ACCEPTED VERSION

Jennifer Margaret Gardner, Michelle Elisabeth Walker, Paul Kenneth Boss, Vladimir Jiranek The effect of grape juice dilution and complex nutrient addition on oenological fermentation and wine chemical composition

Journal of Food Composition and Analysis, 2022; 105:1-8

© 2021 Elsevier Inc. All rights reserved.

This manuscript version is made available under the CC-BY-NC-ND 4.0 license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Final publication at: http://dx.doi.org/10.1016/j.jfca.2021.104241

PERMISSIONS

https://www.elsevier.com/about/policies/sharing

Accepted Manuscript

Authors can share their accepted manuscript:

12 Month Embargo

After the embargo period

- via non-commercial hosting platforms such as their institutional repository
- via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our <u>hosting policy</u>
- not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article

6 February 2023

http://hdl.handle.net/2440/134101

The effect of grape juice dilution and complex nutrient addition on oenological

fermentation and wine chemical composition

Jennifer Margaret Gardner^{1, §*}, Michelle Elisabeth Walker^{1*}, Paul Kenneth Boss,^{2,3} and

Vladimir Jiranek^{1,3}

¹Department of Wine and Food Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia;

²CSIRO, Agriculture and Food, Waite Campus, Urrbrae, SA 5064, Australia;

³Australian Research Council Training Centre for Innovative Wine Production, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia

[§]Corresponding author

*These authors have contributed equally

Corresponding author: Dr Jennifer Gardner Department of Wine and Food Science University of Adelaide Urrbrae, SA 5064 Australia Phone: +61 8 313 0402 Email: jennie.gardner@adelaide.edu.au

Other author email addresses:

Vladimir Jiranek: <u>vladimir.jiranek@adelaide.edu.au</u> Michelle Walker: <u>michelle.walker@adelaide.edu.au</u> Paul Boss: <u>paul.boss@csiro.au</u>

Running Title:

The effect of grape juice dilution on fermentation

1The effect of grape juice dilution and complex nutrient addition on oenological fermentation2332and wine chemical composition

Abstract

The impact of water addition and complex nutrient addition to grape juice in laboratory scale winemaking, on both alcoholic and malolactic fermentation duration and outcome has been examined using commercial wine yeasts, Lalvin EC1118TM and Lalvin R2TM and malolactic bacteria Lalvin VP41TM. As expected, dilution with water did not impede fermentation, instead resulted in shortened duration, or in the case of malolactic fermentation enabled completion in these conditions. Addition of complex organic nutrient further shortened alcoholic fermentation by Lalvin R2TM and in some conditions also reduced the duration of malolactic fermentation. In general, compounds contributing to wine aroma and flavour were present at lower concentrations at the end of fermentation where juices were diluted and the addition of organic complex nutrient also influenced the concentration of some compound in wine. These findings are significant to commercial winemaking, highlighting that winemakers should consider potential impacts of juice dilution on processing efficiencies along with wine flavour and aroma.

Keywords: fermentation, wine, grape juice dilution, yeast, nutrient, volatile compounds

1. Introduction

The addition of water to grape juice before fermentation is legal and commonplace in some countries, including more recently, Australia. The wording of legislature around water additions varies between countries, for instance additions (noted as ameliorations) are allowed "to facilitate fermentation" (USA, Federal Regulation 27 CFR 24.178 and California State Law, Provisions 1

Applicable to Wine Produced in California 17 CCR 17010) or in Australia "water may only be added to wine pre-fermentation and does not dilute the must below 13.5 °Bé" (Standard 4.5.1 Section 5, 7C) or "oenological practices shall exclude the addition of water, except where required on account of a specific technical necessity" (European Union, Council Regulation (EC) 491/2009 Annex XVb A1). Fermentation difficulties can be encountered in high sugar musts where yeasts can fail to ferment all available sugars, leading to wines that are out of winemaker specifications. Highsugar musts are becoming increasingly common since elevated daily average temperatures during ripening (Schultz, 2016) can lead to accelerated and uneven phenological development of grapes, resulting in vintage compaction and delay of harvest by winemakers waiting for "flavour ripeness". Market limitations also exist for higher alcohol wines, where higher taxes are incurred and some consumers are increasingly avoiding these in favour of wines with lower alcohol, suiting some modern flavour and healthier lifestyle choices. The addition of water to must pre-fermentation to combat the problems associated with high sugar musts is a simple and inexpensive procedure for which the practical logistics have been discussed (Cowey, 2017). Previous studies have examined the effect of juice dilution with water on final concentrations and sensory impacts of various compounds in wine (Harbertson, Mireles, Harwood, Weller, & Ross, 2009; Petrie, Teng, Smith, & Bindon, 2019; Schelezki, Antalick, Šuklje, & Jeffery, 2020; Schelezki, Smith, Hranilovic, Bindon, & Jeffery, 2018; Schelezki, Suklje, Boss, & Jeffery, 2018; Teng, Petrie, Smith, & Bindon, 2020). Authors report variable effects on wine, from an overall decrease in wine volatiles (Schelezki et al., 2020) to an increase to specific compounds such as total higher alcohols and ethyl esters of fatty acids (Schelezki, Suklje, et al., 2018), and minor to measurable decreases in colour, tannin and phenolics (Schelezki, Smith, et al., 2018; Teng et al., 2020). Some wines were also reported as generally not being reduced in sensorial complexity, in fact some dilutions maintain many of the fuller bodied and richer flavours of wine from undiluted juices (Petrie et al., 2019). In terms of grape derived compounds, this presumably reflects that changing the juice to solid ratio, or indeed simply providing more water, enables increased extraction. The variability in the reported effect of

50 dilution inevitably arises due the complexities of variety, vintage and experimental differences (Schelezki et al., 2020). Overall, authors suggest that impacts on wine of juice dilution prefermentation are surprisingly minor. Similarly it is hypothesised that these additions will not impede alcoholic and malolactic fermentation, however research has vet to specifically address this. We hypothesise that the addition of water to juice pre-fermentation will shorten fermentation time and effect the final concentration of some compounds in the final wine in proportion to the dilution. To test this, we analysed fermentation dynamics of two commercial wine yeast; Lalvin EC1118TM (aromatically neutral) and Lalvin R2TM (aromatic) over a range of juice dilutions (commercially relevant; 16 Bé juice diluted to 14.5, 13.5 and an extreme example 12.5 Bé, corresponding to water additions of 10.5, 17.2 and 24%). Pressed juice from white grapes was chosen so as to avoid the complexities introduced when winemaking with skin contact is undertaken. Furthermore, studies addressing the impact of juice dilution on extraction of colour and phenolics in red wines fermented in the presence of skins have been recently reported (Schelezki et al., 2020; Teng et al., 2020). Nitrogen was ameliorated to be equal across all juices, including those that were diluted, to ensure this was not impacting fermentation dynamics. Yeast nutrient (FERMAID[®] O, an organic complex nutrient; Lallemand) was also added to examine if any negative effects (potentially due to the dilution of micronutrients), could be reduced. It is well known that many compounds (volatile and non-volatile) in wine change with the addition of nitrogenous compounds (Bell & Henschke, 2005; Torrea, Fraile, Garde, & Ancin, 2003), thus inclusion of this analysis allowed us to examine the combined effects of dilution and nutrient supplementation.

2. Materials and methods

2.1 Strains and media

Saccharomyces cerevisiae strains Lalvin EC1118TM and Lalvin R2TM (Lallemand, Canada) were chosen due to their common commercial use, variation in nutrient requirements and contribution to wine aroma (Lavin EC1118TM regarded as neutral and Lalvin R2TM as aromatic). Yeast and bacteria

were grown using methods that applicable to high throughput studies. Yeast were grown in 250 mL conical shake flasks from single colonies in 100 mL Yeast Peptone Dextrose (YPD) medium (1% w/v yeast extract, 2% w/v bacteriological peptone, and 2% w/v glucose) overnight at 28 °C with shaking (120 rpm). These cells were then inoculated at 2.5 x 10⁶ cells mL⁻¹ in 250 mL of diluted juice (45%, sterile (0.22 μ m), 2018 Viognier-Marsanne blend, 10% YPD, 45% water) in 1 L conical shake flasks and grown overnight. This culture was used to inoculate experimental fermentations. *Oenococcus oeni* malolactic bacteria strain Lalvin VP41TM (Lallemand) was chosen as it is widely used in the Australian wine industry. Lalvin VP41TM (2.5g) was rehydrated from a commercial packet, according to the manufacturer's instructions and grown in 50 mL of MRSAJ (de Man-Rogosa-Sharp medium; Amyl Media) in a 50 mL screw capped tube supplemented with 20% (^V/_v) apple juice (Golden Circle[®]) and 0.1% cyclohexamide (^V/_v, Sigma Aldrich) for 4 days at 30 °C and

20% CO₂. The *O. oeni* culture was centrifuged (10 min, 4600 x g), and the pellet was washed in phosphate buffered saline (PBS: 137 mM NaCl, 10 mM Phosphate, 2.7 mM KCl, pH 7.4) and recentrifuged. The cell pellet was washed with 50 mL Viognier-Marsanne juice (13.5 Bé, 0.22 μ m), centrifuged (2 min, 4600 x g) and resuspended in 50 mL Viognier-Marsanne juice. This *O. oeni* culture was grown overnight at 30 °C and 20% CO₂ prior to inoculation at 1:100 (0.25 mL) in the experimental fermentations. Culture viability was analysed using spot plating (10 μ L of serially

diluted cultures were grown on MRSAJ with 2% agar, and colonies enumerated post growth).

A filter sterile (0.22 μ m) 2018 Adelaide Hills Viognier-Marsanne (~75% Viognier) blended juice was used for experimental fermentations (16 Bé, pH 3.2, 3.13 g L⁻¹ malic acid, 18 : 63 mg L⁻¹ free:total SO₂, 60 mg L⁻¹ ammonia, 196 mg L⁻¹ alpha amino nitrogen, 245 mg L⁻¹ yeast assimilable nitrogen (YAN)). Juices were diluted with ultrapure water (pH 7.0) to 14.5, 13.5 and 12.5 Bé (10.5, 17.2 and 24% water). Density after addition of water was calculated instead of measured as, based on experience, measurement at that stage is inaccurate. These dilutions were chosen as they encompass both typical and extreme (12.5 Bé) in industry. pH was measured post water addition and found to have limited change (<0.05). Nitrogen was also adjusted in diluted juices to 245 mg YAN L⁻¹ with addition of diammonium phosphate and complex organic nutrient (FERMAID[®] O, Lallemand) where indicated at either 0 (control), 200 or 400 mg L⁻¹.

2.2 Experimental fermentation

Fermentations were conducted with a custom-made high throughput robotic platform 'Tee-bot v.2.0' built on an EVO freedom workdeck (Tecan, Männedorf, Switzerland) that can accommodate 384 discreet fermentations and sample automatically at programmable intervals. Fermentation vessels had custom-made airlocks that allowed sampling through a silicone septum. Experimental fermentations were mixed at inoculation and briefly before sampling with magnetic stir bars. Viognier-Marsanne juice was pressed from solids to alleviate the complexity of changing the juice:solid ratio by dilution in experimental fermentations. Also, typically white wine fermentation is undertaken without the presence of grape skins. Temperature was regulated to 17 °C by a water bath that housed the fermentation flasks. Juice (25 mL, ameliorated with dilution or addition of FERMAID[®] O) was inoculated with 5 x 10⁶ yeast cells mL⁻¹ (either EC1118TM or Lalvin R2TM). After 24 hours, experimental fermentations to be treated with malolactic acid bacteria (MLB+) were inoculated with 0.25 mL of cultured Lalvin VP41TM. This method of co-inoculation was chosen instead of sequential inoculation for malolactic fermentation as it is fast becoming a common industrial method, particularly in high sugar musts, and also reduces the risk of excess oxidation of wines due to extended fermentation times, particularly important here due to small experimental volumes. Control (MLB-) fermentations had 0.25 mL sterile Viognier-Marsanne juice added. Fermentations were performed in triplicate. This combination of treatments of yeast (Lalvin EC1118TM, Lalvin R2TM or none), dilution (16, 14.5, 13.5 or 12.5 Bé), nutrient addition (0, 200 or 400 mg L⁻¹) and MLB (+/-) resulted in 216 unique fermentations. During fermentation, sugars (glucose, fructose) and malic acid consumption were monitored using commercial enzymatic kits (Megazyme, Bray, Ireland) with some modifications as described in (Walker et al., 2014; Jiang, Sumby, Sundstrom, Grbin, & Jiranek, 2018).

60 61 62

63 64 65

2.3 Determination of wine composition by HPLC and GC-MS.

Major yeast metabolites, organic acids (malic, succinic, acetic), glucose, fructose, glycerol and ethanol were determined from 1 mL filter sterilised terminal fermentation samples by HPLC according to Lin, Boss, Walker, Sumby, Grbin, & Jiranek (2020). In brief, undiluted samples were injected onto an Aminex H7C-8H column (300 × 7.8 mm, Bio-Rad) on an Agilent 1100 series HPLC system (Agilent Technologies). The column temperature was 60 °C and the mobile phase was a 2.5 mM solution of H₂SO₄, at a flow rate of 0.5 mL min⁻¹. Signals were detected at 210 nm with an Agilent G1315B diode array and an Agilent G1362A refractive index detector. Compounds were identified by their retention time and quantified by comparison to known standard solutions using Agilent ChemStation software. Quantification was performed using calibration curves $(R^2 > 0.99)$ relating to the concentration of analytes from standard solutions.

Terminal fermentation samples after alcoholic fermentation of MLB- wines were also analysed by solid phase micro-extraction (SPME)-GC/MS exactly according to Hranilovic et al. (2018) with extraction and chromatographic condition as outlined by Boss, Pearce, Zhao, Nicholson, Dennis, & Jeffery (2015). MLB+ wines were not analysed since MLF was not completed in all samples. In brief, each sample was diluted with water (1 : 2 and 1 : 100) to a final volume of 10 mL, with the addition of 3 g of sodium chloride and then spiked with five standards: d13- hexanol (920 mg L^{-1} for 1 : 2 dilution, 92 mg L⁻¹ for 1 : 100 dilution; C/D/N Isotopes, Pointe- Claire, QC, Canada); d11- hexanoic acid (930 mg L⁻¹ for 1 : 2 dilution, 93 μ g L⁻¹ for 1 : 100 dilution; C/D/N Isotopes); d16- octanal (82.1 mg L^{-1} for 1 : 2 dilution, 8.21 mg L^{-1} for 1 : 100 dilution; C/D/N Isotopes); d3hexyl acetate- (17.5 mg for 1:2 dilution, 1.75 mg L⁻¹ for 1 : 100 dilution; C/D/N Isotopes); d3linalool (1.73 mg L^{-1} for 1 : 2 dilution and 0.17 mg L^{-1} for 1 : 100 dilution, C/D/N Isotopes). Volatile compounds were then identified by comparing mass spectra with those of authentic 5149 577 standards and spectral libraries. A laboratory generated library (328 compounds) as well as the US 58 5**1**950 National Institute of Standards and Technology- 11 and the Wiley Registry 9th edition mass

spectral libraries were used for identification purposes. Compounds were considered positively identified after matching of both mass spectra and linear retention indices (LRI) with that of authentic samples. LRI was calculated from a compounds retention time relative to the retention of a series of n-alkanes (C8-C26). Quantification of target compounds was achieved by relating ion peak areas with that of the relevant internal standard using MassHunter Version B.08.00 (Agilent Technologies). Calibration curves of respective analytes were used to determine concentration of all volatiles. Target compounds were chosen that are well known to impact wine aroma. Samples of un-inoculated juices, subjected to the same experimental conditions were also analysed to decipher between juice and fermentation related volatiles. The concentrations of volatiles measured in unfermented juices were very low or below detection (data not shown).

2.4 Data analysis

Statistical analysis was undertaken with GraphPad Prism v 7.02 (GraphPad Software, La Jolla, CA, USA) and XLSTAT (Addinsoft, New York, NY, USA). Data is reported as the mean values with standard deviation and one way analysis of variance (ANOVA) with Fisher's least significant difference (LSD) multiple comparison test (p < 0.05) to determine statistical significance. Principal component analysis (PCA) was conducted using The Unscrambler X v10.1 (CAMO Software, Oslo, Norway). Input variables for the PCA were the volatile compound concentrations measured in each wine sample which were scaled to unit variance. The NIPALS algorithm was used for the PCA with cross validation to test the model.

3. Results and Discussion

3.1 Dilution and addition of nutrients reduced alcoholic and malolactic fermentation duration

Both alcoholic (AF) and malolactic fermentation (MLF) duration were shortened in diluted juices, as is expected where initial sugar concentrations were reduced (AF, Fig. 1 and 2; MF, data not shown). For instance, AF of juice diluted from 16 Bé to 12.5 Bé was reduced in duration with the use of Lalvin EC1118TM by 126 hours, or 42% (298 vs 172 h). AF of undiluted juices by Lalvin

 $R2^{TM}$ was slightly longer (in comparison to Lalvin EC1118TM), however, dilution resulted in a similar reduction of fermentation duration of 121 hours or 34% (355 v 234 h). Dilution to 13.5 Bé or below also allowed the completion of MLF (<0.1 g L⁻¹ of malic acid) within 45 days in wines fermented by either yeast, whereas MLF of higher Baumé juices failed to complete in this time frame, leaving residual malic acid (>1.0 g L⁻¹) (Supp. Tab. 1). The very slow MLF in these conditions is thought to be particular to this juice, perhaps due to limitation of a micronutrient or presence of an inhibitor such as ethanol.

The effect on fermentation dynamics of diluted juices with nutrient addition was also evaluated, this was in an effort to alleviate effects, if any, of micronutrient dilution. Additions were made at an industry standard rate, as recommended by the manufacturer (200 mg L⁻¹) and also at a higher rate (400 mg L⁻¹). The addition of nutrient had little to no impact on AF duration by Lalvin EC1118TM in any juice (Supplementary Table 1A), however, fermentations by Lalvin R2TM, were up to 76 hours (26%) shorter, for instance in 13.5 Bé juice (Fig. 3). Surprisingly, increasing the dose of nutrient addition (from 200 to 400 mg L⁻¹) did not result in consistent differences in alcoholic fermentation, except in a single condition with13.5 Bé juices with Lalvin R2TM reduced fermentation by 76 hours in comparison to 52 hours when only 200mg L⁻¹ of nutrient was added and malolactic acid bacteria (MLB) were present. The presence of MLB also had little to no effect on AF duration (Fig. 3, Supplementary Table 1A).

The addition of nutrient shortened MLF in some instances. For example, juice diluted to 13.5 Bé with 200 or 400 mg L⁻¹ of nutrient and with AF undertaken by Lalvin EC1118TM completed MLF in 47 hours less (4.7% reduction) than when no nutrient was added (Supplementary Table 1B).

3.2 Dilution and nutrient addition changed the chemical composition of wines

The effect of juice dilution on volatile compounds and major yeast metabolites of the resulting wines that were not inoculated for malolactic fermentation was examined. This wine set was chosen

since malolactic fermentation was not complete in the complete set of wines inoculated with lactic acid bacteria. Similar to other studies (Schelezki et al., 2020; Schelezki, Suklje, et al., 2018), the dilution of juices modified the final concentrations of many compounds. Of the 38 volatile compounds analysed, 22 were significantly different to the control in at least three treatments (Table 1) with 19 influenced by dilution and 17 by nutrient addition. One treatment (juice diluted to 13.5 Bé and fermented with Lalvin R2) altered the abundance of 15 volatile compounds. In almost all cases, dilution of juices reduced the concentration of volatiles, presumably by dilution of juicederived precursors that arise from major metabolic pathways such as glycolysis. This outcome is similar to that seen by (Schelezki et al., 2020) where many compounds were reported to decrease upon addition of water to Shiraz juice prior to fermentation.

