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As climate warms, tropical species are expanding their distribution to temper-
ate ecosystems where they are confronted with novel predators and habitats.
Predation strongly regulates ecological communities, and range-extending
species that adopt an effective antipredator strategy have a higher likelihood
to persist in non-native environments. Here, we test this hypothesis by compar-
ing various proxies of antipredator and other fitness-related behaviours
between range-extending tropical fishes and native-temperate fishes at mul-
tiple sites across a 730 km latitudinal range. Although some behavioural
proxies of risk aversion remained unaltered for individual tropical fish species,
in general they became more risk-averse (increased sheltering and/or flight
initiation distance), and their activity level decreased poleward. Nevertheless,
they did not experience a decline in body condition or feeding rate in their tem-
perate ranges. Temperate fishes did not show a consistently altered pattern in
their behaviours across range locations, even though one species increased its
flight initiation distance at the warm-temperate location and another one had
lowest activity levels at the coldest range location. The maintenance of feeding
and bite rate combined with a decreased activity level and increased sheltering
may be behavioural strategies adopted by range-extending tropical fishes, to
preserve energy and maintain fitness in their novel temperate ecosystems.

1. Introduction

A central tenet of biological invasions is that invaders create novel species inter-
actions in recipient communities [1,2]. Climate change has intensified this
phenomenon by facilitating species dispersion to regions where they did not
occur historically and therefore these species need to adapt to survive under
these new local conditions [3,4]. Marine animals exhibit faster range extensions
than terrestrial organisms due to characteristics such as high propagule pro-
duction and distant dispersal by ocean currents [5,6]. For example, tropical
fishes are among the fastest organisms to shift their distribution to higher lati-
tudes, facilitated by increased ocean temperatures and strength of major ocean
currents such as Australia’s East Australian Current [7,8]. The recruitment of tro-
pical fish species has progressively increased in temperate ecosystems around the
world, for example in southeast Australia, which is a hotspot of ocean warming
and tropicalization. Yet, we do not fully understand potential mechanisms that
might limit or facilitate these species to succeed in these new environments. Sur-
vivorship of tropical species is still low at higher latitudes due to detrimental
minimum winter temperatures, but as the climate continues to warm permanent
establishment will become more likely for some species [9,10]. Biological factors
such as novel habitats, prey, predators and species interactions are also important
[11,12] but remain largely unstudied.

Species that show adaptability in their antipredator strategies have a higher
chance of survival in changing ecological environments [13]. Prey species that
expand their range to novel environments under climate change are relieved
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from historically important predators, but at the cost of gaining
novel ones [2]. For example, tropical fish species might be
particularly vulnerable to a native-temperate predator not
only because of the lack of eco-evolutionary predator—prey
experiences [14,15] but also because younger fishes are at a
greater relative risk of predation [16,17]. Such lack of previous
experiences and the unknown surrounding environment at
temperate locations may induce neophobic predator avoidance
in recruits and juvenile tropical fishes [18]. Although neopho-
bia can constrain their establishment by reducing foraging
opportunities, it would also reduce the potential detrimental
costs of the ‘initial encounter’ with a novel predator in a
novel environment [19]. Therefore, learning to assess the risk
conditions of unfamiliar environments [20] and respond
appropriately to novel temperate predators will allow tropical
range-extending species to exhibit more efficient preda-
tor escape performance behaviour and facilitate their
establishment in altered or suboptimal abiotic conditions [21].

Temperature is a major environmental determinant of life-
history processes and governs basic physiological functions
and behavioural traits, including predator evasion [22,23].
Temperature could affect antipredator responses through
changes in swimming performance [10,24], muscle develop-
ment [25], contractile properties of the swimming muscles
[26] and neural control [22]. In addition to temperature effects,
local habitat structure and composition can influence antipreda-
tor defences, with species that are able to adapt to novel
surroundings and their associated threats having an increased
advantage in persisting in novel habitats [27,28]. Fishes rely
strongly on olfactory cues to perceive the presence and intensity
of predation threat, but unfamiliarity with olfactory cues of
novel environment may make predation risk hard to assess
[29,30]. Thus, unfamiliarity with novel temperate habitats and
predators combined with the physiological effects of low temp-
eratures can significantly alter antipredator performance of
tropical fishes in their novel temperate ranges.

