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Abstract 
The Late Quaternary Period (the past ~1.0 million years) is characterised by cyclical 

growth and retraction of glaciers and polar ice caps driven by periods of cooler and warmer 

global temperatures. Ancient DNA has emerged as a key tool for unravelling the impacts 

of climate and environmental change as it enables detection of population and species 

level changes that would otherwise be undetectable. Ursids (bears) have shown potential 

as a model taxon for investigating faunal responses to climate and environmental change 

during the Late Quaternary, especially brown bears (Ursus arctos), which have an 

extensive subfossil record, Holarctic distribution, and well-studied mitochondrial 

phylogeography. 

 

My PhD research uses ancient DNA techniques to investigate the evolutionary 

history of ursids during the Late Quaternary. In Chapters 2 and 5 I use analyses of new 

mitochondrial genome sequences from 217 ancient brown bears to investigate 

phylogeographic structure across their Holarctic distribution and refine their 

mitochondrial phylogeny, revealing striking patterns of migration and population turnover 

that correlate with drastic changes in the climate and environment during the Pleistocene. 

In Chapter 2 I also demonstrate that population changes observed in North American 

brown bears are paralleled by changes in lion populations, suggesting analogous drivers 

of phylogeographic structure and population dynamics between these two carnivorans. In 

Chapter 3 I use 31 mitochondrial genomes from the extinct North American giant short-

faced bear, Arctodus simus, to investigate their phylogeography and taxonomy, revealing 

striking sexual dimorphism and a lack of evidence for previously described subspecies. 

Finally, in Chapter 4 I use whole genome data from extinct short-faced bears to investigate 

the evolutionary history of Tremarctinae and find evidence for extensive hybridisation 

resulting in phylogenetic discordance between the mitochondrial and nuclear genomes. 

 

My research demonstrates the usefulness of ancient DNA datasets for understanding 

the evolutionary history of species and populations. Further, I argue that my data provide 

added evidence for the suitability of ursids as model taxa for studying Quaternary 

biogeography, as they appear to have exhibited pronounced responses to past climate and 

environmental change, have undergone extensive hybridisation among species within the 

family (including extinct lineages), and comprise species that both survived and went 

extinct during the Pleistocene-Holocene transition. 
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1.1 The Changing Climate and Biodiversity 

1.1.1 Extinctions and biodiversity loss 

The world is currently in the midst of what has been referred to as the sixth mass 

extinction, otherwise known as the Holocene/Anthropocene extinction (Ceballos and 

Ehrlich, 2018; Ceballos et al., 2015; Lewis and Maslin, 2015). The past few hundred years 

have seen a dramatic increase worldwide in species extinctions and turnovers, changes in 

species distributions and biodiversity (Barnosky et al., 2011; Ceballos et al., 2015), where 

biodiversity is the measure of genetic, species, or ecosystem-level variation. The current 

loss of species is estimated to be between 100 and 1000 times the natural background 

extinction rate throughout geological time (Ceballos and Ehrlich, 2018; Ceballos et al., 

2015; De Vos et al., 2015; Pimm et al., 2014). Human exploitation, habitat loss and 

degradation, and human-induced climate change have been implicated as the primary 

drivers of this accelerating biodiversity loss. In order to understand current biodiversity 

trajectories and how to best conserve current and future biodiversity, it is important to 

understand how species and ecosystems have responded to past climatic and 

environmental changes. Investigating past biodiversity change may allow us to identify 

factors that put species at risk for extinction. By combining data from palaeontology, 

genetics, and ecology, species’ responses to climate and environmental change can be 

determined, and patterns and shared drivers may be identified (Barnosky et al., 2011; 

Ceballos et al., 2015; Hofman et al., 2015). Ultimately, this information may reveal why 

some species survive while others perish and allow more effective allocation of 

conservation funding. 

 

One of the most recent extinction events, which is often regarded as the start of the 

current Holocene extinction crisis, is the Late Quaternary extinction of terrestrial 

megafauna. The Quaternary Period is the most recent of the three periods of the Cenozoic 

Era and is divided into two epochs: the Pleistocene, 2.58 million years ago (mya) to 11.7 

kya; and the Holocene, 11.7 kya to present. While the rate of extinction at the end of the 

Pleistocene was much less than what we are currently experiencing, the Quaternary 

extinction event saw the extinction of numerous megafauna species across the world, with 

a large proportion of extinctions clustering around the Pleistocene–Holocene transition 

~11.7 thousand years ago (kya) (Barnosky et al., 2004; Cooper et al., 2015; Koch and 
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Barnosky, 2006). Notably this extinction event is within the limits of ancient DNA 

research, and therefore represents our best opportunity for understanding the patterns and 

processes leading to extinction or survival of species threatened by a rapidly changing 

environment. 

 

1.1.2 Quaternary climatic and environmental change 

The Quaternary is characterised by cyclical growth and retraction of glaciers and polar ice 

caps driven by periods of cooler and warmer global temperatures (Figure 1) (Denton et 

al., 2010; Jansson and Dynesius, 2002). These climatic changes appear to have been 

driven by Milankovitch cycles, which are periodic perturbations in Earth’s orbit around 

the sun, axial tilt, and axis of rotation that alter sunlight/radiation received during the 

different seasons (Jansson and Dynesius, 2002). It is becoming increasingly evident that 

Quaternary climate fluctuations and concomitant environmental change played a 

significant role in shaping species distributions and evolution (Cooper et al., 2015; Jansson 

and Dynesius, 2002).  

 

 

 

 

 
 
Figure 1: Relative sea level (RSL) compared to the present in metres (m) plotted above δ18O 

measured from Greenland ice-cores. δ18O is the ratio of stable isotopes oxygen-18 and 
oxygen-16 and is a proxy for temperature. A clear pattern of a rise in sea level with rising 
temperature (δ18O) can be observed. Numbered grey and white bars indicated different 
Marine Isotope Stages (MIS), where grey bars (odd numbers) are warm interglacials and 
white (even numbers) are cold glacials. 

 

Climate change during the Quaternary caused drastic changes in temperature and 

sea level, with resulting shifts in habitat across the continents. Temperatures during glacial 

maxima — when the ice reached its greatest extent — were up to 21 °C colder than the 

current climate (Cuffey et al., 1995) and were generally followed by periods of rapid 

warming of 5–10 °C (but potentially up to 16 °C) known as Dansgaard-Oeschger (D-O) 

events (Rahmstorf, 2002; Wolff et al., 2010). With these changes in temperature came the 

formation and retraction of vast ice sheets in the form of glaciers and polar ice caps, with 
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corresponding fluctuations in sea level (Figure 1). During glacial maxima sea level may 

have fallen as low as 120 m below the current level (Rahmstorf, 2002). These lower sea 

levels uncovered large areas of previously inundated land, resulting in the periodic 

formation of land bridges between previously unconnected land masses, such as the 

Bering Land Bridge (or Beringia) connecting Eurasia and the New World (Elias et al., 

1996). 

 

1.1.3 Quaternary environment and megafauna 

It is widely believed that many animal taxa tracked Quaternary changes in climate, ice 

sheets, and sea levels, moving as suitable habitat became available or vanished, resulting 

in dynamic distributions of species through time (Eldredge, 1989; Eldredge, 1995; Hewitt, 

1996, 1999). Land bridges between continents are thought to have played an important 

role in facilitating the movement of animal populations during periods of environmental 

change (Elias et al., 1996; Stehli and Webb, 1985). One widely cited model — the 

“Expansion/Contraction” (E/C) model — suggests that the ranges of many temperate 

European species contracted into southern refugia on Mediterranean peninsulas (Iberia, 

Italy, and the Balkans) during glacial maxima, followed by northward expansion during 

interglacial periods as glacial ice retracted (Figure 2) (e.g. Hewitt, 1996, 1999, 2000; 

Provan and Bennett, 2008). Inability to track environmental changes may have put a 

species at risk of extinction if they were unable to adapt to the new local environmental 

conditions (Dalen et al., 2007; Provan and Bennett, 2008).  

 

 

 

 

 
 
 
 
 
Figure 2: Post-glacial expansion of three model species used to develop the 

“Expansion/Contraction” model. Arrows indicate the movement of populations out of 
refugial areas in Iberia, Italy, the Balkans, and the Caucasus region. Figure reproduced from 
Hewitt (2000). 
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During the Late Pleistocene a wide range of megafauna taxa across most continents 

became extinct or experienced massive population declines (Barnosky et al., 2004). These 

extinctions are thought to have had major ecological consequences, with changes in plant 

community structure, vegetation cover, species diversity, and fire regimes (Doughty, 

2013; Johnson, 2009). The cause of these extinctions has been highly controversial over 

the past 50 years and the contributions of various factors remain contentious today 

(Barnosky et al., 2004; Cooper et al., 2015; Haynes, 2013; Koch and Barnosky, 2006; 

Prescott et al., 2012; Sandom et al., 2014). Both climate change and human activity have 

been proposed to play major roles in the extinction of megafauna. Climatic changes appear 

to coincide with the extinction of many megafauna (Barnosky et al., 2004; Cooper et al., 

2015; Guthrie, 2006; Metcalf et al., 2016), but it is undeniable that many recent 

Pleistocene megafauna extinctions also coincided with the local arrival of humans (Alroy, 

2001; Barnosky and Lindsey, 2010). This has created much debate about whether climate 

or human impact is the major driving force behind these extinctions (Koch and Barnosky, 

2006). 

 

Human contributions to megafaunal population decline and/or extinction could have 

taken several forms, including overkill (overhunting resulting in reduced prey 

populations), blitzkrieg (rapid overkill completely depleting prey populations), and 

“sitzkrieg” (habitat destruction, modification, and fragmentation, as well as the 

introduction of exotic species and disease). Overkill is distinct from blitzkrieg in that 

under an “overkill” model extinction could occur millennia after first contact while under 

“blitzkrieg” extinction could occur within a single generation (Koch and Barnosky, 2006). 

Blitzkrieg has been suggested as the primary driver of extinction in New Zealand, with 

Polynesian hunting resulting in the rapid extinction of numerous bird species, including 

the giant flightless moa (Allentoft et al., 2014; Holdaway, 1989). More protracted models 

of overkill have been suggested for Australia, with extinction occurring ~13,500 years 

after human arrival, though blitzkrieg may have occurred on a more local scale (Johnson 

et al., 2016; Saltre et al., 2016). In both Australia and New Zealand, sitzkrieg has also 

been proposed as a major cause of extinction. In New Zealand and other Pacific islands, 

the impact of introduced predators (pigs, dogs, rats) is thought to have been immense, as 

many islands lacked terrestrial predators prior to human arrival and native fauna were 

therefore naïve and susceptible to predation (Holdaway, 1989, 1996; Holdaway, 1999; 

Koch and Barnosky, 2006; Wroe et al., 2004). In Australia, habitat modification through 
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human use of fire has been suggested as a major cause of extinction (Miller et al., 2005; 

Miller et al., 1999). It now seems more probable that increased fire frequency/intensity 

actually resulted from herbivore extinction rather than direct anthropogenic causes (Rule 

et al., 2012), where the loss of herbivore communities results in woody plant species 

creating a more burnable environment. Although anthropogenic causes for extinctions on 

small landmasses such as New Zealand seem clear, extrapolation to large continental 

megafaunal extinction during the Quaternary has been criticised. Major opposition to 

overkill explanations of Quaternary extinctions has stemmed from a lack of direct 

archaeological evidence of human hunting and the fact that many species known to have 

been hunted, such as bison, did not go extinct (Barnosky et al., 2004; Grayson and Meltzer, 

2003; Koch and Barnosky, 2006). 

 

Environmental causes of Quaternary megafaunal extinction have largely focused on 

climate change, although less well supported theories have been proposed, such as an 

extra-terrestrial impact (Firestone et al., 2007; Koch and Barnosky, 2006). However, many 

of the megafaunal extinctions during the Quaternary roughly coincide with climatic shifts, 

especially those associated with the end of the Last Glacial Maximum (LGM), suggesting 

that environmental change was a major driving force of Quaternary extinctions (Barnosky 

et al., 2004; Guthrie, 2006; Koch and Barnosky, 2006). Instead of earlier suggestions of 

climatic catastrophe (e.g., drought, quick freeze), more recent hypotheses focus on habitat 

and landscape change, such that regions with conditions sufficient to support megafauna 

became increasingly restricted and fragmented or completely disappeared (Guthrie, 2006; 

Mann et al., 2015). There has also been a shift in focus from cold periods as drivers of 

extinction to periods of intense, rapid warming, especially those associated with D-O 

events (Cooper et al., 2015; Mann et al., 2015; Metcalf et al., 2016; Rozas-Davila et al., 

2016). It is argued that these rapid changes in climate led to changes in plant diversity, 

with an increase in anti-herbivore features, in turn supporting smaller biomasses of large 

mammals (Guthrie, 2006; Mann et al., 2015). Indeed, pollen, lake, soil, and marine cores 

have been used to show an increase in temperature and moisture on the landscape at the 

end of the LGM (Bigelow and Edwards, 2001; Lozhkin et al., 1993), as well as the 

accumulation of organic material and peatland expansion associated with increased 

temperature throughout the Pleistocene (Mann et al., 2015; Treat et al., 2019). This would 

result in the landscape changing to one fragmented by lakes, bogs, forests, and low-

nutrient, acidic soils, in turn, resulting in floral communities that were defended against 



 CHAPTER 1 

 
7 

herbivory and concomitant smaller biomass of large animals (Guthrie, 2006; Hofreiter and 

Stewart, 2009; Mann et al., 2015; Treat et al., 2019). 

 

 Despite the contention surrounding the causes of megafaunal declines and 

extinctions, it is clear that the loss of megafaunal diversity had a profound impact on 

ecosystems, with knock on effects in food webs, changes in vegetation communities, and 

loss of co-evolutionary relationships (Johnson, 2009; Smith et al., 2016). A majority of 

extinctions were of megafaunal herbivores, which palaeoecological studies suggest 

maintained a state of vegetative openness on the landscape and helped in creating more 

diverse profiles of vegetation in more wooded areas (Bakker et al., 2009; Gill et al., 2012; 

Johnson, 2009; Smith et al., 2016). Therefore, following these extinctions and the 

consequent release of palatable hardwoods from herbivory pressure these habitats may 

have changed to a more dense and less diverse profile (Johnson, 2009). There also appears 

to have been a shift in the type of herbivory in ecosystems following megafaunal 

extinctions, with grazers replaced by frugivores and granivores (Smith et al., 2016). In 

addition, megafaunal extinctions and declines often appear to closely precede enhanced 

fire regimes, with low fire intensity prior to declines (Gill et al., 2009; Johnson, 2009). It 

is thought that the release of many woody plant species from herbivory pressure leads to 

an increase in plant biomass resulting in a more burnable environment (Gill et al., 2009; 

Johnson, 2009).  

 

Understanding how and why so many megafaunal species became extinct during the 

Late Quaternary and the role humans and climate played is paramount for explaining not 

only the current distribution and status of species but also for future conservation 

management of extant species, especially considering current climate change (Hadly et 

al., 2004). Fossil assemblages and modern genetic data are of limited value for 

investigating the effect of climate and humans on past animal populations, as they will 

often fail to record genetic turnovers and bottlenecks. In contrast, ancient DNA allows 

researchers to sample genetic diversity from ancient populations and extinct species, 

revealing genetic turnovers and bottlenecks, thus allowing the investigation of 

demographic scenarios leading to extinction.  
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1.2 Ancient DNA and Quaternary Research 

1.2.1 Ancient DNA 

Ancient DNA (aDNA) is DNA from remains of organism, where the DNA has not been 

specifically preserved and may therefore be degraded. Ancient DNA can be extracted 

from museum specimens, archaeological or subfossil (i.e., not fully fossilised) remains, 

or even sediment samples, and can provide insight into the evolutionary history and 

genetic relationships of populations or species. However, the analysis of aDNA is 

hampered by technical difficulties stemming from the exponential nature of DNA decay 

(Allentoft et al., 2012). After the death of an organism, cellular repair mechanisms no 

longer function and the DNA is exposed to numerous factors that threaten its stability 

(Dabney et al., 2013b; Hofreiter et al., 2001; Paabo et al., 1989; Paabo et al., 2004), 

including digestion by intracellular nucleases and microorganisms. Under certain 

conditions (e.g., extreme cold, anoxia) the impact of these digestive mechanisms may be 

inhibited, however, even then the DNA is still exposed to hydrolytic and oxidative damage 

(Dabney et al., 2013b; Hofreiter et al., 2001; Paabo et al., 1989; Paabo et al., 2004). As a 

result, aDNA is highly fragmented (average fragment length often <100 bp), contains 

lesions that block DNA replication, and contains miscoding lesions primarily resulting 

from cytosine deamination (Hofreiter et al., 2001; Paabo et al., 1989; Paabo et al., 2004). 

Ultimately the cumulative effects of these processes will be so extensive that no useful or 

informative DNA molecules will remain, leaving only a relatively short window (several 

hundred thousand years) during which ancient DNA can be successful sequenced 

(Allentoft et al., 2012; Hofreiter et al., 2001; Paabo et al., 1989; Paabo et al., 2004). Due 

to the degraded nature of aDNA another complicating factor is contamination with 

“exogenous” DNA molecules, which can eclipse the endogenous DNA in terms of 

concentration (Gilbert et al., 2005; Kolman and Tuross, 2000; Malmstrom et al., 2005; 

Noonan et al., 2005; Skoglund et al., 2014). Therefore, contamination controls are 

extremely important, and criteria have been proposed to validate the authenticity of a 

sample (Cooper and Poinar, 2000; Llamas et al., 2017). 

 

With the development of high-throughput sequencing (HTS) techniques, the amount 

of data that can be extracted from ancient samples has greatly increased, overcoming many 

of the pitfalls of previous methods based on PCR and Sanger sequencing (Knapp and 
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Hofreiter, 2010; van Dijk et al., 2014). HTS allows an enormous number (millions to 

billions) of DNA molecules to be sequenced at a relatively low cost (Goodwin et al., 2016; 

van Dijk et al., 2014) and is not greatly hampered by the short fragment lengths 

characteristic of ancient DNA (Knapp and Hofreiter, 2010). Furthermore, as a high 

number of individual of whole molecules are sequenced (as opposed to fragments of 

molecules in traditional PCR based Sanger sequencing), HTS allows characteristic 

patterns of DNA damage, such as miscoding lesions, to be identified and accounted for 

(Ginolhac et al., 2011; Green et al., 2009; Jonsson et al., 2013). There are two main 

approaches to HTS: straight “shotgun” sequencing, or sequencing in combination with an 

enrichment/complexity-reduction technique. Shotgun HTS is where all molecules are 

sequenced, giving an untargeted and minimally biased view of the total DNA present. 

However, the amount of contaminant DNA in aDNA extracts often makes this shotgun 

sequencing uneconomical, and the use of enrichment techniques to increase the relative 

concentration of endogenous DNA is often essential (Knapp and Hofreiter, 2010). 

Traditional PCR-based enrichment methods often fail to take full advantage of the pool of 

molecules and is laborious when scaled to multiple loci, let alone full mitochondrial and 

nuclear genomes (Knapp and Hofreiter, 2010). Consequently, DNA-DNA or DNA-RNA 

hybridisation capture methods are increasingly being used as they can target many very 

short molecules at multiple loci across the genome using synthetic DNA or RNA baits 

(Carpenter et al., 2013; Knapp and Hofreiter, 2010; Richards et al., 2019). Hybridisation 

capture allows the targeting of a large number of short molecules from multiple loci in a 

single reaction, making it suitable for single-nucleotide polymorphism (SNP) analyses or 

sequencing of full mitogenomes (Carpenter et al., 2013; Gnirke et al., 2009). 

 

1.2.2 Ancient DNA and megafaunal extinction and evolutionary history 

Ancient DNA (aDNA) has contributed significantly to the deduction of the causes of 

megafauna extinctions and population turnover, whether human-induced or related to 

climatic changes (Campos et al., 2010; Cooper et al., 2015; Lorenzen et al., 2011; 

Palkopoulou et al., 2015). It is increasingly accepted that evolutionary interpretations 

based on modern genetic data alone can lead to misleading historic reconstructions and 

phylogeographic patterns. This is because contemporary DNA sequences only show the 

result of a modern snapshot of evolution, giving a static picture of a highly dynamic 

process (Paabo et al., 2004). The introduction of aDNA has provided a partial solution to 
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this problem as it allows researchers to look retrospectively in order to capture the process 

of molecular evolution and population dynamics. 

 

Much of the debate surrounding megafaunal extinctions has been centred on fossil 

assemblages and morphology. These methods are likely to fail to detect important and 

informative population-level processes, such as genetic turnovers and bottlenecks, 

especially considering the loss of genetic diversity through drift in populations that have 

experienced recent bottlenecks (Cooper et al., 2015; Davison et al., 2011; Paabo, 2000). 

Extraction of ancient DNA from Pleistocene megafauna remains is a valuable tool for 

inferring demographic scenarios, as it allows the detection of population bottlenecks, 

expansions and turnovers that can then be compared to other temporal environmental and 

anthropogenic events, possibly allowing the deduction of putative causative agents of 

these dynamic population processes (Cooper et al., 2015; Davison et al., 2011).  

 

For example, aDNA analyses have revealed dynamic processes such as population 

and species level extinction recolonisation events, population declines and habitat tracking 

during the Pleistocene in brown bears (Barnes et al., 2002), polar bears (Miller et al., 

2012), bison (Hofreiter and Stewart, 2009; Shapiro et al., 2004), musk oxen (Campos et 

al., 2010), and even non-megafaunal species such as lemmings (Brace et al., 2012) and 

arctic foxes (Dalen et al., 2007). These past demographic events would be virtually 

undetectable using conventional fossil-based methods and modern genetic data. Detection 

of these events does not assign causation, but if well resolved climate and human 

occupation records with calibration onto a common timescale are made available, 

confident inferences on possible causes can be hypothesised and tested. Therefore, it is 

undeniable that aDNA is paramount in the debate surrounding the decline and extinction 

of megafaunal species during the Quaternary, due to its ability to reveal dynamics that 

would otherwise go unrecognised. In addition, aDNA research can also be used to reveal 

patterns in extant species, allowing the testing of hypotheses based on modern 

distributions and phylogeography (Bray et al., 2013; Dalen et al., 2007), with the results 

potentially being applicable to conservation management in relation to changing climate 

and modern population dynamics (Boessenkool et al., 2009; Bray et al., 2013; Hofman et 

al., 2015; Leonard, 2008; Miller and Waits, 2003; Waters and Grosser, 2016). 
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The majority of early aDNA research focused on the maternally inherited, more 

abundant, and smaller mitochondrial genome, ignoring the more complex and more 

challenging to sequence nuclear genome. With advances in technological and analytic 

frameworks for ancient DNA, the retrieval of high-quality nuclear data for use in 

population-level genetic studies is now achievable. Indeed, a wealth of information 

surrounding demographic trajectories, taxonomic relationships, and admixture has been 

uncovered using nuclear genomic data, which may have been missed using mtDNA alone. 

For example, nuclear aDNA has revealed the demographic trajectory of mammoths 

leading up to their extinction (Palkopoulou et al., 2015), taxonomic relationships and 

admixture in ancient wolves and domestic dogs (Skoglund et al., 2015), and admixture 

and demography of polar bear and brown bears relative to past climate change (Miller et 

al., 2012). Therefore, nuclear genomic data may help further understand the evolutionary 

history of extinct and extant taxa.

 

Taxonomically speaking, a majority of megafauna aDNA research has focused on 

herbivores such as mammoths (Debruyne et al., 2008; Enk et al., 2016; Miller et al., 2008; 

Palkopoulou et al., 2013; Palkopoulou et al., 2015; Pecnerova et al., 2017), horses (Fages 

et al., 2019; Gaunitz et al., 2018; Heintzman et al., 2017; Librado et al., 2017; Lorenzen 

et al., 2011; Orlando et al., 2013; Schubert et al., 2014), and bison (Froese et al., 2017; 

Heintzman et al., 2016; Lorenzen et al., 2011; Massilani et al., 2016; Shapiro et al., 2004; 

Soubrier et al., 2016), with results showing differing impacts of climate and human 

activity. Many of these megafauna herbivore taxa have proven useful as model species to 

investigate the role of climate and environmental change on population dynamics and 

species turnover (Cooper et al., 2015; Lorenzen et al., 2011; Metcalf et al., 2016). 

However, changes in herbivore communities would ultimately have corresponding 

impacts on carnivore communities, including the stability, viability, and persistence of 

populations. However, due to the lower abundance of carnivores in the fossil record, only 

a relatively limited number of aDNA studies have attempted to investigate the influence 

of climate and environmental change on carnivore communities (Barnes et al., 2002; 

Barnett et al., 2016; Barnett et al., 2009; Ersmark et al., 2019; Ersmark et al., 2016; 

Gretzinger et al., 2019; Loog et al., 2020; Paijmans et al., 2017; Stanton et al., 2020; Stiller 

et al., 2010; Valdiosera et al., 2007; Valdiosera et al., 2008). Unlike many 

carnivorous/omnivorous megafauna, brown bears (Ursus arctos) represent a promising 

Late Quaternary model species, as they have a Holarctic distribution, abundant subfossil 
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remains, and well-documented modern genetic diversity (Davison et al., 2011; Paabo, 

2000). Furthermore, as they occupy a vastly different niche that megafauna herbivores, 

brown bears offer an alternative perspective on the influence of climate and humans on 

megafauna, which could potentially be extended to other carnivores/omnivores. 

 

1.3 Bears as a Quaternary Model Taxon 

1.3.1 Carnivora 

Carnivora is an order of placental mammals, one of the few to occur naturally on all 

continents, including both terrestrial and aquatic species, with most species exhibiting a 

degree of carnivory (eating animal flesh). They represent a large range in size from the 

smallest representative, the least weasel (Mustela nivalis) weighing a mere 25 g and 

measuring 11 cm, to male southern elephant seals (Mirounga leonine) that can weigh up 

to 5000 kg and measure 6.7 m in length. Carnivora arose 60 million years ago (mya) in 

the Paleocene of North America, and most extant families of carnivorans had diversified 

by the Miocene (23–5.3 mya). Carnivora is divided into two clades: (1) the cat-like 

Feliformia, including cats (Felidae), mongooses (Herpestidae), hyenas (Hyaenidae), and 

civets (Nandiniidae); and (2) the dog-like Caniformia, including dogs (Canidae), bears 

(Ursidae), mustelids (Mustelidae), skunks, and badgers (Mephitidae), red pandas 

(Ailuridae), raccoons and related taxa (Procyonidae), and seals, walruses, and sea lions 

(Pinnipedia). 

 
 
1.3.2 Bears 

Bears are mammals of the family Ursidae, belonging to the order Carnivora. Their closest 

relatives are pinnipeds, musteloids, and canids. Bears originated in Eurasia and started to 

diversify during the Miocene, 11 to 12 mya. Ursidae is comprised of three subfamilies 

that are represented by eight extant species: the giant panda (Ailuropoda melanoleuca), 

which is the sole representative of Ailuropodinae; the spectacled bear (Tremarctos 

ornatus), which is the only living representative of Tremarctinae (the short-faced bears); 

and sun bears (Helarctos malayanus), sloth bears (Melursus ursinus), American black 

bears (Ursus americanus), Asiatic black bears (Ursus thibetanus), polar bears (Ursus 

maritimus), and brown bears (Ursus arctos), which comprise Ursinae. Despite there being 
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only eight extant species, bears are widespread, inhabiting a variety of environments 

throughout the Northern Hemisphere and parts of the Southern Hemisphere. During the 

Pleistocene a number of extinct species also existed. Extinct species of Ursinae include 

the cave bears (Ursus spelaeus, U. ingressus, and U. deningeri) in Eurasia, and the 

Etruscan bear (U. estruscus) in Europe, Asia, and North Africa. Extinct diversity of 

Tremarctinae includes South American short-faced bears (Arctotherium sp.), North 

American short-faced bears (Arctodus sp.), and the Florida spectacled bear (Tremarctos 

floridanus) (McLellan and Reiner, 1994). This extinct ursid diversity included the largest 

terrestrial mammalian carnivores to exist, the North American giant short-faced bear — 

Arctodus simus — and the South American giant short-faced bear —Arctotherium 

angustidens — the largest individuals of which are estimated to have weighed upwards of 

1000 kg (Christiansen, 1999; Gobetz and Martin, 2001; Soibelzon and Schubert, 2011).  

 

1.3.3 Bear phylogenetics and evolutionary history 

Disentangling ursid phylogenetics and evolutionary history has proven challenging. 

Evidence from the fossil record, morphology, mitochondrial data, and nuclear loci have 

all offered different perspectives on the evolutionary history of bears. Early mitochondrial 

studies failed to confidently disentangle many relationships between the different extant 

species. For example, within Ursinae, the placement of Asiatic and American brown bears 

has proven difficult, with fossil data, morphology and mitochondrial phylogenies placing 

them as sister taxa (Krause et al., 2008; McLellan and Reiner, 1994; Yu et al., 2004; Yu 

et al., 2007) (Figure 3A), while nuclear data suggest the American black bear as sister to 

polar and brown bears (Kutschera et al., 2014; Pages et al., 2008) (Figure 3B). 

Additionally, different types of data have provided conflicting placements of the sloth 

bear within the ursid phylogenetic tree. Mitochondrial analyses place the sloth bear as 

basal within Ursinae (Yu et al., 2004; Yu et al., 2007) (Figure 3A), while nuclear analyses 

have placed it closer to the sun bear (Kutschera et al., 2014; Pages et al., 2008) (Figure 

3B). Furthermore, mitochondrial phylogenies have placed polar bears within brown bear 

diversity. This has long been argued to be the result of either hybridisation or incomplete 

lineage sorting. Not until many different nuclear loci could be analysed was the true 

distinct relationship between the bears able to be retrieved, with evidence supporting that 

polar bears carry introgressed brown bear mitochondrial genomes (Hailer et al., 2012; 

Miller et al., 2012). With subsequent analyses of full nuclear genomes, the degree of 
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hybridisation could be quantified, with up to 8.8% of modern brown genomes comprising 

DNA of polar bear origin (Cahill et al., 2013; Cahill et al., 2015; Hailer, 2015; Liu et al., 

2014).  

 

 

 

 

 

 

 

 

 

 

Figure 3: Schematic representation of ursid phylogeny from A) mitochondrial data and B) full 
nuclear genomes. Dashed lines indicate extinct species for which there are mitochondrial 
data but no nuclear data. 

 

As sequencing technologies have improved, phylogenetic studies have included 

extinct species, including cave bears (Dabney et al., 2013a; Krause et al., 2008; Loreille 

et al., 2001; Noonan et al., 2005), North American short-faced bears (A. simus) (Krause 

et al., 2008), and South American short-faced bears (Arctotherium sp.) (Metcalf et al., 

2016; Mitchell et al., 2016), but these studies have largely been based on mitochondrial 

data. These mitochondrial data have revealed cave bears to be sister to brown bears and 

polar bears ((Krause et al., 2008; Loreille et al., 2001; Noonan et al., 2005)), and 

Arctotherium to be sister to extant spectacled bears (Mitchell et al., 2016) (Figure 3A). 

However, with improvement of sequencing technologies and decreases to the cost of 

sequencing whole genomes, it has become clear that nuclear genomes are crucial to fully 

deduce ursid phylogenetics and evolutionary history. Indeed, whole genome sequencing 

has revealed a genetic landscape characterised by frequent hybridisation and introgression 

within ursids (Barlow et al., 2018; Cahill et al., 2013; Cahill et al., 2018; Cahill et al., 

2015; Hailer, 2015; Kumar et al., 2017; Liu et al., 2014).  

 

Analysis of full genomes have revealed more accurate relationships within ursine 

bears, with the sun bears and sloth bears being sister taxa and forming a clade with Asian 

black bears, while American black bears form a clade with polar bears and brown bears 
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(Kumar et al., 2017) (Figure 3B). Although the mitochondrial genomes of a number of 

extinct species have been analysed and have proven crucial to understanding ursid 

phylogenetics, nuclear data have been harder to obtain. Recently, the full genome of cave 

bears has been sequenced, showing extensive hybridisation with brown bears (Barlow et 

al., 2018; Barlow et al., 2020). However, no nuclear data from extinct tremarctine bears 

have been sequenced. The mitochondrial phylogeny of Tremarctinae is in conflict with 

morphological and fossil assemblage-based reconstructions, which suggest the genera 

Arctotherium and Arctodus should be sister with Tremarctos forming a separate clade 

(McLellan and Reiner, 1994; Soibelzon et al., 2005; Trajano and Ferrarezzi, 1995). In 

light of the conflict seen within ursine bears resulting from hybridisation, nuclear data 

may provide yet another different topology for Tremarctinae. 

 

1.3.4 The brown bear (Ursus arctos) 

The brown bear is one of the largest extant terrestrial carnivores, with a wide distribution 

throughout the Holarctic, from Europe, through Asia, and into North America. Brown 

bears have provided a useful animal model for Pleistocene biogeography, due to their wide 

distribution and relatively abundant subfossil remains from throughout the Holocene and 

Pleistocene (Sommer and Benecke, 2005). Brown bears are largely solitary and tend to 

exhibit a variable polygamous mating system, with plasticity in mating strategies based 

on geographical and environmental factors (Steyaert et al., 2012). Like most mammals, 

dispersal is mostly achieved while still young (Greenwood, 1980; Zedrosser et al., 2007). 

Natal dispersal is largely sex-biased, with males dispersing further from their mothers’ 

home ranges and females exhibiting high philopatry, establishing home ranges adjacent 

or within that of their mother (Stoen et al., 2006; Zedrosser et al., 2007). There have been 

suggestions of competition for philopatry among females, with subdominant sisters being 

forced to disperse (Zedrosser et al., 2007). However, even when females do disperse, the 

dispersal distance is considerably less than that of males (Stoen et al., 2006). These sex-

specific dispersal behaviours can have a profound influence on species’ genetics, resulting 

in high levels of mitochondrial structuring across the landscape compared to nuclear loci.  

 

1.3.5 Brown bear phylogeography and evolutionary history 

The modern mitochondrial DNA (mtDNA) phylogeography of brown bears throughout 

Europe, North America, and Asia has been extensively studied, with geographically 
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structured mtDNA clades proposed by Leonard et al. (2000) and subsequently extended 

to include extinct and less well characterised clades (Figure 4) (Barnes et al., 2002; 

Calvignac et al., 2009; Calvignac et al., 2008; Çilingir et al., 2016; Davison et al., 2011; 

Miller et al., 2006). Modern European bears have traditionally been divided into two 

distinct lineages, eastern (clade 3a) and western (clade 1) (Kohn et al., 1995; Taberlet and 

Bouvet, 1994). The eastern lineage is widespread, found from eastern Russia to Northern 

Scandinavia (Korsten et al., 2009; Saarma et al., 2007; Tammeleht et al., 2010), while the 

western lineage is found throughout Spain, France, Italy, and southern Scandinavia, and 

is further split into two groups: the Iberian lineage (clade 1a) and the Balkan/Italian 

lineage (clade 1b) (Kohn et al., 1995; Taberlet and Bouvet, 1994). In North America, four 

extant phylogeographically restricted clades have been identified: clade 2a in the 

Admiralty, Baranof, and Chicaghof (ABC) islands of southern Alaska, clade 3a in western 

Alaska, 3b in eastern Alaska, and clade 4 in southern Canada and the contiguous USA 

(Talbot and Shields, 1996; Waits et al., 1998). The three latter North American clades (3a, 

3b, and 4) are also found in Hokkaido, Japan, in a phylogeographically distinct distribution 

(Hirata et al., 2013; Masuda et al., 1998; Matsuhashi et al., 2001; Matsuhashi et al., 1999). 

