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Abstract

Literature-Based Discovery (LBD) research focuses on discovering implicit knowledge

linkages in existing scientific literature to provide impetus to innovation and research

productivity. Despite significant advancements in LBD research, previous studies con-

tain several open problems and shortcomings that are hindering its progress. The over-

arching goal of this thesis is to address these issues, not only to enhance the discovery

component of LBD, but also to shed light on new directions that can further strengthen

the existing understanding of the LBD workflow. In accordance with this goal, the thesis

aims to enhance the LBD workflow with a view to ensuring its widespread applicability.

The goal of widespread applicability is twofold. Firstly, it relates to the adaptability of

the proposed solutions to a diverse range of problem settings. These problem settings

are not necessarily application areas that are closely related to the LBD context, but

could include a wide range of problems beyond the typical scope of LBD, which has tra-

ditionally been applied to scientific literature. Adapting the LBD workflow to problems

outside the typical scope of LBD is a worthwhile goal, since the intrinsic objective of

LBD research, which is discovering novel linkages in text corpora is valid across a vast

range of problem settings.

Secondly, the idea of widespread applicability also denotes the capability of the proposed

solutions to be executed in new environments. These ‘new environments’ are various

academic disciplines (i.e., cross-domain knowledge discovery) and publication languages

(i.e., cross-lingual knowledge discovery). The application of LBD models to new envi-

ronments is timely, since the massive growth of the scientific literature has engendered

huge challenges to academics, irrespective of their domain.

This thesis is divided into five main research objectives that address the following top-

ics: literature synthesis, the input component, the discovery component, reusability, and

portability. The objective of the literature synthesis is to address the gaps in existing

LBD reviews by conducting the first systematic literature review. The input component

section aims to provide generalised insights on the suitability of various input types in the

LBD workflow, focusing on their role and potential impact on the information retrieval

cycle of LBD.

The discovery component section aims to intermingle two research directions that have

been under-investigated in the LBD literature, ‘modern word embedding techniques’

and ‘temporal dimension’ by proposing diachronic semantic inferences. Their potential

positive influence in knowledge discovery is verified through both direct and indirect

uses. The reusability section aims to present a new, distinct viewpoint on these LBD

models by verifying their reusability in a timely application area using a methodical reuse

plan. The last section, portability, proposes an interdisciplinary LBD framework that

can be applied to new environments. While highly cost-efficient and easily pluggable,



ii

this framework also gives rise to a new perspective on knowledge discovery through its

generalisable capabilities.

Succinctly, this thesis presents novel and distinct viewpoints to accomplish five main

research objectives, enhancing the existing understanding of the LBD workflow. The

thesis offers new insights which future LBD research could further explore and expand

to create more efficient, widely applicable LBD models to enable broader community

benefits.
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tral (PMC) Open Access set (Névéol et al. 2010) . . . . . . . . . . . . . . 125

5.1 Schematic overview of the proposed LBD framework . . . . . . . . . . . . 135

5.2 Schematic overview of the typical LBD workflow . . . . . . . . . . . . . . 137

5.3 Schematic overview of the time-specific global corpus . . . . . . . . . . . . 138

5.4 The architectures of CBOW and Skip-Gram models (Mikolov, Chen, Cor-
rado & Dean 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xvi



List of Figures xvii

5.5 Simple example illustrating the three layers of the SGNS neural network
(El-Amir & Hamdy 2020) . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.6 Neighbouring words of the word ‘cell’ across time (Boukhaled et al. 2019) 142

5.7 Semantic change of the word ‘cell’ across time (Li et al. 2019) . . . . . . . 142

5.8 Semantic change of words across time using the classic example of fish
oil-blood viscosity-Raynaud’s disease in the LBD field (Xun et al. 2017) . 143

5.9 Simplified example of orthogonal Procrustes alignment . . . . . . . . . . . 144

5.10 Individual global shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.11 Individual local shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.12 Pairwise semantic displacement . . . . . . . . . . . . . . . . . . . . . . . . 147

5.13 Pairwise distance proximity . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.14 Neighbourhood semantic displacement . . . . . . . . . . . . . . . . . . . . 148

5.15 Neighbourhood distance proximity . . . . . . . . . . . . . . . . . . . . . . 149

5.16 Schematic overview of the Dedicated Trajectory Model (DTM) . . . . . . 154

5.17 Unified deep learning framework of multivariate time series (Fawaz et al.
2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.18 Example of 1D convolutions for temporal trajectories . . . . . . . . . . . . 156

5.19 Types of sequence problems (Gulli & Kapoor 2017) . . . . . . . . . . . . . 157

5.20 LSTM model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.21 CNN model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.22 CNN LSTM model architecture . . . . . . . . . . . . . . . . . . . . . . . . 161

5.23 LSTM CNN model architecture . . . . . . . . . . . . . . . . . . . . . . . . 162

5.24 Schematic overview of the Feature-based Trajectory Model (FTM) . . . . 163

5.25 Nature of trajectory values and shapes . . . . . . . . . . . . . . . . . . . . 164

5.26 Schematic overview of molecular docking used in structure-based drug
design (Jacob et al. 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.27 Schematic overview of the Trajectory Alignment Model (TAM) . . . . . . 170

5.28 Dynamic time warping (Keogh & Ratanamahatana 2005) . . . . . . . . . 172

5.29 Trajectory alignment using dynamic time warping (Yang, Scholz, Shao,
Wang & Liu 2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.30 Construction of cost profile for a local topic using historical trajectories
from the template repository . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.31 Simplified example of cost profiles . . . . . . . . . . . . . . . . . . . . . . 175

5.32 MAP@k results for the five golden test cases: FO-RD, MG-MIG, IGF1-
ARG, AD-INN and SZ-PA2 . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.33 The performance increase of TAM over the baseline models . . . . . . . . 183

5.34 The performance increase of FTM over the baseline models . . . . . . . . 184

5.35 GMAP@k results for the five golden test cases: FO-RD, MG-MIG, IGF1-
ARG, AD-INN and SZ-PA2 . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.36 Contribution of each semantic shift type towards the predictive perfor-
mance of TAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

5.37 Contribution of each semantic shift type towards the predictive perfor-
mance of FTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.38 MAP@k results for the five golden test cases: FO-RD, MG-MIG, IGF1-
ARG, AD-INN and SZ-PA2 in the long run . . . . . . . . . . . . . . . . . 190

5.39 GMAP@k results for the five golden test cases: FO-RD, MG-MIG, IGF1-
ARG, AD-INN and SZ-PA2 in the long run . . . . . . . . . . . . . . . . . 192



List of Figures xviii

5.40 Contribution of each semantic shift type towards the predictive perfor-
mance of TAM in the long run . . . . . . . . . . . . . . . . . . . . . . . . 193

5.41 Contribution of each semantic shift type towards the predictive perfor-
mance of FTM in the long run . . . . . . . . . . . . . . . . . . . . . . . . 194

6.1 Schematic overview of the adaptation of the proposed LBD framework . . 207

6.2 Completing the analogy through forming a parallelogram in vector space . 209

6.3 MAP@k results for the four golden test cases . . . . . . . . . . . . . . . . 222

6.4 GMAP@k results for the four golden test cases . . . . . . . . . . . . . . . 223

6.5 MAP@k results for the four golden test cases using only drugs . . . . . . 226

6.6 GMAP@k results for the four golden test cases using only drugs . . . . . 228

6.7 MAP@k results for the four golden test cases in the long run . . . . . . . 229

6.8 GMAP@k results for the four golden test cases in the long run . . . . . . 230

6.9 LBD predictive performance with every possible combination of the four
adapted semantically infused temporal trajectories in this reuse setting . . 235

6.10 Average predictive performance with the number of semantically infused
temporal trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.11 Formation of condensed clusters of local topics for a local topic lti at a
radius of r1 over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6.12 Formation of condensed clusters of Local topics for a local topic lti at
different radius values (e.g., r1 and r2) over time . . . . . . . . . . . . . . 237

7.1 Historical landmarks in the evolution of Semantic Web into Linked Data
(Méndez & Greenberg 2012) . . . . . . . . . . . . . . . . . . . . . . . . . . 245

7.2 Structure of an RDF triple . . . . . . . . . . . . . . . . . . . . . . . . . . 245

7.3 Simplified example of an RDF graph . . . . . . . . . . . . . . . . . . . . . 247

7.4 N-triples format of RDF graph . . . . . . . . . . . . . . . . . . . . . . . . 247

7.5 Evolution of LOD cloud over the years . . . . . . . . . . . . . . . . . . . . 248

7.6 LOD cloud as of May 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . 249

7.7 High-level overview of DBpedia knowledge extraction (Bizer et al. 2009) . 250

7.8 Semantic augmentation generates additional knowledge . . . . . . . . . . 251

7.9 Typical LBD framework followed by most LBD models (Henry & McInnes
2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

7.10 Simplified example illustrating the semantic augmentation process . . . . 258

7.11 Exemplifying the need for discipline-related terminology extraction . . . . 259

7.12 Predicates in DBpedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

7.13 Deriving the immediate categories of dbr:ri using ‘dct:subject’, where
dbc:cic

j denotes the jth immediate category in DBpedia . . . . . . . . . . . 264

7.14 Deriving the categories of dbr:ci using ‘skos:broader’ . . . . . . . . . . . . 265

7.15 Exemplifying the topic-category link structure in DBpedia through the
use of ‘dct:subject’ and ‘skos:broader’ . . . . . . . . . . . . . . . . . . . . 268

7.16 DBpedia graph snippet of Raynaud Syndrome denoting topic-category
structure via ‘dct:subject’ and ‘skos:broader’ . . . . . . . . . . . . . . . . 269

7.17 Simplified example of the proposed rules . . . . . . . . . . . . . . . . . . . 270

7.18 Senses of the term kuru extracted using ‘dbo:wikiPageDisambiguates’
predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

7.19 DBpedia graph snippet of the sense kuru (disease) using ‘dct:subject’ and
‘skos:broader’ predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272



List of Figures xix

7.20 DBpedia graph snippet of the sense Taygun Kuru using ‘dct:subject’ and
‘skos:broader’ predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

7.21 DBpedia graph snippet of the sense Kuru, Nigeria using ‘dct:subject’ and
‘skos:broader’ predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.22 DBpedia graph snippet of the sense Khuru (sport) using ‘dct:subject’ and
‘skos:broader’ predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.23 Schematic overview of semantic type filtering . . . . . . . . . . . . . . . . 275

7.24 Synonym identification of dbr:ri using ‘is dbo:wikiPageRedirects of ’ . . . . 276

7.25 Structural difference between the two knowledge resources DBpedia and
MeSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

7.26 Illustrating the difference between in-degree centrality and out-degree cen-
trality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

7.27 Comparison of semantic types for the topic fish oil . . . . . . . . . . . . . 284

7.28 Comparison of semantic types for the topic Raynaud disease . . . . . . . . 284

7.29 Comparison of semantic types for the topic Magnesium . . . . . . . . . . 284

7.30 Comparison of semantic types for the topic Migraine . . . . . . . . . . . . 285

7.31 Comparison of semantic types for the topic Insulin-like growth factor 1 . 285

7.32 Comparison of semantic types for the topic Arginine . . . . . . . . . . . . 285

7.33 Comparison of semantic types for the topic Alzheimer’s disease . . . . . . 286

7.34 Comparison of semantic types for the topic Indomethacin . . . . . . . . . 286

7.35 Comparison of semantic types for the topic Schizophrenia . . . . . . . . . 286

7.36 Comparison of semantic types for the topic Phospholipase A2 . . . . . . . 287

7.37 Comparison of semantic types for the topic genetic algorithm . . . . . . . 288

7.38 Comparison of semantic types for the topic gravitational lens . . . . . . . 288

7.39 Comparison of semantic types for the topic inverse galois problem . . . . 288

7.40 Comparison of semantic types for the topic oligopoly . . . . . . . . . . . . 289

7.41 Converting DBpedia link structure to a tree (Nakayama et al. 2007) . . . 294

8.1 Cohesion and separation of data points in the input types . . . . . . . . . 318

8.2 Identifying important segments in the trajectories (Hsu et al. 2019) . . . . 319

8.3 Integrating personalisation component into the proposed LBD framework 319

8.4 Proposal for personalised trajectory pattern mining by adapting the pro-
posed LBD models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

8.5 Proposal for cross-domain collaboration recommendation by adapting the
proposed LBD models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321



List of Tables

1.1 LBD terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Procedural differences between systematic reviews and traditional reviews 18

2.2 Statistics of the article retrieval process . . . . . . . . . . . . . . . . . . . 24

2.3 LBD tools and their main computational techniques . . . . . . . . . . . . 37

2.4 Domains in which LBD experiments have been conducted . . . . . . . . . 42

2.5 Level of generalisability of the existing LBD literature . . . . . . . . . . . 43

2.6 Top cited papers in LBD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Top cited recent papers (2016-present) . . . . . . . . . . . . . . . . . . . . 45

2.8 Top authors in LBD research . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.9 Statistics of the article retrieval process . . . . . . . . . . . . . . . . . . . 53

2.10 Replicated discoveries in the LBD literature . . . . . . . . . . . . . . . . . 66

2.11 Domain-dependency of the evaluation techniques . . . . . . . . . . . . . . 70

2.12 Quantitative measures used in the LBD literature . . . . . . . . . . . . . . 71

3.1 Summary of the datasets used in the experiments . . . . . . . . . . . . . . 81

3.2 Assessing the suitability of the popular evaluation methods in LBD . . . . 85

3.3 Time-slicing setting of the golden test cases . . . . . . . . . . . . . . . . . 87

3.4 Time-slicing setup used in Chapters 5 and 6 . . . . . . . . . . . . . . . . . 88

3.5 Summary of baseline models . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1 Mapping to the Optimal Foraging Theory (OFT) . . . . . . . . . . . . . . 116

4.2 Selected input type variants . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Assessing IR of the input types . . . . . . . . . . . . . . . . . . . . . . . . 129

4.4 Assessing intrigue IR of the input types . . . . . . . . . . . . . . . . . . . 130

4.5 Assessing average intrigue score of the input types . . . . . . . . . . . . . 131

5.1 Parameters of semantic shift measures . . . . . . . . . . . . . . . . . . . . 178

5.2 Precision@k results for FO-RD test case . . . . . . . . . . . . . . . . . . . 179

5.3 Precision@k results for MG-MIG test case . . . . . . . . . . . . . . . . . . 180

5.4 Precision@k results for IGF1-ARG test case . . . . . . . . . . . . . . . . . 180

5.5 Precision@k results for AD-INN test case . . . . . . . . . . . . . . . . . . 181

5.6 Precision@k results for SZ-PA2 test case . . . . . . . . . . . . . . . . . . . 181

5.7 Classification results for FO-RD test case . . . . . . . . . . . . . . . . . . 191

5.8 Classification results for MG-MIG test case . . . . . . . . . . . . . . . . . 195

5.9 Classification results for IGF1-ARG test case . . . . . . . . . . . . . . . . 195

5.10 Classification results for AD-INN test case . . . . . . . . . . . . . . . . . . 195

5.11 Classification results for SZ-PA2 test case . . . . . . . . . . . . . . . . . . 195

xx



List of Tables xxi

6.1 Adaptation of the proposed semantic shift measures in the new reuse setting211

6.2 P@k results for FO-RD test case where topic A is RD . . . . . . . . . . . 219

6.3 P@k results for MG-MIG test case where topic A is MIG . . . . . . . . . 219

6.4 P@k results for AD-INN test case where topic A is AD . . . . . . . . . . . 220

6.5 P@k results for SZ-PA2 test case where topic A is SZ . . . . . . . . . . . 220

6.6 P@k results for FO-RD test case using only drugs, where topic A is RD . 224

6.7 P@k results for MG-MIG test case using only drugs, where topic A is MIG224

6.8 P@k results for AD-INN test case using only drugs, where topic A is AD . 225

6.9 P@k results for SZ-PA2 test case using only drugs, where topic A is SZ . 225

6.10 Trajectory combination types used to analyse their performance impact . 233

7.1 Assessing the suitability of DBpedia in a portable LBD framework . . . . 256

7.2 Several predicates from the DBpedia RDF graph on the subject ‘Raynaud
syndrome’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

7.3 Several predicates from the DBpedia RDF graph on the subject ‘Word
embedding’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

7.4 Simplified example demonstrating a sample of category relationships through
the use of ‘skos:broader’ property, up to six hops . . . . . . . . . . . . . . 266

7.5 Topic coverage of local corpora in the golden datasets . . . . . . . . . . . 281

7.6 Qualitative evaluation of synonym coverage . . . . . . . . . . . . . . . . . 290

7.7 Qualitative evaluation of synonym coverage in non-medical settings . . . . 291

7.8 Quantitative evaluation of literature coverage . . . . . . . . . . . . . . . . 292

7.9 Check-tags identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

7.10 Basic statistics on localised DBpedia editions (Lehmann et al. 2015) . . . 294

7.11 Mapping of the main topics from golden datasets to localised DBpedia
resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

7.12 Localised DBpedia resource mapping in the computer science domain . . 296

7.13 Extent to which proposed solutions support portability to new environments298

7.14 Extent to which proposed solutions support portability in terms of asso-
ciated costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

8.1 Summary of the major contributions . . . . . . . . . . . . . . . . . . . . . 314

A.1 MAP@k results for the five golden test cases: FO-RD, MG-MIG, IGF1-
ARG, AD-INN and SZ-PA2 . . . . . . . . . . . . . . . . . . . . . . . . . . 328

B.1 MAP@k results for the four golden test cases . . . . . . . . . . . . . . . . 329

B.2 MAP@k results for the four golden test cases using only drugs . . . . . . 330

C.1 Several predicates from the DBpedia RDF graph on the subject “Pul-
monary hypertension” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

C.2 Several predicates from the DBpedia RDF graph on the subject “Big Five
personality traits” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

C.3 Several predicates from the DBpedia RDF graph on the subject “Bloom’s
taxonomy” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

C.4 Qualitative evaluation of synonym coverage . . . . . . . . . . . . . . . . . 334

C.5 Qualitative evaluation of synonym coverage in non-medical settings . . . . 338



Nomenclature

Acronyms/Abbreviations

LBD Literature-Based Discovery

ML Machine Learning

DNN Deep Neural Network

LSTM Long Short Term Memory

CNN Convolutional Neural Network

DTM Dedicated Trajectory Model

FTM Feature-based Trajectory Model

TAM Trajectory Alignment Model

RDF Resource Description Framework

URI Uniform Resource Identifier

LOD Linked Open Data

W3C World Wide Web Consortium

SPARQL SPARQL Protocol And RDF Query Language

DCTERMS/DCT Dublin Core Metadata Terms

SKOS Simple Knowledge Organization System

Notations

(x1, ..., xn) Ordered list of n pairwise distinct elements (xi)
n
i=1

dbr:x Denoting that x is a DBpedia resource

dbc:x Denoting that x is a DBpedia category

xxii



Chapter 1

Introduction

1.1 Problem Definition

The scientific literature is growing at an unprecedented rate and it is estimated that the

global scientific output doubles every nine years (Bornmann & Mutz 2015). To date,

scientific digital libraries consist of millions of research publications, with thousands of

these being added every day (Masic & Milinovic 2012). For instance, consider MED-

LINE 1, a popular bibliographical database. It contains more than 26 million journal

articles, mainly in the fields of life sciences and biomedicine (Guo et al. 2020, Jha et al.

2018). The MEDLINE database is updated with nearly 2000-4000 scientific papers on a

daily basis (Masic & Milinovic 2012, Lu et al. 2015). This enormous growth of scientific

literature and its easy accessibility via World Wide Web (WWW) has opened up mas-

sive opportunities for scientists to explore novel research directions (Jha, Xun, Wang &

Zhang 2019).

However, at the same time, this overwhelming amount of information has created huge

barriers for scientists to make connections with their work from other disciplines (Pratt &

Yetisgen-Yildiz 2003, Cohen & Hersh 2005). It is widely accepted that solutions derived

through interdisciplinary scientific problem solving are more impactful and innovative

than solutions proposed within the same problem domain (Chen 2016, Lavrač et al. 2020,

Tang et al. 2012, Rzhetsky et al. 2015, Kostoff 2002). Nevertheless, this massive influx

of scientific literature has made it extremely difficult for scientists to identify suitable

1https://www.nlm.nih.gov/bsd/medline.html

1

https://www.nlm.nih.gov/bsd/medline.html
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cross-domain topics that complement their own areas of study (Hristovski et al. 2005,

Weeber 2007). More specifically, researchers typically specialise in limited branches of

knowledge. Thus, researchers from each area of academic specialisation only see a part

of the big picture, which often leads to difficulty in identifying complementary cross-

domain topics (Hristovski et al. 2005, Lindsay & Gordon 1999).

Consider a scientist who is interested in exploring novel research directions in dementia.

To construct a scientifically sensible novel research hypothesis, the scientist is required

to analyse the existing and emerging knowledge in the literature and combine the obser-

vations in a creative way to form a hypothesis (Weeber et al. 2005, Brown 2020). At the

time of writing, a simple search in MEDLINE alone for the query ‘dementia’ results in

more than 210,000 scientific articles. Even if the scientist decided only to investigate re-

search published in the past 12 months, MEDLINE would still return more than 13,000

records.

Despite this staggering amount of information, the reading ability of humans has re-

mained the same over the years. In 2012, it was reported that US scientists read 264

papers per year on average, which is similar to the figure recorded in an identical sur-

vey conducted in 2005 (Wang et al. 2019). In light of this sheer volume and the rapid

growth of scientific literature, it is obvious that no one will be able to keep abreast

of all the advancements across the entire body of the literature (Preiss et al. 2015,

Pratt & Yetisgen-Yildiz 2003, Yetisgen-Yildiz 2006). Consequently, potentially valuable

cross-silo linkages in the literature tend to remain unnoticed. This indicates the need

to develop tools that efficiently search knowledge in the literature to assist researchers

in forging novel research hypotheses (Swanson 2008, Smalheiser 2017). In this regard,

novel advances in text summarisation techniques may assist researchers to some extent

by providing them with a high-level overview of the literature (Jha et al. 2018). How-

ever, such tools are not tailored to capture the novel knowledge linkages made between

seemingly distinct knowledge areas in the literature (Jha et al. 2018, Jha, Xun, Wang

& Zhang 2019).

Motivated by this, Literature-Based Discovery (LBD) research focuses on developing

efficient knowledge discovery models that elicit new, implicit knowledge linkages from

existing cross-domain scientific facts (Gopalakrishnan et al. 2019). Given the sheer

volume of scientific knowledge, LBD is becoming an increasingly important tool in the
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research development process. For instance, Arrowsmith (Torvik & Smalheiser 2007),

which was initiated by the pioneers of the LBD discipline and is considered to be the

most popular and well-maintained LBD tool in the discipline (Sebastian et al. 2017a)

has approximately 1200 unique monthly users (Smalheiser et al. 2009). The escalating

benefits that LBD tools offer, as well as their practicality and capacity to accelerate

innovation have attracted more and more research contributions from the text mining

community. Smalheiser, a pioneer of the discipline, defines LBD as follows (Smalheiser

2012):

“LBD refers to a particular type of text mining that seeks to identify nontrivial assertions

that are implicit, and not explicitly stated, within (generally a large body of) documents.”

1.2 Role of Literature-Based Discovery (LBD)

The ultimate goal of LBD research is to bridge undiscovered research gaps in the existing

scientific knowledge to provide impetus to research progress and increase research pro-

ductivity (Jha et al. 2018, Xun et al. 2017). This process will also connect isolated facts

into one interconnected knowledge space by introducing new interdisciplinary research

directions (Palmer & Fenlon 2010, Skeels et al. 2005).

For instance, consider the research collaborations between biology and computer science,

which evoked the revolutionary bioinformatics discipline (Tang et al. 2012). Due to these

cross-domain collaborations, biology tasks such as DNA sequencing and protein structure

modelling (which were originally very time-consuming and expensive) have become more

scalable and affordable (He et al. 2008, Eswar & Sali 2009, Wei & Zou 2016). Similarly,

the field of medical informatics was created from cross-domain collaborations between

medicine and data mining, which undoubtedly had a massive impact on the development

of medicine as a discipline (Tang et al. 2012). In essence, interdisciplinary scientific

problem solving has a huge influence on society (Tang et al. 2012). Thus, insights

derived through LBD models for such cross-domain research directions are becoming

increasingly important (Chen 2016).

LBD was developed as a research field based on the ground-breaking studies of Swan-

son since 1986. These studies demonstrated the possibility of detecting undiscovered

cross-silo knowledge in the literature (Swanson 1986, 1988). The underlying notion of



Introduction 4

Figure 1.1: Schematic overview of the LBD setting

Table 1.1: LBD terminology

Component Alternative Terminology

Topic A Start topic/concept, Source topic/concept

A-literature Start literature, Source domain

Topic C Target topic/concept

C-literature Target literature/domain

Conceptual
bridges

B-concepts, Intermediate concepts, Novel knowledge bridges,
Novel knowledge linkages

Swanson’s work is that within the scientific literature, there exist complementary and

non-interactive structures that can lead to interesting and novel discoveries (Maclean &

Seltzer 2012, Hu et al. 2006). As such important linkages are not indexed or cross-cited;

they may not be accessible through mere customary methods of keyword and citation

searching, and, thus require a more detailed and systematic knowledge discovery process,

as in LBD (Lindsay & Gordon 1999).

For instance, consider two disjointed topics of interest A and C (see Figure 1.1); a

therapeutic substance (e.g., fish oil) and a disease (e.g., Raynaud’s disease), where the

objective of the LBD process is to explore novel ways to meaningfully connect these two

disjointed areas of knowledge (e.g., blood viscosity, as illustrated in Figure 1.1) (Jha et al.

2018). The most critical characteristic of LBD models is their ability to identify novel

cross-silo knowledge, even if the articles in the two domains A and C have not cited

or co-cited each other. This aspect of LBD ensures that it is able to detect knowledge

bridges between seemingly uncorrelated pieces of information (Swanson 1986).

Table 1.1 summarises the terminology used in connection with the LBD setting illus-

trated in Figure 1.1. The rest of the thesis utilises the terminology outlined in Table 1.1

interchangeably to denote each of the main components of the LBD setting.
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1.3 Research Context and Objectives

The problem of eliciting novel knowledge from unstructured text started gaining atten-

tion following the publications of Swanson’s seminal studies since 1986, as discussed in

Section 1.2. Even though Swanson’s initial studies laid the groundwork for the discipline,

the knowledge synthesis method underlying his LBD process was labour-intensive and

time-consuming (Jha et al. 2018). Since then, different computational models were pro-

posed by the LBD community to facilitate the knowledge discovery process in a more

automated manner (Smalheiser 2017, Sebastian et al. 2017a, Henry & McInnes 2017,

Gopalakrishnan et al. 2019, Cohen & Hersh 2005).

Despite the significant progress in the field of LBD over the past few decades, there

are several open research issues and technical shortcomings in the discipline that this

thesis intends to address. This section discusses five main research objectives, which were

proposed with respect to these identified research deficiencies in the LBD literature. The

main aim of this thesis is to enhance the existing understanding of the LBD workflow

in order to enable its widespread applicability.

1.3.1 Main Research Objective 1

To integrate a large-scale systematic literature review procedure of LBD studies, in order

to address the limitations in the existing traditional narrative-based LBD reviews, while

shedding light on novel focus areas in the LBD workflow.

Problem Setting

Literature reviews are an essential part of any research discipline, since they involve

assessing and analysing pertinent literature as well as providing valuable insights for

future research. Even though several literature reviews have been published on the sub-

ject of LBD (Gopalakrishnan et al. 2019, Henry & McInnes 2017, Sebastian et al. 2017a,

Smalheiser 2017, Ahmed 2016, Smalheiser 2012, Kostoff et al. 2007, Bekhuis 2006, Ganiz

et al. 2005, Weeber et al. 2005, Davies 1989), these follow the traditional narrative form

of collecting, analysing and synthesising the literature. Despite the valuable contribu-

tions of these LBD reviews in shaping the field of LBD and its position today in the text
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mining community, these traditional narrative-based LBD reviews suffer from several

limitations, including their restrictive scope and limited focus points. For instance, it

is evident that none of the existing LBD reviews focuses on the LBD workflow (i.e.,

the input component, discovery component, output component, evaluation component,

and the overall process - including reusability and portability) as a whole. Furthermore,

most of the existing LBD reviews have restricted their scope to medical-related LBD

studies. To strengthen the existing understanding of the LBD workflow and to promote

its widespread applicability, this thesis conducts a large-scale, domain-independent liter-

ature synthesis with a broader, more comprehensive scope than that of existing reviews.

Following this notion, conducting a systematic literature review (a well-known research

method with multiple strengths, including transparency, clarity, equality, accessibility,

impartial inclusive coverage, replicability, objectivity, scientific rigour, focus and unity

(Frangieh & Yaacoub 2017, Boell & Cecez-Kecmanovic 2015)) is particularly critical in

the LBD field for two main reasons. Firstly, there are now almost 35 years of published

LBD research; secondly, the field is continuously growing and evolving. As such, there

is ample scope for a systematic literature review of the subject.

Systematic literature reviews play a pivotal role in any academic discipline since they

are considered the gold standard among reviews (Snyder 2019). They follow a rigorous

and transparent approach to ensure the future replicability of results through the use

of a clear systematic review protocol, and to minimise any bias in results by focusing

on empirical evidence rather than preconceived knowledge (Mallett et al. 2012). While

addressing the limitations of traditional narrative-based reviews in the LBD discipline

(such as restrictive scope and limited focus points), this systematic literature review

also aims to shed light on several new areas that future LBD research could contribute

towards enabling its widespread applicability.

1.3.2 Main Research Objective 2

To investigate the input component of the LBD workflow in order to deduce the suitability

of different input types in the LBD process.



Introduction 7

Problem Setting

The input is one of the most critical components in the LBD workflow as the entire

knowledge representation and reasoning of the discovery process relies on it (Henry &

McInnes 2017). As with other text mining tasks, low-quality input will impact the

LBD results and will ultimately impact decisions that are made based on those results

(Corrales et al. 2015). However, there is no consistent selection of the LBD input and

different studies have picked different input types (Henry & McInnes 2017). These

include title only (Swanson & Smalheiser 1997), title and abstract (Sebastian et al.

2017b), full-text (Lever et al. 2018), keywords (Jha et al. 2018), and highly specialised

input resources such as clinical patient records (Symonds, Bruza & Sitbon 2014), and

case reports (Smalheiser et al. 2015).

Among these input types, title and abstract is the most common selection. However,

LBD pioneers have consistently adopted the title of the research publications as the LBD

input since the inception of the field (Swanson et al. 2006, Swanson & Smalheiser 1999).

Exemplifying this practice, Arrowsmith, the most popular and well-maintained LBD tool

in the field (Sebastian et al. 2017a), only supports the analysis of titles when making

predictions (Torvik & Smalheiser 2007). Some studies argue that using title/abstract

may introduce noise and be computationally expensive, thereby using a special form of

keywords called MeSH (Medical Subject Headings)2 as their input (Jha et al. 2018).

Despite these discussions in the LBD literature, to the best of our knowledge, no previous

LBD research has explicitly attempted to perform any sort of assessment to verify these

conclusions. Considering the cruciality of the input component in the LBD process, it

is vital to understand the role of input types in the LBD workflow, as well as their

impact on the overall knowledge discovery process. Such explorations will allow for the

construction of better LBD models in the future. Thus, this thesis explores potential

definitions to assist in the comprehension of different LBD input types to establish the

first steps towards understanding the input component in a generalisable manner.

2https://www.nlm.nih.gov/mesh/meshhome.html

https://www.nlm.nih.gov/mesh/meshhome.html
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1.3.3 Main Research Objective 3

To enhance the discovery component of the LBD workflow using fine-grained diachronic

semantic inferences by conjoining global semantic relationships with the temporal dimen-

sion to enrich the typical static cues used in the LBD literature.

Problem Setting

Notwithstanding the significant progress in LBD research over the last few decades, al-

most all prior LBD studies have neglected the importance of scrutinising the temporal

evolution of scientific topics in digital libraries (Jha et al. 2018, Jha, Xun, Wang & Zhang

2019). Consequently, these LBD studies have mainly relied on a static snapshot of liter-

ature (i.e., assuming that the knowledge in the domain remains static) to discover novel

knowledge linkages. This may be limiting, as scientific knowledge evolves continuously

with the constant addition of new information from on-going research (Jha et al. 2018,

Jha, Xun, Wang & Zhang 2019).

Therefore, integrating the dynamic nature of knowledge into the LBD workflow may

provide rich cues to further enhance the identification of novel knowledge linkages in

the scientific literature. More recently, a few studies have attempted to mitigate the

assumption of static domains made in previous LBD studies through the infusion of

temporal information of scientific topics into the LBD process (Jha et al. 2018, Jha, Xun,

Wang & Zhang 2019, Xun et al. 2017). Even though these few recent studies undoubtedly

ameliorate the typical knowledge discovery process, the temporal analysis component of

these studies is fairly shallow. For example, Xun et al. (2017) only considered the first

and last values of the time series when measuring the temporal trend of a scientific

topic neglecting the subtle patterns that could reside in the time series as a whole.

Nevertheless, a fine-grained analysis of the time series may provide further promising

cues towards discovering the novel knowledge linkages with high precision. With this in

mind, the current thesis explores the need to perform a circumstantial temporal analysis

in the context of LBD, in order to capture novel cross-silo connections. Such an analysis,

may represent an improvement over static cues (employed in almost all previous LBD

studies) and shallow temporal cues (employed in emerging LBD studies that incorporate

temporal information into the LBD workflow (Xun et al. 2017)).
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Despite the wide spectrum of techniques employed to enhance the predictions of the

LBD process over the last few decades, this thesis also observes that most of these

previous LBD studies rely on one (or at most two to three) characteristic(s) to elicit

new knowledge (Sebastian et al. 2017a, Henry & McInnes 2017). For instance, in a

recent LBD study, Jha et al. (2018) have only considered two characteristics, namely

global transformation and local transformation to discover potential novel linkages. The

use of one or a few characteristic(s) to define novel knowledge linkages may be limiting

for two main reasons.

Firstly, due to the complexity of natural language usage (that causes intricate structures

in the scientific literature), identification of novel knowledge linkages using one (or a

handful) of characteristic(s) may not be sufficient. In other words, for a knowledge

linkage to be labelled a potential novel knowledge linkage, it may need to fulfil multiple

factors or characteristics. Therefore, the use of one or limited characteristics may inhibit

the model’s ability to discover novel knowledge linkages more precisely.

Secondly, in the theoretical LBD literature, it has been identified that novel knowledge

can reside in the literature in different forms. For example, Davies (1989) identified five

forms of novel knowledge in the ‘Fish oil-Raynaud’s disease’ and ‘Migraine-Magnesium’

test cases. Therefore, reliance on one or limited characteristics in the knowledge dis-

covery process may hinder the model’s ability to identify novel knowledge linkages in

different forms. It may also result in situations where the LBD model may dispropor-

tionately be picking only one or limited forms of novel knowledge based on the single

or limited characteristics utilised in the LBD workflow. With this problem in mind,

this thesis attempts to verify the potential benefits of defining multiple meaningful char-

acteristics in the knowledge discovery process, with the goal of further enhancing the

prediction performance of novel knowledge linkages.

Most prior LBD research relies on a query-specific local corpus to discover potential

new knowledge in the LBD process (Jha et al. 2018). Otherwise stated, to capture

the interactions of scientific topics, they focus on cues at the local scale. This may be

limiting, since a local-scale analysis may not necessarily convey a detailed picture of

scientific topic interactions. For example, when analysing ‘COVID-19’ literature in the

LBD workflow, it may be important to identify how scientific topics in the COVID-19
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literature have interacted with other related topics such as ‘SARS’. However, a query-

specific local corpus could fail to convey such implicit interactions that may require

for complex semantic deductions. Thus, this thesis intends to view the interactions of

the scientific topics through a wider lens by incorporating the global picture of topic

interactions in the LBD workflow.

Bearing in mind, the aforementioned research deficiencies observed in the discovery

component of the LBD workflow, this thesis attempts to make the most of these neglected

components in the prior LBD studies by accommodating ideas involving the temporal

dimension of the scientific literature and large-scale feature analysis using the global

picture of topic interactions to enhance its discovery component.

1.3.4 Main Research Objective 4

To validate the predictive power of the proposed LBD models through reuse research, with

the goal of providing broader community benefits.

Problem Setting

Reuse research assists in creatively uncovering novel application areas for the proposed

models (in contrast to the LBD models, which cater to one single problem), while also

increasing their dependability (or reliability) (Ahmaro et al. 2014). Therefore, integrat-

ing reusability into the LBD workflow (which involves identifying new applications of

LBD models using proper evaluations) will provide an extended platform to further ver-

ify the predictive performances of such models. Furthermore, ensuring reusability will

facilitate the marking of new research directions in order to further improve existing

LBD models as well as expanding the potential benefits of these models to the commu-

nity. Contemplating the positive impact and numerous benefits of reuse research on the

proposed LBD models (in contrast to LBD models specialised to a single problem), this

thesis explores potential application areas in validating and comparing the predictive

effects of the LBD models proposed as part of the main research objective 3.
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1.3.5 Main Research Objective 5

To demonstrate the portability of the LBD workflow by proposing an interdisciplinary (or

generalisable) LBD framework to assist scientific problem solving in a domain-agnostic

manner.

Problem Setting

Even though LBD plays a critical role in speeding up innovation and research produc-

tivity regardless of the domain, most existing LBD research efforts suffer from a major

research deficiency which is lack of portability of their LBD models. The main reason

for this is that their LBD models depend on domain-specific knowledge resources, which

hinders their applicability in other domains. More specifically, to date, LBD research

has primarily been restricted to the medical domain, relying on semantic inferences that

are made using medicine-specific knowledge resources (e.g., UMLS, MeSH and SemRep)

(Henry & McInnes 2017, Sebastian et al. 2017a). The enormous growth of scientific lit-

erature (i.e., the ‘data deluge’ (Khan et al. 2017)) has imposed challenges on researchers

in almost every discipline; thus, those with stakes in LBD models can be found in almost

every discipline. Therefore, the reliance on semantic inferences made using medicine-

specific knowledge resources restricts the benefits that LBD could offer to the researchers

outside the medical domain (Hui & Lau 2019).

Developing an interdisciplinary (or generalisable) LBD framework that could easily be

applied to general scientific problem solving is important not only in order to equip a

large and diverse community with the tools of LBD, but also to enhance LBD research

outside the medical domain (where it is still in a nascent stage) (Hui & Lau 2019).

To the best of our knowledge, no previous LBD studies have attempted to fulfil this

research deficiency. Motivated by the broader opportunities that a portable LBD frame-

work could offer to expand the existing constrained environments of LBD models, this

thesis puts forward the first steps toward achieving portability in the LBD workflow,

by proposing a highly cost-efficient and easily pluggable interdisciplinary (or generalis-

able) LBD framework. While enabling the widespread applicability of the LBD workflow,

this proposed portable framework also alleviates one of the most often-cited challenges
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observed in non-medical LBD studies, which is the unavailability of a comprehensive

knowledge base (Hui & Lau 2019).

1.4 New Contributions in the LBD Discipline

This section provides a high-level overview of new research contributions made through

the thesis. More details on these new research contributions (along with the remaining

major contributions) are outlined methodically at the end of each chapter and discussed

in detail in Chapter 8.

• Integrating a systematic literature procedure into the LBD discipline to address the

limitations of traditional narrative-based LBD reviews, while also shedding light on

novel focus points in the field.

• Exploring the suitability of different input types in the LBD workflow by quantitatively

assessing and comparing them by taking inspiration from the subjective understanding

of information and optimality theory.

• Integrating a comprehensive temporal component into the LBD workflow to perform

a nuanced analysis of semantically infused temporal signals.

• Introducing patterns based on relativity by integrating a trajectory binding method,

taking inspiration from the molecular docking engine used in structured drug design.

• Proposing an interdisciplinary (or generalisable) LBD framework by circumventing ex-

isting domain-specific impediments to facilitate cross-domain and cross-lingual knowl-

edge discovery with little or no cost.

• Integrating the vast range of knowledge encoded in DBpedia into the LBD workflow

to build a robust platform from which to facilitate the formation of deep semantic

inferences in a cross-domain and cross-lingual manner.
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Figure 1.2: Dependency relations among chapters

1.5 Thesis Organisation

This section outlines the remaining main chapters of the thesis with a brief summary

of their content. The dependency relations of these chapters are depicted in Figure 1.2

that could also be used as a guide to reading the thesis.

• Chapter 2 (Systematic Literature Review): Chapter 2 reviews the existing LBD lit-

erature by mainly considering on areas related to general overview, methodology, sta-

tistical analysis, and components of the LBD workflow (i.e., input component, process

component, output component and evaluation component). This thesis adheres to a

systematic review protocol to collect, appraise and synthesise the literature to answer

clearly formulated research questions. The purpose of following this protocol is to

establish a broad and comprehensive evidence base which can be used to form con-

clusions that serve as the main theoretical foundation for the remaining chapters of

the thesis.
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• Chapter 3 (Research Design): The intention of this chapter is to provide details on

the underlying design considerations that will be utilised in the studies performed in

the ensuing chapters. This chapter opens up by outlining the scope of this research

and the components of the LBD workflow which correspond to the defined research

scope. Subsequently, the experimental setups are discussed with a focus on the selected

datasets and test cases. This is followed by a discussion on current challenges in

LBD evaluation and how this thesis selected the most suited evaluation technique by

outlining their advantages and disadvantages. The latter part of this chapter describes

the theoretical foundation of the machine learning framework adopted in Chapters 5

and 6, while also discussing the evaluation metrics and baselines which were selected

to facilitate performance comparisons.

• Chapter 4 (Input Types): This chapter is dedicated to establishing the first steps in

investigating the input component of the LBD process, in order to understand the

role of LBD input types and their contributions to the overall knowledge discovery

process. More specifically, this chapter looks closely at the information richness of

different LBD input types in the information retrieval cycle of the LBD workflow. The

main aim of this analysis is to ascertain the suitability of different input types for the

LBD framework, which will ideally serve as a guide towards developing better LBD

models in the future. This analysis entails quantitatively measuring the information

richness of different LBD input types using a subjective understanding of information

(Tague-Sutcliffe 1992), while mapping the major ingredients of optimal foraging theory

(Stephens & Krebs 1986) with the information retrieval cycle of the LBD workflow.

• Chapter 5 (Semantic Evolution): Chapter 5 concentrates on intermingling modern

word embedding techniques with the temporal dimension to enhance the discovery

component of the LBD workflow. This chapter discusses how the thesis disentan-

gles multiple types of semantic shifts from diachronic word embeddings, in order to

better understand the semantic evolution of scientific topics. More specifically, this

chapter focuses on three broader categories of diachronic semantic inferences, namely

individual, pairwise and neighbourhood to perform a circumstantial analysis of the

semantically infused temporal trajectories of the scientific topics. The holistic integra-

tion of vector semantics with temporally charged semantic deductions substantiates
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the efficacy of the proposed LBD models as a means of discovering new knowledge

linkages.

• Chapter 6 (Reusability): Chapter 6 provides a distinctive perspective to the proposed

LBD models by validating their reusability in a timely reuse application area. Since

this study follows a method similar to opportunistic reuse (i.e., gluing together pieces

of components constructed for distinct problem setting(s) to create new capabilities),

adaptations are made to the selected reuse setting using a methodical reuse plan.

The experimental results of this reuse research corroborate the vertical reuse of the

proposed LBD models, further verifying their robust predictive performances, as well

as the positive influence of the complementary integration of vector semantics with

the temporal dimension.

• Chapter 7 (Portability): The purpose of Chapter 7 is to describe the portability

research performed as part of this thesis. To this end, this chapter describes how

the thesis leverages the revolutionary opportunities offered through Semantic Web

(more specifically, Linked Open Data (LOD)) to alleviate the domain-dependent im-

pediments that are typical of the LBD workflow, which restrict the LBD models’

applicability to limited problems or domains. Subsequently, this chapter investigates

how well the proposed solutions meet the ultimate research objective of developing

an interdisciplinary (or generalisable) LBD framework and the costs involved in the

process of portability, in order to assess the cost-effectiveness of the proposed portable

framework.

• Chapter 8 (Conclusions and Future Work): Chapter 8 concludes the thesis with a

detailed reflection on the solutions proposed to overcome the identified research issues

in the LBD discipline. More specifically, it restates the main research objectives of

the thesis, provides a summary of studies performed and a detailed discussion on how

these studies contribute to the field of LBD research. The latter section of this chapter

describes the proposed research directions for the future considering each of the main

objectives of the thesis. Lastly, the purpose of this thesis and how it contributes

towards enhancing the existing understanding of the LBD workflow are discussed.
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Systematic Literature Review

2.1 Introduction

With the seemingly boundless growth of scientific literature, researchers struggle to deal

with this amount of knowledge that ultimately has led to knowledge fragmentation (Liu

& Rastegar-Mojarad 2016). Consequently, useful and interesting knowledge linkages

among these fragmented knowledge isolations remain unnoticed (Pratt & Yetisgen-Yildiz

2003, Choudhury et al. 2020). Classical techniques, such as computer-aided literature

searches or even recent advancements in text summarisation, may assist researchers to

some extent by providing them with a high-level overview of the discipline. Nevertheless,

such tools or techniques are not tailored towards capturing novel knowledge linkages

between seemingly distinct knowledge fragments in the literature (Jha, Xun, Wang &

Zhang 2019). Literature-Based Discovery (LBD) aims to elicit latent novel knowledge

linkages in digital libraries by logically integrating complementary and non-interactive

scientific literature. Discovering such meaningful novel knowledge linkages contributes

to stimulating human creativity, which increases scientific productivity and research

innovation (Jha et al. 2018, Xun et al. 2017).

The LBD research progressed through the groundbreaking studies of Swanson since

1986. These studies demonstrated the possibility of detecting undiscovered knowledge

from the literature (Swanson 1986). In his first LBD study, Swanson discovered that

fish oil might serve as a treatment for Raynaud’s disease. This deduction was made by

logically integrating the circulatory effects observed in the fish oil literature with the

16
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literature on Raynaud’s disease (Swanson 1986). This implicit connection that Swanson

identified through his unique bibliographic analysis was later supported by evidence from

laboratory experiments (Kastrin & Hristovski 2020). Swanson labelled his initial finding

undiscovered public knowledge - public, since every piece of knowledge required for his

knowledge synthesis already existed publicly in the literature, and undiscovered because

no researcher had previously brought these pieces together to form such a hypothesis

(Bekhuis 2006, Garten et al. 2010). Later, Swanson further verified the importance of de-

tecting such undiscovered knowledge through a series of other LBD discoveries (Swanson

1988, 1990a, Smalheiser & Swanson 1996, 1998, Swanson & Smalheiser 1996). Swanson’s

seminal discoveries demonstrate the potential for detecting undiscovered public knowl-

edge that could provide valuable insights and lead to the formation of novel scientific

hypotheses (Jha et al. 2018).

While Swanson’s LBD discoveries form the groundwork in the discipline, the underlying

knowledge synthesis processes that he followed to elicit these implicit novel knowledge

linkages were both time and labour intensive (Jha, Xun, Wang & Zhang 2019). There-

fore, different computational models were proposed in the LBD discipline to facilitate

the knowledge discovery process in a more automated manner. While the initial com-

putational methods in the LBD field were based purely on statistical techniques, with

time, a wide spectrum of techniques was introduced to the field, facilitating the further

automation of knowledge synthesis and making LBD knowledge discovery more efficient

(Sebastian et al. 2017a, Henry & McInnes 2017). More specifically, LBD research focuses

on developing novel knowledge discovery models that elicit such implicit linkages from

the existing scientific knowledge in the literature (Xun et al. 2017).

While several traditional narrative-based review papers on LBD have been published

(Gopalakrishnan et al. 2019, Henry & McInnes 2017, Sebastian et al. 2017a, Smalheiser

2017, Ahmed 2016, Smalheiser 2012, Kostoff et al. 2007, Bekhuis 2006, Ganiz et al. 2005,

Weeber et al. 2005, Davies 1989), there are no published systematic literature reviews on

LBD. Conducting such a systematic literature review is pivotal to the discipline, due to

its ever-increasing growth of research contributions across 35 years of study. With this in

mind, the current thesis performs a large-scale systematic literature review that circum-

vents the limitations of traditional narrative-based literature reviews such as restrictive

scope and limited focus points. Systematic reviews employ a rigorous, transparent, well-

defined as well as reproducible approach to synthesise the literature in a manner designed
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Table 2.1: Procedural differences between systematic reviews and traditional reviews

Component Systematic Review Traditional Review

Protocol Includes an explicit and detailed
review protocol

No protocol

Focus Clear objectives are identified; uses
focused research questions

Covers several aspects of the
topics, including context and
current thinking, often with
no specific research questions

Inclusion/ ex-
clusion criteria

Inclusion and exclusion criteria are
identified prior to conducting the
review

No criteria specified

Search strategy Comprehensive, reproducible and
systematic search is conducted us-
ing several specified databases with
precise search terms. There is
an attempt to identify all relevant
publications on the topic

Search strategy is not men-
tioned; papers are found us-
ing a random process. Usu-
ally involves few literature
databases

Process of select-
ing articles

Clear and explicit selection process
is performed using explicit inclu-
sion and exclusion criteria

No details on the selection
process

Results and data
synthesis

Clear conclusions based on high-
quality evidence. The findings of
the review are unbiased, balanced
and reproducible

May be influenced by the re-
viewer’s needs, beliefs and
theories

to minimise bias (Snyder 2019, Kitchenham et al. 2009). The following key principles

of systematic literature reviews can be considered their main strengths: transparency,

clarity, equality, accessibility, impartial inclusive coverage, replicability, objectivity, sci-

entific rigour, focus and unity. Such attributes are lacking in the traditional reviews

(Frangieh & Yaacoub 2017, Boell & Cecez-Kecmanovic 2015, Pittaway & Cope 2007).

Table 2.1 outlines the procedural differences between systematic literature reviews and

traditional narrative-based reviews (Keele 2007, Cook et al. 1997, Egger & Smith 1997,

Khan et al. 2003, Snyder 2019).

2.2 Research Questions of the Systematic Literature Re-

view

The research questions designed as part of the systematic literature procedure (i.e., the

focus component in Table 2.1) are also compatible with the main research objectives of

this thesis, as mentioned below.
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• Main Research Objective 2: Since main objective 2 of this thesis (discussed in

Section 1.3.2) is related to LBD input types the following two research questions were

defined to better understand the input component of the LBD workflow.

1. What input types are used in the knowledge discovery process of the LBD work-

flow?

2. What data sources are used in LBD research to extract these identified input

types?

• Main Research Objective 3: Since main objective 3 of this thesis (discussed in

Section 1.3.3) is related to the knowledge discovery process of the LBD workflow, the

following nine research questions were defined in order to identify potential directions

in enhancing the current understanding of the discovery component.

3. What computational techniques are used in LBD research?

4. What topics/central themes emerged over time in the LBD discipline?

5. What filtering techniques are used in the LBD process?

6. What ranking/thresholding mechanisms are used in the LBD process?

7. What is the evidence that LBD generates discovery?

8. What are the LBD evaluation types and how suitable are they to non-medical

domains?

9. What quantitative measurements are used to assess the effectiveness of the re-

sults?

10. What visualisation techniques are used to display results in LBD research?

11. What are the trends in LBD research in terms of publications over the years,

top-cited papers and top authors?

• Main Research Objective 4: Since main objective 4 of this thesis (discussed in Sec-

tion 1.3.4) is related to reusability in the LBD context, the following research question

was designed to better understand potential application areas for LBD models.

12. What are the applications of LBD research?
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• Main Research Objective 5: Since main objective 5 of this thesis (discussed in

Section 1.3.5) is related to portability of the LBD workflow, the following three re-

search questions were designed to better understand the potential reasons that restrict

the ability of LBD models to serve non-medical domains.

13. What domains are considered in LBD research, and what are the levels of gen-

eralisability for these domains?

14. What domain-independent and domain-dependent resources are utilised in LBD

research?

15. What are the main LBD tools available, and what are their supported domains?

2.3 Findings of the Systematic Literature Review

Since this thesis follows the hybrid publications-narrative format, the findings of the

systematic literature review are presented methodically in the following two publications,

which are enclosed in this chapter.

• Publication I:

Title: A Systematic Review on Literature-based Discovery: General Overview, Method-

ology, & Statistical Analysis

Authors: Menasha Thilakaratne, Katrina Falkner, Thushari Atapattu

Venue: ACM Computing Surveys 2019 (CORE Rank: A*, Impact Factor: 6.131)

• Publication II:

Title: A Systematic Review on Literature-based Discovery Workflow

Authors: Menasha Thilakaratne, Katrina Falkner, Thushari Atapattu

Venue: PeerJ-CS 2019 (Impact Factor: 3.09)



Systematic Literature Review 21

Statement of Authorship
Title of Paper  

Publication Status Published Accepted for Publication
 

Submitted for Publication
Unpublished and Unsubmitted w ork w ritten in 
manuscript style  

Publication Details  

Principal Author 

Name of Principal Author (Candidate)  

Contribution to the Paper 

 

 

 

Overall percentage (%)  

Certification: This paper reports on original research I conducted during the period of my Higher Degree by 
Research candidature and is not subject to any obligations or contractual agreements with a 
third party that would constrain its inclusion in this thesis. I am the primary author of this paper. 

Signature  Date  

Co-Author Contributions 
By signing the Statement of Authorship, each author certifies that: 

i. the candidate’s stated contribution to the publication is accurate (as detailed above); 

ii. permission is granted for the candidate in include the publication in the thesis; and 

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.  

 

Name of Co-Author  

Contribution to the Paper  

Signature  Date  

 

Name of Co-Author  

Contribution to the Paper  

Signature  Date  

Please cut and paste additional co-author panels

 

 

 

Menasha Thilakaratne

Conceptualisation of work (planned the systematic literature review), 
its realisation (research analysis), and documentation (wrote manuscript).
Acted as the corresponding author.

A Systematic Review on Literature-based Discovery: General Overview, 
Methodology, & Statistical Analysis

Professor Katrina Falkner

Dr Thushari Atapattu

Provided ideas, Evaluated review protocol, Supervised development of work, 
Commented on manuscript versions.

Provided ideas, Evaluated review protocol, Supervised development of work, 
Commented on manuscript versions.

85%

Thilakaratne, M., Falkner, K. & Atapattu, T. (2019), 'A Systematic Review 
on Literature-based Discovery: General Overview, Methodology, & Statistical 
Analysis', ACM Computing Surveys 52(6).

02/11/2020

3/11/2020

6 November 2020



Systematic Literature Review 22

2.4 Publication I

A Systematic Review on Literature-Based Discovery: Gen-

eral Overview, Methodology, & Statistical Analysis

The vast nature of scientific publications brings out the importance of Literature-Based Discovery (LBD) research
that is highly beneficial to accelerate knowledge acquisition and the research development process. LBD is a
knowledge discovery workflow that automatically detects significant, implicit knowledge associations hidden in
fragmented knowledge areas by analysing the existing scientific literature. Therefore, the LBD output not only
assists in formulating scientifically sensible novel research hypotheses, but also encourages the development of
cross-disciplinary research. In this systematic review, we provide an in-depth analysis of the computational
techniques used in the LBD process using a novel, up-to-date and detailed classification. Moreover, we also
summarise the key milestones of the discipline through a timeline of topics. To provide a general overview of
the discipline, the review outlines LBD validation checks, major LBD tools, application areas, domains and
generalisability of LBD methodologies. We also outline the insights gathered through our statistical analysis
that capture the trends in the LBD literature. To conclude, we discuss the prevailing research deficiencies in the
discipline by highlighting the challenges and opportunities for future LBD research.

i Introduction

Formulation of scientifically sensible novel research hypotheses requires a comprehensive
analysis of the existing domain-specific knowledge presented in the literature. However,
the massive influx of research publications (Cheadle et al. 2017) makes the hypotheses
generation process extremely difficult and time-consuming even in the narrow speciali-
sation of a scientist. Developing a tool that assists in eliciting novel knowledge linkages
can significantly reduce the time and the effort the scientists must put in to manually ar-
ticulating and validating research hypotheses, which will ultimately accelerate scientific
productivity and research innovation. In this regard, Literature-Based Discovery (LBD)
research is highly beneficial as it aims to detect non-trivial implicit associations in the
literature that have the potential to generate novel research hypotheses (Swanson 2001,
Ganiz et al. 2005, Su & Zhou 2009). A simple definition by Hristovski et al. (2015b) is;
“Literature-Based Discovery (LBD) generates discoveries, or hypotheses, by combining
what is already known in the literature”.

Swanson (the pioneer of the LBD discipline) demonstrated the importance of detecting
such non-apparent associations between disjointed knowledge fragments by manually
discovering the role of fish oil in preventing Raynaud’s disease (Swanson 1986). He
followed a simple procedure, namely the ABC model to make this discovery. The ABC
model is built on the assumption that ‘if concept A is associated with a concept B and
that concept B is associated with another concept C, then concept A is associated with
concept C, where the B -concept denotes the association/relationship between the two
concepts A and C ’. Thus, concept A can be treated as the starting concept/term, B
concept(s) as the intermediate association(s), and concept C as the target concept/term.
Later on, Swanson followed the same process in unrevealing the hidden associations be-
tween Migraine↔Magnesium literature (Swanson 1988). Subsequently, his observations
were proven from laboratory experiments that demonstrate the validity of his thinking
process (Ramadan et al. 1989). These two discoveries of Swanson formed the ground-
work of the LBD discipline. Even though the ABC model is simple, it is still widely
used as a discovery framework of the existing LBD studies (Sebastian et al. 2017a).

This model has two variants termed open discovery and closed discovery. In open dis-
covery, the user requires to specify a topic of interest (concept A), and the LBD process
identifies the B and C concepts, respectively by exploring the scientific literature. On
the contrary, closed discovery requires the user to input a pair of topics (concepts A and
C ) and the LBD process detects the implicit relationships between these two concepts
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(B concepts). Later, various other discovery frameworks were introduced into the field,
such as the AnC model (Wilkowski et al. 2011b), heterogeneous bibliographic information
network (Sebastian et al. 2017b, 2015), network structures (Ding et al. 2013), outlier de-
tection (Petrič et al. 2012), and analogical reasoning (Mower et al. 2016) to elicit more
complex associations that the ABC model fails to detect (Smalheiser 2017, 2012).

ii Purpose of the Review

Although there have been several literature reviews published in the LBD discipline
over time (Henry & McInnes 2017, Sebastian et al. 2017a, Smalheiser 2017, Ahmed
2016, Smalheiser 2012, Kostoff et al. 2007, Bekhuis 2006, Ganiz et al. 2005, Weeber
et al. 2005, Davies 1989), the field is still lacking a systematic literature review. Different
from the traditional literature reviews, systematic reviews follow a rigorous, transparent,
explicit, and reproducible methodology with a predefined review protocol to minimise
bias in the results. This enables systematic reviews to provide more reliable findings and
conclusions in the discipline (Higgins & Green 2008). With the intention of filling this
gap, we present a large-scale systematic review that critique the research progress in the
LBD discipline in a wide scope. In a nutshell, our major contributions are; 1) being the
first systematic literature review in the LBD discipline, 2) providing novel, up-to-date
and comprehensive classifications to answer our research questions, and 3) reviewing
independently from the domain without only limiting to the medical LBD studies.

iii Research Questions

This review attempts to answer the below-mentioned seven research questions that are
categorised into methodology, general overview, and statistical analysis.

1. LBD Methodology

What computational techniques are used in LBD research?

What topics/central themes emerged over time in the LBD discipline?

2. General Overview

What is the evidence that LBD generates discovery?

What are the main LBD tools available, and what are their supported domains?

What are the applications of LBD research?

What domains are considered in LBD research, and what are the levels of generalis-
ability for these domains?

3. Statistics Analysis

What are the trends in LBD research in terms of publications over the years, top-cited
papers and top authors?

iv Methods

This review follows the typical workflow of systematic literature reviews in computer
science to retrieve and select articles for analysis (Weidt & Silva 2016).
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Table 2.2: Statistics of the article retrieval process

Keyword Web of
Science

Scopus PubMed ACM Digi-
tal Library

IEEE
Xplore

Springer
-Link

Total
Count

Query 1a 161 68 75 15 15 8 342

Query 2b 14 0 4 1 2 1 22

Query 3c 14 0 0 0 0 1 15

References from Henry & McInnes (2017) 96

Total Article count 475

a“literature based discovery” OR “literature based discoveries”
b“literature based knowledge discovery” OR “literature based knowledge discoveries”
c“literature related discovery” OR “literature related discoveries”

iv.1 Article Retrieval Process

We used six keywords and six literature databases to retrieve articles, as summarised in
Table 2.2. The search was performed using title, abstract or keywords depending on the
search options given by the databases. To minimise the risk of losing important articles
that are outside the keywords and the databases used, we also obtained the references
list from the latest LBD review (Henry & McInnes 2017).

iv.2 Article Selection Process

The article types that we considered for the review are only journals and conference
proceedings. We excluded articles that are reviews, book chapters, books, editorials,
keynotes, and lesson learned reports. The language of the articles considered is English.
Our article selection process is comprised of three stages (Weidt & Silva 2016); Stage
1: analyse only title and abstract, Stage 2: analyse introduction and conclusion, and
Stage 3: read complete article and quality checklist. We did not include articles that
are less than or equal to 4 pages in our analysis as they mainly reflect work-in-progress.
However, we included such papers only to answer RQ5, as such papers tend to propose
novel application areas in LBD. Our article selection process resulted in 176 papers,
and for RQ5, we used additional 18 papers. The complete list of articles is available at
https://tinyurl.com/selected-list.

v LBD Methodology

v.1 What computational techniques are used in LBD research?

Even though the early work in LBD was mostly performed manually (Swanson 1986,
1988), over time, different computational techniques were adopted to automate the
knowledge discovery process. In this review, we provide a detailed classification of the
existing LBD techniques, as illustrated in Figure 2.1.

v.1.1 Statistical/Probabilistic/Co-occurrence Models

This section reviews the LBD methodologies that rely on statistical measures to deter-
mine the frequencies/likelihood or co-occurrence patterns of the relationships between
terms. The main disadvantage of solely depending on the techniques in this category is
that they do not consider the semantic aspects of the terms in the knowledge discovery
process. However, distributional semantic models deviate from the remaining techniques

https://tinyurl.com/selected-list
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Figure 2.1: Main computational techniques in LBD

as they also capture the context of the terms (patterns of their positions in the content)
to construct the vector space by adhering to the distributional hypothesis.

Statistical-based Approaches: Statistical approaches often rely on frequencies of
concepts and their statistical distributions to discover implicit knowledge associations
between disjointed literature sets (Swanson & Smalheiser 1997, Lindsay & Gordon 1999,
Gordon & Lindsay 1996, Petric et al. 2014, Petriĕ et al. 2009, Spinak et al. 1999, Work-
man et al. 2016, Ittipanuvat et al. 2012, Gordon et al. 2002, Kibwami & Tutesigensi
2014, Yao et al. 2008). Early studies in the LBD discipline mostly relied on statistical
measures, which can be considered as the most primitive technique used in the literature.

For instance, Swanson & Smalheiser (1997) initiated the automation of the LBD process
by following a simple frequency-based metric of word occurrences to obtain the target
concepts. Subsequently, Gordon & Lindsay (1999, 1996) further extended this work by
using scores such as token frequency, record frequency, term frequency-inverse document
frequency (TF-IDF) and relative frequency. However, these statistical approaches tend
to pick terms that frequently co-occur. Thus, they fail to identify important associations
that are formed using less frequent words. As a result, Petric et al. (2014, 2009, 2007)
exploited the notion of rarity in their LBD process. That is, if a concept rarely appears
in a given set of literature, they believe that it is less researched in the given field. Thus,
they argue that exploring these concepts may lead to innovative research pathways.
Similarly, Spark LBD system (Workman et al. 2016) also exploits the use of rarity as a
signal to provide new knowledge to the users.

Even though these statistical techniques are easy to compute, they require high inter-
vention of human experts because their success vastly depends on prior knowledge. For
example, Lindsay & Gordon (1999) manually removed highly ranked B-concepts during
their discovery process to reach the target C-concept, which shows the bias and the
requisite of the prior knowledge. Moreover, the success of these statistical approaches is
highly limited as they do not consider the semantic meaning of terms.
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Probabilistic Approaches: Some LBD approaches (Vidal et al. 2014, Seki & Mostafa
2009, 2007) have utilised probabilistic techniques to detect potential knowledge associ-
ations between disjointed literature sets. For instance, Vidal et al. (2014) proposed
an authority-flow based ranking mechanism by modelling a Bayesian network using two
sampling techniques; direct sampling reasoning algorithm and conditional probability.
Similarly, Seki & Mostafa (2009, 2007) also utilised an inference network (Turtle &
Croft 1991) to predict novel gene↔disease associations based on probabilities.

Fuzzy Logic: Fuzzy logic (Steimann 1997) is a foam of multivalued logic that computes
degrees of truth (which ranges from 0 to 1) by handling the concept of partial truth.
Therefore, fuzzy logic is different to Boolean logic, which is only based on two-valued
logic, true or false (1 or 0). Wren et al. (2004) argue that the term co-occurrences
do not necessarily indicate meaningful relationships between the terms. Therefore, they
have exploited the use of fuzzy logic to weight the importance of the term co-occurrences
by assigning a fuzzy score to model relationships in their LBD process.

Association Rule Mining: Association Rule Mining (ARM) helps to uncover associ-
ations between data objects by observing frequent patterns/behaviours, and correlations
among objects. Although ARM and co-occurrence analysis are similar, ARM can de-
tect tri-occurrences, quad-occurrences that can be utilised to identify the correlations
between terms (Ganiz et al. 2005). An association rule can be denoted as the expres-
sion A→B, where A and B are set of objects. Every association rule must satisfy the
user-defined two constraints, namely support and confidence. ‘Support’ measures the
count of articles in which both starting and linking terms co-occur, whereas ‘confidence’
measures the fraction of articles that contain the linking term, given that the starting
concept occurs in the document (Yetisgen-Yildiz & Pratt 2009).

The typical procedure involving ARM in the LBD process is; 1) For a given starting con-
cept A, find all linking terms B such that A→B, 2) Find all target concepts C such that
B→C, 3) Remove those C concepts for which A→C already exists, and 4) The remaining
C concepts are the candidates of novel associations (between A and C) (Hu et al. 2010,
Hristovski et al. 2005, Berardi et al. 2005, Huang & Nakamori 2004, Hristovski et al.
2003, Jha & Jin 2016b, Hristovski et al. 2001, Pratt & Yetisgen-Yildiz 2003, Yetisgen-
Yildiz 2006). Generally, the produced candidate list is extensive, which requires some
mechanism to handle this combinatorial problem. Hristovski et al. (2001) proposed the
use of UMLS semantic types to limit the results. For example, if the starting concept
belongs to a semantic type ‘disease’, the user can select ‘pathologic function’ and ‘phar-
macologic substance’ to be the semantic types of B and C, respectively. Similarly, Hu et
al. (2010) also utilised a semantic-based association rule system by using semantic type
filters. Berardi et al. (2005) proposed the use of generalised association rules by explor-
ing the hierarchy of MeSH taxonomy. Generalised association rules (Srikant & Agrawal
1995) signify association rules A→B, where no term in B is an ancestor of any term in A.
With regards to the ARM algorithms, LBD literature has commonly used Apriori algo-
rithm in the knowledge discovery process (Cherdioui & Boubekeur 2013, Hu et al. 2010,
Pratt & Yetisgen-Yildiz 2003, Yetisgen-Yildiz 2006). A comparison by Yetisgen-Yildiz &
Pratt (2009) has revealed that association rules outperformed statistical measures such
as TF-IDF, Mutual Information Measure (MIM) and z-score.

Logic Programming: Thaicharoen et al. (2009) proposed Inductive Logic Program-
ming (ILP) to detect meaningful associations in forms of relational frequent patterns.
The expressive data representations of ILP and its ability to integrate background knowl-
edge are the main benefits of this technique. There are several popular ILP algorithms,
such as FOIL, WARMR and PROGOL. For instance, Thaichareon et al. (2009) used
WSRMR (which is an extension of the Apriori algorithm) in their LBD process.
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Distributional Semantic Approaches: Distributional semantic models involve con-
structing semantic representations of terms in the form of dense vectors by analysing
their statistical distribution across documents, syntactic dependency relations, colloca-
tional profiles, and other contextual features. These models are based on the assumption
that two words in a similar context are semantically related (a.k.a. distributional hypoth-
esis). As a result, semantically related terms tend to have similar vector representations
in the vector space.

Various distributional semantic techniques have been proposed in the LBD literature
such as Latent Semantic Indexing (LSI)/Latent Semantic Analysis (LSA) (Kostoff,
Solka, Rushenberg & Wyatt 2008, Gordon & Dumais 1998), Reflective Random In-
dexing (RRI) (Shang et al. 2014, Cohen et al. 2012, 2011, Cohen, Schvaneveldt & Wid-
dows 2010, Mower et al. 2016, Malec et al. 2016, Cohen, Widdows, Stephan, Zinner,
Kim, Rindflesch & Davies 2014, Cohen, Whitfield, Schvaneveldt, Mukund & Rindflesch
2010), Predication-based Semantic Indexing (PSI) (Shang et al. 2014, Cohen et al. 2012,
2011, Mower et al. 2016, Malec et al. 2016, Cohen, Widdows, Stephan, Zinner, Kim,
Rindflesch & Davies 2014, Cohen, Whitfield, Schvaneveldt, Mukund & Rindflesch 2010,
Cohen et al. 2009, Cohen, Widdows & Rindflesch 2014, Cohen, Widdows, Schvaneveldt
& Rindflesch 2010), Associative Concept Space (ACS) (Van der Eijk et al. 2004, 2002),
Semantic Vectors package (McClure 2012), Tensor Encoding (TE) (Symonds, Bruza &
Sitbon 2014), Symmetric Random Indexing (SRI) (Cohen & Schvaneveldt 2010), Hyper-
space Analogue to Language (HAL) (Bruza et al. 2006, Cole & Bruza 2005, Bruza et al.
2004), Word embeddings (Xun et al. 2017) and Graph embeddings (Gopalakrishnan et al.
2017).

Typically, nearest neighbour analysis or vector operations in the semantic space is per-
formed to identify the implicit and novel associations using distributional models. For
instance, the work of Gordon & Dumais (1998) followed a nearest neighbour search
to detect the potential target concepts. More specifically, they have employed LSI to
identify semantically similar neighbouring terms of the A-concept by calculating the
cosine similarity to derive the target C-concepts. They have reported that LSI analysis
provided slightly better results than the traditional frequency-based statistical metrics
(Gordon & Lindsay 1996).

Cohen et al. (2011) proposed a vector operations-based distributional semantic model
that uses the PSI technique based on Kanerva’s Binary Spatter Code. The PSI space was
built using SemRep predications that are encoded into a high-dimensional vector space.
Afterwards, the predication space was searched using a process similar to Kanerva’s
XOR-based analogical mapping to facilitate analogical retrieval that in the form of “A
is to B as C is to ?” (e.g., “prozac is to depression as what is to schizophrenia?”).

Topic Modelling: How topic-level information is propagated among documents can
be observed using topic modelling algorithms, instead of performing a term-level analy-
sis. This approach can also be viewed as a topic-based profiling technique (see Section
v.1.2). However, the effects of such algorithms are rarely experimented in LBD research
(Sebastian et al. 2017b). Few studies have involved topic modelling in the knowledge
discovery process using Latent Dirichlet Allocation (LDA) algorithm (Sebastian et al.
2017b, Qi & Ohsawa 2016, Bisgin et al. 2011).

v.1.2 Structured Knowledge bases/Ontologies/Taxonomies

Semantic augmentation (a.k.a. semantic annotation or semantic tagging) is the pro-
cess of attaching semantics to terms in texts to assist automatic interpretation of their
meaning. In this section, we summarise how LBD research have used structured data to
facilitate semantic augmentation with the intention of enhancing the reasoning and infer-
encing ability of the knowledge discovery process. However, this also opens up questions
such as word sense disambiguation/entity resolution (Preiss & Stevenson 2016).
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Knowledge-based Approaches: The involvement of knowledge-based techniques
has become an integral component of the LBD process (Lever et al. 2018, Vlietstra
et al. 2017, Preiss & Stevenson 2017, Huang et al. 2016, Preiss & Stevenson 2016, Zhou
et al. 2015, Song et al. 2015, Preiss et al. 2015, Cairelli et al. 2015, Cameron et al. 2015,
Rastegar-Mojarad et al. 2015, Srinivasan et al. 2015, Shang et al. 2014, Hanauer et al.
2014, Dong et al. 2014, Tsafnat et al. 2014, Kastrin et al. 2014b, Vidal et al. 2014, Petric
et al. 2014, Ding et al. 2013, Liang et al. 2013, Cameron et al. 2013, Gabetta et al. 2013,
Cherdioui & Boubekeur 2013, Cohen et al. 2012, Miller et al. 2012, Bhattacharya &
Srinivasan 2012, Goodwin et al. 2012, Faro et al. 2011, Guo & Kraines 2009b, Maclean
& Seltzer 2011, Loglisci & Ceci 2011, Hur et al. 2010, Baker & Hemminger 2010, Ijaz
et al. 2009, Hu et al. 2010, Hristovski et al. 2010, Petriĕ et al. 2009, Vidal et al. 2010,
Yetisgen-Yildiz & Pratt 2009, Kostoff & Briggs 2008, Kostoff, Briggs & Lyons 2008,
Yetisgen-Yildiz & Pratt 2006, Swanson et al. 2006, Hu et al. 2006, Hristovski et al.
2005, Hu et al. 2005, Berardi et al. 2005, Huang et al. 2005b, Srinivasan 2004, Van der
Eijk et al. 2004, Huang et al. 2005a, Huang & Nakamori 2004, Stegmann & Grohmann
2003, Weeber et al. 2001, 2000, Park et al. 2017, Jha & Jin 2016b, Rastegar-Mojarad
et al. 2016, Mower et al. 2016, Gulec et al. 2010, Sang, Yang, Wang, Liu, Lin & Wang
2018, Gopalakrishnan et al. 2017, Peng et al. 2017, Malec et al. 2016, Cohen, Widdows,
Stephan, Zinner, Kim, Rindflesch & Davies 2014, Cairelli et al. 2013, Wilkowski et al.
2011b, Özgür et al. 2011, Cohen, Whitfield, Schvaneveldt, Mukund & Rindflesch 2010,
Hristovski et al. 2006, 2003, Qian et al. 2012, Huang et al. 2012, Jelier et al. 2008,
Srinivasan & Libbus 2004, Zhang et al. 2014, Preiss 2014, Cohen et al. 2009, Cohen,
Widdows & Rindflesch 2014, Cohen, Widdows, Schvaneveldt & Rindflesch 2010, Work-
man et al. 2016, Pratt & Yetisgen-Yildiz 2003, Yetisgen-Yildiz 2006, Wren 2004, Frijters
et al. 2010). These approaches utilise external structured knowledge-based resources to
acquire domain-specific background knowledge.

To date, LBD literature has only focused on knowledge-based resources that are in
the medical domain to gain additional knowledge. The most common practice of the
existing literature is to utilise Unified Medical Language System (UMLS) (Bodenreider
2004) with the help of tools, such as MetaMap for concept detection. The advantage of
MetaMap tool (Aronson 2001) is that it automatically identifies the medical concepts in
a text, and maps them to UMLS medical entities. Using such concept-based controlled
vocabularies greatly assist in detecting words that are biologically relevant. Moreover,
this also enables to explore additional information of concepts, such as semantic types,
hierarchical relations, synonyms etc. For instance, Weeber et al. (2001) proposed a
semantic type filtering approach using MetaMap tool to detect medical concepts and to
filter these identified concepts by user-specified semantic types.

As knowledge-based approaches explore the semantics of concepts, they tend to produce
more meaningful knowledge associations. Other types of approaches that are evolved
from knowledge-based approaches are relation-based and hierarchical-based approaches.

Relation/Predicate-based Approaches: Relation based approaches use explicit re-
lations between concepts by analysing subject-predicate-object triples (semantic predica-
tions) to detect the meaning of knowledge associations (Vlietstra et al. 2017, Yang
et al. 2017, Preiss & Stevenson 2017, Kim et al. 2016, Song et al. 2015, Preiss et al.
2015, Cairelli et al. 2015, Cameron et al. 2015, Rastegar-Mojarad et al. 2015, Shang
et al. 2014, Vicente-Gomila 2014, Marsi et al. 2014, Cohen et al. 2012, Miller et al.
2012, Bhattacharya & Srinivasan 2012, Goodwin et al. 2012, Cohen et al. 2011, Guo &
Kraines 2009b, Kraines et al. 2010, Hristovski et al. 2010, Guo & Kraines 2009a, Hu et al.
2005, Sang, Yang, Wang, Liu, Lin & Wang 2018, Malec et al. 2016, Cohen, Widdows,
Stephan, Zinner, Kim, Rindflesch & Davies 2014, Cairelli et al. 2013, Wilkowski et al.
2011b, Cohen, Whitfield, Schvaneveldt, Mukund & Rindflesch 2010, Ahlers et al. 2007,
Hristovski et al. 2006, Kraines et al. 2013, Zhang et al. 2014, Preiss 2014, Hristovski,
Kastrin, Dinevski & Rindflesch 2015a, Cohen et al. 2009, Cohen, Widdows & Rind-
flesch 2014, Cohen, Widdows, Schvaneveldt & Rindflesch 2010, Workman et al. 2016).
This will not only filter out the meaningless connections, but also enable the user to
clearly understand the derived implicit associations. The most commonly used semantic
interpreter to extract these semantic predications from the biomedical text is SemRep
(Rindflesch & Fiszman 2003).
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An example of this technique is the work proposed by Hristovski et al. (2006) that
exploited a discovery pattern-based technique. More specifically, they introduced two
forms of discovery patterns named Maybe Treats1 and Maybe Treats2 to propose novel
treatments for a given disease. For a given disease (concept A), the first pattern identifies
any change in body function, substance or body measurement (concept B), and proposes
treatments C, which are associated with the opposite change of concept B. For a starting
disease A, the second pattern analyses the diseases B with similar characteristics and
suggests their treatments as potential C concepts.

Another useful resource available for relations-based approaches is Semantic MEDLINE,
a web-based tool that visualises SemRep-generated semantic predications of MEDLINE
stored in SemMedDB database. Some research studies have directly utilised Semantic
MEDLINE in their LBD process (Cairelli et al. 2013, Wilkowski et al. 2011b). The main
advantage of the relation-based approaches is the better interpretation of associations
that assists in detecting more accurate results. However, this technique is restricted to
problems where such explicit associations between concepts are known in advance or in
the domains where such resources (e.g., SemRep) are available.

Hierarchical-based Approaches: Hierarchical-based approaches exploit the hierar-
chical structure of concepts in a given knowledge base/taxonomy to gain additional
knowledge (Berardi et al. 2005, Huang et al. 2005b,a, Pratt & Yetisgen-Yildiz 2003,
Gulec et al. 2010). This could be done by analysing details such as; 1) position/level
of a concept in the hierarchy, and 2) relationships between ancestor-descendant and
siblings.

The study of Pratt & Yetisgen-Yildiz (2003) can be considered as an example for the first
category that analyses the position/level of concepts in the hierarchy. They observed
that concepts which reside on second and third levels of UMLS hierarchy tend to be
general (e.g., drug, disease). Thus, they utilised the position details of concepts as a
filtering mechanism to remove the general terms.

An example that denotes the second category is the study of Huang et al. (2005a) which
analysed sibling relationships to eliminate meaningless candidate associations. More
specifically, for a starting concept A, they have identified B concepts that co-occur with
A. Afterwards, the siblings of B concepts are extracted as C -concepts. Then, the already
known A→C connections are removed to obtain the novel association list. The authors
state that since A→B is reported as a valid association in the literature, and B and C
tend to be similar due to the sibling relationship, there is a high chance of establishing a
connection between A and C. However, these hierarchical-based techniques are limited
to problems/domains where such hierarchical taxonomies are available.

Semantic Profile-based Approaches: In the Manjal project (Srinivasan & Libbus
2004), Srinivasan (2004) proposed a semantic profile-based approach for the first time
in the LBD discipline. In her methodology, a profile is denoted by vectors of weighted
MeSH terms, which are each assigned to one of the 124 UMLS semantic types. She
has used the TF-IDF metric as the weighting mechanism. These generated MeSH-based
profiles are used in both open and closed discovery setting to identify the potential as-
sociations (Srinivasan 2004). Similarly, the system Anni also leverages a profile-based
technique using biomedical concept profiles (Jelier et al. 2008). The system constructs
profiles using related biomedical concepts that are weighted using symmetric uncer-
tainty coefficient to denote their importance within a profile. Moreover, Cheung et al.
(2012a) utilised a MeSH-based weighted profile, namely Medical Subject Heading Over-
representation Profiles (MeSHOPs) in the LBD process, where Fisher’s Exact Test was
used to determine the over-represented MeSH terms in profiles (Cheung et al. 2012b).
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v.1.3 Graph Theory

In this section, we present how graph theory is integrated into the LBD framework.
Different types of graphs have been analysed in the discipline representing both directed
(e.g., Entitymetrics (Ding et al. 2013), heterogeneous bibliographic information network
(Sebastian et al. 2017b, 2015)) and undirected (e.g., co-occurrence networks (Kastrin
et al. 2016)) graphs. These constructed graphs are typically analysed using one or
more of the following three levels; macro-level (i.e., global graph metrics such as degree
distribution, and shortest distance), meso-level (i.e., cluster characters such as clustering
coefficient, and modularity-based clustering), and micro-level (i.e., node properties such
as centrality measures).