Effective antipredator behaviours rely on many factors
related to perceived risk and costs or benefits of escaping,
such as predator size relative to prey, social interaction and proxi-
mity to refuge [31,32]. Escape responses often depend on the
behavioural-environmental context [31]. Despite some differ-
ences among studies and species-specific responses [33,34],
social species often have some advantage in their antipredator
behaviour compared to solitary species, either because they
feel safer through their shoaling behaviour and thus tolerate a
closer predator approach, or initiate an escape response at
greater distances because they are better at detecting approach-
ing threats as a group [35-37]. Hence, range-extending species
that shoal are more likely to persist during the initial stages of
range extensions than solitary species [38], as they can learn to
recognize unfamiliar predators from more experienced co-
shoaling conspecific or native species [39,40]. Habitat context,
such as refuge proximity, is an additional driver of antipredator
behaviour. With decreasing distance to refuge, individuals
become more confident and allow closer predator approaches
[41,42]. While changes in temperature [43] and habitat context
[44] might make early stages of coral reef fishes more vulnerable
to predation in temperate environments, shoaling behaviour
and refuge proximity in contrast may reduce their risk to
temperate predators.

Risk-taking behaviour has important consequences for
fitness and therefore ecological success of range-extending
species [4546]. Although increased risk-taking can provide

benefits such as more food or better habitats, it may also increase
mortality risk through increased predator exposure [47]. As
such, many animals face a continuous trade-off between preda-
tion risk and resource acquisition [48,49]. If resources are
limiting (e.g. reduced energy intake), trade-offs may occur in
energy allocation towards different processes and behaviours.
For example, individuals have to assess risk levels and make
decisions to either spend energy fleeing from a threat or preser-
ving energy for other physiological process (sensu energy
budget theory; [50]). Burst swim responses from predators
have a strong energetic cost, which disrupts other fitness-related
behaviours such as foraging [51,52]. As such, to maintain phys-
iological homeostasis, continuous decisions are made based
on starvation-predation risk trade-offs among behavioural
traits (sensu economic hypothesis; [53]). However, climatic and
biotic alterations can affect the decision-making of organisms
and consequently their behavioural responses, which in turn
can affect survivorship [54].

Here, we investigate how tropical fishes adjust their
antipredator behaviours as they extend their ranges to tem-
perate ecosystems under climate change. These ecosystems at
the leading distribution edges of tropical species represent
potentially hostile environments, with novel predators and shel-
ter habitats in addition to suboptimal temperatures. We compare
various antipredator behaviours between tropical and sympatric
native-temperate fish species at multiple locations across a
730 km latitudinal temperature gradient along the south-
east Australian coast. To understand if altered antipredator
behaviours lead to trade-offs in other behaviours, we also quan-
tified vital behaviours such as foraging, activity level and shelter
behaviour, as well as fish body condition, all of which affect
species survival and individual fitness [55,56]. Phenotypic flexi-
bility in behaviours by range-extending species in response to
novel predators and shelter habitats may be a key determinant
of their invasion success at their temperate range locations and
therefore a strong regulator of their persistence and expansion
in temperate environments (figure 1).

2. Material and methods

(a) Risk-averse behaviours in fishes
Risk-averse behaviours of three tropical species were quantified
along a 730 km latitudinal gradient (covering tropical, subtropical
and temperate range positions) and compared to that of two tem-
perate species (electronic supplementary material, figure S1). An
artificial threat-eliciting stimulus was used to mimic a potential
predator attack. The stimulus was created using a cubical PVC
frame connected to a 60 cm iron rod, which supported a 30 cm
metal ruler at its most distal end (see inset electronic supplemen-
tary material, figure S2; following [57]). A GoPro camera was
fixed to the cubical frame and positioned towards the ruler.
Once a target fish was found, the snorkeler carefully approached
the fish and once close enough to the fish the end of the ruler
was moved from above the fish towards its head at a constant
speed, while the camera was recording its escape behaviour
(recording at 30 frames per second). Nagelkerken et al. [58]
showed that this approach is a good proxy for escape behaviours
from real predators. The approach by the snorkeler towards the
focal fish always started from approximately the same distance
as the water visibility was very similar among the study sites.
Risk-averse behaviours towards a threat were evaluated as a
proxy of antipredator performance, using three behavioural
proxies (flight initiation distance, escape distance, escape speed)
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Figure 1. Diagram showing the study design. Tropical and temperate fish communities were analysed together for each behaviour and body condition metric using
permutational non-parametric ANOVA to test for differences among range locations, fish species and life stage (only for antipredator behaviours).

which were quantified using VLC media player (see details in
electronic supplementary material).