2-Phenylethanol, described as contributing aromas of rose, honey and spice, was detected in all fermentations above its aroma threshold of 14 mg L⁻¹ (Ferreira, Lopez, & Cacho, 2000), and with almost all dilutions was significantly reduced (70 - 49% or -1.44 to -2.02 Fold change (FC)). Furthermore, its ester, 2-phenylethyl acetate was also reduced with dilution (62 - 19% or -1.62 to - 5.31 FC). In undiluted fermentations, isoamyl alcohol and, in fermentations conducted with Lalvin R2TM, its ester, isoamyl acetate were also detected above their aroma thresholds. Isoamyl acetate could be reduced to below its aroma threshold with any of the trialled dilutions (Fig. 4). Typically, isoamyl acetate was reduced to around 20% of the control (6 ± 3 to 13 ± 9 vs $56 \pm 3 \mu g$ L⁻¹, Supp. Tab. 2). This ester can contribute an overpowering banana aroma, especially in white wines, and as such, a dilution strategy (where grapes have an elevated Bé) may represent an option for desirable flavour modification during winemaking.

Acetic acid was also reduced in diluted fermentations conducted with Lalvin R2TM, for instance, 3.57 mg L⁻¹ was measured in wines using undiluted juice, whilst dilution to 13.5 Bé dramatically reduced acetic acid concentrations to 0.8 mg L⁻¹. Even though the aroma threshold of acetic acid is 200 mg L⁻¹ (Ferreira et al., 2000), given that this compound is one of the most common faults in

wine, even at low concentrations this small difference could be of industrial relevance. The measured values of acetic acid here are also quite low in comparison to what is routinely found in finished wines $(200 - 600 \text{ mg L}^{-1})$, which is likely due to the sterility of juice used and terminal sample collection directly after completion of primary fermentation. The primary alcohols 3 and 4methyl-1-pentanol were significantly reduced in almost all diluted juices. For instance, with the use of Lalvin EC1118TM, 3-methyl-1-pentanol was reduced to 31% (-3.23 FC) of the control at the most extreme dilution (12.5 Bé). Aromatically, 3-methyl-1-pentanol is described as contributing earthy and green notes, whereas for 4-methyl-1-pentanol its main descriptor is 'nutty', however their aroma detection thresholds are near 500 and 50,000 μ g L⁻¹, respectively (Moreno, Zea, Moyano, & Medina, 2005), many magnitudes above that detected here. If considering these compounds individually we would expect the contribution here to wine aroma to be minimal. It is however widely accepted that many subtle changes in volatile components could result in detectable differences in overall wine aroma, and the individual effects of compounds on the sensory attributes of wine can be complicated by many factors such as the interaction with other wine compounds (Escudero, Campo, Fariña, Cacho, & Ferreira, 2007; Escudero, Gogorza, Melús, Ortín, Cacho, & Ferreira, 2004; Voilley, Lamer, Dubois, & Feuillat, 1990). Ethyl acetate was also commonly reduced in wines made from diluted juices with either yeast, whereas many more compounds were detected as decreased in diluted juices fermented with Lalvin R2TM with no additional complex nutrient, i.e., butanoic acid, ethyl butanoate, 2-methyl-4-vinylphenol, ethyl decanoate, isobutyl acetate, benzyl alcohol and hexyl acetate. The single volatile that increased with dilution of juice in this analysis was methionol (sweet potato aroma), but was only significant for the dilution to 14.5 Bé and with the use of Lalvin $R2^{TM}$.

Some major yeast metabolites were also affected by juice dilution (Supp. Tab. 2 - 4). As expected these decreased in concentration in proportion to juice dilution, for example ratios of malic and succinic acid, glycerol and ethanol decreased (ranging from 0.92 to 0.67, Supp. Tab. 4) to very similar ratios to that of juice dilution (14.5–12.5 Bé being 0.89–0.76; juice:water). This confirms

the expectation that the major determinate of the final concentrations of these compounds is the initial concentration of sugars in juice. Only the concentration of acetaldehyde increased when juices were diluted to 13.5 or 14.5 Bé and fermented by Lalvin R2TM (167 and 197% respectively). Pyruvate decarboxylase forms acetaldehyde from pyruvate in the latter stages of glycolysis and then alcohol dehydrogenase reduces it to ethanol (Pronk, Yde Steenema, & Van Dijken, 1996). This reaction importantly regenerates NAD⁺ from NADH. The accumulation of acetaldehyde is influenced by the expression and subsequent activity of alcohol dehydrogenases and particularly by the availability of its cofactor, NADH (Xu, Bao, et al., 2019; Xu, Niu, Liu, & Li, 2019). Transient accumulation of acetaldehyde has also been linked to decreased activity of NADP-dependent acetaldehyde dehydrogenase, which converts acetaldehyde to acetate (Remize, Andrieu, & Dequin, 2000). This may also explain the reduction in acetic acid accumulation in the present study with fermentation by Lalvin R2TM, especially as it is reduced beyond that expected from dilution alone (at 13.5 Bé reduced to 28% and 12.5 Bé to 22% (-3.54 and -4.45 FC) of undiluted juice fermentations, Table 1). Perhaps this indicates that the cumulative effect of juice dilution is a reduction of the activity of alcohol dehydrogenase and/or acetaldehyde dehydrogenase, through modification of the NAD⁺/H or NADP/H pools. Dilution of juices is expected to change the external osmolarity that yeast experience at the beginning of fermentation, and it is well documented that many metabolic processes are affected (Blomberg & Adler, 1992; Varela & Mager, 1996). These minor adjustments of redox cofactors may reflect how the cell achieves balance under these different initial osmotic conditions and results in changes to compound concentrations, such as acetaldehyde and acetic acid reported here. Interestingly, glycerol, the main compound involved in balancing redox factors in response to osmotic stress, is relatively unaffected, only reducing in proportion to juice dilution (Supp. Tab. 4).

We were also particularly interested to see if complex nutrient addition could recover volatile concentrations to those similar to undiluted juices, supposedly by re-supplying diluted precursors. Of the volatile compounds that were significantly different with addition of nutrient, the vast

majority were increased (44 from 56 data points, Table 1), however these rarely recovered the concentration found in undiluted juices. In some conditions, ethyl lactate could be recovered (Supp. Fig 1). Compounds found to increase with the addition of nutrient in more than one condition included 3 and 4-methyl-1-pentanol (up to 129%), butanoic acid (up to 166%), ethyl butanoate (up to 120%), hexanoic acid (up to 141%) and octanoic acid (up to 346%), ethyl lactate (up to 131%) and isobutyric acid (up to 168%; Table 1). Interestingly the occurrence of fatty acids, hexanoic and octanoic acid was unaffected by juice dilution, but consistently increased with nutrient addition (octanoic: 215–346%, hexanoic: 125–141%). This is akin to that seen by other studies (Rollero et al., 2015; Torrea, Varela, Ugliano, Ancin-Azpilicueta, Leigh Francis, & Henschke, 2011). Similarly, the fatty acid, butanoic acid, also increased with addition of nutrients, however in contrast to hexanoic and octanoic acids, in wines fermented by Lalvin R2TM, dilution reduced butanoic acid. Torrea and colleagues (2003) suggest an increase in medium chain fatty acids could simply be due to a relative increase in fatty acid synthesis due to nitrogen supplementation. Fatty acids are produced during fermentation by the fatty acid synthase (FAS) complex from acetyl-CoA and malonyl-CoA during lipid synthesis (Marchesini & Poirier, 2003; Taylor & Kirsop, 1977) with the main source of acetyl CoA during anaerobiosis being acetic acid (Chen, Siewers, & Nielsen, 2012). A number of factors could influence the activity of the enzymes involved and availability of acetyl-CoA in the cytosol such as the supply of cofactors like NADPH (Bloem, Sanchez, Dequin, & Camarasa, 2016; Sheng & Feng, 2015) and availability of nutrients (Chen et al., 2012). The mechanism leading to accumulation of medium chain fatty acids under these conditions is still debated but likely involves premature release from the FAS complex due to feedback inhibition by saturated fatty acids and/or an increase in the fatty acid synthetic pathway (Duffour, Malcorps, & Silcock, 2003; Furukawa, Yamada, Mizoguchi, & Hara, 2003; Saerens, Delvaux, Verstrepen, Van Dijck, Thevelein, & Delvaux, 2008). Perhaps saturated fatty acids from the complex nutrient contributed to this release of medium chain fatty acids. These commercial preparations commonly contain inactivated yeast and as such have a component of fatty acids along with amino acids,

peptides, proteins, polysaccharides, nucleotides, vitamins (thiamine, biotin, pantothenic acid) and minerals (magnesium and zinc) (Lallemand, 2019; Pozo-Bayón, Andújar-Ortiz, & Moreno-Arribas, 2009). However, yeasts for this purpose are grown with plentiful oxygen, and thus saturated fatty acids should far exceed the concentration of non-saturated fatty acids, thus reducing the possibility of feedback inhibition of the FAS complex. Changes to the redox status of yeast have also been shown to affect volatiles produced by yeast (Bloem et al., 2016; Fariña, Medina, Urruty, Boido, Dellacassa, & Carrau, 2012). Of particular relevance to this study, Bloem and colleagues (2016) report decreased accumulation of medium chain fatty acids (hexanoic and octanoic) during increased demand for NADPH or NADH. As hexanoic, octanoic and butanoic acids were detected many magnitudes above their aroma threshold (hexanoic: 420 μ g L⁻¹ (Guth, 1997), octanoic: 500 μ g L⁻¹ and butanoic: 173 μ g L⁻¹ (Ferreira et al., 2000)), we expect these difference would translate to a sensorial difference. This group of compounds is commonly described as sweaty and cheesy. The presence of fatty acids have also been shown to translate to increases in their fatty acid ethyl ester, for instance ethyl hexanoate and ethyl butanoate (Saerens et al., 2008; Saerens et al., 2006). In this study, the sensorially desirable esters, ethyl lactate and ethyl butanoate, increased with the addition of nutrient (up to 131 and 120%, respectively in wines fermented by Lalvin R2TM). Whilst ethyl lactate is described as fruity and ethyl butanoate as floral, fruity, and strawberry like, the increases found in this study were below their aroma thresholds. Exogenously added amino acids have been suggested to be direct precursors of esters, however studies report variable effects of changes in nutrition upon the ester composition of wine, which may reflect changes in juice composition, yeast strain and amount and timing of additions (Hernández-Orte, Ibarz, Cacho, & Ferreira, 2005; Miller, Wolff, Bisson, & Ebeler, 2007; Sumby, Grbin, & Jiranek, 2010; Torrea et al., 2011).

Both 3 and 4-methyl-1-pentanol increased with the addition of nutrient in the order of 9-29%, in comparison to wine made from the juice of the same Bé. The most consistent increases of these compounds occurred with addition of 400 mg L⁻¹ nutrient, however the magnitude of increases was always well below that of the effect of the initial dilution, thus not resulting in full recovery of reduced volatiles caused by dilution. An increase in these compounds may simply reflect an increase in flux through glycolysis and/or fatty acid synthesis as the 2-keto acid precursors for their formation might be originally derived from pyruvate. This has been shown possible with synthetic pathways built from a combination of yeast and bacterial genes with the goal of efficient production of these compounds for biofuel (Zhang, Sawaya, Eisenberg, & Liao, 2008). This is supported since the Saccharomyces cerevisiae enzyme Adh6p, an alcohol dehydrogenase with a strict specificity for NADPH, is capable of completing the final step in formation of methyl pentanols (Zhang et al., 2008). Other aliphatic alcohols can be formed by yeast via the Ehrlich pathway, however these are limited to 5-carbon chains as determined by amino acid precursors (Hazelwood, Daran, van Maris, Pronk, & Dickinson, 2008). 2-Methyl-4-vinylphenol, methyl octanoate, methyl decanoate, acetic acid and ethyl acetate and methionol were found to decrease with the addition of nutrient in selected conditions (Table 1), with methionol being previously reported to decrease with exogenous additions of nitrogen (ca. 70%; Hernández-Orte et al., 2005).

Few differences in major metabolites were detected with added nutrient (Supp. Tab. 4). The most prominent, as with dilution, was an increase of acetaldehyde. Whether this is simply a reflection of increased flux through the glycolytic pathway or accumulation due to reduced availability of cofactors to drive the activity of alcohol dehydrogenases remains to be proven. Acetaldehyde is generally regarded as undesirable when occurring above 100-125 mg L⁻¹ (Zoecklein, 1995), as occurred in this study (120-330 mg L⁻¹).

Principal Component Analysis of measured volatiles highlighted the interaction between dilution and yeast strain, with the effect of both of these variables on wine volatile compound composition

being explained by both of the first 2 principal components (Fig. 5). Wines made with either yeast and from diluted juices were clearly separated, with wines made with Lalvin EC1118TM located more towards the right and the top of the score plot (i.e. they had more positive PC1 and PC2 values) compared to the comparable juices fermented with Lalvin R2TM (Fig. 5A). The clear separation of these yeasts supports what is widely known in the winemaking industry as Lalvin R2TM can make a significant contribution to wine aroma, thereby it is marketed as "aromatic", whereas Lalvin EC1118TM is considered "neutral". The Lalvin EC1118TM wines were associated with higher concentrations of methyl esters and the straight chain fatty acids hexanoic and octanoic acid (Fig. 5B). In contrast, wines fermented with Lalvin R2TM had higher concentrations of branched-chain acids and alcohols, and their associated esters (Fig. 5B). Wines also grouped according to their juice dilution with higher Bé cultures being located toward the left and top of the plot compared to those with lower Bé (Fig. 5A). The undiluted wines were found to have higher concentrations of a number of ethyl and acetate esters, as well as benzyl and phenylethyl alcohol, compared to the diluted wines which were located at the opposite quarter of the plot, suggesting they have lower concentrations of these compounds due to dilution of the must (Fig. 5). No clear trend appears to be associated with nutrient additions, reflecting the differential effects depending upon the compound.

4. Conclusions

In this study juice dilution does not impede microbial fermentation, but instead results in reduction of both alcoholic and malolactic fermentation duration and changes to the chemical composition of wines. Nutrient addition was also effective in shortening fermentation duration by Lalvin R2TM by up to 26%. These impacts are of great interest to the wine industry, in particular shortened alcoholic fermentation duration reported here as a reduction of up to 42% (or 28% when considering dilutions to 13.5 Bé or above in accordance with Australian standards). Thus use of juice dilution or addition of nutrient could allow more efficient use of often-limited tank space since turnover would be more

rapid. The concentrations of 22 volatile compounds were significantly different in three or more treatments, with a single treatment resulting in modifications to as many as 15 different volatile compounds. Even if these individually are not above their aroma threshold values, they may act in concert to result in global changes to wine aroma, an outcome of great interest to winemakers. Compounds that were significantly affected in more than 3 treatments by either dilution or nutrient addition and detected above their aroma thresholds were isoamyl acetate, isoamyl alcohol, 2phenylethanol, methionol and hexanoic, butanoic and octanoic acids. Isoamyl acetate and isoamyl alcohol (banana aroma) and 2-phenylethanol (rose) were reduced by dilution, but the effect upon methionol (sweet potato aroma) varied depending on the treatment. Furthermore, the addition of complex organic nutrient, irrespective of dilution rate, increased medium chain fatty acids (hexanoic, butanoic and octanoic characterised by sweaty, cheesy and rancid aromas). Sensory studies would be of great benefit to determine which of these impacts result in wines that are detectably different to consumers, given the large quantity of changes detected in this study, we suspect this likely. Further studies should examine the impact of juice dilution on an industrial scale and when other wine processing methods are utilised, for instance with the purposeful addition of oxygen. Depending on the target wine style, these changes may be regarded as a desirable outcome. Winemakers should take into consideration the potential impacts of juice dilution, as well as yeast choice and nutrient addition on both processing efficiencies as well as effect on the aroma and flavour of wine.

398 Acknowledgements

This work was supported by Wine Australia, Adelaide, South Australia (grant number, UA 1803-2.1). VJ is supported by The Australian Research Council Training Centre for Innovative Wine Production (www.ARCwinecentre.org.au; project number IC170100008), which is funded by the Australian Government with additional support from Wine Australia and industry partners. The University of Adelaide is a member of the Wine Innovation Cluster in Adelaide (http://www.thewaite.org/waite-partners/wine-innovation-cluster/). We also thank Mr Nick van Holst Pellekaan and Dr Jin Zhang for technical assistance during setting up of the fermentations and HPLC analysis and Sue Maffei and Emily Nicholson for assistance with the wine volatile compound analysis. Finally we also thank Lallemand for supply of microbes and complex organic nutrient.

Conflicts of Interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

References

- Bell, S. J., & Henschke, P. A. (2005). Implications of nitrogen nutrition for grapes, fermentation and wine. Australian Journal of Grape and Wine Research, 11(3), 242-295. https://doi.org/10.1111/j.1755-0238.2005.tb00028.x.
- Bloem, A., Sanchez, I., Dequin, S., & Camarasa, C. (2016). Metabolic impact of redox cofactor
 perturbations on the formation of aroma compounds in *Saccharomyces cerevisiae*. *Appl Environ Microbiol*, 82(1), 174-183. https://doi.org/10.1128/AEM.02429-15.
- Boss, P. K., Pearce, A. D., Zhao, Y. J., Nicholson, E. L., Dennis, E. G., & Jeffery, D. W. (2015).
 Potential grape-derived contributions to volatile ester concentrations in wine. *Molecules*, 2005) 7045, 7072, https://doi.org/10.02000/j.j.https://doi.org/10.0000/j.j.https://doi.org/1

20(5), 7845-7873. https://doi.org/10.3390/molecules20057845.