Network/Graph-based Approaches: Graph-based approaches use graph proper-
ties and theories to identify the novel associations between concepts (Baek et al. 2017,
Vlietstra et al. 2017, Pusala et al. 2017, Sebastian et al. 2017b, Jha & Jin 2016a, Kastrin
et al. 2016, Kim et al. 2016, Song et al. 2015, Cairelli et al. 2015, Cameron et al. 2015,
Lee et al. 2015, Kastrin et al. 2014b, Ding et al. 2013, Liang et al. 2013, Cameron et al.
2013, Goodwin et al. 2012, Maciel et al. 2011, Guo & Kraines 2009b, Özgür et al. 2010,
Schroeder et al. 2007, Park et al. 2017, Gopalakrishnan et al. 2017, Wilkowski et al.
2011b, Özgür et al. 2011, Hu et al. 2006). They typically rely on the AnC discovery
model and mostly output graph paths that include a number of bridging terms, connect-
ing the start (A) and target (C ) concepts. Hence, the output of graph-based approaches
greatly assists in generating more comprehensive research hypotheses.

Wilkowski et al. (2011a) developed a graph-based approach with semantic predications
by adhering to the AnC model, which is the first approach reported in the literature
that did not follow the canonical ABC model. This work mainly utilised graph theo-
ries, such as the degree centrality of nodes and path analysis using depth first search
to output graph paths that represent relationship chains. Same as Wilkowski et al.
(2011a), Özgür et al. (2011) also made use of network centrality analysis to elicit hid-
den linkages. Furthermore, some approaches (Baek et al. 2017, Kim et al. 2016) have
performed shortest path analysis by using algorithms such as Dijkstra to output the
implicit discovery paths. More recently, Cameron et al. (2015) suggested a model that
uses SemMedDB database to extract the semantic predications to build the knowledge
graph. The main strength of their work is the automatic generation of sub-graphs based
on the context/thematic dimension of paths.

Most of the existing graph-based approaches heavily rely on external knowledge resources
in their knowledge discovery process. This limits the applicability of these approaches
in situations/problems where such resources are unavailable.

Bibliometrics Analysis: Several approaches have utilised bibliographic link struc-
tures such as direct citation links, co-citation links, and bibliographic coupling in their
knowledge discovery process (Kostoff 2014, Sebastian et al. 2017b, 2015, Lee et al. 2015,
Ittipanuvat et al. 2014, Nakamura et al. 2014, Ding et al. 2013, Ittipanuvat et al. 2012).
The concept of bibliographic coupling is first introduced to LBD research by Kostoff
(2014) through his LBD approach that inspected shared references between two dis-
jointed medical literature sets. When two publications cite many common references,
then it is said that their bibliometric coupling is strong. Their results (Kostoff 2014)
verified the importance of analysing the content in research papers along with their
shared references.

Shibata et al. (2009) have shown that direct citations are the most effective way of
detecting emerging research fronts in a field. As a result, Ittipanuvat et al. (2014)
considered direct citation links in their knowledge discovery process. Ding et al. (2013)
proposed a network-based approach that utilised biological entities extracted from the
literature along with the citation details to construct a network, namely entitymetrics.
In other words, they constructed an entity-entity citation network by linking biological
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entities extracted from paper 1 with the biological entities extracted from paper 2,
given that paper 1 cites paper 2. The constructed entity-entity citation network is
analysed by considering both node-level and cluster-level features to predict the novel
entity interactions. The integration of both biological entities and bibliographic entities
to the same network is useful as the same network can be utilised to obtain different
network-based features.

Sebastian et al. (2017b) further extend the bibliometric-based research by using hetero-
geneous bibliographic information network to extract more complex bibliometric-based
relationships (e.g., core paper shares a term with other core paper’s citer). More specifi-
cally, they analysed 16 different bibliometric-based relationship features as cues to detect
potential knowledge links.

Link Prediction Approaches: Several approaches have viewed the LBD process as
a link prediction problem (Pusala et al. 2017, Sebastian et al. 2017b, Kastrin et al. 2016,
Sebastian et al. 2015, Kastrin et al. 2014b, Crichton et al. 2018, Kastrin et al. 2014a).
They analyse the attributes of concepts and observed links from the current literature
to predict the existence of new links between concepts in the future. The existing link
prediction studies can be divided into two main groups; predicting future links between
homogeneous entities, and predicting future links between heterogeneous entities.

Homogeneous networks only consider the ‘terms’ as ‘nodes’ and the ‘connection’ of terms
obtained from evidence (e.g., literature and databases) as the ‘edges’ of their network.
More specifically, these LBD studies have considered biological entities as their nodes
and the co-occurrence of biological entities extracted from the literature (Pusala et al.
2017, Kastrin et al. 2014b, Crichton et al. 2018) or the entity associations extracted from
curated databases (Crichton et al. 2018) as their edges. Subsequently, the constructed
networks were used to predict the future links between nodes, which are treated as the
novel associations in the field. In the second category of link prediction, the networks
are created from nodes and edges with diverse entity types. For instance, Sebastian et
al. (2017b) introduced Heterogeneous Bibliographic Information Network (HBIN) to the
LBD discipline using terms in the paper, venue of the journal/conference, and author
details as nodes, and authorship links, citation links, semantic links, and publication
links as edges. Through HBIN graphs, they have attempted to predict the future co-
citation links in the disjointed literature.

Most of the link prediction LBD approaches have employed the state-of-the-art link
prediction techniques, such as Adamic-Adar, Common Neighbours, and Jaccard Index
in their methodologies or as the baselines.

v.1.4 Supervised/Unsupervised Learning

Incorporating machine learning techniques to analyse and interpret patterns and struc-
tures of the literature using supervised, semi-supervised or unsupervised learning is
described in this section. The integration of machine learning is not only limited to
knowledge discovery component of the LBD workflow, but also in other phases, such as
pre-processing (Hossain et al. 2012, Özgür et al. 2010, Petrič et al. 2012) and ranking
(Torvik & Smalheiser 2007).

Supervised Learning Approaches: Several approaches have used supervised ma-
chine learning techniques in their LBD process (Kastrin et al. 2016, Sang et al. 2015,

Özgür et al. 2010, Torvik & Smalheiser 2007, Park et al. 2017, Mower et al. 2016,
Sang, Yang, Wang, Liu, Lin & Wang 2018, Gopalakrishnan et al. 2017). For instance,
Torvik & Smalheiser (2007) have experimented how machine learning can be adopted
to rank the intermediate concepts. More specifically, they have utilised a manually cre-
ated dataset for the training of a Logistic Regression model, which was employed to
rank the generated intermediate concepts. Since manual annotation of data is expensive
and time-consuming, some studies have directly used the data from databases such as
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AIMED (Özgür et al. 2010), CB (Özgür et al. 2010), SemMedDB (Rastegar-Mojarad
et al. 2016), CTD (Rastegar-Mojarad et al. 2016), OMOP (Mower et al. 2016) and Ther-
apeutic Target Database (TTD) (Sang, Yang, Wang, Liu, Lin & Wang 2018) for model
training.

As discussed above, supervised learning-based techniques require a large, high-quality
dataset to train the model, which is challenging. As a result, some approaches (Sang
et al. 2015, Park et al. 2017) have performed semi-supervised learning techniques that
make use of a few labelled data with a large amount of unlabeled data. For instance,
Sang et al. (2015) have used 5% of the data to create the gold-standard. Unsupervised
learning techniques do not require any labelled data and learn from the test data itself
to identify potential knowledge associations. The work of Xun et al. (2017), Kastrin
et al. (2016), and Bisgin et al. (2011) can be considered as examples of unsupervised
learning.

Cluster Analysis: Several approaches have used cluster analysis to detect potential
associations between disconnected knowledge areas (Qi & Ohsawa 2016, Cameron et al.
2015, Ittipanuvat et al. 2014, Nakamura et al. 2014, Ittipanuvat et al. 2012, Faro et al.
2011, Kostoff 2011, Kostoff, Block, Stump & Johnson 2008, Kostoff 2008, Kostoff &
Briggs 2008, Kostoff, Briggs & Lyons 2008, Kostoff, Solka, Rushenberg & Wyatt 2008,
Van der Eijk et al. 2004, Stegmann & Grohmann 2003, Gopalakrishnan et al. 2017,
Kostoff et al. 2004, Ye et al. 2010, Petrič et al. 2012, Kostoff & Patel 2015, Kostoff
2014). These approaches can be divided into two categories by considering the data
used for clustering; term/document-based clustering and citation-based clustering. The
work of Stegmann & Grohmann (2003) that uses co-word analysis along with clustering
can be provided as an example for the first category. They analysed cluster properties
(e.g., external centrality and internal density) of their keyword-based clusters to identify
potential regions where the intermediate terms can be found. Their results revealed that
such linking terms reside in regions of below-median centrality and density. The second
category of cluster analysis, which is citation-based clustering, can be represented by the
work of Ittipanuvat et al. (2014). Initially, they constructed a direct citation network
that was classified into clusters using Newman’s community detection algorithm. Each
cluster was then represented as a term vector to measure the cluster similarity using
similarity measures (e.g., cosine, Jaccard Index, and Dice Coefficient) to pair clusters
with high similarity from the two domains. For each paired cluster, lexical statistics
such as term frequency, document frequency and TF-IDF were calculated to identify
potential linking terms.

When considering the unit of analysis, cluster-based LBD approaches can be categorised
into two groups; analysis of major clusters, and analysis of outliers. For instance, Itti-
panuvat et al. (2014) have considered the top 10 clusters after ordering by cluster size
to analyse the potential linking terms. In contrast, Petric et al. (2012) only considered
the detected outliers as their unit of analysis in the LBD process. Overall, using clus-
ter analysis techniques, the authors could discover some interesting insights into LBD
discipline.

v.1.5 Time Analysis

Dynamic representation of knowledge in the literature can be represented as a time
series of snapshots where each snapshot represents the state of the knowledge over an
interval of time (e.g., 5 years, 10 years). The knowledge evolution of these dynamic
representations facilitates the analysis of different patterns of evolutionary aspects, as
described in this section.

Temporal-based Approaches: Few LBD approaches have analysed the evolutionary
behaviour of terms to detect the interesting associations between disjointed literature
sets (Xun et al. 2017, Loglisci & Ceci 2011, Cohen & Schvaneveldt 2010). For instance,
Xun et al. (2017) have observed how the semantics of terms evolve by utilising dynamic
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MeSH-based embeddings to track the evolutionary trajectories of MeSH terms in the
vector space. More specifically, their research is based on the assumption that if two
terms have an evolutionary trend towards each other, it implies that the two terms
are more likely to form a relationship in the future. Moreover, Loglisci & Ceci (2011)
also considered temporal factor into consideration to analyse the dynamic behaviour of
domains using a series of static representations over time. In other words, they have
observed several snapshots at different time points to discover potential bisociations
between concepts using ARM as the main discovery technique.

v.1.6 User-based Approaches

How the user can be involved in the LBD workflow to enhance the prediction accu-
racy of the knowledge discovery process is described in this section. We consider two
classes of user-based approaches; query enhancements (i.e., expanding and enhancing
queries based on observations) and user-interaction (i.e., incorporating theories of hu-
man information-seeking behaviours).

Query Enhancements: This technique is based on query development and enhance-
ments in the literature search engines, which falls under Literature-Related Discovery
(LRD) methodology proposed by Kostoff et al. (2008). The major steps of LRD are man-
ually creating and executing various queries in the literature search engines, analysing
the retrieved articles using CLUTO clustering software, and selecting important themes
and phrases in the literature set (Kostoff & Patel 2015, Kostoff 2014, Kostoff & Briggs
2008, Kostoff 2011, 2008, Kostoff, Briggs & Lyons 2008, Kostoff, Solka, Rushenberg &
Wyatt 2008, Kostoff & Lau 2013). Furthermore, LRD also includes a multi-step vet-
ting process to filter out associations that are false-positives. The author has proposed
several hypotheses using his LRD process, such as chronic kidney disease (Kostoff & Pa-
tel 2015), Parkinson’s disease (Kostoff 2014), SARS (Kostoff 2011), cataracts (Kostoff
2008), multiple sclerosis (Kostoff, Briggs & Lyons 2008) and water purification (Kostoff,
Solka, Rushenberg & Wyatt 2008).

User Interaction Studies: User interaction LBD studies use the theories related to
human information-seeking behaviours with the intention of assisting human creativity in
generating new knowledge (Wilkowski et al. 2011b, Hristovski et al. 2006, Cairelli et al.
2013, Workman et al. 2016, 2014). For example, information foraging theory (Pirolli
2007) assesses the information-seeking behaviour of users regarding cost and benefit. In
other words, if the user can get the highest amount of benefit spending the lowest amount
of energy in the information-seeking activity, it can be considered as optimal foraging.
Discovery browsing (a technique based on information foraging theory), was introduced
by Wilkowski et al. (2011b) using a graph-based approach with semantic predications.
This work was an extension of the discovery pattern approach of Hristovski et al. (2006).
Wilkowski et al. (2011b) allowed the users to iteratively navigate through graph paths
of LBD output to gain novel insights about poorly understood relationships. The main
advantage of this approach is that it allows the user to fine-tune the LBD process by
controlling the growth of the graph. Later, the discovery browsing technique introduced
by Wilkowski et al. (2011b) was further extended by Cairelli et al. (2013) and Goodwin
et al. (2012).

v.1.7 Enhancements

This section summarises the potential enhancement techniques that can be incorpo-
rated to uplift the typical workflow of the LBD process. Up to now, LBD is treated as
a support tool for researchers as it requires human assistance and creativity to interpret
the predicted knowledge associations, and to formulate them into a research hypothe-
sis. However, LBD is an innovation problem where the ultimate goal is to construct a
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model of human-level creativity in detecting novel knowledge. This is where the tech-
niques in computational creativity (more specifically, linguistic creativity) can be useful.
This section discusses the studies that have attempted to integrate techniques involving
linguistic creativity into the LBD workflow.

Creativity Techniques and Problem Solving: Vicente-Gomila (2014) pointed out
the importance of identifying the relationship between logical causes and effects, in or-
der to enhance the traditional LBD process. To facilitate this, they have utilised TRIZ
(Moehrle 2005), which suggests innovative solutions for problem-solving by identifying
and generalising patterns across various disciplines. Vicente-Gomila (2014) suggested
that incorporating such human-like logic sense will also reduce human intervention dur-
ing the knowledge discovery process with less degree of implication.

Storytelling Algorithms: Storytelling algorithms provide a different perspective to
LBD research and can be considered as a more improved version of the AnC model.
However, the LBD community seems to have overlooked the importance of such algo-
rithms in the LBD process. For example, Hossain et al. (2012) utilised an approach
based on storytelling algorithm on PubMed abstracts to build story chains involving
biological entities. The authors of this study argue that this type of work can be served
as a valuable discovery aid to develop hypotheses for the users.

v.2 What topics/central themes emerged over time in the LBD disci-
pline?

In order to analyse topics/central themes emerged in the discipline over time, we created
a timeline indicating the events that occurred first in the field of LBD (Figure 2.2). For
example, lexical statistics was marked in 1996 since the very first LBD experiment that
used lexical statistics was published in 1996. Note that this timeline has been created
by only using the articles selected for the review.

The events in black show the evolution of computational techniques discussed in Section
v.1. As seen in the timeline, the computational techniques have roughly evolved in the
sequence of: lexical statistics → distributional semantics → ARM → knowledge-based
→ semantic profiling → hierarchical-based → relations-based → machine learning →
LRD → ILP → network analysis → temporal analysis → topic modelling → user in-
teraction studies → linguistic creativity → bibliometrics-based → embedding techniques.
According to the timeline, the most recently emerged techniques include latest embed-
ding techniques, such as GloVE, DeepWalk, LINE, node2vec, and SDNE. These tech-
niques have also been successfully applied in many other recent NLP tasks (Hashimoto
et al. 2015). Embedding methods based on neural networks (Collobert & Weston 2008,
Mnih & Hinton 2009, Mikolov, Sutskever, Chen, Corrado & Dean 2013) are at the fore-
front of this trend due to their scalability, simplicity and semantic richness (Hashimoto
et al. 2015). However, non-parametric embedding techniques have also proven to exhibit
similar properties as embeddings based on neural networks (Levy & Goldberg 2014a).
Therefore, future LBD research could be further expanded by experimenting with the
efficiency of these techniques in the knowledge discovery process.

In addition, we have also denoted other special events in the discipline, where orange
denotes the changes in the data sources, blue represents the popular LBD tools, and green
shows the different evaluation techniques developed. When it comes to data sources,
Gordon et al. (2002) have initially attempted to utilise a non-traditional data source by
extracting data from the World Wide Web (WWW). Later, different other traditional
and non-traditional sources, such as drug labels (Bisgin et al. 2011), patents (Vicente-
Gomila 2014, Maciel et al. 2011), Tweets (Bhattacharya & Srinivasan 2012), Google
news (Maclean & Seltzer 2011) and non-English data resources (Su & Zhou 2009, Gao,
Wang, Tao, Liu, Li, Yu, Yu, Tian & Zhang 2015, Qian et al. 2012, Yao et al. 2008) have
been experimented in the field. With regards to LBD tools, the Arrowsmith project
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Figure 2.2: Evolution of the LBD discipline over time

initiated by Swanson & Smalheiser (1997, 1999) can be considered as the first tool that
supported the LBD process. Subsequently, different other tools were introduced in the
discipline roughly in the sequence of: BITOLA → LitLinker → Manjal → RaJoLink →
EpiphaNet → SemBT.

vi General Overview

vi.1 What is the evidence that LBD generates discovery?

The main objective of LBD is to generate new knowledge by combining existing liter-
ature, as demonstrated through Swanson’s discoveries since 1986 (Swanson 1986). In
the first discovery of Swanson, he manually analysed the titles of fish oil and Raynaud’s
disease literature, where he observed that the patients with Raynaud’s disease tend to
have high blood viscosity and high platelet aggregation, and fish oil (eicosapentaenoic
acid) helps to decrease the blood viscosity and platelet aggregation. By combining these
knowledge pairs, he concluded that ‘Raynaud’s disease can be cured using fish oil’. The
significance of his hypothesis is due to the disjointedness of the two literature sets. That
is, the articles of fish oil and Raynaud’s disease have not mentioned, cited or co-cited
each other.

Swanson followed the same thinking process in uncovering the implicit relationship be-
tween Migraine and Magnesium. Subsequently, Swanson introduced several other new
medical discoveries (Swanson & Smalheiser 1996), such as Somatomedin C and Arginine,
Dietary Magnesium and Neurologic disease, Indomethacin and Alzheimer’s disease, Es-
trogen and Alzheimer’s disease, and Phospholipases and Sleep.

In addition to Swanson’s discoveries, other proposals of novel knowledge discovered
through the LBD process include Alzheimer’s disease and Gut microbiota (Gubiani
et al. 2017), Oral Lichen Planus and Depression (Zhan et al. 2017), Alzheimer’s disease
and Parkinson’s disease (Kim et al. 2016), Neovascularization in Diabetic Retinopathy
(Maver et al. 2013), Parkinson’s disease (Hristovski et al. 2010), Autism and Calcineurin
(Petriĕ et al. 2009, Petrič et al. 2012), Down syndrome and Cell polarity (Thaicharoen
et al. 2009), Deafness and Macular Dystrophy (Van der Eijk et al. 2004), Insulin and
Ferritin (Van der Eijk et al. 2004), Prions and Manganese (Stegmann & Grohmann
2003), Obese patients (Cairelli et al. 2013), Serotonin (Wilkowski et al. 2011b), Chronic
kidney disease (Kostoff & Patel 2015) and Huntington disease (Hristovski et al. 2006).

Even though LBD contributes to detect anticipated novel knowledge linkages (as dis-
cussed above), this raises the question ‘how do authors claim that the detected discoveries
are actual discoveries?’. Kostoff et al. (2009) argue that to label an anticipated discovery
candidate as a potential discovery, the following four checks are required as a minimum:
1) check for the co-occurrence of the discovery candidate and the core problem in the
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core problem literature, 2) check the discovery candidate citing papers for mention of
the core problem, 3) check for the co-occurrence of the discovery candidate and the core
problem in the patent literature, and 4) involve an expert(s) in the core problem area
to check whether the discovery candidate is an actual discovery. Kostoff et al. (2009)
emphasis the importance of passing these four checks to consider a potential discovery
candidate as an actual discovery by revising the novel knowledge proposed in the past
LBD studies.

Extending the discussion of Kostoff et al. (2009), we summarise the validation techniques
used in the literature to determine whether the detected knowledge associations of the
LBD process are true discoveries.

vi.1.1 Evidence-based Validation

In this section, we discuss the sources that are used in the LBD literature to validate
whether the proposed discovery candidates are scientifically sensible valid research dis-
coveries.

Using literature databases (such as MEDLINE and Web of Science) to check whether
the detected discovery candidate has co-occurred with the core problem (starting con-
cept) is the commonly used validation resource in the LBD literature (Lever et al. 2018,
Yang et al. 2017, Xun et al. 2017, Pusala et al. 2017, Preiss & Stevenson 2017, Sebastian
et al. 2017b, Kim et al. 2016, Preiss et al. 2015, Kastrin et al. 2014b, Petric et al. 2014,
Cheung et al. 2012a, Maciel et al. 2011, Baker & Hemminger 2010, Cohen, Schvaneveldt
& Widdows 2010, Yetisgen-Yildiz & Pratt 2009, 2006, Huang et al. 2005b,a, Rastegar-
Mojarad et al. 2016, Gulec et al. 2010, Peng et al. 2017, Cohen, Whitfield, Schvaneveldt,
Mukund & Rindflesch 2010, Crichton et al. 2018, Hristovski et al. 2001, Yetisgen-Yildiz
2006, Frijters et al. 2010). Some studies have verified the validity of their LBD output by
cross-referencing their results with curated databases. Examples of curated databases
include Comparative Toxicogenomics Database (CTD) (Rastegar-Mojarad et al. 2015,
Ding et al. 2013, Cheung et al. 2012a), SIDER2 (Shang et al. 2014), GEO (Faro et al.
2011) and GAD (Seki & Mostafa 2009, 2007). Few studies have used discussion forums
(such as UseNet (Gordon et al. 2002)) and public websites (such as Mayo Clinic (Vidal
et al. 2014)) as their validation resources. Extracting reference sets from the previous
literature reviews (Vlietstra et al. 2017) and the results of other publications (Malec
et al. 2016) as the validation resources is another technique used in the LBD literature.
Few studies have attempted to prove the validity of their proposed discovery candi-
dates through the results of laboratory experiments (e.g., clinical trials) (Baek et al.
2017, Ramadan et al. 1989). However, validating all detected discovery candidates of
LBD systems using laboratory experiments is infeasible. Hence, the most likely to be
successful discovery candidate is usually picked to prove its validity.

vi.1.2 Expert/User-oriented Validation

In expert-based validation, typically one (Gubiani et al. 2017, Ittipanuvat et al. 2012,
Guo & Kraines 2009b, Petriĕ et al. 2009, Gordon et al. 2002, Urbančič et al. 2007) or
two (Baek et al. 2017, Hanauer et al. 2014) domain experts inspect the LBD output
to validate whether the detected discovery candidates are meaningful. Alternatively,
the domain expert(s) may provide with a more open-ended validation (Gordon et al.
2002) by asking them to provide anticipated future associations in the domain from their
experience, without actually looking at the LBD output. Afterwards, the list of potential
associations provided by the expert is cross-checked against the actual LBD results as
the validation source. However, expert-based evaluation is expensive, time-consuming
and suffers from subjectivity. Qi & Ohsawa (2016) have involved both experts and
non-experts in validating the detected knowledge candidates using a score derived using
three criteria: utility (how useful is the generated hypothesis?), interestingness (how
interesting is the generated hypothesis?), and feasibility (to what extent the generated
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Table 2.3: LBD tools and their main computational techniques

Tool Main Computational Techniques

Arrowsmith Statistical-based (relative and absolute frequencies), Knowledge-
based (MeSH, UMLS ), Machine Learning (aggregate local and
global features to obtain a composite ranking function)

LitLinker Probabilistic (z-score), Knowledge-based (MeSH ), Association
Rule Mining (Support and Confidence)

RaJoLink Statistical-based (rarity), Knowledge-based (MeSH, HUGO,
ToppGene, Endeavour, STRING)

Bitola Knowledge-based (UMLS ), Predicate-based (SemRep,
BioMedLEE ), Discovery patterns (two disease treatment
patterns)

Manjal Statistical-based (TF-IDF ), Knowledge-based (MeSH, UMLS ),
Profile-based (weighted vectors with semantic type groupings)

DAD Statistical-based (frequency), Knowledge-based (UMLS )

Anni Knowledge-based (UMLS, Gene Ontology), Profile-based
(weighted related concepts))

IRIDESCENT Statistical-based (Mutual Information Measure), Knowledge-
based (MeSH, OMIM, drug names from FDA, Locuslink, Gene
Ontology)

hypothesis can be realised?). The derived scores have been used to verify the validity of
their LBD process.

vi.2 What are the main LBD tools available, and what are their sup-
ported domains?

In this section, we outline the popular LBD tools developed over time in the field. Even
though some of these tools are no longer available for online use, we still discuss how
they have been developed as the underlying algorithms of these tools will be useful for
future LBD research. Table 2.3 summarises the key computational techniques utilised
in each tool.

vi.2.1 Arrowsmith

After the manual discoveries of Swanson (1986, 1988), he initiated the Arrowsmith
project, which is the very first semi-automatic tool in the LBD literature (Swanson
& Smalheiser 1997, 1999). The system uses a simple frequency-based metric of word
occurrences to obtain the C-concept. Even though Arrowsmith sets a promising start to
develop tools that automate the LBD process, its scope was limited as it did not contain
a strong lexical approach.

Later, Smalheiser (Smalheiser 2005, Smalheiser et al. 2009, 2006) initiated the second
version of the Arrowsmith project1. Even though Arrowsmith initially utilised a basic
statistical approach, over time, Smalheiser improved the tool by incorporating knowledge
from medical resources (such as MeSH (Swanson et al. 2006) and UMLS (Torvik &
Smalheiser 2007)), and machine learning techniques (Torvik & Smalheiser 2007).

1http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html

http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html
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vi.2.2 LitLinker

Pratt & Yetisgen-Yildiz (2003) developed an LBD tool that supports the open discovery
process, namely LitLinker. LitLinker utilises a knowledge-based approach using UMLS
for concept extraction, filtering and clustering. Their methodology employs association
rule mining to identify the associations between concepts. They replicated Swanson’s
Migraine↔Magnesium to evaluate their methodology.

A later version of LitLinker utilises MeSH descriptors, instead of UMLS concepts to
represent the documents (Yetisgen-Yildiz & Pratt 2006). Moreover, to identify the asso-
ciated concepts, they used z-score as a metric that is based on the background distribu-
tion of the term probabilities. Through this approach, they were able to provide new in-
sights into Swanson’s discoveries by identifying the following new associations; Alzheimer
disease↔Endocannabinoids, Migraine↔AMPA receptors and Schizophrenia↔Secretin.
However, Kostoff et al. (2009, 2007) have questioned whether the above-claimed discov-
eries are truly novel as they were not cross-checked against patent databases (where they
found evidence that the suggested knowledge discoveries have actually been published
prior in patent databases). Later, Yestisgen-Yildiz & Pratt (2009) proposed a way to
automatically create a gold standard dataset using time-sliced evaluation. They used
this evaluation technique to compare the performance of LitLinker with other techniques
using 100 disease names.

vi.2.3 RaJoLink

Even though most existing LBD approaches heavily rely on the idea of frequent terms,
RaJoLink (Petriĕ et al. 2009) make use of ‘rarity’ as the main underlying principle of the
knowledge discovery process based on associationist creativity theory (Mednick 1962).
Another distinguishing feature of RaJoLink is their unique discovery model employed
to identify the hidden connections. Instead of using the ABC model as it is, they have
combined both open and closed discovery models into one model to identify potential
associations. To reduce the search space and speed up the whole process, a human
expert focuses on the neighbouring documents in the similarity graph to detect potential
linking terms. This process was done with the use of OntoGen tool using TF-IDF as a
metric to measure the document similarity. As for evaluation, the authors applied their
model in Autism literature to detect novel, implicit associations that were confirmed
through expert evaluation. Later, an enhanced rarity based RaJoLink model (Petric
et al. 2014) was proposed using open discovery. It combined text mining and gene
prioritising techniques to identify gene↔disease associations using MeSH and HUGO
based term identification. In this method, the authors proposed four types of re-ranking
methods using the two web servers; ToppGene and Endeavour, and two propagation-
based methods; personalised PageRank and diffusion kernel method.

vi.2.4 Bitola

Hristovski et al. (2003, 2005, 2006) developed BITOLA that supports both open and
closed discovery of LBD. BITOLA detects novel disease↔gene associations using associ-
ation rule mining and background medical knowledge. The system makes use of MeSH,
gene symbols and chromosomal locations. Given a disease X, the system initially identi-
fies the disease characteristics (concepts B) as linking terms using association rule A→B.
Afterwards, the genes related to the previously identified disease characteristics are se-
lected as the target C concepts using association rule B→C. The system also employs
UMLS semantic type filter, chromosomal locations filter, and relationship strength filter
(support and confidence) to limit the derived associations.

However, using co-occurrence to identify novel associations suffers from several draw-
backs: 1) system tend to identify many semantically unrelated connections (false posi-
tives), 2) all co-occurrence pairs identified in MEDLINE are not necessarily interesting
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and 3) user needs to understand the nature of the specified association by manually re-
viewing the research articles. As a result, Hristovski et al. (2006) proposed a predication-
based approach using SemRep and BioMedLEE with the use of discovery patterns based
approach (discussed in Section v.1.2). BITOLA was further improved by integrating a
pre-processor for the gene symbol disambiguation process using a Chi-square based scor-
ing method (Kastrin et al. 2010, Kastrin & Hristovski 2008).

Subsequently, Hristovski et al. (2010) also developed a semantic version of the BITOLA,
namely SemBT 2 that integrates semantic relations with microarray results. They have
demonstrated the use of their system using microarray data on Parkinson’s disease along
with semantic relations to detect novel and implicit treatments.

vi.2.5 Manjal

Srinivasan (2004) introduced Manjal that supports both open and closed knowledge
discovery process. Her proposed approach leverages semantic profiling technique based
on the relationships between MeSH terms and UMLS semantic types. In her work,
a profile is a set of weighted MeSH terms that are grouped to denote a specific UMLS
semantic type. More specifically, all the MeSH terms in the given article set are retrieved
and weighted based on TF-IDF scheme. Each UMLS semantic type constructs a vector
of MeSH terms and normalises their weights within each vector. The user can restrict
the intermediate and target concepts by specifying UMLS semantic types of interest.
Srinivasan has replicated five of Swanson’s discoveries to evaluate her Manjal system.

vi.2.6 Other LBD Tools

Weeber et al. (2000) developed DAD (Drug-ADR-Disease), a knowledge-based tool that
utilises UMLS and MetaMap. Anni is a concept profile-based LBD tool, where a profile
contains weighted concepts co-occurred with the target concept (Jelier et al. 2008).
Wren et al. (2004) developed IRIDESCENT by integrating fuzzy logic, as discussed in
Section v.1.1. In a later study, Wren (2004) extended mutual information measure to
detect potential associations.

Apart from the above discussed main LBD tools, other LBD tools such as CrossBee3

(Juršič et al. 2012, 2013), EpiphaNet4 (Cohen, Whitfield, Schvaneveldt, Mukund &
Rindflesch 2010), Spark (Workman et al. 2016), Transcriptional Regulatory Modules
Extracted from Literature (TREMEL)5 (Roy et al. 2017), Biolab Experiment Assistant
(BAE)6 (Persidis et al. 2004) and Dragon Exploratory System on Hepatitis C Virus
(DESHCV)7 (Kwofie et al. 2011) have also been built to support the knowledge dis-
covery process. These tools have been utilised by several LBD studies to identify novel
knowledge associations, which supports the need for such systems to solve real-world
problems. For example, Swanson et al. (2001), Gao et al. (2015) and Dong et al. (2014)
have used Arrowsmith, Gubiani et al. (2017) have used CrossBee, Zhan et al. (2017)
have used BITOLA, Vos et al. (2013) have used Anni, and Maver et al. (2013) have
used SemBT to predict potential discoveries. Unfortunately, the existing LBD tools only
support medical-based searches. This clearly showcases the requirement of constructing
cross-domain LBD systems.

2http://sembt.mf.uni-lj.si
3http://crossbee.ijs.si/
4http://epiphanet.uth.tmc.edu
5http://binf1.memphis.edu/tremel
6https://www.biovista.com/research/bea/
7http://apps.sanbi.ac.za/DESHCV/
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vi.3 What are the applications of LBD research?

As discussed in Section i, the main objectives of LBD research are; 1) alleviating the
problem of the knowledge over-specialisation, and 2) assisting to formulate scientifically
sensible novel research hypotheses. However, LBD techniques have also been successfully
applied to other application areas as described below.

vi.3.1 Drug Development

Developing a novel drug for existing diseases is of vital importance as it could save
millions of human lives. Some studies have contributed to this application area by
employing their LBD process to discover novel treatments for existing diseases (Kostoff
2008, Kostoff & Briggs 2008, Kostoff, Briggs & Lyons 2008, Kostoff 2014, Zhang et al.
2014, Hu et al. 2003, Kim & Park 2016). Several examples of the diseases that have
been explored in LBD are Parkinson’s disease (Kostoff & Briggs 2008, Kostoff 2014),
multiple sclerosis (Kostoff, Briggs & Lyons 2008) and cataracts (Kostoff 2008). Some
of these proposed treatments have even been verified through clinical tests (Baek et al.
2017), which shows the potential usage of LBD in developing new drugs.

vi.3.2 Adverse Drug Reactions

Prevention of fatal adverse drug events is another application area where the LBD
process has been successfully applied (Hristovski, Kastrin, Dinevski, Burgun, Žiberna
& Rindflesch 2016, Shang et al. 2014, Rastegar-Mojarad et al. 2016, Mower et al. 2016,
Malec et al. 2016, Banerjee et al. 2014). Therefore, LBD can be considered as a useful
technique for early prediction of unanticipated adverse drug reactions by automatically
analysing clinical notes and literature.

vi.3.3 Drug Repositioning

Drug repositioning is the process of detecting novel therapeutic uses and applications for
existing drugs (Andronis et al. 2011). This is a highly useful application as it involves
500-2000 million of dollars with 10 -15 years of effort to invent a new drug (Henry &
McInnes 2017). However, the success rate of a new drug is less than 10% (Rastegar-
Mojarad & Prasad 2015, Henry & McInnes 2017). As a result, several LBD studies
have developed drug repositioning LBD systems to cater to this issue (Yang et al. 2017,
Rastegar-Mojarad et al. 2015, Park et al. 2017, Rastegar-Mojarad et al. 2016, Sang,
Yang, Wang, Liu, Lin & Wang 2018, Lekka et al. 2011, Rastegar-Mojarad & Prasad
2015).

In addition to the above discussed popular application areas, the LBD process has also
been employed in the following problem areas.

vi.3.4 Cross-domain Research Collaboration Recommendation

Hristovski et al. (2015, 2016) have utilised LBD paradigm to recommend novel cross-
domain research collaborations. To facilitate this, they have developed a network with
author names and biomedical concepts as the major node types, and writes about and
co author as the major edge types. Using the suggestions proposed through the open
discovery process, they select author profiles that write about these suggested concepts
to propose potential collaborations. Kothari & Payne (2015) have also attempted to
identify cross-disciplinary research teams by using a keyword-based approach.
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vi.3.5 Clinical Guidelines Update Process

The procedure of creating, reviewing and updating clinical guidelines is expensive and
laborious. As a result, the guidelines update usually occurs based on a fixed schedule
(such as every two years) which often leads into situations where guidelines get out of
date by the time they are published (Iruetaguena et al. 2013). Inspired from the LBD
open discovery model, Iruetaguena et al. (2013) have attempted to support the decision-
making process of clinical guidelines update by recommending new articles to the medical
committee as the starting point to update clinical guidelines without manually searching
and reading the articles.

vi.3.6 Co-citation Prediction

While most existing LBD approaches have attempted to elicit future links among con-
cepts, Sebastian et al. (2017b, 2015) have formulated the problem of LBD as a co-citation
prediction task. They have utilised heterogeneous bibliographic information network
analysis to predict the potential novel co-citations that are likely to occur in the future,
as discussed in Section v.1.3.

vi.4 What domains are considered in LBD research, and what are the
levels of generalisability for these domains?

When analysing the literature, it is evident that the majority of the studies have only
contributed to the medical domain and its applications. The reason for this might be the
availability of highly specific and descriptive content in medical research papers, which
is necessary for the LBD process (Ittipanuvat et al. 2014). To date, only a handful of
research studies have been performed in non-medical domains, as shown in Table 2.4.
For example, the only LBD study that has been performed in the computer science
domain is to find suitable implicit applications of the Genetic algorithm (Gordon et al.
2002). This points out the importance of contributing to non-medical LBD research,
since automated knowledge discovery is beneficial to research development despite the
domain.

Furthermore, we also analysed the domain generalisability of LBD research. In other
words, we examined the extent to which the existing methodologies can be applied in
other domains. For this purpose, we used the following categories to divide the literature,
as summarised in Table 2.5.

• Category 1 (only limited to specific medical problem/subdomain): This category rep-
resents LBD methodologies that can only be applied to a specific medical problem/-
subdomain. That is, these methodologies are specialised to a certain problem and
cannot be generalised even within the medical domain itself (e.g., LBD methodologies
that are specialised only to find associations between ‘diseases’ and ‘drugs’, in order
to fulfil purposes such as drug repositioning (Rastegar-Mojarad et al. 2015) or adverse
drug reactions (Shang et al. 2014)).

• Category 2 (can be used in the medical domain in general): If an LBD methodology
can be used in any problem/area related to the medical domain (but not in other
domains), we consider it as a Category 2 methodology.

• Category 3 (can be used in other domains in addition to the medical domain): This
category denotes LBD methodologies that are originally proposed in the medical do-
main but can also be used in other domains since they do not specifically use any
medical domain related resources in their methodologies. However, their usage in
other domains has not explicitly been verified or tested by the authors.
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Table 2.4: Domains in which LBD experiments have been conducted

Domain Past Studies

Medical (Lever et al. 2018, Gubiani et al. 2017, Baek et al. 2017, Vlietstra
et al. 2017, Yang et al. 2017, Zhan et al. 2017, Xun et al. 2017, Pusala
et al. 2017, Preiss & Stevenson 2017, Sebastian et al. 2017b, Huang
et al. 2016, Hristovski, Kastrin, Dinevski, Burgun, Žiberna & Rind-
flesch 2016, Preiss & Stevenson 2016, Kastrin et al. 2016, Qi & Ohsawa
2016, Kim et al. 2016, Zhou et al. 2015, Song et al. 2015, Preiss et al.
2015, Cairelli et al. 2015, Cameron et al. 2015, Rastegar-Mojarad et al.
2015, Srinivasan et al. 2015, Sebastian et al. 2015, Sang et al. 2015,
Lee et al. 2015, Shang et al. 2014, Hanauer et al. 2014, Vicente-Gomila
2014, Dong et al. 2014, Tsafnat et al. 2014, Workman et al. 2014, Kas-
trin et al. 2014b, Vidal et al. 2014, Petric et al. 2014, Vos et al. 2013,
Ding et al. 2013, Liang et al. 2013, Iruetaguena et al. 2013, Cameron
et al. 2013, Gabetta et al. 2013, Cherdioui & Boubekeur 2013, Maver
et al. 2013, Cohen et al. 2012, Cheung et al. 2012a, Miller et al. 2012,
Hossain et al. 2012, Bhattacharya & Srinivasan 2012, Goodwin et al.
2012, Faro et al. 2011, Maciel et al. 2011, Bisgin et al. 2011, Kostoff
2011, Kwofie et al. 2011, Cohen et al. 2011, Guo & Kraines 2009b,
Maclean & Seltzer 2011, Loglisci & Ceci 2011, Hur et al. 2010, Baker
& Hemminger 2010, Ijaz et al. 2009, Cohen, Schvaneveldt & Widdows
2010, Hu et al. 2010, Özgür et al. 2010, Kraines et al. 2010, Hristovski
et al. 2010, Cohen & Schvaneveldt 2010, Kastrin et al. 2010, Vidal et al.
2010, Yetisgen-Yildiz & Pratt 2009, Smalheiser et al. 2009), ...

Other
domains

Industrial domain (electric vehicles energy storage systems) (Vicente-
Gomila 2014), Water purification techniques (Kostoff, Solka, Rushen-
berg & Wyatt 2008), Robotics↔Gerontology (Ittipanuvat et al. 2014,
2012), Chance discovery↔Olympic games (Qi & Ohsawa 2016), Coun-
terterrorism (Jha & Jin 2016a), Built environment (Kibwami & Tutesi-
gensi 2014), Genetic algorithms (Gordon et al. 2002), Chinese agricul-
tural economics (Huang et al. 2012), Crime investigation (Schroeder
et al. 2007), Climate science (Marsi et al. 2014), Sustainability
issues↔Aviation industry (Nakamura et al. 2014)

• Category 4 (proven to be useful in medical and other domains): This category rep-
resents LBD studies same as Category 3, except for the fact that the authors have
verified or tested the suitability of their medical LBD approach in other domains as
well.

• Category 5 (other domains): If the LBD methodology is proposed in a non-medical
domain, it is categorised under this category.

The following conclusions can be made by analysing Table 2.5; 1) most medical LBD
studies rely on medical domain knowledge, making them infeasible to apply to other
domains, 2) a substantial amount of medical studies are not generalised even within
the medical domain itself, 3) the usage of most of the domain-independent medical
approaches has not been validated or tested in other domains. 4) validating LBD
methodologies in both medical and non-medical domains to demonstrate their domain-
independency has not received much attention from the LBD community, and 5) the
LBD approaches that have performed outside the medical domain have rarely evaluated
their ability to detect medical discoveries (e.g., (Huang et al. 2012)).
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Table 2.5: Level of generalisability of the existing LBD literature

Category Past Studies

Category
1

Baek et al. (2017), Vlietstra et al. (2017), Yang et al. (2017), Huang
et al. (2016), Hristovski, Kastrin, Dinevski, Burgun, Žiberna & Rind-
flesch (2016), Kim et al. (2016), Zhou et al. (2015), Cairelli et al. (2015),
Rastegar-Mojarad et al. (2015), Srinivasan et al. (2015), Shang et al.
(2014), Hanauer et al. (2014), Dong et al. (2014), Tsafnat et al. (2014),
Vidal et al. (2014), Petric et al. (2014), Ding et al. (2013), Liang et al.
(2013), Cameron et al. (2013), Gabetta et al. (2013), Maver et al.
(2013), Cohen et al. (2012), Cheung et al. (2012a), Bhattacharya &
Srinivasan (2012), Faro et al. (2011), Maciel et al. (2011), Bisgin et al.
(2011), Kwofie et al. (2011), Hur et al. (2010), Baker & Hemminger
(2010), Ijaz et al. (2009), Özgür et al. (2010), ...

Category
2

Lever et al. (2018), Xun et al. (2017), Pusala et al. (2017), Preiss &
Stevenson (2017), Kastrin et al. (2016), Song et al. (2015), Preiss et al.
(2015), Cameron et al. (2015), Sang et al. (2015), Lee et al. (2015),
Kastrin et al. (2014b), Cherdioui & Boubekeur (2013), Miller et al.
(2012), Hossain et al. (2012), Goodwin et al. (2012), Kostoff (2011),
Cohen et al. (2011), Guo & Kraines (2009b), Maclean & Seltzer (2011),
Loglisci & Ceci (2011), Cohen, Schvaneveldt & Widdows (2010), Hu
et al. (2010), Kraines et al. (2010), Yetisgen-Yildiz & Pratt (2009),
Smalheiser et al. (2009), Petriĕ et al. (2009), Guo & Kraines (2009a),
Kostoff, Block, Stump & Johnson (2008), ...

Category
3

Sebastian et al. (2017b, 2015), Cohen & Schvaneveldt (2010),
Thaicharoen et al. (2009), Bruza et al. (2006), Cole & Bruza (2005),
Lindsay & Gordon (1999), Gordon & Dumais (1998), Gordon & Lind-
say (1996), McClure (2012), Crichton et al. (2018), Petrič et al. (2012),
Urbančič et al. (2007), Kostoff & Lau (2013)

Category
4

Qi & Ohsawa (2016), Vicente-Gomila (2014)

Category
5

Jha & Jin (2016a), Ittipanuvat et al. (2014), Nakamura et al. (2014),
Marsi et al. (2014), Ittipanuvat et al. (2012), Kostoff, Solka, Rushen-
berg & Wyatt (2008), Schroeder et al. (2007), Gordon et al. (2002),
Huang et al. (2012), Kibwami & Tutesigensi (2014)

vii Statistical Analysis

The statistical analysis of this review was performed with the intention of identifying
current trends in the LBD discipline regarding publications over the years, top-cited
papers and authors.

vii.1 What are the trends in LBD research in terms of publications
over the years, top-cited papers and top authors?

The line chart in Figure 2.3 depicts the publication counts in the LBD discipline for
each year. We only considered the publications in the dataset that we developed for this
review to obtain the statistics. The publication count of the year 2018 is not mentioned,
as we collected the data for the review at the beginning of May 2018. When analysing
the chart, it is visible that overall there is a growing research interest in the LBD field.
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Figure 2.3: Publication count over time

A close inspection of the latter part of the chart reveals that LBD research has come to
its peak in 2014, drops in 2015 and remains plateau over 2015-2017.

Table 2.6 mentions the top 10 cited papers in LBD that are based on the citation counts
extracted from Google Scholar. These papers include most of the initial works in the
discipline that were published in the time frame of 1996-2005. When analysing the pur-
pose of these papers, it is evident that most of the papers introduce the main LBD tools
in the discipline, while others are integrating new computational techniques to the LBD
framework for the first time in the discipline. Considering the categories of techniques,
it is clear that most of the techniques belong to statistical/co-occurrence models and
early attempts of incorporating domain knowledge from structured knowledge bases.
One reason for the high citation counts could be that these LBD papers have set the
foundation of the discipline and thus, providing the background knowledge/history of
the LBD literature. However, Kostoff et al. (2009) questioned whether the predicted
novel discoveries of most of these initial works are actual discoveries as they fail to fulfil
the requirements of an actual discovery (see Section vi.1).

Table 2.6: Top cited papers in LBD

Article Title Count Purpose Techniques

An interactive system for finding com-
plementary literatures: a stimulus to
scientific discovery (Swanson & Smal-
heiser 1997)

540 Introducing Arrow-
smith (version 1)
LBD tool

Relative frequency

Text Mining: Generating hypotheses
from MEDLINE (Srinivasan 2004)

351 Introducing Manjal
LBD tool

Weighted topic pro-
files using MeSH
and UMLS

Using concepts in literature-based dis-
covery Simulating Swanson’s Raynaud-
fish oil and migraine-magnesium dis-
coveries (Weeber et al. 2001)

263 Integrating seman-
tic information into
the LBD process

Incorporating back-
ground knowledge
using UMLS

Using literature-based discovery to
identify disease candidate genes (Hris-
tovski et al. 2005)

242 Introducing
BITOLA LBD
tool

Association rule
mining and back-
ground domain
knowledge from
medical resources

Knowledge discovery by automated
identification and ranking of implicit re-
lationships (Wren et al. 2004)

219 Introducing IRI-
DESCENT LBD
tool

Network structures
and fuzzy logic

Toward discovery support systems: A
replication, re-examination, and exten-
sion of Swanson’s work on literature-
based discovery of a connection between
Raynaud’s and fish oil (Gordon & Lind-
say 1996)

205 Incorporating con-
ventional statistical
measures in LBD

Frequencies (abso-
lute and relative)
and TF-IGF

Literature-based discovery by lexical
statistics (Lindsay & Gordon 1999)

199 Incorporating con-
ventional statistical
measures in LBD

Frequencies (abso-
lute and relative)
and TF-IDF



Systematic Literature Review 45

Text-based discovery in biomedicine:
The architecture of the DAD-system
(Weeber et al. 2000)

167 Introducing DAD
LBD tool and its
applicability in
adverse drug reac-
tions prediction

Incorporating back-
ground knowledge
using UMLS

Using latent semantic indexing for lit-
erature based discovery (Gordon & Du-
mais 1998)

165 Integrating distri-
butional semantics
into the LBD
framework

Latent semantic in-
dexing with neigh-
bourhood analysis

Mining MEDLINE for implicit links be-
tween dietary substances and diseases
(Srinivasan & Libbus 2004)

148 Drug repositioning
using Manjal LBD
tool

Weighted topic pro-
files using MeSH
and UMLS

Table 2.7: Top cited recent papers (2016-present)

Article Title Count Purpose Techniques

The effect of word sense dis-
ambiguation accuracy on
literature based discovery
(Preiss & Stevenson 2016)

10 Emphasises the impor-
tance of Word Sense Dis-
ambiguation (WSD)

Three WSD systems: per-
sonalized page rank, vec-
tor space model, and
MetaMap

Literature-based discovery
of new candidates for drug
repurposing (Yang et al.
2017)

10 Drug repurposing using
the ABC model

Pattern-based relation-
ship extraction and
vector space-based rank-
ing

Link Prediction on a
Network of Co-occurring
MeSH Terms: Towards
Literature-based Discovery
(Kastrin et al. 2016)

9 Devising LBD as a
link prediction prob-
lem (both supervised &
unsupervised)

Proximity measures:
common neighbor, Jac-
card coefficient, Adam-
ic/Adar index, and
preferential attachment

Prioritizing adverse drug
reaction and drug reposi-
tioning candidates gener-
ated by literature-based
discovery (Rastegar-
Mojarad et al. 2016)

6 Drug repositioning, ad-
verse drug event, & drug-
disease relation detection
using the ABC model

SemMedDB semantic
predications and super-
vised machine learning

Learning the heterogeneous
bibliographic information
network for literature-
based discovery (Sebastian
et al. 2017b)

6 Devising LBD as a co-
citation prediction prob-
lem (supervised link pre-
diction)

Proves the importance
of non-lexical information
such as author, venue
and citation details us-
ing Heterogeneous Biblio-
graphic Information Net-
work (HBIN)

Enriching plausible new
hypothesis generation in
PubMed Baek et al. (2017)

5 Finding implicit biologi-
cal associations using the
AnC model

Graph-based using aver-
age semantic relatedness
of a path

Spark, an application based
on Serendipitous Knowl-
edge Discovery (Workman
et al. 2016)

5 Integrating the poten-
tial use of information-
seeking behaviour in ap-
plication design

Serendipitous knowledge
discovery using semantic
predications

Classification-by-Analogy:
Using Vector Representa-
tions of Implicit Relation-
ships to Identify Plausibly
Causal Drug/Side-effect
Relationships (Mower et al.
2016)

5 Adverse drug events
prediction by mimicking
analogical reasoning

Semantic predications,
distributional semantics
(PSI) and supervised
machine learning

Using Literature-Based
Discovery to Explain
Adverse Drug Effects
(Hristovski, Kastrin,
Dinevski, Burgun, Žiberna
& Rindflesch 2016)

4 Adverse Drug Effects
prediction using SemBT
LBD tool

Semantic predications
with discovery patterns
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Table 2.8: Top authors in LBD research

Author Count Author Count

Thomas C. Rindflesch 27 Ingrid Petric 4

Dimitar Hristovski 15 Judita Preiss 4

Trevor Cohen 13 Kishlay Jha 4

Ronald N. Kostoff 10 Michael D. Gordon 4

Neil R. Smalheiser 9 Michael J. Cairelli 4

Andrej Kastrin 8 Rein Vos 4

Borut Peterlin 8 Tanja Urbancic 4

Roger Schvaneveldt 7 Vetle I. Torvik 4

Dominic Widdows 6 Bojan Cestnik 4

Marcelo Fiszman 6 Steven B. Kraines 4

Min Song 6 Weisen Guo 4

M. Yetisgen-Yildiz 5 Erik M. van Mulligen 4

Don R. Swanson 4

We also analysed the papers that have received high citation counts during the time-
period of 2016-present with the intention of identifying most attracted computational
techniques used in the recent LBD literature. In other words, we assumed that highly
cited recent LBD publications indicate an attractive technique in the LBD literature
(Table 2.7).

Regarding the purpose of most cited recent publications, it is visible that much of them
are contributing to the special-purpose applications areas of LBD (such as adverse drug
events and drug repurposing). This highlights the potential of adapting the LBD frame-
work in other problem areas to enhance the reasoning process. Another interesting
pattern concerning the purpose of these papers is that they have deviated from the typ-
ical research setting of the LBD process, which is a ranked list of hidden associations.
These redefined research settings include LBD as a co-citation prediction task, link pre-
diction task, supervised learning task and/or unsupervised learning task. Overall, it is
evident that the LBD community tends to have a special interest in involving techniques
in the link prediction discipline to uncover hidden associations in the literature.

In terms of techniques, Table 2.7 reveals that semantic predicates, network analysis and
machine learning are commonly used in most of these publications. Regarding the
network analysis, while most of the LBD studies focus on homogeneous networks that
are constructed only using concepts in the research papers, the study of Sebastian et
al. (2017b) have incorporated multiple other metadata (such as author details, pub-
lished venues, and citation details) to construct their heterogeneous network. Their
results demonstrate that combining both lexical and non-lexical information tends to
perform well in detecting hidden patterns. Preiss & Stevenson (2016) have attempted
to measure the effect of word sense disambiguation (WSD) accuracy in terms of LBD
performance. Their results reveal that WSD is a useful component in LBD systems,
and the effectiveness of LBD is sensitive to the accuracy of WSD. Mower et al. (2016)
have experimented to integrate the characteristics of analogical reasoning into the LBD
process by incorporating distributional semantics (PSI).

We believe that the above discussed unique contributions of each study in terms of
purpose and techniques are the main reason for their high citation counts. We also
analysed the authors who have mostly contributed to the discipline by considering the
number of times each author appeared in the author list (irrespective of the position
of the author) as the metric. Table 2.8 summarises the top authors found from our
statistical analysis. It is clear that most of the top-cited articles (in Table 2.6) are
mostly authored by the top authors in the field.
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viii Limitations

Although this review outlines the insights gleaned through our rigorous literature anal-
ysis with confidence, we could have missed articles that are outside the six databases
and six keywords used. To mitigate this effect up to some extent, we have also added
references from the recent review (Henry & McInnes 2017) during our paper retrieval
process, as listed in Table 2.2.

ix Conclusions and Future Work

The main discussion points of this review are LBD computational techniques, key mile-
stones of the discipline, validation checks, tools, application areas, domains and general-
isability levels. The latter part of the review presents a statistical analysis that attempts
to elicit patterns in the LBD literature. We also performed a comparison of the findings
in this review with two most recent LBD reviews (Henry & McInnes 2017, Sebastian
et al. 2017a), which is available at https://tinyurl.com/review-comparisons.

LBD was originally evolved with the intention of overcoming the knowledge over-specialisation
and to support scientists in the knowledge discovery process. However, as pointed by
this review, special-purpose LBD systems were successfully developed to address issues
in other problem areas (such as drug discovery, drug repurposing and adverse drug reac-
tions). Our highly cited recent publications analysis reveals that such applications have
received greater attention within the LBD community. However, the application areas
explored and verified so far are mainly in the medical domain. Hence, an interesting
future direction would be to integrate the LBD frameworks (e.g., the ABC model) in
other problem areas, such as e-commerce (e.g., product recommendation), entertainment
(e.g., movie recommendation), and nutrition (e.g., recipe recommendation) to enhance
the accuracy of the predictions in these problem settings.

As discussed in Section vi.2, the LBD discipline has few knowledge discovery tools avail-
able such as Arrowsmith, BITOLA, SemBT, LitLinker, Manjal, etc. However, these
tools only support medical literature mining. This emphasises the need to develop
cross-domain LBD tools, which can be considered as a challenging future direction.
Two main reasons for their domain-dependency are; 1) underlying algorithm relies on
the knowledge extracted from the domain-specific knowledge bases and databases (such
as UMLS) to make the predictions, and 2) supporting the literature search only in
domain-specific databases (such as PubMed). To overcome the aforementioned two
limitations, the proposed algorithm should be; 1) independent of using domain-specific
resources. In this regard, the usage of domain-independent knowledge bases (such as DB-
pedia, Freebase and YAGO) is extremely useful. Unlike hand-crafted knowledge bases,
the suggested community-driven knowledge bases are up-to-date, free, multilingual and
domain-independent, and 2) supporting the search in other literature databases (such
as Web of Science and Scopus) to facilitate domain-independent literature search.

Furthermore, existing LBD tools have paid a little attention in terms of visualisation
of their results, user interface and documentation (Weeber et al. 2005). Therefore, it is
equally important to alleviate these issues when designing an LBD system. This brings
out the importance of conducting Human-Computer Interaction (HCI) research in the
field to enable LBD tools to support users with a varied range of expertise and abilities
without any formal training. Currently, the usage statistics of LBD tools have been
reported to be low. For example, Arrowsmith tool is only used by 1200 unique users
on a monthly basis (Li et al. 2013), even though the tool is continuously maintained
and available online as a free service. Hence, the involvement of HCI research will also
promote awareness of the availability of such discovery tools.

As for the computational techniques, it is evident that much of the early computational
approaches have utilised lexical statistics that can be considered as the most primi-
tive technique used in the LBD literature. Later, different other techniques (such as
knowledge-based, relations-based, hierarchical-based, graph-based, bibliometrics-based,

https://tinyurl.com/review-comparisons
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link prediction-based and distributional semantics-based approaches) were introduced to
the discipline. The following methodological trends were revealed from our 1) statistical
analysis of citations (see Section vii.1), 2) evolution analysis (see Section v.2) and 3)
computational techniques analysis (see Section v.1). The analysis of highly cited recent
publications disclosed the trend of using predication/relation-based, network-based, ma-
chine learning and link prediction techniques. According to our timeline analysis, the
recently emerged techniques include embeddings-based techniques, such as word em-
beddings (e.g., GloVE) and graph embeddings (e.g., DeepWalk, LINE, node2vec and
SDNE). Besides, as shown in our classification of main computational techniques, cre-
ativity techniques (Vicente-Gomila 2014) and storytelling algorithms (Hossain et al.
2012) can be considered as two important enhancements in the LBD discipline.

In addition, Korhonen et al. (2014) pointed out that the existing LBD methodologies are
limited as they utilise fairly shallow techniques to analyse texts. Hence, they highlight
the importance of developing more accurate, dynamic and broader LBD systems through
deep analysis and understanding of texts using advanced text mining methods (Korhonen
et al. 2014). Moreover, as pointed through Kostoff’s LRD studies (Kostoff, Briggs,
Solka & Rushenberg 2008), it is also important to improve the information retrieval
effectiveness from literature databases (such as MEDLINE) by incorporating techniques
related to query expansion (Symonds, Bruza, Zuccon, Koopman, Sitbon & Turner 2014).
The recent advancements in query expansion techniques (Azad & Deepak 2017) will be
useful in this regard.

The statistical analysis of the review reveals that the LBD discipline is receiving a grow-
ing research interest from the global research fraternities. Despite the valuable contribu-
tion of the LBD studies during the last three decades, the field still requires a substantial
amount of research to overcome the current limitations. In terms of methodology, the
most prevailing limitation of the LBD studies is their restriction to the medical domain
by developing highly specific LBD systems that lack generalisability. Most of the studies
primarily focus on finding associations among a set of fixed domain concepts: proteins,
genes, diseases and drugs. Surprisingly, a considerable amount of medical LBD studies
are not even generalisable within the medical domain itself. To date, there are a handful
of LBD research studies performed outside the medical domain. This points out the
importance of developing domain-independent LBD solutions in future LBD research
whose success do not depend on domain-specific knowledge resources.

With the increasing research trend in the field, we believe that future LBD research will
attempt to alleviate these existing limitations by developing fully automated, domain-
independent LBD systems with concise and informative visualisations, and robust eval-
uations. Such LBD systems will not only assist scientists to generate scientifically sen-
sible novel research hypotheses in a shorter time, but also encourage cross-disciplinary
research by connecting disjointed knowledge areas.
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2.5 Publication II

A Systematic Review on Literature-Based Discovery Work-

flow

As scientific publication rates increase, knowledge acquisition and the research development process have become

more complex and time-consuming. Literature-Based Discovery (LBD), supporting automated knowledge discov-

ery, helps facilitate this process by eliciting novel knowledge by analysing the existing scientific literature. This

systematic review provides a comprehensive overview of the LBD workflow by answering eight research questions

related to the major components of the LBD workflow (i.e., input, process, output and evaluation). With regards

to the ‘input ’ component, we discuss the input types and data sources used in the literature. The ‘process’

component presents filtering techniques, ranking/thresholding techniques and LBD resources. Subsequently, the

‘output ’ component focuses on the visualisation techniques used in the LBD discipline. As for the ‘evaluation’

component, we outline the evaluation techniques, their generalisability and the quantitative measures used to

validate results. To conclude, we summarise the findings of the review for each component by highlighting the

possible future research directions.

x Introduction

Due to the exponential growth of scientific publications, keeping track of all research
advances in scientific literature has become almost impossible for a scientist (Cheadle
et al. 2017). As a result, scientific literature has become fragmented, and individual
scientists tend to deal with fragments of knowledge based on their specialisation. Con-
sequently, valuable implicit associations that connect these knowledge fragments tend
to remain unnoticed, since scientists in each specialisation have only seen part of the big
picture. Literature-Based Discovery (LBD) supports cross-disciplinary knowledge dis-
covery to elicit these hidden associations to recommend new scientific knowledge. The
recommended novel associations can greatly assist scientists in formulating and evalu-
ating novel research hypotheses (Ganiz et al. 2005). While reducing the time and effort,
this will also promote scientists to discover new areas of research.

x.1 Brief History

LBD was developed as a research field from the medical discoveries published by Swanson
since 1986. In his first discovery, he manually analysed the titles of two literature sets:
fish oil and Raynaud’s disease (Swanson 1986). Swanson observed that patients with
Raynaud’s disease tend to have high blood viscosity and high platelet aggregation. He
also noted that fish oil contains EPA (eicosapentaenoic acid), which helps to decrease
the blood viscosity and platelet aggregation. By combining these knowledge pairs, he
generated the hypothesis; ‘Raynaud’s disease can be cured using fish oil’. Furthermore,
he also observed that the two literature sets he was referring are disjointed. That is,
the articles in the two literature sets have not mentioned, cited or co-cited each other.
Consequently, he published these findings, which were deduced using the ABC model
(see Section x.2). His second discovery followed the same process, where he manually
examined the titles of Migraine and Magnesium to detect implicit associations that
connects the two literature sets (Swanson 1988). Later, his observations were proven
through laboratory experiments that demonstrate the validity of his thinking process
(Ramadan et al. 1989).
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Even though the early work of Swanson was mostly performed manually by merely
analysing the article titles and their word co-occurrence frequencies, they formed the
foundation of the field. In accordance with Swanson’s experiments, the existing disperse
knowledge fragments in the literature can be accumulated in such a way to develop novel
semantic relationships that have not drawn any awareness before (a.k.a. undiscovered
public knowledge) (Swanson 1986). These connectable disperse knowledge fragments in
the literature may exist as; 1) hidden refutations or qualifications, 2) undrawn conclusion
from different knowledge branches, 3) cumulative weak tests, 4) analogous problems,
and/or 5) hidden correlations (Davies 1989). In a later study, Swanson also pointed out
the importance of studying cases where the interaction of the two literature sets is not
null (i.e., the literature sets are not disjointed), but populated by few articles (a.k.a.
literature-based resurrection (Swanson 2011), scientific arbitrage (Smalheiser 2012)).

x.2 Discovery Models

Most LBD literature is based on the fundamental premise introduced by Swanson,
termed ABC model (Swanson 1986). It employs a simple syllogism to identify the
potential knowledge associations (a.k.a. transitive inference). That is, given two con-
cepts A and C in two disjointed scientific literature sets, if concept A is associated with
concept B, and the same concept B is associated with concept C, the model deduces
that the concept A is associated with the concept C. The popular ABC model has two
variants termed open discovery and closed discovery.

Open discovery is generally used when there is a single problem with limited knowledge
about what concepts can be involved. The process starts with an initial concept related
to the selected research question/problem (A-concept). Afterwards, the LBD process
seeks the relevant concepts that ultimately lead to implicit associations (C-concepts).
In other words, only the concept A is known in advance and concepts B and C are
identified by the LBD process. Therefore, this model can be viewed as a knowledge
discovery process that assists in generating novel research hypotheses by examining the
existing literature. Unlike the open discovery process, closed discovery model attempts
to discover novel implicit associations between the initially mentioned A-concept and
C-concept (a.k.a. concept bridges). Thus it represents hypotheses testing and vali-
dation process. More explicitly, the LBD process starts with user-defined A-concept
and C-concept, and the output will be the intermediate B-concepts that represents the
associations between the two user-defined domains.

Even though the prevalent ABC model has contributed in numerous ways to detect new
knowledge, it is merely one of several different types of discovery models that facilitates
the LBD process. In this regard, Smalheiser (2012) points out the importance of thinking
beyond the ABC formulation and experimenting with alternative discovery models in
the discipline. Despite the simplicity and power of the ABC model, it also suffers from
several limitations such as the sheer number of intermediate terms that exponentially
expands the search space and producing a large number of target terms that are hard to
interpret manually (Smalheiser 2012). Even though LBD research has suggested various
ways to overcome the aforementioned two limitations, most of these studies rely on
similarity-based measures to rank the target terms. This will result in LBD systems
that merely detect incremental discoveries. In addition, the field requires to explore
various interestingness measures that allow customising the LBD output to facilitate
different types of scientific investigations (Smalheiser 2012).

With respect to other LBD discovery models that are enhanced based on the ABC
discovery structure include the AnC model (where n=(B1,...,Bn)) (Wilkowski et al.
2011b), combined open and closed discovery model (Petriĕ et al. 2009), context-based
ABC model (Kim & Song 2019) and context-assignment-based ABC model (Kim &
Song 2019). Moreover, recent studies have attempted to further explore alternative dis-
covery models that deviate from the typical ABC discovery setting. These new directions
include storytelling methodologies (Sebastian et al. 2017b), analogy mining (Mower et al.
2016), outlier detection (Gubiani et al. 2017), gaps characterisation (Peng et al. 2017)
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and negative consensus analysis (Smalheiser & Gomes 2015). For a comprehensive dis-
cussion of contemporary discovery models and future directions, please refer (Smalheiser
2017, 2012).

x.3 Purpose of the Review

Even though there are several review papers (Gopalakrishnan et al. 2019, Henry &
McInnes 2017, Sebastian et al. 2017a, Ahmed 2016) published on LBD, the field still lacks
systematic literature reviews. Therefore, the existing reviews merely cover a subset of the
LBD literature and do not provide a comprehensive classification of the LBD discipline.
To address this gap, we present a large-scale systematic review by analysing 176 papers
that were selected by manually analysing 475 papers. On the contrary to the existing
traditional reviews, systematic reviews adhere to a rigorous and transparent method to
ensure the future replicability of the findings using a clear systematic review protocol,
and to minimise the bias through the focus on empirical evidence, not preconceived
knowledge (Mallett et al. 2012).

Another persistence research deficiency of other literature reviews is their limited and ad-
hoc focus points. To date, none of the existing reviews focuses on the LBD workflow as a
whole. Moreover, despite the importance of LBD components such as input, output and
evaluation, the existing reviews have not paid attention to critically analyse the state-
of-the-art and the limitations of these components. To overcome these two limitations,
in this review, we provide a sequential walk-through of the entire LBD workflow by
providing new insights on the LBD components such as input, output and evaluation.

Furthermore, we have also observed that most of the existing reviews have restricted
their scope only to medical-related LBD studies. Consequently, these reviews are lacking
the discussions of LBD in the non-medical and domain-independent settings. To cater
this issue, we examine the LBD literature in both medical and non-medical domains in
this review.

More specifically, our contributions are; 1) being the first systematic literature review
that covers every component of the LBD workflow, 2) shedding light on components
in the LBD workflow (such as input, output and evaluation) that have not been criti-
cally analysed or categorised by the existing reviews, 3) answering each of our research
questions using novel, up-to-date and comprehensive categorisations compared to the ex-
isting reviews, and 4) critiquing the LBD literature independently from domain, without
restricting to only medical-related LBD studies.

xi Methods

The overall process of this systematic review adheres the steps of systematic literature
reviews in computer science (Weidt & Silva 2016), as illustrated in Figure 2.4.

xi.1 Article Retrieval Process

We used six keywords and six databases to retrieve the articles for this review. Each
keyword is searched in the title, abstract or keywords depending on the search options
given by the databases. To ensure that we have not missed any useful articles, we also
added the full reference list of a latest LBD review (Henry & McInnes 2017). The article
retrieval process (with relevant statistics) is summarised in Table 2.9.
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Figure 2.4: Process of the systematic literature review

Table 2.9: Statistics of the article retrieval process

Keyword Web of
Science

Scopus PubMed ACM Digi-
tal Library

IEEE
Xplore

Springer
-Link

Total
Count

Query 1a 161 68 75 15 15 8 342

Query 2b 14 0 4 1 2 1 22

Query 3c 14 0 0 0 0 1 15

References from Henry & McInnes (2017) 96

Total Article count 475

a“literature based discovery” OR “literature based discoveries”
b“literature based knowledge discovery” OR “literature based knowledge discoveries”
c“literature related discovery” OR “literature related discoveries”

xi.2 Article Selection Process

We only included journals and conference proceedings that are in the English language in
our analysis. We excluded other types of articles such as reviews, books, book chapters,
papers reporting lessons learned, keynotes and editorials. We also eliminated the papers
that provide the theoretical perspective of LBD as our research questions are focused
to assess the LBD discipline in terms of computational techniques. We also excluded
articles of page count 4 or below as such articles mainly contain research-in-progress. The
entire article selection of this review was performed in three stages (Weidt & Silva 2016);
Stage 1: analyse only title and abstract, Stage 2: analyse introduction and conclusion,
and Stage 3: read complete article and quality checklist. In total, we obtained 176
papers for this review (listed in https://tinyurl.com/selected-LBD-articles).

xii Review Overview

In this review we seek answers for 8 research questions that are grouped into four cate-
gories by considering the workflow of LBD process, as illustrated in Figure 2.5.

1. Input Component

What input types are used in the knowledge discovery process of the LBD workflow?
What data sources are used in LBD research to extract these identified input types?

2. Process Component

What filtering techniques are used in the LBD process?
What ranking/thresholding mechanisms are used in the LBD process?

https://tinyurl.com/selected-LBD-articles
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Figure 2.5: Main components of the LBD workflow

What domain-independent and domain-dependent resources are utilised in LBD
research?

3. Output Component

What visualisation techniques are used to display results in LBD research?

4. Evaluation Component

What are the LBD evaluation types and how suitable are they to non-medical
domains?
What quantitative measurements are used to assess the effectiveness of the results?

To increase the readability of our review, we have cited a limited number of literature
for each research question. However, a complete list of references that supports the
proposed categorisations and conclusions of the research questions are listed in https:
//tinyurl.com/full-references.

xiii Input Component

This section analyses the input component of the LBD workflow to get an overview of
the data structures and databases used in the literature.

xiii.1 What input types are used in the knowledge discovery process
of the LBD workflow?

The LBD studies make use of different data types as their input of the knowledge
discovery process. The selection of the most suitable input type is one of the key design
decisions, as they should represent the most important entities and relationships of an
article to perform an efficient knowledge discovery. The input types used in the LBD
literature can be categorised as follows.

Title only: Some LBD studies (Swanson & Smalheiser 1997, Cherdioui & Boubekeur
2013) have only considered the article title as the input of the knowledge discovery
process. This input type selection might have influenced by Swanson’s initial work as
he only utilised the titles to uncover the hidden associations in his discoveries such as
Raynaud’s disease↔fish oil. Even though the article title contains limited information,
Sebastian et al. (2017b) have reported that using only titles for knowledge discovery
tend to produce better results compared to analysing abstracts.

Title and Abstract: The most common input type selection in the literature is using
both title and abstract (Lever et al. 2018, Sebastian et al. 2017b). The main reasons
for this selection over full-text analysis could be; 1) Reducing noise: Typically, the
title and abstract include the most important concepts that best describe the study
than considering the full-text, 2) Data retrieval constraints: Most APIs of the literature

https://tinyurl.com/full-references
https://tinyurl.com/full-references
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databases only support metadata retrieval, and 3) Reducing computational complexity :
As the content of title and abstract is restricted, the time and space complexities are
reduced compared to full-text analysis.

Full-text: Few studies (Lever et al. 2018, Vicente-Gomila 2014) have considered the
entire content of articles as their input type. It has been reported that using full-text
yields better results over title and abstract analysis. (Seki & Mostafa 2009). However, it
is also important to pay attention as to what sections of the full-text need to be analysed
to obtain better results. For instance, does analysing only the methodological-related
sections of an article produce better results than analysing the entire article? Such
detailed full-text analyses have not been preformed in the LBD literature yet.

Selected articles only: While most of the studies have used data retrieved from literature
database search engines (e.g., MEDLINE) for analysis, Cameron et al. (2015) have only
considered the reference lists of Swanson’s LBD publications. Considering only the 65
articles cited in Swanson’s Raynaud’s disease↔fish oil LBD paper (Swanson 1986) as
the input of the knowledge discovery process can be taken as an example. However,
since these reference lists are manually analysed and selected, whether this input type
selection reflects the complexity of the real-world data is doubtful.

Entire literature database: Several research studies (Lever et al. 2018, Yang et al. 2017)
have considered the entire literature database as their LBD input. That is, they have
not limited to articles retrieved for a given query (e.g., subset of the articles retrieved for
the query “fish oil”). Since the primary focus of LBD research is in the medical domain,
the literature database that has been mainly considered for analysis is MEDLINE. Ad-
ditionally, other sources such as SemMedDB (Cohen, Widdows, Stephan, Zinner, Kim,
Rindflesch & Davies 2014) and PubMed Central Open Access Subset articles (Lever
et al. 2018) have also been used as the LBD input.

Keywords: Some research approaches have employed the keywords of the articles as
the input type (Pusala et al. 2017, Hu et al. 2010). The mostly utilised keyword type
is Medical Subject Headings (MeSH), which are associated with MEDLINE records. It
is considered that MeSH descriptors are accurate and medically relevant as National
Library of Medicine (NLM) employs trained indexers to assign them to the MEDLINE
articles. Therefore, it is considered as a reliable source of representing the content of an
article.

Other metadata: Few studies have analysed other metadata of the research articles such
as author details (Sebastian et al. 2017b), publisher details (Sebastian et al. 2015) and
reference details (Kostoff, Block, Stump & Johnson 2008) to glean additional cues for the
possible links in the knowledge discovery process. The results of these studies prove that
the use of such metadata enhances the predictability of implicit knowledge associations
(Sebastian et al. 2017b).

Other traditional input types: While majority of the LBD studies have focused only
on analysing the research papers, some approaches have been conducted using other
traditional input types, such as patents (Vicente-Gomila 2014, Maciel et al. 2011), TREC
MedTrack collection of clinical patient records (Symonds, Bruza & Sitbon 2014) and case
reports (Smalheiser et al. 2015), as their input to the LBD process.

Non-traditional input types: Few research studies have attempted to perform the LBD
process using non-traditional input types, such as Tweets (Bhattacharya & Srinivasan
2012), Food and Drug Administration (FDA) drug labels (Bisgin et al. 2011), Popular
Medical Literature (PML) news articles (Maclean & Seltzer 2011), web content (Gordon
et al. 2002), crime incident reports (Schroeder et al. 2007) and commission reports (Jha
& Jin 2016a). Their results have proved the suitability of the LBD discovery setting in
a non-traditional context to elicit hidden links.

The data unit of analysis denotes the types of data extracted from the above-discussed
input types to represent knowledge associations. Since most LBD research is performed
in medicine, the most common term representations are UMLS and MeSH (Lever et al.
2018, Preiss & Stevenson 2017). Apart from these two medical resources, other medical



Systematic Literature Review 56

databases such as Entrez Gene (Kim et al. 2016), HUGO (Petric et al. 2014), LocusLink
(Hristovski et al. 2005), OMIM (Hristovski et al. 2003) and PharmGKB (Kim & Park
2016) have also been used to extract data units. LBD studies in other domains mainly
consider word or word phrases (n-grams) as their term representation (Qi & Ohsawa
2016) that have been extracted using techniques such as Part-Of-Speech (POS) tag
patterns.

xiii.2 What data sources are used in LBD research to extract these
identified input types?

MEDLINE/PubMed is extensively being used as the main data source of the LBD lit-
erature (Lever et al. 2018). Additionally, other data sources such as PubMed Central
(PMC) Open Access (Ding et al. 2013), Science Direct (Vicente-Gomila 2014), Web
of Science (Sebastian et al. 2015), IEEE Xplore Digital Library (Qi & Ohsawa 2016),
Engineering Village (Kibwami & Tutesigensi 2014), ProQuest (Kibwami & Tutesigensi
2014), EBSCO Host (Kibwami & Tutesigensi 2014) and INSPEC (Ye et al. 2010) have
also been employed by several other LBD approaches to retrieve the articles for analysis.

The patent-based LBD studies (Vicente-Gomila 2014) have considered patent databases
such as Thomson Innovation, United State Patent and Trade Mark Office (USPTO)
and MAtrixware REsearch Collection (MAREC) patent document collection to retrieve
the data. Other conventional data sources include clinical datasets (Dong et al. 2014),
Gene Expression Omnibus (GEO) database (Hristovski et al. 2010), ArrayExpress (AE)
database (Maver et al. 2013), Manually Annotated Target and Drug Online Resource
(MATADOR) (Crichton et al. 2018), Biological General Repository for Interaction Datasets
(BioGRID) (Crichton et al. 2018), PubTator (Crichton et al. 2018), Online Mendelian
Inheritance in Man (OMIM) (Cohen, Whitfield, Schvaneveldt, Mukund & Rindflesch
2010) and TREC (Symonds, Bruza & Sitbon 2014).

Few non-English data sources such as Chinese Social Sciences Citation Index (Su &
Zhou 2009), China Biology Medicine disks (Qian et al. 2012), Chinese Medicine Library
and Information System (Yao et al. 2008), Traditional Chinese Medicine Database (Gao,
Wang, Tao, Liu, Li, Yu, Yu, Tian & Zhang 2015) and Chinese Journal Full-text database
(Yao et al. 2008) have also been utilised in the LBD workflow.

The studies that have attempted to perform LBD in a non-traditional setting have
extracted data from a variety of sources such as Twitter (Bhattacharya & Srinivasan
2012), DailyMed: FDA drug labels (Bisgin et al. 2011), Google news (Maclean & Seltzer
2011) and World Wide Web (WWW) (Gordon et al. 2002).

xiv Process Component

This section outlines the two major elements of the process component in the LBD
workflow; filtering techniques and ranking/thresholding techniques. Moreover, this sec-
tion also discusses the resources utilised in the LBD workflow.

xiv.1 What filtering techniques are used in the LBD process?

It is vital to provide a concise output to the user that is easily interpretable by only
including the most promising knowledge associations. To achieve this, the search space
of the knowledge discovery process should be reduced by eliminating spurious, general,
uninteresting or invalid terms/concepts. Different types of filtering techniques used in
the literature are summarised in Figure 2.6 (a).
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Stop word Removal: Stop words typically denote non-topic general English terms. How-
ever, it could also include general terms used in a domain. For example, terms such as
‘drug’ and ‘treatment’ can be considered as general terms in the medical domain. Using
stop words to remove uninformative terms is a popular filtering technique used (Lever
et al. 2018, Preiss & Stevenson 2017, Sebastian et al. 2017b). Stop word lists could be
either manually created, obtained from other resources or automatically generated. 1)
Manually created: A popular example of this category is the stop word list created for
the Arrowsmith project (Smalheiser 2005) that has nearly 9500 terms (by 2006) (Preiss
& Stevenson 2017). However, manual development of stop words is costly and time-
consuming. Moreover, since these stop word lists are highly domain-dependent, their
applicability is also limited. 2) Obtained from other resources: Other resources used to
obtain stop word lists include NLTK toolkit (Lever et al. 2018), Corpus of Contempo-
rary American English (Lever et al. 2018) and Nvivo (Kibwami & Tutesigensi 2014). 3)
Automatically generated: Some studies (Preiss & Stevenson 2017, Hu et al. 2010) have
automatically created their stop word lists by employing different techniques. The most
common way is eliminating terms that appear above a user-defined threshold (Pratt &
Yetisgen-Yildiz 2003). In addition to such threshold-based removal, Xun et al. (2017)
have followed law of conformity to remove general terms by analysing the temporal
change of terms, and Jha et al. (2016b) have considered outliers of the box-plot as the
general terms removal mechanism.

Semantic Category Filter: This technique typically utilises the semantic type or group
information provided by UMLS (Lever et al. 2018, Vlietstra et al. 2017). UMLS cur-
rently provides 127 semantic types8 and each medical concept is classified to one or
more of these semantic types based on the relevance. Each semantic type is further
classified into one or more of 15 UMLS semantic groups9. For example, panic disorder
belongs to the semantic type ‘mental or behavioural dysfunction’ and migraine belongs
to the semantic type ‘disease and syndrome’. Both of these semantic types belong to
the semantic group ‘disorders’ (Yetisgen-Yildiz & Pratt 2009). This filtering technique
involves imposing selected semantic type or group to restrict the linking and target con-
cepts of the knowledge discovery process. However, selecting the most suitable semantic
type or group is challenging as it varies according to the problem. If a too granular
semantic category is selected, it may also remove valid associations, and if a too broader
semantic category is picked, it may not filter out all meaningless associations.

Relation/predicate Type Filter: This filtering technique mostly consider the predications
assigned using SemRep (Cameron et al. 2015, Rastegar-Mojarad et al. 2015). The typical
procedure is to restrict the search space by eliminating uninteresting predicate types.
For example, Cohen et al. (2010) have removed ‘PROCESS OF’ predication in their
LBD process as it is less informative. Other types of predicate filtering techniques
are; 1) removal of negated relations (Rastegar-Mojarad et al. 2016), 2) considering the
directionality of the predicate (Baek et al. 2017) and 3) restricting the semantic type
or group of the subject and object in predications (i.e., subject-relation-object triples)
(Hristovski et al. 2010).

