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a b s t r a c t

High-entropy alloys (HEAs) represent prospective applications considering their

outstanding mechanical properties. The properties in HEAs can be affected by the phase

structure. Artificial neural network (ANN) is a promising machine learning approach for

predicting the phases of HEAs. In this work, a deep neural network (DNN) structure using a

residual network (RESNET) is proposed for the phase formation prediction of HEAs. It

shows a high overall accuracy of 81.9%. Compared it with machine learning models, e.g.,

ANN and conventional DNN, its Micro-F1 score highlights the advantages of phase

prediction of HEAs. It can remarkably prevent network degradation and improve the

algorithm accuracy. It delivers a new path to develop the phase formation prediction

model using deep learning, which can be of universal relevance in assisting the design of

the HEAs with novel chemical compositions.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

High-entropy alloys (HEAs) are a newly promising kind of

material with outstanding properties [1e3]. It typically

shows complex chemical composition with multiple com-

ponents [4]. Phase engineering is proposed to obtain excel-

lent performance combinations via different phase

structures in HEAs [5]. Via phase engineering, HEAs can

exhibit high hardness [6], high strength [7], high ductility [8],
uo).

d by Elsevier B.V. This
strong wear resistance [9], strong corrosion resistance [10],

and superior catalytic properties [11]. These three phases,

solid solution (SS), amorphous (AM), and intermetallic (IM),

are found and indexed in HEAs. The phase structure

remarkably affects the properties of HEAs. Despite the ad-

vances that have been made in the field of high-entropy

alloy phase formation, it still exhibits a complex and time-

consuming design process. Notably, machine learning has

been recognized as a useful method to aid material design

[12].
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Fig. 1 e Schematic diagram of the ANN model for phase formation prediction of HEAs.
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Machine learning, e.g., deep learning, is a type of artificial

intelligence. It extracts features from a large number of

datasets, and summarizes the relationships among them. The

available data in the existing works about HEAs provides

opportunities to use different deep learning algorithms for the

phase formation prediction of HEAs. With both the data

accumulation of HEAs and the development of deep learning

algorithms, several works show interesting results for the

phase formation prediction of HEAs. This shows that it is a

promisingmethod for the prediction of HEAs [13e15]. It shows

a deep learning method to predict the hardness of refractory

HEAswith excellent accuracy for the first time in Uttam et al.'s
work [16]. The algorithms include support vector machine

(SVM) classifier, logistic regression, gradient boosting classi-

fier, decision trees, artificial neural network (ANN), and

random forest to predict the phases of HEAs in Yegi et al.'s
work [17]. It shows the methods containing K-nearest neigh-

bors (KNN), SVM, and ANN to forecast the phases in Huang

et al.'s work [18]. It shows that the method of ANN is more

precise than the others. Therefore, there is the promising

future for using neural networks to forecast phases in HEAs.

Islam et al.'s work [19] shows an ANN method to predict

phases and it shows that the training set accuracymight be as

high as 99%while the actual prediction accuracywas less than

80%. Notably, it is important for the HEA design to enhance

the predictive performance. Although there are many results

in this rapidly growing field, there are still some challenges in

the phase prediction of HEAs, e.g., the optimization of deep
learning algorithms and the limited amount of experimental

data. There will be a large number of unstudied HEA compo-

sitions for a long time, since the compositional design space

for HEAs is enormous. It is crucial to propose high-

performance deep learning algorithms based on existing

available data for the phase prediction of HEAs.

Herein, it shows a mixed deep neural network (DNN) and

residual network (RESNET) architecture to train the best

suitable model for the current dataset by constantly opti-

mizing the hyperparameters, e.g., theminibatch size, learning

rate, learning rate decay, dropout rate, for phase formation

prediction of HEAs. The significance of the feature parameters

is evaluated on the phase prediction outcomes. The Micro-F1

score is applied to compare the results to those of the ANN

and DNN on the final test set.
2. Methods

2.1. Data collection

The HEA data of are preprocessed using a traditional data

sciencemethod before training the architecture. Five separate

datasets from many prior studies [20e24] are selected and

used for the establishment of the deep-learning-based phase

prediction model. After eliminating redundant samples and

portions with missing data, it offered a dataset of 529 HEAs

containing 131 AM, 196 SS, and 202 IM phases.
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Fig. 2 e Schematic diagram of the DNNmodel for the phase formation prediction of HEAs. (a) A deep neural network is made