423	Chen, Y., Siewers, V., & Nielsen, J. (2012). Profiling of cytosolic and peroxisomal Acetyl-CoA
4124 2	metabolism in Saccharomyces cerevisiae. PLoS One, 7(8), e42475.
$4^{3}_{4}^{2}_{5}$	https://doi.org/10.1371/journal.pone.0042475.
5 4626 7	Cowey, G. (2017). Making water additions to high sugar must. AWRI Technical Review, 227, 9-12.
4 <u>9</u> 27	Duffour, J., Malcorps, P., & Silcock, P. (2003). Control of Ester Synthesis During Brewery
10 1 428 12	Fermentation. In K. Smart (Ed.), Brewing Yeast Fermentation Performance (pp. 213-233).
12 14329 14	https://doi.org/10.1002/9780470696040.ch21
$^{15}_{430}$	Escudero, A., Campo, E., Fariña, L., Cacho, J., & Ferreira, V. (2007). Analytical characterization of
17 14831 19	the aroma of five premium red wines. insights into the role of odor families and the concept
$20 \\ 432 \\ 2132$	of fruitiness of wines. Journal of Agricultural and Food Chemistry, 55(11), 4501-4510.
22 24333 24	https://doi.org/10.1021/jf0636418.
²⁴⁵ 2634	Etievant, P. X. (1991). Volatile compounds in foods and beverages. In H. Maarse (Ed.), Food
27 2 435 29	science and technology ; 44 (pp. 483-546). New York, N.Y: Marcel Dekker.
3436 31	Ferreira, V., Lopez, R., & Cacho, J. F. (2000). Quantitative determination of the odorants of young
32 3 43 7 34	red wines from different grape varieties. Journal of the Science of Food and Agriculture,
34538 36	80(11), 1659-1667. https://doi.org/Doi 10.1002/1097-0010(20000901)80:11<1659::Aid-
37 439	Jsfa693>3.0.Co;2-6.
39 44040 41	Gomez-Miguez, M. J., Cacho, J. F., Ferreira, V., Vicario, I. M., & Heredia, F. J. (2007). Volatile
42 44 43 1	components of Zalema white wines. Food Chemistry, 100(4), 1464-1473.
44 41542 46	https://doi.org/10.1016/j.foodchem.2005.11.045.
4743 48	Guth, H. (1997). Quantitation and sensory studies of character impact odorants of different white
49 5 1614 51	wine varieties. Journal of Agricultural and Food Chemistry, 45(8), 3027-3032.
54445 53	https://doi.org/DOI 10.1021/jf970280a.
54 545 56	Harbertson, J. F., Mireles, M. S., Harwood, E. D., Weller, K. M., & Ross, C. F. (2009). Chemical
56 5 47 58 59	and sensory effects of saignée, water addition, and extended maceration on high brix must.
60 61 62 63	18

448	American Journal of Enology and Viticulture, 60(4), 450-460.
449 2	https://www.ajevonline.org/content/ajev/60/4/450.full.pdf.
$4^{3}_{4}50$	Hazelwood, L. A., Daran, J. M., van Maris, A. J., Pronk, J. T., & Dickinson, J. R. (2008). The
5 4651 7	Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces
452	cerevisiae metabolism. Appl Environ Microbiol, 74(8), 2259-2266.
10 1453 12	http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation
¹ 4354 14	&list_uids=18281432.
15 455 17	Hernández-Orte, P., Ibarz, M. J., Cacho, J., & Ferreira, V. (2005). Effect of the addition of
14 856 19	ammonium and amino acids to musts of Airen variety on aromatic composition and sensory
$20 \\ 457 \\ 21 \\ 57$	properties of the obtained wine. Food Chemistry, 89(2), 163-174.
22 2 435 8 24	https://doi.org/https://doi.org/10.1016/j.foodchem.2004.02.021.
2459 26	Hranilovic, A., Li, S., Boss, P. K., Bindon, K., Ristic, R., Grbin, P. R., Van der Westhuizen T., &
27 2 460 29	Jiranek, V. (2018). Chemical and sensory profiling of Shiraz wines co-fermented with
3461 31	commercial non-Saccharomyces inocula. Australian Journal of Grape and Wine Research,
32 34562 34	24(2), 166-180. https://doi.org/10.1111/ajgw.12320.
34563 36	Jiang, J., Sumby, K. M., Sundstrom, J. F., Grbin, P. R., & Jiranek, V. (2018). Directed evolution of
37 <u>46</u> 4	Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine
39 4 4065 41	environment. Food Microbiol, 73, 150-159. https://doi.org/10.1016/j.fm.2018.01.005.
42_{44}	Lallemand. (2019). Fermaid O Natural Yeast Derived Nutrient. Retrieved from:
44 4 95 7 46	https://catalogapp.lallemandwine.com/uploads/nutrient/docs/f4a473f989e161ecc34cae1cedd
$4768 \\ 48$	6058cefb223b2.pdf. Accessed 1.7.20.
49 5469 51	Lin, M. MH., Boss, P. K., Walker, M. E., Sumby, K. M., Grbin, P. R., & Jiranek, V. (2020).
54 7 0 53	Evaluation of indigenous non-Saccharomyces yeasts isolated from a South Australian
54 5571 56	vineyard for their potential as wine starter cultures. International Journal of Food
50 54772 58	Microbiology, 312, 108373.
59 473	https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2019.108373.
61 62 63	19
64	

474 Moreno, J. A., Zea, L., Moyano, L., & Medina, M. (2005). Aroma compounds as markers of the 475 2 4476 5 4677 7 4978 10 4479 12 changes in sherry wines subjected to biological ageing. Food Control, 16(4), 333-338. https://doi.org/10.1016/j.foodcont.2004.03.013. Peinado, R. A., Moreno, J., Bueno, J. E., Moreno, J. A., & Mauricio, J. C. (2004). Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chemistry, 84(4), 585-590. https://doi.org/10.1016/S0308-1480 14 15 1481 17 1482 19 8146(03)00282-6. Petrie, P. R., Teng, B., Smith, P. A., & Bindon, K. (2019). Managing high Baume juice using dilution. Wine and Viticulture Journal, Summer, 36-37. 20 2183 22 2484 24 Pozo-Bayón, M. Á., Andújar-Ortiz, I., & Moreno-Arribas, M. V. (2009). Volatile profile and potential of inactive dry yeast-based winemaking additives to modify the volatile 2485 26 27 2486 29 composition of wines. Journal of the Science of Food and Agriculture, 89(10), 1665-1673. https://doi.org/10.1002/jsfa.3638. 3487 31 32 3488 34 Pronk, J. T., Yde Steenema, H., & Van Dijken, J. P. (1996). Pyruvate Metabolism in Saccharomyces cerevisiae. Yeast, 12(16), 1607-1633. https://doi.org/10.1002/(sici)1097-34789 36 0061(199612)12:16<1607::Aid-yea70>3.0.Co;2-4. 373490Remize, F., Andrieu, E., & Dequin, S. (2000). Engineering of the pyruvate dehydrogenase bypass in 39 4491 41 42 43 43 44 44 45 3 46 Saccharomyces cerevisiae: role of the cytosolic $Mg(^{2+})$ and mitochondrial $K(^{+})$ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Applied and Environmental Microbiology, 66(8), 3151-3159. 449 49 505 51 5496 53 54 557 https://doi.org/10.1128/aem.66.8.3151-3159.2000. Saerens, S. M. G., Delvaux, F., Verstrepen, K. J., Van Dijck, P., Thevelein, J. M., & Delvaux, F. R. (2008). Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Applied and Environmental Microbiology, 74(2), 454-461. 56 5498 https://doi.org/10.1128/aem.01616-07. 58 59 60 61 62 20 63

499	Saerens, S. M. G., Verstrepen, K. J., Van Laere, S. D. M., Voet, A. R. D., Van Dijck, P., Delvaux,
500 2	F. R., & Thevelein, J. M. (2006). The Saccharomyces cerevisiae EHT1 and EEB1 genes
5 ³ / ₄ 01	encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis
5 502 7	capacity. Journal of Biological Chemistry, 281(7), 4446-4456.
5°03	https://doi.org/10.1074/jbc.M512028200.
10 504 12	Salo, P. (1970). Determining the odor thresholds for some compounds in alcoholic beverages.
$12 \\ 1505 \\ 14$	Journal of Food Science, 35(1), 95-99. https://doi.org/10.1111/j.1365-2621.1970.tb12378.x.
15_{1506}	Schelezki, O. J., Antalick, G., Šuklje, K., & Jeffery, D. W. (2020). Pre-fermentation approaches to
17 1 5807 19	producing lower alcohol wines from Cabernet Sauvignon and Shiraz: Implications for wine
$20 \\ 2108$	quality based on chemical and sensory analysis. Food Chemistry, 309, 125698.
22 2509 24	https://doi.org/https://doi.org/10.1016/j.foodchem.2019.125698.
2510 2610	Schelezki, O. J., Smith, P. A., Hranilovic, A., Bindon, K. A., & Jeffery, D. W. (2018). Comparison
27 25811 29	of consecutive harvests versus blending treatments to produce lower alcohol wines from
35012 31	Cabernet Sauvignon grapes: Impact on polysaccharide and tannin content and composition.
32 333 34	Food Chemistry, 244, 50-59. https://doi.org/10.1016/j.foodchem.2017.10.024.
35914 36	Schelezki, O. J., Suklje, K., Boss, P. K., & Jeffery, D. W. (2018). Comparison of consecutive
$37 \\ 38 \\ 38 \\ 39 \\ 39 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30$	harvests versus blending treatments to produce lower alcohol wines from Cabernet
39 45016 41	Sauvignon grapes: Impact on wine volatile composition and sensory properties. Food
42_{43}^{42} 17	Chemistry, 259, 196-206. https://doi.org/10.1016/j.foodchem.2018.03.118.
44 45518 46	Schultz, H. R. (2016). Global climate change, sustainability, and some challenges for grape and
4719 48	wine production. Journal of Wine Economics, 11(1), 181-200.
49 5020 51	https://doi.org/10.1017/jwe.2015.31.
5521 53	Takeoka, G., Buttery, R. G., Flath, R. A., Teranishi, R., Wheeler, E. L., Wieczorek, R. L., &
54 5 <u>5</u> 22	Guentert, M. (1989). Volatile Constituents of Pineapple Ananas Comosus [L.] Merr.). In
56 55723 58	Flavor Chemistry (pp. 223-237): American Chemical Society.
59 60	
61 62 63	21
64 65	

524	Taylor, G. T., & Kirsop, B. H. (1977). The origin of the medium chain length fatty acids in beer.
525 2	Journal of the Institute of Brewing, 83(4), 241-243. https://doi.org/10.1002/j.2050-
$5\frac{3}{4}26$	0416.1977.tb03802.x.
5 527 7	Teng, B., Petrie, P. R., Smith, P. A., & Bindon, K. A. (2020). Comparison of water addition and
5°28	early-harvest strategies to decrease alcohol concentration in Vitis vinifera cv. Shiraz wine:
10 1529	impact on wine phenolics, tannin composition and colour properties. Australian Journal of
12 1530 14	Grape and Wine Research, 26(2), 158-171. https://doi.org/10.1111/ajgw.12430.
15 131	Torrea, D., Fraile, P., Garde, T., & Ancin, C. (2003). Production of volatile compounds in the
17 1 53 2 19	fermentation of chardonnay musts inoculated with two strains of Saccharomyces cerevisiae
$20 \\ 21 \\ 21 \\ 33$	with different nitrogen demands. Food Control, 14(8), 565-571.
22 25334 24	http://www.sciencedirect.com/science/article/B6T6S-482G9D2-
²⁵ 26 26	D/2/d6c8022a366b98e79e0e669480a62401.
27 25836 29	Torrea, D., Varela, C., Ugliano, M., Ancin-Azpilicueta, C., Leigh Francis, I., & Henschke, P. A.
3037 31	(2011). Comparison of inorganic and organic nitrogen supplementation of grape juice –
32 3338	Effect on volatile composition and aroma profile of a Chardonnay wine fermented with
34 3 539 36	Saccharomyces cerevisiae yeast. Food Chemistry, 127(3), 1072-1083.
37 3840	https://doi.org/https://doi.org/10.1016/j.foodchem.2011.01.092.
39 45041 41	Varela, J. C. S., & Mager, W. H. (1996). Response of Saccharomyces cerevisiae to changes in
$42_{43}42$	external osmolarity. Microbiology, 142(4), 721-731.
44 4543 46	https://doi.org/https://doi.org/10.1099/00221287-142-4-721.
45744 48	Walker, M. E., Nguyen, T. D., Liccioli, T., Schmid, F., Kalatzis, N., Sundstrom, J. F., Gardner J.
49 5645	M., & Jiranek, V. (2014). Genome-wide identification of the Fermentome; genes required
51 5746 53	for successful and timely completion of wine-like fermentation by Saccharomyces
54 5547	cerevisiae. BMC Genomics, 15, 17. https://doi.org/10.1186/1471-2164-15-552.
56 57 58	
59 60	
61 62	22
63 64	

Au, A., Bao, M., Niu, C., Wang, J., Liu, C., Zneng, F., Yongxian, L., & Li, Q. (2019). Engineering
the cytosolic NADH availability in lager yeast to improve the aroma profile of beer.
Biotechnology Letters, 41(3), 363-369. https://doi.org/10.1007/s10529-019-02653-x.
Zhang, K., Sawaya, M. R., Eisenberg, D. S., & Liao, J. C. (2008). Expanding metabolism for

0 I' O (2010) E

biosynthesis of nonnatural alcohols. *Proceedings of the National Academy of Sciences*, 105(52), 20653-20658. https://doi.org/10.1073/pnas.0807157106.

Zoecklein, B. W. (1995). Wine analysis and production. Chapman & Hall, New York. https://doiorg.proxy.library.adelaide.edu.au/10.1007/978-1-4757-6967-8

Figure Legends

Figure 1. Sugar catabolism by Lalvin EC1118TM (A) or Lalvin R2TM (B) of 16 Bé juice (\bullet) and juices diluted with water to 14.5 (\blacksquare), 13.5 (\blacktriangle) and 12.5 (\bullet) Bé without the addition of malolactic bacteria or complex organic nutrient. Data presented are the average of triplicate fermentations, with the error bars representing the standard deviation.

Figure 2. Alcoholic fermentation duration of Lalvin EC1118TM (EC) and Lalvin R2TM (R2), with (MLB+) and without (MLB-) malolactic bacteria. 16 Bé juice was either fermented neat (\blacksquare), or diluted with water to 14.5 (\blacksquare), 13.5 (\blacksquare) or 12.5 (\blacksquare) Bé. Data presented is the average of triplicate fermentations and includes standard deviations. *Significantly different to fermentation duration of 16 Bé juice within the set (same yeast and MLB treatment), one way ANOVA, p < 0.05.

Figure 3. Alcoholic fermentation duration of Lalvin R2TM, in juice diluted to 13.5 Bé with (MLB+) and without (MLB-) malolactic bacteria and with the addition of complex organic nutrient at 0 (\Box), 200 (\blacksquare) or 400 (\blacksquare) mg L⁻¹. Data presented is the average of triplicate fermentations and includes standard deviations. Values with different letters are significantly different, one way ANOVA, p < 0.05.

Figure 4. Isoamyl acetate measured in wines (GC-MS) fermented by Lalvin EC1118TM or Lalvin R2TM with no malolactic bacteria added. Wines were made from juice with initial Bé of 16 or diluted with water to 14.5, 13.5 or 12.5. Nutrient was also added to juices; 0 (\Box), 200 (\blacksquare) or 400 (\blacksquare) mg L⁻¹. Dashed line represents aroma threshold of isoamyl acetate (30 µg L⁻¹ (Guth, 1997)). *significantly different to 16.0 Bé with no nutrient added (for the same yeast), one way ANOVA, p < 0.05).

Figure 5. Principal Component Analysis scores (A) and loadings (B) plots of the wines fermented by Lalvin EC1118TM (EC) or Lalvin R2TM (R2) based on the concentration of 39 volatile compounds measured by GC-MS. Wines made from juice with initial Bé of 16, 14.5 (14), 13.5 (13) and 12.5 (12) with the addition of 0, 200 (20) or 400 (40) mg L⁻¹ nutrient. The first two principal components are shown (PC-1 and PC-2).

Table 1. Volatiles detected in final wines that were significantly different (one way ANOVA, p < 0.05) to the matched control (no nutrient added 16 Bé juice fermented by either Lalvin EC1118TM or Lalvin R2 TM with no exogenous nutrient added, or where nutrients were added comparison was to the same Be juice with no nutrients added). Where a significant difference was detected, the fold change difference of treatment to control is shown. Volatiles that increased upon dilution are shaded in green and decreased in red. The symbol (–) denotes no significant difference. Actual values (µg L⁻¹) are shown for undiluted juices. Aroma threshold as reported in ^a(Moreno et al., 2005), ^b(Guth, 1997), ^c(Ferreira et al., 2000), ^d(Peinado, Moreno, Bueno, Moreno, & Mauricio, 2004; Salo, 1970), ^e(Etievant, 1991), ^f(Takeoka et al., 1989), ^g(Gomez-Miguez, Cacho, Ferreira, Vicario, & Heredia, 2007). *Volatiles detected above the aroma threshold in at least one treatment.

Supplementary legends

Supplementary Table 1. (A) Alcoholic fermentation duration of Lalvin EC1118TM and Lalvin R2TM, without (MLB-) and with (MLB+) malolactic bacteria. 16 Bé juice was either fermented neat or diluted with water to 14.5, 13.5 or 12.5 Bé. Data presented is the average of triplicate

fermentations and includes standard deviations. Significantly different data within the set (same yeast and MLB treatment) are highlighted by different letters, one way ANOVA, p < 0.05. (B) Residual malic acid after 1122 hours or hours taken to metabolise all malic acid (< 0.2 g L⁻¹) by Lalvin VP 41TM when co-inoculated with either Lalvin EC1118TM or Lalvin R2TM in juice at 16 Bé or a range of dilutions with either 0, 200 or 400 mg L⁻¹ of complex organic nutrient. Values are the average of triplicates \pm Standard deviations. *Significantly different to no nutrient added (same Bé), Student's t-test, p<0.05.

Supplementary Table 2. Volatile and major yeast metabolic compounds (μ g L⁻¹ \pm standard deviations) detected in final wines for all treatments except for those inoculated with lactic acid bacteria for malolactic fermentation. 'No yeast' controls were also analysed, and in most cases volatiles were below detection limits. Where they were measured the volatiles were many magnitudes lower than in fermented treatments and thus the data is not shown.

Supplementary Table 3. Volatile and major yeast metabolic compounds (volatiles: μ g L⁻¹ and major metabolites g L⁻¹) detected in final wines for all treatments except for those inoculated with lactic acid bacteria for malolactic fermentation. 'No yeast' controls were also analysed, and in most cases volatiles were below detection limits. Where volatiles were measured, they were many magnitudes lower than fermented treatments and thus the data is not shown. Blue highlighted cells indicate those measurements significantly different due to juice dilution (compared to the same yeast at 16 Bé) and orange highlighted cells indicate those significantly different due to nutrient addition (compared to the same yeast and same initial Bé juice). Significant differences were determined by ANOVA and significantly different data are indicated by different letters.

Supplementary Table 4. Ratios of significantly different compounds measured by HPLC. Ratios of compounds detected in wines made from diluted juices are in comparison to 16 Bé juices fermented by the same yeast, or in the case of where nutrient is added, to wines made from juices of the same Bé. Increased ratios are highlighted in green and decreased in red. Results for wines made

622 from 16 Bé juices with no nutrient addition are displayed as actual values (g L^{-1}) \pm SD. Significant 623 differences were determined by ANOVA.

Supplementary Figure 1. Ethyl lactate measured in wines (GC-MS) fermented by Lalvin R2TM with no malolactic bacteria added. Wines were made from juice with initial Bé of 16 or diluted with water to 14.5, 13.5 or 12.5. Nutrient was also added to juices; 0 (\Box), 200 (\blacksquare) or 400 (\blacksquare) mg L⁻¹. Dashed line represents aroma threshold of isoamyl acetate (30 µg L⁻¹ (Guth, 1997)). Significantly different values are labelled with different letters or letter groups (a-d), one way ANOVA, p < 0.05).

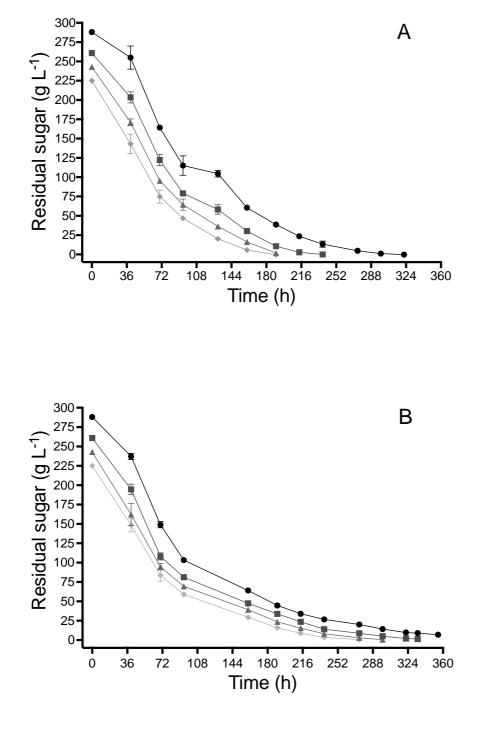


Figure 1. Gardner et al

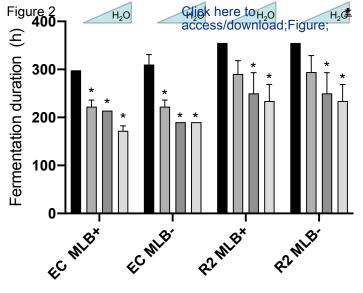


Figure 2. Gardner et al

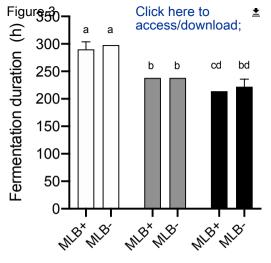


Figure 3. Gardner et al.

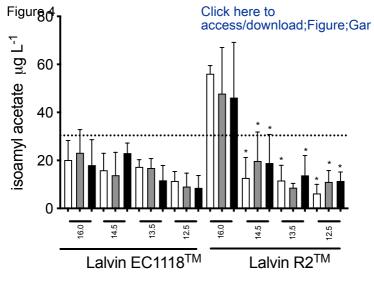


Figure 4. Gardner et al.