Hierarchical Filter: This technique utilises the hierarchical information such as levels
and relationships of terms to filter out uninformative associations (Shang et al. 2014).
The levels of UMLS/MeSH hierarchy are typically examined to remove broader terms.
For example, Qian et al. (2012) have eliminated terms in the first and second level of
MeSH tree to remove less useful, broad associations. Another approach is to analyse
the hierarchical relationships of the concepts to eliminate terms that are too close to the
starting term. For instance, Pratt & Yetisgen-Yildiz (2006) have eliminated terms in
the UMLS hierarchy such as children, siblings, parents and grandparents as they have
observed that these terms are closely related to the starting term; thus, they do not
form any interesting association.

Synonym Mapping: Mapping synonyms by grouping exactly or nearly equal terms of a
given term is another technique used to reduce the results (Lever et al. 2018, Baek et al.
2017). To facilitate this, resources such as UMLS (Preiss et al. 2015), MeSH (Van der

8https://semanticnetwork.nlm.nih.gov/SemanticNetworkArchive.html
9https://semanticnetwork.nlm.nih.gov/download/SemGroups.txt

https://semanticnetwork.nlm.nih.gov/SemanticNetworkArchive.html
https://semanticnetwork.nlm.nih.gov/download/SemGroups.txt
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Eijk et al. 2004), Entrez gene database (Liang et al. 2013) and HUGO (Özgür et al.
2011) have been utilised.

POS Tag-based Filter: Several studies have utilised POS tags to restrict the search space
by limiting the terms to nouns (Qi & Ohsawa 2016), nominal phrases (Ittipanuvat et al.
2014) or verbs (Kim et al. 2016). For example, Qi & Ohsawa (2016) have only extracted
nouns as unigrams.

Template-based Restriction: Several studies (Maver et al. 2013, Cohen et al. 2012) have
reduced their search space by only extracting the associations that adhere to some
specified rules/templates. For example, two forms of discovery patterns were defined by
Hristovski et al. (2006) to restrict the detected associations that are in accordance with
the templates of the two defined patterns.

Time-based Filter: Smalheiser (2005) have considered the time factor of the associations
to reduce the search space of results. More specifically, given a user-defined year, only
the associations that appear first time after the year (or before) have been considered
as a filter. In addition, monitoring the temporal behaviours of words (Xun et al. 2017)
have also been used to remove unnecessary terms.

Common Base Form: Deriving a common base form of terms is another technique used
in the literature to reduce the vocabulary space. To facilitate this, the two popular
techniques, stemming (Sebastian et al. 2015) and lemmatisation (Song et al. 2015) have
been used in the LBD literature.

Article Retrieval Filter: Several studies (Cherdioui & Boubekeur 2013, Ittipanuvat et al.
2014) have attempted to limit the number of articles that need to be analysed through
the LBD process with the intention of reducing their search space. For instance, Petric
et al. (2012) have only considered the outlier documents for analysis without analysing
all the documents derived from a search query.

Sentence Filter: Some studies (Hossain et al. 2012, Özgür et al. 2010) have only picked

specific sentences from texts to analyse. For example, Özgür et al. (2010) have only
picked sentences from abstracts that describe gene interactions for their analysis. For a
sentence to qualify as a potential interaction sentence, the authors have followed a rule-
based mechanism. Moreover, Hossain et al. (2012) have employed machine learning
techniques to select sentences by training a Näıve Bayes classifier to differentiate context
and results sentences in abstracts.

Network-based Filter: The network-based LBD approaches have utilised different tech-
niques to reduce the size of their network. For example, Cairelli et al. (2015) have
filtered their network by setting degree centrality and edge-occurrence frequency thresh-
olds. Furthermore, Kastrin et al. (2014b) have performed Pearson’s Chi-Square test to
detect whether a particular connection occurs more often by chance. Ittipanuvat et al.
(2014) have removed nodes that are not connected with any node in Largest Connected
Components (LCC) of their knowledge graph.

Term Restrictions: Some studies have restricted terms in word-level and character-
level to reduce the vocabulary space. Removal of unigrams from the analysis can be
considered as an example for word-level restriction (Thaicharoen et al. 2009, Gordon
et al. 2002). The LBD studies (Roy et al. 2017, Kibwami & Tutesigensi 2014) that have
removed terms less than three characters in their LBD process can be considered as
an example for character-level restrictions. However, since this filter does not consider
semantic aspects of the terms into consideration, valuable short terms will be removed
from the vocabulary.

Cohesion-based filter: Given two linking terms that are most similar, Smalheiser (2005)
hypothesises that the term with a more narrow focus is the most useful. Hence, this
filter calculates a cohesion score to select most granular-level terms as the results.

Expert/user-based filtering: Expert/user-based filtering (Gubiani et al. 2017, Preiss &
Stevenson 2017) involves the decision of an expert/user to remove uninteresting associ-
ations. For example, most of the semantic category filter requires user-defined semantic
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Figure 2.6: (a) Filtering techniques and (b) Ranking/thresholding techniques

types/groups to perform the filtering. As described in ‘Semantic Category Filter’, this
selection is crucial as a more restrictive semantic category would risk at losing valid
and informative associations, whereas less restrictive semantic category would result in
a noisy output. As a result, the success of these approaches greatly depend on the
experience and prior knowledge of the user.

xiv.2 What ranking/thresholding mechanisms are used in the LBD
process?

Term ranking/thresholding is an important component of the LBD process as it should
downweight or remove noisy associations, and upweight or retain the interesting and
significant knowledge associations when ordering the terms. More specifically, these
measures are used in two ways. 1) Thresholding: prune away uninteresting associations
during the filtering process (e.g., setting a threshold to remove general terms), and 2)
Ranking: rank the selected set of associations based on their significance (e.g., rank
the most significant terms in the top of LBD output). Outlined below are the ranking
mechanisms used in the discipline (see Figure 2.6 (b)).

Considering conventional statistical measures to rank/threshold terms is common in
the literature. These measures can be broadly divided into four categories (Aizawa
2003) based on how they are mathematically defined; 1) Measures of popularity: these
measures denote the frequencies of terms or probability of occurrences (e.g., concept
frequency), 2) Measures of specificity: this category denotes the entropy or the amount
of information of terms (e.g., mutual information), 3) Measures of discrimination: how
terms are contributing to the performance of a given discrimination function is repre-
sented through these measures (e.g., information gain), and 4) Measures of representa-
tion: these measures denote the usefulness of terms in representing the document that
they appear (e.g., TF-IDF).

Examples for conventional statistical measures used in LBD studies are; token frequency
(Gordon & Lindsay 1996), average token frequency (Ittipanuvat et al. 2014), relative to-
ken frequency (Lindsay & Gordon 1999), document/record frequency (Gordon & Lindsay
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1996), average document frequency (Ittipanuvat et al. 2014), relative document frequency
(Thaicharoen et al. 2009), TF-IDF (Maciel et al. 2011), mutual information (Loglisci
& Ceci 2011), z-score (Yetisgen-Yildiz & Pratt 2006), information flow (Bruza et al.
2006), information gain (Pusala et al. 2017), odds ratio (Bruza et al. 2006), log likeli-
hood (Bruza et al. 2006), support (Hristovski et al. 2005), confidence (Hristovski et al.
2003), F-value of support and confidence (Hu et al. 2010), chi-square (Jha & Jin 2016b),
kulczynski (Jha & Jin 2016a), cosine (Baek et al. 2017), equivalence index (Stegmann &
Grohmann 2003), coherence (Pusala et al. 2017), conviction (Pusala et al. 2017), klosgen
(Pusala et al. 2017), least contradiction (Pusala et al. 2017), linear-correlation (Pusala
et al. 2017), loevinger (Pusala et al. 2017), odd multiplier (Pusala et al. 2017), piatetsky-
shapiro (Pusala et al. 2017), sebag-schoenauer (Pusala et al. 2017), zhang (Pusala et al.
2017), Jaccard index (Yang et al. 2017), dice coefficient (Yang et al. 2017) and condi-
tional probability (Seki & Mostafa 2009).

Additionally, non-conventional statistical measures such as Average Minimum Weight
(AMW) (Yetisgen-Yildiz & Pratt 2009), Linking Term Count with AMW (LTC-AMW)
(Yetisgen-Yildiz & Pratt 2009), Averaged Mutual Information Measure (AMIM) (Wren
2004) and Minimum Mutual Information Measure (MMIM) (Wren 2004) have also been
proposed in the discipline to rank the potential associations. In comparison with AMW
and Literature Cohesiveness, Yetisgen-Yildiz & Pratt (2009) have reported that they
gained improved performance with LTC-AMW measure (Swanson et al. 2006). Other
types of ranking and thresholding categories used in the LBD literature are summarised
below.

Nearest Neighbours: In this category, the score of an association is decided by analysing
its nearest neighbours. Such analyses are typically performed in distributional semantic
models by employing measures such as cosine (Gopalakrishnan et al. 2017), Euclidian
distance (Van der Eijk et al. 2004) and information flow (Bruza et al. 2006).

Network/Graph-based Measures: Network/graph-based measures analyse node-level and
edge-level attributes to score an associations. Examples of measures that represent this
category include degree centrality (Goodwin et al. 2012), eigenvector centrality (Özgür

et al. 2010), closeness centrality (Özgür et al. 2011), betweenness centrality (Özgür
et al. 2010), common neighbours (Kastrin et al. 2014b), Jaccard index (Kastrin et al.
2014b), preferential attachment (Kastrin et al. 2014b), personalised PageRank (Petric
et al. 2014), personalised diffusion ranking (Petric et al. 2014) and spreading activation
(Goodwin et al. 2012).

Knowledge-based Measures: This category denotes the scoring measures such as MeSH-
based literature cohesiveness (Swanson et al. 2006), semantic type co-occurrence (Jha
& Jin 2016b), chemDB atomic count (Ijaz et al. 2009) and chemDB XLogP (Ijaz et al.
2009) that involve the knowledge from structured resources to rank an association. The
advantage of these measures is that they entangle semantic aspects into consideration
to decide the potentiality of an association.

Relations-based Measures: Relations/predicates-based measures (a sub-class of knowledge-
based measures) analyse the relations extracted from resources such as SemRep to
rank/threshold associations. Scoring measures such as semantic relations frequency
(Hristovski et al. 2010), predicate independence (Rastegar-Mojarad et al. 2015), predicate
interdependence (Rastegar-Mojarad et al. 2015), edge frequency-based weight (Kim et al.
2016), edge traversal probability (Vlietstra et al. 2017), relationship traversal probability
(Vlietstra et al. 2017), source traversal probability (Jha & Jin 2016b) and impact factor
(Huang et al. 2016) are examples of this category.

Hierarchical Measures: This category is another sub-class of knowledge-based measures
that utilise hierarchical information of taxonomies such as UMLS and MeSH to derive
the rankings. Child-to-parent and parent-to-child predications (Seki & Mostafa 2009),
and MeSH tree code depth (Gopalakrishnan et al. 2017) can be considered as examples.
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Cluster-based Measures: In this category, cluster similarities are measured using tech-
niques such as intra-cluster similarity (Cameron et al. 2015), Jaccard index (Ittipanuvat
et al. 2014), inclusion index (Ittipanuvat et al. 2014), dice coefficient (Ittipanuvat et al.
2014), cosine (Ittipanuvat et al. 2014), cosine similarity of tf-idf (Ittipanuvat et al. 2014)
and cosine similarity of tf-lidf (Ittipanuvat et al. 2014) to derive the ranking scores of
associations.

Combined Measures: The idea of combined measures is to incorporate multiple charac-
teristics of an association to decide its potential ranking. For example, Torvik & Smal-
heiser (2007) have utilised machine learning techniques to combine seven characteristics
of an association (such as absolute and relative term frequencies, cohesion, recency, etc.)
to obtain the final ranking score. Song et al. (2015) have also proposed a combined
ranking measure by considering an average of three semantic similarity measures, and
SemRep score. The characteristics that have been considered in the study of Ijaz et al.
(2009) include UMLS semantic type, structural similarity, chemDB atomic count and
chemDB XLogP. Similarly, Gopalakrishnan et al. (2017) have also introduced a com-
bined ranking measure by using global (node centrality and MeSH tree code depth) and
local (semantic co-occurrence and betweenness centrality) measures. Overall, combined
ranking measures are more flexible as they rely on multiple characteristics to prioritise
the derived associations.

xiv.3 What domain-independent and domain-dependent resources are
utilised in LBD research?

xiv.3.1 Domain-Dependent Resources

Since the majority of LBD research are in medicine, we refer medical resources as domain-
dependent resources. These resources are further categorised as; 1) Resources that pro-
vide background domain knowledge, and 2) Resources that are used in content analysis.

Resources to acquire background domain knowledge: The main purposes of extracting
the domain knowledge are; 1) input data preparation (e.g., concept extraction), 2) filter-
ing the noisy, uninteresting or unrelated associations (e.g., semantic type filtering), 3)
prepare a ranking mechanism (e.g., hierarchical ranking), 4) evaluate the results (e.g.,
compare results with curated databases), and 5) training data preparation. The popular
domain-dependent resources used in the discipline are;

- UMLS: Lever et al. (2018), Vlietstra et al. (2017), Preiss & Stevenson (2017)

- MeSH: Baek et al. (2017), Xun et al. (2017), Pusala et al. (2017)

- SemMedDB/Semantic MEDLINE: Vlietstra et al. (2017), Cairelli et al. (2015)

- Gene Ontology: Baek et al. (2017), Huang et al. (2016), Kim et al. (2016)

- Entrez Gene Database: Baek et al. (2017), Liang et al. (2013), Kwofie et al. (2011)

- Kyoto Encyclopedia of Genes and Genomes (KEGG): Kwofie et al. (2011)

- HGNC/HUGO: Petric et al. (2014), Ding et al. (2013), Maciel et al. (2011)

- UNIPROT: Baek et al. (2017), Vlietstra et al. (2017), Swiss-Prot Jelier et al. (2008)

- Therapeutic Target Database (TTD): Yang et al. (2017), Maciel et al. (2011)

- LocusLink: Smalheiser (2005), Hristovski et al. (2003)

- Online Mendelian Inheritance in Man (OMIM) Hristovski et al. (2003), Wren et al.
(2004)

- Drug Bank: Vlietstra et al. (2017), Maciel et al. (2011), Ding et al. (2013)

- Comparative Toxicogenomics Database (CTD): Vlietstra et al. (2017), Yang et al.
(2017)

- BioGRID: Huang et al. (2016), Crichton et al. (2018)
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- Gene2pubmed: Cheung et al. (2012a), Roy et al. (2017)

- Drugs.com: Maciel et al. (2011), Banerjee et al. (2014)

- SIDER Side Effect Resource: Vlietstra et al. (2017), Shang et al. (2014)

Additionally, other medical resources such as Medical Dictionary for Regulatory Activi-
ties (MedDRA) (Bisgin et al. 2011), Reactome Pathway Database (Kwofie et al. 2011),
Orphanet (Baek et al. 2017), Human Metabolome Database (HMDB) (Baek et al. 2017),
Lipid Maps (Baek et al. 2017), MassBank (Baek et al. 2017), DailyMed (Vlietstra et al.
2017), miRBase (Huang et al. 2016), miRGate (Huang et al. 2016), Transcriptional
Regulatory Relationships Unraveled by Sentence-based Text mining (TRRUST) (Huang
et al. 2016), PAZAR (Huang et al. 2016), Biomedical Knowledge Repository (BKR)
(Cameron et al. 2015), MEDI (Shang et al. 2014), Tanabe-Wilbur list (Smalheiser 2005),

ChemDB (Ijaz et al. 2009), BioVerb (Kim et al. 2016), AIMED (Özgür et al. 2010), CB

(Özgür et al. 2010), STRING (Petric et al. 2014), ToppGene (Petric et al. 2014), En-
deavour (Petric et al. 2014), MIPS (Liang et al. 2013), Proteomics Standards Initiative
Molecular Interactions (PSI-MI) (Song et al. 2015), Cell Line Knowledge Base (CLKB)
(Song et al. 2015), Observational Medical Outcomes Partnership (OMOP) (Mower et al.
2016), METADOR (Crichton et al. 2018), Animal Transcription Factor Database (An-
imalTFDB) (Roy et al. 2017), RxNorm (Malec et al. 2016), Vaccine Ontology (VO)

(Özgür et al. 2011), Gene Reference Into Function (GeneRIF) (Cheung et al. 2012a),
Homologene (Jelier et al. 2008), Pharmacogenomics Knowledge base (PharmGKB) (Kim
& Park 2016), Chinese Medical Terminology (Qian et al. 2012), Food and Drug Adminis-
tration approved drug names (Wren 2004) and Rush University Medical Center’s health
encyclopedia (Banerjee et al. 2014) have also been employed in the LBD workflow.

Our analysis reveals that UMLS and MeSH are most extensively used as the domain-
dependent resources in the literature. The databases such as SemMedDB/Semantic
MEDLINE, Gene Ontology, Entrez Gene Database and HUGO/HGNC are also popular
among other resources.

Resources for content analysis: The following resources have been used in the LBD
systems to process and analyse contents.

- MetaMap (medical concept extraction): Preiss & Stevenson (2017, 2016), Cairelli
et al. (2015)

- SemRep (semantic predications extraction): Vlietstra et al. (2017), Preiss et al.
(2015)

- Genia Tagger (biological NER): Lever et al. (2018), Özgür et al. (2010)

- ABNER (biological NER): Liang et al. (2013)

- Peregrine software (biological NER): Jelier et al. (2008)

- DAVID tool (gene annotation enrichment analysis): Maver et al. (2013), Özgür et al.
(2010)

- RankProd Package (meta analysis): Maver et al. (2013)

- BioTeKS Text Analysis Engine (text annotation): Berardi et al. (2005)

- PubTator (PubMed citations annotation): Crichton et al. (2018)

- MedLEE (structure and encode clinical reports): Malec et al. (2016)

- BioMedLEE (semantic predications extraction): Hristovski et al. (2006)

- EpiphaNet (interactive visual representation): Malec et al. (2016)

- SciMiner (literature mining and functional enrichment analysis): Hur et al. (2010)

- Biovista (drug repurposing, systems literature analysis environment): Persidis et al.
(2004)
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Among the content analysis tools, we observed that MetaMap and SemRep are the
most popular selections. MetaMap is a tool that recognises UMLS concepts in texts,
whereas SemRep is used to extract semantic predications from texts. The predications
in SemRep are formal representations of text content that comprises of subject-predicate-
object triples.

xiv.3.2 Domain-Independent Resources

In this section, we summarise the resources that can be used in a cross-domain LBD
setting. For Named Entity Recognition (NER) resources such as GATE (Loglisci & Ceci
2011), PKDE4J (Baek et al. 2017), Open Calais (Jha & Jin 2016a), Sementax (Jha &
Jin 2016a) and Lingpipe (Hossain et al. 2012) have been employed in the LBD literature.

Other text analytics resources include NLTK : to identify noun phrases (Sebastian et al.
2017b) and stop words (Lever et al. 2018), ReVerb: to extract relations (Preiss et al.
2015), Stanford parser: for dependency tree parsing (Sang et al. 2015) and extract re-
lations (Preiss et al. 2015), Stanford CoreNLP: for sentence boundary detection, POS
tagging and lemmatisation (Song et al. 2015), WordNet: for word sense disambiguation
(Sebastian et al. 2017b), RacerPro: for logical and rule-based reasoning (Guo & Kraines
2009a), Link Grammar Parser: for sentence parsing (Ijaz et al. 2009), Vantage Point:
for document clustering, auto-correction mapping and factor matrix analysis (Kostoff
2011), Nvivo: to extract terms, stop words, coding and matrix coding queries (Kib-
wami & Tutesigensi 2014), CLUTO: for document clustering (Kostoff, Briggs, Solka &
Rushenberg 2008), Lucene: for information retrieval (Malec et al. 2016) and OntoGen:
for topic ontology construction (Petriĕ et al. 2009).

To facilitate tasks such as network construction and visualisation, the following resources
have been utilised in the literature; Neo4j (Vlietstra et al. 2017), JUNG (Kim et al.
2016), Gephi (Song et al. 2015), NetworkX (Wilkowski et al. 2011b) and Large Graph
Layout (LGL) (Ittipanuvat et al. 2014).

The importance of using the aforementioned resources in LBD systems is that they
support the systems’ functionalities not only in medical domain, but also in a wide
variety of other domains. To date, such domain-independent LBD methodologies have
been rarely experimented.

xv Output Component

This section discusses the existing LBD output types, their drawbacks and the important
characteristics that need to be fulfilled in terms of output visualisation to meet the
objectives of the LBD discipline.

xv.1 What visualisation techniques are used to display results in LBD
research?

The most commonly used output of LBD systems is a ranked list of associations (Gubiani
et al. 2017, Baek et al. 2017), where the top associations reflect the most probable
knowledge links. However, providing only a ranked list may not be the best way of
visualising the results due to the following two reasons; 1) ranked associations are isolated
in nature and do not provide an overall picture of all suggested associations, and 2)
ranked associations do not reflect how they are linked with the start and/or target
concepts to better understand an association. As a result, the user needs to manually
analyse the ranked associations individually to get an overview of the entire results
and to interpret the linkage of a proposed associations with the start and/or target
concepts. This points out the importance of exploring better visualisation techniques
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that can reduce the manual investigations the user requires to perform. Discussed below
are other visualisation techniques employed in the literature.

Group based on semantic type: In Manjal LBD system (Srinivasan 2004), the outputted
terms are organised by UMLS semantic types and ranked based on their estimated
potential within these semantic types.

Rank based on templates: SemBT LBD system (Hristovski et al. 2010) ranks the identi-
fied novel associations using frequency of semantic relations (relation triples) by speci-
fying the subject and object of the relation. Ijaz et al. (2009) have ranked the detected
associations based on an information model that includes substance, effects, processes,
disease and body part.

Graph-based visualisations: Several studies have utilised graphs to visualise their LBD
results. For instance, Kim et al. (2016) have used directed gene-gene network to clearly
illustrate the discovery pathways suggested by their LBD methodology. A more ad-
vanced graph-based visualisation was proposed by Cameron et al. (2015) that outputs
multiple context driven sub-graphs. Since the graph is divided into subgraphs by group-
ing the paths with similar context, the results can be easily interpreted by the user.

Ranking the discovery pathways: From the LBD perspective, this technique can also be
viewed as an output of the AnC model. While graph-based visualisations (discussed
above) display graphs as output, this technique only lists down the potential paths from
the graph. Examples of this category include the study of Wilkowski et al. (2011b)
where the graph paths with high degree centrality are shown as the output, and the
study of Kim et al. (2016) that considers the shortest paths in the graph as the output.

Story chain construction: Hossain et al. (2012) have attempted to build story chains
by focusing on biological entities in PubMed abstracts. Their storytelling algorithm
provides new insights on LBD visualisation and can be viewed as a next step of the
ranking the discovery pathways technique (discussed above).

Word clouds: Malec et al. (2016) have used word clouds to present their results where
the font size is proportionate to term frequencies.

Matrix-like visualisation: Qi & Ohsawa (2016) have proposed a matrix-like visualisation
to detect mixed topics of their experiments. Moreover, they have also performed a user-
based evaluation by providing their visualisation to the users to detect and interpret
mixed topics.

Using Existing Tools: Some studies have utilised existing tools such as Semantic MED-
LINE (Miller et al. 2012), OntoGen (Petrič et al. 2012), EpiphaNet (Cohen et al. 2009)
and Biolab Experiment Assistant (BAE) (Persidis et al. 2004) for the LBD visualisation.

Improving output visualisation is an essential component of the LBD workflow as it
highly influences the user acceptance of LBD systems. However, the existing literature
has a little contribution towards output visualisation. This suggests the importance of
involving Human Computer Interaction (HCI) techniques in the field. Some important
characteristics that should be taken into consideration when developing a visualisation
technique are; 1) concise output, 2) easily interpretable, 3) less complex, 4) visually
attractive and 5) assist users to gain new insights. Moreover, it is also vital to evalu-
ate the efficiency of the visualisation techniques by performing user-based evaluations
(Santos 2008). For instance, one could organise sessions for the participants to use LBD
tools (Cohen, Whitfield, Schvaneveldt, Mukund & Rindflesch 2010), observe how they
interact with tools and obtain their feedback. Santos (2008) suggests two types of partic-
ipants for such evaluations; target users and graphic designers. The author pointed out
that the target users will assist to elicit new ideas, whereas graphic designers will detect
problems and provide suggestions with visual aspects. Furthermore, another interesting
avenue is to involve target users with different level of expertise (i.e., expert and novice)
to evaluate how users with each level of expertise interact and benefit with the LBD
process (Qi & Ohsawa 2016).
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xvi Evaluation Component

xvi.1 What are the LBD evaluation types and how suitable are they
to non-medical domains?

Evaluating the effectiveness of the LBD results is challenging and remains to be an
open issue. The main reason for this is that the LBD process detects novel knowledge
that has not been publicly published anywhere and thus needs to be proven that they
are useful. Moreover, there are no comprehensive gold standard datasets or consistent
formal evaluation approaches in LBD (Ganiz et al. 2005). This review provides an
in-depth classification of the existing evaluation techniques as summarised below.

xvi.1.1 Evidence-based Evaluation

This category of evaluation asserts if a given association is accurate by using evidence
from reliable sources such as existing discoveries, literature or curated databases.

Replicating existing medical discoveries: By far, this is the most commonly used evalu-
ation technique. It measures the capability of the LBD methodology to reproduce the
popular historical discoveries (see Table 2.10). The most popular selections of discovery
replication are Swanson’s initial two medical discoveries; Raynaud’s disease↔Fish oil
and Migraine↔Magnesium. The normal procedure used for discovery replication is to
only use the literature before the original paper of discovery as the input data of the
LBD process and to verify if the mentioned associations detected in the original paper
could be replicated. For example, if we consider Swanson’s Raynaud’s disease↔Fish oil
to replicate, the literature prior to 1986 (the published year of the paper) should only
be considered.

However, discovery replication may not be the most effective way of evaluating an LBD
methodology due to the following reasons. 1) These existing discoveries have not de-
veloped rigorously as a gold standard (Ganiz et al. 2005). For example, in Swanson’s
Raynaud’s disease↔Fish oil discovery, he only suggested three novel intermediate con-
nections. No evidence suggest that these connections identified through his trial and
error approach can be seen as the only existing novel associations that connect these
two domains, 2) Only focusing on one particular discovery might result in a system
that performs well for that problem, but not for other problems even within the same
domain (i.e., overfitting) (Yetisgen-Yildiz & Pratt 2009). For example, Swanson & Smal-
heiser (1997) have replicated medical discoveries to evaluate Arrowsmith LBD system.
The overfitting of their model is evident by the failure of it in recognising the links of
Somatomedin-C↔Arginine (Swanson 1990b). As a result, it is important to accom-
pany other evaluation techniques along with discovery replication to measure the true
efficiency of a proposed methodology.

Time-sliced evaluation: Time-sliced method evaluates the ability of an LBD methodol-
ogy to predict future co-occurrences based on a time-sliced dataset (Lever et al. 2018,
Yang et al. 2017). Currently this is the most objective evaluation technique in the
discipline that attempts to alleviate the following key issues (Yetisgen-Yildiz & Pratt
2009).

1) Discovery replication is limited to the associations defined in that particular discovery
and merely evaluates the ability of a methodology to recreate these specific associations.
As a result, the remaining associations in the LBD output are not assessed. This makes
it difficult to estimate the overall performance of an LBD system. Instead, time-sliced
evaluation evaluates the complete list of associations outputted from an LBD system. 2)
Most LBD systems consider one or two existing medical discoveries to replicate. Hence,
the true generalisability of their methodologies is not reflected. To overcome this issue,
time-sliced evaluation is designed in a way it is repeatable for many starting concepts
without only limiting to one or two existing medical discoveries. For example, Yetisgen-
Yildiz & Pratt (2009) have considered 100 starting concepts for the evaluation of their
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Table 2.10: Replicated discoveries in the LBD literature

Replicated Discovery Past Studies

Migraine↔Magnesium Xun et al. (2017), Preiss & Stevenson (2017),
Sebastian et al. (2017b), Qi & Ohsawa (2016),
Song et al. (2015)

Raynaud’s disease↔Fish Oil Xun et al. (2017), Preiss & Stevenson (2017), Se-
bastian et al. (2017b), Song et al. (2015), Preiss
et al. (2015)

Indomethacin↔Alzheimer’s Xun et al. (2017), Preiss & Stevenson (2017),
Preiss et al. (2015), Cameron et al. (2015), Sang
et al. (2015)

Schizophrenia↔Calcium-
Independent Phospholipase A2

Xun et al. (2017), Preiss & Stevenson (2017),
Preiss et al. (2015), Cameron et al. (2015), Srini-
vasan (2004)

Alzheimer’s↔Estrogen Preiss & Stevenson (2017), Preiss et al. (2015),
Cameron et al. (2015), Preiss (2014)

Magnesium deficiency↔Neurologic Preiss & Stevenson (2017), Preiss et al. (2015),
Preiss (2014)

Thalidomide↔Chronic Hepatitis C Kwofie et al. (2011), Jelier et al. (2008)
Testosterone↔Sleep Cameron et al. (2015), Goodwin et al. (2012)
Somatomedin C↔Arginine Swanson & Smalheiser (1997), Preiss (2014)
Chlorpromazine↔Cardiac Hyper-
trophy

Cameron et al. (2015)

Diethylhexyl (DEHP)↔Sepsis Cameron et al. (2015)
Sleep↔Depression Goodwin et al. (2012)

LBD system. 3) When replicating existing medical discoveries, the required intermedi-
ate and target terms are known in advance. As a result, the parameters of a system
can be tuned in a way to obtain these terms. This results in a system that performs
well only for that discovery, but not in other cases. However, time-sliced evaluation is
independent of prior knowledge as it does not require to know the output in advance
which assists to perform an unbiased evaluation. 4) When replicating medical discover-
ies or in expert-based evaluation, it is difficult to compare the performance of different
LBD systems. For example, if two systems claim that they could successfully replicate
a particular discovery, it is hard to determine the most efficient system. Similarly, when
incorporating expert decisions for evaluation, it is hard to quantify the results and com-
pare against other LBD systems. As a result, time-sliced evaluation provides a platform
to quantitatively compare the LBD outcomes with other systems.

This technique requires a cut-off-date to divide the dataset into two segments, namely
pre-cut-off (data before the specified cut-off date) and post-cut-off (data after the cut-
off date). The pre-cut-off segment is treated as the training set, where the LBD system
is employed to output the potential novel associations. Afterwards, the post-cut-off
segment is utilised to develop the ground truth dataset to evaluate the produced asso-
ciations. The ground truth dataset is created by identifying associations present in the
post-cut-off set and absent in the pre-cut-off set. More specifically, time-sliced evalu-
ation verifies whether the identified potential associations from the LBD process have
taken place in the future. Therefore, the selection of the cut-off-date is crucial because
it decides the time period that turns a hypothesis into a true discovery (Yetisgen-Yildiz
& Pratt 2009).

Manual literature search: Some studies have verified whether the produced associations
are meaningful by manually searching the research articles that provide evidence of the
existence of the specified association (Yang et al. 2017, Xun et al. 2017).
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Intersection evaluation: This approach checks if the identified associations have been co-
occurred with the initial concept in any of the literature databases (e.g., Web of Science)
or other sources (e.g., UseNet), and remove already known associations to identify the
novel associations (Gordon et al. 2002, Bhattacharya & Srinivasan 2012). Afterwards,
these identified novel associations are qualitatively evaluated.

Derive reference sets from the literature: In this technique, a methodology is evaluated
by using reference sets created using the past literature. For example, in the study
of Vlietstra et al. (2017), they have developed the reference set from the results of a
systematic literature review to compare their results. In the work of Bernstam et al.
(2016), they have used curated drug-ADE associations of Patrick Ryan et al. (2013) as
the reference set to facilitate comparison.

Compare results with curated databases: Cross referencing the LBD output with existing
curated databases to verify the validity of results is another technique used in the LBD
literature. For example, some studies (Rastegar-Mojarad et al. 2015, Cheung et al.
2012a) have used drug-disease interactions in Comparative Toxicogenomics Database
(CTD) to validate their results. Similarly, other databases such as SIDER2 (Shang et al.
2014), GEO (Faro et al. 2011), GAD (Seki & Mostafa 2009) and StringDB (Nagarajan
et al. 2015) have also been used for validation.

Compare results using other resources: In contrast to curated databases, this technique
uses other reliable sources (such as websites) to validate the results. For instance, Vidal
et al. (2014) have used the information published in Mayo Clinic public website as the
ground truth to evaluate the efficacy of their ranking technique.

xvi.1.2 Comparison with Baselines

The previous LBD studies have incorporated different baseline models for comparison,
as discussed below.

Comparison with existing LBD tools: Several studies have considered the output of the
popular LBD tools as baselines to compare their results. The LBD tools that have
been considered for results comparison are; BITOLA (Lever et al. 2018), ARROW-
SMITH (Loglisci & Ceci 2011), Manjal (Vidal et al. 2014), ANNI (Lever et al. 2018)
and FACTA+ (Lever et al. 2018).

Comparison with previous LBD techniques: In this evaluation method, popular tech-
niques that have already been tested by several LBD studies are considered as baselines
to facilitate comparison. These include techniques such as association rule mining (e.g.,
Apriori (Hu et al. 2010)), distributional semantic techniques (e.g., LSI and RRI (Hu
et al. 2010)), lexical statistics (e.g., TF-IDF and token frequencies (Kim et al. 2016))
and bibliographic coupling (Sebastian et al. 2015).

Comparison with previous LBD work: Several studies have recreated previous LBD
methodologies as baselines to compare their results. Recreating work of Gordon et al.
(1996) for comparison in (Gordon & Dumais 1998), and recreating work of Hristovski
et al. (2001) for comparison in (Huang et al. 2005a) can be considered as examples.
Some studies have only recreated subsections of the previous methodologies to evaluate
the corresponding sub-section of their methodology. For instance, Rastegar-Mojarad et
al. (2016) have compared their ranking method with linking term count mentioned in
(Yetisgen-Yildiz & Pratt 2006). Others have performed a direct comparison of their
results with the results of previous methodologies. For example, Qi & Ohsawa (2016)
have compared their results in Migraine↔Magnesium rediscovery with five other previ-
ous work in terms of precision, recall and F-measure.

Comparison with other state-of-the-art methods: Some studies have compared their work
with state-of-the-art methods in the relevant disciplines that are not necessarily tested
in LBD before. For example, Crichton et al. (2018) have considered Adamic-Adar,
Common Neighbours and Jaccard Index to compare their results as these algorithms are
considered to be competitive and challenging baselines in the link prediction discipline.
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xvi.1.3 Expert-oriented Evaluation

Expert-based evaluation: In expert-based evaluation, typically one (Gubiani et al. 2017)
or two (Baek et al. 2017) domain experts inspect the LBD output to verify if the produced
associations are meaningful. Alternatively, the domain expert may provide with a more
open-ended evaluation (Gordon et al. 2002) by asking them to provide anticipated future
associations in the domain, without actually looking at the LBD results. Afterwards,
the list of potential associations provided by the expert is cross-checked against the
actual LBD outcome. However, expert-based evaluation is expensive, time-consuming
and suffers from subjectivity.

Qualitative analysis of selected results: A commonly used technique in the LBD evalu-
ation is to qualitatively analyse the LBD output (typically in an ad-hoc basis) by the
author(s) or domain expert(s) (Jha & Jin 2016a, Huang et al. 2016). Since the complete
LBD result is not evaluated, it is hard to determine the true accuracy of an LBD method-
ology using this evaluation technique. Moreover, same as in expert-based evaluation,
the analysis of results suffers from subjectivity.

xvi.1.4 User-oriented Evaluation

It is crucial to perform user-oriented evaluations to verify the use of LBD systems for real-
world usage. However, such evaluations are rarely performed in the existing literature.

User-based evaluation: Evaluating user’s ability to identify and formulate hypotheses
from the output of the LBD process is an essential evaluation approach. However, such
user-oriented evaluations are mostly neglected in the LBD literature. As defined in
the study of Qi & Ohsawa (2016), criteria such as utility (how useful is the generated
hypothesis?), interestingness (how interesting is the generated hypothesis?) and feasi-
bility (to what extent the generated hypothesis can be realised?) can be incorporated
to score these user formulated hypotheses. Such scores can be analysed to verify the ex-
tent to which LBD systems assist users to create novel scientifically meaningful research
hypotheses.

User-experience evaluation: Analysing how users interact with an LBD system plays a
critical role as such user behaviours provide useful insights to improve the visualisation
techniques of LBD results, user-interface, and the process of knowledge discovery. How-
ever, user-experience is rarely measured in LBD research. Qi & Ohsawa (2016) have
compared the performance of experts and non-experts with their matrix-like visualisa-
tion LBD process and verified that the users with no prior knowledge also benefited from
their LBD process. Similarly, a user performance evaluation was conducted in the study
of Cohen et al. (2010) using one domain expert and one advanced undergraduate stu-
dent using a total of nearly 6.5 hours of sessions to evaluate their LBD tool, EpiphaNet
from the users’ perspective.

xvi.1.5 Proven from Experiments

Some studies have performed experiments to prove the validity of their produced hy-
potheses. Since most LBD methodologies are in medical domain, clinical trials are
typically used to verify the derived hypotheses. However, validating all derived associ-
ations of the LBD process using laboratory experiments is infeasible. Hence, the most
likely to be successful association from the top of the list is picked for validation (Baek
et al. 2017). As a result, this evaluation does not assess the accuracy of the remaining
associations; thus, does not reflect the overall performance of an LBD methodology.
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xvi.1.6 Scalability Analysis

From query to query, the number of records that need to be analysed vary (Spangler
et al. 2014). Therefore, it is important to measure the requirements in terms of time and
storage for each phase in the LBD process to make the methodology more user-friendly.

Processing time analysis: Less processing time is a critical characteristic of the LBD
process as the users would like to quickly obtain results for their queries. However,
the time complexity is rarely measured and compared against other LBD methodologies
in the literature. Few LBD studies (Hossain et al. 2012, Loglisci & Ceci 2011) have
performed such processing time analyses of their algorithms.

Storage analysis: Analysing memory requirements is also important when dealing with
large datasets. For instance, the study of Symond et al. (2014) have analysed the storage
complexity of several distributional models. Through their analysis, they have identified
that Tensor Encoding model is well suited for open discovery as it is efficient in storing
and computing (independent of the vocabulary size).

xvi.1.7 Evaluate Ranking Technique

The algorithm used to rank the detected associations plays a vital role in an LBD
methodology. It should rank the most promising associations in the top of the list
by filtering the weak or false-positive associations. Therefore, the success of the LBD
process greatly depends on the efficacy of the ranking algorithm.

Evaluate ranking positions: Most of the studies have evaluated the ranking positions
of the LBD output to verify the effectiveness of their ranking algorithm. For instance,
the LBD studies that have chosen to replicate previous medical discoveries (Gordon &
Dumais 1998, Lindsay & Gordon 1999) have attempted to obtain the associations of that
particular medical discovery in the top of the list. Some studies have compared their
ranked list with a ranking list of previously published LBD studies to determine the
superiority of their algorithms (Gordon & Dumais 1998). Moreover, in techniques such
as time-sliced evaluation (Yetisgen-Yildiz & Pratt 2009), the efficiency of the ranking
algorithm is measured by using information retrieval metrics (such as 11-point average
interpolated precision, precision at k and mean average precision). Some studies have
automatically created ground-truths using evidence from the literature to evaluate their
ranking algorithms (Xun et al. 2017).

Evaluate ranking scores: Mapping the ranking scores of the detected associations with
scores obtained from databases (Baek et al. 2017) or other algorithms (Pusala et al.
2017) is another evaluation technique used in the literature.

xvi.1.8 Evaluate the Quality of the Output

Evaluate the interestingness of results: Cameron et al. (2015) have used association
rarity to statistically evaluate the interestingness of the LBD output. To facilitate this,
they have queried MEDLINE to obtain the number of articles that contain the derived
associations and divided it by the number of associations. Afterwards, an interesting
score was obtained which is proportionate to the rarity score.

Evaluation of quality and coherence of stories: This evaluation metric provides a novel
perspective on LBD evaluation. The quality of the produced story chains can be evalu-
ated using dispersion coefficient, which is 1 for an ideal story (Hossain et al. 2012). This
type of evaluation can be adapted when the LBD methodology outputs a chain of story
path (e.g., output of the AnC model).

We also analysed the generalisability of each evaluation technique across domains. To
achieve this, the previously discussed evaluation techniques are categorised into the
following two groups; Category 1: Highly domain-dependent and only applicable to
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Table 2.11: Domain-dependency of the evaluation techniques

Evaluation Technique Category 1 Category 2

Evidence-based Evaluation:

Replicating existing medical discoveries

Time-sliced evaluation

Manual literature search

Intersection evaluation

Derive reference sets from the literature

Compare results with curated databases

Compare results using other resources

X

-

-

-

-

X

X

-

X

X

X

X

-

-
Comparison with baselines:

Comparison with existing LBD tools

Comparison with previous LBD techniques

Comparison with previous LBD work

Comparison with other state-of-the-art meth-
ods

X

-

-

-

-

X

X

X

Expert-oriented Evaluation:

Expert-based evaluation

Qualitative analysis of several selected results

-

-

X

X
User-oriented Evaluation:

User-based evaluation

User-experience evaluation

-

-

X

X
Proven from Experiments:

Clinical Tests (or relevant other experiments) - X

Scalability Analysis:

Processing time analysis

Storage analysis

-

-

X

X
Evaluate Ranking Technique:

Evaluate ranking positions

Evaluation ranking scores

-

-

X

X
Evaluate the quality of the output:

Evaluate the interestingness of results

Evaluation of quality and coherence of stories

-

-

X

X
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Table 2.12: Quantitative measures used in the LBD literature

Measure Past Studies

Precision Lever et al. (2018), Yang et al. (2017), Preiss & Stevenson
(2017)

Recall Sebastian et al. (2017b), Jha & Jin (2016a), Sang et al.
(2015)

F-Measure Preiss et al. (2015), Sebastian et al. (2015), Sang et al.
(2015)

Precision at k Vlietstra et al. (2017), Shang et al. (2014), Song et al.
(2015)

Recall at k Lever et al. (2018), Vlietstra et al. (2017), Shang et al.
(2014)

Average Precision Cohen et al. (2012), Roy et al. (2017)
Mean Average Preci-
sion

Yang et al. (2017), Shang et al. (2014), Crichton et al.
(2018)

Precision over time Yetisgen-Yildiz & Pratt (2006)
Recall over time Vlietstra et al. (2017), Yetisgen-Yildiz & Pratt (2006)
11-point average inter-
polated precision

Yetisgen-Yildiz & Pratt (2009)

Area Under Curve Lever et al. (2018), Kastrin et al. (2016), Sebastian et al.
(2015)

Accuracy Sebastian et al. (2017b), Sang et al. (2015)
Cumulative Gain Vlietstra et al. (2017)
Mean Reciprocal Rank Song et al. (2015)
Correlation Analysis Baek et al. (2017), Yang et al. (2017), Xun et al. (2017)

domains where similar resources are available, and Category 2: Domain-independent
(Table 2.11).

The most prominent and widely used evaluation technique, which is discovery replication,
is only limited to the medical domain. Other popular evaluation techniques such as the
use of curated databases and resources and comparison with existing LBD tools are also
highly domain-dependent and mostly available for the medical domain. Nevertheless,
the most objective evaluation technique considered so far in the discipline, which is time-
sliced evaluation, is domain-independent. Most of the remaining evaluation techniques
are typically independent of the domain and can be utilised in non-medical LBD studies.

xvi.2 What quantitative measurements are used to assess the effec-
tiveness of the results?

Different information retrieval metrics have been used to obtain a quantitative under-
standing of the performance of the LBD methodologies, as summarised in Table 2.12.
From our analysis we observed that precision (i.e., fraction of associations obtained
from the LBD process that are relevant), recall (i.e., fraction of relevant associations
that are successfully retrieved), F-measure (i.e., harmonic mean of precision and recall)
and Area Under Curve (AUC) (i.e., area under the Receiver Operating Characteristic
(ROC) curve, which falls in the range from 1 to 0.5) are the popular evaluation metrics
used in the previous literature.

Since most of the time the users will not able to go through the entire list of suggested
associations, it is also important to evaluate the proportion of associations in the top k
positions that are relevant. For this purpose, the metrics such as precision at k, recall
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at k, 11-point average interpolated precision and mean reciprocal rank have been used in
the LBD literature.

xvii Limitations

Even though we present the insights gleaned from our rigorous literature analysis with
confidence, we may have missed LBD research articles that are outside the six databases
and six keywords we used. To alleviate this issue to some extent, we also included
the references from a recent review (Henry & McInnes 2017) during our paper retrieval
process, as discussed in Section xi.

xviii Discussions and Future Work

The key findings and future research directions of each component of the LBD workflow
are summarised below.

Input Component: The primary source of data utilised in the LBD studies is research pa-
pers. Different studies have extracted different details from the research papers for their
analysis. Among them, using title and abstract is the most popular method. However,
some studies have proven the use of full-text and other metadata (such as keywords,
references, author details and venue details) assists to glean additional cues of the an-
ticipated knowledge links. Lee et al. (2015) pointed out that different perspectives are
reflected by different input types used in the content of the research papers. In their
analysis, they have found that keyphrases, citation relationships and MeSH reflect the
views of authors, citers and indexers, respectively. Moreover, Kostoff et al. (2004) have
analysed the information content in various fields of a paper using four metrics; total
number of phrases, number of unique phrases, factor matrix filtering and multi-link hi-
erarchical clustering. They have identified that the selection of the field depends on
the objectives of the study, as described in (Kostoff et al. 2004). Hence, selecting the
suitable input type in the papers is crucial as they represent different perspectives (Lee
et al. 2015) and information content (Kostoff et al. 2004) and mainly depends on the
objective of the research. Furthermore, Nagarajan et al. (2015) have discovered that
the LBD performance mainly depends on the richness of the information being used.

Apart from research papers, several approaches have experimented the LBD process with
other traditional input types (such as patents and clinical case reports). Smalheiser et
al. (2015) have identified that information nuggets (i.e., main findings) are surprisingly
prevalent and large in clinical case reports. Mostly, the title itself reveals the main
findings of the case report that enables ample opportunities for finding-based information
retrieval (Smalheiser et al. 2015).

Interestingly, the LBD methodology was successfully adopted to non-traditional input
types (such as drug labels, Tweets, news articles and web content). Therefore, an inter-
esting future direction would be to analyse how the LBD process using research papers
can be enhanced by integrating knowledge from non-traditional input types (such as
Tweets). Furthermore, since most of the non-traditional input types are utilised in
medical domain, another interesting avenue would be to integrate the LBD process
into other domains using input types such as product descriptions (for product rec-
ommendation), movie scripts (for movie recommendation) and recipe books (for recipe
recommendation).

With respect to unit of analysis, making use of controlled vocabularies such as UMLS,
MeSH and Entrez Gene to extract concepts is the most popular approach. However,
research outside the medical domain have followed a term-based approach by extracting
n-grams. As the controlled vocabularies utilised yet in LBD research are in the med-
ical domain, an interesting future avenue is to experiment the use of general-purpose
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controlled vocabularies (such as DBpedia, Freebase, and YAGO) to facilitate knowledge
discovery in a cross-disciplinary manner.

Process Component: Swanson’s manually detected medical discoveries have set the
foundation for LBD research. Later various computational techniques such as statis-
tical, knowledge-based, relations-based, hierarchical, graph-based, bibliometrics-based
and link prediction were proposed to automate and make the process of LBD more effi-
cient. The filtering and ranking techniques used in an LBD methodology are two equally
important major components of the LBD workflow.

Many of the filtering mechanisms utilised in the LBD studies have restricted the search
space using word-level filters. Considering the article-level filters (e.g., analysing the
contribution of outlier documents), section-level filters (e.g., analysing the contribution
of different sections in a research article such as introduction and conclusion) or sentence-
level filters (e.g., analysing the contribution of sentences that describes the main findings)
have received little attention in the literature. Therefore, analysing the effect of various
article, section and sentence level filtering techniques to remove noisy associations before
the word-level filtering is another important area that needs to be further explored.
Ultimately, such techniques will also help to further narrow down the literature search
and to eliminate the hindrances of the existing word-level filters.

As for the ranking techniques, most of the studies have utilised conventional statisti-
cal measures to rank/threshold their results. Whether using such single measure alone
would be sufficient to rank the most promising associations in the top of the list is
doubtful. In other words, an association may require satisfying several characteristics
to become a significant and promising association among others. Therefore, it would be
more interesting to develop a ranking approach that reflects the identified characteris-
tics of potential associations to prioritise the results. For instance, Torvik & Smalheiser
(2007) have attempted to derive a formula using seven features that capture various
characteristics of an association into a single score by employing a machine learning
model. Identifying the important characteristics of a significant and promising associa-
tion and deriving a score based on these characteristics to rank the LBD results would
be more successful than merely relying on standard single measures. In this regard, the
analysis of different types of gaps in the literature is useful (Peng et al. 2017). Moreover,
Smalheiser (2017) suggests the need of several ranking measures to customise the LBD
output according to the user preferences. LION LBD system (Pyysalo et al. 2018) that
supports multiple scoring functions to facilitate flexible ranking mechanism can be taken
as an example.

Output Component: The typical output of the LBD process is a ranked list of terms that
denote the potential associations. However, it is not an effective output technique as the
users need to interpret the logical connections of the associations by manually reading the
research articles, which is difficult and time-consuming. As a result, other visualisation
techniques such as term groupings, graphs and discovery pathways have been proposed
in the LBD literature. However, the extent to which these proposed techniques assist
the user has been rarely measured. Therefore, providing a better visualisation (which
is concise, easily interpretable, less complex, visually attractive and assist users to gain
new knowledge) and measuring the user experience of the visualisation are two critical
components of the LBD workflow that need to be further explored by incorporating HCI
techniques.

Nevertheless, the importance of such techniques has been overlooked by the LBD com-
munity. To date, only a few LBD research studies (Wilkowski et al. 2011b, Hristovski
et al. 2006) have contributed in terms of user interaction studies. These studies make
use of information foraging theory, which is a technique that analyses the user’s informa-
tion retrieval behaviour. The theory evaluates the user’s information seeking behaviour
in terms of costs and benefits. If the user can maximise his/her rate of gaining valu-
able information (i.e., maximum benefit) by spending the lowest amount of energy (i.e.,
minimum effort), it is termed an optimal foraging. The key concepts in an information-
seeking context are information, information patches, information scents and informa-
tion diet, which needed to be supported effectively when designing interfaces (Ruthven
& Kelly 2011). Therefore, the challenge of information visualisation is to discover ef-
fective mechanisms to represent massive amounts of data and provide effective ways to
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navigate through them to support users with optimal foraging. The novel advances in
HCI research will be useful in this regard (Stephanidis 2019). Moreover, Smalheiser &
Torvik (2008) emphasises the importance of simplicity in user-interfaces of LBD tools
to support widening the target audience.

Evaluation Component: Evaluating the LBD output is challenging and remains to be
an open issue as the field lacks gold standard datasets or consistent formal evaluation
techniques. The most widely used evaluation technique is replicating Swanson’s medical
discoveries. However, relying only on discovery replication can be restrictive and may
fail to reflect the true performance of LBD systems. Hence, this technique should be
accompanied with other evaluation techniques to overcome these limitations. Another
popular technique is qualitatively evaluating the results randomly by an expert or au-
thor. Nevertheless, this does not give an overall image of LBD systems’ performance
as few valid associations are taken into consideration for analysis. An LBD system
that produces a handful of valid associations in a sea of invalid associations tend to be
inefficient (Yetisgen-Yildiz & Pratt 2009). As a result, besides this random qualitative
evaluation, LBD systems should also be validated quantitatively to measure their overall
performance.

To date, time sliced evaluation is considered as the most objective evaluation technique
proposed in the LBD field. However, this evaluation technique suffers from two major
limitations; 1) The association is proven to valid if the starting and linking term co-
occur in the future publications (that do not co-occur in the training set). However,
co-occurrence does not necessarily mean that the proposed link has been established,
and 2) Rejected associations can still be valid even though they have not been published
yet.

To overcome the first limitation, it is important to perform much deeper analysis of
language (Korhonen et al. 2014) to verify whether the co-occurrence display a true
association, which can be considered as an interesting future direction. Additionally,
some studies have attempted to utilise evidence from curated databases (e.g., CTD and
StringDB) as an alternative for co-occurrence in time-sliced evaluation. However, such
curated databases are limited to certain problems and may not be available for every
domain or problem. The second limitation of time-sliced evaluation can be alleviated
to some extent through domain expert involvement by further evaluating the validity of
the rejected associations.

Another interesting direction for future evaluation is to incorporate the actual end users
of LBD research to validate the results, which is a neglected area in the literature. For
instance, involving users with a diverse range of knowledge and expertise (e.g., novice to
expert) will help to understand the extent to which each user will be benefited from the
LBD output. In this regard, the hypotheses scoring mechanism used by Qi & Ohsawa
(2016) can be considered as a successful first step.

Due to the massive influx of scientific knowledge, the volume of data that the LBD
systems expect to analyse increases with time. For instance, a simple search of ‘dementia’
results in more than 150,000 records in PubMed alone. This highlights the importance
of performing scalability analysis of LBD systems in terms of time and storage. This
will also improve the usability of LBD systems.

xix Conclusion

In this review, we present novel, up-to-date and comprehensive categorisations to answer
each of our research questions to provide a detailed overview of the discipline. The review
summary and a comparison with the following recent reviews (Henry & McInnes 2017,
Gopalakrishnan et al. 2019) are available at https://tinyurl.com/workflow-summary.

With respect to the input component, it is evident that the LBD community is show-
ing a growing research interest towards incorporating knowledge from non-traditional
data sources to enhance the traditional setting of the LBD framework and to explore

https://tinyurl.com/workflow-summary
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new application areas. Nevertheless, the selection of the input needs to be precise and
cross-checked against the research objectives, as different input types reflect different
perspectives (Lee et al. 2015) and information content (Kostoff et al. 2004).

Filtering and ranking are two important constituents of the process component. Most of
the filtering techniques examined in the discipline are at word-level. However, the impor-
tance of article-level, section-level and sentence-level filters have been rarely studied in
the literature. Considering the ranking component, most of the studies have employed a
single conventional ranking technique to prioritise the generated discoveries. This show-
cases the need of developing a series of interestingness measures that customise the LBD
output that suit multiple scientific investigations (Smalheiser 2012).

The output component of the LBD workflow is largely neglected in the prevailing lit-
erature, which emphasises the necessity of conducting user-interaction studies to assess
the user experience. Concerning the evaluation component, time-sliced evaluation is
the current most objective technique used to validate the results. However, this tech-
nique suffers from several limitations which suggests the requirement of developing new
evaluation methods and metrics to evaluate the generated output.

We hope that the future LBD studies will contribute to overcome the prevailing research
deficiencies in the LBD workflow with the ultimate intention of uplifting the typical
research procedures which are followed by the scientists.

2.6 Summary

This chapter surveyed the state-of-the-art in LBD field with an emphasis on the main

research objectives of this thesis, including the input component, knowledge discovery

framework, reuse research and the portability of LBD models. The conclusions of the

review form the theoretical foundation for the rest of the thesis and also serve as a

roadmap for the ensuing chapters. In addition to the rich source of conclusions obtained

for this thesis, this review conducted as part of this chapter also serves as a milestone

as it is the first systematic literature review conducted in the LBD field (as discussed in

detail in the two enclosed publications).



Chapter 3

Research Design

3.1 Introduction

The main motive of LBD studies is to support the discovery of hidden knowledge linkages

to assist researchers in formulating novel research hypotheses (Gordon & Dumais 1998,

Guo et al. 2020). While reducing the time and effort involved in doing such divergent

thinking, this will also help researchers to discover new areas of investigation. Even

though significant contributions have been made in tackling this problem over the last

few decades, prior research suffers from several major hindrances and shortcomings, as

discussed in Section 1.3. The overarching goal of this thesis is to investigate new ways to

tackle these identified open and prolonged research deficiencies in the LBD discipline. In

doing so, this chapter presents the underlying research design utilised in the remaining

chapters of this thesis.

This chapter is organised as follows. Section 3.2 describes the thesis’ scope in relation

to the main components of the LBD workflow (i.e., the main research objectives 2, 3,

4 and 5 discussed in Chapter 1). Section 3.3 discusses the experimental setup in terms

of the main data sources and the golden test cases selected. Section 3.4 delineates the

evaluation framework used in this thesis by outlining the advantages and disadvantages

of popular existing LBD evaluation techniques. The intention of section 3.5 is to describe

the theoretical foundation of the machine learning framework employed in this thesis,

as well as the selected evaluation metrics. Section 3.6 discusses the baseline models

considered for the comparison of the proposed LBD models. Section 3.7 summarises the

76
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Figure 3.1: Research scope in terms of the main components of the LBD workflow

chapter, with a brief outline of the main design selections to be used in the subsequent

chapters of this thesis.

3.2 Research Scope

This section is dedicated to discussing the LBD components that are in scope as part of

the research conducted in this thesis. This discussion centers on the main components

of the LBD process, as illustrated in Figure 3.1. It also adheres to the order of the main

research objectives discussed in Chapter 1 (i.e., objective 2, 3, 4 and 5, respectively).

• Input Component: The input can be viewed as the fuel that drives the entire knowl-

edge discovery process. Thus, comprehending the role of the input component in the

LBD process and how it can impact the remaining components in the workflow may

provide useful insights and aid in developing better LBD systems in the future. To

the best of our knowledge, no studies have specifically attempted to understand the

suitability of different input types to the LBD workflow (i.e., independent input type

studies that isolate the influence of the knowledge discovery method). Contemplating

the potential benefits of interpreting the role and the contribution of different input

types within the LBD workflow, this thesis attempts to assess their relative suitabil-

ity, taking inspiration from information theory (Tague-Sutcliffe 1992) and behavioural

ecology models (Stephens & Krebs 1986) in Chapter 4. More specifically, the main

research question that this chapter seeks to answer is: “how can LBD input types be

quantitatively assessed and compared so as to better understand their suitability in the

LBD workflow?”.



Research Design 78

• Discovery Component: The discovery component is the most researched component

in the LBD literature. It involves developing knowledge discovery methods to filter

unnecessary or meaningless concepts and rank potential novel knowledge linkages, as

denoted in Figure 3.1. Despite several decades of research using a wide spectrum

of computational techniques to automate and streamline the discovery process, the

performance of existing LBD models is limited by several shortcomings. The key

aim of this thesis is to explore novel ways to circumvent these limitations, with the

ultimate goal of eliciting novel knowledge linkages with high precision, as discussed

in Chapter 5. More precisely, this chapter is based on the research question: “does

incorporating meaningful diachronic semantic inferences in the LBD discovery process

through leveraging implicit semantic relationships of word embeddings in temporally-

aware vector spaces enrich the typical static cues used in the previous LBD studies?”.

• Reusability (i.e., involving the LBD workflow): Reusability is the process that con-

centrates in adaptation and integration of the constructed components efficiently into

new applications. Inspired by the broad benefits that reuse research can offer, this

thesis explores the extent to which the proposed LBD framework can be reused in

a new application area. For this purpose, this thesis adheres to a methodical reuse

plan to assess the extent to which the proposed models can be reused in new settings.

Chapter 6 is dedicated to discussing the reuse research performed as part of this the-

sis with the main research question of: “how can the reusability of the proposed LBD

models be ensured in a new application area, to further confirm their robust predictive

power?”.

• Portability (i.e., involving the LBD workflow): Portability refers to the adaptation

of the constructed components to new environments, at little or no cost. Due to the

importance of the problem that LBD research attempts to solve (regardless of the

domain), stakeholders of LBD systems could exist in almost all academic disciplines.

Therefore, fulfilling the notion of portability is crucial in LBD models to ensure its

widespread applicability. Nevertheless, the existing LBD models are mostly tailored

to the medical domain, relying on semantic inferences made using medicine-specific

knowledge resources. This hinders the models’ portability. Even though LBD has

been researched for over thirty years, the lack of such portable research may explain

why LBD research outside the medical domain is still in a nascent stage. Portable
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LBD frameworks have the potential to expand the currently constrained environments

of LBD settings, which stand to provide a wide range of benefits to the scientific

community. With such a goal in mind, this thesis explores the leveraging of semantic

web technologies as a way to port LBD models to a wider range of environments.

Chapter 7 is dedicated to discussing this novel initiative in the LBD discipline using

the main research question: “how can an interdisciplinary (or generalisable) LBD

framework be developed in a way that ensures the portability of the LBD workflow to

new portable environments with little or no cost?”.

3.3 Experimental Setup

The intention of this section is to describe the datasets and test cases utilised in the

experiments performed in this thesis. This section also outlines the main reasons for

selecting the datasets and test cases that were used in these experiments.

3.3.1 Datasets

The main dataset used in the subsequent chapters of this thesis is extracted from MED-

LINE (Guo et al. 2020). The main reason for this selection is that MEDLINE has been

commonly used as the primary data source in previous LBD studies. It is considered to

be one of the largest scientific repositories that provides access to more than 25 million

scientific articles (Jha et al. 2018); thus, provides the opportunity to perform a large-

scale literature mining. Figure 3.2 illustrates how the scientific articles got accumulated

in MEDLINE over the years that showcase the exponential growth of scientific literature

over time.

The National Library of Medicine (NLM) produces baseline data for MEDLINE on an

annual basis. This data contains timestamped citation records. This thesis consid-

ered the 2019 version of the MEDLINE data dump1, which comprises 25,396,551 total

records. The data dump consists of numerous data fields extracted from the articles,

including titles, abstracts, MeSH keywords and other metadata such as author names,

1https://www.nlm.nih.gov/bsd/medline.html (downloaded as at January, 2019)

https://www.nlm.nih.gov/bsd/medline.html
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Figure 3.2: Yearly accumulated literature count in MEDLINE

venue details, publication dates etc. Since the main focus of this study is to analyse tex-

tual data using natural language processing techniques, the following three data fields

are considered in this thesis: titles, abstracts and MeSH keywords.

Table 3.1 summarises which of these textual data fields are utilised in the remaining

chapters of this thesis. In addition to these textual data fields, the publication date of the

articles is also considered in order to facilitate tasks such as local topics identification (as

discussed in Chapters 5 and 6), diachronic semantic inferences (as discussed in Chapters

5 and 6) and evaluation (as discussed in Section 3.4). For the experiments, this thesis

considered scientific articles published from 1960 onwards in the MEDLINE data dump

(further details are discussed in Section 3.4).

In addition to MEDLINE, two other datasets were employed in Chapters 6 and 7 of

this thesis (Table 3.1). More specifically, Chapter 6 utilises chemical-disease relations

as reported in the Comparative Toxicogenomics Database (CTD)2 (Mattingly 2009).

Further details on how these chemical-disease relations are used are discussed in Chapter

6. The other dataset utilised in Chapter 7 employs the terminology used in the LBD

study by Gordon et al. (2002) (the purpose of using this dataset is discussed in Chapter

7). The main reason for this selection is that it is the only available LBD study that

is directly relevant to computer science domain (Gordon et al. 2002). More specifically,

in this LBD study, Gordon et al. (2002) attempted to detect novel applications of

2downloaded as at 5th of April, 2020
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Table 3.1: Summary of the datasets used in the experiments

Chapter Datasets

Chapter 4 (Input Types) MEDLINE (titles, abstracts, MeSH keywords and
publication date)

Chapter 5 (Semantic Evolu-
tion)

MEDLINE (MeSH keywords and publication date)

Chapter 6 (Reusability) MEDLINE (MeSH keywords and publication date),
CTD (chemical-disease relations)

Chapter 7 (Portability) MEDLINE (titles, abstracts and publication date),
Terminology from the only existing computer science
LBD study (Gordon et al. 2002)

genetic algorithms (i.e., the starting concept) by viewing the A-B-C discovery path as a

technology-technology-application problem.

3.3.2 Test Cases

To evaluate the effectiveness of the proposed solutions and to compare them with the

existing LBD models and methods, test cases are required. For this purpose, this thesis

considered the following five real-world test cases reported by the pioneers of the LBD

discipline. The main reason for selecting these test cases is that they are commonly used

for LBD evaluation and treated as golden datasets in the discipline (Jha et al. 2018, Jha,

Xun, Wang & Zhang 2019, Xun et al. 2017).

1. Fish-Oil (FO) and Raynaud’s Disease (RD) (Swanson 1986)

2. Magnesium (MG) and Migraine Disorder (MIG) (Swanson 1988)

3. Somatomedin C (IGF1) and Arginine (ARG) (Swanson 1990a)

4. Alzheimer’s Disease (AD) and Indomethacin (INN) (Smalheiser & Swanson 1996)

5. Schizophrenia (SZ) and Calcium-Independent Phospholipase A2 (PA2) (Smalheiser

& Swanson 1998)

The significance of some of these test cases in the LBD context is that they are comple-

mentary but disjointed. This means that the articles in the two topics of each test case

have never been mentioned or cited together. For instance, consider Figure 3.3, which

demonstrates the disjointed nature of test case 1, which is FO-RD before the Swanson’s

discovery in 1986. Therefore, the use of the aforementioned golden test cases validates
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Figure 3.3: Complementary and non-interactive nature of FO-RD test case (Sebastian
et al. 2017b)

the LBD model’s ability to accumulate existing disperse knowledge in the literature to

develop novel semantic relationships that have not previously attracted any attention.

3.4 Evaluation Framework

The purpose of this section is to describe the evaluation framework employed in the

subsequent chapters of this thesis. Prior to selecting an evaluation framework, the

initial part of this section discusses the potential reasons why evaluation is difficult and

an open issue in the LBD discipline. Subsequently, to identify the most appropriate

evaluation setting, the criteria that constitute an ideal evaluation setting are discussed.

The selection of an evaluation framework of this thesis was made by weighing these

criteria, considering the most popular evaluation techniques in the LBD field.

3.4.1 Evaluation in the LBD Discipline

Evaluating LBD models is difficult and considered to be an open problem in the dis-

cipline. Firstly, no standard ground truth exists in the LBD field and the creation of

such a ground truth remains an open issue, as it is nearly impossible to construct a

comprehensive ground truth that will presumably contain all future discoveries (Jha

et al. 2018). Other reasons for the difficulty of evaluation in the field of LBD include
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disagreements about the role of LBD models in research, difficulty in quantifying how

interesting, useful or actionable a predicted discovery is, and difficulty in objectively

defining what a ‘discovery’ is (Crichton et al. 2020). As a result of these barriers, there

is no existing technique that evaluates LBD models perfectly. Therefore, it is impor-

tant to weigh the advantages and disadvantages of existing LBD evaluation techniques,

and to select the most suitable evaluation framework to quantify and compare the LBD

outputs.

3.4.2 Ideal Evaluation Setting

Before comparing the existing LBD evaluation techniques, it is important to identify

what constitutes an ideal evaluation setting. The following criteria need to be satisfied

in order to consider an evaluation method in its ideal setting (Henry 2019).

• Automated: The evaluation method should be scalable and easily calculated in a

reasonable amount of time, without requiring a manual process.

• Replicable: The evaluation method should be objective and support replication.

• Quantifiable: The evaluation method should provide a numeric metric indicating per-

formance, which facilitates comparison between other LBD systems.

• Informative: The evaluation method should facilitate a deeper understanding of the

model’s behaviour.

• Modular: The evaluation method should not rely on the LBD workflow, since it should

facilitate the evaluation of single components (or even sets of components) in isolation.

3.4.3 Selection of Evaluation Method

This section discusses the strengths and weaknesses of the popular existing LBD eval-

uation techniques by cross-checking the extent to which they fulfil the criteria outlined

in Section 3.4.2.

The evaluation technique, discovery replication, focuses on reproducing historical LBD

discoveries. If the terms identified in the historical discoveries are identified or ranked

highly enough, according to this evaluation technique, the LBD model is considered to be
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successful. This evaluation method can be automated and replicable (Henry 2019). The

results are easy to understand and demonstrate the model’s ability to identify at least

one discovery when the target term(s) is reported at a higher rank. The consideration

of ranking positions makes this evaluation method quantitative. Nevertheless, discovery

replication is a narrow and constrained task that only reports a few hand-selected dis-

coveries that have been reported in the LBD literature. Thus, discovery replication is

prone to overfitting (Yetisgen-Yildiz & Pratt 2009, Henry 2019). Moreover, the report-

ing of a ranking position is considered to be an unstable metric (Henry 2019). Discovery

replication provides little insight into how the LBD model works and the potential ways

that it could be improved. Thus, this evaluation method is not informative (Henry

2019).

The focus of user studies in the LBD context is to understand how users operate the

LBD system and how the system could be further improved based on users’ feedback and

activities (Qi & Ohsawa 2016, Cohen, Whitfield, Schvaneveldt, Mukund & Rindflesch

2010). Typically, user studies provide a good platform to understand how LBD models

are actually being used. Therefore, this evaluation method is extremely informative

(Henry 2019). Nevertheless, user studies suffer from subjectivity, making them non-

replicable (Henry 2019, Yetisgen-Yildiz & Pratt 2009). The reliance on human users

also means that this evaluation method is non-automated. In addition, user studies are

modular, since they can be used to evaluate certain components in the LBD model such

as the user interface and visualisation.

New discovery proposals indicate the discoveries made using an LBD model. This eval-

uation method provides opportunities to expose LBD to a wider community and gives

LBD credibility. Nevertheless, the involvement of domain experts makes this evalua-

tion method non-replicable, non-automated and non-quantitative (Henry 2019, Yetisgen-

Yildiz & Pratt 2009). Furthermore, this method does not provide insights into how the

LBD model works with respect to individual components or the model as a whole; thus,

the method is not informative. Since the new discovery proposal relies on the entire

LBD process, it is also non-modular (Henry 2019).

Time-slicing is an evaluation technique that uses a cut-off-date to divide the literature

into training and testing sets. To date, time-slicing is the most objective evaluation

method to have been proposed in the LBD field, circumventing most of the key issues
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Table 3.2: Assessing the suitability of the popular evaluation methods in LBD

Evaluation
Method

Auto-
mated

Replica-
ble

Quantifi-
able

Informa-
tive

Modular

Discovery Replica-
tion

X X X - -

User Studies - - X X X
New Discovery Pro-
posal

- - - - -

Time-Slicing X X X X X
where ‘X’ denotes the support of the relevant criterion with the evaluation method and ‘-’ denotes if the
evaluation method does not fulfil the relevant criterion

in the existing evaluation methods (Yetisgen-Yildiz & Pratt 2009). Time-slicing pro-

vides the platform to evaluate in an automated and quantitative manner (Henry 2019,

Yetisgen-Yildiz & Pratt 2009). This facilitates the usage of informative metrics, such

as precision at k and mean average precision (Henry 2019, Jha et al. 2018). Moreover,

this evaluation method is replicable due to its standardised procedure (Henry 2019,

Yetisgen-Yildiz & Pratt 2009). Time-slicing is also modular, since it can be used to

evaluate individual components in the model (Henry 2019). There are several criticisms

of time-slicing in the LBD field, since the technique is mainly based on co-occurrence;

thus, it can contain false discoveries or noise (Henry 2019). Nevertheless, for large scale,

quantifiable evaluations, time-slicing is (so far) the only available evaluation method in

the LBD discipline (Yetisgen-Yildiz & Pratt 2009, Crichton et al. 2020).

Table 3.2 summarises the extent to which popular existing LBD evaluation methods

fulfil the criteria defined in Section 3.4.2 (Henry 2019). Overall, time-slicing fulfils every

defined criterion, making it the most suitable evaluation setting in the LBD field. Thus,

this thesis selected time-slicing for the evaluation of the proposed LBD models.

3.4.4 Time-Slicing Setting

In a time-slicing setting, the LBD system uses known knowledge to make its predictions

and verifies whether the proposed novel knowledge linkages have actually taken place in

the future. The proposed novel linkage is legitimate if it is absent in the known knowledge

and present in future knowledge (Yetisgen-Yildiz & Pratt 2009, Jha et al. 2018, Xun et al.

2017). For instance, consider Figure 3.4 that depicts how scientific knowledge evolves

over time by forming connections with different topics. The known connections between

scientific topics are limited in timestamp t. However, with the ongoing research findings,
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Figure 3.4: Temporal evolution of scientific knowledge at different timestamps (where
nodes represent scientific topics and edges represent if there is a connection between

two scientific topics at a given timestamp)

more connections have been established between topics that are depicted by edges in

blue, orange and green colours in timestamps t+1, t+2 and t+N, respectively. The

purpose of the time-slicing setting is to predict such future connections between topics

(i.e., shown in timestamps t+1, t+2 and t+N ) by only using the known knowledge (i.e.,

using the topic interactions at timestamp t).

In LBD context, time-slicing is achieved by dividing the literature repository into two

segments: pre-cut-off and post-cut-off 3. The pre-cut-off segment represents known

knowledge, and the LBD system uses the knowledge in this segment to discover the

potential future discoveries. The post-cut-off segment that represents future knowledge

is used to evaluate the legitimacy of the predictions. The legitimacy of a discovered

knowledge linkage is established if it is present in the post-cut-off segment and absent in

the pre-cut-off segment (Yetisgen-Yildiz & Pratt 2009). Typically, co-occurrence is used

to detect such newly established knowledge linkages in the literature (Xun et al. 2017,

Jha et al. 2018, Jha, Xun, Wang & Zhang 2019). Figure 3.5 summarises the above-

discussed pre-cut-off and post-cut-off setting used in time-slicing. Table 3.3 summarises

the details of the pre-cut-off and post-cut-off segments of the selected five golden test

cases discussed in Section 3.3.2.

As in previous LBD studies (Jha et al. 2018, Xun et al. 2017, Jha, Xun, Gopalakrishnan

& Zhang 2019), Chapter 5 uses the following equation: gt(k) = #(k,A)+#(k,C)
#(k) , where

#(i,j ) is number of times concepts i and j co-occur and #(i) =
∑

j #(i,j ) to rank the

ground truth conceptual bridge k for the two given topics of interest (A and C ). For

example, consider the FO-RD test case where the ground truth intermediate concepts k

are ranked using gt(k) = #(k,“FO”)+#(k,“RD”)
#(k) in the post-cut-off segment of 1986-2019

3https://github.com/Menasha/LBD/

https://github.com/Menasha/LBD/
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Figure 3.5: Pre-cut-off and post-cut-off segments of the time-slicing setting

Table 3.3: Time-slicing setting of the golden test cases

Test case First Discovery Pre-cut-off
Segment

Post-cut-off
Segment

FO-RD Swanson (1986) 1960-1985 1986-Jan 2019

MG-MIG Swanson (1988) 1960-1987 1988-Jan 2019

IGF1-ARG Swanson (1990) 1960-1989 1990-Jan 2019

AD-INN Smalheiser & Swanson
(1996)

1960-1995 1996-Jan 2019

SZ-PA2 Smalheiser & Swanson
(1998)

1960-1997 1998-Jan 2019

(Table 3.3). To retain only the legitimate novel knowledge linkages, all the existing con-

nections in the pre-cut-off segment (i.e., 1960-1985 as listed in Table 3.3) are removed

from the ranked list. Some examples of the identified novel knowledge linkages from this

time-slicing setup include blood viscosity, platelet aggregation, vasoconstriction, vasodi-

lation and prostaglandins e. Highly frequent terms (i.e., the bottom 5% of this ranked

list) were removed from the ground truth as a post-processing step. As in previous LBD

studies, Chapter 6 employs one-node time-slicing, where #(k,A) is used to decide the

legitimacy of the novel knowledge linkage (i.e., the co-occurrence pair is unavailable in

the pre-cut-off segment and available in the post-cut-off segment) (Yetisgen-Yildiz &

Pratt 2009). In the instance of the FO-RD test case, the novel knowledge linkages are

identified using #(k, “RD”) in the post-cut-off segment of 1986-2019 by removing all the

existing connections that occurred in the pre-cut-off segment of 1960-1985 (Table 3.3).

Some examples of the identified novel knowledge linkages in this process include fish oils,

eicosapentaenoic acid, lipoproteins ldl, oils and cardiolipins. Table 3.4 summarises the

number of local topics and the number of legitimate novel knowledge linkages identified

for each golden test case in the time-slicing setups of Chapters 5 and 6.
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Table 3.4: Time-slicing setup used in Chapters 5 and 6

Test case Setting Local Topics Novel Linkages

FO-RD Chapter 5 3014 914
Chapter 6 2964 250

MG-MIG Chapter 5 9487 3064
Chapter 6 3026 536

IGF1-ARG Chapter 5 6298 3819
Chapter 6 – –

AD-INN Chapter 5 9632 4126
Chapter 6 3182 1067

SZ-PA2 Chapter 5 9179 2567
Chapter 6 3105 409

3.5 Machine Learning Framework

The automation of data analysis techniques became possible with the development of

digital computers in the mid 20th century. Fuelled by rapid advancements in algorithms

and computer power over the past half-century, machine learning methods have become

powerful tools for discovering complex and subtle patterns in data (Biamonte et al.

2017, Anzai 2012). The purpose of machine learning (or its subfield, deep learning)

is to elicit patterns from large volumes of data (Nguyen et al. 2019, Ongsulee 2017).

This aligns with the aim of LBD research, which is to uncover patterns of potential

novel knowledge linkages from vast quantities of literature. Therefore, the integration

of machine learning methods into the discovery component of the LBD workflow opens

up ample opportunities to perform large-scale knowledge discovery, in order to perceive

complex and subtle patterns in the literature. Discovering such intricate structures in

the scientific literature is essential to the automated generation of high-quality predictive

decisions. With this idea in mind, this thesis incorporates machine learning techniques

in order to discover potential novel knowledge linkages in the scientific literature with

high precision.

The purpose of this section is to describe the foundation of the machine learning setup

used in Chapters 5 and 6. In doing so, the first part of this section discusses how the

machine learning setup was mapped to the discovery component of the LBD workflow.

Subsequently, the process of stratified cross-validation is discussed. Stratified cross-

validation was used to obtain prediction probabilities of scientific topics, indicating their

likelihood of becoming a novel knowledge linkage (when they were in the test sample).

Subsequently, the procedure of cost-sensitive learning, which was used in the training
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phase of the stratified cross-validation, is discussed. Next, the theoretical foundations

of deep learning and machine learning settings are discussed. These settings are used in

the construction of the machine learning models in Chapters 5 and 6. The latter part

of this section discusses the evaluation metrics employed to quantify and compare the

performance of the LBD models.

3.5.1 Setup of the Discovery Component

The discovery component of a typical LBD workflow comprises two main tasks: filtering

and ranking (Henry & McInnes 2017). The purpose of the ‘filtering’ component is to

discard uninteresting or meaningless scientific topics during knowledge discovery (Figure

3.6). The ‘ranking’ component attempts to efficiently order the remaining scientific top-

ics (i.e., the scientific topics retained in the ‘filtering’ component) to assist researchers

to develop novel hypotheses (Figure 3.6). In a typical machine learning setup, these

two tasks from the discovery component can be mapped to two classes: negative in-

stances and positive instances (Bunescu & Mooney 2007, Settles et al. 2008, Jha, Xun,

Gopalakrishnan & Zhang 2019). The positive instances signify potential novel knowl-

edge linkages (resembling the ‘ranking’ component). In the time-slicing setup (discussed

in Section 3.4), positive instances denote the scientific topics that were realised in the

post-cut-off segment, but which were absent in the pre-cut-off segment (a.k.a. legitimate

novel knowledge linkages(Jha et al. 2018)). The negative instances are uninteresting or

meaningless concepts (resembling the ‘filtering’ component). This category denotes the

remaining scientific topics that are not identified as legitimate novel knowledge linkages.

With the mapping of negative and positive instances to the ‘filtering’ and ‘ranking’ tasks

in the discovery component, the goal of the machine learning model is as follows: given

a scientific topic, the machine learning model predicts the probability with which it will

belong to the negative class Pneg, or the positive class Ppos (Figure 3.6). In the context of

LBD, these two prediction probabilities can be interpreted as follows. Ppos denotes the

probability of a scientific topic becoming a novel knowledge linkage. Thus, the higher

Ppos is, the higher the chance that the relevant scientific topic to be a potential novel

knowledge linkage. Similarly, Pneg (i.e., 1 - Ppos) signifies the likelihood that a scientific

topic is meaningless or uninteresting. Thus, the higher Pneg is, greater the chance that
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Figure 3.6: Mapping the machine learning setup to the discovery component in the
LBD workflow

the scientific topic is an unnecessary or meaningless concept in the context of knowledge

discovery.

The two probabilities Ppos and Pneg can be employed in two settings: the recommen-

dation component and the classification component (Figure 3.6). The purpose of the

recommendation component is to evaluate the validity of the scientific topics that the

machine learning model predicts with high Ppos probability (i.e., the Ppos in the de-

scending order). In contrast, the classification component gauges how well the machine

learning model is able to classify the positive and negative instances by mapping each

scientific topic to the class in which it indicates the highest probability, from Ppos and

Pneg. Further details on these two setups are discussed in Section 3.5.6 and Chapter 5.

3.5.2 Stratified Cross-Validation

Cross-validation (more specifically, k-fold cross-validation) partitions the available learn-

ing set (i.e., the positive and negative instances discussed in Section 3.5.1) into k number

of disjoint subsets (or folds) of approximately equal size (Zhang et al. 2016). For the

purpose of model training, k-1 subsets are used, which represents the training data of

the machine learning framework. The remaining fold, which is known as the test set,

is used to apply the machine learning model to obtaining prediction probabilities (i.e.,
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Ppos and Pneg). This process is repeated until all k subsets have served as a test set in

the iterations (Niu et al. 2018, Berrar 2019).

