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Abstract: Monitoring activity patterns of animals offers the opportunity to assess individual health
and welfare in support of precision livestock farming. The purpose of this study was to use a triaxial
accelerometer sensor to determine the diel activity of sheep on pasture. Six Perendale ewe lambs,
each fitted with a neck collar mounting a triaxial accelerometer, were filmed during targeted periods
of sheep activities: grazing, lying, walking, and standing. The corresponding acceleration data were
fitted using a Random Forest algorithm to classify activity (=classifier). This classifier was then
applied to accelerometer data from an additional 10 ewe lambs to determine their activity budgets.
Each of these was fitted with a neck collar mounting an accelerometer as well as two additional
accelerometers placed on a head halter and a body harness over the shoulders of the animal. These
were monitored continuously for three days. A classification accuracy of 89.6% was achieved for
the grazing, walking and resting activities (i.e., a new class combining lying and standing activity).
Triaxial accelerometer data showed that sheep spent 64% (95% CI 55% to 74%) of daylight time
grazing, with grazing at night reduced to 14% (95% CI 8% to 20%). Similar activity budgets were
achieved from the halter mounted sensors, but not those on a body harness. These results are
consistent with previous studies directly observing daily activity of pasture-based sheep and can
be applied in a variety of contexts to investigate animal health and welfare metrics e.g., to better
understand the impact that young sheep can suffer when carrying even modest burdens of parasitic
nematodes.

Keywords: sheep; diel activity; classification algorithm; tri-axial accelerometers; health monitoring

1. Introduction

Monitoring the activity of animals using non-invasive technologies such as accelerom-
eter sensors can provide an indicator of an individual’s response to its external or internal
environment [1]. These technologies are widely used in wildlife ecology studies [2–5] and
in an increasing number of animal science studies [6–13] to infer the behavioural responses
of host animals to their environment.

In domestic sheep, accelerometer data has been used to develop classifier algorithms to
identify different activities of several breeds of sheep on pasture, including Merino [6,9,14–17],
Sarda [18], Suffolk cross [19] and Debouillet [20]. The range of activity types include
grazing, lying down, standing, walking, and ruminating. A few studies have endeavoured
to use such activity classifiers to investigate behavioural patterns, usually associated with
a particular context, e.g., to detect the effect of opioids on sheep behaviour [21], to monitor
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change in behaviour during parturition events [20,22], and detection of lameness [23,24].
In the field of parasitology, helminth worms have been associated with daily changes in
sheep lying time [25] and increased irregularity in activity patterns [26], as measured by
accelerometers. The current authors found that sub-clinically parasitised sheep reduced
their overall activity compared to uninfected controls [27] using an ultra-light weight
acceleration sensor (Actigraph wGT3X-BT®, LLC, Pensacola, FL, USA). This commercially
available sensor has been used in proximity studies investigating contact between ewes and
their lambs [28], and can potentially assist in the identification of different activity types in
pastured sheep in order to allow onward investigations on the influence of parasites on
these behavioural attributes. Each species differs in their signature in the tri-axial data, and
hence the developments made in developing classifier algorithms in other species using the
Actigraph wGT3X-BT® on horses [29] and dogs [30] cannot be applied to sheep. Moreover,
the ability to detect changes in animal activity during a 24 h period is potentially useful for
detecting health and welfare problems, but few studies have used accelerometry data to
identify the diel activity of sheep. One study to date has used a motion index derived from
accelerometer data to investigate the circadian rhythm of sheep [31], but the effect of time
of day on activity classes such as grazing, standing, lying and walking have received little
attention from a research standpoint.

