
 
 

 

 

 

GENOMIC SELECTION FOR HIGH QUALITY BEEF PRODUCTION 

A Thesis Presented for the Degree of 

Doctor of Philosophy 

 

By 

Rudi Adrianna McEwin B.Ag.Sc.(Hons.) 

At 

The University of Adelaide 

School of Animal and Veterinary Sciences 

Faculty of Sciences 

January 2021 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



i 
 

Table of Contents 

Chapter 1 : Literature Review .................................................................................................................. 1 

1.1 Introduction to Marbling (Physiology, Evaluation and Major Genes of Interest).......................... 1 

1.1.1 Wagyu background ................................................................................................................. 2 

1.1.2 Physiology of Marbling ............................................................................................................ 4 

1.1.3 Why are “Wagyu” able to produce highly marbled beef? ...................................................... 6 

1.1.4 Marbling and Subcutaneous Fat deposition in Wagyu ........................................................... 7 

1.1.5 Evaluation of Marbling and Marbling Fineness ...................................................................... 8 

1.1.6 Major and Minor Genes influencing marbling ...................................................................... 11 

1.2 Genetic parameters of traits ........................................................................................................ 13 

1.2.1 Carcass Traits ......................................................................................................................... 15 

1.2.2 Camera Image traits .............................................................................................................. 17 

1.2.3 Conclusion ............................................................................................................................. 20 

1.3 Within breed selection is sufficient to improve terminal crossbred beef marbling: A review of 

reciprocal recurrent genomic selection ............................................................................................. 21 

1.3.1 Importance of additive vs. non-additive genetic effects ...................................................... 23 

1.3.2 Pure-line selection for crossbred production ....................................................................... 27 

1.3.3 Reciprocal recurrent selection .............................................................................................. 30 

1.3.4 Genomic selection of purebreds for crossbred performance ............................................... 32 

Breed specific allele effects ........................................................................................................ 32 

Models that include dominance ................................................................................................ 34 

Purebred selection for crossbred performance with real data ................................................. 36 

1.3.5 Summary of Reciprocal Recurrent Genomic Selection ......................................................... 39 

Chapter 2 : Genetic Parameters for Economically important traits in an Australian herd of Japanese 

Black Wagyu ........................................................................................................................................... 43 

2.1 Introduction ................................................................................................................................. 43 

2.2 Materials and Methods ................................................................................................................ 45 

2.2.1 Genotype and Pedigree Data ................................................................................................ 45 

2.2.2 Phenotype Data ..................................................................................................................... 45 

2.2.3 Model Development and Statistical Analysis ........................................................................ 47 

2.3 Results .......................................................................................................................................... 51 

2.4 Discussion ..................................................................................................................................... 55 

2.4.1 Reported Heritabilities .......................................................................................................... 55 

2.4.2 Correlations between traits .................................................................................................. 58 

2.5 Conclusion .................................................................................................................................... 63 

Chapter 3 : Impact of SNP Density on Genomic Relationship Matrix Values ........................................ 65 

3.1 Introduction ................................................................................................................................. 65 

3.2 Materials and Methods ................................................................................................................ 67 



ii 
 

3.2.1 Genotyping ........................................................................................................................... 67 

3.2.2 Construction of the GRM ...................................................................................................... 68 

3.2.3 SNP selection ........................................................................................................................ 68 

3.2.4 Imputation ............................................................................................................................ 70 

3.3 Results.......................................................................................................................................... 71 

3.3.1 Scenario 1 and 2 ................................................................................................................... 71 

3.3.2 Random and Sorted Samples (Scenario 3 and 4) .................................................................. 72 

3.3.3 Imputation ............................................................................................................................ 75 

3.3.4 Imputation to High Density (770K) ....................................................................................... 78 

3.4 Discussion .................................................................................................................................... 79 

3.4.1 Correlation with Core Manifest (Scenario 1) ........................................................................ 79 

3.4.2 Importance of minor allele frequency (Scenario 2) .............................................................. 80 

3.4.3 Performance of Lower SNP Densities (Scenario 3 & 4) ........................................................ 81 

3.4.4 Imputation Performance and Impact ................................................................................... 84 

3.4.5 High Density (HD) Genotyping .............................................................................................. 85 

3.5 Conclusion ................................................................................................................................... 87 

Chapter 4 : Comparison of Methods to Select Reference Candidates for Whole Genome Sequencing 

in an Australian Wagyu Population ....................................................................................................... 89 

4.1 Introduction ................................................................................................................................. 89 

4.2 Materials and Methods ............................................................................................................... 91 

4.2.1 Calculating Imputation Accuracy .......................................................................................... 94 

4.3 Results.......................................................................................................................................... 95 

4.3.1 Overlap between chosen candidates ................................................................................... 95 

4.3.2 Percentage of Genetic Variance Explained ........................................................................... 97 

4.3.3 Number of Unique Haplotypes accounted for ..................................................................... 98 

4.3.4 Imputation Accuracy ............................................................................................................. 99 

4.4 Discussion .................................................................................................................................. 100 

4.4.1 Comparison of Relationship Matrix Methods .................................................................... 100 

4.4.2 Comparison of Haplotype Block Methods .......................................................................... 101 

4.4.3 Practical Considerations ..................................................................................................... 104 

4.5 Conclusion ................................................................................................................................. 105 

Chapter 5 : Impact of high density genotyping on genomics best linear unbiased prediction 

estimation and subsequent selection decisions .................................................................................. 107 

5.1 Introduction ............................................................................................................................... 107 

5.2 Materials and Methods ............................................................................................................. 109 

5.2.1 Genotype Data .................................................................................................................... 109 

5.2.2 Selection Reference Population for Imputation ................................................................. 110 

5.2.3 Phenotype Data and Statistical Analysis ............................................................................. 111 



iii 
 

5.3 Results ........................................................................................................................................ 112 

5.3.1 Heritability Estimation ........................................................................................................ 112 

5.3.2 GBLUP Comparison ............................................................................................................. 113 

5.3.3 Animal Ranking .................................................................................................................... 114 

5.4 Discussion ................................................................................................................................... 116 

5.4.1 Heritability estimation ........................................................................................................ 116 

5.4.2 BLUP Comparison and Animal Ranking ............................................................................... 117 

5.5 Conclusion .................................................................................................................................. 121 

Chapter 6 : General Discussion ............................................................................................................ 123 

6.1 Summary of Work ...................................................................................................................... 123 

6.2 Future Work ............................................................................................................................... 125 

6.2.1 Value of Whole Genome Sequencing ................................................................................. 125 

6.2.2 Genomic Evaluation Methodology...................................................................................... 127 

6.2.3 Breeding Objective Suitability (traits under investigation) ................................................. 128 

6.2.4 Inclusion of F1 data in analysis ............................................................................................. 130 

6.3 Conclusion .................................................................................................................................. 133 

Chapter 7: Appendix ............................................................................................................................ 135 

Appendix 1: Development and Review of Genomic Selection ........................................................ 135 

Appendix 1.1 Traditional pedigree based selection ..................................................................... 135 

Appendix 1.2 Marker Assisted Selection (MAS) ........................................................................... 136 

Appendix 1.3 Advantages of Genomic Selection ......................................................................... 138 

Appendix 1.4 Methodology for Genomic Selection ..................................................................... 139 

Appendix 1.4.1 Cleaning of Genotypes .................................................................................... 139 

Appendix 1.4.2 Genomic estimated breeding values (GBLUP) ................................................ 140 

Appendix 1.4.3 Back-solving from GBLUPs to estimate marker effects .................................. 143 

Appendix 1.4.4 Bayesian approaches ...................................................................................... 144 

Appendix 1.4.5 Comparing GBLUP and Bayesian results ......................................................... 146 

Appendix 1.5 Implementation in Breeding Programs .................................................................. 147 

Appendix 1.5.1 Multi-Step genomic selection versus Single Step ........................................... 147 

Appendix 1.5.2 Reference Populations .................................................................................... 149 

Appendix 1.5.3 Long-term response to genomic selection ..................................................... 151 

Appendix 1.5.4 Number of SNPs and Imputation .................................................................... 152 

Appendix 1.6 Summary of Genomic Selection ............................................................................. 154 

References............................................................................................................................................ 157 

 
 
 



iv 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



v 
 

 
List of Figures 
 
Figure 2.1: Distribution of number of progeny per sire for 1091 Full-Blood Wagyu carcass records. .. 47 

Figure 2.2: Distribution of Heterozygosity values for 4940 Full-Blood Wagyu genotypes, genotyped with 

GGP-LD 30K SNP chip. ............................................................................................................................ 49 

Figure 2.3: Distribution of AUS-MEAT marbling scores (A_MARB) demonstrating a large proportion of 

animals grouped within a high marble score of 9. ................................................................................. 60 

Figure 3.1: Relationship between diagonal and off diagonal elements of the lower triangle for genomic 

relationship matrices constructed using 20,955 (Base GRM) and 9,181 (Core) SNPs respectively. ...... 71 

Figure 3.2: Relationship between genomic relationship values constructed using the base 20,955 SNPs 

and 29,547 SNPs not filtered for call rate or minor allele frequency. ................................................... 72 

Figure 3.3: Histograms depicting the range of correlations of GRMs to the base 20,955 GRM obtained 

from 200 random samples of SNPs at 4 different densities (top left: 1,250; top right: 2,500; bottom 

left: 5,000 and bottom right: 10,000). ................................................................................................... 73 

Figure 3.4: The diagonal and off-diagonal values from the 1,250 (top) and 10,000 (bottom) random 

samples that had the lowest (min; left) and highest (max; right) correlation with the base GRM, plotted 

against the diagonal and off-diagonal values of the base GRM. ........................................................... 74 

Figure 3.5: Bland Altman Plot showing the difference between genomic relationship values plotted 

against the average measure of values, constructed using 10,000 randomly selected SNPs* compared 

to the base scenario with the mean (blue) and a 95% confidence interval(red) shown. *Repetition in 

scenario 3 that resulted in the worst correlation to the base GRM i.e. 10,000 minimum sample. ...... 75 

Figure 3.6: Correlation with base GRM vs. SNP density before and after imputation .......................... 76 

Figure 3.7: Distribution of imputation accuracy (correlations)  between the reference 20,955 genotypes 

and imputed 20,955 genotypes for 4940 animals using random SNP samples with the best and worst 

correlations to the base GRM (1250; left, 10,000; right) ....................................................................... 77 

Figure 3.8: Bland Altman Plot showing the difference between genomic relationship values plotted 

against the average measure of values, constructed using 10,000 randomly selected SNPs* imputed to 

base density versus the base scenario with the mean (blue) and a 95% confidence interval (red) 

shown.*Repetition in scenario 3 that resulted in the worst correlation to the base GRM i.e. 10,000 min 

sample. ................................................................................................................................................... 78 

Figure 3.9: Genomic relationship values built from 4,940 30K SNP genotypes compared to 4,940 

imputed 770K data. ................................................................................................................................ 79 

Figure 4.1: Distribution of Haplotype block frequency (log scale) of 339,824 blocks, 100 SNPs in width, 

estimated from a population of 5,334 genotyped Australian Wagyu. .................................................. 93 

Figure 4.2: Plot of ranks of candidates selected for whole genome sequencing using the MCA or MCG 

methods respectively ............................................................................................................................. 96 

Figure 4.3: Diagonal values of A* representing the percentage of genetic variance explained for each 

additional selected candidate for whole genome sequencing using the MCG method (top) or MCA 

method (bottom). The IWS and AHAP2 methods are presented as singluar dots where 100 animals 

have been sampled. ............................................................................................................................... 98 

Figure 5.1: Heritability estimates for 14 traits estimated from genomic relationships constructed using 

Low Density (30K) and High Density (770K) genotypes on 4,940 individuals. ..................................... 112 

Figure 5.2: BLUP values for Hot Standard Carcass Weight (HSCW, top) and MIJ percentage marbling 

(I_MARB, bottom) calculated using Low Density (LD) genotypes versus High Density (HD) genotypes; 

zoomed in to assess changes in animal ranking for the predicted best animals. ................................ 115 

 

 

file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601223
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601223
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601225
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601225
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601226
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601226
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601227
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601227
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601227
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601228
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601228
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601228
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601229
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601229
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601229
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601229
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601231
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601231
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601231
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601232
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601232
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601232
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601232
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601232
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601233
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601233
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601235
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601235
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601236
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601236
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601236
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601236
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601237
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601237
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601238
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601238
file://///uofa/users$/users4/a1646374/PhD%202020/Formatted_Thesis/Amended_Thesis/McEwin_Thesis_Amendments_9-7-21.docx%23_Toc77601238


vi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

List of Tables 

Table 1.1: Range of Direct heritabilities (h2) and number of reports referenced (N) for carcass traits of 

Japanese Black cattle assessed using Japan meat grading association (JMGA) and Australian meat 

industry classification system (AUS-MEAT) grading methodology at the 6-7th and 5-6th rib cross-sections 

respectively. ........................................................................................................................................... 16 

Table 1.2: Unweighted Genetic correlations among carcass traits (above diagonal) and the number of 

reports included in unweighted average (below diagonal) in Japanese Black Cattle (Oyama, 2011). .. 17 

Table 1.3: Range of Direct Heritabilities (h2) for image analysis traits and the number of reports 

referenced (N) in Japanese Black Cattle. ............................................................................................... 18 

Table 2.1: Summary Statistics and number of records in the subset provided for 14 traits measured in 

an Australian Japanese Wagyu Herd from 2011 to 2018. ..................................................................... 46 

Table 2.2: Variance components, heritabilities and their standard errors and standard deviation of 

estimated breeding values from genomic univariate analysis. ............................................................. 51 

Table 2.3: Variance components, heritabilities and their standard errors and standard deviation of 

estimated breeding values (EBVs) from pedigree univariate analysis. .................................................. 52 

Table 2.4: Mean standard errors (se) of estimated breeding values (EBVs) reported from genomic and 

pedigree univariate analysis. ................................................................................................................. 52 

Table 2.5: Genomic phenotypic (𝑟𝑃 , above diagonal) and genetic (𝑟𝐺 , below diagonal) correlations 

between traits* ...................................................................................................................................... 54 

Table 3.1: The Base and multiple SNP selection scenarios investigated based on SNP chip involved, 

selection method, minor allele frequency (MAF), SNP Call Rate, SNP Density considered and whether 

an additional imputation study was included. ....................................................................................... 69 

Table 3.2: Minimum and Maximum counts of SNPs imputed to base SNP density incorrectly from 

random sample* and sorted SNP subsets ............................................................................................. 76 

Table 4.1: The degree of overlap i.e. the number of animals selected in common, between the MCA, 

MCG, IWS and AHAP2 methods. The number of animals sampled by each method is displayed on the 

diagonal. ................................................................................................................................................. 96 

Table 4.2: Number of unique haplotypes accounted for when 100 animals are selected as whole 

genome sequencing candidates using varying methods that utilise a relationship matrix (MCA/MCG) 

or haplotype library (IWS/AHAP2) respectively. .................................................................................... 99 

Table 4.3: Imputation accuracy calculated for sparse 11K genotypes imputed to 30K using differing 

reference populations of different sizes selected from four methods. ............................................... 100 

Table 5.1: Minimum, Maximum and Standard Deviation (SD) values for BLUPS estimated for 14 traits 

using either Low Density (LD) genotype data or High Density (HD) genotype data as well as the 

correlation between BLUPs from the two methods for 4,490 animals. .............................................. 113 

Table 5.2: The number of animals in common between the Top 50 (Top 1%) selected for each trait 

utilising Low Density (LD) or High Density (HD) genotypes within the genetic evaluation and the 

Spearman Rank Correlation between the rankings of selected animals when BLUPs are estimated from 

either dataset. ...................................................................................................................................... 114 

 

 

 

 



viii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

Abstract  

This thesis focuses on the implementation of genomic selection within Wagyu, a breed of 

cattle that is highly desired due to its propensity to accumulate marbling. Initial focus of the 

thesis was to investigate using genomics to breed purebred Wagyu, producing crossbreds with 

improved marbling performance. However, the thesis had to undergo a change in direction 

due to unforeseen delays in obtaining crossbred genotype and phenotype data. The 

experimental chapters, therefore, focus on scenarios within the core nucleus breeding herd 

while the literature review considers the influence of crossbreeding heavily. 

Chapter two considered a comparison between pedigree and genomics with relationship 

matrices built from 10,549 and 4,940 individuals respectively. Animal models for multiple 

traits found genomics resulted in more accurate breeding values. This was evident through 

higher breeding value standard deviations and lower mean breeding value standard error. 

Additionally objective carcass measures were more heritable than subjective measurements 

(Meat Image Japan (MIJ) vs. AUS-MEAT grading) and highly correlated to their equivalent AUS-

MEAT counterparts. This is consistent with findings from the meta-anlaysis in the literature 

review. 

Chapter three investigated how differing SNP densities describe genomic relationships across 

the Wagyu population herein, utilising masked subsets from a 30K base SNP density and HD 

SNP data. It was demonstrated that small SNP subsets of 2,500-5,000 were sufficient. 

Imputation was used to impute these subsets to a ~30K density, producing a genomic 

relationship matrix (GRM) with highly correlated elements to a GRM built using all 30K SNP 

data. Imputation to a high density SNP platform (770K) improved the description of 

relationships further by better describing highly related animals.  



x 
 

Given imputation requires well-formed reference populations, Chapter four compared four 

published methods to select animals to form a reference population for imputation to whole 

genome sequence. Methods investigated used relationship matrices or haplotype libraries. 

The MCG method, which utilises a genomic relationship matrix to select animals highly related 

to the target population but distantly related to other selected candidates, accounted for the 

most genetic variance in the population relative to the other methods when 100 animals were 

selected. This method was then used to select 70 animals to be sent for whole genome 

sequencing. 

Chapter 5 planned to compare genetic parameters estimated from imputed whole genome 

sequence data to those from the commercial 30K SNP chip. Due to delays in obtaining 

sequencing data, a back-up set of 770K genotypes that accounted for a similar proportion of 

genetic variance as the original 70 animals selected by MCG (Chapter 4), was used to build an 

HD genomic relationship matrix to compare trait heritabilities and animal selection decisions. 

Animal models were used, as in Chapter 2, finding HD genotype arrays resulted in improved 

prediction accuracy through increased spread of breeding values and higher heritability 

estimates across traits.  

With Wagyu product worth an exceptional premium and with multiplier effects of genetic gain 

from the nucleus to daughter herds, marginal gains in accuracy are of high value. This supports 

that investment in higher density genotyping, including sequencing, and objective marbling 

assessment. 
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C h a p t e r  O n e  | 1 
 

Chapter 1 : Literature Review 
 

This thesis covers a number of aspects relating to the implementation of genomic selection 

within a Wagyu beef seedstock program. The primary focus is placed on producing and 

maintaining high quality beef, particularly marbling. Topics of research and discussion include 

contrasting measurement of specific traits and their relationship to other economically 

important traits, comparing cost effective ways to obtain high density genotypes and the 

benefits these higher density panels have on additive variance estimates and animal selection 

decisions.   

1.1 Introduction to Marbling (Physiology, Evaluation and Major Genes of Interest) 
 

The aim of this literature review is to provide background and context to the experimental 

results demonstrated in this thesis. Chapter 1 presents the literature review in two distinct 

sections. The first, introduces Wagyu and marbling with physiology and genes related to this 

key trait discussed. This section culminates with a meta-analysis that presents weighted and 

un-weighted heritability estimates for traits, calculated from the published literature. The 

second section was written to capture the initial planned direction for the thesis, breeding 

purebreds that produce better crossbred Wagyu. A review of genomic selection is presented 

in Appendix 1. 

The initial focus of the thesis was to explore genomic selection in the context of a purebred 

Wagyu breeding program and expand into the potential use of crossbreed Wagyu data. That 

is, using crossbred data to breed better pure-breds for crossbred production. Wagyu are well 

suited for this purpose having a genetic pre-disposition to display extreme marbling 

characteristics under the correct management conditions. This characteristic has made them 

highly desirable, but not easily accessible due to price of product. Using Wagyu sires in 
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crossbred systems has been rapidly gaining momentum as a way to amplify the amount of 

marbled product available for consumers, sold at a premium yet still accessible price (i.e. 

restaurants serve Wagyu at a range of price points).   

However, throughout the course of candidature a change in direction had to be made due to 

unforeseen delays in obtaining crossbred phenotype and genotype data. The focus in 

experimental chapters was hence shifted towards the core nucleus breeding program. This 

crossbred scenario is still referenced throughout the thesis as the focus shifted from breeding 

better crossbreds to a full-blood nucleus scenario and is the subject of future work for the 

herd analysed herein. 

1.1.1 Wagyu background 
 

Australian beef production is commodity based with potential for cuts of saleable meat to vary 

greatly in eating quality, a factor that consumers desire to be consistent across meat 

purchases. Marbling, which is defined as the accumulation of triacylglycerol in muscle tissue 

primarily occurring within adipocytes between muscle fibre bundles (Harper and Pethick 

2004), is an integral component within breeding objectives of Australian beef producers. The 

initial interest in marbling was from producers and exporters targeting high value export 

markets however it is becoming increasing sought after in the domestic sector due to 

consumer associations with improved beef quality. Wagyu offer an entry point into these 

markets having a propensity to produce highly marbled beef (Gotoh et al. 2009).  

Wagyu is a general term used to describe beef breeds native to Japan and literally translates 

to ‘Japanese cattle’. Wagyu cattle consist of four Bos taurus beef breeds known as the 

Japanese Black, Japanese Brown, Japanese Shorthorn and Japanese Polled. These breeds were 

developed by crossing native Japanese cattle with foreign breeds, e.g. Simmental, Ayrshire, 

Brown Swiss, Devon and Hanwoo, approximately 90 years ago to generate cattle suitable for 
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draft work. However this crossbreeding produced large bodied, slow moving draft animals 

with poor meat quality resulting in the discontinuation of the practice and the initiation of 

interbreeding for improved meat quality to get the modern Japanese breeds today (Gotoh et 

al. 2014). The Japanese Black is the predominant breed accounting for 97% of Wagyu in Japan 

(Hirooka 2014; 1,663,000 head; Motoyama et al. 2016). The other three breeds are considered 

to be minor regional breeds (Hirooka 2014).  

Wagyu are typically bred in Japan by the crossing of three major bloodlines, identified and 

developed due to geographical isolation in Japan. These are the Tajima bloodline (Hyogo 

Prefecture), Kedaka bloodline (Tottori Prefecture) and the Itozakura bloodline (Shimane 

Prefecture) (Motoyama et al. 2016). Japanese Black cattle all have pedigrees consisting of 

these three bloodlines to some degree and the specific crossing of these bloodlines is followed 

by Wagyu breeders outside of Japan today (Dr Joe Grose; Seedstock Wagyu Breeder, Personal 

communication) 

The Japanese black is what is commonly referred to as ‘Wagyu’ in herds outside Japan, with 

grey skin, black muzzles and hooves, tame demeanour and a brownish-black coat. The breed 

is known for its marbling capabilities and high intramuscular fat (IMF) content (Motoyama et 

al. 2016) which improves texture, juiciness and therefore overall palatability of beef cuts (Iida 

et al. 2015).  

The Australian beef industry is comprised of 27.4 million head of cattle as of 2014-15, 

producing 2.34 million tonnes (carcass weight) of beef and veal valued at $14.3 billion in 2015-

2016 (Meat and Livestock Australia 2016). Wagyu have been bred in Australia since their 

importation from Japan via the United States of America during the 1990s (Maeda et al. 2014). 

Currently it is estimated that Wagyu, and Wagyu infused stock, account for 1-2% of the 

national beef herd with 80-90% of its production being exported (Australian Wagyu 
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Association 2015). In 2013, Wagyu globally accounted for about 2%, 2%, 4% and 8% of beef 

carcass production in the US, Brazil, China and Argentina respectively (Motoyama et al. 2016)  

1.1.2 Physiology of Marbling 
 

Strong evidence within the literature suggests that several forms of stem cells, identified as 

pluripotent stem cells, exist within the skeletal muscle of mammals acting as a replenishable 

pool with cells from other body parts. These pluripotent stem cells are thought to lie dormant 

within muscle tissue until an external stimulus induces them to differentiate towards a specific 

lineage of cells. Differentiation towards the adipocyte lineage results in the accumulation of 

adipocytes within muscle fibre bundles resulting in the visible white flecks of fat known as 

marbling (Harper and Pethick 2004).  

Marbling is an important factor in determining meat quality characteristics especially meat 

texture (tenderness), juiciness and flavour (Thompson 2004).  The shear force value, a 

measurement of toughness (opposite of tenderness), in the Longissimus muscle has been 

shown in Wagyu to decrease after approximately 20 months of age, concurrent with the 

increased attainment of intramuscular fat demonstrating marbling’s role in tenderisation 

(Nishimura et al. 1999).  The structure, composition and amount of intramuscular connective 

tissue within skeletal muscle contribute to meat texture. As the animal grows, collagen 

crosslinks become more stable which increases the structural integrity of intramuscular 

connective tissue, contributing to the toughening of meat. Intramuscular fat deposits between 

muscle fibre bundles cause remodelling of these connective tissues by disrupting their 

structure integrity thereby reducing the mechanical strength and contributing to beef 

tenderization (Nishimura 2010). There are a quite a few known characteristics, both animal 

and environmental, that influence the expression of marbling such as age and time on feed, 

muscle chronology, gender, nutrition and gene effects (Harper and Pethick 2004).  
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The conclusion that intramuscular fat is late developing is a common assumption from animal 

developmental studies (Vernon 1980) and the order of development for fat depots is usually 

reported as abdominal, intermuscular (between muscles), subcutaneous and then 

intramuscular (within muscles). However fat is deposited within in the body at a greater rate 

than lean tissues and so the concentration of intramuscular fat will ultimately increase as the 

animal ages. Therefore the visible intramuscular fat, i.e. the expression of the commercial 

marbling trait, and actual IMF% (percentage intramuscular fat) are late maturing however the 

deposition of fat within intramuscular adipocytes is not late maturing (Cianzio et al. 1982; 

Pethick et al. 2004). The rate of intramuscular fat accretion between hot carcass weights of 

200kg and 400kg is approximately 0.47% per 10kg of HCW for British breeds (Duckett et al. 

1993) or 0.56% units for F1 Wagyu (Aoki et al. 2001). A study involving Wagyu x Holsteins 

found that IMF content did not increase above carcass weights of around 420kg, implying that 

IMF has a ‘maximum value’, most likely due to declining feed intake as the animals approach 

their mature weight (Aoki et al. 2001). However the sooner the animal reaches its maximal 

potential for muscle and fat growth i.e. approaches “muscle maturity”, the sooner marbling 

will be expressed at commercial levels. This means that faster growth throughout the animal’s 

life will result in the expression of marbling at an earlier age. In addition, longer feeding 

regimes allow the cattle to acquire higher intramuscular fat levels since there is time for the 

animal to reach muscle maturity with additional time following for the muscle to accrue fat. 

Shorter feeding regimes pose a greater risk of failing to meet market marbling requirements, 

particularly if animals in these regimes are slower to reach muscling maturity (Pethick et al. 

2004).  

Marbling is of most interest in muscles that have a relatively high commercial value, such as 

the striploin and tenderloin, however it is also expressed within other skeletal muscles such 

as the gluteal group etc., but to different extents (Brackebusch et al. 1991). Gender also plays 
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a role in determining marbling with heifers expressing higher marbling than steers at a given 

slaughter weight and time on feed (Slanger et al. 1985; Jones et al. 1990).  

Nutrition and diet composition influences the expression of marbling. Diets with an increased 

energy density, due to a high percentage of concentrates in the ration, drive greater rates of 

fat synthesis and therefore marbling (Prior et al. 1977; Pethick et al. 2004). Diets that contain 

metabolic modifiers such as hormonal growth promotions may decrease the rate of 

intramuscular fat deposition due to its promoting effect on muscle growth. Vitamin A levels 

in the diet and corresponding serum Vitamin A levels in the animal have also been associated 

with marbling ability (Naruse et al. 1994; see below) 

1.1.3 Why are “Wagyu” able to produce highly marbled beef? 
 

The specific details about why Wagyu have a high marbling phenotype, above and beyond the 

marbling displayed by other cattle breeds, is not well known. It has been demonstrated in rats 

that adipocytes store retinoid (such as retinol, retinal and retinoic acid which collectively are 

known as Vitamin A) as well as synthesize and secrete retinoid-binding protein (Tsutsumi et 

al. 1992) necessary for the movement of retinol across membranes. It is hypothesised that 

Japanese cattle may have a genetic predisposition to increase intramuscular fat content for 

storage of vitamin A during periods when dietary levels are low. This hypothesis is plausible 

given the Japanese climate which is characterised as temperate and humid with very marked 

changes of the four seasons resulting in cold winters. Cold winters are especially prevalent in 

the remote hilly and mountainous areas where the ancestors of the Japanese Black were 

raised for draft use. These native ancestral cattle would’ve usually been kept in barns over the 

winter in these areas due to a lack of green forage (high in beta carotene, the precursor for 

vitamin A) caused by heavy snow cover. This poor environment may have driven Japanese 

native cattle to develop mechanisms against vitamin A shortages, such as increasing adipocyte 
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deposition within muscle, resulting in an enhanced genetic potential to marble driven by long 

term natural and artificial selection (Hirooka 2014).  

Torii et al. (1996) reported total adipogenic activity increased with improved marbling score 

and that adipogenic activity was negatively correlated with serum retinol concentration in 

Wagyu and Wagyu x Holstein carcasses. This implied that retinol level in blood during the 

finishing period influences the deposition of intramuscular fat. Similarly, Gorocica-Buenfil et 

al. (2007) reported marbling scores of Angus cross steers increasing by approximately one-

third of a grade when steers were fed vitamin A restricted diets. Kato et al. (2011) first 

reported the negative genetic correlation between serum vitamin A concentration and 

marbling score occurring during the later stages of finishing. In fact, vitamin A restriction in 

the finishing diets of Wagyu is widely practiced in feedlot operations within (Hirooka 2014) 

and outside of Japan to achieve higher marbling carcasses. One explanation for the inverse 

correlation between marbling and serum vitamin A concentration is that retinoic acid, a 

metabolite of vitamin A, may regulate adipogenic differentiation and thereby inhibit terminal 

differentiation of intramuscular adipocytes (Oka et al. 1998).  

This relationship between vitamin A status and marbling has been described in other breeds 

(Kruk et al. 2004) indicating that this is a general relationship among cattle. In fact some 

studies into vitamin A status and fat deposition in other breeds were motivated by seeing 

Japanese and Korean production systems (Siebert et al. 2006; Kruk et al. 2008). This suggests 

that maybe low vitamin A resulting in higher marbling is a result of the production system 

rather than serving a genetic basis for marbling propensity in Wagyu. 

1.1.4 Marbling and Subcutaneous Fat deposition in Wagyu 
 

Gotoh et al. (2009) investigated the IMF content in the longissimus muscle of carcasses from 

24 month old cattle, all raised under standard conditions, and found that the Japanese Black 
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animals had an IMF% of 23.3% which was substantially higher than 4.4%, 4.7% and 0.6% and 

reported for Angus, Holstein Friesians and Belgian Blue respectively. This agrees with previous 

knowledge about Wagyu’s known predisposition to marble and IMF% has been reported in 

Wagyu to sometimes exceed 50% in the longissimus muscle (Motoyama et al. 2016). However, 

Wagyu seemingly also have the benefit of increased marbling without a steep accompanying 

increase in external or subcutaneous fat (Pitchford et al. 2002). Gotoh et al (2009) also 

reported that for every 1% increase in IMF, an increase of 3.0, 4.3, 7.9 and 10.7 kg of 

subcutaneous fat was observed in Japanese Black, Holstein Friesian, German Angus and 

Belgian Blue respectively. Oyama (2011) supports these results, reporting a low and even 

negative genetic correlation (-0.06) between marbling and subcutaneous fat thickness in 

Japanese black cattle as does McEwin (2016; -0.05) whereas a moderately positive correlation 

(0.44) has been reported for British/European breeds (Gregory et al. 1995). The breeds do not 

differ in their mechanisms of postnatal fat accretion however, but rather in their efficiency of 

accretion of IMF (Gotoh et al. 2009).  