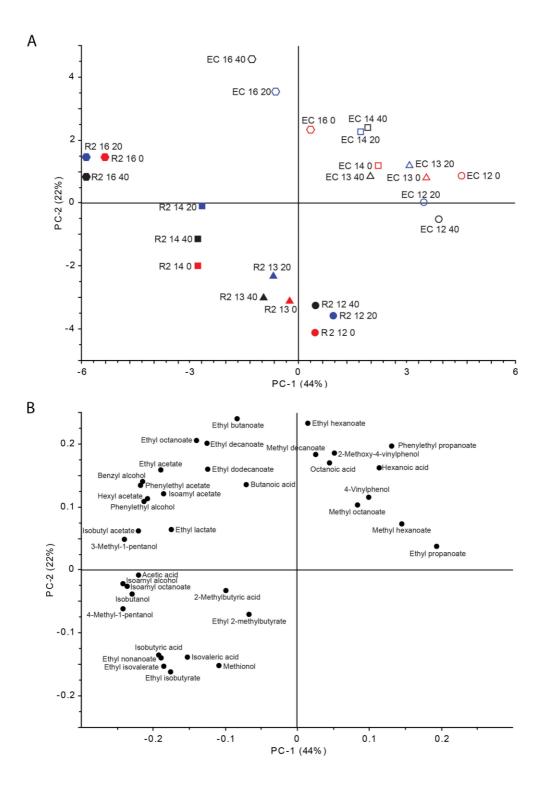


Figure 5. Gardner et al.

Table 1. Gardner et al.

	Baumé	Nutr	3-methyl-1-pentanol	4-methyl-1-pentanol	*hexanoic acid	ethyl acetate	*butanoic acid	2-phenylethyl acetate	ethyl butanoate	*octanoic acid	*2-phenylethanol	2-methyl-4-vinylphenol	ethyl decanoate	ethyl lactate	isobutyl acetate	*methionol	*isoamyl alcohol	methyl decanoate	isobutyric acid	methyl octanoate	acetic acid	benzyl alcohol	hexyl acetate	* isoamyl acetate
Aroma thr (µg L		hold	500ª	50000ª	3000 ^b	7500 ^b	173°	250 ^b	20 ^b	500°	14000 ^c	N/A	200°	14000 ^d	1600 ^e	1000 ^c	30000 ^b	N/A	2300 ^c	200 ^f	2x10 ^{5b}	2x10 ^{5g}	670 ^e	30 ^b
	16 Bé	0	217 ± 16	650 ± 21	6,107 ± 384	1,769 ± 228	895 ± 149	4.8 ± 1.6	6.9 ± 0.8	222 ± 49	171614 ± 17567	2544 ± 787	20 ± 3	3.91 ± 0.24	0.35 ± 0.1	1297 ± 43	145139 ± 13654	$0.65 \\ \pm \\ 0.46$	601 ± 90	5.9 ± 3.54	260 ± 178	37 ± 5	0.34 ± 0.07	20 ± 8
EC1118	14.5 Bé	200 400 0 200 400	1.09 1.24 -1.79	1.11 1.22 -1.45 - 1.11	1.39 1.37 - 1.26	- 1.16 - -		-1.62	- - -	- 3.13 - - 2.30	- -1.44 -	-1.66 - -	- 1.84 - -	- - -	- - -	- - -	- - -	2.88	- 1.68 -	- - -	- - -	- - -	- - -	- - -
EC	13.5 Bé 12.5 Bé	400 0 200 400 0 200 400	-2.42	-1.79 - - -2.19 -	- 1.36 - 1.41 1.37	-1.28 - - -1.47 -	- - - - -	-2.16	-	2.30 - - - - - - - - - - -	-1.72 - - -2.02	- - -1.61 -	-	-1.25		- - -1.79	-1.23 - - -1.29 -		- - - - -	5.01			-	
	16 Bé	0	282 ± 17	1647 ± 49	5974 ± 1888	1942 [±] 53	1019 ± 244	7.9 ± 0.8	7.7 ± 0.3	258 ± 118	181170 ± 36204	1851 ± 346	24 ± 9	3.89 ± 0.19	0.95 ± 0.1	1992 ± 113	177126 ± 17640	$0.7 \\ \pm \\ 0.56$	1401 ± 297	7.93 ± 6.39	3577 ± 467	47 ± 3	0.8 ± 0.1	56 ± 3
n R2	14.5 Bé	200 400 0 200	1.13 1.14 -1.26	1.07 - -1.22 -	- 1.25 - 1.31	-1.18	1.23 -1.63	-2.00	-1.47 1.13		-	-1.54	- - -		-2.25 1.29	2.13 -1.68	- - -	-2.48 -2.06	1.34 -	-3.36	- - -	- -1.29	-2.10	-4.43 -
Lalvin R2	13.5 Bé	400 0 200 400	1.07 -1.47 -	-1.57	1.36 - - 1.29	-1.19 -	1.62 -1.36 - 1.50	-3.60	-1.53 1.15 1.20	2.57 - -	-1.51	-1.59 -	-1.32 -1.24	1.27 - 1.29	-2.46	-2.22 - -	-1.21	-3.58	- - -	-3.04	-2.67 -3.54	-1.63	-3.41	-4.83
	12.5 Bé	0 200 400	-2.31 - 1.29	-2.08 1.20 1.17		-1.33 -1.28 -1.17	-1.44	-5.31	-1.68	-	-1.85 -	-	-1.48 -	- -	-2.76	-	-1.24	-	- - -		-4.45	-1.93	-4.89 - -	-8.96 - -

The effect of grape juice dilution on oenological fermentation.

Jennifer Margaret Gardner^{1, §*}, Michelle Elisabeth Walker^{1*}, Paul Kenneth Boss,^{2,3} and Vladimir Jiranek^{1,3}

Author Declaration:

All authors agree that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

We wish to confirm that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

We confirm that the manuscript has been read and approved by all named authors, all have contributed significantly and that there are no other persons who satisfied the criteria for authorship but are not listed.

We further confirm that the order of authors listed in the manuscript has been approved by all of us.

We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.

We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). She is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address, which is accessible by the Corresponding Author.

CRediT author statement

Jennifer Gardner: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing - Original Draft. Michelle Walker: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing - Review & Editing. Paul Boss: Methodology, Investigation, Writing - Review & Editing. Vladimir Jiranek: Conceptualization, Resources, Writing - Review & Editing, Supervision, Funding acquisition.

The effect of grape juice dilution and complex nutrient addition on oenological fermentation and wine chemical composition

Jennifer Margaret Gardner^{1, §*}, Michelle Elisabeth Walker^{1*}, Paul Kenneth Boss,^{2,3} and Vladimir Jiranek^{1,3}

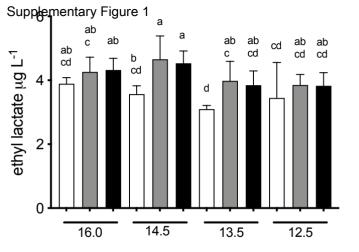
Author Declaration:

All authors agree that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

We wish to confirm that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

We confirm that the manuscript has been read and approved by all named authors, all have contributed significantly and that there are no other persons who satisfied the criteria for authorship but are not listed.

We further confirm that the order of authors listed in the manuscript has been approved by all of us.


We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In so doing we confirm that we have followed the regulations of our institutions concerning intellectual property.

We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). She is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs. We confirm that we have provided a current, correct email address,

which is accessible by the Corresponding Author.

CRediT author statement

Jennifer Gardner: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing - Original Draft. Michelle Walker: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing - Review & Editing. Paul Boss: Methodology, Investigation, Writing - Review & Editing. Vladimir Jiranek: Conceptualization, Resources, Writing - Review & Editing, Supervision, Funding acquisition.

Supplementary Figure 1. Gardner et al.

Supplementary Table 1. Gardner et al.

(A)

	Nutrient	-MI	LB	+M	ILB
	(mg L ⁻¹)	Lalvin EC1118 TM	Lalvin R2 TM	Lalvin EC1118 TM	Lalvin R2 TM
	0	$298\pm0~^a$	360 ± 0 ^a	306 ± 14 a	360 ± 0 ^a
16 Bé	200	$298\pm0~^{\rm a}$	$355\pm0~^a$	$290\pm28~^{\rm a}$	357 ± 3 ^a
	400	$309\pm42~^{\rm a}$	$355\pm0~^{\rm a}$	$306\pm43~^{\rm a}$	355 ± 0 ^a
	0	$238\pm0^{\ b}$	$322\pm0~^{b}$	$238\pm0^{\ b}$	322 ± 0 ^b
14.5 Bé	200	214 ± 0 $^{\rm c}$	$274\pm0~^{\rm d}$	$214\pm0~^{c}$	$274\pm0~^{\rm d}$
	400	214 ± 0 $^{\rm c}$	$274\pm0~^{\rm d}$	$214\pm0\ensuremath{^{\circ}}$ $^{\circ}$	$274\pm0~^{\rm d}$
	0	$198 \pm 14 \ ^{cd}$	$298\pm0~^{\rm c}$	$214\pm0~^{c}$	$290\pm14\ ^{\rm c}$
13.5 Bé	200	$190\pm0~^{d}$	$238\pm0~^{e}$	$214\pm0~^{c}$	$238\pm0~^{e}$
	400	$190\pm0~^{d}$	$222\pm14~^{\rm ef}$	$214\pm0~^{c}$	$214\pm0~^{\rm f}$
	0	$190\pm0~^{d}$	262 ± 21^{d}	152 ± 7 ^d	262 ± 21 ^d
12.5 Bé	200	$190\pm0~^{d}$	$214\pm0~{\rm f}$	$160\pm0~^{\rm d}$	$214\pm0~^{\rm f}$
	400	198 ± 14 ^{cd}	$190\pm0~^{g}$	$152\pm7~^{\rm d}$	$214\pm0~^{\rm f}$

(B)

	Nutrient (mg L ⁻¹)	Lalvin EC1118™	Lalvin R2 TM]
	0	2.3 ± 0.1	2.2 ± 0.1	Res
16 Bé	200	2.4 ± 0.1	$2.2\ \pm 0.1$	Residual malic acid (g L ⁻¹)
	400	2.3 ± 0.1	$2.2\ \pm 0.1$	mali
	0	2.1 ± 0.1	$1.7\ \pm 0.2$	c aci
14.5 Bé	200	$1.4\pm0.1\ast$	$1.4\ \pm 0.4$	d (g I
	400	1.0 ± 0.9	$1.4\ \pm 0.4$	L1)
	0	1002 ± 0	1066 ± 96	
13.5 Bé	200	$955\pm0^{\ast}$	$955\ \pm 0$	
	400	$955 \pm 0*$	$955\ \pm 0$	Time (h)
	0	917 ± 70	874 ± 70	(h)
12.5 Bé	200	834 ± 0	834 ± 0	
	400	834 ± 0	834 ± 0	

μg L ⁻¹	EC1118 16Bé N0 MLF-	EC1118 16Bé N200 MLF-	EC1118 16Bé N400 MLF-	EC1118 14.5Bé N0 MLF-	EC1118 14.5Bé N200 MLF-	EC1118 14.5Bé N400 MLF-	EC1118 13.5Bé N0 MLF-	EC1118 13.5Bé N200 MLF-
Ethyl acetate	1768.95±228.13	1980.56±284.26	2043.34±146.59	1603.35±188.62	1744.16±70.35	1587.54±166.87	1379.49±61.82	1313.78±197.82
Ethyl propanoate	12.73±0.84	11.86±1.92	14.16±1.24	21.01±13.13	20.89±14.62	19.43±4.75	22.7±12.81	16.98±4.19
Ethyl isobutyrate	0.42±0.17	0.42±0.1	0.49±0.13	0.41±0.03	0.45±0.03	0.47±0.16	0.42±0.04	0.55±0.12
Isobutyl acetate	0.35±0.09	0.4±0.08	0.46±0.02	0.3±0.09	0.3±0.06	0.34±0.11	0.27±0.04	0.3±0.03
Ethyl butanoate	6.95±0.82	7.28±0.59	7.58±0.63	6.82±1.67	7.44±1.86	7.67±1.14	6.35±0.91	6.35±0.82
Ethyl 2-methylbutyrate	1.35±0.54	1.29±0.3	1.51±0.52	1.2±0.09	1.25±0.09	1.38±0.49	1.1±0.14	1.54±0.41
Ethyl isovalerate	0.1±0.03	0.09±0.02	0.11±0.03	0.08±0.01	0.08±0.01	0.09±0.03	0.08±0.01	0.1±0.03
Isobutanol	125698.23±53324.07	126726.05±69190.63	142155.4±70298.6	114285.41±52723.51	119149.25±79073.22	107815.65±58647.55	72809.37±5711.94	102496.48±55216.01
Isoamyl acetate	20.15±8.12	23.14±9.72	18.03±10.58	15.93±7.04	13.81±9.58	23.01±4.24	17.28±2.99	16.83±3.91
Methyl hexanoate	4.15±2.54	3.14±1.68	8.66±7.51	6.71±8.45	5.76±7.38	7.6±5.4	6.1±4.71	9.95±2.6
Hexyl acetate	0.34±0.07	0.44±0.17	0.38±0.1	0.3±0.11	0.35±0.09	0.29±0.04	0.28±0.09	0.26±0.09
4-Methyl-1-pentanol	649.6±21.64	722.02±37.93	790.12±14.93	447.2±9.04	473.06±9.96	495.03±23.85	363.61±5.55	368.98±16.36
3-Methyl-1-pentanol	217.43±16.3	237.48±22.86	268.57±17.62	121.68±5.33	115.04±3.38	130.52±9.03	89.73±3.43	90.07±15.27
Ethyl lactate	3.91±0.24	4.11±0.13	4.04±0.38	3.86±0.37	3.74±0.3	3.96±0.45	3.43±0.32	3.61±0.21
Methyl octanoate	5.9±3.54	5.11±2.51	10.7±7.96	5.39±4.55	4.87±4.03	7.89±5.24	7.22±7.1	11.95±2.74
Acetic acid	260.52±178.21	303.34±319.91	198.02±108.03	148.26±118.28	193.05±141.69	71.51±17.55	116.21±51.44	111.44±35.15
Ethyl nonanoate	0.01±0	0.01±0	0.01±0	0.01±0	0.01±0	0.01±0	0.01±0	0.01±0
Isobutyric acid	601.36±90.17	768.11±131.04	1010.84±207.19	700.81±192.6	798.26±189.21	764.09±261.11	698.22±70.03	741.69±153.17
Methyl decanoate	0.65±0.46	0.66±0.4	1.88±1.7	0.5±0.36	0.5±0.31	0.74±0.52	0.53±0.42	0.88±0.19
Butanoic acid	894.96±148.87	1024.72±176.33	1191.96±133.89	854.41±379.16	1032.4±66.82	997.52±153.55	784.94±65.09	919.23±64.29
Ethyl decanoate	20.38±3.33	27.18±7.16	37.51±17.06	15.01±5.77	19.04±9.05	15.13±3.2	12.05±4.42	12.2±3.04
Isoamyl octanoate	0.02±0	0.02±0	0.02±0.01	0.01±0	0.01±0.01	0.01±0	0.01±0	0.01±0
Isovaleric acid	2228.51±348.56	2438.44±432.24	3020.47±346.93	2327.57±1407.94	2293.53±717.66	2346.64±158.01	1809.91±608.65	2012.49±121.89
2-Methylbutanoic acid	2795.75±548.33	2961.35±592.74	3548.08±403.09	2832.92±1518.63	2864.7±831.53	2931.88±279.69	2106.96±628.69	2455.78±132.22
Methionol	1297.26±43.38	1546.55±238.25	1516.77±344.78	1166.77±343.26	1367.15±374.39	1157.83±137.46	1064.46±218.79	1251.15±179.04
2-Phenylethyl acetate	4.83±1.64	5.89±1.44	6.01±1.13	2.98±0.93	3.87±0.98	4.03±0.72	2.24±1.04	2.45±0.73
Ethyl dodecanoate	0.12±0.01	0.16±0.03	0.21±0.1	0.1±0.03	0.11±0.05	0.1±0.01	0.09±0.03	0.09±0.03
Hexanoic acid	6107.29±384.45	8509.74±587.18	8339.73±1358.46	6905.94±238.16	8682.74±1594.91	8617.89±547.51	6863.48±442.99	8360.89±518.06
Benzyl alcohol	37.02±4.86	38.51±4.93	38.88±5.6	29.38±6.98	32.3±8.07	31.37±3.79	29±5.99	29.38±2.53
2-Phenylethyl propanoate	0.19±0.04	0.2±0.04	0.22±0.01	0.22±0.06	0.24±0.07	0.29±0.03	0.22±0.02	0.22±0.04
Octanoic Acid	222.21±49.42	499.96±99.2	695.12±382.86	263.23±89.08	511.93±187.57	604.24±137.04	318.7±75.73	444.78±86.82
2-Methoxy-4-vinylphenol	2544.42±787.45	2228.15±348.6	1535.06±149.52	2028.07±591.07	1725.79±647.29	1431.93±492.53	2250.4±484.39	1898.33±242.44
4-vinylphenol	4102.24±1418.58	4055.88±919.13	3310.32±676.09	3522.71±1096.67	3773.27±1381.07	3608.69±867.58	4132.05±1083.36	4253.17±673.16
Isoamyl alcohol (1/100)	145139.95±13654.68	144590.34±14025.96	143960.98±11148.68	129787.17±19120.85	129635.03±18549.35	132704.76±19779.9	118268.24±16518.57	120678.32±17202.09
Ethyl hexanoate (1/100)	11.48±3.02	11.58±2.77	11.47±3.27	11.81±4.88	12.39±5.06	12.34±3.64	9.8±5.28	10.15±1.98
Ethyl octanoate (1/100)	3.28±1.89	3.45±1.66	3.23±1.35	2.4±0.57	2.82±0.56	2.34±1.08	1.91±0.74	2.33±1.03
Phenylethyl alcohol (1/100)	171614.28±17567.67	180885.68±23730.72	198504.71±33572.19	119530.39±7971.31	123171.42±23395.96	136900.72±6162.4	99590.5±17126.72	102239.13±17127.63
g L ⁻¹	EC1118 16Bé N0 MLF-		EC1118 16Bé N400 MLF-	EC1118 14.5Bé NO MLF-	EC1118 14.5Bé N200 MLF-	EC1118 14.5Bé N400 MLF-		EC1118 13.5Bé N200 MLF-
Malic Acid (HPLC)	3.38±0.05	3.37±0.07	3.36±0.07	3.11±0.05	3.1±0.01	3.16±0.05	2.88±0.03	2.92±0.04
Succinic Acid (HPLC)	2.68±0.11	2.72±0.02	2.8±0.02	2.2±0.1	2.25±0.13	2.31±0.06	1.97±0.1	2.07±0.04
Lactic Acid (HPLC)	1.1±0.14	0.67±0.6	1.13±0.04	0.72±0.63	0.65±0.56	0.74±0.65	0±0	0.36±0.62
Glycerol (HPLC)	7.77±0.01	7.77±0.01	7.79±0.1	6.73±0.05	6.76±0.04	6.81±0.07	6.16±0.15	6.15±0.12
Acetaldehyde (HPLC)	0.33±0.01	0.45±0.04	0.45±0.03	0.27±0.01	0.37±0.02	0.4±0.08	0.21±0.03	0.27±0.03
Ethanol (HPLC)	120.83±0.29	120.95±0.56	119.98±0.95	108.75±1.45	108.18±1.11	107.86±0.49	100.83±0.28	100.17±1.02

Supplementary Table 2. Compounds (± standard deviations) detected in final wines for all treatments except for those inoculated with lactic acid bacteria for malolactic fermentation. The "no yeast controls" were also analysed, in most cases volatiles were below detection limits, where they were measured they were many magnitudes lower than fermented treatments and thus the data is not shown.