For the limited studies reporting simultaneous deployment of accelerometers using
different attachment locations in sheep, accelerometers have been applied to individuals
on the hind leg [32], foreleg [14], neck [14,18,19,33] and ear [14,19,33], and each may have
advantages. It has been suggested that for an accurate indication of individual energy
expenditure, accelerometers should be placed close to the centre of mass [34], such as on
a harness. However, the placement on top of the shoulder (Figure 1; position 3) limits
the collection of information on head movement associated with grazing. For practical
on-farm purposes it is likely that accelerometers will likely be included in some form of ear
tag. However, several commercial accelerometers may not fit on the ear of young lambs,
although advances in miniaturising the technology will undoubtedly change this. The
collar placement for accelerometers has been the most commonly used to date, and the
results of previous research [14] suggest that, for grazing activity, accelerometer sensors
deployed on the ear show similar performance metrics to those on a collar. Similarly,
the classification performance of algorithms for walking and standing activities were not
different from accelerometry data collected from placement on the ear or a neck collar [19].
Hence, placement on collars appears to be a suitable candidate position for continuing
research purposes, in the absence of suitably sized accelerometers for ear deployments. In
addition, attaching the accelerometer to a neck collar will capture some head movement
but with limited information from minor head movements. Moreover, previous studies in
sheep have seldom examined the degree to which classifiers developed in one placement
are robust across different placement methods [14,18,19,33], and it remains unclear whether
a general classifier can be developed to infer activities for other body positions. As a
secondary objective, we sought to investigate the ability of a classifier generated in the
collar position to infer similar activity budgets in two other placements.

The aim of the current study was to build a prediction model to classify the diel activity
of Perendale sheep at pasture fitted with a neck collar mounting the Actigraph wGT3X-BT®

tri-axial accelerometer. This study tested two hypotheses: (1) that raw, untransformed
acceleration data could be used to create an accurate classification model capable of in-
ferring diel activity patterns of sheep; (2) that the classification model developed from
accelerometers attached to neck collars can be applied to infer activity from accelerometers
place on head halters and on body harnesses.
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Figure 1. The position of the Actigraph tri-axial accelerometer on 1 (head halter), 2 (neck collar) and
3 (body harness) and the axis orientation at each position in relation to the animal’s body.

2. Materials and Methods

The study was conducted at the Massey University sheep unit, Palmerston North,
New Zealand (40◦23′28′′ S 175◦36′21′′ E 40 m elevation) between 24 July and 9 August
2018, which is during winter at this location. Ethical approval to conduct this study was
obtained from the Massey University Animal Ethics Committee (Protocol No. 16/134,
23 December 2016).

2.1. Study Animals and Design

The study comprised two phases: a classification model development phase (P1)
and a second phase (P2) to test model performance for different body locations of the
accelerometers in identifying the diurnal activity of sheep, with the collar as the reference.
P1 was conducted with six lambs that were part of a mob of 27 Perendale ewe-lambs grazing
together. The lambs were approximately one year of age and had a mean liveweight
of 43 kg (SD = 4.5 kg). For P2, 10 ewe lambs from the same cohort were used, but
different individuals than those used in P1. All animals received a standard combination
clostridial and leptospirosis vaccine (Ultravac® 7 in 1, Zoetis New Zealand Inc., 8 Mahuhu
Crescent, Auckland CBD, Auckland 1010, New Zealand) as well as topical insecticide
(Clik®, Elanco Animal Health New Zealand Ltd., 106 Wiri Station Road, Wiri, Auckland
2104, New Zealand) to prevent fly strike. They were treated with anthelmintics one and
four weeks prior to the study for P1 and P2 respectively and all lambs were determined
to be clinically healthy upon physical examination. To allow visual identification in the
paddock from a distance, each ewe lamb was coat-sprayed visibly with a unique colour
and number on the hind quarter and lateral sides using scourable spray-mark (SprayLine®,
Midvale, WA 6056, Australia).

2.2. Accelerometer

For P1, individuals were fitted with ActiGraph wGT3X-BT® accelerometers (Acti-
Graph, LLC, Pensacola, FL, USA), which weighed 19 g and were 46 × 33 × 15 mm in size.
The wGT3X-BT® records accelerations from the individual’s amplitude (g) and frequency
(Hz) of movement across three axes (X for front-to-back; Y for side-to-side; and Z for
up-down), and was attached onto the top side of a neck collar with a cable tie, and in P2
two additional monitors were used. One was fastened to a head halter adjacent to the cheek
and the second on a ram mating harness being positioned over the shoulders (Figure 1).