up of an input layer, multiple hidden layers, and one output layer. (b) Random interconnections of neurons in the hidden

layers are regulated by the dropout technique.
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After the labels for phases are verified, the NN model is

extracted, and the features are evaluated. Six relevant

features, including valence electron concentration (VEC),

electronegativity difference (Dc), atomic size difference (d),

mixing enthalpy (DHmix), mixing entropy (DSmix), and melting

temperature (Tm), are selected based on domain knowledge of

which features could be useful in phase prediction. The input

numerical values for the six features are derived from the

formulae below [25e28],

VEC¼
Xn

i¼1

ciVECi (1)

Dc¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ciðci � cÞ2
s

(2)

d¼100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

cið1� ri=rÞ2
s

(3)

DHmix ¼
Xn

i¼1;i< j

4Hijcicj (4)

DSmix ¼ � R
Xn

i¼1

ci ln ci (5)

Tm ¼
Xn
i¼1

ciTmi (6)

where ci (0< ci <1) denotes the atomic concentrations for the i

th element. n represents the total number of components in

an HEA. VECi stands for the valence electron concentration of

the i th element. Hij is the enthalpy of atomic pairs computed

by Miedema’s model [29]. Tmi, ci and ri are the melting point,

Pauling electronegativity and atomic radius of the i th

element, respectively. The averaged Pauling electronegativity

is c, and the averaged atomic radius is r. The averaged Pauling

electronegativity c is computed as c ¼ Pn
i¼1cici, and the
averaged atomic radius r is calculated as r ¼ Pn
i¼1ciri. R refers

to the gas constant.

2.2. ANN and DNN

In the ANN, the neurons that perform computational func-

tions collectively constitute a layer. It describes the aj that

means the output of every neuron in the hidden layer as

follows,

aj ¼
Xn
i¼1

xiWij þ bj (7)

where Wij denotes the weights assigned to every of the input

parameters xi and bj refers to the bias coefficients. The ANN

model with backpropagation functions depicted in Fig. 1

consists of two hidden layers, each of which contains 20

neurons. The value of aj is obtained via Eq. (7) from each

neuron linked with connection-specific weights. It feed the

value into the activation function. The input layer contains six

parameters for features, and the output layer consists of 3

neurons that signify the phases.

A DNN is an architecture that enhances the number of

neurons and hidden layers as shown in Fig. 2a, which is based

on an ANN. The dropout strategy is used to eliminate over-

fitting, as shown in Fig. 2b. It updates theweights of the neural

network utilizing Eq. (7) while keeping the input and output

layers unaltered. After expanding from the ANN, there are 6

hidden layers, and each layer holds 20 neurons.

2.3. RESNET

In Fig. 3, the RESNET model shows the architecture with skip

connections. As the scale of the layers in the training network

is enhanced, the degradation of the network and a decrease in

accuracy inevitably occur. The residual units resolve the

degradation and gradient troubles. It adds the values of the

upper layer to the current layer and transmits it as the input

for the next layer or the far layer as follows,
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Fig. 3 e Schematic diagram of the RESNET model for the phase formation prediction of HEAs.
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a½lþ2� ¼ g
�
wa½lþ1� þ bþa½l�� (8)

where gð,Þ is the activation function, and a½l�/a½lþ2� are the

hidden layers. The residual blocks that feed the parameter of

some layer into the later hidden layer can aid in resolving

network degradation.

2.4. Deep learning

Before training the architecture, the data are processed for the

feature values. The feature values are normalized, and the

values are varied between 0 and 1 with the Pandas library, as

below,

Xnew ¼ Xi � Xmin;i

Xmax;i � Xmin;i
(9)

where Xi denotes the original information about the features,

Xmin;i and Xmax;i signify the minimum and maximum values,

respectively. Xnew refers the normalized feature. The purpose

of normalization is to provide a dimensionless numerical

representation. The procedure guarantees features with the

same numericweight. Among the features, they are evaluated

equally.