Figure 3.7 denotes the cross-validation process in which k is set to 10 (i.e., 10-fold cross-

validation). Cross-validation often uses stratified random sampling (a.k.a. stratified

k-fold cross-validation), which denotes that the sampling is performed while preserving

the class proportions in the learning set in the individual folds. The underlying aim

of stratification is to avoid biased evaluation, since the data folds used for evaluating

the machine learning model reflect the class ratio in the population (Berrar 2019, Pu-

rushotham & Tripathy 2011). Therefore, the machine learning setups used in Chapters 5

and 6 are based on the stratified k-fold cross-validation variant. More specifically, every

instance in the dataset becomes an ‘unknown’ (i.e., not included in the training set)

in one of the iterations in stratified cross-validation, where the prediction probabilities

(Ppos and Pneg) are computed by the machine learning model. Thus, these probabilities

are used to evaluate the validity of the machine decision (Bannach-Brown et al. 2019,

Kwon et al. 2019, Purushotham & Tripathy 2011).

It should also be noted that the same training data were used in each fold of the strati-

fied cross-validation, in order to obtain the prediction probabilities Ppos and Pneg of the

corresponding test set in all the proposed LBD models, including the baselines (Kwon

et al. 2019). The main reason for ensuring the consistency of the training and testing

folds among the LBD models is to facilitate a uniform and unbiased performance com-

parison. In other words, the prediction probabilities (Ppos and Pneg) of the test sets are

obtained using the same training sets across all LBD models.

3.5.3 Cost-Sensitive Learning

In the machine learning settings, it is important to integrate some strategy to balance

if there are any imbalances between the two classes in the training sample (i.e., positive

and negative instances in the stratified cross-validation, as discussed in Section 3.5.2).

For this purpose, this thesis incorporates cost-sensitive learning to ensure that if there

are any imbalances among the classes, the machine learning model is aware of the fact

(Zadrozny et al. 2003). Cost-sensitive learning is incorporated by mapping class weights

inversely proportional to class frequencies (a.k.a. balanced mode) (Zadrozny et al. 2003,

Liu & Zhou 2006). If the classes in the training sample are balanced, the weight will be
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Figure 3.7: 10-fold cross-validation in which D test,1 denotes the first fold that is served
as the testing set and Dtrain,1 denotes the remaining nine folds used for training

1 for each class. More specifically, the class weights are defined as
nsamples

(nclasses×[n1 ,n2 ,...])
,

where nsamples is the number of instances in the training sample, nclasses is the number

of classes, and n1 , n2 , ... are the number of instances in each class (Elkins et al. 2019).

3.5.4 Deep Learning Setting

The purpose of this section is to discuss the theoretical foundation of the deep learning

setting used in this thesis. More specifically, The deep learning models are constructed

using two main building blocks, namely Long Short-Term Memory (LSTM) and Convo-

lutional Neural Networks (CNN). The main reason for using these two building blocks

is that LSTM has shown superior performance in modelling temporal dynamics (Lee

et al. 2017), while CNN excels at detecting low-level to high-level features using its se-

ries of feature extractors (Yu et al. 2018). Therefore, the use of these two variants of

deep neural networks provides an extended platform from which to decide which setting

is most appropriate in the LBD context (i.e., comparing the suitability of modelling

temporal dependencies using LSTM or the multiple layers of feature hierarchies using

CNN (Ordóñez & Roggen 2016)). The deep learning models constructed using these

two primary building blocks are used to obtain the prediction probabilities Ppos (i.e.,

the probability of becoming a novel knowledge linkage) and Pneg (i.e., the probabil-

ity of being an unnecessary or meaningless concept; 1 - Ppos). Further details on the
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Figure 3.8: Internal structure of the LSTM unit (Chen et al. 2020)

constructed deep learning models (using LSTMs and CNNs) are discussed in Chapter

5.

3.5.4.1 Long Short-Term Memory (LSTM)

LSTM (Hochreiter & Schmidhuber 1997) is a specialised version of the Recurrent Neural

Network (RNN), which is capable of learning long-term dependencies and detecting long-

range features in sequences (Selvin et al. 2017, Chen et al. 2020). The unit structure of

an LSTM network is illustrated in Figure 3.8 (Zhou et al. 2019). The main component

of the LSTM unit is its cell, which keeps track of the dependencies between elements in

the input sequence by maintaining a cell state ct in time. More specifically, LSTM has

the ability to remove and add information to the cell state through its three types of

gates (Selvin et al. 2017), as outlined below.

• input gate: this gate has control over a new value that flows into the cell.

• forget gate: this gate has the control to decide the amount of value remains in the

cell.

• output gate: this gate controls which portion of the value in the cell is used to calculate

the LSTM unit’s output activation.

The process in LSTM unit can be summarised as follows (Zhou et al. 2019). The forget

gate (which is a sigmoid layer) uses ht-1 and xt to decide whether to increase or decrease

the data flow by imposing a threshold denoted as ft = σ(wfht−1 + ufxt + bf ), where u

and w are the values of weights, σ is the activation function, and b is the bias value.
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In the next step, the input gate (which is also a sigmoid layer) determines which values

to update (i t), and is followed by a tanh layer that constructs a vector of new candidate

values (c̃t) to store in the cell state. These two functionalities are expressed using:

it = σ(wiht−1 + uixt + bi) and c̃t = tanh(wcht−1 + ucxt + bc), respectively.

Subsequently, the cell state is updated using the old cell state ct-1 and the new cell state

ct , as denoted in ct = ct−1 � ft + it � c̃, where � is the Hadamard product. In essence,

the old cell state ct-1 is scaled according to how much the forget gate has decided to

forget, and the new state ct is scaled according to how much the input gate has decided

to update.

Finally, the output gate decides the output ht in two steps (i.e., through sigmoid layer

and tanh filter) as defined in: ot = σ(w0ht−1 + u0xt + b0) and ht = ot � tanh(ct). More

specifically, the output of the previous moment ht-1 and the input of the current moment

xt are processed first using a sigmoid layer, which is then passed to the next stage to

filter the current version of the cell state.

3.5.4.2 Convolutional Neural Network (CNN)

CNN is a type of deep neural network that is used to process data with grid patterns

(such as images) to automatically and adaptively learn spatial features from low-level

to high-level patterns (Yamashita et al. 2018). Thus, CNNs are most commonly applied

in research areas related to image analysis (e.g., computer vision (Le Guennec et al.

2016)), in which spatial convolutions are cascaded to represent the spatial content in

images (Tijskens et al. 2019, Liu et al. 2018). More recently, CNNs have been successfully

applied to learning sequences (Tijskens et al. 2019) using temporal convolutions in areas

such as signal processing (Yang et al. 2020), speech recognition (Fawaz et al. 2019) and

time series analysis (Le Guennec et al. 2016). The core idea of CNN was derived from

the organisation of the visual cortex in animals (Hubel & Wiesel 1968, Fukushima &

Miyake 1982). CNN can be considered a mathematical construct that typically contains

three types of layers/building blocks: convolution, pooling and a fully connected layer

(Zhao et al. 2017). The purpose of the first two layers is to extract meaningful features,

while the latter layer maps these extracted features into a final output (Yamashita et al.

2018).
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Figure 3.9: Simplified example of convolution operation with 3×3 kernel size (note:
a stride of 1 is used in this example, with no padding) (Yamashita et al. 2018)

The convolutional layer can be considered the fundamental unit in CNN. It comprises

a stack of mathematical operations, including convolution. Convolution is a specialised

form of linear operation in which a small array of numbers (the kernel) is applied through

the input, which is an array of numbers called a tensor. Subsequently, an element-wise

product between the elements of kernel and tensor is performed at each location in

the tensor to produce a feature map (Yamashita et al. 2018). This process is repeated

through multiple kernels, in order to construct an arbitrary number of feature maps that

denote different characteristics of tensors. Thus, different kernels can be considered to

be different feature extractors or filters (Yamashita et al. 2018). In essence, the core

purpose of this layer is to learn convolutional filters in a data-driven manner, with the

ultimate aim of extracting features that efficiently describe the inputs (see Figure 3.9)

(Le Guennec et al. 2016).

The pooling layer provides a platform to reduce the in-plane dimensionality of the con-

structed feature maps. Therefore, it involves a down-sampling operation such as max

pooling, average pooling, probabilistic max pooling or differentiable pooling (Shin et al.

2016). The most popular pooling operation is max pooling, which is illustrated in Fig-

ure 3.10 (Yamashita et al. 2018). The main intention of this layer is to make feature

maps translation-invariant with regard to distortions and small shifts, and to preserve
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Figure 3.10: Simplified example of max pooling with a 2×2 filter size (note: a stride
of 2 is used in this example, with no padding) (Yamashita et al. 2018)

important information (Yang et al. 2020). Once the features are extracted and down-

sampled using the convolution layer and pooling layer, respectively, the fully connected

layer maps them to the final output of the network (i.e., the probabilities, Ppos and

Pneg) (Yamashita et al. 2018).

3.5.5 Machine Learning Setting

This section describes the setup of the traditional machine learning setting utilised in

Chapters 5 and 6. More specifically, these traditional machine learning setups, which are

based on handcrafted features, incorporate conventional machine learning algorithms

so as to make predictions. To this end, this thesis employed random forest as the

base learning algorithm. The main reason for this selection was that random forest

is based on ensemble learning algorithms, which are considered to be more accurate

than a single machine learning model, since the notion of ensembles is based on the

premise that a set of models tend to perform better in comparison to a individual

models (Rodriguez-Galiano et al. 2012, Breiman 1996, Xuan et al. 2018). Additionally,

random forest presents other advantages, such as its ability to estimate which features are

important, its ability to generate an internal unbiased estimation of the generalisation

error, its relative robustness to noise and outliers, and its relative computational lightness

in comparison to other tree ensemble methods (Rodriguez-Galiano et al. 2012, Cutler

et al. 2012, Khoshgoftaar et al. 2007). Random forest has also commonly been used

as a learning algorithm in previous LBD studies and has demonstrated the highest or

competitive results relative to other learning algorithms (Kastrin et al. 2016, Rastegar-

Mojarad et al. 2016, Sang, Yang, Liu, Wang, Lin, Wang & Dumontier 2018). As in the

deep learning setting (discussed in Section 3.5.4), the output of the machine learning

setting is composed of the two prediction probabilities Ppos and Pneg.
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3.5.6 Evaluation Metrics

The selection of evaluation metrics is strongly influenced by the problem objective (Lem-

naru 2012). Evaluation metrics that perfectly suit a given scenario may not fit expec-

tations in a different problem setting. For instance, the focus in a medical diagnosis

setting is on maximising the true positive rate (Horn et al. 2011), while in contextual

advertising problems precision is important (Ciaramita et al. 2008). Therefore, iden-

tifying an appropriate performance metric that adheres with specific problem goals is

important (Lemnaru 2012).

3.5.6.1 Recommendation Component

The purpose of the recommendation component is to determine how well the identified

characteristics (or features) contribute towards deciding the correct recommendations

while discarding the irrelevant ones (discussed in Section 3.5.1). In recommendation

systems, precision is typically considered to be more important than recall (Tyler &

Zhang 2008). In large-scale knowledge retrieval systems, such as LBD, it is unrealistic

to assume that the user will read all the predicted recommendations. Therefore, as in

previous LBD studies (Jha, Xun, Wang & Zhang 2019, Jha et al. 2018), Precision at k

(P@k) and Mean Average Precision (MAP) are utilised as the key evaluation metrics

to assess the recommendation component. In addition to these key metrics, this thesis

also uses Geometric Mean Average Precision (GMAP) to evaluate the consistency of the

predictions.

Precision@k (P@k) denotes the proportion of the top k records that are relevant, as

defined in the form r
k , where r is the number of relevant records (Craswell 2009). P@k

gives every record in the ranked list an equal weight. For instance, when calculating

P@1000, the 1000th record in the ranked list has a equal weight to the 1st record.

Nevertheless, in ranked retrieval systems, a greater emphasis should be placed on early

ranks than on the later records.

To alleviate this issue, information retrieval metrics such as Mean Average Precision at k

(MAP@k) (which are sensitive to the ranking order) could be utilised. More specifically,

the relevant records that are ranked more highly contribute more to this metric than

the relevant records that are ranked lower in the ranking list. Mean Average Precision
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Figure 3.11: Confusion matrix

(MAP) denotes the arithmetic mean of average precision (AP) values over a set of n

query topics as defined using
1

n

∑
n

APn. This measure is widely used as the de facto

gold standard in the evaluation of information retrieval systems (Beitzel et al. 2009b).

Average precision in MAP denotes the mean of the precision scores obtained after each

relevant record is retrieved. In essence, this measure combines both recall and precision

in the retrieval results, as defined using

∑
r P@r

R
where r represents the rank of each

relevant record, R is the total number of relevant records, and P@r denotes the precision

of the top r retrieved records (Zhang & Zhang 2009a).

While MAP@k showcases the overall performance, Geometric Mean Average Precision

at k (GMAP@k) examines whether a model demonstrates consistently good performance

across all queries (Beitzel et al. 2009a). GMAP is defined as n

√∏
n

APn, where AP is

the average precision over n queries. This is alternatively calculated as the arithmetic

mean of logs as expressed in exp

(
1

n

∑
n

logAPn

)
(Beitzel et al. 2009a). To avoid logs

of 0.0, AP scores lower than 0.00001 are set to 0.00001 (Voorhees 2006).

3.5.6.2 Classification Component

Classification problems attempt to determine the characteristics (or features) that cor-

rectly distinguish the class to which each of the test instances belongs (discussed in

Section 3.5.1). The performance metrics used to compare classification performance are

typically represented using elements in the confusion matrix, which is generated by the

machine learning model on a test sample (Lemnaru 2012). Figure 3.11 denotes the tem-

plate of a confusion matrix for a two-class classification problem, where the class of an

instance is either positive or negative (discussed in Section 3.5.1).
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In the confusion matrix, columns represent actual classes, while rows represent the

predicted classes. The number of instances in the test sample is depicted on the top of

the confusion matrix, where P is the total number of positive instances and N is the total

number of negative instances. The number of instances predicted by the model in each

class is shown in the left of the confusion matrix, where p is the total number of instances

predicted to be positive and n is the total number of instances predicted to be negative.

True Positives (TP) denotes the number of instances correctly predicted to be positive

examples. False Negatives (FN) denotes the number of positive instances predicted to be

negative. Similarly, True Negatives (TN) is the number of correctly predicted negative

instances, and False Positives (FP) denotes the number of negative instances predicted

to be positive. The True Positive rate (TPrate), which is represented as TPrate = TP
TP+FN ,

depicts the rate at which the positive class is recognised. This is also known as recall

or sensitivity (Zhang & Zhang 2009d). The corresponding metric of the negative class

is the true negative rate (TNrate), which is measured as TNrate = TN
TN+FP . This is also

known as specificity and indicates the number of negative instances that are correctly

detected. The purpose of Positive Predictive Value (PPV) and Negative Predictive Value

(NPV) is to quantify how many instances which are detected as belonging to a given

class actually represent that class. PPV, which is also known as precision, measures the

number of actual instances identified as positive (i.e., PPV = TP
TP+FP ) (Zhang & Zhang

2009c). NPV denotes the number of negative instances that are correctly detected out

of all instances predicted to be negative (i.e., NPV = TN
TN+FP ).

From the elementary performance metrics discussed above, several composite measures

have been constructed, such as F-measure and ROC curves. F-measure (more specifi-

cally, F1) is the harmonic mean of precision and recall, and is denoted as 2×precision×recall
precision+recall

(Zhang & Zhang 2009b). The ROC (Receiver Operating Characteristic) curve plots true

positive rate (or sensitivity denoted as TP
TP+FN ) against false positive rate (or 1-specificity

denoted as FP
FP+TN ), at different classification thresholds (Tan 2009). Typically, a good

classification model should reside in the upper left region of the plot (Figure 3.12). Point

(0,0) indicates a model that detects all instances as negative. Point(1,1) denotes all in-

stances as positive, while a random classifier signifies y=x curve. The ideal classification

model generates the point (0,1) indicating that its false positive rate is zero (i.e., none

of the negative instances are predicted to be positive) and the true positive rate is equal

to 1 (i.e., every positive instance is identified). The AUC (Area Under the ROC Curve)
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Figure 3.12: Classifier performance with ROC curve

is the aggregated measure of the ROC curve that indicates the performance across all

possible thresholds . More specifically, the AUC denotes the entire two-dimensional area

under the ROC curve from point (0,0) to (1,1). Simply put, it indicates the probability

with which classifier will rank a random positive instance more highly than a random

negative instance.

In the classification setup of this thesis, negative class denotes topics that are not inter-

esting or meaningless in the knowledge discovery process. In contrast, the positive class

denotes topics that are potential novel knowledge linkages, as discussed at the outset

of this section. In a typical LBD workflow, these two classes are equivalent to filtering

and ranking, respectively (Figure 3.6). Therefore, given an instance, it is important

to understand how well the model is capable of distinguishing its class (whether it is

an uninteresting, meaningless concept used in filtering or a potential novel knowledge

linkage used in ranking). To facilitate this, the weighted average composite measures of

precision, recall and F-measure are utilised (Zhou et al. 2016, Mohammed & Omar 2020,

Maharjan et al. 2018). More specifically, these composite measures provide the oppor-

tunity to get an understanding of the overall performance of an LBD model in terms of

how well each instance was classified in the testing sample. This thesis also considers

AUC in order to quantify how well the LBD model separates negative instances from

positive instances.
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3.6 Baselines

As in previous LBD research (Jha et al. 2018, Jha, Xun, Wang & Zhang 2019, Lever

et al. 2018, Xun et al. 2017), this thesis considered the following eight baseline algo-

rithms in order to facilitate a comparison of the proposed LBD models’ performance

(discussed in Chapters 5 and 6). The discussion in this section focuses on two aspects:

the characteristic(s) that are considered in each baseline and the motivation for using

each selected baseline.

Arrowsmith (AR) is the oldest LBD project in the discipline. It was initiated by the

pioneers of the LBD field and is considered to be the most popular and well-maintained

LBD system (Sebastian et al. 2017a). It is reported that Arrowsmith has approximately

1200 unique monthly users. The system uses seven features to decide potential novel

knowledge linkages (Torvik & Smalheiser 2007), namely does the B concept occur in

more than a paper in A and C literature? (f1), do the sub-literatures AB and BC have

any common MeSH terms? (f2), does B concept has a mapping to at least one semantic

category in UMLS? (f3), does the B concept demonstrate a high literature cohesion score?

(f4), does the B concept extremely common or extremely rare in MEDLINE? (f5), does the

first occurrence of B concept recent in MEDLINE? (f6), and does the B concept highly

characteristic in A and C literature? (f7) (Torvik & Smalheiser 2007). The features

proposed in Arrowsmith include both global (i.e., f3, f4, f5 and f6) and local (i.e., f1,

f2 and f7) properties of the literature. Even though the feature f6, which is the first

occurrence of the B-concept in the literature, could potentially be used to obtain some

basic understanding of the temporal aspect of the concept, the remaining features in

Arrowsmith are based on static cues taken from the literature. Therefore, the use of this

baseline in this thesis provides the opportunity to assess whether meticulous temporal

cues really matter in determining potential novel knowledge linkages. To facilitate the

comparison, the features proposed in Arrowsmith are used in the same machine learning

setting that is used in this thesis (as discussed in Section 3.5). Since Chapters 5 and 6 are

based on MeSH keywords (as discussed in Section 3.3.1), feature f3 will be meaningless

in this setting, since MeSH terms are integrated into UMLS ; thus, the MeSH terms

are assigned to UMLS semantic categories (Bodenreider 2004). With that in mind, this

feature is removed to facilitate a fair comparison of results.
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Bitola (BI) (Hristovski et al. 2001) is one of the longest-established and most popular

LBD tools in the discipline. It uses association rule mining (more specifically, confidence

or support) to rank potential knowledge linkages. Confidence measures the percentage

of all records in which A appears that contain B, whereas support indicates the number

of records in which A and B co-occur (Hristovski et al. 2005). These two measurements

can be denoted in the form: |DA∩DB ||DA| and | DA ∩ DB |, respectively, where Di is the

set of records in which the term i is included (Yetisgen-Yildiz & Pratt 2009). In the

default setting, Bitola LBD system uses confidence for ranking (Hristovski et al. 2001).

The use of this baseline model provides the opportunity to understand whether a single

conventional statistical metric would be sufficient in the knowledge discovery process or

whether the knowledge discovery process favours the integration of multiple semantically

infused features to elicit potential novel knowledge linkages with high precision.

Dynamic Embeddings (DE) (Xun et al. 2017) represent a recently developed LBD algo-

rithm that mainly relies on diachronic word embeddings. This study is based on three

global semantic measures, local topic’s cosine similarity with topic A and C at cut-off

timestamp t, trend between local topic, topic A and topic C with reference to the times-

tamp of first occurrence and cut-off timestamp t, and generality of the local topic (Xun

et al. 2017). Even though this study undoubtedly provides a novel perspective to the

LBD field through the use of diachronic semantic inferences, this study suffers from

several inherent limitations. One of these is its relatively shallow temporal component.

For instance, to measure the temporal trend, this study simply considers the first and

last values in the diachronic vector spaces, ignoring the concept’s behaviour in the re-

maining timestamps. Secondly, the number of semantic measures incorporated in this

study is limited to three. Therefore, the use of this LBD algorithm as a baseline assists

in the task of assessing whether a meticulous temporal analysis with multiple temporal

characteristics is required in the LBD process.

Static Embeddings (SE) baseline algorithm uses word embeddings that are generated

without integrating any temporal analysis, where the bridge terms are ranked using

cosine similarity (Jha et al. 2018, Jha, Xun, Wang & Zhang 2019). Since this baseline

does not incorporate any temporal cues in the vector space, it provides the opportunity

to assess whether static similarity analysis among words alone is sufficient in the LBD

knowledge discovery workflow.
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Term-frequency and Inverse-document frequency (TI) is a popular metric that represents

the importance of a concept to a document in the corpus (Jha et al. 2018, Liu & Rastegar-

Mojarad 2016). This metric has been widely used in the LBD literature since the

inception of LBD; thus, it is selected as a baseline in this thesis (Yetisgen-Yildiz &

Pratt 2009, Ittipanuvat et al. 2014). The use of TF-IDF as a baseline helps to identify

whether such a standard statistical measure alone is capable of capturing novel knowledge

linkages, or whether the knowledge discovery process requires more problem-specific

measures to detect latent novel knowledge linkages with high precision.

More recently, there has been growing research interest in incorporating link prediction

techniques in the LBD field (Kastrin et al. 2016, Yang et al. 2017, Li 2020). More

specifically, these LBD studies have attempted to predict the links between terms that

are not present in the current timestamp, but that have a tendency of occurring in

the future. With these studies in mind, this thesis uses three popular link prediction

techniques that have been employed in prior LBD studies (Common Neighbours (CN),

Jaccard’s Index (JI) and Preferential Attachment (PA)) as baselines. As in the case of

TF-IDF, the use of these link prediction methods helps to gauge whether the direct use of

such standard measures alone would be sufficient to discover potential novel knowledge

linkages, or whether the knowledge discovery process favours the development of methods

tailored to the focus of LBD. The three link prediction metrics can be denoted in the

form: | Γ(x) ∩ Γ(y) |,
∣∣ Γ(x)∩Γ(y)

Γ(x)∪Γ(y)

∣∣, and | Γ(x) | × | Γ(y) |, respectively, where Γ(i)

denotes a set of terms that co-occur with the term i (Gao, Musial, Cooper & Tsoka

2015, Jha, Xun, Wang & Zhang 2019, Lever et al. 2018).

A summary of the selected eight baselines is outlined in Table 3.5, along with the chap-

ter number in which they will be utilised. Note that some baselines are not used in

both Chapters 5 and 6 due to their incompatibility with the setting and focus of the

chapters. Details on the incompatibility of these baselines are discussed in the Experi-

mental Setup section of Chapters 5 and 6. The selected eight baselines include the only

two long-established LBD models that are still available online for public use, which are

Arrowsmith4 and Bitola5 (Kastrin & Hristovski 2020).

4http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html
5https://ibmi.mf.uni-lj.si/sl/bitola

http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html
https://ibmi.mf.uni-lj.si/sl/bitola
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Table 3.5: Summary of baseline models

Baseline Prominent Properties Chapter

Arrowsmith (AR) • The oldest LBD project in the discipline

• Considered to be the most popular and well-

maintained LBD tool with approximately 1200

unique monthly users

• Multi-characteristic

• Global and local features

• Static literature analysis

Chapter 5,

Chapter 6

Bitola (BI) • One of the long-established and popular LBD tool

in the discipline

• Co-occurrence frequencies

• Local feature

• Static literature analysis

Chapter 5

Dynamic Embed-

dings (DE)

• Considering recent advancements in word embed-

dings

• Multi-characteristic

• Global features

• Dynamic literature analysis using temporal cues

Chapter 5,

Chapter 6

Static Embeddings

(SE)

• Considering recent advancements in word embed-

dings

• Global feature

• Static literature analysis

Chapter 5,

Chapter 6

TF-IDF (TI) • Widely used metric in the LBD literature

• Co-occurrence frequencies

• Static literature analysis

Chapter 5

Common Neigh-

bours (CN)

• State-of-the-art link prediction technique

• Neighbourhood analysis

• Static literature analysis

Chapter 6

Jaccard’s Index

(JI)

• State-of-the-art link prediction technique

• Neighbourhood analysis

• Static literature analysis

Chapter 6

Preferential At-

tachment (PA)

• State-of-the-art link prediction technique

• Neighbourhood analysis

• Static literature analysis

Chapter 6
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3.7 Summary

The purpose of this chapter is to outline the underlying research design of the remaining

chapters of this thesis. Initially, the scope of the research and the connections between

the subsequent four chapters of this thesis and the main components of the LBD workflow

are discussed. The main scope of this thesis is to address the input component, the

discovery component and the overall LBD workflow, with an emphasise on reusability

and portability. Subsequently, the datasets and the test cases selected for the experiments

(and the reasons behind these selections) are discussed. More specifically, this thesis uses

MEDLINE as its main data source, due to the popularity of the database in the LBD

literature. MEDLINE also contains more than 25 million timestamped article records,

making it suitable for large-scale literature mining. With regard to test cases, this thesis

considered real-world test cases reported in the LBD literature; these are commonly

considered golden datasets for the purposes of evaluating results.

Subsequently, the evaluation framework adhered to in this thesis is discussed. The se-

lection of the most suited evaluation technique was performed by initially identifying

the criteria that constitute an ideal evaluation setting. Next, popular LBD evaluation

techniques were cross-checked with these defined criteria to identify the evaluation tech-

nique that most closely resembles the ideal evaluation setting. Based on this assessment,

time-slicing was selected as the main evaluation framework for this thesis. Time-slicing

enables large-scale knowledge discovery through the incorporation of machine learning

techniques. In the machine learning framework, the legitimate novel knowledge linkages

identified through time-slicing can be considered positive instances, while remaining lo-

cal topics are considered negative instances. In the conventional LBD workflow, negative

class is equivalent to filtering process, while positive class indicates the potential candi-

dates used for the ranking process. Subsequently, the machine learning framework that

will be used in Chapters 5 and 6 is discussed. This discussion also covers the selection

of metrics that can be used to evaluate the recommendation component and the classifi-

cation component. These selections were made by contemplating the problem setting of

LBD and the qualities of the LBD models which needed to be highlighted in the exper-

iments. Finally, the baseline models used to compare the performance of the proposed

LBD models are discussed. This discussion includes not only the characteristic(s) used

in each baseline LBD model, but also the reason why this thesis selected it as a baseline.
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Such a broader understanding of the baseline models is important to critically compare

and discuss the results.

Throughout this chapter, design selections were made carefully based on logical reason-

ing. A strong evidence base was used to ensure that the best selections were made. The

subsequent chapters of this thesis mainly rely on the research design selections discussed

in this chapter. When design selections mentioned in this chapter are used in the sub-

sequent chapters, this thesis makes relevant references to this chapter, indicating the

relevant details and explaining why such selections were made.



Chapter 4

Input Types

4.1 Introduction

To initiate the LBD process, the user is required to input two scientific topics of interest

A and C. The LBD model elicits potential new knowledge linkages between the two user-

defined knowledge fragments that are most likely to occur in the future. For this purpose,

the literature related to the two topics A and C is collected from a digital library that is

collectively termed the local corpus (Figure 4.1). The local corpus represents the input

component of the LBD workflow. This derived local corpus could consist of different

input types. For instance, it could include data on titles, keywords, or even the scientific

articles’ full content in the literature database (Henry & McInnes 2017).

Figure 4.1: Input component of the LBD workflow

107
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The input is one of the most critical components in the LBD workflow, as the entire

knowledge representation and reasoning of the discovery process relies on it (Henry

& McInnes 2017). As with other text mining tasks, low-quality input will negatively

impact the LBD results and, ultimately, the decisions based on it (Corrales et al. 2015).

Existing studies are not consistent in their choice of LBD input types, since different

studies have picked different input types (e.g., titles, abstracts and keywords) for their

LBD process. This varied selection of input types leads to the following question: ‘which

input types are best-suited to the LBD workflow?’.

Despite the importance of LBD input in the overall knowledge discovery process, no

previous studies have explicitly attempted to assess the suitability of different input

types to the knowledge discovery process. Some prior LBD studies have implicitly com-

pared the performance of their LBD models with various input types. For instance,

Sebastian et al. (2017b) reported that they obtained better results using titles in com-

parison to abstracts. Nagarajan et al. (2015) mentioned that their LBD performances

mainly depended on the richness of the information being used (i.e., with more edges

in the knowledge network). However, these conclusions are potentially biased to their

methodologies as they have not isolated the input component from their proposed dis-

covery methodology during the evaluation. Otherwise stated, these conclusions may

differ when a different discovery method is utilised in the LBD process. Thus, they may

not necessarily provide insights that can be broadly applied to determine the suitability

of each input type in the LBD workflow.

Selecting a suitable input type representing the LBD workflow’s input component is

not straightforward. This is because different data fields in research papers have their

own perspectives and information content. For instance, Lee et al. (2015) have found

that keyphrases, citation relationships, and MeSH reflect the views of authors, citers,

and indexers, respectively. Kostoff et al. (2004) have identified that the information

content in different data fields of the research papers varies; thus, the selection of the

field depends on the objectives of the study. This highlights the importance of exploring

the input component of the LBD workflow, as proper decisions about input types in the

LBD context may ultimately contribute to developing better LBD models in the future.

With this goal in mind, this study performs a quantitative analysis of the LBD input

component to understand its performance using different input types. The main research
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objective of this study is:

“to investigate the input component of the LBD workflow in order to deduce the suitability

of different input types in the LBD process”

as defined at the outset of this thesis (i.e., main research objective 2 (RO2) in Chapter

1). To the best of our knowledge, this is the first study in the LBD discipline that

explores the input component of the LBD workflow with the ultimate aim of deciding

the suitability of each LBD input type in the knowledge discovery process. In doing

so, this study attempts to answer the following main research question (RQ2 ): ‘how

can LBD input types be quantitatively assessed and compared so as to better understand

their suitability in the LBD workflow?’. This study is split into two stages to accomplish

the main research objective and answer the primary research question, considering the

following two sub research objectives.

• RO2.1. Identifying the most influential characteristics that should be considered to

understand the role of the input types in the context of LBD (discussed in Sections

4.2 and 4.3).

• RO2.2. Leveraging the identified characteristics to quantitatively assess and compare

the input types, to validate their contribution to the overall knowledge discovery process

of LBD workflow (discussed in Section 4.4).

This chapter is organised as follows. Section 4.2 attempts to identify factors that dif-

ferentiate each input type in the information retrieval cycle of the LBD process. In

accordance with the knowledge gained from Section 4.2, Section 4.3 explores potential

characteristics to facilitate a comprehension of LBD input types by exploring informa-

tiveness definitions in information theory. In this regard, this study explores subjective

definitions of input types, since, in information retrieval cycles (as in the LBD work-

flow), subjective definitions of information are considered to be more meaningful and

sensible than objective definitions (Tague-Sutcliffe 1992) (as discussed in Section 4.4).

Following this notion, this section also discusses the main proposed subjective definition

of information which is used in this study to quantitatively assess and compare LBD

input types, and to decide their suitability to the LBD workflow. Section 4.5 outlines the

existing LBD input types used in the literature in terms of their popularity and viability.
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Section 4.6 extends the selected input types through the use of ‘local neighbourhood’,

to verify whether such extensions of the input types would benefit the LBD process.

Section 4.7 outlines the setup used in experiments in terms of input types, dataset and

test cases. Section 4.8 presents the results alongside an extended discussion on the key

observations, while also modifying the main subjective definition of information so as to

unravel various other perspectives on input types. Furthermore, this section contains a

compatibility check of the observations, drawing connections to the text mining litera-

ture to explain potential reasons for the key findings. Section 4.9 summarises the main

findings of the study, along with its major contributions.

4.2 Information Retrieval Cycle of the LBD Workflow

LBD is an information retrieval process that is initiated when the user enters the scientific

topics of interest into the LBD system. Subsequently, the user’s input is transformed

into an extended query to identify all the relevant literature that the user is interested in.

For instance, consider a situation where a user inputted “fish oil” as an input topic. The

query formulation component will identify every possible mapping to the user input such

as synonyms, abbreviations and syntactic variations to ensure a high literature coverage

in the subsequent phases. In the case of “fish oil”, the potential mappings identified in the

query formulation component would include terms such as fish-oil, marine oil, fish oils,

and fish liver oils. These identified mappings are queried in a digital library to extract

all the relevant literature related to the user input. This derived literature set from the

digital library represents the local corpus (more specifically, the input type) in the LBD

workflow. To perform a topic-level analysis, domain-related scientific topics need to be

extracted from the derived textual data in the local corpus. Since the aforementioned

example (i.e., fish oil) is from the medical domain, all the relevant medical-related

scientific topics (such as platelet aggregation, blood viscosity, vasodilation, etc.) in the

textual data needs to be extracted. These identified scientific topics are termed local

topics since they are extracted from the local corpus. Subsequently, these local topics

are processed through the knowledge discovery component in order to detect potential

new knowledge linkages that are most likely to occur in the future. Finally, these elicited

novel knowledge linkages are provided as output to the user. Figure 4.2 illustrates the

information retrieval cycle of the LBD workflow as discussed above.
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Figure 4.2: Information retrieval cycle in the LBD workflow

When closely inspecting this information retrieval cycle, it is evident that the only dif-

ference between each input type in this cycle is the ‘information’ that it provides to the

knowledge discovery process, which will ultimately determine the output provided to the

user. In other words, the process that each LBD input type flows through in the infor-

mation retrieval cycle is identical, in spite of the difference in content (or information)

that it carries across the components in the LBD workflow.

Thus, it can be deduced that the input types that are ‘most informative’ (i.e., the

input types that demonstrate the ‘greatest degree of information richness’) in the LBD

workflow are the most suitable input types. Nevertheless, it is difficult to quantify

or make appropriate decisions about input types without defining what it means by

‘informativeness’ (or ‘information richness’ ) that it provides to the information retrieval

cycle in the context of LBD.

4.3 Different Perspectives on Information Richness

Informativeness (or information richness) is the main factor that differentiates input

types from each other in the information retrieval cycle of LBD (as discussed in Section

4.2). With that in mind, the most important characteristics in terms of comprehending
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the relative suitability of different input types should be those related to informative-

ness (or information richness). In this regard, the first question to emerge from this

study was: ‘how can one define the information that resides in input types?’. Within

information theory, there are two main viewpoints on the definition or understanding of

information: objective phenomena and subjective phenomena (Hjørland 2007, Capurro

& Hjørland 2003).

• Objective phenomena: The objective definitions consider information to be an at-

tribute that is mainly based on the text (or record) itself (Tague-Sutcliffe 1992).

Therefore, the idea of objective perspectives of information are observer-independent

as well as situation-independent (Hjørland 2007).

• Subjective phenomena: On the contrary, subjective definitions consider information to

be an attribute of the transaction between the text and the user, and what the user

learns from reading the output (Tague-Sutcliffe 1992, Bates 2005). Therefore, the sub-

jective understanding of information is user-centered while involving the information

retrieval cycle. This is also known as the situational understanding of information.

These two key understandings of information influenced this study’s definition of infor-

mativeness (or information richness) in the context of LBD input types. Decisions as to

which perspective to choose will vary according to the goal of the study (Tague-Sutcliffe

1992). Therefore, this study investigates how each of the two perspectives on informa-

tion can be transformed into the LBD context, to aid the process of choosing the most

suitable perspective.

4.3.1 Objective Perspectives in the Context of LBD

The objective understanding of information has intrinsic value and a definite meaning,

since it is user-independent and situation-independent (Pervez 2009). With this defi-

nition in mind, consider a situation in which readability formulas (as proposed in text

mining literature (Shams 2014)) are used to assess input types. Even though such read-

ability measures provide a quantitative metric that facilitates the comparison of input

types to decide their suitability, they are solely based on the attributes of a text, as

summarised below.
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• Flesch Reading Ease Score (FRES): This measure is based on the average number of

syllables per word and the average sentence length in a text.

• SMOG Index: This measure is based on the number of polysyllabic words in a text.

• Gunning Fox Index: This measure is based on the percentage of long words and the

average sentence length in a text.

• FORCAST Index: This measure is based on the number of monosyllabic words in a

text.

When such readability measures are used, they cannot tell us anything about the impact

these input types had on the user, or whether the selected input types fulfilled the user’s

needs. Because of the observer-independent and situation-independent nature of such

readability measures, they do not capture the way in which input types interact with

the information retrieval cycle of the LBD process. Since objective measures (such as

readability measures, as discussed above) only reflect the properties of textual elements

in input types, rather than how these input types interact with the whole information

retrieval process, their use in the context of LBD can be limiting.

4.3.2 Subjective Perspectives in the Context of LBD

The subjective understanding of information is situation-dependent, interpretive and

constructivist (Pervez 2009). In the information retrieval context, where the informa-

tion outputted from the system depends on the user’s needs, subjective definitions of

information are considered to be more reasonable and sensible than objective definitions

(Tague-Sutcliffe 1992). The purpose of the information retrieval cycle of LBD is to in-

form users about potential latent knowledge linkages (i.e., information-as-process (Buck-

land 1991)) to support the user to gain new knowledge (i.e., information-as-knowledge

(Buckland 1991)). As such, this indicates a case in which subjective definitions should

be used to define informativeness (or information richness), in order to quantitatively

validate the suitability of each input type. With this aim in mind, this study explores

potential subjective definitions that consider the interactivities between texts and the

user, in order to measure the informativeness or the information richness of the LBD

input types.
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4.4 Defining Information Richness in the Context of LBD

Since a subjective understanding of information is the best approach in the LBD scenario,

this section explores potential subjective definitions that can be used to quantify infor-

mativeness or information richness for each LBD input type. Otherwise stated, the pro-

posed metric should pay close attention to the information retrieval cycle in the context

of LBD (i.e., information-as-process) and what users gained from it (i.e., information-

as-knowledge). Nevertheless, it remains unclear which fundamental aspect(s) should be

captured in order to quantify informativeness within the subjective phenomenon.

In this regard, this study revisited the main objective of this study, which is identifying

the LBD input types that demonstrate maximum information richness (or informative-

ness), as discussed in Section 4.2. In essence, this can be viewed as an optimisation

problem, where the most suitable LBD input type is the most optimised solution. With

this objective in mind, this study leverages the optimality theory as the fundamental

aspect (or focus point) of the subjective understanding of information to quantify the

information richness of LBD input types.

The main inspiration for the proposed metric came from optimal foraging theory, which

is based on a cost-benefit analysis (Stephens & Krebs 1986). Simply put, the goal of the

theory is to assess the amount of resources consumed (i.e., cost) and resulting gains (i.e.,

benefit) in the information retrieval cycle. Originally, the idea came from a behavioural

ecology model that predicts how animals behave when searching for food. In the case

of a predator, it adopts an optimality model where with the lowest effort to obtain the

maximum amount of energy. The process of gaining the highest benefit by spending

the least amount of energy is called optimal foraging. This theory has also been widely

used in the context of information-related research, namely information foraging theory

(Pirolli 2007). Inspired by the key interpretation of the theorem, this thesis uses optimal

foraging as the primary setting to assess information richness. More specifically, the

intention is to measure which input types provide the maximum benefit at the lowest cost

in the information retrieval cycle of the LBD workflow. The two main components of the

foraging theory, cost and benefit, are analogically mapped to the information retrieval

cycle of the LBD workflow, as described below.
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4.4.1 Cost Assessment

In the context of LBD, the cost is mapped to the number of local topics in the local

corpus. The main reason for this mapping is that the local topics selected from the input

component are used as the main data source of the entire knowledge discovery process

(Figure 4.3). These local topics consume both time (i.e., denoting time complexity)

and space (i.e., denoting space complexity) in the LBD workflow, both of which can be

analogously mapped to energy in optimal foraging theory.

4.4.2 Benefit Assessment

LBD is designed to infer potential novel knowledge linkages which have been previously

unknown but are probably going to occur in the future. Thus, the benefit (or the gain)

in the LBD workflow is the number of legitimate novel knowledge predictions (Figure

4.3). This demonstrates how the information retrieval cycle of LBD (i.e., information-

as-process) helps users to gain or perceive knowledge (i.e., information-as-knowledge).

Thus, it is fair to say that these legitimate novel knowledge predictions signify the

interactivities between the LBD model and the user, and how satisfied the user was

from the information retrieval output.

It should also be noted for something to be considered informative, several individuals

need to agree that it is so (Buckland 1991). This is known as information by consensus.

Thus, if one of the LBD model’s predictions is considered a legitimate novel knowledge

by a mere individual, this does not necessarily indicate informativeness. Thus, it is

necessary to account for multiple users’ consensuses in order to assess benefit (which is

the number of legitimate predictions). Due to the time- and cost-intensive nature of such

large-scale user studies, this study considers time-slicing as a substitute for user studies

to denote the legitimacy of a knowledge linkage (discussed in Chapter 3). Since the

number of times the proposed novel knowledge linkages have taken place in the future

is incorporated in time-slicing, this method also caters to the need for information by

consensus. In addition, time-slicing also ensures the reproducibility of results, which is

lacking in actual user studies.
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Figure 4.3: Subjective perspectives involving optimal foraging

Table 4.1: Mapping to the Optimal Foraging Theory (OFT)

OFT Mapping

Cost Number of local topics (depicting the amount of information ex-
tracted from each input type)

Energy Computations in the knowledge discovery process (denoting the
time and space complexity of the discovery process in the informa-
tion retrieval cycle)

Benefit/Gain Number of legitimate novel knowledge linkages (signifying how sat-
isfied the user was with the information retrieval output)

4.4.3 Optimal Foraging

To summarise, this study maps foraging theory setup to the process of measuring the

Information Richness (IR) of LBD input types, as summarised in Table 4.1. Succinctly,

this study attempts to identify the input types that provide the greatest benefit by

consuming the least energy (i.e., optimal foraging behaviour), as denoted in equation 4.1.

More specifically, the notion of optimal foraging answers the following question: ‘how

much important information does the information retrieval cycle (i.e., information-as-

process) provide to the user (i.e., information-as-knowledge)?’. Figure 4.3 illustrates

how the key ingredients of optimal foraging interact with the information retrieval cycle

to preserve the subjective perspective of information richness.

IR (input type) =
#legitimate novel topics

#local topics
×100 (4.1)
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4.5 Input Types

The LBD literature has utilised different variants of input types in its LBD models in

order to facilitate the knowledge discovery process. These variants include title only, title

and abstract, full-text, keywords, and even some highly specialised input type variants,

such as clinical patient records and case reports (discussed in Chapter 2). Among these

variants, title and abstract are the most commonly selected. Nevertheless, the pioneers

of the LBD disciple have continuously employed only the title of research publications

as their LBD input since the inception of the LBD field (Swanson & Smalheiser 1997).

Following this notion, Arrowsmith (the most popular and well-maintained LBD tool in

the discipline (Sebastian et al. 2017a)), only supports the analysis of titles to elicit new

knowledge (Torvik & Smalheiser 2007). To date, the most widely used keyword type in

the LBD literature is Medical Subject Headings (MeSH). MeSH is a controlled vocabulary

thesaurus maintained and updated annually by the National Library of Medicine (NLM)

(Lipscomb 2000). There are several LBD studies reported in the literature that have

used the full-text of articles as their input (Lever et al. 2018). However, most APIs of

literature databases merely support metadata retrieval; thus, the use of full-text may

limit the applicability of the LBD system in real-world settings (Cohen & Hersh 2005).

Input types which are rarely used in the LBD discipline include selected articles only

(Cameron et al. 2015), other metadata (Kostoff 2014), and non-traditional input types

(Bhattacharya & Srinivasan 2012). This study picked the three most popular and feasible

input types for our investigations: title only, title and abstract, and MeSH keywords.

4.6 Influence of Local Neighbourhood

Given the novel advancements in word embedding techniques, recent LBD studies have

paid special attention to integrating the local semantic neighbourhood into the analysis

in the LBD workflow (Jha et al. 2018, Jha, Xun, Gopalakrishnan & Zhang 2019). In the

same spirit, this study also aimed to verify whether the addition of local neighbouring

research publications to the selected three input types: title only, title and abstract,

and MeSH keywords would benefit the knowledge discovery workflow. To facilitate the

inclusion of such neighbouring documents, some method is required to identify which

documents are the most similar to the local corpus. In this regard, this study uses
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novel advancements in document embeddings that were emerged due to the success of

modern word embedding techniques (such as word2vec). More specifically, this study

employs the popular doc2vec document embedding technique to identify semantically

similar neighbouring documents (Le & Mikolov 2014). Doc2vec is an extended version

of word2vec that determines an adequate d-dimensional and continuous vector for each

document (or paragraph), while preserving semantic relationships among the documents

(or paragraphs) in the corpus (Kim et al. 2019).

To facilitate the identification of local semantic neighbouring documents, first, this study

learnt the document embeddings of the entire literature in the digital library using the

Doc2vec model (more specifically, using the ‘distributed memory’ variant, since it has

been found to work well in most situations (Le & Mikolov 2014)). Subsequently, the

nearest k neighbours of the original articles in the local corpus were added to each

selected input type: title only, title and abstract and MeSH keywords. These additional

input types constructed using the nearest local neighbourhood are referred to as the

extended input types for brevity.

4.7 Experimental Setup

This section is dedicated to describing the experimental setup to which this study adheres

to evaluate the information richness of the LBD input types. To this end, the first part

of this section describes the different input type variants incorporated in this study,

while the latter part discusses the main dataset and test cases used.

4.7.1 Input Type Variants

This study uses two different k values (5 and 10 ) to construct extended datasets (as

discussed in Section 4.6). In summary, the study intends to analyse nine variants of the

LBD input types, as summarised in Table 4.2.

Table 4.2: Selected input type variants

Dataset Type k value Input Type Variant

Default datasets k = 0 1. title only (T )

2. title and abstract (TA)



Input Types 119

3. MeSH keywords (K )

Extended datasets k = 5 4. title only (Ex5-T )

5. title and abstract (Ex5-TA)

6. MeSH keywords (Ex5-K )

Extended datasets k = 10 7. title only (Ex10-T )

8. title and abstract (Ex10-TA)

9. MeSH keywords (Ex10-K )

4.7.2 Dataset and Test Cases

This study uses the entire MEDLINE literature repository to extract local corpora, con-

struct document vectors (discussed in Section 4.6), and determine the legitimacy of the

novel knowledge linkage. The following five test cases are used to evaluate the informa-

tion richness of each input type. Further details on these aforementioned selections are

described in Chapter 3.

• Fish-Oil (FO) and Raynaud’s Disease (RD) (Swanson 1986)

• Magnesium (MG) and Migraine Disorder (MIG) (Swanson 1988)

• Somatomedin C (IGF1) and Arginine (ARG) (Swanson 1990a)

• Alzheimer’s Disease (AD) and Indomethacin (INN) (Smalheiser & Swanson 1996)

• Schizophrenia (SZ) and Calcium-Independent Phospholipase A2 (PA2) (Smalheiser &

Swanson 1998)

4.8 Results and Discussion

This section assesses the information richness of the selected input type variants to

analyse their foraging behaviours. Moreover, this section also redefines the proposed

information richness metric to capture several other perspectives of the input types to

verify whether the observed foraging behaviours are consistent with these perspectives.

The latter part of this section draws connections with the findings and conclusions

reported in the text mining literature. This allows for a description of the observed

foraging behaviours of the main input types.
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4.8.1 Information Richness (IR)

This section uses equation 4.1 to assess the informativeness (or information richness)

of the selected nine variants of LBD input types. Table 4.3 outlines the information

richness (IR) scores obtained for each of the nine input type variants in the context of

the five golden test cases. When analysing Table 4.3, it is evident that the input type

title and abstract consistently achieved the highest IR score across all the datasets. Due

to the independence of the test cases, this thesis also analysed how the IR score correlates

with the sizes of the local corpora. This yielded -0.483 of Pearson’s correlation coefficient

for title and abstract that demonstrates that the IR score is marginally sensitive to the

size of the local corpus in each test case. The second highest IR score was obtained

through the use of MeSH keywords. The mean IR score increase of title and abstract

over MeSH keywords was 10.7%. Furthermore, it was evident that the use of only titles

yielded the lowest IR out of the three main input types.

A similar IR score pattern was observed for extended input types: Ex5 and Ex10. In

other words, the IR scores of the main three input types occur in the following order

(from highest to lowest): title and abstract, MeSH keywords, and title only for both the

Ex5 and Ex10 datasets. Overall, the involvement of neighbouring documents reduced

the IR score of the three main input types. In other words, the IR score was negatively

correlated with the number of k nearest neighbours added to the original local corpus.

This study observed an average Pearson’s correlation coefficient of -0.942 between k (i.e.,

for k values 0, 5 and 10) and IR score for title and abstract. Overall in this experimental

setup, the most optimal foraging behaviour was achieved using title and abstract as the

LBD input type, and the second-best optimal foraging was obtained through the use of

MeSH keywords.

4.8.2 Intrigue Information Richness

Despite the consistency of the IR score based patterns observed over the five golden

test cases (Table 4.3), this study aimed to further confirm the observed optimal for-

aging behaviours of the input type variants by disentangling IR score in several other

perspectives. To this end, the following questions emerged: 1) what input types contain

the highest number of intriguing novel knowledge topics (not just the count of novel
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knowledge linkages, as captured in equation 4.1)?, and 2) does the inclusion of implicit

neighbouring documents compensate for its low IR gain by increasing the opportunity

to include more intriguing novel knowledge topics?

To answer these questions, the intrigue score of a legitimate novel topic (n) for the two

input topics A and C was calculated using equation 4.2 in the post-cut-off segment (as

in previous LBD studies (Jha et al. 2018, Xun et al. 2017)). That is, all the legitimate

novel topics were ranked using the scores gained from equation 4.2, where the topmost

topics reflected the most intriguing new knowledge (Jha et al. 2018, Xun et al. 2017).

rank score (n) =
#(n,A) + #(n,C)

#n
×100 (4.2)

The total intrigue for each test case was calculated using the cumulative gain of scores

derived from equation 4.2. Subsequently, this study redefined equation 4.1 using the

derived total intrigue score from cumulative gain (equation 4.3).

intrigue IR (input type) =
total intrigue

#local topics
×100 (4.3)

The results of the intrigue IR are reported in Table 4.4. This study observed similar

patterns as those in Table 4.3 by using intrigue IR. As with the IR score, the input type

title and abstract consistently engendered the highest intrigue IR across all the golden

test cases. Therefore, based on the evaluation results, this study can confirm that using

the title and abstract in the LBD workflow not only ensures the maximum IR in terms

of legitimate novel topic count, but also the highest intrigue score for these legitimate

novel topics. As in the previous evaluation setting, the use of MeSH keywords resulted in

the second-highest intrigue IR across the datasets. The lowest intrigue IR was obtained

when titles were used as input type.

The observations pertaining to the extended datasets are compatible with those from

the previous evaluation setting. More specifically, the three main input types were in

the following order (from highest to lowest): titles and abstracts, MeSH keywords and

titles only in both the extended datasets: Ex5 and Ex10. Furthermore, this evaluation

setting also confirms that the inclusion of neighbouring documents to the main input

types is not rewarding, since the inclusion of these documents consistently results in a

loss for every test case.
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4.8.3 Average Intrigue Score

This study also analysed the average intrigue score of legitimate novel topics for each

input type, as defined in equation 4.4. The main reason for conducting this analysis was

to verify whether extended input types dilate the opportunity of including the most in-

triguing novel topics, which could possibly indemnify the constant IR loss these extended

input types incur.

average intrigue score =
total intrigue

#legitimate novel topics
(4.4)

Table 4.5 summarises the results obtained for the five golden test cases in this analysis.

Overall, using title and abstract as the input type resulted in the maximum average

intrigue score. As was the case under the previous evaluation settings, extended input

types exhibited the minimum results in comparison with their main input type. This

further confirms that the integration of the local neighbourhood not only incurs IR loss,

but also lowers the average intrigue score.

4.8.4 Key Observations

Succinctly, the input type title and abstract conclusively reported the highest IR, intrigue

IR, and average intrigue score in all three evaluation settings. The consistent optimal

foraging behaviour of the title and abstract in all three evaluation settings confirms that

it is the most suitable LBD input type. This study observes that MeSH keywords are the

second-best LBD input type, since they often achieved the second highest optimal forag-

ing behaviours. Overall, titles only demonstrated the least optimal foraging behaviours.

Furthermore, the evaluation results indicate that the inclusion of local neighbouring

documents to the input types was not rewarding, as they consistently demonstrated a

loss in each evaluation metric. More specifically, the foraging behaviours can be placed

in the following order (from highest- to lowest-performing): TA, K, T, Ex5-TA, Ex5-K,

Ex5-T, Ex10-TA, Ex10-K, and Ex10-T.
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4.8.5 Compatibility Check

This section explores findings/conclusions relating to the selected three main input types

as reported in the literature, in order to locate potential reasons for the observed foraging

behaviours. Since such input-based discussions are rare in the LBD literature, this study

mainly relies on the studies reported in the text mining literature to build this discussion.

4.8.5.1 Titles Only

The following three findings relating to titles (i.e., limited character length, inverse im-

pact and influence, and single characteristic) could support why we observed titles to

have the lowest information richness in each experimental setup (i.e., the least optimal

foraging).

• Limited character length: Titles have a limited character length (or word length)

(Moattarian & Alibabaee 2015, Nagano 2015). For instance, Hudson (2016, 2017) has

analysed the average character length of titles in numerous disciplines and observed

that the longest character length for titles occurs in disciplines such as public health

(117.1 characters), clinical medicine (113 characters), and agriculture (110.4 char-

acters), whereas the shortest occurs in disciplines like philosophy (51.1 characters)

and economics (66 characters) (Hudson 2016). It is interesting to see that even the

longest title is about 41.8% of the length of the longest possible Tweet, indicating the

potential paucity of information or facts that can be conveyed through titles.

• Inverse impact and influence: It has also been identified that using long titles or wider

diversity of concepts in titles can adversely affect the impact and the influence of

research publications (Hudson 2016, Paiva et al. 2012, Milojević 2017, Elgendi 2019,

Jamali & Nikzad 2011, Subotic & Mukherjee 2014). Such findings may discourage

researchers from including a large number of details in their titles, which may further

reduce the possibility of capturing rich information through knowledge discovery.

• Single characteristic: There are different classifications of title types (Bahadoran et al.

2019). For instance, Hartley (2008, 2007) recognises 13 types of titles, including titles

with a general subject, a specific theme, a controlling question, findings, an indication

of an answer to a question, an indication of the direction of an argument, an emphasis
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on methodology, guidelines and/or comparisons, a bid for attention, alliteration, lit-

erary elements, puns and mystifying utterances. Therefore, it is fair to conclude that

the title always informs one single characteristic of the study (e.g., either findings

or methodology), which may not be sufficient for the process of knowledge discovery.

Moreover, title types that contain literary elements, humour, irony, or puns might not

reveal details that are pertinent to knowledge discovery, since machines are not as

intelligent as humans when it comes to understanding the meaning conveyed through

them.

4.8.5.2 MeSH Keywords

The following factor may often have influenced MeSH keywords to manifest the second

highest optimal foraging.

• Manual indexing: MeSH terms are manually assigned to research papers by trained

indexers with the required qualifications (Lipscomb 2000). Since MeSH keywords

are selected based on a systematic procedure by subject matter experts, it is safe

to assume that they represent the important content of a research paper (Jha et al.

2018).

Typically, MeSH is limited to 10-12 terms per each article (Chapman 2009). This may

be the reason why it did not surpass the foraging behaviours of title and abstract.

The other form of keywords available for research papers (in addition to the indexed

keywords such as MeSH) is author keywords, where the authors select keywords dur-

ing their manuscript submissions (Oermann & Murphy 2018). Since MeSH keywords

demonstrated the second-highest optimal foraging behaviour, this thesis also investi-

gated whether author keywords would potentially demonstrate a similar information

richness behaviour by making references to the text mining literature.

In the study of Névéol et al. (2010), they have identified that 60% of author keywords

can be closely linked with the MeSH keywords. Even though there is a high similarity

of author keywords and MeSH keywords in terms of their content, a small subset of the

biomedical research papers has author keywords recorded. For instance, the cumulative
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Figure 4.4: Cumulative percentage of papers with author keywords in PubMed Cen-
tral (PMC) Open Access set (Névéol et al. 2010)

percentage of research papers with author keywords in the PubMed Central Open Ac-

cess set is estimated to be nearly 15% as of 2010 (Figure 4.4). This thesis observed a

similar conclusion outside the medical domain. More specifically, it has been identified

that a large portion of research papers in non-medical domains (such as Ethnology, Eco-

nomics, Physics, Sociology, Library and Information Science (LIS), Fluids & Plasma,

and Acoustics) do not also have author keywords (Mao et al. 2018).

The above-discussed limited availability of author keywords (in both medical and non-

medical domains) suggests that using author keywords in LBD workflow may not nec-

essarily demonstrate a high information richness, as shown by MeSH keywords.

4.8.5.3 Title and Abstract

The following factors may have caused the abstracts to demonstrate continuous optimal

foraging in every evaluation setting: well-structured elements, handy synopsis of a paper’s

content and length.

• Well structured elements: Unlike titles, there are various standards that authors

should follow when constructing abstracts for research papers (e.g., American Na-

tional Standards Institute (ANSI)) (Tenopir & Jasco 1993, Hartley 2008). In accor-

dance with the ANSI standards, research papers should include informative abstracts.

These abstracts are considered a condensed version of the important ideas presented

in the paper, incorporating the following elements: purpose, methodology, results and

conclusions (Tenopir & Jasco 1993, Hartley 2008). Thus, it is fair to say that the

abstract contains the main content of the paper, yet in a concise manner.
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• Handy synopsis of the paper content: It has been identified that abstracts (anal-

ysed from 1930-2013 ) are becoming more generous (or representative) with time, and

cannot merely be considered ‘teasers’ (Ermakova et al. 2018). The generous (or rep-

resentative) nature of abstracts in comparison with their corresponding full-texts may

have influenced abstracts to exhibit consistent optimal foraging behaviours.

• Length: In regard to the length of abstracts for research publications, the ANSI

recommendation is 250 words (Tenopir & Jasco 1993). Thus, abstracts have a greater

chance of providing rich information in the knowledge discovery process than input

types such as titles.

In addition to the aforementioned findings and conclusions, this study observes that

the text mining community has identified that the readability of abstracts is lower (i.e.,

text difficulty is high) across all disciplines using measures such as the Flesch Reading

Ease score (Gazni 2011, Hartley et al. 2003). However, to quantify text difficulty, these

readability scores mainly rely on metrics like the average number of words per sentence

and the average number of syllables in words, rather than the semantic aspects of ab-

stracts (Shams 2014, Farr et al. 1951). Based on the observations in our study, it can

be concluded that the readability of abstracts is not an important consideration in the

LBD workflow. The main reason for this could be that the readability scores used in

the text mining community are mostly syntactic and do not factor in semantic aspects

of abstracts. This ensures that in complex reasoning tasks like LBD, semantic details

are more important than syntactic details.

4.8.6 Limitations

Due to the time- and cost-intensive nature of large-scale user studies, this study utilised

time-slicing as a substitute for benefit assessments. While the use of time-slicing en-

ables the replicability of results and information by consensus, reliance on co-occurrence

in time-slicing may introduce noise, since co-occurrence does not necessarily imply a

legitimate relationship between two topics. Therefore, time-slicing is merely an approx-

imated substitute for such large-scale user studies.
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4.9 Summary

The input can be considered one of the most critical components of the LBD process,

as the entire knowledge discovery depends on the content and quality of the input

selection. However, different LBD studies have made use of different input types (e.g.,

titles, abstracts and keywords) (Henry & McInnes 2017). Choosing the most suitable

input types is a key design decision, as input types should be able to convey the most

important entities and relationships contained in an academic article, in order to permit

efficient knowledge discovery (Henry & McInnes 2017). This indicates the need to assess

the informativeness (or information richness) of inputs in order to choose the most

suitable input types in the LBD workflow.

Accordingly, this study performed a large-scale quantitative assessment of nine variants

of LBD input types, taking inspiration from the subjective understanding of information

and optimal foraging theory. More specifically, amalgamating these two notions enabled

an assessment of different LBD input types in the form of: ‘how much important in-

formation does the information retrieval cycle (i.e., information-as-process) provide to

the user (i.e., information-as-knowledge)?’. In terms of the foraging behaviours, the

input types can be ordered as follows (from highest to lowest): title and abstract, MeSH

keywords and titles only. This study also observed that the inclusion of semantic neigh-

bouring documents in the LBD workflow is ineffective due to their consistent loss of

information richness scores. Lastly, a compatibility check was performed to explain po-

tential reasons for the foraging behaviours observed in the three main LBD input types.

To summarise, this study put forward the first paving stones on the path towards as-

sessing and comparing input types. This process is crucial to the construction of better

LBD models in the future.

4.9.1 Major Contributions

Through this study, this thesis was able to shed light on a new direction for the LBD

discipline. The major contributions of this chapter are summarised below, and are

discussed in detail in Chapter 8.

• Being the first study in the LBD discipline that comprehensively analyses and evalu-

ates the input component of the LBD workflow.



Input Types 128

• Proposing a novel perspective on assessing the information richness of LBD input

types, taking inspiration from foraging theory and subjective understandings of infor-

mation that make use of the information retrieval cycle of the LBD workflow.
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Chapter 5

Semantic Evolution

5.1 Introduction

Even though perceiving the meaning of words in the text is at the heart of natural lan-

guage processing research, understanding them deeply at a human-level remains elusive

(Levy et al. 2015). Nevertheless, in recent times, vector representations of words (de-

veloped using word embeddings) have demonstrated huge success in recovering certain

semantic properties of words (Levy et al. 2015, Hashimoto et al. 2016). Word embed-

dings represent words as vectors in a multi-dimensional, continuous vector space where

the geometrical relationships between vectors are vital. For instance, words that have

higher semantic similarity to each other tend to reside in close proximity within the

vector space (i.e., distributional hypotheses), and analogical relationships can be discov-

ered through distance and angle properties (i.e., vector arithmetic) (Mikolov, Sutskever,

Chen, Corrado & Dean 2013). Word embeddings have been successfully applied in a

wide variety of natural language processing applications including sentence classifica-

tion (Kim 2014), machine translation (Zou et al. 2013), part-of-speech tagging (Al-Rfou’

et al. 2013) and recommender systems (Musto et al. 2016). Most of these application

areas entail using word embeddings to learn a detailed representation of input data,

which is crucial for downstream natural language processing tasks (Palangi et al. 2016,

Hashimoto et al. 2016). From the timeline analysis of LBD computational techniques

(discussed in Chapter 2), this thesis observed that the incorporation of modern word

embedding techniques in the knowledge discovery process is the most recent type of

computational technique utilised in the LBD literature. Nevertheless, only a handful

132
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of recent LBD studies use such techniques (Jha et al. 2018, Jha, Xun, Wang & Zhang

2019, Xun et al. 2017). In complex natural language processing application areas such

as LBD (where rich semantic inferences are crucial) circumstantial analysis of vector

semantics through the leveraging of word embeddings could be highly beneficial.

This thesis also observed from the categorisation of the LBD computational techniques

(discussed in Chapter 2) that almost all prior LBD studies have neglected the temporal

evolution of topics in the scientific literature. That is, they have used a static snapshot

of digital libraries to discover novel knowledge linkages (Jha et al. 2018, Jha, Xun,

Wang & Zhang 2019, Xun et al. 2017). However, scientific knowledge evolves rapidly,

with the constant addition of new knowledge from on-going research (Jha et al. 2018,

Jha, Xun, Wang & Zhang 2019). Therefore, the use of a mere static snapshot of the

literature restrains the opportunity of detecting dynamic cues in the knowledge discovery

process (Xun et al. 2017, Jha et al. 2018). Encoding the temporal dynamics of scientific

knowledge in the LBD process may offer the opportunity to unravel meaningful temporal

signals in differentiating new knowledge that cannot be captured using static analysis

of literature.

Contemplating the complementary strengths of modern embedding techniques (observed

in timeline literature analysis as discussed above) and temporal dynamics (observed

in categorisations of computational techniques as discussed above), providing a holistic

solution that encodes the global scale implicit semantics into an informative temporal

setting may represent an improvement on existing LBD models. The main objective of

this chapter is:

“to enhance the discovery component of the LBD workflow using fine-grained diachronic

semantic inferences by conjoining global semantic relationships with the temporal dimen-

sion to enrich the typical static cues used in the LBD literature”

as defined at the outset of this thesis (i.e., main objective 3 (RO3) in Chapter 1).

Otherwise stated, this study intends to analyse the implicit semantic relationships of

scientific topics in a time-sensitive environment with the ultimate goal of detecting novel

knowledge linkages with high precision. With this goal in mind, this chapter attempts

to answer the main research question (RQ3 ): ‘does incorporating meaningful diachronic

semantic inferences in the LBD discovery process through leveraging implicit semantic

relationships of word embeddings in temporally-aware vector spaces enrich the typical



Semantic Evolution 134

static cues used in the previous LBD studies?’. To support the main objective of this

chapter and to systematically answer the aforementioned research question, this study

is sub-divided into several stages by focusing on the following sub research objectives.

• RO3.1. Incorporating a global picture of topic interactions into temporally encoded

schemata to capture the semantic relationships of the topics in a wide scope (discussed

in Section 5.3).

• RO3.2. Integrating temporal information of the scientific topics with word embeddings

to construct temporally encoded schemata to model and understand the semantic be-

haviour of scientific topics across time (discussed in Section 5.4).

• RO3.3. Disentangling temporal semantics of the scientific topics from the temporally

encoded schemata that reflect the potential characteristics of novel knowledge linkages

(discussed in Section 5.5).

• RO3.4. Scrutinising the derived diachronic semantic inferences of the scientific topics

using a circumstantial temporal analysis component to unravel meaningful semanti-

cally infused temporal cues (discussed in Sections 5.6, 5.7, 5.8 and 5.9).

This chapter is organised as follows. Section 5.2 provides a high-level overview of the

major phases of the proposed LBD framework by summarising the key functionalities and

objectives of each phase. Section 5.3 discusses the way in which global topic interactions

are induced to learn the latent vector representations of scientific topics in the literature

through the use of the time-specific global corpus. Section 5.4 describes how the corpora

prepared in the previous phase are used to construct diachronic word embeddings that

co-model both vector semantics and the temporal dimension. Section 5.5 presents the

core discovery setting of this study by elaborating how the semantics and temporal

aspects of the scientific topics are combined to provide a holistic solution to the problem

of discovering novel knowledge linkages. In this regard, this section leverages the idea

of semantic shifts to capture the semantically infused temporal trajectories of scientific

topics. Section 5.6 is dedicated to describing how these extracted semantically infused

temporal trajectories (i.e., diachronic semantic inferences) of scientific topics are sifted

to elicit novel knowledge linkages patterns. In essence, Section 5.6 provides a high-

level overview of the core analysis setting of this study, which is constituted of three
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Figure 5.1: Schematic overview of the proposed LBD framework

main models: the dedicated trajectory model, the feature-based trajectory model and the

trajectory alignment model. These three models are discussed in detail in Sections 5.7, 5.8

and 5.9, respectively. Section 5.10 outlines the experimental setup and the experimental

results of the proposed models, as well as comparing them to the baseline LBD models.

Section 5.11 summarises the key findings of this study, while also highlighting its major

contributions.

5.2 Overview of the Proposed LBD Framework

The purpose of this section is to briefly outline the four major components in the proposed

LBD framework and their key objectives. These components are construction of a time-

specific global corpus, construction of diachronic word embeddings, extraction of semantic

shifts, and analysis of semantically infused temporal trajectories. Figure 5.1 denotes a

high-level overview of how these four components are connected in the proposed LBD

framework. This framework is considered the main blueprint of all the LBD models

proposed in the latter part of this chapter. Further details on these four components

are discussed in Sections 5.3, 5.4, 5.5 and 5.6, respectively.

The main purpose in the construction of a time-specific global corpus component is

to prepare the scientific literature corpora for the analysis of remaining phases in the

proposed LBD framework. In preparing the corpora, this study deviates from most prior

LBD studies, which rely on a query-specific local corpus to extract potential patterns in

identifying novel knowledge linkages. Otherwise stated, this study aims to detect large-

scale global patterns in the local corpora by enriching concepts’ semantic neighbourhoods

with the idea of the global corpus. The key objective of this component is to incorporate
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semantic relationships of scientific topics in a wide scope that would ultimately benefit

the semantic deductions made in the latter components of the proposed framework.

The intention of the construction of diachronic word embeddings component is to com-

bine the word embeddings with the time dimension. This will allow for the construction

of schemata that better represent the evolution of knowledge in the scientific literature.

In this regard, this thesis focuses on an emerging research field that was initiated with

the development of modern word embedding techniques (such as word2vec), namely

diachronic word embeddings (a.k.a. temporal word embeddings, dynamic word embed-

dings), where the idea is to capture how words change across time in a data-driven

manner (Kutuzov et al. 2018). More specifically, given the corpora of text (Ct1 , Ct2 , ...,

Ctn-1 Ctn ) in time slices (t1, t2, ..., tn-1, tn), the task of diachronic word embeddings is

to analyse the dynamics of relationships among words across time (i.e., from t1 to tn).

These dynamics reflect complicated processes in the natural language usage displayed

in the corpora. The use of such diachronic embedding settings (which are rich in both

semantics and temporal details), facilitates this study’s main objective of inspecting the

semantic behaviour of scientific topics in a time-sensitive environment.

The main objective of the extraction of semantic shifts component is to extract meaning-

ful measures to demonstrate the benefits of amalgamating semantic aspects and temporal

dynamics of scientific topics towards discovering novel knowledge linkages. To facilitate

this objective, the thesis leverages the idea of semantic shifts, which denotes how a

concept’s semantics change across time. In disentangling semantic shifts, this thesis

focuses on three different perspectives of the concepts, namely individual, pairwise and

neighbourhood. The extracted semantic shifts are prepared in the form of semantically

infused temporal trajectories (i.e., diachronic semantic inferences). These trajectories

are used as the key source to mine semantically infused temporal patterns in the sub-

sequent phase (a.k.a. trajectory pattern mining). By mining these patterns, it may be

possible to unravel strong temporal signals to detect novel knowledge linkages in the

literature with high precision.

The final component of the proposed LBD framework, the analysis of semantically in-

fused temporal trajectories entails scrutinising the derived semantically infused temporal

trajectories (i.e., the extracted diachronic semantic inferences) to detect patterns of po-

tential novel knowledge linkages. In this regard, this study proposes three types of LBD
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Figure 5.2: Schematic overview of the typical LBD workflow

models, namely the dedicated trajectory model, feature-based trajectory model and tra-

jectory alignment model, where the first two models demonstrate the direct uses of the

proposed diachronic semantic inferences. In contrast, the latter model manifests the

indirect uses of the proposed diachronic semantic inferences. Unlike most previous LBD

studies, the design of these three proposed LBD models does not incorporate seman-

tic inferences from any external knowledge resources to support the idea of reusability

(discussed in Chapters 6 and 8) and portability (discussed in Chapter 7) of this thesis.

5.3 Construction of Time-specific Global Corpus

To analyse the semantic properties of scientific topics in a temporal setting, a time-

specific corpus is required. In this regard, this study leverages the entire literature

in the selected digital library/text repository. The key objective behind incorporating

the entire text repository is that it provides a rich platform to analyse the semantic

relationships of local scientific topics in a global setting. In other words, the inclusion of

the global semantic relationships in the entire text repository allows us to harness weak

signals of novel knowledge that are not visible in a query-specific local corpus.

To further elaborate on this idea, consider the typical LBD framework used by most prior

LBD studies depicted in Figure 5.2. In the typical framework, only the query-specific

local corpus is used for the purposes of knowledge discovery. The major disadvantage

of employing the query-specific local corpus is that it may be lacking crucial semantic

relationships; thus, it may provide weak signals in eliciting new knowledge. For example,

consider a situation where the user needs to explore coronavirus literature. In such

situations, the query-specific local corpus merely contains the literature on coronavirus.

However, when eliciting new knowledge on coronavirus, the semantic relationships of

‘coronavirus’ with other related areas, such as ‘SARS’, may be vitally important. Due to

the query-restrictive nature of local corpora, accommodating such vital semantic details
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Figure 5.3: Schematic overview of the time-specific global corpus

into the analysis is difficult. To circumvent this issue, this study analyses the topics in

the local corpus in a global semantic space by incorporating the entire text repository

(namely, global corpus), with the ultimate aim of performing the semantic analysis in a

wide perspective (Figure 5.3).

To facilitate the temporal analysis of the current study, the global corpus is divided

into equivalent-sized time slices according to the window size (Figure 5.3). Supposing,

the window size is set at five years, the global corpus is divided into five years slices,

with each slice containing the literature published in the corresponding five years. This

corpus is termed a time-specific global corpus, and it is used as the main data source in

knowledge discovery.

5.4 Construction of Diachronic Word Embeddings

To prepare the diachronic word embeddings using the time-specific global corpus con-

structed in the previous phase, this study considers the following two main steps: em-

bedding construction and embedding alignment.

5.4.1 Embedding Construction

This study utilises the popular neural word embedding technique word2vec to construct

the distributional embeddings of the global corpus. The technique was chosen because its

vector representations are efficient and expressive in comparison to those of other modern

word embedding techniques, such as GloVE (Naili et al. 2017, Levy et al. 2015). There

are two variants of word2vec, namely CBOW (Continuous bag of words) and Skip-Gram

(Figure 5.4).
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Figure 5.4: The architectures of CBOW and Skip-Gram models (Mikolov, Chen,
Corrado & Dean 2013)

This study employs the Skip-Gram variant of word2vec (more specifically, Skip-Gram

with Negative Sampling (SGNS)) to learn latent embedding spaces due to the following

reasons.

• SGNS is considered to be the most popular variant to learn monolingual vector rep-

resentations due to its robustness and training efficiency (Ruder et al. 2019).

• Levy et al. (2015) found that SGNS consistently outperformed the recent embed-

ding technique GloVE on most of the tasks, such as word similarity and analogy.

In the same study, they concluded that SGNS as a robust baseline, since even if it

underperformed in some tasks, its reduction was not significant.

• SGNS has established its reputation by providing state-of-the-art results in numerous

linguistic tasks (Levy & Goldberg 2014b)

• Levy et al. (2015) have identified SGNS as the fastest and cheapest embedding method

to train in terms of memory consumption and disk space.

• SGNS is considered to be a powerful diachronic tool in the study of Hamilton et al.

(2016b) that analyses the evolution of language.
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Figure 5.5: Simple example illustrating the three layers of the SGNS neural network
(El-Amir & Hamdy 2020)

5.4.1.1 Skip-Gram with Negative Sampling (SGNS)

Given a target word wk, skip-gram predicts the surrounding context words (see Figure

5.4) under the training objective defined in equation 5.1, where C is the corpus and C is

the window size of each word.

LSGNS = − 1

|C| − C

|C|−C∑
k=C+1

∑
−C≤j≤C,j 6=0

logP (wk+j|wk) (5.1)

To calculate P(wk+j | wk) in equation 5.1, a softmax function is used as denoted in

equation 5.2, where x̃ and x represent the input and output word embeddings of wi.

P (wk+j|wk) =
exp(x̃wk+j

>xwk
)∑|V |

i=1 exp(x̃wi>xwk
)

(5.2)

Figure 5.5 demonstrates a simplified example of how the three layers in the neural

network structure of SGNS (i.e., input layer, projection layer and output layer, illustrated

in Figure 5.4) works to predict the vectors of the context words.

Since the partition function in the softmax’s denominator in equation 5.2 is computation-

ally expensive, SGNS utilises Negative Sampling (a simplification of Noise Contrastive

Estimation) to approximate softmax. Negative sampling can be defined as in equation
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5.3, where N is the number of negative samples, σ is the sigmoid function and Pn is the

noise distribution.

P (wk+j|wk) = log σ(x̃wk+j
>xwk

) +

N∑
i=1

Ewi∼Pn log σ(−x̃wi>xwk
) (5.3)

Pn is empirically defined as in equation 5.4, where U(w) represents the unigram dis-

tribution and Z is a normalisation factor (Mikolov, Sutskever, Chen, Corrado & Dean

2013).

Pn(w) =
U(w)

3
4

Z
(5.4)

5.4.1.2 Limitations of Word Embedding Techniques

Despite the significant advances achieved in natural language processing applications

using modern word embedding techniques (such as word2vec), the use of mere word

embeddings may be limited. This is mainly because such models are based on static

context, such that the meaning of words remains the same across time (Jha, Xun,

Gopalakrishnan & Zhang 2019). Such static contexts are unable to capture complex

phenomena involving language usage over time. However, analysis of language usage

across time is crucial for areas such as scientific literature mining, where the knowledge

is evolving rapidly on a daily basis (e.g., MEDLINE alone updates its data repository

with nearly 2000-4000 scientific articles daily (Lu et al. 2015)).

To further illustrate this idea, consider the task of tracking the neighbourhood of a word

over time. Figure 5.6 illustrates the evolution of the word ‘cell’, using three different

timestamps (Boukhaled et al. 2019). In the 18th century, the word cell referred to a

prison cell. However, the meaning of cell has changed drastically over time, and it is

now mostly used to refer to the microscopic part of living beings (Figure 5.6).

Interpreting words based on their neighbourhood (as in Figure 5.6) is simply one of

the many tasks that such time-sensitive word embeddings can offer. For instance, one

could analyse how the word’s neighbourhood density changes in time (Naili et al. 2017).

In Figure 5.7 (Li et al. 2019), it is clear that the word cell does not have a dense

neighbourhood in the 1900s. However, the neighbourhood of the word cell becomes
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Figure 5.6: Neighbouring words of the word ‘cell’ across time (Boukhaled et al. 2019)

Figure 5.7: Semantic change of the word ‘cell’ across time (Li et al. 2019)

denser across time. In contrast to such density analysis, one could measure how much

a word has moved in the semantic space across time. For example, Figure 5.7 clearly

illustrates that the word cell has moved drastically (i.e., it displays a higher semantic

distance) from 1850 to 1900. However, from 1950-2000, the semantic movement of the

word cell is less prominent.

To further elaborate the potentiality of time-sensitive semantic inferences in the context

of LBD, consider the classic example of fish oil-blood viscosity-Raynaud’s disease. Figure

5.8 illustrates how the semantic meaning of the two topics, fish oil and Raynaud’s disease

evolved over time with respect to the intermediate concept of blood viscosity. More

specifically, the concept of blood viscosity was semantically distinct from the two main

topics in 1953 (Xun et al. 2017). Nevertheless, with more research findings getting

published on these topics over time, the concept of blood viscosity has come closer to the

main topics in the semantic spaces indicating their implicit semantic relatedness, which

was eventually identified by Swanson in 1986 (Swanson 1986).

Correspondingly, temporal word embeddings can be used to make in-depth semantic

inferences about words in a way that static word embeddings cannot facilitate. This

emphasises the need to develop dynamic language models wherein the semantic change
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Figure 5.8: Semantic change of words across time using the classic example of fish
oil-blood viscosity-Raynaud’s disease in the LBD field (Xun et al. 2017)

of words across time is encapsulated. With such a goal in mind, this study leverages the

revolutionary opportunities afforded by diachronic word embeddings in order to better

understand the way that the semantics of scientific topics change over time. This allows

for the detection of new temporal signals that could be beneficial in capturing novel

knowledge linkages more precisely.

5.4.1.3 Construction of Time-specific Embedding Spaces

To construct time-specific embedding spaces, this study learnt the distributed represen-

tation of scientific topics for each time-slice in the time-specific global corpus, employing

SGNS. That is, this phase entailed constructing n latent embedding spaces, assuming

the existence of n time-slices in the time-specific global corpus. In the constructed em-

bedding spaces, each scientific topic w i has a vector representation w(t) in each time

slice of the global corpus.

5.4.2 Embedding Alignment

It is not possible to directly compare the constructed word vectors in each time slice

of vector spaces. This is because most modern word embedding methods (including

SGNS ) are inherently stochastic; thus, the produced word embedding sets could occur

in arbitrary orthogonal transformations (Hamilton et al. 2016b,a). Consequently, even if

word embeddings are trained on the same data, the produced numerical vectors will be

different in separate learning runs (however, the pairwise similarities between vectors will
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Figure 5.9: Simplified example of orthogonal Procrustes alignment
Source: https://en.wikipedia.org/wiki/Procrustes_analysis

be roughly equivalent) (Levy et al. 2015). Therefore, it is crucial to perform an alignment

of the word vectors in each time slice to the same co-ordinate axes before extracting the

semantic shifts of local topics (e.g., for measures such as individual semantic shifts).

To facilitate this alignment process, orthogonal Procrustes alignment is utilised in this

study, which finds the optimal rotational alignment of embedding spaces. Figure 5.9

illustrates a simplified example of the orthogonal Procrustes alignment of two different

shapes.

In embedding alignment, the orthogonal Procrustes problem can be considered as a

matrix approximation in linear algebra. Simply put, given two matrices M 1 and M 2 ,

the orthogonal Procrustes problem attempts to find the orthogonal matrix which most

closely maps M 1 to M 2 . Considering a matrix of word embeddings trained at time slice

t (W(t)∈Rd×|V|), orthogonal Procrustes alignment is conducted across time, as defined

in equation 5.5 where R(t)∈Rd×d . The solution corresponds to the best rotational

alignment while preserving cosine similarity (Hamilton et al. 2016b). In essence, given

two matrices W(t) and W(t+1 ) in arbitrary coordinate systems, equation 5.5 minimises

over all the possible orthogonal matrices Q to find the most optimal solution.