1.1.5 Evaluation of Marbling and Marbling Fineness 
 

Marbling fineness is described as the distribution and size of fat flecks within the meat, often 

measured within the rib-eye at the 12-13th rib cross-section in Australian evaluation systems 

(AUS-MEAT Limited 2005) or at the 6-7th rib cross-section in Japanese evaluation systems 

(Japan Meat Grading Association 2000). A fine marbling particle has been described as a 

particle ranging in size/area from 0.01 to 0.5 cm2 (Maeda et al. 2014).  

Australian meat quality evaluation schemes include the Australian Meat Industry classification 

system as well the Meat Standard Australia (MSA) which requires members of the supply chain 

to obtain MSA certification as part of the programs aim to guarantee excellent eating quality 

beef (AUS-MEAT Limited 2005). The AUS-MEAT marbling score evaluates the degree of 
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marbling on a scale of 0-9 and is used on all breeds in Australia. Due to the limited range in 

the marbling scale, AUS-MEAT may lack the range of values necessary to accurately evaluate 

the highly marbled Wagyu carcasses produced in Australia. In addition, the AUS-MEAT scale 

does not take into account distribution or fineness of marbling in the ribeye. The MSA 

marbling scale differs in that it provides an indication of marbling distribution as well as fat 

fleck size or fineness. The scale ranges from scores of 100 to 1100 in increments of ten, 

providing a finer description of marbling in the ribeye however still may not be adequate to 

describe highly marbled Wagyu carcasses. Both evaluation systems require an official grader 

to subjectively score (AUS-MEAT Limited 2005).  

Wagyu carcasses are assessed in Japan on the basis of the beef marbling standard (BMS) which 

indicates the amount of marbling in the rib-eye on a scale of 1-12 (Japan Meat Grading 

Association 2000). Cameron et al. (1994) reported the IMF% within each BMS finding a mean 

IMF% ranging between 3-7.4% for a BMS of 1 and 29.9-38.1% for a BMS of 12. More recently 

the content of crude fat within the rib-eye at a given BMS has been increasing. Meat with a 

BMS of 12 contained 29% intramuscular fat in 1988, however that same fat content extracted 

from carcasses in 2004 was graded into a BMS of 5 (Horii et al. 2009). This variation in 

consistency between BMS and IMF% is important considering the BMS is used as a measure 

of determining eating quality and that an increase in IMF% has a corresponding increase in 

the sensory qualities of the meat such as tenderness and juiciness (Okumura et al. 2007; Iida 

et al. 2015).  

To address the issue regarding the subjective measurement of the evaluation systems, many 

objective systems were developed but only one has been commercialised in Japan. A 

computerised image analysis system has been developed as a new method for objectively 

assessing fat within the rib-eye of beef carcasses (Kuchida et al. 1997a, 1997b). Marbling traits 
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that can be assessed with the image analysis system include percentage marbling area, 

marbling coarseness, marbling fineness as well as average luminance of exposed lean within 

the rib-eye (Nakahashi et al. 2008; Osawa et al. 2008).  

Highly marbled meat attained through numerous small marbling flecks is highly desired by 

Japanese consumers (Motoyama et al. 2016). The view that more finely marbled meat is more 

desirable is agreed upon by packers and consumers in western societies, such as the US (Vierck 

et al. 2017). Marbling coarseness is higher in crossbred Wagyu (Wagyu x Holstein) compared 

to full-blood animals and is higher in carcasses from heifers than those from steers (Kuchida 

et al. 2002). There is a lack of understanding around the physiology of marbling fineness and 

its effect on eating quality. One study reported that coarser marbled beef was juicer and more 

flavourful than medium textured or fine marbled beef (Vierck et al. 2017) which is in 

disagreement with current consumer views. This study used striploins assessed under USDA 

grading and took samples that had been categorized into quality grades “choice” and “select”. 

These particular quality grades serve those consumers who were looking for a more 

economical beef product and would not include beef with marbling equivalent to that of a top 

Wagyu carcass. Kato et al. (2017) found that finer marbled beef was more palatable in 

consumer taste trials of highly marbled Waygu (BMS 6 or 7) It is possible that as marbling 

reaches higher levels that fineness plays a role in determining sensory characteristics.  

Improving fineness is not as simple as increasing the number of small marbling fleck sizes. 

Bottema et al. (2020) demonstrated that marbling is actually a single connected entity in beef 

striploins using 3D image analysis. That is, marbling represents a single structure rather than 

being isolated flecks of fat, appearing to be deposited along an existing internal network (such 

as the vascular system). This finding suggests that it is the shape of this internal network that 

results in the 2D trait “marbling fineness”. As marbling increased in the samples, the diameter 
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of the interconnected structure increased yet the shape of the structure itself does not 

change.  

1.1.6 Major and Minor Genes influencing marbling  
 

A major gene known to affect carcass fatness within beef is GDF8, more commonly known as 

myostatin, which is responsible for the double muscling phenotype in cattle (Harper and 

Pethick 2004). The GDF8 gene is a growth regulator for muscle development and mutations 

that affect its function generally result in increased muscle mass (McPherron et al. 1997). 

Additionally it has been demonstrated that double muscled  animals have fewer deposits, or 

‘islands’, of adipocytes in their longissimus dorsi muscle that also exhibit slower growth 

patterns and are smaller  in size compared to wild-type cattle of the same age and finishing 

period (Wegner et al. 1998). 

Significant associations exist between DNA markers CSSM34 and ETH10 on chromosome 5 and 

marbling score. CSSM34 is associated with RARG (retinoic acid receptor gamma), a known 

factor in adipocyte growth and differentiation, and ETH10 is associated with RDH5 (retinol 

dehydrogenase 5), a catalyst for the interconversion of retinol and retinoic acid (Barendse 

2002). This does make sense considering an animal’s serum vitamin A level has been directly 

linked its marbling performance. Additionally thyroid and steroid hormones, e.g. thyroxine, 

retinol and estrogen, bind to nuclear receptors, such as RARG (Barendse 2002). Retinoic acid 

receptor gamma, in turn, then binds to specific sequences of DNA in the nucleus, increasing 

the rate of transcription from the gene to which it bound. These receptors are important 

elements in the growth and differentiation of tissues (Solomin et al. 1998).    

The TG5 (thyroglobulin 5’ leader sequence) single nucleotide polymorphism (SNP) has also 

been associated with marbling variation in cattle. The TG gene encodes a protein that plays 

an indirect role in the regulation of metabolic rate. These TG5 SNP is located within the 5’ 



 

C h a p t e r  O n e  | 12 
 

untranslated region of the TG gene, rather than within the coding region, which could indicate 

that it is involved in the regulation of the gene’s activity. None of the genes immediately 

surrounding TG5 are obvious candidates for marbling with the next closest gene likely to have 

an effect on fat being DGAT1 (Diacylglycerol O-Acyltransferase; see below), approximately 

15Mb away on the human map (Barendse et al. 2004).   

Michal et al. (2006) reported that fatty acid binding protein (FABP4) could be associated with 

marbling. FABP4 is expressed in adipose tissue and plays an important role in lipid metabolism 

and homeostasis. Their data indicated that FABP4 falls into a QTL interval for marbling 

reported in three different populations on bovine chromosome 14. In Hanwoo cattle, genetic 

variants of FABP4 have also shown associations with marbling (Lee et al. 2010; Shin et al. 

2012). However a more recent study found no association between FABP4 and marbling, 

instead suggesting that Fatty acid desaturase 2 (FADS2) would be a useful genetic marker for 

improving marbling in beef cattle (Matsumoto et al. 2014).  Hudson et al. (2015) perhaps 

proposed an explanation for this demonstrating that fat metabolism genes such as FABP4, but 

also THRSP, CIDEC and ACACA, diverge in expression quite late in postnatal development, with 

divergent expression between high marbling and low marbling animals appearing at 

approximately 20 months of age. Michal et al. (2006) did not disclose age of animals included 

in their study, but it is possible that if their animals were older than 20 months than that would 

explain why they were able to find an association between marbling and FABP4. Matsumoto 

et al. (2014) used animals ranging from 20-29 months of age and found no association.  

There are multiple other genes that have been reported be associated with marbling as well; 

WNT1-inducible-signaling pathway protein 2 (WISP-2 also named CCn5), GADD45A, PIAS3, 

CCRN4l, DIRAS3, POU5F1, HOXA9, ATP2A2, PIM1, AKIRIN2, EDG1, RPL27A and MYBPC1  

(Sadkowski et al. 2014; Sukegawa et al. 2014; Hudson et al. 2015; Tong et al. 2015). Inter-
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allelic interactions between some of these genes have been reported suggesting that for 

effective marker-assisted selection to improve marbling, these interactions need 

consideration (Sukegawa et al. 2014).  

Clearly marbling is highly polygenic indicating that no single gene or small group of genes is 

causative. Additionally it has been shown that certain genes associated with marbling are 

differentially expressed at different time points in postnatal development. The Myostatin 

gene described earlier is a major gene influencing the degree of marbling in other breeds, but 

perhaps is not particularly relevant in the Wagyu breed which is mostly homozygous for the 

wildtype.  This does make marker-assisted selection for improved marbling difficult but not 

impossible. A suite of SNPs may need to be included in breeding programs to account for large 

proportions of marbling variance in addition to selecting the most appropriate SNPs, for 

example those that can better predict marbling performance at a young age.  

1.2 Genetic parameters of traits 
 

Genetic variability consists of differences found between species, between breeds, 

differences due to crossing of breeds and differences between lines or individual animals 

within breeds. It is this variation between animals within a breed that is used to estimate the 

heritability of and genetic correlations between traits (De Smet et al. 2004).  

To gain insight into the range of genetic parameters for traits in Wagyu a meta-analysis of 

published reports was conducted. Heritabilities can be reported as both un-weighted and 

weighted heritabilities when they are being compared by authors. Unweighted heritabilities 

were calculated as follows: 

(1)   Unweighted h2 = 
∑ 𝒉𝒊

𝟐𝑵
𝒊=𝟏

𝑵
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Where N is the number of estimates reported for the trait and ℎ𝑖
2describes the i-th heritability 

for the trait. 

Weighted heritabilities were estimated such that, each individual heritability was weighted by 

its accompanying standard error, as detailed by Koots et al. (1994). The weighted heritability 

estimate was calculated as follows: 

(2)  Weighted h2 = 
∑

𝒉𝒊
𝟐

(𝑺𝑬𝒊)𝟐
𝑵
𝒊=𝟏

∑
𝟏

(𝑺𝑬𝒊)𝟐
𝑵
𝒊=𝟏

  

Herein, all reported standard errors were treated equally, regardless of the methodology used 

in their calculation. Where authors reported standard errors as a range, the largest standard 

errors were assigned to each heritability estimate. Where authors reported no standard 

errors, heritability estimates were excluded from the calculation of weighted means meaning 

the number of reports included in the weighted average was always equal to or less then the 

unweighted average, though missing standard errors were uncommon.  

For genetic correlations, weighted averages were not calculated due to the limited availability 

of published estimates between all traits. Unweighted averages, where presented, were 

calculated using a simple average.  

The traits of interest in the meta-analysis included carcass traits and MIJ camera traits. The 

strategy of searching for published studies aimed to locate all studies in English. However, 

papers in other languages were included if their abstracts/tables were in English and 

contained enough detail to be sure the paper met the inclusion criteria. Articles on these 

topics were identified using Google Scholar, Pub Med and Web of Science. Key concepts used 

for searching were “Wagyu” and “genetic parameters”. Hand searching of reference lists was 

performed to identify any other relevant studies for inclusion. 
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Studies were only included if they reported heritabilities on any of the traits of interest in Full-

Blood Wagyu estimated from pedigree data. For example, reports on Angus or crossbred 

Wagyu would have been ineligible for inclusion.  

The final list of traits to include was determined by looking at the common traits reported 

across all papers, after they were grouped into “themes” i.e. carcass traits, MIJ camera traits 

or fatty acid traits. It was possible for papers to fit more than one theme depending on the 

scope of their investigation. 

1.2.1 Carcass Traits 
 

Carcass traits in Wagyu have been reported to range from being lowly to highly heritable 

depending on the trait. Oyama (2011) reported heritabilities of carcass traits, for specifically 

the Japanese Black, graded under Japan meat grading association (JMGA) guidelines, sourced 

from 18 published studies. Oyama (2011) found unweighted and weighted heritabilities for 

carcass weight, rib-eye area, subcutaneous fat depth and marbling score to be 0.48, 0.46, 0.39 

and 0.55 and 0.46, 0.49, 0.32 and 0.21 respectively (Table 1.1).  

The heritability of similar carcass traits, estimated under the AUS-MEAT grading system, has 

been published for Japanese Wagyu in Australia yielding similar results to Japanese 

publications (Table 1.1). These studies were designed so that they could be compared to 

Japanese studies by grading at the 5-6th rib-eye cross-section (Maeda et al. 2014; Zhang et al. 

2015). In other breeds, using a different grading system, heritabilities for carcass weight, rib-

eye area, subcutaneous fat thickness and marbling score have been reported as moderately 

to highly heritable (0.23, 0.22, 0.25 and 0.48 respectively) consistent with the range of 

heritabilities for specifically Wagyu described in Table 1.1 (Gregory et al. 1995). 

Calculated unweighted heritabilities are similar to weighted averages with the exception of 

marbling score graded under the JMGA method. The weighted mean is substantially lower 
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than the unweighted mean due to the inclusion of a low heritability estimate with a low 

standard error (Oyama 2011).  

Table 1.1: Range of Direct heritabilities (h2) and number of reports referenced (N) for carcass 
traits of Japanese Black cattle assessed using Japan meat grading association (JMGA) and 
Australian meat industry classification system (AUS-MEAT) grading methodology at the 6-7th 
and 5-6th rib cross-sections respectively. 

Trait Measurement 
method 

N Range of 
h2 

Unweighted 
mean h2 

Weighted 
mean h2 

Carcass Weight JMGA 18 0.23-0.78 0.48 0.46 
 AUS-MEAT 

 
2 0.47-0.59 0.53 0.48 

Rib Eye Area JMGA 18 0.37-0.45 0.46 0.49 
 AUS-MEAT 

 
1 0.59 - - 

Subcutaneous fat 
thickness* 

JMGA 18 0.07-0.59 0.39 0.32 

 AUS-MEAT 
 

2 0.25-0.84 0.55 0.43 

Marbling Score JMGA 11 0.16-0.74 0.55 0.21 
 AUS-MEAT 2 0.23-0.54 0.38 0.43 

Oyama (2011), Maeda et al. (2014), Zhang  et al. (2015) 
*Subcutaneous fat thickness for AUS-MEAT grading refers specifically to the P8 fat depth 
measurement (mm) 

 

Heritability estimates in Wagyu have been published recently, with 50K SNP genotype data 

utilising models that included the additive polygenic effect and chosen SNPS or just the 

polygenic effect alone. Estimated heritabilities for the carcass traits listed above ranged from 

0.40 to 0.84, with the proportion of variance attributable to the SNPs increasing as the number 

of SNP effects that fit increased (Watanabe et al. 2014).  

Unweighted averages of genetic correlations between carcass traits in Wagyu populations 

have been summarised by Oyama (2011; Table 1.2). Moderately positive average correlations 

were reported between carcass weight and ribeye area and ribeye area and marble score (0.44 

and 0.43 respectively). The preceding correlation is slightly higher than what has been 

published in an Australian Wagyu herd which is different to the one utilised in experimental 
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chapters herein (0.38; McEwin 2016). However this correlation is still in agreement with what 

is to be expected. The latter correlation (0.43) is a unique characteristic of Wagyu as previous 

estimates in other breeds have been zero or lowly negative (Gregory et al. 1995). McEwin 

(2016) demonstrated that the moderately positive correlation in Wagyu was perhaps 

explained by the excessive amount of marbling, exhibited by the breed, pushing the muscle 

fibre bundles apart and thereby increasing the ribeye area measurement. Lean muscle area in 

the rib-eye was estimated by removing the estimated intramuscular fat percentages and 

reported a negative correlation more similar to what would be observed in other breeds. As 

discussed previously, another unique Wagyu characteristic is the apparent lack of, or slightly 

negative, genetic correlation between marble score and subcutaneous fat depth. The average 

correlation, as calculated by Oyama (2011), is presented as -0.06 (Table 1.2) whereas in other 

breeds it is moderately positive (0.44; Gregory et al. 1995).  

Table 1.2: Unweighted Genetic correlations among carcass traits (above diagonal) and the 
number of reports included in unweighted average (below diagonal) in Japanese Black Cattle 
(Oyama, 2011). 

Trait 1 2 3 4 

1                        Carcass Weight  0.44 0.31 0.15 
2                        Rib eye Area 5  0.02 0.43 
3                        Subcutaneous Fat thickness 5 5  -0.06 
4                        Marble Score 6 6 6  

 

1.2.2 Camera Image traits 
 

Image analysis methodology presents as an objective way to assess carcass quality 

characteristics such as marbling traits, meat colour/brightness and muscle symmetry. A 

description of the image analysis traits presented in Table 1.2 can be found in Maeda et al. 

(2014) with the exception of the ratio of minor to major rib-eye axis trait which describes the 

symmetry of rib-eye muscle when observed at the rib-eye cross-section.  
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Weighted heritabilities for image analysis carcass traits were calculated as being highly 

heritable (greater than 0.40) with the exception of coarseness index for the largest marbling 

particle which is lowly heritable (0.12; Table 1.3). This is in contrast to the higher heritabilities 

of percentage marbling area and marbling coarseness index (0.52 and 0.42 respectively) which 

could suggest that an extremely large marbling particle might be distributed in the muscle at 

random (Osawa et al. 2008). Where unweighted and weighted means are both estimated, the 

weighted mean differed little from the unweighted mean, although this might be due to the 

small spread of studies included.  

Japanese Black Wagyu is the predominant breed utilising image analysis with few publications 

available to include in a weighted analysis of heritabilities. In addition not all studies 

encompassed all traits analysed here, or provided sufficient information and that is why some 

calculations are missing from Table 1.2. Certainly, more studies which include a larger spread 

of breeds and traits would be valuable as only shared traits among studies that incorporated 

one breed were included here. However the high heritability of the majority of traits certainly 

suggests that image analysis traits may be useful in the design of breeding programs and could 

be an alternative to the current subjective grading systems.  

Table 1.3: Range of Direct Heritabilities (h2) for image analysis traits and the number of reports 
referenced (N) in Japanese Black Cattle. 

Trait N Range of h2 Unweighted 
mean h2 

Weighted 
mean h2 

Camera rib-eye muscle area 3 0.44-0.62 0.50 0.49 
% Marbling area 4 0.37-0.59 0.52 0.52 
Marbling  coarseness index 4 0.31-0.47 0.38 0.42 
Coarseness index of largest 
marbling particle 

4 0.05-0.20 0.11 0.12 

Marbling fineness index 2 0.50-0.55 0.53 0.51 
Average luminance of exposed lean 2 0.40-0.57 0.49 0.47 
Ratio of minor to major rib-eye axis 2 0.08-0.32 0.2 - 

Osawa et al. (2004; 2008) , Maeda et al. (2014), Zhang et al. (2015).                                                                                  

 



 

C h a p t e r  O n e  | 19 
 

Osawa et al. (2008) describes best the genetic correlations between some of the image 

analysis traits above. Camera rib-eye muscle area is lowly-moderately correlated with 

percentage marbling area, overall marbling coarseness and coarseness of maximum marbling 

particle (0.36, 0.39 and 0.24 respectively; Osawa et al. 2008). Similarly marbling percentage 

and coarseness of maximum marbling particle are lowly-moderately correlated (0.29) which 

could present as more evidence for coarser marbling particles to be distributed in the muscle 

at random. Unsurprisingly, marbling percentage had a high genetic correlation with overall 

coarseness and overall coarseness was highly correlated to coarseness of maximum marbling 

particle (0.69 and 0.85 respectively; Osawa et al. 2008).  

In general image analysis traits have high genetic correlations with their carcass trait 

counterparts i.e. Camera rib-eye muscle area and rib-eye muscle area (0.97) and marbling 

percentage and marble score (0.97; Osawa et al. 2008), with similar values reported by Zhang 

et al. (2015). This suggests that the image analysis traits would be an appropriate, objective 

substitute for the current subjective methodologies. In addition these traits have low negative 

correlations (-0.03 to -0.21) with subcutaneous fat thickness, which is unsurprising in Wagyu 

for reasons described previously, as well as low to moderate correlations with carcass weight 

(0.17-0.35; Osawa et al. 2008). Therefore improvement in marbling characteristics will not 

hinder gains in carcass weight as well as not result in an accompanying increase in 

subcutaneous fat, improving yield potential.  

Osawa et al. (2008) reported an undesirably moderately-strong correlation between marble 

score and overall marbling coarseness (0.66) suggesting that improvement in marbling based 

on marble score could be accompanied by an increase in coarser marbling particles. Therefore 

breeding programs would have to potentially mitigate this by incorporating assessment of 
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marling fineness into their breeding objectives which should be plausible given its high 

heritability (see above; Table 1.3).  

1.2.3 Conclusion  
 

Marbling is quickly becoming an integral component within breeding objectives of Australian 

beef producers due to its association with meat eating quality, specifically tenderness, 

juiciness and palatability. Wagyu appear as an attractive breed to meet rising demand for 

higher marbled beef due to their genetic predisposition to produce high degrees of marbling. 

Currently there is a demand for finer marbled beef and subjective grading programs are not 

able to capture this variation in marbling fineness. This is important to capture due to a strong 

genetic correlation between marbling and marbling coarseness (0.66). This has led to the 

development of camera imaging technology (objective marbling assessment) to describe 

marbling fineness and coarseness indexes. Heritabilities of these new novel traits in Wagyu 

have been reported as moderately to highly heritable, although a range exists, which suggests 

they could be implemented into successful breeding programs. Delving into the genes 

responsible for marbling, no genes of major effect (or causal genes) have been reported; 

rather many genes seem to contribute a small effect each on phenotype. While traditional 

breeding programs have made head-way in improving the amount of marbling in retail cuts, 

there is suggestion that the pairing of ‘high-tech’ phenotypes (Camera imaging and fatty acid 

analysis) with genomic selection (Appendix 1) presents as an exciting future opportunity worth 

exploring.    
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1.3 Within breed selection is sufficient to improve terminal crossbred beef marbling: A review 

of reciprocal recurrent genomic selection 
 

The development of a genetic evaluation program for beef cattle in Australia started as the 

National Beef Recording Scheme (NBRS) in the late 1970’s and became BREEDPLAN in 1985 

(Graser and Hammond 1985). The purpose of BREEDPLAN is to quantitatively evaluate an 

individual’s genetic merit before they are selected as breeding stock on a breed by breed basis. 

This is achieved using recorded phenotypes and knowledge of an animal’s pedigree.  

Traditionally, only phenotypes from stud recorded, purebred relatives have been able to be 

included in genetic modelling, due to pedigrees not commonly extending between breeds 

across nucleus herds. However, with the development of genomic selection (Meuwissen et al. 

2001), it has become increasingly easier by replacing pedigree relationships with those 

estimated from single nucleotide polymorphism (SNP) data. This allows access to much larger 

pools of data which could in turn improve the accuracy of genomic predictions (Hayes and 

Goddard, 2008), that is assuming marker density is sufficient to capture linkage disequilibrium 

(LD) among breeds (De Roos et al. 2009). 

Many studies struggle to find an advantage of using multi-breed evaluations. Prediction 

accuracies for certain traits can be improved but often the effects are neutral or slightly 

decreased (Hayes et al. 2009; Erbe et al. 2012; Moghaddar et al. 2014; Brito et al. 2017). 

Degree of relatedness between populations is key, with closely related populations offering 

more benefit than distant relations (Habier et al. 2010). First cross (F1) data is a good example 

of this, whereby cross-breed phenotypes are obtained on animals who are sired by individuals 

within the nucleus herd. Assuming the correlation between the purebred and crossbred trait 

(rpc) is high, F1 data can easily be utilised in the nucleus through a single-trait GBLUP (genomic 

best linear unbiased prediction; VanRaden, 2008). For instances where rpc is low, i.e. the 
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purebred and crossbred traits are considered different traits, than a multi-trait GBLUP model 

can be used to incorporate cross-bred data into purebred evaluations (Olson et al. 2012). 

A lot of emphasis in cattle breeding is placed on breeding better purebreds, yet the 

commercial product is often the result of cross-breeding to capitalise on heterosis and breed 

complementarity. A particular beef cross that achieves this is Japanese Black Wagyu x Angus, 

Angus dams provide high weaning rates and growth while Wagyu sires provide high marbling 

(intramuscular fat) attributes. In addition, obtaining large numbers of Wagyu cows is 

prohibitively expensive while Angus dams are more accessible.   

Breeding better purebreds does result in improved performance in cross-bred progeny (Banks 

1995) but there is often phenotype unpredictability associated with cross-breeding. This is 

particularly the case for marbling in F1 Wagyu (Brethour, 1995), which is undesirable 

considering these animals are on feed for over 300 days. The question then is, for a system 

such as F1 Wagyu production, is there breeding systems available, utilising cross-bred 

information, that breed better purebreds, for the purpose of improved (and consistent) cross-

bred performance. To what extent is there genetic (sire) by genetic (dam breed) interactions 

in highly marbled crossbreds? 

Reciprocal recurrent selection (RRS) describes the selection of purebreds to maximise 

crossbred performance utilising both additive and non-additive genetic variance (Comstock et 

al. 1949). In other words, there is potential to breed for increased heterosis as well as utilise 

additive variance.  This approach was developed in maize populations and has been expanded 

to the poultry and pig industries with varying success (Wei & Van der Steen, 1991). As pedigree 

recording is not common practice in commercial beef herds, RRS has not yet been applied in 

this industry. Genomic selection may make the utilisation of RRS in beef cattle plausible, 

especially in Wagyu with their very high price point. Several publications have proposed model 
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considerations for reciprocal recurrent genomic selection (RRGS) for application in the pig and 

poultry industries (Dekkers 2007; Ibánẽz-Escriche et al. 2009; Zeng et al. 2013; Vitezica et al. 

2016; Xiang, Christensen, Vitezica, & Legarra, 2016). 

The aim of this paper is to review proposed approaches to RRGS and to evaluate their 

usefulness for a potential application in beef cattle. This knowledge is collated with literature 

regarding the relative importance of additive and non-additive variance in animal 

performance and breeding programs. This is achieved by focussing on a suggested two-way, 

terminal cross scenario between the Japanese Wagyu and Angus breeds that will have a 

primary focus on meat quality attributes such as marbling. 

1.3.1 Importance of additive vs. non-additive genetic effects 
 

Genetic variance (σG
2) can be partitioned into three components; additive (σA

2), dominant 

(σD
2) and epistatic (σI

2) gene action with the epistatic component able to be partitioned further 

(Falconer and Mackay 1996). Dominant and epistatic variance components are collectively 

referred to as non-additive genetic variance and have implications in inbreeding and heterosis.  

Traditional selection of livestock has focused purely on the additive genetic component of an 

individual’s genotype using an animal model with numerator relationship matrix based on 

pedigree (Henderson 1976) or SNP (VanRaden 2008). This additive component is expressed as 

an estimated breeding value (EBV) or genomic estimated breeding value (GEBV) when 

estimated from pedigree or genotype information respectively. Breeding values are 

determined using the statistical method known as best linear unbiased prediction selection 

(BLUP; Henderson 1984), termed GBLUP when genomic information is considered. Estimated 

breeding values have been effective for increasing economically important traits of 

agricultural species where pedigree is accurately recorded on each individual (Banks 1995; 

Parnell 2015) or genotypes are available (VanRaden 2008).  
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The importance of considering additive and non-additive genetic effects in breeding programs 

can loosely be considered under two criteria; 

1) What traits are under selection pressure (fitness vs. production) and, 

2) What is the basic breeding program design (purebred production vs crossbred 

production). 

Non-additive genetic variance is more influential for fitness traits and forms part of the genetic 

mechanism underpinning heterosis, although the exact mechanism is not known (East 1908; 

Shull 1908; Ford 1945; Davenport 1908). Maize is perhaps one of the most well-known 

agricultural crops to exploit heterosis for commercial hybrid production, having laid the 

foundation for exploitation of breeding hybrids in other agricultural crops (Virmani and 

Edwards 1983; Mühleisen et al. 2013; Zhao et al. 2013). As well as heavily exploiting heterosis, 

crop yield is of high economic importance which is biologically a fitness trait for seed 

production.  

Maize is a naturally cross pollinating crop with separate male and female inflorescence making 

artificial hybridisation and self-pollination (or “selfing”) for seed production relatively easy. 

The inbred-hybrid concept is widely used in maize production for the production of 

commercial hybrids. Here, inbred, homozygous, elite parental lines are developed through 

many generations of selfing and then a single cross between two lines is used to produce the 

heterozygous, high vigour, commercial hybrid. Where maize breeding exploits this further is 

that while the hybrid progeny are heterozygous at an individual plant level, they are 

homogeneous at the population level. This means commercial hybrid progeny exhibit uniform 

performance assuming uniform environmental effects (Hallauer et al. 2010).   

Inbred lines are developed for use in hybrid production and this is where their commercial 

value lies. A specific line may excel for several traits but unless they produce excellent hybrid 
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combinations, they are unlikely to make it into commercial production.  Combining ability of 

lines was a general concept for classifying inbred lines relative to their hybrid progeny 

performance. Sprague and Tatum (1942)  describe general combining ability (GCA) and specific 

combining ability (SCA) which relates to genes having largely additive and non-additive effects 

respectively (Reif et al. 2007).   

A similar mechanism to SCA has been described in animal breeding as “nicking”, a term used 

to describe matings which produce unexpectedly superior offspring, which has been 

attributed to non-additive genetic effects in early literature (Seath and Lush 1940). Early 

comparison of dairy bulls based on average performance of daughter-dam groups give 

inconclusive evidence for nicking, in fact differences between groups could have easily been 

due to chance or environmental influences (Heizer et al. 1938; Johnson et al. 1940; Seath and 

Lush 1940). With more modern methods which look at including the pedigree relationship 

matrix (animal model; Meyer 1989) or genomic relationship matrix (VanRaden 2008) in the 

analysis of trait data, several studies have further partitioned the genetic variance to include 

dominance and/or epistatic variance in livestock (Tempelman and Burnside 1989; van der 

Werf and De Boer 1989; Miglior et al. 1995; Rodriguez-Almeida et al. 1995; Palucci et al. 2007) 

reporting significant although relatively small non-additive variance. It is important to 

distinguish here between effects seen between breeds (heterosis) and at an individual level 

(dominance effects). The latter is harder to implement in animal breeding programs due to 

the difficulty of estimation. It is much easier to utilise individual level dominance in programs 

such as maize due to using inbred lines.  

Hill, Goddard & Visscher (2008) evaluated the evidence from a number of empirical studies of 

genetic variance components and reported that additive genetic variance typically accounts 

for over half the total genetic variance for a trait.  Certainly traits of economic importance in 
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Wagyu, such as Carcass Weight, Rib-Eye Area, Subcutaneous Fat thickness and Marbling 

(marble score), have heritabilities (σA
2/σP

2) of approximately 0.50 (Oyama 2011), indicating 

that A
2 alone accounts for 50% of the total phenotypic variance. This means dominance, 

epistasis and all environmental variance contribute no more than σA
2

 collectively.  For 

example, in an F1 population of pigs, dominance variation accounted for a marginal proportion 

of the total genetic variance in litter size, 13% (Vitezica et al. 2016). In addition, Hill, Goddard 

& Visscher (2008) reported theoretical models which predicted high proportions of additive 

genetic variance, even in the presence of non-additive gene action, due to the likelihood of 

most alleles being at extreme frequencies i.e. 1 or 0.  This certainly suggests that dominance 

variance is smaller than additive, however large dominance effects could still exist. 

In pigs, dominance and epistasis have been reported to account for approximately 6 and 9% 

of the phenotypic variance for daily weight gain in pigs in respectively, although only the 

dominance variance was significantly different from 0 (P<0.05; Su et al. 2012). Additionally, 

reliability of genomic breeding values increased by 1% when dominant and epistatic terms 

were included in the model (Su et al. 2012). Sun et al. (2014) and Aliloo et al. (2016) reported 

dominance variance accounted for 5 and 7% of total variance for milk yield traits in Holsteins 

and Jerseys respectively. For these yield traits, inclusion of both additive and dominance 

variance described the data better, and increased prediction accuracy, compared to just 

including additive variance (Sun et al. 2014), although this wasn’t consistent for all traits 

(Aliloo et al. 2016). In Broiler chickens, for seven feed related traits, dominance accounted for 

approximately 10-13% of phenotypic variance across traits and 29 – 58% of the total genetic 

variance (Li et al. 2017).   