The accelerometers were pre-scheduled to sample data at a rate of 30 Hz, i.e.,
30 data points per second. For comparison in P2, the accelerometers on the shoulders (body
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harness) had the front-to-back orientation on the Y axis, side-to-side movement on the
X axis and up-down on the Z axis, with these body axes were 90◦ different to those on the
neck collar. For the head halter the accelerometers had employed front-to-back movements
on the X axis, side-to-side on the Z axis, and up-down on the Y axis. This difference in
orientation was corrected and accounted for prior to analysis.

2.3. Behavioural Activity Ethogram

Four categories of behavioural activities were defined a priori based on previous
work [6,14] in order to compare behavioural categories collected from accelerometry against
behavioural observations. These categories included:

1. Grazing—head down while standing still or slowly moving forward whilst ingesting
grass with the muzzle close to the ground.

2. Standing—standing with head up >5 s, minimal head movement (left to right).
3. Walking—head up whilst walking at a slow pace/running at a fast pace. Head raised

at or above horizontal plain and eyes open (to include scanning).
4. Lying—lying down with minimal head movement.
5. Other—including scratching, playing etc.

2.4. Data Recording and Management

For each phase of the study, raw acceleration data, continuously recorded at 30 Hz,
were integrated into five second epochs across the X, Y and Z axes at each of three body
positions per sheep.

2.4.1. Model Classification Phase (P1)

Three experimental tests (ET) were conducted. Lambs were in a grazing paddock (ET
One), a holding pen (ET Two) or walked through a lane way (ET Three). Each ET was
designed to capture a target activity, with grazing, standing, and walking corresponding to
ETs One, Two and Three, respectively. All six lambs were filmed during these experimental
tests. Video recordings were made using a Samsung NX300 digital camera (Samsung
Electronics America, Inc.). All observations were conducted during daylight hours. The
starting times for the six observation sessions per day are shown in Table 1. Video obser-
vations were taken from a 100 to 200 m distance using the camera’s zoom lens in order
to avoid disturbance of the sheep. Although experiment One was designed to capture
grazing activity, all other activities were also captured during this time. Lying activity was
opportunistically targeted during the late morning period. A mean (SD) of 3.30 h (0.30)
of video was recorded for each individual, generating a total video time of ~20 h 40 min
(Table 1). Using the behaviours defined in Section 2.3, all videos were watched and coded
by the same observer (SJI). An activity profile of each animal was created from videos by
annotating and coding activity type at five seconds interval (i.e., five seconds epochs) using
CowLog®, an open-source software for coding behaviours from digital video [35].

Table 1. Starting times and duration of focal behaviour observation sessions recorded by video
across three experimental periods on ewe lambs (n = 6) fitted with a collar mounting an Actigraph®

wGT3X-BT accelerometer sensor.

Date Focal Behaviour Start End Duration (mins)

2/08/2018 Grazing 14:09:40 14:39:30 29:59
2/08/2018 Grazing 14:41:05 14:51:00 17:05
3/08/2018 Lying 11:15:00 11:45:55 31:00
9/08/2018 Standing 10:46:50 11:16:35 29:59
9/08/2018 Standing 11:17:15 11:22:15 05:09
9/08/2018 Walking 11:28:00 11:44:55 17:03

11/08/2018 Grazing 13:17:35 13:47:25 29:59
11/08/2018 Grazing 13:48:40 14:18:30 29:59
11/08/2018 Grazing 14:19:10 14:34:10 15:40
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2.4.2. Within-Observer Reliability Test

This test measures the extent to which a single observer obtains consistent results
when repeatedly measuring the same behaviour [36]. In this part, the intra-observer
agreement was tested using the Kappa statistic by calculating the level of agreement of
activity annotations using a subset of 15 min per activity category in four study animals and
compared to annotations for activity of the same animals during the initial activity coding.
There was a time interval of 18 months between the first and second activity coding. The
percentage of exact agreement between the first and second coding of the same behaviour
by the observer was calculated, and the within-observer variability was assessed using an
intra-class confusion matrix and kappa coefficients (k) [37]. Kappa results were interpreted
according to Fleiss et al. [38], where values >0.75 suggested excellent, 0.4 to 0.75 indicated
fair-good and <0.4 indicated poor levels of agreement.