R(t) = arg min
Q>Q=I

‖QW(t) −W(t+1 )‖F (5.5)

In equation 5.5, ‖·‖F denotes the Frobenius norm. For a matrix M, the Frobenius norm

can be calculated as per equation 5.6.

‖ M ‖ F = (
∑
i

∑
j

M2
ij)

1
2 (5.6)

https://en.wikipedia.org/wiki/Procrustes_analysis
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5.5 Extraction of Semantic Shifts

The purpose of this section is to explain how meaningful measures are extracted from

the constructed diachronic embedding spaces in the previous phase, in order to quantify

the semantic evolution of scientific topics in the literature (more specifically, local top-

ics, as denoted in Figure 5.1). In this regard, the semantic shifts of the scientific topics

are the crux of this phase. Accordingly, this study unravels the way in which scientific

topics’ semantics evolve over time from three broad perspectives, individual semantic

shifts, pairwise semantic shifts and neighbourhood semantic shifts. The ultimate ratio-

nale behind extracting such measures in the form of semantic shifts is to unravel new

temporal patterns to distinguish potential novel knowledge linkages from the remaining

scientific topics in the literature.

5.5.1 Individual Semantic Shifts

This category captures how the semantics of each scientific topic changes across time by

focusing on the scientific topic itself. In this regard, two types of individual semantic

shift were employed, namely individual global shifts and individual local shifts.

Individual Global Shift (IGS) quantifies the linguistic drift of a concept by analysing

how far a scientific topic has shifted in the embedding spaces in two consecutive time

slices t and t+1, as defined in equation 5.7. More specifically, equation 5.7 extracts the

cosine distance of the concept’s word vector wi in the vector spaces modelled at time

t and t+1. This process is illustrated in Figure 5.10. The subtle usage changes and

other global effects encountered as a result of the shifting of the entire semantic space

are reflected in this measure (Hamilton et al. 2016a).

d IGS(w
(t)
i , w

(t+1)
i ) = cos-dist(w

(t)
i ,w

(t+1)
i ) (5.7)

Individual Local Shift (ILS) focuses on semantic change at the local scale by observing

the concept’s (wi) nearest semantic neighbours in two consecutive time slices, t and

t+1 (Figure 5.11). As such, ILS is sensitive to the concept’s paradigmatic relations and

less concerned with global shifts in syntagmatic contexts. Since this measure is based

on the local semantic neighbours, initially, the concept wi’s K nearest neighbours at
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Figure 5.10: Individual global shifts

Figure 5.11: Individual local shifts

time t are obtained (NK(w
(t)
i )). Subsequently, to quantify the change between the two

time-periods t and t+1, a second-order similarity vector is computed for w
(t)
i based on

these nearest neighbour sets, as defined in equation 5.8. The computed vectors for w
(t)
i

and w
(t+1)
i are used to quantify the local neighbourhood change, as denoted in equation

5.9 (Hamilton et al. 2016a,b).

s(t)(j) = cos-sim(w
(t)
i ,w

(t)
j ) where ∀wj ∈ NK(w

(t)
i )∪NK(w

(t+1)
i ) (5.8)

d ILS(w
(t)
i , w

(t+1)
i ) = cos-dist(s

(t)
i , s

(t+1)
i ) (5.9)

5.5.2 Pairwise Semantic Shifts

This category assesses how the semantics of each scientific topic change across time

with respect to the two user-defined input topics A and C. In terms of pairwise semantic

shifts, this study leverages two types of measure, namely pairwise semantic displacement

and pairwise distance proximity.

Pairwise Semantic Displacement (PSD) is intended to capture how a concept’s (wi)

semantic similarity changes across time relative to topics A (wA) and C (wC ), as shown

in Figure 5.12. Thus, this measure provides a platform from which to assess whether
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Figure 5.12: Pairwise semantic displacement

a concept displays a growing semantic similarity with topics A and C over time. To

facilitate this process, the cosine similarity of the vectors in each time-slice is used, as

defined in equation 5.10.

s PSD(w
(t)
i , w

(t)
A , w

(t)
C ) = avg(cos-sim(w

(t)
i ,w

(t)
A ), cos-sim(w

(t)
i ,w

(t)
C )) (5.10)

The purpose of the Pairwise Distance Proximity (PDP) measure is to identify whether

a concept’s (wi) temporal trajectory is leaning towards (i.e., in close proximity to) both

topics A (wA) and C (wC ). The reason for adopting this measure is that LBD seeks

latent conceptual bridges that connect topics A and C ; thus, the concept’s trajectory

should incline towards both the input topics. Note that in Figure 5.13, wj only favours

wC at time t+1, while wi favours both wA and wC . The purpose of this measure is to

capture such details in the knowledge discovery process. PDP is calculated as defined

in equation 5.11, where β denotes a penalising factor, equal to or greater than zero.

d PDP(w
(t)
i , w

(t)
A , w

(t)
C ) = max(cos-dist(w

(t)
i ,w

(t)
A ), cos-dist(w

(t)
i ,w

(t)
C ))

+ β | cos-dist(w
(t)
i ,w

(t)
A )− cos-dist(w

(t)
i ,w

(t)
C ) | where β ≥ 0 (5.11)

5.5.3 Neighbourhood Semantic Shifts

This category of semantic shifts detects how the semantics of each scientific topic change

over time, focusing not only on the user-defined A and C topics alone, but also on their

recent core meaning. With reference to neighbourhood semantic shifts, this study uses
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Figure 5.13: Pairwise distance proximity

Figure 5.14: Neighbourhood semantic displacement

the same two measures introduced in pairwise semantic shifts, except that instead of

using A and C themselves, their recent core meanings are utilised. The recent neighbours

of topic A (N A) and C (N C ) in a time window W are calculated as in equation 5.12.

NA =

T⋂
t=T−W

NK(w
(t)
A ), NC =

T⋂
t=T−W

NK(w
(t)
C ) (5.12)

The only difference between Neighbourhood Semantic Displacement (NSD) and Pairwise

Semantic Displacement is that NSD includes the recent core meaning of input topics A

(wA) and C (wC ) in the calculation, as denoted in Figure 5.14. Thus, NSD captures

the extent to which a concept (wi) forms semantic relationships not only with the two

input topics, but also with their recent core meaning. Therefore, this measure provides

the opportunity to evaluate the need to assess the semantic neighbourhood of the input

topics in the LBD context.



Semantic Evolution 149

Figure 5.15: Neighbourhood distance proximity

Neighbourhood Distance Proximity (NDP) extends the idea of Pairwise Distance Prox-

imity by incorporating the recent neighbourhoods of topics A (wA) and C (wC ). Thus,

this measure assesses whether a concept’s (wi) temporal trajectory inclines not just to

topics A and C, but also to their semantic neighbours, as illustrated in Figure 5.15.

5.5.4 Semantically Infused Temporal Trajectories

The six types of semantic shift (as described in Sections 5.5.1, 5.5.2 and 5.5.3; two from

each semantic shift category, individual, pairwise and neighbourhood) are devised in the

form of trajectories. Since these trajectories reflect both semantics and temporal aspects

of concepts, this study refers to them as semantically infused temporal trajectories (i.e.,

diachronic semantic inferences). More specifically, the six semantically infused temporal

trajectories that are extracted for a scientific topic wi can be denoted in the form of:

TJIGS(wi) = (d IGS(wy
i ), d IGS(wy+1

i )), ..., d IGS(wT−1
i ), d IGS(wT

i ))

TJILS(wi) = (d ILS(wy
i ), d ILS(wy+1

i )), ..., d ILS(wT−1
i ), d ILS(wT

i ))

TJPSD(wi) = (sPSD(wy
i ), sPSD(wy+1

i )), ..., sPSD(wT−1
i ), sPSD(wT

i ))

TJPDP(wi) = (dPDP(wy
i ), dPDP(wy+1

i )), ..., dPDP(wT−1
i ), dPDP(wT

i ))

TJNSD(wi) = (sNSD(wy
i ), sNSD(wy+1

i )), ..., sNSD(wT−1
i ), sNSD(wT

i ))

TJNDP(wi) = (dNDP(wy
i ), dNDP(wy+1

i )), ..., dNDP(wT−1
i ), dNDP(wT

i ))

where y is the first occurrence of wi in the dataset, s is a similarity measure and d is a

distance measure.
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Since local topics are the potential discovery candidates of the two user-defined input

topics A and C, each local topic is represented by the six semantically infused temporal

trajectories, as defined above (Figure 5.1). To summarise, the main ingredients of these

semantically infused temporal trajectories are global-scale semantics and time-specific

behaviours of concepts in the scientific literature. The ultimate objective of this analysis

is to deduce whether these six temporal trajectories demonstrate potential semantically

infused temporal cues, which can be used to distinguish novel knowledge linkages from

the remaining scientific topics with high precision.

5.5.5 Frequency Heuristics

In addition to the proposed semantically infused temporal trajectories discussed in Sec-

tion 5.5.4, this study also uses two frequency heuristics that have been developed in

past LBD research, namely the Local Frequency Heuristic (LFH) and Global Frequency

Heuristic (GFH).

The intention of LFH is to capture the frequency with which a local topic (lpi) appears

in the local corpus, since prior LBD research has identified that local topics which

occur only once in A or C literature are less prominent in the LBD workflow (Torvik

& Smalheiser 2007). More specifically, this feature is set to 1, if (n(A,lpi) >1 OR n(A)

<1000) AND (n(lpi,C ) >1 OR n(C ) <1000), and 0 otherwise (Torvik & Smalheiser 2007).

The intention of GFH is to capture the global frequency of a local topic (lpi), since it has

also been identified in the LBD literature that very frequent or rare local topics in the

global corpus are less prominent. Thus, this feature is set to |3 − log10(n(lpi)) | (Torvik

& Smalheiser 2007).

5.6 Analysis of Semantically Infused Temporal Trajecto-

ries

This section briefly introduces the three types of LBD models proposed in this study,

each of which leverages the derived semantically infused temporal trajectories as their

core discovery source. These LBD models are the dedicated trajectory model, feature-

based trajectory model and trajectory alignment model.
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In recent times, deep learning models have shown promise in many application areas,

including time series and sequential data analysis (Fawaz et al. 2019, Längkvist et al.

2014). Inspired by such research outside LBD, the Dedicated Trajectory Model (DTM)

leverages deep learning techniques to perform feature learning using the derived seman-

tically infused temporal trajectories. More specifically, this study proposes multiple

Deep Neural Network (DNN) architectures to unravel meaningful semantically infused

temporal signals to discover potential novel knowledge linkages. For this purpose, the

study leverages LSTM to detect long term temporal dependencies and CNN to capture

the spatial sparsity and heterogeneity in data (Du et al. 2018). Further details on this

proposed LBD model are discussed in Section 5.7.

In the Feature-based Trajectory Model (FTM), semantically infused temporal trajecto-

ries are represented using hand-crafted features. To extract hand-crafted features, this

study incorporates both the trajectory values and trajectory shape, since these are the

major components that constitute a semantically infused temporal trajectory. There-

fore, intermingling these two types of hand-crafted features facilitates the derivation

of meaningful temporal patterns that are otherwise hidden (i.e., when using these two

feature types in isolation) in the knowledge discovery process. Details on this proposed

LBD model are presented in Section 5.8.

Unlike DTM and FTM, the Trajectory Alignment Model (TAM) does not incorporate

the proposed semantically infused temporal trajectories directly into the analysis. In-

stead, this model demonstrates the potential indirect uses of the semantically infused

temporal trajectories. More specifically, this LBD model leverages the idea of incor-

porating multiple forms of new knowledge types by maintaining a template repository,

which includes the trajectory samples of actual new knowledge. Subsequently, these tra-

jectory samples are aligned with the trajectories of local topics to identify the extent of

their correspondence. In essence, this LBD model focuses on large-scale integration of

patterns from multiple forms of new knowledge to provide a different perspective on en-

hancing the knowledge discovery process. The main inspiration for this proposed model

comes from the docking mechanism, which is popular in molecular modelling (Jacob

et al. 2012, Ferreira et al. 2015). This model is discussed in detail in Section 5.9.
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5.7 Dedicated Trajectory Model (DTM)

This section describes the first LBD model proposed in this study, the Dedicated Tra-

jectory Model (DTM). This model leverages modern deep learning techniques (more

specifically, LSTM and CNN, as discussed in Section 3.5.4) to sift important charac-

teristics of the semantically infused temporal trajectories, with the ultimate motive of

detecting novel knowledge linkages with high precision. This section commences by sum-

marising the key motivation for this study and providing an overview of the proposed

model. The succeeding sub-sections describe the main phases of this LBD model (in-

cluding the setup of the DNN framework, design considerations relating to DNNs, and

the construction of DNNs) in detail.

5.7.1 Rationale

More recently, a few studies (Jha et al. 2018, Jha, Xun, Wang & Zhang 2019, Xun

et al. 2017) have attempted to mitigate the limitation of static domain in previous LBD

research by integrating temporal information on scientific topics into the LBD workflow.

Even though these studies undoubtedly enhance the traditional LBD setting, they still

contain several inherent limitations.

One of these limitations is their fairly shallow temporal analysis component. For exam-

ple, when measuring the temporal trend of implicit connections, Xun et al. (2017) only

consider the first and last values of the temporal sequence, ignoring the patterns in the

overall sequence. The focus of this study is to overcome this limitation by scrutinising

semantically infused temporal trajectories using a higher level of granularity (Shoemark

et al. 2019), which may aid in identifying novel knowledge linkages more precisely. More

specifically, this study attempts to answer the following question: ‘does analysing the

proposed semantically infused temporal trajectories in greater detail assist in the unravel-

ling of novel knowledge linkages with high precision?’. To the best of our knowledge, this

is the first study in the LBD field to integrate such circumstantial temporal analysis in

order to deduce semantically infused temporal cues. In this regard, this study explores

the massive opportunities afforded by modern deep learning techniques to unwind new

signals of potential novel knowledge linkages. Unlike handcrafted features, using DNN

models may offer the opportunity to discover unforeseen structures of novel knowledge.
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Secondly, as in most existing LBD literature, these recent temporal studies rely on one

or two temporal characteristics to discover potential new knowledge linkages. Such a

reliance on few temporal characteristics may be limited due to two reasons (as discussed

in detail in Chapter 1). Firstly, due to the complexity of natural language usage, incor-

porating limited characteristics may hinder the LBD model’s ability to discover novel

knowledge linkages with high precision. Secondly, these LBD models may be biased in

favour of picking only one or limited types of novel knowledge, since it has been observed

in the theoretical LBD literature that novel knowledge may reside in multiple forms in

the literature (Davies 1989). Therefore, the integration of multiple factors/characteris-

tics in the knowledge discovery process may assist in overcoming these two limitations.

In essence, this study attempts to answer the following question: ‘does providing a

comprehensive solution that incorporates multiple factors/characteristics (e.g., multiple

semantically infused temporal cues) yield better predictive effects in comparison to single

or limited characteristics?’. In this regard, this study focuses on different DNN architec-

ture setups by contemplating the strengths of LSTM and CNN, with the main objective

of broadly identifying features/characteristics (e.g., from low-level features to high-level

features) that will ultimately be beneficial in increasing prediction precision as well as

recovering multiple forms of novel knowledge linkages in the literature.

5.7.2 Overview of Proposed LBD Model (DTM)

This section provides a high-level overview of the proposed LBD model by outlining the

key functionalities of its main phases. Recall that the input to an LBD model is two

topics of interest (A and C ) and a date T, where the goal is to analyse the literature

up to time T, and to detect latent conceptual bridges that are most likely to connect

the two topics in the future. To facilitate this process, the same initial phases in the

blueprint of the proposed LBD framework (discussed in Section 5.2) are utilised. To

sum up, first, the local corpus is preprocessed in order to identify scientific topics that

are relevant to the user-defined input topics A and C (i.e., local topics in Figure 5.16).

Subsequently, semantic inferences relating to these extracted local topics are performed

using the global corpus. The main reason for adopting the global corpus is that it is

rich in semantic details compared to the query-specific local corpus. To perform this

analysis in a temporal setting, the global corpus is divided into equivalent-sized time-

slices named time-specific global corpus (Figure 5.16). For the scientific topics in each
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Figure 5.16: Schematic overview of the Dedicated Trajectory Model (DTM)

Figure 5.17: Unified deep learning framework of multivariate time series (Fawaz et al.
2019)

time-slice of the time-specific global corpus, latent embedding spaces are constructed

to reason upon them to detect interesting global semantic relationship patterns of the

local topics. More specifically, this study investigates the evolution of global semantic

relationships of local topics in the embedding spaces across time, in order to extract six

types of semantically infused temporal trajectories (i.e., diachronic semantic inferences),

as discussed in Section 5.5.

Prior to the design of deep neural network models, as denoted in Figure 5.16, this

study redefines the six extracted semantically infused temporal trajectories of each local

topic as a multivariate time series problem. For this purpose, this study introduces

the notions of univariate time series and multivariate time series, and transforms the

six temporal trajectories in the setting of a multivariate time series. The next stage of

this model incorporates deep neural network (DNN) models that excel at interpreting

sequence/time series data to detect patterns in a data-driven manner. To this end,

two variants of deep neural networks (LSTM and CNN ) are used as the main building

blocks of this study for the purpose of designing DNN architectures. Subsequently, the

temporal trajectories that are in the setting of multivariate time series are used with the

designed DNNs, as denoted in Figure 5.17 (Fawaz et al. 2019).
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5.7.3 Multivariate Time Series Setting

Typically, a univariate time series is an ordered set of data points measured at successive

time-spaced points with uniform time intervals (Fawaz et al. 2019, Zheng et al. 2014).

The univariate time series can be denoted in the form Ui = (x1, x2, ..., xn), where n

is the length of Ui. In multivariate time series M, each component mi is a univariate

time series Ui. In essence, multivariate time series is a collection of time series that have

the same timestamps. In any timestamp t, mt can be defined as mt = (mU1t , mU2t , ...,

mUjt), where j is the number of univariate time series collected in M.

Following these definitions, it is safe to assume that the derived six semantically infused

temporal trajectories as six univariate time series. Next, this study articulated these six

temporal trajectories in the form of M (defined above), wherein for time slice t, mt is

defined as in equation 5.13. In the equation, x in TJx corresponds to the six temporal

trajectories defined in Section 5.5.4.

mt = (mTJIGSt,mTJILSt,mTJPSDt,mTJPDPt,mTJNSDt,mTJNDPt) (5.13)

5.7.4 Main Building Blocks of DNN Models

This section is dedicated to discussing the design considerations of DNN architectures

that are used to analyse the derived temporal trajectories. The two main building

blocks used to construct the proposed DNN architectures are Long Short-Term Memory

(LSTM) and Convolutional Neural Network (CNN). The theoretical foundation of these

two key building blocks is discussed in Chapter 3.

While LSTMs are inherently designed to analyse time series or sequence data (much like

the proposed semantically infused temporal trajectories), CNNs were originally used to

analyse data with grid patterns, such as images (discussed in Chapter 3). Nevertheless,

the proposed semantically infused temporal trajectories display different characteristics

in contrast to images, since these trajectories are 1D sequences, not 2D pixels (Zheng

et al. 2014). Therefore, in multivariate temporal trajectory problems, as in this study

(discussed in Section 5.7.3), 1D convolutions can be employed to circumvent this issue

(Figure 5.18).
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Figure 5.18: Example of 1D convolutions for temporal trajectories where N is the
number of time steps and m is number of data points in each time step (note that in

1D convolutions kernel width is similar to m)

5.7.4.1 Complementary Integration of LSTMs and CNNs

Even though the objectives of LSTM and CNN are different (i.e., extracting long-term

temporal dependencies vs. extracting spatial features), successful attempts have been

reported in the time series analysis, sequence mining and signal processing research

areas when the two models are combined (Kim & Cho 2019, Liu et al. 2017, Kim & Cho

2018). Such combinations are feasible, since CNN can typically be utilised as feature

extractors in any kind of network (Le Guennec et al. 2016). Inspired by such research

from outside the field of LBD, this study proposes several DNN architectures that employ

both LSTM and CNN, as described in Section 5.7.4. The main reason for adopting such

architectures is to verify the suitability of both temporal and spatial features in the LBD

context.

5.7.5 Design of DNN Models

Considering the strengths of each main building block (i.e., LSTM and CNN ), this

section provides details on the proposed DNN architectures used in this study to sift the

proposed semantically infused temporal trajectories.

5.7.5.1 Proposed LSTM Architectures

The design of sequence problems (similar to this study) can be broadly defined into four

categories: one-to-one, one-to-many, many-to-one and many-to-many (Gulli & Kapoor
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Figure 5.19: Types of sequence problems in which rectangles represent vectors and
arrows denote functions such as matrix multiplication. (input, output and state of

LSTM are presented in red, blue and green, respectively) (Gulli & Kapoor 2017)

2017, Ayyadevara 2019).

• One-to-one sequence problems contain a single fixed-sized input and output (e.g., im-

age classification). Such problems can directly utilise vanilla processing mode (without

LSTMs), as denoted in Figure 5.19 (a).

• One-to-many sequence problems contain a single fixed-sized input and a sequence

output. Image captioning can be considered an example of this category. During

image captioning, an image is used as the input, and the output made up of multiple

words (Figure 5.19 (b)).

• Many-to-one sequence problems contain a sequence input and one fixed-sized output,

as illustrated in Figure 5.19 (c). One example of this category is sentiment analysis,

in which a model can determine the sentiment of a sentence as positive or negative.

• Many-to-one sequence problems can be occur in two possible forms; one with a

desynced input sequence and output sequence (Figure 5.19 (d)), and one with a synced

input sequence and output sequence (Figure 5.19 (e)). For instance, consider a ma-

chine translation problem in which LSTMs read a sentence in English and output a

French sentence. This denotes the first type of many-to-one sequence architectures.

The latter type can be illustrated through the example of video classification, wherein

each frame of the video is labelled by the constructed model.
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This study falls under many-to-one type architectures in which the six semantically

infused temporal trajectories are considered the input (i.e., many inputs) and the pre-

diction probability that denotes the potential of a local topic to become a new knowledge

linkage is the output (i.e., one output). With this in mind, the study proposes the fol-

lowing three LSTM architectures in order to analyse the temporal trajectories. In the

LSTM designs, dropout layers are used to prevent model overfitting, and the Adam

algorithm is used to optimise the loss function.

LSTM model architecture 1 (LSTM 1 ) uses the six semantically infused temporal tra-

jectories prepared in the form of multivariate time series (discussed in Section 5.7.3)

to construct its input layer. This model incorporates vertically stacked LSTM layers

through the use of two LSTM layers to sift the temporal trajectories, as depicted in Fig-

ure 5.20. The colour differences between the two LSTM layers in Figure 5.20 indicate

that the first LSTM layer will output the full sequence of hidden states, (h1, h2, ..., hn),

where n is the final time step, while the second LSTM layer will only output the hidden

state at the final time step. Subsequently, the LSTM output is concatenated with the

two frequency heuristics (i.e., LFH and GFH, discussed in Section 5.5.5) followed by

a fully connected layer (Figure 5.20). The final output of the model is the predicted

probability of a local topic becoming a new knowledge linkage, which is denoted through

sigmoid in Figure 5.20.

Much like LSTM 1, the remaining two LSTM model architectures (LSTM 2 and LSTM 3 )

follow the idea of stacked LSTM. The only difference between the structure of LSTM 2

and LSTM 3 and that of LSTM 1 is in the number of LSTM layers included in the

architectures. Specifically, LSTM 2 uses three LSTM layers, whereas LSTM 3 incorpo-

rates four. As with LSTM 1, the output of these two models is a prediction probability

that denotes the potential of a local topic becoming a new knowledge linkage.

5.7.5.2 Proposed CNN Architectures

As in the case of LSTM architectures, the many-to-one setting is utilised in CNN, as il-

lustrated in Figure 5.21. More specifically, this study employs two 1D convolution layers

followed by a max-pooling layer as feature extractors (see Chapter 3 for details). Subse-

quently, the feature maps constructed through convolution layers and filtered through a

pooling layer are passed to the flatten layer. The output of CNN is concatenated with
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Figure 5.20: LSTM 1 model architecture

the two frequency heuristics (LFH and GFH ) and then connected via a fully connected

layer. As with LSTM models, the final output of this model is a prediction probability

indicating the extent to which a local topic is likely to become a novel knowledge linkage.

5.7.5.3 Proposed LSTM and CNN Architectures

In addition to the use of LSTMs and CNNs separately (discussed above), this study also

leverages the idea of hybrid architectures, which use both LSTMs and CNNs as their

main building blocks. The ultimate motive of these proposed architectures is to verify

the suitability of both temporal and spatial features in the context of LBD. In this regard,

this study proposes two DNN architectures, namely CNN LSTM and LSTM CNN.

In CNN LSTM model architecture (Figure 5.22), CNN layers are employed first to ex-

tract features from the temporal trajectories. Next, these extracted features (which are

represented as feature maps) are passed to the LSTM layers. The LSTM layers are

vertically stacked, as discussed in LSTM 2. The output of the LSTM is connected to

the two frequency heuristics via a concatenation layer, followed by a fully connected
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Figure 5.21: CNN model architecture

layer. As in the case of other models, the output of this model is a probability that

denotes the potential of a local topic becoming a novel knowledge linkage. Note that a

pooling layer is not employed in this model just after the convolution layers (as in the

proposed CNN model, depicted in Figure 5.21). The main reason for this is that using a

pooling layer reduces the amount of inputs passed on to the LSTM layer. Since LSTMs

typically excel at processing with sequences of any length, inserting a pooling layer is

not necessarily important in this instance.

The functionalities of the proposed LSTM CNN model architecture can be considered

the inverse of those in the previous model (see Figure 5.23). In essence, this model

first extracts temporal features from the temporal trajectories using vertically stacked

three LSTM layers. Subsequently, these temporal features are passed to the convolution

layers for the extraction of spatial features. In contrast to the previous model, a pooling

layer is employed prior to the fully connected layer to make feature maps translation

invariance using max-pooling as the down-sampling operation (discussed in Chapter 3).
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Figure 5.22: CNN LSTM model architecture

As with other models, the output of this architecture is a probability that expresses the

extent to which a local topic will become a new knowledge linkage.

5.8 Feature-based Trajectory Model (FTM)

This section describes the second proposed LBD model of this study, the Feature-based

Trajectory Model (FTM). The only difference between FTM and DTM is in the under-

lying process used by the model to analyse the derived semantically infused temporal

trajectories. In essence, FTM employs the traditional ML setting, using hand-crafted

features derived from temporal trajectories to perform knowledge discovery. The first

part of this section presents an overview of the model and the reasons for adopting it,

while the latter part of this section presents details relating to this model’s setting.
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Figure 5.23: LSTM CNN model architecture

5.8.1 Rationale

The key aim of this model is similar to that of DTM, as discussed in Section 5.7.1. Suc-

cinctly, FTM explores the need for detailed temporal analysis by incorporating multiple

characteristics to elicit novel knowledge linkages. In doing so, this model exploits the

traditional feature-based ML setting, in contrast to the deep learning setting that is

used in DTM (discussed in Section 5.7). More specifically, this study exploits salien-

t/noteworthy features from the proposed semantically infused temporal trajectories by

focusing on both the trajectory values and trajectory shape. Like DTM, this model can
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Figure 5.24: Schematic overview of the Feature-based Trajectory Model (FTM)

also be considered a model which provides the opportunity to understand the direct

uses of the proposed semantically infused temporal trajectories, with the ultimate goal

of detecting novel knowledge linkages.

5.8.2 Overview of Proposed LBD Model (FTM)

This section provides a high-level overview of the main phases involved in this model.

The objective of this model is similar to that of DTM. That is, given two user-defined

input topics A and C, and a date T, the model seeks novel knowledge bridges that are

likely to occur in the future by analysing literature up to time T. Like DTM, this LBD

model follows the initial phases of the proposed LBD framework, which are constituted

of phases such as corpora preparation, construction of diachronic word embeddings and

semantic shifts extraction (discussed in Section 5.2). This model follows traditional ML

techniques by manually extracting features from the six extracted semantically infused

temporal trajectories (Figure 5.24). Features are an important consideration in pattern

recognition tasks and are also related to prediction performance (Fu 1968). Thus, this

study focuses on both the key components of the proposed temporal trajectories, which

are their values and shapes.

5.8.3 Hand-crafted Features

When analysing a trajectory, both its values and shape play a crucial role. For instance,

consider the example trajectories denoted as t1, t2, ..., t10 in Figure 5.25, where the

trajectory values represent the cosine similarity. This example can be analysed using

three different scenarios: 1) analysing only trajectory values, 2) analysing only trajectory

shapes and 3) analysing both trajectory values and trajectory shapes.
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Figure 5.25: Nature of trajectory values and shapes

When analysing only the trajectory values from Figure 5.25 (i.e., scenario 1 ), the most

obvious observation is that t8 and t6 have higher semantic similarity in comparison to

remaining trajectories. When looking at Figure 5.25, by focusing on scenario 2, it is

visible that t8 and t10 demonstrate distinguishing patterns in their trajectory shapes

when compared to remaining trajectories. However, when focusing on scenario 3, it can

be observed that the scenario reflects not only the two observations in scenario 1 and

2, but also further interpretations of the trajectories. For example, in scenario 3, it is

possible to say that even though both t8 and t10 have distinguishing trajectory shapes, t8

and t10 are entirely different in terms of trajectory values (i.e., the trajectory values of t8

have high semantic similarities, whereas the trajectory values of t10 have low semantic

similarities). Therefore, it is important to accommodate both the trajectory’s values

and shape in order to perform a rich pattern mining of the trajectories. Following

this reasoning, this study attempts to sift the derived semantically infused temporal

trajectories using signals from both trajectory values and shape to differentiate potential

novel knowledge linkages from the remaining scientific topics in the literature. In essence,

the values and shape of the semantically infused temporal trajectories are the main focus

points of this analysis.
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With this in mind, given a temporal trajectory t = (t1 , t2 , ..., tn) and assuming t1

is the first occurrence of a concept in the literature, this study considers the following

descriptive statistics to represent the feature category trajectory values.

• Minimum: indicating the lowest value of the trajectory t.

• Index of the minimum: indicating the point at which the lowest value is encountered

in the trajectory t.

• Maximum: indicating the highest value of the trajectory t.

• Index of the maximum: indicating the point at which the highest value is encountered

in the trajectory t.

• Mean: indicating the average of the values in the trajectory t.

• Median: indicating the median (Q2) of the values in the trajectory t.

• Standard deviation: indicating the standard deviation of the values in the trajectory

t.

• Variance: indicating the variance of the values in the trajectory t.

• Sum: indicating the total of the values in the trajectory t.

• Count above mean: indicating how many values are above the mean of the trajectory

t.

• Count below mean: indicating how many values are below the mean of the trajectory

t.

• Length ratio: indicating the proportion of unique values in the trajectory t.

• Subsequence above mean: indicating the length of the longest consecutive sub-sequence

in the trajectory t in which the values are higher than its mean.

• Subsequence below mean: indicating the length of the longest consecutive sub-sequence

in the trajectory t in which the values are lower than its mean.

• Mean change: indicating the mean of the differences between subsequent values in

the trajectory t, which can be denoted as in equation 5.14.

1

n− 1

n−1∑
i=1

ti+1 − ti =
1

n− 1
(tn − t1) (5.14)



Semantic Evolution 166

• Absolute mean change: indicating the mean of the absolute differences between sub-

sequent values in the trajectory t, which can be denoted as in equation 5.15.

1

n

n−1∑
i=1

| ti+1 − ti | (5.15)

This study considers the following features to denote the trajectory shape-based features.

• Smoothness: indicating the roughness of the trajectory line using the equation 5.16

in which d i is an element of the first-order differences vector of t (tFOD = (d1 , d2 ,

..., dn-1 )), where d i = t i+1−t i . √
1

n−2

∑n−1
i=1 (di − d̄)2

| d̄ |
(5.16)

• Skewness: indicating the skewness of the trajectory t, using the adjusted Fisher-

Pearson standardised moment coefficient G1 (Joanes & Gill 1998, Doane & Seward

2011) (equation 5.17). √
n(n− 1)

n− 2
=

[
1
n

∑n
i=1(ti − t̄)3(

1
n

∑n
i=1(ti − t̄)2

) 3
2

]
(5.17)

• Number of peaks: indicating peaks inside the trajectory t based on peak properties.

More specifically, a peak is considered to be a local maximum based on comparison

with its neighbours in terms of their height, prominence, width, threshold and mutual

distance (Bills et al. 2020).

• Length: indicating the length of the trajectory t starting from the first occurrence of

the concept in the literature.

• Trend: indicating the slope of the values in the trajectory t using ordinary least-

squares approximation (i.e., m in f(x) = mx + b)).

For each of the six semantically infused temporal trajectories of a local topic lti, the

discussed hand-crafted features are extracted in the form of feature profiles FPx, where

x denotes the semantic shift variant discussed in Section 5.5.4.

FPIGS(lti) = (f1
IGS(lti), f2

IGS(lti), ..., fn-1
IGS(lti), fn

IGS(lti))

FPILS(lti) = (f1
ILS(lti), f2

ILS(lti), ..., fn-1
ILS(lti), fn

ILS(lti))
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FPPSD(lti) = (f1
PSD(lti), f2

PSD(lti), ..., fn-1
PSD(lti), fn

PSD(lti))

FPPDP(lti) = (f1
PDP(lti), f2

PDP(lti), ..., fn-1
PDP(lti), fn

PDP(lti))

FPNSD(lti) = (f1
NSD(lti), f2

NSD(lti), ..., fn-1
NSD(lti), fn

NSD(lti))

FPNDP(lti) = (f1
NDP(lti), f2

NDP(lti), ..., fn-1
NDP(lti), fn

NDP(lti))

where fi denotes a hand-crafted feature and n is the number of hand-crafted features

used in this model. Finally, the six feature profiles of local topic lti are aggregated to

construct the final feature profile of lti, as defined in equation 5.18.

FP(lti) = FPIGS(lti) ∪ FPILS(lti) ∪ FPPSD(lti) ∪ FPPDP(lti) ∪ FPNSD(lti) ∪ FPNDP(lti)

(5.18)

These constructed feature profiles along with the two frequency heuristics are utilised

in a traditional ML framework (discussed in Chapter 3) to predict the probability with

which each local topic lti will become a novel knowledge linkage (as in the case of the

DNN models proposed in DTM ).

5.9 Trajectory Alignment Model (TAM)

The purpose of this section is to describe the third proposed LBD model, which is the

Trajectory Alignment Model (TAM). This model is different from DTM (discussed in

Section 5.7) and FTM (discussed in Section 5.8) in terms of its rationale, objectives

and questions. These differences are described in Section 5.9.1. Subsequently, a high-

level overview of the proposed model is presented, in which the key functionalities of its

major phases are outlined. The remaining part of this section describes each of these

major phases of TAM in detail. The major phases are as follows: the construction of

the template repository using large-scale actual novel knowledge linkages, the alignment

of the temporal trajectories in the template repository in the form of docking engine,

and the use of ML techniques to sift the extracted patterns in the trajectory alignment

process so as to distinguish novel knowledge linkages from the remaining scientific topics.
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Figure 5.26: Schematic overview of molecular docking used in structure-based drug
design (Jacob et al. 2012)

5.9.1 Rationale

The ultimate purpose underlying the LBD research is the elicitation of meaningful pat-

terns that could be employed to identify novel knowledge linkages in the scientific liter-

ature. To this end, previous LBD studies have employed a wide spectrum of techniques,

from basic statistical methods to complex graph-theoretic methods. Nevertheless, to

the best of our knowledge, none of the previous LBD studies has attempted to learn

patterns relative to actual novel knowledge linkages that could serve as a meaningful

metric in identifying whether the potential candidates (or local topics) exhibit the same

patterns as those demonstrated in actual novel knowledge linkages.

The main impetus for the development of the proposed LBD model came from the

approach of docking in molecular modelling, which is the most frequently used method

in structure-based drug design (Ferreira et al. 2015). The easiest way to understand

molecular docking is to think of it as a ‘lock and key’ problem in which the lock is the

receiving molecule (or receptor) - most commonly a protein or biopolymer, and the key

is the complementary partner molecule that binds to the receptor (a.k.a. the ligand).

The purpose of the docking engine is to measure the free energy of binding ∆E between

the receptor and a ligand, as illustrated in Figure 5.26. Subsequently, ligands are ranked

by ∆E, where a lower ∆E denotes more favourable ligand bindings, while a higher ∆E

denotes less favourable bindings (see Figure 5.26) (Jacob et al. 2012). Similarly, the idea

of this model is to bind the trajectories of local topics (analogously, ligands) with the

trajectories of actual novel knowledge linkages (analogously, receptors) to deduce some

cost metric that denotes whether the binding is less or more favourable.



Semantic Evolution 169

The idea of docking as described above could be highly beneficial in the context of LBD,

for the following two reasons.

• Firstly, it is fair to assume that the concealed patterns of potential novel linkages

sought within LBD studies across several decades are encapsulated in these actual

novel knowledge linkages (a.k.a. templates) since they have been realised in the real-

world with time, thereby providing a platform which is rich in cues for knowledge

discovery. Nevertheless, these patterns (encapsulated in templates) may not be salient

when they are considered as separate entities. This is where the idea of relativity may

assist. In other words, instead of directly mining these templates, one could verify the

extent to which the patterns of local topics match with the patterns of these templates

(as in the case of docking).

• There are several discussions in the theoretical LBD literature that novel knowledge

can exist in multiple forms. Despite decades of research in LBD, only a limited number

of such forms have been identified (Davies 1989). The main reason for this could be the

complexity of natural language usage that causes intricate structures in the literature.

Thus, there could be several hundred or even thousands of other forms that are not

salient, and yet to be discovered in such theoretical LBD studies. Nevertheless, the

idea of maintaining a large collection of templates in a template repository may assist

to overcome this constraint to some extent. This is because such a repository could

accommodate a large number of novel knowledge linkage forms in a single place.

Considering all these facts, this LBD model utilises a large-scale and data-driven ‘tem-

plate docking’ approach to discover novel knowledge linkages, namely the trajectory align-

ment model. More precisely, this study attempts to answer the following question: ‘can

actual novel knowledge linkages serve as templates to deduce the potentiality of a local

topic becoming a new knowledge linkage?’. To the best of our knowledge, this is the

first study in the LBD field that employs the idea of deriving patterns from actual novel

knowledge linkages in the form of docking to deduce the potentiality of local topics

representing new knowledge.
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Figure 5.27: Schematic overview of the Trajectory Alignment Model (TAM)

5.9.2 Overview of Proposed LBD Model (TAM)

This section outlines the key functionalities of the main phases in this proposed LBD

model. Like DTM and FTM, the objective of this model (given two user-defined input

topics A and C, and a date T ) is to analyse the literature up to time T and detect

the temporally charged novel knowledge bridges that are most likely to occur in the

future. The initial phases of this LBD model (i.e., corpora preparation, construction

of diachronic word embeddings and semantic shifts extraction) follow the blueprint of

the proposed LBD framework discussed in Section 5.2 (Figure 5.27). Thus, this section

provides an overview of the steps specific to TAM and aligns with the study’s rationale.

This study revolves around the template repository (Figure 5.27), which comprises novel

knowledge linkages that have been realised in the real-world. The template repository

maintains a collection of temporal trajectories that denote how the semantics of actual

novel knowledge linkages have evolved across time. These serve as templates that can be

used to analyse the trajectories of local topics (Figure 5.27). Otherwise stated, this study

scrutinises how closely the semantically infused temporal trajectories of the local topics

resemble the trajectories in the template repository. This phase is termed trajectory

alignment, as shown in Figure 5.27. Next, the output of the trajectory alignment is

leveraged to construct a profile for each local topic denoting the similarity or difference

between each local topic with the templates in the template repository. Finally, these

profiles of local topics are analysed using ML techniques, in order to discover potential

novel knowledge relating to the user-defined input topics A and C.

5.9.3 Constructing the Template Repository

One of the main components of this model is the construction of the template repository

which will be used as the core analysis source in the remaining phases (see Figure 5.27).
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To this end, this study leverages historical test cases to create a rich and comprehensive

platform from which to extract multiple forms of novel knowledge (i.e., templates).

For instance, consider the historical test case of fish oil and Raynaud’s disease, where

Swanson initially identified three novel conceptual bridges in order to meaningfully con-

nect these two knowledge isolations in 1986 (Swanson 1986). The prominence of this test

case is due to the fact that the two subjects (fish oil and Raynaud’s disease) were com-

plementary but non-interactive before Swanson’s LBD-facilitated discovery (Figure 3.3).

That is, articles relating to these two knowledge fragments had never mentioned, cited

or co-cited each other. With time, researchers identify more and more creative ways to

combine such knowledge fragments. Thus, such historical test cases provide a rich and

comprehensive platform from which to extract multiple forms of novel knowledge in a

data-driven manner.

Simply put, this study first identifies the actual novel knowledge linkages in such his-

torical test cases that got realised over time. Next, this study extracts the same six

types of semantically infused temporal trajectories discussed in Section 5.5.4, before the

selected historical test case gets bridged (i.e., when it was non-interactive). This the-

sis calls these derived semantically infused temporal trajectories of such identified new

knowledge linkages in the selected historical test case historical trajectories.

5.9.4 Trajectory Alignment

The derived historical trajectories represent their temporal behaviour in semantic space

across time, before the bridging of the two knowledge isolations A and C in the historical

test case. Therefore, these historical trajectories serve as templates of potential novel

knowledge. Simply put, this study assumes that potential novel knowledge relating

to the local topics is correlated with the temporal behaviour of historical trajectories.

Thus, for each local topic extracted using a user-defined query, this study measures how

closely their temporal trajectories resemble the historical trajectories. For this purpose,

this study utilises Dynamic Time Wrapping (DTW), for the following two reasons.

• DTW measures the similarity between two trajectories that might differ in time scale,

but which are similar in shape (Figure 5.28) (Keogh & Ratanamahatana 2005). This
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Figure 5.28: Dynamic time warping in the context of (a) two sequences C and Q
that are similar in shape but different in time scale, (b) construction of a cost matrix
(warping matrix) to search optimal warping path, illustrated using solid squares, and

(c) optimal alignment found, using a cost matrix (Keogh & Ratanamahatana 2005)

is in line with the objective of this study, i.e., identifying the extent to which the

trajectories of local topics resemble historical trajectories.

• Unlike other measurements (such as Euclidean distance and edit distance), DTW has

proven to be an exceptionally strong distance measure for time series (Kate 2016).

5.9.4.1 Dynamic Time Warping (DTW)

Consider two temporal trajectories t1 and t2 , where the DTW algorithm first defines a

local cost matrix C∈R|t1|×|t2| as in equation 5.19, where ‖t1 [i ]−t2 [j ] ‖ denotes a distance

between two points in the trajectories (Radinsky et al. 2011).

Ci,j =‖ t1[i]− t2[j] ‖, i ∈ 〈1... | t1 |〉, j ∈ 〈1... | t2 |〉 (5.19)

After defining this cost matrix, DTW creates an alignment path p that minimises the

cost over the constructed cost matrix. This alignment p is known as the warping path

and can be expressed as a sequence of point pairs from the two trajectories p = (pair1,

pair2, ..., pairk), in which pairl = (i,j )∈〈1...|t1 |〉×〈1...|t2 |〉 is the index of points in t1

and t2 , respectively. Each subsequent pair in the warping path p preserves the point
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ordering in t1 and t2 , while enforcing the initial points and endpoints of the warping

path to become the initial points and endpoints of t1 and t2 . For each warping path

p, its cost is calculated as c(p) =
∑k

l=1C (pair l ). The DTW is the minimum optimal

warping path of all possible warping paths P, as denoted in equation 5.20 (Radinsky

et al. 2011).

DTW (t1, t2) = min{c(p) | p ∈ P |t1×t2|} (5.20)

Since DTW is computationally expensive, a dynamic programming algorithm is typi-

cally used to calculate the optimal warping path of two trajectories (Radinsky et al.

2011). According to this study, t1 and t2 (discussed above) will be the trajectory of a

local topic and the historical trajectory, as denoted in Figure 5.29. In summary, for each

of the six semantically infused temporal trajectories of a local topic lpi , the aforemen-

tioned trajectory alignment process was performed with the corresponding variant of

the historical trajectories. In essence, the local topic lpi can be denoted as a cost profile

as summarised below.

CP(lpi)
IGS= (C (TJIGS(lpi), HTIGS

1 ), ..., C (TJIGS(lpi), HTIGS
N-1 ), C (TJIGS(lpi), HTIGS

N ))

CP(lpi)
ILS= (C (TJILS(lpi), HTILS

1 ), ..., C (TJILS(lpi), HTILS
N-1), C (TJILS(lpi), HTILS

N ))

CP(lpi)
PSD= (C (TJPSD(lpi), HTPSD

1 ), ..., C (TJPSD(lpi), HTPSD
N-1 ), C (TJPSD(lpi), HTPSD

N ))

CP(lpi)
PDP= (C (TJPDP(lpi), HTPDP

1 ), ..., C (TJPDP(lpi), HTPDP
N-1 ), C (TJPDP(lpi), HTPDP

N ))

CP(lpi)
NSD= (C (TJNSD(lpi), HTNSD

1 ), ..., C (TJNSD(lpi), HTNSD
N-1 ), C (TJNSD(lpi), HTNSD

N ))

CP(lpi)
NDP= (C (TJNDP(lpi), HTNDP

1 ), ..., C (TJNDP(lpi), HTNDP
N-1 ), C (TJNDP(lpi), HTNDP

N ))

in which C (,) is the cost of the optimal warping path, HTx
i is a historical trajectory

and N is the number of historical trajectories in the template repository. Figure 5.30

illustrates an example of a cost profile.

5.9.5 Extracting Patterns from the Cost Profiles of Local Topics

The derived cost profile of each local topic epitomises its similarity or dissimilarity with

the historical trajectories in the template repository. For instance, consider the cost

profiles of three local topics (lt1, lt2 and lt3) denoted in Figure 5.31 as CP1, CP2 and

CP3, assuming that there are only six historical trajectories in the template repository,
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Figure 5.29: Trajectory alignment using dynamic time warping where time series X
represents a trajectory of local topic and time series Y represents a historical trajectory

(a) Cost matrix (b) Optimal warping path (Yang, Scholz, Shao, Wang & Liu 2019)

Figure 5.30: Construction of cost profile for a local topic using historical trajectories
from the template repository

namely HT1, HT2, HT3, HT4, HT5 and HT6. When closely inspecting each of the cost

profiles, the following observations can be made.

• Cost profile CP1: The trajectory of the local topic lt1 is almost identical with that of

HT3, and nearly identical to that of HT6. The trajectory of lt1 is quite dissimilar to

those of HT2, HT4 and HT5 and mostly dissimilar with that of HT1.

• Cost profile CP2: This cost profile denotes that the local topic lt2 has a nearly similar

trajectory to that of HT4. However, unlike lt1, lt2 does not have any identical tra-

jectories in the template repository. Moreover, the trajectory of lt2 demonstrates low

dissimilarity with HT2. The remaining historical trajectories (i.e., HT1, HT3, HT5

and HT6) are almost dissimilar with the trajectory of lt2.
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Figure 5.31: Simplified example of cost profiles, where the lowest DTW value in each
profile is highlighted

• Cost profile CP3: When observing the cost profile CP3, it is evident that every histor-

ical trajectory is almost dissimilar with the trajectory of lt3. The historical trajectory

displaying the greatest dissimilarity to lt3 is HT3.

Overall, the interpretations of the cost profiles summarise the degree of similarity (or

dissimilarity) between each trajectory of a local topic and the historical trajectories in

the template repository. Following this notion, this study extracts the following descrip-

tive features from the cost profiles to capture the extent to which each semantically

infused temporal trajectory of the local topics resembles the historical trajectories.

• Minimum: denoting the highest cost in the CPi.

• Maximum: denoting the minimum cost in the CPi

• Mean: denoting the average cost in the CPi

• Standard deviation: denoting the dispersion of costs in the CPi relative to its mean.

• Variance: denoting the variability of costs in the CPi from the mean.

• Q1: denoting the middle value in the first half of the rank-ordered costs in the CPi.

• Q2: denoting the median of the costs in the CPi.
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• Q3: denoting the middle value in the second half of the rank-ordered costs in the CPi.

Note that the features introduced in FTM (discussed in Section 5.8.3) have no rela-

tionship with this study, since this model uses cost profiles, not time series. In essence,

the aforementioned descriptive features provide a rough estimation of the similarity (or

dissimilarity) between a local topic and the historical trajectories in the template repos-

itory. Similarly, for each of the six cost profiles constructed for a local topic lti, the

aforementioned descriptive features are extracted in the form of:

CFPIGS(lti) = (dIGS(lti, ht1), dIGS(lti, ht2), ..., dIGS(lti, htn-1), dIGS(lti, htn))

CFPILS(lti) = (dILS(lti, ht1), dILS(lti, ht2), ..., dILS(lti, htn-1), dILS(lti, htn))

CFPPSD(lti) = (dPSD(lti, ht1), dPSD(lti, ht2), ..., dPSD(lti, htn-1), dPSD(lti, htn))

CFPPDP(lti) = (dPDP(lti, ht1), dPDP(lti, ht2), ..., dPDP(lti, htn-1), dPDP(lti, htn))

CFPNSD(lti) = (dNSD(lti, ht1), dNSD(lti, ht2), ..., dNSD(lti, htn-1), dNSD(lti, htn))

CFPNDP(lti) = (dNDP(lti, ht1), dNDP(lti, ht2), ..., dNDP(lti, htn-1), dNDP(lti, htn))

where hti represents historical trajectories, d(,) is the cost of the optimal warping path

and n is number of historical trajectories in the template repository.

Subsequently, the six cost feature profiles CFPIGS(lti), CFPILS(lti), CFPPSD(lti), CFPPDP(lti),

CFPNSD(lti), and CFPNDP(lti) are concatenated to represent the final feature set of local

topic lti, as in equation 5.21.

CFP(lti) = CFPIGS(lti) ∪ CFPILS(lti) ∪ CFPPSD(lti) ∪ CFPPDP(lti) ∪ CFPNSD(lti)

∪ CFPNDP(lti) (5.21)

Finally, the traditional ML setting (discussed in Chapter 3) is used to analyse the pat-

terns in cost feature profiles with the two frequency heuristics to distinguish new knowl-

edge. In this regard, this study considers the prediction probability in a similar way to

the proposed LBD models, DTM and FTM.

5.10 Experiments

The purpose of this section is to validate the predictive performance of the proposed LBD

models using a variety of experiments conducted under different settings. The first part
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of this section outlines the experimental setup used, including data sources, test cases

and other design selections. Subsequently, the results are presented with a discussion

of the observations, along with a comparison with the baselines. The latter part of this

section describes the strengths of the proposed LBD models while also revisiting the

research objectives of this study.

5.10.1 Experimental Setup

This section briefly outlines the setup used for the experiments that was discussed in

detail in Chapter 3. In doing so, the first part summarises the dataset and test cases

used in the experiments. Subsequently, the setups used in extracting semantic shifts

(discussed in Section 5.5) and constructing template repositories for the proposed LBD

model: TAM (discussed in Section 5.9) in each of the five selected golden test cases are

discussed.

5.10.1.1 Dataset and Test Cases

The main data source used for the experiments was obtained using MeSH keywords in

MEDLINE, as discussed in Chapter 3. To evaluate the effectiveness of the proposed LBD

models and to compare it with the baseline models, the following five golden test cases

(which have commonly been used as evaluation datasets in the previous LBD studies)

were utilised.

• Fish-Oil (FO) and Raynaud’s Disease (RD) (Swanson 1986)

• Magnesium (MG) and Migraine Disorder (MIG) (Swanson 1988)

• Somatomedin C (IGF1) and Arginine (ARG) (Swanson 1990a)

• Alzheimer’s Disease (AD) and Indomethacin (INN) (Smalheiser & Swanson 1996)

• Schizophrenia (SZ) and Calcium-Independent Phospholipase A2 (PA2) (Smalheiser &

Swanson 1998)
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Table 5.1: Parameters of semantic shift measures

Measure Parameters

Individual global shifts –

Individual local shifts The nearest neighbour count was set to 100 for each local
topic (i.e., K = 100)

Pairwise semantic dis-
placement

–

Pairwise distance prox-
imity

The penalising factor was set to 5 to quantify the distance
differences of topic A and C (i.e., β = 5)

Neighbourhood seman-
tic displacement

To compute the constant neighbours of topic A and C,
this study considered five years of time span, while sieving
neighbouring concepts within a proximity of 500 nearest
neighbours (i.e., W = 5 and K = 500)

Neighbourhood dis-
tance proximity

Similar to Neighbourhood semantic displacement

5.10.1.2 Extraction of Semantic Shifts

To construct the time-specific global corpus in the experiments, this study divided the

MEDLINE dataset into one-year time unit slices (e.g., 1960, 1961, etc.). In each time-

slice, an SGNS model was trained, with the dimensionality of the word embeddings set

to 300 and the window size set to 5. The parameters used for each of the proposed

semantic shift measures are summarised in Table 5.1.

5.10.1.3 Construction of the Template Repository

This study considered the actual novel knowledge linkages from historical test cases

(which were realised with time) as templates to construct the template repository, as

discussed in Section 5.9.3. More specifically, this study utilised the actual novel knowl-

edge linkages in the oldest historical test case (FO-RD) as templates to construct the

template repository in the test cases: MG-MIG, IGF1-ARG, AD-INN and SZ-PA2.

Since employing the actual novel knowledge linkages from FO-RD as templates for the

FO-RD test case itself is biased, the template repository for FO-RD was constructed

using the actual novel knowledge linkages from the MIG-MG test case.
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5.10.2 Results and Discussion

Tables 5.2, 5.3, 5.4, 5.5 and 5.6 report the Precision at k (P@k) results of the five golden

test cases, where the value of k is gradually increased by an interval of 10. Overall, P@k

results indicate the robust predictive performance of the proposed LBD models across

all five golden test cases. More specifically, the overall highest predictive performances

of P@k were often exhibited across every k value of the golden test cases from the two

proposed LBD models, TAM (discussed in Section 5.9) and FTM (discussed in Section

5.8). While TAM got 1.0 of P@10 for the test cases MG-MIG and IGF1-ARG, it got

0.9, 0.9 and 0.8 of P@10 for the test cases, FO-RD, AD-INN and SZ-PA2, respectively.

The P@10 errors of TAM are atropine (in FO-RD), epilepsies partial (in AD-INN ), and

growth hormone and adrenalectomy (in SZ-PA2 ).

Since P@k is not sensitive to the ranking order of the correct predictions (Craswell 2009),

this study also focused on Mean Average Precision at k (MAP@k), which quantifies the

Average Precision (AP) in each test case. MAP@k is not only sensitive to the number

of correct predictions, but also evaluates how well the ranking of these predicted correct

instances are ordered. As such this metric is considered the de-facto gold standard for

quantifying information retrieval systems (Beitzel et al. 2009b). Figure 5.32 presents the

MAP@k results obtained across all five golden test cases (also mentioned in Table A.1).

As in the case of P@k, the k value in MAP@k was incremented from 10 to 100 with an

interval of 10.

Table 5.2: Precision@k results for FO-RD test case

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.8 0.7 0.733 0.675 0.68 0.667 0.657 0.638 0.611 0.6

BI (baseline) 0.0 0.0 0.1 0.225 0.38 0.45 0.486 0.525 0.556 0.58

DE (baseline) 0.3 0.25 0.4 0.425 0.4 0.383 0.4 0.438 0.422 0.4

SE (baseline) 0.2 0.2 0.2 0.25 0.24 0.283 0.271 0.3 0.322 0.32

TI (baseline) 0.2 0.25 0.333 0.425 0.46 0.483 0.5 0.5 0.522 0.53

DTM: LSTM 1 0.5 0.7 0.667 0.725 0.66 0.683 0.671 0.688 0.689 0.71

DTM: LSTM 2 0.7 0.8 0.833 0.775 0.78 0.783 0.743 0.763 0.756 0.76

DTM: LSTM 3 0.5 0.5 0.567 0.55 0.6 0.65 0.686 0.7 0.733 0.71

DTM: CNN 0.5 0.45 0.433 0.5 0.48 0.533 0.571 0.6 0.611 0.63

DTM:
CNN LSTM

0.0 0.15 0.233 0.275 0.32 0.417 0.443 0.475 0.511 0.55

DTM:
LSTM CNN

0.0 0.1 0.2 0.3 0.36 0.417 0.443 0.488 0.544 0.57

FTM 0.9 0.8 0.867 0.85 0.82 0.817 0.8 0.775 0.789 0.77

TAM 0.9 0.85 0.867 0.85 0.78 0.783 0.757 0.75 0.756 0.77
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Table 5.3: Precision@k results for MG-MIG test case

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.6 0.55 0.567 0.575 0.6 0.567 0.529 0.575 0.567 0.57

BI (baseline) 0.0 0.0 0.0 0.0 0.06 0.117 0.143 0.15 0.2 0.26

DE (baseline) 0.6 0.5 0.467 0.425 0.44 0.467 0.5 0.488 0.456 0.44

SE (baseline) 0.5 0.5 0.633 0.6 0.56 0.55 0.529 0.525 0.544 0.55

TI (baseline) 0.1 0.15 0.2 0.3 0.34 0.4 0.386 0.425 0.456 0.47

DTM: LSTM 1 0.4 0.65 0.633 0.7 0.74 0.767 0.8 0.825 0.822 0.81

DTM: LSTM 2 0.5 0.7 0.667 0.675 0.68 0.7 0.714 0.725 0.733 0.73

DTM: LSTM 3 0.4 0.65 0.7 0.7 0.74 0.75 0.757 0.75 0.756 0.75

DTM: CNN 0.7 0.6 0.733 0.775 0.8 0.8 0.829 0.825 0.822 0.82

DTM:
CNN LSTM

1.0 0.9 0.8 0.725 0.7 0.733 0.757 0.763 0.789 0.79

DTM:
LSTM CNN

0.9 0.8 0.833 0.8 0.82 0.85 0.843 0.85 0.811 0.81

FTM 0.9 0.9 0.867 0.9 0.9 0.85 0.857 0.813 0.8 0.8

TAM 1.0 0.9 0.833 0.85 0.84 0.867 0.871 0.863 0.833 0.82

Table 5.4: Precision@k results for IGF1-ARG test case

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 1.0 0.85 0.8 0.775 0.78 0.783 0.786 0.813 0.811 0.8

BI (baseline) 0.0 0.0 0.033 0.05 0.04 0.05 0.057 0.075 0.089 0.12

DE (baseline) 0.5 0.5 0.6 0.575 0.62 0.583 0.6 0.613 0.611 0.61

SE (baseline) 0.4 0.55 0.6 0.6 0.64 0.633 0.6 0.6 0.622 0.61

TI (baseline) 0.1 0.2 0.267 0.3 0.4 0.383 0.4 0.388 0.411 0.4

DTM: LSTM 1 0.4 0.6 0.6 0.65 0.68 0.683 0.7 0.713 0.722 0.72

DTM: LSTM 2 0.6 0.55 0.567 0.65 0.68 0.7 0.714 0.713 0.688 0.7

DTM: LSTM 3 0.5 0.65 0.7 0.625 0.68 0.7 0.7 0.688 0.7 0.7

DTM: CNN 0.8 0.65 0.767 0.825 0.8 0.767 0.743 0.75 0.767 0.75

DTM:
CNN LSTM

0.6 0.6 0.633 0.65 0.68 0.717 0.743 0.763 0.778 0.79

DTM:
LSTM CNN

0.5 0.65 0.667 0.725 0.76 0.783 0.771 0.763 0.778 0.77

FTM 0.7 0.8 0.8 0.75 0.74 0.683 0.671 0.663 0.644 0.66

TAM 1.0 0.9 0.9 0.925 0.92 0.867 0.829 0.813 0.778 0.75



Semantic Evolution 181

Table 5.5: Precision@k results for AD-INN test case

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.8 0.85 0.8 0.775 0.76 0.767 0.7 0.7 0.689 0.67

BI (baseline) 0.0 0.0 0.0 0.025 0.02 0.033 0.1 0.1 0.167 0.17

DE (baseline) 0.6 0.45 0.5 0.525 0.48 0.467 0.486 0.488 0.5 0.48

SE (baseline) 0.2 0.6 0.6 0.575 0.62 0.617 0.629 0.65 0.656 0.67

TI (baseline) 0.0 0.1 0.1 0.125 0.22 0.283 0.257 0.275 0.3 0.31

DTM: LSTM 1 0.8 0.85 0.9 0.825 0.82 0.833 0.814 0.8 0.822 0.84

DTM: LSTM 2 0.7 0.75 0.8 0.825 0.86 0.85 0.871 0.85 0.856 0.86

DTM: LSTM 3 0.8 0.85 0.833 0.8 0.8 0.767 0.771 0.788 0.778 0.78

DTM: CNN 0.7 0.85 0.833 0.85 0.86 0.867 0.871 0.875 0.889 0.89

DTM:
CNN LSTM

1.0 0.9 0.933 0.925 0.92 0.867 0.871 0.863 0.867 0.88

DTM:
LSTM CNN

0.8 0.8 0.867 0.85 0.82 0.833 0.814 0.825 0.822 0.82

FTM 0.9 0.9 0.9 0.9 0.92 0.933 0.943 0.95 0.944 0.93

TAM 0.9 0.9 0.867 0.875 0.9 0.883 0.871 0.875 0.867 0.88

Table 5.6: Precision@k results for SZ-PA2 test case

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.7 0.6 0.633 0.6 0.58 0.6 0.629 0.625 0.622 0.61

BI (baseline) 0.0 0.0 0.0 0.0 0.02 0.067 0.086 0.1 0.111 0.15

DE (baseline) 0.2 0.4 0.4 0.45 0.48 0.467 0.429 0.425 0.433 0.43

SE (baseline) 0.0 0.15 0.267 0.325 0.34 0.367 0.386 0.4 0.4 0.42

TI (baseline) 0.1 0.15 0.133 0.125 0.14 0.167 0.171 0.213 0.233 0.25

DTM: LSTM 1 0.5 0.55 0.633 0.65 0.66 0.667 0.671 0.663 0.678 0.68

DTM: LSTM 2 0.6 0.45 0.367 0.4 0.44 0.45 0.5 0.538 0.567 0.59

DTM: LSTM 3 0.7 0.75 0.7 0.725 0.76 0.767 0.757 0.75 0.733 0.72

DTM: CNN 0.7 0.6 0.6 0.6 0.66 0.617 0.614 0.575 0.589 0.6

DTM:
CNN LSTM

0.7 0.75 0.733 0.75 0.72 0.683 0.714 0.7 0.7 0.71

DTM:
LSTM CNN

0.1 0.25 0.233 0.3 0.34 0.317 0.329 0.4 0.411 0.44

FTM 0.9 0.95 0.9 0.85 0.86 0.833 0.857 0.825 0.811 0.82

TAM 0.8 0.8 0.8 0.8 0.84 0.85 0.843 0.838 0.833 0.83
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Figure 5.32: MAP@k results for the five golden test cases: FO-RD, MG-MIG, IGF1-
ARG, AD-INN and SZ-PA2

When observing MAP@k results for the five golden test cases (Figure 5.32), it is evi-

dent that the proposed LBD model TAM displayed the highest predictive performance.

The proposed LBD model FTM displayed the second highest predictive performance.

Even though TAM exihibited a 6.3% performance increase over FTM at MAP@10, the

remaining performance increases of TAM over FTM were in the range of 1% to 3%.

Ordered from highest to lowest, the predictive performances of the baseline models were

as follows: AR, DE, SE, TI and BI. The performance increases of the two highest-

performing predictive models: TAM and FTM over the baseline models are illustrated

in Figures 5.33 and 5.34, respectively. It is evident from Figure 5.33 that TAM exhibited
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significant performance increases over the baselines at every k value. The most compet-

itive baseline model was AR, yet TAM demonstrated consistent performance increases

of nearly 20% across every k value. More specifically, the average performance increases

of TAM over the baselines were 0.226 (with AR), 0.518 (with DE ), 0.542 (with SE ),

0.667 (with TI ) and 0.726 (with BI ). FTM also demonstrated slightly similar perfor-

mance increases over the baselines across the k values as depicted in Figure 5.34. More

precisely, the average MAP performance increases of FTM over the baselines were 0.208

(with AR), 0.5 (with DE ), 0.524 (with SE ), 0.649 (with TI ) and 0.708 (with BI ).

With respect to DTM model variants, it is evident from Figure 5.32 that they performed

better than the baseline models: DE, SE, TI and BI. Nevertheless, the baseline model

AR displayed a higher performance than the DTM model variants until MAP@60. The

ensuing MAP performances of DTM model variants (except DTM: LSTM CNN model)

after the k value reached 60 demonstrated better performance compared to the AR

baseline. From MAP@k results, DTM: CNN LSTM displayed the highest predictive

performance. The second-highest performance of the DTM model variants was observed

through the use of DTM: CNN. One of the key differences between the DTM model

variants and the remaining two proposed LBD models (TAM and FTM ) is that their

MAP performances increased as values of k increased. Nevertheless, these DTM model

Figure 5.33: The performance increase of TAM over the baseline models
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Figure 5.34: The performance increase of FTM over the baseline models

variants did not surpass the predictive performance of TAM and FTM, which demon-

strates that knowledge discovery often favours measures that are tailored to the LBD

problem (i.e., handcrafted features) over features extracted using deep learning models.

Otherwise stated, the results demonstrate that LBD performance is more sensitive to

temporal patterns extracted using empirical observations while also focusing on LBD’s

problem setting and objective.

The following conclusions were obtained through an analysis of the predictive perfor-

mances of the baseline models. The AR baseline consistently outperformed the other

baselines in terms of prediction. This could be due to the AR baseline’s usage of multiple

characteristics, focus on both global and local features and LBD-tailored heuristics. De-

spite these strengths, this baseline relies on semantic inferences performed using domain-

specific knowledge resources (i.e., MeSH and UMLS ), which may inhibit the reusability

and portability of this LBD model in other problem settings and other portable scientific

domains.

The second-best performance was exhibited by the DE (Dynamic Embedding) baseline,

potentially due to its focus on integrating temporal characteristics in semantic spaces

into the knowledge discovery. Nevertheless, the baseline’s use of limited characteris-

tics to define new knowledge, as well as its shallow temporal analysis component may

have reduced its performance over the proposed LBD models in this study. The next
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highest performance was obtained through the use of SE (Static Embedding) baseline.

The prediction performances of DE and SE indicate the need for semantic inferences

in the knowledge discovery process to detect novel knowledge linkages more precisely

than purely statistical-based baseline models, such as TI and BI. The fact that DE

outperformed SE in terms of MAP until k is equal to 60 showcases the limited nature of

static semantic cues in comparison to the shallow temporal semantic cues used in DE.

With the integration of large-scale temporal semantic cues through the circumstantial

temporal analysis component (as in this study’s proposed LBD models), the predic-

tive performance was significantly improved in comparison to the SE and DE baseline

models, which use static and shallow temporal semantic cues, respectively.

The two statistical baselines (TI and BI ) displayed the lowest predictive performance.

There are three possible reasons for this. Firstly the complexity of the problem that

LBD attempts to solve may require detailed semantic inferences that these conventional

statistical-based techniques may not capture sufficiently. Secondly, overall, the results

indicate that knowledge discovery in the LBD process favours measures tailored to the

problem, rather than to the direct use of conventional statistical measures. Third, the

use of a single characteristic may not be sufficient to capture novel knowledge linkages

precisely.

Despite the promising MAP@k results observed in the previous setting that showcase

overall predictive performances, this study requires to further verify how consistent the

predictive performances were across all five golden test cases. To quantify the consistency

of the prediction, Geometric Mean Average Precision at k (GMAP@k) was utilised, as

discussed in Chapter 3. The predictive performances of the LBD models in terms of

GMAP are shown in Figure 5.35. It is evident that the two proposed LBD models,

TAM and FTM also demonstrated significant performance increases in terms of GMAP.

This verifies that these two LBD models not only demonstrated the overall highest

predictive performances, but also consistently highest predictive performances across

the test cases. Considering the DTM variants of the proposed LBD models, it is plain

that DTM: LSTM 1, DTM: LSTM 2, DTM: LSTM 3, and DTM: CNN displayed similar

GMAP performances in comparison to their corresponding MAP performances. It is

interesting to observe that even DTM: CNN LSTM exhibited overall high performance

(i.e., in MAP results) due to its superior performances in test cases such as MG-MIG

and AD-INN, its GMAP performance was significantly lower, since it did not perform
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Figure 5.35: GMAP@k results for the five golden test cases: FO-RD, MG-MIG,
IGF1-ARG, AD-INN and SZ-PA2

well for test cases such as FO-RD. Otherwise stated, these findings indicate that the use

of the DTM: CNN LSTM model may not necessarily guarantee good performance for

every user query, since its predictive performances are unstable, especially for the initial

k values. Among the proposed LBD models, DTM: LSTM CNN displayed the lowest

GMAP predictive performance, as was the case for the previous MAP setup.

This study also aimed to detect potential contributions of semantic shift types in isola-

tion to predictive performance, with the aim of identifying the most effective semantic

shift types in the LBD knowledge discovery process. Figures 5.36 and 5.37 represent the

performance differences exhibited through each of the semantic shift types (i.e., Individ-

ual Semantic Shifts (ISS), Pairwise Semantic Shifts (PSS) and Neighbourhood Semantic
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Shifts (NSS)). Overall, it is evident that the complementary integration of these three

types of semantic shifts (i.e., ISS+PSS+NSS ) is more promising in terms of discovering

novel knowledge linkages than using each semantic shift type alone. Otherwise stated,

semantic shift types in isolation underperformed relative to the integrated version. Nev-

ertheless, each of the semantic shift types alone performed better than the baseline

models. This indicates the significant influence of diachronic semantic inferences on the

high-precision discovery of novel knowledge linkages in the LBD process.

Comparing the predictive performance of the semantic shift types alone, the most con-

sistent predictive performance was displayed by ISS in both of the two proposed LBD

models, TAM and FTM (Figures 5.36 and 5.37, respectively). The predictive perfor-

mances of the PSS and NSS semantic shift types contrasted with those of TAM and

FTM. More specifically, while NSS exhibited high predictive performance in TAM in

the initial phase (i.e., until MAP@50), its predictive performance dropped in the latter

phase, while PSS demonstrated consistent performance throughout the k values. In the

model FTM, PSS showed high predictive performance at MAP@10. Nonetheless, there

was a performance drop after the k value 10, while NSS indicated consistent predictive

performance across every k value. Furthermore, this study observed that the predictive

performance variance of each semantic shift type alone (i.e., ISS, PSS and NSS individ-

ually) was slightly low in TAM in comparison to FTM, further verifying the consistent

predictive performance of TAM relative to FTM.

This study aimed to further assess the robust predictive performance of the proposed

LBD models in an extended experimental setup, with the goal of indicating how the

models perform in the long run (in contrast to the previous setup). More specifically,

this experimental setup resembles a situation where a user is keen to explore novel knowl-

edge linkages of more than 100, as described in the previous setup. For this purpose, this

study evaluated the predictive performances of the proposed LBD models and baselines

up to the k value 500. Similarly to the previous experimental setup, the k value was

incrementally increased from 10 to 500, with an interval of 10. The MAP results are

depicted in Figure 5.38 that indicate the overall performances of the LBD models in the

long run. As in the previous experimental setup, the two proposed LBD models, TAM

and FTM consistently outperformed in this experimental setup, demonstrating their ro-

bust predictive performance. It is also evident that in this extended experimental setup,

the DTM model variants are becoming to be better than the baseline AR, indicating
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Figure 5.36: Contribution of each semantic shift type towards the predictive perfor-
mance of TAM

the potential contributions that deep neural network techniques may have in the LBD

context. Furthermore, this study observed that TAM performed better than FTM until

k was equal to 200. For the ensuing k values, FTM demonstrated a slight performance

increase over TAM. More specifically, the average performance increase of FTM over

TAM after k = 200 was 0.5%. The most visible performance improvements of TAM over

FTM were within the range of k = 240 to k = 300, with an increase of nearly 1%. It is

evident that the performance of BI was increasing over the two semantic baselines DE

and SE after the k = 360, whereas TI displayed nearly similar performances after k =

470. Overall, the proposed LBD models demonstrated significant performance increases

over the baseline models.
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Figure 5.37: Contribution of each semantic shift type towards the predictive perfor-
mance of FTM

As with the previous MAP setup, this extended study also analysed the consistency of

the predictive performances in the long run through the use of GMAP, as denoted in

Figure 5.39. As in the case of all the previous experimental setups, TAM and FTM

demonstrated the highest predictive performances, indicating that they had the highest

as well as the most consistent predictive performances in the long run. Moreover, it is

also evident that the prediction consistency of the two LBD models, DTM: CNN LSTM

and DTM: LSTM CNN that were penalised in the short run (due to their low perfor-

mances in test cases such as FO-RD) increased in the long run. More specifically, these

two DTM variants surpassed the performance of the most competitive baseline, which

is AR at k values 90 and 180, respectively. Moreover, these two DTM variants also
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aligned with the remaining DTM model variants at k values 100 and 330. Overall, the

proposed LBD models outperformed the baseline models considering their consistency

of the predictions in the long run.

Next, the same extended experimental setup was conducted with the use of diachronic

semantic inferences alone (i.e., ISS, PSS and NSS individually). The purpose of this

experiment was to further analyse whether these semantic shift types alone (i.e., most

simplified versions of the proposed LBD models) outperformed the baseline models in

the long run. Figures 5.40 and 5.41 denote the predictive performances of each semantic

shift type in the two proposed LBD models, TAM and FTM that demonstrated the

highest predictive performances in all experimental setups. It is evident from the results

of this experiment that even the most simplified versions of the proposed LBD models

(i.e., each semantic shift type alone) outperformed the baseline models not only in the

short run (as demonstrated in the previous experimental setup), but also in the long run.

These results demonstrate the robust positive influence of the complementary integration

of vector semantics with temporal dimension in the LBD knowledge discovery workflow.

Despite the interesting results observed in terms of P@k, MAP@k and GMAP@k in the

short run and long run, to further verify the robust predictive performance of the two

best-performing models (TAM and FTM ) in the experimental setups described above,

this study evaluated how well these proposed LBD models separated negative instances

from positive instances using standard classification metrics (as discussed in Chapter 3).

This setup reflects the way in which the LBD models perform in the longer run. To

summarise, negative instances in the LBD workflow denote uninteresting or meaningless

concepts, indicating the filtering phase of knowledge discovery. In contrast, positive

instances in the LBD workflow denote potential novel knowledge linkages, which can be

viewed as the ranking component in knowledge discovery (discussed in Chapter 3).

Table 5.7: Classification results for FO-RD test case

Method ROC Area Precision Recall F-Measure

AR (baseline) 0.69 0.69 0.697 0.692

DE (baseline) 0.554 0.614 0.672 0.621

FTM 0.734 0.723 0.74 0.703

TAM 0.749 0.737 0.751 0.727

Tables 5.7, 5.8, 5.9, 5.10 and 5.11 summarise the classification performance of the two

best-performing models in comparison to the two multi-characteristic baselines, AR and
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Table 5.8: Classification results for MG-MIG test case

Method ROC Area Precision Recall F-Measure

AR (baseline) 0.658 0.676 0.684 0.679

DE (baseline) 0.603 0.618 0.661 0.623

FTM 0.75 0.724 0.74 0.708

TAM 0.755 0.736 0.747 0.724

Table 5.9: Classification results for IGF1-ARG test case

Method ROC Area Precision Recall F-Measure

AR (baseline) 0.623 0.607 0.604 0.605

DE (baseline) 0.564 0.564 0.567 0.565

FTM 0.7 0.663 0.664 0.663

TAM 0.715 0.681 0.682 0.681

Table 5.10: Classification results for AD-INN test case

Method ROC Area Precision Recall F-Measure

AR (baseline) 0.651 0.625 0.626 0.625

DE (baseline) 0.59 0.565 0.577 0.563

FTM 0.743 0.686 0.687 0.677

TAM 0.744 0.692 0.693 0.684

Table 5.11: Classification results for SZ-PA2 test case

Method ROC Area Precision Recall F-Measure

AR (baseline) 0.686 0.706 0.713 0.709

DE (baseline) 0.571 0.63 0.693 0.641

FTM 0.765 0.744 0.762 0.73

TAM 0.755 0.747 0.764 0.737

DE. Overall, it is evident that the two models, TAM and FTM consistently outper-

formed the two competitive baselines in all five golden test cases in terms of area under

ROC curve (i.e., the AUC ), and weighted average versions of precision, recall and F-

measure. As in the case of the previous setup, the predictive performance of these two

proposed LBD models are in the order of TAM and FTM. Moreover, the performance

of the two baseline models indicated that AR performed better than DE in every test

case. The increased performance behaviour of AR in comparison to the DE baseline

was consistent with the previous setup.

5.10.3 Strengths of the Proposed LBD Models

This study observes the following eight strengths of the proposed LBD models in com-

parison to the previous LBD research: integration of global semantics, intermingling
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vector semantics with the temporal dimension, disentangling semantic shifts from differ-

ent perspectives, nuanced temporal analysis, use of multiple characteristics, integration

of machine learning and deep learning techniques, domain independency, and potential

direct and indirect uses of diachronic semantic inferences. These strengths may explain

why the proposed LBD models consistently outperformed the baseline models through-

out every experimental setup.

Most of the prior LBD research mainly uses the query-specific local corpora to facilitate

knowledge discovery; thus, the potential cues identified in this process denote signals

extracted from local scale topic interactions. Since query-specific local corpora lack

the global-level topic interactions due to its restrictive nature, harnessing these signals

through the integration of global semantics may be particularly important for tasks that

require complex semantic deductions, as in the case of LBD. Therefore, the proposed

LBD models incorporated a wide scope of topic interactions through the integration

of time-specific global corpus. This ensured that the implicit semantic relationships of

scientific topics that are invisible to the local corpus were also captured when forming

diachronic semantic inferences.

The following two observations (discussed in Chapter 2), which are limited research

contributions that incorporate modern word embedding techniques (observed in time-

line analysis) and overlooking the importance of temporal dimension (observed in cat-

egorisations of computational techniques) prompted this thesis to amalgamate vector

semantics with the temporal dimension. Unlike previous LBD studies, which are based

on a static snapshot of the literature, the complementary integration of these two no-

tions enables the opportunity to capture the dynamic nature of scientific knowledge that

is invisible to mere static literature analysis. Therefore, this study has been influenced

by an emerging research field, diachronic word embeddings, which has emerged due to

recent advancements in word embedding techniques. The experimental results indicate

the importance of co-modelling the complementary strengths of vector semantics and

temporal dynamicity, due to its robust predictive performance in terms of LBD knowl-

edge discovery, compared to models that use static cues. More specifically, scrutinising

the temporal behaviour of scientific topics in the semantic spaces to discover latent novel

knowledge linkages demonstrated consistently highest predictive performance in every

experimental setup across all golden test cases.
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The constructed diachronic vector spaces enable a rich platform to scrutinise deep seman-

tic inferences. Yet it is important to define meaningful diachronic semantic inferences

tailored to focus and objective of the LBD research. To this end, this thesis disentangles

diachronic semantic inferences from three main perspectives (i.e., individual semantic

shifts, pairwise semantic shifts and neighbourhood semantic shifts). Individual seman-

tic shifts were quantified at both the global and local context, namely individual global

shifts and individual local shifts. Pairwise semantic shifts included two measures rela-

tive to user-defined input topics, namely pairwise semantic displacement and pairwise

distance proximity. Neighbourhood semantic shifts extended pairwise semantic shifts by

incorporating the recent core meaning into the semantic inferences through the use of

neighbourhood semantic displacement and neighbourhood distance proximity. Unravel-

ling such meaningful semantic shifts at multiple levels enriches the semantic deductions

and ultimately strengthens the prediction capabilities of the LBD models.

Even though there are a few recent LBD studies that have attempted to mitigate the

issue of static literature analysis of the previous LBD research through the inclusion of

temporal information, the underlying temporal analysis component of these studies is

fairly shallow (Jha et al. 2018, Jha, Xun, Wang & Zhang 2019, Xun et al. 2017). For

instance, to identify the temporal trend of the scientific topics, the study of Xun et al.

(2017) has only considered the first and last value of the time series while neglecting

potential temporal signals that could reside in the time series as a whole. Neverthe-

less, circumstantial analysis of patterns in time series (Shoemark et al. 2019) could be

beneficial to further comprehend the temporal behaviours of the scientific topics that

would contribute to enhancing predictions in the knowledge discovery component. To

circumvent this hindrance, this study performs a nuanced temporal analysis by using se-

mantically infused temporal trajectories as the main analysis unit in the proposed LBD

models. The robust predictive performances of the proposed LBD models showcase the

necessity of integrating such fine-grained temporal analysis components into the LBD

workflow. More precisely, such subtle temporal analysis provides the opportunity to

identify strong temporal cues which are otherwise concealed.

Most of the previous LBD studies mainly rely on one (or at most two to three) char-

acteristic(s) to discover potential new knowledge linkages in the literature. This may

be limited due to two main reasons. Firstly, it may inhibit a model’s capability to

detect novel knowledge linkages precisely, due to the complexities involved in natural
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language usage that result in intricate structures of scientific literature. Secondly, it is

observed in the theoretical LBD literature that new knowledge can be in multiple forms;

thus, the use of limited characteristics may hinder the model’s capability of identifying

novel knowledge forms in a wide perspective. Therefore, this study attempts to con-

solidate multiple characteristics in the knowledge discovery process to circumvent the

above two limitations. More specifically, this study used two different levels to integrate

multiple characteristics that could have a potentially positive impact on the knowledge

discovery process. The first level was at the formation of diachronic semantic inferences,

where this study disentangled semantic shifts at three main perspectives, resulting in

six semantically infused temporal trajectories. The second level involved the temporal

analysis component, in which numerous temporal signals were extracted to elicit po-

tential novel knowledge linkages. These temporal signals were either handcrafted as

used in traditional machine learning setting or extracted using deep learning models.