(b) Behaviours modulated by predation risk

We evaluated whether there was a trade-off between risk-
assessment behaviours and other important behaviours at
multiple sites across a latitudinal gradient (all species). To evalu-
ate this, we analysed feeding behaviour (proportion of time
feeding), bite rate (number of bites on the substrate and water
column), boldness (time inside shelter) and activity levels (pro-
portion of time actively moving around) for the same focal
tropical and temperate fish species. Activity level differs from
feeding as in the latter fishes were mostly stationary during feed-
ing. The focal individuals were randomly selected from the same
sites where the escape behaviours were measured. However,
the behaviours modulated by predation risk and the antipredator
behaviours, quantified using two methodologies, were per-
formed at different periods during the day with an interval of
a few hours to avoid any behavioural disturbances caused by
the artificial fear-eliciting stimulus. For sample sizes see
electronic supplementary material, methods.

Underwater GoPro cameras were attached to dive weights
and positioned in front of a target fish at a distance of approxi-
mately 50 cm. This distance was chosen based on being able to
accurately film fishes with a relatively small body size (less
than or equal to 5cm) versus maintaining some distance to
avoid disturbing them with the presence of a camera. Each
video recording was 10 min long, with the first 3 min used as
acclimation time and not included in the analyses.

Behaviours were quantified using the software VLC media
player and for each focal individual all behaviours were analy-
sed from the same recording (see details in the electronic
supplementary material).

(c) Body condition

Fulton’s condition index was used as a proxy of energy reserve in
fish body and growth condition across the latitudinal range
locations (electronic supplementary material).

3. Results

(a) in situ behaviours across range locations

The tropical and temperate species showed an approxi-
mately 1.2- to 1.4-fold increase in flight initiation distance
(i.e. higher risk aversion) at the warm-temperate range
location compared to the subtropical range location (figure 24;
electronic supplementary material, table S2, F=6.888,
p=0.033), with the exception of the temperate species
A. strigatus whose escape behaviour could not be assessed
at the subtropical range location. A. waigiensis, however,
showed similar flight initiation distances at the tropical
and all other range locations. All the tropical and tempe-
rate fishes maintained their escape distances (F=0.825,
p=0.576) and escape speeds (F=1.134, p=0.424) across
range locations. The escape distance varied from 2 to
26 cm (mean =~13 cm) for tropical fishes and 3 to 23 cm
(mean=~12cm) for temperate species, and the escape
speed ranged from 0.22 to 4.88cms™' (mean=0.9 cms™)
and 0.17 to 2.83cms™' (mean=0.8cms™"), respectively
(electronic supplementary material, figure S3 and table S2).
Life stage did not show an effect on the three proxy of anti-
predator behaviours (flight initiation distance: F=1.636,
p=0.201; escape distance: F =0.020, p =0.863; escape speed:
F=0.086, p=0.801).

Feeding activity and bite rate did not differ with range
location for any of the species (figure 2b,c; electronic sup-
plementary material, table S3, feeding: F=0.905, p=0.478;
bite rate: F=0.021, p=0.994). However, activity level
showed a decrease (ranging from 18% to 77%) with increas-
ing range location for three of the five species (figure 2de;
electronic supplementary material, table S3; range location x
species, F=2.500, p=0.023), and shelter use increased
(ranging from ~45% to 379%) with range location for two
tropical species (range location x species, F=2.364, p=
0.031). No difference in the body condition proxy was
detected as a function of range location for any of the
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Figure 2. in situ behaviours (mean + s.e.): (a) flight initiation distance as a proxy for risk-averse behaviour towards a threat stimulus, (b) proportion of the time
feeding, (c) bite rate per second, (d) proportion of time active, (e) proportion of the time sheltering and (f) body condition of tropical and temperate species as a
function of distributional range locations (tropical only for A. vaigiensis, subtropical, warm-temperate, cold-temperate). Different letters above bars indicate signifi-
cant differences and asterisks indicate when factors such as species or the interaction between range position X species were statistically significant (see electronic

supplementary material, tables S2-54). n.s. = not significant.

species (figure 2f; electronic supplementary material, table S3;
F=10.162, p=0.088).