Using a high density SNP chip array and a dominance relationship matrix, Bolormaa et al. 

(2015) reported significant (P < 0.001) proportions of phenotypic variance attributable to 
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dominance effects for  post weaning live weight (11%), intramuscular fat (10%) and retail beef 

yield (18%) in admixed cattle populations. Dominance was also significant (P <0.01) for feedlot 

exit live weight accounting for 7.0% of phenotypic variance. In contrast to Su et al. (2012), Sun 

et al. (2014) and Aliloo et al. (2016) but in agreement with Li et al. (2017), Bolormaa et al. 

(2015) reported no improvement in the accuracy of genomic breeding values by including 

dominance variance terms in the model and attributed this to the more distant relationship 

of the cattle populations examined. For example Su et al. (2012) utilised a more closely related 

pig population. Xiang et al. (2016) reported similar predictive ability for crossbred pigs with 

and without accounting for dominance for total number of piglets born, as did Jiang et al. 

(2017) for 8 complex traits in dairy. Additionally, significant effects of heterozygosity are often 

associated with significant effects of dominance variance for traits (Bolormaa et al. 2015; Li et 

al. 2017); but this is not always the case i.e. for intramuscular fat or retail beef yield (Bolormaa 

et al. 2015).  Clearly estimates of dominance here are small (although significant for some 

traits) and the literature appears conflicting as to whether inclusion of dominance in the 

model improves predictive ability compared to additive variance alone.   

1.3.2 Pure-line selection for crossbred production 
 

Breeding for improved pure-line or purebred performance through the use of EBVs (additive 

genetic variance) has demonstrated commercial production advantages where superior 

genetic sires are mated over commercial females (Banks 1995). Using sires with high breeding 

values for growth resulted in a 1.6-8.4 g/day increase in post weaning growth rate of crossbred 

progeny per kg increase in sire growth EBV for Australian Sheep flocks (Hall et al. 1997; 

Hegarty et al. 2006). Measured another way, post-weaning weight of crossbred lambs has 

been shown to increase 0.1-0.9 kg per kg increase in sire growth EBV (Hall et al. 1992; Fogarty 

et al. 1997; Hall et al. 1997; Hegarty et al. 2006). Other traits influenced cross-bred post-
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weaning weight as well with an additional half a kg being achieved in crossbred lambs per mm 

increase in sire EBV for post weaning eye muscle depth (Hegarty et al. 2006). The proportion 

of sire EBV observed in crossbred progeny did not differ significantly from the expected value 

of 0.5 in the studies discussed above (Hall et al. 1992; Fogarty et al. 1997; Hall et al. 1997). 

That is, genetically superior sires do transfer 50% of their superiority to their cross-bred 

progeny. 

Similar results have been observed in crossbred cattle where Brahman dams were mated to 

Angus, Hereford, Shorthorn, Belmont Red and Santa Gertrudis sires in a multi-breed 

evaluation study (Newman et al. 2002). Regressions of cross-bred calf performance on sire 

EBV were all found to be significantly different from zero for the weight-related and carcass 

traits investigated. Four hundred day weight (400W) of cross-bred progeny increased by 0.5kg 

per kg increase in the 400W sire EBV, and did not differ significantly from the expected 0.5 

kg/kg (Newman et al. 2002). In contrast, regressions of crossbred intramuscular fat (IMF) on 

sire IMF EBV and crossbred P8 (subcutaneous fat depth) on sire P8 EBV were less than the 

expected 0.5.  

The regression coefficient 𝑏𝑥,𝐸𝐵𝑉 between a trait 𝑥 of cross breed and the EBV of purebred 

sire is calculated as; 

𝑏𝑥,𝐸𝐵𝑉 =  0.5 𝑥 𝑟𝑝𝑐
√ℎ2×𝜎𝑝

𝜎𝐸𝐵𝑉
   

Where ℎ2 is the heritability, 𝜎𝑝 is the variation of the trait in crossbreds, 𝜎𝐸𝐵𝑉 is the additive 

genetic (EBV) standard deviation in the purebred and 𝑟𝑝𝑐 the genetic correlation between the 

purebred and crossbreds for the same trait. Regressions less than 0.5 could be due to the 

genetic correlation between purebreds and crossbreds ( 𝑟𝑝𝑐) being less than 1, the trait having 
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a lower heritability (ℎ2) in crossbreds or the trait having lower variance (𝜎𝑝) in crossbreds 

(Hebart et al. 2020). 

If the genetic correlation between traits, the heritability and the variation in sire EBV are 

known, or assumed to be known, and are likely to remain constant, it is the variation in carcass 

traits, such as that caused by scale effects, that is likely to have the biggest impact on the 

regression coefficient (Hebart et al. 2020). Sire EBVs are computed based on a standard 400kg 

carcass however the mean carcass weight in the crossbred study of Newman et al. (2002) was 

259kg. This lower carcass weight could indicate lower variation in crossbred IMF and P8 fat 

and hence explain the lower than expected regression coefficient.  

Purebred-crossbred genetic correlations ( 𝑟𝑝𝑐) have been estimated in cattle (Newman et al. 

2002). Using elite EBV sires results in increased cross-bred progeny performance. However, 

there has been little discussion about the possibility of sires re-ranking based on usefulness as 

crossbred progenitors; at least where additive genetic variance is concerned. Purebred-

crossbred genetic correlations of traits are less unified for weight traits (400W and Carcass 

Weight; 𝑟𝑝𝑐=0.48 each) than carcass quality traits such as retail beef yield, IMF and P8;  𝑟𝑝𝑐 of 

0.83, 0.95 and 1.00 respectively (Newman et al. 2002). In general,  𝑟𝑝𝑐 decreases with 

increasing dominance level or increasing genetic disparity (gene frequency difference) 

between parental populations. Conversely, traits which have highly positive 𝑟𝑝𝑐  are often an 

indicator of greater importance of additive genetic effects for that trait (Wei and Van der 

Steen 1991). Heterosis does influence growth and hence 400 day weight and carcass weight 

and is not nearly as important for fat traits such as IMF (Pitchford et al. 2017), however both 

trait groups are highly heritable being governed largely by additive genes and so consistently 

high  𝑟𝑝𝑐 might have been expected across the traits.   Environment may have been a 

contributing factor leading to low 𝑟𝑝𝑐. Performance data on Angus, Hereford and Shorthorn is 
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typically measured in southern Australian climates while crossbreds were reared, and some 

finished, in a sub-tropical environment. (Newman et al. 2002). Additonally 𝑟𝑝𝑐 is often 

confounded with genotype by environment effects. However the less unified  𝑟𝑝𝑐 could be 

suggestive that producers may encounter some re-ranking of sires for weight related traits 

when selecting bulls for use over Brahman cows, though this isn’t expected to be the case for 

marbling (Newman et al. 2002).  

In summary, sires being genetically evaluated within their own populations (breed) is an 

effective strategy to improve cross-breed performance. Under this frame work, only additive 

genetic variance is utilised and any heterotic effects expressed in crossbred progeny are 

simply an expression of the genetic distance between those two breeds. Theoretically one 

could purposely use genetically distant breeds to capitalise on heterosis as well as utilise the 

additive genetic variance. This has practical applications in that sires could potentially re-rank 

based on the potential of their cross-bred offspring.  

1.3.3 Reciprocal recurrent selection 
 

Not all crosses are equal regarding heterosis response in progeny performance (Long 1980). 

For example heterosis in cattle is greatest when Bos indicus and Bos taurus breeds are crossed 

i.e. Brahman x Angus matings produce greater heterosis expression in progeny than Brahman 

crossed with a tropical composite e.g. Belmont Red (Newman et al. 2002). However an 

element of breed complementarity needs to be considered and this is where reciprocal 

recurrent selection can be useful. 

Reciprocal recurrent selection (RRS) describes the selection of purebreds to maximise 

crossbred performance utilising additive and non-additive genetic variance (general and 

specific combing abilities respectively) (Comstock et al. 1949). This is in contrast to pure-line 

selection (described above) which can only use additive variance. Reciprocal recurrent 
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selection was developed for maize breeding (Comstock et al. 1949) where performance of 

inbred lines in hybrid combinations is paramount. Reciprocal recurrent selection procedures 

have improved commercial hybrid performance in maize for yield characteristics as well as 

some other agronomic parameters (Penny and Eberhart 1971; Keeratinijakal and Lamkey 

1993; Moll et al. 1994). For example, improved heterosis response in line crosses has been 

observed indicating greater utilisation of non-additive genetic effects (Moll et al. 1994).  

Most commercial poultry birds (layers and broilers) result from the crossing of three or four 

pure lines (Hunton 1990) and some seed-stock breeders are using RRS, or variations on RRS, 

as a means to select purebreds for crossbred performance. Selection response for an egg 

production trait from first egg to 40 weeks of age was evaluated using pure-line (within-line) 

selection versus RRS. In both breeding systems responses to selection were significantly 

greater than zero but not significantly different to each other (Calhoon and Bohren 1974). 

Where improvement in the rate of egg production is concerned, pure-line selection and RRS 

were again equal in response (Saadeh et al. 1968) despite it being expected that RRS would 

be advantageous over pure-line selection. However, this certainly appears to be the case for 

litter size and feed efficiency in pigs, with RRS found to be advantageous over pure-line 

selection (reviewed by Wei and Van der Steen (1991)).  

Selection of broilers for 10-week body weights using RRS was shown to improve the trait 

favourably however combining ability was not improved and therefore improved performance 

was likely due to an accumulation of favourable additive alleles (Griesbach 1962). In pigs, the 

usefulness of RRS for selection response in weight traits is generally less or equivalent to pure-

line selection (Wei and Van der Steen 1991). 

The application of RRS has not been tested in beef and this is due to pedigrees not being 

recorded in crossbred commercial herds. Additionally, the reproductive rate of cattle is slow 
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and so complex crossbreeding schemes are not common. Pure-line selection is successful at 

improving cross-bred performance, and crossbred data can be utilised to improve purebred 

predictions. How this data is used depends on the corresponding rpc. With genomic 

information able to replace pedigree and Wagyu constituting a high value market, any small 

additional improvements to crossbred performance through RRGS could see significant 

financial advantages. 

1.3.4 Genomic selection of purebreds for crossbred performance  
 

Genomic selection for purebred production has been adopted in purebred breeding schemes, 

particularly dairy (VanRaden 2008; Goddard et al. 2010; Jiang et al. 2017). Recent literature 

has proposed selecting purebreds for crossbred performance using genomic selection 

(Dekkers, 2007; Ibánẽz-Escriche et al. 2009; Zeng et al. 2013). This is possible in multi-breed 

populations when using sufficient SNP densities to ensure the consistency of LD between the 

populations (De Roos et al. 2008; Lu et al. 2012; Porto-Neto et al. 2014). Studies in this area 

can be largely categorized into 3 groups; those that account for additive gene action, those 

that account for additive and dominant gene action and those that account for breed specific 

allele effects (breed x additive interactions). As genomic selection traditionally accounts for 

additive gene action, the two latter categories will be the primary focus of discussion regarding 

selection for crossbred performance.  

Breed specific allele effects 
 

Marker assisted selection for crossbred performance was proposed by Dekkers (2007) as a 

method for overcoming the limitations of combined crossbred and purebred selection (Wei & 

Van der Steen, 1991; Lo et al. 1993). Combined crossbred and purebred selection refers to the 

utilisation of phenotypic data from commercial crossbred relatives for selection of purebreds, 

but is limited in that improved crossbred performance is accompanied with increased 
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inbreeding in the parental lines (Bijma et al. 2001). This can only be countered by extensive 

pedigree recording. Dekkers (2007) demonstrated through simulation that using marker-EBVs, 

i.e. the sum of marker effects, derived from crossbred phenotypes, to select a terminal sire 

line, resulted in increased rates of response in crossbreds and reduced parental line 

inbreeding. This was relative to the accuracy of the marker-EBV. Implementation of this 

methodology using SNP markers is a good strategy, however the best results for selection of 

purebreds mean training on crossbred data. As crossbreds represent a mixture of specific 

marker-QTL associations that exist within the parental breeds, knowledge of breed-specific 

effects i.e. from which parental line the marker allele/haplotype was inherited, are essential 

to be able to use these markers/haplotypes to aid selection of purebred parents (Dekkers 

2007).  

Ibánẽz-Escriche et al. (2009) investigated the importance of a breed specific SNP allele model 

(BSAM)  further, constructing a simulation that compared a classical genomic selection model 

with breed-specific allele effects to an across breed SNP genotype model (ASGM) where SNP 

effects were assumed the same across the parental breeds.  Considering SNP number (500 vs 

2000), parental breed relatedness and number of training records (1000 vs 4000), breed 

specific marker effects outperformed across parental breed effects when the lesser density of 

SNPs (500) was utilised, breeds were distant or unrelated and when the larger level of training 

records was utilised. Regardless of this trend, the largest difference in accuracy of purebred 

breeding values trained on F1 crossbred data, between the two models, was 4%.  Genotype 

simulation was for one chromosome, 1M in length where trait phenotype was known to be 

influenced by 30 QTL with a moderate heritability of 0.30 (Ibánẽz-Escriche et al. 2009). Where 

10 chromosomes, 1000 QTL and 10,000 SNPs were considered a BSAM model performed 

equal to or worse than an additive model (GS BayesC) regarding cumulative response to 

selection in the crossbreds after 20 generations (Zeng et al. 2013). Duenk et al. (2019) utilised 
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a genomic relationship matrix that accounts for the breed-of-origin of alleles, demonstrating 

that accounting for breed of origin is beneficial for improving prediction accuracy. However 

this was only the case when rpc for the trait was lower 0.8. Traits with more unified rpc (0.98) 

did not benefit. 

Models that include dominance 
 

Kinghorn et al. (2010) built further on the work done by Ibánẽz-Escriche et al. (2009) by 

exploiting within-locus dominance effects as well as additive effects, for selection within 

purebred parental lines for crossbred performance in a two-way cross. Denoted reciprocal 

recurrent genomic selection (RRGS), a “genomic key” (a set of weightings to calculate GEBVs 

using genotype) was derived for each separate parental line from crossbred phenotypes and 

their gametotypes contributed by each parental line for each crossbred individual (similar to 

BSAM; Ibánẽz-Escriche et al. 2009).  In simulation, RRGS resulted in a substantial increase in 

genetic merit, but at the expense of genetic merit in the purebred lines, which decreased over 

generations of selection in purebreds. Another scenario was investigated herein similar to 

ASGM (Ibánẽz-Escriche et al. 2009), where crossbred genotypes and phenotypes were used 

to make one genomic key for use across both parental lines. This method utilises diploid 

information (genotypes) compared to haploid (gamete gametotypes). Responses in 

crossbreds were still favourable and almost comparable with RRGS however genetic merit of 

the purebreds was able to be maintained and slightly increased over 40 generations of 

selection. This was true when genomic and phenotypic information from the crossbreds was 

updated each generation as alleles. The drive in both RRGS and ASGM is such that allele 

frequencies within pure lines can drift to opposing extreme or fixed values, leading to 

increased heterosis expression (Kinghorn et al. 2010). 
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The practicality of either RRGS or ASGM method is dependent on situation. If the aim is purely 

crossbred performance then RRGS will achieve the highest genetic merit. If parental line 

performance is desired to at the very least be maintained, then ASGM may be more suitable 

although one limitation is that crossbred progeny will need to be genotyped every year. 

Phenotype collection would be a non-issue, relating back to the crossbred Wagyu example 

herein; all progeny of the two-way cross would be slaughtered making phenotypes of each 

generation available. Another benefit of ASGM is that phasing of alleles/haplotypes etc. is not 

required.  

Zeng et al. (2013) compared a BSAM model to an additive and dominance model. Their 

dominance model is potentially advantageous. Breed of origin must be known or inferred for 

BSAM, however no such knowledge is need for the dominance model. This is a different 

approach to Kinghorn et al. (2010) as BSAM was investigated in conjunction with dominance 

deviations, rather than compared separately. In the absence of overdominance the 

dominance model was favoured over the additive model and where no dominance was 

present the models were equivalent. The dominance model outperformed BSAM in all cases; 

however this advantage may decrease as the disparity in LD, between breeds, increases.  

While the additive and dominance variances at the QTL may be consistent between breeds, 

the SNP effects between breeds may differ due to differences in LD (Zeng et al. 2013).  

A limitation in the approach of Zeng et al. (2013) is that SNP effects were estimated once and 

then used for 20 generations of purebred selection for crossbred performance. This is rarely 

done in practice as retraining is usually carried out after each generation of selection; with 

retraining the advantage of the dominance model is expected to decline relative to the 

additive or BSAM models (Zeng et al. 2013).  
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The studies discussed thus far investigating purebred selection for crossbred performance 

have been simulation studies. As the simulations move to more realistic scenarios accuracy 

estimates or responses to selection are shown to drop. For example, Ibánẽz-Escriche et al. 

(2009) conducted a more realistic simulation scenario where breeds were closely related, 

comparing the BSAM and ASGM models utilising 20,000 segregating SNPs from the crossbred 

population over 10 chromosomes. A 25% drop in accuracy from the single chromosome 

simulation was observed (Ibánẽz-Escriche et al. 2009). Similar tendencies have been observed 

when moving from a simple to a more realistic simulation regarding levels of response to 

selection (Kinghorn et al. 2010; Zeng et al. 2013).  Additionally due caution is warranted as 

some results presented herein will likely not translate to performance under real conditions 

particularly because the ability to perfectly estimate QTL effects and trace the inheritance of 

crossbred alleles back to parental lines is assumed (Ibánẽz-Escriche et al. 2009; Kinghorn et al. 

2010). This demonstrates the requirement for such models, as described above, to be 

investigated in the field using real data. 

Purebred selection for crossbred performance with real data 
 

Studies that investigate purebred selection for crossbred performance using real data are 

limited and have only been published in recent years with a large focus on pig production. 

Vitezica et al. (2016) ran a GBLUP analysis to estimate genetic parameters (additive and 

dominant) for an F1 pig population based on approximately 7500 SNP genotypes, that was 

inclusive of the parental lines as well as the crossbreds. A multivariate model that included 

purebred and F1 performance for litter size was used. The theory presented demonstrated the 

estimation of variance components under a genomic model with additive and non-additive 

inheritance. In particular three variance components were described i.e. the additive genetic 

variance due to alleles from population 1, the additive genetic variance due to alleles from 
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population 2 and the dominance genetic variance from the F1 population, that have 

interpretation value in terms of variances of breeding values (general combining abilities) and 

of dominance deviations (specific combining ability).  Genomic correlations between the 

parental lines and crossbreds were presented. Additive genomic correlations between 

parental lines were 0.78 and ranged from 0.60-0.83 between the parental lines and F1s. This 

indicates that the additive effects of SNPs are similar between lines and between crossbreds. 

The dominance correlations were lower regardless of population (0.47-0.54) indicating 

dominance effects differ between the populations. This allows for selection of a specific pair 

of parents to produce superior F1 individuals in a GBLUP evaluation framework i.e. matings 

with the highest specific combining ability (heterosis) can be predicted. This was assuming 

SNP effects were independent of the origin of alleles and that allele frequencies differed 

between the parental populations (Vitezica et al. 2016).  

Esfandyari et al. (2016) used a dominance model for genomic prediction of crossbred 

performance based on purebred landrace and Yorkshire litter size data. They found prediction 

accuracy of GEBVs for cross-bred performance was highest when both additive and 

dominance effects were accounted for in the prediction model (Esfandyari et al. 2016) which 

is in agreement with previously discussed simulation studies (Ibánẽz-Escriche et al. 2009; Zeng 

et al. 2013).  Esfandyari et al. (2016) used a dominance relationship matrix to estimate SNP 

dominance effects. However, simply accounting for heterozygosity of individuals may be 

simpler for evaluating crossbred performance using dominance variation as done in a 

tropically adapted composite population (Pitchford et al. 2017). While this study was not a 

genomic reciprocal recurrent selection program, including heterozygosity as a fixed effect, 

prevented bias in GBLUP estimates from heterosis in the composite population. 

Heterozygosity effects reflect heterosis and/or dominance effects (animals with higher 
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heterozygosity were bigger and conceived faster) and are much simpler to calculate (Pitchford 

et al. 2017).  

The importance of breed-specific allele effects inherited by F1 pigs, from Large White or 

Landrace parental lines for litter size and gestation length was investigated (Lopes et al. 2017). 

Here the prediction accuracies of GEBVS for a traditional genomic selection model were 

compared with those obtained from a model that accounts for breed-specific effects, trained 

on purebred and crossbred data. For both traits, estimates of breed-specific additive genetic 

variance were only slightly larger for alleles inherited from the Large White population in the 

F1s, although standard errors were expectedly large due to dataset size. Additionally the 

highest accuracies for predicting crossbred performance were observed when training was 

done on crossbred data; prediction accuracies between the traditional GS model and the 

model accounting for breed-specific effects were similar. This is consistent with other studies 

where training on crossbred data (Moghaddar et al. 2014), or data that comprised both 

parental breeds (Ibánẽz-Escriche et al. 2009; Esfandyari et al. 2016) resulted in equal or higher 

prediction accuracies for crossbred performance.  

A genomic selection model accounting for breed-specific allele effects is expected to be 

advantageous when crossbred populations are larger and the parental breeds are more 

distantly related (Ibánẽz-Escriche et al. 2009).  In pigs, the F1 cross between two dam lines or 

‘dam breeds’ is done to produce F1 dams to mate to terminal sire lines. Crossing separate dam 

(maternal) lines, as in Vitezica et al. (2016) and Lopes et al. (2017), likely doesn’t involve 

distantly related breeds, which could potentially be achieved by crossing with a terminal sire 

boar for pork production. Therefore the examples with pig data here, although suggestive, are 

not a good representation of the terminal cross Wagyu x Angus beef scenario where it might 

be expected that breed-specific effects to be of greater importance.  
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The pig examples here, as they are producing maternal lines, would place emphasis on 

reproduction, where non-additive genetic effects are more important. In the F1 Wagyu 

scenario, emphasis would be largely on production traits relating to meat quality (marbling) 

and production efficiency (yield and feed use efficiency). Although there is some evidence for 

non-additive effects influencing production traits, the effect is often small and inclusion of 

such effects does not improve the prediction accuracy of individuals breeding values. It is likely 

that for the traits of interest,in a terminal Wagyu x Angus cross, that additive genetic effects, 

being far more abundant and important, particularly for marbling will suffice to improve F1 

performance through selection of purebreds.  

1.3.5 Summary of Reciprocal Recurrent Genomic Selection 
 

Complex crossbreeding schemes, such as reciprocal recurrent selection, are not popular in 

commercial beef herds. This is largely due to the requirement to keep pedigrees in order to 

feed progeny information back into purebred breeding programs, as well as low reproductive 

rates. Genomic selection technology presents a way to replace traditional pedigree recording, 

making selection for purebreds for crossbred performance possible, assuming crossbreds are 

both phenotyped and genotyped. Additionally, the financial incentive that Wagyu offer 

provides an opportunity where even small improvements in cross-bred performance are 

sought after. In most studies discussed, non-additive genetic variance accounts for small 

proportions of total variance in production traits. This non-additive variance is more influential 

in reproduction traits although nowhere near to the degree of additive gene action. Including 

dominance in prediction models varies in its effectiveness to improve predictive ability. 

Simulation studies show that including dominance in RRGS models may be advantageous to 

accounting for breed-specific allele effects where breed origin of alleles is difficult to 

determine or cannot be inferred. Additionally, accounting for breed-specific-allele effects is 
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only benefical where rpc for a trait is low. Advantages gained by including dominance in the 

model, over purely additive variance, faded as more realistic simulations were conducted. 

Studies with real data in pigs confirmed the advantage of accounting for dominance, although 

emphasis in these studies was for maternal reproduction. For a Wagyu x Angus breeding 

program, emphasis would be on production traits, namely marbling, so accounting for 

dominance will not be as advantageous and selection on additive variance will likely suffice. 

This is supported by earlier reciprocal recurrent selection studies in livestock species where 

response to selection was generally no different to that achieved using pure-line selection.  
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Chapter 2 : Genetic Parameters for 

Economically important traits in an 

Australian herd of Japanese Black Wagyu 
 

2.1 Introduction 
 

There are multiple methods to assess marbling in Australia which have been discussed 

previously in detail (1.1.5). One method is AUS-MEAT (AUS-MEAT Limited 2005), which 

subjectively assesses marbling using visual scoring systems. This method lacks the precision 

and range to accurately record high marbling phenotypes in Wagyu where there are a large 

proportion of carcasses at the maximum score (9). Furthermore, it only crudely assesses 

marbling fleck size. It is likely that objective measures will be more accurate and repeatable 

than visual scores. An example is the Meat Image Japan (MIJ) camera which measures both 

marbling and fineness.  

Genetic evaluation is traditionally carried out with the use of pedigrees to record ancestry. 

However pedigree based relationships are not able to capture Mendelian segregation 

amongst relatives (Visscher 2009), particularly full siblings. This is described in more detail in 

the following chapter (Chapter 3.1). The described relationships between animals are 

combined with recorded phenotypes to produce Estimated Breeding Values (EBVs), an 

estimate of an animal’s genetic merit. Information from more distant relatives, especially 

relationships between ancestors, are often ignored in pedigree BLUP as they tend to fall 

outside the known pedigree. Genomic selection (Meuwissen et al. 2001) is an approach that 

exploits thousands of SNP (single nucleotide polymorphisms) markers that are in linkage 

disequilibrium (LD) with QTL associated with traits of interest to produce Genomic Estimated 



 

C h a p t e r  T w o  | 44 
 

Breeding Values (GEBVs; Appendix 1). With the use of genomics, distant relationships can be 

detected (even if small) and phenotypes used if genotyping is widely carried out. The debate 

is not whether to use exclusively genomics or exclusively pedigree, estimates are generally 

similar between the two. However, pedigree can be difficult to collect, incorrectly recorded or 

not recorded at all. This is particularly the case for slaughter data, with slaughtered animals 

mostly being commercially bred and, therefore, difficult for seedstock breeders to obtain with 

good management groups and pedigree records.  

Three previous studies have estimated and compared genetic parameters of AUS-MEAT and 

MIJ camera traits in Australian Wagyu cattle, two using pedigree (Maeda et al. 2014; Zhang et 

al. 2015) and one utilising genomics through single step BLUP (Zhang and Banks 2019). While 

not yet accredited as such, users of the MIJ camera, such as the Australian Wagyu Association, 

believe it is more accurate than AUS-MEAT scoring, especially at high marbling levels. 

However, the relationship between marbling and other live measure traits such as 

weight/growth traits (Birth-weight; BWT, and yearling weight; 400_WT), ultrasound 

measurements from 12 month old animals and daily feed intake (DFI) have not been widely 

reported in Australian Wagyu.   

The aim of this chapter is using genomic information to 1/ Estimate the heritability of image 

marbling traits relative to AUS-MEAT score as an indication of value of objective measure to 

increase genetic gain and 2/ Assess the genetic relationships between marbling and other 

economically important traits in a breeding population of Wagyu. 
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2.2 Materials and Methods 

2.2.1 Genotype and Pedigree Data 
 

Genotype information on 4,940 Full-Blood Wagyu individuals and a subset of 1091 with 

carcass information was utilised for this study. These animals were genotyped with the 30K 

GGP-LD (NeoGen Australasia: GeneSeek Genomic Profiler Low-Density) SNP chip. Animals 

were not excluded on SNP call rate, however SNPs were excluded if they possessed ≥ 5% 

missing data (95% call rate) and/or a minor allele frequency (MAF) less than 0.05. This meant 

20,955 of 29,547 SNPs were retained for the analysis. Homozygous genotypes were coded as 

-1 and 1, with heterozygous genotypes as 0. After genotype cleaning a genomic relationship 

matrix (GRM) was constructed as per VanRaden’s first method (VanRaden 2008); 

𝑮 =
𝒁𝒁′

2 ∑ 𝑝𝑖(1 − 𝑝𝑖)
𝑛
𝑖=1

 

Where Z denotes a centred matrix of allele effects with a mean of zero, pi is the frequency of 

the second (minor) allele at locus 𝑖 and division by 𝟐 ∑ 𝑝𝑖(1 − 𝑝𝑖 ) scales the G matrix to be 

similar in magnitude (diagonal elements average 1) to the numerator relationship matrix 

constructed from genealogy (VanRaden 2008).  

For comparison, a pedigree relationship matrix was also constructed using the R-package 

pedigreemm (Version 0.0.3; Bates and Vazquez 2014) with the pedigree consisting of 10,549 

animals.  

2.2.2 Phenotype Data 
 

A subset of phenotype data was provided; collected on individuals born from 2009 to 2017 for 

14 different traits including live weight and ultrasound measurements as well as and carcass 

measures (AUS-MEAT and MIJ). The AUS-MEAT traits analysed here were hot standard carcass 

weight (HSCW), AUS-MEAT P8 site fat depth (P8_FAT) and AUS-MEAT marble score (A_MARB). 
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Ultrasound traits measured on 12 month old animals describing intramuscular fat (U_IMF), P8 

site fat depth (U_P8) and eye muscle area (U_EMA) as well as measurements on birth weight 

(BW), 400 day weight (400_WT) and average daily feed intake (DFI) were also utilised (Table 

2.1). 

MIJ traits included were image eye muscle area (I_EMA), image percentage marbling 

(I_MARB), image coarseness of marbling (I_COARSE), percentage image marbling minus 

largest marbling particle (I_MARB2) and fineness of image marbling index (I_FINE). I_FINE is 

described as the total circumference of marbling particles (mm) divided by the square root of 

the rib-eye area. Further definitions and methodology for MIJ camera traits are presented by 

Kuchida et al. (2006), Kato et al. (2014) and Maeda et al. (2014). These traits were measured 

at the 5th-6th ribbing site. 

Table 2.1: Summary Statistics and number of records in the subset provided for 14 traits 
measured in an Australian Japanese Wagyu Herd from 2011 to 2018. 

Trait Units No. records Mean Min Max SD 

BWT kg 2252 29.6 14.6 46.0 4.5 

400_WT kg 2990 256.1 95.5 478.0 55.2 

U_IMF % 3072 6.2 2.2 8.3 1.3 

U_EMA cm2 3070 58.4 25 94 11.1 

U_P8 mm 3073 5.9 0 18 2.7 

DFI kg/day 1462 9.6 2.5 16.5 2.2 

HSCW kg 1091 437.8 302.0 618.5 46.8 

P8_FAT mm 1091 18.0 5 44 7.1 

I_EMA cm2 1079 45.4 25.0 82.2 7.8 

I_MARB % 1079 29.1 13.5 60.3 6.6 

I_COARSE % 1079 29.1 13.7 57.1 5.8 

I_FINE mm/cm2 1079 55.0 23.7 89.5 11.1 

I_MARB2 % 1079 27.1 12.8 51.5 6.0 

A_MARB Score 0-9 1091 7.7 2 9 1.4 
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Pedigree information was available on all animals that had phenotypic records. For the carcass 

progeny records, 79 sires and 1129 dams with an average of 14 progeny/sire and 1.5 

progeny/dam. The number of progeny per sire ranged from 1 to 53 (Figure 2.1) 

 

 

Figure 2.1: Distribution of number of progeny per sire for 1091 Full-Blood Wagyu carcass 
records. 

2.2.3 Model Development and Statistical Analysis  
 

Datum was first analysed as a series of univariate models with a general linear mixed model 

using ASReml-R 4.0 (Butler et al. 2017) such that; 

𝒚 = 𝑿𝒃 + 𝒁𝒖 + 𝒆 

Where, 𝒃 is the vector of fixed effects, 𝒖 is the vector of random effects (with 𝑿 and 𝒁 their 

respective design matrices) and 𝒆 is the vector of residual variance. All traits included fixed 
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effects of dam age (Maiden; < 2 year of age, Mature; 3-9 years or Old; > 10 years), 

heterozygosity (calculated as the proportion of heterozygous genotypes, Figure 2.2), Sex 

(Heifer, Bull or Steer, except for BWT which just had two levels i.e. Heifer or Bull) and 

contemporary group based on a predefined age slice that grouped animals born within the 

same year and calving period. A birth date co-variate was also fitted nested within 

management group. Management groups were defined as: 

 Birth weight management group for BWT (12 levels);  

 The combination of 400 day weight management group and 400 weight date for 

400_WT (40 levels);  

 The combination of 200 weight management and feed test date and feed test pen for 

DFI (21 levels); 

 200 weight management for ultrasound traits (16 levels) and; 

  The combination of 200 weight management, Kill management, Kill date for carcass 

traits (23 levels). Carcass traits were not adjusted for HSCW. 