2.4.3. Collection of Accelerometer Data from Different Body Locations (P2)

The sensor data from each body location were collated for a 72-h period commencing
at 0900 h on the day of attachment of the sensors to the lambs (i.e., Tuesday), and presented
as three daily blocks, that is per 24 h. As mentioned above, the orientation of the X, Y and
Z axes differed between the attachment methods. This was adjusted for prior to analysis.
Then the classification model was applied to deduce activity types at each 5 s interval. We
then separately compared the activity budgets for the head halter and the harness to the
activity budget of the collar.

2.5. Statistical Analysis

All data computation and statistical analysis was conducted in R version 3.5.2 [39].

2.5.1. Descriptive Statistics

The frequency of occurrence of the coded activity were described and two-dimensional
plots were used to describe the relationship between activity types and the X-Y, X-Z and
Y-Z axes.

2.5.2. Phase One—Building Classifier Model

Activities classified as ‘other’ were removed. A random forest algorithm (R package
‘randomForest’, [40]) was used to develop an activity classification model using the raw X,
Y and Z accelerometer data to predict the activity types observed in the labelled dataset,
running 1000 iterations. This method implements out-of-bag error estimation for robust
and unbiased inferences. In each iteration, the algorithm randomly samples data points
and variables, and then combines the output at the end. The output of the out-of-bag
random forest model (hereafter called classifier) was then used to predict behaviours using
the entire labelled dataset, and model predictions were compared to the gold standard
(video observations) to compute a confusion matrix to evaluate the performances of the
classifier. Two metrics were used for overall classifier performance across all activities:
the overall accuracy and overall misclassification rate. To evaluate the performance of
the classifier for each individual activity type separately, four performance metrics were
calculated as outlined in Equations (1)–(4):

Sensitivity = TP/(TP + FN) (1)

Specificity = TN/(TN + FN) (2)

Precision = TP/(TP + FP) (3)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (4)

where, TP (true positive) corresponds to the number of epochs where the behaviour of
interest was correctly predicted by the classifier. TN (true negative) is the number of
epochs where the behaviour of interest was correctly classified as not having occurred.
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FN (false negative) is the number of epochs where the behaviour of interest was observed
but not inferred by the classifier. FP (false positive) is the number of epochs where the
behaviour of interest was inferred by the classifier but not observed. To further validate
the predictive ability of the classifier model, a “leave-one-out” cross-validation was used
based on individual sheep removal, as the observations were clustered by individual. Data
points for each individual lamb were removed sequentially from the labelled dataset, the
model was trained using the remaining five lambs and validated on the lamb removed.

2.5.3. Phase Two

For P2, the daily activity budgets (proportion of time spent grazing, resting, and
walking) were calculated for each ewe lamb (n = 10) and compared between accelerometer
placements. The daily proportions of each activity were summarised as mean per hour of
day and described for each placement of the sensor on the animal’s body.

A Dirichlet regression with log link was then fitted to model the relative hourly pro-
portion of time spent in each activity for each sheep, as a function of the accelerometer
placement and the day. As the multivariate generalization of the beta distribution, the
Dirichlet distribution accounts for the numerical constraint associated with compositional
data such as activity budgets, whose components sum to 1 [41], and allows for the simul-
taneous assessment of the effects of covariates on the relative contribution of multiple
activities [42]. The R package ‘DirichletReg’ [43] was used to model the response variable
activity budget (hourly proportion of performing the activities) and the explanatory vari-
ables were position (head halter and body halter, reference = neck collar) and day (the trial
was run for 3 consecutive days).

To endeavour to quantify sheep activity occurring during daylight and those occurring
at night, the collar-derived accelerometry daily data were divided into the mean hourly
sunset to sunrise times over the three days of activity monitoring (i.e., from 07.30 to 17.18 h
for daylight hours; www.timeanddate.com, 2018, accessed 23 March 2019).