Clade 3b has also been identified in bears from the Russian Far East (Gus'kov et al., 2013; 

Miller et al., 2006) and Altai-Sayan region (Tumendemberel et al., 2019). Furthermore, 

less well characterised clades have been identified in Asia: clade 5 in Tibet; clade 6 in the 

Gobi desert and Pakistan; and an Iranian clade recently denoted as clade 7 by Çilingir et 

al. (2016) (Ashrafzadeh et al., 2016; Calvignac et al., 2009; Miller et al., 2006). Clade 7 

contains a strikingly high degree of haplotype diversity and the presence of three 

geographically restricted subclades, reminiscent of patterns seen in Hokkaido, North 

America, and Europe (Ashrafzadeh et al., 2016). 

 

 

 

 

 

 

 
Figure 4: Current (dark red) and historic (light red) distribution of brown bears with approximate 

distribution of mitochondrial clades 1 to 7, and the extinct North African clade (NA). 
Adapted from Davison et al. (2011). 
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Ancient DNA (aDNA) studies have further revealed apparently extinct lineages of 

brown bear mtDNA lineages, as well as revealing signatures of dynamic population 

processes. For example, Barnes et al. (2002) observed the extinct subclades 2c and 3c in 

North America during the Pleistocene. Moreover, a complex temporal phylogeographic 

structuring was observed in North America, with a dynamic history of local extinctions 

and repopulation from Eurasia of distinct subclades throughout the Pleistocene apparently 

coincident with climatic shifts (Barnes et al., 2002). Studies of brown bear remains from 

Eurasia have extended the historical range of clade 3b west into the Altai-Sayan and 

Caucasus regions (Hirata et al., 2014), and possibly identified the presence of the extinct 

clade 3c in the Pleistocene Russian Far East (Rey-Iglesia et al., 2019). Meanwhile, a study 

of extinct “Atlas bears” revealed the recent extinction of an endemic North African 

mtDNA clade as well as the presence of the Iberian subclade 1a in Africa, possibly 

resulting from introduction of western European bears by Romans or Carthaginians for 

wild beast battles (Calvignac et al., 2008). Valdiosera et al. (2007) identified extinct 

divergent clade 1 haplotypes in France, which were later grouped as subclade 1c (Davison 

et al., 2011), indicative of higher diversity pre-LGM and of significant loss of variation 

following the end of the LGM. Calvignac et al. (2009) also identified a supposedly 

divergent extinct clade 1 lineage in ancient Lebanese samples, this lineage was later found 

to be extant in Turkish bears and was denoted as clade 1d (Çilingir et al., 2016). The 

abundance of lost genetic variation demonstrates the “time-trapped” nature of modern 

DNA alone and the necessity of aDNA for understanding current genetic variation. The 

study of aDNA from subfossil material can recover lost genetic variation, revealing past 

demographic processes, which may have been influenced by climate change or 

anthropogenic influences. 

 

The phylogeographic structure seen in modern European brown bears has been 

considered to be largely consistent with the European “expansion/contraction” model of 

postglacial recolonisation. In fact, brown bears were one of the key species in developing 

this model (Hewitt, 1999, 2000, 2004). Under Hewitt’s model, brown bears would have 

been restricted to refugia on the Iberian (clade 1a) and Italian/Balkan (clade 1b) 

peninsulas. Following the end of the LGM, it has been proposed that clade 1a was first to 

expand out of its Iberian refugium and into southern Scandinavia, creating a hybrid zone 

with the eastern clade 3a, with the northward expansion of clade 1b in the Italian and 

Balkan peninsulas potentially hindered by the late deglaciation of the Alps, creating the 
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phylogeographic pattern observed today (Hewitt, 1999; Sommer and Benecke, 2005; 

Taberlet and Bouvet, 1994). However, ancient DNA studies have raised doubts about the 

isolation, existence, and timing of expansion of these southern refugia, with suggestions 

of gene flow across Europe before the LGM and between refugia during and after 

(Ersmark et al., 2019; Hofreiter et al., 2004; Valdiosera et al., 2007; Valdiosera et al., 

2008).  

 

The timing of expansion from refugia has also come into doubt with the discovery 

of clade 1b in southern Scandinavia 5310 years before present (ybp) (Bray et al., 2013). 

Indeed, ancient DNA data suggest that the expansion of the Italian/Balkan lineage was not 

hindered by the glaciated alps, with evidence of expansion as early as 12,000 ybp in 

Germany (Bray, 2010). These results indicate that the phylogeographic pattern observed 

today might not be the direct result of expansion from refugia following the end of the 

LGM and that bears from the Italian/Balkan refugium may have been the first to expand 

into northern Europe, followed by a turnover event sometime between 2000 and 5000 ybp, 

resulting in the current phylogeographic pattern (Bray et al., 2013). Furthermore, a recent 

study, using the largest number of brown bear ancient sequences to date, showed high late 

Pleistocene diversity and refuted the confinement of bears to southern refugia during the 

LGM. They instead showed genetic turnover prior to the LGM and demographic decline 

and structuring of populations during the Holocene (Ersmark et al., 2019). Further 

research to elucidate the demographic scenario leading to the current phylogeography and 

past population dynamics in Europe would require more extensive sampling of European 

subfossil material immediately after and during the LGM, to allow more confident 

inferences of population movements. More extensive sampling of subfossil material from 

putative refugia, namely the Iberian and Balkan refugia, would also allow more accurate 

testing about refugial existence, isolation, and connectivity. 

 

The majority of previous mtDNA studies, including those on ursids, have focused 

on fragments of the control region and cytochrome b. While these regions have proved 

informative for inferring phylogeographic structure, reconstructing phylogenies, and 

formulating/testing questions about demographic histories, it is undeniable that extension 

to full mitogenomes would be beneficial, allowing refinement of previous conclusions and 

analyses. For example, expansion to full mitogenomes could further clarify the 

phylogenetic relationships among and within the less well-characterised clades, such as 
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clade 5, 6, and 7, as well as the North African clade. Full mitogenomes from a range of 

clades and subclades, and from ancient specimens, would also allow more accurate and 

reliable estimates of mutation rates and divergence times, which could be more 

confidently correlated with past events (i.e. climatic changes) that may have been driving 

forces for population dynamics. 

 

1.4 Thesis Overview 

1.4.1 Thesis scope and aims 

In this thesis, I explore the evolutionary history of bears using ancient mitochondrial and 

nuclear genomes. The drastic changes in climate and environment during the Late 

Quaternary have driven the evolutionary history of many megafauna species and ancient 

DNA allows us to learn about populations that lived in the past. With the advent of high-

throughput sequencing and hybridization enrichment techniques, the scope of samples and 

the data that can be extracted from such samples has been expanded, with the possibility 

of whole genome data being obtained from well-preserved samples. In this thesis, I aim 

to broaden our understanding of the evolutionary history of bears, both at the species level 

(e.g. brown bears) and at higher taxonomic scales. Furthermore, a main objective of the 

research I present across the following chapters is to gain a better understanding of the 

response of megafauna to climatic and environmental change. 

 

1.4.2 Chapter 2: Lions and brown bears colonised North America in multiple 

synchronous waves of dispersal across the Bering Land Bridge 

During the Pleistocene, the growth and retreat of ice sheets and glaciers resulted in 

corresponding changes in sea level. These changes in sea level resulted in previously 

submerged land become subaerial and vice versa. A classic exemplar of this process is the 

Bering Land Bridge, connecting the Americas to Eurasia between Alaska and Far East 

Russia. This land bridge formed an intermittent connection between the continents 

throughout the Pleistocene, alternating between a submerged and subaerial state. This 

intermittent connection would have alternately fragmented populations and allowed 

migrations between Eurasia and North America. In Chapter 2 I investigate the influence 

of the Bering Land Bridge and Pleistocene climate change on the diversity and distribution 
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of two carnivoran taxa, lions (Panthera spp.) and brown bears (Ursus arctos), using whole 

mitogenomes from 39 lions and 103 bears. 

 

1.4.3 Chapter 3: Phylogeography of the extinct North American giant short-faced 

bear (Arctodus simus), with comments on their palaeobiology 

The North American giant short-faced bear (Arctodus simus) is an emblematic member of 

carnivore guilds of the continent, becoming extinct during the Pleistocene–Holocene 

transition (Kurtén, 1967; Kurtén and Anderson, 1980). A plenitude of past research has 

debated the ecological niche inhabited by this species (e.g. Barnes et al., 2002; Emslie and 

Czaplewski, 1985; Figueirido et al., 2010; Matheus, 1995; Matheus, 2003), as wells as 

different explanations for variation in size seen across the range of A. simus (i.e. extreme 

sexual dimorphism versus taxonomic subdivisions) (e.g. Richards et al., 1996; Schubert, 

2010; Schubert et al., 2010). However, despite being one of the most intensely studied 

megafauna species of Pleistocene North America, genetic data has been published from 

only a single specimen (Krause et al., 2008). In this chapter I used hybridisation 

enrichment techniques to obtain mitogenomic data from an additional 31 A. simus 

specimens from across their range, from Eastern Beringia to New Mexico, in order to 

investigate mitochondrial diversity, phylogeography, and evidence for distinct subspecies 

within A. simus. Further, I used shallow shotgun sequencing data to genetically determine 

the sex of specimens, which I combined with size estimates to test whether observed size 

variation represents sexual dimorphism. I synthesise these different data to provide 

insights into the palaeobiology of the taxon. 

 

1.4.4 Chapter 4: Ancient genomes reveal hybridisation between extinct short-faced 

bears and the extant spectacled bear (Tremarctos ornatus) 

Following the investigation of the phylogeography and diversity of A. simus in Chapter 4, 

I investigate the evolutionary history of short-faced bears more broadly (family: 

Tremarctinae). Previous work has investigated the evolutionary history and phylogenetics 

of short-faced bears using mitochondrial data (Mitchell et al., 2016), but no investigations 

of the nuclear genome have previously been undertaken. I obtained whole genomic data 

from the two extinct short-faced bear lineages — Arctodus and Arctotherium — using 

shotgun sequencing of DNA from three A. simus specimens from North America and a 

single Arctotherium sp. specimen from South America. I combined these new data with 
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published whole genomes from all extant species of bear with the objective of 

investigating the phylogenetic relationships among short-faced bears and testing for 

evidence of hybridisation both within short-faced bears and between short-faced bears and 

the more common bear family, Ursinae, with which tremarctine bears coexisted in North 

America during the Pleistocene. 

 

1.4.5 Chapter 5: From Iberia to Siberia: Phylogeography and evolutionary history 

of Eurasian brown bears

Eurasia has been a major focus of Quaternary research, with special interest paid to 

Europe, large expanses of which were intermittently glaciated during the Pleistocene. 

Brown bears have been used as a model for the responses of temperate taxa to 

environmental changes during the Late Quaternary (Hewitt, 1999, 2000, 2004). 

Consequently, many ancient DNA studies have focused on European brown bears, but 

largely relied on short mitochondrial fragments (Ersmark et al., 2019; Fortes et al., 2016; 

Hofreiter et al., 2004; Valdiosera et al., 2007; Valdiosera et al., 2008; Xenikoudakis et al., 

2015). North Asia has been far less represented in aDNA studies, with low mitochondrial 

diversity seen across Russia despite the fossil evidence suggesting the species evolved in 

the region (Anijalg et al., 2018; Davison et al., 2011; Korsten et al., 2009; Rey-Iglesia et 

al., 2019). Adding to the brown bear data produced in Chapter 2, I used hybridisation 

enrichment techniques to sequence a further 114 mitogenomes from ancient and historic 

brown bear specimens from North Asia, Europe, and North Africa, resulting in the largest 

dataset of ancient brown bear mitochondrial genomes to date. My objectives in this 

chapter were to comprehensively sample brown bear diversity and infer the evolutionary 

history of the species in its putative birthplace, Eurasia. Chapter 5 represents the first 

comprehensive aDNA study of brown bears across Eurasia (from Iberia to Western 

Beringia), including samples ranging in age from historic times to beyond the limits of 

radiocarbon dating, from ecologically and biogeographically important areas such as the 

Caucasus, Ural, and Altai mountains. The data I produced allowed me to propose and test 

a number of evolutionary scenarios for brown bear evolution in Eurasia. 
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Abstract: 

The Bering Land Bridge connecting North America and Eurasia was periodically exposed 

and inundated by oscillating sea levels during the Pleistocene glacial cycles. This land 

connection allowed the intermittent dispersal of animals, including humans, between 

Western Beringia (far north-east Asia) and Eastern Beringia (north-west North America), 

changing the faunal community composition of both continents. The Pleistocene glacial 

cycles also had profound impacts on temperature, precipitation, and vegetation, impacting 

faunal community structure and demography. While these palaeoenvironmental impacts 

have been studied in many large herbivores from Beringia (e.g., bison, mammoths, 

horses), the Pleistocene population dynamics of the diverse guild of carnivorans present 

in the region are less well understood, due to their lower abundances. In this study, we 

analyse mitochondrial genome data from ancient brown bears (Ursus arctos; n = 103) and 

lions (Panthera spp.; n = 39), two megafaunal carnivorans that dispersed into North 

America during the Pleistocene. Our results reveal striking synchronicity in the population 

dynamics of Beringian lions and brown bears, with multiple waves of dispersal across the 

Bering Land Bridge coinciding with glacial periods of low sea levels, as well as 

synchronous local extinctions in Eastern Beringia during Marine Isotope Stage 3. The 

evolutionary histories of these two taxa underscore the crucial biogeographic role of the 

Bering Land Bridge in the distribution, turnover, and maintenance of megafaunal 

populations in North America. 

 

 

Keywords 

Ancient DNA, brown bears, lions, phylogeography, Beringia 

 

 

 



 CHAPTER 2 

 47 

Main Text 

Introduction: 

During the Pleistocene (2.58 million to 11,700 years ago), Eastern Beringia — the area 

comprising Alaska and parts of Yukon Territory — was inhabited by numerous species of 

megafauna (Harington, Naughton, Dalby, Rose, & Dawson, 2003). Many of these taxa 

belonged to endemic New World lineages, such as the giant short-faced bear (Arctodus 

simus), Jefferson’s ground sloth (Megalonyx jeffersonii), and the stilt-legged horse 

(Haringtonhippus francisci) (Harington et al., 2003; Kurtén & Anderson, 1980). 

However, Eastern Beringian megafaunal diversity also included non-endemic species that 

dispersed from Western Beringia — the area of Russia east of the Lena River — during 

the Pleistocene (Elias & Crocker, 2008; Elias, Short, Nelson, & Birks, 1996; Harington et 

al., 2003). Some of these immigrant taxa, including moose (Alces alces) and elk/wapiti 

(Cervus canadensis), appear to have arrived during the Last Glacial Maximum (LGM) 

when the Bering Land Bridge connecting Western and Eastern Beringia was most recently 

exposed (Guthrie, 2006; Hundertmark et al., 2002; Meiri, Lister, Kosintsev, Zazula, & 

Barnes, 2020; Meiri et al., 2014). Other taxa apparently invaded much earlier in the 

Pleistocene, for example bison (Bison spp.) (Froese et al., 2017; Shapiro et al., 2004), and 

mammoth (Mammuthus spp.) (Enk et al., 2016; Lister & Sher, 2015). However, the exact 

timeline and processes underlying early Pleistocene dispersals are currently poorly 

characterised, and it remains uncertain whether the arrivals of individual species 

represented independent chance events or more concerted waves of species responding to 

changes in climate and environment.  

 

Sea level records from the Northern Pacific indicate that the Bering Land Bridge 

opened and closed multiple times during the Pleistocene (Hopkins, 1973; Hu et al., 2010), 

in glacial and interglacial periods respectively. During glacial Marine Isotope Stage 6 

(MIS 6) around 185 thousand years ago (kya) to 135 kya, sea levels were low enough to 

allow the Bering Land Bridge to be uncovered (Colleoni, Wekerle, Näslund, Brandefelt, 

& Masina, 2016; Hopkins, 1973). In the subsequent MIS 5, interglacial sea levels 

increased to higher than present-day, flooding the Bering Land Bridge from approximately 

135 to 70 kya before it re-emerged again ~70 to 60 kya during glacial MIS 4 (Hu et al., 

2010). Intermittent connections may have occurred again during MIS 3, before the final 



2.2 MANUSCRIPT 

 48 

emergence during MIS 2/LGM starting ~34 kya and finishing at 11 kya (Hu et al., 2010; 

Jakobsson et al., 2017). 

 

Repeated glacial cycles also had profound effects on vegetation, which could also 

influence animal dispersal. For example, increased temperature during interstadials is 

likely to have resulted in the landscape becoming wetter, in turn facilitating the 

accumulation of organic matter (“paludification”) and the expansion of peatlands (Mann 

et al., 2015; Treat et al., 2019). Paludification is thought to have lowered nutrient 

availability and favoured less palatable plant species, negatively impacting megafaunal 

herbivore populations. Indeed, Mann et al. (Mann et al., 2015) observed that during 

interstadials in Alaska there was an initial increase in megafaunal herbivore abundance 

followed by a decrease coincident with peatland expansion. In addition, bone nitrogen 

isotopes demonstrate that the diet of horses in Alaska changed radically coincident with 

an increase in peatlands during Greenland Interstadial 1 (14.7-12.9 kya) (Mann et al., 

2015). Changes in herbivore communities are likely to have impacted populations of 

megafaunal carnivores and omnivores, potentially affecting their ability to colonise or 

persist in Eastern Beringia through multiple glacial cycles. However, our understanding 

of fine-scale carnivore responses to environmental change in Eastern Beringia has been 

limited by their relative rarity in the fossil record. Although several studies have used 

ancient DNA to examine megafaunal carnivoran population dynamics (e.g., Barnes, 

Matheus, Shapiro, Jensen, & Cooper, 2002; Barnett et al., 2009), sample sizes have 

generally been small and resolution limited.  

 

During the Late Pleistocene, a number of megafaunal carnivorans roamed Eastern 

Beringia, including the giant short-faced bear (Arctodus simus), grey wolves (Canis 

lupus), and scimitar-toothed cats (Homotherium serum) (Harington et al., 2003; Kurtén & 

Anderson, 1980). Lions (Panthera spp.) and brown bears (Ursus arctos) appear to have 

dispersed into northern North America from Eurasia via the Bering Land Bridge during 

the Pleistocene (Kurtén & Anderson, 1980). Genetic data from North American lion and 

brown bear subfossils (preserved non-mineralised animal remains) have revealed a 

complicated history (Barnes et al., 2002; Barnett et al., 2009; Davison et al., 2011; 

Ersmark et al., 2015; Leonard, Wayne, & Cooper, 2000). For example, North American 

Pleistocene lions have been grouped into two lineages based on both fossil evidence and 
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mitochondrial DNA, potentially representing two distinct species (or alternatively two 

subspecies of the extant lion). 

 

The cave lion, Panthera (leo) spelaea, is currently described as being found in both 

Eastern Beringia and Eurasia; while the American lion, Panthera (leo) atrox, is described 

as being found exclusively south of the North American Cordilleran and Laurentide Ice 

Sheets (Barnett et al., 2009; Baryshnikov & Boeskorov, 2001; Kurtén, 1985). Early 

research had initially described eastern Beringian lions as P. l. atrox (Harington, 1969; 

Harington, 1996; Whitmore & Foster, 1967), however, the identity of specimens across 

Beringia was contentious, also being described as P. l. spelaea (Kurtén, 1985; Sotnikova 

& Nikolskiy, 2006) or a completely separate subspecies, Panthera leo vereshchagini 

(Baryshnikov & Boeskorov, 2001). Later, it was widely considered that atrox was 

restricted south of the North American ice sheets, distinct from Beringian lions (Barnett 

et al., 2009; Christiansen & Harris, 2009; Stuart & Lister, 2011). The genetic divergence 

between the American lion and its relatives is estimated to have occurred ~340 kya 

(Barnett et al., 2009), suggesting that the ancestors of the American lion entered North 

America prior to MIS 6. In contrast, molecular data suggest that brown bears first 

colonised North America ~70 kya (around the MIS 5/MIS 4 transition), and subsequently 

appear to have become locally extinct in Eastern Beringia between ~35 kya and 21 kya 

(Barnes et al., 2002; Davison et al., 2011; Kurtén, 1985). Genetic data from ancient lions 

and brown bears has so far been limited to only short fragments of mitochondrial DNA 

and a small number of individuals. As a result, both the timeline for dispersal and the 

number of waves of dispersal of brown bears and lions into North America is still 

relatively uncertain. 

 

To better understand the dynamics and assembly of the Eastern Beringian 

megafaunal carnivoran guild and their responses to climatic and environmental change, 

we sequenced near-complete mitochondrial genomes from 39 Pleistocene lions and 103 

Pleistocene/Holocene brown bears from North America and Eurasia. In combination with 

new radiocarbon dates and previously published genetic data this allowed us to refine the 

phylogenetic and temporal histories of both groups and identify common drivers of 

dispersal and turnover.  
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Materials and Methods: 

Sample preparation, DNA extraction, library preparation, and mitochondrial 

enrichment 

We sampled 120 brown bear subfossil bone and tooth specimens from northern Asia and 

North America, and 47 lion subfossils from Europe, northern Asia, and North America 

(Supplementary tables S1 and S2). Twenty-six samples were radiocarbon dated at the 

Oxford Radiocarbon Accelerator Unit of the University of Oxford. Radiocarbon date of 

the specimens were combined with published dates from North American brown bears 

and lions, as well as Arctodus simus (Supplementary table S3). All radiocarbon dates were 

calibrated with the IntCal13 curve (Reimer et al., 2013) using OxCal 4.4 (Ramsey, 2009). 

 

Sample preparation, DNA extraction and library construction were conducted in 

purpose-built ancient DNA (aDNA) clean-room facilities at the University of Adelaide’s 

Australian Centre for Ancient DNA (ACAD) or the Henry Wellcome Ancient 

Biomolecules Centre at the University of Oxford and a number of precautions were taken 

to minimise contamination of samples with exogenous DNA (Cooper & Poinar, 2000).  

 

DNA extraction was performed on bone or tooth powder using either an in-house 

silica-based extraction protocol adapted from Dabney et al. (Dabney et al., 2013) or a 

phenol-chloroform-based extraction protocol from Bray et al. (Bray et al., 2013). Double-

stranded Illumina libraries were constructed following the protocol of Meyer et al. (Meyer 

et al., 2012) with truncated Illumina adapters with unique dual 7-mer internal barcodes 

added to allow identification and exclusion of any downstream contamination and 

including partial uracil-DNA glycosylase (UDG) treatment (Rohland, Harney, Mallick, 

Nordenfelt, & Reich, 2015) to restrict cytosine deamination to terminal nucleotides.  

 

Brown bear libraries were enriched with home-made RNA baits following Richards 

et al. (Richards et al., 2019) produced from long-range PCR fragments amplified from 

modern brown bear DNA (UAM 87948 and UAM 125917 tissue samples from the 

University of Alaska Fairbanks Museum) using primers from Hwang et al. (Hwang et al., 

2008). For lion libraries, commercially synthesised biotinylated 80-mer RNA baits (Arbor 

Biosciences, MI, USA) were used to enrich for mammalian mitochondrial DNA (Mitchell 

et al., 2016). DNA-RNA hybridisation enrichment was performed according to 
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manufacturer’s recommendations (MYbaits protocol v3). Libraries were pooled and 

sequenced on an Illumina NextSeq using 2 x 75 bp PE (150 cycle) High Output chemistry. 

A more detailed description of the laboratory methods is available in the Supplementary 

Material. 

 

Data processing 

Sequenced reads were demultiplexed using SABRE (https://github.com/najoshi/sabre) 

and were then processed through Paleomix v1.2.12 (Schubert et al., 2014), with adapter 

sequences removed and pair end sequences merged using ADAPTER REMOVAL v2.1.7 

(Schubert, Lindgreen, & Orlando, 2016), and merged reads mapped against either the 

mitochondrial genome of Panthera spelaea (KX258452) or Ursus arctos (EU497665) 

using BWA v0.7.15 (Li & Durbin, 2009). Reads with mapping Phred scores less than 25 

were removed using SAMTOOLS 1.5 (Li et al., 2009) and PCR duplicates were removed 

using “paleomix rmdup_collapsed” and MARKDUPLICATES from the Picard package 

(http://broadinstitute.github.io/picard/). Data from our lion samples exhibited signals 

consistent with the presence of nuclear mitochondrial DNA segments (numts), which are 

known to be widespread in felid genomes (Kim et al., 2006). The numt sequence was 

identified and lion samples were remapped with the numt sequence included as an 

additional scaffold to allow separation of true mitochondrial sequences and numt 

sequences. Mapped reads were visualised in Geneious Prime v2019.0.4 

(https://www.geneious.com) and we created a 75% majority consensus sequence, calling 

N at sites with less than 3x coverage. Subsequent analyses were restricted to specimens 

with greater than 70% of the mitochondrial genome covered, representing 103 and 39 of 

the brown bear and lion samples respectively. Published sequencing data from one modern 

brown bear (Liu et al., 2014) and two ancient cave lions (Barnett et al., 2016) were also 

processed through the pipeline described above (Supplementary table S4). A more 

detailed description of the data processing methods is available in the Supplementary 

Material. 

 

Phylogenetic analyses 

Brown bear consensus sequences were aligned using MUSCLE v3.8.425 (Edgar, 2004) in 

Geneious Prime v2019.0.4 with an additional 46 brown bear and polar bear mitogenomes 

downloaded from GenBank (Supplementary table S5). Lion sequences were aligned 

separately also using MUSCLE v3.8.425. PartitionFinder 2.1.1 (Lanfear, Frandsen, 
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Wright, Senfeld, & Calcott, 2016) was used to find the best-fitting partitioning scheme 

using the Bayesian information criterion, separating the data into 5 partitions for each 

alignment (Supplementary table S6). Bayesian tip-dating analyses were then performed 

on each taxon using BEAST 2.6.1 (Bouckaert et al., 2019). The temporal signal in our 

dataset was evaluated using leave-one-out cross-validation (e.g. Stiller et al., 2014), using 

only the finite-dated specimens (Supplementary Fig. S1). The ages of undated specimens 

were then estimated one at a time using the dated specimens as calibration for the 

molecular clock (Supplementary Fig. S2). Once all samples were assigned an age (either 

based on radiocarbon dating or Bayesian date estimation), we conducted a date-

randomisation test (Ramsden, Holmes, & Charleston, 2009; Stiller et al., 2014), to test for 

sufficient temporal signal within the datasets (Supplementary Fig. S3). Runs described 

above were performed with a strict clock with a uniform prior on rate (0–10-5 mutations 

per site per year), constant population coalescent tree prior with a 1/x distribution on 

population size, a uniform prior (0–500,000) on the age of the sequence being estimated 

if required, and run for 30 million steps with sampling every 3000 steps. Convergence was 

checked in Tracer v1.7.1 (Rambaut, Drummond, Xie, Baele, & Suchard, 2018). Final 

BEAST analyses were conducted using a strict clock with a uniform prior on rate (0–10-5 

mutations per site per year), and a Bayesian skyline coalescent tree prior. We ran three 

independent MCMC chains, each run for 50 million steps, sampling every 5,000 steps. 

Results from individual runs were combined using LogCombiner after discarding the first 

10% of steps as burn-in. Maximum clade credibility trees were generated in 

TreeAnnotator using the median node age. 

 

To test for the association of migrations between Eurasia and North America with 

glacial periods, phylogeographic model testing was performed in BEAST (Suchard et al., 

2018). The same substitution model settings were used as described above, but the 

alignments were combined in a single analysis, with a separate tree estimated 

simultaneously for each taxon. Clade 2 brown bears were excluded from the analysis due 

to lack of sampling, and the introgressed nature with polar bears resulting in a complicated 

evolutionary history of the clade (Cahill et al., 2013; Cahill et al., 2018; Cahill et al., 2015; 

Edwards et al., 2011; Hailer, 2015; Hailer & Welch, 2016; Miller et al., 2012). Each tip 

was assigned a binary phylogeographic character (Eurasia vs North America), and the rate 

of evolution of this character was estimated directly from the data. Two models for the 

evolution of this character were tested: a strict clock, where rates of evolution were 
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constant through time and a two-epoch clock that had two separate rates (interglacial and 

glacial periods). Note, in this method, tree topology and dispersal times for the two clades 

are essentially estimated separately (unlinked trees), but dispersal rates for the two epochs 

(combined glacial and combined interglacial) are estimated based on the pooled data from 

both trees and have identical priors. Bayes Factors were estimated and compared using 

Akaike's Information Criterion for MCMC samples (Tracer). Four independent MCMC 

chains were run for 20 million steps each, sampling every 2,000 steps. We checked for 

convergence and sufficient sampling of parameters in Tracer v1.7.1 (Rambaut et al., 

2018). A more detailed description of the phylogenetic analysis methods is available in 

the Supplementary Material. 

 

Results: 

Brown bears 

We produced 103 new near-complete (i.e., >70% coverage) mitogenomes from 

Pleistocene/Holocene subfossil Ursus arctos specimens from North America (n=53) and 

Eurasia (n=50), which we analysed along with previously published data from 47 brown 

and polar bears (Hirata et al., 2013; Lindqvist et al., 2010; Liu et al., 2014; Miller et al., 

2012; Rey-Iglesia et al., 2019), spanning 107 unique mitochondrial haplotypes. We used 

BEAST2 (Bouckaert et al., 2019) to create a time-calibrated phylogenetic tree (Fig. 1), 

which was largely concordant with previous studies in grouping Beringian brown bear 

mitochondrial diversity into four major spatio-temporally restricted clades: clade 2 

(including clade 2a, 2b, and 2c, also encompassing extant polar bears), clade 3 (including 

3a, 3b, and 3c), clade 4, and clade 5 (Barnes et al., 2002; Davison et al., 2011; Hirata et 

al., 2013; Leonard et al., 2000; Talbot & Shields, 1996; Waits, Talbot, Ward, & Shields, 

1998). The temporal and geographic distributions of the different clades appear to result 

from dispersals into Eastern Beringia at widely different points in time. 
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Fig. 1. Bayesian phylogenetic trees inferred from (A) brown bear and (B) lion mitogenomes. The 

grey vertical columns represent odd-numbered MIS stages (interglacials) and white 
columns even-numbered MIS stages (glacials). Bars on nodes represent 95% Highest 
Posterior Densities for node age estimates indicated for modes leading to major clades and 
those reported in main text. Numbers on tips in (A) refer to selected specimens mentioned 
in text: 1 = A155, 2 = A156, 3 = A1945, 4 = A1944, 5 = A1946, 6 = A138, 7 = A5889, 8 = 
MH255807, 9 = A5883. Clade 2b in the brown bear tree represents modern polar bear 
sequences. For detailed trees with tip labels, and posterior support values see Supplementary 
Figs S4 and S5. 
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Within Eurasia we identified three ancient specimens (A155, A156, and A1945) 

with haplotypes closely related to North American clade 3b bears, and five deeply 

divergent Eurasian clade 3b bears (A138, A1944, A1946, A5889, and MH255807), 

including a published mitogenome previously assigned to clade 3c (28) (Fig. 1; 

Supplementary Fig. S4). The addition of these specimens increased the estimate for the 

Time to Most Recent Common Ancestor (TMRCA) for Eurasian and North American 

clade 3b bears from 75 kya (Davison et al., 2011) to 114 kya (95% highest posterior 

density (HPD): 100.2–127.3 kya). We also identified a new haplotype that is sister-taxon 

to all clade 4 bears from an ancient specimen (A5883) from Da’an Cave in Northeast 

China, for which we estimated a median age of 103 kya (95% HPD: 66.7-140.6 kya).  

 

Our time-calibrated Bayesian phylogenetic analysis returned median age estimates 

for five Eastern Beringian brown bear specimens that were older than the previous ~70 

kya estimate for the initial colonisation of North America (Barnes et al., 2002; Davison et 

al., 2011; Kurtén & Anderson, 1980): A345 at 78.3 kya (95% HPD: 58.6–98.9 kya), A335 

at 82.4 kya (95% HPD: 64.9–103.3 kya), A298 at 95.1 kya (95% HPD: 64.9–127.1 kya), 

A193 at 100 kya (95% HPD: 74.0–130.2 kya), and A318 at 111.4 kya (95% HPD: 79.0–

148.8 kya) (Supplementary Fig. S2A). These older samples likely descend from the 

original wave of brown bears entering North America, and all belong to either 

mitochondrial clade 2c or 4 (Figs 1 and 2), neither of which is found in Eastern Beringia 

after 35 kya. Clade 4 bears are currently restricted to the contiguous 48 States and appear 

to have diverged from Eastern Beringian clade 4 bears ~83 kya (95% HPD: 73.4-93.8 

kya), soon after the 92 kya TMRCA for all North American clade 4 brown bears (95% 

HPD: 83.2–101.6 kya). In turn, North American clade 4 brown bears appear to have 

diverged from Eurasian clade 4 bears (found today in Japan) much earlier, ~177 kya (95% 

HPD: 154.5–201.7 kya) during MIS 6. The other early bears, clade 2c, are currently 

represented by only six pre-35 kya samples from Eastern Beringia and have not been 

found in any modern bears, and have a TMRCA in early MIS 5, ~121 kya (95% HPD: 

114.4–128.5 kya). An additional extinct clade, 3c, was also identified in Eastern Beringia 

between 40 and 35 kya, and the 15 specimens make up the majority of samples found in 

that time period. The TMRCA of the 15 clade 3c brown bears indicates that the clade 

arrived in Eastern Beringia during MIS 4 ~69 kya (95% HPD: 62.3–75.2 kya). 
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There is a marked gap in the Eastern Beringian fossil record of brown bears between 

35 and 25 kya (Fig. 2) as previously noted (Barnes et al., 2002), and after this point all 

samples belonged to either clade 3b or 3a. Clade 3b is the dominant group through MIS 

2, comprising 13 samples, and appears to have arrived during the LGM with a TMRCA 

~25 kya (95% HPD: 22.9–28.1 kya) (Fig. 1). The upper limit of this dispersal is 

constrained by a 39 kya estimate for the TMRCA with the closely related Eurasian clade 

3b brown bears (95% HPD: 31.9–46.4 kya). In contrast, clade 3a is represented by only a 

single Holocene specimen and two previously published modern bears, and presumably 

constitutes a terminal-Pleistocene dispersal into North America as clade 3a bears arrive in 

Japan at a similar time (Hirata et al., 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Timeline of radiocarbon and molecular dates for Eastern Beringian giant short-faced bears 
(Arctodus simus), lions (Panthera spp.), and brown bears (Ursus arctos). Dates are shown 
with one standard error and are coloured by genetic clade. For additional radiocarbon dates 
used to produce this plot see Supplementary table S3. 
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Lastly, we recovered mitochondrial data from ten ancient clade 2a bears from Haida 

Gwaii and Prince of Wales Island (Alexander Archipelago). Clade 2a is closely related to 

the polar bear mitochondrial clade 2b, and a divergent clade 2a specimen (A308) was also 

recovered from Engineer Creek Mine near Fairbanks, Alaska dating to 23.3 kya, the first 

record of clade 2a in interior Alaska. This specimen was previously reported as belonging 

to clade 2b using control region sequences (Barnes et al., 2002; Davison et al., 2011), 

although doubts about species ID (polar bear versus brown bear) and provenance have 

been raised (Barnes et al., 2002; Edwards et al., 2011). In any case, the TMRCA of all 

Haida Gwaii and Alexander Archipelago specimens dates to ~20 kya (95% HPD: 17–24 

kya), while the TMRCA between the Engineer Creek sample and all other clade 2a bears 

is 41 kya (95% HPD: 32.7–28.7 kya). 