(b) in situ behavioural differences of tropical vagrant

versus native-temperate fishes
Only the fitness-related behaviours (feeding activity, bite rate,
activity level and sheltering) and body condition metric
differed significantly among species, and two of these

behaviours differed among species within range location.
Two out of three tropical species (A. triostegus and A. vaigiensis)
showed higher proportions of feeding activity than the
temperate fishes, independent of the range location (electronic
supplementary material, table S3; F = 9.375, p = 0.0002). Across
all studied range locations, all the tropical fishes had higher
bite rates than the temperate species M. strigatus (species:
F=11.349, p=0.0002). The tropical species A. wvaigiensis
showed a higher activity level (range location x species:
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Figure 3. The proportion of time (mean + s.e.) that tropical (a—c) and temperate (d,e) fish species spent feeding when inside shelter, near shelter (distance of 0-5
body lengths from shelter) and away from shelter (exposed; distance greater than five body lengths from shelter) as a function of distributional range location
(‘tropical only for A. vaigiensis, ‘subtropical’, ‘warm-temperate’ and ‘cold-temperate’). Different letters above bars indicate significant differences within range

locations (see electronic supplementary material, table S5).

F=2.500, p =0.023) than some temperate species at some of the
range locations, while the other tropical species A. nigrofuscus
spent more time inside shelter at its warm-temperate range
location than all temperate species (range location x species:
F=2364, p=0.031).

Tropical species had a higher body condition than both of
the temperate species, irrespective of range location (elec-
tronic supplementary material, table S4; F =7.336, p =0.005).

(c) Feeding—sheltering trade-offs

Except for a few non-significant trends, tropical and temper-
ate species, in general, showed higher feeding activity in the
vicinity of shelter than in exposed areas or while sheltering
under rocky overhangs or between crevices (figure 3; elec-
tronic supplementary material, tables S5, range location x
species x shelter position: F=1.828, p=0.043). Feeding time
differed among species as a function of shelter position,
with several tropical fishes spending more time feeding in
exposed areas and near to shelter than the temperate species,
especially at the subtropical range location (species x shelter
position, F =4.245, p=0.0001).

(d) Shoaling group size versus antipredator behaviours
Abudefduf vaigiensis and its co-shoaling temperate species M.
strigatus were the only species that showed a significant,
albeit weak effect of shoal size for one of their antipredator
behaviours. Escape distance of A. vaigiensis decreased with
increased shoal size (electronic supplementary material,
figure S4; R%=0.09, p=0.035), while that for M. strigatus

increased (electronic supplementary material, figure S4;
R*=0.13, p=0.036).

4. Discussion

We here show that tropical fishes in general expressed more
risk-averse behaviours at their warm-temperate range location
than at their subtropical distributional range. Higher risk
aversion by coral reef fishes in their novel warm-temperate
ranges was expressed as an increased flight initiation distance
and/or increased amount of time sheltering in temperate
rocky habitats under a perceived threat. Increased risk-
averse behaviours enhance the probability of successfully
evading or avoiding predatory attacks [59], especially while
foraging in unfamiliar habitats [60] or when there is lack of a
co-evolutionary prey—predator interaction [46]. The conserva-
tive behaviours exhibited by tropical fishes with increasing
distance from their native ranges are therefore likely due to
uncertainty of the risk factors in an unfamiliar temperate
environment [55,61]. In novel habitats, the reliability of the
surrounding information on which to judge risk levels is
often reduced [55,62]. Thus, exhibiting greater caution is
apparently an efficient strategy to reduce predation risk
while learning to cope with novel threats [44]. Surprisingly,
the tropical species, A. vaigiensis, did not show highest flight
initiation distance at their most extreme leading range edge
(i.e. cold-temperate range location). However, their increased
risk-averse behaviour at this range location was shown
by the largest time expenditure inside shelters, suggesting
that the low-flight initiation distance of A. wvaigiensis at
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cold-temperate range location could be reflected by their
higher proximity to shelters. Yet, the relationship between
flight initiation distance and distance to shelter is needed to
confirm this argument.