3. Results
3.1. Descriptive Statistics for Labelled Dataset and 2-D Plots (Phase 1)

The epoch counts (total time) labelled for activities were grazing—4855 (6 h 45 min),
lying—2573 (3 h 34 min), standing—2639 (3 h 39 min), and walking/running—1078
(1 h 30 min). The activity budget is shown in Table 2. Grazing was the most frequent
activity. Activity data are described in two-dimensional plots (Figure 2) between each of
the predictor axis, i.e., X-Y, X-Z and Y-Z axes, where X, Y and Z axes correspond to axis1,
axis2 and axis3, respectively.

Table 2. Activity budget percentage (95% confidence interval) of overall epochs (5 s periods) that
were classified as grazing, lying, standing, walking/running or other from filmed ewe lambs.

Activity Percentage (95% CI)

Grazing 38.8% (38.0 to 39.6)
Lying 20.6% (19.9 to 21.3)

Standing 21.1% (20.4 to 21.8)
Walking/Running 8.6% (8.1 to 9.1)

Other 11% (10.5 to 11.5)

3.2. Within-Observer Agreement Test

A summary of the activity data recorded by one observer on two occasions (18 months
apart) is shown in Table 3. The overall accuracy between the first and second observations
was 99%. Walking and standing behaviours were the most frequent to be misclassified,
but with a misclassification error ≤4% between the activities. The Kappa value (k = 0.98)
suggests that there was excellent agreement between the first and second coding of the
same observer.

www.timeanddate.com
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Figure 2. 2-D scatter plots of acceleration signals recorded in X, Y and Z axes of six ewe lambs during
periods of grazing, standing, lying and walking.

Table 3. Count of activity for four ewe lambs at five seconds interval over a one-hour period.
Observations coded by one observer on two occasions (18 months apart).

1st Coding

2nd Coding Grazing Lying Standing Walking/Running Total

Grazing 173 0 0 0 173
Lying 0 177 0 0 177

Standing 0 0 150 6 156
Walking/Running 0 0 3 133 136

Total 173 177 153 139 642

3.3. Random Forest Model

The best out-of-bag classification model (classifier) was derived by combining the
standing and lying behaviours into one behaviour (=resting). This improved model pre-
diction and reduced misclassification by 15%. Two-dimensional scatter plots of grazing,



Sensors 2021, 21, 6816 8 of 16

walking and the newly categorized resting extracted from the accelerometers mounted on
neck collars using raw X, Y and Z acceleration values are shown in Figure 3.
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periods of grazing, resting (standing or lying activity) and walking.

The confusion matrix of the final model predictions against the observed activities
(video recorded) is shown in Table 4.

The performance metrics calculated from the classifier model for each activity is
shown in Table 5.
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Table 4. Confusion matrix of the best classifier using random forest, showing the predicted activity
for neck collar-mounted accelerometers recording activity of six sheep during four sampling days (5
s epochs). Values across the diagonal (bold) represent those activities that were correctly identified,
true positives. Values in the matrix are the number of epochs.

Predicted Activity

Observed Activity Grazing Resting Walking

Grazing 4562 154 139
Resting 459 4650 103
Walking 256 50 772

Out-of-bag misclassification rate: 10.4%.

Table 5. Performance metrics of random forest classifier algorithm for grazing, resting, and walking
activities of ewe lambs.

Activity Accuracy Precision Specificity Sensitivity

Grazing 91% 86% 88% 94%
Resting 93% 96% 96% 89%
Walking 95% 76% 97% 72%

3.4. Leave-One-Out Cross Validation by Individual Sheep Removal

The overall accuracy for each round of prediction was 88% (Kappa 0.8; 95% CI 87 to
90), 87% (Kappa 0.8; 95% CI 85 to 88), 88% (Kappa 0.8; 95% CI 87 to 90), 88% (Kappa 0.8;
95% CI 86 to 89), 92% (Kappa 0.9; 95% CI 90 to 93) and 87% (Kappa 0.9; 95% CI 90 to 93),
respectively. This resulted in a mean model prediction accuracy of 88% (SD = 1.7%). The
performance of random forest models analysed at the level of the individual ewe-lambs
(i.e., trained by five individuals’ labelled datasets to predict the sixth individual) is shown
in Table 6.

Table 6. Performance of the random forest classification algorithm predictions across individual ewe lambs (n = 6). Data
shown for each lamb when data for other 5 lambs were used to develop the algorithm.