 

Lions 

We produced 39 new near-complete mitogenomes from lion subfossil material from North 

America (n=24) and Eurasia (n=15), and analysed these along with two mitogenomes 

reconstructed from previously published data (Barnett et al., 2016), representing 35 unique 

haplotypes. The results of our phylogenetic analyses were in broad topological agreement 

with past studies, supporting the existence of two geographically restricted clades (Fig. 

1B) corresponding to Panthera (leo) spelaea (Eastern Beringia and Eurasia) and Panthera 

(leo) atrox (all other North American specimens from Edmonton southwards). We 

observed one important exception to this pattern: a specimen from Sixtymile River in 

Yukon Territory (~64°N), A181, possessing an atrox (American lion) mitochondrial 

haplotype (Fig. 1; Supplementary Fig. S5), the first genetic atrox specimen ever recorded 

from any locality farther north than Edmonton (~53°N). Radiocarbon dating of this 

specimen yielded an infinite radiocarbon age (>51,500 uncal. yBP), but our Bayesian 

phylogenetic analyses suggested a median age for the specimen of 67 kya (95% HPD: 

51.5–84.5 kya). The TMRCA of all atrox lions, representing the split between the two 

older atrox specimens (>50 kya, including A181) and the younger specimens (< 35 kya), 

dates to MIS 5 ~81 kya (95% HPD: 74.7–87.6 kya). 

 

Our Bayesian analysis indicated a split date between Panthera (leo) spelaea and 

Panthera (leo) atrox of approximately 165 kya (95% HPD: 145.0–185.2 kya). This MIS 

6 divergence date is substantially younger than the previous estimate of 340 kya based on 

short control region sequences (Barnett et al., 2009), which was likely an overestimate 
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resulting from application of a fossil-based node-age constraint and the time-dependency 

of mitochondrial substitution rates (Subramanian & Lambert, 2011). By relying on 

radiocarbon-dated tips to calibrate our analysis we have minimised the impact of rate time-

dependency, allowing more accurate dating of population splits and sample ages, as 

demonstrated by the results of our leave-one-out cross-validation (Supplementary, Fig. 

S1).  

 

Within Beringian lion diversity we were able to identify a genetically distinct pre-

LGM mitochondrial clade of Eastern Beringian Panthera (leo) spelaea specimens with a 

TMRCA of 63 kya (95% HPD: 58.9–67.6 kya). These pre-LGM samples are genetically 

distinct from the two clades that include all younger Eastern Beringian lion specimens, 

which have TMRCAs of 23 kya (95% HPD: 22.1–24.5 kya) and 22 kya (95% HPD: 18.9–

25.5 kya), and a combined TMRCA of 33 kya (95% HPD: 29.2–37.0 kya). This suggests 

that in addition to the original dispersal of the ancestors of Panthera (leo) atrox, lions 

appear to have dispersed into North America on at least two other occasions during the 

Late Pleistocene. It is notable that the hiatus in the fossil record between the pre- and post-

LGM lion clades falls between 33 and 22 kya, closely mirroring the pattern of local 

extinction observed in brown bears (Fig. 2). 

 

Phylogeography: Testing the influence of the land bridge 

The results of our separate phylogenetic analyses of brown bears and lions hinted at the 

existence of synchronous waves of dispersal and extinction tied to Pleistocene glacial 

cycles: in particular, most dispersal events seemed to occur during glacials, when the land 

bridge was present. To explicitly test whether the spatio-temporal distribution and parallel 

lineage turnover of lions and bears in Eastern Beringia was strongly affected by the 

presence or absence of the Bering Land Bridge, we performed a phylogeographic analysis 

in BEAST (Suchard et al., 2018). To overcome low power and over-parameterisation 

issues caused by the low number of dispersals in each clade, we used a novel approach 

uniting joint-tree (Sanmartin, Van der Mark, & Ronquist, 2008), and epoch-clock 

(Bielejec, Lemey, Baele, Rambaut, & Suchard, 2014) methods. We estimated both the 

bear and lion trees together in a single MCMC analysis (as separate unlinked trees); each 

tip in the trees (i.e., each specimen) was assigned an additional phylogeographical trait: 

Eurasia (Western Beringia) or North America (Eastern Beringia and South-of-the-Ice). 

We then estimated east-west dispersal rates (i.e., the rate of change of this 
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phylogeographic trait) simultaneously across both the bear and lion phylogenies, along 

with all other parameters associated with the previous two separate analyses (i.e., clock 

models, substitution models, topology, branch lengths). By using a single shared 

biogeographic model, data from both brown bears and lions are pooled to estimate 

dispersal patterns and drivers (Sanmartin et al., 2008). We compared two dispersal models 

using this method. (1) A simple null model, where a single dispersal rate across time was 

estimated, and (2) an epoch-based model where separate rates were estimated for two 

different groups of time slices: one rate for all periods when the Bering Land Bridge was 

likely emergent (i.e., glacials, even-numbered MISs) and another rate for all periods when 

the Bering Land Bridge was submerged (i.e., interglacials, odd-numbered MISs). Bayes 

factors (Kass & Raftery, 1995) provided moderate support for the epoch-based model over 

the single-rate null model (BF=3.038). The estimated dispersal rate for glacials was 

approximately 13 times higher than the dispersal rate during interglacials (1.56E-5 versus 

1.22E-6 events per lineage per year). Supplementary Fig. S6 shows the pattern driving 

this difference: branches containing inferred dispersals are concentrated in glacials, yet 

the combined glacial epochs occupy less time and shorter tree length (compared to the 

combined interglacials).  

 

Discussion: 

Our results demonstrate that Pleistocene glacial cycles were an important driver of 

population dynamics in both Eastern Beringian brown bears and lions. In particular, 

dispersal between Western and Eastern Beringia was heavily influenced by presence of 

the Bering Land Bridge, with inferred dispersal rates across both species being over an 

order of magnitude higher during colder periods. This result strongly implicates 

geographical and environmental changes caused by glacial cycles as key drivers of 

carnivoran diversity, which is further supported by the remarkably parallel and 

synchronous response to these drivers observed in both brown bears and lions. For 

example, the respective origins of the American lion (atrox) mitochondrial lineage (~165 

kya) and North American clade 4 brown bear lineage (~177 kya) — the earliest 

representatives of both species observed in North America (Fig. 2) — occurred during 

MIS 6, the Illinoian glaciation (Fig. 1), when the Bering Land Bridge was likely exposed 

(Fig. 3A). This is consistent with the first recorded lions occurring in Sangamonian (MIS 

5) deposits in Kansas and Texas (Dalquest, 1962; Harington, 1969; Hibbard & Taylor, 
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1960). Notably, this also aligns with evidence that the steppe bison (Bison priscus) and 

red foxes (Vulpes vulpes) arrived in North America during MIS 6 (Froese et al., 2017), or 

immediately prior (Kutschera et al., 2013; Statham et al., 2014), respectively.  

 

 

 

 

 

 

 

 

 

 
Fig. 3. Map of Late Quaternary phylogeography of North American brown bears and lions during 

six time periods. A) MIS 6, 191–130 kya, brown bears and lions first colonise North 
America via the Bering Land Bridge; B) MIS 5, 130–71 kya, Bering Land Bridge is flooded, 
dispersal of brown bears and lions south of continental ice sheets; C) MIS 4, 71–57 kya, 
dispersal of clade 3c bears and spelaea across the Bering Land Bridge; D) MIS 3, 57–29 
kya, flooding of Bering Land Bridge and extinction of both carnivoran taxa in Eastern 
Beringia; E) MIS 2, Last Glacial Maximum, 29–14 kya, dispersal of clade 3b bears and 
second wave of spelaea lions; and F) MIS 1, Holocene, 14 kya to present, lions go extinct 
in North America and Eurasia, additionally clade 3a bears disperse into Eastern Beringia 
before the Bering Land Bridge is flooded for the last time. Different coloured silhouettes of 
brown bears and lions represent different genetic clades, corresponding to clade colouring 
in Figs 1 and 2. White area represents the approximate extent of glacial ice along with rough 
estimates of Bering Land Bridge extent during the different time periods using spatial data 
from Dyke, Moore, and Robertson (2003). 
 

 

While our results suggest that clade 4 bears and atrox lions likely arrived in Eastern 

Beringia around 170 kya during MIS 6, they must have dispersed southwards soon 

afterwards, as individuals belonging to these lineages are never observed farther north 

than Edmonton (~53°N) following the end of MIS 3. The TMRCAs of the North American 

clade 4 brown bear clade at 92 kya and atrox lion clade (including all North American 

samples) at 81 kya, both occurred during MIS 5, suggesting that both species dispersed 

southwards during this warmer period when ice sheets retreated and opened an ice-free 
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north-south corridor (Fig. 3B). This movement coincides with the first southward 

dispersal of the bison through the ice-free corridor between late MIS 6 and early MIS 5 

(Froese et al., 2017; Heintzman et al., 2016; Shapiro et al., 2004). The dispersal and 

subsequent isolation of lions south of the ice was previously thought to have initiated the 

divergence between the American lion (Panthera atrox) and cave lion (P. spelaea) 

(Barnett et al., 2009). However, our discovery of a ~66.7 thousand-year-old P. atrox 

specimen north of the ice sheets in Yukon instead suggests that the formation of the 

endemic American lion lineage was more likely the result of their isolation in North 

America after the flooding of the Bering Land Bridge during MIS 5. Alternatively, this 

Yukon atrox sample could plausibly represent a migrant from south of the ice sheets, but 

we favour the former hypothesis as the timing of the split between atrox and spelaea 

coincides with the emergence of the Bering Land Bridge and there are no putative later 

examples of lions dispersing northwards. 

 

Following MIS 6, the second wave of lion and brown bear dispersals into North 

America appears to have occurred during MIS 4 when lowered sea levels next exposed 

the Bering Land Bridge (Fig. 3C), corresponding with the respective TMRCAs of the 

North American endemic clade 3c bears and the clade comprising the four pre-LGM 

Eastern Beringian spelaea lions. However, during the interglacial period MIS 3, as the 

Bering Land Bridge was again submerged (Hu et al., 2010) (Fig. 3D), all lions (atrox and 

spelaea) and brown bears (clades 2c, 3c, and 4) appear to have become locally extinct in 

Eastern Beringia (Fig. 2), with atrox lions and clade 4 brown bears — descendants of the 

first wave of dispersal — surviving only in the contiguous USA and southern Canada. The 

absence of both brown bears and lions from the Eastern Beringian fossil record between 

35 and 25 kya does not appear to be due to a taphonomic bias, as remains of the giant 

short-faced bear (Arctodus simus) are abundant during the same period (Fig. 2). Indeed, 

the reappearance of both lion and bear populations appears to be closely linked in time to 

the extinction of short-faced bears in the area, suggesting some form of competition 

(Barnes et al., 2002; Barnett et al., 2009; Davison et al., 2011; Ersmark et al., 2015; 

Leonard et al., 2000). Importantly, the timing of these carnivoran extinctions in Eastern 

Beringia coincides with evidence for widespread vegetation change in the region, namely 

expansion of peatlands caused by significant paludification (Mann et al., 2015; Reuther et 

al., 2020; Treat et al., 2019).  
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Populations of a number of megafaunal herbivores appear to have decreased during 

MIS 3, possibly related to the expansion of peatlands and restrictions on foraging and 

nutrition (Mann et al., 2015), which may have had reciprocal impacts on the megafaunal 

carnivores and omnivores that preyed upon them, plausibly causing the local extinction of 

both lions and brown bears. For example, musk-ox populations experienced a dramatic 

decrease in diversity and effective population size during MIS 3 (Campos et al., 2010), 

mammoth populations were steadily declining (Debruyne et al., 2008), and bison began 

to experience dramatic declines towards the end of MIS 3 into MIS 2 (Drummond, 

Rambaut, Shapiro, & Pybus, 2005; Lorenzen et al., 2011; Shapiro et al., 2004). In addition, 

it appears that non-caballine horses (i.e., Haringtonhippus) underwent a bottleneck during 

MIS 3 with only a single fossil specimen found in Eastern Beringia after ~31 kya (Guthrie, 

2003; Heintzman et al., 2017) around the time that the brown bear and lion populations 

went extinct. In contrast, the giant short-faced bear appears to have persisted in Eastern 

Beringia throughout MIS 3. It is possible that the mobility, large home range, and solitary 

behaviour that has been proposed for the giant short-faced bear (Matheus, 1995; Schubert 

& Wallace, 2009) may have allowed them to exploit food resources that were less 

available to lions or brown bears. Grey wolves also appear to be present in eastern Beringia 

throughout MIS 3, with no evidence of genetic turnovers (Leonard et al., 2007; Loog et 

al., 2020). Isotope analyses have suggested Beringian wolves had similar diets to that of 

Pleistocene lions and brown bears, consisting largely of large herbivores (Fox-Dobbs, 

Leonard, & Koch, 2008; Leonard et al., 2007; Pilot et al., 2010). However, dietary analysis 

of a mummified MIS 3 Beringian wolf indicated a diet consisting a significant proportion 

of aquatic resources (Meachen et al., 2020), possibly indicating wolfs may have utilised 

resources that may not have been available to lions or brown bears in Beringia during MIS 

3. 

 

Following MIS 3, lions and brown bears do not reappear in the fossil record of 

Eastern Beringia until after 27 kya, at the height of the LGM (MIS 2), when the Bering 

Land Bridge once again connected Eurasia and North America. This coincides with the 

invasion of North America from Eurasia by wapiti and moose (Hundertmark et al., 2002; 

Meiri et al., 2020; Meiri et al., 2014), and a secondary wave of bison dispersal across the 

Bering Land Bridge (Froese et al., 2017). The recolonizing populations were genetically 

distinct from those present in Eastern Beringia pre-MIS 2 as well as those south of the ice 

sheets, confirming that they likely comprised a new wave of dispersal from Western 
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Beringia (Fig. 3E). This wave of megafaunal dispersals associated with the re-emergence 

of the Bering Land Bridge in MIS 2 may also have included early Native American human 

populations, who are recorded shortly afterwards in the stratigraphic record of Chiquihuite 

Cave in Mexico, from approximately 26 kya (Ardelean et al., 2020). 

 

The reappearance of lions and brown bears in Eastern Beringia during MIS 2 

occurred at around the same time as the local extinction of Arctodus, which may relate to 

previously proposed competition between brown bears and Arctodus (Barnes et al., 2002; 

Steffen & Fulton, 2018). The apparent timing of the extinction of Arctodus in Eastern 

Beringia around 23 kya could be linked to the sharp climatic cooling associated with 

Heinrich Event 2 (24.3–23.3 ka BP), a period characterised by the collapse of the Northern 

Hemisphere ice sheets resulting in large discharges of ice into the North Atlantic causing 

drastic climatic changes (Heinrich, 1988; Hemming, 2004). In any case, the fact that 

Eastern Beringia was not instead recolonised by atrox lions and clade 4 bears from the 

contiguous USA may either reflect that conditions had not improved sufficiently to 

support lion and brown bear populations in Eastern Beringia before the ice-free corridor 

closed during the LGM or suggest that some other geographical or biogeographical barrier 

prevented dispersal from south of the ice sheets. Concordantly, in bison there is little 

evidence for northward dispersal through the ice-free corridor until after the LGM when 

a pulse of south to north dispersal is observed (Heintzman et al., 2016). Further, it is 

possible that clade 4 bears and atrox lions did contribute to the new populations of brown 

bears and lions in Eastern Beringia with the signal being lost either due to the maternal 

inheritance of mitochondrial DNA, or specimens harbouring these mitochondrial lineages 

yet to be sequenced. 

 

All modern and ancient clade 2a brown bears from the Alexander and Haida Gwaii 

archipelagos coalesce at 20 kya (95% HPD: 17.0–24.0 kya), comparable to the TMRCAs 

for Beringian clade 3b bears and spelaea lions. This supports the model proposed by Cahill 

et al. (Cahill et al., 2013) for the origin of clade 2a bears, under which the mitochondrial 

lineage was captured by brown bears following male-biased gene-flow into a population 

of polar bears stranded in the Alexander archipelago after the retraction of ice sheets post-

LGM. Assuming all our ancient Alexander and Haida Gwaii archipelago samples 

represent brown bears (or at least brown-polar hybrids), and that mtDNA diversity in the 

stranded polar bear population was low, the coalescence of our samples can be considered 
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a proxy for the minimum age of hybridisation between polar and brown bears, and hence 

a minimum age for the arrival of brown bears in the Alexander and Haida Gwaii 

archipelagos post-LGM. If this is the case, then brown bears arrived in the islands no later 

than 17 kya (the lower bound of the 95% HPD). That timing is coincident with the first 

records of brown bears on the Haida Gwaii archipelago ~ 17.5 kya (Ramsey, Griffiths, 

Fedje, Wigen, & Mackie, 2004) and the existence of unglaciated western Alaskan 

coastline, which represents an alternative southward dispersal pathway into the continent 

that may also have been exploited by humans (Lesnek, Briner, Lindqvist, Baichtal, & 

Heaton, 2018; Shaw, Barrie, Conway, Lintern, & Kung, 2020).  

 

Overall, our results highlight the key role of Pleistocene glacial cycles in driving the 

distribution and diversity of North American carnivorans. Glacial cycles may also have 

driven parallel waves of dispersal in other regions, such as across the Sakhalin land bridge 

that connected Japan with mainland Asia. Genetic evidence from modern Japanese brown 

bears suggests multiple waves of Pleistocene dispersal in a similar temporally staggered 

sequence, with present day Japanese mitochondrial diversity closely mirroring that 

observed in modern Eastern Beringia (i.e., clades 3a, 3b, and 4) and also exhibiting a 

marked phylogeographic structure (Hirata et al., 2013). Analysis of ancient Japanese 

brown bear specimens might allow determination of whether extinct Eastern Beringian 

clades such as 3c were also present in Japan during the late Pleistocene. 

 

Conclusion: 

Lions and brown bears display remarkably synchronous responses to Pleistocene glacial 

cycles, and combining phylogenetic data from these two Pleistocene carnivoran species 

in a shared common biogeographic model provides power to demonstrate a 13-fold 

increase in dispersal rate between Eastern and Western Beringia when the land bridge is 

present. By combining additional ancient DNA datasets from other species with trans-

Beringian Pleistocene distributions (e.g., foxes), future studies may further refine the 

timing and magnitude of waves of dispersal across the Bering Land Bridge. A similar 

combined biogeographical approach may also be useful for exploring the timing of faunal 

dispersals through the ice-free corridor between the North American ice sheets, which 

available data suggests are biased southwards, with few observed northward dispersals. 

However, this apparent bias may be due to many ancient DNA studies focusing on recently 
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immigrated taxa (e.g., brown bears, bison, wapiti, humans) for which Eastern Beringia 

acts as a source, with the contiguous USA likely a sink. Endemic North American species 

may exhibit different patterns of phylogeography and dispersal, and large ancient DNA 

datasets from species like the giant short-faced bear or the western camel (Camelops 

hesternus) would be valuable in evaluating this possibility. Our densely-sampled study of 

rarer carnivorans contributes to the growing body of research suggesting remarkably 

concerted responses to Pleistocene geographical and environmental changes across many 

megafaunal taxa (e.g., Cooper et al., 2015). 
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Supplementary Information Text 

Extended Material and Methods: 

Sampling 

We sampled 120 brown bear subfossil bone and tooth specimens from northern Asia and 

North America, and 47 lion subfossils from Europe, northern Asia, and North America 

(supplementary tables S1 and S2). Fourteen brown bear specimens, and 12 lion specimens 

were radiocarbon dated at the Oxford Radiocarbon Accelerator Unit of the University of 

Oxford. All radiocarbon dates were calibrated with the IntCal13 curve (Reimer et al., 

2013) using OxCal 4.4 (Ramsey, 2009). 

 

All pre-PCR steps (extraction, library preparation) were conducted in purpose-built 

aDNA clean-room facilities at the University of Adelaide’s Australian Centre for Ancient 

DNA (ACAD) or the Henry Wellcome Ancient Biomolecules Centre at the University of 

Oxford, spatially separated and physically isolated from any other molecular laboratories. 

Strict protocols were followed and a number of precautions taken to minimize 

contamination of samples with exogenous DNA (Cooper & Poinar, 2000). Protective 

clothing was worn, including: hooded coveralls over ancient-DNA lab-dedicated clothing 

(clothes never previously worn in any other molecular laboratory), hairnets, facemasks, 

face shields, designated footwear for both transitional areas and the physical laboratory, 

and three pairs of gloves worn at all times to prevent skin exposure between frequent 

changes of the outer layer of gloves. Furthermore, the lab was designed with positive air 

pressure, flowing from the cleanest workrooms to the outside of the lab. Stringent 

decontamination procedures were also adhered to, including cleaning equipment and 

surfaces with bleach or disinfectant detergent before and after use as well as regular UV 

irradiation of surfaces. These precautions also included negative controls for both DNA 

extraction and PCR setup. PCR amplification and all downstream procedures (e.g., 

quantification and hybridization enrichment) were carried out in independent DNA 

laboratories. 

 

DNA extraction 

Potential surface contamination on each sample was reduced by UV irradiation for 15 min 

each side, followed by abrasion of the exterior surface (c. 1 mm) using a Dremel tool and 

a disposable carborundum disk. The sample was then pulverized using either a metallic 
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mallet or a Mikro-Dismembrator S (Sartorius). Approximately 100 mg of powder was 

extracted using one of two protocols: 1) Phenol-chloroform-based extraction protocol 

from Bray et al. (Bray et al., 2013); or 2) an in-house silica-based extraction protocol 

adapted from Dabney et al. (Dabney et al., 2013). For the latter protocol, the powder was 

digested first in 1 mL 0.5 M EDTA for 60 min, followed by an overnight incubation in 

970 μL fresh 0.5 M EDTA and 30 μL proteinase K (20 mg/ml) at 55°C. The samples were 

centrifuged and the supernatant mixed with 13 mL of a modified PB buffer (12.6 mL PB 

buffer (Qiagen), 6.5 μL Tween-20, and 390 μL of 3M Sodium Acetate) and bound to 

silicon dioxide particles, which were then washed two times with 80% ethanol. The DNA 

was eluted from silica particles with 100 μL TE buffer. 

 

Library preparation 

Double-stranded Illumina libraries were constructed following the protocol of Meyer et 

al. (Meyer et al., 2012) from 25 µL of DNA extract, with truncated Illumina adapters with 

unique dual 7-mer internal barcodes added to allow identification and exclusion of any 

downstream contamination. In addition, all samples underwent partial uracil-DNA 

glycosylase (UDG) treatment (Rohland, Harney, Mallick, Nordenfelt, & Reich, 2015) to 

restrict cytosine deamination, characteristic of ancient DNA, to terminal nucleotides, 

while eliminating damage in the centre of the molecules. A short round of PCR using PCR 

primers complementary to the adapter sequences was performed to increase the total 

amount of DNA. Cycle number was determined via real-time PCR and each library split 

into 8 separate PCR reactions to minimize PCR bias and maintain library complexity. 

Each PCR of 25 μL contained 1× HiFi buffer, 2.5 mM MgSO4, 1 mM dNTPs, 0.5 mM 

each primer, 0.1 U Invitrogen Platinum Taq Hi-Fi polymerase and 3 μL DNA. The cycling 

conditions were 94 °C for 6 min, 9–31 cycles of 94 °C for 30 s, 60 °C for 30 s, and 68 °C 

for 40 s, followed by 68 °C for 10 min. PCR replicates were pooled and products were 

then purified using AxyPrep™ magnetic beads (Axygen™). DNA was eluted in 30 μL 

EB buffer and quantified with a Qubit fluorometer (Thermo Fisher). 

 

Mitochondrial enrichment 

For lion libraries, commercially synthesized biotinylated 80-mer RNA baits (Arbor 

Biosciences, MI, USA) were used to enrich for mammalian mitochondrial DNA (Mitchell 

et al., 2016). DNA-RNA hybridization enrichment was performed according to 
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manufacturer’s recommendations (MYbaits protocol v3) with the exception that 1.25 µL 

of baits per reaction was used and the incubation step which was changed to 55 °C for 15 

hr followed by 50 °C for 16 hrs. The beads were washed three times with 0.1 x SSC and 

0.1% SDS (5 min 55 °C).  

 

Brown bear libraries were enriched with home-made RNA baits following Richards 

et al. (Richards et al., 2019). DNA was extracted from two brown bear tissue samples 

obtained from the University of Alaska Fairbanks Museum (UAM 87948 and UAM 

125917) using a Qiagen DNeasy Blood and Tissue kit following manufacturer’s protocols. 

The mitochondrial genomes were then amplified from the two specimens in two long-

range PCR fragments of 8-9 kb fragments using primers adapted from Hwang et al. 

(Hwang et al., 2008), ensuring a T7 promoter sequence was ligated to the 5’ end of one 

primer of each pair. The primer sequences were as follows: fragment 1, S-LA-16S-L-T7: 

5'-AATTGTAATACGACTCACTATAGGG GAT GTT GGA TCA GGA CAT CCT 

AAT GGT GCA-3', H-12193-Leu: 5'-AGT TGC ACC AAT TTT TTG GTT CCT AAG 

ACC-3’, and fragment 2, L-12193-Leu-T7: 5'-AATTGTAATACGACTCACTATAGGG 

GGT CTT AGG AAC CAA AAA ATT GGT GCA ACT-3', S-LA-16S-H, 5’-TGC ACC 

ATT AGG ATG TCC TGA TCC AAC ATC-3’. The long-range PCR fragments from 

both samples were then pooled in equimolar amount and subjected to in vitro transcription. 

The resulting RNA was then fragmented and biotinylated to form completed RNA baits 

specific to the brown bear mitochondrial genome. Brown bear samples were then enriched 

for mitochondrial DNA following the same protocol as per the lions but using the 

homemade RNA baits instead of commercially synthesized baits.  

 

Full-length Illumina sequencing adapters were then added to the enriched libraries 

via a final round of “off-bead” PCR split into 5 replicate PCRs (25 µL) containing 1× 

Gold PCR buffer, 2.5 mM MgCl2, 1 mM dNTPs, 0.5 mM each primer and 0.1 U AmpliTaq 

Gold. Cycling conditions were as follows: 94 °C for 6 min; 15 cycles of 94 °C for 30 s, 

60 °C for 30 s, 72 °C for 45 s; and 72 °C for 10 min. Following PCR, replicates were 

pooled and purified using AxyPrep™ magnetic beads, eluted in 30 μL H2O, and quantified 

on TapeStation 2200 (Agilent Technologies), using a D1000 ScreenTape assay. Libraries 

were pooled and sequenced on an Illumina NextSeq using 2 x 75 bp PE (150 cycle) High 

Output chemistry. 
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Data processing 

Sequenced reads were demultiplexed using SABRE (https://github.com/najoshi/sabre) 

using the unique 5’ and 3’ barcodes allowing one mismatch in the barcode sequence (-m 

1). Demultiplexed reads were then processed through Paleomix v1.2.12 (Schubert et al., 

2014). Within Paleomix, adapter sequences were removed and paired end reads merged 

using ADAPTER REMOVAL v2.1.7 (Schubert, Lindgreen, & Orlando, 2016), trimming 

low-quality bases (<Phred20 --minquality 4) and discarding merged reads shorter than 25 

bp (--minlength 25). Read quality was visualized before and after adapter trimming using 

fastQC v0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to ensure 

efficient adapter removal. Merged reads were mapped against the mitochondrial genome 

of Panthera spelaea (KX258452) and Ursus arctos (EU497665) using BWA v0.7.15 (Li 

& Durbin, 2009) (aln -l 1024 (seed inactivated), -n 0.01, -o 2). Reads with mapping Phred 

scores less than 25 were removed using SAMTOOLS 1.5 (Li et al., 2009) and PCR 

duplicates were removed using “paleomix rmdup_collapsed” and MARKDUPLICATES 

from the Picard package (http://broadinstitute.github.io/picard/).  

 

Heterozygous sites were observed across a 7-kb region in multiple Panthera 

samples, presumably as the result of nuclear mitochondrial DNA segments (numts), which 

are known to be widespread in felids (Kim et al., 2006). To counteract this, we constructed 

a numt sequence reference by identifying runs of sequences that disagreed with flanking 

homozygous sequences of the “true” mitochondrial genome. This numt reference was 

included as an additional scaffold when mapping to the lion mitochondrial genome 

reference so that reads preferentially mapping to the numt reference could subsequently 

be excluded from downstream analyses.  

 

Following mapping, reads for all samples were visualized in Geneious Prime 

v2019.0.4 (https://www.geneious.com) and we created a 75% majority consensus 

sequence, calling N at sites with less than 3x coverage. Subsequent analyses were 

restricted to specimens with greater than 70% of the mitochondrial genome covered, 

representing 103 and 39 of the brown bear and lion samples respectively. We also re-

analysed published data from one modern brown bear (Liu et al., 2014) and two ancient 

cave lions (Barnett et al., 2016) through the pipeline described above to produce full 

mitochondrial genomes (table S4). 
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Phylogenetic analysis 

Using MUSCLE v3.8.425 (Edgar, 2004) in Geneious Prime v2019.0.4, we aligned the 104 

brown bear consensus sequences described above with an additional 46 brown bear and 

polar bear mitogenomes downloaded from GenBank (table S5). We aligned our lion 

consensus sequences the same way, thus creating a separate alignment for each taxon (i.e., 

Panthera and Ursus arctos). Repetitive regions with poor read mapping were deleted from 

the control region in both alignments, representing 308 bp in brown bears and 245 bp in 

lions. The final alignment was 16451 bp for brown bears and 16694 in lions. 

 

Bayesian tip-dating analyses were performed using BEAST 2.6.1 (Bouckaert et al., 

2019) on each alignment to co-estimate the tree topology and divergence dates of our 

sequences. First, PartitionFinder 2.1.1 (Lanfear, Frandsen, Wright, Senfeld, & Calcott, 

2016) was used to find the best-fitting partitioning scheme using the Bayesian information 

criterion, separating the data into 5 partitions for each alignment (table S6). We then 

evaluated the temporal signal in our dataset using leave-one-out cross-validation (e.g. 

Stiller et al., 2014), using only the finite-dated specimens (28 lions and 119 brown bears). 

In sequential analyses we left out and then attempted to estimate the age of each specimen. 

For all but two of the lion and two of the brown bear specimens, the “true” (radiocarbon) 

age was within the 95% credibility interval of the estimated age, suggesting that our 

dataset included sufficient temporal information to estimate the age of undated samples 

(fig. S1). Consequently, we performed sequential analyses where undated samples were 

added to the dataset one at a time, in order to estimate their ages (fig. S2). Runs were 

performed with a strict clock with a uniform prior on rate (0–10-5 mutations per site per 

year), constant population coalescent tree prior with a 1/x distribution on population size, 

a uniform prior (0–500,000) on the age of the sequence being estimated, and run for 30 

million steps with sampling every 3000 steps. Some chains were extended to ensure 

effective sampling sizes near or above 200 for all parameters. The first 10% of samples 

were discarded as burn-in and parameter values were monitored to check for convergence 

in Tracer v1.7.1 (Rambaut, Drummond, Xie, Baele, & Suchard, 2018). Once all samples 

were assigned an age (either based on radiocarbon dating or Bayesian date estimation), 

we conducted a date-randomization test (Ramsden, Holmes, & Charleston, 2009; Stiller 

et al., 2014). Runs were conducted as for date estimation but excluding a prior on sequence 

age. For both datasets the rate estimate of the original data did not overlap the credibility 
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intervals of the rate estimate from 20 randomized replicates (fig. S3), suggesting that our 

dataset could be used to reliably estimate evolutionary rate and divergence times. 

 

For the final BEAST analysis, a strict clock was used with a uniform prior on rate 

(0–10-5 mutations per site per year), and a Bayesian skyline coalescent tree prior. We ran 

three independent MCMC chains, each run for 50 million steps, sampling every 5,000 

steps. We checked for convergence and sufficient sampling of parameters in Tracer v1.7.1 

(Rambaut et al., 2018) and combined individual runs in LogCombiner, after discarding 

the first 10% of steps as burn-in. Maximum clade credibility consensus trees were 

generated in TreeAnnotator using the median node age. 

 

Phylogeographic model testing  

The joint-tree epoch analyses used BEAST (Suchard et al., 2018) and identical DNA 

substitution model settings as above. However, the analysis was set up so that two separate 

alignments (lions and bears) were encoded in a single common xml file, and two separate 

trees (lions and bears) were estimated simultaneously during the MCMC. Additionally, 

clade 2 bears were excluded from the analysis due to a lack of sufficient sampling and 

introgressed relationship with polar bears (Ursus maritimus). Each tip or taxon was coded 

with an additional binary phylogeographic character (Eastern vs Western Beringia), and 

the rate of evolution of this character was estimated directly from the data. Two models 

for the evolution of this character were tested: a strict clock, where rates of evolution were 

constant through time, and a two-epoch clock, which had two separate rates (interglacial 

and glacial periods). We ascertained Bayes Factors using both stepping-stone and AICM 

(Tracer) approaches, but the former values were very unstable across runs (possibly due 

to poor convergence during some steps), and the values reported in the main text are 

AICM. 

 

We ran four independent MCMC chains, each run for 20 million steps, sampling 

every 2,000 steps. We checked for convergence and sufficient sampling of parameters in 

Tracer v1.7.1 (Rambaut et al., 2018) and combined individual runs using LogCombiner 

after discarding the first 20% of steps as burn-in. Maximum clade credibility consensus 

trees were generated in TreeAnnotator using the median node age (fig. S6). 
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f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S14933 

R
ussia

B
aikal lake, B

arguzin N
ature R

eserve 
54.45

109.86
B

one
H

istoric 1925 
3a

Phenol-chloroform
3284

>0.99
10.81

149
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S59248 

R
ussia

E
nisei R

iver, V
erkhniy Im

bak R
iver 

62.97
88.55

B
one

H
istoric 1956 

3a
Phenol-chloroform

804744
>0.99

5632.18

150
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S66341

R
ussia

Pechoro-Ilych N
aure R

eserve 
62.40

58.93
B

one
H

istoric 1947 
3a

Phenol-chloroform
477252

>0.99
2954.12

151
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S84887

R
ussia

Y
akutia, E

lgiyay settlem
ent. 

67.55
134.63

B
one

H
istoric 1969 

3a
Phenol-chloroform

26672
>0.99

140.07

152
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S34934

R
ussia

B
olshoy Shantar island, R

aduzhnyi 
cape 

54.93
137.50

B
one

H
istoric 1926 

3a
Phenol-chloroform

1275410
>0.99

6975.11

153
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S84888

R
ussia

Y
akutia, E

lgiyay settlem
ent 

67.55
134.63

B
one

H
istoric 1969 

3a
Phenol-chloroform

363100
>0.99

2449.86

154
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S22367

R
ussia

C
au

casian
 B

io
sp

h
ere N

atu
re R

eserv
e, 

D
u

d
u

g
u

le M
t., K

o
say

a m
ead

o
w

 
43.84

40.40
B

one
H

istoric 1936
3a

Phenol-chloroform
19051

>0.99
106.04

155
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S34958

R
ussia

U
ssury R

egion 
43.66

132.51
B

one
H

istoric 1932
3b

Phenol-chloroform
59939

>0.99
252.81

156
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S34972

M
ongolia

A
ltai M

ountains
48.00

99.00
B

one
H

istoric 1934
3b

Phenol-chloroform
703894

>0.99
3987.31

164
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S34955

R
ussia

K
rasnoyarsk region, A

ginsk district 
50.94

114.53
B

one
H

istoric 1911 
3a

Phenol-chloroform
5713

>0.99
27.82

165
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S159009

R
ussia

M
ag

ad
an

 p
ro

v
in

ce, u
p

p
er stream

 o
f A

n
ad

y
r 

riv
er, B

alag
an

ch
ik

 riv
er 

64.93
168.58

B
one

H
istoric 1989 

3a
Phenol-chloroform

102099
>0.99

607.19

166
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S14939

R
ussia

N
th C

aucasus C
hechnya. 

