacks-2019/.

[129] Hamish Spencer, Wei Wang, Ruoxi Sun, and Minhui Xue. “Dissecting Malware
in the Wild”. In: arXiv preprint arXiv:2111.14035 (2021).

[130] Octavian Suciu, Scott E Coull, and Jeffrey Johns. “Exploring adversarial ex-
amples in malware detection”. In: Proceedings of the 2019 IEEE Security and
Privacy Workshops (SPW). IEEE. 2019.

[131] Octavian Suciu, Radu Marginean, Yigitcan Kaya, Hal Daume III, and Tudor
Dumitras. “When does machine learning {FAIL}? generalized transferability
for evasion and poisoning attacks”. In: Proceedings of the 27th USENIX Security
Symposium (USENIX Security 18). 2018, pp. 1299–1316.

[132] Ruoxi Sun, Wei Wang, Minhui Xue, Gareth Tyson, Seyit Camtepe, and Damith
Ranasinghe. “Vetting Security and Privacy of Global COVID-19 Contact Trac-
ing Applications”. In: arXiv preprint arXiv:2006.10933 (2020).

[133] Ruoxi Sun and Minhui Xue. “Quality Assessment of Online Automated Privacy
Policy Generators: An Empirical Study”. In: Proceedings of the Evaluation and
Assessment in Software Engineering. 2020, pp. 270–275.

[134] Suibin Sun, Le Yu, Xiaokuan Zhang, Minhui Xue, Ren Zhou, Haojin Zhu,
Shuang Hao, and Xiaodong Lin. “Understanding and Detecting Mobile Ad
Fraud Through the Lens of Invalid Traffic”. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security. CCS ’21.
2021.

[135] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution for
deep networks”. In: Proceedings of the International Conference on Machine
Learning. 2017.

https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://skylightcyber.com/2019/07/18/cylance-i-kill-you/
https://github.com/JesusFreke/smali
https://play.google.com/store/apps/details?id=com.sohu.inputmethod.sogou
https://play.google.com/store/apps/details?id=com.sohu.inputmethod.sogou
https://www.msspalert.com/cybersecurity-research/sonicwall-research-malware-attacks-2019/
https://www.msspalert.com/cybersecurity-research/sonicwall-research-malware-attacks-2019/

64 Bibliography

[136] Zhushou Tang, Ke Tang, Minhui Xue, Yuan Tian, Sen Chen, Muhammad
Ikram, Tielei Wang, and Haojin Zhu. “iOS, Your OS, Everybody’s OS: Vet-
ting and Analyzing Network Services of iOS Applications”. In: Proceedings of
the 29th USENIX Security Symposium (USENIX Security 20). 2020, pp. 2415–
2432.

[137] Microsoft Defender Security Research Team. New machine learning model sifts
through the good to unearth the bad in evasive malware. 2019. url: https://ww
w.microsoft.com/security/blog/2019/07/25/new-machine-learning-mod
el-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/.

[138] TensorFlow Lite | ML for Mobile and Edge Devices. url: https://www.tens
orflow.org/lite.

[139] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi,
Yarik Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, et al. “Data
breaches, phishing, or malware? Understanding the risks of stolen credentials”.
In: Proceedings of the 2017 ACM SIGSAC conference on computer and com-
munications security. 2017, pp. 1421–1434.

[140] Romain Thomas. LIEF - Library to instrument executable formats. 2017. url:
https://lief.quarkslab.com/.

[141] Ruben Rodriguez Torrado, Philip Bontrager, Julian Togelius, Jialin Liu, and
Diego Perez-Liebana. “Deep reinforcement learning for general video game ai”.
In: Proceedings of the 2018 IEEE Conference on Computational Intelligence
and Games (CIG). IEEE. 2018, pp. 1–8.

[142] Daniele Ucci, Leonardo Aniello, and Roberto Baldoni. “Survey of machine
learning techniques for malware analysis”. In: Computers & Security (2019).
doi: 10.1016/j.cose.2018.11.001. url: http://dx.doi.org/10.1016/j.c
ose.2018.11.001.

[143] Giulia Vilone and Luca Longo. Explainable Artificial Intelligence: a Systematic
Review. 2020. arXiv: 2006.00093 [cs.AI].

[144] R Vinayakumar, Mamoun Alazab, KP Soman, Prabaharan Poornachandran,
and Sitalakshmi Venkatraman. “Robust intelligent malware detection using
deep learning”. In: IEEE Access (2019).

[145] R Vinayakumar, KP Soman, Prabaharan Poornachandran, and S Sachin Ku-
mar. “Detecting Android malware using long short-term memory (LSTM)”. In:
Journal of Intelligent & Fuzzy Systems (2018).

[146] Virbox protector. url: https://www.sense.com.cn/VirboxProtector.html.