Lamb
Grazing Resting Walking

n Acc. Prec. Spec. Sens. Acc. Prec. Spec. Sens. Acc. Prec. Spec. Sens.

1 1838 89% 80% 86% 94% 93% 95% 96% 89% 94% 80% 99% 50%
2 1853 88% 85% 93% 80% 90% 89% 87% 93% 94% 74% 97% 73%
3 2146 90% 89% 89% 91% 93% 91% 93% 91% 93% 63% 97% 52%
4 1717 89% 83% 87% 92% 91% 94% 94% 88% 95% 83% 98% 69%
5 2887 93% 90% 91% 96% 93% 97% 97% 88% 97% 81% 98% 88%
6 1504 89% 89% 84% 92% 91% 95% 98% 76% 93% 64% 94% 87%

n = number of predictions made for individual lamb; Acc. = Accuracy; Prec. = Precision; Spec. = Specificity; Sens. = Sensitivity.

3.5. Testing Classifier Model Performance to Estimate Sheep Diel Activity and at Alternative Body
Positions (Phase 2)

The daily activity budgets deduced (proportion of time spent grazing, resting, and
walking) using the classifier developed in Phase 1 from the accelerometer data obtained
by fitting the accelerometer to a collar (neck, as reference), a halter (head) and a harness
(body) are presented in Table 7.
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Table 7. The mean (95% confidence limits, CL) daily time spent grazing, resting, and walking for
three days recorded continuously by tri-axial accelerometers positioned on a neck collar, head halter
and body harness of ewe lambs (n = 10).

Activity
Position

Collar (95% CL) Halter (95% CL) Harness (95% CL)

Grazing 39% (31, 48) 35% (28, 42) 7.8% (6, 10)
Resting 59% (51, 67) 60% (52, 68) 91.9% (90, 93)
Walking 2% (1, 2) 5% (4, 6) 0.3% (0.2, 0.4)

At the collar reference position, grazing was the primary activity of sheep for all three
days of monitoring during daylight hours (Table 8). Grazing time during daylight hours
represented approximately 82% of the total grazing time.

Table 8. Activity time budgets of grazing sheep during 11 h of daytime and 13 h of sunset hours
derived from neck collar mounted accelerometers on 10 ewe lambs over three monitoring days.

Mean 95% CI

Total daytime hours
Grazing 64% 55% to 74%
Resting 33% 23% to 43%
Walking 2% 2% to 3%

Total sunset hours
Grazing 14% 8% to 20%
Resting 85% 80% to 91%
Walking 1% 0% to 1%

Collars and halters produced similar proportions of time spent in each activity type
(Figure 4). However, results derived from harness accelerometers were different for all
three activity types. Resting was strongly overestimated, whereas the other two types were
strongly underestimated.

Results of the multivariable Dirichlet model to compare accelerometer body place-
ments are presented in Table 9. They indicate that predictions of grazing and resting
activities were not statistically different using an accelerometer on a head halter, compared
to the neck collar. On the other hand, the daily proportion of time spent walking was
overestimated by sensors placed on the head halter, as compared to the collar. At the body
harness placed sensors, the daily proportion of time spent grazing was underestimated,
while time spent resting was overestimated. Only the total walking time did not differ
between harness and collar derived data.
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Figure 4. Mean daily activity budgets of ewe lambs (n = 10) per hour of day allocated to three
activities monitored for 72 h with tri-axial accelerometers at three positions on the animal’s body.

Table 9. Result of the Dirichlet regression model of the relative allocation of daily activities (grazing,
resting, walking/running) for 10 sheep over 3 monitoring days. Reference category for the model is
the neck collar.