42.72
45.46

B
one

H
istoric 1913 

3a
Phenol-chloroform

4047
>0.99

30.89

167
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S1396

R
ussia

K
am

chatka 
56.11

159.60
B

one
H

istoric 1946 
3a

Phenol-chloroform
653583

>0.99
3816.37

168
U

rsus arctos
Z

o
o

lo
g

ical M
u

seu
m

 o
f 

M
o

sco
w

 U
n

iv
ersity

M
M

Z
 S34928

R
ussia

Shantarsiy isles. 
54.93

137.50
B

one
H

istoric 1925 
3a

Phenol-chloroform
503051

>0.99
2720.49

169
U

rsus arctos
U

A
F

/P
aleo

A
K

-374-V
-8

U
SA

Prince of W
ales Island

55.63
-132.91

L
. fem

ur of juvenile
9995±95

A
A

-10451 
11509

178
2a

Phenol-chloroform
29222

>0.99
108.57

171
U

rsus arctos
C

an
ad

ian
 M

u
seu

m
 o

f N
atu

re
C

M
N

 29005
C

anada
D

aw
son area L

oc. 17 Sulphur C
reek

63.77
138.93

L
. tibia distal end

9983 ± 37
O

xA
-38823

11432
105

3b
Silica

15158
>0.99

66.74
172

U
rsus arctos

P
au

l M
ath

eu
s - B

L
M

IK
-98-1065

U
SA

 (A
laska)

N
orth Slope - Ikpikpuk R

iver
70.81

-154.41
H

um
erus

36310±780
?

40899
721

L
ow

 D
N

A
Silica

48
<0.1

0.19
173

U
rsus arctos

C
an

ad
ian

 M
u

seu
m

 o
f N

atu
re

C
M

N
 38279

C
anada

Sixtym
ile, L

oc. 3
63.99

-140.78
H

um
erus

36500±1150 
B

eta-16162
41044

1046
2c

Silica
76905

>0.99
302.55

174
U

rsus arctos
U

n
iv

ersity
 o

f A
lask

a M
u

seu
m

V
-55-526

C
anada

Sixtym
ile, L

oc. 3
63.99

-140.78
Phalange

43453.24
3733.62

3c
Silica

1850
0.92296485

7.04

176
U

rsus arctos
A

m
erican

 M
u

seu
m

 o
f N

atu
ral 

H
isto

ry
FA

M
 95634

U
SA

 (A
laska)

G
oldstream

64.96
-147.62

R
. H

um
erus

41787±212
?

45182
236

3c
Silica

37401
>0.99

146.18
177

U
rsus arctos

?
C

anada
Prince E

dw
ard Island

46.37
-63.36

B
one

8436.93
6999.13

3a
Phenol-chloroform

2169
0.97541431

9.55

180
U

rsus arctos
A

m
erican

 M
u

seu
m

 o
f N

atu
ral 

H
isto

ry
FA

M
 95646 A

-439-3812
U

SA
 (A

laska)
C

ripple C
reek

64.83
-147.99

M
etatarsal III

L
ow

 D
N

A
Silica

117
<0.1

0.38
182

U
rsus arctos

U
C

L
A

C
M

N
 42381, 582 U

C
L

A
C

anada
Sixtym

ile, L
oc. 4

63.99
-140.78

R
. ulna

35970± 660
C

A
M

S-51808
40599

658
4

Silica
143149

>0.99
550.88

184
U

rsus am
ericanus U

n
iv

ersity
 o

f K
an

sas
K

U
 88497

U
SA

K
ansas R

. B
onner Springs

39.04
-94.89

C
ranium

U
. am

ericanusPhenol-chloroform
1206

0.48
5.49

186
U

rsus arctos
U

C
L

A
FA

M
 95665  A

-653-4738
U

SA
 (A

laska)
G

old H
ill

64.85
-147.98

R
. R

adius
13760±50

C
A

M
S-54128

16628
129

3b
Silica

124720
>0.99

493.07
187

U
rsus arctos

C
an

ad
ian

 M
u

seu
m

 o
f N

atu
re

C
M

N
 28972

C
anada

D
aw

son area L
oc. 17 Sulphur C

reek
63.73

-138.83
L

. pelvic fragm
ent

10541.76
1885.23

3b
Silica

34300
>0.99

154.1
189

U
rsus am

ericanus C
an

ad
ian

 M
u

seu
m

 o
f N

atu
re

C
M

N
 42289

C
anada

D
aw

son area. L
oc 21, m

outh 
B

rim
stone

63.76
-138.82

R
. tibia

U
. am

ericanusSilica
26010

0.83
103.09

190
U

rsus arctos
U

n
iv

ersity
 o

f K
an

sas
K

U
 23034

U
SA

Ice C
ave K

U
-M

T
-41

45.16
-108.40

Fem
ur

413 ± 22
O

xA
-38828

491
37

4
Silica

312011
>0.99

1499.64
192

U
rsus arctos

U
n

iv
ersity

 o
f A

lask
a M

u
seu

m
A

K
-374-V

-30A
-0

U
SA

Prince of W
ales Island

55.63
-132.91

T
ooth

11280.57
1919.05

2a
Phenol-chloroform

18261
>0.99

102.88
193

U
rsus arctos

C
an

ad
ian

 M
u

seu
m

 o
f N

atu
re

C
M

N
 46448

C
anada

Sixtym
ile, L

oc.3
63.99

-140.78
R

. ulna
100040.00

14488.11
2c

Silica
95503

>0.99
337.31

195
U

rsus arctos
U

n
iv

ersity
 o

f K
an

sas
K

U
 42725

U
SA

N
atural T

rap C
ave, W

yom
ing

44.97
-108.19

Phalange
5840.32

4795.54
4

Phenol-chloroform
12703

>0.99
52.17

198
U

rsus arctos
C

an
ad

ian
 M

u
seu

m
 o

f N
atu

re
C

M
N

 35965
C

anada
D

aw
son area L

oc. 16 H
unker C

reek
63.95

-138.90
M

andible
41000 ± 1050

B
eta-16159 

44610
992

3c
Silica

12500
0.99

45.48

288
U

rsus arctos
A

m
erican

 M
u

seu
m

 o
f N

atu
ral 

H
isto

ry
FA

M
 95597 A

-653-4722
U

SA
 (A

laska)
G

old H
ill

64.85
-147.98

R
. ram

us
18098.42

2477.53
3b

Silica
7772

>0.99
30.42
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A

C
A

D
#

G
enetic ID

M
useum

M
useum

/Field A
ccession

C
ountry 

Site
Latitude

Longitude
Sam

ple Type
C

arbon D
ate

R
eference

C
alibrated 

M
edian

C
alibrated 

Sigm
a

Estim
ated 

A
ge

Standard 
D

eviation
H

aplotype
Extraction M

ethod
R

eads
C

overage*
D

epth of 
C

overage

290
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95641 A

-203-8241
U

SA
 (A

laska)
E

ngineer C
reek

64.92
-147.62

Fibula
11940±100

O
xA

-9798
13781

135
3b

Silica
7515

>0.99
33.07

293
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95640

U
SA

 (A
laska)

C
ripple C

k
64.83

-147.99
bone

>53900
O

xA
-9861

54367.78
4311.62

3c
Silica

243837
>0.99

1053.21

295
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95666  A

-340-2949
U

SA
 (A

laska)
C

ripple C
k

64.83
-147.99

U
lna

47100±3100
O

xA
-9260

O
ut of bounds

51187.53
2381.63

3c
Silica

3034
0.98

11.95

298
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95602 A

-576-3445
U

SA
 (A

laska)
C

ripple C
reek sum

p
64.83

-147.99
R

. m
andible

95146.10
15633.49

2c
Silica

3420
0.98

12.91

299
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95648 A

-340-8835
U

SA
 (A

laska)
E

ngineer C
reek

64.92
-147.62

m
etatarsal V

L
ow

 D
N

A
Silica

197
0.12

0.71

300
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95637 A

-386-4550
U

SA
 (A

laska)
C

ripple C
reek

64.83
-147.99

tibia
56453.99

8979.90
2c

Silica
1960

0.81460572
5.58

301
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 30770-F

U
SA

 (A
laska)

G
oldstream

64.96
-147.62

radius
45085.53

2187.76
3c

Silica
33637

1
127.96

302
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95605

U
SA

 (A
laska)

L
ow

er G
oldstream

64.96
-147.62

r. ram
us

35295.40
6268.65

3c
Silica

1009
0.74946883

3.5

303
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95677

U
SA

 (A
laska)

C
ripple C

reek
64.83

-147.99
ulna

48390.55
7417.73

3c
Silica

7865
0.99

25.41

304
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95631 A

-653-5216
U

SA
 (A

laska)
G

old H
ill

64.85
-147.98

tibia
L

ow
 D

N
A

Silica
433

0.33
1.23

305
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95603 A

-439-3806
U

SA
 (A

laska)
C

ripple C
reek

64.83
-147.99

r. ram
us

49763.79
2875.13

3c
Silica

16073
>0.99

73.73

306
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95671

U
SA

 (A
laska)

G
oldstream

, B
anks near Fox

64.96
-147.62

ulna
54994.91

4570.22
3c

Silica
114416

>0.99
440.6

307
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95609

U
SA

 (A
laska)

C
ripple C

reek
64.83

-147.99
bone

50800±1900
O

xA
-9767

51315
2293

3c
Silica

5271
0.99

21.49

308
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95657

U
SA

 (A
laska)

E
ngineer C

reek
64.92

-147.62
ulna

19360±140
O

xA
-10036

23313
194

2a
Silica

166965
>0.99

779.87

309
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 30421

U
SA

 (A
laska)

Fairbanks area
65.00

-147.00
r. m

andible
22326.03

3532.23
3b

Silica
13057

>0.99
47.99

310
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95596 A

-255-6946
U

SA
 (A

laska)
G

oldstream
64.96

-147.62
r. m

andible
16986.83

2726.69
3b

Silica
57280

>0.99
238.44

311
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95601 A

-528-4149
U

SA
 (A

laska)
C

ripple C
reek

64.83
-147.99

r. m
andible

36137±783
A

A
-17509

40742
741

3c
Silica

12491
0.99

46.54

312
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95612 A

-199-8654
U

SA
 (A

laska)
E

ster C
reek

64.84
-147.96

tooth
10015±62

A
A

-17506
11512

141
3b

Silica
98774

>0.99
399.46

315
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95600 A

-200-4347
U

SA
 (A

laska)
L

ow
er E

ldorado C
reek

65.06
-147.53

r. ram
us

43387.77
4123.84

3c
Silica

5500
0.9718327

22.17

316
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95595 A

-200-6671B
U

SA
 (A

laska)
G

oldstream
64.96

-147.62
r. ram

us
12441±75

A
A

-17508 
14571

219
3b

Silica
3032

0.97110423
13.56

317
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95672 A

-386-4544
U

SA
 (A

laska)
C

ripple C
reek

64.83
-147.99

ulna
49589.29

2910.01
3c

Silica
3309

0.98
13.59

318
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95669 A

-528-4179
U

SA
 (A

laska)
C

ripple C
reek

64.83
-147.99

ulna
> 45600

O
xA

-38855
111490.00

17390.44
2c

Silica
1058

0.73732775
3.39

320
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95635

U
SA

 (A
laska)

G
oldstream

64.96
-147.62

tibia
L

ow
 D

N
A

Silica
148

0.11
0.53

323
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95642  A

-425
U

SA
 (A

laska)
E

ster C
k

64.84
-147.96

fem
ur

14150±90
O

xA
-9262

17224
148

3b
Silica

91587
>0.99

426.96

325
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95670  A

-658-1545
U

SA
 (A

laska)
G

old H
ill

64.85
-147.98

U
lna

15830±100
O

xA
-9263

18650
107

3b
Silica

12552
>0.99

75
326

U
rsus am

ericanus C
anadian M

useum
 of N

ature
C

M
N

 47036
C

anada
C

aribou C
k, D

aw
son

63.83
-138.82

R
.fem

ur
298 ± 39

O
xA

-9258
U

. am
ericanusSilica

161771
0.92

665.59

328
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
FA

M
 95630

U
SA

 (A
laska)

L
ow

er G
oldstream

64.96
-147.62

R
.hum

erus
14980± 60

C
A

M
S-51805

18204
101

3b
Silica

101779
>0.99

382.79

331
U

rsus arctos
A

m
erican M

useum
 of N

atural 
H

istory
A

M
N

H
 30422

U
SA

 (A
laska)

Fairbanks A
rea

65.00
-147.00

l. m
andible

19027±132
A

A
-17507

22909
195

3b
Silica

18023
>0.99

80.02
333

U
rsus arctos

U
niversity of A

laska M
useum

V
-55-583

U
SA

 (A
laska)

L
illian C

reek
65.51

-148.58
carpal

42900 ± 1700
O

xA
-38822

46566
1530

3c
Silica

737
0.7176592

18.8
335

U
rsus arctos

Paul M
atheus

no#
U

SA
 (A

laska)
C

olville R
iver

70.08
-151.40

m
andible

82616.12
9943.96

2c
Silica

4501
0.99

3.58
341

U
rsus arctos

C
incinnati M

useum
C

M
C

 V
P 3866 9001/93-20

O
hio

Sheriden C
ave

40.59
-83.27

T
ibia

10746.76
4663.61

4
Phenol-chloroform

1364
0.8492685

4.45
345

U
rsus arctos

U
niversity of A

laska
IK

-01-112
U

SA
 (A

laska)
N

orth Slope - Ikpikpuk R
iver

70.81
-154.41

H
um

erus
> 52500

O
xA

-38821
78288.60

10208.43
4

Silica
20247

>0.99
83.98

406
U

rsus arctos
R

oyal A
lberta M

useum
P98.5.374

C
anada

E
dm

onton
53.64

-113.28
M

axilla
27020 ± 190

O
xA

 12912
31064

122
4

Silica
15143

>0.99
62.72

407
U

rsus arctos
PIN

 M
oscow

3657-153
R

ussia
Indigirka area

70.58
147.17

V
ertebrae

30660±180
O

xA
-14944

34600
187

3a
Phenol-chloroform

1898
0.9718327

7.92
1673

U
rsus arctos

Parks C
anada

G
D

7D
16-T

10-#259
C

anada
G

aadu D
in 1, H

aida G
w

aii
52.44

-131.37
thoracic vertebra

12,085±30
13937

76
13393.18

3128.03
2a

Phenol-chloroform
37833

>0.99
200.25

1674
U

rsus arctos
Parks C

anada
G

D
9A

6-#1128
C

anada
G

aadu D
in 1, H

aida G
w

aii
52.44

-131.37
skull fragm

ent, sagital crest
12,230 ± 30 

14123
60

14708.50
2847.24

2a
Phenol-chloroform

49487
>0.99

228.71
1675

U
rsus arctos

Parks C
anada

T
2A

15, 85-90, D
B

I
C

anada
G

aadu D
in 1, H

aida G
w

aii
52.44

-131.37
foot bone

12,205±40
14097

66
14809.66

2895.65
2a

Phenol-chloroform
41723

>0.99
207.59

1676
U

rsus arctos
Parks C

anada
G

D
786-#71

C
anada

G
aadu D

in 1, H
aida G

w
aii

52.44
-131.37

bone
10,715 ± 30 

12679
27

14706.81
2833.27

2a
Phenol-chloroform

18118
>0.99

84.63
1677

U
rsus arctos

Parks C
anada

G
D

9A
17-#1264

C
anada

G
aadu D

in 1, H
aida G

w
aii

52.44
-131.37

proxim
al pahlange

11,030±30
12892

61
U

. am
ericanusPhenol-chloroform

54
<0.1

0.25
1678

U
rsus arctos

Parks C
anada

G
D

7H
1-#780

C
anada

G
aadu D

in 1, H
aida G

w
aii

52.44
-131.37

tooth (upper left I2)
14707.55

2880.73
2a

Phenol-chloroform
14599

>0.99
74.03

1679
U

rsus arctos
Parks C

anada
G

D
7F10

C
anada

G
aadu D

in 1, H
aida G

w
aii

52.44
-131.37

tooth (large upper left canine)
L

ow
 D

N
A

Phenol-chloroform
239

0.13
0.61

1680
U

rsus arctos
Parks C

anada
G

D
8B

1_#764
C

anada
G

aadu D
in 1, H

aida G
w

aii
52.44

-131.37
upper right M

1 and jaw
bone

14719.68
2793.70

2a
Phenol-chloroform

13055
>0.99

57.67
1681

U
rsus am

ericanus Parks C
anada

G
D

9B
10-#756

C
anada

G
aadu D

in 1, H
aida G

w
aii

52.44
-131.37

 tooth (right low
er M

2)
U

. am
ericanusPhenol-chloroform

18494
0.75

78.1
1682

U
rsus arctos

Parks C
anada

T
5A

7, 45-50, D
B

D
C

anada
G

aadu D
in 1, H

aida G
w

aii
52.44

-131.37
bone

11,985 ± 50 
13836

80
14817.25

2876.11
2a

Phenol-chloroform
3200

>0.99
14.61

1683
U

rsus arctos
Parks C

anada
T

5A
7, 45-50

C
anada

G
aadu D

in 1, H
aida G

w
aii

52.44
-131.37

podial bone (tarsal/carpal)
12019 ± 44

O
xA

-38824
13868

73
2a

Phenol-chloroform
31454

>0.99
147.47

1731
U

rsus arctos
B

LM
, Elok N

evada
T

P5-01-1
N

evada
M

ineral H
ill C

ave
40.08

-116.05
B

one
9,960 ±50

SR
-5293

11389
115

4
Phenol-chloroform

24630
>0.99

103.5

1918
U

rsus arctos
Institute of Plant and A

nim
al 

Ecology
IPA

E
 705/514

R
ussia

U
rals, T

ain C
ave

59.42
57.77

T
ibia

14120 ± 60
O

xA
-37429

17184
120

3a
Phenol-chloroform

130021
>0.99

494.31

1920
U

rsus arctos
Institute of Plant and A

nim
al 

Ecology
IPA

E
 915/870

R
ussia

Irtysh R
iver 

58.03
68.85

T
ibia

27020 ± 260
O

xA
-37455

31065
159

3a
Phenol-chloroform

29463
>0.99

112.87

1927
U

rsus arctos
Institute of Plant and A

nim
al 

Ecology
IPA

E
 915/869

R
ussia

Irtysh R
iver 

58.03
68.85

H
um

erus.
43600±1500

U
C

IA
M

S-56989 
47131

1335
3a

Phenol-chloroform
24465

>0.99
95.74

1941
U

rsus arctos
Institute of A

rchaeology 
R

ussian A
cadem

y of Sciences
R

ussia
A

ltai, R
azboinichya C

ave
51.30

84.47
C

anine root (upper)
16450±60

U
C

IA
M

S-56991 
19847

111
3a

Phenol-chloroform
4839

>0.99
20.54

1942
U

rsus arctos
Institute of A

rchaeology 
R

ussian A
cadem

y of Sciences
R

ussia
A

ltai, R
azboinichya C

ave
51.30

84.47
T

ibia
16440±60

U
C

IA
M

S-56992
19835

111
3a

Phenol-chloroform
128184

>0.99
669.87

1943
U

rsus arctos
Institute of A

rchaeology 
R

ussian A
cadem

y of Sciences
R

ussia
A

ltai, R
azboinichya C

ave
51.30

84.47
T

ibia
16380±60

U
C

IA
M

S-56993
19769

109
3a

Phenol-chloroform
96512

>0.99
419.11

T
able S1 cont. 
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A
C

A
D

#
G

en
etic ID

M
u

seu
m

M
u

seu
m

/F
ield

 A
ccession

C
ou

n
try 

S
ite

L
atitu

d
e

L
on

gitu
d

e
S

am
p

le T
yp

e
C

arb
on

 D
ate

R
eferen

ce
C

alib
rated

 
M

ed
ian

C
alib

rated
 

S
igm

a
E

stim
ated

 
A

ge
S

tan
d

ard
 

D
eviation

H
ap

lotyp
e

E
xtraction

 M
eth

od
R

ead
s

C
overage*

D
ep

th
 of 

C
overage

1944
U

rsus arctos
Institute of A

rchaeology 
R

ussian A
cadem

y of Sciences
Russia

A
ltai, Razboinichya Cave

51.30
84.47

U
lna

13925±40
U

CIA
M

S-56994
16886

112
3b

Phenol-chloroform
76173

>0.99
315.37

1945
U

rsus arctos
Institute of A

rchaeology 
R

ussian A
cadem

y of Sciences
Russia

A
ltai, Razboinichya Cave

51.30
84.47

U
lna

15370±100
U

CIA
M

S-56995
18641

108
3b

Phenol-chloroform
375299

>0.99
1959.65

1946
U

rsus arctos
Institute of A

rchaeology 
R

ussian A
cadem

y of Sciences
Russia

A
ltai, Razboinichya Cave

51.30
84.47

U
lna

13830±40
U

CIA
M

S-56996
16738

118
3b

Phenol-chloroform
108649

>0.99
442.22

4098
U

rsus arctos
Field collected

M
3M

 N
18

Russia
M

ezm
aiskaya Cave, Layer 2A

, 
Caucasus M

ountains 
44.17

40.00
Long bone fragm

ent42,900±1600
CU

RL-10273
46549

1481
3a

Phenol-chloroform
16466

>0.99
60.92

5390
U

rsus arctos
M

useum
 of N

atural H
istory 

V
ienna

V
N

H
M

 40604
Russia

K
am

chatka
56.11

159.60
top right incisor

H
istoric collected 1878-1883

3a
Phenol-chloroform

74827
>0.99

421.68

5391
U

rsus arctos
M

useum
 of N

atural H
istory 

V
ienna

V
N

H
M

 40648
Russia

K
am

chatka
56.11

159.60
top right I3

H
istoric collected 1878-1883

3a
Phenol-chloroform

173669
>0.99

1209.16

5392
U

rsus arctos
M

useum
 of N

atural H
istory 

V
ienna

V
N

H
M

 40627
Russia

K
am

chatka
56.11

159.60
bottom

 left 1st m
olarH

istoric collected 1878-1883
3a

Phenol-chloroform
45993

>0.99
243.18

5393
U

rsus arctos
M

useum
 of N

atural H
istory 

V
ienna

V
N

H
M

 40601
Russia

K
am

chatka
56.11

159.60
bottom

 right 1st m
olar root

H
istoric collected 1878-1883

3a
Phenol-chloroform

101794
>0.99

450.65

5394
U

rsus arctos
M

useum
 of N

atural H
istory 

V
ienna

V
N

H
M

 40626
Russia

K
am

chatka
56.11

159.60
bottom

 left 1st incisorH
istoric collected 1878-1883

3a
Phenol-chloroform

71664
>0.99

429.94
5568

U
rsus arctos

Field collected
O

K
-01719

U
SA

O
n Y

our K
nees Cave, Prince of 

W
ales Island

56.33
-133.59

Tooth
Low

 D
N

A
Phenol-chloroform

12
<0.1

0.06
5569

U
rsus am

ericanus
O

K
-01725

U
SA

O
n Y

our K
nees Cave, Prince of 

W
ales Island

56.33
-133.59

Tooth
U

. am
ericanusPhenol-chloroform

14
<0.1

0.06
5570

U
rsus am

ericanus
O

K
-10826

U
SA

O
n Y

our K
nees Cave, Prince of 

W
ales Island

56.33
-133.59

Tooth
U

. am
ericanusPhenol-chloroform

124
0.11

0.56
5571

U
rsus arctos

O
K

-19677
U

SA
O

n Y
our K

nees Cave, Prince of 
W

ales Island
56.33

-133.59
Tooth

Low
 D

N
A

Phenol-chloroform
55

<0.1
0.28

5572
U

rsus arctos
O

K
-19730

U
SA

O
n Y

our K
nees Cave, Prince of 

W
ales Island

56.33
-133.59

Tooth
Low

 D
N

A
Phenol-chloroform

19
<0.1

0.06
5573

U
rsus am

ericanus
O

K
-35482

U
SA

O
n Y

our K
nees Cave, Prince of 

W
ales Island

56.33
-133.59

Tooth
U

. am
ericanusPhenol-chloroform

230
0.19

0.88
5883

U
rsus arctos

D
A

RD
0371

China
D

aA
ngRong Cave, JiLin D

a'an cave
41.68

125.77
Tooth

> 47000
O

xA
-38854

102840.00
18882.00

4
Silica

3716
0.96539792

12.77
5889

U
rsus arctos

07H
G

X
C

China
X

iaoG
uShan Cave, H

aiCheng G
ushan 

Zhen, LiaoN
ing

40.58
122.97

Tooth
46100 ± 2600

O
xA

-38852 
48293

1247
3b

Silica
10440

0.99
36.77

*Proportion of m
itogenom

e covered  in consensus sequence

T
ab

le S
1: Inform

ation on brow
n bear bone and tooth sam

ples analysed. N
ew

 radiocarbon dates are highlighted in red.

T
able S1 cont. 

 



 CHAPTER 2 

 
 

85 

 
 
 
  

T
able S2: Inform

ation on lion bone and tooth sam
ples analysed. N

ew
 radiocarbon dates are highlighted in red. 

 A
C

A
D

#
G

enetic ID
M

useum
M

useum
/Field 

A
ccession

C
ountry 

Site
L

atitude
L

ongitude
Sam

ple T
ype

C
arbon D

ate
R

eference
C

alibrated 
m

edian
C

alibrated 
sigm

a
E

stim
ated 

A
ge

Standard 
D

eviation
E

xtraction 
M

ethod
R

eads
C

overage*
D

epth of 
C

overage
179#

Panthera spelaea
A

m
erican M

useum
 of N

atural H
istory

FA
M

 95646
U

SA
 (A

laska)
Fairbanks A

rea
65.00

-147.00
R

adius
14756.0

1763.3
Silica

21847
0.99

65.38
181#

Panthera atrox
Canadian M

useum
 of N

ature
C

M
N

 46739
C

anada
Sixtym

ile, Loc. 3
63.99

-140.78
R

. radius
> 51500

O
xA

-38851
66680.3

8543.2
Silica

27318
0.99

76
287#

Panthera spelaea
A

m
erican M

useum
 of N

atural H
istory

FA
M

 13754
C

anada
Fox G

ulch
63.95

-139.35
bone

47670.2
2672.2

Silica
48910

0.99
138.38

322#
Panthera spelaea

Canadian M
useum

 of N
ature

C
M

N
 44433

C
anada

D
aw

son - D
om

inion Loc50
63.62

-138.71
R

. fem
ur

48000 ± 3200
O

xA
-38819

O
ut of bounds

47317.2
5091.8

Silica
42717

0.99
122.7

332#
Panthera spelaea

U
A

F/Paleo
A

K
-326-V

-1
U

SA
 (A

laska)
Big D

elta D
-6

64.84
-146.92

bone
15601.4

1864.2
Silica

616
0.73

2.56
334#

Panthera spelaea
U

A
F/Paleo

V
-54-30

U
SA

 (A
laska)

Lost Chicken Creek
64.05

-141.88
R

. tibia
33620 ± 530

O
xA

-38820
37919

704
Silica

209274
0.99

611.4
3083

Pantera, low
 quality D

N
A

U
niversity of N

ew
 M

exico
U

TEP 41.62
U

SA
Isleta Cave N

o.1,  N
ew

 M
exico

34.88
-106.88

20240 ± 110
O

xA
-37750 

24313
157

Silica
4

<0.1
0.01

5178
Panthera atrox

U
niversity of K

ansas
K

U
 38992

U
SA

N
atural Trap Cave, W

yom
ing

44.97
-108.19

Phalange
25340.6

1215.3
Phenol-chloroform

21398
0.99

60.72
5180

Pantera, low
 quality D

N
A

U
niversity of K

ansas
K

U
 44000

U
SA

N
atural Trap Cave, W

yom
ing

44.97
-108.19

H
um

erus
Phenol-chloroform

375
0.43

1.12
5183

Panthera spelaea
A

m
erican M

useum
 of N

atural H
istory

FA
m

 69016
U

SA
G

old H
ill, A

laska
64.85

-147.98
R

am
us

18,240±90
O

xA
-10084

22108
133

Silica
179675

>0.99
509.49

5186
Panthera spelaea

A
m

erican M
useum

 of N
atural H

istory
A

-780-1435
U

SA
Fairbanks Creek, A

laska
65.07

-147.17
H

um
erus

11,925±70
O

xA
-10080

13750
109

Silica
71690

>0.99
193.89

5187
Panthera spelaea

A
m

erican M
useum

 of N
atural H

istory
FA

m
 69094

U
SA

Low
er G

oldstream
, A

laska
64.96

-147.62
H

um
erus

12,540±75
O

xA
-10081

14815
215

Silica
98051

0.99
265.83

5191
Panthera spelaea

A
m

erican M
useum

 of N
atural H

istory
FA

m
 30757 

U
SA

Banner Creek, A
laska

64.32
-146.35

R
am

us
15,975±65

O
xA

-13832
19279

115
Phenol-chloroform

31991
0.99

78.97
5193

Panthera spelaea
A

m
erican M

useum
 of N

atural H
istory

FA
m

 69167
U

SA
Ester Creek, A

laska
64.84

-147.96
Tibia

12,090±80
O

xA
-13451

13942
108

Phenol-chloroform
11138

0.98
26.89

5195
Panthera spelaea

A
m

erican M
useum

 of N
atural H

istory
FA

m
 69139

U
SA

Fairbanks Creek, A
laska

65.07
-147.17

U
lna

16,005±65
O

xA
-13834

19320
111

Phenol-chloroform
5418

0.97
14.19

5199
Panthera spelaea

A
m

erican M
useum

 of N
atural H

istory
FA

m
 69138

U
SA

Fairbanks Creek, A
laska

65.07
-147.17

U
lna

17,890±100
O

xA
-13452

21675
147

Phenol-chloroform
37210

0.99
100.42

5216
Panthera spelaea

St. Petersburg Institute of Zoology
29421 (2)

R
ussia

Lena River
72.50

127.50
H

um
erus

12,450±60
O

xA
-12901

14587
203

Silica
255928

>0.99
767.67

5252
Panthera spelaea

K
rakow

 Institute of Zoology
6857

Poland
W

ierzchow
ska G

orna
50.17

19.81
Tibia

38,650±600
O

xA
-10087

42677
445

Silica
15510

0.97
36.51

5269
Panthera spelaea

Russian A
cadem

y of Sciences
153-003

R
ussia

A
rga-Y

urekh River
62.20

146.78
U

lna
12,525±50

O
xA

-13833
14809

183
Silica

341964
>0.99

1027.38
5271

Panthera spelaea
Palaeontological Institute M

oscow
3020-073

R
ussia

Beryozovka River
68.00

156.00
U

lna
27,950±140

O
xA

-13831
31659

226
Phenol-chloroform

38768
>0.99

100.29
5272

Panthera spelaea
Palaeontological Institute M

oscow
3020-350

R
ussia

A
lazeya River

70.85
153.70

R
adius

13,770±55
O

xA
-13835

16646
133

Phenol-chloroform
169823

>0.99
520.83

5273
Panthera spelaea

Palaeontological Institute M
oscow

3752-024A
R

ussia
D

uvannyy Y
ar

68.62
159.13

Fem
ur

>61,500
O

xA
-13829

69638.1
5525.0

Phenol-chloroform
95921

>0.99
257.58

5274
Panthera spelaea

Palaeontological Institute M
oscow

3915-121
R

ussia
K

hrom
skaya G

uba, K
haptashinskiy

71.83
145.88

Fem
ur

>50,600
O

xA
-13023

82240.1
7270.5

Silica
256752

>0.99
745.47

5275
Panthera spelaea

Palaeontological Institute M
oscow

3916-162
R

ussia
K

restovka River, Loc. 6
60.08

139.90
R

adius
54,100±1800

O
xA

-13830
54556

2128
Phenol-chloroform

233765
>0.99

635.32
5276

Panthera spelaea
M

oscow
 State U

niversity
772-095/1341

R
ussia

D
uvannyy Y

ar, Loc. 1341
68.62

159.13
C

alcaneus
46,200±1500

O
xA

-13024
48860

901
Phenol-chloroform

4719
0.98

13.54
5278

Panthera spelaea
IPF

D
Y

a2002
R

ussia
D

uvannyy Y
ar

68.62
159.13

M
andibula

>53,200
O

xA
-13022

66209.0
4639.5

Silica
178970

0.99
486.68

5279
Panthera spelaea

M
oscow

 State U
niversity

xD
Y

a-84
R

ussia
D

uvannyy Y
ar

68.62
159.13

R
adius

28,720±160
O

xA
-12981

32859
295

Silica
28260

0.99
76.89

5283
Panthera spelaea

N
atural H

istory M
useum

 Stuttgart
9995.2 SIB

01
G

erm
any

Sibyllenhoehle
48.65

9.05
C

alcaneus
>48,100

O
xA

-15354
65686.3

5876.3
Phenol-chloroform

14434
0.98

33.44
5295

Panthera spelaea
Russian A

cadem
y of Sciences

B
L-0418-L

R
ussia

Bolshoi Liakhovsky Island
73.32

141.37
Tibia

>62100
O

xA
-13837

80908.1
7336.6

Phenol-chloroform
21095

>0.99
52.93

5310
Panthera atrox

Royal A
lberta M

useum
P94.1.672

C
anada

Consolidated pit 48 Edm
onton

53.64
-113.28

R
ight M

etatarsal IV
> 50400 

O
xA

-37876 
64652.5

8279.1
Silica

25780
0.98

70.2
5311

Panthera atrox
Royal A

lberta M
useum

P89.13.110
C

anada
Consolidated pit 48 Edm

onton
53.64

-113.28
Left H

um
erus

29100 ± 310 
O

xA
-37877 

33278
370

Silica
33028

0.99
93.73

5312
Panthera atrox

Royal A
lberta M

useum
P98.5.404

C
anada

Consolidated pit 48 Edm
onton

53.64
-113.28

R
ight M

andible
28,940 ± 240

O
xA

-13453
33134

330
Silica

54796
>0.99

149.08
5313

Panthera atrox
Royal A

lberta M
useum

P89.13.546
C

anada
Consolidated pit 48 Edm

onton
53.64

-113.28
Left m

etatarsal II
11,355 ± 55

O
xA

-12900
13198

57
Phenol-chloroform

59828
0.99

167.68
5325

Low
 quality D

N
A

Idaho M
useum

 of N
atural H

istory
IM

N
H

 71005/25870
U

SA
A

m
erican Falls, Idaho

42.96
-112.83

U
lna

>50,300
O

xA
-37879

Phenol-chloroform
132

<0.1
0.32

5326
Low

 quality D
N

A
Idaho M

useum
 of N

atural H
istory

IM
N

H
 47002/2544

U
SA

A
m

erican Falls, Idaho
42.96

-112.83
R

ight U
lna

>49,700
O

xA
-37880

Phenol-chloroform
2

<0.1
0.01

5327
Equus caballus

Idaho M
useum

 of N
atural H

istory
IM

N
H

 50001/17237
U

SA
A

m
erican Falls, Idaho

42.96
-112.83

R
ight H

um
erus

>49,000
O

xA
-37893

Phenol-chloroform
283

0.1
0.67

5333
Low

 quality D
N

A
U

niversity of K
ansas

127201
U

SA
K

aw
 River, K

ansas
39.08

-95.71
H

um
erus

11930 ± 50
O

xA
-37751 

13755
91

Silica
7

<0.1
0.01

5343
Panthera spelaea

U
niversity of V

ienna
G

S-27 
A

ustria
G

am
ssulzen

47.68
14.30

Tibia
49,900±1500

O
xA

-13110
50204

1677
Phenol-chloroform

17889
0.99

52.79
5353

Panthera spelaea
U

niversity of A
laska

IK
-01-409

U
SA

N
orth Slope, A

laska
70.81

-154.41
12,630±60

O
xA

-13473
15009

139
Silica

80361
>0.99

211.06
5355

Panthera atrox
U

niversity of K
ansas

K
U

 38992
U

SA
N

atural Trap Cave, W
yom

ing
44.97

-108.19
Phalange

25412.4
1276.9

Phenol-chloroform
28559

0.99
77.02

5356
Pantera, low

 quality D
N

A
U

niversity of K
ansas

K
U

 44000
U

SA
N

atural Trap Cave, W
yom

ing
44.97

-108.19
H

um
erus

21030 ± 120 
O

xA
-37896

25385
152

Phenol-chloroform
316

0.29
0.88

5357
Panthera atrox

U
niversity of K

ansas
K

U
 44409

U
SA

N
atural Trap Cave, W

yom
ing

44.97
-108.19

H
um

erus
24,080 ± 170

O
xA

-10078
28124

196
Silica

17740
0.99

49.39
5363

Panthera spelaea
U

niversity of Bergen
J.S.951

R
ussia

Pym
va Shor, U

ral M
ountains, Russia

67.10
60.51

B
one

12,995±90 
U

a-14006 
15544

157
17253.6

2625.9
Silica

40228
0.99

106.28
16196

Pantera, low
 quality D

N
A

N
atural Trap Cave Collection

N
TC

14-03
U

SA
N

atural Trap Cave, W
yom

ing
44.97

-108.19
Prem

olar Tooth
Silica

477
0.48

1.38
16207

Panthera atrox
N

atural Trap Cave Collection
N

TC
14-12

U
SA

N
atural Trap Cave, W

yom
ing

44.97
-108.19

Phalinx
20020 ± 110 

O
xA

-37895
24084

147
Silica

4222
0.95

12.15
16214

Panthera atrox
N

atural Trap Cave Collection
N

TC
14-19

U
SA

N
atural Trap Cave, W

yom
ing

44.97
-108.19

H
um

erus
19840 ± 60

?
23883

113
Silica

103380
>0.99

278.13
18153

Panthera atrox
N

atural Trap Cave Collection
N

o #
U

SA
N

atural Trap Cave, W
yom

ing
44.97

-108.19
M

etapodial
21080 ± 120

O
xA

-37347
25431

146
Silica

11979
0.99

38.26

*Proportion of m
itogenom

e covered  in consensus sequence
Table S2: Inform

ation on lion bone and tooth sam
ples analszed. N

ew
 radiocarbon dates are highlighted in red.