[147] VirusShare. url: https://www.virusshare.com.

[148] VirusTotal. url: https://www.virustotal.com.

[149] VMProject software protection. url: https://vmpsoft.com/.

[150] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y. Zhao. “Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks”. In: Proceedings of the 2019 IEEE Symposium on
Security and Privacy (SP). 2019.

[151] Rongrong Wang, Minhui Xue, Kelvin Liu, and Haifeng Qian. “Data-driven
privacy analytics: A WeChat case study in location-based social networks”. In:
Proceedings of the International Conference on Wireless Algorithms, Systems,
and Applications. Springer. 2015, pp. 561–570.

https://www.microsoft.com/security/blog/2019/07/25/new-machine-learning-model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/
https://www.microsoft.com/security/blog/2019/07/25/new-machine-learning-model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/
https://www.microsoft.com/security/blog/2019/07/25/new-machine-learning-model-sifts-through-the-good-to-unearth-the-bad-in-evasive-malware/
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://lief.quarkslab.com/
https://doi.org/10.1016/j.cose.2018.11.001
http://dx.doi.org/10.1016/j.cose.2018.11.001
http://dx.doi.org/10.1016/j.cose.2018.11.001
https://arxiv.org/abs/2006.00093
https://www.sense.com.cn/VirboxProtector.html
https://www.virusshare.com
https://www.virustotal.com
https://vmpsoft.com/

Bibliography 65

[152] Wei Wang, Ruoxi Sun, Tian Dong, Shaofeng Li, Minhui Xue, Gareth Tyson,
and Haojin Zhu. “Exposing Weaknesses of Malware Detectors with Explainability-
Guided Evasion Attacks”. In: arXiv preprint arXiv:2111.10085 (2021).

[153] Zhi Wang, Chaoge Liu, and Xiang Cui. “EvilModel: Hiding Malware Inside
of Neural Network Models”. In: Proceedings of the 2021 IEEE Symposium on
Computers and Communications (ISCC). IEEE. 2021.

[154] Jialin Wen, Benjamin Zi Hao Zhao, Minhui Xue, Alina Oprea, and Haifeng
Qian. “With great dispersion comes greater resilience: efficient poisoning at-
tacks and defenses for linear regression models”. In: IEEE Transactions on
Information Forensics and Security (2021).

[155] Jialin Wen, Benjamin Zi Hao Zhao, Minhui Xue, and Haifeng Qian. “PALOR:
Poisoning attacks against logistic regression”. In: Proceedings of the Australasian
Conference on Information Security and Privacy. Springer. 2020.

[156] Emily Wenger, Josephine Passananti, Arjun Nitin Bhagoji, Yuanshun Yao,
Haitao Zheng, and Ben Y Zhao. “Backdoor attacks against deep learning sys-
tems in the physical world”. In: Proceedings of the 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021.

[157] Davey Winder. Apple iOS 14 exposes Microsoft’s LinkedIn app reading clip-
board data. 2020. url: https://www.forbes.com/sites/daveywinder/2020
/07/04/apple-ios-14-catches-microsofts-linkedin-spying-on-clipbo
ard-tiktok-apps-privacy-iphone-ipad-macbook/#70bf4e695896.

[158] Cangshuai Wu, Jiangyong Shi, Yuexiang Yang, and Wenhua Li. “Enhancing
Machine Learning Based Malware Detection Model by Reinforcement Learn-
ing”. In: Proceedings of the 8th International Conference on Communication
and Network Security. 2018.

[159] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu,
Jianjun Zhao, Bo Li, Jianxiong Yin, and Simon See. “Deephunter: a coverage-
guided fuzz testing framework for deep neural networks”. In: Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis. 2019, pp. 146–157.

[160] Jing Xu, Minhui Xue, and Stjepan Picek. “Explainability-based backdoor at-
tacks against graph neural networks”. In: Proceedings of the 3rd ACM Workshop
on Wireless Security and Machine Learning. 2021, pp. 31–36.

[161] Ke Xu, Yingjiu Li, and Robert H. Deng. “ICCDetector: ICC-Based Malware
Detection on Android”. In: IEEE Transactions on Information Forensics and
Security (2016).

[162] Ke Xu, Yingjiu Li, and Robert H. Deng. “ICCDetector: ICC-based malware
detection on Android”. In: IEEE Transactions on Information Forensics and
Security (2016).

[163] Ke Xu, Yingjiu Li, Robert H. Deng, and Kai Chen. “DeepRefiner: Multi-layer
Android malware detection system applying deep neural networks”. In: Pro-
ceedings of the IEEE European Symposium on Security and Privacy. 2018.