Estimate SE p

Grazing
(Intercept) −1.07 0.21 <0.001

Position (Halter) −0.29 0.22 0.174
Position (Harness) −0.48 0.23 0.034

Day 1.71 0.08 <0.001
Resting

(Intercept) −1.11 0.18 <0.001
Position (Halter) −0.09 0.22 0.671

Position (Harness) 1.53 0.23 <0.001
Day 1.86 0.07 <0.001

Walking
(Intercept) −2.36 0.23 <0.001

Position (Halter) 0.75 0.22 0.001
Position (Harness) 0.08 0.22 0.731

Day 1.16 0.09 <0.001

4. Discussion

Results from this study show the utility of tri-axial accelerometers in capturing the
diel activity of sheep on pasture. Acceleration data were used to identify three behavioural
activity classes performed by ewe lambs. The random forest classification algorithm
(classifier) had an overall accuracy of ~90% when related to video footage that recorded the
activity at the same time. This study shows that raw X, Y and Z acceleration data can be
used to develop classification algorithms for the grazing, resting and walking activities of
Romney sheep on pasture. This algorithm was developed without transforming the data
to create the summary features. Traditionally, X, Y and Z axis values are used to calculate
summary features, which are then evaluated and subsequently tested for accuracy of
prediction of activity [4,6,33,44–46], although the number of features generally differ across
studies. Since random forests allow for non-linear relationships between the covariates and
the outcome (behaviour class membership probability) to be detected [47,48], they proved
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satisfactory for the purposes of this present study. Furthermore, the classifier developed
was extended to accelerometer data at two other placement positions to infer the activity
budgets of lambs in comparison to the collar position where it was developed, which is
discussed below.

Grazing activity had the lowest misclassification rate (6%) among all activity types
predicted by the classifier. With a classification precision of 86%, grazing activity was,
however, 10% less precisely predicted than resting, but 10% more precisely predicted than
walking. This is likely due to grazing having a higher rate of false positives than resting.
Walking was misclassified as grazing 24% of the time by the classification model developed
from the collar position, which may be attributable to the fact that sheep often quickly
alternate between moving with head up and grazing with head down [49]. It is plausible
that this difficulty in differentiating these two activity types with higher resolutions relates
to the sampling frequency. In contrast, Barwick et al. [14] found a high prediction accuracy
for walking behaviour, readily differentiating walking events from grazing and standing
behaviours. This may have been achieved as a result of the transformation of the raw data
in their study. In the present study, although walking was only predicted correctly 72%
of the time, it was considered satisfactory to maintain it as a predicted category. Similar
results to those of the present study were shown for estimations of walking activity by
accelerometers placed at the collar location by Walton et al. [19]. Also, it was the intention
of the authors to predict grazing behaviour apart from other activities, hence not combining
with walking activity to create an active category [14].

Conversely, to improve the accuracy of the final algorithm, standing and lying were
combined into a resting category. The acceleration signals of standing and lying were
similar, as seen in Figures 2 and 3. This would explain the misclassification between both
categories and hence warrant combining the categories. This recategorization of standing
and lying into resting improved the accuracy and precision of the classification to 93 and
96%, respectively. Barwick et al. [14] proposed further studies employ this approach and
merge the classifications of lying and standing behaviour into an “inactive” behaviour
category, as no clear grouping was evident for these activities in their study. It is possible
to speculate that the X, Y and Z signals only differ at the collar position when animals
are either transitioning between lying down and standing up, but once they stand or are
lying the X, Y and Z signal is the same. This activity transition period can be the target of
future efforts at building classifiers, as it should be pointed out that the different activities
indicative of inactive or resting states could also be important in on-farm management as
indicators of health issues.

When comparing two other accelerometer placement positions to the collar-derived
data, at least one activity frequency was not different. One way to look at this is that the
classifier developed at the collar position was robust enough to capture activity budgets
at other accelerometer placement positions. However, care in interpreting this finding is
warranted because the other placement positions were not compared to the video obser-
vations in this study. Other studies investigating placement methods develop classifiers
for each placement method and hence compared sensor data at these positions to video
data [13,14,19]. In the current study, the results from using a single classifier developed
from one placement method to infer activity at another suggests that little activity may
have been recorded at the harness position. Hence, resting was overpredicted, with grazing
activity underpredicted using this attachment method. It is also likely that a significant
difference between collars and harnesses for walking activity may have been seen because
walking was a rarely predicted activity. Since comparisons were made for the time budgets
and not the individual classification of the activities, it is conceivable that the harness-
placed accelerometers may have recorded walking activity at a very different time than
the collar. However, when grazing is the target activity, it is unlikely that accelerometer
technology located on a body harness would reliably detect grazing activity. Future studies
can seek to corroborate acceleration signatures from these different placement methods
with time stamps of those occurring activity and then assess the performance of a classifier
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derived in one position to the others, and vice versa. In all, this finding highlights the
challenge of applying classifiers developed from tri-axial accelerometer data from one
placement to another placement, not the least applying classifiers developed from other
species.