21118 13.5Bé N400 MLF-	EC1118 12.5Bé N0 MLF-	EC1118 12.5Bé N200 MLF-	EC1118 12.5Bé N400 MLF-	R2 16Bé N0 MLF-	R2 16Bé N200 MLF-	R2 16Bé N400 MLF-	R2 14.5Bé N0 MLF-	R2 14.5Bé N200 MLF-	R2 14.5Bé N400 MLF
1568.33±133.61	1205.21±56.43	1250.56±52.63	1158.48±31.09	1942.12±53.77	2129.91±257.04	1994.87±151.87	1641.65±133.15	1708.91±260.32	1655.26±244.21
19.01±10.73	18.86±3.77	11.53±2.38	13.12±4.6	7.88±0.73	7.55±0.12	7.22±0.59	8.55±1.43	6.95±4.78	9.01±1.72
0.61±0.19	0.4±0.12	0.38±0.12	0.43±0.16	0.87±0.33	0.8±0.3	0.82±0.3	0.62±0.24	0.61±0.29	0.71±0.23
0.29±0.09	0.28±0.01	0.21±0.06	0.25±0.03	0.95±0.08	1.03±0.05	0.92±0.12	0.42±0.02	0.54±0.1	0.45±0.02
7.1±1.48	5.54±0.46	5±0.36	5.26±0.81	7.76±0.37	7.5±0.14	7.21±0.23	5.29±0.4	5.98±0.18	5.93±0.5
1.63±0.68	0.88±0.31	0.83±0.29	0.97±0.4	1.41±0.56	1.19±0.38	1.27±0.45	1.21±0.5	1.27±0.58	1.33±0.48
0.11±0.05	0.07±0.02	0.06±0.02	0.07±0.03	0.15±0.05	0.13±0.03	0.13±0.04	0.12±0.04	0.13±0.05	0.14±0.04
73651.95±8401.62	66295.94±7509.4	58513.27±4741.69	64253.44±7178.29	247540.7±142527.18	313769.05±118089.39	237953.24±130659.29	194559.8±84559.05	196773.96±78056.01	194353.67±82554.99
11.69±6.22	11.44±3.93	9.08±5.61	8.56±5.15	56.13±3.4	47.82±19.22	46.15±23.04	12.67±8.57	19.8±12.04	18.93±11.93
7.15±8.83	10.49±0.72	1.58±0.89	5.56±4.86	4.15±3.05	2.09±1.13	1.57±0.28	1.31±0.39	1.91±1.18	2.03±1.48
0.31±0.1	0.26±0.06	0.26±0.03	0.21±0.05	0.83±0.1	0.84±0.04	0.73±0.21	0.4±0.13	0.49±0.23	0.42±0.08
390.47±9.9	296.61±32.92	297.64±6.29	296.47±13.24	1647.66±49.25	1760.51±17.89	1720.51±116.86	1354.75±25.4	1385.13±12.14	1444.98±83.83
98.63±2.63	67.27±9.79	66.31±6.29	65.56±5.57	281.55±17.25	317.9±8.22	320.41±23.79	223.64±9.12	241.96±13.39	258.23±20.76
3.49±0.24	3.12±0.46	3±0.16	2.85±0.19	3.89±0.19	4.26±0.46	4.32±0.36	3.57±0.26	4.66±0.73	4.53±0.39
6.39±5.19	11.59±2.06	2.31±0.99	6.03±3.86	7.93±6.39	4.32±2.49	3.52±0.36	2.36±0.79	4.61±0.53	3.02±1.64
136.38±34.79	135.52±65.15	65.56±24.14	58.41±22.14	3577.54±467.55	3720.28±1332.34	4509.36±951.82	3376.53±2631.06	1802.53±1552.1	1262.97±527.08
0.01±0	0.01±0	0.01±0	0.01±0	0.02±0.01	0.01±0	0.02±0.01	0.02±0	0.02±0.01	0.02±0.01
1072.06±410.75	501.28±123.94	676.59±78.96	766.04±128.2	1401±297.78	1403.51±83.35	1880.81±231.93	1079.8±284.21	1149.45±146.28	1357.95±167.97
0.48±0.15	0.77±0.32	0.3±0.09	0.47±0.27	0.7±0.56	0.35±0.21	0.28±0.06	0.34±0.13	0.35±0.11	0.24±0.08
1300.59±404.4	710.18±54.43	859.23±119.3	960.62±80.55	1018.64±244.39	997±45.1	1248.35±187.2	624.25±64.14	797.81±27.46	1008.93±76.64
15.32±7.94	10.88±4.8	15.09±5.58	11.8±5.97	24.33±8.98	21.82±5.97	21.9±8.15	26.4±7.58	19.03±3.48	15.42±2.73
0.01±0.01	0.01±0	0.02±0.01	0.01±0	0.03±0.01	0.04±0.01	0.04±0.01	0.03±0	0.04±0	0.03±0.01
2598.28±1164.6	1390.76±83	1513.8±153.63	1806.54±270.41	2859.32±749.76	2859.86±240.62	3490.77±733.98	2477.73±341.56	2658.41±409.66	3436.71±380.5
3137.64±1446.78	1529.9±81.17	1674.71±144.82	1974.25±269.27	2640.71±679.41	2562.15±302.89	3199.1±762.2	2221.78±292.6	2358.32±481.97	3072.23±268.73
1120.01±191.07	723.3±157.03	776.11±153.28	745.96±231.42	1991.76±113.23	1379.25±240.34	1134.22±273.04	4247.53±1437.01	2528.13±1119.24	1916.6±739.24
2.99±1.03	1.69±0.59	2.07±0.43	1.82±0.44	7.9±0.84	9±2.18	8.92±1.02	4247.55±1457.01 3.94±1.28	5.81±1.46	5.72±1.97
0.11±0.05	0.09±0.02	0.13±0.02	0.1±0.03	0.14±0.03	0.13±0.02	0.13±0.03	0.15±0.05	0.14±0	0.12±0.02
9327.58±1629.67	6646.72±930.25	9370.06±522.92	9103.97±1827.25	5974.48±1888.83	6126.52±273.99	7453.07±1170	4736.21±78.19	6208.12±715.1	6460.09±138.62
30.36±4.77	24.6±4.44	26.57±6.65	25.25±5.73	47.35±3.07	46.62±7.32	46.4±4.57	36.79±5.4	37.32±3.1	38.04±5.44
0.21±0.05	0.17±0.06	0.14±0.05	0.15±0.04	0.13±0.02	0.1±0.01	0.11±0.02	0.1±0.02	0.13±0.04	0.14±0.04
509.41±320.5	264.74±73.69	538.08±59.44	568.55±152.45	258.25±117.97	298.72±62.54	399.42±40.03	156.35±69.83	541.51±355.49	401.99±84.13
1400.24±490.26	2253.32±431.19	1661.03±214.1	1311.9±352.09	1851.68±346	1761.63±444.81	1561.58±253.17	1202.87±95.23	1743.63±311.75	1177.93±398.07
3911.38±770.25	4057.1±1065.72	4091.55±1012.43	3905.82±671.62	3138±587.95	3559±1163.8	3427.97±761.39	2436.8±263.34	4344.01±1006.38	3582.77±656.98
118709.04±12145.76	112805.12±10786.68	109208.75±11316.3	107728.25±9857.3	177126.62±17640.29	178202.97±15471.91	179763.43±22098.7	160413.7±17426.88	159408.74±12613.05	163663.85±17344.57
9.98±4.75	10.57±3.97	7.89±2.22	6.58±1.46	10.17±0.89	9.42±1.08	8.9±2.31	9.51±2.33	8.89±1.99	8.49±1.04
2.03±0.8	2.45±1.76	2.31±1.13	1.64±0.79	3.41±0.64	3.71±1.08	3.1±1.38	3.37±1.62	2.97±1.03	2.49±0.74
111263.29±18489.68	84947.28±12437.26	92454.09±17194.55	94762.59±18071.24	181170.82±36204.95	184074.43±23929.88	193482.33±60301.19	156057.4±41463.33	155827.85±30786.41	173978.51±31969.46
1118 13.5Bé N400 MLF-	EC1118 12.5Bé N0 MLF-	EC1118 12.5Bé N200 MLF-	EC1118 12.5Bé N400 MLF-	R2 16Bé N0 MLF-	R2 16Bé N200 MLF-	R2 16Bé N400 MLF-	R2 14.5Bé N0 MLF-	R2 14.5Bé N200 MLF-	R2 14.5Bé N400 MLI
2.93±0.04	2.64±0.04	2.66±0.04	2.67±0.05	2.84±0.04	2.81±0.03	2.87±0.05	2.63±0.03	2.6±0.03	2.63±0.02
2.1±0.14	1.8±0.03	1.96±0.02	1.96±0.07	3.22±0.03	3.79±0.58	3.54±0.12	3.03±0.1	2.9±0.01	3.02±0.07
0.7±0.61	0.69±0.6	0.63±0.55	0.29±0.5	1±0.02	0.3±0.51	0.27±0.47	0.65±0.56	0.82±0.03	0.53±0.46
6.22±0.05	5.75±0.03	5.77±0.01	5.73±0.06	7.87±0.04	7.98±0.04	7.98±0.08	7.12±0.06	7.08±0.09	7.11±0.05
						0.11±0.01	0.24±0.07	0.27±0.03	0.24±0.01
0.26±0.02	0.16±0.04	0.23±0.02	0.22±0.03	0.12±0.01	0.15±0.06				

±

R2 13.5Bé N0 MLF-	R2 13.5Bé N200 MLF-	R2 13.5Bé N400 MLF-	R2 12.5Bé N0 MLF-	R2 12.5Bé N200 MLF-	R2 12.5Bé N400 MLF-	NO Yeast 16 Be N0 MLF-	NO Yeast 14.5 Be N0 MLF-	NO Yeast 13.5 Be NO MLF-	NO Yeast 12.5 Be N0 MLF-
1630.23±152.5	1531.15±74.51	1470.44±51.87	1459.07±67.13	1140.58±52.74	1246.44±52.2	89.37±66.58	93.58±87.88	119.35±92.89	114.08±81.59
14.52±4.98	15.2±6.3	15.11±5.73	15.53±9.75	12.45±0.98	13.16±2.52	0.72±0.67	1.27±0.61	0.88±0.72	0.89±0.74
0.76±0.33	0.72±0.28	0.74±0.15	0.89±0.29	0.67±0.17	0.7±0.17	0.01±0.01	0.01±0.01	0.01±0.01	0.01±0.01
0.39±0.09	0.36±0.02	0.37±0.03	0.34±0.02	0.3±0.01	0.25±0.03	0.03±0.01	0.05±0.04	0.06±0.02	0.04±0
5.08±0.43	5.83±0.46	6.09±0.25	4.61±0.58	4.79±0.26	5.21±0.48	0.14±0.14	0.16±0.19	0.21±0.19	0.2±0.17
1.62±0.76	1.54±0.76	1.53±0.32	1.68±0.51	1.33±0.41	1.43±0.37	0±0	0±0	0±0	0.01±0
0.15±0.05	0.14±0.05	0.14±0.02	0.14±0.04	0.13±0.03	0.13±0.03	0±0	0±0	0±0	0±0
137977.49±21045.73	129447.78±14980.08	170366.03±65187.59	212565.18±147448.1	166882.56±91445.01	110906.56±5436.18	465.75±501.93	1327.85±1135.74	257.81±146.18	575.02±411.96
11.63±6.33	8.66±1.77	13.78±8.27	6.26±3.76	11.02±4.75	11.42±3.78	0.41±0.33	0.81±1.01	0.66±0.61	0.78±0.93
7.71±2	5.99±1.5	2.49±1.32	5.53±3.86	3.97±2.57	3.25±1.55	0.03±0.03	0.04±0.02	0.04±0.01	0.03±0.02
0.24±0.08	0.32±0.11	0.25±0.03	0.17±0.08	0.2±0.05	0.23±0.04	0±0	0±0	0±0	0.01±0
1051.02±36.01	1127±59.95	1027.66±86.25	791.25±86.51	952.06±50.04	929.42±56.41	8.24±6.16	9.47±9.14	9.48±5.83	9.96±6.24
191.93±22.66	193.49±6.77	178.27±17.08	121.69±15.4	144.15±3.51	157.01±6.9	1.21±0.92	1.68±1.35	1.5±0.79	1.4±1.09
3.1±0.11	3.98±0.61	3.85±0.44	3.45±1.11	3.85±0.33	3.83±0.41	0.28±0.04	0.27±0.01	0.3±0.03	0.31±0.03
8.92±2.4	7.52±1.6	2.93±1.23	5.48±4.83	4.46±2.93	3.72±1.58	0.01±0.01	0.02±0.01	0.02±0.01	0.01±0.01
1010.99±671.64	598.94±47.43	483.2±437.71	804.82±771.55	333.62±282.57	316.36±246.99	164.47±73	161.27±36.7	111.69±57.94	114.19±29.13
0.01±0	0.02±0	0.02±0	0.01±0	0.01±0	0.01±0	0±0	0±0	0±0	0±0
1237.68±200.91	1427.1±88.21	1533.87±308.74	1197.11±205.93	1249.74±50.5	1459.44±248.47	44.27±39.35	84.29±89.64	32.39±47.24	10.57±18.31
0.72±0.28	0.42±0.02	0.2±0.05	0.36±0.2	0.21±0.09	0.19±0.07	0±0	0.01±0.01	0.01±0	0±0
747.94±57.13	890.82±9.69	1120.08±131.19	709.2±171.36	746.94±62.43	902.99±212	159.71±66.08	149.65±44.42	104.42±37.06	151.23±66.11
13.71±1.2	10.88±2.92	9.47±0.91	9.19±1.51	6.42±2.28	6.52±1.58	0.13±0.07	0.21±0.1	0.16±0.03	0.11±0.04
0.02±0	0.02±0.01	0.02±0	0.02±0.01	0.02±0.01	0.02±0	0±0	0±0	0±0	0±0
3117.03±279.68	3611.5±165.57	4410.06±961.13	3137.77±1111.01	3239.95±53.66	3355.63±664.39	157.58±128.4	155.63±61.6	117.32±32.01	140.82±69.59
2889.96±239.7	3262.73±144.19	4027.75±814.98	2941.75±1020.9	2962.14±108.16	3120.5±580.25	151.68±59.08	151.94±61.36	131.8±59.18	135.62±62.76
3093.32±531.99	2340.43±1380.29	1677.52±333.29	2290.17±485.44	2345.07±743.54	1701.04±555.57	0±0	0.53±0.92	1.14±1.24	0.77±1.34
2.19±0.51	3.5±1.33	3.33±0.48	1.49±0.53	1.97±0.34	2.82±0.38	0±0	0.01±0	0.01±0	0±0
0.11±0.02	0.1±0.03	0.09±0.01	0.09±0.01	0.08±0.02	0.08±0.02	0±0	0±0	0±0	0±0
5260.05±180.79	5951.41±222.05	6769.6±606.66	5295.83±1086.18	6209.91±206.59	6530.56±524.3	1036.49±295.91	1235.69±383.19	1042.04±256.38	1231.58±769.61
28.97±4.23	29.19±7.03	28.74±4.16	24.57±4	26.58±5.69	26.88±4.81	12.71±1.22	11.88±1.66	11.83±1.93	10.56±2.34
0.1±0.02	0.14±0.05	0.14±0.03	0.09±0.02	0.12±0.01	0.14±0.02	0±0	0±0	0±0	0±0
225.52±53.41	294.2±89.56	320.85±29.79	200.68±127.54	238.91±69.09	270.85±40.5	92.78±30.67	128.42±55.71	142.85±52.31	131.72±129.49
1166.54±382.79	1362.73±365.68	1121.22±524.94	1303.75±259.1	1538.44±49.96	1104.14±438.61	24.32±15.93	27.1±8.54	35.88±23.49	31.66±20.82
2248.09±268.07	3589.73±591.13	3420.63±1031.65	2645.43±645.74	3956.86±835.27	3734.54±603.03	88.28±47.21	96.11±34.41	126±62.95	100.63±53.79
146802.48±15855.25	153754.09±19809.51	149094.16±17113.16	143323.63±13285.47	137558.51±10982.71	139608.15±15560.64	1720.28±1417.48	2164.38±1503.51	1610.65±1371.28	3057.66±861.93
7.66±2.64	8.28±1.86	7.39±1.69	8.33±1.32	6.3±2.05	7.37±1.9	0.2±0.02	0.16±0.05	0.19±0.09	0.17±0.08
1.84±0.96	1.99±0.96	1.47±0.33	1.45±0.85	1.23±0.73	1.4±0.58	0.11±0.16	0.01±0	0.04±0.01	0.02±0
119868.17±24876.06	138350.65±33418.35	144468.3±27287.21	97714.24±11684.31	114802.42±16415.29	131700.57±22601.3	2286.92±1926.89	1137.46±42.95	2066.1±352.81	2058.09±709.71

R2 13.5Bé N0 MLF-	R2 13.5Bé N200 MLF-	R2 13.5Bé N400 MLF-	R2 12.5Bé N0 MLF-	R2 12.5Bé N200 MLF-	R2 12.5Bé N400 MLF-
2.43±0.01	2.46±0.04	2.45±0.05	2.25±0.04	2.3±0.03	2.37±0.01
2.69±0.08	2.57±0.03	2.65±0.06	2.54±0.11	2.39±0.04	2.34±0
0.61±0.53	0.27±0.47	0.25±0.44	0.33±0.58	0.93±0.08	0.28±0.49
6.66±0.02	6.46±0.11	6.46±0.04	6.39±0.02	6.01±0.08	6.04±0.03
0.2±0.06	0.19±0.02	0.23±0.04	0.14±0.06	0.15±0.01	0.15±0.01
99.57±0.39	99.89±0.42	99.91±0.57	91.05±0.72	91.11±1.24	92.31±0.31

Supplementary Table 3. Compounds (measured by GC-MS; up L ¹) detected in final wines for all treatments except for those inoculated with lactic acid bacteria for malolactic fermentation. The 'no yeast' controls were also analysed, in most cases volatiles were
below detection limits, where they were measured they were many magnitudes lower than fermented treatments and thus the data is not shown. Blue highlighted cells indicate those measurements significantly different due to juice dilution (compared to the same yeast at 16 Bé) and
orange highlighted cells indicate those significantly different due to natrient addition (compared to the same yeast and same initial Bé juice). Significant differences were determined by ANOVA and significantly different data are indicated by different letters.