The experimental results demonstrate the importance of incorporating such multiple

meaningful characteristics in the knowledge discovery process to enhance its predictive

performance.

Machine Learning (ML) is concerned with eliciting patterns from large volumes of data

(Nguyen et al. 2019, Ongsulee 2017), whereas LBD aims to uncover novel knowledge

patterns from vast quantities of literature. This indicates that there is a case for us-

ing machine learning (or even its subfield deep learning) in LBD. More specifically, this

study attempts to accommodate ML and deep learning techniques, both of which provide

ample opportunities for identifying intricate structures in data (LeCun et al. 2015). This

process is crucial for complex reasoning tasks such as LBD. Otherwise stated, perceiving

complex patterns in data through the integration of machine learning techniques pro-

vides an extended platform to make better predictive decisions in an automated manner.

The experimental results highlighted the need to perform such large-scale pattern min-

ing (with the use of meaningful data or characteristics) to distinguish novel knowledge

linkages more precisely.

Most of the previous LBD models rely on semantic inferences performed using domain-

specific knowledge resources to discover novel knowledge linkages from the literature.

Nevertheless, the use of such external knowledge inferences based on domain-specific

knowledge resources inhibits the LBD model’s reusability and portability. This is be-

cause of their restrictive prediction settings, which may not be supportive and may even
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be unavailable in other problem settings (i.e., when focusing on reusable applications)

or other domains (i.e., when focusing on portable domains). The benefits that LBD

models offer are domain-agnostic and could be broadly applicable to almost every dis-

cipline due to the escalating scientific knowledge growth, which is commonly visible in

all disciplines. Moreover, given the objective of discovering potentially novel linkages,

the use of the discovery component in LBD models could also be broadly applicable to

numerous other problem settings. Therefore, reusability and portability are two crucial

design properties that should be considered when developing LBD models to ensure

their widespread applicability. To support the idea of reusability and portability, the

LBD models proposed in this study are completely free from external knowledge in-

ferences that depend on domain-dependent knowledge resources. More specifically, the

proposed LBD models’ predictive performances do not rely on domain-specialised knowl-

edge resources. As a result, they are portable and can be broadly reused, ensuring their

widespread applicability towards providing broader community benefits.

The LBD models proposed in this study incorporated semantically infused temporal tra-

jectories (i.e., diachronic semantic inferences) as the core analysis setting. Therefore,

these models can be broadly divided into two categories based on how these proposed

temporal trajectories are being analysed: manifesting the direct usage and manifest-

ing the indirect usage. The first category refers to LBD models that directly extract

potential semantically infused temporal signals from the proposed diachronic semantic

inferences to make predictions. Therefore, the two proposed LBD models; dedicated

trajectory model and feature-based trajectory model represent this category. The latter

category refer to LBD models that do not directly extract potential signals from the

diachronic semantic inferences, and instead use them as a medium to discover potential

new knowledge linkages, as in the trajectory alignment model. The experimental results

indicate that the proposed diachronic semantic inferences are efficient in both direct

and indirect usages. Succinctly, the robust predictive performance evident in both the

direct and indirect settings of the proposed diachronic inferences further supports their

contribution towards the discovery of new knowledge linkages.
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5.10.4 Limitations

The semantically infused temporal trajectories of scientific topics are the core analysis

unit of the proposed LBD models. Therefore, new scientific topics that only appear

in the last time-slice of the literature (i.e., time-slice T in Figure 5.2) do not have

temporal trajectories, as they only exist in that final time-slice. This means that implicit

knowledge linkages involving such recently added scientific topics are not captured by

the proposed LBD models. In other words, reliance on the temporal trajectories of

scientific topics limits the proposed LBD models’ ability to discover novel knowledge

linkages involving scientific topics that are emergent in the literature.

This study employs time-sliced evaluation to analyse and compare results since it re-

sembles the characteristics of an ideal evaluation setting such as automated, replicable,

quantifiable, informative and modular. These characteristics are lacking in other LBD

evaluation techniques as discussed in detail in Chapter 3. Nevertheless, the reliance on

co-occurrence in the time-sliced evaluation may introduce noise, since co-occurrence does

not necessarily imply a legitimate relationship between two topics. Therefore, the use

of time-sliced evaluation only provides an approximated platform from which to analyse

and compare results.

5.11 Summary

The main focus of this study was to understand the potential contribution of co-

modelling vector semantics with the temporal dimension to discovering novel knowledge

linkages. The main incentive for intermingling these two notions came from two key

observations in systematic literature review discussed in Chapter 2. Firstly, the spar-

sity of LBD studies that attempt to incorporate modern word embedding techniques,

which was observed in the timeline analysis. Secondly, previous LBD research contains

scant usage of temporal details due to a focus on static snapshots of the literature, as

observed in the categorisations of computational techniques. More specifically, the main

objective of this study was to verify whether the complementary integration of modern

word embedding techniques with temporally charged environments and scrutinising the

semantic evolution of scientific topics enriches the typical static cues used in the LBD

literature. To construct temporally encoded semantic spaces, this study incorporated
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diachronic word embeddings, a research field which is emerging as a result of modern

developments of word embedding techniques. In the constructed diachronic word em-

beddings, this study disentangled the semantic evolution of scientific topics at multiple

levels. This facilitates a comprehension of the dynamic behaviour of scientific topics,

and allows for the capture of meaningful semantically infused temporal signals, in or-

der to discover novel knowledge linkages with high precision. In this regard, this study

considered the derived semantically infused temporal trajectories as the main analysis

unit in the experiments. Overall, the experimental results showcase the strength of the

holistic integration of these two notions in the LBD context to enhance the predictive

performance.

5.11.1 Major Contributions

Through this study, the thesis was able to provide several insights which, to the best of

our knowledge, are new in the LBD discipline. The major contributions of this study

are summarised below and are discussed in detail in Chapter 8.

• Being the first study in the LBD discipline to incorporate a circumstantial temporal

component by utilising a wide range of techniques from areas such as sequence mining,

time series analysis and signal processing, in order to perform a fine-grained analysis

of semantically infused temporal trajectories.

• Being the first study to introduce patterns based on relativity by taking inspiration

from molecular docking mechanism.

• Demonstrating not only the direct uses of the proposed diachronic semantic inferences,

but also their indirect uses through the trajectory alignment model.

• The experimental results verified the efficacy of the proposed LBD models (i.e., both

direct and indirect usage of diachronic semantic inferences) in all experiments, per-

formed under different settings.

• The proposed semantic shift types in isolation (i.e., ISS, PSS and NSS ) also demon-

strated high prediction performances (in both direct and indirect uses of diachronic

semantic inferences) compared to the baseline models, indicating the predictive power

of the proposed semantically infused temporal trajectories, even individually.
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• The prediction performance of the proposed LBD models does not depend on se-

mantic inferences performed using external domain-dependent knowledge resources,

which ensures their reusability (in various problem settings) and portability (in various

academic domains), offering the opportunity to provide broader community benefits.



Chapter 6

Reusability

6.1 Introduction

Reuse research focuses on efficiently reusing components (or similar artifacts) in new

applications (Mooney 1995). Creatively uncovering new application areas of reusability

increases the dependability (or reliability) of the reused components (Ahmaro et al.

2014, Singh et al. 2010). With this aim in mind, the thesis required to further assess

the robust predictive performances of the proposed LBD models (discussed in Chapter

5) by conducting reuse research. To this end, the following question was evoked: ‘how

can the reusability of the proposed LBD models be ensured in a new application area, to

further confirm their robust predictive power?’. To seek potential extensions of such reuse

research in the context of LBD, this chapter considered the existing application areas of

the LBD discipline, following a method similar to opportunistic reuse (i.e., making new

capabilities by welding together pieces of components originally developed for distinct

problem setting(s)) (Katz et al. 1994, Ncube et al. 2008).

Even though the primary objective of LBD models is to mitigate the effects of knowledge

over-specialisation by helping researchers to formulate novel research hypotheses (Swan-

son & Smalheiser 1996), there are several special-purpose LBD models that have been

developed to cater to specific problem areas (Henry & McInnes 2017). Among these

application areas, drug development, drug repositioning and adverse drug reactions can

be considered the most popular selections (Henry & McInnes 2017, Thilakaratne et al.

203
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2019b). The COVID-19 pandemic underscores the need to contribute to such special-

purpose application areas of LBD more urgently than ever. This critical situation pro-

vides an impetus to explore this timely direction, and to demonstrate the reusability of

the proposed LBD models described in Chapter 5.

The development of new drugs is a costly and time-intensive procedure that involves costs

between 500 million to 2 billion dollars and takes 10 to 15 years to bring a new drug from

the laboratory to market (Wei et al. 2015, Henry & McInnes 2017). Nevertheless, the

success rate of such newly developed drugs is less than 10%, and FDA approval of new

drugs is declining (Henry & McInnes 2017). Identifying potential chemical-disease inter-

actions play a crucial role in drug discovery, biocuration and pharmacovigilance (Chen

et al. 2015, Li et al. 2015). It has been reported that chemicals, diseases and their re-

lationships are some of the most searched topics in PubMed (Wei et al. 2015). Despite

the importance of such chemical-disease relations in numerous biomedical research and

healthcare, including drug discovery and safety surveillance, many undiscovered inter-

actions could be buried in the literature due to its exponential growth (Wei et al. 2015).

This suggests the need to elicit such latent interactions from the unstructured text using

natural language processing techniques (Wei et al. 2015, Li et al. 2015).

The intrinsic objective of LBD studies is to discover implicit novel knowledge linkages

hidden in the vast academic literature, this indicates the potential benefits that LBD

models could offer to the discovery of hidden chemical-disease relations. The recent

COVID-19 pandemic illustrates the urgent need for research on this selected reuse set-

ting. The main research objective of this study is:

“to validate the predictive power of the proposed LBD models through reuse research,

with the goal of providing broader community benefits”

as defined at the outset of this thesis (i.e., main research objective 4 (RO4) in Chapter

1). With the overarching goal of contributing to this timely application area, this chap-

ter revolves around the main research question (RQ4 ): ‘are the proposed LBD models

reusable for the purpose of discovering latent chemicals that may have potential inter-

actions for a given disease?’. More specifically, since a closely related problem area to

the LBD context is selected to demonstrate the reusability of the proposed LBD mod-

els, this can be considered vertical reuse (Jalender et al. 2010). Bearing in mind this
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chapter’s focus on reusability, RQ4 is further divided into the following two sub research

objectives.

• RO4.1. Defining a methodical reuse plan in consideration of the opportunistic reuse

nature of the problem setting, to ensure that the meaning of reusability is preserved

during the adaptations (discussed in Section 6.2).

• RO4.2. Adapting the proposed LBD models to this new reuse setting in accordance with

the defined reuse plan to make predictions about potential chemical-disease relations

(discussed in Section 6.3).

This chapter is organised as follows. Section 6.2 outlines the underlying reuse framework

that is employed, as well as discussing reuse considerations and reuse objectives. Section

6.3 discusses the adaptation of the proposed LBD framework (discussed in Chapter 5)

to this new reuse setting. Section 6.4 describes the experimental setup of this chapter,

including the datasets, test cases, baselines and other design considerations of this study.

Section 6.5 presents the results of the experiments, along with an extended discussion

of the key observations. The latter part of this discussion highlights the strengths of the

proposed LBD models that were evident in this new reuse setting. Furthermore, this

study looks closely at the predictive performances of the adapted LBD models with the

intention of understanding potential future improvements that could be considered in

the next iterations of the selected reuse framework (discussed in Section 6.2). Section

6.6 concludes the chapter by outlining the key findings and major contributions.

6.2 Structure of the Reuse Research

The purpose of this section is to describe the structure underpinning this study, which is

performed as part of the thesis’ reuse research. In this regard, the first section discusses

the underlying reusability framework, which is employed to ensure that the study falls

within the boundaries of reuse research. Subsequently, the major differences between

this problem setting and the setting utilised in Chapter 5 are discussed. The main reason

for this discussion is that these differences indicate the instances where adaptations are

required during the process of assembling the reuse components, in accordance with the
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reusability framework employed. Lastly, the main focus of this reuse research is outlined

by revisiting the definition of reusability.

6.2.1 Reusability Framework

This study uses grab-and-glue as its underlying reusability framework. This framework is

based on the assembling of components rather than building the components to demon-

strate their reusability (Robinson et al. 2004). More specifically, the components that

are intended to be reused are grabbed and glued, so as to quickly assemble a model in a

new reuse setting. Subsequently, this quickly assembled model is validated to verify its

fitness for the intended purpose. If its fitness is judged to be satisfactory, it can be con-

cluded that an understanding of the problem has been attained. If its fitness is judged

unsatisfactory, the assembled model is rejected, and grab-and-glue is performed differ-

ently (Robinson et al. 2004). In essence, this process can be performed iteratively until

fitness for purpose is established. Nevertheless, this study only considers one iteration

in the grab-and-glue framework to verify the reusability of the LBD models.

6.2.2 Reuse Considerations

Prior to conducting reuse research, it is important to identify the key differences between

the two problem settings (i.e., the problem setting discussed in Chapter 5 and the setting

used in this chapter). These key differences can be considered as areas of adaptation

when assembling the reuse components.

The major difference between the setting used in this chapter and the previous setting is

the input that the user provides to the LBD model to initiate the knowledge discovery

process. In the current setting, the user merely enters a disease name as the input

topic (i.e., only one user topic, namely topic A). In essence, this setting does not have

a topic C (whereas the previous setting does). Therefore, in this new reuse setting, the

LBD model is required to elicit novel knowledge in a more open-ended manner, (based

only on topic A) to discover meaningful novel knowledge linkages (or chemicals that are

currently unknown, but potentially related to the user-defined disease).
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Figure 6.1: Schematic overview of the adaptation of the proposed LBD framework

6.2.3 Reuse Focus

Recall that reuse denotes the process of efficiently using components designed for one

application in new applications (Mooney 1995, Katz et al. 1994). Reuse can be demon-

strated in application areas that are closely related to the original area (i.e., vertical

reuse, which is similar to the kind of reuse demonstrated in this study) or even in

broadly different application areas (i.e., horizontal reuse) (Jalender et al. 2010, Katz

et al. 1994). The cost of adapting components to facilitate a new function in a new

reuse setting (relative to the original purpose of those components) should be little or

none (Katz et al. 1994). With this in mind, this chapter is not about developing new

LBD models or features from scratch. Instead, the focus of this study is on quickly

adapting and assembling the proposed LBD models (discussed in Chapter 5) to this new

problem setting (i.e., grab-and-glue) to assess their fitness for the intended purpose.

6.3 Adaptation of the Proposed LBD Framework

This section discusses how the proposed LBD framework discussed in Chapter 5 was

adapted to this new problem setting (Figure 6.1). As discussed in Section 6.2, the adap-

tation is performed with minimal effort (to adhere to the earlier definition of reusability),

and only one iteration of the grab-and-glue process is performed to identify whether fit-

ness for purpose was established. The new objective of this adapted version of the LBD

framework is to discover chemicals with potential novel relationships to a user-defined

input disease (i.e., topic A).
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6.3.1 Local Topic Extraction

Since the new reuse setting only employs one topic of interest to elicit new knowledge,

the local topics relevant to the input topic (i.e., topic A) need to be identified in a more

open-ended manner. In this regard, this study exploits the analogical reasoning power

of word embeddings to construct an initial list of local topics to initiate the knowledge

discovery process.

6.3.1.1 Analogy Mining

The vector representations of words generated through neural network methods such

as word2vec (discussed in Chapter 5) have shown surprising capacity to detect verbal

analogies (Allen & Hospedales 2019, Chen et al. 2017). These verbal analogies between

vectors can be represented through the parallelogram model. Parallelogram model states

that the four elements involved in an analogy adhere to a regularity rule, much like

a parallelogram in vector space (Murena et al. 2018). The parallelogram model was

reincarnated in recent machine learning research through popular embedding methods

such as word2vec, which have been successfully applied to a wide variety of natural

language processing tasks (Allen & Hospedales 2019, Chen et al. 2017). These studies

suggest that the verbal analogies enabled through these vector representations may

accommodate sufficient information to allow for relationships to be directly inferred

from them (Chen et al. 2017). The application of the parallelogram model of an analogy

using vector representations is considered to be domain-agnostic and broadly usable in

both semantic and perceptual domains (Chen et al. 2017). For instance, consider the

verbal analogy ‘wa is to wa* as wb is to wb* ’, which often satisfies wa* - wa + wb ≈

wb* where wi defines the vector representation of the word wi (Figure 6.2) (Allen &

Hospedales 2019). Following this notion, this study explores the topics that may be

potentially relevant to topic A using analogy mining to initiate the knowledge discovery

process.

6.3.1.2 Time-sliced Analogy Mining

This study explores the notion of time-sliced analogy mining, as illustrated in Figure 6.1,

where recent N vector spaces are considered for analogy mining (i.e., from T-(N-1) to
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Figure 6.2: Completing the analogy wa : wa* :: wb : ? by adding the difference
vector between wa and wa* to wb, forming a parallelogram in vector space

T ). The reason for not considering only the last time-slice (i.e., T ) is that this study aims

to dilate the search scope in order to perform large-scale knowledge discovery. Such a

broader search may be beneficial during the knowledge discovery process, allowing for the

capture of surprising or radical knowledge linkages (Jha et al. 2018). The aforementioned

process of analogy mining in each vector space is performed in the form of diseasei :

chemicali :: topic A : ?, as illustrated in Figure 6.2. The chemicals derived through this

phase for topic A are considered local topics in this setting (Figure 6.1). It is important

to note that these extracted local topics merely indicate chemicals that may be interested

with reference to the user-defined disease, not the potential novel knowledge. Thus, it

is important to sieve these local topics using the knowledge discovery process in order

to retain chemicals that are potentially relevant and novel with respect to the user-

specified disease. For this purpose, (and in a manner similar to that in the previous

setting discussed in Chapter 5), semantic shifts are employed to perform knowledge

discovery.

6.3.2 Semantic Shifts

In this new reuse setting, the user merely inserts the name of a disease to initiate the

discovery process (i.e., topic A). Nevertheless, recall that in Chapter 5, semantic shifts

were defined using two topics (i.e., topic A and topic C ). Thus, measures that use both

topics A and C are required to be adapted to this new reuse setting by only focusing on

topic A. Table 6.1 summarises the adaptation of the semantic shifts proposed in Chapter

5 to this new reuse setting.
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6.3.2.1 Individual Semantic Shifts

Since this category focuses on the semantic change of topics based on the topic itself

(i.e., not involving topic A and/or C ), the two semantic shift measures defined under

this category (Individual Global Shifts (IGS) and Individual Local Shifts (ILS)) remain

unchanged in this new setting (Table 6.1).

6.3.2.2 Pairwise Semantic Shifts

This category analyses the semantic change of topics relative to the two user-defined

input topics A and C. Thus, this category is required to be adapted to this new setting

by only considering topic A. The two types of measures proposed in this category were

previously named pairwise semantic displacement and pairwise distance proximity. Note

that the word pairwise in these two measures was originally used to indicate that they

are based on the two user-defined input topics A and C.

• Pairwise Semantic Displacement (PSD): Originally, this measure was intended to

capture the concept’s (wi) semantic change over time relative to topics A (wA) and

C (wC ). Due to the unavailability of topic C in this new setting, PSD was rede-

fined with reference to the concept’s semantic change relative to topic A only (i.e.,

cos-sim(w
(t)
i ,w

(t)
A )). More specifically, in this setting, PSD verifies whether the con-

cept displays any growing semantic similarity with respect to topic A over time.

• Pairwise Distance Proximity (PDP): Originally, the idea of this measure was to verify

whether the temporal trajectory of a concept was leaning towards (i.e., in close prox-

imity to) both user-defined topics A and C. This was because Chapter 5 was seeking

topics that bridge the two topics A and C. Thus, the concept’s trajectory ought to

have inclined towards both the input topics. Due to the unavailability of two topics

in the new setting, this measure is not compatible with this setting. Since the idea of

this chapter is not to develop new features (as discussed in Section 6.2) but to adapt

the existing features (if compatible) with minimum effort, this semantic shift has been

removed from the knowledge discovery process employed in this setting (Table 6.1).
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6.3.2.3 Neighbourhood Semantic Shifts

This category originally denoted the extended measures of pairwise semantic displace-

ment and pairwise distance proximity by incorporating not only A and C, but also their

recent core meanings. Thus, the measures proposed under this category of semantic

shifts need to be adapted to a setting featuring one topic only.

• Neighbourhood Semantic Displacement (NSD): The main difference between this mea-

sure and the pairwise semantic displacement measure is that it also involves the recent

core meaning of the input topics A (wA) and C (wC ). As there is no topic C in the

new reuse setting, NSD is adapted in such a way that the concept’s semantic shift is

measured relative to topic A and its recent core meaning only (i.e., topic C and its

recent core meaning are excluded). Thus, the adapted measure captures how well the

concept (wi) semantically connects with topic A and its recent core meaning.

• Neighbourhood Distance Proximity (NDP): This measure represents the neighbour-

hood variant of the pairwise distance proximity measure. Since pairwise distance

proximity was removed from this study due to its incompatibility with the reuse set-

ting, this measure is also removed in this new setting.

Table 6.1: Adaptation of the proposed semantic shift measures in the new reuse
setting

Semantic Shift Compatibility
Cost of

Adaptation
Description

Individual Global

Shifts (IGS)

X None Does not involve A and/or C

topics; thus, no adaptation is

required.

Individual Local

Shifts (ILS)

X None Does not involve A and/or C

topics; thus, no adaptation is

required.

Pairwise Semantic

Displacement

(PSD)

X Negligible Involves both topics A and C ;

thus, adaptation is performed

by retaining the semantic in-

ference corresponding to topic

A only.
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Pairwise Distance

Proximity (PDP)

× – Requires both topics A and C ;

thus, not compatible.

Neighbourhood

Semantic Dis-

placement (NSD)

X Negligible Involves both A and C topics;

thus, adaptation is performed

by retaining the semantic in-

ference corresponding to topic

A only.

Neighbourhood

Distance Proxim-

ity (NDP)

× – Requires both topics A and C ;

thus, not compatible.

6.3.2.4 Frequency Heuristics

The two frequency heuristics considered with the aforementioned semantic shifts in

Chapter 5 are also adapted to the new reuse setting if topic A and/or C are utilised.

These two frequency heuristics obtained from previous LBD research (Torvik & Smal-

heiser 2007) are Global Frequency Heuristic (GFH) and Local Frequency Heuristic (LFH).

GFH penalises concepts that are extremely common or extremely rare in the literature.

Since GFH does not incorporate topic A or C, it remains unchanged in this new reuse

setting. Originally, LFH was employed to penalise concepts that only occurred once in

A or C literature, where the corresponding literature set had over 1000 records. Since

this measure involves both topics A and C, this required to be altered by only incor-

porating topic A. Thus, in the new setting, this feature is set by only focusing on the

concept’s frequency with reference to topic A (i.e., n(A, wi)>0). Therefore, in this new

setting, LFH indicates whether the extracted local topics already have an established

relationship with topic A on or before time T (i.e., indicating that it is not a novel

knowledge linkage).

To summarise, in this reuse setting, this study only considered four types of semantic

shifts (Table 6.1) along with the two frequency heuristics. As in the previous setting

(discussed in Chapter 5), the semantic shifts are denoted in the form of semantically

infused temporal trajectories, to facilitate temporal analysis. More specifically, the four

semantically infused temporal trajectories of concept wi are constructed in the form of:

TJIGS(wi) = (d IGS(wy
i ), d IGS(wy+1

i )), ..., d IGS(wT−1
i ), d IGS(wT

i ))
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TJILS(wi) = (d ILS(wy
i ), d ILS(wy+1

i )), ..., d ILS(wT−1
i ), d ILS(wT

i ))

TJPSD(wi) = (sPSD(wy
i ), sPSD(wy+1

i )), ..., sPSD(wT−1
i ), sPSD(wT

i ))

TJNSD(wi) = (sNSD(wy
i ), sNSD(wy+1

i )), ..., sNSD(wT−1
i ), sNSD(wT

i ))

where y is the first occurrence of wi in the dataset, s is a similarity measure and d is a

distance measure.

6.3.3 Reuse of Proposed LBD Models

The main three LBD models proposed in Chapter 5, the Dedicated Trajectory Model

(DTM), Feature-based Trajectory Model (FTM) and Trajectory Alignment Model (TAM)

are used in this new experimental setting to sieve novel knowledge linkages from the

remaining local topics. To summarise, DTM uses novel advancements in deep learn-

ing techniques by employing LSTM and CNN as the two main building blocks of the

proposed neural network architectures. The main purpose of these developed neural

network architectures is to scrutinise extracted semantically infused temporal trajecto-

ries in order to discover patterns of potential novel knowledge linkages. Further details

on this model can be found in Section 5.7 of Chapter 5. FTM follows the traditional

machine learning process using hand-crafted features from the semantically infused tem-

poral trajectories to discover potential novel knowledge linkages. These features mainly

comprise two feature categories, trajectory values-based and trajectory shape-based fea-

tures. Further details on this model can be found in Section 5.8 of Chapter 5. TAM

uses the semantically infused temporal trajectories of actual novel knowledge linkages

as templates (in a trajectory repository) to analyse the extent to which the trajectories

of local topics demonstrate the patterns exhibited in these templates. To measure how

similar or dissimilar the trajectories of local topics are to the templates, a trajectory

alignment procedure is proposed in this LBD model. Further details on this model can

be found in Section 5.9 of Chapter 5.

6.4 Experimental Setup

The purpose of this section is to discuss the experimental setup employed in this reuse

research. In this regard, the initial part of this section discusses the datasets, test cases
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and baselines utilised. The latter section provides details on how time-sliced analogy

mining was performed and how the template repository of the proposed LBD model,

TAM was constructed using the additional data sources used in this study.

6.4.1 Datasets and Test Cases

As with previous experiments in this thesis, MEDLINE was used as the main data

source for this study. The MEDLINE data field used in the study’s experiments was

MeSH (discussed in Chapter 3). In addition to MEDLINE, the study also made use of

the chemical-disease interactions reported in the Comparative Toxicogenomics Database

(CTD) (Davis et al. 2019). The chemical-disease associations stored in CTD are either

curated (i.e., extracted from the published literature) or inferred (i.e., extracted using

transitive inferences from the literature) (Yang, Zhao, Waxman & Zhao 2019, Zhang

et al. 2018, Wang et al. 2017). CTD is considered a primary data source that facilitates

an understanding of the way environmental exposures impact human health (Yang,

Zhao, Waxman & Zhao 2019).

With regard to test cases (and for the sake of consistency with the remaining chapters

of the thesis), this study used the disease names from the golden test cases (where

available) as topic A to initiate knowledge discovery in this reuse setting. The selected

disease names from the golden test cases included Raynaud’s Disease (RD) (Swanson

1986), Migraine Disorder (MIG) (Swanson 1988), Alzheimer’s Disease (AD) (Smalheiser

& Swanson 1996) and Schizophrenia (SZ) (Smalheiser & Swanson 1998).

6.4.2 Baselines

Bearing in mind the previous experimental setup discussed in Chapter 5, this study

incorporated the following baseline models: Arrowsmith (AR), Dynamic Embeddings

(DE) and Static Embeddings (SE). Moreover, within the LBD field, there is a growing

research interest in integrating link prediction techniques to discover future links between

concepts (Yang et al. 2017, Kastrin et al. 2014b). Since link prediction techniques are

suited to this reuse setting and have been used as baselines in previous LBD studies for

the purpose of comparing results (Jha, Xun, Wang & Zhang 2019, Lever et al. 2018), this

study also incorporated three popular and classical link prediction techniques, namely
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Common Neighbours, Jaccard’s Index and Preferential Attachment as baselines in this

reuse setting (discussed in Chapter 3).

Note that this reuse setting did not employ the two LBD models: Bitola (BI) and

TF-IDF (TI) as baselines, as in Chapter 5. The main reason for excluding these two

LBD models was that they follow the traditional ABC model in facilitating one-node

searches, similar to this reuse setting. Thus, when these two LBD models get adapted

to this reuse setting, the meanings conveyed through these measures become irrelevant,

as summarised below.

• Bitola (BI): The default metric used by BI is confidence. This is is expressed as
|DA∩Dlpi |
|DA| , where Dx is the set of records in which the term x is included (Hristovski

et al. 2001, Yetisgen-Yildiz & Pratt 2009). In this reuse setting, lpi denotes chemicals

that may have potential relationships with the user-defined disease. Thus, if a local

topic lpi has | DA ∩ Dlpi | >0, this indicates that the relevant chemical already has

a connection with the user-defined disease. Thus, the knowledge linkage between

the chemical and the disease is not a novel one. Therefore, this measure becomes

meaningless when adapted to this reuse setting. More specifically, this metric is only

make sense if knowledge discovery is performed using the typical ABC setting.

• TF-IDF (TI): Much like BI, the initial component of TF-IDF (which is term fre-

quency; TF) calculates the number of times a local topic lpi and the user-defined

disease have occurred together. Thus, when TF >0, this indicates that the local topic

already has a connection with the disease. Thus, this metric becomes meaningless in

the process of adaptation to this reuse setting. In other words, this metric is only

valid in the typical ABC discovery setting.

When adapting the three baseline models used in Chapter 5 Arrowsmith (AR), Dynamic

Embeddings (DE) and Static Embeddings (SE) to this reuse setting, the inference related

to topic A only is retained by excluding topic C. This is similar to the cases involving

our proposed LBD models (discussed in Section 6.3.2). In this process of adapting the

three baseline models to the current setting, the following two features in Arrowsmith

(AR) baseline are removed, due to their incompatibility with this reuse setting (similar

to ours, as discussed in Section 6.3.2 to adhere with the reuse plan).
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• Feature f2 (discussed in Chapter 3) which is characterised by the question: do sub-

literatures AB and BC have any common MeSH terms? involves both topics A and

C ; thus, adaptation needs to be performed by retaining the semantic inference cor-

responding to topic A only. Nevertheless, if only topic A is considered, this measure

becomes meaningless in our present context, as it is infeasible to calculate shared

MeSH terms in the context of AB literature only.

• Feature f7 (discussed in Chapter 3) which is characterised by the question: does the

B concept highly characteristic in A and C literature? also includes both topics A

and C ; thus, needs to be adapted to this reuse setting by retaining the semantic

inference corresponding to topic A in isolation. In situations similar to this, the

expected term occurrence in the literature used in f7 could be calculated using a

hypergeometric distribution expressed as follows: Pr(X = x) = (f1x )(N−f1f2−x
)/(Nx) for x =

0, 1, 2, ...,min(f1, f2), where N is the total paper count, f1 represents the papers that

have a local topic lpi and f2 represents the papers specific to the user-defined disease.

Since N is relatively large, the aforementioned hypergeometric distribution can be

approximated using a Poisson distribution defined using: Pr(X = x) ≈ e−λλx/x! for

x = 0, 1, 2, ... where λ = f1f2/N (Smalheiser et al. 2011, 2008). This could alternatively

be considered as a problem with a number of balls N in an urn, where f1 is denoted

using black balls. When randomly selecting f2 distinct balls, the number of black

balls selected (Smalheiser et al. 2011) resembles f7 in this setting. Nevertheless, as in

the case of BI and TI (discussed above), this is a situation where a local topic lpi

already has a connection with the user-defined disease; thus, this measure becomes

meaningless when adapted to this reuse setting.

In summary, this study incorporated the following six baseline models in this reuse set-

ting: Arrowsmith (AR), Dynamic Embeddings (DE), Static Embeddings (SE), Common

Neighbours (CN), Jaccard’s Index (JI) and Preferential Attachment (PA).

6.4.3 Construction of Local Topics via Time-sliced Analogy Mining

This study extracted the chemical-disease pairs from the CTD as seed pairs in order

to perform analogical mining, as discussed in Section 6.3.1. The only purpose of the

CTD seed pairs at this stage was to develop an initial local topic list, denoting potential
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chemicals that may be worth exploring with regard to the disease mentioned as topic A

to initiate the knowledge discovery process. More specifically, this study used the CTD

chemicals available at time T to extract a maximum of ten chemical-disease associations

(i.e., the first ten entries in CTD1) for each chemical, in order to perform time-sliced

analogy mining to construct the initial list of local topics. Note that these local topics

derived through analogy mining are not potential novel knowledge linkages. They merely

serve as an independent initial vocabulary to initiate the knowledge discovery process.

The novel knowledge linkages within these constructed local topics are discovered by

employing the proposed LBD models, as discussed in Section 6.3.

6.4.4 Construction of the Template Repository of Trajectory Align-

ment Model

To construct a template repository of the trajectory alignment model (discussed in Sec-

tion 6.3.3), this study incorporated the trajectories of chemicals in CTD, which are

available at time T. Note that when constructing the pairwise semantic displacement

trajectory and neighbourhood semantic displacement trajectory of these chemicals, the

chemical-disease relationships that have not been realised by time T (i.e., no direct

co-occurrences) are employed. The main reason for this is that the key purpose of the

template repository is to collect potential trajectory shapes that showcase their seman-

tic evolution before they actually get realised in the future. Moreover, chemical-disease

instances for which the disease name is equivalent to topic A are not included when con-

structing the template repository. This helps to avoid biasing the trajectory alignment

procedure. For instance, consider a chemical-disease pair in CTD where the chemical

name is chemicalx, and the disease name is topic A. If the same chemical name (i.e.,

chemicalx) were present in local topics, the trajectory alignment would incur zero costs,

which could ease the decision of the ML component. The main purpose of excluding

chemical-disease relations where the disease name is topic A in the process of construct-

ing the template repository to avoid such bias decisions.

1downloaded as at 5th of April, 2020
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6.5 Results and Discussion

This section validates the predictive effects of the proposed LBD models in this new

reuse setting. Tables 6.2, 6.3, 6.4, and 6.5 report the results of precision at k (P@k) for

the test cases RD, MIG, AD and SZ, respectively. As in the case of Chapter 5, the k

value was gradually increased from 10 to 100, at an interval of 10. When observing P@k

results, it is evident that the following three proposed LBD models often exhibited the

highest predictive performances in every golden test cases across all the k values: FTM

(discussed in Section 5.8), DTM: LSTM 1 (discussed in Section 5.7) and TAM (discussed

in Section 5.9). This verifies the potential positive influence of the proposed diachronic

semantic inferences, not only in terms of their direct uses, but also their indirect uses in

the LBD knowledge discovery process. This thesis observed the same conclusion across

all the experimental setups in Chapter 5. The robust predictive performances evident

even in the very first iteration of the grab-and-glue framework (discussed in Section 6.2)

are indicative of the efficient reuse capabilities of the proposed LBD models.

Since P@k is not sensitive to the ranking order of the correct predictions, this study used

Mean Average Precision at k (MAP@k), which favours models that often front-load the

correct predictions (i.e., the relevant novel knowledge linkages that are ranked at high

positions make a higher contribution to the average than the relevant novel knowledge

linkages that are ranked at low positions). More specifically, the MAP is considered to

be the de facto gold standard for evaluating information retrieval systems (Beitzel et al.

2009b), and it captures the overall performance of the LBD models across the golden

test cases. Figure 6.3 presents the MAP@k results across the selected golden test cases

(i.e., RD, MIG, AD and SZ ), where the value of k was gradually increased from 10 to

100, at an interval of 10 (also outlined in Table B.1).

From Figure 6.3, it is evident that all the variants of the proposed LBD models outper-

formed the baseline models (AR, DE, SE, CN, JI and PA). This indicates the robust

predictive performance of the proposed LBD models, while also highlighting their poten-

tial reuse capabilities. Overall, FTM demonstrated the highest performance across the

golden test cases. The second-highest performance was displayed by DTM: LSTM 1.

TAM demonstrated the third-highest overall performance, especially in terms of the

initial k values.
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Table 6.2: P@k results for FO-RD test case where topic A is RD

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.2 0.1 0.067 0.075 0.1 0.117 0.114 0.113 0.122 0.12

DE (baseline) 0.1 0.15 0.1 0.1 0.1 0.117 0.143 0.163 0.156 0.15

SE (baseline) 0.2 0.25 0.167 0.15 0.2 0.217 0.186 0.163 0.178 0.18

CN (baseline) 0.0 0.0 0.0 0.0 0.02 0.033 0.057 0.05 0.056 0.06

JI (baseline) 0.1 0.1 0.067 0.075 0.08 0.083 0.071 0.075 0.067 0.06

PA (baseline) 0.0 0.0 0.067 0.05 0.08 0.083 0.086 0.088 0.089 0.08

DTM: LSTM 1 0.2 0.25 0.2 0.2 0.18 0.183 0.157 0.163 0.144 0.16

DTM: LSTM 2 0.0 0.05 0.067 0.075 0.1 0.083 0.071 0.075 0.078 0.1

DTM: LSTM 3 0.0 0.1 0.133 0.1 0.08 0.067 0.071 0.075 0.089 0.08

DTM: CNN 0.0 0.05 0.033 0.05 0.08 0.1 0.1 0.125 0.122 0.11

DTM:
CNN LSTM

0.0 0.05 0.033 0.05 0.06 0.067 0.071 0.088 0.089 0.09

DTM:
LSTM CNN

0.0 0.05 0.133 0.125 0.12 0.117 0.1 0.088 0.078 0.09

FTM 0.4 0.25 0.233 0.2 0.2 0.167 0.186 0.163 0.144 0.16

TAM 0.3 0.3 0.233 0.2 0.16 0.15 0.143 0.15 0.144 0.14

Table 6.3: P@k results for MG-MIG test case where topic A is MIG

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.1 0.1 0.1 0.15 0.18 0.2 0.186 0.163 0.178 0.16

DE (baseline) 0.5 0.35 0.233 0.25 0.22 0.183 0.171 0.175 0.178 0.19

SE (baseline) 0.1 0.1 0.133 0.175 0.18 0.183 0.186 0.175 0.167 0.17

CN (baseline) 0.0 0.0 0.0 0.0 0.0 0.017 0.029 0.038 0.033 0.04

JI (baseline) 0.0 0.0 0.0 0.0 0.0 0.017 0.029 0.05 0.044 0.04

PA (baseline) 0.0 0.0 0.033 0.075 0.08 0.1 0.114 0.125 0.122 0.13

DTM: LSTM 1 0.3 0.4 0.4 0.4 0.42 0.4 0.371 0.338 0.333 0.33

DTM: LSTM 2 0.2 0.25 0.233 0.2 0.26 0.3 0.314 0.338 0.344 0.33

DTM: LSTM 3 0.4 0.35 0.267 0.25 0.26 0.267 0.257 0.263 0.244 0.25

DTM: CNN 0.4 0.35 0.367 0.375 0.36 0.317 0.329 0.325 0.3 0.29

DTM:
CNN LSTM

0.1 0.25 0.333 0.275 0.32 0.35 0.329 0.338 0.344 0.33

DTM:
LSTM CNN

0.4 0.5 0.333 0.325 0.32 0.283 0.286 0.288 0.3 0.29

FTM 0.6 0.5 0.5 0.5 0.46 0.4 0.371 0.4 0.389 0.39

TAM 0.5 0.45 0.333 0.325 0.3 0.3 0.3 0.325 0.311 0.31
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Table 6.4: P@k results for AD-INN test case where topic A is AD

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.6 0.7 0.7 0.65 0.62 0.6 0.6 0.588 0.589 0.58

DE (baseline) 0.2 0.2 0.233 0.3 0.3 0.267 0.286 0.288 0.3 0.29

SE (baseline) 0.0 0.05 0.033 0.05 0.06 0.05 0.086 0.088 0.089 0.13

CN (baseline) 0.0 0.0 0.0 0.0 0.0 0.0 0.014 0.013 0.011 0.03

JI (baseline) 0.0 0.05 0.033 0.05 0.04 0.033 0.043 0.038 0.044 0.04

PA (baseline) 0.0 0.0 0.0 0.0 0.0 0.017 0.029 0.038 0.056 0.05

DTM: LSTM 1 0.9 0.8 0.833 0.8 0.8 0.833 0.829 0.813 0.822 0.83

DTM: LSTM 2 0.8 0.7 0.767 0.825 0.82 0.833 0.829 0.813 0.822 0.83

DTM: LSTM 3 0.8 0.9 0.867 0.825 0.82 0.85 0.829 0.838 0.811 0.8

DTM: CNN 0.7 0.55 0.567 0.55 0.52 0.517 0.557 0.567 0.578 0.58

DTM:
CNN LSTM

0.8 0.65 0.667 0.675 0.7 0.717 0.757 0.763 0.756 0.75

DTM:
LSTM CNN

0.8 0.75 0.733 0.8 0.82 0.833 0.8 0.813 0.811 0.8

FTM 0.6 0.65 0.733 0.725 0.72 0.717 0.714 0.713 0.711 0.72

TAM 0.6 0.65 0.6 0.55 0.54 0.55 0.529 0.55 0.556 0.56

Table 6.5: P@k results for SZ-PA2 test case where topic A is SZ

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.1 0.1 0.167 0.175 0.18 0.2 0.214 0.25 0.267 0.26

DE (baseline) 0.0 0.05 0.033 0.1 0.1 0.1 0.114 0.113 0.1 0.11

SE (baseline) 0.0 0.0 0.0 0.0 0.0 0.033 0.043 0.05 0.067 0.08

CN (baseline) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

JI (baseline) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PA (baseline) 0.0 0.0 0.0 0.0 0.0 0.0 0.029 0.025 0.044 0.04

DTM: LSTM 1 0.8 0.5 0.5 0.45 0.46 0.467 0.443 0.463 0.467 0.45

DTM: LSTM 2 0.5 0.35 0.3 0.25 0.28 0.317 0.329 0.363 0.367 0.35

DTM: LSTM 3 0.3 0.3 0.3 0.35 0.36 0.367 0.371 0.375 0.378 0.36

DTM: CNN 0.5 0.35 0.367 0.375 0.36 0.317 0.271 0.263 0.233 0.24

DTM:
CNN LSTM

0.7 0.6 0.667 0.6 0.56 0.55 0.514 0.5 0.467 0.43

DTM:
LSTM CNN

0.3 0.45 0.467 0.475 0.42 0.4 0.357 0.35 0.344 0.34

FTM 0.8 0.7 0.667 0.65 0.62 0.633 0.571 0.563 0.522 0.51

TAM 0.9 0.65 0.6 0.575 0.56 0.533 0.486 0.438 0.444 0.41
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The predictive performances of the baseline models can be ranked in the following order,

from highest to lowest: AR, DE, SE, JI, PA and CN. The superiority of AR to DE,

and DE to SE is consistent with results from the previous setting (Chapter 5). The

inheritance of the following strong points: multi-characteristic nature, use of both local

and global features and LBD-tailored heuristics may have caused AR to outperform the

other baseline models. The inclusion of dynamic semantic inferences through shallow

temporal cues may have caused DE to perform second-highest relative to the baseline

models, not only in the previous setting (Chapter 5), but also in this setting. The other

semantic baseline (SE ) exhibited the third-highest predictive performance over the other

baseline models. The inclusion of vector semantics may have caused SE to showcase

performance to this level. The performance differences of the two semantic baselines DE

and SE indicate the need for dynamic vector semantics over static vector semantics.

Overall, the three link prediction baselines, CN, JI and PA, performed poorly across

all k values indicating that the LBD process favours techniques tailored to LBD type

problems rather than to the direct usage of conventional measures. A similar conclusion

is reached in Chapter 5.

Next, this study evaluated the predictive performances of the three highest-performing

proposed LBD models (FTM, DTM: LSTM 1 and TAM ) in comparison to the three

competitive baselines: AR, DE and SE. It is evident that FTM initially demonstrated a

30.2% performance increase over AR. The average performance increase of FTM over AR

was 19.88%. Relative to the two semantic baselines (DE and SE ), FTM demonstrated

average performance increase of 27.33% and 30.89%, respectively. The proposed DTM

variant, DTM: LSTM 1 displayed the following average performance increases over the

baselines: 17.43% (compared to AR), 24.64% (compared to DE ) and 28.44% (compared

to SE ). The third highest-performing proposed LBD model, TAM displayed the follow-

ing average performance increases 12.04%, 19.24%, 23.05% over the baselines, AR, DE

and SE, respectively. Overall, the prediction increases indicate that the proposed LBD

models demonstrated significant performance increases over the baselines.

Overall, both the P@k and MAP@k results indicate that the proposed LBD models

not only detected novel knowledge linkages with high precision (i.e., the P@k results),

but also demonstrated a better ordering of new knowledge (i.e., the MAP@k results).

However, despite these promising results, this study aimed to verify the consistency of

the predictive performances through the use of the Geometric Mean Average Precision
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Figure 6.3: MAP@k results for the four golden test cases

at k (GMAP@k) evaluation metric. More specifically, GMAP penalises LBD models

with unstable predictive performances in the test cases, as discussed in Chapter 3. As

in the previous setups, the k value was increased by increments of 10, beginning at 10

and going up to 100. Figure 6.4 denotes the predictive performances of the LBD models

in terms of GMAP. The three highest-performing proposed LBD models: FTM, DTM:

LSTM 1 and TAM also displayed the highest GMAP performances. This shows not

only that they had the highest overall predictive performances, but also the highest

consistent predictive performances. It is interesting to observe that the other DTM

variants (i.e., all except DTM: LSTM 1 ) were penalised, especially when k = 10, due to
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Figure 6.4: GMAP@k results for the four golden test cases

their unstable predictive performances in test cases such as FO-RD. Nevertheless, these

DTM variants displayed better GMAP performances for the ensuing k values relative

to the most competitive baseline AR, indicating the potential contributions of feature

learning using deep learning models in the LBD workflow (that are worth exploring and

expanding in the future LBD models).

In the next experimental setting, the search for novel knowledge was limited to drugs by

retaining the CTD chemicals that had a corresponding mapping to the drugs in Drug-

Bank (Yang, Zhao, Waxman & Zhao 2019). Thus, this setting is relatively similar to
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drug repurposing, where the idea is to propose existing drugs that may have potential

relationships to a user-specified disease. Tables 6.6, 6.7, 6.8, and 6.9 present the P@k

results for golden test cases RD, MIG, AD and SZ, respectively. As in the previous

setups, FTM, DTM: LSTM 1 and TAM often demonstrated the highest predictive per-

formances in every test case across all k values. Figure 6.5 illustrates the MAP@k results

of the golden test cases (i.e., RD, MIG, AD and SZ ) (also reported in Table B.2).

Table 6.6: P@k results for FO-RD test case using only drugs, where topic A is RD

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.0 0.0 0.033 0.075 0.12 0.117 0.1 0.088 0.089 0.08

DE (baseline) 0.1 0.1 0.067 0.15 0.2 0.167 0.143 0.125 0.122 0.13

SE (baseline) 0.1 0.15 0.1 0.15 0.2 0.183 0.157 0.175 0.178 0.17

CN (baseline) 0.0 0.0 0.0 0.05 0.08 0.1 0.086 0.088 0.1 0.11

JI (baseline) 0.2 0.1 0.067 0.05 0.04 0.033 0.043 0.05 0.056 0.05

PA (baseline) 0.0 0.05 0.1 0.075 0.1 0.083 0.1 0.1 0.1 0.11

DTM: LSTM 1 0.4 0.4 0.3 0.25 0.22 0.2 0.214 0.188 0.2 0.2

DTM: LSTM 2 0.1 0.1 0.1 0.075 0.08 0.083 0.086 0.1 0.1 0.1

DTM: LSTM 3 0.1 0.15 0.1 0.1 0.1 0.083 0.1 0.1 0.1 0.09

DTM: CNN 0.1 0.05 0.067 0.075 0.14 0.133 0.129 0.125 0.122 0.14

DTM:
CNN LSTM

0.1 0.1 0.067 0.05 0.08 0.067 0.071 0.088 0.1 0.11

DTM:
LSTM CNN

0.0 0.05 0.133 0.1 0.08 0.083 0.086 0.1 0.089 0.08

FTM 0.4 0.25 0.233 0.175 0.18 0.15 0.129 0.125 0.122 0.14

TAM 0.2 0.2 0.167 0.125 0.14 0.15 0.143 0.138 0.133 0.12

Table 6.7: P@k results for MG-MIG test case using only drugs, where topic A is MIG

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.1 0.2 0.233 0.2 0.16 0.167 0.157 0.188 0.189 0.21

DE (baseline) 0.4 0.2 0.167 0.125 0.16 0.183 0.214 0.213 0.211 0.21

SE (baseline) 0.1 0.15 0.167 0.2 0.18 0.183 0.186 0.188 0.167 0.17

CN (baseline) 0.0 0.0 0.033 0.05 0.06 0.067 0.071 0.088 0.111 0.11

JI (baseline) 0.0 0.0 0.0 0.05 0.06 0.05 0.057 0.088 0.1 0.1

PA (baseline) 0.0 0.1 0.067 0.1 0.1 0.117 0.129 0.125 0.156 0.17

DTM: LSTM 1 0.4 0.5 0.433 0.425 0.44 0.4 0.4 0.375 0.356 0.35

DTM: LSTM 2 0.2 0.3 0.3 0.325 0.36 0.333 0.371 0.363 0.333 0.35

DTM: LSTM 3 0.2 0.2 0.267 0.25 0.24 0.25 0.243 0.225 0.233 0.25

DTM: CNN 0.5 0.4 0.4 0.375 0.36 0.333 0.314 0.363 0.356 0.34

DTM:
CNN LSTM

0.3 0.3 0.4 0.375 0.38 0.367 0.386 0.35 0.344 0.37

DTM:
LSTM CNN

0.4 0.35 0.367 0.35 0.34 0.333 0.343 0.35 0.333 0.34

FTM 0.7 0.65 0.5 0.475 0.46 0.45 0.429 0.438 0.411 0.39

TAM 0.6 0.45 0.367 0.35 0.34 0.367 0.371 0.35 0.333 0.33
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Table 6.8: P@k results for AD-INN test case using only drugs, where topic A is AD

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.5 0.45 0.4 0.4 0.4 0.417 0.429 0.413 0.411 0.41

DE (baseline) 0.2 0.25 0.233 0.225 0.24 0.25 0.257 0.238 0.233 0.24

SE (baseline) 0.0 0.0 0.033 0.075 0.08 0.083 0.1 0.113 0.144 0.15

CN (baseline) 0.0 0.0 0.0 0.0 0.02 0.017 0.014 0.025 0.044 0.05

JI (baseline) 0.0 0.0 0.033 0.05 0.04 0.033 0.043 0.038 0.067 0.07

PA (baseline) 0.0 0.0 0.0 0.0 0.0 0.017 0.014 0.038 0.044 0.05

DTM: LSTM 1 0.7 0.65 0.667 0.7 0.68 0.717 0.743 0.713 0.711 0.7

DTM: LSTM 2 0.7 0.65 0.733 0.75 0.74 0.733 0.729 0.75 0.744 0.73

DTM: LSTM 3 0.8 0.75 0.667 0.7 0.7 0.667 0.657 0.65 0.622 0.64

DTM: CNN 0.7 0.6 0.533 0.5 0.5 0.467 0.471 0.513 0.5 0.5

DTM:
CNN LSTM

0.6 0.55 0.633 0.65 0.62 0.6 0.614 0.625 0.622 0.62

DTM:
LSTM CNN

0.5 0.65 0.733 0.7 0.68 0.7 0.7 0.675 0.644 0.65

FTM 0.8 0.65 0.7 0.65 0.62 0.6 0.586 0.588 0.556 0.58

TAM 0.5 0.45 0.433 0.45 0.46 0.45 0.457 0.488 0.5 0.5

Table 6.9: P@k results for SZ-PA2 test case using only drugs, where topic A is SZ

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.1 0.15 0.167 0.225 0.26 0.283 0.257 0.238 0.222 0.2

DE (baseline) 0.1 0.05 0.133 0.15 0.12 0.117 0.114 0.125 0.122 0.13

SE (baseline) 0.0 0.0 0.0 0.0 0.04 0.05 0.071 0.1 0.089 0.09

CN (baseline) 0.0 0.0 0.0 0.0 0.0 0.017 0.014 0.013 0.022 0.03

JI (baseline) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.011 0.03

PA (baseline) 0.0 0.0 0.0 0.05 0.04 0.033 0.043 0.038 0.033 0.04

DTM: LSTM 1 0.5 0.4 0.367 0.35 0.38 0.4 0.4 0.375 0.367 0.35

DTM: LSTM 2 0.3 0.25 0.233 0.2 0.24 0.267 0.271 0.313 0.322 0.32

DTM: LSTM 3 0.1 0.2 0.267 0.25 0.28 0.3 0.271 0.275 0.267 0.27

DTM: CNN 0.2 0.25 0.267 0.225 0.18 0.167 0.171 0.213 0.211 0.23

DTM:
CNN LSTM

0.7 0.6 0.567 0.5 0.44 0.4 0.357 0.375 0.378 0.4

DTM:
LSTM CNN

0.3 0.35 0.4 0.375 0.34 0.367 0.343 0.35 0.344 0.33

FTM 0.6 0.65 0.633 0.625 0.6 0.55 0.529 0.5 0.467 0.43

TAM 0.6 0.5 0.567 0.525 0.44 0.4 0.4 0.4 0.4 0.39
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Figure 6.5: MAP@k results for the four golden test cases using only drugs

The results obtained through the use of MAP (Figure 6.5) are consistent with observa-

tions from the previous settings, in which FTM, DTM: LSTM 1 and TAM demonstrated

the highest predictive performances. More specifically, FTM demonstrated a 41.2% per-

formance increase over the most competitive baseline AR at the outset of the k values.

The average performance increases of FTM, compared to the three most competitive

baselines: AR, DE, SE were 24.46%, 25.81% and 29.54%, respectively. The second-

highest performing model, DTM: LSTM 1 exhibited average performance increases of

19.45% (compared to AR), 20.8% (compared to DE ) and 24.53% (compared to SE ).

The proposed LBD model TAM displayed average performance increases of 14.37%,
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15.72% and 19.45% compared to the three baseline models AR, DE and SE, respec-

tively. It is also noteworthy that all the proposed LBD models showcased significant

performance increases (Figure 6.5), providing further support for their potential reuse

capabilities, even in the very first iteration of the grab-and-glue framework. As in the

previous setup, link prediction baseline models showcased poor predictive performances,

further substantiating the need for LBD-tailored measures rather than the direct use of

conventional measures. The main reason for the poor performances of such conventional

measures could be the complexity of the problem that LBD attempts to address, which

requires more comprehensive and detailed semantic deductions.

Subsequently, GMAP@k was used to verify the consistency of the predictive perfor-

mances in this experimental setup. Figure 6.6 depicts the results obtained using GMAP.

The GMAP results also verify the robust predictive performances of the three LBD mod-

els, FTM, DTM: LSTM 1 and TAM. Except for DTM: LSTM CNN at the k value of

10, all the other proposed LBD models demonstrated consistent predictive performances

in comparison to the baselines. This further supports the potential reusability of the

proposed LBD models.

In spite of the promising results observed, it was necessary for this study to further ver-

ify the potential reusability of the proposed LBD models in an extended setup. Within

an extended setup, a user is interested in exploring potential novel knowledge linkages

greater than 100 (i.e., in the long run). To model this situation, the predictive perfor-

mances of the LBD models are observed until k is equal to 250. The MAP and GMAP

results of this extended experimental setup are illustrated in Figures 6.7 and 6.8, respec-

tively. When observing the results in Figures 6.7 and 6.8, it is clear that all the proposed

LBD models outperformed the baseline models, not only in terms of overall predictive

performance, but also in the consistency of their predictive performance across the test

cases even in the long run. This provides evidence for two important things: firstly, the

efficient reusability of the proposed LBD models, and secondly, the power of diachronic

semantic inferences to aid LBD models in discovering implicit linkages in the knowledge

discovery process of the LBD workflow.
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Figure 6.6: GMAP@k results for the four golden test cases using only drugs

6.5.1 Strengths of the Proposed LBD models

As in the previous setting (discussed in Section 5.10.3 of Chapter 5), the following eight

strengths may explain why the proposed LBD models demonstrated robust predictive

performances in all experimental setups in this reuse setting (even in the very first it-

eration of the grab-and-glue framework). These strengths are as follows: integration of

global semantics, intermingling of vector semantics with temporal dimension, disentan-

gling of semantic shifts from different perspectives, nuanced temporal analysis, use of

multiple characteristics, integration of machine learning and deep learning techniques,
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domain independency, and potential direct and indirect uses of diachronic semantic in-

ferences.

• Integration of global semantics: The diachronic semantic inferences used as the core

analysis unit in the proposed LBD models enclose global scale semantics. The use

of a global picture of topic interactions enables models to perform comprehensive,

detailed semantic deductions by analysing semantic relationships between scientific

topics, with a wide scope.

• Intermingling of vector semantics with temporal dimension: The proposed LBD mod-

els are sensitive to the temporal semantics of scientific topics, which opens up a differ-

ent dimension and allows them to detect signals of potential novel knowledge linkages.

In other words, the proposed LBD models take advantage of cues that are invisible

to traditional LBD models (which merely focus on static literature analysis) through

co-modelling vector semantics with the temporal dimension of the scientific topics.

• Disentangling of semantic shifts from different perspectives: This thesis disentangled

the diachronic semantic inferences in three broader perspectives, namely individual,

pairwise and neighbourhood. For this reason, the proposed LBD models were able to

capture the semantically infused temporal trajectories of scientific topics in different

viewpoints, ultimately enriching the temporal signals on which they were based.

• Nuanced temporal analysis: This study integrated a circumstantial temporal analy-

sis component, using a wide range of techniques from sequence mining, time series

analysis and signal processing to scrutinise the derived semantically infused temporal

trajectories. These trajectories reflect the way in which scientific topics evolved in

latent embedding spaces across time. The integration of a circumstantial temporal

component enabled the proposed LBD models to elicit semantically infused temporal

cues in greater detail.

• Use of multiple characteristics: The proposed LBD models utilise multiple character-

istics to elicit novel knowledge linkages. The idea of integrating multiple characteris-

tics in the knowledge discovery is supported for the following two reasons. Firstly, it

enables the precise identification of local topics that could form potential novel knowl-

edge linkages. It does so by verifying the extent to which the local topics fulfil the
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characteristics of novel knowledge linkages through large-scale feature analysis. Sec-

ondly, it has been reported that novel knowledge could exist in different forms; thus,

the use of multiple characteristics may provide a platform to discover novel knowledge

linkages in different forms with increased coverage.

• Integration of machine learning and deep learning techniques: This thesis integrated

machine learning as well as recent advancements in deep learning techniques to detect

intricate structures in data. This is particularly important for complex reasoning

tasks like LBD, since the use of such techniques unravels complex patterns in data,

facilitating better predictive decisions.

• Domain independency: The proposed LBD models are completely free from knowl-

edge inferences made using external knowledge resources to ensure their widespread

applicability. More specifically, the robust predictive performances of the proposed

LBD models do not rely on domain-dependent semantic inferences. As such, they

could be broadly applicable, independent of domain or problem setting to provide

broader community benefits.

• Potential direct and indirect uses of diachronic semantic inferences: The proposed

LBD models showcase two different perspectives of the diachronic semantic infer-

ences: firstly, direct usage, in which semantically infused temporal trajectories are

used directly to elicit potential semantically infused temporal signals, and secondly,

indirect usage, where the idea is to use the semantically infused temporal trajectories

as a medium to facilitate knowledge discovery. As with the previous setup discussed

in Chapter 5, this reuse setting provides evidence for the potential positive influence of

both the direct and indirect uses of the diachronic semantic inferences on the discovery

of novel knowledge linkages.

6.5.2 Potential Bottlenecks

One of the key benefits of verifying the reusability of LBD models in new application

areas is that it provides better insights into potential bottlenecks. These insights can

be used as a guide to further enhance LBD models. Due to the complexity of the

problem that LBD attempts to solve, it is difficult (or perhaps even impossible) to

produce universal LBD models that perfectly predict potential novel knowledge linkages
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in every possible setting. Therefore, identifying potential bottlenecks through reuse

research helps to establish an extended platform from which to elicit precise future

enhancements to each of the new reuse settings.

The main bottleneck that this study observed from the results obtained in the first

iteration of the grab-and-glue framework was the loss of performance of the proposed

LBD models in this new reuse setting, relative to the results observed in Chapter 5.

One main reason for this decline in performance could be the unavailability of the two

semantic shifts (pairwise distance proximity and neighbourhood distance proximity) in

this new reuse setting, due to their incompatibility. Otherwise stated, this setting only

employed four semantically infused temporal trajectories to discover novel knowledge

linkages, while the setting in Chapter 5 employed six temporal trajectories. This leads

to the following question: ‘does the number of meaningful diachronic semantic inferences

(i.e., the number of semantically infused temporal trajectories derived through seman-

tic shifts for each local topic) integrated into the knowledge discovery process positively

correlate with the predictive performance?’.

To seek out answers to this question, this thesis analyses the performance impact of

different combinations of semantically infused temporal trajectories in the knowledge

discovery process. More specifically, the four main trajectory combination types sum-

marised in Table 6.10 are considered for this analysis.

Table 6.10: Trajectory combination types used to analyse their performance impact

Combination

Type
Trajectory Combinations

Total

Combinations

1 trajectory IGS, ILS, PSD, NSD 4

2 trajectories IGS+ILS, IGS+PSD, IGS+NSD, 6

ILS+PSD, ILS+NSD, PSD+NSD

3 trajectories IGS+ILS+PSD, IGS+ILS+NSD, 4

IGS+PSD+NSD, ILS+PSD+NSD

4 trajectories IGS+ILS+PSD+NSD 1

Figure 6.9 presents the MAP@k results obtained for the 15 trajectory combinations sum-

marised in Table 6.10. It is evident that trajectory combination types: 1 trajectory, 2

trajectories and 3 trajectories often underperformed the trajectory combination type: 4
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trajectories (i.e., IGS+ILS+PSD+NSD). Even though PSD+NSD demonstrated a slight

performance increase over 4 trajectories at MAP@10 and MAP@20, its performance de-

creased swiftly from MAP30 onwards. Overall, IGS+ILS+PSD+NSD displayed the

highest and most consistent predictive performance across the k values. It is also in-

teresting to observe that even the most simplified versions of the proposed LBD model

(i.e., the performances of 1 trajectory, 2 trajectories and 3 trajectories) displayed better

predictive performances than the baseline models (see Figure 6.9), indicating the strong

positive influence of the proposed diachronic semantic inferences in the LBD workflow.

Subsequently, this study analysed the average predictive performance of the trajectory

combination types outlined in Table 6.10. The results obtained through this analysis

are presented in Figure 6.10. Overall, it is evident that at each k value, LBD predictive

performance was highest for 4 trajectories, followed by 3 trajectories, 2 trajectories and

1 trajectory.

In essence, this study observed a strong positive correlation between the number of

temporal trajectories and the average predictive performance. The average Pearson’s

correlation coefficient was 0.971 across the k values (i.e., 10 to 100 ). Therefore, it

can be concluded that LBD performance strongly favours the number of meaningful

diachronic semantic inferences utilised in the knowledge discovery process. This also

verifies a potential reason for the performance loss in this reuse setting compared to

that in Chapter 5, which is the unavailability of the two diachronic inferences, pairwise

distance proximity and neighbourhood distance proximity. As discussed at the outset

of this section, reuse research provides a valuable opportunity to identify precise future

enhancements in each new setting. This is because it is extremely difficult (or sometimes

impossible) to develop LBD models that perfectly predict novel knowledge linkages in

every possible setting. The bottleneck and its potential causes (observed through each

iteration of the grab-and-glue framework) can be fixed in the subsequent iteration, in

order to enhance the predictive performance of the LBD workflow.

6.5.3 Considerations for the Second Iteration of the Grab-and-glue

Framework

There is a strong positive correlation between the number of meaningful diachronic

semantic inferences and LBD predictive performance. Thus, the integration of novel
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Figure 6.9: LBD predictive performance with every possible combination of the four
adapted semantically infused temporal trajectories in this reuse setting
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Figure 6.10: Average predictive performance with the number of semantically infused
temporal trajectories

meaningful diachronic semantic inferences (i.e., more meaningful semantically infused

temporal trajectories through semantic shifts) may have a positive impact on LBD pre-

dictive performance. Therefore, one goal for the second iteration of the grab-and-glue

framework is the integration of more meaningful diachronic semantic inferences in or-

der to make up for the absence of the two semantic shifts used in the previous setting

(pairwise distance proximity and neighbourhood distance proximity). With this in mind,

this study proposes semantic shifts (such as those below) in the next iteration of the

grab-and-glue framework.

In this new reuse setting, local topics are detected through time-sliced analogy mining.

Therefore, local topics indicate concepts that may be worth exploring with regard to

topic A. Thus, if these local topics get condensed (i.e., becoming closer to each other)

over time, the topics in such condensed clusters may demonstrate potential signals of

novel knowledge linkages. For instance, consider a local topic of interest: lti, depicted

as a blue dot in Figure 6.11. The green dots signify the local topics extracted via

time-sliced analogy mining, and the grey dots depict the remaining topics in the vector

spaces. When closely inspecting Figure 6.11, it is evident that at timestamp t=1, lti

has only one other local topic within the r1 sized radius of its neighbourhood. However,

with time, the number of local topics in its neighbourhood increases, resulting in the

formation of a slightly condensed cluster. In essence, the semantically infused temporal

trajectory in this instance signifies how condensed the neighbourhood of lti becomes



Reusability 237

Figure 6.11: Formation of condensed clusters of local topics (i.e., green dots) for a
local topic lti at a radius of r1 over time

Figure 6.12: Formation of condensed clusters of Local topics (i.e., green dots) for a
local topic lti at different radius values (e.g., r1 and r2) over time

with the local topics extracted via analogy mining over time. This idea could be further

extended by integrating different neighbourhood radius sizes, as shown in Figure 6.12.

Exploiting such meaningful diachronic inferences in the next iteration of the grab-and-

glue framework may further increase the prediction results of the proposed LBD models

reported in this chapter.

6.5.4 Limitations

This study utilises time-sliced evaluation to analyse and compare results due to its unique

characteristics such as automated, replicable, quantifiable, informative and modular that

are lacking in other LBD evaluation techniques (Henry 2019, Yetisgen-Yildiz & Pratt

2009). To date, time-slice is the only evaluation technique in the LBD field that is

capable of performing large-scale knowledge discovery (Henry 2019). Further details on

this selection are discussed in Chapter 3. The reliance on co-occurrence in the time-

sliced evaluation may introduce noise, since co-occurrence does not necessarily imply a

legitimate relationship between two topics. Thus, the use of the time-sliced evaluation

only provides an approximate platform for comparing results.

Due to this chapter’s focus on reusability, this study employed the Arrowsmith features

in the two-node search, adapted to this new reuse setting (similar to our models and other

baselines). Nevertheless, the online version of the Arrowsmith one-node search follows
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a different approach to locate potential C concepts (in situations similar to this reuse

setting). Therefore, the Arrowsmith results reported as part of this reusability study

may not necessarily indicate the performance of the online version of the Arrowsmith’s

one-node search.

6.6 Summary

Through this research into reusability, this thesis attempted to creatively uncover areas

in which the proposed LBD models could be applied. The proposed three LBD models

demonstrated significant performance increases even in the very first iteration of grab-

and-glue framework compared to the baseline models not only in terms of the direct uses

of semantically infused temporal trajectories, but also in terms of their indirect uses.

Overall, the experimental results demonstrate the potential reusability of the proposed

LBD models, which also verifies the power of diachronic semantic inferences with fine-

tuned temporal analysis in the LBD workflow. The unavailability of the two semantic

shifts (pairwise distance proximity and neighbourhood distance proximity) in this new

reuse setting may have decreased the performance of the proposed LBD models relative

to their performance in the previous setting discussed in Chapter 5. This emphasises the

need to accommodate further meaningful diachronic semantic inferences in the knowl-

edge discovery workflow, which could be considered as an improvement in the second

iteration of the grab-and-glue framework.

6.6.1 Major Contributions

Through this reuse research, the thesis could showcase a distinct perspective of the

proposed LBD models (i.e., their vertical reusability). To summarise, the major con-

tributions of this chapter are outlined below, and are discussed in detail in Chapter

8.

• Performing large-scale reuse research by integrating considerations of reusability through

a methodical reuse plan.

• Demonstrating the vertical reuse of the proposed LBD models considering an oppor-

tune application area in the LBD field.



Reusability 239

• The proposed LBD models exhibit a greater flexibility in adapting to new reuse set-

tings, due to their domain-agnostic nature and to the power of vector semantics on

which they are based.

• Establishing the models’ fitness for the intended purpose through the first iteration in

the grab-and-glue framework, compared to the competitive baselines in the two-node

search, as well as state-of-the-art link prediction techniques.

• The trajectory combination types alone also demonstrated high predictive perfor-

mances compared to baseline models, which verifies the predictive power of the pro-

posed semantically infused temporal trajectories, even when they are used individually.



Chapter 7

Portability

7.1 Introduction

Portability is characterised by the extent to which a model can be applied in new envi-

ronments, at a cost that is lower than the model’s redevelopment costs (Mooney 1995,

1997, Ghandorh et al. 2020). Despite several decades of LBD research, most proposed

LBD models suffer from a major research deficiency which is lack of portability due

to their excessive dependency on semantic inferences performed using domain-specific

knowledge resources (Kastrin & Hristovski 2020, Hui & Lau 2019, Thilakaratne et al.

2019b). Consequently, these LBD models tend only to support knowledge discovery in

a single problem setting or domain. To date, LBD research is mostly limited to the

medical domain, thereby relying on resources that merely support medical data anal-

ysis such as MeSH, UMLS, SemRep and SemMedDB to perform semantic inferences

(Kastrin & Hristovski 2020, Henry & McInnes 2017, Thilakaratne et al. 2019b,a). It is

noteworthy that some of these LBD models are not even generalisable within the medi-

cal domain itself, due to their usage of highly specialised knowledge resources that are

mostly available for a single or limited problem setting(s) (e.g., Gene Ontology, SIDER

and PharmGKB).

The potentiality of LBD framework outside the medical domain has been experimented

by few LBD studies (Hui & Lau 2019, Sebastian et al. 2017a). Despite the promise,

these studies have tended to overlook the importance of portability since their models

are mostly specific to the selected problem (Hui & Lau 2019). Most of these non-medical

240
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models require human intervention or statistical methods due to the unavailability of

resources such as MeSH, UMLS, SemRep and SemMedDB outside the medical domain

(Hui & Lau 2019). For instance, Kostoff et al. (2008) have stated the complexity of

processing the text in non-medical domains due to the unavailability of MeSH. The

recent LBD review by Hui & Lau (2019) have identified that lack of comprehensive

ontologies outside the medical domain as an often-cited major challenge that inhibits

the adaptation of the LBD workflow to other disciplines.

One of the remedies proposed by Hui & Lau (2019) is the use of domain-specific con-

trolled vocabularies such as the ACM Computing Classification System (ACM CCS)1

for domains such as computer science. Even though this classification was developed by

computer science domain experts, it is comparatively small-scale (contains nearly 2,000

subject headings) and getting updated more slowly (the latest version was released in

2012) (Han et al. 2020). Moreover, such schemata do not capture concrete, fine-grained

concepts and may only be useful for identifying relatively large areas in the computer

science domain (Han et al. 2020, Salatino et al. 2020). Other prominent controlled vo-

cabularies (such as the Physics and Astronomy Classification Scheme (PACS)2 (Smith

2019), Physics Subject Headings (PsySH)3 (Smith 2020), Mathematics Subject Classi-

fication (MCS)4 (Lange et al. 2012, Dunne & Hulek 2020) and Journal of Economic

Literature (JEL) classification5 (Cherrier 2017, Heikkilä 2020)) are also limited due to

their small-scale nature, as well as slow and infrequent updates. Even though classifica-

tions such as the Library of Congress Classification (LCC)6 encompass several disciplines

and are actively maintained (Chan et al. 2016), such schemata display a lack of breadth

and depth which inhibits their capacity to carry out knowledge discovery at an adequate

level of granularity. For instance, LCC only uses the three topics: electronic computers,

computer science and computer software to characterise the computer science discipline

(Salatino et al. 2020). Such examples illustrate the challenges of ensuring the portability

of the LBD workflow.

1https://dl.acm.org/ccs
2https://journals.aps.org/PACS - small-scale (9.1K) (Han et al. 2020), latest version is from 2010

and no longer been maintained (Smith 2020, 2019)
3https://physh.aps.org/ - small-scale (3.5K) (Han et al. 2020) and latest version is 1.1.1 (Smith

2020)
4https://mathscinet.ams.org/mathscinet/msc/msc2020.html - small-scale (6.1k) (Han et al. 2020)

and usually gets updated in 10 years (e.g., new MSC 2020 version is the update of its 2010 version)
(Salatino et al. 2020)

5https://www.aeaweb.org/econlit/jelCodes.php - small-scale (1K) (Heikkilä 2020) and the last
major revision was performed in 1990 (Salatino et al. 2020, Kosnik 2018)

6https://www.loc.gov/catdir/cpso/lcco/

https://dl.acm.org/ccs
https://journals.aps.org/PACS
https://physh.aps.org/
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
https://www.aeaweb.org/econlit/jelCodes.php
https://www.loc.gov/catdir/cpso/lcco/


Portability 242

More recently, Sebastian et al. (2017b) have attempted to deviate from the remaining

LBD models by integrating WordNet (Fellbaum 2012) for the first time in the LBD

discipline to propose an LBD model that can be easily applied to various research do-

mains. Even though their study undoubtedly ameliorates the typical LBD setting and

provides a different perspective on the LBD discipline, they merely consider WordNet

to identify the synsets (i.e., synonyms). Identification of synonyms may not necessarily

be the only domain-dependent impediment in the overall LBD workflow. Thus, it is

unclear whether their proposal is capable of helping LBD models in general to achieve

greater portability.

Contemplating the benefits of the LBD approach in terms of providing speedier inno-

vation and enhanced research productivity, it is obvious that developing an interdisci-

plinary (or generalisable) LBD framework that could be easily portable across domains

to support general scientific problem solving is crucial. Even though the unavailability

of such an interdisciplinary/generalisable LBD framework remains to be a prolonged

open issue in the LBD discipline (Hui & Lau 2019), to the best of our knowledge, no

previous LBD studies have explicitly attempted to alleviate this issue. Motivated by

the enormous potential unravels through circumventing this prolonged research defi-

ciency, this thesis aims to propose a cost-efficient as well as easily pluggable portable

LBD framework. To accomplish this goal, this study considers the revolutionary oppor-

tunities offered through the Semantic Web (more specifically, using Linked Open Data

(LOD)). To the best of our knowledge, this is the first study to propose a portable LBD

framework to assist researchers in general scientific problem solving. Our proposal also

alleviates one of the top-cited major challenge faced by LBD studies outside the medical

domain, which is the unavailability of comprehensive ontologies in other disciplines (Hui

& Lau 2019).

The main research objective of this portability research is:

“to demonstrate the portability of the LBD workflow by proposing an interdisciplinary (or

generalisable) LBD framework to assist scientific problem solving in a domain-agnostic

manner”

as defined at the outset of this thesis (i.e., main objective 5 (RO5) in Chapter 1). With

this objective in mind, this chapter attempts to answer the following main research

question (RQ5 ): ‘how can an interdisciplinary (or generalisable) LBD framework be
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developed in a way that ensures the portability of the LBD workflow to new portable

environments with little or no cost?’. To this end, this study is divided into several

sub-components with the ultimate aim of putting forward the first steps towards this

research direction in the LBD discipline by considering the following four sub research

objectives.

• RO5.1. Identifying the impediments in existing LBD models that restrict their appli-

cability to certain problems/domains (discussed in Section 7.3).

• RO5.2. Identifying characteristics that need to be fulfilled in developing a portable

LBD system (discussed in Section 7.4).

• RO5.3. Identifying potential knowledge sources in Semantic Web that support the

identified portable characteristics defined, in relation to the LBD context (discussed

in Section 7.5).

• RO5.4. Circumventing the identified domain-dependent impediments by performing

semantic inferences using the selected knowledge resource, which supports portability

in the LBD context (discussed in Section 7.6).

This chapter is organised as follows. Section 7.2 is dedicated to describing the idea of

the Semantic Web and how this thesis was inspired to explore this direction to remedy

the portability problem that exists in the LBD workflow. Section 7.3 describes domain-

dependent impediments that are common in existing LBD models, which restrain their

applicability to other problem areas or domains. Section 7.4 defines portability in the

LBD context and establishes six characteristics that required to be fulfilled to attain a

portable LBD framework. Section 7.5 discusses how the selected knowledge resource in

the LOD cloud (i.e., Semantic Web) fulfil the idea of portability by cross-checking the

six characteristics defined in Section 7.4. The intention of Section 7.6 is to describe the

proposed remedies to the impediments identified in the existing LBD models. With this

regard, this study leverages Semantic Web technologies to perform semantic inferences

in the selected knowledge resource (introduced in Section 7.2 and verified in Section

7.5). Section 7.7 evaluates the suitability of the proposals described in Section 7.6 to

overcome the prevailing limitations by comparing the proposals with the commonly used

domain-specific resource in the LBD literature: MeSH (Medical Subject Headings). This
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section also revisits the strengths and weaknesses of the proposed remedies in the form

of an extended discussion. Finally, Section 7.8 summarises the main conclusions of this

chapter while also outlining its major contributions.

7.2 Semantic Web

Semantic Web enables machines to browse the knowledge distributed across the Web

(Bizer et al. 2011). Consider a Wikipedia page that provides knowledge to human

readers. The knowledge contained in the Wikipedia page is opaque from the perspective

of the machines, as they ‘see’ nothing but a presentation markup of the Wikipedia page.

The idea of ‘Semantic Web’ was developed to allow computers to explore the knowledge

on the Web (i.e., to make the Web data machine-readable) (Coyle 2012). To realise this

goal, it was crucial to have a large amount of Web data in a standard format that could

be reached and managed by Semantic Web tools. In essence, to construct such Web of

Data, Semantic Web not only requires access to the data, but also to the relationships

among data points (as opposed to a large collection of datasets). Such interrelated

datasets available on the Web are also known as Linked Data that connect and share

data through dereferenceable Uniform Resource Identifiers (URIs) across a wide range

of applications (Mirizzi et al. 2010).

Figure 7.1 presents historical landmarks in the evolution process of the Semantic Web

into Linked Data (Méndez & Greenberg 2012). The main aim of Linked Data is to

expand the Web by publishing datasets in the form of RDF (Resource Description

Framework) and by setting up links between data from various other data sources. In

accordance with this aim, URIs are the fundamental units used to identify everything

and RDF is the fundamental linking structure that utilises URIs to name the relation-

ships between datapoints as well as the two ends of each relationship (Mirizzi et al.

2010). In essence, RDF is the W3C (World Wide Web Consortium) standard for en-

coding the knowledge contained in the resources in World Wide Web (WWW) (Decker,

Melnik, Van Harmelen, Fensel, Klein, Broekstra, Erdmann & Horrocks 2000, Decker,

Mitra & Melnik 2000).
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Figure 7.1: Historical landmarks in the evolution of Semantic Web into Linked Data
(Méndez & Greenberg 2012)

Figure 7.2: Structure of an RDF triple

7.2.1 RDF (Resource Description Framework) Triple

The unit structure of an RDF is a triple, composed of three items (Decker, Mitra &

Melnik 2000). The first item is the subject, which represents the resource. It is a URI

reference that uniquely identifies the described resource. The subject is followed by the

second item, the predicate. It represents the relationship described through the RDF

triple. Like the subject, the predicate is also a URI. The third item of the RDF triple

is the object, which can either be a literal or a URI. It relates to the subject via the

relationship specified by the predicate. Figure 7.2 depicts these three components in an

RDF triple7.

7Note that sometimes the subject and object could be blank nodes.
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7.2.2 RDF Graph

When there is a collection of RDF triples, this becomes an RDF graph (Carroll et al.

2004). For instance, consider Figure 7.3, which represents a simplified example of an

RDF graph. In this graph, the subject, predicates and objects can be defined as sum-

marised below.

• The subject of this RDF graph is the resource specified by <http://www.w3.org/

People/EM/contact#me>, which is a URI.

• The predicates of this RDF graph are:

– <http://www.w3.org/2000/10/swap/pim/contact#fullName>, which is a URI

that describes the ‘whose name is’ relationship.

– <http://www.w3.org/2000/10/swap/pim/contact#mailbox>, which is a URI

that describes the ‘whose email is’ relationship.

– <http://www.w3.org/2000/10/swap/pim/contact#personalTitle>, which is

a URI that describes the ‘whose title is’ relationship.

– <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, which is a URI that

describes the ‘subject is a type of’ relationship.

• The objects of this RDF graph are:

– Eric Miller, which is a literal that describes the name of the person identified by

the subject.

– <mailto:em@w3.org>, which is a URI that describes the email address of the

person identified by the subject.

– Dr., which is a literal that describes the title of the person identified by the

subject.

– <http://www.w3.org/2000/10/swap/pim/contact#Person>, which is a URI

that describes the type of the subject as a Person.

According to the standards, the RDF triple can be written as (<subject>, <predicate>,

<object>) (Carroll et al. 2004). Therefore, the example RDF graph illustrated in Figure

7.3 can be denoted in N-triples format, as depicted in Figure 7.4.

<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/People/EM/contact#me>
<http://www.w3.org/2000/10/swap/pim/contact#fullName>
<http://www.w3.org/2000/10/swap/pim/contact#mailbox>
<http://www.w3.org/2000/10/swap/pim/contact#personalTitle>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<mailto:em@w3.org>
<http://www.w3.org/2000/10/swap/pim/contact#Person>
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Figure 7.3: Simplified example of an RDF graph
Source: https://www.w3.org/TR/rdf-primer/fig1dec16.png

Figure 7.4: N-triples format of RDF graph

7.2.3 Linked Open Data

Linked Open Data is a powerful mixture of open data and linked data. The idea of

blending both open and linked data was formed in 2007 through a project entitled linking

open data (Heath & Bizer 2011a). Since then, the W3C community and the semantic

web research community have put tremendous effort into expanding the Linked Open

Data (LOD) cloud. Figure 7.5 denotes the growth in the number of datasets published

on the Web since the inception of the linking open data project. Currently, the LOD

cloud contains over 1200 datasets, as depicted in Figure 7.6. Each node in Figures 7.5

and 7.6 represents distinct open datasets published as linked data. The edges indicate

whether there are links between the items in two datasets.