# These specim
ens w

ere orignally identified as U
rsus arctos and w

ere initially run through the brow
n bear pipeline. Resulting sequences w

ere run through blastn on N
CBI returning the highest hits against the cave lion m

itochondrial reference (this is 
how

 other m
isidentifications such as sam

ple 5327 w
ere identified). Consequently the sam

ples w
ere rerun through the lion pipeline.
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Table S3: Additional radiocarbon dates used to produce Figure 2. 
 

Date ID Species Museum Accession Locality Country Radiocarbon 
age 

Radiocarbon 
error 

Calibrated 
median 

Calibrated 
error 

ANUA-38615  A.simus YT03/134 Quartz Creek, Yukon Canada 26940 570 31029 576 

OxA-37428 A.simus YT03/288 Cat No 
129.1 

Hester Creek, 
Klondike, Dawson, 
Yukon 

Canada 26800 240 30950 157 

OxA-9259  A.simus CMN 49874  Dawson area, Hester 
Creek Loc.57, Yukon Canada 26720 270 30899 193 

Wk20235  A.simus CMN 37957 
Dawson area Loc. 45, 
Eldorado Creek, 
Yukon 

Canada 22417 452 26713 436 

OxA-37426  A.simus A-1828 Goldstream, Alaska USA 20900 120 25233 188 

TO-2699 A.simus CMN 42388 Sixtymile, Yukon Canada 44240 930 47621 984 

OxA-37425 A.simus A-203-2808 Cripple Creek, Alaska USA 44600 2000 47763 1347 

I-11037 A.simus CMN 37577 Lower Hunker Creek, 
Yukon Canada 29600 1200 33744 1384 

Wk20236  A.simus AMNH A-'Alaska' 
Bx 35 Alaska USA 25264 650 29450 695 

AA-17511 A.simus NA Fairbanks, Alaska USA 20524 180 24727 262 

AA-17512 A.simus NA Fairbanks, Alaska USA 25496 224 29632 330 

AA-17513 A.simus NA Upper Cleary Creek 
Fairbanks area, Alaska USA 27511 279 31355 258 

AA-17514 A.simus NA Fairbanks, Alaska USA 39565 1126 43536 964 

AA-17515 A.simus NA Birch Creek , Alaska USA 34974 652 39576 714 

CAMS-58092 A.simus T99-033 Titaluk River, Alaska USA 42600 2200 46368 1767 

TO-2539 A.simus ROM:VP 43646 Ikpikpuk River, Alaska USA 27190 280 31158 183 

TO-2696 A.simus CMN 7438 
Gold Run Creek 
(Dawson Loc. 31), 
Yukon 

Canada 26040 270 30284 336 

TO-3707 A.simus CMN 50367 
Hunker Creek 
(Dawson Loc. 37), 
Yukon 

Canada 24850 150 28884 184 

OxA-9261 U. arctos FAM 30771 Lower Goldstream, 
Alaska USA 20080 160 24149 200 

OxA-9709 U. arctos FAM 95659 Goldstream, Alaska USA 13415 70 16141 115 

OxA-9799 U. arctos FAM 95598 Cripple Creek, Alaska USA 12320 90 14347 216 

OxA-9800 U. arctos FAM 95653 Engineer Creek, 
Alaska USA 9535 75 10883 144 

OxA-9801 U. arctos FAM 95599 Goldstream, Alaska USA 14310 100 17430 153 

OxA-9828 U. arctos FAM 95628 Lower Goldstream, 
Alaska USA 12310 65 14285 174 

OxA-9829 U. arctos FAM 95681 Fairbanks Creek, 
Alaska USA 20820 120 25119 208 

OxA-9830 U. arctos FAM 95632 Rosie Creek, Alaska USA 14810 80 18019 113 

CAMS-131346 P. spelaea FAM 69126 Fairbanks, Alaska USA 16650 110 20094 157 

CAMS-131347 P. spelaea FAM 69173 Fairbanks, Alaska USA 14050 80 17077 152 

CAMS-131348 P. spelaea FAM 69053 Fairbanks, Alaska USA 13040 70 15616 142 

CAMS-131349 P. spelaea FAM 69078 Fairbanks, Alaska USA 18270 130 22134 159 

CAMS-131350 P. spelaea FAM 69080 Fairbanks, Alaska USA 12990 70 15536 136 

CAMS-131361 P. spelaea AMNH 69142 Fairbanks, Alaska USA 18590 130 22462 153 

CAMS-131362 P. spelaea AMNH 69172 Fairbanks, Alaska USA 17140 110 20678 152 

CAMS-18421 P. spelaea NA Porcupine River, 
Yukon Canada 39300 1000 43286 830 

OxA-10085 P. spelaea FAM 69158 Cripple Creek Sump, 
Alaska USA 53900 2300 54706 3036 
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Date ID Species Museum Accession Locality Country Radiocarbon 
age 

Radiocarbon 
error 

Calibrated 
median 

Calibrated 
error 

AA-48280 P. spelaea IK01-409 Ikpikpuk River, Alaska USA 12930 130 15466 201 

Beta-117142 P. spelaea IK97-1001 Ikpikpuk River, Alaska USA 35710 1180 40335 1154 

Beta-286419 P. spelaea IK06-18 Ikpikpuk River, Alaska USA 33260 230 37514 434 

Beta-331881 P. spelaea MAY12-24 Maybe Creek, Alaska USA 15990 60 19301 109 

Beta-339277 P. spelaea TIT12-07 Titaluk River, Alaska USA 30520 180 34483 185 

CAMS-131360 P. spelaea AMNH 69140 Fairbanks, Alaska USA 20970 180 25303 243 

CAMS-53909 P. spelaea IK98-278 Ikpikpuk River, Alaska USA 11290 50 13143 51 

CAMS-53910 P. spelaea IK98-436 Ikpikpuk River, Alaska USA 40900 1140 44558 1085 

SI-456 P. spelaea NA Upper Ester Creek, 
Alaska USA 22680 300 26965 323 

TO-7743 P. spelaea NA Thistle Creek, Yukon Canada 32750 370 36838 552 

 
 
Table S4: Information on read data downloaded from EMBL-EBI. 

Sample SRA number/ EBI run 
accession number Age Location Species Mitochondrial 

Clade Reference 

GP01 
SRR935602, SRR935609, 
SRR935616, SRR935617, 
SRR941811, SRR941814  

Modern 
Glacier National 
Park, Montana, 

USA 
Ursus arctos Clade 4 Liu et al. 2014 

F2678/70 SRR3591801, 
SRR3591802  

28,690 ± 130, 
OZQ292 

Malyi Anyui river, 
Chukotka, Russia 

Panthera 
spelaea Spelaea Barnett et al. 

2016 

YG 
401.410 SRR3630971  

29,860 ± 210, 
UCIAMS-143525 

Quartz Creek, 
Yukon, Canada 

Panthera 
spelaea Spelaea Barnett et al. 

2016 

 
 
Table S5: Information on sequences downloaded from GenBank included as part of the brown 
bear dataset. 

GenBank code Age Location Species Mitochondrial 
Clade Reference 

AF303110.1 Modern Continental USA Ursus arctos 4 Delisle & Strobeck 2002 

AP012559.1 Modern Central Hokkaido Ursus arctos 3a Hirata et al. 2013 

AP012560.1 Modern Central Hokkaido Ursus arctos 3a Hirata et al. 2013 

AP012561.1 Modern Central Hokkaido Ursus arctos 3a Hirata et al. 2013 

AP012562.1 Modern Central Hokkaido Ursus arctos 3a Hirata et al. 2013 

AP012563.1 Modern Central Hokkaido Ursus arctos 3a Hirata et al. 2013 

AP012564.1 Modern Central Hokkaido Ursus arctos 3a Hirata et al. 2013 

AP012565.1 Modern Central Hokkaido Ursus arctos 3a Hirata et al. 2013 

AP012566.1 Modern Central Hokkaido Ursus arctos 3a Hirata et al. 2013 

AP012567.1 Modern Central Hokkaido Ursus arctos 3a Hirata et al. 2013 

AP012568.1 Modern Central Hokkaido Ursus arctos 3a Hirata et al. 2013 

AP012569.1 Modern Central Hokkaido Ursus arctos 3a Hirata et al. 2013 

AP012570.1 Modern Eastern Hokkaido Ursus arctos 3b Hirata et al. 2013 

AP012571.1 Modern Eastern Hokkaido Ursus arctos 3b Hirata et al. 2013 

AP012572.1 Modern Eastern Hokkaido Ursus arctos 3b Hirata et al. 2013 

AP012573 Modern Eastern Hokkaido Ursus arctos 3b Hirata et al. 2013 
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GenBank code Age Location Species Mitochondrial 
Clade Reference 

AP012574 Modern Southern Hokkaido Ursus arctos 4 Hirata et al. 2013 

AP012575 Modern Southern Hokkaido Ursus arctos 4 Hirata et al. 2013 

AP012576 Modern Southern Hokkaido Ursus arctos 4 Hirata et al. 2013 

AP012577 Modern Southern Hokkaido Ursus arctos 4 Hirata et al. 2013 

AP012578 Modern Southern Hokkaido Ursus arctos 4 Hirata et al. 2013 

AP012579 Modern Sakhalin Ursus arctos 3a Hirata et al. 2013 

AP012580.1 Modern Kunashiri Island Ursus arctos 3b Hirata et al. 2013 

AP012581.1 Modern Etorofu Island Ursus arctos 3b Hirata et al. 2013 

AP012582.1 Modern Etorofu Island Ursus arctos 3b Hirata et al. 2013 

AP012583.1 Modern Etorofu Island Ursus arctos 3b Hirata et al. 2013 

AP012584.1 Modern Etorofu Island Ursus arctos 3b Hirata et al. 2013 

AP012585 Modern Ekaterinburg Ursus arctos 3a Hirata et al. 2013 

AP012586 Modern Ekaterinburg Ursus arctos 3a Hirata et al. 2013 

AP012587 Modern Ekaterinburg Ursus arctos 3a Hirata et al. 2013 

AP012592.1 Modern Tibet Ursus arctos 5 Hirata et al. 2013 

AP012593.1 Modern Tibet Ursus arctos 5 Hirata et al. 2013 

AP012594.1 Modern Asahikawa Municipal 
Asahiyama Zoo, Japan 

Ursus 
maritimus 2b Hirata et al. 2013 

AP012595.1 Modern Asahikawa Municipal 
Asahiyama Zoo, Japan 

Ursus 
maritimus 2b Hirata et al. 2013 

AP012596.1 Modern Asahikawa Municipal 
Asahiyama Zoo, Japan 

Ursus 
maritimus 2b Hirata et al. 2013 

AP012597.1 Modern Asahikawa Municipal 
Asahiyama Zoo, Japan 

Ursus 
maritimus 2b Hirata et al. 2013 

GU573485.1 Modern St Lawrence Island, 
Alaska, USA 

Ursus 
maritimus 2b Lindqvist et al. 2010  

GU573486.1 Modern Admiralty Island, 
Alaska, USA Ursus arctos 2a Lindqvist et al. 2010 

GU573487.1 Modern Admiralty Island, 
Alaska, USA Ursus arctos 2a Lindqvist et al. 2010 

GU573489.1 Modern Baranof Island, Alaksa, 
USA Ursus arctos 2a Lindqvist et al. 2010 

GU573490.2 Modern Little Diomede Island, 
Alaska, USA 

Ursus 
maritimus 2b Lindqvist et al. 2010  

GU573491.1 Modern Kodiak Island Ursus arctos 2a Lindqvist et al. 2010 

JX196367.1 Modern Kenai Peninsula, 
Alaska, USA Ursus arctos 3a Miller et al. 2012 

JX196368.1 Modern Baranof Island, Alaksa, 
USA Ursus arctos 2a Miller et al. 2012 

JX196369.1 Modern Admiralty Island, 
Alaska, USA Ursus arctos 2a Miller et al. 2012 

MH255807.1 >48000 
Indigirka river basin, 

Uyandina river, 
Yakutia, Russia 

Ursus arctos 3b Rey-Iglesia et al. 2019 
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Table S6: Best partition scheme according to BIC for BEAST analyses 
 

Brown Bears 

Partition Best Model #sites Positions 

1 TRN+I 4227 Second codon position of ND6, tRNAs, and rRNAs 

2 HKY+I 3603 
First codon position of ATP6, ATP8, CO1, CO2, CO3, CYTB, ND1, ND2, 
ND3, ND4, ND4L, ND5, ND6 

3 HKY+I 3603 
Second codon position of ATP6, ATP8, CO1, CO2, CO3, CYTB, ND1, ND2, 
ND3, ND4, ND4L, ND5, ND6 

4 TRN+G 3955 
First and third codon position ND6, third codon position of ATP6, ATP8, CO1, 
CO2, CO3, CYTB, ND1, ND2, ND3, ND4, ND4L, ND5, ND6 

5 TRN+I+G 1063 Non Coding 

Lions 

Partition Best Model #sites Positions 

1 HKY 4229 Second codon position of ND6, tRNAs, and rRNAs 

2 HKY+I 3602 
First codon position of ATP6, ATP8, CO1, CO2, CO3, CYTB, ND1, ND2, 
ND3, ND4, ND4L, ND5, ND6 

3 HKY+I 3602 
Second codon position of ATP6, ATP8, CO1, CO2, CO3, CYTB, ND1, ND2, 
ND3, ND4, ND4L, ND5, ND6 

4 TRN 3954 
First and third codon position ND6, third codon position of ATP6, ATP8, CO1, 
CO2, CO3, CYTB, ND1, ND2, ND3, ND4, ND4L, ND5, ND6 

5 TRN+I+G 1357 Non Coding 
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Fig. S1: Plots of median estimated ages from leave-one-out cross-validation in BEAST2 for (A) 

Brown bears and (B) Lions. Error-bars represent 95% higher posterior density (HPD). The 
real age of the specimen is within the 95% HPD of each estimate for all but 2 of each of the 
brown bears and lions. The specimens for which the real age is outside the 95% HPD were 
still included in subsequent analyses as they fall in under sampled regions of the tree. 
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Fig. S2: Estimated ages from BEAST2 of specimens with no associated date or infinite 

radiocarbon dates. Error bars represent 95% higher posterior densities. 
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Fig. S3: Comparison of mean clock rate estimations with 95% higher posterior intervals from 

BEAST2 for the real data and the 20 date-randomized datasets from the date-randomization 
test (DRT).  
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Fig. S4: Bayesian phylogenetic tree inferred from brown bear mitogenomes. Branch labels 

represent posterior support values above 0.75. 
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Fig. S5: Bayesian phylogenetic tree inferred from lion mitogenomes. Branch labels represent 

posterior support values above 0.75.  
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Fig. S6: Bayesian phylogenetic trees inferred from (A) brown bear and (B) lion mitogenomes 

under joint-tree epoch analyses in BEAST. The gray vertical columns represent odd-
numbered MIS stages (interglacials) and white columns even-numbered MIS stages 
(glacials). Colours of branches correspond to geographic character in the joint-tree epoch 
analyses, where blue is Eurasia and red North America. Shifts from blue to red and vice 
versa are inferred migrations across the Bering Land Bridge. The white vertical columns 
even-numbered MIS stages (glacials) and grey vertical columns represent odd-numbered 
MIS stages (interglacials). The combined glacials occupy less time, and subtend less tree 
length, than combined interglacials, yet branches with inferred migration events tend to span 
glacials: of 11 such branches, 2 are entirely restricted to glacials and 2 are largely restricted 
to glacials, whereas none are restricted to interglacials and only 1 is largely restricted to 
interglacials (the other 6 broadly span both glacial and interglacial time slices).  

 
 
 
 
 
Supplementary References: 
 
Barnett, R., Lisandra, M., Zepeda Mendoza, M. L., Soares, A., Soares, R., Ho, S., . . . 

Gilbert, P. (2016). Mitogenomics of the extinct cave lion, Panthera spelaea 
(Goldfuss, 1810), resolve its position within the Panthera cats. Open Quaternary, 
2(4), 1-11. doi:10.5334/oq.24 

Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchene, S., Fourment, M., 
Gavryushkina, A., . . . Drummond, A. J. (2019). BEAST 2.5: An advanced 
software platform for Bayesian evolutionary analysis. PLoS Computational 
Biology, 15(4), e1006650. doi:10.1371/journal.pcbi.1006650 

Bray, S. C. E., Austin, J. J., Metcalf, J. L., Østbye, K., Østbye, E., Lauritzen, S.-E., . . . 
Cooper, A. (2013). Ancient DNA identifies post-glacial recolonisation, not recent 
bottlenecks, as the primary driver of contemporary mtDNA phylogeography and 
diversity in Scandinavian brown bears. Diversity and Distributions, 19(3), 245-
256. doi:10.1111/j.1472-4642.2012.00923.x 

Cooper, A., & Poinar, H. N. (2000). Ancient DNA: Do it right or not at all. Science, 
289(5482), 1139. doi:10.1126/science.289.5482.1139b 

Dabney, J., Knapp, M., Glocke, I., Gansauge, M.-T., Weihmann, A., Nickel, B., . . . Meyer, 
M. (2013). Complete mitochondrial genome sequence of a Middle Pleistocene 
cave bear reconstructed from ultrashort DNA fragments. Proceedings of the 
National Academy of Sciences of the United States of America, 110(39), 15758-
15763.  

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high 
throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340 

Hwang, D. S., Ki, J. S., Jeong, D. H., Kim, B. H., Lee, B. K., Han, S. H., & Lee, J. S. 
(2008). A comprehensive analysis of three Asiatic black bear mitochondrial 
genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on 
the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae). DNA 
Sequence, 19(4), 418-429. doi:10.1080/19401730802389525 



 CHAPTER 2 

 
 

97 

Kim, J. H., Antunes, A., Luo, S. J., Menninger, J., Nash, W. G., O'Brien, S. J., & Johnson, 
W. E. (2006). Evolutionary analysis of a large mtDNA translocation (numt) into 
the nuclear genome of the Panthera genus species. Gene, 366(2), 292-302. 
doi:10.1016/j.gene.2005.08.023 

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., & Calcott, B. (2016). 
PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for 
Molecular and Morphological Phylogenetic Analyses. Molecular Biology and 
Evolution, 34(3), 772-773. doi:10.1093/molbev/msw260 

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler 
transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . Genome Project 
Data Processing, S. (2009). The sequence alignment/map format and SAMtools. 
Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352 

Liu, S. P., Lorenzen, E. D., Fumagalli, M., Li, B., Harris, K., Xiong, Z. J., . . . Wang, J. 
(2014). Population genomics reveal recent speciation and rapid evolutionary 
adaptation in polar bears. Cell, 157(4), 785-794. doi:10.1016/j.cell.2014.03.054 

Meyer, M., Kircher, M., Gansauge, M. T., Li, H., Racimo, F., Mallick, S., . . . Paabo, S. 
(2012). A high-coverage genome sequence from an archaic Denisovan individual. 
Science, 338(6104), 222-226. doi:10.1126/science.1224344 

Mitchell, K. J., Bray, S. C., Bover, P., Soibelzon, L., Schubert, B. W., Prevosti, F., . . . 
Cooper, A. (2016). Ancient mitochondrial DNA reveals convergent evolution of 
giant short-faced bears (Tremarctinae) in North and South America. Biology 
Letters, 12(4), 20160062. doi:10.1098/rsbl.2016.0062 

Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior 
summarization in bayesian phylogenetics using Tracer 1.7. Systematic Biology, 
67(5), 901-904. doi:10.1093/sysbio/syy032 

Ramsden, C., Holmes, E. C., & Charleston, M. A. (2009). Hantavirus evolution in relation 
to its rodent and insectivore hosts: no evidence for codivergence. Molecular 
Biology and Evolution, 26(1), 143-153. doi:10.1093/molbev/msn234 

Ramsey, C. B. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337-
360. doi:10.1017/S0033822200033865 

Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., . . . van 
der Plicht, J. (2013). Intcal13 and Marine13 radiocarbon age calibration curves 0-
50,000 years cal BP. Radiocarbon, 55(4), 1869-1887. 
doi:10.2458/azu_js_rc.55.16947 

Richards, S. M., Hovhannisyan, N., Gilliham, M., Ingram, J., Skadhauge, B., Heiniger, 
H., . . . Cooper, A. (2019). Low-cost cross-taxon enrichment of mitochondrial 
DNA using in-house synthesised RNA probes. PLoS ONE, 14(2), e0209499. 
doi:10.1371/journal.pone.0209499 



2.3 SUPPLEMENTARY INFORMATION 
 

 
98 

Rohland, N., Harney, E., Mallick, S., Nordenfelt, S., & Reich, D. (2015). Partial uracil-
DNA-glycosylase treatment for screening of ancient DNA. Philosophical 
Transactions of the Royal Society of London B Biological Sciences, 370(1660), 
20130624. doi:10.1098/rstb.2013.0624 

Schubert, M., Ermini, L., Sarkissian, C. D., Jonsson, H., Ginolhac, A., Schaefer, R., . . . 
Orlando, L. (2014). Characterization of ancient and modern genomes by SNP 
detection and phylogenomic and metagenomic analysis using PALEOMIX. 
Nature Protocols, 9(5), 1056-1082. doi:10.1038/nprot.2014.063 

Schubert, M., Lindgreen, S., & Orlando, L. (2016). AdapterRemoval v2: rapid adapter 
trimming, identification, and read merging. BMC Research Notes, 9, 88. 
doi:10.1186/s13104-016-1900-2 

Stiller, M., Molak, M., Prost, S., Rabeder, G., Baryshnikov, G., Rosendahl, W., . . . Knapp, 
M. (2014). Mitochondrial DNA diversity and evolution of the Pleistocene cave 
bear complex. Quaternary International, 339-340, 224-231. 
doi:10.1016/j.quaint.2013.09.023 

Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. 
(2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 
1.10. Virus Evolution, 4(1), vey016. doi:10.1093/ve/vey016 

 



 
99 

Chapter 3 

 

Phylogeography of the extinct North American giant 
short-faced bear (Arctodus simus), with comments on 

their palaeobiology 

 

 

Manuscript written for submission to Biology Letters 

 

 

 

 

 

 

 

 
3.1 Authorship Statement 

 



3.1 AUTHORSHIP STATEMENT 

 
100 

  



 CHAPTER 3 

 
101 

 



3.2 MANUSCRIPT 

 
102 

3.2 Manuscript 

Phylogeography of the extinct North American giant short-faced bear (Arctodus 
simus), with comments on their palaeobiology 
 

Alexander T Salis1, Blaine W. Schubert2, Sarah C. E. Bray1,3, Holly Heiniger1, Julie 

Meachen4, Alan Cooper5, Kieren J Mitchell1 

 
1Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, University of Adelaide, South 
Australia 5005, Australia 
2Center of Excellence in Paleontology and Department of Geosciences, East Tennessee State University 
(ETSU), Johnson City, Tenessee 37614, USA 
3Registry of Senior Australians (ROSA), South Australian Health and Medical Research Institute 
(SAHMRI), Adelaide, South Australia 5000, Australia 
4South Australian Museum, Adelaide, South Australia 5000, Australia  
5Anatomy Department, Des Moines University, Des Moines, IA, USA 
 
Abstract: 

Giant short-faced bears (Arctodus simus) represent the largest carnivoran of Pleistocene 

North America and are one of the most extensively studied extinct megafaunal species 

from the continent. Smaller and larger forms of the giant short-faced bear have previously 

been recognised across its wide range, which are sometimes considered subspecies (A. s. 

simus and A. s. yukonensis, respectively). However, researchers have also proposed that 

this size variation is the result of sexual dimorphism within a single species. We sequenced 

31 mitogenomes of A. simus from locations ranging from Alaska to as far south as New 

Mexico. Our results revealed a striking lack of phylogeographic structure in A. simus, as 

well as low genetic diversity and relatively recent mitochondrial diversification. These 

observations may either represent population bottlenecks during the Late Pleistocene or 

simply a naturally low effective population size resulting from a wide-ranging lifestyle. 

We found no evidence for genetic differences among our samples that were compatible 

with the previously proposed A. simus subspecies. In contrast, by comparing the size of 

specimens to their sex, as determined using low-coverage shotgun data, we showed that 

all large specimens were male and all small specimens female, supporting the hypothesis 

that A. simus size variation is explained by significant sexual dimorphism. Finally, our sex 

determination results also revealed that only female specimens were associated with cave 

sites, backing the supposition that female short-faced bears used caves for denning.  
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Introduction: 

The giant short-faced bear, Arctodus simus, represents one of the most iconic and 

thoroughly studied megafaunal species from Pleistocene North America [1-14], and also 

one of the largest ever terrestrial carnivorans [1]. Short-faced bears in general (Ursidae; 

Tremarctinae) are endemic to the Americas and are represented today by the spectacled 

or Andean bear (Tremarctos ornatus) from South America. Tremarctinae appears in the 

latest Miocene fossil record of North America represented by Plionarctos [15], which 

subsequently diversified into three genera: Tremarctos, Arctotherium (including several 

extinct species, primarily from South America), and Arctodus. Arctodus is known 

exclusively from North America and occurs as A. pristinus from the late Pliocene to 

middle Pleistocene [11, 16]. Arctodus simus, a larger and proportionally distinct taxon 

[17], appears in the middle Pleistocene, and became extinct at the Pleistocene–Holocene 

transition [10, 11]. While previous morphological research supported a close relationship 

between Arctodus and Arctotherium [18], recent ancient DNA (aDNA) analyses have 

suggested that Arctotherium and Tremarctos shared a more recent common ancestor [19]. 

However, while several studies have included aDNA from extinct short-faced bears [6, 

19], including A. simus, sample sizes have generally been too small to draw conclusions 

about intra-species diversity, demography, and evolutionary history. 

 

While Arctodus simus individuals could approach 1000 kg [1], the species exhibited 

a remarkable degree of size variation through time and space, which has been variously 

explained as sexual dimorphism (common in extant bears [17, 20]) and/or subspecific 

differentiation. Kurtén [17] recognised and discussed size dimorphism in A. simus, but he 

also supported separating the species into two subspecies based on size and (to some 

degree) geographical distribution. This subspecific separation was subsequently followed 

by other researchers, with the smaller morph referred to A. s. simus and the larger morph 

A. s. yukonensis [2, 5, 8, 9]. According to Richards, Churcher [8], A. s. yukonensis 

occupied western North America during the Irvingtonian (1.6–0.25 mya), persisted in 

Beringia, western Canada, and areas of the western and eastern United States during the 

Rancholabrean (250–11 kya), and survived up until the terminal Pleistocene in some areas. 

In contrast, by the Rancholabrean A. s. simus had apparently “differentiated south of the 

Wisconsinan glaciated area and was widespread throughout much of the United States and 

Mexico” [8]. However, some researchers have argued against the subspecific separation 
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of A. simus based on notable size differences observed in specimens from the same site 

[3, 13] and/or from analysing geographic, temporal, and size variation across the known 

range of the species [10, 11, 21]. In these cases, researchers suggested that sexual 

dimorphism could fully account for the recorded size variation in A. simus. Further, 

Schubert [10, 21] discovered that all specimens from cave deposits represent the smaller 

form (i.e. “A. simus simus”) and suggested that female A. simus utilized caves, perhaps for 

denning like other bears [10, 11, 21]. 

 

Ancient DNA can be used to test hypotheses about sexual dimorphism [22, 23], 

taxonomy, and phylogeography [24-33]. For example, genetic sex assignment was 

recently used to confirm that two extinct genera of North American muskoxen — Symbos 

and Bootherium — had originally been described based on size variation that actually 

represented sexual dimorphism within a single species [26]. In terms of phylogeography, 

the majority of studies in North America have focused on non-endemic megafaunal taxa 

(i.e. those also found outside of North America), including brown bears (Ursus arctos) 

[24, 34, 35], the woolly mammoth (Mammuthus primigenius) [27, 32, 33], bison (Bison 

sp.) [28, 30, 31], and lions (Panthera sp.) [25]. These studies have generally found that 

these taxa displayed strong phylogeographic structure, often with a separation between 

populations in Beringia (“North of the Ice”) and the contiguous USA (“South of the Ice”), 

as well as dynamic population histories with local extinction and replacement from 

Eurasia via the Bering Land Bridge (e.g. brown bears and bison) [24, 28, 31]. In contrast, 

very little work has been done on the ancient phylogeographic structure of endemic North 

American taxa like A. simus. 

 

In the present study we investigate the evolutionary history of Arctodus simus 

through time and space, and test the hypothesis that intraspecific size variation represents 

distinct subspecies. We successfully obtained near complete mitochondrial genome 

sequences from 34 A. simus specimens, representing at least 31 individuals, from a number 

of deposits across North America. We also used chromosome-specific read-dosage from 

low-depth shotgun data to determine the sex of 31 individuals in order to test how much 

of the observed size variation in A. simus can be explained by sexual dimorphism. 
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Methods: 

Sampling 

Analyses were performed on 49 bone samples putatively identified as Arctodus simus 

obtained from a range of museum and field collections (Table S1). The samples were 

broadly distributed across the range of A. simus, from Alaska and the Yukon Territory to 

the contiguous USA. Eight specimens were radiocarbon dated at the Oxford Radiocarbon 

Accelerator Unit of the University of Oxford. All radiocarbon dates were calibrated with 

the IntCal13 curve [36] using OxCal 4.4 [37]. Size estimates were collated from Richards, 

Churcher [8] for relevant specimens, an additional size estimate was obtained for 

specimen A17860 through measurements performed by author B.W.S. 

 

All pre-PCR steps (i.e. extraction, library preparation) were conducted in purpose-

built ancient DNA (aDNA) clean-room facilities at the University of Adelaide’s 

Australian Centre for Ancient DNA (ACAD), Australia, spatially separated and physically 

isolated from any other molecular laboratories. Strict protocols were followed and a 

number of precautions taken to minimise contamination of samples with exogenous DNA 

[38]. Protective clothing was worn, including: hooded coveralls over ancient-DNA lab-

dedicated clothing (clothes never previously worn in any other molecular laboratory), 

hairnets, facemasks, face shields, designated footwear for both transitional areas and the 

physical laboratory, and three pairs of gloves worn at all times to prevent skin exposure 

between frequent changes of the outer layer of gloves. Furthermore, the lab was designed 

with positive air pressure, flowing from the cleanest workrooms to the outside of the lab. 

Stringent decontamination procedures were also be adhered to, including cleaning 

equipment and surfaces with bleach or disinfectant detergent before and after use as well 

as regular UV irradiation of surfaces. These precautions also included the inclusion of 

negative controls for both DNA extraction and PCR setup, and the exclusion of modern 

positive controls. PCR amplification and all downstream procedures were carried out in 

independent, physically separated DNA laboratories at the University of Adelaide. 

 

DNA extraction 

Surface contamination on each sample was reduced by UV irradiation for 15 min each 

side followed by abrading the exterior surface (c. 1 mm) using a Dremel tool and a 

disposable carborundum disk. The sample was then pulverised with a metallic mallet and 
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approximately 100 mg of powder used for extraction using one of two protocols: 1) a 

phenol-chloroform based extraction protocol Bray, Austin [39]; or 2) an in-house silica-

based extraction protocol adapted from Dabney, Knapp [40]. The latter method involved 

digesting the powder first in 1 mL 0.5 M EDTA for 60 min, followed by an overnight 

incubation in 970 uL fresh 0.5 M EDTA and 30 uL proteinase K (20 mg/ml) at 55 °C. The 

samples were centrifuged and the supernatant mixed with 13 mL of a modified PB buffer 

(12.6 mL PB buffer (Qiagen), 6.5 μL Tween-20, and 390 μL of 3M Sodium Acetate) and 

bound to silicon dioxide particles, which were then washed two times with 80% ethanol. 

The DNA was eluted from silica particles with 100 uL TE buffer. 

 

Library preparation 

Double-stranded Illumina libraries were built following the protocol of Meyer, Kircher 

[41] using 25 µL of DNA extract and truncated Illumina adapters with unique dual 7-mer 

internal barcodes to allow identification and exclusion of any downstream contamination. 