Significantly different to 56 Be (F0 only) Significantly different to F0 (within Be) Volatile compounds measured by GC-MS

Significantly different to F0 (within Be) Volatile compounds measured by GC-MS														
ug L ¹	Ethyl acetate	Ethyl propanoate	Ethyl isobutyrate	Isobutyl acetate	Ethyl butanoate	Ethyl 2- methylbutyrat e	Ethyl isovalerate	Isobutanol	isoamyi acetate	Methyl hexanoate	Hexyl acetate	4-Methyl-1- pentanol	3-Methyl-1- pentanol	Ethyl lactate
EC1118 1684 NO	1768.947 bc	12.727 a	0.420 ab	0.349 abc	6.947 abc	1.348 abc	0.096 abc	125698.228 ab	20.148 abc	4.149 a	0.340 abc	649.598 c	217.426 c	3.907 abc
EC1118 1684 N200	1980.556 ab	11.857 a	0.425 ab	0.397 ab	7.277 ab	1.292 abc	0.092 abc	126726.052 ab	23.143 a	3.138 a	0.440 a	722.019 b	237.483 b	4.113 a
EC1118 168é N400	2043.336 a	14.160 a	0.489 ab	0.458 a	7.583 a	1.515 ab	0.107 ab	142155.403 a	18.030 abc	8.656 a	0.377 ab	790.116 a	268.574 a	4.042 a
EC1118 14.5Bé NO	1603.352 cd	21.009 a	0.409 ab	0.299 bcd	6.821 abc	1.200 abc	0.082 abc	114285.411 ab	15.930 abc	6.707 a	0.297 abc	447.196 e	121.685 d	3.861 abc
EC1118 14.5Bé N200	1744.157 bc	20.894 a	0.446 ab	0.304 bcd	7.440 a	1.248 abc	0.085 abc	119149.251 ab	13.811 abc	5.764 a	0.345 abc	473.063 de	115.042 de	3.744 abc
EC1118 14.5Bé N400	1587.542 cd	19.427 a	0.467 ab	0.340 bc	7.673 a	1.383 abc	0.093 abc	107815.645 ab	23.011 ab	7.603 a	0.289 abc	495.026 d	130.523 d	3.958 ab
EC1118 13.5Bé NO	1379.487 def	22.697 a	0.425 ab	0.268 cd	6.352 abcd	1.104 abc	0.079 abc	72809.370 ab	17.284 abc	6.098 a	0.284 bc	363.613 f	89.7261	3.427 cd4
EC1118 13.5Bé N200	1313.778 ef	16.980 a	0.550 ab	0.301 bcd	6.346 abcd	1.539 ab	0.102 abc	102496.484 ab	16.828 abc	9.946 a	0.260 bc	368.9781	90.0671	3.611 abcd
EC1118 13.58é N400	1568.332 cde	19.007 a	0.605 a	0.293 bcd	7.095 ab	1.627 a	0.112 a	73651.952 ab	11.690 abc	7.150 a	0.309 abc	390.471 f	98.629 ef	3.486 bcde
EC1118 12.5Bé N0	1205.213 f	18,859 a	0.396 ab	0.280 cd	5.541 bcd	0.883 bc	0.067 bc	66295.943 ab	11.435 bc	10.488 a	0.261 bc	296.611 g	67.265 g	3.122 de
EC1118 12.5Bé N200	1250.558 f	11.535 a	0.383 b	0.214 d	5.001 d	0.828 c	0.061 c	58513.274 b	9.075 c	1.580 a	0.263 bc	297.640 g	66.311 g	3.005 e
C1118 12.5Bé N400	1158.476 f	13.117 a	0.431 ab	0.249 cd	5.262 cd	0.969 abc	0.072 abc	64253.444 ab	8.563 c	5.557 a	0.212 c	296.473 g	65.565 g	2.853
r > F(Model)	< 0.0001	0.675	0.636	0.015	0.049	0.297	0.411	0.420	0.175	0.716	0.244	< 0.0001	< 0.0001	0.00
Significant	Yes	No	No	Yes	Yes	No	No	No	No	No	No	Yes	Yes	Yes
ug L ^{°1}	Ethyl acetate	Ethyl propanoate	Ethyl isobutyrate	Isobutyl acetate	Ethyl butanoate	Ethyl 2- methylbutyrat e	Ethyl isovalerate	Isobutanol	Isoamyl acetate	Methyl hexanoate	Hexyl acetate	4-Methyl-1- pentanol	3-Methyl-1- pentanol	Ethyl lactate
12 168é NO	1942.120 ab	7.875 bcd	0.866 a	0.947 ab	7.757 a	1.412 a	0.149 a	247540.701 ab	56.127 a	4.153 bcd	0.831 a	1647.662 b	281.549 b	3.892 abc
12 168é N200	2129.914 a	7.552 cd	0.804 a	1.033 a	7.496 a	1.185 a	0.130 a	313769.050 a	47.817 a	2.091 d	0.840 a	1760.508 a	317.904 a	4.264 ab
12 168é N400	1994.871 a	7.220 cd	0.818 a	0.920 b	7.209 a	1.267 a	0.135 a	237953.242 ab	46.150 a	1.566 d	0.730 a	1720.511 ab	320.411 a	4.323 at
12 14.584 NO	1641.650 c	8.552 abcd	0.619 a	0.422 d	5.286 cde	1.211 a	0.120 a	194559.799 ab	12.671 b	1.311 d	0.397 bc	1354,753 c	223.638 d	3.566 bcs
12 14.5Bé N200	1708.911 bc	6.948 d	0.606 a	0.544 c	5.977 b	1.267 a	0.129 a	196773.961 ab	19.798 b	1.911 d	0.489 b	1385.129 c	241.955 cd	4.656 i
12 14.5Bé N400	1655.257 c	9.013 abcd	0.709 a	0.447 cd	5.928 bc	1.328 a	0.135 a	194353.675 ab	18.931 b	2.027 d	0.415 bc	1444.979 c	258.234 bc	4.531 i
12 13.58é NO	1630.226 c	14.518 abc	0.762 a	0.386 de	5.084 ef	1.621 a	0.146 a	137977.491 b	11.626 b	7.714 a	0.244 cd	1051.016 de	191.931 e	3.099 (
12 13.58é N200	1531.145 c	15.201 ab	0.718 a	0.363 de	5.829 bcd	1.537 a	0.140 a	129447.783 b	8.658 b	5.989 ab	0.317 bcd	1126.997 d	193.490 e	3.984 ab
12 13.58é N400	1470.441 cd	15.114 ab	0.736 a	0.366 de	6.089 b	1.533 a	0.145 a	170366.031 ab	13.783 b	2.493 cd	0.253 cd	1027.659 def	178.266 ef	3.850 abc
R2 12.58é N0	1459.067 cd	15.534 a	0.890 a	0.343 def	4.612 f	1.679 a	0.144 a	212565.183 ab	6.262 b	5.530 abc	0.170 d	791.250 g	121.686 h	3.446 cc
32 12.58é N200	1140.579 e	12.450 abcd	0.670 a	0.304 ef	4,788 ef	1.328 a	0.128 a	166882.558 ab	11.021 b	3.968 bcd	0.202 d	952.063 ef	144.151 sh	3.850 abc
R2 12.584 N400	1246.438 de	13.162 abod	0.702 a	0.251 f	5.206 def	1.431 a	0.133 a	110905.557 b	11.416 b	3.249 bod	0.229 cd	929.416 f	157.008 fg	3.827 abc
Pr > F(Model)														
	< 0.0001	0.082	0.963	< 0.0001	< 0.0001	0.982	0.999	0.419	< 0.0001	0.009	< 0.0001	< 0.0001	< 0.0001	0.04

81 ⁻¹	Malic Acid	Succinic Acid	Lactic Acid	Glycerol	Acetic acid	Acetaldehyde	Ethanol
EC1118 1684 0 FO MLF-	3.377 a	2.680 a	1.097 a	7.770 a	0.000 b	0.333 c	120.827 #
EC1118 1684 20 FO MLF-	3.367 a	2.717 a	0.673 ab	7.770 a	0.000 b	0.447 a	120.950 #
EC1118 168é 40 FO MLF-	3.357 a	2,797 a	1.133 a	7.790 a	0.033 a	0.453 a	119.983 #
EC1118 14.58é 0 FO MLF-	3.107 b	2.203 bc	0.717 ab	6.727 b	0.000 b	0.270 d	108.753 b
EC111814.58é 20 FO MLF-	3.103 b	2.253 b	0.650 ab	6.763 b	0.000 b	0.367 bc	108.177 8
EC1118 14.58é 40 FO MLF-	3.157 b	2.313 b	0.740 ab	6.813 b	0.000 b	0.403 ab	107.857 b
EC1118 13.584 0 FO MLF-	2.877 c	1.967 de	0.000 b	6.163 c	0.000 b	0.207 ef	100.827
EC1118 13.58é 20 FO MLF-	2.917 c	2.073 cde	0.360 ab	6.153 c	0.000 b	0.273 d	100.170
EC1118 13.58é 40 FO MLF-	2.930 c	2.100 cd	0.700 ab	6.223 c	0.000 b	0.263 de	101.137
EC1118 12.58#0 FO MUF-	2.640 d	1.803 f	0.687 ab	5.747 d	0.000 b	0.163 f	92.003 (
EC1118 12.58é 20 FO MLF-	2.663 d	1.960 e	0.633 ab	5.773 d	0.000 b	0.227 de	92.653 (
EC1118 12.58é 40 FO MLF-	2.667 d	1.960 e	0.290 ab	5.733 d	0.000 b	0.217 def	91.953 (
Pr > F(Model)	<0.0001	<0.0001	0.391	<0.0001	0.474	<0.0001	<0.000
Significant	Yes	Yes	No	Yes	No	Yes	Yes
gL ⁻¹	Malic Acid	Succinic Acid	Lactic Acid	Glycerol	Acetic acid	Acetaldehyde	Ethanol
12 168é 0 FO MLF-	2.840 ab	3.217 b	1.003 a	7.873 b	0.333 a	0.120 d	122.537
12 168é 20 FO MLF-	2 807 h	3.787 a	0.297 ab	7,980 a	0.313 a	0.147 cd	
							122.350
12 168é 40 FO MLF-	2.867 a	3.787 a	0.297 ab	7.983 a	0.313 a 0.303 a	0.147 cd 0.107 d	
	2.867 a 2.627 c						122.350 a 122.243 a 109.367 b
12 14.58é 0 FO MLF-		3.537 a	0.273 ab	7.983 a	0.303 a	0.107 d	122.243
R2 14.58é 0 FO MLF- R2 14.58é 20 FO MLF-	2.627 c	3.537 a 3.033 bc	0.273 ab 0.650 ab	7.983 a 7.123 c	0.303 a 0.277 a	0.107 d 0.237 ab	122.243 (109.367 (109.050 (
R2 14.586 0 FO MLF- R2 14.586 20 FO MLF- R2 14.586 40 FO MLF- R2 13.586 0 FO MLF-	2.627 c 2.600 c 2.630 c 2.433 d	3.537 a 3.033 bc 2.903 cd 3.020 bc 2.690 de	0.273 ab 0.650 ab 0.823 ab 0.527 ab 0.613 ab	7.983 a 7.123 c 7.077 c 7.113 c 6.663 d	0.303 a 0.277 a 0.137 b 0.110 bcd 0.123 bc	0.107 d 0.237 ab 0.267 a 0.243 ab 0.200 bc	122.243 109.367 109.050 109.070 99.573
R2 14.586 0 FO MLF- R2 14.586 20 FO MLF- R2 14.586 40 FO MLF- R2 13.586 0 FO MLF-	2.627 c 2.600 c 2.630 c	3.537 a 3.033 bc 2.903 cd 3.020 bc	0.273 ab 0.650 ab 0.823 ab 0.527 ab	7.983 a 7.123 c 7.077 c 7.113 c	0.303 a 0.277 a 0.137 b 0.110 bcd	0.107 d 0.237 ab 0.267 a 0.243 ab	122.243
12 14.584 0 FO MLF- 12 14.586 20 FO MLF- 12 14.586 40 FO MLF- 12 13.586 0 FO MLF- 12 13.586 0 FO MLF- 12 13.586 20 FO MLF-	2.627 c 2.600 c 2.630 c 2.433 d	3.537 a 3.033 bc 2.903 cd 3.020 bc 2.690 de	0.273 ab 0.650 ab 0.823 ab 0.527 ab 0.613 ab	7.983 a 7.123 c 7.077 c 7.113 c 6.663 d	0.303 a 0.277 a 0.137 b 0.110 bcd 0.123 bc	0.107 d 0.237 ab 0.267 a 0.243 ab 0.200 bc	122.243 109.367 109.050 109.070 99.573
12 34.584 0 FO MLF- 12 34.584 20 FO MLF- 12 34.584 40 FO MLF- 12 35.584 0 FO MLF- 12 35.584 0 FO MLF- 12 35.584 20 FO MLF- 12 35.584 40 FO MLF-	2.627 c 2.600 c 2.630 c 2.433 d 2.457 d	3.537 a 3.033 bc 2.903 cd 3.020 bc 2.690 de 2.573 ef	0.273 ab 0.650 ab 0.823 ab 0.527 ab 0.613 ab 0.273 ab	7.983 a 7.123 c 7.077 c 7.113 c 6.663 d 6.457 e	0.303 a 0.277 a 0.137 b 0.110 bcd 0.123 bc 0.020 cd	0.107 d 0.237 ab 0.267 a 0.243 ab 0.200 bc 0.193 bc	122.243 109.367 109.050 109.070 99.573 99.887 99.910
12 14 586 0 FO MLF- 12 14 586 20 FO MLF- 12 14 586 40 FO MLF- 12 13 586 0 FO MLF- 12 13 586 20 FO MLF- 12 13 586 20 FO MLF- 12 13 586 40 FO MLF- 12 12 586 0 FO MLF-	2.627 c 2.600 c 2.630 c 2.433 d 2.457 d 2.457 d 2.447 d	3.537 a 3.033 bc 2.903 cd 3.020 bc 2.690 de 2.573 ef 2.647 de	0.273 ab 0.650 ab 0.823 ab 0.527 ab 0.613 ab 0.273 ab 0.253 b	7.983 a 7.123 c 7.077 c 7.113 c 6.663 d 6.457 e 6.463 e	0.303 a 0.277 a 0.137 b 0.110 bcd 0.123 bc 0.020 cd 0.023 cd	0.107 d 0.237 ab 0.267 a 0.243 ab 0.200 bc 0.193 bc 0.227 ab	122.243 109.367 109.050 109.070 99.573 99.887 99.910 91.047
12 14.586 0 FO MLF- 12 14.586 20 FO MLF- 12 14.586 40 FO MLF- 12 13.588 20 FO MLF- 12 13.588 20 FO MLF- 12 13.588 20 FO MLF- 12 13.588 20 FO MLF- 12 12.586 20 FO MLF- 12 12.586 20 FO MLF-	2.627 c 2.600 c 2.630 c 2.433 d 2.457 d 2.447 d 2.247 f	3.537 a 3.033 bc 2.903 cd 3.020 bc 2.690 de 2.573 ef 2.647 de 2.537 ef	0.273 ab 0.650 ab 0.823 ab 0.527 ab 0.613 ab 0.273 ab 0.253 b 0.333 ab	7.983 a 7.123 c 7.077 c 7.113 c 6.663 d 6.457 e 6.463 e 6.393 e	0.303 a 0.277 a 0.137 b 0.110 bod 0.123 bc 0.020 cd 0.023 cd 0.107 bod	0.107 d 0.237 ab 0.267 a 0.243 ab 0.200 bc 0.193 bc 0.227 ab 0.143 cd	122.243 109.367 109.050 109.070 99.573 99.887
12 1684 04 FO MUF- 12 1584 04 FO MUF- 82 14 584 07 FO MUF- 82 14 584 07 FO MUF- 82 13 584 07 FO MUF- 82 13 584 04 FO MUF- 82 13 584 04 FO MUF- 82 12 584 04 FO MUF- 70 7 F(Model)	2.627 c 2.600 c 2.630 c 2.433 d 2.457 d 2.447 d 2.247 f 2.247 f 2.247 f	3.537 a 3.033 bc 2.903 cd 3.020 bc 2.690 de 2.573 ef 2.647 de 2.537 ef 2.387 ef	0.273 ab 0.650 ab 0.823 ab 0.527 ab 0.613 ab 0.273 ab 0.253 b 0.333 ab 0.933 ab	7.983 a 7.123 c 7.077 c 7.113 c 6.663 d 6.457 e 6.463 e 6.393 e 6.010 f	0.303 a 0.277 a 0.137 b 0.110 bcd 0.123 bc 0.020 cd 0.023 cd 0.107 bcd 0.000 d	0.107 d 0.237 ab 0.267 a 0.243 ab 0.200 bc 0.193 bc 0.227 ab 0.243 dd 0.150 cd	122.243 109.367 109.050 109.070 99.573 99.887 99.910 91.047 91.107