Comparison of 200 and 400 day management groupings showed that animals were kept 

in the same management groups formed at weaning as those when scanned as yearlings. 

Given this, 200 day management group was utilised for ultrasound/carcass traits over 400 

day management as it had the greatest number of complete records. 

No maternal effects were added in the model. This could be considered an omission for 

BWT and 400_WT. A subsequent analysis found maternal effects not significant for BWT 

and of diminishing importance for 400_WT using the same dataset herein.  
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Graser et al. (2005) described the genetic evaluation system (BREEDPLAN) currently used in 

Australia. The models used herein follow similar concepts to that adopted by BREEDPLAN with 

some key differences noted. BREEDPLAN currently accounts for random maternal genetic and 

random permanent maternal environmental variances (only where repeated records are 

present) in their modelling which is not done herein. BREEDPLAN also does not estimate age 

of dam or age of animals within the model, rather utilising phenotypes that have been pre-

adjusted with specific adjustment factors. Contemporary group definitions are similar 

between BREEDPLAN and the models herein, except for age slice. BREEDPLAN subdivides 

animals into age slices of 45 or 60 days depending on the trait, beginning with the oldest 

animal in a contemporary group. Herein, we applied age slice using fixed dates chosen relative 

to the distribution of calving across years.  

Figure 2.2: Distribution of Heterozygosity values for 4940 Full-Blood Wagyu 
genotypes, genotyped with GGP-LD 30K SNP chip. 
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Having identified the appropriate models from the univariate analysis, a bi-variate analysis 

between all traits was conducted incorporating the univariate models. Let  

𝒚 = (𝒚𝟏
′ , 𝒚𝟐

′ )′, be the combined vector of data between two traits. The mixed model for the 

bivariate analysis is given by; 

𝒚 = 𝑿∗𝒃 + 𝒁∗𝒖 + 𝒆 

Where 𝒃 = (𝒃𝟏
′ , 𝒃𝟐

′ )′is the 2m x 1 vector of fixed effects with 𝑿∗ = 𝑰𝟐⨂𝑿 the associated 

design matrix; 𝒖 = (𝒖𝟏
′ , 𝒖𝟐

′ )′ is the 2n x 1 vector of random effects with 𝒁∗ = 𝑰𝟐⨂𝒁 the 

associated design matrix and 𝒆 = (𝒆𝟏
′ , 𝒆𝟐

′ )′ the vector of residual variance ordered as for the 

data vector. The variance assumptions for the random effects are; 

  

𝑣𝑎𝑟(𝒖) = 𝑣𝑎𝑟 (
𝒖𝟏

𝒖𝟐
) =  [

𝜎1
2

𝜎12 𝜎2
2] ⨂ 𝑮 

 

where 𝜎1
2 is the variance at trait 1, 𝜎2

2 is the variance at trait 2 and 𝜎12 is the covariance 

between the two traits. 

Univariate and bi-variate models were fitted for all traits utilising a genomic relationship 

matrix with heritabilities, genetic and phenotypic correlations calculated. Univariate models 

utilising the A matrix constructed from pedigree were only run for HSCW, I_MARB and 

400_WT. Models were fitted that attempted to estimate random effects of both A and G 

simultaneously (analogous to single step) but surprisingly, there was no additional variance 

estimated in G beyond that described by A. 

 



 

C h a p t e r  T w o  | 51 
 

 

2.3 Results 
 

The majority of traits were moderate to highly heritable (>0.23, Table 2.2), with the exception 

of ultrasound intramuscular fat (U_IMF, 0.15). Marbling associated traits such as carcass 

I_MARB, I_MARB2 and AUS_MARB were highly heritable (0.68, 0.67 and 0.50 respectively) 

and were substantially higher than the equivalent ultrasound measure. The calculated I_FINE 

index was less heritable (0.44). Image loin eye muscle area (I_EMA) was also more heritable 

than its live measure counterpart U_EMA (0.38 compared to 0.23) while the opposite was true 

for P8_FAT (0.40 for U_P8 vs. 0.24 for P8_FAT). HSCW was the most heritable of the weight 

traits (0.56) and DFI was moderately heritable (0.29).  

Table 2.2: Variance components, heritabilities and their standard errors and standard 
deviation of estimated breeding values from genomic univariate analysis. 

Trait σA
 σP

2 σEBV h2 se 

BWT 2.74 16.3 1.91 0.46 0.03 

400_WT 17.8 920 12.12 0.34 0.03 

U_IMF 0.55 1.96 0.32 0.15 0.03 

U_EMA 2.62 29.9 1.74 0.23 0.03 

U_P8 1.13 3.25 0.83 0.40 0.03 

DFI 0.76 2.05 0.47 0.29 0.05 

HSCW 32.9 1928 20.8 0.56 0.05 

P8_FAT 2.94 36.3 1.46 0.24 0.06 

A_MARB 0.97 1.88 0.70 0.50 0.05 

I_EMA 4.55 54.9 2.53 0.38 0.06 

I_MARB 5.21 40.1 4.17 0.68 0.05 

I_COARSE 0.042 0.0034 0.026 0.53 0.05 

I_FINE 6.19 87.2 4.52 0.44 0.06 

I_MARB2 0.047 0.0033 0.038 0.67 0.05 

 



 

C h a p t e r  T w o  | 52 
 

A pedigree analysis was conducted for comparison for three selected traits. The estimated 

genetic standard deviation (σA ) from pedigree was similar to or greater than estimates from 

genomics. Heritabilities are difficult to compare directly due to the scale effect of the matrix 

on the variance components so σEBV is presented. The standard deviation of the EBVs (σEBV ) 

were greater for all traits in the genomic analysis. The same pattern was observed in the 

standard errors for the individual EBVs estimated from either method (sepedigree and segenomic, 

Table 2.4). On average standard error for the predicted EBVs was lower when using genomics 

than when utilising pedigree. In addition, standard error estimates on heritabilities were lower 

within the genomic prediction compared to pedigree given the same phenotype information.  

Table 2.3: Variance components, heritabilities and their standard errors and standard 
deviation of estimated breeding values (EBVs) from pedigree univariate analysis. 

Trait σA
 σP

2 σEBV h2 se 

400_WT 22.2 988 10.4 0.50 0.05 

HSCW 32.5 1998 12.6 0.53 0.10 

I_MARB 5.58 42.7 3.14 0.73 0.10 

 

Table 2.4: Mean standard errors (se) of estimated breeding values (EBVs) reported from 
genomic and pedigree univariate analysis. 

Trait sepedigree segenomic 

400_WT 16.0 11.7 

HSCW 27.0 23.6 

I_MARB 4.4 3.5 

 

All measures of carcass marbling were uncorrelated with carcass weight (Table 2.5). P8 fat 

(0.30) and I_EMA (0.33) were more highly correlated with HSCW. This is in contrast to 

ultrasound fat measurements (U_IMF and U_P8) which were moderately negatively 

genetically correlated with HSCW (-0.39 and -0.20 respectively). As expected, traits that 
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indicate weight or muscling (I_EMA, U_EMA, BWT and 400_WT) have moderate to strong 

genetic correlations to HSCW (0.33 to 0.71) as well as between themselves (0.16 to 0.68).  

While measured at almost a year apart and at very different weights and stages of maturity, 

ultrasound traits generally had strong genetic correlations to their equivalent carcass 

measurements; 0.53 between U_P8/P8_FAT and 0.62 between U_IMF/I_MARB respectively. 

The exception was U_EMA which was only moderately correlated to I_EMA (0.29). There was 

also a high degree of relationship between marbling traits with I_MARB with genetic 

correlations of 0.64, 0.77 and 0.96 between I_COARSE, I_FINE and A_MARB respectively. 

Phenotypic correlations amongst these traits were lower, reported as 0.55, 0.66 and 0.77 

respectively.  

As expected, feed intake (DFI) was positively correlated with weight and muscling traits such 

as HSCW, I_EMA, U_EMA, BWT and 400_WT (0.41 to 0.79). However, feed intake was lowly 

correlated with both subcutaneous and intramuscular fat depots.  
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 Table 2.5: Genomic phenotypic (𝑟𝑃 , above diagonal) and genetic (𝑟𝐺 , below diagonal) correlations between traits* 

  BWT 400_WT U_IMF U_EMA U_P8 DFI HSCW P8_FAT A_MARB I_EMA I_MARB I_COARSE I_FINE I_MARB2 

BWT 
 

0.38 -0.08 0.17 -0.09 0.26 0.4 0.01 -0.04 0.18 -0.12 -0.09 0.03 -0.11 

400_WT 0.68 
 

0.02 0.5 0.14 0.43 0.5 0.08 0.00 0.11 -0.04 0.06 -0.03 -0.06 

U_IMF -0.41 -0.26 
 

0.2 0.29 0.13 0.06 0.16 0.35 0.00 0.34 0.12 0.22 0.35 

U_EMA 0.23 0.55 -0.01 
 

0.39 0.44 0.4 0.06 0.01 0.19 -0.07 0.05 -0.02 -0.08 

U_P8 -0.39 -0.11 0.39 0.25 
 

0.2 0.08 0.29 0.03 -0.02 0.07 0.07 -0.01 0.07 

DFI 0.42 0.7 -0.14 0.49 -0.01 
 

0.52 0.09 0.1 0.21 0.06 0.14 0.02 0.05 

HSCW 0.53 0.71 -0.39 0.43 -0.2 0.79 
 

0.22 0.19 0.32 0.1 0.21 0.07 0.08 

P8_FAT 0.05 0.03 -0.09 0.01 0.53 0.08 0.3 
 

0.00 0.00 0.03 0.05 -0.03 0.03 

A_MARB -0.2 -0.04 0.63 0.05 -0.01 0.16 0.08 -0.02 
 

0.3 0.77 0.5 0.56 0.76 

I_EMA 0.16 0.17 -0.08 0.29 -0.09 0.41 0.33 -0.02 0.33 
 

0.19 0.41 0.38 0.17 

I_MARB -0.26 -0.12 0.62 -0.12 0.05 0.10 0.02 -0.09 0.96 0.23 
 

0.55 0.66 nc** 

I_COARSE -0.22 -0.04 0.39 0.02 0.11 0.25 0.12 -0.01 0.64 0.36 0.64 
 

0.00 0.45 

I_FINE -0.08 -0.08 0.42 -0.06 -0.08 -0.01 -0.03 -0.16 0.83 0.36 0.77 0.15 
 

0.7 

I_MARB2 -0.25 -0.16 0.61 -0.12 0.05 0.07 0.00 -0.09 0.96 0.23 nc** 0.59 0.8 
 

*Standard errors range 0.01 - 0.04 for 𝑟𝑃 and 0.02 - 0.15 for 𝑟𝐺; **nc = non-converged due to a value assumed close to 1 
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2.4 Discussion 

2.4.1 Reported Heritabilities  
 

Weighted mean heritabilities for traits of interest were calculated for three different grading 

systems; being Japanese Meat grading association (JMGA), AUS-MEAT and Meat Image Japan 

(MIJ) camera (Chapter 1, Tables 1.1 and 1.3). For HSCW and A_MARB, the literature weighted 

heritability calculated was 0.48 and 0.43 respectively (Table 1.1), lower than reported herein 

(0.56 and 0.50 respectively). For I_MARB and I_COARSE, reported heritabilities herein of 0.68 

and 0.53 were, again, higher than the weighted mean heritabilities calculated (0.52 and 0.42 

respectively, Table 1.3). The difference between the review presented in Chapter 1 (Table 1.1, 

Table 1.3) and the study herein, is the utilisation of genomic relationships. Genomic 

relationships are more precise than those obtained through pedigree due to taking Mendelian 

segregation of alleles into consideration (Visscher 2009).  

Higher observed heritabilities under genomics was not the trend for every trait herein. For 

I_EMA and P8_fat, heritabilities of 0.38 and 0.24 were reported which is lower than the 

weighted heritabilities of 0.49 and 0.43 calculated prior. However, it should be noted that 

these particular weighted estimates are not extremely robust due to the inclusion of only 3 

and 2 studies respectively. Genomic heritabilities calculated herein were within the range of 

previously reported estimates used in the weighted analysis (Table 1.1 and 1.3).  

BWT was highly heritable (0.46, Table 2.2) although is within the range of reported estimates 

for Japanese Black Wagyu (0.19 to 0.61) as discussed by Oyama (2011) who calculated a 

weighted mean heritability of 0.28 from 8 separate published reports. Given this, the estimate 

herein is certainly on the higher end compared to what might be expected. For example, 

within Australian and New Zealand Angus, heritabilities for BWT were reported as 0.35-0.38 

and 0.29 respectively (Meyer 1995; Robinson 1996). The additive variance in Meyer (1995) for 
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Australian Angus was reported as 5.98 kg2 compared to 7.5 kg2 (Table 2.2) herein with 

comparable phenotypic variance. Given Oyama (2011) and Meyer (1995) did not utilise 

genomics in their studies, this supports a more accurate description of relationships using 

genomics resulting in higher heritabilities for BWT. Saatchi et al. (2011) reported a genomic 

heritability of 0.42 for BWT in American Angus data which further supports the above 

conclusion.  

Yearling weight (400_WT) has been reported in Angus as 0.24 - 0.31 (Meyer 1995; Robinson 

1996) which is slightly lower than the comprehensive weighted heritability estimate of 0.33 

produced by Koots et al. (1994). Afolayan et al. (2007) reported an identical estimate for 

400_WT of 0.33 estimated across diverse beef breeds which aligns with the estimate produced 

herein of 0.34 for Wagyu.  

Heritability for DFI has been reported in Wagyu as 0.34 (Hoque et al. 2006) which is virtually 

the same as 0.29 estimated herein (Table 2.2). Hoque et al. (2006) reported additive and 

phenotypic variances of 0.44 and 1.3 kg2 respectively (giving a residual variance of 0.86) which 

are lower than those reported in Table 2. The residual variance for DFI herein (1.5 kg2) is 

approximately double that reported by Hoque et al. (2006), suggesting the DFI model used in 

this analysis is not explaining all of the variance in the trait. One explanation could be the how 

long the animals are feed tested for. For example in the 2006 study, Wagyu bulls were feed-

tested for 112-140 days, whereas animals herein were tested for a much shorter period, 63-

107 days. The shorter feeding period could be providing less accurate phenotypic records for 

DFI, though still should be easily sufficient (Archer et al. 1997). Looking at the raw phenotype 

data the standard deviation for DFI was 1.08kg/day in the 2006 study and 2.18kg/day herein, 

indicating more variation.    
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It is not correct to assume that genomics is responsible for higher trait heritabilities. For 

example contemporary group definition in the subset of phenotypes provided herein is 

extremely well defined which could lead to improved estimates compared to the weighted 

analysis where the studies included used various degrees of commercial slaughter data. When 

genetic parameters estimated from pedigree were compared to those estimated from 

genomics herein, the assumption that genomics produced higher heritabilities by definition 

did not hold (Table 2.2 vs. Table 2.3). This is expected due to the influence of the scaling effect 

of G and/or A on the variances in the mixed model equation such that; 

𝒖 ~ (𝟎, 𝜎𝐺
2𝑮), 𝒆 ~ (𝟎, 𝜎e

2𝑰) 

Therefore parameter estimates may be biased if the genomic relationship matrix elements 

are in a different scale than pedigree-based estimates, although adjustments can be made to 

allow comparison (Forni et al. 2011). If we take the standard errors of heritabilities estimated 

into account, the estimates produced from pedigree are not statistically significantly different 

from genomics, except for 400_WT. Genetic standard deviation (σA) estimated from pedigree 

and genomics can be compared as this value is independent of any scaling effects. 400_WT 

and I_MARB had greater σA when estimated from pedigree compared to genomics whereas 

σA   was extremely similar between the two methods for HSCW. The opposite is true when 

comparing standard deviations of the EBVs (σEBV) from either analysis. Genomics displayed 

higher σEBV for 400_WT, HSCW and I_MARB (12.12kg, 20.8kg and 4.17 % respectively) as well 

as a lower mean EBV standard error compared to using pedigree. This demonstrates that the 

ability to describe Mendelian sampling within the relationship matrix leads to a greater spread 

of EBVs when using genomics, indicating higher prediction accuracy. This is despite pedigree 

estimating greater additive variation (σA) for the three traits. In addition, the standard errors 
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on heritability estimates were far lower in the genomic analysis than in pedigree which is in 

agreement with previous studies (Bérénos et al. 2014).  

The weighted analysis demonstrated that MIJ camera traits are more highly heritable than 

their AUS-MEAT counterparts which indicates a greater accuracy of measurement. The same 

trend was observed herein for marbling and eye muscle area traits (Table 2.2) indicating the 

value of having more precise phenotypes through using objective measurement technologies 

rather than subjective grading.  

2.4.2 Correlations between traits 
 

Correlations were reported between all traits included in the analysis successfully, with the 

only exception being between I_MARB and I_MARB2 due to non-convergence. This indicates 

the relationship is likely close to one which was expected given I_MARB2 is the same 

measurement as I_MARB minus the percentage attributed to the largest marbling particle 

present in the image (Kuchida et al. 2006; Maeda et al. 2014). An earlier pilot study conducted 

using a smaller subset of the same data herein did converge with a genetic correlation of 1 

between I_MARB and I_MARB2 (McEwin et al. 2018). Correlations were similar between 

I_MARB and I_MARB2 with other traits as well.   

Many of the correlations between carcass traits (HSCW, P8_Fat, A_MARB) and between MIJ 

camera traits have been discussed previously in detail (Table 1.2 and section 1.2.2) and are 

comparable to the results presented in Table 2.5. Briefly, HSCW presents moderate genetic 

correlations to P8_FAT and Rib-eye area (I_EMA) while appearing to be lowly correlated to 

A_MARB indicating that selection for improved marbling does not hinder improvements to 

carcass weight. Additionally, the correlation between A_MARB and P8_Fat was lowly negative 

(-0.02; Table 2.5) which is favourable given improvements in marbling will not also increase 

subcutaneous fat which needs to be trimmed at excessive levels; this is in contrast to other 
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breeds where marble score and subcutaneous fat depth is moderately to strongly positive 

(0.44; Gregory et al. 1995). A positive genetic correlation between rib-eye area and 

marbling/marble score has been reported previously in Wagyu (Oyama 2011; McEwin 2016) 

consistent with the values between I_EMA and I_MARB/A_MARB (0.23 and 0.33 respectively, 

Table 2.5). Significantly lower correlations between these traits are reported in other breeds, 

for example in long fed Angus the correlation is closer to 0 (Torres-Vázquez et al. 2018).  

In general, MIJ camera traits are highly genetically correlated with their equivalent carcass 

traits (Osawa et al. 2008; Zhang et al. 2015). For example A_MARB and I_MARB1 were strongly 

positively genetically correlated (0.96, Table 3). Improvements in marbling are likely to 

increase marbling coarseness (Osawa et al. 2008) although this can be mitigated by 

incorporating selection for fineness (genetic correlation of 0.77 between I_MARB and I_FINE 

and 0.15 between I_FINE and I_COARSE, Table 3).  

The high genetic correlation (0.96) between A_MARB and I_MARB1 is important to note. 

A_MARB is a key trait in the breeding objective of Wagyu producers, however I_MARB is a 

more appropriate trait to select for two reasons; 

1/ I_MARB is able to capture marbling variation accurately from high marbling carcasses due 

to not being based on a restrictive scale. The AUS-MEAT scale of 0-9 limits the differentiation 

of highly marbling carcasses as they will all be grouped in the highest bracket, unable to 

describe carcasses that marble above a score of nine (Figure 2.2) 

2/ I_MARB is more highly heritable than A_MARB (0.68 versus 0.50) which indicates response 

to selection in A_MARB will be greater using I_MARB through indirect selection. If we consider 

the genetic response (𝑅) through direct selection using the equation; 

𝑅 =  
𝑖 𝜎𝐴ℎ

𝐿
 ≈  𝜎𝐴ℎ 
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Where 𝜎𝐴described the genetic standard deviation for the trait and ℎ the square root of the 

heritability then the response in A_MARB under direct selection is 0.69 scores per generation. 

However, if we consider the correlated response (𝐶𝑅) in A_MARB when selection pressure is 

on I_MARB then the correlated response to selection can be calculated as; 

𝐶𝑅 =  
𝑟𝐺𝑖 𝜎𝑃ℎ1ℎ2

𝐿
 ≈  𝑟𝐺𝜎𝐴ℎ 

Where 𝑟𝐺 describes the genetic correlation between the two traits, 𝜎𝐴 is the genetic standard 

deviation for A_MARB and ℎ is the square root of the heritability for I_MARB. The correlated 

response in A_MARB is then 0.77 scores per generation. This demonstrates that it is 12% more 

efficient to improve A_MARB through indirect selection on I_MARB.  

 

Figure 2.3: Distribution of AUS-MEAT marbling scores (A_MARB) demonstrating a large 
proportion of animals grouped within a high marble score of 9. 

 

Perhaps more novel correlations for Wagyu, certainly Australian Wagyu, are the correlations 

between ultrasound measurements and MIJ image phenotypes. Ultrasound measures are 

routinely taken within most studs as an easy measure to obtain proxy carcass records on stud 
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stock. In general correlations between carcass marbling measures (such as extracted-IMF or 

marbling scores) and ultrasound measures are strongly positive around 0.7, although can be 

as low as 0.54 (Su et al. 2017; Duff et al. 2018). The genetic correlation between U_IMF and 

I_MARB herein was at the low end of reported values at 0.62 (Table 3) while the genetic 

correlation between U_EMA and I_EMA was even lower (0.29) although has been reported as 

high as 0.81 in Herefords (Su et al. 2017). This suggests the relationship between carcass and 

ultrasound measures is weaker in Wagyu than in other breeds. The studies mentioned report 

breeds such as Simmental, Hereford and Angus which are often short fed in the feedlot before 

being slaughtered in contrast to Wagyu which are commonly long fed for 300-500 days to 

attain high marbling. Given the long time on feed and hence an older age at slaughter, 

ultrasound measures, which in this dataset were taken at approximately 12 months of age, 

are poor predictors of carcass performance in Wagyu because of the long time between 

ultrasound measurement and carcass outcome. This was more the case for I_EMA than for 

I_MARB, which is likely due to high expressions of marbling “inflating” size of the rib-eye at 

slaughter (McEwin 2016), and not highly expressed during live ultrasound scanning of a 12 

month old bull. U_EMA and U_IMF in this study demonstrated little genetic co-variance (-

0.01), while I_EMA and I_MARB/AMARB were moderately correlated (0.23 and 0.33 

respectively) demonstrating the influence marbling has on rib-eye measurements after long 

feed periods in Wagyu.  

BWT and 400WT were both highly genetically correlated with HSCW (0.53 and 0.71) which 

were both higher than expected given previous reports of 0.26-0.29 and 0.56 by previous 

studies (Gregory et al. 1995; Torres-Vázquez et al. 2018). The genetic correlation between 

BWT and 400_WT (0.68) were also higher than previously reported estimates suggesting a 

correlation closer to 0.53 (Torres-Vázquez et al. 2018). As with HSCW, moderate to high 

genetic correlations of 0.16-0.55 were reported between BWT/400_WT and muscling 
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measures (I_REA and U_EMA) as well as moderately negative to low correlations (-0.26-0.05) 

to carcass fat measures (IMARB/P8_Fat). The moderate negative correlation (-0.26) is 

interesting between BWT and I_MARB as previously reported estimates in long fed Angus are 

near 0 also (Torres-Vázquez et al. 2018). Additionally the genetic correlation is close to zero 

between HSCW and I_MARB herein. However, given BWT was strongly correlated to HSCW, 

another key trait under selection, it is likely that as HSCW increases, BWT will increase, as will 

then marbling. Used correctly, the relationship between marbling and BWT could be used to 

counter the traditionally antagonistic relationship with HSCW that leads to calving difficulties 

and dystocia. The complexity of this multi-trait discussion highlights the importance of using 

a selection index with appropriate economic weights on traits. 

DFI was moderately to strongly genetically correlated with growth and muscling traits (0.41-

0.79) consistent with previous published estimates (Robinson and Oddy 2004; Torres-Vázquez 

et al. 2018) but generally low correlations to fat traits (-0.01-0.16) which were expected to be 

more moderate to strong(Robinson and Oddy 2004). I_COARSE was an exception to this trend 

having a  moderate genetic correlation of 0.25 with DFI, suggesting higher daily feed intakes 

could lead to coarser marbling particles being formed but not necessarily higher marbling 

percentages overall. Given the low correlation to fat traits, selection for high IMF should not 

impact on feed intake. This is perhaps due to IMF and P8_Fat not being highly correlated, 

therefore high IMF in Wagyu is coming more from improved fat distribution rather than more 

fat deposition, unlike in other long fed datasets (Robinson and Oddy 2004; Torres-Vázquez et 

al. 2018). Clearly daily feed intake is more important for growth/weight improvement than fat 

acquisition which might be expected; by definition animals that eat more will be heavier.  

Residual feed intake was proposed as an alternate measure of feed efficiency by Koch et al. 

(1963) and describes the difference between actual feed intake and the expected feed intake 
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to facilitate body weight maintenance and growth. Given the genetic correlation between DFI 

and 400_WT was high (0.70) this suggests that up to 51% of the genetic variance in DFI is 

independent of growth so there may be an opportunity to improve residual feed intake. Lines 

et al. (2018) suggested that this variation is likely to be associated with fatness and so any 

improvement would need to not negatively impact on marbling. Robinson and Oddy (2004) 

demonstrated that the genetic correlation between RFI and subcutaneous fat (Rib and P8) was 

strong (0.48-72) whereas the genetic correlation to IMF% was much more moderate (0.22), 

suggesting selection for improved RFI will impact Rib and P8 fat deposits more so than 

marbling. The genetic correlation between subcutaneous fat deposits and IMF% in their study 

was 0.45-0.48 which is considerably higher than what is reported herein (-0.09). Given the low 

correlation between fat depots in this Wagyu population, it is likely to improve RFI without 

negatively impacting on marbling performance.  

2.5 Conclusion 
 

Traits of economic importance were found to be moderately and highly heritable. In general, 

traits estimated using genomic information achieved higher heritability estimates when 

compared to those estimated from pedigree demonstrating the potential benefits of genomic 

selection within a Wagyu breeding program. Extensive genetic correlations were conducted 

and newer novel MIJ camera measures for marbling were highly correlated to their equivalent 

AUS-MEAT counterparts, and more heritable, supporting their adoption into breeding 

programs for faster genetic gain. Genetic correlations between economically important traits 

such as HSCW, I_MARB, P8_FAT and DFI were very favourable for Wagyu compared to other 

breeds. These results demonstrate the currently genomic methodology and traits under 

investigation are suitable for pursuing genetic improvement of the Wagyu breed. 
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Chapter 3 : Impact of SNP Density on 

Genomic Relationship Matrix Values 
 

3.1 Introduction 
 

Genomic selection is the selection of breeding stock on the basis of their genetic merit 

(genomic estimated breeding values) predicted from genome wide markers known as single 

nucleotide polymorphisms or SNPs (Meuwissen et al. 2001). It is advantageous over pedigree 

based selection when traits are hard to measure, sex-limited or appear later in life (Dekkers 

2004) due to removing the need for progeny testing. Such traits include carcass and meat 

quality measurements, important to the breeding objective for Wagyu. Genomic selection is 

especially advantageous where pedigree testing is logistically complex, for example in 

commercial herds, where multiple sire mating and lack of dam pedigree knowledge is 

common. 

Breeding values are estimated based on an individual’s own performance (if available) and the 

performance of known relatives, captured through a relationship matrix. A genomic 

relationship matrix (G) is more precise than one obtained through pedigree (A) as it takes into 

consideration Mendelian segregation of alleles, characterising relationships with more 

accuracy (Visscher 2009). A is built on the idea of identity by descent (IBD) by tracing the flow 

of genes down a pedigree whereas G, which utilises genomic markers, involves assumptions 

of identity by state (IBS). This means markers are in linkage disequilibrium with genes 

controlling phenotypes, and these genes behave similarly across the whole population for 

relationships within and extended beyond the pedigree (Tier et al. 2015).   Off-diagonal 

elements of G denote relationships of an individual compared to all others. When compared 
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to others which are unrelated, the expectation is zero with a small level of variation possible. 

Positive values indicate a direct relationship between animals e.g. approximately 0.5 for full-

sib and parent offspring relationships. Note that in A these sibling, parent relationships would 

denote a value of 0.5 exactly. Negative values (where the expectation would be 0) are 

observed due to genotypic sampling and a lack of shared alleles or haplotypes between 

individuals. That is negative values show the unrelatedness between individuals. Diagonal 

elements of G, denote relatedness of an individual with itself. Diagonal elements of A are 

equal to 1+Fj (inbreeding co-efficient of individual j) so can range from 1-2, whereas in G the 

diagonal elements average 1 and have a wider range. In general elements of G are 

approximately equivalent to those obtained through A, however are highly dependent on 

allele frequencies and coding (Strandén and Christensen 2011; Tier et al. 2015). 

The adoption of genomic technology has become widespread and is already being 

incorporated into the breeding programs of cattle and sheep breeds in Australia (Swan et al. 

2012).  The largest limitation to the uptake of this technology has been the cost of procuring 

a genotype, which is correlated to the number of SNPs in a chosen panel. Smaller arrays are 

cheaper and therefore could be more readily adopted by industry. Given the effective 

population size (Ne) of Japanese Black Wagyu is small (Nomura et al. 2001) the extent of 

whole-genome linkage disequilibrium is likely higher such that lower density panels are able 

to effectively capture total additive genetic variance.  

One argument for using high density SNP chip arrays e.g. 770K, is that it can potentially 

increase the accuracy of genomic selection by capturing and describing greater population 

variation. As higher density chips are developed, re-genotyping previously genotyped animals 

or even new animals becomes an expensive undertaking. Imputation from a lower to higher 

SNP density offers a solution to increasing the level of high density genotype information 
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available. This means a proportion of the population, influential parents for example, can be 

genotyped with a high density, high cost, SNP chip array and the remainder (including 

commercial animals) genotyped using a more cost effective, lower density panel and imputed 

upwards. A certain level of accuracy of imputation would be required to ensure good data is 

being used in breeding value estimation.  

The objective of this study was to investigate the impact of varying SNP densities on 

relationships within and between animals in a genomic relationship matrix. This was achieved 

by exploring several ‘ad-hoc’ SNP selection methods and included looking at the value of 

imputation up to mid-range and higher densities in a relatively closely related population of 

Wagyu.  

3.2 Materials and Methods 

3.2.1 Genotyping 
 

DNA Hair and semen samples were collected from 4,940 Full-Blood Wagyu and genotyped 

with 30K GGP-LD SNP chip (Neogen: GeneSeek Operations). One hundred and sixty five of 

these animals, identified as being key influential sires, were genotyped with a high density, 

770K chip (Ilumina BovineHD BeadChip). Animals were not excluded on SNP call rate, however 

SNPs were excluded if they possessed ≥ 5% missing data (95% call rate) and/or a minor allele 

frequency (MAF) less than 0.05. This meant 20,955 of 29,547 and 499,171 of 777,107 SNPs 

were retained for the analysis. Homozygous genotypes were coded as -1 and 1, with 

heterozygous genotypes as 0.  
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3.2.2 Construction of the GRM 
 

Genomic relationship matrices were constructed using the equations of VanRaden’s first 

method (VanRaden 2008); 

      𝑮 =
𝒁𝒁′

2 ∑ 𝑝𝑖(1 − 𝑝𝑖 )
  

Where Z denotes a centred matrix of allele effects with a mean of zero, 𝑝𝑖 is the frequency of 

the second (minor) allele at locus 𝑖 and division by 2 ∑ 𝑝𝑖(1 − 𝑝𝑖 ) scales the G matrix to be 

analogous to the numerator relationship matrix constructed from genealogy (VanRaden 

2008).  