Risk-averse behaviours at warm-temperate (all species)
and cold-temperate (only for A. wvaigiensis) range locations
did not seem to compromise the fitness of tropical range-
extending fishes. We show that an increased flight response
at temperate locations was not associated with reduced fora-
ging (e.g. feeding activity or bite rates) or reduced body
condition. However, this finding can be related to the fact
that individuals that under-responded to temperate predators
(i.e. allowed closer approach) were less observed in this study
because they were already consumed by predators. Although
animals that over-respond to a threat often engage less
in other fitness-related activities [63,64], some animals com-
pensate this by adjusting the time allocated to other
behaviours, i.e. known as the predation risk compensation
term [56,65,66]. Accordingly, two out of three tropical fish
species showed increased sheltering behaviours at temperate
locations which was associated with highly reduced feeding
(i.e. when inside shelter). Hence, the reduced activity levels
at temperate locations may be a behavioural strategy adopted
by some tropical fishes to preserve energy in the light of this
reduced feeding, and therefore maintain their body con-
dition, albeit at the cost of reduced growth [67]. The water
temperatures during the field surveys at the tropical locations
in autumn and winter were comparable to those from the
subtropical and warm-temperate locations sampled during
summer. This supports the notion that any behavioural
differences especially for A. vaigiensis among locations were
primarily driven by response to a novel environment rather
than to seawater temperature per se. This suggests that
tropical fishes trade-off activity levels (through increased
time sheltering) for maintenance of fitness as an adaptive
response to their novel environment. Such trade-offs can
ensure the future survivorship of some tropical fishes at tem-
perate locations as winter temperatures continue to increase
due to climate change. Hence, the balance between risk-
avoidance, activity levels and feeding behaviours can be
critical for tropical range-extending species at the initial
phase of their range extension. However, eventually this
could diminish as tropical vagrants learn to recognize tem-
perate predators and behaviourally adjust to their novel
surrounding environment.

Similar to tropical fishes, one of the studied temperate
species (M. strigatus) was more risk-averse at the warm-tem-
perate range position, while the other temperate species
(A. strigatus) was less active at the cold-temperate range
position. Hence, our prediction that native-temperate fishes
would maintain their behavioural responses across distribu-
tional ranges, because these species have always naturally
occurred there, was not supported by our findings. At the
same time, our study reveals that native-temperate fishes
did not show a consistently altered pattern in their beha-
viours across their range locations, as one species increased
its flight initiation distance at the warm-temperate location
and the second species decreased its activity level at the
coldest range location.

Tropical range-extending fishes had higher fitness-related
behaviours (i.e. higher overall feeding activity and bite rates,
and in some cases also higher activity levels and less
time inside shelter) and higher body condition than their

co-shoaling native-temperate species. These results may be
surprising because a logical prediction would be that temper-
ate fishes perform better in their native-temperate ranges than
tropical vagrants. However, higher foraging performance
of tropical fishes compared to temperate fishes could be a
natural physiological response to meet their specific meta-
bolic demands, or a more general response to unfamiliar
and stressful environments. Even though temperate ecosys-
tems are novel environments for tropical fishes, shoaling
with temperate fish species can affect their performance
both positively and negatively. For example, shoaling with
temperates may benefit tropical fishes by attaining larger
body sizes compared to ‘tropical-only” shoals [38]. By con-
trast, in the presence of artificially supplemented food (i.e.
experimentally enforced competition), temperate fishes show
increased feeding performance and higher aggression towards
tropical fishes, and tropicals show increased sheltering with
higher abundances of temperate fishes [68]. However,
such competitive effects might be mitigated under more natu-
ral conditions, through behavioural [69] and trophic [70]
niche segregation between tropical and temperate fishes. In
addition, ocean warming and acidification are likely to
diminish shoaling performance of mixed tropical-temperate
fish shoals, diminishing any gained effects (if any) of mixed
shoaling [12]. Hence, under future climate conditions, the
performance of tropical range-extending fishes will not only
depend on shoaling dynamics and niche segregation as
shown previously, but also on behaviourally mediated
adjustments to feeding and risk aversion.

5. Conclusion

We reveal that tropical fishes can show more risk-averse
behaviours at their warm and cold-temperate distributional
ranges under ongoing climate change (i.e. increased flight
initiation distance and time in shelter) without affecting
their body condition. The way in which tropical fish behav-
iourally balance the conflicting demands between avoiding
temperate predators and sustaining feeding, combined with
decreased activity levels and increased sheltering, is critical
for maintaining their fitness and can have flow-on effects
on temperate fish communities under ocean warming.
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