[164] Weilin Xu, Yanjun Qi, and David Evans. “Automatically evading classifiers”.
In: Proceedings of the Network and Distributed Systems Symposium. 2016.

https://www.forbes.com/sites/daveywinder/2020/07/04/apple-ios-14-catches-microsofts-linkedin-spying-on-clipboard-tiktok-apps-privacy-iphone-ipad-macbook/#70bf4e695896
https://www.forbes.com/sites/daveywinder/2020/07/04/apple-ios-14-catches-microsofts-linkedin-spying-on-clipboard-tiktok-apps-privacy-iphone-ipad-macbook/#70bf4e695896
https://www.forbes.com/sites/daveywinder/2020/07/04/apple-ios-14-catches-microsofts-linkedin-spying-on-clipboard-tiktok-apps-privacy-iphone-ipad-macbook/#70bf4e695896

66 Bibliography

[165] Lok Kwong Yan and Heng Yin. “DroidScope: Seamlessly Reconstructing the
OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”. In:
Proceedings of the 21st USENIX Security Symposium (USENIX Security 12).
2012.

[166] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh,
Xinyu Xing, and Gang Wang. “CADE: Detecting and Explaining Concept Drift
Samples for Security Applications”. In: Proceedings of the 30th USENIX Secu-
rity Symposium (USENIX Security 21). 2021.

[167] Wei Yang, Deguang Kong, Tao Xie, and Carl A Gunter. “Malware detection in
adversarial settings: Exploiting feature evolutions and confusions in Android
apps”. In: Proceedings of the Annual Computer Security Applications Confer-
ence. 2017.

[168] Yufei Yang, Wenbo Luo, Yu Pei, Minxue Pan, and Tian Zhang. “Execution
enhanced static detection of Android privacy leakage hidden by dynamic class
loading”. In: Proceedings of the 2019 IEEE 43rd Annual Computer Software
and Applications Conference (COMPSAC). Vol. 1. IEEE. 2019, pp. 149–158.

[169] YARA - The pattern matching swiss knife for malware researchers. url: http
s://virustotal.github.io/yara/.

[170] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. “Semantics-Aware Android
Malware Classification Using Weighted Contextual API Dependency Graphs”.
In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security. 2014.

[171] Zhaoqi Zhang, Panpan Qi, and Wei Wang. “Dynamic malware analysis with
feature engineering and feature learning”. In: Proceedings of the 2020 AAAI
Conference on Artificial Intelligence. 2020.

[172] Kaifa Zhao, Hao Zhou, Yulin Zhu, Xian Zhan, Kai Zhou, Jianfeng Li, Le Yu,
Wei Yuan, and Xiapu Luo. “Structural Attack against Graph Based Android
Malware Detection”. In: Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 2021, pp. 3218–3235.

[173] Chunyi Zhou, Yansong Gao, Anmin Fu, Kai Chen, Zhiyang Dai, Zhi Zhang,
Minhui Xue, and Yuqing Zhang. “PPA: Preference Profiling Attack Against
Federated Learning”. In: arXiv preprint arXiv:2202.04856 (2022).

[174] Tong Zhu, Yan Meng, Haotian Hu, Xiaokuan Zhang, Minhui Xue, and Haojin
Zhu. “Dissecting Click Fraud Autonomy in the Wild”. In: Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security.
2021, pp. 271–286.

https://virustotal.github.io/yara/
https://virustotal.github.io/yara/

	Abstract
	Declaration of Authorship
	Acknowledgements
	Achievements
	Introduction
	Background
	Common Notations
	Thesis Contribution
	Thesis Organization

	Literature Survey
	Introduction
	Existing Literature Surveys and Related Work
	Machine Learning-based Malware Detection
	Feature Extraction
	Malware Detection

	Explanation on Machine Learning
	Local Explanation
	Global Explanation

	Attacks on Machine Learning
	Backdoor Attack
	Adversarial Evasion & Other Attacks

	Conclusion

	A Semi-Automated Assessment of Android Clipboards
	Introduction
	Clipboard Privacy Assessment
	Preliminary Results
	Conclusion and Future Work

	Explaining and Measuring Functionalities of Malware Detectors
	Introduction
	Related Work & Motivation
	Related Work and Background
	Motivating Example

	Threat Model & Problem Definition
	Threat Model
	Problem Definition
	Ethical Considerations

	Methodology
	Step 1: Feature Selection
	Step 2: Adversarial Sample Generator
	Step 3: Malware Detector Evaluation

	Experiment Setup
	Experimental Environment
	Target Detectors
	Datasets and Model Training
	Benchmark Methods

	Evaluation & Results
	Evaluation of Detectors
	Transferability Analysis
	Generalizability Analysis
	Revisiting AMM with Improved Detectors

	Case Studies
	A Case Study on Evasion Capability
	A Case Study on Detection Efficiency

	Discussion & Limitations
	Conclusion

	Conclusions and Future Work
	Appendix
	Structures of WinPE Binaries

	Bibliography