3.2.3 SNP selection 
 

A ‘base’ genomic relationship matrix (GRM) was constructed from the starting 20,955 SNPs 

and used as the comparative “gold standard”. Five SNP selection method scenarios were 

constructed to compare to this standard detailed in Table 3.1. 

Scenario 1 involved constructing a GRM from a core manifest i.e. the SNPs in common 

between two commercially available chips, namely GGP-LD 30K and VersaSNP 50K 

(Weatherby’s Scientific ). There were 10,898 SNPs in common between these chips that were 

segregating in the Wagyu population which reduced to 9,181 being retained for analysis after 

cleaning for SNP call rate and MAF (described above). In Scenario 2, all available SNPs (29,869 

SNPs, regardless of SNP call rate and MAF) on GGP-LD were retained to construct a GRM, 

briefly exploring the importance of SNP data cleaning and quality.  

To determine the impact of SNP density (Scenario 3) on describing relationships between 

animals; 1,250, 2,500, 5,000 and 10,000 SNPs were randomly sampled from the base 20,955 

SNPs at 200 repetitions per density to construct GRMs. The specific SNPs from each random 
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sample were retained so that specific random samples could be reconstructed to be 

investigated further.  A further sampling method was tested (Scenario 4) where the 20,955 

SNPs were placed in linkage map order by chromosome and base pair position then sampled 

(in order) to replicate sample densities close to those of Scenario 3. This involved selecting 

every second, fourth, eighth and sixteenth SNP, beginning from the first SNP, until 1,310, 

2,620, 5,239 and 10,478 SNPs were sampled respectively and GRMs constructed.  

Table 3.1: The Base and multiple SNP selection scenarios investigated based on SNP chip 
involved, selection method, minor allele frequency (MAF), SNP Call Rate, SNP Density 
considered and whether an additional imputation study was included. 

*For scenario 3, only the SNP subsets from each density that formed GRMs with the highest (max) and lowest 
(min) correlations to the base GRM were imputed for further comparisons. 

 

Scenario 
SNP 
Chip 

Selection 
Method 

MAF 
SNP 
Call 
Rate 

SNP 
Density 

Reps 
Impute  
to Base 

Impute 
to HD 

Base GGP-LD 
SNPs 

available 
5% 95% 20,955 - - - 

1 
GGP-

LD/Vers
a 50K 

SNPs in 
common 

5% 95% 9,181 - Yes - 

2 GGP-LD 
SNPs 

available 
- - 29,869 - - - 

3 GGP-LD 
Random 
Sample 

- - 

1,250 

2,500 

5,000 

10,000 

200 Yes* - 

4 GGP-LD 
Sorted 
Sample 

- - 

1,310 

2,620 

5,239 

10,478 

- Yes - 

5 770K 
SNPs 

available 
5% 95% 499,171 - - Base 
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3.2.4 Imputation 
 

Imputation in this study was conducted using FImpute 2.2 (Sargolzaei et al. 2011). FImpute 

uses an overlapping sliding window approach to identify haplotype similarities between the 

target and reference individuals. The algorithm assumes that all individuals are related to each 

other at different degrees. As such, the algorithm begins with long windows to capture 

haplotype similarity between close relatives, shrinking this window by a constant factor after 

each chromosome sweep is complete to allow for shorter haplotype similarity between more 

distant relatives to be taken into account (Sargolzaei et al. 2011). 

 For most scenarios all 4,940 animals were used as both the reference and target population. 

To investigate the impact of imputing to high density genotypes on GRM elements, all 4940 

animals were imputed up to 770K (479,535 SNPs), where 165 animals were used as the 

reference population (Scenario 5, Table 3.1). Imputation up to 20,955 and 499,171 excluded 

SNPs unable to be mapped to a precise chromosome/base pair location as well as SNPs with 

identical chromosome and base pair positions (in this instance one SNP from these duplicate 

or triplicate locations was kept in the dataset). This left the final imputation densities of unique 

SNPs as 20,874 and 479,535 respectively.  

The Scenario 3 samples from each density, with the lowest and highest correlation to the base 

GRM, were selected for imputation. These samples, along with samples from Scenario 1 and 

4, were imputed to 20,874 and along with imputation results from Scenario 5, formed into 

GRMs and compared to the base.  Accuracy of imputation was calculated using a correlation 

matrix and extracting the diagonals to give the range of correlations across all individual 

animals between their reference and imputed genotypes of up to 20,874 or 479,535. The 

specific number of SNPs correctly or incorrectly imputed was also determined for scenarios 

imputed to 20,874 by counting against the actual genotypes.   
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The lower triangle elements, including the diagonals, of the GRMs built across the five 

scenarios were compared to the lower triangle elements of the base GRM using a simple 

correlation (r) to determine the degree of similarity in how each matrix denoted relationships 

between and within individuals.   

Datum was prepared and analysed using R-studio and GRMs were constructed using the 

package cpgen (Version 0.1; Heuer 2015).  

3.3 Results 

3.3.1 Scenario 1 and 2 
 

The core manifest SNP sample (Scenario 1), comprised 9,181 SNPs, and had a correlation with 

the base GRM of 0.99 which increased to 1.0 (0.999) after imputation (Figure 3.5). The 

strength of this relationship is further illustrated below which shows a comparison of the 

values from each GRM (Figure 3.1). Most diagonal values were between 0.8 and 1.5. An 

extreme group of animals can be identified where values are >1.5 to the top of the graph 

indicating large inbreeding coefficients. Thinning around 0.8 (Figure 3.1) denotes the change 

Figure 3.1: Relationship between diagonal and off diagonal 
elements of the lower triangle for genomic relationship 
matrices constructed using 20,955 (Base GRM) and 9,181 
(Core) SNPs respectively. 
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from values describing relationships between individuals (off-diagonal elements) to values 

describing the diagonal elements. 

Constructing a GRM using all available SNPs (Scenario 2, 29547 SNPs) not cleaned based on 

call rate or MAF, resulted in very poor correlations to the base GRM (r = 0.09, Figure 3.2). An 

absence of linearity can be seen in Figure 3.2 in both off diagonal (lower left cluster) and 

diagonal values (upper right cluster).  

Additionally off-diagonal values with cleaning only based on call rate i.e. removing those SNPs 

with ≥ 5% missing data but not MAF, resulted in removing approximately 300 SNPs leaving 

29,547 SNPs for GRM construction. The values of this GRM were also poorly correlated with 

the base GRM (r = 0.09) indicating that the MAF SNPs were selected at is important in data 

cleaning and quality more so than call rate.  

 

3.3.2 Random and Sorted Samples (Scenario 3 and 4) 
 

Random sampling of SNPs appeared to perform quite well with the lowest correlation to the 

base GRM being 0.92 obtained from a random sample at the 1250 density (Figure 3.3). The 

correlation to the base GRM increased with increasing SNP density such that the mean (SD) 

Figure 3.2: Relationship between genomic relationship values 
constructed using the base 20,955 SNPs and 29,547 SNPs not filtered for 
call rate or minor allele frequency. 
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correlation was 0.92(0.002), 0.96(0.001), 0.98(0.0004) and 0.99(0.0001) for 1,250, 2,500, 

5,000 and 10,000 randomly sampled SNPs respectively. The sorted sampling performed 

slightly better than the random sampling with correlations of 0.93, 0.97, 0.99 and 1.0 (0.996) 

to the base GRM for 1,310, 2,620, 5,239 and 10,478 SNPs respectively.  

 

The off-diagonal values from the lower triangle of the base GRM were extracted along with 

the diagonals and plotted against the equivalent values from GRMs constructed from varying 

SNP densities (Figure 3.4).  

As the SNP density increased, the difference between relationship values constructed in the 

scenario and the base GRM became smaller. This caused the linear trend to follow closer to 

the equivalence line indicating that the relationships described are very similar to those in the 

Figure 3.3: Histograms depicting the range of correlations of GRMs to the base 20,955 GRM 
obtained from 200 random samples of SNPs at 4 different densities (top left: 1,250; top right: 
2,500; bottom left: 5,000 and bottom right: 10,000). 



 

C h a p t e r  T h r e e  | 74 
 

base. More noticeably in the 1,250 max sample, more inbred individuals are identified as a 

tight group whereas these same relationships are more spread in the 1,250 min sample.  

 

Figure 3.5 shows, using the 10,000 min sample as an example, that the high correlation 

between the random sample and the base GRM is accompanied by a high level of agreement 

between the GRM elements themselves. With a mean difference of 0, there is no bias in GRM 

elements when using a subset or all base SNPs in GRM construction. Interestingly, there was 

a fanning out of values around an average measure of 0. This indicates that, while there is a 

high level of agreement, the biggest differences between the two GRMs are when estimating 

relationships that are approximately zero. That is the base GRM describes these ‘0’ 

Figure 3.4: The diagonal and off-diagonal values from the 1,250 (top) and 10,000 (bottom) 
random samples that had the lowest (min; left) and highest (max; right) correlation with the 
base GRM, plotted against the diagonal and off-diagonal values of the base GRM. 
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relationships more precisely than when 10,000 SNPs are used. As the relationships compared 

become higher, the difference between elements decreases. 

 

3.3.3 Imputation 
 

Imputation to the base SNP density had the impact of improving the correlation with the base 

GRM all round. Imputation of the minimum and maximum sample for the random sampling 

gave extremely similar correlations 0.98, 0.99, 1.0 (0.999) and 1.0 (0.999) for 1250, 2500, 5000 

and 10,000 sampled SNPs respectively. The sorted SNP samples performed equally as well; all 

with a correlation greater than 0.99.  

Again, higher starting SNP densities gave improved imputation results. The 1,250 min and max 

samples gave the widest range of correlations, between 0.77 and 0.98 while the 10,000 min 

and max samples gave correlations ranging 0.92 to 1.0 (0.999), however the distribution was 

more skewed towards higher correlations in the 10,000 samples (Figure 3.7).  

Figure 3.5: Bland Altman Plot showing the difference between genomic relationship 
values plotted against the average measure of values, constructed using 10,000 
randomly selected SNPs* compared to the base scenario with the mean (blue) and a 95% 
confidence interval(red) shown. *Repetition in scenario 3 that resulted in the worst 
correlation to the base GRM i.e. 10,000 minimum sample. 
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Figure 3.6: Correlation with base GRM vs. SNP density before and after imputation 

 

In terms of the specific number of SNPs imputed incorrectly for an animal, higher starting SNP 

densities before imputation, unsurprisingly had more correctly imputed SNPs (Table 3.2). The 

sorted SNP samples gave a slight improvement in imputation accuracy compared to the 

random samples of approximate equivalent size. 

Table 3.2: Minimum and Maximum counts of SNPs imputed to base SNP density incorrectly 
from random sample* and sorted SNP subsets 

Random Min Count Max Count 

10,000 min 8 1,057 

10,000 max 10 1,114 

5,000 min 13 1,211 

5,000 max 13 1,395 

2,500 min 37 1,659 

2,500 max 35 1,577 

1,250 min 312 3,160 

1,250 max 248 2,930 
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Sorted Min Count Max Count 

10,478 6 1,029 

5,239 12 1,400 

2,620 29 1,802 

1,310 94 2,376 

*Random sample SNP subsets selected for imputation are those that resulted in the highest 
(max) and lowest (min) correlation when formed into a GRM and compared to the base GRM 
i.e. 10000min and 10000max.  

 

 

Figure 3.7: Distribution of imputation accuracy (correlations)  between the reference 20,955 
genotypes and imputed 20,955 genotypes for 4940 animals using random SNP samples with 
the best and worst correlations to the base GRM (1250; left, 10,000; right) 
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Figure 3.8 depicts the same random sample as Figure 3.5, however it shows the impact of 

imputation on specific elements in the GRM. In general, imputation had the effect of reducing 

the difference between elements of the GRMs compared and depicts a high level of 

agreement between GRM elements supporting the high correlations observed. Again the 

biggest differences are observed at relationships of 0, but relationships either side of this differ 

less than those in Figure 3.5.  

 

3.3.4 Imputation to High Density (770K) 
 

The degree of similarity between GRM values calculated based on a SNP density of 20,955 and 

cleaned 770K data shows a strong linear relationship (Figure 3.9). There is an evident 

separation between the off-diagonal and diagonal values with few individuals above a self-self 

relationship value of 1.5 and a small proportion of animals with negative relatedness. As the 

SNP density increases beyond 20,955 that relationship values begin to spread out around the 

Figure 3.8: Bland Altman Plot showing the difference between genomic relationship 
values plotted against the average measure of values, constructed using 10,000 
randomly selected SNPs* imputed to base density versus the base scenario with the 
mean (blue) and a 95% confidence interval (red) shown.*Repetition in scenario 3 that 
resulted in the worst correlation to the base GRM i.e. 10,000 min sample. 
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equivalence line. This was most evident for the highly inbred individuals to the far right of 

Figure 3.9 compared to Figure 3.4.  

Using 165 influential sires and dams as the reference resulted in imputation accuracies ranging 

from 0.84-0.94 with 0.93 being both the mean and median value. 

 

3.4 Discussion 

3.4.1 Correlation with Core Manifest (Scenario 1) 
 

In Scenario 1 there were highly correlated relationships (0.99) can be obtained between core 

SNPs and the base GRM used herein. This is similar to the performance of ~10,000 SNP 

samples (from Scenario 3&4) having high correlations to the base GRM consistent with other 

studies (Rolf et al. 2010; Harrison et al. 2012; Ogawa et al. 2014). As the core manifest 

describes SNPs in common between the 30K GGP-LD chip platform and the Weatherby’s 

Scientific 50K Versa platform, this suggests that imputation from one platform to the full  SNP 

Figure 3.9: Genomic relationship values built from 4,940 30K SNP genotypes compared to 
4,940 imputed 770K data. 
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set of the other may not be necessary. Rather, the overlapping SNPs between the two 

platforms could be retained and used to form the GRM for genomic analysis.  

The success of lower density panels, such as using a subset common across commercially 

available chips is the ability to adequately cover regions of the bovine genome. The results 

here and discussion in later sections are supportive that this can be achieved with confidence 

in Bos taurus breeds such as Wagyu. Unpublished data (personal communication: Popplewell 

Composites) utilising tropically adapted composite suggests it may not be as straightforward 

in admixed populations. This is more likely due to specific SNPs not being informative in Bos 

indicus rather than due to being in admixture. In the Popplewell data, animals containing a 

high percentage of Brahman (Bos indicus) bloodlines had GEBVs for days to calving (measure 

of reproductive performance) that significantly re-ranked when the core manifest (of similar 

SNP density to the Wagyu population herein) was used solely to construct the GRM compared 

to when using GGP-LD 30K SNP chip which is designed with Bos indicus specific SNPs as well 

as taurine. It was believed that proper rankings were somewhat restored using imputation to 

the 30K Illumina chip from the Weatherby’s platform, however the core manifest appeared to 

lack SNPs to properly and fully impute Bos indicus haplotypes in Brahman and Brahman cross 

cattle. However, it must be considered that another reason for the poor imputation of Bos 

indicus haplotypes could have been a lack of pure Brahman animals in the reference 

population used for imputation.   

3.4.2 Importance of minor allele frequency (Scenario 2) 
 

Data cleaning is considered the first and most critical step in the majority of statistical 

analyses. In genomic analyses, cleaning of genomic data usually includes decisions based 

around SNP call rate, Hardy-Weinberg equilibrium and minor allele frequency (MAF) to 

remove spurious genotyping results (Miyagawa et al. 2008). The results herein demonstrated 
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that MAF was more impactful on GRM elements than SNP call rate, which may be expected 

as MAF had a bigger impact on the number of SNPs retained compared to SNP call rate.   

When evaluating mixed, particularly Bos indicus, breeds, lower MAFs to keep SNPs that belong 

to individual breeds may be necessary to accurately evaluate their differences (Dr Rick Tearle, 

unpublished data). There are no guidelines to decide what MAF should be used for genomic 

analyses. In general using a MAF cut-off of 1-5% is accepted as reasonable (e.g. Saatchi et al. 

2011; Watanabe et al. 2014; Vitezica et al. 2016) however it appears different cleaning 

procedures should be trialled so that an appropriate threshold can be determined for a given 

dataset. For example, in the tropically adapted dataset mentioned above, noticeable 

differences in ranking for days to calving EBVs for high Brahman content animals were 

observed when a MAF cut-off of 1% was used compared to 5% during GRM construction. The 

lower MAF threshold had the effect of separating the indicine and taurine groups more 

distinctly than the higher threshold. However reducing MAF further to 0.1% had no further 

impact (personal communication: Popplewell Composites). This suggests the existence of an 

“optimal” MAF. Since Wagyu are wholly taurine, it is less likely that differences in MAF on a 

taurine built chip will have such effect and a MAF cut-off of 5% is appropriate.   

3.4.3 Performance of Lower SNP Densities (Scenario 3 & 4) 
 

Studies have shown that approximately 300-400 SNPs are sufficient to separate admixed bred 

animals into stable breed groups (Harrison et al. 2012; Judge et al. 2017), indicating that lower 

density SNP panels should be sufficient to describe relationships in a population. An analysis 

based tropically adapted composites (Senepol, Belmont and Bonsmara breeds), genotyped 

with a 54,000 SNP array, reported high correlations (0.8) between a GRM built with all 

available SNP data and a GRM at a density of 1,000 SNPs. Additionally correlations of 0.9, 0.95 

and 0.98 were achieved for 2,500, 5,000 and 10,000 SNP GRMs respectively. Given this, 
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relationships between animals were generally successfully characterised using a genomic 

relationship matrix constructed with at least 3,000 SNPs (Harrison et al. 2012). This pattern is 

consistent with the Scenario 3 results although correlations are lower, most noticeably at the 

sparser densities. This is most likely a function of the degree of relatedness between 

individuals. The Wagyu cattle are more likely to be in a breed group with a relatively high 

extent of whole genome LD due to smaller effective population size, estimated as 30 up to 

1990 and then sharply dropping to ~17 by 1997 (Nomura et al. 2001), than other Bos taurus 

breeds (Ne ~ 100) or composite populations.  Indeed, a study conducted in Angus (Rolf et al. 

2010), resulted in correlations between GRMs that were higher than Harrison et al. (2012) 

across all SNP densities but slightly lower than that seen in Wagyu in general (Ogawa et al. 

2014). This reflects that as Ne decreases, less dense maybe sufficient. 

When comparing directly to Wagyu, the results herein were almost identical with previously 

published estimates. Ogawa et al. (2014) reported correlations between all the elements of 

the GRM built using lower SNP density subsets and all available SNPs (38,502) were 0.92, 0.96, 

0.98 and 0.99 for 1000, 2000, 4000 and 10,000 SNPs respectively. One key difference is that 

these SNP subsets were selected to be evenly spaced, more akin to our Scenario 4 

methodology. Regardless, the random subsets herein performed just as well indicating 

adequate genome coverage.  

In regards to sensitivity of this analysis, Ogawa et al. (2017) demonstrated that the method of 

G matrix construction, the matrix proposed by VanRaden (2008) or the later proposed 

modification by Yang et al. (2010), gave no substantial difference in GEBVs at a given SNP 

density for carcass weight and marble score. This indicates a robustness in using low density 

SNP panels across estimation methods. Additionally, Rolf et al. (2010) demonstrated that 

2,500-10,000 SNPs (randomly chosen) was adequate for robust estimation of Average Feed 
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Intake and Residual Feed intake GEBVs in sires estimated from genotyped commercial steer 

records i.e. can adequately identify regions of the genome identical by descent between 

nucleus and commercial families. This is key for genomic breeding programs where phenotype 

collection is primarily from commercial multiplier herds. 

While elements (animal relationships) of GRMS built with varying SNP densities may be highly 

correlated, the actual values of the relationships themselves can have a strong weighting in 

the estimate of genetic variance components. The Bland-Altman plots (Figure 3.5 and 3.7) 

presented herein demonstrate this where differences between GRM elements were greatest 

around values of 0, although generally building GRMs from the base or random sample subset 

were in high agreement. 

 As the number of SNPs utilised increases, the estimated residual and genetic variances 

gradually decrease and increase respectively (Ogawa et al. 2014; Ogawa et al. 2017). This is 

due to higher SNP densities having higher LD levels between the SNP marker itself and true 

QTL region. In Wagyu, for carcass weight approximately 97% of the genetic variance estimated 

from a GRM constructed with ~38K SNPs, was obtained when using 10,000 SNPs whereas only 

92% of the genetic variance could be obtained for marbling (Ogawa et al. 2014). This result 

indicates that certain traits may suffer a reduced rate of genetic gain compared to other traits 

when smaller SNP subsets are utilised. This could be due to marbling being controlled by many 

QTL of relatively small effects compared to those impacting carcass weight.  

In addition supposedly “cheaper” commercial SNP chips containing ~3,000-4,000 SNPs are not 

in production or easily available and so may not prove as a viable option to decrease 

genotyping costs. Another alternative for these small chip arrays could be for parentage 

verification of commercial animals for data inclusion in a nucleus breeding program through 

a traditional pedigree relationship matrix (A) or even single step (H) matrix which combines 
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genomic and pedigree relationships (Legarra et al. 2014). Rolf et al. (2010) demonstrated a 

correlation of 0.86 between A and G constructed with ~41K SNPs. This correlation was 

equivalent to the estimation of a GRM built with 1,500 randomly selected SNPs.  

3.4.4 Imputation Performance and Impact 
 

As newly developed SNP arrays become commercially available, it can become expensive to 

re-genotype animals. Imputation is a commonly suggested solution which is achieved by 

starting from a common SNP base before generating genotypes up to a single SNP 

density/array. Although correlations between GRM elements were high when comparing 

Scenario 3 and 4 SNP subsets and the full suite of 20,955 SNPs, imputation had the resounding 

effect of increasing this correlation further (>0.98) for all SNP subsets. Imputation accuracy 

was an important determinate of these high correlations with imputation accuracies being 

high; mean imputation accuracies ranging from 0.92 to 0.99 when starting with the 1,250 

minimum or 10,000 maximum sample respectively. Imputation accuracies herein are on par 

with previously reported estimates in Wagyu of 93.4 and 97.4% when imputing from 4,000 

and 10,000 SNPs to approximately 38K SNPs (Ogawa et al. 2014), as well as within other pure 

breeds (Dassonneville et al. 2012; Ventura et al. 2014). 

Ogawa et al. (2016) demonstrated that the use of imputed data resulted in a similar level of 

performance compared to using all the SNPs without imputation. Correlations between GEBVs 

(derived from genomic relationships) obtained with imputation and those calculated using all 

SNPs were higher than 0.99 for HSCW and marbling in line with the correlation between GRM 

elements herein. This is consistent with results in Dairy (Berry and Kearney 2011). This clearly 

demonstrates imputation as a useful tool to capitalise on potentially cheaper genotyping 

options. However, denser genotypes are still required on some animals to complete 



 

C h a p t e r  T h r e e  | 85 
 

imputation. This is likely cost effective within a nucleus herd with cheaper genotyping options 

being more applicable to commercial operations.  

3.4.5 High Density (HD) Genotyping 
 

For the imputed high density data, imputation accuracy was calculated on average as 0.93 but 

ranged between 0.84 and 0.94. This was estimated from 165 animals genotyped on both 30K 

and 770K platforms. In general, this is consistent with results published by Aliloo et al. (2018) 

with the correlation between real and imputed genotypes around 0.76 and 0.94 for 7K and 

40K SNP respectively when imputed up to a 770K panel. Given the size of the reference 

population utilised herein, imputation accuracies to HD are appropriate when compared to 

other Wagyu (Uemoto et al. 2015). The accuracy of imputation with low density arrays largely 

depends on the choice of reference population with larger reference populations generally 

improving accuracy. For Wagyu, accuracy of imputation to high density arrays generally 

doesn’t improve further once 400 animals are included in the reference (Uemoto et al. 2015) 

justifying potential further HD genotyping in the future. In addition, it is also important to have 

a highly related reference population to the target population. 

As HD SNP arrays can be imputed to with excellent accuracy, this promotes their use within 

breeding programs due to imputation decreasing the cost of these genotypes. Utilisation of a 

HD SNP array resulted in a larger proportion of the additive genetic variance being explained 

in Wagyu than was found for 50K and 6K SNPs respectively (Ogawa et al. 2017). This resulted 

in higher heritabilities being obtained for key traits e.g. 0.48, 0.54 and 0.56 from 6K, 50K and 

770K respectively for marbling score, which gave corresponding minor increases in accuracy. 

Minor increases in EBV accuracy have also been reported in dairy across production and 

fitness traits when using an Imputed HD SNP array (Khatkar et al. 2012). Lu et al. (2016) 

presented opposite findings for residual feed intake beef cattle with the HD array decreasing 
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accuracy in purebreds compared to 50K. However, the HD array showed clear advantages 

when considering composite/crossbreds as it ensured LD was consistent across these 

populations. This could be particularly beneficial for a Wagyu breeding program where 

crossbred Wagyu data is more widespread and accessible than full-blood data, as was the 

original plan for the thesis. 

Prediction accuracy was not used as a criterium for assessment herein through cross-

validation. This was due to limited data-set size available to undergo cross-validation and will 

be completed in the future with more records. More so, the correlations between the 

elements of the GRM were discussed. This is elaborated on in more detail in Chapter 5, 

however briefly, if the data used in the analysis is the same, with the only source of change 

being SNP density, then this change is spread of relationships is responsible for any changes 

in variance components. 

While benefits of high density SNP arrays appear to only be minor, there is theory to support 

moving to whole genome sequence (WGS) in livestock breeding would bring about further 

advantages. These advantages include better persistence and higher accuracies of GEBV 

across generations as well as more accurate GEBV across breeds. The clear advantage of using 

WGS data is that the actual causal mutations for economically important traits should be in 

the dataset.  

Hayes et al. (2014) reviewed and summarised these advantages. Firstly, better persistence of 

accuracy over generations is due to a shift from focusing on large chromosome segments to 

causal mutations. Predictions from medium density SNP arrays focus on primarily large 

chromosome segments that degrade due to recombination over generations, weakening 

accuracy. Building the prediction equation based on the effects of causal mutations, would 

lead to accuracy persisting over many generations, and in more distantly related animals. This 
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would also be accompanied by the second advantage, which would be an increase in 

prediction accuracy. As current SNP arrays select SNPs with a high minor allele frequency, it is 

less likely that these platforms will have a SNP in linkage disequilibrium with a causal allele at 

low frequency. If this variation from rare alleles could be described within WGS, and used in 

prediction equations, significant improvements in accuracy could be yielded. Finally, for 

populations where assembling large reference populations is difficult (like niche/minor 

breeds), utilising WGS data across breeds would be appealing. While accuracy of multi-breed 

evaluations is close to zero with standard SNP arrays, the causative mutations which do 

segregate across breeds could be captured and used for prediction with sequence data. Across 

breed information could even benefit large populations like Holstein for hard to measure traits 

or for causal mutations at low frequency within Holsteins making them difficult to 

characterize. 

3.5 Conclusion 
 

The results of this study have demonstrated that small SNP subsets of at least 2,500 -5,000 

SNPs are sufficient to describe genomic relationships across this Wagyu population. The 

similarity between these subsets, and the base scenario was improved with the use of 

imputation. In addition, animals were successfully imputed to a HD SNP platform which, when 

compared to the base scenario, showed an increased spread of relationship values, especially 

in the more inbred animals. This could have a beneficial flow on effect in genomic evaluations, 

leading to more accurate BLUP predictions. 

While the cost of HD genotyping is rapidly decreasing, the relatively high cost is still a barrier 

to wide adoption in animal breeding programs. Especially as whole genome sequencing costs 

continue to fall. Imputation technology serves as a bridge to make the utilisation of such in 

depth data more accessible to the broader population of animals. 
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Chapter 4 : Comparison of Methods to 

Select Reference Candidates for Whole 

Genome Sequencing in an Australian Wagyu 

Population 
 

4.1 Introduction 
 

Genomic selection has been rapidly adopted by many breeding sectors following its successful 

introduction to the dairy industry. This is due to realised gains in prediction accuracy of 

genomic estimated breeding values that has increased the response to selection for key 

economic traits as greater proportions of genetic variation are explained and generation 

intervals can be decreased (Hayes et al. 2009a). 

 In genomic selection, a sufficiently dense single nucleotide polymorphism (SNP) panel that 

covers the entire genome is utilised, under the expectation that all quantitative trait loci (QTL) 

are in linkage disequilibrium with at least one SNP. This allows the prediction of QTL effects 

across the population over generations. For traits with few underlying QTL, lower density SNP 

panels may be sufficient to capture these effects, assuming close proximity of at least one 

SNP. However, where underlying QTL are many, denser SNP panels may be required (Hayes et 

al. 2009a). This is often the requirement for many traits in cattle breeding, such as fertility, 

where no QTL of major effect has been found; unlike milk fat percentage in Dairy (Grisart et 

al. 2002). As discussed in the previous chapter, denser SNP panels have been shown to 

increase breeding value accuracy (Khatkar et al. 2012; Ogawa et al. 2017). If there are very 

many QTL of minor effect contributing to variation in a desired trait, a large number of 
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phenotypic records will be required to achieve reasonable estimation accuracies, relative to 

trait heritability (Goddard 2009). 

With the size of the reference population clearly having impact on the accuracy of genomic 

prediction in the target population, there is a clear need to identify cost-effective methods to 

procure more phenotypes. One solution would be to capitalise on the large numbers of 

phenotypes available in commercial herds using genotyping to replace often 

incomplete/missing pedigree data. However, this solution would be accompanied by high 

genotyping costs which usually only nucleus herds have means for.  

In 2010, the Illumina BovineHD chip became available with 777 962 SNPs and now whole-

genome sequencing is the new frontier (Georges 2014; VanRaden et al. 2017). However the 

high price of sequencing and HD chips is a barrier to their application across large numbers of 

animals. 

Imputation can add value here. By investing in a good reference population of dense 

genotypes, imputation can then utilise cheaper, less dense SNP panels which reduces the 

overall cost of genotyping while capitalising on high density results. This was demonstrated 

and discussed in the previous chapter. Given this, which animals should be densely genotyped 

to form the reference set for imputation of sparsely genotyped animals? An ideal approach 

would be to select founder animals of the population, but the availability of this option is 

limited depending on population age (are the founders still alive/have DNA stored i.e. semen). 

A second approach would be to select influential animals with large numbers of effective 

progeny. However, this may bias certain high performing family groups by selecting relatives 

from a few family lines. In most cases, a set budget is implied.  

The aim of this work was to identify a set of animals in a population of Japanese Wagyu, which 

when densely genotyped, would give the highest imputation accuracies. Strategies were 
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compared that fall under two categories; 1) Strategies that utilise relationship matrix data 

already available in routine BLUP and GBLUP analyses and 2) Strategies that take a more 

bioinformatics approach based on population haplotype frequency. Measures of how 

efficiently animals were selected, similarities between animals selected and imputation 

accuracies from low to mid SNP densities are discussed.  

4.2 Materials and Methods 
 

In total, five methods were trialled and compared to select candidates for whole genome 

sequencing in an Australian Wagyu population. The first two methods were described by Yu 

et al. (2014) denoted the MCA and MCG method. These methods select candidates for whole 

genome sequencing by minimising the genetic variation of the target population, relative to 

the selected pool, in order to improve imputation accuracy from the target density to the 

selected density (HD or whole genome sequence). The MCA method utilises (Wrights) 

numerator relationship matrix (A) such that; 

A11* = A11 – A12A22
-1A21 

Where the 1 subscript denotes the set of target animals and 2 subscript denotes the set of 

animals selected to be sequenced. The diagonal elements of A11* are the residual variances 

that are expected to remain if sequence data were to be obtained from the selected 

individuals and used to predict/impute genotypes of the target set. Animals were selected 

using an iterative process. An Australian Full-Blood Wagyu pedigree comprised of 10,549 

individuals with a depth of up to 9 generations from the current generation was utilised to 

construct A through the R package pedigreemm (Bates and Vazquez 2014). 

The second method (MCG) is akin to MCA but utilises a genomic relationship matrix (G) in 

place of A. G was constructed as per VanRaden (2008) method 1, utilising genotype 
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information on 5,334 individuals genotyped with 30K GGP-LD (Neogen: GeneSeek Operations) 

or Bovine VersaSNP 50K (Weatherbys Scientific) chips. Animals genotyped on VersaSNP 50K 

were imputed to 30K from the 11,484 SNPs that overlapped between the chips, due to the 

significantly larger reference population available (4940 vs. 394), using Fimpute 2.2 (Sargolzaei 

et al. 2011). After imputation, SNPs were retained that had a minor allele frequency greater 

than or equal to 0.05 before building the GRM. All genotyped animals were present in the 

pedigree resulting in an overlap of 5,334 animals between the numerator (A) and genomic (G) 

relationship matrices.  