From the datasets published under LOD cloud, DBpedia has been at the heart of the

LOD cloud since the establishment of the linking open data project (Figures 7.5 and 7.6)

and is considered to be the core cross-domain knowledge base (Heath & Bizer 2011a).

It is the Linked Data version of Wikipedia, and has also been interlinked with numerous

other knowledge resources since the initiation of the LOD cloud (see Figures 7.5 and

7.6).

https://www.w3.org/TR/rdf-primer/fig1dec16.png
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Figure 7.5: Evolution of LOD cloud over the years

7.2.4 DBpedia Knowledge Base

DBpedia is a giant among current cross-domain knowledge bases, and serves as a hub

in the Web of Linked Data (Lehmann et al. 2015, Heath & Bizer 2011a). It is also

considered to be one of the main factors behind the success of the linking open data

project (discussed in Section 7.2.3) (Lehmann et al. 2015). DBpedia was initiated in

2007 through the collaboration of the Free University of Berlin and University of Leipzig

(Abián et al. 2017). The main aim of DBpedia was to build a large-scale, cross-domain

and cross-lingual knowledge base by extracting the structured content in Wikipedia,

which is the most widely used encyclopedia, a globally popular and heavily visited

website, a central knowledge source of humankind, and a finest example of collaboratively

created content (Lehmann et al. 2015, Auer et al. 2007, Kobilarov et al. 2009).

While most existing knowledge bases cover only a specific domain (Kobilarov et al. 2009),

DBpedia spans multiple domains and languages by connecting isolated topical islands

into one interconnected knowledge space (Heath & Bizer 2011a). Moreover, most of these

existing knowledge bases are created by a small number of knowledge engineers; thus,

it is highly cost-intensive to keep their information up-to-date, as domains change with

time (Kobilarov et al. 2009). DBpedia addresses this issue through its open community

vision.
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Figure 7.6: LOD cloud as at May, 2020 (note that the colours represent the topical
domain that each dataset represents) Source: https://lod-cloud.net/

Due to the cross-domain and cross-lingual nature of DBpedia, it has been widely used

in numerous applications, algorithms and tools including data integration, document

ranking, topic detection and named entity recognition (Lehmann et al. 2015, Exner &

Nugues 2012). In essence, DBpedia provides a rich platform to explore the gigantic

knowledge source in Wikipedia and other datasets linked to it through sophisticated

queries (Leal et al. 2012), using RDF query languages such as SPARQL (Pérez et al.

2009). Figure 7.7 demonstrates the knowledge extraction framework of DBpedia (Bizer

et al. 2009).

Succinctly, DBpedia prevails over existing knowledge bases due to its inheritance of

many strong points that are lacking in the existing knowledge bases as summarised

below (Mirizzi et al. 2010, Kobilarov et al. 2009).

https://lod-cloud.net/
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Figure 7.7: High-level overview of DBpedia knowledge extraction (Bizer et al. 2009)

• DBpedia spans multiple domains, including more than 23 billion pieces of information

(i.e., RDF triples).

• DBpedia plays a central role in the LOD community effort, as well as being one of the

central interlinking hubs of Web of Data and the core cross-domain knowledge base

in the LOD cloud.

• The real community agreement of DBpedia ensures that it is continuously updated,

which reflects its dynamic, fast-growing and up-to-date nature.

• DBpedia is multilingual and contains more than 130 localised versions.

Considering the aforementioned strengths of DBpedia (all of which are rare in compari-

son to the knowledge bases, both generally and in the LBD domain), this study selected

the DBpedia knowledge base for further analysis.
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Figure 7.8: Semantic augmentation generates additional knowledge

7.2.5 Semantic Augmentation

The key benefit of Linked Data and their accessibility through RDF query languages

such as SPARQL (Pérez et al. 2009) is the ability to attach semantics to a given text as

an aid to automatically interpret the meaning conveyed through a text. This procedure

is termed semantic augmentation (a.k.a. semantic tagging or semantic annotation)

(Dill et al. 2003). The main aim of semantic augmentation is to generate additional

knowledge from the text, as depicted in Figure 7.8. Note how semantic augmentation

has made the term coronavirus disease machine-interpretable. Therefore, the selection of

the DBpedia knowledge base (discussed in Section 7.2.4) ensures the ability to perform

such automated semantic inferences by exploring its massive machine-readable data

using a semantic augmentation procedure.

7.3 Existing Impediments

The purpose of this section is to identify the existing domain-dependent impediments in

the LBD workflow. In this regard, this study followed the framework that is typically

used in most LBD systems, as suggested in a recent LBD review by Henry & McInnes

(2017). This framework contains five main phases: preprocessing, term linking, uninfor-

mative term removal, term ranking and thresholding, and evaluation/display results, as

denoted in Figure 7.9.
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Figure 7.9: Typical LBD framework followed by most LBD models (Henry & McInnes
2017)

When closely inspecting the framework, it is clear that term linking denotes the knowl-

edge discovery algorithm employed in the LBD model. For instance, this could be the

feature engineering phase of the LBD model. The term ranking and thresholding phase

denotes the recommendation component of the model. This could be the machine learn-

ing component or even a simple statistical-based ranking mechanism employed in the

LBD model. Hence, most of the domain-dependent decisions are commonly performed

at the preprocessing and uninformative term removal stages. This is assuming that the

model is capable of identifying novel knowledge linkages with domain-independent fea-

tures at the feature engineering phase (i.e., features without the involvement of domain-

specific knowledge resources) and identifying domain-independent ranking mechanisms

during the recommendation component (i.e., employing machine learning or statistical-

based ranking methods without incorporating domain-dependent knowledge resources),

as highlighted in Figure 7.9.

Further disentangling tasks typically used in these two stages: preprocessing, and un-

informative term removal, the following four major impediments were identified as the

most common domain-dependent impediments in the existing LBD models: 1) concept

extraction (i.e., discipline-related terminology), 2) semantic type filtering, 3) synonym

identification and 4) granularity detection. This study intends to address the problem

of how to circumvent these impediments with high precision.
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7.4 Defining Portability in the LBD Setting

This section is dedicated to explaining the notion of portability and the criteria (or

characteristics) that should be fulfilled when proposing a portable framework in the

context of LBD.

Portability refers to a model’s ability to be executed in new environments (Mooney

1995). In the context of LBD, the new environments are typically different scientific

domains (i.e., cross-domain support) and publication languages (i.e., cross-lingual sup-

port). To facilitate a complete and accurate knowledge search in these new environments,

the LBD model should have high coverage of scientific facts from reliable and up-to-

date sources. Degree of portability denotes the costs involved in portability. A model

is portable if its degree of portability is lower than its redevelopment costs (Mooney

1995). In other words, the LBD model is portable if it is transferable across domains

and languages without any heavy configurations (i.e., easy transition) or involvement of

domain/language experts (i.e., automation).

In essence, the following six criteria should be fulfilled to ensure portability in the LBD

context, where the first four criteria signify the characteristics related to the new envi-

ronments of portability and the final two criteria indicate the characteristics related to

degree of portability.

• New environments of portability



1. Cross-domain support

2. Cross-lingual support

3. Reliability

4. Coverage

• Degree of portability


5. Easy transition

6. Automation



Portability 254

7.5 Portability Check with DBpedia

Bearing in mind the potential benefits of employing the DBpedia knowledge base within

the LBD workflow (discussed in Section 7.2), this study evaluated the extent to which

DBpedia meets the defined criteria in Section 7.4.

The first criterion, cross-domain support is fulfilled through the use of DBpedia, since it

is not restricted to a single main domain like the knowledge resources utilised so far in

the LBD field. More specifically, DBpedia is a cross-domain resource that spans a wide

range of academic domains, including (but not limited to) medicine, computer science,

sociology, psychology, geography, economics, anthropology, philosophy, law, languages

and literature, history, arts, social work, biology, chemistry, earth science, space science,

physics, mathematics, business, engineering (including chemical engineering, civil engi-

neering, educational technology, electrical engineering, material science and engineering,

mechanical engineering) etc. Therefore, using DBpedia ensures that the data in these

vast domains are reflected in the form of an interconnected knowledge space rather than

fragmented, isolated topical islands (Mendes et al. 2012, Titze et al. 2014, Lehmann

et al. 2015). This interconnected knowledge space allows us to transcend the restric-

tive environments of existing LBD models, which only cater to a single main domain or

problem.

The second criterion, cross-lingual support, is also compatible with DBpedia due to its

multilingual nature. This feature is rare among the knowledge resources utilised in the

LBD field. To date, DBpedia supports more than 130 language editions, including (but

not limited to) German, French, Italian, Spanish, Polish, Russian, Portuguese, Catalan,

Czech, Hungarian, Korean, Turkish, Arabic, Basque, Slovene, Bulgarian, Croatian, Greek

etc. Therefore, the use of DBpedia not only facilitates knowledge discovery in the English

language, but also in a vast range of other publication languages (Aprosio et al. 2013,

Lehmann et al. 2015, Chiarcos et al. 2012). This is particularly important in the LBD

field given the emerging non-English research that exists in the LBD literature (Gao,

Wang, Tao, Liu, Li, Yu, Yu, Tian & Zhang 2015, Qian et al. 2012, Yao et al. 2008).

The third criterion, coverage of information, is also preserved through the use of DBpe-

dia. The main reason for this is that DBpedia is considered to be the core cross-domain

knowledge base in the LOD cloud, lies at the heart of the LOD cloud, one of the central
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interlinking hubs of Web of Data, and plays a pivotal role in the LOD community’s work.

The main data source used in DBpedia is taken from Wikipedia, which is the most widely

used encyclopedia and the central knowledge source of humankind (Lehmann et al. 2015,

Auer et al. 2007, Kobilarov et al. 2009). In addition to knowledge from Wikipedia, DB-

pedia also interconnects with multitudinous knowledge resources that exist in the LOD

cloud. To date, DBpedia constitutes more than 23 billion pieces of information (i.e.,

RDF triples). This wealth of information means that DBpedia can facilitate rich and

informative knowledge discovery.

The fourth criterion, reliability, is ensured through the use of DBpedia, since it is contin-

uously expanded and updated in line with changes to Wikipedia (a knowledge resource

that is constantly improved and extended by a large global community). These infor-

mation updates and additions adhere to the use of predefined collaborative procedures

that ensure their reliability. One of the main negative consequences that could occur

due to the notion of open community vision is vandalism, which is handled by employ-

ing a variety of vandalism removal methods including bots, recent change patrols and

watchlists (Abián et al. 2017, Mola-Velasco 2011). The efficacy of these vandalism re-

moval methods is evident, since the number of reported incidental discoveries (in which

a reader identifies that vandalism has occurred) is considered to be rare (Broughton

2008). The methodical collaborative procedures involved in Wikipedia, as well as its

relative freedom from vandalism, ensure that the information that DBpedia encloses is

reliable and suited to knowledge discovery.

The fifth criterion, easy transition, is also fulfilled by the integration of DBpedia, since

it interconnects isolated topical islands into one common data space (Heath & Bizer

2011b). Thus, DBpedia provides a single uniform view across domains and publications

languages. This enables a querying of information that is more efficient than connecting

numerous single domain knowledge resources into one single space that demands profuse

design considerations (due to the differences in data types, data formats, programming

languages, etc.). Such a process of connecting single resources into one space would

be both time and labour intensive when changing domains. The use of DBpedia re-

duced such complexities, since it does not require any heavy configurations within the

transitions among domains and publication languages.

The sixth criterion, automation, is ensured through the use of DBpedia, since it is based
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on the vision of the Semantic Web, i.e., to make Web data machine-readable (Taye

2010). In essence, to enable the encoding of semantics into data, W3C has defined

technologies such as RDF and OWL, which make it possible for machines to access,

process and understand data without human intervention. Consequently, the knowledge

inferences required in the LBD process can be performed automatically without any

human intervention (i.e., either without domain expert involvements (in cross-domain

knowledge discovery) or without language expert involvements (in cross-lingual knowl-

edge discovery)). Succinctly, this helps LBD discovery to be performed automatically

in any domain and publication language that DBpedia supports.

Table 7.1 outlines the portability criteria check with DBpedia, along with a brief overview

of the above-discussed justifications indicating how each criterion is met. Overall, it is

evident that DBpedia adheres with all the characteristics that are defined considering the

new environments of portability and the degree of portability (Mooney 1995). Therefore,

this study mainly relies on DBpedia as the key knowledge base, in order to circumvent

existing domain-dependent impediments in the LBD workflow (discussed in Section 7.3).

Table 7.1: Assessing the suitability of DBpedia in a portable LBD framework

Criteria
Criteria

Check
Justification

Cross-

domain

Support

X DBpedia is not specific to a single domain, but spans mul-

tiple domains, and so avoids the fragmentation of data into

isolated topical islands.

Cross-

lingual

Support

X DBpedia provides its localised versions in more than 130

languages, thereby allowing information extraction not only

in English but also in other publication languages.

Coverage X DBpedia is the core cross-domain knowledge-base in the

LOD cloud, and it is also interlinked with numerous other

data sources. Currently, DBpedia covers more than 23 bil-

lion pieces of information (RDF triples).
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Reliability X DBpedia is continuously extended and improved by a large

global community with predefined collaboration procedures

(e.g., the use of templates), which makes it an up-to-date

and reliable resource.

Easy

Transition

X DBpedia is a single interconnected data space connecting

information from multiple domains into a uniform view.

Therefore, its information can be queried from multiple do-

mains and publication languages simultaneously, without

any heavy configurations.

Automation X The semantic web (including DBpedia) enables the machines

to understand the data by encoding semantics using well-

known technologies such as RDF and OWL, thereby al-

lowing knowledge inferences to be performed automatically

without any human/expert intervention.

7.6 Methodology

This section discusses how this study alleviates the detected domain-dependent impedi-

ments (discussed in Section 7.3) by performing semantic inferences that use the enormous

body of machine-understandable knowledge encoded in the DBpedia knowledge base (in

the form of RDF representation).

7.6.1 Concept Extraction

Identification of concepts from the unstructured text is one of the critical phases in

the LBD process, as all of the reasoning and inference making of the discovery process

relies on it. For this purpose, this study utilises DBpedia entity names (which represent

Wikipedia article titles) as the main source for concept extraction. The main reason for

the selection of DBpedia entity names is that they are considered to be well-formed and

succinct, resembling terms in a conventional thesaurus (Milne et al. 2006, Wang et al.
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Figure 7.10: Simplified example illustrating the semantic augmentation process

2009). Moreover, the dynamic, up-to-date and fast-growing nature of DBpedia (Wang

et al. 2009) ensures a high topic coverage during the concept extraction process.

For instance, consider the article title ‘Raynaud’s disease and primary pulmonary hy-

pertension’ (Celoria et al. 1960). The DBpedia entity extraction would be performed

as depicted in Figure 7.10. In essence, ‘http://dbpedia.org/resource/Raynaud_

syndrome’ and ‘http://dbpedia.org/resource/Pulmonary_hypertension’ denote the

corresponding DBpedia entries (or URIs) of the two concepts: Raynaud’s disease and

primary pulmonary hypertension. Note that for the term ‘Raynaud’s disease’, the latter

part of the DBpedia URI is ‘Raynaud syndrome’, and for the term ‘primary pulmonary

hypertension’, the latter part of the DBpedia URI is ‘Pulmonary hypertension’. The

main reason for such syntactic variations in the DBpedia entries is that Raynaud’s dis-

ease is a redirect resource (as discussed in Section 7.6.4); thus, this term is mapped to its

main entity resource, which is titled ‘Raynaud syndrome’. Similarly, primary pulmonary

hypertension is also a redirect resource in which ‘Pulmonary hypertension’ is the main

entity resource. Mapping the unstructured text to the corresponding DBpedia entries

(a.k.a. semantic augmentation, as discussed in Section 7.2.5) provides the opportunity

to make automated semantic deductions, in order to identify the meaning of concepts

in the text (Figure 7.10).

http://dbpedia.org/resource/Raynaud_syndrome
http://dbpedia.org/resource/Raynaud_syndrome
http://dbpedia.org/resource/Pulmonary_hypertension
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Figure 7.11: Exemplifying the need for discipline-related terminology extraction

7.6.2 Discipline-related Terminology Extraction

Unlike the existing resources used in the LBD domain (which merely cover concepts

in a single domain), DBpedia spans a wide variety of domains. Hence, the concepts

identified from the text are in multiple domains. However, the LBD user may only be

interested in retrieving new knowledge from a single main domain (e.g., analysing only

medical topics). In such situations, the extracted concepts that are not relevant to the

selected main domain need to be filtered out. For example, consider a paper entitled,

‘Detecting Signs of Dementia Using Word Vector Representations’ (Mirheidari et al.

2018). The semantic augmentation (as discussed in Section 7.6.1) can be performed, as

illustrated in Figure 7.11. If the user is only interested in medical topics in the knowledge

discovery, non-medical mappings such as word vector need to be removed (Figure 7.11).

The purpose of the discipline-related terminology extraction component (performed as

part of concept extraction) is to cope with situations like those illustrated in Figure 7.11.

To facilitate the identification of such discipline-related terminology, it is necessary to

explore the machine-readable knowledge encoded in the relevant DBpedia entry. For

instance, consider the paper title ‘Raynaud’s disease and primary pulmonary hyperten-

sion’ (Celoria et al. 1960), discussed in Section 7.6.1. The fact that the two concepts

Raynaud’s disease and primary pulmonary hypertension belong to the same domain (i.e.,

medicine) remains opaque to machines. This is where the mappings of the two DBpedia
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Figure 7.12: Predicates in DBpedia

URIs are crucial, since these URIs can be considered as the entry points from which to

explore the knowledge encoded in DBpedia (i.e., in essence, its RDF graph). To access

this encoded knowledge, the predicates (or properties) in the RDF graph can be utilised.

Predicates of the two DBpedia URIs in the example title are denoted in Figure 7.12.

From Figure 7.12, it is evident that there are numerous predicates available in DBpedia;

thus, it is necessary to carefully pick the predicate that is best suited to the problem

at hand. Table 7.2 presents examples of few selected predicates that are available in

DBpedia for the concept ‘Raynaud syndrome’. Similarly, the DBpedia predicates of the

remaining concept from the example title (‘Pulmonary hypertension’ ) are outlined in

Table C.1.

Table 7.2: Several predicates from the DBpedia RDF graph on the subject ‘Raynaud
syndrome’

No. Property

(Predicate)

Value (Object) Comments

1 dbo:abstract Raynaud syndrome, also known as Raynaud’s is a medical

condition in which there are episodes of reduced blood flow

due to spasm of arteries. Typically the fingers and less ...

denoting the summary of the re-
source from Wikipedia page

2 dbo:icd10 173.0 denoting the corresponding
mapping from ICD-10, where
173.0 maps to Raynaud
syndrome

3 dbo:icd9 443.0 denoting the corresponding
mapping from ICD-9, where
443.0 maps to Raynaud’s
syndrome

4 dbo:meshid D011928 denoting the corresponding
mapping from MeSH, where
443.0 maps to Raynaud disease
https://id.nlm.nih.gov/

mesh/D011928.html

https://id.nlm.nih.gov/mesh/D011928.html
https://id.nlm.nih.gov/mesh/D011928.html
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5 dbo:omim 179600 denoting the corresponding
mapping from OMIM, where
179600 maps to Raynaud
disease

6 dbo:wikiPage

ExternalLink

http://niams.nih.gov/Health Info/Raynauds Phenom

enon/default.asp, http://www.nhlbi.nih.gov/health/

dci/Diseases/raynaud/ray what.html ,

http://healthlink.mcw.edu/article/926055412.html

denoting the external pages
linked in Wikipedia page

7 dbo:wikiPageID 599203 denoting the page ID of
Wikipedia

8 dbp:diseasesdb 25933 denoting the correspond-
ing mapping from diseases
database, where 25933 maps
to Raynaud phenomenon

9 dbp:field dbr:Rheumatology denoting the corresponding
field(s) mapped

10 dct:subject dbc:Vascular-related cutaneous conditions

dbc:Autoimmune diseases

dbc:Rheumatology

dbc:Syndromes

dbc:Diseases of arteries, arterioles and capillaries

denoting the immediate cate-
gories of the subject Raynaud
syndrome, where ‘dbc:’ repre-
sents the DBpedia category

11 rdf:type owl:Thing, wikidata:Q12136 , dbo:Disease denoting the class that the sub-
ject Raynaud syndrome is an in-
stance of

12 owl:sameAs wikidata:Raynaud syndrome,

dbpedia-cs:Raynaud syndrome,

dbpedia-de:Raynaud syndrome,

dbpedia-es:Raynaud syndrome,

dbpedia-fr:Raynaud syndrome,

dbpedia-it:Raynaud syndrome,

dbpedia-ja:Raynaud syndrome,

dbpedia-ko:Raynaud syndrome,

dbpedia-nl:Raynaud syndrome,

dbpedia-pl:Raynaud syndrome,

dbpedia-pt:Raynaud syndrome,

dbpedia-wikidata:Raynaud syndrome

denoting the mappings of the
connected datasets for the sub-
ject Raynaud syndrome (note
that URIs with ‘dbpedia-xx’
denotes the corresponding lo-
calised entry)
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13 is dbo:wikiPage

Redirects of

dbr:Raynaud’s disease and Raynaud’s phenomenon,

dbr:Reynaud’s, dbr:Reynaud’s disease,

dbr:Raynaud’s disease, dbr:Raynaud phenomenon,

dbr:Reynaud’s phenomenon, dbr:Raynauds disease,

dbr:Reynaud’s Disease, dbr:Raynaud’s disorder ,

dbr:Intermittent arterial vasospasm,

dbr:Raynaud’s Disease, dbr:Raynaud’s syndrome,

dbr:Raynaud’s phenomenon,

dbr:Raynaud’s disease/phenomenon,

dbr:Raynaud disease, dbr:Raynauds,

dbr:Raynauds Syndrome,

dbr:Raynauld’s syndrome, dbr:Raynauld syndrome,

dbr:Reynaud’s phenomenon,

dbr:Primary Raynaud’s phenomenon,

dbr:Raynaud’s Phenomenon,

dbr:Raynaud’s Syndrome,

dbr:Reynaud’s Syndrome, dbr:Reynaud’s syndrome,

dbr:Primary raynaud’s phenomenon,

dbr:Secondary raynaud’s phenomenon,

dbr:Raynaud’s Syndrome, dbr:Raynaud’s

denoting the redirects of the
subject Raynaud syndrome

When closely inspecting Table 7.2 and Table C.1, one could simply assume that the

DBpedia entities related to the main domain Medicine could be located by verifying

whether a DBpedia entity has properties (or ‘predicates’ in RDF terminology) that

denote links to medical classifications or external medical resources. Examples of such

medical classifications could include ICD-10 (e.g., No. 2 in Table 7.2), ICD-9 (e.g.,

No. 3 in Table 7.2), OMIM (e.g., No. 5 in Table 7.2) and DiseasesDB (e.g., No. 8 in

Table 7.2); examples of such external medical resources could include MeSH (e.g., No.

4 in 7.2), eMedicine, GeneReviews, Orphanet and MedlinePlus. However, recall that the

main objective of this study is to cater to domain generalisability. Thus, the proposed

solution should fulfil the same requirements for the DBpedia resources in other domains

too. For instance, consider the following three example concepts that are used in three

separate domains outside the domain of Medicine.

• Word embedding (from the natural language processing domain): Table 7.3

• Big Five personality traits (from the psychology domain): Table C.2

• Bloom’s taxonomy (from the education domain): Table C.3
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Table 7.3: Several predicates from the DBpedia RDF graph of the subject ‘Word
embedding’ (note that the property values indicate similar meanings to those in Table

7.2’s ‘comments’ column)

No. Property

(Predicate)

Value (Object)

1 dbo:abstract Word embedding is the collective name for a set of language modeling and feature learning

techniques in natural language processing (NLP) where words or phrases from the ...

2 dbo:wikiPageID 43561218

3 dct:subject dbc:Artificial neural networks, dbc:Language modeling

4 owl:sameAs freebase:Word embedding, wikidata:Word embedding,

dbpedia-cs:Word embedding, dbpedia-eu:Word embedding,

dbpedia-fr:Word embedding, dbpedia-wikidata:Word embedding

5 is dbo:wikiPage

Redirects of

dbr:Thought vectors, dbr:Word vector , dbr:Word vector space,

dbr:Word vectors

It is evident that such properties/predicates related to classifications and external re-

sources (as in Tables 7.2 and C.1) are rare or almost non-existent in the DBpedia re-

sources relating to other domains (Table 7.3, Table C.2 and Table C.3). Thus, locating

domain-specific terminology in the text by merely considering such expedients does not

meet our objective of domain generalisability. To provide a more comprehensive solution

that is rewarding in every domain, this study explored the property ‘dct:subject’.

7.6.2.1 ‘dct:subject’

The property (or predicate) dct:subject8 denotes the belonging of a concept/topic to its

immediate categories (Stankovic et al. 2011). In essence, this property enables a model

to bridge the topic layer with the category layer in DBpedia, as illustrated in Figure

7.13. Unlike predicates that are relevant to classifications (e.g., ICD-10) and external

resources (e.g., MeSH), the ‘dct:subject’ is consistently available, in DBpedia entities in

both medical (e.g., No. 10 in Tables 7.2 and C.1) and non-medical domains (e.g., No. 3

in Table 7.3, Table C.2 and Table C.3).

For instance, consider ‘dct:subject’ in Table 7.2, which represents the immediate cate-

gories of Raynaud syndrome. These include dbc:Vascular-related_cutaneous_conditions,

8this is one of DCTERMS (Dublin Core Metadata Terms) metadata: https://www.dublincore.org/
specifications/dublin-core/dcmi-terms/

dbc:Vascular-related_cutaneous_conditions
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
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Figure 7.13: Deriving the immediate categories of dbr:ri using ‘dct:subject’, where
dbc:cicj denotes the jth immediate category in DBpedia

dbc:Autoimmune_diseases, dbc:Rheumatology, dbc:Syndromes and dbc:Diseases_

of_arteries,_arterioles_and_capillaries. Using knowledge which humans have

previously acquired, they can easily determine that the immediate categories of Ray-

naud syndrome belong to Medicine. Similarly, humans could effortlessly identify that

the immediate categories of Pulmonary Hypertension (i.e., dbc:Hypertension and dbc:

Pulmonary_heart_disease_and_diseases_of_pulmonary_circulation as denoted in

Table C.1) belong to Medicine.

When considering non-medical domains, the immediate categories of word embeddings

(which are dbc:Artificial_neural_networks and dbc:Language_modeling shown in

Table 7.3) give an indication to humans that word embeddings belong in the Nat-

ural Language Processing domain, or, more broadly, to the Computer Science do-

main. Similarly, when inspecting the immediate categories of the two other exam-

ple concepts, Big Five personality traits (dbc:Personality_traits, denoted in Table

C.2), and Bloom’s taxonomy (dbc:Stage_theories, dbc:Classification_systems,

dbc:Educational_psychology, and dbc:Educational_technology, denoted in Table

C.3) humans can easily determine the domains to which they belong through derived

immediate categories (i.e., psychology and education, respectively) based on their prior

knowledge.

However, such human-like deductions, concluded at a glance by inspecting the immedi-

ate categories of a concept, are not straightforward for machines. This indicates that

machines are incapable of determining the main domain to which a concept belongs

by considering its immediate categories derived using the ‘dct:subject’ property alone.

Thus, there is a need to further explore DBpedia’s category structure. For this purpose,

this study utilises the property (or predicate in RDF terminology) ‘skos:broader’.

dbc:Autoimmune_diseases
dbc:Rheumatology
dbc:Syndromes
dbc:Diseases_of_arteries,_arterioles_and_capillaries
dbc:Diseases_of_arteries,_arterioles_and_capillaries
dbc:Hypertension
dbc:Pulmonary_heart_disease_and_diseases_of_pulmonary_circulation
dbc:Pulmonary_heart_disease_and_diseases_of_pulmonary_circulation
dbc:Artificial_neural_networks
dbc:Language_modeling
dbc:Personality_traits
dbc:Stage_theories
dbc:Classification_systems
dbc:Educational_psychology
dbc:Educational_technology


Portability 265

Figure 7.14: Deriving the categories of dbr:ci using ‘skos:broader’

7.6.2.2 ‘skos:broader’

The property/predicate ‘skos:broader’ 9 denotes the broader category/categories of a

given category (Stankovic et al. 2011). Succinctly, this provides a platform from which

to analyse category-category relationships wherein each DBpedia category is assigned to

one or more categories (Figure 7.14). Note that unlike ‘dct:subject’, in which there is

only one hop between the topic layer and the category layer (Figure 7.13), ‘skos:broader’

can be performed using many hops. Figure 7.14 exemplifies how ‘skos:broader’ was

performed in two hops for the DBpedia category dbc:ci.

Therefore, the use of ‘skos:broader’ property facilitates a rich understanding of each

of the DBpedia categories in an automated manner. For example, consider the imme-

diate DBpedia category (derived using ‘dct:subject’) of Raynaud syndrome, which is

dbc:Vascular-related_cutaneous_conditions. The left column of Table 7.4 denotes

how to move through (or navigate) DBpedia’s category structure from this immediate

category (using ‘skos:broader’). In this example, ‘skos:broader’ is performed only until

six hops. If one wishes, a more in-depth navigation could be performed. Table 7.4

shows that this search (using ‘skos:broader’) has begun to elicit the main domain con-

cept of dbc:Vascular-related_cutaneous_conditions, which is dbc:Medicine in the

4th, 5th and 6th hops (highlighted in Table 7.4). Also, note that the DBpedia category

structure (inherited from Wikipedia) is a directed acyclic graph in which numerous cate-

gorisation schemes coexist simultaneously by forming a thematically organised thesaurus

(Stankovic et al. 2011). This is the reason why the main domain concept dbc:Medicine

is elicited at different hops (i.e., the 4th, 5th and 6th) rather than in a single fixed hop.

9this is one of SKOS (Simple Knowledge Organization System) semantic relations: https://www.w3.
org/TR/skos-reference/

dbc:Vascular-related_cutaneous_conditions
dbc:Vascular-related_cutaneous_conditions
dbc:Medicine
dbc:Medicine
https://www.w3.org/TR/skos-reference/
https://www.w3.org/TR/skos-reference/
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Overall, from the example demonstration in the left column of Table 7.4, it can be con-

cluded that dbc:Vascular-related_cutaneous_conditions reaches its main domain

concept dbc:Medicine with a shortest hop path count of four.

Much like the property ‘dct:subject’, ‘skos:broader’ is available not only in the medical

domain, but also in other domains. To illustrate this fact, consider the non-medical

DBpedia category dbc:Personality_traits, which belongs to the main domain Psy-

chology. Through navigating in the DBpedia’s category structure (using ‘skos:broader’

in six hops, as discussed above), dbc:Personality_traits begins to elicit its main do-

main concept dbc:Psychology (as highlighted in the right column of Table 7.4). From

the example demonstration in Table 7.4, it can be concluded that the shortest hop path

count from dbc:Personality_traits to dbc:Psychology is three.

Table 7.4: Simplified example demonstrating a sample of category relationships
through the use of ‘skos:broader’ property, up to six hops, where the colours indi-
cate selected DBpedia category, 1st hop, 2nd hop, 3rd hop, 4th hop, 5th hop and 6th

hop

Example DBpedia category in Medicine Example DBpedia category in Psychology

dbc:Vascular-related cutaneous conditions dbc:Personality traits

dbc:Cutaneous conditions dbc:Personality theories

—dbc:Dermatology —dbc:Personality

——dbc:Integumentary system ——dbc:Conceptions of self

———dbc:Organ systems ———dbc:Philosophical concepts

————dbc:Anatomy ————dbc:Philosophy

——————dbc:Branches of biology ——————dbc:Abstraction

——————dbc:Morphology ——————dbc:Academic disciplines

——————dbc:Structure ——————dbc:Belief

——————dbc:Zoology ——————dbc:Humanities

————dbc:Animal anatomy ———dbc:Self

——————dbc:Animals ————dbc:Concepts in metaphysics

——————dbc:Anatomy ——————dbc:Metaphysics

——————dbc:Veterinary medicine ——————dbc:Philosophical concepts

——————dbc:Zoology ————dbc:Consciousness

————dbc:Biological systems ——————dbc:Humans

——————dbc:Physical systems ——————dbc:Mental content

——————dbc:Systems biology ——————dbc:Psychological concepts

————dbc:Organs (anatomy) ———– etc.

——————dbc:Anatomy ———dbc:Social psychology

——dbc:Medical specialties ————dbc:Branches of psychology

———dbc:Healthcare occupations ——————dbc:Psychology

————dbc:Health care ——————dbc:Subfields by academic discipline

——————dbc:Health ————dbc:Interdisciplinary subfields of sociology

——————dbc:Service industries ——————dbc:Academic discipline interactions

————dbc:Occupations by type ——————dbc:Subfields of sociology

——————dbc:Categories by type ——————dbc:Subfields by academic discipline

——————dbc:Occupations ————dbc:Psychology

———dbc:Medicine ——————dbc:Applied sciences

————dbc:Branches of biology ——————dbc:Behavioural sciences

——————dbc:Biology ———dbc:Psychological concepts

——————dbc:Subfields by academic discipline ————dbc:Psychology

————dbc:Health care ——————dbc:Applied sciences

——————dbc:Health ——————dbc:Behavioural sciences

dbc:Vascular-related_cutaneous_conditions
dbc:Medicine
dbc:Personality_traits
dbc:Personality_traits
dbc:Psychology
dbc:Personality_traits
dbc:Psychology
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——————dbc:Service industries ——dbc:Human behavior

————dbc:Health sciences ———dbc:Behavior

——————dbc:Health ————dbc:Action (philosophy)

——————dbc:Applied sciences ——————dbc:Free will

——————dbc:Life sciences ——————dbc:Metaphysical theories

———dbc:Clinical medicine ——————dbc:Ontology

————hldbc:Medicine ——————dbc:Philosophy of mind

——————dbc:Branches of biology ————dbc:Psychological concepts

——————dbc:Health care ——————dbc:Psychology

——————dbc:Health sciences ——————dbc:Concepts by field

—dbc:Diseases and disorders by system ———dbc:Humans

——dbc:Organ systems ————dbc:Apes

———dbc:Anatomy ——————dbc:Catarrhini

————dbc:Branches of biology ——————dbc:Primate taxonomy

——————dbc:Biology ————dbc:Invasive mammal species

——————dbc:Subfields by academic discipline ——————dbc:Invasive animal species

————dbc:Morphology ——————dbc:Mammal ecology

——————dbc:Scientific classification ———– etc.

——————dbc:Taxonomy ———dbc:Behavior by type of animal

————dbc:Structure ————dbc:Behavior

——————dbc:Form ——————dbc:Action (philosophy)

——————dbc:Systems ——————dbc:Psychological concepts

————dbc:Zoology ——dbc:Psychological concepts

——————dbc:Branches of biology ———dbc:Psychology

——————dbc:Animals ————dbc:Applied sciences

———dbc:Animal anatomy ——————dbc:Scientific disciplines

————dbc:Animals ——————dbc:Applied disciplines

——————dbc:Eukaryotes ————dbc:Behavioural sciences

——————dbc:Biota ——————dbc:Behavior

————dbc:Anatomy ——————dbc:Social sciences

——————dbc:Branches of biology —dbc:Psychological theories

——————dbc:Morphology ——dbc:Psychology

——————dbc:Structure ———dbc:Applied sciences

——————dbc:Zoology ————dbc:Scientific disciplines

————dbc:Veterinary medicine ——————dbc:Science

——————dbc:Animals ——————dbc:Disciplines by type

——————dbc:Health sciences ——————dbc:Subfields by academic discipline

——————dbc:Medicine ————dbc:Applied disciplines

————dbc:Zoology ——————dbc:Academic discipline interactions

——————dbc:Branches of biology ——————dbc:Academic disciplines

——————dbc:Animals ——————dbc:Disciplines by type

———dbc:Biological systems ——————dbc:Subfields by academic discipline

————dbc:Physical systems ———dbc:Behavioural sciences

——————dbc:Physics ————dbc:Behavior

——————dbc:Systems ——————dbc:Action (philosophy)

————dbc:Systems biology ——————dbc:Psychological concepts

——————dbc:Branches of biology ————dbc:Social sciences

——————dbc:Systems science ——————dbc:Society

———dbc:Organs (anatomy) ——————dbc:Academic disciplines

————dbc:Anatomy ——————dbc:Scientific disciplines

——————dbc:Branches of biology ——dbc:Scientific theories

——————dbc:Morphology ———dbc:Theories

——————dbc:Structure ————dbc:Conceptual systems

——————dbc:Zoology ——————dbc:Abstraction

——dbc:Diseases and disorders ——————dbc:Cognitive science

———dbc:Health ——————dbc:Concepts

————dbc:Main topic classifications ——————dbc:Systems

——————dbc:Articles ——————dbc:Systems science

——————dbc:Container categories ————dbc:Abstraction

————dbc:Personal life ——————dbc:Innovation

——————dbc:Euthenics ——————dbc:Creativity

——————dbc:Anthropology ——————dbc:Philosophy of logic

——————dbc:Philosophy of life ——————dbc:Structure
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——————dbc:Self ——————dbc:Thought

———dbc:Clinical medicine ———– etc.

————dbc:Medicine ——– etc.

——————dbc:Branches of biology

——————dbc:Health care

——————dbc:Health sciences

7.6.2.3 dct:subject+skos:broader

This section describes how this study leverages the powerful combination of the two

properties ‘dct:subject’ and ‘skos:broader’ in order to define discipline-related terminol-

ogy, which is our ultimate goal. To summarise, Figure 7.15 denotes the topic-category

structure of DBpedia using ‘dct:subject’ and ‘skos:broader’. Succinctly, the immediate

categories of each topic can be identified through dct:subject (i.e., topic-category rela-

tionships). Next, each of these categories is made up of broader categories, which can

be accessed via the property skos:broader (i.e., category-category relationships; Figure

7.15).

This study entails navigating through the topic-category graph structure of DBpedia to

elicit domain-related terminology. For example, consider the DBpedia graph snippet of

the concept Raynaud syndrome (Figure 7.16). It is clear that most of the immediate

categories of Raynaud syndrome (i.e., via dct:subject) reach the main domain concept

Medicine quickly (i.e., using a lesser number of hops) via skos:broader.

Figure 7.15: Exemplifying the topic-category link structure in DBpedia through the
use of ‘dct:subject’ and ‘skos:broader’
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Figure 7.16: DBpedia graph snippet of Raynaud Syndrome denoting topic-category
structure via ‘dct:subject’ and ‘skos:broader’

7.6.2.4 Proposed Empirical Rules

Therefore, to decide whether a concept belongs to the main domain as selected by the

user (e.g., Medicine), the following two empirical rules can be proposed. These rules are

based on observations of DBpedia’s topic category structure.

• Empirical Rule 1: This empirical rule concerns the shortest hop path count thresh-

old n. Given a concept dbr:ri (from the semantic augmentation procedure), this

rule checks whether a majority of its immediate categories (i.e., dbc:cic
x derived via

‘dct:subject’) reach the main domain concept dbc:cmain domain with fewer than n hops

using ‘skos:broader’ (e.g., Figure 7.17). Defining the percentage of the immediate

categories that reach the main domain concept using <n as C(n), this empirical rule

requires C(n) to be > 50%. For example, suppose that n is equal to 6 in the example

shown in Figure 7.17. Then, it can be concluded that three of the categories immedi-

ately next to the concept dbr:ri reach the concept’s main domain. Thus, the C(n) of

this example is 75%.

• Empirical Rule 2: However, when the parameter n is increases (e.g., n>8), concepts

that are not directly relevant to the selected main domain may also be included in the

concept extraction. For instance, consider Operant conditioning. The user may not
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Figure 7.17: Simplified example of the proposed rules

necessarily expect to see this categorised as medical concept. However, this concept

has a majority of distant categories which connect it to the main domain concept

Medicine when n is increasing. To avoid the inclusion of such implicitly related

concepts (to the main domain) in the discipline-related terminology, a new and more

restricted rule that considers the direct semantic interactions of immediate categories

with the main domain concept is required. For this purpose, this study defines a

new parameter m (m <n) to identify whether a concept has at least one immediate

category that reaches the selected main domain with fewer than m hops. That is, it

is required that C(m) >0.

7.6.2.5 Word Sense Disambiguation

Due to the cross-domain nature of DBpedia, there is a possibility for a term to have

multiple senses from different domains. If a term has multiple senses in DBpedia, they

can be identified using the ‘dbo:wikiPageDisambiguates’ predicate. For instance, con-

sider the term “kuru”, which has over 20 senses recorded in DBpedia. From the senses

recorded in DBpedia, the term kuru could be a disease, a person, a place, a sport, a

kingdom, mythology, etc., as illustrated in Figure 7.18. In situations where DBpedia

has multiple senses for a given term, the most relevant sense to a given domain needs

to be identified. In the example of kuru (in Figure 7.18), the most relevant sense to the

domain of Medicine is kuru (disease). To facilitate the identification of the most relevant

sense in a given domain, this thesis uses the same process described in Section 7.6.2.4.
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Figure 7.18: Senses of the term kuru extracted using ‘dbo:wikiPageDisambiguates’
predicate

To further elaborate the idea, consider the following four senses of the term kuru; Kuru

(disease), Taygun Kuru, Kuru (Nigeria) and Khuru (sport) (shown in Figure 7.18). The

topic-category graph structures of these selected senses are depicted in Figures 7.19, 7.20,

7.21 and 7.22, respectively. By looking at these senses, a human can easily interpret

the potential main domains that they belong, which are dbc:Medicine (in the sense of

Kuru (disease)), dbc:People (in the sense of Taygun Kuru), dbc:Places (in the sense

of Kuru, Nigeria) and dbc:Sports (in the sense of Khuru (sport)).

To automatically perform a similar interpretation of the senses’ main domains, the two

empirical rules defined in Section 7.6.2.4 can be used. More specifically, in the domain of

Medicine, the sense Kuru (disease) obtains 83.33% of C(n) (i.e., the empirical rule 1) and

66.67% of C(m) (i.e., the empirical rule 2), given that n and m are 9 and 5, respectively.

In other words, the sense Kuru (disease) fulfils both empirical rules defined in Section

7.6.2.4, indicating that it is the most relevant sense within the medical domain. The

immediate DBpedia categories that reached the main domain concept of dbc:Medicine

using <n hops (i.e., the empirical rule 1) include dbc:Transmissible_spongiform_

encephalopathies, dbc:Rare_infectious_diseases, dbc:Foodborne_illnesses, dbc:

Prions and dbc:Cannibalism_in_Oceania. The immediate categories that reached the

main domain concept of dbc:Medicine <m hops (i.e., the empirical rule 2) are dbc:

Transmissible_spongiform_encephalopathies, dbc:Rare_infectious_diseases, dbc:

Foodborne_illnesses and dbc:Prions.

dbc:Medicine
dbc:People
dbc:Places
dbc:Sports
dbc:Medicine
dbc:Transmissible_spongiform_encephalopathies
dbc:Transmissible_spongiform_encephalopathies
dbc:Rare_infectious_diseases
dbc:Foodborne_illnesses
dbc:Prions
dbc:Prions
dbc:Cannibalism_in_Oceania
dbc:Medicine
dbc:Transmissible_spongiform_encephalopathies
dbc:Transmissible_spongiform_encephalopathies
dbc:Rare_infectious_diseases
dbc:Foodborne_illnesses
dbc:Foodborne_illnesses
dbc:Prions
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Figure 7.19: DBpedia graph snippet of the sense kuru (disease) using ‘dct:subject’
and ‘skos:broader’ predicates

Figure 7.20: DBpedia graph snippet of the sense Taygun Kuru using ‘dct:subject’
and ‘skos:broader’ predicates
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Figure 7.21: DBpedia graph snippet of the sense Kuru, Nigeria using ‘dct:subject’
and ‘skos:broader’ predicates

Figure 7.22: DBpedia graph snippet of the sense Khuru (sport) using ‘dct:subject’
and ‘skos:broader’ predicates

Using the same process in the domain of Medicine, Taygun Kuru obtains 33.33% of

C(n) and 0% C(m). In other words, this sense does not fulfil the two empirical rules,

indicating that it is not relevant to the medical domain. However, this sense obtains

88.89% of C(n) and 33.33% of C(m) in the context of people, which implies its relevancy

to the selected context. Similarly, Kuru (Nigeria) fulfil none of the empirical rules from

the domain of Medicine since it obtains 0% of C(n) and C(m) values. However, from the

context of places, this sense obtains 100% of C(n) and C(m) values, indicating that it is

the relevant sense from the perspective of places. As in Kuru (Nigeria), Khuru (sport)

obtains 0% of C(n) and C(m) in the domain of Medicine. However, it obtains 100% of

C(n) and C(m) values for the context of sports.
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As shown in the above-mentioned examples, the only sense that satisfies the two defined

empirical rules in the domain of Medicine is Kuru (disease). Thus, in situations where

a domain-specific term has multiple senses, the two empirical rules can be employed to

detect the most relevant sense in the given domain.

7.6.3 Semantic Type Filtering

The LBD user may need to further narrow down the discovered novel knowledge based

on semantic types. For instance, consider a situation where the user only wishes to

analyse diseases in the literature (Jha, Xun, Wang & Zhang 2019). In such situations,

the concepts need to be further filtered in such a way that those concepts only related

to the selected semantic type (i.e., diseases) are retained in the knowledge discovery

process (Jha, Xun, Wang & Zhang 2019).

As in Section 7.6.2, this study leverages properties dct:subject and skos:broader to carry

out the filtering process described above. In this instance, the shortest hop path counts

are calculated with respect to the specified semantic type (e.g., diseases). Moreover,

the empirical rules imposed in this instance need to be lighter (or less restrictive) than

those in Section 7.6.2 for the following two reasons.

• Semantic types are usually fewer hops away from the resource dbr:ri than the main

domain concept (e.g., medicine), as illustrated in Figure 7.23.

• Unlike the main domain concept, semantic types are typically linked with few imme-

diate categories, as depicted in Figure 7.23.

For example, consider the DBpedia graph snippet of ‘Raynaud syndrome’ (Figure 7.16)

in which the semantic type ‘diseases and disorders’ is considered to exemplify the two

reasons listed above.

• It is evident that the shortest hop path count between the semantic type diseases and

disorders and Raynaud syndrome is lower than the hop path count between the main

domain concept Medicine and Raynaud syndrome. This is because semantic types

are typically more granular than the main domain concept. Thus, when defining the
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Figure 7.23: Schematic overview of semantic type filtering, where dbc:cici is the ith

immediate category of dbr:ri and dbc:csemantic type is the relevant semantic type

empirical rules for semantic type filtering, the shortest hop path count threshold n

should be lower than that in Section 7.6.2.

• Most of the immediate categories of Raynaud syndrome link to its main domain

concept, Medicine (via ‘skos:broader’). But, irrespective of the length differences

between the shortest hop path counts, it is unrealistic to assume that majority of

the immediate categories will link with the selected semantic type (e.g., diseases

and disorders). The main reason for this is that a semantic type typically denotes

a single characteristic that describes a concept. Note that in the ‘Raynaud syn-

drome’ example, the immediate category dbc:Rheumatology is not connected with

dbc:Diseases_and_disorders, even though it is connected with its main domain

concept dbc:Medicine. Therefore, when defining rules, the immediate category count

threshold C(n) should be lower than in Section 7.6.2.

7.6.4 Synonym Identification

Identification of synonyms is one of the crucial steps in the LBD workflow, and it provides

numerous benefits. The synonyms can be utilised from a query expansion phase to

other tasks in remaining LBD components, for the purpose of making relevant semantic

deductions. For instance, consider the query expansion phase of the LBD workflow

as a use case. When the user inputs topics to the LBD system, the system should

first extract the literature relevant to these defined input topics (i.e., the local corpus)

(Kostoff, Briggs, Solka & Rushenberg 2008). For a complete search of potential novel

dbc:Rheumatology
dbc:Diseases_and_disorders
dbc:Medicine
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Figure 7.24: Synonym identification of dbr:ri using ‘is dbo:wikiPageRedirects of ’,
where dbr:rsyi denotes redirect DBpedia resources, and j denotes the number of redirect

resources defined for dbr:ri

knowledge, this extracted local corpus should contain all the literature relevant to the

user’s interests. For this purpose, the LBD system needs to construct an expanded query

using synonyms. Thus, even if the user simply enters ‘Raynaud’s disease’, the system

will not only obtain literature that contains ‘Raynaud’s disease’, but also other related

literature containing synonymous terms such as ‘Raynaud syndrome’, ‘Raynaud disease’,

etc. In essence, when the LBD system uses a MeSH keyword-based search in PubMed,

the search is not performed in free-text. As such, the user does not need to think of

word variations, synonyms, plural or singular forms or word endings (Chapman 2009).

However, MeSH is restricted to PubMed (more specifically, to the medical domain); thus,

employing such a query expansion phase using synonyms in other domains is vital.

To facilitate domain-independent synonym identification for tasks such as query expan-

sion, this study used the DBpedia property (or predicate) ‘is dbo:wikiPageRedirects of ’

(Figure 7.24). This property enables the identification of synonyms using the redirect

pages of the defined entity name (or concept). Redirects are a special type of article that

originated in Wikipedia. They group equivalent concepts to ensure that only one article

exists for a particular concept (Wang et al. 2009). In addition to alternative terms, redi-

rects also handle abbreviations (e.g., Insulin-like growth factor 1 vs. IGF-1 ), spelling

variations (e.g., Raynaud disease vs. Raynaud’s disease) and even singular/plural forms

where necessary (e.g., fish oil vs. fish oils). Thus, the use of ‘is dbo:wikiPageRedirects of ’

can be considered a good approximation of synonyms. Moreover, like ‘dct:subject’ and

‘skos:broader’, ‘is dbo:wikiPageRedirects of ’ is not domain-specific, since it is available

in DBpedia entities in both medical (e.g., No. 13 in Tables 7.2 and C.1) and non-medical

domains (e.g., No. 5 in Tables 7.3, C.2 and C.3).
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Figure 7.25: Structural difference between the two knowledge resources DBpedia and
MeSH

7.6.5 Granularity Detection

The identification of a concept’s granularity is mainly used in order to discard discipline-

related stop words (a.k.a. check-tags). In other words, more granular concepts are

typically used in the knowledge discovery process while removing more broad concepts

(Swanson et al. 2006). However, performing such hierarchical-level semantic inferences

are difficult using DBpedia’s structure. The main reason for this is that DBpedia is

not a tree, but a directed acyclic graph (Atzori & Dessi 2014). Therefore, it is not

straightforward to perform hierarchical filtering similar to the tree structures which are

used in the LBD domain, such as MeSH. Figure 7.25 illustrates the structural difference

between DBpedia and MeSH using ‘Raynaud syndrome’ as an example.

Even though DBpedia is not a tree, the graph structure of DBpedia means that it can

facilitate the integration of graph theory into the analysis. Thus, graph-related semantic

inferences can be made using DBpedia. Consequently, this study attempts to verify

whether using graph/network properties such as centrality can assist in approximating

the granularity of concepts. In graph analysis, centrality measures are often used to

capture topologically important nodes (a.k.a. hub nodes) based on the nodes’ positions.

These measures play a critical role in diverse types of networks (Oldham et al. 2019).

There are many centrality measures that have been developed to gauge the importance

of a node based on its characteristics (Srinivas & Velusamy 2015).
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Figure 7.26: Illustrating the difference between in-degree centrality and out-degree
centrality

This study employed degree centrality, which is one of the most frequently used centrality

measures in network analysis studies (Valente et al. 2008). Degree centrality indicates

the number of links attached to a node. In the context of directed networks, two types of

degree centrality measures are used: in-degree and out-degree (Sharma & Surolia 2013).

The first measure counts the number of links directed to a given node, while the latter

measure counts the number of links that a given node directs to others. Figure 7.26

exemplifies the difference between these two measures of degree centrality.

This study followed the in-degree centrality measure to facilitate granularity detection

of concepts. In the context of DBpedia, the in-degree centrality measure is the in-

degree resource (i.e., URIs/pages) link count for a particular resource. The reason for

this selection is that in-degree centrality measures the connectedness of a node in a

network. Simply put, this measure facilitates the comparison of nodes in the network

by considering the magnitude of their local neighbourhood. In the context of DBpedia,

if a particular concept has a massive in-degree local neighbourhood, this means that

the relevant node has served as a root to a large number of concepts (i.e., hub nodes

(Oldham et al. 2019)). Thus, it is fair to assume that if a concept has a higher in-

degree centrality, it is a less granular concept. Bearing this in mind, the current study

assumes that concepts with excessively high in-degree resource links should represent

discipline-related check-tags.
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7.7 Evaluation

This section evaluates the suitability of the proposed solutions to circumventing the

existing domain-dependent impediments in the LBD workflow. In this regard, one of the

main objectives of our experiments in the validation of medical setting is to observe how

well DBpedia resembles the most widely used LBD resource: MeSH. The main reason for

pursuing this objective is that most existing LBD models are based on MeSH. Thus, if

DBpedia can resemble MeSH with high precision, the LBD community does not need to

perform substantial modifications to enable the portability of their models. In addition,

the proposed solutions are validated in a non-medical setting by considering computer

science as the test domain. Furthermore, this study also evaluates the suitability of

WordNet for synonym identification, as proposed by Sebastian et al. (2017b).

The first part of this section outlines the experimental setup used in this chapter. The

subsequent sections contain details of the results obtained for the proposed solutions,

along with an extended discussion of their strengths and weaknesses in terms of cir-

cumventing the corresponding domain-dependent impediments. In addition to demon-

strating cross-domain support of the proposed framework, the latter part of this section

also demonstrates cross-lingual support for DBpedia, which will facilitate knowledge

discovery in different publication languages.

7.7.1 Experimental Setup

The following five real-world test cases are used for the evaluation, as they are consid-

ered to be the golden datasets of the discipline. Further details on these selections are

discussed in Chapter 3 of this thesis.

• Fish-Oil (FO) and Raynaud’s Disease (RD) (Swanson 1986)

• Magnesium (MG) and Migraine Disorder (MIG) (Swanson 1988)

• Somatomedin C (IGF1) and Arginine (ARG) (Swanson 1990a)

• Alzheimer’s Disease (AD) and Indomethacin (INN) (Smalheiser & Swanson 1996)

• Schizophrenia (SZ) and Calcium-Independent Phospholipase A2 (PA2) (Smalheiser &

Swanson 1998)
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Since the aforementioned test cases are all in the field of medicine, this study also utilises

the study by Gordon et al. (2002) (the only available LBD study, which is directly

relevant to the field of computer science) as a test case to demonstrate the suitability of

DBpedia outside the medical domain. In their study, Gordon et al. (2002) attempted

to explore novel areas using genetic algorithms as the start concept.

7.7.2 Concept Extraction (Discipline-related Terminology Extraction)

The purpose of this section is to verify the suitability of the proposed discipline-related

terminology extraction component discussed in Section 7.6.2. An evaluation was per-

formed, with reference to the topic coverage of local corpora from the five golden test

cases, using MEDLINE’s title and abstract fields. For the current experiments, param-

eters n and m of the two empirical rules (discussed in Section 7.6.2) were set to 9

and 5, respectively. To extract the MeSH concepts of the local corpora, the MetaMap

tool10 (Aronson & Lang 2010) was employed. The main domain concept was set to

dbc:Medicine. The key intention of topic coverage was to verify how many topics

extracted using MeSH were the same as those in DBpedia (denoted in equation 7.1).

topic coverage =
MeSH topics ∩DBpedia topics

MeSH topics
× 100 (7.1)

Nevertheless, it is not possible to perform direct string matching when comparing the

topics extracted from two knowledge resources (DBpedia and MeSH ) in order to cal-

culate the numerator in equation 7.1. The main reason for this is that this evaluation

setting compares topics from entirely different knowledge resources; thus, concepts can

be in different lexical forms even if they denote similar meanings. For instance, consider

the concept Non-steroidal anti-inflammatory agent in DBpedia, the relevant MeSH map-

ping of which is Anti-Inflammatory Agents, Non Steroidal. Note that in this scenario,

in spite of the syntactic differences of these two concepts, the tokens within the concepts

are also shuffled. To address this issue, this study utilises fuzzy string matching (more

specifically, the token set ratio variant (Geel et al. 2012)) to measure topic similarity.

The use of the token set ratio variant not only caters to syntactic variations, but also

handles the issue of shuffled tokens. A topic is considered to be a match if it obtains

more than 75% similarity. The topic coverage results for the five golden test cases are

10https://metamap.nlm.nih.gov/MainDownload.shtml - 2018 version

dbc:Medicine
https://metamap.nlm.nih.gov/MainDownload.shtml
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Table 7.5: Topic coverage of local corpora in the golden datasets

Test case
MeSH
topics

DBpedia
topics

Similar
topics

Topic
coverage

(1) FO-RD 2879 2960 2186 75.93%

(2) MG-MIG 16329 11601 9647 59.08%

(3) IGF1-ARG 14191 9709 7983 56.25%

(4) AD-INN 17672 14856 12406 70.20%

(5) SZ-PA2 15168 13556 11023 72.67%

outlined in Table 7.5. Even though medicine is only one of the many domains that DB-

pedia covers, the results in Table 7.5 indicate that DBpedia has a fair coverage of topics

in MeSH, which is a specialised single-domain resource. The average topic coverage of

DBpedia was 66.83%.

Similarly, to perform topic coverage in a non-medical setting, this study used all the

terms mentioned in the only computer science LBD study conducted by Gordon et al.

(2002) (i.e., Table 1, 2, 3, 4 and 5 in (Gordon et al. 2002)) as the main vocabulary.

Subsequently, this study verified the extent to which the proposed discipline-related

terminology extraction component identified these topics with respect to its main domain

concept dbc:Computer_science. For this experiment, the same n and m values were

utilised (i.e., 9 and 5, respectively). Through this process, 66.32% of the terms were

identified as terminology related to computer science. Nevertheless, a few obvious terms

in this dataset (such as civil engineering and financial engineering) may not be relevant

to the computer science domain. Thus, it is impossible to get 100% topic coverage

for this dataset. Even though computer science is also one of the many domains that

DBpedia covers, overall, it demonstrates a fair topic coverage in terms of identifying

topics related to computer science.

Note that to switch across domains, our proposal only needs to change its main domain

concept name (e.g., ‘dbc:Medicine in the medical domain, and dbc:Computer_science

in the computer science domain). The remaining computations performed as part of

the proposed discipline-related terminology extraction component will automatically ad-

here to the selected main domain. This fulfils our objective of achieving portability

dbc:Computer_science
dbc:Medicine
dbc:Computer_science
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with little or no cost (i.e., degree of portability). Moreover, the proposed solution facili-

tates knowledge discovery in a wide spectrum of domains. In addition to medicine and

computer science, which were evaluated in this section, our solution could also be inte-

grated into numerous other domains such as sociology, psychology, geography, economics,

anthropology, philosophy, law, languages and literature, history, arts, social work, biol-

ogy, chemistry, earth science, space science, physics, mathematics, business, engineering

(including chemical engineering, civil engineering, educational technology, electrical en-

gineering, material science and engineering, mechanical engineering) etc. due to the

prominence of DBpedia as a cross-domain resource.

In addition to facilitating knowledge discovery in a selected single main domain, the

proposed component also adheres to the use of multiple domains in single knowledge

discovery (something which none of the existing LBD models are capable of). For in-

stance, consider a researcher who wishes to explore knowledge in both medicine and

computer science at the same time. In such a situation, the user can select both the

main domain concepts (dbc:Medicine and dbc:Computer_science) in order to retain

concepts from both disciplines. In this way, the user gets the opportunity to discover

latent novel knowledge not only from a single main domain, but also across multiple

domains. Enabling broader knowledge discovery in this way is crucial for the develop-

ment of interdisciplinary research (such as bioinformatics and medical informatics). The

aforementioned proof of concept enables interdisciplinarity (or generalisability) during

the LBD knowledge discovery process.

Prior to this study, performing cross-disciplinary concept extraction was a long-term

open issue in the LBD field, where the non-medical LBD studies were time-intensive,

since they were mostly performed using manual concept searches. Nevertheless, with the

integration of the proposed discipline-related terminology extraction component, these

non-medical LBD studies can be improved not only in terms of time, but also replicability,

reliability, automation and easy transition. The topic coverage results reported as part of

this section may be further improved by fine-tuning the n and m parameters defined by

the two empirical rules. The next stage of this component will be to integrate Machine

Learning (ML) techniques. In this regard, one could use several n and m values (e.g., n

= {n1, ..., nx}, m = {m1, ..., my}) to determine C(n) and C(m) (e.g., C(n) = {C(n1), ...,

C(nx)}, C(m) = {C(m1), ..., C(my)}) as the features of a ML model designed to identify

the most prominent n and m values (i.e., the most important features). Subsequently,

dbc:Medicine
dbc:Computer_science
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the selected features could be utilised in the ML setting to determine discipline-related

terminology with further enhanced precision.

7.7.3 Semantic Type Filtering

In this setting, this study first closely inspected semantic relationships of the medical

topics from the golden datasets, in order to compare the consistency of semantic types

between DBpedia and MeSH. Consistency of semantic types between the two knowledge

resources provide evidence that similar concepts can be retrieved through semantic type

filtering using the two properties dct:subject and skos:broader (as discussed in Section

7.6.3) with a closer precision to MeSH.

For instance, consider Figure 7.27, which illustrates how each semantic type in a MeSH

tree (i.e., oils, lipids, chemicals and drugs) resembles a DBpedia knowledge graph for the

topic fish oil. Overall, DBpedia covers almost all semantic types in MeSH for the topic

fish oil (nevertheless, it does so using different wordings for some semantic types, which is

inevitable given that DBpedia and MeSH are completely different knowledge resources).

In addition, this study observed that DBpedia has a set of fine-grained semantic type

groupings compared to MeSH. The main reason for this could be that DBpedia is not

limited to a single domain, enabling it to encode the semantic relationships of a concept

from a wider perspective compared to single-domain knowledge resources like MeSH.

In the example in Figure 7.27, the topic fish oil not only interacts with semantic types

such as medical treatments and chemical compounds (as is the case with MeSH), but

also with a wide variety of other semantic types, from nutrition to cooking, and even

to fish industry. In a nutshell, while demonstrating similarities with MeSH in terms

of semantic types, DBpedia contains much additional knowledge encoded in a wider

spectrum, due to its cross-domain support (a strength that is lacking in other knowledge

sources). Such circumstantial semantic groupings in DBpedia enable it to perform subtle

semantic reasoning beyond the existing LBD tasks such as semantic type filtering. This

study observes similar conclusions (discussed above) for most of the remaining topics

from the golden test cases, as illustrated from Figures 7.28, 7.29, 7.30, 7.31, 7.32, 7.33,

7.34, 7.35 and 7.36.

Overall, DBpedia displayed good coverage of the semantic types that exist in MeSH.

Therefore, as in Section 7.6.2, the two properties dct:subject and skos:broader can be used
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Figure 7.27: Comparison of semantic types for the topic fish oil

Figure 7.28: Comparison of semantic types for the topic Raynaud disease

Figure 7.29: Comparison of semantic types for the topic Magnesium

to retrieve concepts under a semantic type of interest, with closer precision to MeSH.

Moreover, this study observed that the two empirical observations mentioned in Section

7.6.2 were also valid in most of the topics depicted from Figure 7.27 to 7.36. The two

observations were, firstly, that semantic types are usually more granular than the main

domain concept, meaning that n should be lower than the discipline-related terminology

component, and secondly, semantic types usually demonstrate a single characteristic of

the concept, since limited immediate categories are connected with each semantic type;
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Figure 7.30: Comparison of semantic types for the topic Migraine

Figure 7.31: Comparison of semantic types for the topic Insulin-like growth factor 1

Figure 7.32: Comparison of semantic types for the topic Arginine
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Figure 7.33: Comparison of semantic types for the topic Alzheimer’s disease

Figure 7.34: Comparison of semantic types for the topic Indomethacin

Figure 7.35: Comparison of semantic types for the topic Schizophrenia



Portability 287

Figure 7.36: Comparison of semantic types for the topic Phospholipase A2

thus, C(n) should be lower than the discipline-related terminology component.

To demonstrate the semantic types in a non-medical setting, this study first considered

the start concept of the study by Gordon et al. (2002): genetic algorithm (represent-

ing the computer science domain). Figure 7.37 denotes the semantic relationships of

genetic algorithm in DBpedia’s topic-category structure in comparison with ACM CCS.

As in the medical domain, DBpedia has a fine-grained (a.k.a. finer granularity) set of

semantic type groupings in non-medical settings too. Note how the genetic algorithm

not only connects with semantic types such as algorithms and bioinformatics, but also

with other semantic types involving artificial intelligence, mathematical optimisation

and search engines. This study also compared the semantic type groupings of DBpedia

using prominent controlled vocabularies from physics (e.g., Figure 7.38), mathematics

(e.g., Figure 7.39) and economics (e.g., Figure 7.40). It is evident that DBpedia captures

semantic type grouping in greater detail compared to the prominent controlled vocabu-

laries in the corresponding domains. This provides further evidence for the depth and

breadth of the semantic types that DBpedia encompasses.

As with our previous component (i.e., discipline-related terminology extraction), this

component involved negligible costs in the process of establishing portability (i.e., de-

noting the degree of portability). This is because the only requirement when transitioning

across domains in the knowledge discovery process was to set DBpedia’s semantic types

relevant to each domain. Moreover, in addition to the single domain knowledge dis-

covery (through the selection of one of the numerous domains that DBpedia supports),

this component also meets our objective of interdisciplinarity (or generalisability) by

supporting several domains at once in the knowledge discovery process. For example,
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Figure 7.37: Semantic types of the topic genetic algorithm from the computer science
domain (also compared with ACM CSS)

Figure 7.38: Semantic types of the topic gravitational lens from the physics domain
(also compared with PsySH)

Figure 7.39: Semantic types of the topic inverse galois problem from the mathematics
domain (also compared with MSC)
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Figure 7.40: Semantic types of the topic oligopoly from the economics domain (also
compared with JEL)

consider a situation where a researcher wishes to identify new ways to combine opti-

misation techniques for wave energy converter placement. In this instance, the user

can select the two semantic types dbc:Optimization_algorithms_and_methods and

dbc:Sustainable_technologies to perform the knowledge discovery in an interdisci-

plinary and generalisable manner.

7.7.4 Synonym Identification

To evaluate possibility of performing synonym identification through the DBpedia pred-

icate, ‘is dbo:wikiPageRedirects of ’, this study used two settings: synonym coverage and

literature coverage. The purpose of the first setting was to quantitatively evaluate the

synonym coverage of DBpedia and MeSH. Note that this evaluation setting also used

WordNet, as proposed by Sebastian et al. (2017b).

Table C.4 outlines the results of the synonym coverage setting using the main topics

from the golden test cases (while Table 7.6 presents selected results from Table C.4).

The synonym coverage results showed that DBpedia had higher coverage of synonyms

than MeSH and WordNet. Moreover, DBpedia synonyms also include spelling varia-

tions (which are not available in MeSH), making DBpedia a suitable resource for the

recent LBD research that incorporates non-traditional data sources, such as Twitter

(Bhattacharya & Srinivasan 2012). Overall, WordNet displayed the least coverage of

synonyms. Moreover, some of the topics in the golden datasets were not found in Word-

Net. This could be due to the fact that WordNet typically rich in general English

dbc:Optimization_algorithms_and_methods
dbc:Sustainable_technologies
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terminology and lacking in scientific topics. Even though the use of WordNet is a good

starting point for LBD, our evaluation reveals that it is unsuitable in some respects with

regard to the development of a high-precision interdisciplinary LBD framework.

Table 7.6: Qualitative evaluation of synonym coverage (includes the redirects that
are directly linked to the main Wikipedia page, i.e., redirects with ‘no anchor’)

Test

case No.

Topic Resource Synonyms

(1) FO MeSH Fish Oils, Fish Liver Oils, Fish Oil

DBpedia Fish oil, Fish oils, Fish-oil, Lovanza, Marine oil, Fish liver

oils

WordNet Fish oil, Fish-liver oil

RD MeSH Raynaud Disease, Hereditary Cold Fingers, Raynaud Phe-

nomenon, Raynaud’s Disease

DBpedia Raynaud syndrome, Raynaud’s disease and Raynaud’s phe-

nomenon, Reynaud’s, Reynaud’s disease, Raynaud’s dis-

ease, Raynaud phenomenon, Reynaud’s phenomenon, Ray-

nauds disease, Reynaud’s Disease, Raynaud’s disorder, In-

termittent arterial vasospasm, Raynaud’s Disease, Ray-

naud’s syndrome, Raynaud’s phenomenon, Raynaud’s dis-

ease/phenomenon, Raynaud disease, Raynauds, Raynauds

Syndrome, Raynauld’s syndrome, Raynauld syndrome,

Reynaud’s phenomenon, Primary Raynaud’s phenomenon,

Raynaud’s Phenomenon, Raynaud’s Syndrome, Reynaud’s

Syndrome, Reynaud’s syndrome, Primary raynaud’s phe-

nomenon, Secondary raynaud’s phenomenon, Raynaud’s

Syndrome, Raynaud’s

WordNet Raynaud’s sign, Acrocyanosis

*Results pertaining to the remaining test cases can be found in Table C.4

As in other sections, this study also validated several randomly chosen computer science

terminology that was used in the study of Gordon et al. (2002) to assess synonym

coverage in a non-medical setting. Table C.5 outlines the results obtained through

this analysis11 (while Table 7.7 presents selected results from Table C.5). As in the

medical setting, DBpedia displayed the highest coverage of synonyms in this setting

11CCS, MSC and JEL do not have synonymous terms; thus, they were not included in the table. Even
though PsySH supports synonymous terms (i.e., alternate labels: https://physh.aps.org/about), the
selected physics concept does not have any synonyms recorded in PsySH. Thus, it was not included in
the table.

https://physh.aps.org/about
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too. Furthermore, this study observed that MeSH contains synonyms for some of these

non-medical terms, though these are not comprehensive. As in the previous setting,

WordNet displayed the lowest coverage of synonyms. Overall, the results in the non-

medical setting consistently indicated the suitability of DBpedia for accomplishing our

ultimate goal of portability. Since DBpedia encapsulates all the domains into a single

uniform view, the costs involved in the cross-domain transitions are almost zero (i.e.,

degree of portability).

Table 7.7: Qualitative evaluation of synonym coverage in non-medical settings

Topic Resource Synonyms

Genetic MeSH –

algorithms DBpedia Genetic algorithm, Genetic algorithms, Darwinian algorithm,

GATTO, Building block hypothesis, Theory of genetic algorithms,

Genetic Algorithm, Genetic Algorithms, GEGA, Genethc algo-

rithm

WordNet –

Pattern

recognition

MeSH Automated Pattern Recognition, Pattern Recognition System

DBpedia Pattern recognition, Pattern analysis, Visual pattern recognition,

Pattern Recognition, Machine pattern recognition, Pattern recog-

nition and learning, Pattern-recognition, Pattern Recognition and

Learning, Pattern recognition (machine learning)

WordNet –

*Results pertaining to the remaining concepts can be found in Table C.5

The following evaluation setting estimates local corpus coverage using expanded search

queries as a use case (discussed in Section 7.6.4). For this purpose, the study used

the Web of Science literature database. The main reason for not using MEDLINE is

that MeSH terms are indexed in MEDLINE; thus, the database does not necessarily

showcase the query expansion ability of MeSH in non-medical settings. The literature

coverage results obtained through expanded queries are outlined in Table 7.8. Overall,

it is evident that DBpedia also has high coverage of local corpora compared to MeSH,

due to its richness of synonyms. In most of the situations, DBpedia contains all the

records from MeSH as its subset (i.e., M∩D
M %). Since the synonym coverage of MeSH

outside the medical domain is poor or non-existent in most situations, this study did

not compare the coverage of local corpora in non-medical settings.
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Table 7.8: Quantitative evaluation of literature coverage

Test case
No.

Topic MeSH
(M)

DBpedia
(D)

M∩D M∩D
M %

(1) FO 328 366 328 100%
RD 262 1100 262 100%

(2) MG 22780 24192 22780 100%
MIG 3409 3520 3406 99.91%

(3) IGF1 1838 1947 1838 100%
ARG 6863 6966 6863 100%

(4) AD 8972 21034 8259 92.05%
INN 12681 12680 12671 99.92%

(5) SZ 29240 41365 28827 98.59%
PA2 6185 6086 5946 96.14%

7.7.5 Granularity Detection

This section evaluates whether the use of DBpedia’s in-degree resource links approxi-

mates the identification of check-tags, as discussed in Section 7.6.5. For this purpose,

the study incorporated the same concepts used by Xun et al. (2017) to empirically

observe the in-degree resource link counts of each concept outlined in Table 7.9. It is

clear that check-tags typically have a higher number of in-degree page links (i.e., hub

nodes in knowledge networks) compared to informative, granular terms.

Subsequently, this study attempted to regenerate the MeSH level 1 and 2 topics (typ-

ically considered as check-tags; discussed in Chapter 2) using in-degree resource link

counts. The in-degree link count threshold was set to 200. That is, terms with a >200

in-degree link count were considered as check-tags. Through this experiment, this study

was able to identify 29.63% of the terms in MeSH level 1 and 2 topics as check-tags.

When the in-degree link count threshold was set to 200, this also meant that the infor-

mative terms were the terms that had an in-degree link count of 6200. In this way, this

study recovered 100% of the main topics from the five golden datasets as informative

terms.

To validate this component in a non-medical domain, a similar analysis was performed

using all the terms in the only available computer science LBD study (Gordon et al.

2002). In this non-medical setting, the study was able to identify 97.80% of terms

as informative terms with the same threshold (i.e., an in-degree resource link count

of 6200). As in other proposed components of this study, this component not only
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Table 7.9: Check-tags identification

Concept Check-tag label
In-degree link

count

humans check-tag 327

animals check-tag 190301

female check-tag 392

male check-tag 506

fish oils informative 8

Raynaud disease informative 30

blood viscosity informative 8

epoprostenol informative 12

supports our idea of portability across numerous domains, but also does not involve any

costs when switching across domains (denoting the degree of portability).

Overall, the in-degree link count is a good starting proxy from which to detect the

granularity of a concept. However, our results also suggest the importance of further

enhancing this component to detect check-tags with broad coverage and high precision.

One of the major differences between DBpedia and MeSH that was observed in this

study is that DBpedia is a directed acyclic graph, whereas MeSH is a tree. Thus, per-

forming hierarchical-level semantic inferences is difficult in DBpedia. Nevertheless, it

is possible to obtain some rough approximation using network properties in DBpedia’s

topic structure, as this study demonstrated. This component could be further enhanced

by integrating multiple other network measures, such as PageRank and structural holes,

which capture different other perspectives of nodes in the graph. For instance, consider

Figure 7.41, which exemplifies how this structural transition of DBpedia could be per-

formed. The next stage of this component is to integrate ML techniques. In essence,

one could use the most prominent network properties extracted from DBpedia’s graph

structure in a multi-class classification problem in which each class denoted the level

of a term in the MeSH tree. This would further enhance this component in terms of

approximating a tree structure from DBpedia (equivalent to the structure of MeSH) to

support hierarchical semantic inferences.

7.7.6 Cross-lingual Support

The purpose of this section is to demonstrate the cross-lingual support of DBpedia,

which facilitates knowledge discovery not only across domains but also across publication
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Figure 7.41: Converting DBpedia link structure to a tree (Nakayama et al. 2007)
(e.g., like that of MeSH)

Table 7.10: Basic statistics on localised DBpedia editions (Lehmann et al. 2015)

Language Inst. LD
all

Inst. CD
all

Inst. with
MD CD

Raw
Prop.
CD

Map.
Prop.
CD

Raw
Statem.
CD

Map.
Statem.
CD

English (en) 3,769,926 3,769,926 2,359,521 48,293 1,313 65,143,840 33,742,015
German (de) 1,243,771 650,037 204,335 9,593 261 7,603,562 2,880,381
French (fr) 1,197,334 740,044 214,953 13,551 228 8,854,322 2,901,809
Italian (it) 882,127 580,620 383,643 9,716 181 12,227,870 4,804,731
Spanish (es) 879,091 542,524 310,348 14,643 476 7,740,458 4,383,206
Polish (pl) 848,298 538,641 344,875 7,306 266 7,696,193 4,511,794
Russian (ru) 822,681 439,605 123,011 13,522 76 6,973,305 1,389,473
Portuguese
(pt)

699,446 460,258 272,660 12,851 602 6,255,151 4,005,527

Catalan (ca) 367,362 241,534 112,934 8,696 183 3,689,870 1,301,868
Czech (cs) 225,133 148,819 34,893 5,564 334 1,857,230 474,459
Hungarian (hu) 209,180 138,998 63,441 6,821 295 2,506,399 601,037
Korean (ko) 196,132 124,591 30,962 7,095 419 1,035,606 417,605
Turkish (tr) 187,850 106,644 40,438 7,512 440 1,350,679 556,943
Arabic (ar) 165,722 103,059 16,236 7,898 268 635,058 168,686
Basque (eu) 132,877 108,713 41,401 2,245 19 2,255,897 532,709
Slovene (sl) 129,834 73,099 22,036 4,235 470 1,213,801 222,447
Bulgarian (bg) 125,762 87,679 38,825 3,984 274 774,443 488,678
Croatian (hr) 109,890 71,469 10,343 3,334 158 701,182 151,196
Greek (el) 71,936 48,260 10,813 2,866 288 206,460 113,838

LD = Localised data sets; all = Overall number of instances in the data set, including instances without infobox
data; CD = Canonicalized data sets; MD = Number of instances for which mapping-based infobox data exists;
Raw Properties = Number of different properties that are generated by the raw infobox extractor; Mapping
Properties = Number of different properties that are generated by the mapping-based infobox extractor; Raw
Statements = Number of statements (facts) that are generated by the raw infobox extractor; Mapping
Statements = Number of statements (facts) that are generated by the mapping-based infobox extractor.

languages. To date, DBpedia consists of more than 130 localised versions (Chiarcos &

Pareja-Lora 2019) that have been extracted from corresponding language editions in

Wikipedia (Lehmann et al. 2015). Table 7.10 summarises the basic statistics on a few

localised DBpedia editions in release 3.8 (Lehmann et al. 2015). Overall, the English

version of DBpedia includes more instances than other language editions. The second

and third largest localised editions are German and French, respectively.

Table 7.11 illustrates how DBpedia entities can be mapped to its localised versions for
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Table 7.11: Mapping of the main topics from golden datasets to localised DBpedia
resources

Main
Topic

English (en) Edition French (fr) Edition

FO http://dbpedia.org/resource/

Fish_oil

http://fr.dbpedia.org/

resource/Huile_de_poisson

RD http://dbpedia.org/resource/

Raynaud_syndrome

http://fr.dbpedia.org/

resource/Syndrome_de_Raynaud

MG http://dbpedia.org/resource/

Migraine

http://fr.dbpedia.org/

resource/Migraine

MIG http://dbpedia.org/resource/

Magnesium

http://fr.dbpedia.org/

resource/Magn%C3%A9sium

(Magnésium)

IGF1 http://dbpedia.org/resource/

Arginine

http://fr.dbpedia.org/

resource/Arginine

ARG http://dbpedia.org/resource/

Insulin-like_growth_factor_1

http://fr.dbpedia.org/

resource/IGF-1

AD http://dbpedia.org/resource/

Alzheimer’s_disease

http://fr.dbpedia.org/

resource/Maladie_d’Alzheimer

INN http://dbpedia.org/resource/

Indometacin

http://fr.dbpedia.org/

resource/Indom%C3%A9tacine

(Indométacine)

SZ http://dbpedia.org/resource/

Schizophrenia

http://fr.dbpedia.org/

resource/Schizophr%C3%A9nie

(Schizophrénie)

PA2 http://dbpedia.org/resource/

Phospholipase_A2

http://fr.dbpedia.org/

resource/Phospholipase_A2

the main topics from the golden test cases using DBpedia’s French language edition. The

corresponding language editions of DBpedia can be located using the ‘owl:sameAs’ 12

predicate. Overall, the domain-independent solutions proposed in this study are com-

patible with other language editions of DBpedia, since they employ the same predicates

and structures, as in the English language edition. This enables the portability of the

proposed solutions across numerous publication languages with negligible costs.

To demonstrate DBpedia’s cross-lingual support outside the medical domain (as in other

evaluation settings), the terms used in the study of Gordon et al. (2002) were employed.