There are three neurons that represent the AM, SS and IM in

the output layer and the SoftMax activation function is

commonly employed in the task of classification. The function

for the type of multiple classification is considered as the final

activation function since there are three final classification re-

sults. In contrast to the target labels and the actual output value,

the error of the network is calculated via the cross-entropy loss

function. The gradient descent technique with learning rate is

used to transmit the mistake back to the architecture. At the

initial stage of the training procedure, the weights and bias are

initialized with seeds and updated. The SoftMax [30] function

and cross-entropy [31] loss function are as follows:

s
�
y0
i

�¼ ey0
iPn

i¼1

ey0
l

(10)
Hyðy0Þ ¼ �
Xn
i¼1

y log
�
s
�
y0
i

��
(11)

where y refers to one of the One-Hot encoders, y0 signifies the

prediction, and sðy0iÞ is the probability. The neural network's

final output is translated into probability and used to calculate

loss via cross-entropy.

The model is trained with the training set, and assessed

with the validation set. Its parameters are modified by deliv-

ering feedback based on the results of the validation set. The

preferred model with the best results on the validation set is

obtained. The model is checked using the test set. Finally, the

hyperparameters are shown in Table 1.
3. Results and discussions

3.1. Data analysis

Fig. 4 shows the 6 � 6 scatter matrix plot showing the dataset.

The subgraphs on the diagonal show the histograms of the

phase distribution with only one feature from the six features.

It shows that, no individual feature can be adopted to properly

identify the alloy phases, since all of the histograms in each

subgraph cannot be isolated from one another. The subgraphs

that are drawn on the off-diagonal mean that the phase

selection depends on the correlations among the six features.

This indicates that a single feature cannot be used to distin-

guish these phases.

To describe the correlation between the values of six

features, the Pearson correlation coefficients are derived from

the formula below [32],

rxy ¼ 1
n� 1

Pn
i¼1

ðxi � xÞ � �
yi � y

�
sxsy

(12)

where n represents the total number, x and y are the mean

values of two input features, and sx or sy, are the standard

https://doi.org/10.1016/j.jmrt.2022.01.172
https://doi.org/10.1016/j.jmrt.2022.01.172


Table 1 e Hyperparameters of ANN, DNN, and DNN with RESNET.

Model ANN DNN DNN þ RESNET

Number of hidden layers 2 10 DNN(6)þ RESNET (2)

Number of hidden neurons 20 20 20

Minibatch size 8, 16, 32, 64 8, 16, 32, 64 8, 16, 32, 64

Learning rate decay coefficient 0.1, 0.5 0.1, 0.5 0.1, 0.5

Learning rate 0.1, 0.01, 0.001 0.1, 0.01, 0.001 0.1, 0.01, 0.001

Dropout rate 0.3, 0.5, 0.7 0.3, 0.5, 0.7 0.3, 0.5, 0.7

Activation Relu, Leaky Relu Relu, Leaky Relu Relu, Leaky Relu

Epoch 100e200 100e200 100e200

Fig. 4 e Green stands for IM, yellow refers to SS, and red is AM. The diagonal histogram in the diagonal panels depicts

distributions of the three phases with the different six features. The scatter plots in the off-diagonal panels show the

correlation of the values for the different six features.
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Fig. 5 e Heatmap of the correlation matrix between the six features.
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deviations of the two features. The values that are used to

describe the correlations quantitatively vary from 1 to �1,

indicating a highly positive or negative relationship. The

feature correlations calculated by Eq. (12) are shown in Fig. 5.

As shown in Fig. 5, thematrix elements range from�0.65 to

0.65 when paying attention to the correlation between two

separate features. We can understand from the fifty indepen-

dent correlation matrix members that seven of them are pos-

itive, and the others are negative. In accordancewith Fig. 5, the

atomic size difference and mixing enthalpy show a negative

correlation, which it means that the atomic size difference

appears larger as the mixing enthalpy decreases. The electro-

negativity difference and melting temperature correlate posi-

tively. Overall, no strong positive or negative correlationmatrix

exists between any two features, implying that the six features

should be taken into account in the deep learning model.