In addition, all samples underwent partial uracil-DNA glycosylase (UDG) treatment [42] 

to restrict cytosine deamination, characteristic of ancient DNA, to terminal nucleotides. A 

short round of PCR using PCR primers complementary to the adapter sequences was 

performed to increase the total amount of DNA. Cycle number was determined via rtPCR 

and each library split into 8 separate PCR reactions to minimise PCR bias and maintain 

library complexity. Each PCR of 25 uL contained 1× HiFi buffer, 2.5 mM MgSO4, 1 mM 

dNTPs, 0.5 mM each primer, 0.1 U Platinum Taq Hi-Fi polymerase and 2 μL DNA. The 

cycling conditions were 94 °C for 12 min, 12–27 cycles of 94 °C for 30 s, 60 °C for 30 s, 

and 68 °C for 40 s, followed by 68 °C for 10 min. PCR replicates were pooled and products 

were then purified using AxyPrep™ magnetic beads (Axygen™). DNA was eluted in 30 

μL EB buffer and quantified with a Qubit fluorometer (Thermo Fisher). 

 

Mitochondrial enrichment 

Commercially synthesised biotinylated 80-mer RNA baits (Arbor Biosciences, MI, USA) 

were used to enrich the libraries for mammalian mitochondrial DNA [19]. DNA-RNA 

hybridisation enrichment was performed according to manufacturer’s recommendations 

(MYbaits protocol v3) with the exception of 1.25 µL of baits used per reaction and the 

incubation step which was changed to 55 °C for 15 hrs followed by 50 °C for 16 hrs. The 

beads were washed three times with 0.1 x SSC and 0.1% SDS (5 min at 50 °C). Full-

length Illumina sequencing adapters were then added to the enriched libraries via a final 
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round of “off-bead” PCR split into 5 replicate PCRs (25 µL) containing 1× Gold PCR 

buffer, 2.5 mM MgCl2, 1 mM dNTPs, 0.5 mM each sequencing primer and 0.1 U 

AmpliTaq Gold. Cycling conditions were as follows: 94 °C for 12 min; 15 cycles of 94 

°C for 30 s, 60 °C for 30 s, 72 °C for 40 s; and 72 °C for 10 min. Following PCR, replicates 

were pooled and purified using AxyPrep™ magnetic beads, eluted in 30 uL H2O, and 

quantified using a TapeStation (Agilent Technologies). Enriched libraries were pooled 

and sequenced on an Illumina NextSeq 500 (2x 75 bp paired end). 

 

Data processing 

Sequenced reads were demultiplexed using SABRE (https://github.com/najoshi/sabre) 

using the unique 5’ and 3’ barcodes allowing one mismatch in the barcode sequence (-m 

1). Demultiplexed reads were then processed through Paleomix v1.2.12 [43]. Within 

Paleomix adapter sequences were removed and paired end reads merged using ADAPTER 

REMOVAL 2.1.7 [44], trimming low quality bases (<Phred20 --minquality 4) and 

discarding merged reads shorter than 25 bp (--minlength: 25). Read quality was visualised 

before and after adapter trimming using fastQC v0.11.5 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to ensure efficient adapter 

removal.  

 

Merged reads from the mitochondrially enriched libraries were mapped against the 

published mitochondrial genome sequence of Arctodus simus (FM177762) using BWA 

v0.7.15 (aln -l 1024, -n 0.01, -o 2; Li and Durbin [45]) as implemented in Paleomix. Reads 

with mapping a Phred score less than 25 were removed using SAMTOOLS v1.5 (Li et al., 

2009) and PCR duplicates were removed using “paleomix rmdup_collapsed” and 

MARKDUPLICATES from the Picard package (http://broadinstitute.github.io/picard/). 

Damage profiles were assessed using MapDamage 2.0.8 [46] (Figure S1). We visualised 

mapped reads in Geneious Prime v2019.0.4 (https://www.geneious.com) and created a 

75% majority consensus sequence, calling N at sites with depth of coverage <2X. 

Consensus sequences were aligned using MUSCLE v3.8.425 [47] as implemented in 

Geneious Prime v2019.0.4. 

 

Genetic diversity 

In order to compare mitogenomic diversity of A. simus to other mammalian species of 

varying life histories, a number of mitogenomes from various species were downloaded 
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from GenBank. The sequences for each species were aligned using MUSCLE v3.8.425 

[47] as implemented in Geneious Prime v2019.0.4. The average pairwise distances (k) and 

nucleotide diversity (p) were calculated in DnaSP v6 [48] for A. simus and the downloaded 

datasets, only including sequences with at least 90% coverage. 

 

Phylogenetic analyses 

Population structure was investigated using median-joining haplotype networks [49] 

constructed in PopART [50]. Haplotype networks were constructed for all specimens with 

>60% coverage (n=34) and for a subset of specimens with >90% coverage (n=32) of the 

mitochondrial genome. 

 

Bayesian tip-dating analyses were performed using BEAST 2.6.1 [51]. The dataset 

used for our Bayesian phylogenetic analyses consisted of 31 aligned sequences (excluding 

specimens that could be duplicates), 14 of which had finite radiocarbon dates (five new), 

three of which had infinite radiocarbon dates (all new), and 14 for which no age 

information was available (Table S1). Firstly, to check the power of the relatively few 

dated samples to estimate the ages of the undated specimens a leave-one-out cross-

validation was performed using only the finite dated specimens [e.g. 29]. Sequentially, the 

age of each specimen was individually left out and estimated using the remaining 

sequences as calibration. This approach identified one specimen for which the age could 

not be recapitulated (Figure S2). The radiocarbon date of this specimen predated the 

routine utilization ultra-filtration methods of sample preparation for radioisotope analysis 

[52], and likely underwent an alkali extraction without ultrafiltration (Salvador Herrando-

Pérez 2021, personal communication). Therefore, it was deemed that this radiocarbon date 

was likely unreliable as a result of contamination with modern carbon, resulting in a 

younger radiocarbon age than the actual age of the specimen [53]. The radiocarbon age 

for this sample was excluded, and analyses rerun. Subsequently, we sequentially estimated 

the age of undated specimens and those with infinite ages, using the dated specimens as 

calibrations. All specimens returned non-zero unimodal age estimates (Figure S3). Runs 

were performed with a strict clock with a uniform prior on rate (0–10-5 mutations per site 

per year), constant population coalescent tree prior with a 1/X distribution on population 

size, a uniform prior (0–500,000) on the age of the sequence being estimated, and run for 

15 million steps with sampling every 1500 steps. The substitution model was co-estimated 

and averaged throughout the analyses using bModelTest [54]. Some chains were extended 
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to ensure effective sampling sizes near or above 200 for all parameters. The first 10% of 

samples were discarded as burn-in and parameter values were monitored to check for 

convergence in Tracer v1.7.1 [55]. Once all specimens had an associated date (whether 

estimated or radiocarbon), a date-randomisation test was performed [29, 56]. This 

involved randomly reassigning the ages of the sequences 20 times and comparing the 

resulting rates. Runs were conducted as for date estimation but excluding a prior on 

sequence age. The credibility intervals of the rate estimates from the original data and the 

randomized replicates did not overlap (Figure S4), suggesting our dataset contained 

sufficient temporal information to estimate evolutionary rates and divergence times. 

 

For the final BEAST analysis, a strict clock was used with a uniform prior on rate 

(0–10-5 mutations per site per year), and a Bayesian skyline coalescent tree prior. We ran 

three independent MCMC chains, each run for 30 million steps, sampling every 3000 

steps. We checked for convergence and sufficient sampling of parameters in Tracer v1.7.1 

[55] and combined individual runs after discarding the first 10% of steps as burnin in 

logcombiner. MCC consensus trees were generated in TreeAnnotator using the median 

node age. A second BEAST analysis was performed excluding two basal samples with 

wide 95% higher posterior density (HPD) interval (A183 and A439). 

 

Shotgun sequencing and genetic sex determination 

Non-enriched libraries were pooled equimolarly and full-length Illumina sequencing 

adapters added in a final PCR containing 1× Gold PCR buffer, 2.5 mM MgCl2, 1 mM 

dNTPs, 0.5 mM of each sequencing primer and 0.1 U AmpliTaq Gold. Cycling conditions 

were as follows: 94 °C for 12 min; 15 cycles of 94 °C for 30 s, 60 °C for 30 s, 72 °C for 

40 s; and 72 °C for 10 min. Following PCR, replicates were pooled and purified using 

AxyPrep™ magnetic beads, eluted in 30 uL H2O, and quantified using a TapeStation 

(Agilent Technologies). Shotgun libraries were pooled and sequenced on an Illumina 

NextSeq 500 (2x 75 bp paired end). 

 

Merged reads from the shotgun libraries were mapped to the polar bear reference 

genome UrsMar 1.0 (GCA_000687225) [57] using Paleomix v 1.2.2 as described above. 

SAMTOOLS was used to index and generate mapping statistics for the bam files of each 

sample. As the UrsMar1.0 reference genome is only assembled to the scaffold level, X-

linked scaffolds were identified by mapping scaffolds longer that 1 Mb to the dog 
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reference genome, CanFam3.1 [58, 59], using minimap2 [60] with default mapping 

parameters. Scaffolds with more than 100 kb in total matches to the CanFam3.1 chrX were 

considered as being putatively X-linked. The genetic sex of each individual was 

determined by the ratio of reads mapping to the X-linked scaffolds versus those mapping 

to autosomal scaffolds, as implemented by Gower, Fenderson [22]. As the number of reads 

mapping to the X-chromosome is assumed to be the result of the length and copy number 

of the chromosome (i.e., one copy in males, two in females), it is expected that in males 

approximately half the number of reads will map to the X-chromosome as to an autosome 

of similar length. Therefore, sex was determined by counting the reads that mapped to the 

X chromosome and to the autosomes, with the ratio determined after taking into account 

the length of the respective chromosomes. A ratio-likelihood test was then used to 

determine whether one sex fit the data better, where the ratio of males clustered near 0.5 

and females near 1.0 with a p-value <0.001. Samples that had a ratio that fell between 0.6 

and 0.8 did not have a sex assigned. 

 
Results: 

Mitochondrial diversity 
Of the 49 samples analysed, 36 produced sequencing reads identifiable as belonging to 
Arctodus simus (Table S1). Of these 36 specimens, only 34 produced mitochondrial 
genome sequences with a coverage of ≥60%. Network analyses collapsed these 34 
sequences into 18 haplotypes (Figure 1B). When restricting to samples with at least 90% 
coverage (n = 32) the number of haplotypes increased to 20 (Figure S5). Three pairs of 
samples had matching haplotypes, provenance, and sex (where available) and could 
therefore conceivably be from the same individual (A1954 and A344; A421 and A436; 
A429 and A440). Consequently, only one sample from each of these pairs was used for 
subsequent analyses, resulting in a final dataset of 31 sequences (18 haplotypes) with 
coverage ≥60% and 29 sequences (20 haplotypes) with >90% coverage. Diversity 
measures for the 29 unique sequences with >90% coverage showed an average of 27 

pairwise mismatches (k) and an average of 0.00186 (±0.0005) nucleotide differences per 

site (p). We compared these values to those obtained from a number of other extinct and 

extant mammalian species (Table 1). Arctodus simus exhibited low genetic diversity 

overall, with lower nucleotide diversity (p) and a lower average number of nucleotide 

differences between two sequences (k).  
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Figure 1: Phylogenetic analysis of Arctodus simus mitogenomes with >60% coverage. A. 

Bayesian tip-dated phylogenetic tree, excluding two basal specimens with wide 95% HPDs 
associated with their age estimates. The grey vertical columns represent odd-numbered MIS 
stages (interglacials) and white columns even-numbered MIS stages (glacials). See Figure 
S4 for tree with these samples included. B. Median-joining network of all samples. See 
Figure S5 for network restricted to specimens with >90% coverage. 

 

Phylogenetics and molecular dating 

Bayesian phylogenetic analyses allowed us to successfully estimate the age of 17 

specimens for which direct radiocarbon dates were unavailable (Table S1, Figure S6). 

Notably, our analyses suggested ages >100 kya for two specimens from the Yukon 

Territory: A183 (mean: 125.2 kya, 95% Higher Posterior Density, HPD: 64.2–176.6 kya) 

and A439 (mean: 183.7 kya, 95% HPD: 97.8–256.8 kya) (Figure S3). Our phylogenetic 

analyses also suggested that the Time to Most Recent Common Ancestor (TMRCA) of all 

sampled A. simus mitochondrial lineages was 218.3 kya (95% HPD: 176.1–261.3 kya) 

(Figure S6). When the two older samples — A183 and A439 — were excluded the 

TMRCA was only 77.1 kya (95% HPD: 66.9–87.8 kya), with the root of the tree falling 

between a clade comprising two samples from the Yukon Territory (A438 and A448) and 

the remaining samples (Figure 1A). Samples from south of the North American icesheets 

(i.e. southern Canada and the contiguous USA) did not form a monophyletic clade, but 

instead belonged to four distinct lineages across five haplotypes intermingled with Eastern 

Beringian specimens (Figure 1). While A. simus did not become extinct in Beringia until 

~21 kya, the youngest observed TMRCA between northern and southern A. simus samples 

was 31.7 kya (95% HPD: 30.9–32.6 kya) (Figure 1A). 
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Table 1: Population genetic diversity statistics for different mammalian taxa. The number of 

haplotypes (h), haplotype diversity (Hd) and standard deviation, nucleotide diversity (p) 
and standard deviation, the average number of pairwise differences, and IUCN red list 
classification. 

 
Species h Hd (SD) p (SD) k IUCN 
New Zealand Fur Seal 
(Arctocephalus forsteri) 48 0.999 (0.004) 0.01373 (0.00117) 226.79 Least 

concern 
Lion (Panthera leo) 25 0.992 (0.012) 0.01161 (0.00357) 177.72 Vulnerable 

Brown Bear (Ursus arctos) 112 0.994 (0.0025) 0.00947 (0.00061) 138.78 Least 
concern 

Leopard (Panthera pardus) 24 0.98 (0.017) 0.00857 (0.0006) 117.36 Vulnerable 

Moose (Alces alces) 47 0.997 (0.005) 0.00809 (0.00479) 128.97 Least 
concern 

Mammoth 50 0.997 (0.004) 0.00685 (0.00068) 95.01 Extinct 
Cave bear (Ingressus & 
Spelaea) 38 0.959 (0.019) 0.00679 (0.00039) 66.99 Extinct 

European Bison (Bison 
bonasus) 31 0.995 (0.009) 0.00611 (0.00029) 72.09 Vulnerable 

Tiger (Panthera tigris) 27 0.97 (0.022) 0.00488 (0.00135) 71.71 Endangered 

Grey Wolf (Canis lupus) 85 0.994 (0.002) 0.00387 (0.00028) 57.36 Least 
concern 

Grey Fox (Urocyon 
cinereoargenteus) 22 0.983 (0.015) 0.00361 (0.00111) 59.39 Least 

concern 
Tasmanian Devil 
(Sarcophilus harrisii) 30 0.986 (0.01) 0.00346 (0.00027) 53.96 Endangered 

Polar Bear (Ursus 
maritimus) 23 0.973 (0.014) 0.00335 (0.00114) 54.85 Vulnerable 

Orca (Orcinus orca) 29 0.998 (0.009) 0.00306 (0.00015) 50.07 Data 
deficient 

Thylacine (Thylacinus 
cynocephalus) 23 0.932 (0.023) 0.00269 (0.00044) 40.61 Extinct 

Ingressus (Ursus ingressus) 19 0.983 (0.021) 0.00249 (0.00035) 32.61 Extinct 

Cougar (Puma concolor) 10 0.905 (0.035) 0.00219 (0.0006) 35.56 Least 
concern 

Arctodus simus 20 0.954 (0.021) 0.00186 (0.0005) 27.05 Extinct 
New World Stilt-Legged 
Horse (Haringtonhippus 
francisci) 

20 0.984 (0.019) 0.00167 (0.00039) 23.58 Extinct 

Steller Sealion (Eumetopias 
jubatus) 10 0.982 (0.046) 0.00161 (0.0003) 25.87 Near 

threatened 
Spelaeus (Ursus spelaeus) 20 0.899 (0.045) 0.00137 (0.0002) 15.37 Extinct 
Island Fox (Urocyon 
littoralis) 10 0.876 (0.015) 0.00101 (0.00008) 16.65 Near 

threatened 

Eurasian Lynx (Lynx lynx) 24 0.927 (0.011) 0.001 (0.00007) 16.31 Least 
concern 

Brown Hyena (Hyaena 
brunnea) 8 0.895 (0.053) 0.00021 (0.00002) 3.66 Near 

threatened 
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Subspecific assignment 

The majority of the specimens assigned to a subspecies based on size data as per Richards, 

Churcher [8] were assigned to the larger A. s. yukonensis (Table 2). Only one specimen 

(A5177), from Natural Trap Cave in Wyoming, was assigned to A. s. simus [8] (Table 1). 

Reciprocal monophyly was not observed between the two hypothesised subspecies, with 

the phylogenetic position of A5177 nested within “A. s. yukonensis”, most closely related 

to specimens from Eastern Beringia (Figure 2). The specimen shared a common ancestor 

with specimens representing “A. s. yukonensis” 31.7 kya (95% HPD: 30.9–32.6 kya), 

much later than the split between the two putative subspecies proposed based on fossil 

data.  

 

Genetic sex determination 

We were able to determine the sex of 29 specimens belonging to unambiguously unique 

individuals (Table 2): 13 females and 16 males. However, only 11 specimens could be 

characterised as large or small based off Richards, Churcher [8] or by additional 

measurements. Of these 11, all large specimens were males (n = 7) and all smaller 

specimens females (n = 4), including the one specimen proposed to represent “A. s. simus” 

[8]. Three of the specimens that produced genetic results were associated with cave sites, 

all of which were female (Table 2). While one of these specimens was excavated from 

Natural Trap Cave, and likely represents an individual that fell into the cave, the other two 

specimens were found in caves that could represent denning sites. 
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Table 2: Genetic sex and morphological size of specimens with positive genetic ID for Arctodus 
simus. Samples that could not be confirmed to be from separate individuals were considered 
to be from the same individual. Superscript numbers in subspecies column refer to the 
reference number from Richards, Churcher [8]. Size estimates are taken from Richards, 
Churcher [8] unless indicated otherwise.  

Sample 
number 

Museum Accession Genetic 
Sex 

Richards 1996 
subspecies 

Size  Country Specific Location 

183 CMN 44730 F none   Canada (Yukon) Sixty Mile 

330 CMN 49874 F none   Canada (Yukon) Hester Creek 

336 AMNH F:AM 145914 U A. s. yukonensis92 large USA (Alaska) Cripple Creek 

346 P96.2.38 M none   Canada (Alberta) Consolidated pit 48 

419 CMN 42335 F none   Canada (Yukon) Hunker Creek 

420 KUVP 88869 U none   USA (Kansas) Kansas River, 
Leavenworth 

424 CMN 37957 F none   Canada (Yukon) Eldorado Creek  

425 AMNH F:AM 30493 F A. s. yukonensis91 small  USA (Alaska) Cleary Creek 

426 CMN 44566 M none   Canada (Yukon) Hunker Creek 

428 CMN 34556 M none   Canada (Yukon) Gold Run 

431 PM-97-001-100 M none   USA (Alaska) Eva Creek Mine 

434 YG-24.1 CRH-95-3 F none   Canada (Yukon) Ophir Creek 

435 AMNH F:AM 127693 M A. s. yukonensis95 large  USA (Alaska) Ester Creek 

436; 421 AMNH F:AM 145917; 
AMNH F:AM 145915 

M A. s. yukonensis97 large  USA (Alaska) Goldstream 

437 AMNH F:AM 145920 M A. s. yukonensis97 large  USA (Alaska) Goldstream 

438 CMN 42388 M ssp?80 no measure Canada (Yukon) Sixtymile 

439 CMN 26864 M A. s. yukonensis84 no measure Canada (Yukon) Old Crow River 

440; 429 AMNH F:AM 145560; 
AMNH F:AM 145561 

M A. s. yukonensis92 large USA (Alaska) Cripple Creek 

441 AMNH F:AM 95656 F A. s. yukonensis95 small USA (Alaska) Ester Creek 

442 AMNH F:AM 145918 M A. s. yukonensis92 large USA (Alaska) Cripple Creek 

443 AMNH F:AM 127688 F A. s. yukonensis98 small  USA (Alaska) Cripple Creek 

444 AMNH F:AM 145919 M none   USA (Alaska) Cripple Creek 

446 CMN 36236 M none   Canada (Yukon) Dawson Area 

448 CMN 37577 M A. s. yukonensis77 no measure Canada (Yukon) Hunker Creek 

450 AMNH F:AM 145921 F none   USA (Alaska) Alaska 

1734 CMNHS VP8289  F ssp?2 no measure USA (Ohio) Sheriden Pit 

1954 YT03/134 F none   Canada (Yukon) Quartz Creek 

1955; 344 YT03/288 Cat No 
129.1; YG 76.4  

M none   Canada (Yukon) Hester Creek 

5177 KU 31956 F A. s. simus49 small  USA (Wyoming) Natural Trap Cave 

17859* NSRL 276, CHEM 358, 
CHN-444, AAA-236 

U A. s. yukonensis66 large USA (Utah) Huntington Dam 

17860 ETMNH 3429 M none large# USA (Virginia) Saltville 

20189   F spp?21 unknown USA (New 
Mexico) 

Oso cave  

* Specimen did not produce sufficient mitogenomic data 
#  Size estimated by Blaine Schubert 
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Discussion: 

Our genetic results are incompatible with the hypothesis that there were two subspecies 

of Arctodus simus (A. s. simus and A. s. yukonensis) in North America during the Late 

Pleistocene. Instead it appears all specimens in this study represent members of a single 

highly sexually dimorphic taxon, with males sometimes being twice as large as females 

[10]. This interpretation is supported by our observations that the only putative “A. s. 

simus” sample in our dataset fell within the mitochondrial diversity of “A. s. yukonensis”, 

and that the size of specimens we analysed closely reflected the sex of the individual. 

Further, the lack of deep phylogeographic structure between A. simus populations north 

and south of the North American ice sheets suggests that the ice sheets did not represent 

a severe barrier to dispersal, as they did for other megafaunal taxa during the Pleistocene, 

such as bison [28, 30], brown bears [24, 34, 61], and lions [25]. Alternatively, the ice 

sheets may have posed a geographic barrier to Arctodus while at their maximum extent, 

but the species was able to migrate freely soon after the icesheets retreated post-LGM. 

Definitively resolving the chronology and direction of Arctodus migration will require 

aDNA from additional southern specimens from before the LGM.  

 

The lack of mitochondrial phylogeographic structure observed in Arctodus simus 

supports the hypothesis that it was wide-ranging and more vagile than other species of 

bear [1, 7, 62, 63]. This result also suggests that Arctodus may not have engaged in the 

same level of philopatry seen in other bear species such as brown bears, where strong 

maternal philopatry has resulted in striking phylogeographic structure [24, 35, 61] and 

perhaps contributed to an overrepresentation of males in the fossil record [22]. Indeed, 

while our sample size was smaller, the proportion of male A. simus individuals we detected 

in the present study (55%) was much lower than previously reported for brown bear 

subfossils (75% [22]). This result further supports the hypothesis that A. simus did not 

show strong maternal philopatry. 

 

Overall Arctodus simus appears to have possessed relatively low genetic diversity, 

similar to species that have undergone bottlenecks, such as Steller’s sea lion, and solitary 

wide-ranging carnivores such as the cougar and Eurasian lynx (Table 2). The lowered 

genetic diversity and shallow mitogenomic structure in A. simus may therefore be a result 

of population bottlenecks leading up to their extinction, possibly with competition with 



3.2 MANUSCRIPT 

 
116 

invading brown bears playing a role [24]. Alternatively, this lowered diversity could 

simply be a function of the ecological niche that A. simus filled, or a characteristic of 

tremarctine bears in general. Indeed, wide-ranging, solitary carnivores often possess 

lowered genetic diversity; for example, the cougar [64-66], cape vulture [67], snow 

leopard [68-70], and cheetah [71, 72]. Notably, brown hyenas and striped hyenas, wide-

ranging scavengers, also lack clear phylogeographic signals and have lower mitochondrial 

diversity [73, 74], as do scavenging bird species with high dispersal capabilities, such as 

vultures [67, 75-77]. Overall, our findings agree with morphological evidence that A. 

simus was a wide-ranging carnivoran, with fossils possessing characters suggestive of a 

gait suited for long-range dispersal [7, 34, 63]. 

 

While not conclusive, our findings are also consistent with the hypothesis that A. 

simus females used caves for denning, as observed among extant spectacled bears [78] 

and suggested for the extinct Arctotherium angustidens [79]. Schubert and Kaufmann [21] 

noted that no large specimens of A. simus — which our genetic results suggest represent 

males — have been associated with cave sites. In contrast, the two samples we analysed 

that were from putative denning caves were small and female. Ultimately, our results 

further demonstrate the power of ancient DNA for resolving outstanding questions about 

behaviour and morphological variation of other Pleistocene species, particularly with 

respect to sex-linked differences. Application of similar genomic methods may be 

particularly useful for resolving the causes of conflict between mitochondrial DNA data 

and morphology-based taxonomy in groups like bison, where several morphologically 

divergent species have been described that do not appear to be genetically distinct [e.g. 

30, 31]. 
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Table S2: GenBank accession numbers for mitogenomes used in the calculation of population 
genetic statistics for different mammalian taxa.  

 
 
 

Species Genbank accessions 

New Zealand Fur Seal 
(Arctocephalus forsteri) 

KT693333–KT693381 

Lion (Panthera leo) JQ904290, KC834784, KF776494, KF907306, KP001493–KP001507, 
KP202262, KR132589, KU234271, MG772937, MG792275–MG792277 

Brown Bear (Ursus arctos) Chapter 2 data, AF303110, AP012559–AP012587, AP012591–AP012597, 
GU573485–GU573491, JX196367–JX196369, MH255807 

Leopard (Panthera pardus) EF551002, KJ866876, KP001507, KP202265, KX655614, MG932393, 
MH588611–MH588632, MK043027 

Moose (Alces alces) JN632595, KP164854, KP405229, MF784597–MF784604, MK644889–
MK644928 

Mammoth KX176750–KX176803, MF579931–MF579950, MG334264–MG334285 
European Bison (Bison bonasus) HM045017, HQ223450, JN632602, KX553930–KX553934, KX592176–

KX592189, KX773459, KX898005–KX898017, KY055664 
Tiger (Panthera tigris) EF551003, HM185182, HM589214, HM589215, JF357967–JF357974, 

KF297576, KF892541, KJ508412, KJ508413, KP202268, KR132595, 
MH124079–MH124114, MH893763, MN624080 

Grey Wolf (Canis lupus) AB499818–AB499824, DQ480503–DQ480508, EU789787, EU789788, 
GQ374438, KC461238, KC89637, KF661038–KF661077, MK936995–
MK937053, MN071185–MN071206 

Grey Fox (Urocyon 
cinereoargenteus) 

KP129083–KP129108 

Tasmanian Devil (Sarcophilus 
harrisii) 

JX475454–JX475467, MG957409–MG957430 

Polar Bear (Ursus maritimus) AF303111, AJ428577, GU573485–GU573491, JX196370–JX196392 

Orca (Orcinus orca) GU187156–GU187215 
Thylacine (Thylacinus 
cynocephalus) 

FJ515780, FJ515781, KY678342–KY678392 

Ingressus (Ursus ingressus) FM177760, FN390842–FN390846, FN390848, FN390853, FN390854, 
FN390853–FN390862, FN390869, FN390870, MN311249, MN311250, 
KX641330–KX641332 

Cougar (Puma concolor) JN999997, KP202261, KX808222–KX808231, MH807447, MH814703–
MH814707, MH818219–MH818222 

New World Stilt-Legged Horse 
(Haringtonhippus francisci) 

JX312727, KT168317–KT168336, MF134655–MF134661 

Steller Sealion (Eumetopias 
jubatus) 

AB300601–AB300608, GU475464, NC_004030 

Spelaeus (Ursus spelaeus) EU327344, FN390847, FN390849–FN390852, FN390855, FN390865–
FN390868, FN390871, FN390872, KX641289–KX641314, KX641333–
KX641335, KX641337 

Island Fox (Urocyon littoralis) KP128924–KP129056 

Eurasian Lynx (Lynx lynx) MK229198–MK229293 
Brown Hyena (Hyaena 
brunnea) 

MF593938–MF593952 
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FigureS1: Example mapDamage2 plots for an older (A183) and younger (A1734) sample.  
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Figure S2: Plots of median estimated ages from leave-one-out cross-validation in BEAST2 for 

(A) all radiocarbon dated specimens and (B) all radiocarbon dated specimens but with but 
with A434 excluded due to an unreliable radiocarbon date. Error-bars represent 95% Higher 
Posterior Density (HPD). The real age of the specimen is within the 95% HPD of each 
estimate for all but 1 the specimens in the final analysis with A434 removed but was still 
included in subsequent analyses as it fell in an under sampled region of the tree. 
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Figure S3: Estimated ages from BEAST2 of specimens with no associated date or infinite 

radiocarbon dates. Error bars represent 95% Higher Posterior Densities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4: Comparison of mean clock rate estimations with 95% Higher Posterior Densities from 

BEAST2 for the real data and 15 date-randomised datasets from the date-randomisation test 
(DRT). 
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Figure S5: Median-joining network for samples with >90% mitochondrial coverage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S6: Bayesian phylogenetic trees inferred from A. simus mitogenomes with the divergent 

A183 and A439 included. Bars on nodes represent 95% Highest Posterior Densities for node 
age estimates. Branch labels represent posterior support values. Tips are coloured by 
geographic region: red — south of the ice, blue — Eastern Beringia. 
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Summary: 

Two genera and multiple species of short-faced bear from the Americas went extinct 

during or toward the end of the Pleistocene, and all belonged to the endemic New World 

subfamily Tremarctinae [1-7]. Two of these species were giants, growing in excess of 

1,000 kg [6, 8, 9], but it remains uncertain how these extinct bears were related to the sole 

surviving short-faced bear: the spectacled bear (Tremarctos ornatus). Ancient 

mitochondrial DNA has recently suggested phylogenetic relationships among these 

lineages that conflict with interpretations based on morphology [1, 10-12]. However, 

widespread hybridisation and incomplete lineage sorting among extant bears mean that 

the mitochondrial phylogeny frequently does not reflect the true species tree [13, 14]. Here 

we present ancient nuclear genome sequences from representatives of the two extinct 

short-faced bear genera, Arctotherium and Arctodus. Our new data support a third 

hypothesis for the relationships among short-faced bears, which conflicts with existing 

mitochondrial and morphological data. Based on genome-wide D-statistics, we suggest 

that the extant spectacled bear derives substantial ancestry from Pleistocene hybridisation 

with an extinct short-faced bear lineage, resulting in a discordant phylogenetic signal 

between the mitochondrion and portions of the nuclear genome. 
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Results and Discussion: 

The spectacled bear (Tremarctos ornatus) is the only extant species of short-faced bear 

(Tremarctinae), a once diverse subfamily endemic to the Americas. This subfamily also 

includes many species that became extinct during the Pleistocene, including the Florida 

cave bear (Tremarctos floridanus), two species of North American short-faced bears 

(Arctodus spp. [3, 4]), and as many as five species of South American short-faced bears 

(Arctotherium spp. [2, 6]), one of which (Arctotherium wingei) has recently been 

discovered as far north as the Yucatan of Mexico [5]. Notably, the genera Arctodus and 

Arctotherium both included giant (>1,000kg) forms [8, 9] — Arctodus simus and 

Arctotherium angustidens, respectively — and based on morphology it was hypothesised 

that these genera were closely related [1, 6, 10, 11]. However, recently published 

mitochondrial DNA data suggested that Arctotherium was most closely related to the 

extant spectacled bear, to the exclusion of North American Arctodus [12]. While this result 

supported the convergent evolution of giant bears in North and South America, the 

mitochondrial genome does not always reflect the true relationships among species [e.g. 

15, 16-19]. Importantly, discordance between mitochondrial and nuclear loci has been 

previously noted in bears, and has been attributed to a combination of stochastic processes 

and the rapid evolution of bears [13], as well as hybridisation between species [13, 14, 20-

25]. To further resolve the evolutionary history of short-faced bears, we applied ancient 

DNA techniques to retrieve and analyse whole genome data from both Arctodus and 

Arctotherium. 

 

Ancient DNA (aDNA) was extracted and sequenced from three Arctodus simus 

specimens: one each from placer mines at Sixty Mile Creek (ACAD 438; Canadian 

Museum of Nature; CMN 42388) and Hester Creek (ACAD 344; Yukon Government; 

YG 76.4) in the Yukon Territory, Canada; and one from Natural Trap Cave in Wyoming, 

USA (ACAD 5177; University of Kansas; KU 31956). We also analysed one specimen of 

Arctotherium sp. from Cueva del Puma, Patagonia, Chile (ACAD 3599; complete right 

femur, no. 32104, Centro de Estudios del Hombre Austral, Instituto de la Patagonia, 

Universidad de Magallanes). The Arctotherium specimen was previously dated to 12,105 

± 175 cal yBP (Ua-21033) [26], while two of the Arctodus specimens have been dated: 

ACAD 438 at 47,621 ± 984 cal yBP (TO-2699) [27] and ACAD 5177 at 24,300 ± 208 cal 

yBP (OxA-37990) (Table S1). The Arctotherium specimen has yielded mitochondrial 

aDNA in a previous study [12], however, here we shotgun sequenced this specimen, along 
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with the three A. simus specimens, at much greater depth in order to reconstruct nuclear 

genome sequences. Mapping our new sequencing data from these specimens to the giant 

panda (Ailuropoda melanoleuca) reference genome (LATN01) yielded average depths of 

coverage between 0.12x to 5.9x for the A. simus specimens and 3.9x for the Arctotherium 

specimen (Table S3). We compared these new genomic data to previously published 

genomes from all extant species of bear (Table S2): spectacled bear, giant panda, brown 

bear (Ursus arctos), American black bear (U. americanus), Asian black bear (U. 

thibetanus), polar bear (U. maritimus), sloth bear (U. ursinus), and sun bear (U. 

malayanus).  

 

Phylogenetic analyses on a concatenated dataset of genome-wide SNPs revealed 

relationships within Ursinae that were consistent with previous genomic studies: U. 

americanus, U. maritimus, and U. arctos formed a monophyletic clade sister to a clade 

consisting of U. thibetanus, U. malayanus, and U. ursinus [13, 14]. In contrast, within 

short-faced bears (Tremarctinae) we recovered strong support for a close relationship 

between the spectacled bear and the North American short-faced bear (Arctodus simus) to 

the exclusion of the South American Arctotherium (Figure 1A, Figure S2). This result 

conflicts with the mitochondrial tree, which instead supports a clade comprising 

Arctotherium and Tremarctos ornatus to the exclusion of Arctodus simus [12] (Figure 

1B). As the radiation of bears is thought to have occurred rapidly during the Miocene - 

Pliocene transition, it is possible that this discordance could be explained by incomplete 

lineage sorting (ILS) [28], a process whereby pre-existing genetic variation in an ancestral 

species is randomly inherited and fixed in descendant species [29, 30]. Alternatively, 

given the observed propensity of bears for hybridisation [e.g. 13, 14, 20-22, 25, 31], 

mitochondrial/nuclear discordance within short-faced bears may instead result from gene 

flow between Tremarctos and either Arctodus or Arctotherium. 
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Figure 1: Phylogenetic relationships among ursids A. Maximum likelihood tree based on nuclear 

SNPs constructed in RAxML. Branch labels represent bootstrap support percentages. For 
RAxML tree with all individuals analysed see Figure S2. B. Bayesian phylogeny based on 
full mitochondrial genomes adapted from Mitchell, et al. [12]. Blue bars represent 95% 
highest posterior density interval on node ages. Branch labels represent BEAST posterior 
support values. 