In terms of quantifying the diel activity of sheep, the collar mounted sensor showed
that the ewe lambs followed a daily pattern of activity consistent with previous observa-
tions [50,51], indicating more grazing activity in day light hours, with resting predomi-
nating between sunset and dawn hours. The average daily time budget of the ewe lambs
by hour of day showed that their grazing activity started to rise just after 06.00 h, and
peaked shortly after 15.00 h, before starting to decrease (Figure 4), in accord with the
observations of Bueno and Ruckebusch [51]. Generally, sheep graze from sunrise to dusk,
stopping sporadically to chew their cud (which is a resting activity despite small head
movements) and this grazing period can be up to seven hours of the day [50], but a range of
7 h to 12 h a day has been reported for sheep daily grazing time [52]. This grazing activity
pattern is typical of sheep in Mediterranean climes [50], although in hot arid environments,
sheep were shown to graze with less intensity as temperatures rose from 10.00 h to 15.00 h,
with grazing steadily rising again from 16.00 h [53]. Sunset hours were associated with
14% (95% CI 8% to 20%) of total grazing time. Mohammed et al. [54] comparably noted
that the time herbivores spent grazing at night varied between 10 to 30% of total grazing
time. Elsewhere, sheep that were housed in pens at night were found to spend 72% of
total daylight activity grazing [54]. As sheep have been shown to compensate for their
daily grazing by grazing longer in daylight when they do not have access to pasture at
night [55], this may account for the higher proportion of time spent grazing by Mohammed
et al. [54] compared to the 64% sheep spent in the present study. We further suggest that
our algorithm included rumination activities into the resting category, which might be why
the ewe lambs were estimated to rest for upward of five hours on average, compared to the
3 to 4 h sheep were reported to spend sleeping by Arnold [50].

Overall, it is possible to apply this output in a variety of contexts. For example, in-
fection with gastrointestinal nematodes is known to affect voluntary feed intake [56,57]
which is presumably reflected in grazing activity. Hence, grazing behaviour derived from
accelerometer data could be used as a proxy for feed intake, and hence as an early warning
sign for nematode infection [27]. Head halters on cows that measured jaw movement
combined with pedometers showed that dairy cows grazed for longer whilst benefiting
from the persistent activity of anthelmintics whilst untreated cows ate less and presumably
had to divert resources to mount an immune response against ingested larvae [58]. The
results in the current study can be used to infer similar changes in sheep. Overall activity
data calculated from the Actigraph tri-axial accelerometer allowed the detection of re-
duced total activity in parasitized young sheep using dynamic vectorial body acceleration
(VeDBA; [27]). The development of the classifier model in the present study can now allow
the optimal placement method for further differentiation of activities and how activities
change in response to the effects of parasites on their hosts’ welfare and health. These
results could also be used to study other food intake disorders, such as rumen atony, rumen
tympany, and secondary inhibition of the gastrointestinal motility resulting from diseases
with severe pain.

5. Conclusions

This study demonstrates the value of raw, untransformed accelerometry data to
predict discrete numerical signatures associated with grazing, resting and walking activity
of sheep. The change in activity budgets in relation to time of day derived from sensor
data were similar to those reported in other studies using direct observation, showing
that sheep spend most of their daytime grazing. This research confirms that tri-axial
accelerometer sensors can be a very effective tool for identifying the grazing activity of
sheep, but a classifier developed in one attachment location may not be robust to infer
activity at different attachment locations. These findings should facilitate further research
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for identifying day and night-time activity in sheep on pasture in response to changing
internal and external environmental conditions. Overall, the technology shows promise
to inform early identification of deviations in normal diel activity of sheep and provide
managers with decision support towards better health and welfare outcomes.
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