The dataset is generally divided into a training set and a

test set throughout the machine learning modeling process.
Fig. 6 e Processing of training and
The test set unrelated to the training is not used in any

manner during the training and is used to evaluate the final

model. In this work, 4-fold cross-validation is used, as shown

in Fig. 6.

3.2. Deep learning results

All Python network models are built in the Keras (TensorFlow

backend) deep learning framework. The dataset is split into

subsets. The subsets of ANN and DNN are trained using

gradient descent. The values of the hyperparameters are then

updated. The optimum model and hyperparameter values for

the ANN and DNN are obtained by 4-fold cross-validation, as

shown in Table 2.

In Fig. 7, it shows the results of ANN and DNN. Overall

accuracy improves as training times rise. This shows that the

accuracy of the ANN oscillates more, which is caused by

the smallminibatch size.With the decline in the learning rate,
testing the neural network.

https://doi.org/10.1016/j.jmrt.2022.01.172
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Table 2 e Appropriate parameters of ANN, DNN.

Model ANN DNN

Number of hidden layers 2 10

Number of hidden neurons 20 20

Minibatch size 8 64

Learning rate decay coefficient 0.5 0.3

Learning rate 0.01 0.001

Dropout rate 0.5 0.3

Activation Relu Relu

Epoch 100 100

Fig. 8 e Comparison of accuracy between the training set

and validation set in the DNN with RESNET.
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the oscillation decreases gradually. Islam et al. [19] proposed

that a neural network with two hidden layers leads to over-

fitting due to the limited number of neurons in the hidden

layers. The accuracy of the validation set is not substantially

improved despite increasing the number of neurons and

introducing dropout. This suggests that the neural network

limits the number of layers, which causes the features to be

learned in each layer to be complicated. If there are multiple

layers, the feature information and classification information

can be retrieved hierarchically. As seen in train_dnn, the

number of hidden layers and neurons per layer are increased,

allowing the model to extract features more effectively for

fitting and the training curve becomes smoother as the

number of batch sizes increases. However, after completing

iterations of 72 epochs, the degradation of the network occurs,

resulting in the decreasing trend of accuracy on the training

set. DNN hidden layers, 6e9, are replaced with two RESNET-

blocks to form a DNN þ RESNET structure. Taking the best

model of DNN with the most suitable hyperparameters as a

reference, the DNN with RESNET architecture is trained. As a

result, it is shown in Fig. 8.

From the training results in Fig. 8, the training set accuracy

increases gradually with the number of iterations and tends to

be stable when the number of epochs exceeds 80, indicating

that the model converges well. The prediction rate on the

validation set can be close to 83%, indicating that the DNN

with RESNET performs well and that the model has a good

level of generalization. As the number of layers and neurons
Fig. 7 e Comparison of accuracy between the training set

and validation set with the ANN model and DNN model.
increases, the model can extract the feature values more

accurately, but the degradation of the network is still inevi-

table as the number of layers increases. Due to the inclusion of

the residual block structure based on the original depth

model, to a certain extent, the feature information can be

propagated across layers and is not easily decayed, thus

ultimately improving the utilization rate of feature informa-

tion and the accuracy of prediction.

In addition, residual blocks are formed by adding skip

connections from the first hidden layer. However, the model

performed poorly. It suggests that the network design is not

valid. The neural networks are integrated in an end-to-end

approach in which the feature values are extracted hierar-

chically by the first few layers of neural networks, and the

feature values are fitted for classification by the final few

levels. The purpose of the residual block is to solve the

gradient problem during back propagation, ensuring that

what is learned in the deep network is not lost and that it

continues to learn new information, improving the prediction

rate. As a result, adding skip connections when the features

are not fully derived is not reasonable.

With Micro-F1 to assess the prediction results, the test set

is used to validate the efficacy of the three neural networks.