 

To test for potential phylogenetic discordance across our short-faced bear genomes, 

we constructed phylogenetic trees from 500 kb non-overlapping windows (n = 2622) 

across the 85 largest autosomal scaffolds of the giant panda reference genome (LATN01). 

Trees created from roughly 70% of windows agreed with the results from our genome-

wide concatenated dataset (Topology 1; i.e. Tremarctos + Arctodus; Figure 2B & S3). 

However, approximately 30% of windows instead supported the mitochondrial tree 

topology (Topology 2; i.e. Tremarctos + Arctotherium; Figure 2B & S3), while the third 

possible topology where the two extinct genera form a clade — Arctodus + Arctotherium 

— was rejected for over 95% of windows. The frequencies of the three possible tree 

topologies are difficult to explain as a result of ILS, which we would expect to result in a 

more even representation of the two “minority” topologies (i.e. Topologies 2 and 3). Our 

results therefore suggest that introgression may be the most likely explanation for the 

observed phylogenetic discordance. Consequently, we calculated D-statistics [32, 33] 

using our concatenated genome-wide SNPs in order to identify signals of hybridisation 

between the bear species in our dataset.  
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Figure 2: A. The three possible short-faced bear (Tremarctinae) tree topologies. B. Discordance 

visualisation using DiscoVista from 2622 500 kb genomic fragments. The x-axis represents 
topologies tested and the y-axis the proportion of fragments that support the topology, with 
>80% bootstrap support used to define strong support. For more comprehensive tests of 
phylogenetic placements see Figure S3. C. Divergence time estimates (TMRCA) of 
Tremarctos, Arctodus, and Arctotherium (Node 1) and for sister species (Node 2) of the two 
most common short-faced bear topologies. 

 

 

Consistent with previous studies [i.e. 14], our D-statistics revealed compelling 

evidence for hybridisation between: Asian black bears and all North American ursine 

bears (including the polar bear); sun bears and North American ursine bears; and Asian 

black bear and sun bear (Table S4). In contrast, we did not obtain any significantly non-

zero values for D-statistics calculated using our two extinct short-faced bear genomes, any 

member of Ursinae, and the panda outgroup (Table 1). This result suggests that no gene 

flow occurred between Arctodus or Arctotherium and the ancestors of any modern ursine 

bear, and also demonstrates a lack of any discernible reference bias in the ancient genomic 

data (which would result in asymmetrical allele sharing with the reference). Thus, it 

appears Arctodus and Arctotherium did not hybridise with brown and black bears in the 

Americas during the late Pleistocene, even though the distribution of Arctodus overlapped 

with both ursines, and Arctotherium may have encountered them in Mexico or Central 

America [5]. 
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Contrary to previous studies, our D-statistics revealed signals consistent with gene 

flow between the spectacled bear and members of Ursinae (Table 1 & S5), suggesting the 

possibility that Tremarctos hybridised with ancestors of either the brown bear or American 

black bear during the Pleistocene. This signal is surprising given the deep divergence 

between ursine and short-faced bears, having split approximately 10 million years ago 

(mya) [12, 14, 28]. However, in support of this hypothesis, offspring between spectacled 

bear and Asiatic black bear have resulted from hybridisation in zoos, although whether 

these hybrids were fertile remains unknown [34]. Importantly, members of Tremarctos 

and the ancestors of modern American black bears had overlapping distributions 

throughout the Pleistocene in North America [4, 10], meaning that hybridisation may have 

occurred when the two lineages were less divergent and reproductive barriers had had less 

time to evolve.  

 

In addition to evidence for hybridisation between Tremarctos and ursine bears, we 

also recovered convincing evidence for hybridisation between Arctotherium and 

Tremarctos (Table 1). These results are consistent with a model where the divergence 

between Arctodus and Tremarctos occurred in North America after the ancestors of 

Arctotherium dispersed southwards into South America, with subsequent hybridisation 

between Tremarctos and Arctotherium. This interpretation is supported by the presence 

of Arctodus and Tremarctos (and absence of Arctotherium) in the late Pliocene fossil 

record of North America [3, 4, 7, 10]. The fossil record further suggests that contact 

between Tremarctos and Arctotherium occurred during the late Pleistocene, when 

representatives of Arctotherium were distributed as far north as the Yucatan of Mexico 

[5], providing an opportunity for hybridisation. 
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Table 1: D-statistics for short-faced bears (Tremarctinae). D-statistics (D), standard error, and Z-

Score (significant if  > |3|) are displayed, with ABBA-BABA counts and the number of SNPs 

considered in the analysis. It is clear that there is an excess of allele sharing between the spectacled 

bears (T. ornatus) and Arctotherium. However, neither of the spectacled bear individuals show 

elevated D-statistics in relation to each other, meaning gene flow likely occurred in the ancestor 

of both individuals, or they carry similar proportions of hybridised DNA.  

*Significantly positive d-statistic, denote deviations from a typical bifurcating tree with H1 and H3 
being closer than expected 
 

If the ancestors of the spectacled bear hybridised with Arctotherium somewhere in 

the American mid-latitudes during the migration of Tremarctos into South America, then 

signals of gene flow between members of these two genera could date to the latest 

Pleistocene or earliest Holocene, when spectacled bears are thought to have migrated into 

South America [6, 35, 36]. To test this hypothesis, we estimated divergence times among 

the three short-faced bear lineages for all 500 kb windows from the largest 40 scaffolds 

corresponding to either Topology 1 (n = 980) or Topology 2 (n = 413) and summarised 

the results (Figure 2c). The age of the most recent common ancestor (TMRCA) of 

Tremarctos, Arctodus, and Arctotherium was similar irrespective of topology (Topology 

1: 3.6 mya; Topology 2: 3.6 mya), as was the subsequent divergence between the 

remaining two lineages (Topology 1: 3.1 mya; Topology 2: 3.1 mya). Assuming that 

members of Tremarctos migrated southward no earlier than the latest Pleistocene, our 

results superficially appear to be incompatible with late Pleistocene/Holocene 

hybridisation between Tremarctos and Arctotherium. The fossil record suggests two ways 

these observations may be explained. 

 

D-statistic: D(H1, H2, H3, Giant Panda) D Stderr Z-Score BABA ABBA nSNPs 
D(T. ornatus (Chaparri), Arctodus, Arctotherium) 0.3116 0.009559 32.6* 41219 21633 6071021 
D(T. ornatus (Nobody), Arctodus, Arctotherium) 0.3112 0.009462 32.889* 41187 21637 6070446 
D(T. ornatus (Chaparri), T. ornatus (Nobody), Arctodus) 0.0206 0.022575 0.911 1375 1320 6393667 
D(T. ornatus (Chaparri), T. ornatus (Nobody), Arctotherium) 0.0172 0.021533 0.801 1227 1186 6258343 
D(T. ornatus (Nobody), Arctotherium sp., Ursus arctos) 0.2079 0.008878 23.418* 11177 7329 6184195 
D(T. ornatus (Chaparri), Arctotherium sp., Ursus arctos) 0.2074 0.009242 22.442* 11185 7342 6185696 
D(T. ornatus (Nobody), Arctodus simus, Ursus arctos) 0.2152 0.009651 22.302* 11172 7214 6317724 
D(T. ornatus (Chaparri), Arctodus simus, Ursus arctos) 0.2131 0.010012 21.281* 11191 7260 6319318 
D(Arctodus simus, Arctotherium sp., Ursus malayanus (Klaus)) 0.0215 0.00854 2.523 9662 9254 6010428 
D(Arctodus simus, Arctotherium sp., Ursus americanus) 0.0225 0.009168 2.453 9661 9236 6025070 
D(Arctodus simus, Arctotherium sp., Ursus malayanus (Anabell)) 0.0211 0.009128 2.308 9691 9291 6009103 
D(Arctodus simus, Arctotherium sp., Ursus maritimus (PB1)) 0.0187 0.009374 1.99 9677 9323 6019285 
D(Arctodus simus, Arctotherium sp., Ursus arctos) 0.0167 0.009247 1.802 9717 9398 6033406 
D(Arctodus simus, Arctotherium sp., Ursus maritimus (PB9)) 0.016 0.009483 1.683 9752 9446 6044167 
D(Arctodus simus, Arctotherium sp., Ursus ursinus) 0.016 0.009584 1.666 9608 9306 6012634 
D(Arctodus simus, Arctotherium sp., Ursus thibetanus) 0.0157 0.009487 1.652 9644 9346 6019681 
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Late Pleistocene fossil data indicate that the ancestors of the spectacled bear are 

likely to have encountered Arctotherium individuals from Mexico, Central America, 

and/or northern South America, which were comparable in size and diet to the spectacled 

bear [1, 5, 37] and which may have represented a different Arctotherium species from the 

Chilean specimen sequenced in the present study [1, 6, 12, 26]. Indeed, throughout the 

Pleistocene a number of Arctotherium species have been described across South and 

Central America, with putative species ranging from gigantic in the early-mid Pleistocene 

to relatively small in the late Pleistocene [1, 2, 6, 9]. If the ancestors of our sampled 

Patagonian Arctotherium specimen diverged from those of more northerly Arctotherium 

species during the Pliocene or early Pleistocene, then our molecular dating results remain 

consistent with hybridisation being the primary driver of phylogenetic discordance in our 

genomic data. Alternatively, hybridisation between Tremarctos and Arctotherium could 

have occurred in Central America during the Pleistocene. Tremarctos and Arctotherium 

have both been recorded in Central American cave deposits [5, 38], however, the extent 

of occupation by both genera in the region is unknown, and conceivably Central America 

represents a contact zone between the genera throughout the Pleistocene where 

hybridisation may have occurred.  

 

An alternative interpretation of our phylogenetic results is that Topology 2 

(Tremarctos + Arctotherium), which is supported by the mitochondrion and ~30% of our 

nuclear genome windows, is the pre-hybridisation tree. Recently, Li, et al. [39] suggested 

that under scenarios involving substantial gene flow the predominant phylogenetic signal 

across the genome may not reflect the pre-hybridisation tree. If this were the case for short-

faced bears, the majority of support for Topology 1 would actually result from extensive 

hybridisation between Arctodus and Tremarctos in North America. Li, et al. [39] contend 

that the phylogenetic signal of the pre-hybridisation tree may be enriched in regions of 

low recombination, especially on the X-chromosome. In order to test this hypothesis, we 

identified panda scaffolds corresponding to the ~40 Mb recombination cold-spot on the 

X-chromosome highlighted by Li, et al. [39] and produced phylogenetic trees for each 500 

kb window along this region (Figure S4). Interestingly, the majority of these fragments 

supported Topology 2 (Tremarctos + Arctotherium), the same topology as the 

mitochondrial phylogeny but contrasting with the majority of autosomal scaffolds.  
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Unlike felids [e.g. 40, 41, 42], a high-quality reference assembly and linkage map 

does not exist for any bear species, meaning scaffolds pertaining to high and low 

recombination areas of the genome could not be identified. Unfortunately, this currently 

makes it impossible to further explore the possibility that Topology 2 (Tremarctos + 

Arctotherium) may reflect the pre-hybridisation short-faced bear tree, rather than 

Topology 1 (Tremarctos + Arctodus). In the absence of a linkage map, sequencing aDNA 

from either the extinct Tremarctos floridanus or more northerly Arctotherium populations 

will be key to further resolving the evolutionary history of short-faced bears, though this 

will be challenging given that the core range of these species lies in the lower-latitudes 

where aDNA preservation is less reliable. For now, we conclude that the weight of 

evidence supports a closer relationship between the spectacled bear and the extinct short-

faced bears from North America (Arctodus) rather than South America (Arctotherium). In 

any case, our genomic data imply extensive hybridisation occurred between the spectacled 

bear and one of the extinct short-faced bear lineages. These results contribute to the 

growing consensus that hybridisation is widespread among carnivoran groups generally 

[13, 14, 39, 43]. 

 

 

Acknowledgements: 

We would like to thank the following institutions for allowing access to specimens: 

Canadian Museum of Nature, University of Kansas Natural History Museum, Yukon 

Government, Centro de Estudios del Hombre Austral, Instituto de la Patagonia, 

Universidad de Magallanes. In addition, we are grateful to the following individuals who 

helped in the collection and identification of specimens and/or provided laboratory 

support: Grant Zazula (Yukon Territorial Government, Palaeontology Program, Canada), 

Fabiana Martin (Universidad de Magallanes, Chile), Jeremy Austin (University of 

Adelaide, Australia) and Sarah Bray (University of Adelaide, Australia). We would like 

to thank the Wyoming BLM and permit number PA-13-WY-207. This research was 

funded by an Australian Research Council Laureate Fellowship awarded to AC 

(FL140100260), U.S. National Science Foundation grant (EAR/SGP#1425059) awarded 

to JM and AC, and Agencia Nacional de Promoción Científica y Técnica’ (ANPCyT, 

Argentina) (PICT 2015–966) awarded to FJP. 

 

 



 CHAPTER 4 

 
143 

 

Author Contributions: 

Conceptualization, A.T.S., A.C. and K.J.M.; Methodology, A.T.S., G.G., A.C., and 

K.J.M.; Investigation, A.T.S., H.H., and K.J.M.; Writing – Original Draft, A.T.S. and 

K.J.M.; Writing – Review & Editing, G.G., B.W.S., L.H.S., H.H., A.P., F.J.P., J.M., and 

A.C.; Funding Acquisition, F.J.P., J.M., and A.C.; Resources, J.M., A.P., and F.J.P.; 

Supervision, A.C., and K.J.M. 

 

Materials and Methods: 

Sampling 

Analyses were performed on three bone samples identified as Arctodus simus and one 

sample identified as Arctotherium sp. (Table S1). The Arctotherium specimen ACAD 

3599, had previously be radiocarbon dated, as well as one of the A. simus specimens 

(ACAD 438), a further A. simus specimen was radiocarbon dated at the Oxford 

Radiocarbon Accelerator Unit of the University of Oxford. All radiocarbon dates were 

calibrated with the either the IntCal13 curve [44] or the SHCal13 curve [45] using OxCal 

4.4 [46] (Table S1).  

 

Sample preparation and extraction 

All pre-PCR steps (i.e., extraction, library preparation) were conducted in purpose-built 

ancient DNA clean-room facilities at the University of Adelaide’s Australian Centre for 

Ancient DNA (ACAD). Potential surface contamination on each sample was reduced by 

UV irradiation for 15 min each side, followed by abrasion of the exterior surface (c. 1 mm) 

using a Dremel tool and a disposable carborundum disk. The sample was then pulverised 

using a metallic mallet. Approximately 100 mg of powder was extracted using an in-house 

silica-based extraction protocol adapted from Dabney, et al. [47] optimised for the 

recovery of small fragments. the powder was digested first in 1 mL 0.5 M EDTA for 60 

min, followed by an overnight incubation in 970 µL fresh 0.5 M EDTA and 30 µL 

proteinase K (20 mg/ml) at 55°C. The samples were centrifuged and the supernatant mixed 

with 13 mL of a modified PB buffer (12.6 mL PB buffer (Qiagen), 6.5 µL Tween-20, and 

390 µL of 3M Sodium Acetate) and bound to silicon dioxide particles, which were then 

washed two times with 80% ethanol. The DNA was eluted from silica particles with 100 

µL TE buffer. 
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Library preparation 

Double-stranded Illumina libraries were constructed following the protocol of Meyer, et 

al. [48] from 25 µL of DNA extract. In addition, all samples underwent partial uracil-

DNA glycosylase (UDG) treatment [49] to restrict cytosine deamination, characteristic of 

ancient DNA, to terminal nucleotides. A short round of PCR using PCR primers 

complementary to the library adapter sequences was performed to increase the total 

amount of DNA and add full-length Illumina sequencing adapters. Cycle number was 

determined via rtPCR and each library split into 8 separate PCR reactions to minimise 

PCR bias and maintain library complexity. Each PCR of 25 µL contained 1× HiFi buffer, 

2.5 mM MgSO4, 1 mM dNTPs, 0.5 mM each primer, 0.1 U Platinum Taq Hi-Fi 

polymerase and 3 μL DNA. The cycling conditions were 94 °C for 6 min, 8–10 cycles of 

94 °C for 30 s, 60 °C for 30 s, and 72 °C for 40 s, followed by 72 °C for 10 min. Following 

PCR, replicates were pooled and purified using AxyPrep™ magnetic beads, eluted in 30 

µL H2O quantified on TapeStation (Agilent Technologies). 

 

Sequencing 

Libraries were initially pooled and sequenced on an Illumina NextSeq using 2 x 75 bp PE 

(150 cycle) High Output chemistry. For deeper sequencing, libraries were diluted to 1.5 

nM and each was run on one lane of an Illumina HiSeq X Ten using 2 x 150 bp PE (300 

cycle) chemistry, except for ACAD 438 which was run on two lanes of an Illumina HiSeq 

X Ten. 

 

Data processing 

Demultiplexed sequencing reads were processed through Paleomix v1.2.12 [50]. Within 

Paleomix, raw reads were filtered, adapter sequences removed, and pair-end reads merged 

using ADAPTER REMOVAL v2.1.7 [51], trimming low quality bases (<Phred20 --

minquality 4) and discarding merged reads shorter than 25 bp (--minlength 25). Read 

quality was visualised before and after adapter trimming using fastQC v0.11.5 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to ensure efficient adapter 

removal. Reads were mapped to the Panda ASM200744v1 genome [52] with BWA 

v0.7.15 using the mem algorithm [53]. Reads with mapping Phred scores less than 25 

were removed using SAMtools 1.5 [54] and PCR duplicates were removed using 

“paleomix rmdup_collapsed” and MARKDUPLICATES from the Picard package 
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(http://broadinstitute.github.io/picard/). Indel realignment was performed using GATK 

[55] and damage profiles assessed using MapDamage v2.0.8 [56] (Figure S1). 

 

Sequencing reads were downloaded from the European Nucleotide Archive for all 

extant bear species (Table S2) [14, 21, 24, 57, 58] and processed using the same pipeline 

as for the ancient samples. 

 

Phylogenetic analysis 

Indexed VCF files were created for each BAM file using mpileup, part of the SAMtools 

package v0.1.19 [54], and the call and index functions as a part of the BCFtools package 

v0.1.19. Parallel v2010622 [59] was used to process each BAM file in parallel. BCFtools 

was then used to filter SNPs within 3 bp of an indel (--SnpGap 3). The 85 largest scaffolds 

of the Panda reference genome were renamed as chromosomes (chr1–85) in each VCF 

file using BCFtools annotate. Biallelic variants in VCF files were converted to random 

pseudohaploid variants in eigenstrat format for the 85 largest scaffolds using vcf2eig (part 

of eig-utils; https://github.com/grahamgower/eig-utils) including monomorphic (-m) and 

singleton (-s) sites, and excluding transitions (-t). Eigenstrat formatted files were then 

converted to PHYLIP files using eig2phylip (part of eig-utils; 

https://github.com/grahamgower/eig-utils). A supermatrix tree was then created in 

RAxML v8.2.4 [60] using the rapid bootstrapping algorithm (-f a) and using the GTRCAT 

model of substitution with ascertainment correction (-m ASC_GTRCAT) with 100 

bootstrap replicates (-#100) and using the Felsenstein ascertainment correction (--asc-

corr=felsenstein) based on the number of invariant sites (calculated from the total 

ungapped length of the largest 85 scaffolds of the Panda reference genome minus the 

length of the alignment). 

 

Discordance analysis using DiscoVista 

The eigenstrat files were broken down into non-overlapping 500kb sliding windows using 

eigreduce (part of eig-utils; https://github.com/grahamgower/eig-utils). We only used the 

higher coverage A. simus sample (ACAD 344) in these analyses. For each window a 

PHYLIP file and tree were created as described above. The frequency and support of 

different tree topologies was then summarised and visualised using DiscoVista [61], using 

bootstrap values of 80 as the cutoff for strong support. Topologies tested included: 1) the 

inclusion of Arctotherium with ursine bears; 2) the inclusion of Arctodus with ursine 
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bears; 3) the inclusion of Tremarctos with ursine bears; 4) any combination of tremarctine 

bears included with ursine bears; 5) the monophyly of Tremarctinae; 6) monophyly of 

Tremarctos and Arctodus; 7) monophyly of Tremarctos and Arctotherium; and 8) 

monophyly of Arctotherium and Arctodus. 

 

D-statistics 

To test for signals of gene flow within Tremarctinae and between tremarctine and ursine 

lineages we used D-statistics as implemented by Admixtools [62] in admixr [63]. We only 

used the higher coverage A. simus sample (ACAD 344) in this analysis. The giant panda 

was used as outgroup and block jack-knife procedure used to test for significant departures 

from zero (|Z|>3). D-statistics within Tremarctinae were calculated in the form 

D(Arctodus, Tremarctos, Arctotherium, panda) and for detecting gene flow between 

Tremarctinae and Ursinae in the form D(U1, U2, T1, panda), where T1 is any short-faced 

bear and U1 and U2 any ursine individual. D-statistics were also performed to detect gene 

flow within Ursinae (as per Kumar, et al. [14]), using either the giant panda or spectacled 

bear as outgroup. To account for the possibility of a reference bias in ancient samples, 

within Tremarctinae D-statistics were recalculated using the Asiatic black bear as 

outgroup (Table S5). 

 

Molecular dating 

Divergence times were estimated for each 500kb fragment from the discordance analysis 

using MCMCtree, part of the PAML package v4.8a [64], using the topology from the ML 

tree produced in the discordance analysis as the input tree. Four calibrations were used to 

calibrate the phylogeny: 

 

1. The crown-age of Ursidae (i.e. the divergence of the giant panda lineage) was 

constrained to between 11.6 and 23 million years ago (mya) based on the presence 

of Kretzoiarctos [65], a putative ailuropodine, in the middle Miocene and the 

assumption that early Miocene Ursavus representatives are likely ancestral to 

modern ursids [10]. 

2. The divergence of Tremarctinae and Ursinae was constrained to between 7 and 13 

mya based on the presence of putative early tremarctine bears (e.g. Plionarctos) in 

the Late Miocene/Early Pliocene [66]. 

3. The common ancestor of all sampled ursine bears was constrained to between 4.3 

and 6 mya based on the occurrence of Ursus minimus [14, 67]. 
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4. The divergence of polar and brown bears was constrained to between 0.48 and 1.1 

mya based on previous nuclear estimates [21, 24, 25]. 

 

The JC +G substitution model with 5 discrete gamma categories was used with 

autocorrelated-rates, also known as the geometric Brownian diffusion clock model. 

Uniform priors for node ages using the birth-death (BD) process were used [λBD = 1 (birth-

rate), μBD = 1 (death-rate), and ρBD = 0.1 (sampling fraction for extant species)]. A gamma-

Dirichlet distribution was used for the prior on rate with an α shape parameter of 2 (diffuse 

prior). The σi2 prior was defined as a diffuse gamma-Dirichlet distribution (2,2). MCMC 

tree runs were performed with a burn-in of 10000, and a sample size of 10000, sampling 

every ten iterations. Median node ages were then averaged for each tree topology. 

 

Low-recombining region of X-chromosome 

Scaffolds of the panda ASM200744v1 reference genome [52] corresponding to low 

recombination regions of the X chromosome were identified by mapping all scaffolds to 

the recombination cold-spot of the X chromosome of the domestic cat (FelCat9) using 

minimap2 [68]. Default parameters were used, meaning the alignment lacked base-level 

precision (to account to phylogenetic distance between giant panda and the domestic cat). 

Only scaffolds larger than 500kb and with greater than 100 kb of segments mapping to 

the low recombining region of the domestic cat X-chromosome were retained, resulting 

in 15 scaffolds linked to the low recombination region of the X-chromosome. A 

maximum-likelihood phylogenetic tree and gene-tree discordance analysis were 

performed on these 15 scaffolds as described above for the genome-wide dataset. 
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Figure S1: Authentication of ancient genomic data from the four extinct short-faced bears 

specimens. A) Cytosine deamination patterns where the x-axis represents the number of 
bases from the 5’ or 3’ end of a DNA fragment. The red lines represent cytosine (C) to 
thymine (T) transitions and blue lines guanine (G) to adenine (A) transitions compared to 
the giant panda reference genome. All samples show and accumulation of C-T transitions 
on the first base of DNA fragments, characteristic of aDNA that has undergone partial UDG 
treatment. The increase in G-A at terminal 3’ base is an artefact of the double-stranded DNA 
library procedure and actually represents C-T transitions. B) Fragment length distributions 
of the length of reads mapping to the giant panda reference from each sample. The minimum 
read length used for mapping was 30 bp, resulting in a hard cut-off at this length. All 
samples show an abundance of small fragments (all centred around ~50 bp), characteristic 
of aDNA. 
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Figure S2: Maximum likelihood tree based on nuclear SNPs constructed in RAxML. Branch 

labels represent bootstrap support percentages. 
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Figure S3: Discordance visualisation using DiscoVista from 2622 500 kb autosomal genomic 

fragments for all tested topologies involving tremarctine bears, with >80 bootstrap support 
used to define strong support. The x-axis represents topologies tested and the y-axis the 
proportion of fragments that support the topology.  
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Figure S4: Discordance visualisation using DiscoVista from 80 500 kb genomic fragments 

pertaining to the ~40 Mb recombination cold-spot on the X chromosome, with >80 
bootstrap support used to define strong support. The x-axis represents topologies tested and 
the y-axis the proportion of fragments that support the topology. 
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Table S1: Details of published and newly sequenced bears used in this study. 
 

*Newly sequenced samples 
 
 
 
 
 
 
 
 
 
 
 

Binomial 
Name 

Common 
Name 

Sample 
Name 

Location EBI Sample 
Accession 

EBI Read 
Accession 

Study 

*Arctodus simus  North American 
short-faced bear 

ACAD 344/ 
YG 76.4 

Hester Creek, 
Yukon 

NA NA this study 

*Arctodus simus North American 
short-faced bear 

ACAD 438/ 
CMN 42388 

Sixty Mile Creek, 
Yukon 

NA NA this study 

*Arctodus simus North American 
short-faced bear 

ACAD 5177/ 
KU 31956 

Natural Trap Cave, 
Wyoming 

NA NA this study 

*Arctotherium 
sp. 

South American 
short-faced bear 

ACAD 3599/ 
no. 32104 

Cueva del Puma, 
Patagonia 

NA NA this study 

Tremarctos 
ornatus 

Spectacled bear Chaparri Zoo Basel SAMEA3749107 ERR946788 Kumar, et al. [1] 

Tremarctos 
ornatus 

Spectacled bear Nobody Zoo Basel SAMEA3749205 ERR946789 Kumar, et al. [1] 

Ursus 
maritimus 

Polar bear PB1 Spitsbergen, 
Svalbard 

SAMN01057636 SRR518661, 
SRR518662 

Miller, et al. [2] 

Ursus 
maritimus 

Polar bear PB9 Spitsbergen, 
Svalbard 

SAMN01057666 SRR518686, 
SRR518687 

Miller, et al. [2] 

Ursus arctos Brown bear GP01 Glacier National 
Park, Montana 

SAMN02256322 SRR935609, 
SRR935616, 
SRR935617, 
SRR941811, 
SRR941814 

Liu, et al. [3] 

Ursus 
americanus 

American black 
bear 

JC012 Pennsylvania SAMN02045561 SRR830685 Cahill, et al. [4] 

Ursus 
thibetanus 

Asiatic black bear Anorexica Zoo Madrid SAMEA3749106 ERR946787 Kumar, et al. [1] 

Ursus ursinus Sloth bear Renate Zoo Liepzig SAMEA3749105 ERR946786 Kumar, et al. [1] 

Ursus 
malayanus 

Sun bear Anabell Zoo Munster SAMEA3749104 ERR946784 Kumar, et al. [1] 

Ursus 
malayanus 

Sun bear Klaus Zoo Madrid SAMEA3750870 ERR946785 Kumar, et al. [1] 

Ailuropoda 
melanoleuca 

Giant Panda GP13 Baoxing, Sichuan SAMN01040418 SRR504866 Zhao, et al. [5] 

Ailuropoda 
melanoleuca 

Giant Panda GP18 Beichuan, Sichuan SAMN01040423 SRR504871 Zhao, et al. [5] 
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Table S2: Sequencing and mapping statistics for all bear samples analysed in this study. Columns 
show the number of filtered raw reads used in mapping, the number of successfully mapped 
reads to the giant panda reference genome, the number of unique reads that mapped after 
PCR duplicates were removed, the percentage of original reads that mapped, and the 
percentage of mapped reads that were PCR duplicates.  

 

*Newly sequenced samples 
 
 
 
 
 
 
 
 
 
 
 
 

Binomial Name Sample 
Name 

Retained 
Reads 

Raw 
Mapped 
Reads 

Unique 
Mapped 
Reads 

Mapped 
Reads % 

Clonality Coverage 
(X) 

*Arctodus simus ACAD 
344 

496403229 279086649 202678836 0.562217634 0.273778102 5.92566319 

*Arctotherium sp. ACAD 
3599 

402733914 192677824 140025115 0.478424631 0.273268132 3.892443033 

*Arctodus simus ACAD 
438 

800500649 33649637 23716909 0.04203574 0.295180837 0.519775289 

*Arctodus simus ACAD 
5177 

475874477 5166918 4488594 0.010857733 0.13128213 0.121626851 

Tremarctos ornatus Chaparri 312051217 268627345 256263228 0.860843767 0.046027023 9.199861216 

Tremarctos ornatus Nobody 318173650 274620841 263660657 0.863116229 0.039910241 9.459313992 

Ursus maritimus PB1 346660533 298508499 289412061 0.861097444 0.030472962 11.58217001 

Ursus maritimus PB9 340345215 297785719 290239526 0.874951978 0.025341017 11.58504902 

Ursus arctos GP01 553954695 433336259 382711352 0.782259385 0.11682592 15.30793958 

Ursus americanus JC012 194019255 160004491 153521351 0.824683566 0.040518488 10.34896241 

Ursus thibetanus Anorexica 331174468 280801772 269428174 0.847896801 0.040504011 9.659247534 

Ursus ursinus Renate 295156761 254126145 240552726 0.860987037 0.053412131 8.639123446 

Ursus malayanus Anabell 294000644 250655873 243756105 0.852569129 0.027526856 8.753848913 

Ursus malayanus Klaus 319734539 271802375 260802737 0.850087625 0.040469249 9.370637783 

Ailuropoda 
melanoleuca 

GP13 137650116 119980120 111763758 0.871631085 0.068481028 3.765764372 

Ailuropoda 
melanoleuca 

GP18 138649930 124714455 112803002 0.899491655 0.095509803 4.014613177 
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Table S3: D-statistics testing for Ursinae hybridisation within short-faced bears (Tremarctinae). 
D-statistics (D), standard error, and Z-Score (significant if > |3|) are displayed, with ABBA-
BABA counts and the number of SNPs considered in the analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

D-statistic D Stderr Z-score BABA ABBA nSNPs 
D(T. ornatus (Nobody), Arctotherium sp., U. maritimus (PB1)) 0.1922 0.007582 25.347 10828 7336 6158376 
D(T. ornatus (Nobody), Arctotherium sp., U. malayanus (Klaus)) 0.2057 0.008348 24.646 10960 7219 6157958 
D(T. ornatus (Nobody), Arctotherium sp., U. thibetanus) 0.2043 0.008319 24.555 11051 7301 6171003 
D(T. ornatus (Nobody), Arctotherium sp., U. malayanus (Anabell)) 0.2024 0.008262 24.499 10921 7243 6158753 
D(T. ornatus (Nobody), Arctotherium sp., U. ursinus) 0.2008 0.00824 24.367 10882 7242 6163089 
D(T. ornatus (Nobody), Arctotherium sp., U. maritimus (PB9)) 0.1932 0.008019 24.091 10935 7394 6184441 
D(T. ornatus (Chaparri), Arctotherium sp., U. malayanus (Klaus)) 0.2083 0.008725 23.875 10997 7205 6159057 
D(T. ornatus (Chaparri), Arctotherium sp., U. maritimus (PB1)) 0.1942 0.008137 23.86 10864 7331 6158997 
D(T. ornatus (Chaparri), Arctotherium sp., U. malayanus (Anabell)) 0.206 0.008636 23.851 10976 7227 6159872 
D(T. ornatus (Nobody), Arctotherium sp., U. arctos) 0.2079 0.008878 23.418 11177 7329 6184195 
D(T. ornatus (Chaparri), Arctotherium sp., U. thibetanus) 0.2052 0.008794 23.338 11072 7300 6172374 
D(T. ornatus (Nobody), Arctotherium sp., U. americanus) 0.187 0.008062 23.191 10684 7318 6158065 
D(T. ornatus (Chaparri), Arctotherium sp., U. ursinus) 0.2 0.00868 23.039 10885 7256 6164301 
D(T. ornatus (Chaparri), Arctotherium sp., U. americanus) 0.188 0.008193 22.952 10727 7331 6158709 
D(T. ornatus (Chaparri), Arctotherium sp., U. maritimus (PB9)) 0.1962 0.008646 22.692 10978 7376 6184907 
D(T. ornatus (Chaparri), Arctotherium sp., U. arctos) 0.2074 0.009242 22.442 11185 7342 6185696 
D(T. ornatus (Nobody), Arctodus simus, U. arctos) 0.2152 0.009651 22.302 11172 7214 6317724 
D(T. ornatus (Nobody), Arctodus simus, U. maritimus (PB1)) 0.1958 0.009013 21.728 10753 7230 6290704 
D(T. ornatus (Nobody), Arctodus simus, U. malayanus (Klaus)) 0.2065 0.009668 21.36 10878 7154 6290343 
D(T. ornatus (Chaparri), Arctodus simus, U. arctos) 0.2131 0.010012 21.281 11191 7260 6319318 
D(T. ornatus (Nobody), Arctodus simus, U. thibetanus) 0.2091 0.009899 21.126 11026 7212 6302970 
D(T. ornatus (Nobody), Arctodus simus, U. maritimus (PB9)) 0.2003 0.009484 21.125 10898 7259 6317216 
D(T. ornatus (Chaparri), Arctodus simus, U. thibetanus) 0.2104 0.010212 20.604 11076 7225 6304295 
D(T. ornatus (Nobody), Arctodus simus, U. americanus) 0.1879 0.00916 20.512 10580 7233 6292779 
D(T. ornatus (Chaparri), Arctodus simus, U. malayanus (Klaus)) 0.2075 0.010129 20.487 10909 7159 6291437 
D(T. ornatus (Nobody), Arctodus simus, U. malayanus (Anabell)) 0.2029 0.009971 20.347 10862 7198 6290304 
D(T. ornatus (Chaparri), Arctodus simus, U. maritimus (PB9)) 0.1998 0.009847 20.287 10942 7298 6317882 
D(T. ornatus (Nobody), Arctodus simus, U. ursinus) 0.206 0.010293 20.014 10868 7154 6294596 
D(T. ornatus (Chaparri), Arctodus simus, U. maritimus (PB1)) 0.196 0.01 19.604 10789 7252 6291256 
D(T. ornatus (Chaparri), Arctodus simus, U. malayanus (Anabell)) 0.2042 0.010502 19.444 10879 7189 6291443 
D(T. ornatus (Chaparri), Arctodus simus, U. americanus) 0.188 0.009687 19.403 10609 7252 6293439 
D(T. ornatus (Chaparri), Arctodus simus, U. ursinus) 0.2036 0.010578 19.246 10855 7182 6295812 