The third and fourth methods were described by Bickhart et al. (2016), and referred to as 

AHAP2 (Bickhart et al. 2016 modified the AHAP method presented by Druet et al. (2014)) and 

the inverse weight selection method (IWS). Both methods require the construction of a 

haplotype “block” library. This library was constructed utilising the 5,334 post imputation 

genotypes to construct G, using FindHap v3 (http://aipl.arsusda.gov/software/findhap/). 

Program settings included 4 iterations at 3 haplotype block widths (50, 75, 100 SNPs). Only 

the 100 SNP wide blocks were retained for analysis. Haplotype blocks, which by definition are 

non-overlapping, were assigned a unique ID and their frequency in the dataset was calculated. 

It was assumed that haplotype frequencies in this population are reflective of the Australian 

Industry. In total 339,824 unique haplotypes were identified with a mean haplotype frequency 

of 0.07% and a minimum and maximum haplotype frequency of 0.005% and 0.28% 

respectively. The distribution of haplotype frequencies on the log scale (Figure 4.1), clearly 

indicated a skewed distribution towards lower frequencies. Due to logarithmic increases in 

haplotype counts at lower frequencies, haplotypes with a frequency lower than 0.1% were 

excluded from consideration. This brought the total number of haplotypes under 

consideration for sampling down to 20,854 of which 588 had a haplotype frequency ≤ 5% 

(Common), 3,666 had a frequency ≥ 1% but < 5% (Uncommon) and 16,600 had a haplotype 

http://aipl.arsusda.gov/software/findhap/
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frequency ≥ 0.1% but < 1% (Rare). A haplotype frequency threshold of 0.1% was chosen to 

allow for 1 in 1000 error in genotype calls. 

 

Figure 4.1: Distribution of Haplotype block frequency (log scale) of 339,824 blocks, 100 SNPs 
in width, estimated from a population of 5,334 genotyped Australian Wagyu. 

 

Both the AHAP2 and IWS methods are designed to maximise the haplotype coverage from the 

population while minimising redundancy of haplotype sampling. Both methods choose 

candidates to maximise the number of haplotypes sampled per dollar invested in sequencing, 

achieved through a weighting system, however two separate approaches are used to achieve 

this.  

The AHAP2 method, which is an iterative modification on the AHAP method described by 

Druet et al. (2014) utilises the following equation; 

Sample weight = ∑ 𝑓𝑖
𝑁𝐻𝐴𝑃
𝑖=1             if i= homozygous. 

The frequency of the haplotype in the population is defined by 𝑓𝑖  as determined by FindHap, 

and NHAP is the total number of haplotypes under consideration. Only haplotypes that are 
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homozygous within a potential candidate are counted towards the weighting for selection. All 

individuals in the imputed genotype set were considered as potential candidates. After 

calculating the weight for all individuals, the individual with the highest weighting is selected 

as the sequencing priority. Once a candidate is chosen, all homozygous haplotypes that this 

candidate contained are removed from consideration for all remaining samples. Sample 

weights are then recalculated and the next sequencing candidate is selected until the desired 

number of candidates (n = 100) are sampled. 

In reverse to the AHAP2 method, the IWS method preferentially selects candidates that carry 

rare frequency haplotypes. Bickhart et al. (2016) developed an inverted parabolic function 

that calculated sequencing priority (weighting) under the following equation; 

Sample weight = ∑ 𝑓𝑖
2 − 2𝑓𝑖 + 1𝑁𝐻𝐴𝑃

𝑖=1             if i= homozygous. 

As 𝑓𝑖  approaches 0, the haplotypes score approaches 1, increasing the weighting. More 

frequent haplotypes give an increasingly smaller weighting to the sample. 

The final method is a more traditional approach that selects animals based on influence in 

pedigree. This was to assess a previous attempt to genotype animals that ‘describe’ the 

population.  Previously 166 Full-Blood Wagyu animals were genotyped on the Illumina 770K 

platform. These animals were selected as influential due to having greater than 10 progeny 

nationwide, with effective progeny numbers of 1 to 437, mean = 47, in the pedigreed 

population descirbed herein. One hundred of the 166 animals were randonly chosen (RAND) 

for comparison against the other methods.  

4.2.1 Calculating Imputation Accuracy 
 

Imputation accuracy, described here as the correlation between true and imputed genotypes 

(r), was calculated only for the 4,940 individuals genotyped on the 30K chip by masking their 
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true genotypes to the ~11K overlap density. Seven rounds total of single replicate genotype 

imputation (Fimpute 2.2) was then carried out using 4 reference population sizes (100, 50, 25, 

10) of animals selected for whole genome sequencing by MCA, MCG, IWS or AHAP2.  

For MCA, out of the 100 selected animals utilising pedigree, only 75 also had genotypes and 

so could be used to calculate imputation accuracy. For MCG only this meant that only 

reference populations of 50, 25 and 10 selected candidates could be constructed. In forming 

the imputation reference populations of MCG selected candidates, if a candidate was selected 

but un-genotyped, the next available genotyped candidate was selected in their place. This 

means that MCG imputation reference populations were not developed using perfect ranking 

of candidates but can be used as an example.  

For IWS and AHAP2, imputation accuracy was calculated from the top 100 animals selected if 

those animals were previously genotyped on the GGP-LD 30K platform. For IWS, this meant 

that imputation accuracy was only able to be calculated for 87 individuals as the method 

selected 13 animals that were genotyped on the newer Versa 50K chip. 

4.3 Results  

4.3.1 Overlap between chosen candidates 
 

The degree of similarity between the MCA and MCG methods was very high with MCA 

selecting 70/100 individuals (Table 4.1) that were selected by MCG. Of the animals that were 

selected by both methods, they were ranked very similarly with a strong positive rank 

correlation of 0.82 (Figure 4.2). As MCA contains animals that are not available in MCG, a 

modified version of the MCA method was run (data not shown) where only the 5,334 

genotyped animals could be chosen but still relative to the whole pedigreed population i.e. 

genotyped animals were selected based on their relationship to all animals in the pedigree. 
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This produced similar results with 73 animals being selected in common between MCA 

modified and MCG. 

There is little overlap between the relationship matrices’ methods and the haplotype methods 

AHAP2 and IWS (Table 4.1). For example, the specific animals themselves selected by IWS are 

all progeny or grand-progeny of those selected by MCG and/or MCA. There was a moderate 

similarity between animals selected by IWS and AHAP2. Differences are due to different 

emphasis weights on rare versus common haplotypes.  

It is important to reiterate that all methods used the same starting population of 5,334 

genotyped animals where appropriate (i.e. MCA utilised a much bigger pedigreed population). 

Additionally all genotyped animals were in the pedigree.  

Table 4.1: The degree of overlap i.e. the number of animals selected in common, between the 
MCA, MCG, IWS and AHAP2 methods. The number of animals sampled by each method is 
displayed on the diagonal. 
 

MCA MCG IWS AHAP2 

MCA 100 
   

MCG 70 100 
  

IWS 5 7 100 
 

AHAP2 2 4 61 100 

 

Figure 4.2: Plot of ranks of candidates selected for whole genome sequencing 
using the MCA or MCG methods respectively 
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4.3.2 Percentage of Genetic Variance Explained 
 

The MCG method did account for slightly more genetic variance reaching 34.6% when 100 

animals were selected compared to 30% accounted for using the MCA method. The first 20 

selected animals accounted for 19% and 21% of the genetic variance for the MCG and MCA 

method respectively with each additional animal there after contributing less information 

(Figure 4.3). Where the number of selected candidates was low, MCA outperformed the MCG 

method until approximately 30 candidates where MCG became superior.  IWS was superior 

to AHAP2 accounting for 23.3% of the genetic variance compared to 22.9% when selecting 

100 candidates, although both methods accounted for significantly less genetic variance 

compared to methods utilising a relationship matrix. For RAND, the mean percentage of 

genetic variance accounted for when randomly sampling 100 of the most influential sires for 

5 replicates is 29.6% (SD = 0.40, data not shown) equivalent to the MCA method. MCA 

modified, where only genotyped animals are available for selection relative to the whole 

pedigree, account for 29.3% of the genetic variance, giving very similar results to MCA.  
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4.3.3 Number of Unique Haplotypes accounted for 
 

Haplotype blocks were categorised into common, uncommon and rare classifications based 

on frequency in the population. The number of haplotypes accounted for within each group 

was then assessed for three methods (Table 4.2). All methods were able to account for the 

588 unique common haplotypes in the population and a similar number of uncommon 

haplotypes; approximately 3500 haplotypes out of the 3666 in the population. The three 

methods begin to clearly separate where rare haplotypes are considered. MCG accounted for 

8175 rare haplotypes followed by IWS and AHAP2 with 6492 and 5137 respectively. This 

resulted in MCG accounting for the highest total number of haplotypes (12,320) compared to 

IWS and AHAP2.   

Figure 4.3: Diagonal values of A* representing the percentage of genetic 
variance explained for each additional selected candidate for whole genome 
sequencing using the MCG method (top) or MCA method (bottom). The IWS 
and AHAP2 methods are presented as singluar dots where 100 animals have 
been sampled. 
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Table 4.2: Number of unique haplotypes accounted for when 100 animals are selected as whole 
genome sequencing candidates using varying methods that utilise a relationship matrix 
(MCA/MCG) or haplotype library (IWS/AHAP2) respectively. 

Method Common Uncommon Rare Total 
 

≥5% 1%- <5% 0.1% - < 1% 
 

MCA* - - - - 

MCG 588 3557 8175 12320 

IWS 588 3507 6492 10587 

AHAP2 588 3524 5137 9249 

Max # 588 3666 16600 20854 

*As not all MCA selected animals were genotyped, the number of unique haplotypes 
accounted for cannot be estimated. 

 

4.3.4 Imputation Accuracy 
 

Across methods, mean imputation accuracy increased with increasing reference population 

size. In addition, the range of imputation values decreased with increasing reference 

population size. The mean imputation accuracies for MCA using 50, 25 or 10 reference animals 

were comparable to MCG although MCG was slightly superior (Table 4.3). Noticeably, MCA 

did have a much higher minimum imputation accuracy of 0.67 compared to 0.55 for MCG 

which indicates a narrower spread of accuracies giving more successful imputation overall. 

The two haplotype methods, IWS and AHAP2, gave comparable mean accuracies of 0.97 each 

to MCA/MCG, with the highest maximum accuracies reported although they also had the 

largest spread.  
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Table 4.3: Imputation accuracy calculated for sparse 11K genotypes imputed to 30K using 
differing reference populations of different sizes selected from four methods. 

MCG MCA IWS AHAP2 

Ref size 100 50 25 10 100* 50 25 10 87** 100 

Min 0.55 0.55 0.55 0.51 - 0.67 0.53 0.51 0.52 0.54 

Mean 0.98 0.97 0.94 0.83 - 0.96 0.93 0.83 0.97 0.97 

Max 0.99 0.99 0.99 0.97 - 0.99 0.99 0.99 1.00 1.00 

* For MCA, out of the 100 selected animals, only 75 were genotyped and so could be used to 
calculate imputation accuracy. For comparisons sake, only reference populations of 50, 25 and 
10 were constructed. The next available candidate was selected and so reference populations 
do not display perfect ranking but can be used as an example. **Only 87 animals selected by 
IWS had 30K genotypes to calculate imputation accuracy. The remaining 13 candidates were 
genotyped using the 50K Versa platform. 

 

4.4 Discussion 

4.4.1 Comparison of Relationship Matrix Methods 
 

The methods which utilised a relationship matrix, MCA and MCG, had very high concordance 

between them in regard to specific candidates selected (Table 4.1). The rank correlation 

reported of 0.82 (Figure 4.2) is a stronger relationship than previously reported Yu et al. 

(2014). One explanation is Wagyu in Japan are known to already have a very small effective 

population size with only a small number animals serving as the founder population for 

Australia’s herd today. Given this, the MCG and MCA method are more likely to select identical 

candidates than the population in the original study which was a Norwegian pig population 

pedigree with simulated genotype data (Yu et al. 2014).    

MCA performed better where the number of selected candidates was low (Figure 4.3). This is 

likely due to the MCA method having access to the full pedigree of 10,549 individuals with a 

depth of up to 9 generations, whereas only 5,334 of these animals were available for selection 

under MCG. There are some population structure implications in the data behind this. The 

pedigree includes deeper information on original “imported” founder animals in the 
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population and a larger number of descendants, whereas MCG only includes genotypes on 

these founders and a subset of their descendants. The additional depth and breadth of 

pedigree appears advantageous to better inform selection decisions of early selected 

candidates. MCG appeared robust as the genomic relationships were able to compensate for 

lack of pedigree depth after a certain number of selected candidates due to more detailed 

relationship information regarding Mendelian sampling. When only the genotyped animals 

could be selected as candidates (MCA modified), it performed extremely similarly to MCA on 

a whole. This supports the conclusion that the pedigree used in constructing A is not adding 

any information above and beyond what G captures. MCG also demonstrates a steady 

increase in genetic variance accounted for as the number of candidates approaches 100 

whereas MCA begins to level off. This can again be attributed to more variation being able to 

be discerned through genomic relationships which can better describe animals, particularly 

where relationships would be traditionally low (zero) in A and between full-sibs.   

4.4.2 Comparison of Haplotype Block Methods 
 

The methods which utilised 100 SNP wide haplotype blocks, IWS and AHAP2, had moderate 

concordance between the animals selected with 61/100 animals in common. In contrast, 

concordance between these methods and candidates selected by MCA and MCG was poor 

(Table e.1). An analysis of the pedigree reveals the specific animals themselves selected by 

IWS, in particular, are all progeny or grand-progeny of those selected by MCG/MCA. This 

makes sense as only homozygous haplotypes are considered in calculation of the weighting. 

Influential haplotypes being targeted (those accounted for by MCA/MCG) must be passed on 

across generations through paternal and maternal lines to be selected by IWS, and to a lesser 

degree the AHAP2 method.  
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While MCG accounted for the greatest number of haplotypes with a frequency of 0.1% or 

greater (12,320, Table 4.2) it did not account for the greatest number of haplotypes overall 

when counting haplotypes below this frequency. Candidates selected using the cut-off 

restrictions were compared to the unrestricted raw data to get a view of the incidental rare 

haplotypes that were sampled in passing. IWS, AHAP2 and MCG accounted for an additional 

9842, 7221 and 2631 haplotypes respectively below a frequency of 0.1% resulting in grand-

totals of 20429, 16470 and 14951 haplotypes sampled out of 339824 respectively. Given this 

metric, IWS was the best where total number of haplotypes are concerned. Results from 

Bickhart et al. (2016) are consistent to those above with IWS demonstrating it accounted for 

the greatest number of haplotypes while selecting the least number of candidates compared 

to AHAP2. Additionally, given a set number of candidates, IWS accounted for more haplotypes 

than AHAP2 which is a more comparable metric to the study herein.  

A study on simulated dairy data performed by Butty et al. (2019) demonstrated similar findings 

to the study herein with IWS accounting for a greater proportion of unique haplotypes (when 

all incidental haplotypes are included) than a method analogous to MCG. In addition, the 

overlap of selected candidates was very low between these methods across varying selection 

densities (50 to 1200 individuals).  However, IWS did not outperform MCG in terms of genetic 

variance accounted for (Figure 4.3).  Initial thoughts in this study were that the more 

haplotypes accounted for, the greater the degree of genetic variance explained, but Figure 4.3 

demonstrates that is clearly not the case. There could be a couple of explanations for this. 

The IWS method is intentionally selecting animals that are more distantly related to others by 

preferentially selecting rare haplotypes. Animals that are homozygous for a rare haplotype 

had to receive one copy from each of the paternal and maternal lines, which to occur suggests 

the paternal and maternal lines were already likely related i.e. IWS selects animals from the 
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ends of different family branches rather than the bulk of the whole family tree. Additionally, 

given the haplotype blocks used aren’t representative of “actual” haplotypes segregating in 

the population, they are merely chunks of SNPs in 100 SNP wide blocks; selection of individuals 

where these true haplotypes are essentially broken up could explain a loss in genetic variance 

accounted for. In contrast the GRM utilises all SNPs, it can capture the similarity of true 

haplotypes between individuals in its estimation of relationships.  

Another point for consideration is that, while it could be expected that more haplotypes in 

the reference would yield higher imputation accuracies, IWS preferentially selected 

haplotypes with a low frequency. Daetwyler et al. (2014) demonstrated using initial data from 

the 1000 bulls genome project that accuracy of imputed calls was high for SNPs with a MAF > 

0.1 while it decreased rapidly for rarer variant sites. Butty et al. (2019) demonstrated this 

nicely showing imputation accuracy of specific variants increases with MAF bin. Additionally, 

Butty et al. (2019) showed that reference populations selected by IWS were more effective at 

achieving high imputation accuracies for low MAF SNPs than other methods compared, but 

this advantage lessened with increasing reference population size.  

 The small scale study within achieved relatively high imputation accuracies overall but did not 

investigate the accuracies of SNPs of low MAF versus high MAF. Additionally the SNPs are 

filtered to only include those with a MAF ≥ 0.05 when the GRM is constructed. This effectively 

removed the less accurately imputed SNPs from consideration but could also be removing 

important genetic variation as well. As high density genotyping and sequencing costs 

decrease, it would be more feasible to target lower frequency haplotypes by sequencing 

additional candidates to improve their accuracy of imputation. Methods, such as those 

proposed by Ros-Freixedes et al. (2017) that allocate sequencing resources to specific 

haplotypes rather than individuals would be suitable for this purpose, in fact they propose an 
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adjustment to IWS to allow for this. The benefit of the method proposed by Ros-Freixedes et 

al. (2017) is that it assembles high-coverage sequence data through the accumulation of low 

coverage information over genome segments that are shared with many other individuals. 

This prevents these ‘census’ haplotypes from being ‘over-sequenced’ so that sequencing 

resources can then be allocated towards key-rare variants for example. A target sequencing 

depth (i.e. 10x) needs to be defined and the aim is to get all desired haplotypes to this target.    

4.4.3 Practical Considerations 
 

While the haplotype block methods appeared promising, their performance was inferior to 

relationship matrix based methods given the metrics measured herein. One-hundred animals 

selected under MCG accounted for the most genetic variance, accounted for the greatest 

number of haplotypes (above a frequency of 0.1%) and gave high imputation accuracies. But 

this was due to one key assumption, both the MCA and MCG method assumed that all 

potential selection candidates had DNA available for sequencing and in a commercial pedigree 

this is not always the case. This fact became partially evident in the imputation study where 

not all MCA selected candidates had genotypes to form the reference. This is an important 

consideration and both methods could be easily modified to account for this. Within an 

iteration, the animal that is selected is logically the one that reduces the residual genetic 

variance of the target population i.e. Diag(A11
*), the most. Multiplying each candidates’ impact 

on the residual by a simple vector of 0 (no DNA available) or 1 (DNA available) would ensure 

that only candidate animals with DNA are selected. This would also prevent bias when 

selecting sequence candidates to form the reference if you were just to remove animals with 

no DNA from the analysis all together. MCA clearly outperformed MCG where the number of 

samples selected was low and this could reflect a scenario where the sequencing budget is 

low. A strong depth of pedigree proved advantageous to the GRM where number of selected 
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candidates is low. To capitalise on depth of pedigree while utilising the detail of genomic 

relationships an H matrix could be constructed as is done for single step GBLUP (Legarra et al. 

2009; Christensen and Lund 2010) with parameters set around DNA availability.  

The relationship matrix methods also have one key advantage over haplotype methods when 

being applied within a breeding program. That is they utilise data that is routinely constructed 

within a genetic evaluation program and are therefore simple and relatively quick to 

implement. This is compared to constructing haplotype libraries where cut-off decisions 

around haplotype inclusion must be made. This decision can impact the final animals that are 

selected for HD genotyping or sequencing. For example, the cut-off used for IWS by Bickhart 

et al. (2016) was 4% whereas it was 0.1% herein.     

In addition, the examples provided in this discussion assume selection within one population 

of animals and does not deeply discuss implications of across breed or crossbred populations.  

4.5 Conclusion 
 

Selection using the MCG is highly recommended as a starting point for an on-going sequencing 

project. Then the best method depends on the use case for the future set of sequences. If the 

aim is to select sequence candidates to allow for the overall imputation of the population, 

then it is better to select for animals carrying common haplotypes in the first instance. If the 

resulting sequences from the selected animals are to be used for variant discovery or 

annotation of deleterious variants, animals carrying novel information should be selected.  
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Chapter 5 : Impact of high density 

genotyping on genomics best linear 

unbiased prediction estimation and 

subsequent selection decisions 
 

5.1 Introduction 
 

Genomic selection (Meuwissen et al. 2001) has been widely researched and discussed in this 

thesis thus far, particularly regarding implications in a high quality beef breeding program. 

Traits of key interest are those pertaining to marbling and marbling characteristics, such as 

those defined by AUS-MEAT and Meat Image Japan (MIJ). 

Genomic selection is facilitated through the use of SNPs that are in linkage disequilibrium with 

genes controlling the trait of interest. It is assumed that these genes behave in a similar 

manner across the whole population under selection (Tier et al. 2015). Relationships between 

animals in a population can then be calculated and when combined with phenotypic 

knowledge produce an estimate of genetic merit. This estimate, referred to as an estimated 

breeding value (EBV), informs the selection decisions for the next generation of parent stock. 

Chapter 3 demonstrated that the number of SNPs required to estimate relationships 

accurately for Wagyu was low, with only 2,500 - 5,000 SNPs required. However as the number 

of SNPs increased, the relationships became more accurate when compared to the base 

scenario (20,955 SNPs), consistent with previous studies (Rolf et al. 2010; Harrison et al. 2012; 

Ogawa et al. 2014).  
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Using a commercial density SNP panel (30K) the heritabilities of key traits were high (Chapter 

2). For example, AUS-MEAT marble score was found to be highly heritable (AUS_MARB, 0.50) 

and MIJ marbling percentage was very highly heritable (I_MARB, 0.68, Table 2.2). Undesirable 

marbling characteristics, such as MIJ marbling coarseness, was also highly heritable 

(I_COARSE, 0.53) and was strongly positively genetically correlated to I_MARB (0.64, Table 

2.5) indicating higher marbling is achieved through increasing the size of marbling flecks as 

well as the number. An index trait that increases marbling through more fine marbling 

particles (I_FINE) reported a very strong positive genetic correlation to I_MARB (0.77, Table 

2.5) and was suggested as an alternative to I_MARB to manage marbling characteristics. 

Overall, key traits of interest were all moderately to highly heritable, which is desirable to 

make genetic progress. Given the very high economic value of high marbling animals, any 

small improvement could have a significant impact on profit achieved.  

As discussed in Chapter 3, high density SNP panels more accurately describe relationships and 

increase breeding value accuracy (Khatkar et al. 2012; Ogawa et al. 2017). Procuring high-

density SNP chip panels can be an expensive investment, however, through the use of 

imputation, a large number of high density genotypes can be acquired from cheaper, sparse 

genotypes. This can be achieved with accuracies ranging from 0.84 to 0.94 when imputing 

from 30K to 770K with a reference population of 165 individuals (Chapter 3). Important factors 

to consider when imputing are, that accuracy is greatest when the reference population is 1) 

large and 2) has strong relationships to the target. In Chapter 4, a comparison was made 

between four methods of selecting individuals for the reference population with the aim to 

allocate funds appropriately to get the best imputation results across the whole population. 

Methods that utilised a relationship matrix accounted for approximately 10% more genetic 

variance in the population with their selected candidates than methods considering haplotype 

blocks. However, all methods were comparable in regard to their imputation accuracies 
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attained. The reference population for this chapter was selected using the MCG method which 

selects candidates from a genomic relationship matrix that are closely related to the 

population but distantly related from previously chosen candidates (Chapter 4). This method 

is described below. 

This chapter builds on the genetic parameters generated in Chapter 2 using low density SNP 

data and aims to supplement results, demonstrating relationships are better captured using 

high density SNP (through imputation, Chapter 3) due to describing greater population 

additive genetic variance. Particularly, changes in EBVs and subsequent animal selection 

decisions is discussed. To facilitate accurate imputation, selection of reference candidates was 

facilitated using the MCG method (Chapter 4).  

5.2 Materials and Methods 

5.2.1 Genotype Data 
 

The starting genotype data for this study was the same as for Chapter 2 comprising of 4,940 

GGP-LD 30K genotypes, all full-blood Australian Wagyu of which 29,869 SNPs were segregating 

in the population. These 4,940 individuals were imputed to a high density (HD) SNP array of 

777,107 SNPs (Illumina BovineHD BeadChip). Imputation was completed using FImpute 2.2 

(Sargolzaei et al. 2011), with 165 animals, which had been genotyped with the HD SNP array, 

as the reference population. SNPs were removed from the reference genotypes that were 

unable to be mapped to precise chromosome/base pair location as well as SNPs with identical 

chromosome and base pair positions; in this instance one SNP from these duplicate or 

triplicate locations was kept in the dataset. In addition, SNPs were excluded if they had ≥ 5% 

missing data (95% call rate) and/or a minor allele frequency (MAF) less than 0.05. This left the 

final imputation density as 479,535 SNPs which were used to construct a GRM as per 
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VanRaden (2008) method 1 (Section 2.2.1). Data obtained when using the 30K and 770K 

datasets are referred to as Low-Density (LD) and High-Density (HD) respectively.  

5.2.2 Selection Reference Population for Imputation 
 

The initial reference population was to be made up of 70 animals selected from a population 

of 5,334 Full-Blood Wagyu using the MCG method (Yu et al. 2014), described in chapter 4.2. 

The 70 selected animals were initially planned to undergo whole genome sequencing to form 

a reference population to impute the remainder of the herd to sequence. However technical 

difficulties with sample DNA extraction made this method unavailable so a different approach 

has been taken.  

Due to delays in obtaining sequence data it was decided to proceed using animals with 770K 

genotype (HD) data to form a reference population. Given budget limitations and DNA 

availability, a reference population consisting solely of the top 70 animals could not be formed 

as they did not all have 770K genotypes. The 165 currently available animals with 770K 

genotypes were used instead. The preferred method discussed in Chapter 4 is the MCG 

method detailed by Yu et al. (2014) and given by the equation; 

G11* = G11 – G12G22
-1G21 

Where the 1 subscript denotes the set of target animals and 2 subscript denotes the set of 

animals selected to be sequenced. Diag(G11*) are the residual variances that are expected to 

remain if sequence data were to be obtained from the selected individuals and used to 

predict/impute genotypes of the target set. Given this, the genetic variance accounted for by 

the set of 165 animals with HD genotype data can be calculated and compared to “ideal” top 

70 selection. The 165 animals with HD genotypes on hand accounted for 38% of the variance 

in the population compared to 31% when the top 70 were selected. There was an overlap of 
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63 animals between the 165 used as the reference population for imputation and the top 70 

originally selected by MCG.  

5.2.3 Phenotype Data and Statistical Analysis 
 

Phenotype data for this study is presented in Chapter 2 (Table 2.1). Briefly, a subset of 

phenotype records were made available on individuals born from 2009 to 2017 for 14 different 

traits spanning live weight and ultrasound measurement to carcass measures in line with 

Australia national AUS-MEAT evaluation system (AUS-MEAT Limited 2005) and Meat Image 

Japan camera image technology (Kuchida et al. 2006; Maeda et al. 2014). Records made 

available include 1079-1091 on carcass traits, 3073 for live ultrasound measures, 2252 for 

birthweight, 2990 for 400 day weight (400_WT) and 1462 for Daily feed intake (DFI).  

Datum was analysed with a general linear model mixed model using ASReml-R 4.0 (Butler et 

al. 2017). Model descriptions for univariate analyses can are the same as outlined in Chapter 

2.2.3. The model utilised was; 

𝒚 = 𝑿𝒃 + 𝒁𝒖 + 𝒆 

Where, 𝒃 is the vector of fixed effects, 𝒖 is the vector of random effects (with 𝑿 and 𝒁 their 

respective design matrices) and 𝒆 is the vector of residual variance. All traits included fixed 

effects of dam age (Maiden; < 2 year of age, Mature; 3-9 years or Old; > 10 years), 

heterozygosity (calculated as the proportion of heterozygous genotypes, Figure 2.1), Sex 

(Heifer, Bull or Steer, except for BW which just had two levels i.e. Heifer or Bull) and 

contemporary group based on a predefined age slice that grouped animals born within the 

same year and calving period. A birth date co-variate was also fitted nested within 

management group. Management groups are described in greater detail in 2.2.3.  
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Genomic best linear unbiased predictions (GBLUPs or Estimated breeding values or EBVs) 

generated from previous analyses in Chapter 2 are compared to GBLUPs estimated from an 

imputed high density GRM (479,535 SNPs). Correlation between individuals EBVs from the 

two datasets were estimated and changes to animal rankings discussed. 

5.3 Results 

5.3.1 Heritability Estimation 
 

Heritabilities were estimated for 14 traits using LD (30K) and HD (770K) genotypes.  For every 

trait, the heritabilities estimated using HD data were equal to or higher than when LD data 

was utilised (Figure 1) with a mean increase of 0.03 (standard deviation = 0.02). The 

heritabilities most improved were MIJ percentage marbling (I_MARB), MIJ marbling fineness 

index (I_FINE), MIJ percentage marbling minus largest marbling particle (I_MARB2) and AUS-

MEAT marble score (A_MARB) with a heritability increase of 0.05. Ultrasound eye muscle area 

(U_EMA) and P8 fat depth (U_P8) showed no improvement in heritability using HD data. 

Figure 5.1: Heritability estimates for 14 traits estimated from genomic relationships 
constructed using Low Density (30K) and High Density (770K) genotypes on 4,940 individuals. 
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5.3.2 GBLUP Comparison 
 

The minimum and maximum values obtained either using LD or HD genotype data allow the 

assessment of the range of BLUPS. For every trait except U_P8, utilising HD genotype data 

increased the range of BLUPs estimated to varying degrees (Table 5.1). This is also supported 

by increasing GBLUP SD when moving from LD to HD data. The correlation between BLUPs 

from either dataset is also reported as very high across traits with mean correlation of 0.96, 

with the highest correlations seen for I_MARB, I_FINE, I_MARB2 and A_MARB.  U_EMA had 

the smallest correlation at 0.9 between BLUPs estimated from LD and HD data respectively.  

Table 5.1: Minimum, Maximum and Standard Deviation (SD) values for BLUPS estimated for 
14 traits using either Low Density (LD) genotype data or High Density (HD) genotype data as 
well as the correlation between BLUPs from the two methods for 4,490 animals. 

Trait LD BLUPS HD BLUPs Correlation 

 
Min Max SD Min Max SD 

 
BWT -6.74 8.49 1.91 -7.09 9.19 1.99 0.97 

400_WT -47.1 55.5 12.1 -49.6 62.0 13.3 0.95 

U_IMF -1.14 5.64 0.32 -1.10 6.86 0.34 0.97 

U_EMA -6.36 6.95 1.74 -6.29 7.84 1.78 0.90 

U_P8 -3.09 3.35 0.83 -3.03 3.20 0.82 0.97 

DFI -1.80 1.84 0.47 -1.88 1.83 0.50 0.97 

HSCW -67.9 79.1 20.8 -74.7 87.9 21.8 0.94 

P8_FAT -5.97 5.26 1.46 -6.44 5.59 1.48 0.96 

A_MARB -3.74 1.98 0.70 -3.96 1.94 0.72 0.98 

I_EMA -10.0 12.2 2.53 -10.1 12.8 2.57 0.97 

I_MARB -13.6 14.4 4.17 -14.8 15.3 4.26 0.98 

I_COARSE -0.09 0.10 0.03 -0.10 0.10 0.03 0.97 

I_FINE -14.4 16.7 4.52 -15.5 16.6 4.70 0.98 

I_MARB2 -0.12 0.13 0.04 -0.13 0.14 0.04 0.98 
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5.3.3 Animal Ranking 
 

While there was a high correlation between animals individual BLUPs (Table 5.1), it is 

necessary to investigate whether changes in BLUPs impact the subsequent rankings of animals 

for each trait. Across most traits, greater than 30 animals are selected in common within the 

top 50 based on BLUPs estimated from LD or HD genotype data (Table 5.2). U_EMA is an 

outlier in this regard with only 19 animals in common; this is accompanied by a low rank 

correlation of 0.13. While most traits select similar animals in the top 50 across LD and HD 

genotype data, rank correlations are only moderately high, indicating some re-ranking of top 

animals. This re-ranking is visually evident for HSCW and I_MARB (Figure 5.2) when looking 

more closely at the BLUPs from LD versus HD genotype data. There was greater differences in 

BLUPs for HSCW than I_MARB. Their rank correlations reflect this pattern being 0.65 and 0.76 

respectively. Large changes in ranking are less likely to occur in the highest ranked animals 

and are more evident for the lower percentile BLUPs (Figure 5.2). However there were some 

notable exceptions.  Highlighted in blue (Figure 5.2) is one animal which ranked 22nd for HSCW 

(LD genotypes) that jumped to 2nd when HD genotypes were utilised for example.  