Methyl octanoate		Ethyl nonanoate	Isobutyric acid	Methyl decanoate	Butanoic acid	Ethyl decanoate	isoamyi octanoate	Isovaleric acid	2-Methylbutanoic acid	Methionol	2- Phenylethyl acetate	Ethyl dodecanoate	Hexanoic acid	Benzyl alcohol	2- Phenylethyl propanoate	Octanoic Acid	2-Methoxy-4- vinylphenol	4-vinylphenol	isoamyl alcohol	Ethyl hexanoate	Ethyl octanoate
5.899 ab	260.519 ab	0.009 b	601.359 c	0.652 b	894.955 bcd	20.383 bc	0.015 abc	2228.506 abc	2795.751 abc	1297.263 abc	4.830 ab	0.117 b	6107.293 e	37.019 abc	0.194 bcd	222.214 d	2544.424 a	4102.241 a	145139.951 a	11.483 a	3.284 a
5.111 ab	303.344 a	0.009 ab	768.112 abc	0.659 b	1024.724 abcd	27.175 ab	0.020 ab	2438.444 abc	2961.349 ab	1546.547 a	5.886 a	0.157 ab	8509.739 abc	38.509 ab	0.198 bcd	499.962 abcd	2228.150 ab	4055.882 a	144590.339 a	11.584 a	3.455 a
10.704 a	198.021 ab	0.012 a	1010.837 ab	1.877 a	1191.964 ab	37.508 a	0.021 a	3020.466 a	3548.075 a	1516.767 ab	6.007 a	0.211 a	8339.728 abcd	38.880 a	0.223 ab	695.116 a	1535.064 bc	3310.324 a	143960.979 a	11.474 a	3.231 a
5.393 ab	148.264 ab	0.009 ab	700.807 bc	0.503 b	854.408 cd	15.014 bc	0.012 c	2327.566 abc	2832.915 abc	1166.770 abcd	2.976 cde	0.097 b	6905.935 bcde	29.379 bcd	0.219 abc	263.233 cd	2028.072 abc	3522.712 a	129787.172 ab	11.813 a	2.398 a
4.867 ab	193.055 ab	0.010 ab	798.259 abc	0.498 b	1032.402 abc	19.039 bc	0.015 abc	2293.525 abc	2864.696 abc	1367.153 abc	3.866 bcd	0.113 b	8682.741 a	32.302 abcd	0.235 ab	511.926 abcd	1725.791 bc	3773.272 a	129635.030 ab	12.388 a	2.823 a
7.886 ab	71.506 b	0.009 ab	764.086 abc	0.740 b	997.523 abcd	15.133 bc	0.013 bc	2346.637 abc	2931.883 ab	1157.831 abcd	4.027 bc	0.096 b	8617.895 ab	31.372 abcd	0.289 a	604.238 ab	1431.928 c	3608.689 a	132704.757 ab	12.341 a	2.344 a
7.223 ab	116.210 ab	0.009 b	698.220 bc	0.526 b	784.940 cd	12.052 c	0.012 c	1809.915 bc	2106.958 bcd	1054.463 cde	2.237 de	0.088 b	6863.475 cde	28.996 cd	0.217 abc	318.697 bcd	2250.405 ab	4132.051 a	118268.242 b	9.801 a	1.915 a
11.945 a	111.442 ab	0.008 b	741.692 bc	0.878 b	919.228 bcd	12.197 c	0.012 c	2012.492 abc	2455.777 abcd	1251.152 abc	2.449 cde	0.093 b	8360.885 abcd	29.376 bcd	0.217 abc	444.784 abcd	1898.333 abc	4253.169 a	120678.321 ab	10.145 a	2.327 a
6.389 ab	136.379 ab	0.011 ab	1072.061 a	0.483 b	1300.594 a	15.322 bc	0.014 abc	2598.275 ab	3137.637 ab	1120.013 bcde	2.992 cde	0.110 b	9327.575 a	30.357 abcd	0.211 bcd	509.410 abcd	1400.244 c	3911.381 a	118709.043 b	9.979 a	2.031 a
11.587 a	135.523 ab	0.010 ab	501.282 c	0.767 b	710.177 d	10.877 c	0.012 c	1390.758 c	1529.896 d	723.303 e	1.689 e	0.094 b	6646.719 de	24.605 d	0.174 bcd	264.738 cd	2253.319 ab	4057.097 a	112805.124 b	10.567 a	2.447 a
2.312 b	65.562 b	0.012 a	676.589 c	0.299 b	859.231 cd	15.088 bc	0.015 abc	1513.797 c	1674.715 cd	776.108 de	2.072 e	0.127 b	9370.056 a	26.570 d	0.139 d	538.080 abc	1661.026 bc	4091.551 a	109208.752 b	7.891 a	2.307 a
6.030 ab	58.410 b	0.010 ab	766.036 abc	0.469 b	960.619 bcd	11.804 c	0.012 c	1806.538 bc	1974.250 bcd	745.961 e	1.823 e	0.103 b	9103.967 a	25.251 d	0.145 cd	568.554 ab	1311.901 c	3905.819 a	107728.255 b	6.582 a	1.639 a
0.317	0.396	0.250	0.079	0.234	0.047	0.007	0.202	0.156	0.058	0.002	< 0.0001	0.054	0.004	0.043	0.039	0.047	0.051	0.991	0.029	0.743	0.744
No	No	No	No	No	Yes	Yes	No	No	No	Yes	Yes	No	Yes	Yes	Yes	Yes	No	No	Yes	No	No
Method		Ethol		Methyl		Ethol	Isnamul		2.Methylhutanoir		2-	Fthyl			2-		2.Methory.4.		Isoamul alcohol	Ethyl	Ethyl
Methyl	Acetic acid	Ethyl	Isobutyric acid	Methyl	Butanoic acid	Ethyl	Isoamyl	Isovaleric acid	2-Methylbutanoic	Methionol	2- Phenylethyl	Ethyl	Hexanoic acid	Benzyl alcohol	2- Phenylethyl	Octanoic Acid	2-Methoxy-4-	4-vinylphenol	Isoamyl alcohol	hexanoate	octanoate
octanoate		nonanoate		decanoate		decanoate	octanoate		acid		acetate	dodecanoate			propangate		vinylphenol		(1/100)	hexanoate (1/100)	octanoate (1/100)
octanoate 7.929 ab	3577.538 ab	nonanoate 0.017 a	1401.002 bcd	decanoate 0.703 ab	1018.644 bc	decanoate 24.335 a	octanoate 0.032 abc	2859.321 bc	acid 2640.714 bc	1991.763 bcd	acetate 7.903 a	dodecanoate 0.139 ab	5974.482 bcd	47.352 a	propanoate 0.130 ab	258.247 bc	vinylphenol 1851.679 a	3137.998 abcd	(1/100) 177126.622 ab	hexanoate (1/100) 10.169 a	octanoate (1/100) 3.412 ab
octanoate 7.929 ab 4.321 abcd	3577.538 ab 3720.282 a	0.017 a 0.015 a	1401.002 bcd 1403.506 bcd	decanoate 0.703 ab 0.348 bc	1018.644 bc 997.000 bc	decanoate 24.335 a 21.816 abc	octanoate 0.032 abc 0.039 a	2859.321 bc 2859.855 bc	acid 2640.714 bc 2562.149 bc	1991.763 bcd 1379.255 cd	acetate 7.903 a 8.997 a	dodecanoate 0.139 ab 0.134 abc	5974.482 bcd 6126.520 abc	47.352 a 46.616 a	0.130 ab 0.105 ab	258.247 bc 298.721 bc	vinylphenol 1851.679 a 1761.625 ab	3137.998 abcd 3558.997 abc	(1/100) 177126.622 ab 178202.974 ab	hexanoate (1/100) 10.169 a 9.421 ab	octanoate (1/100) 3.412 ab 3.713 a
octanoate 7.929 ab 4.321 abcd 3.520 bcd	3577.538 ab 3720.282 a 4509.363 a	0.017 a 0.015 a 0.017 a	1401.002 bcd 1403.506 bcd 1880.812 a	decanoate 0.703 ab 0.348 bc 0.284 c	1018.644 bc 997.000 bc 1248.355 a	decanoate 24.335 a 21.816 abc 21.895 ab	octanoate 0.032 abc 0.039 a 0.035 ab	2859.321 bc 2859.855 bc 3490.770 ab	acid 2640.714 bc 2562.149 bc 3199.101 ab	1991.763 bcd 1379.255 cd 1134.225 d	acetate 7.903 a 8.997 a 8.917 a	dodecanoate 0.139 ab 0.134 abc 0.130 abcd	5974.482 bcd 6126.520 abc 7453.072 a	47.352 a 46.616 a 46.403 ab	0.130 ab 0.105 ab 0.108 ab	258.247 bc 298.721 bc 399.425 ab	vinylphenol 1851.679 a 1761.625 ab 1561.584 abcd	3137.998 abcd 3558.997 abc 3427.971 abcd	(1/100) 177126.622 ab 178202.974 ab 179763.434 a	hexanoate (1/100) 10.169 a 9.421 ab 8.902 ab	octanoate (1/100) 3.412 ab 3.713 a 3.096 abc
octanoate 7.929 ab 4.321 abcd 3.520 bcd 2.359 d	3577.538 ab 3720.282 a 4509.363 a 3376.525 ab	0.017 a 0.015 a 0.017 a 0.017 a	1401.002 bcd 1403.506 bcd 1880.812 a 1079.801 d	decanoate 0.703 ab 0.348 bc 0.284 c 0.342 c	1018.644 bc 997.000 bc 1248.355 a 624.255 e	decanoate 24.335 a 21.816 abc 21.895 ab 26.402 a	octanoate 0.032 abc 0.039 a 0.035 ab 0.035 ab	2859.321 bc 2859.855 bc 3490.770 ab 2477.732 c	acid 2640.714 bc 2562.149 bc 3199.101 ab 2221.780 c	1991.763 bcd 1379.255 cd 1134.225 d 4247.533 a	acetate 7.903 a 8.997 a 8.917 a 3.942 bc	dodecanoate 0.139 ab 0.134 abc 0.130 abcd 0.155 a	5974.482 bcd 6126.520 abc 7453.072 a 4736.213 d	47.352 a 46.616 a 46.403 ab 36.792 cde	0.130 ab 0.105 ab 0.108 ab 0.100 ab	258.247 bc 298.721 bc 399.425 ab 156.354 c	vinylphenol 1851.679 a 1761.625 ab 1561.584 abcd 1202.873 bcd	3137.998 abcd 3558.997 abc 3427.971 abcd 2436.801 cd	(1/100) 177126.622 ab 178202.974 ab 179763.434 a 160413.704 abcd	hexanoate (1/100) 10.169 a 9.421 ab 8.902 ab 9.505 ab	octanoate (1/100) 3.412 ab 3.713 a 3.096 abc 3.366 ab
octanoate 7.929 ab 4.321 abcd 3.520 bcd 2.359 d 4.605 abcd	3577.538 ab 3720.282 a 4509.363 a 3376.525 ab 1802.530 bc	0.017 a 0.015 a 0.017 a 0.018 a 0.018 a	1401.002 bcd 1403.506 bcd 1880.812 a 1079.801 d 1149.448 cd	decanoate 0.703 ab 0.348 bc 0.284 c 0.342 c 0.354 bc	1018.644 bc 997.000 bc 1248.355 a 624.255 e 797.814 cde	decanoate 24.335 a 21.816 abc 21.895 ab 26.402 a 19.026 abcd	octanoate 0.032 abc 0.039 a 0.035 ab 0.035 ab	2859.321 bc 2859.855 bc 3490.770 ab 2477.732 c 2658.409 bc	acid 2640.714 bc 2562.149 bc 3199.101 ab 2221.780 c 2358.316 bc	1991.763 bcd 1379.255 cd 1134.225 d 4247.533 a 2528.135 bc	acetate 7.903 a 8.997 a 8.917 a 3.942 bc 5.809 b	dodecanoate 0.139 ab 0.134 abc 0.130 abcd 0.155 a 0.136 ab	5974.482 bcd 6126.520 abc 7453.072 a 4736.213 d 6208.116 abc	47.352 a 46.616 a 46.403 ab 36.792 cde 37.317 cd	0130 ab 0.130 ab 0.105 ab 0.108 ab 0.100 ab 0.129 ab	258.247 bc 298.721 bc 399.425 ab 156.354 c 541.512 a	vinylphenol 1851.679 a 1761.625 ab 1561.584 abcd 1202.873 bcd 1743.625 abc	3137.998 abcd 3558.997 abc 3427.971 abcd 2436.801 cd 4344.011 a	(1/100) 177126.622 ab 178202.974 ab 179763.434 a 160413.704 abcd 159408.735 bcde	hexanoate (1/100) 10.169 a 9.421 ab 8.902 ab 9.505 ab 8.890 ab	octanoate (1/100) 3.412 ab 3.713 a 3.096 abc 3.366 ab 2.967 abcd
0ctanoate 7.929 ab 4.321 abcd 3.520 bcd 2.359 d 4.605 abcd 3.019 cd	3577.538 ab 3720.282 a 4509.363 a 3376.525 ab 1802.530 bc 1262.973 c	nonanoate 0.017 a 0.015 a 0.018 a 0.018 a 0.019 a 0.017 a	1401.002 bcd 1403.506 bcd 1880.812 a 1079.801 d 1149.448 cd 1357.949 bcd	decanoate 0.703 ab 0.348 bc 0.284 c 0.342 c 0.354 bc 0.235 c	1018.644 bc 997.000 bc 1248.355 a 624.255 a 797.814 cde 1008.933 bc	decanoate 24.335 a 21.816 abc 21.895 ab 26.402 a 19.026 abcd 15.417 bcde	octanoate 0.032 abc 0.039 a 0.035 ab 0.035 ab 0.035 ab 0.031 abc	2859.321 bc 2859.855 bc 3490.770 ab 2477.732 c 2658.409 bc 3436.714 abc	acid 2640,714 bc 2562,149 bc 3199,101 ab 2221,780 c 2358,316 bc 3072,227 bc	1991.763 bcd 1379.255 cd 1134.225 d 4247.533 a 2528.135 bc 1916.596 bcd	acetate 7.903 a 8.997 a 8.917 a 3.942 bc 5.809 b 5.717 b	dodecanoate 0.139 ab 0.134 abc 0.130 abcd 0.155 a 0.136 ab 0.117 abcde	5974.482 bcd 6126.520 abc 7453.072 a 4736.213 d 6208.116 abc 6460.088 abc	47.352 a 46.616 a 46.403 ab 36.792 cde 37.317 cd 38.042 bc	0130 ab 0.130 ab 0.105 ab 0.108 ab 0.100 ab 0.129 ab 0.144 a	258.247 bc 298.721 bc 399.425 ab 156.354 c 541.512 a 401.989 ab	vinylphenol 1851.679 a 1761.625 ab 1561.584 abcd 1202.873 bcd 1743.625 abc 1177.932 bcd	3137.998 abcd 3558.997 abc 3427.971 abcd 2436.801 cd 4344.011 a 3582.771 abc	(1/100) 177126.622 ab 178202.974 ab 179763.434 a 160413.704 abcd 159408.735 bcde 163663.851 abc	hexanoate (1/100) 10.169 a 9.421 ab 8.902 ab 9.505 ab 8.890 ab 8.487 abc	octanoate (1/100) 3.412 ab 3.713 a 3.096 abc 3.366 ab 2.967 abcd 2.487 bcde
octanoate 7.929 ab 4.321 abcd 3.520 bcd 2.359 d 4.606 abcd 3.019 cd 8.916 a	3577.538 ab 3720.282 a 4509.363 a 3376.525 ab 1802.530 bc 1262.973 c 1010.992 c	0.017 a 0.015 a 0.017 a 0.018 a 0.019 a 0.019 a 0.017 a	1401.002 bcd 1403.506 bcd 1880.812 a 1079.801 d 1149.448 cd 1357.949 bcd 1237.675 bcd	decanoate 0.703 ab 0.348 bc 0.284 c 0.342 c 0.354 bc 0.235 c 0.724 a	1018.644 bc 997.000 bc 1248.355 a 624.255 e 797.814 cde 1008.933 bc 747.941 de	decanoate 24.335 a 21.816 abc 21.895 ab 26.402 a 19.026 abcd 15.417 bcde 13.710 cdef	octanoate 0.032 abc 0.039 a 0.035 ab 0.035 ab 0.035 ab 0.031 abc 0.021 cd	2859.321 bc 2859.855 bc 3490.770 ab 2477.732 c 2658.409 bc 3436.714 abc 3117.029 bc	acid 2640.714 br 2562.149 br 3199.101 ab 2221.780 c 2358.316 br 3072.227 br 2889.964 br	1991.763 bcd 1379.255 cd 1134.225 d 4247.533 a 2528.135 bc 1916.596 bcd 3093.324 ab	acetate 7.903 a 8.997 a 8.917 a 3.942 bc 5.809 b 5.717 b 2.194 cd	dodecanoate 0.139 ab 0.134 abc 0.130 abcd 0.155 a 0.136 ab 0.117 abcde 0.113 bcde	5974.482 bcd 6126.520 abc 7453.072 a 4736.213 d 6208.116 abc 6460.088 abc 5260.050 cd	47.352 a 46.616 a 46.403 ab 36.792 cde 37.317 cd 38.042 bc 28.973 def	01004n0416 0.130 ab 0.105 ab 0.108 ab 0.100 ab 0.129 ab 0.144 a 0.103 ab	258.247 bc 298.721 bc 399.425 ab 156.354 c 541.512 a 401.989 ab 225.518 bc	vinylphenol 1851.679 a 1761.625 ab 1561.584 abcd 1202.873 bcd 1743.625 abc 1177.932 bcd 1166.539 cd	3137.998 abcd 3558.997 abc 3427.971 abcd 2436.801 cd 4344.011 a 3582.771 abc 2248.094 d	(1/100) 177126.622 ab 178202.974 ab 179763.434 a 160413.704 abcd 159408.735 bcde 163663.851 abc 146802.482 cdef	hexanoate (1/100) 10.169 a 9.421 ab 8.902 ab 9.505 ab 8.890 ab 8.487 abc 7.655 bc	octanoate (1/100) 3.412 ab 3.713 a 3.096 abc 3.366 ab 2.967 abcd 2.487 bcde 1.836 def
octanoate 7.929 ab 4.321 abcd 3.520 bcd 2.359 d 4.606 abcd 3.019 cd 8.916 a 7.523 abc	3577.538 ab 3720.282 a 4509.363 a 3376.525 ab 1802.530 bc 1262.973 c 1010.992 c 598.938 c	nonanoate 0.017 a 0.015 a 0.017 a 0.018 a 0.019 a 0.017 a 0.014 a 0.014 a	1401.002 bcd 1403.506 bcd 1880.812 a 1079.801 d 1149.448 cd 1357.949 bcd 1327.675 bcd 1427.098 bcd	decanoate 0.703 ab 0.348 bc 0.342 c 0.354 bc 0.235 c 0.724 a 0.415 abc	1018.644 bc 997.000 bc 1248.355 a 624.255 e 797.814 cde 1008.933 bc 747.941 de 890.820 cd	decanoate 24.335 a 21.816 abc 21.895 ab 26.402 a 19.026 abcd 15.417 bcde 13.710 cdef 10.879 def	octanoate 0.032 abc 0.039 a 0.035 ab 0.035 ab 0.035 ab 0.031 abc 0.021 cd 0.024 bcd	2859.321 bc 2859.855 bc 3490.770 ab 2477.732 c 2658.409 bc 3436.714 abc 3117.029 bc 3611.503 ab	acid 2640.714 bc 2562.149 bc 3199.101 ab 2221.780 c 2358.316 bc 3072.227 bc 2889.964 bc 3262.732 ab	1991.763 bcd 1379.255 cd 1134.225 d 4247.533 a 2528.135 bc 1916.596 bcd 3093.324 ab 2340.426 bcd	acetate 7.903 a 8.997 a 8.917 a 3.942 bc 5.809 b 5.717 b 2.194 cd 3.501 c	dodecanoate 0.139 ab 0.134 abc 0.130 abcd 0.155 a 0.136 ab 0.117 abcde 0.113 bcdef 0.100 bcdef	5974.482 bcd 6126.520 abc 7453.072 a 4736.213 d 6208.116 abc 6460.088 abc 5250.050 cd 5951.407 bcd	47.352 a 46.616 a 46.403 ab 36.792 cde 37.317 cd 38.042 bc 28.973 def 29.189 def	0100200210 0.130 ab 0.105 ab 0.108 ab 0.100 ab 0.129 ab 0.144 a 0.103 ab 0.144 a	258.247 bc 298.721 bc 399.425 ab 156.354 c 541.512 a 401.989 ab 225.518 bc 294.202 bc	vinylphenol 1851.679 a 1761.625 ab 1561.584 abcd 1202.873 bcd 1743.625 abc 177.932 bcd 1166.539 cd 1362.726 abcd	3137.998 abcd 3558.997 abc 3427.971 abcd 2436.801 cd 4344.011 a 3582.771 abc 2248.094 d 3589.726 abc	(1/100) 177126.622 ab 178202.974 ab 179763.434 a 169413.704 abcd 159408.735 bcde 163663.851 abc 146802.482 cdef 153754.093 cdef	hexanoate (1/100) 10.169 a 9.421 ab 8.902 ab 9.505 ab 8.890 ab 8.487 abc 7.655 bc 8.284 abc	octanoate (1/100) 3.412 ab 3.713 a 3.096 abc 3.366 ab 2.967 abcd 2.487 bcde 1.836 def 1.993 cdef
octanoate 7.929 ab 4.321 abcd 3.520 bcd 4.605 abcd 3.019 cd 8.916 a 7.523 abc 2.931 cd	3577.538 ab 3720.282 a 4509.363 a 3376.525 ab 1802.530 bc 1262.973 c 1010.992 c 598.938 c 483.201 c	0.017 a 0.017 a 0.017 a 0.018 a 0.019 a 0.019 a 0.017 a	1401.002 bcd 1403.506 bcd 1880.812 a 1079.801 d 1149.448 cd 1357.949 bcd 1237.675 bcd 1427.018 bcd 1533.871 ab	decanoate 0.703 ab 0.348 bc 0.342 c 0.354 bc 0.235 c 0.724 a 0.415 abc 0.202 c	1018.644 bc 997.000 bc 1248.355 a 624.255 a 797.814 cde 1008.933 bc 747.941 de 890.820 cd 1120.084 ab	decanoate 24.335 a 21.816 abc 21.895 ab 26.402 a 19.026 abcd 15.417 bcde 13.710 cdef 10.879 def 9.471 ef	octanoate 0.032 abc 0.039 a 0.035 ab 0.035 ab 0.035 ab 0.031 abc 0.021 cd 0.021 cd	2859.321 bc 2859.855 bc 3490.770 ab 2477.732 c 2658.409 bc 3436.714 abc 3117.029 bc 3611.503 ab 4410.062 a	acid 2640.734 bc 2562.149 bc 3199.101 ab 2221.780 c 2358.336 bc 3072.227 bc 2889.966 bc 3262.732 ab 4027.746 a	1991.763 bcd 1379.255 cd 1134.225 d 4247.533 a 2528.135 bc 1916.596 bcd 3093.324 ab 2340.426 bcd 1677.523 cd	acetate 7.903 a 8.997 a 8.917 a 3.942 bc 5.809 b 5.717 b 2.194 cd 3.501 c 3.329 cd	dodecanoate 0.139 ab 0.134 abc 0.130 abcd 0.155 a 0.136 ab 0.117 abcde 0.113 bcdef 0.100 bcdef 0.090 def	5974.482 bcd 6126.520 abc 7453.072 a 4735.213 d 6208.116 abc 6460.088 abc 5260.050 d 5951.407 bcd 6769.601 ab	47.352 a 46.616 a 46.403 ab 36.792 cde 37.317 cd 38.042 bc 28.973 def 29.189 def 28.736 ef	0130 ab 0.130 ab 0.105 ab 0.108 ab 0.100 ab 0.129 ab 0.144 a 0.103 ab 0.144 a	258.247 bc 298.721 bc 399.425 ab 156.354 c 541.512 a 401.989 ab 225.518 bc 294.202 bc 320.850 bc	vinylphenol 1851.679 a 1761.625 ab 1561.584 abcd 1202.873 bcd 1743.625 abc 1177.932 bcd 1166.539 cd 1362.726 abcd 1121.218 d	3137.998 abcd 3558.997 abc 3427.971 abcd 2436.801 cd 4344.011 a 3582.771 abc 2248.094 d 3589.726 abc 3420.632 abcd	(1/100) 177126.622 ab 178202.974 ab 179053.434 a 160413.704 abcd 159408.735 bcde 163653.851 abc 146802.482 cdef 153754.093 cdef 149094.157 cdef	hexanoate (1/100) 10.169 a 9.421 ab 8.902 ab 9.505 ab 8.487 abc 7.655 bc 8.284 abc 7.388 bc	octanoate (1/100) 3.412 ab 3.713 a 3.096 abc 3.366 ab 2.967 abcd 2.487 bcde 1.836 def 1.993 cdef 1.469 ef
octanoste 7.929 ab 4.321 abcd 3.520 bcd 4.606 abcd 3.019 cd 8.916 a 7.523 abc 2.931 cd 5.480 abcd	3577.538 ab 3720.282 a 4509.363 a 3376.525 ab 1802.530 bc 1262.973 c 598.938 c 483.201 c 804.824 c	0.017 a 0.017 a 0.017 a 0.018 a 0.019 a 0.017 a 0.014 a 0.018 a 0.017 a	1401.002 bcd 1403.506 bcd 1880.812 a 1079.801 d 1149.448 cd 1357.949 bcd 1327.675 bcd 1427.098 bcd 1533.871 ab 1197.112 bcd	decanoate 0.703 ab 0.348 bc 0.348 c 0.354 bc 0.354 bc 0.235 c 0.724 a 0.475 abc 0.202 c 0.355 bc	1018.644 bc 997.000 bc 1248.355 a 624.255 a 1008.933 bc 747.941 de 890.820 cd 1120.094 ab 700.199 de	decanoate 24.335 a 21.816 abc 21.895 ab 26.402 a 19.026 abcd 15.417 bcde 13.710 cdef 10.879 def 9.471 ef 9.187 ef	octanoate 0.032 abc 0.039 a 0.035 ab 0.035 ab 0.035 ab 0.031 abc 0.021 cd 0.024 bcd 0.021 cd 0.024 bcd 0.021 cd	2859.321 bc 2859.855 bc 3490.770 ab 2477.732 c 2658.409 bc 3436.714 abc 3117.029 bc 3611.503 ab 4410.062 a 3137.768 bc	acid 2640.714 bc 2552.149 bc 2359.101 ab 2221.780 c 2358.336 bc 3072.227 bc 2889.964 bc 3262.732 ab 4027.745 bc	1991.763 bcd 1379.255 cd 1134.225 d 2528.135 bc 1916.596 bcd 3093.324 ab 2340.426 bcd 1677.233 cd 2290.169 bcd	acetate 7.903 a 8.997 a 8.917 a 3.942 bc 5.809 b 5.717 b 2.194 cd 3.501 c 3.329 cd 1.489 d	dodecanoate 0.139 ab 0.134 abc 0.135 a 0.136 ab 0.117 abcde 0.130 bcdef 0.000 bcdef 0.090 def	5974.482 bcd 6126.520 abc 7453.072 a 4735.213 d 6208.116 abc 6460.088 abc 5260.050 cd 5951.407 bcd 6769.601 ab 5205.833 cd	47.352 a 46.616 a 46.403 ab 36.792 cde 37.317 cd 38.042 bc 28.973 def 29.189 def 28.736 ef 28.736 ef 24.573 f	0130 ab 0.105 ab 0.105 ab 0.108 ab 0.100 ab 0.144 a 0.144 a 0.144 a 0.144 a	258.247 bc 298.721 bc 399.425 ab 156.354 c 541.512 a 401.989 ab 225.518 bc 294.202 bc 320.850 bc 200.683 bc	vinylphenol 1851.679 a 1761.625 ab 1561.584 abcd 1748.625 abc 1748.625 abc 1748.625 abc 1749.625 abc 1749.625 abc 1762.726 abcd 1362.726 abcd 1303.745 abcd	3137.998 abcd 3558.997 abc 3427.971 abcd 2435.801 cd 4344.011 a 3582.771 abc 2248.094 d 3589.726 abc 3420.652 abcd 2645.434 bcd	(1/100) 177126.622 ab 178202.974 ab 179763.434 a 169413.704 abcd 159408.735 bcde 163663.851 abc 146802.482 cdat 153754.093 cdef 143923.627 def	hexanoate (1/100) 10.169 a 9.421 ab 8.902 ab 9.505 ab 8.487 abc 7.655 bc 8.284 abc 7.388 bc 8.333 abc	octanoate (1/100) 3.412 ab 3.713 a 3.096 abc 3.366 ab 2.967 abcd 2.487 bcde 1.836 def 1.993 cdef 1.459 ef 1.448 ef
octanoste 7.929 ab 4.321 abcd 3.520 bcd 4.605 abcd 3.019 cd 8.016 a 7.523 abc 2.931 cd 5.480 abcd 4.464 abcd	3577.538 ab 3720.282 a 4500.363 a 3376.525 ab 1802.530 bc 1262.973 c 598.938 c 483.201 c 804.824 c 333.617 c	nonanoate 0.017 a 0.015 a 0.017 a 0.018 a 0.019 a 0.014 a 0.018 a 0.017 a 0.017 a	1401.002 bcd 1403.506 bcd 1880.812 a 1079.801 d 1357.949 bcd 1357.949 bcd 1327.675 bcd 1427.098 bcd 1533.871 ab 1197.112 bcd 1249.742 bcd	decanoate 0.703 ab 0.348 bc 0.348 c 0.342 c 0.354 bc 0.225 c 0.724 a 0.415 abc 0.355 bc 0.355 bc 0.214 c	1018.644 bc 997.000 bc 1248.355 a 624.255 e 797.814 cde 1008.933 bc 747.941 de 890.820 cd 1120.084 ab 706.199 de 746.944 de	decanoate 24.335 a 21.816 abc 21.805 ab 26.402 a 19.026 abcd 15.417 bcde 13.710 cdef 10.879 def 9.471 ef 9.471 ef 6.418 f	octanoate 0.032 abc 0.039 a 0.035 ab 0.035 ab 0.035 ab 0.031 abc 0.021 cd 0.021 cd 0.021 cd 0.021 cd 0.021 cd 0.027 d	2859.321 bc 2859.855 bc 3490.770 ab 2477.732 c 2658.409 bc 3436.714 abc 3117.029 bc 3611.503 ab 4410.062 a 3137.768 bc 3239.948 bc	acid 2640.714 bc 2562.149 bc 2358.2149 bc 2358.316 bc 3072.227 bc 2889.964 bc 3262.732 ab 4022.746 a 2941.745 bc 2962.141 bc	1991.763 bcd 1379.255 cd 1134.225 d 4247.533 a 2528.135 bc 1916.596 bcd 3093.324 ab 2340.426 bcd 1677.523 cd 2290.169 bcd 2290.169 bcd	acetate 7.903 a 8.997 a 8.917 a 3.942 br 5.809 b 5.717 b 2.194 cd 3.501 c 3.329 cd 1.489 d 1.965 cd	dodecanoate 0.139 ab 0.134 abc 0.130 abcd 0.155 a 0.136 ab 0.117 abcde 0.113 bcdef 0.200 bcdef 0.000 ddf 0.090 ddf 0.090 ddf 0.090 ddf 0.090 ddf	5974.482 bcd 6126.520 abc 7453.072 a 4736.213 d 6208.116 abc 6460.088 abc 5256.050 cd 5951.407 bcd 6769.601 ab 5295.833 cd 6209.913 abc	47.352 a 46.616 a 46.403 ab 36.792 cde 37.317 cd 38.042 bc 28.973 def 28.973 def 28.973 def 28.736 ef 24.573 f	0.130 ab 0.105 ab 0.108 ab 0.108 ab 0.108 ab 0.108 ab 0.129 ab 0.144 a 0.103 ab 0.144 a 0.144 a 0.044 a 0.044 a	258.247 bc 298.721 bc 399.425 ab 541.512 a 401.989 ab 225.518 bc 294.202 bc 320.850 bc 200.683 bc 238.913 bc	vinylphenol 1851.679 a 1761.625 ab 1561.584 abcd 1743.625 abc 17743.625 abc 1177.932 bcd 1186.539 cd 11362.726 abcd 1121.218 d 1303.745 abcd 1538.441 abcd	3137.998 abcd 3558.997 abc 3427.971 abcd 2436.801 cd 4344.011 a 3582.771 abc 2248.094 d 3589.726 abc 3420.532 abcd 2545.434 bcd 3956.851 a	(1/100) 177126.622 ab 178202.974 ab 179763.434 a 160413.704 abcd 159408.735 bcte 163663.851 abc 148002.482 cdef 148002.482 cdef 14802.482 cdef 14802.482 cdef 14802.482 cdef 14802.482 cdef 148323.627 def 1337558.511 f	hexanoate (1/100) 10.169 a 9.421 ab 8.902 ab 9.505 ab 8.487 abc 7.655 bc 8.284 abc 7.388 bc 8.333 abc 6.295 c	octanoste (1/100) 3.412 ab 3.713 a 3.096 abc 3.365 ab 2.967 abcd 1.836 def 1.993 cdef 1.469 ef 1.449 ef 1.448 ef 1.229 f
octanoate 7.929 ab 4.321 abcd 3.520 bcd 4.605 abcd 3.039 cd 8.016 a 7.523 abc 2.931 cd 5.489 abcd 4.464 abcd 3.723 bcd	3577.538 ab 3720.282 a 4509.363 a 3376.525 ab 1802.530 bc 1262.973 c 508.938 c 483.201 c 804.824 c 333.617 c 316.560 c	nonanoate 0.017 a 0.015 a 0.017 a 0.018 a 0.019 a 0.017 a 0.014 a 0.018 a 0.017 a 0.014 a 0.014 a	1401.002 bcd 1403.506 bcd 1880.812 a 1079.801 d 1149.448 cd 1357.940 bcd 1327.675 bcd 1427.018 bcd 1533.871 ab 1197.112 bcd 1249.742 bcd 1459.444 bc	decanoate 0.703 ab 0.348 bc 0.348 c 0.342 c 0.354 bc 0.235 c 0.724 a 0.415 abc 0.202 c 0.355 bc 0.214 c	1018.644 bc 997.000 bc 1248.355 a 624.255 a 7979.814 cde 1008.933 bc 747.941 de 890.820 cd 1120.084 ab 709.199 de 746.944 de 902.985 bcd	decanoate 24.335 a 21.816 abc 21.895 ab 25.402 a 19.026 abcd 13.710 cdef 13.710 cdef 10.879 def 9.471 ef 9.487 ef 6.518 f	octanoate 0.032 abc 0.039 a 0.035 ab 0.035 ab 0.035 ab 0.031 abc 0.021 cd 0.021 cd 0.021 cd 0.021 cd 0.017 d 0.017 d	2859.321 bc 2859.855 bc 3490.770 ab 2477.732 c 2658.409 bc 3436.714 abc 3117.029 bc 3611.503 ab 4410.062 a 3137.768 bc 3239.948 bc 3239.948 bc	acid 2640.714 br 2562.149 br 2359.161 ab 2221.780 c 2358.316 br 3072.227 br 2889.964 br 3262.732 ab 40227.746 a 2941.745 br 2362.141 br 2362.141 br	1991.763 bcd 1379.255 cd 1134.225 d 4247.533 a 2528.135 bc 1916.596 bcd 3093.324 ab 2340.426 bcd 1677.523 cd 2290.169 bcd 2345.067 bcd 1701.042 cd	acetate 7.903 a 8.997 a 8.917 a 3.942 bc 5.809 b 5.717 b 2.194 cd 3.501 c 3.329 cd 1.965 cd 2.820 cd	dodecanoate 0.139 ab 0.134 abc 0.134 abc 0.135 a 0.135 ab 0.117 abcde 0.113 bode 0.113 bode 0.090 def 0.090 def 0.094 cdef 0.096 def	5974.482 bcd 6126.520 abc 7453.072 a 4736.213 d 6208.116 abc 6460.088 abc 5951.407 bcd 6769.601 ab 5295.833 d 6209.913 abc 6530.561 abc	47,352 a 46,616 a 46,603 ab 36,792 cde 37,317 cd 38,042 bc 28,973 def 29,180 def 28,736 ef 28,736 ef 26,577 f 26,584 f	0.130 ab 0.130 ab 0.105 ab 0.108 ab 0.109 ab 0.129 ab 0.144 a 0.103 ab 0.144 a 0.144 a 0.144 a 0.144 a 0.144 a 0.144 a	258.247 bc 298.721 bc 399.425 ab 156.354 c 541.512 a 401.989 ab 225.518 bc 294.202 bc 320.650 bc 200.683 bc 238.913 bc 270.347 bc	vinylphenol 1851.679 a 1761.625 ab 1561.584 abcd 1202.873 bcd 1779.32 bcd 1166.539 cd 1166.539 cd 11303.745 abcd 11303.745 abcd 11303.745 abcd 11303.745 abcd 11303.745 abcd 11303.745 abcd 11304.140 d	3137.998 abcd 3558.997 abc 3427.971 abcd 4344 (011 a 3582.771 abc 2248.094 d 3589.726 abc 3420.652 abcd 2645.434 bcd 3956.861 a 3734.544 ab	(1/100) 177126.622 ab 178202.974 ab 179763.434 a 159413.704 abcd 159408.735 bcde 163663.851 abc 146802.482 cdef 153754.093 cdef 143223.527 def 143223.527 cdef 1337558.511 f 133668.153 ef	hexanoate (1/100) 10.169 a 9.421 ab 8.902 ab 9.505 ab 8.487 abc 7.655 bc 8.284 abc 7.388 bc 8.33 abc 6.295 c 7.367 bc	octanoste (1/100) 3.412 ab 3.713 a 3.066 abc 2.487 bcde 1.836 def 1.469 ef 1.468 ef 1.468 ef 1.229 f 1.399 ef
octanoste 7.929 ab 4.321 abcd 3.520 bcd 4.605 abcd 3.019 cd 8.016 a 7.523 abc 2.931 cd 5.480 abcd 4.464 abcd	3577.538 ab 3720.282 a 4500.363 a 3376.525 ab 1802.530 bc 1262.973 c 598.938 c 483.201 c 804.824 c 333.617 c	nonanoate 0.017 a 0.015 a 0.017 a 0.018 a 0.019 a 0.014 a 0.018 a 0.017 a 0.017 a	1401.002 bcd 1403.506 bcd 1880.812 a 1079.801 d 1357.949 bcd 1357.949 bcd 1327.675 bcd 1427.098 bcd 1533.871 ab 1197.112 bcd 1249.742 bcd	decanoate 0.703 ab 0.348 bc 0.348 c 0.342 c 0.354 bc 0.235 c 0.724 a 0.415 abc 0.355 bc 0.235 bc 0.214 c	1018.644 bc 997.000 bc 1248.355 a 624.255 e 797.814 cde 1008.933 bc 747.941 de 890.820 cd 1120.084 ab 706.199 de 746.944 de	decanoate 24.335 a 21.816 abc 21.805 ab 26.402 a 19.026 abcd 15.417 bcde 13.710 cdef 10.879 def 9.471 ef 9.471 ef 6.418 f	octanoate 0.032 abc 0.039 a 0.035 ab 0.035 ab 0.035 ab 0.031 abc 0.021 cd 0.021 cd 0.021 cd 0.021 cd 0.021 cd 0.027 d	2859.321 bc 2859.855 bc 3490.770 ab 2477.732 c 2658.409 bc 3436.714 abc 3117.029 bc 3611.503 ab 4410.062 a 3137.768 bc 3239.948 bc	acid 2640.714 bc 2562.149 bc 2358.2149 bc 2358.316 bc 3072.227 bc 2889.964 bc 3262.732 ab 4022.746 a 2941.745 bc 2962.141 bc	1991.763 bcd 1379.255 cd 1134.225 d 4247.533 a 2528.135 bc 1916.596 bcd 3093.324 ab 2340.426 bcd 1677.523 cd 2290.169 bcd 2290.169 bcd	acetate 7.903 a 8.997 a 8.917 a 3.942 br 5.809 b 5.717 b 2.194 cd 3.501 c 3.329 cd 1.489 d 1.965 cd	dodecanoate 0.139 ab 0.134 abc 0.130 abcd 0.155 a 0.136 ab 0.117 abcde 0.113 bcdef 0.200 bcdef 0.000 ddf 0.090 ddf 0.090 ddf 0.090 ddf 0.090 ddf	5974.482 bcd 6126.520 abc 7453.072 a 4736.213 d 6208.116 abc 6460.088 abc 5256.050 cd 5951.407 bcd 6769.601 ab 5295.833 cd 6209.913 abc	47.352 a 46.616 a 46.403 ab 36.792 cde 37.317 cd 38.042 bc 28.973 def 28.973 def 28.973 def 28.736 ef 28.736 ef 24.573 f 26.577 f 26.587 f 26.587 f 26.587 f 26.587 f	0.130 ab 0.105 ab 0.108 ab 0.108 ab 0.108 ab 0.108 ab 0.129 ab 0.144 a 0.103 ab 0.144 a 0.144 a 0.044 a 0.044 a	258.247 bc 298.721 bc 399.425 ab 541.512 a 401.989 ab 225.518 bc 294.202 bc 320.850 bc 200.683 bc 238.913 bc	vinylphenol 1851.679 a 1761.625 ab 1561.584 abcd 1743.625 abc 17743.625 abc 1177.932 bcd 1186.539 cd 11362.726 abcd 1121.218 d 1303.745 abcd 1538.441 abcd	3137.998 abcd 3558.997 abc 3427.971 abcd 2436.801 cd 4344.011 a 3582.771 abc 2248.094 d 3589.726 abc 3420.532 abcd 2545.434 bcd 3956.851 a	(1/100) 177126.622 ab 178202.974 ab 179763.434 a 160413.704 abcd 159408.735 bcte 163663.851 abc 148002.482 cdef 148002.482 cdef 14802.482 cdef 14802.482 cdef 14802.482 cdef 14802.482 cdef 148323.627 def 1337558.511 f	hexanoate (1/100) 10.169 a 9.421 ab 8.902 ab 9.505 ab 8.487 abc 7.655 bc 8.284 abc 7.388 bc 8.333 abc 6.295 c	octanoste (1/100) 3.412 ab 3.713 a 3.096 abc 3.365 ab 2.967 abcd 1.836 def 1.993 cdef 1.469 ef 1.449 ef 1.448 ef 1.229 f