Table 7.12 outlines the corresponding mapping of DBpedia entities from the English

edition with entities from the French edition. This study observed that the term text

retrieval does not have a corresponding mapping in the French edition. This may be due

to the reduced content in the French edition of DBpedia (relative to the English edition),

12this is one of OWL (Web Ontology Language) properties: https://www.w3.org/TR/owl-ref/
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http://fr.dbpedia.org/resource/IGF-1
http://dbpedia.org/resource/Alzheimer's_disease
http://dbpedia.org/resource/Alzheimer's_disease
http://fr.dbpedia.org/resource/Maladie_d'Alzheimer
http://fr.dbpedia.org/resource/Maladie_d'Alzheimer
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http://dbpedia.org/resource/Schizophrenia
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https://www.w3.org/TR/owl-ref/
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Table 7.12: Localised DBpedia resource mapping in the computer science domain

Main Topic English (en) Edition French (fr) Edition

Genetic algo-
rithm

http://dbpedia.org/

resource/Genetic_algorithm

http://fr.dbpedia.org/

resource/Algorithme_g%C3%

A9n%C3%A9tique (Algorithme
génétique)

Pattern recog-
nition

http://dbpedia.org/

resource/Pattern_

recognition

http://fr.dbpedia.org/

resource/Reconnaissance_

de_formes

Virtual reality http://dbpedia.org/

resource/Virtual_reality

http://fr.dbpedia.org/

resource/R%C3%A9alit%

C3%A9_virtuelle (Réalité
virtuelle)

Reinforcement
learning

http://dbpedia.org/

resource/Reinforcement_

learning

http://fr.dbpedia.org/

resource/Apprentissage_

par_renforcement

Text retrieval http://dbpedia.org/

resource/Document_

retrieval

-

Cluster analy-
sis

http://dbpedia.org/

resource/Cluster_analysis

http://fr.dbpedia.org/

resource/Partitionnement_

de_donn%C3%A9es (Partition-
nement de données)

Image segmen-
tation

http://dbpedia.org/

resource/Image_

segmentation

http://fr.dbpedia.org/

resource/Segmentation_d’

image

Speech recogni-
tion

http://dbpedia.org/

resource/Speech_

recognition

http://fr.dbpedia.org/

resource/Reconnaissance_

automatique_de_la_parole

Signal process-
ing

http://dbpedia.org/

resource/Signal_processing

http://fr.dbpedia.org/

resource/Traitement_du_

signal

Machine vision http://dbpedia.org/

resource/Machine_vision

http://fr.dbpedia.

org/resource/Vision_

industrielle

as outlined in Table 7.10. Overall, the switch across publication languages in the non-

medical setting is also feasible at little or no cost, due the proposed solutions’ support for

predicates and structures in non-English language editions of DBpedia. Therefore, the

use of proposed solutions in this study not only supports the transition across domains,

but also across publication languages.
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http://fr.dbpedia.org/resource/Reconnaissance_automatique_de_la_parole
http://dbpedia.org/resource/Signal_processing
http://dbpedia.org/resource/Signal_processing
http://fr.dbpedia.org/resource/Traitement_du_signal
http://fr.dbpedia.org/resource/Traitement_du_signal
http://fr.dbpedia.org/resource/Traitement_du_signal
http://dbpedia.org/resource/Machine_vision
http://dbpedia.org/resource/Machine_vision
http://fr.dbpedia.org/resource/Vision_industrielle
http://fr.dbpedia.org/resource/Vision_industrielle
http://fr.dbpedia.org/resource/Vision_industrielle
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7.8 Summary

DBpedia is one of the dominant Semantic Web data sources, comprising data from

Wikipedia as well as a broad range of additional knowledge gained by interlinking with

other knowledge bases. The main influence for selecting DBpedia in this study is that

it adhered to all the defined criteria of portability in the LBD setting. This chapter

systematically compared the proposed solutions for existing domain-dependent impedi-

ments with the ultimate objective of developing a portable LBD framework to offer the

benefits of LBD models beyond medicine. Overall, the proposals of this study resemble

the knowledge inferences performed using MeSH with high precision. In some instances

(e.g., synonym identification), the proposed solutions were superior to MeSH even in the

medical setting itself. This ensures that existing LBD models that are mostly based on

MeSH do not require to perform substantial modifications to enable the portability of

their models through the integration of our solutions. Moreover, evaluations performed

in non-medical settings also demonstrated the validity and reliability of the proposed

solutions.

The overarching goal of this study was to develop an interdisciplinary (or generalisable)

LBD framework that enables the portability of the LBD workflow in new environments at

little or no cost. To assess the extent to which this goal was accomplished, the proposed

solutions were validated in the context of new environments of portability (i.e., cross-

domain and cross-lingual support; summarised in Table 7.13) and degree of portability

(i.e., little or no cost in portability; summarised in Table 7.14). Further details on these

conclusions in Tables 7.13 and 7.14 were discussed in Section 7.7. Solving the domain-

dependent impediments of the LBD workflow through the proposed solutions enables

a whole new level of knowledge discovery to extend LBD research beyond the medical

domain, where it is still in a nascent stage.

7.8.1 Major Contributions

As a result of the portability research conducted in this chapter, this thesis presents

several new insights on LBD. The major contributions of this study are outlined below.

These contributions are discussed further in Chapter 8.



Portability 298

Table 7.13: Extent to which proposed solutions support portability to new environ-
ments

Proposed

Solution

Cross-domain

support in

medical

setting

Cross-domain

support in

non-medical

settings

Cross-lingual

support in

medical

setting

Cross-lingual

support in

non-medical

settings

Disciple-
related ter-
minology
extraction

X X X X

Semantic
type filter-
ing

X X X X

Synonym
identifica-
tion

X X X X

Granularity
detection

X X X X

where X denotes if the requirement is met

Table 7.14: Extent to which proposed solutions support portability in terms of asso-
ciated costs

Proposed

Solution

Costs in cross-domain support Costs in cross-lingual support

Disciple-
related ter-
minology
extraction

Cost category: Negligible
Details: Select the domain(s) of
interest (e.g., dbc:Medicine, dbc:
Computer_science) in order to fa-
cilitate knowledge discovery

Cost category: Negligible
Details: Set the corresponding lan-
guage edition(s) required. The de-
fault setting would be English.

Semantic
type filter-
ing

Cost category: Negligible
Details: Select the semantic typ-
e(s) of interest (e.g., dbc:

Optimization_algorithms_

and_methods, dbc:Sustainable_

technologies) in order to facili-
tate knowledge discovery

Cost category: Negligible
Details: Set the corresponding lan-
guage edition(s) required. The de-
fault setting would be English.

Synonym
identifica-
tion

Cost category: None
Details: –

Cost category: Negligible
Details: Set the corresponding lan-
guage edition(s) required. The de-
fault setting would be English.

Granularity
detection

Cost category: None
Details: –

Cost category: Negligible
Details: Set the corresponding lan-
guage edition(s) required. The de-
fault setting would be English.

dbc:Medicine
dbc:Computer_science
dbc:Computer_science
dbc:Optimization_algorithms_and_methods
dbc:Optimization_algorithms_and_methods
dbc:Optimization_algorithms_and_methods
dbc:Sustainable_technologies
dbc:Sustainable_technologies
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• Being the first LBD study that proposes a comprehensive portable LBD framework

to support knowledge discovery in a cross-domain and cross-lingual manner.

• Being the first LBD study to demonstrate interdisciplinarity (or generalisability)

through the combination of multiple domains in a single knowledge discovery, with

negligible costs in the transitions between (or among) domains.

• Being the first study to introduce DBpedia to the LBD discipline, providing opportu-

nity to perform multifarious semantic inferences using unstructured text in a domain-

agnostic and language-agnostic manner.

• Observing that the proposed solutions displayed similarities to (and sometimes out-

performed) the commonly used LBD resource MeSH, meaning that the LBD commu-

nity will be able to integrate the proposed solutions into their LBD models without

substantial modifications, which will facilitate LBD research beyond medicine.



Chapter 8

Conclusions and Future Work

8.1 Introduction

To bring about advancement in a scientific field, researchers need to explore new knowl-

edge, creatively combining observations and existing published knowledge (Foster et al.

2015, Rzhetsky et al. 2015). This requires them to keep abreast of existing and emerging

scientific knowledge (Jha, Xun, Wang & Zhang 2019). However, the tremendous influx

of research publications, and their easy accessibility via digital libraries, have resulted

in information overload. This has made it harder for scientists to form connections be-

tween their own work and the research output from other disciplines (Xun et al. 2017,

Guo et al. 2020, Su & Zhou 2009). One fundamental property of influential research is

that it is richly interconnected with ideas from a broad range of domains (i.e., divergent

thinking scientific discovery) (Chen 2016, Lavrač et al. 2020). Given the sheer volume

of scientific knowledge, there is a need for models that are capable of discovering novel

knowledge areas that complement scientists’ niche specialisations. With this in mind,

Literature-Based Discovery (LBD) research aims to detect hitherto undiscovered, but

critical cross-silo connections in the literature (Sebastian et al. 2017a). Discovering such

novel and potentially productive knowledge linkages serves to stimulate research devel-

opment processes and increase research productivity (Jha et al. 2018, Rzhetsky et al.

2015, Swanson & Smalheiser 1997).

Notwithstanding the significant progress of LBD researchers in tackling this problem

over the last few decades, there are several open issues and shortcomings in the LBD

300
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literature. The overarching goal of this thesis was to fill these identified research gaps

with high precision. To this end, five primary research objectives were defined at the

outset of this thesis, after which numerous studies were conducted to explore novel

ways to accomplish these defined research objectives. In this process, several major

contributions were made to the field of LBD research. The purpose of Section 8.2 is

to provide an extended discussion of these major contributions, which are also outlined

at the end of each of the chapters that are dedicated to the five main objectives. The

studies conducted as part of this thesis also open up novel directions for future LBD

research. These future directions are discussed in detail in Section 8.3 in light of the five

main research objectives. Section 8.4 concludes by summing up the entire purpose of

the thesis and how it has contributed to enhancing existing understandings of the LBD

workflow to promote its widespread applicability.

8.2 Major Contributions

This section contains an extended discussion of the major contributions of the studies

conducted in this thesis, as outlined in the latter part of the previous chapters. These

major contributions represent the key outcomes of the five main research objectives that

were initially defined in Chapter 1.

8.2.1 Main Research Objective 1 (RO1)

To integrate a large-scale systematic literature review procedure of LBD studies, in order

to address the limitations in the existing traditional narrative-based LBD reviews, while

shedding light on novel focus areas in the LBD workflow.

Due to the 35 years of LBD research and its increased knowledge production evident each

year, there was a critical need for a systematic literature review in the LBD discipline.

Systematic literature reviews are considered the gold standard among reviews since they

provide a comprehensive overview of the evidence in a discipline (Snyder 2019). With

this in mind, this thesis performed a large-scale systematic literature review, following

a research method and process that adheres with standards and guidelines to collect,

appraise and synthesise the literature, as discussed in Chapter 2.
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To construct the review protocol for this objective, this study adhered to the standard

systematic literature review procedure used in computer science. In following this pro-

tocol and considering the entire LBD workflow, this study methodically designed fifteen

research questions that also align with the remaining four main research objectives of

this thesis. The main reasons for adopting such a dilated search scope are the restric-

tive scope and limited focus points of existing LBD reviews. Thus, the expanded search

scope of this systematic literature review offered the opportunity to appraise the LBD

literature from multiple perspectives, considering each component of the LBD workflow,

while also shedding light on new areas. Ultimately, this assisted in performing a com-

prehensive systematic literature review to gain rich, deep insights and conclusions on

the historical progress and contemporary focus in the LBD field.

One of the main findings of this review was that very few existing studies have en-

riched the LBD workflow to support its widespread applicability. Following this notion,

through the ensuing research objectives, this thesis pursued several new research direc-

tions, with the aim of promoting widespread applicability of the LBD workflow that is

crucial to provide broader community benefits. In addition to providing a strong theo-

retical framework for the remaining research objectives of the thesis, this review is, to

the best of our knowledge, the first systematic literature review reported in the field.

8.2.2 Main Research Objective 2 (RO2)

To investigate the input component of the LBD workflow in order to deduce the suitability

of different input types in the LBD process.

The selection of an LBD input type (that denotes its input component) is not straight-

forward. This is because different data fields in the research papers have their own

perspectives (Lee et al. 2015) and information content (Kostoff et al. 2004). Therefore,

understanding the LBD input component in terms of how each input type contributes

to the LBD workflow and what impact this has on the overall knowledge discovery is

important, as the selected input type plays a central role in the information retrieval

cycle of the LBD workflow. Even though there are some LBD studies that implicitly

attempt to comprehend the performance differences of LBD input types, these studies

drew conclusions without isolating the input component from their proposed discovery

methodologies. Thus, these conclusions may not be generalisable (i.e., they could differ
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when a different discovery method is utilised). Unavailability of LBD studies that ex-

plicitly analyse the LBD input component explains why there is no consistent selection

of LBD input types in the field, and why different studies have focused on different in-

put types to facilitate knowledge discovery. Given this gap in the literature, this thesis

sought to investigate the input component so as to scrutinise the role of input types and

how they contribute to the information retrieval cycle by assessing their informativeness.

Informativeness (or information richness) of the different input types can be captured

as an objective textual feature or as a subjective measure that captures the interactivity

between texts and users. In information retrieval tasks such as LBD, using subjective

definitions is considered to be more appropriate and meaningful (Tague-Sutcliffe 1992).

Following this notion, this study explored a suitable setting that could define the in-

formation richness of each input type involving the information retrieval cycle in the

LBD context (i.e., focusing on the subjective understanding of information). To this

end, this study took inspiration from optimal foraging theory, since the main objective

of this study (i.e., identifying LBD input types that demonstrate maximised informa-

tion richness) can be viewed as an optimisation problem. More specifically, intermin-

gling subjective understanding of information with optimal foraging theory facilitated

the quantification of input types in terms of: ‘how much important information does

the information retrieval cycle (i.e., information-as-process) provide to the user (i.e.,

information-as-knowledge)?’.

The evaluation of this study focused on a large-scale assessment of the information

richness of nine different variants of the most common and viable LBD input types.

Overall, information richness was showcased in the following order (from highest to

lowest): title and abstract, MeSH keywords and titles only using the three metrics IR,

intrigue IR and average intrigue score. This was the case not only in the default dataset,

but also in the extended datasets, where the nearest neighbour count was set to 5 and

10, respectively. Furthermore, this study observed that the inclusion of neighbouring

documents into the local corpus does not improve information richness in the information

retrieval cycle. This is because the nearest neighbour count of such extended datasets is

negatively correlated with the information richness score, indicating that such extended

searches in the LBD knowledge discovery process are not efficient due to their negative

impact on observed optimal foraging behaviours. Succinctly, this study presents the first

steps towards a better understanding of input component and what impact this might
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have on the remaining components in the LBD workflow, with a view to developing

better LBD systems in the future.

8.2.3 Main Research Objective 3 (RO3)

To enhance the discovery component of the LBD workflow using fine-grained diachronic

semantic inferences by conjoining global semantic relationships with the temporal dimen-

sion to enrich the typical static cues used in the LBD literature.

The focus of RO3 was to enhance the discovery component of the LBD workflow. To this

end, this study attempted to identify the potential contributions of diachronic semantic

inferences in discovering potential novel knowledge linkages in the literature. This study

focused on diachronic semantic inferences for two main reasons. Firstly, based on the

timeline analysis of LBD computational techniques (discussed in Chapter 2), this thesis

observed that the use of modern word embedding techniques is emerging, yet only a

handful of LBD studies use such techniques. Secondly, based on the categorisation of

LBD computational techniques (discussed in Chapter 2), this thesis observed that almost

all previous LBD studies have overlooked the importance of integrating the temporal

dimension into the knowledge discovery process, as they rely on a static snapshot of

literature. Cogitating the complementary strengths of these two observations, this thesis

co-modelled vector semantics captured through modern word embedding techniques

with the temporal dynamics.

This study incorporated a circumstantial temporal analysis component to perform rig-

orous and precise analysis of diachronic semantic inferences through the integration of

a wide range of techniques from research areas such as sequence mining, time series

analysis and signal processing for the first time in the LBD discipline. The decision to

perform such fine-grained temporal analysis was based on two observations in the few

recent LBD studies that attempted to integrate temporal information of scientific topics

into the LBD workflow (Jha et al. 2018, Jha, Xun, Wang & Zhang 2019, Xun et al.

2017). Firstly, even though these few LBD studies undoubtedly improved on the typical

LBD setting through the integration of temporal details, the temporal analysis compo-

nent used in their LBD workflow was fairly shallow. Secondly, these initial LBD studies

(Jha et al. 2018, Jha, Xun, Wang & Zhang 2019, Xun et al. 2017) merely considered

limited temporal characteristics when defining new knowledge linkages. Nevertheless,
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due to the complexities involved in natural language usage, as well as the availability of

novel knowledge linkages in multiple forms, the use of limited temporal characteristics in

the knowledge discovery process may inhibit the predictive performance of LBD models.

The complementary integration of these two observations formed the groundwork for

the proposed temporal component in this study.

The semantically infused temporal trajectories (i.e., diachronic semantic inferences) are

considered the core analysis unit of the proposed LBD framework. These derived di-

achronic semantic inferences could be analysed in two broad ways to manifest their

potential for detecting novel knowledge linkages in the literature. The first category

would be the direct usage of these proposed diachronic semantic inferences to facilitate

discovering such latent knowledge linkages. The two proposed LBD models, DTM and

FTM represent this category, where the derived semantically infused temporal trajecto-

ries are directly utilised to mine meaningful patterns and make predictions. In contrast,

the second category of analysing diachronic semantic inferences involves indirect usage.

In accordance with this category, potential temporal signals are not directly extracted

from semantically infused temporal trajectories. Instead, they serve as a medium to

facilitate knowledge discovery. The proposed LBD model, TAM belongs to this cate-

gory. It demonstrates how the proposed diachronic semantic inferences can be used as a

medium to perform a process similar to that employed by a docking engine (Jacob et al.

2012).

More specifically, these three LBD models represent the core trajectory analysis compo-

nent in the proposed LBD framework. The purpose of these LBD models is to scrutinise

the proposed diachronic semantic inferences to identify hitherto undiscovered seman-

tically infused temporal signals that may potentially help to discover new knowledge

linkages within the remaining scientific topics in the literature. The experimental re-

sults substantiate the efficacy of both direct and indirect uses of the proposed diachronic

semantic inferences through their robust predictive performance evident in every exper-

imental setup across all test cases. Succinctly, the demonstration of both direct and

indirect uses of the proposed diachronic semantic inferences indicates that the proposed

semantically infused temporal trajectories are capable of enhancing prediction perfor-

mance in the LBD knowledge discovery process.

This thesis also attempted to identify the potential independent contributions of each
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semantic shift type to prediction performance. In this analysis, this thesis observed that

the semantic shift types alone also outperformed the baseline models. More precisely,

the three semantic shift types alone (i.e., ISS, PSS and NSS individually) also tended

to perform better than the baseline models. These findings indicate the potentially

positive influence of semantically infused temporal signals towards discovering novel

knowledge linkages more precisely. This emphasises that performing a rigorous and

precise temporal analysis in the LBD workflow is rewarding, since even simplified versions

of such analyses (i.e., individual performances of each semantic shift type) also display

improved prediction performances in every experimental setup.

The third proposed LBD model (Trajectory Alignment Model; TAM ) demonstrates a

distinct perspective to the best of our knowledge for the first time in LBD discipline

by incorporating semantically infused temporal patterns based on relativity. The main

inspiration for this proposed LBD model is the docking method used in molecular mod-

elling to facilitate structure-based drug design (Ferreira et al. 2015). The purpose of the

docking engine is to quantify the free energy of binding ∆E between the receptor and a

ligand to rank the ligands based on ∆E, which denotes whether the ligand bindings are

more or less favourable (Jacob et al. 2012). Following the same notion, this proposed

model uses the bindings of the semantically infused temporal trajectories of local topics

(analogously ligands) with the temporal trajectories of actual novel knowledge linkages

(analogously receptors) to derive some cost metric, which depicts whether the trajectory

binding is less or more favourable.

Incorporating the idea of the aforementioned docking process into the LBD process could

be particularly beneficial for two main reasons. Firstly, it is natural to assume that the

concealed patterns of potential novel knowledge linkages in which LBD researchers have

explored for more than three decades are encapsulated in these actual novel knowledge

linkages (i.e., templates) due to the fact that they have been realised in real-world

with time. Thus, the patterns that these templates enclose provide a rich platform for

the formation of deductions that may be crucial to the knowledge discovery process.

Nevertheless, these encapsulated patterns of these templates may not be noteworthy

when they are considered as separate entities. For this reason, the idea of relativity (as

similar to docking) may be appropriate in this situation. Secondly, the theoretical LBD

literature has identified that novel knowledge linkages may reside in several forms in the

scientific literature (Davies 1989). Nevertheless, to date, only a handful of such novel
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knowledge linkages have been identified, despite 35 years of LBD research. This may be

due to the complexity of natural language usage, which may hinder the identification of

such noticeable new knowledge linkage forms. More specifically, the complexity involved

in natural language usage may have inhibited the identification of several hundred or

even thousands of other forms of novel knowledge linkages that are not salient and

may potentially be discovered in future theoretical LBD studies. However, the idea of

maintaining a large collection of templates in a template repository may circumvent this

hindrance to some extent, as such a repository could accommodate a large number of

novel knowledge linkage forms in one place.

To carry out trajectory binding, TAM maintained a template repository in which the

trajectories of actual novel linkages were stored. Subsequently, these trajectories were

aligned with the trajectories of potential candidates in a time-invariant manner, so as

to assess the extent to which the trajectories of local topics resembled the patterns of

templates in the template repository. Overall, the experimental results substantiate the

efficacy of incorporating such deductions made using trajectory binding in almost every

experimental setup. This indicates the potential positive influence that patterns based

on relativity could have on the knowledge discovery process, and which future LBD

research could further expand and explore.

While most previous LBD models depend on semantic inferences performed using domain-

specific knowledge resources to facilitate knowledge discovery, the LBD models proposed

in this thesis are entirely free from such domain-dependent semantic inferences using ex-

ternal knowledge resources. This is because the reliance on such semantic inferences us-

ing domain-dependent external knowledge resources inhibits the LBD model’s support

for reusability and portability, which are vital to the provision of broader community

benefits. More specifically, reusability and portability are two crucial design properties

that should be considered when developing LBD models, since they inject new meaning

into the LBD workflow that are otherwise obscured.

The notion of reusability denotes the process of creatively exploring new application

areas of the proposed LBD models, in order to propose expeditious solutions. This is

particularly beneficial in the context of LBD, since the fundamental purpose of LBD re-

search is to discover novel linkages (through the integration of signals from text corpora),
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which could be broadly applicable across numerous other problem settings. These prob-

lem settings may not necessarily imply closely related reusability settings to the problem

of LBD (indicating vertical reuses), but also could entail completely different reusability

settings from those in the LBD context (indicating horizontal uses, as discussed in Sec-

tion 8.3). The view of portability denotes the LBD model’s ability to facilitate knowledge

discovery in new environments. The LBD model’s support of portability is vital due to

the fact that the benefits of LBD research are domain-agnostic and could be broadly

applied in almost any discipline. The escalating growth of scientific literature is evident

in almost every discipline; thus, potential stakeholders in LBD models may be expected

to exist in any discipline. Otherwise stated, the development of LBD models to assist

researchers in discovering latent novel knowledge linkages in the scientific literature is

crucial despite the domain. Contemplating the vast opportunities afforded by preserving

these two vital properties: reusability and portability, the proposed LBD models were

designed without the incorporation of semantic inferences from external knowledge re-

sources. In essence, the prediction effects of the proposed LBD models do not rely on

domain-specific semantic inferences; thus, they could be broadly applicable to reusable

applications and portable environments to ensure their widespread applicability.

8.2.4 Main Research Objective 4 (RO4)

To validate the predictive power of the proposed LBD models through reuse research, with

the goal of providing broader community benefits.

In addition to the direct and indirect uses of the proposed LBD models demonstrated in

RO3, the reuse research performed as part of this research objective provides a distinct

perspective on the proposed LBD models, which is their vertical reusability. The focus of

reuse research is to efficiently reuse components (or similar artifacts) in new application

areas. Performing such reuse research enables the identification of new application areas

of proposed LBD models, ultimately providing the opportunity for broader community

benefits. In addition to this, reuse research also increases the dependability (or reliability)

of the proposed LBD models.

Motivated by the enormous potential of such reuse research, this study conducted large-

scale reuse research following a method similar to opportunistic reuse. The idea of

opportunistic reuse is to make new capabilities in new problem areas by gluing together
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components designed for distinct problem setting(s). In search of new problem areas,

this study focused on several special-purpose LBD models that have been reported in

the LBD literature, which cater to specific problem areas, such as drug development,

drug repositioning and adverse drug reactions (Henry & McInnes 2017). The urgency

of contributing to these special-purpose application areas of LBD has been underscored

by the COVID-19 pandemic, with over 30.6 million cases across the globe resulting in

more than 0.9 million deaths (as of September 2020), while antiviral medications are still

under investigation (Wang et al. 2020). With this in mind, this thesis sought to explore

this timely direction to demonstrate the reusability of the proposed LBD models. More

specifically, this use case indicates a vertical reuse, wherein a closely related problem

setting to the LBD discipline is used to substantiate the prediction performances of the

proposed LBD models.

The experimental results corroborate the efficacy of the proposed LBD models in this

new reuse setting. This verifies the potential contributions of direct and indirect uses

of the proposed diachronic semantic inferences to the LBD workflow, even in reuse set-

tings. Even though the proposed LBD models consistently outperformed the baseline

models, this study observed a performance decrease in the proposed LBD models in this

reuse setting, relative to the two-node search (discussed in RO3). The main difference

between this reuse setting and the previous two-node setting in terms of the diachronic

semantic inferences is the number of semantically infused temporal trajectories used dur-

ing the LBD knowledge discovery process. More specifically, in the previous two-node

setup, this thesis inspected six semantically infused temporal trajectories, whereas in

this reuse setting, the thesis incorporated only four out of these six semantically infused

temporal trajectories. This was because of the incompatibility of pairwise distance prox-

imity and neighbourhood distance proximity in this new reuse setting. This observation

arose the following question: ‘does the number of meaningful diachronic semantic infer-

ences integrated in the knowledge discovery process positively correlate with the predictive

performance?’.

To answer the question, this study scrutinised the performance differences of the best-

performing proposed LBD model (FTM ) for all the possible combinations of the seman-

tically infused temporal trajectories. Through this study, it was verified that there is

a strong positive correlation between the number of semantically infused temporal tra-

jectories and the predictive performance of the LBD workflow. This study exemplifies
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one of the key benefits offered by reuse research, which is the identification of potential

bottlenecks in reused models. Identifying such bottlenecks provides an extended plat-

form to elicit precise enhancements in future iterations. More specifically, due to the

complexity of the problem that LBD research aims to solve, it is difficult (or perhaps

even impossible) to construct universal LBD models that make perfect predictions in

every possible reuse setting. Therefore, verifying the reusability of the proposed LBD

models in new reuse application areas provides insights into the potential bottlenecks

of proposed LBD models. Such insights could be used as a guide to further improve

the results in the next iterations of the reuse setting. Following this notion, this study

proposed several directions (i.e., focusing on the neighbourhood density changes of the

local topics) for integrating meaningful diachronic semantic inferences to make up for

the absence of pairwise distance proximity and neighbourhood distance proximity in the

second iteration of the grab-and-glue framework.

In the process of analysing the potential contributions of different trajectory combina-

tion types, this study observed that even the most simplified versions of the highest

performing proposed LBD model in this reuse setting (FTM ) showcased higher pre-

dictive performances than the baseline models. These trajectory combination types

included the prediction performances of one trajectory, two trajectories and three trajec-

tories with a total of 14 types of simplified versions of the proposed LBD model, FTM.

Overall, 12 types of these simplified versions outperformed all the baseline models across

all the k values, while the remaining 2 types of these simplified versions outperformed

all the baseline models after the k value of 30. The increased predictive performances

of even the most simplified versions of the trajectory combination types indicate the

positive influence that the proposed diachronic semantic inferences on the knowledge

discovery process of the LBD workflow.

The proposed LBD models provide greater flexibility in adapting to a wide range of

application areas, as demonstrated in this main objective as well as discussed broadly

in the future directions section (i.e., Section 8.3). This is evident mainly because of two

reasons. Firstly, the domain-agnostic nature of the proposed LBD models, since they are

completely free from knowledge inferences performed using domain-specific knowledge

resources, can be used in a diverse range of application areas. Secondly, the power of

embedding spaces that the proposed LBD models are based on provides a greater flex-

ibility in performing tasks such as vector arithmetic operations and analogy mining to
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quickly adapt the proposed model in the new reuse setting. Such flexibility is rare when

using hard-wired knowledge discovery structures such as graphs. Moreover, the LBD

systems that are based on inferences using external domain-specific knowledge resources

also inhibit their flexibility in terms of reusability. This is due to the unavailability or

unsuitability of such knowledge inferences that are made using domain-specific knowl-

edge resources in other application areas. Hence, the domain-agnostic nature of the

proposed LBD models, and the power of vector semantics that they are based on, not

only support their adaptation in vertical reuse (e.g., similar to this main objective) and

horizontal reuse (discussed in Section 8.3), but could also be adapted to develop novel

components in the LBD workflow such as personalised knowledge discovery (discussed

in Section 8.3).

8.2.5 Main Research Objective 5 (RO5)

To demonstrate the portability of the LBD workflow by proposing an interdisciplinary (or

generalisable) LBD framework to assist scientific problem solving in a domain-agnostic

manner.

The key aim of this portability research was to reach a large and diverse community by

proposing a highly cost-efficient and easily integrable portable LBD framework, which

supports both cross-domain and cross-lingual knowledge discovery. Enabling portability

is particularly important in LBD field, since the potential stakeholders in LBD systems

could exist in almost any academic discipline. Thus, extricating domain-dependent hin-

drances (which constrain the applicability of LBD models outside the medical domain)

establishes the portability of LBD models. This is crucial to widespread applicability

of the LBD models. To the best of our knowledge, this is the first study on LBD that

demonstrates portability with the aim of unlocking the benefits of typical LBD models

to research communities beyond medicine.

To facilitate portability, this study leverages semantic web technologies (more specifi-

cally Linked Open Data (LOD)), which provide revolutionary opportunities to gain rich

understandings from unstructured texts in a machine-readable manner. More specifi-

cally, this study selected DBpedia, which is a dominant semantic web resource since the

inception of the linking open data project to circumvent the existing domain-dependent

impediments in a typical LBD framework. The main influence for this selection is that
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it adhered to all the portability criteria defined in the context of LBD, which represent

two main aspects of portability, namely new environments of portability and degree of

portability.

The demonstrated portable framework in this thesis supports knowledge discovery across

a wide range of academic domains, including (but not limited to) medicine, computer

science, sociology, psychology, geography, economics, anthropology, philosophy, law, lan-

guages and literature, history, arts, social work, biology, chemistry, earth science, space

science, physics, mathematics, business, engineering (including chemical engineering,

civil engineering, educational technology, electrical engineering, material science and en-

gineering, mechanical engineering) etc. due to two main reasons. Firstly, the prominence

of DBpedia as a cross-domain resource enables knowledge discovery to be performed

across a diverse range of domains. Secondly, the semantic inferences made in the pro-

posed solutions (using DBpedia) did not follow expedients (or shortcuts) that are limited

to only certain domains (such as medicine, as discussed in Chapter 7); thus, the proposed

solutions are compatible in almost every domain that DBpedia supports. The proposed

portable LBD framework also supports large scale cross-lingual knowledge discovery due

to the multilingual nature of DBpedia.

This study demonstrated a proof of concept of one of the key specialities of the proposed

portable framework, which is its interdisciplinary (or generalisable) nature. Such gener-

alisable capabilities, to the best of our knowledge, have never been possible within the

existing LBD models. Therefore, while avoiding the lack of portability which plagued

previous LBD models, this proposed LBD framework also opens up a whole new level

of knowledge discovery in LBD discipline by enabling multifaceted knowledge discovery.

This is an unprecedented direction to the LBD discipline. Otherwise stated, in addition

to carrying out knowledge discovery within a single main domain, the proposed portable

framework also supports the use of multiple domains in a single knowledge discovery.

This enables users a tremendous opportunity in discovering latent novel knowledge not

only in a single main domain, but also across multiple domains. Such multifaceted

knowledge discovery is crucial to advancing interdisciplinary research (such as bioinfor-

matics and medical informatics). For example, consider the recent project Neuralink1,

which strives to develop implantable brain-machine interfaces. Such interdisciplinary re-

search requires the discovery of knowledge from a wide range of domains including (but

1https://neuralink.com/

https://neuralink.com/
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not limited to) medicine, robotics, neural engineering, human-computer interaction, ar-

tificial intelligence and chemistry. The discovery of knowledge across such a range of

disciplines is beyond the ability of existing LBD models. However, the portable LBD

framework proposed in this research objective is capable of facilitating such interdisci-

plinary knowledge discovery. Future LBD research should be able to take advantage of

this capability. Another key advantage of the proposed portable framework is that the

costs involved in the transitions of domains during knowledge discovery (i.e., the degree

of portability) are none or negligible that reflects the cost-efficient nature of the proposed

solution. Similar to the domains, the proposed portable LBD framework also supports

the integration of multiple publication languages in a single knowledge discovery process

with zero or negligible costs in the transitions between (or among) languages.

One of the key focuses of this portability research was to substantiate how well the

proposed solutions resemble the knowledge inferences performed using MeSH. The main

reason for this focus was that MeSH had become an integral part of most of the prior

LBD studies to the formation of semantic deductions. Thus, if the proposed solutions

using DBpedia closely resemble the knowledge inferences made using MeSH, the LBD

community does not have to perform substantial modifications to their LBD models

when integrating the proposed solutions to enable the portability. The experimental

results indicate that the proposed solutions using DBpedia tend to have similarities

with the corresponding knowledge inferences made using MeSH. In some instances, such

as in the case of synonym identification, the proposed solutions showcased superior

performances than MeSH. This ensures that existing LBD models could easily enable the

portability of their models through the integration of the proposed solutions, spreading

the benefits of LBD models to research communities beyond medicine. This will also

assist in enhancing LBD research outside of the medical domain, where it is still in a

nascent stage.

To the best of our knowledge, this is the first study reported in LBD literature to

introduce DBpedia and verify its suitability in the LBD workflow. DBpedia is superior to

most existing knowledge bases (not only in LBD discipline, but also in general) as a result

of its many strengths that are lacking in existing knowledge bases. These distinctive

features of DBpedia provide a unique and significant potential to perform multifarious

deep semantic inferences. Such inferences are crucial to gain a rich understanding of

the unstructured text in a domain-agnostic and language-agnostic manner. This also
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alleviates one of the top-cited major challenges faced by non-medical LBD studies, which

is the unavailability of a comprehensive knowledge base that allows for the formation of

semantic inferences during the knowledge discovery process.

Table 8.1: Summary of the major contributions

Obje-

ctive

Major Contributions

RO1 • being the first systematic literature review in the LBD discipline.

• following a rigorous review protocol with methodically designed research questions

that cover the entire LBD workflow, while also shedding light on several new focal

points.

RO2 • being the first study in the LBD discipline that comprehensively analyses and eval-

uates the input component of the LBD workflow.

• proposing a novel perspective on assessing the information richness of LBD input

types, taking inspiration from foraging theory and subjective understandings of infor-

mation that make use of the information retrieval cycle of the LBD workflow.

RO3 • being the first study in the LBD discipline to incorporate a circumstantial temporal

component by utilising a wide range of techniques from areas such as sequence mining,

time series analysis and signal processing, in order to perform a fine-grained analysis

of semantically infused temporal trajectories.

• being the first study to introduce patterns based on relativity by taking inspiration

from molecular docking mechanism.

• demonstrating not only the direct uses of the proposed diachronic semantic inferences,

but also their indirect uses through the trajectory alignment model.

• the experimental results verified the efficacy of the proposed LBD models (i.e., both

direct and indirect usage of diachronic semantic inferences) in all experiments, per-

formed under different settings.
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• the proposed semantic shift types in isolation (i.e., ISS, PSS and NSS ) also demon-

strated high prediction performances (in both direct and indirect uses of diachronic

semantic inferences) compared to the baseline models, indicating the predictive power

of the proposed semantically infused temporal trajectories, even individually.

• the prediction performance of the proposed LBD models does not depend on semantic

inferences performed using external domain-dependent knowledge resources, which en-

sures their reusability (in various problem settings) and portability (in various academic

domains), offering the opportunity to provide broader community benefits.

RO4 • performing large-scale reuse research by integrating considerations of reusability

through a methodical reuse plan.

• demonstrating the vertical reuse of the proposed LBD models considering an oppor-

tune application area in the LBD field.

• the proposed LBD models exhibit a greater flexibility in adapting to new reuse

settings, due to their domain-agnostic nature and to the power of vector semantics on

which they are based.

• establishing the models’ fitness for the intended purpose through the first iteration in

the grab-and-glue framework, compared to the competitive baselines in the two-node

search, as well as state-of-the-art link prediction techniques.

• the trajectory combination types alone also demonstrated high predictive perfor-

mances compared to baseline models, which verifies the predictive power of the pro-

posed semantically infused temporal trajectories, even when they are used individually.

RO5 • being the first LBD study that proposes a comprehensive portable LBD framework

to support knowledge discovery in a cross-domain and cross-lingual manner.

• being the first LBD study to demonstrate interdisciplinarity (or generalisability)

through the combination of multiple domains in a single knowledge discovery, with

negligible costs in the transitions between (or among) domains.
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• being the first study to introduce DBpedia to the LBD discipline, providing the

opportunity to perform multifarious semantic inferences using unstructured text in a

domain-agnostic and language-agnostic manner.

• observing that the proposed solutions displayed similarities to (and sometimes out-

performed) the commonly used LBD resource MeSH, meaning that the LBD commu-

nity will be able to integrate the proposed solutions into their LBD models without

substantial modifications, which will facilitate LBD research beyond medicine.

8.3 Future Work

There are a number of future directions opened as a result of the studies conducted in

this thesis. The purpose of this section is to discuss these opportunities for future LBD

research. The discussion is framed in relation to the thesis’ five main objectives.

8.3.1 Main Research Objective 1 (RO1)

To accomplish RO1, this thesis performed a large-scale systematic literature review as

discussed in Section 8.2. More recently, Kastrin & Hristovski (2020) have performed

a large scale scientometric analysis of the LBD literature. They focus on evidence

synthesis in a manner that is similar to methods employed in a systematic literature

review. One interesting future direction of this research objective is to conduct an

umbrella review (sometimes called a ‘reviews of reviews’) (Newman & Gough 2020).

The purpose of umbrella reviews is to systematically collect and evaluate the information

on previously published literature reviews. Thus, umbrella reviews offer the opportunity

to obtain a more comprehensive picture of the discipline, while ascertaining whether

the evidence base of the topics and questions in discipline is consistent, contradictory

or discrepant and exploring the potential reasons to describe them. Conducting an

umbrella review may be particularly important in the field of LBD, which has accrued

over 30 years of research. Thus, synthesising consistent, contradictory or discrepant

evidence base and their potential reasons may provide better future directions in the

LBD discipline. Since the data in umbrella reviews are extracted from previous reviews
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(i.e., secondary levels of analysis) rather than primary research studies, these reviews

are considered a tertiary level of research analysis (Newman & Gough 2020). Even

though umbrella reviews provide an efficient way to examine previous research, they

are comparatively novel. Thus, the emerging methodologies used to undertake umbrella

reviews open up many challenges and questions (Newman & Gough 2020, Wiechula et al.

2016). For instance, care is required in the assessment of source reviews in terms of data

inclusion, study quality and overlap among reviews (Newman & Gough 2020).

8.3.2 Main Research Objective 2 (RO2)

The RO2 of this thesis was designed with reference to the notion of the subjective under-

standing of information, while also incorporating optimal foraging theory. With the aim

of measuring the information richness of the LBD input types, this thesis approximated

the benefit assessment through the use of time-slicing since it ensured information by

consensus and replicability, as discussed in Chapter 4. Consequentially, an interest-

ing future research direction would be to validate whether the observed patterns are

consistent with actual user studies in terms of the proposed three informativeness (or

information richness) metrics. Performing such user studies will not only provide an

extended platform to further validate the observations reported in Chapter 4, but also

enable to gain additional understanding of user engagement with respect to each of the

LBD input types, which could pave the way to deeper insights into the LBD input types.

This thesis mainly influenced from the subjective understanding of information to assess

and compare LBD input types. However, exploring the objective definitions of the

input types (i.e., considering textual features themselves, as discussed in Chapter 4)

may facilitate the comparison of the observed results in this thesis to verify if they are

consistent with the subjective understanding of information. In this regard, one could

consider the clustering ability of the input types as a metric which could be used to

compare various LBD input types. One possible way to analyse the clustering ability

of input types is to measure the similarity of data points in each input type when they

are compared to their own cluster (i.e., to capture cohesion), as well as their differences

to other clusters (i.e., to capture separation), as illustrated in Figure 8.1. In this way,

one can verify whether each input type indicates poor cohesion and separation (i.e., too

many or too few clusters) or an appropriate clustering configuration (i.e., the data points



Conclusions and Future Work 318

Figure 8.1: Cohesion and separation of data points in the input types

are well-matched with their own clusters and poorly matched with their neighbouring

clusters). In essence, exploring objective definitions such as clustering ability enables

the comparison of LBD input types according to their textual differences.

This thesis mainly focused on the standard data types used in the LBD discipline to assess

the information richness. Following this direction, an interesting future work would be

to perform information richness analysis on non-standard data types that involve two

or three combinations of data types such as title and MeSH, abstract and MeSH, and

title, abstract and MeSH. This will pave the way to discover efficient combinations of

data types that have not been used in the LBD workflow yet. Moreover, it would also

be interesting to observe how the information richness score of data types changes using

test-cases outside the biomedical field such as physics, chemistry and humanities to

analyse whether the information richness score is sensitive to factors such as differences

in scientific expressions and linguistic styles in each discipline.

8.3.3 Main Research Objective 3 (RO3)

The RO3 of this thesis uses semantically infused temporal trajectories as the core analysis

unit. The performance of the proposed LBD models could be further enhanced by

identifying important regions in the proposed temporal trajectories. Proceeding with

this idea, one could employ recent advancements in deep learning by using attention

mechanisms to detect important regions in the temporal trajectories (or segments that

are critical for the prediction). One way to perform attention would be to employ

a sliding window to identify the subsequences in the temporal trajectories that are

considered to be candidate segments. Then, they could be fed to the pre-trained model

to obtain some metric such as entropy. The top K segments (based on the metric utilised)

could be sent through some weighted ensemble mechanism, helping to identify the most

discriminative parts of the trajectories (Hsu et al. 2019) (Figure 8.2). Identification of

such critical segments in the temporal trajectories provides the opportunity to emphasise
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Figure 8.2: Identifying important segments in the trajectories (Hsu et al. 2019)

Figure 8.3: Integrating personalisation component into the proposed LBD framework

these critical regions when making predictions, and to better understand the LBD model

that may be vital for future decision making.

As with the previous LBD research, the proposed LBD models in this thesis only support

static outputs. That is, for a given user input, the same output will be returned,

irrespective of the users’ context. More specifically, consider two researchers, each of

whom have completely different interests and expertise. When these two users input the

same user query q1 to initiate knowledge discovery, existing LBD models (including ours)

will return the same output irrespective of the users’ context differences. Nevertheless,

the user’s context plays a critical role in information retrieval tasks (such as LBD) that

ultimately decides whether the user is satisfied by the produced output. To facilitate

such personalised knowledge discovery, it is important to integrate a personalisation

component into the typical LBD workflow.

With reference to the LBD framework proposed in this thesis, Figure 8.3 outlines two

potential mechanisms through which to fuse the idea of personalisation with the LBD

workflow. The user’s context (which is required for the personalisation component)

could be automatically inferred by analysing papers that the user has authored, including

his/her reading list (using tools such as EndNote or Google Scholar). To model the user’s

context in the constructed vector spaces of the proposed LBD models, a personalised
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Figure 8.4: Proposal for personalised trajectory pattern mining by adapting the
proposed LBD models

vector needs to be created. For this purpose, one could identify important concepts

that describe the papers that the user has authored and his/her reading list, and use

the arithmetic operations of the word vectors of these identified concepts to infer a

personalised vector (see Figure 8.4). One direction that could be used to infer such a

personalised vector is to average the word vectors of the user’s important concepts.

The first proposed method leverages the idea of considering personalisation as a filter

(Figure 8.3). More specifically, the prominent novel knowledge linkages identified in the

LBD process are reordered with respect to the personalised vector in the most recent

embedding space. The other proposed method, which is personalised trajectory pattern

mining involves a meticulous analysis of the user’s context (Figure 8.3). Specifically, it

entails analysing the way in which the trajectories of the most notable novel knowledge

linkages change with the inferred personalised vector across time (Figure 8.4). Unlike

method 1 (which is static, since only the last timestamp is used), this method offers

greater flexibility and more diachronic cues to better model personalisation. The next

stage of this personalised component will be the integration of the inter-community

context of the user using his/her existing collaborations (Figure 8.3).

8.3.4 Main Research Objective 4 (RO4)

The RO4 of this thesis was designed by adapting the proposed LBD models in a new

reuse setting to demonstrate their vertical reusability. Nevertheless, there are other

closely related application areas in LBD (i.e., other vertical reuses) that could be poten-

tially tackled to further verify the robust predictive effects of the proposed semantically
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Figure 8.5: Proposal for cross-domain collaboration recommendation by adapting the
proposed LBD models

infused temporal trajectories. One such application area is cross-domain collaboration

recommendation. For example, consider a situation where a researcher in the source

domain is seeking novel collaborations from a target domain. In this instance, the evolu-

tion of scientific topics of the authors in the source domain and target domain could be

modelled using diachronic vector spaces (Figure 8.5). More specifically in this instance,

the proposed individual semantic shifts of target authors may reveal whether the author

is willing to form cross-domain collaborations. The pairwise semantic shifts and neigh-

bourhood semantic shifts identify how well the target author matches with the interests

of the source author who is seeking collaboration and the topic on which he/she is will-

ing to collaborate (Figure 8.5). In essence, the adaptation of the proposed diachronic

semantic inferences of this thesis may provide valuable insights that can further the

identification of optimal collaboration candidates.

Due to the domain-agnostic nature of the proposed semantically infused temporal trajec-

tories, it is worth verifying their potential predictive effects in horizontal reuse settings.

Horizontal reuse denotes the process of reusing generic components in new applications.

For instance, consider the development of novel product ideas as an application of hor-

izontal reuse. The underpinning two core components that intricately related to such

product innovation can be considered as the product’s purpose (what it does) and its

mechanism (how it works). One recent popular example of leveraging the similarities

between purpose and mechanism in order to kindle new innovations is a device invented

by a car mechanic. This device eases childbirth by drawing similarities from extracting

a cork from a bottle. Therefore, the separation of purpose and mechanism, and the
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identification of potential repurposings for each of these core components, is demonstra-

bly effective in terms of idea generation (Hope et al. 2017). More specifically, given a

purpose and mechanism by the user that indicates what the user is interested in solving,

the model/system should be able to identify products with the same purpose performed

using different mechanisms (i.e., same purpose, different mechanisms), as well as prod-

ucts with the same mechanism but different purposes (i.e., same mechanism, different

purposes). It is possible to perform such horizontal reuse research using data from

crowd-sourced product innovation websites like Quirky.com. These datasets are large-

scale, the product ideas are explained in natural language, the invention categories span

a variety of domains, and the ideas posted covers several years. This make such websites

an ideal setting to adapt the proposed semantically infused temporal trajectories to elicit

potential purpose and mechanism suggestions to the users’ queries, with the intention

of providing an impetus to accelerate product innovation.

8.3.5 Main Research Objective 5 (RO5)

To achieve RO5, this thesis attempted to integrate semantic web technologies to cir-

cumvent existing domain-dependent impediments, while introducing additional benefits

such as interdisciplinary usage and cross-lingual knowledge discovery. The next stage of

the proposed portable LBD framework of this thesis would be the integration of machine

learning techniques to further enhance the precision of each proposed component in the

portability framework. More precisely, the empirical rules and evidence reported as part

of this portability research can be utilised to extract features (i.e., a feature engineer-

ing phase) using the DBpedia knowledge base to construct machine learning models to

further enhance prediction results.

This thesis also observes that the proposed portability functionalities using DBpedia are

also compatible with Wikidata (Vrandečić & Krötzsch 2014, Piscopo & Simperl 2019).

Wikidata is also a multidomain and multilingual knowledge graph which is collabora-

tively edited by a large global community and maintained by the Wikimedia foundation.

It was founded more recently than DBpedia (i.e., in 2012) (Abián et al. 2017). For in-

stance, consider the scenario that the thesis used ‘dct:subject’ and ‘skos:broader’ prop-

erties to support domain-specific terminology extraction (discussed in Chapter 7). The

same functionality can be approximated using the two Wikidata properties: ‘subclass
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of’ (i.e., P279 ) and ‘instance of’ (i.e., P31 ) (Erxleben et al. 2014). One could locate the

corresponding Wikidata entry in DBpedia using the property ‘owl:sameAs’. Following

this notion, one could analyse and compare the performance of Wikidata in comparison

to DBpedia in the context of LBD, or even perform a more comprehensive analysis by

integrating the knowledge in both DBpedia and Wikidata, as potential future directions

of this thesis.

8.4 Concluding Remarks

One of the main findings of the systematic literature review was the need to alleviate

the existing constrained environments of the LBD workflow in order to reach a large and

more diverse community. This is important for two main reasons. Firstly, the intrinsic

aim of LBD research (i.e., discovering novel, implicit linkages by exploring signals from

text corpora) could be broadly applicable to diverse problem settings. Secondly, the

potential benefits of LBD research are domain-agnostic and could be broadly applicable

to any discipline.

The explorations that were performed focusing on the input component of the LBD

workflow represents the first step towards the assessment and comparison of different

input types in a generalisable manner. Such explorations are crucial to the future devel-

opment of better LBD models. The sparsity of the research conducted on modern word

embedding techniques and temporal analysis provided a rationale for amalgamating these

two methods using diachronic semantic inferences in this thesis. The results indicated

that the proposed LBD models displayed robust predictive performances, not only in

terms of their direct uses, but also their indirect uses.

The reuse research attempted to present a distinct perspective on the LBD models by

demonstrating their vertical reusability in a timely application area. The results further

substantiated the robust predictive performances of both the direct and indirect uses

of the proposed diachronic semantic inferences. Moreover, this study demonstrated the

high levels of flexibility that the proposed LBD models exhibit, due to their domain-

agnostic nature and the power of the semantic spaces on which they are based. The

portability research proposes a highly cost-efficient, easily pluggable portable LBD frame-

work, with the ultimate goal of extending LBD research beyond the medical domain, in
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which it is still in a nascent stage. While ensuring broader usage of knowledge discov-

ery through its support of multiple domains and publication languages, this study also

engenders a novel perspective on knowledge discovery through its generalisable capabil-

ities.

Overall, the five main objectives of this thesis involved seeking a common thread with

the goal of broadening the applicability of the LBD workflow. This thesis’ development

of widely applicable LBD model means that a reasonably broad array of scientific prob-

lems can be tackled by a single system. This is in contrast with LBD models, which

are constructed to solve only a specific problem within a particular domain. Widely

applicable LBD models should offer the possibility to customise solutions in order to

solve scientific problems, which are not prefigured during their construction. More-

over, these LBD models should also facilitate the execution of knowledge discovery in a

domain-agnostic and language-agnostic manner. This will allow them not only to offer

the benefits of LBD research to other research communities, but also to assist in solving

more complex interdisciplinary problems (such as Neuralink, as discussed in this chap-

ter). Due to their potential to adapt to a reasonably diverse range of environments and

problem setups, widely applicable LBD models are highly flexible, and their potential

benefits to the community are manifold. Therefore, future LBD research could further

explore and expand the novel contributions established through the studies performed

in this thesis, in order to further enhance the current understanding of the widespread

applicability of the LBD workflow.
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Semantic Evolution

Algorithm A.1: Pseudocode of Individual Global Shift (IGS)

Input: model(t) and model(t+1) are word2vec embedding spaces in adjacent times-

tamps, and wi is a string representation of a given local topic

Output: d IGS(wi
(t), wi

(t+1))

Start

1. Check if the concept wi is present in both model(t) and model(t+1)

2. Get the similarity vector of the focus concept wi from both the models

3. Compute the cosine distance between these two similarity vectors

End

Algorithm A.2: Pseudocode of Individual Local Shift (ILS)

Input: model(t) and model(t+1) are word2vec embedding spaces in adjacent times-

tamps, wi is a string representation of a given local topic, and k is the size of

the local neighbourhood

Output: d ILS(wi
(t), wi

(t+1))

Start

1. Check if the concept wi is present in both model(t) and model(t+1)

2. Get the two k -nearest neighbourhoods of wi from both models

3. Get the ‘meta’ neighbourhood (both models combined)

4. Filter the meta neighbourhood so that it contains only concepts present in

both models

325
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5. For both models, get a similarity vector between the focus concept wi and

all of the concepts in the meta neighbourhood

6. Compute the cosine distance between those similarity vectors

End

Algorithm A.3: Pseudocode of Pairwise Semantic Displacement (PSD)

Input: model(t) is a word2vec embedding space in timestamp t, wi is a string represen-

tation of a given local topic, wA is a string representation of the user-defined

concept A, and wC is a string representation of the user-defined concept C

Output: sPSD(wi
(t), wA

(t), wC
(t))

Start

1. Check if the concepts wi, wA and wC are present in the model(t)

2. Get the similarity vectors of the focus concept wi and the user-defined

concepts (wA and wC) from the model(t)

3. Compute the cosine similarities between the similarity vectors of the focus

concept wi and wA, and the focus concept wi and wC

4. Compute the average of the two cosine similarities

End

Algorithm A.4: Pseudocode of Pairwise Distance Proximity (PDP)

Input: model(t) is a word2vec embedding space in timestamp t, wi is a string represen-

tation of a given local topic, wA is a string representation of the user-defined

concept A, and wC is a string representation of the user-defined concept C

Output: dPDP(wi
(t), wA

(t), wC
(t))

Start

1. Check if the concepts wi, wA and wC are present in the model(t)

2. Get the similarity vectors of the focus concept wi and the user-defined

concepts (wA and wC) from the model(t)

3. Compute the cosine distances between the similarity vectors of the focus

concept wi and wA, and the focus concept wi and wC

4. Compute the relative distance using the two cosine distances

End
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Algorithm A.5: Pseudocode of Neighbourhood Semantic Displacement (NSD)

Input: model(t) is a word2vec embedding space in timestamp t, wi is a string represen-

tation of a given local topic, wA is a string representation of the user-defined

concept A, wC is a string representation of the user-defined concept C, NA

is the most recent neighbourhood of concept A, and NC is the most recent

neighbourhood of concept C

Output: sNSD(wi
(t), wA

(t), wC
(t))

Start

1. Check if the concepts wi, wA and wC are present in the model(t)

2. Get the similarity vectors of the focus concept wi, user-defined concepts

(wA and wC), and recent neighbourhood (NA and NC) from the model(t)

3. Compute the cosine similarities between the similarity vectors of the focus

concept wi and wA, focus concept wi and NA, focus concept wi and wC, and

focus concept wi and NC

4. Compute the average of the derived cosine similarities

End

Algorithm A.6: Pseudocode of Neighbourhood Distance Proximity (NDP)

Input: model(t) is a word2vec embedding space in timestamp t, wi is a string represen-

tation of a given local topic, wA is a string representation of the user-defined

concept A, wC is a string representation of the user-defined concept C, NA

is the most recent neighbourhood of concept A, and NC is the most recent

neighbourhood of concept C

Output: dNDP(wi
(t), wA

(t), wC
(t))

Start

1. Check if the concepts wi, wA and wC are present in the model(t)

2. Get the similarity vectors of the focus concept wi, the user-defined concepts

(wA and wC), and recent neighbourhood (NA and NC) from the model(t)

3. Compute the cosine distances between the similarity vectors of the focus

concept wi and wA, focus concept wi and NA, focus concept wi and wC, and

focus concept wi and NC

4. Compute the relative distance using the derived cosine distances

End
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Table A.1: MAP@k results for the five golden test cases: FO-RD, MG-MIG, IGF1-
ARG, AD-INN and SZ-PA2

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.665 0.582 0.555 0.523 0.513 0.504 0.486 0.487 0.477 0.467

BI (baseline) 0.0 0.0 0.002 0.007 0.019 0.029 0.038 0.045 0.055 0.065

DE (baseline) 0.246 0.209 0.23 0.233 0.237 0.232 0.237 0.241 0.239 0.233

SE (baseline) 0.083 0.157 0.203 0.213 0.226 0.234 0.233 0.241 0.251 0.256

TI (baseline) 0.031 0.039 0.047 0.065 0.087 0.101 0.106 0.114 0.127 0.133

DTM: LSTM 1 0.311 0.409 0.441 0.465 0.476 0.494 0.503 0.513 0.524 0.532

DTM: LSTM 2 0.437 0.451 0.452 0.462 0.479 0.487 0.497 0.504 0.507 0.515

DTM: LSTM 3 0.364 0.443 0.468 0.46 0.488 0.5 0.51 0.514 0.521 0.517

DTM: CNN 0.521 0.469 0.487 0.512 0.522 0.52 0.528 0.529 0.538 0.541

DTM:

CNN LSTM

0.592 0.545 0.529 0.515 0.508 0.507 0.52 0.524 0.535 0.547

DTM:

LSTM CNN

0.362 0.368 0.391 0.402 0.417 0.435 0.435 0.449 0.455 0.461

FTM 0.788 0.783 0.77 0.751 0.745 0.72 0.717 0.696 0.686 0.68

TAM 0.851 0.792 0.763 0.761 0.755 0.746 0.73 0.72 0.704 0.697
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Table B.1: MAP@k results for the four golden test cases

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.157 0.148 0.146 0.135 0.129 0.127 0.125 0.123 0.124 0.12

DE (baseline) 0.117 0.081 0.06 0.06 0.055 0.049 0.049 0.048 0.048 0.047

SE (baseline) 0.033 0.029 0.021 0.02 0.022 0.023 0.022 0.02 0.021 0.022

CN (baseline) 0.0 0.0 0.0 0.0 0.0 0.0 0.001 0.001 0.001 0.001

JI (baseline) 0.008 0.007 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003

PA (baseline) 0.0 0.0 0.001 0.002 0.003 0.003 0.004 0.005 0.006 0.006

DTM: LSTM 1 0.43 0.331 0.32 0.297 0.293 0.295 0.284 0.277 0.276 0.274

DTM: LSTM 2 0.259 0.204 0.202 0.206 0.21 0.219 0.22 0.223 0.227 0.227

DTM: LSTM 3 0.215 0.243 0.236 0.226 0.225 0.232 0.228 0.23 0.224 0.219

DTM: CNN 0.276 0.193 0.184 0.175 0.162 0.15 0.15 0.147 0.143 0.141

DTM:

CNN LSTM

0.306 0.254 0.265 0.246 0.244 0.246 0.246 0.245 0.24 0.232

DTM:

LSTM CNN

0.279 0.277 0.252 0.259 0.254 0.25 0.236 0.235 0.233 0.229

FTM 0.459 0.372 0.362 0.346 0.327 0.314 0.296 0.291 0.279 0.276

TAM 0.422 0.336 0.285 0.254 0.234 0.222 0.205 0.199 0.194 0.187
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Table B.2: MAP@k results for the four golden test cases using only drugs

Method 10 20 30 40 50 60 70 80 90 100

AR (baseline) 0.058 0.063 0.062 0.065 0.067 0.071 0.07 0.068 0.067 0.067

DE (baseline) 0.102 0.062 0.051 0.047 0.047 0.045 0.045 0.042 0.041 0.041

SE (baseline) 0.005 0.011 0.01 0.014 0.017 0.017 0.017 0.019 0.02 0.02

CN (baseline) 0.0 0.0 0.0 0.001 0.002 0.003 0.003 0.003 0.005 0.005

JI (baseline) 0.031 0.015 0.011 0.009 0.007 0.006 0.006 0.006 0.007 0.006

PA (baseline) 0.0 0.003 0.003 0.004 0.005 0.005 0.006 0.006 0.008 0.009

DTM: LSTM 1 0.364 0.306 0.266 0.253 0.245 0.244 0.246 0.232 0.227 0.22

DTM: LSTM 2 0.234 0.189 0.191 0.19 0.192 0.189 0.192 0.198 0.195 0.194

DTM: LSTM 3 0.203 0.184 0.17 0.17 0.168 0.163 0.157 0.154 0.148 0.15

DTM: CNN 0.261 0.198 0.172 0.151 0.141 0.128 0.122 0.13 0.126 0.125

DTM:

CNN LSTM

0.259 0.224 0.235 0.222 0.207 0.194 0.19 0.187 0.185 0.187

DTM:

LSTM CNN

0.158 0.18 0.204 0.195 0.185 0.19 0.188 0.184 0.176 0.175

FTM 0.47 0.392 0.354 0.325 0.303 0.28 0.263 0.254 0.235 0.228

TAM 0.37 0.263 0.23 0.21 0.187 0.175 0.17 0.167 0.164 0.159
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Table C.1: Several predicates from the DBpedia RDF graph on the subject “Pul-
monary hypertension” (note that the property values indicate similar meanings to those

in Table 7.2’s ‘comments’ column)

No. Property

(Predicate)

Value (Object)

1 dbo:abstract Pulmonary hypertension (PH or PHTN) is an increase of blood pressure in the

pulmonary artery, pulmonary vein, or pulmonary capillaries, together known as the

lung vasculature, leading to shortness of breath, dizziness, fainting, ...

2 dbo:icd10 I27.0, I27.2

3 dbo:icd9 416.0, 416.8

4 dbo:meshId D006976

5 dbo:wikiPage

ExternalLink

http://www.cirquemeded.com/ACCP/CHEST2005/CoTherix/player.html

http://www.merckmanuals.com/home/lung and airway disorders/pulmonary

hypertension/pulmonary hypertension.html#v727742 ,

http://www.phaeurope.org/ , http://www.phassociation.org/Page.aspx?pid=197 ,

http://www.phcentral.org/ , http://www.phaaustralia.com.au,

http://www.annals.org/cgi/reprint/143/4/282 ,

http://emedicine.medscape.com/article/1004828-overview ,

http://emedicine.medscape.com/article/303098-overview ,

http://emedicine.medscape.com/article/898437-overview ,

http://bioinfo.mc.vanderbilt.edu/PAHKB/

http://www.ncbi.nlm.nih.gov/omim/178600,600799,178600,600799

6 dbo:wikiPageID 674529

7 dbp:diseasesdb 10998

8 dbp:field dbr:Cardiology

dbr:Pulmonology
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9 dbp:wordnet type http://www.w3.org/2006/03/wn/wn20/instances/synset-disease-noun-1

10 dct:subject dbc:Hypertension

dbc:Pulmonary heart disease and diseases of pulmonary circulation

11 rdf:type owl:Thing, wikidata:Q12136 , dbo:Disease, yago:Abstraction100002137 ,

yago:Attribute100024264 , yago:Condition113920835 , yago:Disease114070360 ,

yago:Disorder114052403 , yago:IllHealth114052046 , yago:Illness114061805 ,

yago:PathologicalState114051917 , yago:PhysicalCondition114034177 ,

yago:State100024720 , yago:WikicatLungDisorders

12 owl:sameAs wikidata:Pulmonary hypertension, dbpedia-de:Pulmonary hypertension,

dbpedia-es:Pulmonary hypertension, dbpedia-fr:Pulmonary hypertension,

dbpedia-it:Pulmonary hypertension, dbpedia-ja:Pulmonary hypertension,

dbpedia-pl:Pulmonary hypertension, dbpedia-wikidata:Pulmonary hypertension,

dbpedia-nl:Pulmonary hypertension, dbpedia-pt:Pulmonary hypertension,

http://www4.wiwiss.fu-berlin.de/sider/resource/side ,

effects/C0020542 , freebase:Pulmonary hypertension,

http://purl.org/net/tcm/tcm.lifescience.ntu.edu.tw/id ,

/disease/Hypertension Pulmonary, yago-res:Pulmonary hypertension

13 is dbo:wikiPage

Redirects of

dbr:CTEPH , dbr:Cteph, dbr:Primary pulmonary hypertension,

dbr:Chronic thromboembolic pulmonary hypertension,

dbr:Pulmonary Hypertension, dbr:Pulmonary artery hypertension,

dbr:Secondary pulmonary hypertension, dbr:PHTN ,

dbr:Pulmonary arterial hypertension, dbr:Ayerza syndrome,

dbr:Hypertension, pulmonary, dbr:Persistent pulmonary hypertension,

dbr:Pulmonary htn, dbr:Pulmonary hypertension, secondary,

dbr:Pulmonary Arterial Hypertension, dbr:Pulmonary Hypertension, Secondary

Table C.2: Several predicates from the DBpedia RDF graph on the subject “Big Five
personality traits” (note that the property values indicate similar meanings to those in

Table 7.2’s ‘comments’ column)

No. Property

(Predicate)

Value (Object)

1 dbo:abstract The Big Five personality traits, also known as the five factor model (FFM), is a

model based on common language descriptors of personality (lexical hypothesis).

These descriptors are grouped together using a statistical technique ...

2 dbo:wikiPageID 1284664

3 dct:subject dbc:Personality traits
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4 owl:sameAs wikidata:Big Five personality traits, dbpedia-cs:Big Five personality traits,

dbpedia-de:Big Five personality traits, dbpedia-es:Big Five personality traits,

dbpedia-fr:Big Five personality traits, dbpedia-it:Big Five personality traits,

dbpedia-pl:Big Five personality traits, dbpedia-pt:Big Five personality traits,

dbpedia-wikidata:Big Five personality traits,

dbpedia-ko:Big Five personality traits, dbpedia-nl:Big Five personality traits,

freebase:Big Five personality traits, yago-res:Big Five personality traits

5 is dbo:wikiPage

Redirects of

dbr:Big Five Inventory, dbr:Big Five model of personality,

dbr:Big Five personality factors, dbr:OCEAN model ,

dbr:OCEAN model of personality, dbr:Five factor model , dbr:Five Factor Model ,

dbr:Big five personality traits, dbr:OCEAN , dbr:”Big Five” factors,

dbr:Big Five factors, dbr:Big Five test , dbr:Five Factor Personality Test ,

dbr:‘Five Factor’ personality test , dbr:Five factor inventory,

dbr:The Big Five personality traits, dbr:Five factor model of personality,

dbr:Big Five personality, dbr:Five-factor model , dbr:Big Five Personality Traits,

dbr:Big Five model

6 is rdfs:seeAlso of dbr:Personality disorder

7 dbo:wikiPage

ExternalLink

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122245

http://www.ocf.berkeley.edu/ johnlab/bigfive.htm, http://ipip.ori.org/

8 rdf:type yago:Abstraction100002137 , yago:Attribute100024264 , yago:Cognition100023271 ,

yago:Explanation105793000 , yago:HigherCognitiveProcess105770664 ,

yago:Process105701363 , yago:PsychologicalFeature100023100 ,

yago:Theory105989479 , yago:Thinking105770926 , yago:Trait104616059 ,

yago:WikicatPersonalityTheories, yago:WikicatPersonalityTraits

Table C.3: Several predicates from the DBpedia RDF graph on the subject “Bloom’s
taxonomy” (note that the property values indicate similar meanings to those in Table

7.2’s ‘comments’ column)

No. Property

(Predicate)

Value (Object)

1 dbo:abstract Bloom’s taxonomy is a set of three hierarchical models used to classify educational

learning objectives into levels of complexity and specificity. The three lists cover

the learning objectives in cognitive, affective and sensory ...

2 dbo:wikiPageID 261128

3 dct:subject dbc:Stage theories

dbc:Classification systems

dbc:Educational psychology

dbc:Educational technology
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4 owl:sameAs wikidata:Bloom’s taxonomy, dbpedia-cs:Bloom’s taxonomy,

dbpedia-el:Bloom’s taxonomy, dbpedia-es:Bloom’s taxonomy,

dbpedia-fr:Bloom’s taxonomy, dbpedia-pl:Bloom’s taxonomy,

dbpedia-pt:Bloom’s taxonomy, dbpedia-id:Bloom’s taxonomy,

dbpedia-it:Bloom’s taxonomy, dbpedia-wikidata:Bloom’s taxonomy,

freebase:Bloom’s taxonomy, yago-res:Bloom’s taxonomy,

yago-res:Bloom’s taxonomy

5 is dbo:wikiPage

Redirects of

dbr:Blooms taxonomy, dbr:Taxonomy of Education Objectives,

dbr:Bloom’s Toxonomy, dbr:Bloom’s Taxonomy,

dbr:Taxonomy of educational objectives, dbr:Taxonomy of education objectives,

dbr:Blooms Taxonomy In Education, dbr:Taxonomy of Educational Objectives

6 dbo:wikiPage

ExternalLink

http://www.nwlink.com/ donclark/hrd/bloom.html

7 is rdfs:seeAlso of dbr:Scientific literacy

8 rdf:type yago:Abstraction100002137 , yago:Arrangement105726596 ,

yago:ClassificationSystem105727220 , yago:Cognition100023271 ,

yago:PsychologicalFeature100023100 , yago:Structure105726345 ,

yago:WikicatClassificationSystems

Table C.4: Qualitative evaluation of synonym coverage (includes the redirects that
are directly linked to the main Wikipedia page, i.e., redirects with ‘no anchor’)

Test

case No.

Topic Resource Synonyms

(1) FO MeSH Fish Oils, Fish Liver Oils, Fish Oil

DBpedia Fish oil, Fish oils, Fish-oil, Lovanza, Marine oil, Fish liver

oils

WordNet Fish oil, Fish-liver oil

RD MeSH Raynaud Disease, Hereditary Cold Fingers, Raynaud Phe-

nomenon, Raynaud’s Disease

DBpedia Raynaud syndrome, Raynaud’s disease and Raynaud’s phe-

nomenon, Reynaud’s, Reynaud’s disease, Raynaud’s dis-

ease, Raynaud phenomenon, Reynaud’s phenomenon, Ray-

nauds disease, Reynaud’s Disease, Raynaud’s disorder, In-

termittent arterial vasospasm, Raynaud’s Disease, Ray-

naud’s syndrome, Raynaud’s phenomenon, Raynaud’s dis-

ease/phenomenon, Raynaud disease, Raynauds, Raynauds

Syndrome, Raynauld’s syndrome, Raynauld syndrome,
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Reynaud’s phenomenon, Primary Raynaud’s phenomenon,

Raynaud’s Phenomenon, Raynaud’s Syndrome, Reynaud’s

Syndrome, Reynaud’s syndrome, Primary raynaud’s phe-

nomenon, Secondary raynaud’s phenomenon, Raynaud’s

Syndrome, Raynaud’s

WordNet Raynaud’s sign, Acrocyanosis

(2) MG MeSH Magnesium

DBpedia Magnesium, Magnessium, Magnesium compounds, Magne-

sium ribbon, Element 12, Mg2+, C8H14MgO10, Mg2+

WordNet Magnesium, Atomic number 12

MIG MeSH Migraine Disorders, Abdominal Migraine, Acute Con-

fusional Migraine, Cervical Migraine Syndrome, Mi-

graine Headache, Hemicrania Migraine, Migraine, Migraine

Headache, Migraine Variant, Sick Headache, Status Mi-

grainosus

DBpedia Migraine, Migraines, Basilar migraine, Basilar type mi-

graine, Migraine headaches, Facial migraine, Migrane, Mi-

graine treatment drug, Migraine headache, Mı́gren, Mı́greni,

Bickerstaff’s migraine, Classical migraine, Common mi-

graine, Optical migraine, Migraine disorders, Anti-migraine,

Migraine medication, Migreni, Migren, Migraine journal,

Acute migraine, Megrims, Chronic migraine, Status mi-

graine

WordNet Migraine, Megrim, Hemicrania, Sick headache

(3) IGF1 MeSH Insulin-Like Growth Factor I, IGF-1, IGF-I, IGF-I-SmC, In-

sulin Like Growth Factor I, Insulin-Like Somatomedin Pep-

tide I, Somatomedin C

DBpedia Insulin-like growth factor 1, Mechano-growth factor,

Insulin-like growth factor-1, IGF-I, Somatomedin C, IGF

type 1 receptor, Insulin-like Growth Factor 1, Insulin-like

growth factor I, IGF-1, Insulinlike growth factor I, IGF1,

Insulin-like growth factor i, Sulfation factor, IGF1 (gene)

WordNet –

ARG MeSH Arginine, Arginine Hydrochloride, Arginine, L-Isomer, DL-

Arginine Acetate, Monohydrate, L-Arginine
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DBpedia Arginine, Arginin, L-Arginine L-malate, L-arginine hy-

drochloride, Arginine hydrochloride, L-arginine, Arginate,

L-Arginine, D-arginine, 1-Arginine, Arganine, Arginine

malate, L-Arginine Malate, Argamine, Argivene, Detoxar-

gin, Levargin, Minophagen A, L-Arg, Argenine

WordNet Arginine

(4) AD MeSH Alzheimer Disease, Acute Confusional Senile Dementia,

Alzheimer Dementia, Early Onset Alzheimer Disease, Late

Onset Alzheimer Disease, Alzheimer Sclerosis, Alzheimer

Syndrome, Alzheimer Type Senile Dementia, Alzheimer’s

Disease, Focal Onset Alzheimer’s Disease, Alzheimer-Type

Dementia (ATD), Alzheimer Type Dementia, Presenile De-

mentia, Primary Senile Degenerative Dementia, Senile De-

mentia, Early Onset Alzheimer Disease, Familial Alzheimer

Disease (FAD), Focal Onset Alzheimer’s Disease, Late On-

set Alzheimer Disease, Presenile Alzheimer Dementia, Pri-

mary Senile Degenerative Dementia, Acute Confusional Se-

nile Dementia, Alzheimer Type Senile Dementia

DBpedia Alzheimer’s disease, Alzheimers, Alzhiemer’s disease,

Alzheimer’s, Alzheimer’s diseases, Alstimers, Altzimers,

Alzheimer disease, Alzeihmers, Alzheimer’s Disease, Al-

timers, Alzhimer, Alzhiemers, Alzheimers disease, Old

timer’s disease, Old timer disease, Oldtimer disease,

Alzheimer’s disease, Late-onset Alzheimer’s Disease,

Alzhemiers’ disease, Presenile dementia, Old timers disease,

Oldtimer’s disease, Alzheimer’s, Alzheimer, DAT - Demen-

tia Alzheimer’s type, Cognitive disease, Sdat, Alzheimer’s

dementia, Altzheimer, Alzheimer’s diseases, Alzheimer’s

Research, Alzheimer dementia, Alzeheimer’s, Alzeheimers,

Alzheimer’s Disease, Alzheimers Disease, Oldtimers dis-

ease, Retrogenesis, Old-timer’s disease, Old-timers’ dis-

ease, Alzheimer’s Syndrome, Alzheimer’s research direc-

tions, Alzheimer’s Disease and Diet, Alzheimer’s disease and

diet, Alzheimer’s syndrome, Primary degenerative dementia

of the Alzheimer’s type, Senile dementia of the Alzheimer

type, Retrogenesis theory, Alzeimer’s, Alzeimer’s disease,

Alzeimers, Alzeimers disease

WordNet Alzheimers, Alzheimer’s disease, Alzheimer’s
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INN MeSH Indomethacin, Amuno, Indocid, Indocin, Indomet 140,

Indometacin, Indomethacin Hydrochloride, Metindol, Os-

mosin

DBpedia Indometacin, Indocin sr, ATC code C01EB03, ATCvet code

QC01EB03, ATC code M01AB01, ATC code M02AA23,

ATC code S01BC01, ATCvet code QM01AB01, ATCvet

code QM02AA23, ATCvet code QS01BC01, Indomethacin

sodium, Indocid, Indocin, Indomethacin, C19H16ClNO4,

Indomethacin antenatal infection, Indophtal, Indomee,

Amuno, Apo-Indomethacin, Arthrexin, Artracin, Artri-

novo, Artrivia, Bonidin, Bonidon, Bonidon Gel, Catlep,

Chibro-Amuno, Chrono-Indicid, Chrono-Indocid, Confor-

tid, Dolcidium, Dolcidium Pl, Dolovin, Durametacin, El-

metacin, Flexin Continus, Hicin, Idomethine, Imbrilon,

Inacid, Indacin, Indameth, Indmethacine, Indo-Lemmon,

Indo-Phlogont, Indo-Rectolmin, Indo-Spray, Indo-Tablinen,

Indocid Pda, Indocid Sr, Indocin I.V, Indocin I.V., In-

docin Sr, Indolar Sr, Indomecol, Indomed, Indomethe-

gan, Indomo, Indomod, Indoptic, Indoptol, Indorektal, In-

doxen, Inflazon, Infrocin, Inteban Sp, Lausit, Liometa-

cen, Metacen, Metartril, Methazine, Metindol, Miametan,

Mikametan, Mobilan, Novo-Methacin, Novomethacin,

Nu-Indo, Reumacide, Rhemacin La, Rheumacin La,

Sadoreum, Tannex

WordNet Indomethacin, Indocin

(5) SZ MeSH Schizophrenia, Dementia Praecox, Schizophrenic Disorders

DBpedia Schizophrenia, Schyzophrenia, Skitzafrenic, Schizophrene,

Schizofrenia, Schizophrenic disorders, Schizophrenia, ge-

netic types, Pathology of Schizophrenia, Schizopher-

nia, Schizophrenic, Schitzo, Schitzophrenia, Scizophrenia,

Schizo, Schizophrenic narcissism, Schizophrenics, Simple

schizophrenia, Skitzophrenia, Skitsafrantic, Schizophrenia:

Symptoms, Paranoid schizophrenics, SCZ, Integration dis-

order syndrome, Integration disorder, Failure to recognize

what is real

WordNet Schizophrenic psychosis, Schizophrenic disorder,

Schizophrenia, Dementia praecox

PA2 MeSH Phospholipases A2, Lecithinase A2, Phospholipase A2
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DBpedia Phospholipase A2, PLA2, Phospholipase a2, EC 3.1.1.4

WordNet –

Table C.5: Qualitative evaluation of synonym coverage in non-medical settings

Topic Resource Synonyms

Genetic MeSH –

algorithms DBpedia Genetic algorithm, Genetic algorithms, Darwinian algorithm,

GATTO, Building block hypothesis, Theory of genetic algorithms,

Genetic Algorithm, Genetic Algorithms, GEGA, Genethc algo-

rithm

WordNet –

Pattern

recognition

MeSH Automated Pattern Recognition, Pattern Recognition System

DBpedia Pattern recognition, Pattern analysis, Visual pattern recognition,

Pattern Recognition, Machine pattern recognition, Pattern recog-

nition and learning, Pattern-recognition, Pattern Recognition and

Learning, Pattern recognition (machine learning)

WordNet –

Virtual real-

ity

MeSH Virtual Reality, Educational Virtual Reality, Instructional Virtual

Reality

DBpedia Virtual reality, Virtual environment, 3d simulation, Computer-

simulated environment, Computer simulated environment, Simu-

lated environment, Virtuality, Virtual Reality, Neuron Interactive

Virtual Reality, Virtual space, Virtual ? terms, Virtual environ-

ments, Virtual gaming, Computer-generated environment, Virtual

reality (VR), Virtual-reality, Virtual realities

WordNet Virtual reality

Reinforcement MeSH –

learning DBpedia Reinforcement learning, Reward function, Reinforcement Learn-

ing, Actor critic architecture, Actor critic model, Reinforcement

Learning a form of Artificial Intelligence, Inverse reinforcement

learning, Learning from demonstration

WordNet –

Text MeSH –

retrieval DBpedia Text retrieval, Document retrieval system, Document retrieval

WordNet –

Cluster MeSH Cluster Analysis, Clustering, Disease Clustering
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analysis DBpedia Cluster analysis, Cluster analyses, Cluster Analysis, Clustered

data, Clustering algorithm, Data clustering, Clustering metric,

Cluster validation, Cluster (statistics), Data Clustering, Agglom-

erative clustering

WordNet Clustering, Cluster, Bunch

Image MeSH –

segmentation DBpedia Image segmentation, Segmentation (image processing), Image seg-

ment

WordNet –

Speech MeSH Speech Recognition Software, Voice Recognition Software

recognition DBpedia Speech recognition, Automatic speech recognizer, Speech rec-

ognizer, Voice-to-text, Voice to text, Speech to Text, Com-

puter speech recognition, Voice recognition software, Automatic

Speech Recognition, Speech-recognition, Speech-to-text, Auto-

matic speech recognition, Speech Recognition, Spoken word recog-

nition, Voice command, Voice typing, Voice dialing, Voice Com-

mand, Voice Recognition Command System, Speech-to-Text,

Speech recognition technology, Speech recognition software, Au-

tomated speech recognition

WordNet –

Signal pro-

cessing

MeSH Computer-Assisted Signal Processing, Digital Signal Processing,

Computer-Assisted Signal Interpretation

DBpedia Signal processing, Signals processing, Signal analysis, Signal Pro-

cessing, Signal processor, Signal theory, Signal processsing, Multi-

scale signal analysis, Signal conditioner, Signal Processor

WordNet Signal detection

Machine MeSH –

vision DBpedia Machine vision, Machine Sight, Machine Vision, Visual navigation

WordNet –

Gravitational MeSH –

lens DBpedia Gravitational lens, Gravitational Lenses, Bend light, Gravitation-

ally lensed galaxy, Einstein arc, Gravitational Lensing, Gravi-

tational arc, Gravity lens, Gravitational lensing, Gravitational

Lens, Gravitational lense, Gravitational lenses, Multiple images

(gravitational lensing), Gravitatinal lensing, Macrolensing, Grav-

itational deflection

WordNet –

Inverse Galo- MeSH –
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is problem DBpedia Inverse Galois problem, Inverse problem of Galois theory, Inverse

Galois theory, Rigid group

WordNet Galois theory

Oligopoly MeSH –

DBpedia Oligopoly, Oligopolies, Desoligopolization, Desologopolization,

Oligopolistic, Oligolopolistic, Oligopolist, Desoligolipolization,

Oligopology, Oligopoly theory, Oligopolists

WordNet Oligopoly
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Vidal, M.-E., Rivera, J.-C., Ibáñez, L.-D., Raschid, L., Palma, G., Rodriguez, H. &

Ruckhaus, E. (2014), ‘An Authority-flow based Ranking Approach to Discover Poten-

tial Novel Associations between Linked Data’, Semantic Web 5(1), 23–46.

Vlietstra, W. J., Zielman, R., van Dongen, R. M., Schultes, E. A., Wiesman, F., Vos,

R., van Mulligen, E. M. & Kors, J. A. (2017), ‘Automated Extraction of Potential

Migraine Biomarkers using a Semantic Graph’, Journal of Biomedical Informatics

71, 178–189.

Voorhees, E. M. (2006), The TREC 2005 Robust Track, in ‘ACM SIGIR Forum’, Vol. 40,

ACM, pp. 41–48.

Vos, R., Aarts, S., van Mulligen, E., Metsemakers, J., van Boxtel, M. P., Verhey, F.

& van den Akker, M. (2013), ‘Finding Potentially New Multimorbidity Patterns of

Psychiatric and Somatic Diseases: Exploring the use of Literature-Based Discovery

in Primary Care Research’, Journal of the American Medical Informatics Association

21(1), 139–145.
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