Table 5.2: The number of animals in common between the Top 50 (Top 1%) selected for each 
trait utilising Low Density (LD) or High Density (HD) genotypes within the genetic evaluation 
and the Spearman Rank Correlation between the rankings of selected animals when BLUPs are 
estimated from either dataset. 

Trait BWT 400_WT U_IMF U_EMA U_P8 DFI HSCW 

Overlap 38 38 34 19 39 40 35 

Rank Cor 0.69 0.82 0.79 0.13 0.78 0.75 0.65 

Trait P8_FAT A_MARB I_EMA I_MARB I_COARSE I_FINE I_MARB2 

Overlap 38 36 42 38 44 42 39 

Rank Cor 0.73 0.39 0.76 0.76 0.75 0.77 0.68 
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Figure 5.2: BLUP values for Hot Standard Carcass Weight (HSCW, top) and MIJ percentage 
marbling (I_MARB, bottom) calculated using Low Density (LD) genotypes versus High Density 
(HD) genotypes; zoomed in to assess changes in animal ranking for the predicted best animals. 
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5.4 Discussion 

5.4.1 Heritability estimation 
 

Heritabilities estimated for each of the 14 traits were reported as at least equal to or higher 

when utilising HD data in the genomic prediction as opposed to LD data. On average, an 

increase in heritability of 0.03 was observed across traits, which corresponds to a mean 

increase in accuracy of 2% (ranging from 0% for U_EMA/U_P8 to 3.7% for I_FINE) given 

accuracy can be described as the square root of the heritability. This demonstrates that as the 

number of SNPs utilised increases, the estimated residual and genetic variances decrease and 

increase respectively (Ogawa et al. 2014; Ogawa et al. 2017). This is due to the HD SNP panel 

attaining higher levels of linkage-disequilibrium between the SNP marker and true QTL region. 

The G-BLUP (Genomic best linear unbiased prediction) method used to estimate breeding 

values herein does not directly estimate the effect of a SNP like Bayesian methods (Meuwissen 

et al. 2001; Habier et al. 2011; Erbe et al. 2012) but rather utilises a matrix of genomic 

relationships to estimate genetic merit. The HD genotype set has been demonstrated to still 

be useful in this case, while not estimating SNP effects directly, capturing SNPs in close linkage-

disequilibrium to true QTL allows the estimation of relationships to be more accurate. 

Relationships are then estimated based on similarity of genotypes at many QTL as opposed to 

few, so where many QTL may have a positive association with a trait, the associated positive 

phenotype is explained through the relationship matrix. That is high performing animals are 

related to other high performing animals and so on. Certainly, Chapter 3 (Figure 3.9) 

demonstrated that relationships estimated from HD data had a greater spread of values than 

relationships estimated from LD data, while maintaining a strong linear relationship 

suggesting higher accuracy of relationship description. 

Marbling is controlled by many QTL of relatively small effects i.e. it is highly polygenic, and this 

is supported by the numerous reports of varying associated genes (Barendse 2002; Barendse 
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et al. 2004; Michal et al. 2006; Matsumoto et al. 2014; Sadkowski et al. 2014; Sukegawa et al. 

2014; Hudson et al. 2015; Tong et al. 2015). In Wagyu, 97% of the genetic variance estimated 

for carcass weight from a GRM constructed with ~38K SNPs, was obtained utilising 10,000 

SNPs opposed to marbling where only 92% of the genetic variance could be obtained (Ogawa 

et al. 2014). This suggests higher densities are required to capture variation in marbling 

through relationship matrices and certainly explains why the highest improvements in 

heritability herein were observed for I_MARB, I_MARB2, I_FINE and A_MARB with increases 

of 0.05 i.e. 5%.  Ogawa et al. (2017) reported a 2% increase in marbling score when increasing 

SNP density from 50K to 770K. These improvements in marbling heritability are particularly 

significant due to the key importance of marbling in the breeding objectives of Wagyu 

producers. 

Accuracy is considered to be higher for traits with higher heritabilities, although the effect of 

heritability on accuracy becomes smaller as more phenotype information becomes available 

and is utilised. To consider this from a different point of view, less change in heritabilities 

would be expected, and by extension accuracy, where larger numbers of phenotypic records 

are observed. Indeed the three ultrasound traits are a good example of this. Ultrasound EMA 

and P8 fat (U_EMA and U_P8) reported no increases in heritability while U_IMF reported a 2% 

increase. These three traits have the largest number of records in the analysis (3070 to 3073, 

Table 2.2) In contrast the marbling traits that had the highest heritability increase had the 

lowest number of traits (1079 to 1079 records).   

5.4.2 BLUP Comparison and Animal Ranking 
 

In addition to increasing heritability, the range and SD of breeding values (BLUPS, Table 5.1) 

increased for every trait except U_P8 when HD genotype data was utilised compared to LD 

genotype data. The variance of EBVs becomes larger when the accuracy of prediction is higher, 
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with accuracy being higher for traits with higher heritabilities. Ultrasound IMF (U_IMF) 

displayed the largest increase in EBV spread moving from LD to HD genotype data, 17%, 

followed by Hot standard carcass weight (HSCW, 11%), and 400 day weight (400_WT, 9 %). 

Ultrasound IMF, as described above, has a large number of records and so perhaps would not 

have been expected to display the greatest improvement in the spread of EBVs, but critically 

it has the lowest heritability of any trait investigated herein (0.15 and 0.17 when using LD and 

HD genotypes respectively, Figure 1). This suggests that, although a large record base is 

present, it was not being predicted as accurately with LD data compared to using HD genotype 

data. Given the largest increase in EBV spread, U_IMF experienced a minimal amount of re-

ranking compared to other traits with the second highest rank correlation of 0.79 (the highest 

being 400_WT; 0.82, Table 2) between the top 50 animals selected using either genotype 

dataset in the evaluation. This suggests that the LD genotype dataset was able to rank animals 

appropriately, given a large number of records, but that moving to higher density genotypes 

resulted in more accurate individual BLUP values which maintained similar rankings.  

In general, for MIJ marbling traits, correlations between BLUP values from either genotype 

dataset are high (0.97 to 0.98, Table 1) with generally high correlations between rankings of 

the selected top 50 animals (0.68 to 0.76). However, given a similar number of records, similar 

heritability and high genetic correlations (0.96 between AUS_MARB and I_MARB; Table 2.5) 

to these traits, AUS_MARB experiences a significant amount of re-ranking with a rank 

correlation of 0.39 although having a high correlation between BLUPs estimated from either 

dataset itself (0.98). There is an overlap of 36 animals selected as being in the top 50 for 

AUS_MARB from either genotype dataset and so significant re-ranking doesn’t seem plausible 

until the ranking method used versus the specific way the trait is recorded is investigated. 
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It is likely that rank correlations for all traits are under-estimated. Proper rankings should 

account for a “tie” where two individuals have the same value. However, BLUPs in this analysis 

were to 7 decimal points preventing the occurrence of ties. This is not accurate representation 

of how BLUPs are often portrayed. The study herein has strictly assumed a difference in BLUPs 

is a true difference, which is technically correct, however a breeder would look at a BLUP of 

+5.6567322 and +5.6477322 as equivalent and make selection decisions based on that 

assumption. The assumption that any difference in a BLUP is a true difference, has the largest 

impact on traits measured using a discrete scale such as the AUS_MARB scoring system (scores 

0-9) and a lesser impact on continuously measured traits like I_MARB (%) as evident by the 

degree of re-ranking in AUS_MARB given similar animals are selected as superior.  

Ranking herein has been compared between traits individually whereas many traits are often 

under selection together in a breeding program through the use of an index. A selection Index 

allows the consideration of multiple traits when selecting candidates by assigning weighting 

values to traits based on importance, often utilising dollar values surrounding economic 

importance. Simply put, traits in the index have their BLUPs multiplied by their respective 

weighting. These values are then summed together to obtain a single, combined estimate of 

animal’s performance weighted across all traits of importance. Given some ranking changes 

seen within the data for a specific trait are relatively large, where the actual difference in BLUP 

is small, it is likely that index ranking would be quite similar across LD and HD genotype data. 

The index would have the effect of “levelling out” big changes in ranking that aren’t true 

ranking changes due to big discrepancies between BLUP values from LD compared to HD data.  

Knowing the implications of rankings which are calculated based on BLUPs with high 

significant figures, there are still examples present where true re-ranking has occurred. One 

specific but not unique example is highlighted in Figure 2 for HSCW where one individual rank 
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increases from 22nd to 2nd when HD genotype data is utilised. Given the range of EBVs for 

HSCW increased by 11% when HD data was utilised, it is not surprising that some significant 

re-ranking did occur. This supports the use of HD genotype data when making selection 

decisions, given a higher accuracy of prediction, as selection decisions can have longer term 

impacts. For example, response to selection can be altered due to the specific animals selected 

as replacements or for use in embryo transfer programs. Not only do selection decisions 

impact on a stud’s genetic progress but also the progress of wider industry.  

The majority of genetic progress is made in top nucleus breeding programmes which is 

disseminated to industry via lower tiered multiplier herds through semen and bull sales. The 

genetic merit of commercial herds is lagging behind that of nucleus herds due to a function of 

sire and dam generation interval, the rate of genetic progress in the elite herds and the genetic 

merit of the sires and dams themselves (Dechow and Rogers 2018). This lag describes a “delay” 

between selection of elite animals and realised production improvements in commercial 

herds. It can be lowered by reducing the generation interval of sires and dams in commercial 

herds and utilising EBVs with higher accuracies (Dechow and Rogers 2018). However, there is 

an economic trade-off between genetic improvement and longevity in that lower culling rates 

are favourable due to lower costs associated with maintaining herd size (De Vries 2017). This 

means cows, which are genetically inferior to younger heifers, are kept in the herd longer, 

decreasing the proportion of new genetics (i.e. replacement heifers) being brought in, thus 

increasing the genetic lag.  

In elite breeding herds, selection decisions are based on the traits which are desirable in the 

market so clients can produce stock to meet market specifications (Robinson and Buhr 2005). 

This often means elite breeders are “looking ahead” for new price signals ensuring they are 

positioned to supply stud stock suitable for new emerging markets where the most profit 
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often lies. As markets become more targeted or change (greater spread of different traits to 

select on) the currently used superior stock may not be suitable either due to lack of selection 

for new traits or unfavourable correlations e.g. selection for yield resulted in decreased eating 

quality in pork below acceptable consumer levels (Lonergan et al. 2001; Wood et al. 2008). 

This highlights the lingering effect elite selection decisions can have on the commercial 

industry and why obtaining highly accurate EBVs on younger stock is important.   

5.5 Conclusion 
 

Utilising HD genotype array data has been suggested to improve accuracy herein due to 

increased spread of EBVs reported and higher heritability estimates across traits, which aligns 

with the accuracy improvements reported in the literature. This supports the investment 

which has been made into obtaining whole genome sequences on ancestral individuals 

(currently ongoing at time of writing) which will be analysed in the near future. The benefits 

of whole genome sequencing have been discussed in detail in previous chapters. From the 

results herein, it is hypothesised that the use of whole genome sequence data will provide 

better persistence and higher accuracies of EBVs within this Wagyu herd for selection of traits, 

such as marbling, due to capturing the total additive variance in the population through 

inclusion of actual causal mutations impacting traits. It is critical to obtain high accuracies to 

better inform selection decisions which will allow this Wagyu herd to achieve a high response 

to selection that benefits clients purchasing young bulls for their enterprises. 
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Chapter 6 : General Discussion 
 

This thesis has covered a number of aspects relating to the implementation of genomic 

selection within a beef population of Wagyu with a focus on maintaining high quality beef, 

particularly marbling.  Topics have included comparing and contrasting measurement of 

specific traits and their relationships with other economically important recorded traits, 

through to comparing cost effective ways to obtain high density (HD) genotyping and the 

benefits/implications this has on the additive variance estimated within traits and subsequent 

changes to animal selection decisions. The preceding chapters to this discussion have been 

presented in a chronological fashion allowing the connections between results to be discussed 

in turn, culminating with the analysis presented in Chapter 5. This discussion will re-iterate the 

key findings while suggesting areas of further research, particularly around the utilisation of 

whole genome sequencing and commercial cross-bred data.  

6.1 Summary of Work 
 

Given the high marbling capabilities of Wagyu, a relatively new breed to the Australian 

production system being imported in the 1990s (Maeda et al. 2014), it was identified that 

current evaluation schemes such as AUS-MEAT and MSA (AUS-MEAT Limited 2005) were not 

suitable to capture the variation in marbling and marbling characteristics of Wagyu cattle. 

Additionally, with the development of genomic selection (Meuwissen, Hayes and Goddard 

2001), opportunities existed to be able to capture more additive variation associated with a 

trait over traditional pedigree methods. A meta-analysis conducted (Table 1.1) using weighted 

averages of heritability, as described by Koots et al. (1994), paired with the genetic parameters 

estimated in Chapter 2, demonstrated the value of more precise phenotypic measurement 
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and genomic relationships. In general, traits estimated using genomics achieved a greater 

spread of EBV values with less error, than when estimated from pedigree. In addition, newer 

novel MIJ camera measures (Kuchida et al. 2006; Maeda et al. 2014) for marbling were highly 

correlated to their equivalent AUS-MEAT counterparts. Results favoured newer technology 

over traditional methods.  

The benefits of genomic selection could be further amplified with the use of HD genotyping, 

with heritabilities increasing by 3% on average (Figure 5.1). Although this percentage is small, 

given the high value received for highly marbled cuts, any small increases multiply out to have 

a substantial effect on profit. Four thousand and forty HD genotypes were able to be obtained 

accurately (mean imputation accuracy of 0.93; section 3.3.4) through imputation (Sargolzaei 

et al. 2011) using a reference population of 165 animals with HD genotypes (479,535 SNPs). 

Imputation was deemed a cost-effective measure to obtain HD genotypes, with the results 

supporting the hypothesis that whole genome sequencing would be of value to this breeding 

program, increasing heritability further. Re-ranking was generally minimal, although 

exceptions exist, when moving from low density to HD genotypes.  

Phenotype and genotype data from an Australian Full-Blood Wagyu herd, specifically of 

Japanese Black cattle descent has resulted in the main focus of a majority of the discussions 

being centred on a full-blood nucleus scenario. Conclusions presented across chapters are 

therefore not necessarily reflective of the broader “Wagyu” industry in Australia. Australian 

beef production is commodity based with price/kg received at sale varying greatly due to 

perceived eating quality attributes, of which marbling is a determining factor. Wagyu beef has 

excelled in high quality markets due to a genetic predisposition to exhibit superior marbling 

compared to other beef breeds (Gotoh et al. 2009). Acquiring high numbers of full-blood 

Wagyu cattle is an expensive investment and so cross breeding British breeds (such as Angus) 
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with Wagyu bulls has been particularly common across the broader beef industry. The 

resulting cross has the potential to marble highly while capitalising on the growth capabilities 

of Angus and hybrid vigour (a.k.a. heterosis) making the cross cost-effective to produce. 

Production of F1 (first cross cattle) is a key market for Wagyu bull sales.  

6.2 Future Work  

6.2.1 Value of Whole Genome Sequencing 
 

While the intention was to include whole genome sequences in this thesis, technical 

difficulties with sampling the selected animals delayed the arrival of sequence data. A 

different approach utilising HD genotype data had to be undertaken (Chapter 5) which 

demonstrated promising results. Future work will involve investigating the value of whole 

genome sequencing to a nucleus breeding program. Whole genome sequence data is 

expected to give a better persistence of accuracy over generations due to a shifting focus from 

large chromosome segments to causal mutations, which don’t degrade due to recombination. 

Additionally, there is an expected increase in prediction accuracy due to the inclusion of causal 

alleles at frequencies too low to be included in current SNP chip arrays (Hayes et al. 2014).  

High density genotyping also presents as a tool for managing genetic diversity. Previously high 

density genotyping has been used in multi-breed populations to estimate levels of LD, 

consistency of gametic phase between breed-groups, the presence of overlapping population 

structures and level of Ne (Brito et al. 2017). This information was used to manage and inform 

the optimal implementation of genomic selection in this population to ensure good accuracy 

of prediction in a multi-breed population. Besides facilitating multi-breed selection programs, 

high density genotypes could be beneficial for managing populations with small Ne that are 

prone to inbreeding. The ability to describe closely related animals more accurately would be 

beneficial to better inform mate allocation. Estimates of inbreeding obtained using pedigree 
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information are lower than those obtained using genomic data (Chagunda et al. 2018). SNP 

data captures Mendelian Sampling variance to revel the ‘realized’ homozygosity in the 

genome, resulting in greater variation in genomic inbreeding compared to pedigree 

inbreeding within a generation (Zhang et al. 2014; Sumreddee et al. 2019).  

 A large area of investigation has been the use of whole genome sequencing in genome wide 

association studies. The main focus of sequencing data moving forward will be to improve 

predictive abilities of breeding programs through capturing greater additive variance. This is 

expected to be achieved through describing relationships between individuals within the 

population more accurately. Such aims are compatible with the current evaluation procedure 

in use; that is using GBLUP models to estimate breeding values.  

In the first instance, with imputed HD genotypes available, the entire population could be 

imputed to sequence, with imputed sequences used to build a genomic relationship matrix 

and estimate BLUPs. Imputation from low density to high density would preferably be done in 

two steps to achieve the highest imputation accuracies (Van Binsbergen et al. 2014). First 

imputation from a low density to a high density chip (as done in Chapter 3 and 5) and then to 

sequence. Including millions of variants in routine evaluations or on chips is difficult and 

computationally intensive.  

A second approach involves using a subset of sequence variants, discovered in the Wagyu 

population, to complement existing HD SNP chip arrays. Enriching lower density SNP chips 

with SNPs from a high density panel for specific QTL regions has showed an increase in EBV 

accuracy (Saatchi and Garrick 2014). SNP subsets from sequence data have been developed 

using variants identified in candidate genes if the genes are known (Ortega et al. 2016). 

Subsets have also been created using results from genome wide association studies (GWAS) 

that utilise sequence data (Van Den Berg et al. 2014; Brøndum et al. 2015). A GWAS could be 
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performed on the Wagyu population herein, once imputed to sequence to identify specific 

QTL or QTL regions related to economically important traits. Alternatively/or additionally 

regions identified in literature could be utilised (Examples in Wagyu include; Nishimura et al. 

2012; An et al. 2019). However, as QTL variants will likely be chosen on size of effect 

(significance), the benefits of this subset method may be better realised in Bayes style 

estimation evaluation systems, i.e. Bayes A and Bayes B (Meuwissen et al. 2001), Bayes C 

(Habier et al. 2011) and Bayes R (Erbe et al. 2012). In these methods marker effects are 

effectively summed to produce a breeding value. Conversely, these variants may still be useful 

in GBLUP if they are breed specific and help to estimate relationships between Wagyu animals 

better.  

Sequence variants can also be selected using genomic prediction methodologies. These 

methodologies would be ideal as they could use currently employed methods i.e. GBLUP. 

Variant subsets would be chosen based on largest absolute effect or largest genetic variance 

contributed by the locus, where markers are chosen regardless of location. VanRaden et al. 

(2017) compared such methods, however estimated marker effects using Bayes A prediction 

algorithms. This could be done using GBLUP, back solving estimated BLUPs from imputed 

sequence data to calculate marker effects and variances.  

6.2.2 Genomic Evaluation Methodology 
 

The good performance of GBLUP can be attributed to 1/ there are many genes affecting 

economically important traits in livestock and 2/ linkage disequilibrium can extend over large 

genomic distances (Meuwissen et al. 2016). This thesis only evaluated GBLUP. Bayesian 

methods assume a prior distribution of SNP effects that may make more sense biologically 

than the linear assumption where SNP effects follow a normal distribution, resulting in higher 

accuracies (Erbe et al. 2012; Bolormaa et al. 2013).  
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Meuwissen and Goddard (2010) reported accuracies of prediction using sequence data that 

were significantly higher using Bayes B than GBLUP. For a simulated dataset considering 3 or 

30 loci/Morgan, GBLUP did not appear to take full advantage of sequence data. Iheshiulor et 

al. (2016) demonstrated that SNP-BLUP (analogous to GBLUP) was as good as MixP, an 

estimation method similar to Bayes C, when causative QTL density in the dataset was high 

(132 loci/Morgan) using simulated whole-genome sequence data. MixP was superior when 

causative QTL was low (45 loci/Morgan) consistent with Meuwissen and Goddard (2010). 

These results implies that Bayes methodology is superior when traits, both lowly and 

moderately heritable, were controlled by few loci compared to many. Future work should 

investigate transitioning to Bayesian methodologies to better utilise whole genome sequence 

data in Wagyu and how this applies to the traits under investigation. For example, marbling is 

known to be controlled by many QTL of small effect.  

6.2.3 Breeding Objective Suitability (traits under investigation) 
 

Marbling fineness describes the number of fine marbling particles within a cross-section of a 

rib-eye. Coarser marbling particles are considered undesirable in marbled meat products 

(Motoyama et al. 2016; Vierck et al. 2017). This is despite a growing body of evidence 

demonstrating that coarser marbling particles contribute to juicer, more flavourful beef under 

sensory panel evaluation (Vierck et al. 2017; Lee et al. 2019). However finer marbled beef still 

retains a higher consumer acceptability (Lee et al. 2019). This suggests a balance must be 

struck between increasing IMF% and increasing marbling fineness. In this regard, an extensive 

survey to estimate appropriate economic values for marbling coarseness/fineness, including 

both consumers and processors, is needed so that appropriate breeding decisions can be 

made to produce a product that excels in sensory characteristics but remains visually 

appealing.  
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The traits utilised in Chapter 2 (and then Chapter 5) are focused strongly on growth and 

carcass, particularly marbling, characteristics given Wagyu are a beef producing breed. 

However, key traits are missing that would be considered essential in a well-rounded breeding 

objective for a nucleus program such as fertility and survival traits. These traits generally have 

low heritability and include age at first calving (<0.10 - 0.3), age at puberty (<0.10 - ≥0.60), 

days to calving (<0.10), scrotal circumference (0.20 – 0.80) (Cammack et al. 2009) and calving 

ease (0.01-0.22) (Cue and Hayes 1985; Eaglen and Bijma 2009; Jeyaruban et al. 2016). Calf 

survival/mortality is another trait to consider given anecdotal evidence exists (Personal 

communication: David Blackmore of Blackmore Wagyu and Scott DeBruin of Mayura Wagyu) 

describing Wagyu calf survival up to 3 weeks of age as highly volatile with young calves 

succumbing to severe scours. The reason behind this is definitely multifactorial and mortality 

percentages appear to vary between farms which is in agreement with the reportedly low 

heritabilities of mortality (0.001, Cue and Hayes 1985). Estimates of maternal as well as direct 

effects on calf survival would both be beneficial.  

Fertility traits such as days to calving, which is the number of days between the first joining 

date and subsequent calving, is relatively easy to calculate under paddock mating. However 

under extensive artificial insemination (AI), where cows are synchronised prior to mating, this 

can mask variation in fertility and produce bias estimates for fertility, proportional to the 

number of animals used in timed AI (Oliveira et al. 2019). Thus, obtaining accurate fertility 

estimates must consider the use of AI data over traditional paddock mating. Investigating 

traits such as non-return rate, number of inseminations per pregnancy, days from first to 

successful insemination, days from calving to first insemination and age at calving, may be 

suitable traits to consider Wagyu female fertility with heritabilities ranging 0.01-0.1 (Setiaji 

and Oikawa 2019).   
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The suitability of the traits under-investigation, while suitable for producing high marbling 

Wagyu are missing key reproductive and survival traits necessary to a nucleus program. In 

regards to F1 production, the traits are perfectly suitable as there is no need to apply selection 

pressure to reproduction if the F1 is a terminal cross. The goal of F1 production systems will be 

to produce highly marbled meat, as efficiently as possible. In this sense, selecting sires with 

the highest genetic marbling potential will have the desired effect in producing cross-bred 

progeny with higher marbling (see section 1.4). Sires with high marbling potential but lacking 

female reproductive fitness would be better suited for F1 production, while a better balanced 

sire (albeit still strong emphasis on marbling and HSCW) would better suit the nucleus 

program.  

6.2.4 Inclusion of F1 data in analysis 
 

Estimating relationships from genotypes removed a limiting barrier to genetic progress which 

is access to phenotype data that is well described and pedigree recorded. Using genomic 

relationships removes the need for pedigree recording and also, partly, the need to establish 

linkage sires between herds if reference populations are diverse. This has practical 

implications in industry, traditional pedigree evaluation has usually been conducted within 

breeds and not across breeds due to a lack of linkage sires making across breed evaluations 

difficult to establish; notable exceptions exist i.e. LAMBPLAN (Brown et al. 2007). The 

requirement for pedigree also made utilisation of commercial data difficult as parentage is 

rarely recorded sufficiently in these herds.  

The review of reciprocal recurrent genomic selection methods (Section 1.3), where reciprocal 

recurrent selection refers to the selection of purebreds to breed better crossbreds utilising 

both additive and non-additive genetic variance (Comstock et al. 1949) demonstrated that 

RRGS methods (Dekkers, 2007; Ibánẽz-Escriche et al. 2009; Kinghorn et al. 2010; Zeng et al. 
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2013) were likely no more successful at improving crossbred performance than selecting for 

better purebreds using pure-line selection. Genetic evaluations of purebreds within their own 

populations has been sufficient to improve cross-bred progeny performance in sheep and 

cattle (Hall et al. 1992; Fogarty et al. 1997; Hall et al. 1997; Newman et al. 2002; Hegarty et al. 

2006). This is due to additive variance accounting for the majority of total genetic variance 

(Hill et al. 2008). Including commercial-crossbred progeny records into the nucleus evaluation 

could be beneficial to better predict higher performing pure-bred bulls which is expected to 

result in improved F1 performance. This is especially the case when the populations included 

in reference datasets are closely related and/or the access to/or provision of phenotypic 

records is limited (De Roos et al. 2009; Ibánẽz-Escriche et al. 2009).   

Ibáñez-Escriche et al. (2011) reported in a pig population that the mean reliability of predicted 

purebred breeding values for lean meat yield, estimated in Landrace, Duroc and Pietrain pigs, 

was increased when crossbreed data was included using two different methods. The crossbred 

data included was produced from two-way (F1; Duroc x Landrac) and three-way crosses (F1 x 

Pietrain) between the three purebred breeds. Estimated heritabilities for lean meat yield were 

similar to those estimated in purebred data, except for the Pietrain breed which reported an 

improved heritability using crossbred data. This was most likely due to the inclusion of 

crossbred data improving the variance in lean meat yield records, compared to purebred data 

where the variance was quite small for Pietrain compared to other purebreds. This suggests 

that inclusion of crossbred data could increase the accuracy of prediction, especially for 

Pietrain. Ibáñez-Escriche et al. (2011) demonstrated that rank correlations between EBVs 

predicted with and without cross-bred data were highest for Duroc (0.94-0.96) followed by 

Landrace (0.88-0.95) and Pietrain (0.81-0.85). Duroc records maintained a moderate 

heritability throughout the study and included greater than 2.5x the number of records, so 

minimal re-ranking is expected.  
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Earlier studies have demonstrated that the benefit of crossbred information was largest when 

the genetic correlation between purebred and crossbred performance ( 𝑟𝑝𝑐)  was low (Wei 

and van der Werf 1994; Bijma and Van Arendonk 1998). The inclusion of crossbred information 

was worse than purebred data only when 𝑟𝑝𝑐 > 0.8 (Wei and van der Werf 1994). A study by 

Newman et al. (2002) demonstrated that 𝑟𝑝𝑐 in cattle are moderate for weight traits such as 

400 day weight and HSCW (𝑟𝑝𝑐 = 0.48), yet high for carcass quality traits (retail beef yield, 

IMF and P8_Fat; 𝑟𝑝𝑐 of 0.83, 0.95 and 1.00 respectively). Inclusion of crossbred data may not 

result in improved selection for marbling of purebreds in Wagyu based on these results. The 

study in 2002 did not consider crosses between highly marbled Wagyu and more common 

Taurus breeds like Angus though. The 𝑟𝑝𝑐 for marbling between these two breeds could be 

expected to be less unified due to substantial variation in expression of the trait noted 

between the two breeds. The correlation coefficient is expected to decrease with increasing 

genetic disparity between parental populations. Such genetic disparity between the two 

breeds could explain the vastly different marbling phenotypes observed. The Australian 

Wagyu Association (AWA) reported a significant genetic disparity between Wagyu and 10 

other beef breeds, including Angus (Teseling 2016) in the development of their cross-bred 

Wagyu test. The 𝑟𝑝𝑐 between traits measured in Wagyu and their cross-bred progeny needs to 

be assessed. 

Not all commercial data is suitable for inclusion in genetic analyses, with contemporary 

groupings needing to be well defined in order to model additive genetic variances effectively. 

The crossbred data, in this case F1 Wagyu, should be related to the population under selection 

to be most beneficial. The SNP chip density used to estimate relationships between the two 

populations (Wagyu and F1) needs to be sufficiently high to ensure that the phase of linkage 
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disequilibrium between SNPs and QTL is consistent between populations, especially diverged 

populations (De Roos et al. 2008; Porto-Neto et al. 2014).   

6.3 Conclusion 
 

This thesis has investigated a number of aspects regarding the implementation of genomic 

selection within a high quality beef breeding program. The core focus has been on 

investigations relating to the nucleus breeding program covering extensive genetic parameter 

estimation for 14 different traits, with carcass quality parameters explored in depth. These 

parameters have been estimated at two separate SNP chip densities, with higher densities 

yielding generally higher heritabilities. Comparison of methods to develop appropriate 

reference populations to facilitate imputation resulted in high imputation accuracies being 

obtained. Development of the breeding program for this Wagyu herd is on-going and four key 

areas of future research have been identified for perusal. The first is exploring the value of 

whole genome sequence data and secondly the value of Bayesian methods over currently 

used BLUP estimation. Thirdly, to improve the breeding objective, it is recommended that 

fertility and survival traits be developed and included, which may centre on utilising artificial 

insemination records. Lastly, due to the common use of Wagyu sires to produce cross-bred 

progeny, modelling development work is required to determine the value of crossbred data 

to better predict high ranking nucleus sires, facilitated through genomic relationships.  
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Chapter 7: Appendix 
 

Appendix 1: Development and Review of Genomic Selection 

Appendix 1.1 Traditional pedigree based selection 
 

Traditional breeding strategies such as outcrossing, line breeding and inbred matings are 

generally slow to show genetic improvement amongst breeds. This is particularly true for traits 

that have a low heritability which is common for fitness traits such as reproductive and 

maternal traits (Falconer et al. 1996). Most genetic improvement in the national herd using 

traditional breeding strategies have been made by identifying key breeding objectives driven 

to meet the demand of environmental and market forces.  

The development of a genetic evaluation program in Australia started as the National Beef 

Recording Scheme (NBRS) in the late 1970’s and became BREEDPLAN in 1985 (Graser and 

Hammond 1985). The purpose of BREEDPLAN is to quantitatively evaluate an individual’s 

genetic merits before they are selected as breeding stock on a breed by breed basis. 