Supplementary Table 4. Ratios of significantly different compounds measured by HPLC. Ratios of compounds detected in wines mad juices are in comparison to 16 Bé juices fermented by the same yeast, or in the case of where nutrient is added, to wines made from ju Bé. Increased ratios are highlighted in green and decreased in pink. Results for wines made from 16 Bé juices with no nutrient additio actual values (g L-1) \pm SD. Significant differences were determined by ANOVA.

	Malic Acid	Succinic Acid	Lactic Acid	Glycerol	Acetaldehyde
EC1118 16Bé 0 FO MLF-	3.38±0.05	2.68±0.11	1.1±0.14	7.77±0.01	0.33±0.01
EC1118 16Bé 20 FO MLF-					1.34
EC1118 16Bé 40 FO MLF-					1.36
EC1118 14.5Bé 0 FO MLF-	0.92	0.82		0.87	0.81
EC111814.5Bé 20 FO MLF-					
EC1118 14.5Bé 40 FO MLF-					
EC1118 13.5Bé 0 FO MLF-	0.85	0.73	0.00	0.79	0.62
EC1118 13.5Bé 20 FO MLF-					1.32
EC1118 13.5Bé 40 FO MLF-					
EC1118 12.5Bé 0 FO MLF-	0.78	0.67		0.74	0.49
EC1118 12.5Bé 20 FO MLF-		1.09			1.39
EC1118 12.5Bé 40 FO MLF-		1.09			
Pr > F(Model)	<0.0001	< 0.0001	0.391	< 0.0001	< 0.0001
Significant	Yes	Yes	No	Yes	Yes
	Malic Acid	Succinic Acid	Lactic Acid	Glycerol	Acetaldehyde
R2 16Bé 0 FO MLF-	2.84±0.04	3.22±0.03	1±0.02	7.87±0.04	0.12±0.01
R2 16Bé 20 FO MLF-		1.18		1.01	
R2 16Bé 40 FO MLF-		1.10		1.01	
R2 14.5Bé 0 FO MLF-	0.92			0.90	1.97
R2 14.5Bé 20 FO MLF-					
R2 14.5Bé 40 FO MLF-					
R2 13.5Bé 0 FO MLF-	0.86	0.84		0.85	1.67
R2 13.5Bé 20 FO MLF-				0.97	
R2 13.5Bé 40 FO MLF-				0.97	
R2 12.5Bé 0 FO MLF-	0.79	0.79		0.81	
R2 12.5Bé 20 FO MLF-				0.94	
R2 12.5Bé 40 FO MLF-	0.83			0.94	
Pr > F(Model)	<0.0001	<0.0001	0.328	<0.0001	0.000
Significant	Yes	Yes	No	Yes	Yes

e from diluted tices of the same on are displayed as

Ethanol	
120.83±0.29	
0.90	
0.83	
0.76	
<0.0001	
Yes	
Ethanol	
Ethanol 122.54±0.27	
122.54±0.27	
122.54±0.27	
122.54±0.27	
122.54±0.27 0.89	
122.54±0.27 0.89 0.81	
122.54±0.27 0.89	
122.54±0.27 0.89 0.81	
122.54±0.27 0.89 0.81 0.74	