The Micro-F1 is in the equations,

Recallmicro ¼
Pn
i¼1

TPi

Pn
i¼1

TPi þ
Pn
i¼1

FNi

(13)

Precisionmicro ¼
Pn
i¼1

TPi

Pn
i¼1

TPi þ
Pn
i¼1

FPi

(14)

F1micro ¼ 2,
Precisionmicro,Recallmicro

Precisionmicro þ Recallmicro
(15)

where true positive (TPi) denotes that the positive case is

correctly recognized as a positive case of the i element, false

positive (FPi) refers that the negative case is incorrectly
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https://doi.org/10.1016/j.jmrt.2022.01.172


Table 3 e Micro-F1 score of ANN, DNN, and DNN with
RESNET models.

Model ANN DNN DNN with RESNET

TP 384 413 433

FN 145 116 96

FP 145 116 96

F1 0.726 0.781 0.819

Fig. 10 e Impact of the test set accuracy when removing

any feature.
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recognized as a positive case of the i element, and false

negative (FNi) signifies that the positive case is incorrectly

recognized as a negative case of the i element. Recallmicro

indicates how many of the samples that are actually positive

in the sample space are correctly predicted, Precisionmicro

indicates how many of the samples with positive predictions

are forecasted correctly, and F1micro is defined as the summed

average, which weighs Precisionmicro and Recallmicro. The final

outcome is shown in Table 3.

As shown in Table 3, the true positive (TPi) of DNN with

RESNET is 433, and it shows that its Micro-F1 score is higher

than others, reaching 0.819. This indicates that DNN with

RESNET outperforms other models on the test set and en-

hances the learning capacity of the network at deeper levels

owing to the inclusion of residual blocks,which solves network

degradation to some degree and increases prediction accuracy.

Fig. 9 shows that according to prior studies, DNN with RESNET

outperforms the other models in terms of accuracy in pre-

dicting phase information of HEAs. Lee et al. [48] used genera-

tive adversarial networks (GAN) to augment thedataset data by

creating adversarial data, achieving the average prediction rate

of 93.17% based on the DNN architecture. It shows that when

the sample size of the dataset is insufficient, increasing the

amounts for the dataset is more effective than increasing the

number of hidden layers or neurons in the neural network and

optimizing the network structure.

3.3. Relative significance of input features

DNN with RESNET architecture is used to assess the relative

significance of the six input features. Six experiments that
Fig. 9 e Comparison of accuracy for machine learning

algorithms.
delete one feature each time while keeping the other five are

carried out to retrain the model and predict the outcomes to

investigate the influence on the test accuracy. Fig. 10 shows

the accuracy degradation with the six experiments. This

means that all of the accuracy declines positively and deleting

any of the six features affects test accuracy [33]. Among them,

the atomic size difference and the valence electron concen-

tration have a greater impact on the accuracy of the predicted

results than the other feature values. It is found that the sig-

nificant design parameters, i.e., the atomic size difference and

the valence electron concentration, deduced by the current

RESNET method coincide with those from the existing para-

metric rules for the HEA phase formation. In line with the

Hume-Rothery rules, it is recognized that the atomic size

difference plays a vital role in the formation of phases, espe-

cially the SS phase [26,29,34]. Furthermore, the Hume-Rothery

rules suggest that the number of valence electrons per atom

influences the stability of a given solid solution in metal

binary systems [35,36]. Such stabilization depends on the

electron density because the density of states present peaks

where the Fermi sphere is in contact with the Brillouin zone

limit [34]. As a result, a structure is stabilized at a certain value

of the electron concentration. It means that the simple pa-

rameters related to radius and electronegativity differences,

although not always decisive, are strongly indicative in HEA

composition design.
4. Conclusion

In this work, a DNN structure using RESNET is proposed for

the phase formation prediction of HEAs. It shows a high

overall accuracy of 81.9%. The DNN with RESNET architecture

is formed by connecting across layers to form a residual

network block. The DNN model with RESNET supplies more

prediction accuracy than the traditional DNN network on the

training set, and the validation set. Compared with machine

learning models, e.g., ANN and conventional DNN, its Micro-

F1 score highlights the advantages of phase prediction of
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HEAs. It can remarkably prevent network degradation and

improve the algorithm accuracy. By removing the eigenvalues

item by item, it is found that the atomic size difference and

valence electron concentration are crucial for the prediction

rate and should be a focus in designing HEA compositions.
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