BREEDPLAN estimates an individual’s genetic merit, for each analysed trait, as an Estimated 

Breeding Value (EBV). The EBV is a representation of the additive genetic components of the 

individual’s genotype, providing an indication of the genetic component that can be inherited 

in subsequent generations. The EBV is determined using random coefficients from a linear 

mixed model (BLUP; Henderson 1984). This method requires the recorded phenotypes and 

knowledge of an animal’s pedigree. The approach to analysis has evolved from a single-trait 

sire model sometimes including dam or maternal grandsire terms, to a multi-trait animal 

model analysis system, which incorporates growth, reproduction and carcass trait information 

(Quaas and Pollak 1980; Graser et al. 2005).  BREEDPLAN has been very successful, with 

genetic gains being realised in most farmed species. However, despite this success, there is 
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increasing interest to identify the genes and polymorphisms controlling traits as a new means 

of animal selection through simply inherited genetic markers (Goddard et al. 2010). 

Appendix 1.2 Marker Assisted Selection (MAS) 
 

Advances in molecular genetics have led to the identification of multiple genes or genetic 

markers that have an association with genes affecting important traits in livestock. The 

integration of these identifiable genes or genetic markers into breeding and/or selection 

decisions is referred to as marker assisted selection (Dekkers and Hospital 2002). Application 

of MAS for genetic gain relies on the ability to successfully genotype animals for marker loci 

of interest. Three types of marker loci are discernible; causal polymorphisms that code for 

functional mutations, loci in weak linkage disequilibrium (LD) with the functional mutation 

within families, also termed linkage equilibrium (LE) loci, and loci in strong LD across the 

population (Dekkers 2004); 

Causal polymorphisms affecting the traits of interest can be incorporated into animal selection 

criteria for breeding programs. However, in practice, only a few mutations that cause genetic 

abnormalities and a small number of polymorphisms which have large effects on quantitative 

traits have been identified (Dekkers 2004).  The Myostatin gene in cattle (Charlier et al. 1995), 

Callipyge gene in sheep (Cockett et al. 1994) and DGAT1 in Dairy cattle (Grisart et al. 2002) are 

examples of such causal polymorphisms. The majority of traits of economic importance are 

quantitative or complex traits and are controlled by a large number of segregating genes/QTL, 

each contributing a small effect sensitive to the environment (Mackay 2001). Therefore each 

contributing QTL explains only a small proportion of genetic variance in the breeding objective 

or trait (Dekkers 2004). This limits the usefulness of using a small number of causal 

polymorphisms.  
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Microsatellites were the first class of genetic markers to span across the genome. Typically, 

100-200 microsatellites were used to provide wide but imprecise coverage of genome. QTL 

were detected based on linkage within full-sib or half-sib families (Georges et al. 1995; Zhang 

et al. 1998). A big limitation to these early MAS studies was that the QTL was mapped very 

imprecisely and the marker and QTL were in weak linkage disequilibrium so that the linkage 

phase varied between families. While LE markers are readily detectable (Andersson 2001) this 

meant that the linkage phase had to be determined within a family before the microsatellites 

could be used for selection (Goddard et al. 2010).  Fernando and Grossman (1989) presented 

a generalised method for estimating animal breeding values using MAS where the first step 

was to detect and map genes underlying traits of interest (i.e. QTL) and the second step was 

to include this information into the BLUP-EBV. However this method of MAS resulted in small 

gains. Other logistical limitations of implementing LE in selection have been discussed in the 

literature (Dekkers 2004). In Genome wide association studies (GWAS) the number of tests is 

equal to the number of genotyped markers, i.e. single nucleotide polymorphisms (SNPs), with 

each SNP effect being tested independent of all other SNPs. Because the number of tests 

would often be many thousands, the multiple testing problems become so great that very 

stringent significance tests are required. This resulted in only the largest QTL being found , for 

example DGAT1 affecting fat content in milk (Grisart et al. 2002).  Utilisation of a marker type 

that does not require linkage phase to be determined for each family and that utilizes all QTL 

is optimal for genetic improvement of livestock.  

Meuwissen et al. (2001) attempted to estimate the effects of approximately 50,000 markers 

simultaneously from a limited source of phenotypic records in a simulation study. The markers 

were evenly spaced 1 cM apart and were in linkage disequilibrium with the QTL associated 

with the traits of interest. Their results showed that using this methodology could lead to large 

increases in response to selection, which has become known as ‘genomic selection’ (Goddard 
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et al. 2010). Genomic selection has become feasible due to the identification of many of 

thousands of SNP markers and with the declining cost of SNP-Chip genotyping technology. It 

is perhaps the most promising method of marker-assisted selection, being distinctly unique in 

that it utilises SNP markers that are in LD with QTL of interest, spanning across families and 

populations.   

Appendix 1.3 Advantages of Genomic Selection 
 

Genomic selection has many advantages in cattle breeding; in particular it is beneficial for 

traits that are difficult to improve by traditional pedigree based selection. This includes traits 

where measurement of phenotype is difficult, expensive, sex-limited, only possible later in life 

or is not possible on selection candidates e.g. carcass traits (Dekkers 2004). For example, traits 

such as milk yield, which cannot phenotypically be measured on a bull, have been improved 

by progeny testing. This leads to an accurate estimate of the bulls breeding value but at the 

expense of a long generation interval. Genomic selection is beneficial in this scenario as bulls, 

and heifers, can be selected earlier in life, reducing the generation interval, and need for 

progeny testing, which can approximately double genetic gain per year (Pryce et al. 2010). 

Additionally, in multi-sire joining programs it has been hard to implement genetic 

improvement programs based off of pedigree information because they are logistically 

complex. Genomic selection might be more practical as the prediction equation would not 

require pedigree recording, although performance recording would still be necessary, and 

implementation would require only a DNA sample from each animal and laboratory facilities 

(Goddard et al. 2010). Genomic selection also has the potential to utilise information coming 

from a different environment as long as GxE effects are minimal.  

Goddard (2012) described an example of this whereby milk production in the USA is a 

different, but correlated, trait to milk production in Australia. Phenotypic information from 
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the USA predicts breeding value in Australia less accurately than the same phenotypic 

information from Australia, due to the genotype by environment interaction.  This inaccuracy 

can be overcome by using genomic selection where genotype information from the USA bull 

can be used in the equation to predict breeding value in Australia. Assuming the linkage 

disequilibrium (LD) between SNPs and causal QTL are the same in the Australian and American 

populations genomic selection should increase the internationalisation of breeding programs 

(Goddard 2012). Additionally Kinghorn (2012) reviewed the use of genomics in livestock 

management rather than for breeding, suggesting that genomic selection could be useful in 

grouping like animals together to direct towards a market where they will be most likely to 

meet specifications. This involved ideas such as identifying animals that will produce different 

meat qualities as well as animals that would perform better in different feeding schemes, i.e. 

long vs short grain feeding regime, with continued applications being presented along the 

entire supply chain.  

Appendix 1.4 Methodology for Genomic Selection 

Appendix 1.4.1 Cleaning of Genotypes 
 

In between genotyping and constructing genomic predictions, there is an important step 

involving the cleaning of marker genotypes. Markers may be kept in the analysis or omitted 

based on whether they are polymorphic and/or if they have a minor allele frequency (MAF) 

greater than the lowest permitted cut off. The minor allele frequency is the amount at which 

the second most common allele appears in the population for a given marker. SNPs are 

omitted from the analyses that are monomorphic because they do not contribute to 

explaining the relationships between animals, meaning only polymorphic SNPs are retained. 

Of those polymorphic SNPs that are retained a subset are removed that have minor allele 

frequencies below a specified cut off point, below which variation may be considered 

genotyping technical errors. The aim here is to remove genotyping errors that could imply the 
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relationship between two animals is greater or lesser than it actually is. By doing this though, 

there is the potential to remove rare variants in the population; however they contribute such 

a minor effect that excluding them results in little difference.  

Another important consideration is duplication in the data. Correlations between genotypes 

can be used to identify duplicate genotypes. Duplicate genotypes pose an issue when it comes 

to inverting the genomic relationship matrix (see below). In some instances, duplicate 

genotypes can appear as a result of monozygotic twins which will have identical genotypes 

but different phenotypes. Excluding these animals from the analysis does mean removing 

phenotypic information but in reality these animals may be 2 of thousands and so contribute 

a small amount to the analysis.  

Appendix 1.4.2 Genomic estimated breeding values (GBLUP) 
 

In GBLUP, genomic estimated breeding values (GEBVs) for animals are estimated using 

phenotypes and genomic relationships estimated from genome-wide dense SNP data. The 

genomic relationship between two animals is calculated as the correlation between their SNP 

genotypes and thus the GBLUP method is very similar to traditional BLUP with the exception 

that pedigree relationships (pedigree relationship matrix: A) have been replaced with genomic 

ones (genomic relationship matrix: G).  

In order to calculate the genomic relationship G the definition of two matrices M and P is 

required. As in VanRaden (2008), let M denote the matrix of marker genotypes, with 

dimensions as the number of individuals (n) by the number of loci (m). Elements of M are set 

to 0, 1 or 2 for the homozygote, heterozygote and other homozygote respectively. Equations 

can include marker information using n x n matrix MMT where diagonals count the number of 

homozygous individuals for each loci and off-diagonals count the number of times alleles at 

different loci were inherited by one individual.  
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The matrix P contains allele frequencies for each loci expressed as a difference from 0.5 and 

multiplied by 2 such that column ji of P is 2(pj – 0.5); where pj is the frequency of the second 

allele at locus j. Subtraction of matrix P from M gives Z which results in setting the mean values 

of the allele effects to 0. The genomic relationship matrix, G, can then be calculated as follows; 

(1)       𝑮 =
𝒁𝒁′

𝟐 ∑ p𝑖(1−p𝑖 ) 
. 

Division by 2 ∑ p𝑖(1 − p𝑖) ensures the scale of G is similar to the scale of A.  With this method, 

matrix G is generally positive semidefinite, but can be singular if the number of loci (m) are 

limited or if the number of individuals (n) is greater than the number of loci (m). Additionally 

identical twins, clones or duplicate samples can cause singularity to occur. The form of G in 

equation (1) was proposed by VanRaden (2008) for purebred populations however can be 

modified to account for differing allele frequencies in multi-breed (composite and crossbred) 

populations as demonstrated by Harris and Johnston (2010) and Erbe et al. (2012).  The 

genomic relationship matrix can be further improved by taking a weighted average of the 

relationship estimated from each marker, i.e. the weighted average across SNPs, as described 

by Yang et al. (2010). Goddard et al. (2011) argued that a regression of elements of G towards 

A was necessary to account for sampling error in estimating coefficients of G. It was proposed 

that an unbiased genomic relationship matrix, G*, is calculated as in (1) with the adjustments 

described by Yang et al. (2010) and then regressed towards A such that; 

(2)   G* = A + b(G –A), 

Where b is equal to Var(G)/ [Var(G) + 1/m] and Var(G) is the variance of the non-diagonal 

elements of G (Goddard et al. 2011). While this is perhaps the most unbiased method it would 

not be suitable in commercial circumstances where A is not known. In this instance the version 

of G proposed by VanRaden (2008) or Yang et al. (2010) would be suitable. 



 

A p p e n d i x  O n e  | 142 
 

There are many ways to describe genomic relationships among individuals other than the 

equation for G presented above, although that is a common method. While other methods 

may appear to be different (i.e. don’t include estimation of allele frequencies) and may be 

based on different assumptions, providing varying estimates of additive genetic variance, the 

estimation of genetic merit of the population is similar (Tier et al. 2015) i.e. GEBVs are similar.   

Once the genomic relationships have been determined, the breeding value (BV) of an 

individual i can be determined as; 

(3)      BV𝑖 = ∑ 𝑥𝑖𝑗𝑎𝑗
𝑁𝑞

𝑗=1
, 

Where 𝑎𝑗 is the additive effect of the jth QTL and 𝑥𝑖𝑗 is the genotype of the ith individual at 

the jth QTL coded as 0, 1 or 2 (described above). However, in practice the QTL position and 

effects are not known rather we detect the QTL based on linkage-disequilibrium (LD) with 

SNPs. Therefore the BV is estimated rather than truly determined and is coined a genomic 

estimated breeding value (GEBV). The GEBV for individual j becomes; 

(4)     𝐺𝐸𝐵𝑉𝑖
̂ = ∑ 𝑚𝑖𝑗𝒈̂𝑗

𝑛
𝑗=1  

Where the number of SNPs is 𝑛, 𝑚𝑖𝑗 is the genotype of individual i at the jth SNP and 𝑔̂𝑗 is the 

apparent effect of the jth SNP, in LD with one or more QTL, on the quantitative trait estimated 

from data (Goddard et al. 2010).  

G-BLUP utilises a linear mixed model for the calculation of breeding values as follows; 

(5)  y= Xb + Wu + e 

where y is the response vector, b is the fixed parameters in the model, u is the vector of 

genomic breeding values (BLUPS), which assumes SNP effects are normally distributed with a 

mean of 0 and have constant variance and e is the residual or environmental error. Since tens 
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of thousands of SNPs are potentially utilised, the normality assumption implies that each SNP  

contributes a small effect on the trait of interest which is akin to the traditional infinitesimal 

model for quantitative traits (Goddard et al. 2010).   

If the number of individuals is less than the number of SNPs then there is a relationship 

between g and u, the vector of genomic breeding values, such that u=Mg where the variance 

of u is ~ N(0, MMTσ2
u). This is akin to the conventional animal model used in BLUP estimates, 

however here it has been adapted for GBLUP. 

GBLUP is more accurate than BLUP because genomic relationships are able to better partition 

the similarity in genotype between animals compared to pedigree relationships. Pedigree 

relationships assume that, for example between full-sibs, that they have 50% of their alleles 

in common to one another. This assumption would be correct given an infinite number of 

unlinked genes. However genes on the same chromosome are linked which means they are 

not inherited independently of one another, resulting in variation around this 50% 

assumption. Using genomic relationships it has been demonstrated that, between full-sibs, 

only 40% of their alleles might be shared (Hayes et al. 2009b). This can be detected due to 

dense marker genotyping.  

Appendix 1.4.3 Back-solving from GBLUPs to estimate marker effects 
 

GBLUP analysis does not use marker effects to estimate animal breeding values. Rather the 

markers are used to define genomic relationships through the G matrix which is then utilised 

in the calculation of breeding values, equivalent to the traditional pedigree relationship 

matrix. However the effects of individual markers can be estimated by back-solving from 

predicted animal GBLUPS such that, 

(6) g = Z (ZT Z)-1u 
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With these marker effects an animal within the population can then be genotyped and the 

marker effects (i.e. its genotype) can be multiplied by the G matrix to ascertain a breeding 

value, analogous to (7) below. .  

Appendix 1.4.4 Bayesian approaches 
 

The best approach to genomic selection will depend on the genetic architecture of the trait. If 

there are a large number of QTL, each contributing a small effect, then the GBLUP method 

(described above) is more appropriate. Conversely, if only a few markers have a large effect 

then Bayesian methods provide better estimates than GBLUP. Examples of Bayesian methods 

include the ‘Bayesian alphabet’, i.e. Bayes A and Bayes B (Meuwissen et al. 2001), Bayes C 

(Habier et al. 2011) and Bayes R (Erbe et al. 2012). The prior distribution of SNP effects 

described by Bayesian methods may make more sense biologically than the assumption that 

all SNPs have an effect, although small.  

Bayes A assumes that SNP effects follow a scaled t distribution with a small number of degrees 

of freedom. In this scenario, SNPs of large effect are more probable due to the t distribution 

having greater kurtosis (thicker tails) than a normal distribution (Meuwissen et al. 2001). Some 

polymorphisms with large effects on quantitative traits are known and so the Bayes A prior 

assumption may more closely reflect the true situation although it still assumes that all marker 

effects are non-zero. 

Bayes B is an alteration on Bayes A in that a proportion of the marker effects follow a scaled t 

distribution and the remaining markers have no effect. Again this distribution may allow for 

SNPs with large effects but differs in that all SNPs are no longer considered to be having an 

effect (Meuwissen et al. 2001). Bayes C is different again as this method assumes that SNPs 

with effects are normally distributed having a constant variance (Habier et al. 2011). Bayes C 
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doesn’t allow for SNPs with large effects but Bayes R does, assuming a mixture of normal 

distributions for SNPs with effect (Erbe et al. 2012).  

The model used for Bayesian methods can be simply written as; 

(7)  yi = µ + I1  Xi1  b1 + I2  Xi2  b2 +…+ Ij  Xij  bj … + Im Xim bm, 

where yi is the phenotype of animal i, µ is the overall mean, Ij is an indicator variable with a 

value of 0 or 1 indicating whether SNPj is having an effect or not (in this case I1 would be the 

indicator variable of SNP 1), Xij is the genotype of animal i for SNP j and bi is the estimate of 

effect of SNPi i.e. a vector of marker effects, m is the total number of SNPS (Meuwissen et al. 

2016).  

For linear predictions the estimation of g would involve directly utilising the genomic 

relationship matrix as described above (See equations [2] and [3] in VanRaden 2008). However 

this is not the case in Bayesian predictions. As described by Goddard et al. (2010) in their 

review, the vector of marker effects, g, should be estimated as 𝒈̂ = 𝐸(𝒃|𝑑𝑎𝑡𝑎) where the 

estimate of g is conditional upon the data. The data utilised in genomic selection consists of a 

phenotyped and genotyped reference population, and assuming the data have been corrected 

for all other effects, i.e. environmental and management effects, then 𝒈̂ can be calculated 

using Bayes theorem such that; 

(8)      𝑔̂ = 𝐸(𝒈|𝑑𝑎𝑡𝑎) =  
∫ 𝒈𝑝(𝑦|𝒈)𝑃(𝒈)d𝑏

∫ 𝑝(𝑦|𝒈)𝑝(𝒈)d𝑏
, 

Where 𝑝(𝒈) is the prior assumption of distribution of SNP effects (g), and 𝑝(𝒚|𝒈) is the 

likelihood of the data given g (Goddard 2009). Where the prior assumption of g follows a 

normal distribution with the same variance of all markers then (7) reduces to a BLUP estimate 

of g. However, where non-linear assumptions of g are considered, closed form solutions are 

not available for equation (7) so SNP effects are calculated utilising Markov Chain Monte Carlo 



 

A p p e n d i x  O n e  | 146 
 

methods, such as using a  Metropolis- Hasting algorithm, in combination with Gibbs sampling 

methodology (Meuwissen et al. 2001; Habier et al. 2011; Erbe et al. 2012).  

Appendix 1.4.5 Comparing GBLUP and Bayesian results  
 

Bayesian methods assume a prior distribution of SNP effects that may make more sense 

biologically than the linear assumption where SNP effects follow a normal distribution, and 

since the Bayesian distribution may more closely resemble the true distribution, a higher 

accuracy can be achieved. The reliability of genetic merit using Bayesian genomic selection 

methods, in simulated Holstein and Jersey bulls, was shown to be higher  

(approximately 3%) than GBLUP, while both methods has considerably higher reliabilities than 

the traditional relationship matrix (VanRaden 2008). Meuwissen and Goddard (2010) showed 

using simulated whole-genome sequence data that non-linear methods clearly outperform 

GBLUP as they take maximum advantage of the genome sequence data. Similar results have 

been reported in real data investigating milk traits in Holstein and Jersey populations with 

Bayes R increasing the average accuracy of the traits across both breeds by 0.05 when  30,000 

SNPs are used (Erbe et al. 2012). Bolormaa et al. (2013) showed Bayes R accuracies to be, on 

average, greater by 0.03 compared to GBLUP for residual feed intake, carcass and meat quality 

traits in Bos taurus, Bos indicus and composite cattle. Brøndum et al. (2015) reported similar 

results in Nordic dairy populations with analysis under a Bayesian model yielding generally 

higher accuracies with 54,000 SNP data compared to GBLUP.  

While the argument above suggests that Bayesian methods are higher performing than 

GBLUP, this does not mean that GBLUP is poor performing in the field. The fact that there are 

many genes affecting economically important traits in livestock and that linkage 

disequilibrium can extend over large genomic distances explains the good performance of 

GBLUP within breeds (Meuwissen et al. 2016) .  The biggest advantage of GBLUP over Bayesian 
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methods is its capability to be integrated with current genetic evaluation programs, Australia 

wide, that currently utilise pedigree relationships (A matrix) as the genomic relationship 

matrix can replace it. Genomic breeding values have been successfully incorporated using a 

‘blending approach’ with traditional EBVs (Harris and Johnson 2010). However there are 

further challenges ahead regarding genomic selection in beef and sheep populations which 

need to be rectified before genomic selection is widely adopted by these industries. 

Appendix 1.5 Implementation in Breeding Programs 

Appendix 1.5.1 Multi-Step genomic selection versus Single Step 
 

The inclusion of genomic information in Australian genetic evaluations programs, such as 

BREEDPLAN, used to be very ad hoc and involved a selection index approach (Hayes et al. 

2009a; Harris and Johnson 2010) where de-regressing EBVs and GEBVs by their accuracies 

‘blends’ or combines the two values together post-analysis. This approach was used to 

determine BREEDPLAN EBVs for animals that had both SNP and pedigree information and was 

conducted for each trait separately. For traits without genotypes, GEBVs could be blended 

with those traits that do when a high correlation between the two traits exists (Swan et al. 

2012). For example, carcass rump fat depth and carcass rib fat depth are highly correlated 

traits and therefore the GEBV of one can be blended with the EBV of the other.  

To more broadly apply genomic selection in beef, it is likely that most of the animals are not 

going to genotyped, but those ungenotyped animals have pedigree and phenotypic records 

that want inclusion in the estimation of breeding values and similarly the genotyped animal 

may not be phenotyped e.g. for a sex-limited trait the bull may be genotyped but is not 

phenotyped. Because of this it is necessary to use pseudo-phenotypes which is a projection of 

the phenotypes of individuals close to the genotyped individual. First a regular genetic 

evaluation based on pedigree is run which is then used to create pseudo-phenotypes. After 
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this, then a genomic evaluation model is used. This process is clumsy and is referred to as 

Multi-Step GBLUP with potential losses of information as well as inaccuracies and biases 

(Legarra et al. 2014).   

All sources of information such as pedigree, performance and genomic should be combined 

together in as single analysis and not blended after the fact to more easily accommodate 

animals with different levels of information (Swan et al. 2012). This is what is referred to as 

the single step method or ssGBLUP and the basic theory was developed in parallel by Legarra 

et al. (2009) and Christensen and Lund (2010). Single step has now been adopted by 

BREEDPLAN. Accuracy is usually as equal to, if not greater than, any other genomic selection 

method i.e. multi-step (Legarra et al. 2014). One shortcoming of the single-step methodology 

is that so far it does not work when utilising Bayesian distributions of SNP effects although 

some solutions have been proposed in the literature (Legarra and Ducrocq 2012). 

Single-Step GBLUP, or ssGBLUP, integrates genomic relationships (G) with pedigree based 

relationships (A) intro a combined relationship matrix (H) also known as the extended 

relationship matrix. The logic of BLUP still holds and the only other change is to use H instead 

of the relationship matrix where for y= Xb + Wu + e, 

𝑉𝑎𝑟(𝒖) = 𝑯𝜎𝑢 
2 ; 

  𝑉𝑎𝑟(𝒆) = 𝑰𝜎𝑒
2 , and the solutions to the mixed model equations are (Legarra et al. 2014); 

(
𝑿′𝑿 𝑿′𝑾
𝑾′𝑿 𝑾′𝑾 + 𝑯−𝟏𝜆

) (
𝒈̂

𝒖̂
) =  (

𝑿′𝒚

𝑾′𝒚
) 
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Appendix 1.5.2 Reference Populations 
 

In genomic selection, SNP effects are estimated using a reference population (sometimes 

called a discovery or training population) dataset which is made up of individuals that have 

both genotypic and phenotypic records. Dairy populations are favoured for genomic selection 

as they achieve high accuracy GEBVs. For example, Holsteins have a relatively low effective 

population size (approximately 100). This means that the LD between SNPs and QTL is high, 

so that approximately 40,000 SNPs explain most of the population’s genetic variance. This low 

effective population size means that the effective number of chromosome segments is low, 

indicating reduced genetic diversity and therefore higher accuracies can be achieved when 

estimating their effects. In addition, progeny testing is widely practiced in the dairy industry 

which means relatively accurate estimates of genetic variance, and hence breeding values, 

can be obtained which reduces the residual error in the data (Goddard et al. 2010). The 

extensive amount of information in dairy breeds means that these datasets are said to be high 

quality. 

For beef breeds, it may not be possible to assemble such high quality datasets as that 

described for the Holstein breed except that it is expected that as the number of genotyped 

individual’s increases in beef, the accuracy will increase, just as it did for dairy. The low 

accuracies reported in beef GEBVs (Swan et al. 2012) are likely due to the relatively low 

numbers of animals that have both genotypes and phenotypes included in the reference 

population to develop genomic prediction equations (Johnston et al. 2012). In this instance it 

would be desirable to combine data from multiple breeds within a species. Ibánẽz-Escriche et 

al. (2009) and De Roos et al. (2009) reported that across population, i.e. across breed, genomic 

evaluations were preferable compared to evaluations within populations when: the 

populations included in the reference dataset were closely related, the SNP chip density used 
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was high, or the access to/or provision of phenotypic records is limited.  However, De Roos et 

al. (2008) also showed when looking at diverged breeds like Holstein-Friesian, Jersey and 

Angus that including multiple breeds potentially has limitations in that the phase of LD 

between the SNPs and QTL might not be the same. They suggested that if denser SNPs are 

used i.e. approximately 300,000 markers or greater as demonstrated then results should be 

more consistent.  When considering linkage disequilibrium purely between beef breeds with 

approximately 30,000 SNPs (purebred Angus, Charolais and crossbreds of varying Angus, 

Charolais, Simmental and Piedmontese content) it was found that correlations of LD phase 

were high for distances between marker pairs ≤ 70kb, but as distance increased the 

correlations reduced (Lu et al. 2012). When a high density (HD) SNP chip is used (e.g. 777,000) 

a similar pattern is observed. However, the HD SNP chip is advantageous in that associations 

can still be detected when physical distance between markers are larger  (>50-70 kb) that 

otherwise would have been hidden if only 50,000 SNPs were used (Porto-Neto et al. 2014).  

Pryce et al. (2011) reported that there was minimal advantage, under GBLUP or Bayes A 

analysis, of multi-breed genomic evaluations over single breed evaluations. However using 

two breeds in the reference population was generally better than only utilising one breed, 

when the goal was to predict GEBVs for a breed not included in the reference population. 

Moghaddar et al. (2014) reported that not including the target breed in the reference 

population, in sheep, gave prediction accuracies close to zero while including data from 

genetically distant sheep breeds was found to have a neutral to slightly negative effect on 

accuracy. This appears to be contradictory to the results presented by Pryce et al. (2011) 

however that investigation included three dairy breeds while the latter compared Border 

Leicester, Poll Dorset and White Suffolk (pure and first cross) with Merino. It then seems less 

surprising that using a purebred Merino reference population yielded accuracies close to zero 

when calculating GEBVs for the other three breeds as the breeds diverged to serve different 
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purposes (meat vs wool), compared to the dairy cattle breeds who likely diverged more 

recently.  

Ventura et al. (2016) proposed a method to help improve genomic prediction accuracy within 

a multi-breed beef population when selecting for crossbred and purebred animals. Their 

method clusters animals based on their genotype and unlike the traditional approaches for 

genomic selection, that use a fixed reference population, genomic prediction using clusters 

chooses the best reference population that will result in the highest accuracy. They reported 

an overall gain in accuracy of 1.3% across all traits and scenarios investigated.  

Appendix 1.5.3 Long-term response to genomic selection 
 

There is evidence to suggest that long-term genomic selection, that is selection for several 

subsequent generations, may result in declining responses to selection when using the 

prediction equation estimated from the base population or generation (Muir 2007). This is 

because selection is on the SNP allele and not directly on the favourable QTL allele, and 

although the pair is linked, the SNP allele is driven towards fixation much more quickly. This 

diminishes the LD between the SNP and QTL which in turn reduces the effectiveness of 

genomic selection (Goddard 2009). Additionally, genomic selection is unlikely to effectively 

select for rare, favourable alleles due to poor correlations with common SNPs. Traditional 

selection methods i.e. selection on phenotype, don’t result in diminishing responses to 

selection because increasing the occurrence of rare favourable alleles compensates for 

movement towards fixation of more common favourable alleles. However this balance is not 

likely to be achieved in genomic selection and decline in response to selection is expected. 

Although it is likely this decline will be slower if the trait of interest is controlled by numerous 

genes, each contributing a small effect as the rate at which the allele frequency changes will 

be slower (Goddard 2009).  
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To counteract this decline in response, Muir (2007) proposed re-estimating the prediction 

equation each generation which partially prevented the decline. Additionally, Goddard (2009) 

suggested decreasing selection pressure on common QTL with large effect; that is use a high 

density SNP chip in conjunction with Bayes B, so that only SNPs that are in close LD with the 

QTL have estimated effects greater than zero. This resulted in accuracies that persisted over 

time as the LD persisted over time, as demonstrated by Meuwissen and Goddard (2010). The 

level of inbreeding in the population should also be kept to a minimum as this reduces the 

long-term response to selection (Goddard et al. 2010).  

Appendix 1.5.4 Number of SNPs and Imputation 
 

When considering how many markers to use it is important to remember the markers are only 

used because the number and distribution of QTL of interest across the whole genome are 

unknown. Therefore markers, such as SNPs are utilised because they are located genome wide 

with a known location. The aim is to use enough markers so that all QTL are in complete 

linkage disequilibrium with at least one marker or a haplotype of markers, that is every 

potential QTL is ‘tagged’ by a marker (Goddard 2009) such as a SNP. This is the principle that 

genomic selection relies on.  

In Japanese Black cattle approximately 90-97% of the genetic variance was estimated for 

carcass weight using 4,000, 6,000 and 10,000 SNPs respectively (Ogawa et al. 2014). For 

marbling score 10,000 SNPs were required to account for as much as 92% of the genetic 

variance. Ogawa et al. (2014) proposed a larger number of SNPs were required for marbling 

due to the trait being controlled by QTLs with relatively small effects in comparison to carcass 

weight where QTLs with large effects are known. Similar results have been reported in 

Holstein populations where accurate genomic evaluation can be achieved using 3,000-5,000 

SNPs, evenly placed across the genome (Moser et al. 2010; Wiggans et al. 2012). However as 
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the number of SNPs utilised increases, so does the accuracy of prediction. Prediction of genetic 

value using simulated whole-genome sequence data has been shown to increase accuracies 

of prediction by greater than 40% relative to the use of 30,000 SNPs (Meuwissen and Goddard 

2010).  

The attractiveness of using a low density SNP panels is the comparatively low cost compared 

to higher density panels. For example, prior to the availability of the Illumina Bovine3K 

BeadChip (2010), female genotyping accounted for 38.7% of the dairy genotyped population 

in the US which rose to 59% by 2012 (Wiggans et al. 2012). Previously discussed literature, in 

this review, recommends utilising higher density SNP panels to ensure LD between SNPs and 

QTL across populations. This is where imputation becomes important. 

Imputation is used to fill in missing genotypes after SNP-chip genotyping based on the 

genotypes and haplotypes identified in other animals. Imputation methods can also be used 

in conjunction with low density chips that are cheap. For this, key ancestors need to be 

genotyped with a high density SNP chip to identify the haplotypes in the population. 

Descendants can then be genotyped with the low density chip, which has enough SNPs to 

recognise which of the haplotypes the animal carries, allowing the missing information to be 

imputed (Meuwissen et al. 2016).  The limited effective population sizes and population 

structures in livestock make imputation of high-density genotypes for sparse genotypes 

possible (Daetwyler et al. 2011).  

Initially imputing 50K genotypes to 800K genotypes and then to sequence has been shown to 

result in a higher accuracy of imputation than imputing 50K directly to sequence; although 

SNPs with low minor allele frequencies are more difficult to impute correctly (Van Binsbergen 

et al. 2014).  
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Appendix 1.6 Summary of Genomic Selection 
 

Genomic selection is possible due the availability of SNP markers throughout the genome. It 

is an attractive alternative to pedigree based evaluations due to the ability to predict 

phenotypes accurately from genotypes at a young age, rather than using mid-parent averages. 

It is advantageous for late in life, hard to measure traits such as fertility and carcass traits due 

to the utilisation of extensive reference populations. These populations are made accessible 

as SNP data replaces the need for extensive pedigree recording. Many methods of 

implementing genomic selection have been discussed and compared. Most promising, is the 

ability to combine data from different breeds in multi-breed evaluations under the correct 

conditions. 
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