 CHAPTER 4 

 161 

Table S4: D-statistics testing for Tremarctinae hybridisation within Ursinae. D-statistics (D), 
standard error, and Z-Score (significant if > |3|) are displayed, with ABBA-BABA counts 
and the number of SNPs considered in the analysis 

 
D-statistic D Stderr Z-score BABA ABBA nSNPs 
D(U. arctos, U. americanus, T. ornatus (Nobody)) 0.038 0.006774 5.615 10688 9904 6585424 
D(U. arctos, U. maritimus (PB1), T. ornatus (Nobody)) 0.0664 0.012707 5.222 6824 5974 6612645 
D(U. arctos, U. maritimus (PB9), T. ornatus (Nobody)) 0.0639 0.012328 5.181 6869 6043 6646165 
D(U. arctos, U. maritimus (PB1), T. ornatus (Chaparri)) 0.0639 0.012684 5.041 6867 6041 6614829 
D(U. arctos, U. maritimus (PB9), T. ornatus (Chaparri)) 0.061 0.012929 4.717 6847 6059 6648311 
D(U. arctos, U. americanus, T. ornatus (Chaparri)) 0.0309 0.006752 4.577 10651 10011 6587600 
D(U. thibetanus, U. maritimus (PB1), T. ornatus (Chaparri)) 0.0377 0.009127 4.136 12758 11829 6580987 
D(U. thibetanus, U. maritimus (PB1), T. ornatus (Nobody)) 0.0378 0.009426 4.013 12691 11764 6579114 
D(U. ursinus, U. maritimus (PB1), T. ornatus (Chaparri)) 0.0252 0.006652 3.794 14671 13948 6566596 
D(U. ursinus, U. maritimus (PB1), T. ornatus (Nobody)) 0.0253 0.006734 3.761 14617 13894 6565035 
D(U. thibetanus, U. maritimus (PB9), T. ornatus (Chaparri)) 0.0318 0.009213 3.447 12689 11907 6614426 
D(U. thibetanus, U. americanus, T. ornatus (Nobody)) 0.0315 0.009223 3.412 12659 11886 6562354 
D(U. thibetanus, U. maritimus (PB9), T. ornatus (Nobody)) 0.0309 0.009438 3.279 12628 11869 6612456 
D(U. ursinus, U. maritimus (PB9), T. ornatus (Nobody)) 0.0216 0.006665 3.242 14605 13986 6598187 
D(U. thibetanus, U. americanus, T. ornatus (Chaparri)) 0.0287 0.008944 3.214 12632 11925 6564284 
D(U. ursinus, U. maritimus (PB9), T. ornatus (Chaparri)) 0.0211 0.006599 3.199 14624 14018 6599795 
D(U. ursinus, U. americanus, T. ornatus (Nobody)) 0.02 0.00684 2.919 14280 13721 6549440 
D(U. thibetanus, U. malayanus (Anabell), Arctotherium sp.) 0.0219 0.007818 2.807 9969 9540 6169185 
D(U. thibetanus, U. malayanus (Klaus), Arctotherium sp.) 0.0208 0.007595 2.734 9997 9590 6166665 
D(U. malayanus (Anabell), U. maritimus (PB1), T. ornatus (Chaparri)) 0.0182 0.006915 2.639 14490 13970 6562190 
D(U. thibetanus, U. malayanus (Klaus), Arctodus simus) 0.0219 0.008346 2.625 10302 9859 6298833 
D(U. ursinus, U. americanus, T. ornatus (Chaparri)) 0.0173 0.006651 2.597 14286 13801 6551084 
D(U. thibetanus, U. malayanus (Anabell), Arctodus simus) 0.0219 0.008617 2.544 10267 9826 6300444 
D(U. malayanus (Anabell), U. maritimus (PB1), T. ornatus (Nobody)) 0.0171 0.006838 2.496 14405 13922 6560582 
D(U. thibetanus, U. malayanus (Anabell), T. ornatus (Nobody)) 0.0209 0.008549 2.439 11846 11361 6621261 
D(U. malayanus (Klaus), U. maritimus (PB1), T. ornatus (Nobody)) 0.0179 0.007362 2.426 14489 13981 6559995 
D(U. arctos, U. malayanus (Anabell), T. ornatus (Nobody)) 0.0159 0.006604 2.404 14306 13858 6630767 
D(U. malayanus (Klaus), U. maritimus (PB1), T. ornatus (Chaparri)) 0.017 0.007132 2.386 14515 14030 6561717 
D(U. thibetanus, U. malayanus (Anabell), T. ornatus (Chaparri)) 0.0198 0.008296 2.382 11879 11418 6623482 
D(U. ursinus, U. malayanus (Anabell), Arctotherium sp.) 0.0172 0.007243 2.373 9061 8754 6162684 
D(U. malayanus (Klaus), U. americanus, T. ornatus (Nobody)) 0.0135 0.006132 2.197 14115 13740 6545186 
D(U. americanus, U. malayanus (Anabell), Arctotherium sp.) 0.015 0.006894 2.17 12125 11766 6146174 
D(U. thibetanus, U. malayanus (Klaus), T. ornatus (Chaparri)) 0.0183 0.008645 2.119 11898 11469 6621804 
D(U. americanus, U. malayanus (Klaus), Arctotherium sp.) 0.014 0.006638 2.109 12111 11776 6146598 
D(U. ursinus, U. malayanus (Klaus), Arctotherium sp.) 0.0161 0.007726 2.084 9078 8790 6160076 
D(U. arctos, U. malayanus (Anabell), T. ornatus (Chaparri)) 0.0139 0.006701 2.075 14310 13917 6633179 
D(U. arctos, U. malayanus (Klaus), T. ornatus (Chaparri)) 0.0131 0.006487 2.017 14293 13923 6632784 
D(U. arctos, U. malayanus (Klaus), T. ornatus (Nobody)) 0.013 0.006487 1.999 14267 13901 6630244 
D(U. thibetanus, U. malayanus (Klaus), T. ornatus (Nobody)) 0.0182 0.009231 1.972 11827 11403 6619492 
D(U. americanus, U. malayanus (Anabell), Arctodus simus) 0.0125 0.006756 1.854 12469 12159 6279339 
D(U. malayanus (Anabell), U. maritimus (PB9), T. ornatus (Chaparri)) 0.0129 0.006962 1.852 14438 14070 6595307 
D(U. malayanus (Klaus), U. maritimus (PB9), T. ornatus (Nobody)) 0.0131 0.007208 1.812 14448 14075 6593005 
D(U. malayanus (Anabell), U. maritimus (PB9), T. ornatus (Nobody)) 0.0123 0.006926 1.775 14403 14052 6593765 
D(U. malayanus (Klaus), U. americanus, T. ornatus (Chaparri)) 0.0107 0.00619 1.734 14152 13852 6546765 
D(U. malayanus (Anabell), U. americanus, T. ornatus (Nobody)) 0.0106 0.006177 1.712 14113 13817 6545768 
D(U. americanus, U. malayanus (Klaus), Arctodus simus) 0.0115 0.006802 1.687 12471 12187 6280782 
D(U. malayanus (Klaus), U. maritimus (PB9), T. ornatus (Chaparri)) 0.0108 0.007032 1.538 14429 14120 6594752 
D(U. thibetanus, U. maritimus (PB1), Arctotherium sp.) 0.0124 0.00808 1.536 10388 10133 6160785 
D(U. ursinus, U. malayanus (Anabell), Arctodus simus) 0.012 0.008027 1.496 9221 9002 6293600 
D(U. ursinus, U. malayanus (Klaus), Arctodus simus) 0.0119 0.008029 1.484 9238 9020 6291880 
D(U. ursinus, U. malayanus (Klaus), T. ornatus (Chaparri)) 0.0112 0.007567 1.481 10795 10556 6611944 
D(U. ursinus, U. malayanus (Anabell), T. ornatus (Nobody)) 0.0104 0.007157 1.45 10715 10495 6611714 
D(U. malayanus (Anabell), U. americanus, T. ornatus (Chaparri)) 0.0092 0.006374 1.447 14136 13877 6547286 
D(U. maritimus (PB9), U. malayanus (Anabell), Arctodus simus) 0.0097 0.006692 1.442 12513 12274 6304388 
D(U. arctos, U. malayanus (Klaus), Arctodus simus) 0.0084 0.005941 1.422 12439 12230 6306227 
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D-statistic D Stderr Z-score BABA ABBA nSNPs 
D(U. maritimus (PB9), U. malayanus (Anabell), Arctotherium sp.) 0.0095 0.00683 1.396 12168 11938 6172713 
D(U. americanus, U. maritimus (PB1), Arctotherium sp.) 0.0097 0.006981 1.383 8712 8545 6163675 
D(U. maritimus (PB9), U. malayanus (Klaus), Arctodus simus) 0.0092 0.006852 1.348 12505 12275 6305556 
D(U. arctos, U. malayanus (Anabell), Arctodus simus) 0.0081 0.006004 1.344 12435 12235 6306804 
D(U. maritimus (PB9), U. malayanus (Klaus), Arctotherium sp.) 0.0088 0.006675 1.324 12157 11944 6172885 
D(U. maritimus (PB1), U. maritimus (PB9), Arctotherium sp.) 0.0326 0.025583 1.276 816 764 6217830 
D(U. ursinus, U. malayanus (Klaus), T. ornatus (Nobody)) 0.0104 0.008174 1.272 10737 10515 6609836 
D(U. arctos, U. malayanus (Anabell), Arctotherium sp.) 0.0093 0.007391 1.253 12077 11856 6174614 
D(U. maritimus (PB1), U. maritimus (PB9), Arctodus simus) 0.0361 0.029276 1.234 850 790 6352025 
D(U. arctos, U. malayanus (Klaus), Arctotherium sp.) 0.0089 0.007464 1.189 12073 11860 6173076 
D(U. ursinus, U. malayanus (Anabell), T. ornatus (Chaparri)) 0.009 0.007655 1.174 10700 10509 6613671 
D(U. thibetanus, U. ursinus, T. ornatus (Chaparri)) 0.0087 0.007445 1.169 12094 11885 6627699 
D(U. thibetanus, U. maritimus (PB9), Arctotherium sp.) 0.0089 0.00805 1.108 10410 10225 6186620 
D(U. thibetanus, U. arctos, Arctodus simus) 0.009 0.008333 1.075 10491 10303 6323067 
D(U. thibetanus, U. arctos, Arctotherium sp.) 0.009 0.008403 1.075 10232 10048 6190143 
D(U. thibetanus, U. maritimus (PB1), Arctodus simus) 0.0093 0.008807 1.051 10576 10381 6292413 
D(U. thibetanus, U. ursinus, Arctodus simus) 0.0101 0.009698 1.044 10471 10260 6303292 
D(U. thibetanus, U. ursinus, Arctotherium sp.) 0.0077 0.007388 1.043 10153 9997 6172199 
D(U. thibetanus, U. ursinus, T. ornatus (Nobody)) 0.0081 0.007806 1.039 12052 11858 6625682 
D(U. thibetanus, U. maritimus (PB9), Arctodus simus) 0.0083 0.008649 0.956 10587 10412 6318797 
D(U. maritimus (PB1), U. malayanus (Anabell), Arctodus simus) 0.0063 0.006685 0.946 12449 12292 6277891 
D(U. ursinus, U. maritimus (PB1), Arctotherium sp.) 0.0061 0.006559 0.924 12233 12086 6149992 
D(U. maritimus (PB1), U. malayanus (Anabell), Arctotherium sp.) 0.0059 0.006736 0.87 12080 11939 6147000 
D(U. americanus, U. maritimus (PB1), Arctodus simus) 0.0065 0.007941 0.816 8965 8849 6298576 
D(U. thibetanus, U. americanus, Arctotherium sp.) 0.0055 0.007927 0.689 10461 10347 6158742 
D(U. americanus, U. maritimus (PB9), Arctotherium sp.) 0.005 0.007409 0.673 8722 8635 6189156 
D(U. americanus, U. maritimus (PB1), T. ornatus (Chaparri)) 0.0047 0.007502 0.626 10245 10149 6548802 
D(U. ursinus, U. maritimus (PB9), Arctotherium sp.) 0.0041 0.006544 0.623 12225 12126 6175763 
D(U. maritimus (PB1), U. malayanus (Klaus), Arctodus simus) 0.0044 0.007094 0.615 12432 12323 6279261 
D(U. ursinus, U. arctos, Arctotherium sp.) 0.0044 0.007176 0.613 12135 12028 6178377 
D(U. arctos, U. ursinus, T. ornatus (Nobody)) 0.0045 0.007454 0.609 14264 14135 6635967 
D(U. thibetanus, U. americanus, Arctodus simus) 0.005 0.008311 0.603 10769 10662 6292658 
D(U. maritimus (PB1), U. malayanus (Klaus), Arctotherium sp.) 0.004 0.006962 0.576 12052 11954 6147130 
D(U. americanus, U. arctos, Arctotherium sp.) 0.0041 0.007475 0.546 8699 8628 6176832 
D(U. ursinus, U. maritimus (PB1), Arctodus simus) 0.0036 0.006714 0.542 12472 12382 6281231 
D(U. arctos, U. ursinus, T. ornatus (Chaparri)) 0.0037 0.00755 0.495 14265 14158 6638300 
D(U. malayanus (Anabell), U. malayanus (Klaus), T. ornatus (Chaparri)) 0.0072 0.015624 0.46 2495 2459 6638489 
D(U. arctos, U. maritimus (PB9), Arctodus simus) 0.0049 0.011036 0.441 5348 5296 6347717 
D(U. americanus, U. arctos, Arctodus simus) 0.0033 0.007697 0.431 8976 8917 6312319 
D(U. arctos, U. maritimus (PB1), Arctodus simus) 0.0046 0.01109 0.412 5336 5287 6321140 
D(U. americanus, U. maritimus (PB9), Arctodus simus) 0.003 0.008203 0.36 8960 8906 6324725 
D(U. ursinus, U. arctos, Arctodus simus) 0.0023 0.006705 0.349 12408 12350 6310873 
D(U. arctos, U. maritimus (PB1), Arctotherium sp.) 0.0037 0.01124 0.325 5117 5080 6187644 
D(U. ursinus, U. maritimus (PB9), Arctodus simus) 0.002 0.006596 0.308 12441 12390 6307573 
D(U. americanus, U. ursinus, Arctotherium sp.) 0.0016 0.00651 0.24 12034 11997 6148976 
D(U. americanus, U. maritimus (PB1), T. ornatus (Nobody)) 0.0017 0.007694 0.215 10165 10131 6547890 
D(U. thibetanus, U. arctos, T. ornatus (Chaparri)) 0.0021 0.010081 0.206 12079 12028 6654575 
D(U. malayanus (Anabell), U. malayanus (Klaus), Arctodus simus) 0.0028 0.015051 0.189 1899 1888 6316094 
D(U. maritimus (PB1), U. maritimus (PB9), T. ornatus (Nobody)) 0.0044 0.023285 0.188 1242 1231 6631992 
D(U. malayanus (Anabell), U. malayanus (Klaus), Arctotherium sp.) 0.0031 0.01673 0.187 1854 1842 6183689 
D(U. arctos, U. maritimus (PB9), Arctotherium sp.) 0.0021 0.011285 0.187 5150 5128 6213415 
D(U. americanus, U. ursinus, Arctodus simus) 0.0011 0.007109 0.159 12368 12339 6282149 
D(U. arctos, U. thibetanus, T. ornatus (Nobody)) 0.0016 0.010223 0.154 12068 12031 6651971 
D(U. maritimus (PB9), U. americanus, T. ornatus (Nobody)) 0.001 0.008065 0.13 10221 10201 6577928 
D(U. maritimus (PB9), U. americanus, T. ornatus (Chaparri)) 0.001 0.00799 0.126 10262 10242 6578875 
D(U. maritimus (PB9), U. maritimus (PB1), T. ornatus (Chaparri)) 0.0013 0.0221 0.058 1284 1281 6633124 
D(U. malayanus (Klaus), U. malayanus (Anabell), T. ornatus (Nobody)) 0.0001 0.014705 0.006 2451 2451 6636253 
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Abstract: 

Climatic changes during the Late Quaternary have had profound impacts on the 

biogeography and diversity of animal communities. Brown bears offer an excellent 

biogeographic model species during the Late Quaternary owing to their Holarctic 

distribution and abundant subfossil record. However, previous brown bear 

phylogeographic studies have either focused on short fragments of the mitochondrial 

genome or lacked large-scale sampling of ancient and historic specimens. To investigate 

the influence of the changing Quaternary environment on brown bears we sequenced 

mitogenomes from 114 ancient and historic brown bears from across Eurasia, ranging 

from Iberia in the West to western Beringia in the East. These were combined with 

published brown and polar bear mitogenomes (and unpublished data from Chapter 2) and 

analysed using Bayesian tip-dating analyses. Our results reiterate the profound impact the 

fluctuating climate of the Pleistocene had on animal species, with modern day European 

diversity dating back to the LGM. We further cast doubt on the existence of traditional 

southern Mediterranean refugia in brown bears. Furthermore, our results reveal a number 

of expansions and migrations across Eurasia apparently originating in northern Asia and 

coinciding with drastic changes in the paleoenvironment. We suggest the Altai-Sayan and 

Urals-Caucasus regions formed important refugia during the Pleistocene. These results 
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underpin Asia as the heartland for brown bear evolutionary history, being a source for the 

majority of brown bear mitochondrial diversity in North America, Japan and parts of 

Europe. Overall, brown bear biogeography and diversity has been strongly shaped by the 

changing environment of the Late Quaternary and the use of ancient DNA has proven 

fundamental in unravelling the evolutionary history of the species. 

 

Introduction: 

Fluctuations in the climate during the Late Quaternary (the past one million years) have 

greatly affected the diversity, phylogeographic structure, and distribution of modern-day 

species, and have been implicated in the extinction of a number of species (Barnosky et 

al., 2004; Campos et al., 2010; Cooper et al., 2015; Hofreiter and Stewart, 2009; Lorenzen 

et al., 2011; Mann et al., 2015; Metcalf et al., 2016; Mondanaro et al., 2019). The Late 

Quaternary is characterized by the cyclical growth and retraction of glaciers and polar ice 

caps driven by periods of cooler (glacial) and warmer global temperatures (interglacial) 

(Denton et al., 2010; Jansson and Dynesius, 2002), which impacted faunal population size 

and distribution, ultimately affecting species’ evolutionary history. Models describing this 

mechanism have been proposed. For example, in Europe a model of expansion and 

contraction (E/C) has been proposed to explain the phylogeographic structure and modern 

distribution of several temperate species (Hewitt, 1999, 2000). Under this model, during 

glacial periods populations became isolated and genetically differentiated, while 

retraction of icesheets during interglacials facilitated the expansion and mixing of 

populations. Therefore, it has been proposed that the modern phylogeography of many 

European faunal populations date to the Last Glacial Maximum (LGM) and correspond to 

expansion out of several glacial refugia (Hewitt, 1999, 2000, 2001; Taberlet et al., 1998). 

Key to the development of this model has been the brown bear, Ursus arctos. However, 

outside of Europe and North America, the potential for brown bears as a model has not 

been fully realised. 

 

Brown bears are one of the largest extant terrestrial carnivorans. With a Holarctic 

distribution, the brown bear is key to a number of Northern Hemisphere ecosystems. 

Brown bears have proven useful as an animal model for Quaternary biogeography (e.g. 

Davison et al., 2011), due to their wide distribution and relatively abundant subfossil 

remains from throughout the Holocene and Pleistocene (Sommer and Benecke, 2005). 
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Brown bears are believed to have evolved from the Etruscan bear (Ursus etruscus) in Asia 

(probably the Great Steppe region) (McLellan and Reiner, 1994), with the oldest brown 

bear fossils found in North China 0.5 million years ago (mya) (Kurtén, 1968; Pasitschniak-

Arts, 1993). During historic times brown bears were common across Eurasia, but with 

habitat loss and human persecution populations have declined and their distribution has 

become increasingly fragmented (McLellan and Reiner, 1994; Servheen, 1999). 

Currently, brown bears in Eurasia are found across North Asia, while being restricted to 

forested areas of North and Eastern Europe, and extinct across most of their former 

Western European range, only surviving in small isolated populations (Servheen, 1999; 

Sørensen, 1990; Swenson et al., 1995; Zedrosser et al., 2001). 

 

Understanding the mechanisms underlying the current distribution of brown bears, 

often with a focus on conservation, has been a driving force behind the myriad of 

phylogenetic studies on the species. Early phylogeographic studies based on DNA data 

from modern individuals found strong spatial structuring of mitochondrial diversity (Kohn 

et al., 1995; Korsten et al., 2009; Taberlet and Bouvet, 1994; Talbot and Shields, 1996; 

Waits et al., 2000; Waits et al., 1998), owing to the strong philopatry exhibited by female 

bears (Davison et al., 2011; Stoen et al., 2006; Zedrosser et al., 2007). These early studies 

identified two main lineages of brown bears, an eastern lineage (comprising clades 3, 4, 

and 5) and a western lineage (comprising clades 1 and 2). Studies of extinct and more 

enigmatic populations have revealed diversity outside of these two main lineages: an 

extinct North African clade, and clades 6 and 7, found in the Tibetan plateau and Middle 

East respectively. Ancient DNA studies have complicated the patterns observed, revealing 

turnovers and striking responses to climate and environmental change associated with the 

Quaternary Period (Barnes et al., 2002; Bray et al., 2013; Calvignac et al., 2009; Calvignac 

et al., 2008; Davison et al., 2011; Edwards et al., 2014; Edwards et al., 2011; Ersmark et 

al., 2019; Hofreiter et al., 2004; Leonard et al., 2000; Valdiosera et al., 2007; Valdiosera 

et al., 2008). This is best epitomized in North America, where four clades of bears are 

currently found (clades 2a, 3a, 3b, and 4) with strong phylogeographic structuring (Shields 

et al., 2000; Talbot and Shields, 1996; Waits et al., 1998), but ancient DNA has also 

revealed the past presence of extinct clades (clades 2c, and 3c), and temporal structuring, 

resulting from multiple waves of migration across the Bering Land Bridge at different 

times during the Late Pleistocene (Barnes et al., 2002; Leonard et al., 2000; Chapter 2).  
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In contrast to North America, modern European bears have been described as 

descending from two lineages: the eastern lineage (represented by clade 3a) and the 

western lineage (represented by clade 1) (Davison et al., 2011; Kohn et al., 1995; Taberlet 

and Bouvet, 1994). The western lineage has been further subdivided based on the 

proposed glacial refugia they are thought to have occupied under the E/C model of 

postglacial recolonization: clade 1a, representing the Iberian Peninsula; and clade 1b, 

representing the Italian and Balkan peninsulas. However, ancient DNA studies have 

identified extinct clades in Europe, clade 1e and 1c (Valdiosera et al., 2007; Valdiosera et 

al., 2008), and have purported the existence of clade 3c and 4 bears in northern Spain 

(Rey-Iglesia et al., 2019; Valdiosera et al., 2008). These ancient DNA studies have 

undermined the viability of the E/C model of postglacial recolonization, instead 

suggesting a lack of phylogeographic structure leading up to the LGM followed by a 

complex history of post-LGM turnovers and migration (Bray et al., 2013; Edwards et al., 

2014; Ersmark et al., 2019; García-Vázquez et al., 2019; Hofreiter et al., 2004; Valdiosera 

et al., 2007; Valdiosera et al., 2008). 

 

Modern brown bears across Eastern Europe and Siberia predominantly belong to 

clade 3a (Davison et al., 2011; Korsten et al., 2009; Murtskhvaladze et al., 2010; Saarma 

et al., 2007), but recent studies have uncovered increased clade 3 diversity, including clade 

3b in eastern Russia (Gus'kov et al., 2013; Miller et al., 2006; Rey-Iglesia et al., 2019; 

Tumendemberel et al., 2019). However, the diversity observed in modern Siberian 

populations is less than would be expected considering the role the region likely played 

during the past in populating North America and Japan. Meanwhile, clades endemic to 

South, Central, and Western Asia have been described — clades 1d, 5, 6, and 7 (Calvignac 

et al., 2009; Calvignac et al., 2008; Çilingir et al., 2016; Lan et al., 2017; Tumendemberel 

et al., 2019) — while ancient DNA has revealed an extinct lineage of brown bears in North 

Africa that was subsequently replaced by clade 1a bears during historic times (Calvignac 

et al., 2008). 

 

A major limitation of the majority of past phylogeographic studies is that they have 

focused only on small mitochondrial fragments (cytochrome b and control region), 

whereas studies using complete mitogenomes have tended to uncover finer scale patterns 

and better resolved phylogenies (Anijalg et al., 2018; Hirata et al., 2013; Keis et al., 2013; 

Rey-Iglesia et al., 2019). However, these mitogenomic studies have lacked extensive 
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sampling of ancient DNA, as well as modern representatives from clades 1c, 1d, 1e, 2c, 

3c, 7, and the extinct North African clade. In this study we analyse 114 new mitogenomes 

from ancient and historic brown bears across Europe, Siberia, and North Africa, combined 

with an additional 103 mitogenomes from Chapter 2 and an additional 310 brown bear 

and polar bear mitogenomes downloaded from GenBank, in order to complete a 

comprehensive temporal and geographic mitogenomic phylogeny, and study past 

phylogeographic changes and the evolutionary history of brown bears in Eurasia and as a 

whole. 

 

 

Methods: 

We sampled 149 brown bear subfossil bone and tooth specimens from northern Asia, 

Europe, and North Africa (Table S1), which ranged in age from historic times to over 50 

thousand years old, spanning the Holocene and Late Pleistocene. Thirteen brown bear 

specimens were radiocarbon dated at the Oxford Radiocarbon Accelerator Unit of the 

University of Oxford. All radiocarbon dates were calibrated with the IntCal13 curve 

(Reimer et al., 2013) using OxCal 4.4 (Ramsey, 2009). 

 

All pre-PCR steps (extraction, library preparation) were conducted in purpose-built 

aDNA clean-room facilities at the University of Adelaide’s Australian Centre for Ancient 

DNA (ACAD), spatially separated and physically isolated from any other molecular 

laboratories. Strict protocols were followed and a number of precautions taken to 

minimize contamination of samples with exogenous DNA (Cooper and Poinar, 2000). 

Protective clothing was worn, including: hooded coveralls over ancient-DNA lab-

dedicated clothing (clothes never previously worn in any other molecular laboratory), 

hairnets, facemasks, face shields, designated footwear for both transitional areas and the 

physical laboratory, and three pairs of gloves worn at all times to prevent skin exposure 

between frequent changes of the outer layer of gloves. Furthermore, the lab was designed 

with positive air pressure, flowing from the cleanest workrooms to the outside of the lab. 

Stringent decontamination procedures were also adhered to, including cleaning equipment 

and surfaces with bleach or disinfectant detergent before and after use as well as regular 

UV irradiation of surfaces. These precautions also included the inclusion of negative 

controls for both DNA extraction and PCR setup. PCR amplification and all downstream 
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procedures (e.g. quantification, hybridization enrichment) were carried out in independent 

physically isolated DNA laboratories at the University of Adelaide. 

 

DNA extraction, library preparation, and mitochondrial enrichment 

DNA extraction and library preparation was performed as per brown bear samples in 

Chapter 2 using one of two extraction protocols: 1) Phenol-chloroform based extraction 

protocol from Bray et al. (2013); or 2) an in-house silica-based extraction protocol adapted 

from Dabney et al. (2013), followed by construction of double-stranded Illumina libraries 

following Meyer et al. (2012) from 25 µL of DNA extract, with the addition of truncated 

Illumina adapters that had unique dual 7-mer internal barcodes added to allow 

identification and exclusion of any downstream contamination. A partial uracil-DNA 

glycosylase (UDG) treatment (Rohland et al., 2015) was performed to restrict cytosine 

deamination, characteristic of ancient DNA, to terminal nucleotides. Enrichment of 

mitochondrial sequences was performed as per Chapter 2, using the same brown bear 

specific baits constructed following Richards et al. (2019). 

 

Sequencing 

Full-length Illumina sequencing adapters were added to the enriched libraries via a final 

round of “off-bead” PCR split into 5 replicate reactions (25 µL) containing 1× Gold PCR 

buffer, 2.5 mM MgCl2, 1 mM dNTPs, 0.5 mM each primer, and 0.1 U AmpliTaq Gold. 

Cycling conditions were as follows: 94 °C for 6 min; 15 cycles of 94 °C for 30 s, 60 °C 

for 30 s, 72 °C for 45 s; and 72 °C for 10 min. Following PCR, replicates were pooled and 

purified using AxyPrep™ SPRI magnetic beads, eluted in 30 μL H2O quantified on 

TapeStation (Agilent Technologies). Libraries were pooled and sequenced on an Illumina 

NextSeq using 2 x 75 bp PE (150 cycle) High Output chemistry. 

 

Data processing 

Sequenced reads were demultiplexed using SABRE (https://github.com/najoshi/sabre) 

using the unique 5’ and 3’ barcodes allowing one mismatch in the barcode sequence (-m 

1). Demultiplexed reads were then processed through Paleomix v1.2.12 (Schubert et al., 

2014). Within Paleomix, adapter sequences were removed and paired end reads merged 

using ADAPTER REMOVAL v2.1.7 (Schubert et al., 2016), trimming low quality bases 

(<Phred20 --minquality 4) and discarding merged reads shorter than 25 bp (--minlength 

25). Read quality was visualized before and after adapter trimming using fastQC v0.11.5 
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(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to ensure efficient adapter 

removal. Merged reads were mapped against the mitochondrial genome of Ursus arctos 

(EU497665) using BWA v0.7.15 (Li and Durbin, 2009) (aln -l 1024 (seed inactivated), -

n 0.01, -o 2). Reads with mapping Phred scores less than 25 were removed using 

SAMTOOLS 1.5 (Li et al., 2009) and PCR duplicates were removed using “paleomix 

rmdup_collapsed” and MARKDUPLICATES from the Picard package 

(http://broadinstitute.github.io/picard/).  

 

Following mapping, reads for all samples were visualized in Geneious Prime 

v2019.0.4 (https://www.geneious.com) and a 75% majority consensus sequence created, 

calling N at sites with less than 3x coverage. We also downloaded reads from published 

ancient Irish brown bears (Cahill et al., 2018) and processed them through the pipeline 

described above to create full mitochondrial genomes (Table S2). 

 

Phylogenetic analysis 

Using MUSCLE v3.8.425 (Edgar, 2004) in Geneious Prime v2019.0.4, we aligned the 

114 brown bear consensus sequences described above with the 103 mitogenomes 

produced in Chapter 2 and an additional 310 brown bear and polar bear mitogenomes 

downloaded from GenBank (Table S3).  

 

We also created two additional datasets by aligning and trimming our full 

mitogenome sequences to match published control region (Table S4) and cytochrome b 

sequences (Table S5). A maximum of two ambiguous bases or cases of missing data in a 

sequence was allowed across the 177 bp control region fragment published by Valdiosera 

et al. (2008) and the 278 bp cytochrome b fragment published by Calvignac et al. (2008). 

Due to an excess of ambiguities or missingness across these fragments, 57 and 20 

sequences were removed from the control region and cytochrome b alignments 

respectively. We aligned to control region sequences, which have been typically used in 

brown bear genetic studies, to compare how the two types of data compare in the accuracy 

of clade assignment and phylogenetic analysis. We aligned to cytochrome b to see whether 

our North African bears fall into the extinct North African clade identified in previous 

studies (Calvignac et al., 2009; Calvignac et al., 2008), as no North African clade bear 

mitogenomes have been sequenced and our North African samples had poor coverage 

across the control region. 
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We produced maximum-likelihood trees for each dataset (mitogenomes, control 

region, and cytochrome b) using RAxML v8.2.4 (Stamatakis, 2014) with 1000 bootstraps, 

and the GTRGAMMA model of substitution, using the American black bear as outgroup 

(MG772937). Two Median-joining networks for the control region and cytochrome b 

datasets were produced in PopART (Leigh and Bryant, 2015).  

 

Due to poor resolution of the control region maximum-likelihood tree, a bayesian 

tip-dated tree was produced in BEAST v2.6.1 (Bouckaert et al., 2019), using only the 

finite-dated specimens. A strict clock with a uniform prior on rate  

(0–10-3 mutations per site per year) was used with a Bayesian skyline coalescent tree prior. 

The substitution model was co-estimated and averaged throughout the analyses using 

bModelTest (Bouckaert and Drummond, 2017). Two independent chains were run for 20 

million steps sampling every 2,000 steps. Convergence and sufficient sampling of 

parameters was checked in Tracer v1.7.1 (Rambaut et al., 2018) and individual runs 

combined in LogCombiner, after discarding the first 10% of steps as burn-in. MCC 

consensus trees were generated in TreeAnnotator using the median node age. 

 

Bayesian tip-dating analyses were performed on mitogenomes with >85% coverage 

using BEAST v2.6.1 (Bouckaert et al., 2019) to co-estimate the tree topology and 

divergence dates of our sequences. We evaluated the temporal signal in our dataset using 

leave-one-out cross-validation (e.g. Stiller et al., 2014), using only the finite-dated 

specimens or samples with a specific age (n=441). In sequential analyses we left out and 

then attempted to estimate the age of each ancient specimen (n=119). Consequently, we 

performed sequential analyses where undated samples (n=87) were added to the dataset 

one at a time, in order to estimate their ages (Figure S3). Runs were performed with a 

strict clock with a uniform prior on rate (0–10-5 mutations per site per year), constant 

population coalescent tree prior with a 1/x distribution on population size, a uniform prior 

(0–500,000) on the age of the sequence being estimated, and run for 30 million steps with 

sampling every 3000 steps. The substitution model was co-estimated and averaged 

throughout the analyses using bModelTest (Bouckaert and Drummond, 2017). Some 

chains were extended to ensure effective sampling sizes near or above 200 for all 

parameters. The first 10% of samples were discarded as burn-in and parameter values 

were monitored to check for convergence in Tracer v1.7.1 (Rambaut et al., 2018). Eight 

samples produced date estimates that were not unimodal or overlapped substantially with 
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zero and therefore were excluded from subsequent analyses. Once all samples were 

assigned an age (either based on radiocarbon dating or Bayesian date estimation), we 

conducted a date-randomization test (Ramsden et al., 2009; Stiller et al., 2014). Runs were 

conducted as for date estimation but excluding a prior on sequence age. For both datasets 

the rate estimate of the original data did not overlap the credibility intervals of the rate 

estimate from 20 randomized replicates (Supplementary Figure 3), suggesting that our 

dataset could be used to reliably estimate evolutionary rate and divergence times. 

 

For the final BEAST analysis, a strict clock was used with a uniform prior on rate  

(0–10-5 mutations per site per year), and a Bayesian skyline coalescent tree prior. The 

substitution model was co-estimated and averaged throughout the analyses using 

bModelTest (Bouckaert and Drummond, 2017). We ran three independent MCMC chains, 

each run for 100 million steps, sampling every 10,000 steps. We checked for convergence 

and sufficient sampling of parameters in Tracer v1.7.1 (Rambaut et al., 2018) and 

combined individual runs in LogCombiner, after discarding the first 10% of steps as burn-

in. MCC consensus trees were generated in TreeAnnotator using the median node age. 

 

Isotope analysis 

Two brown specimens produced genetic results that cast doubt on their provenance and 

/or species identification (A308 and A1947). In order to contextualise isotopic data (δ13C 

and δ15N) produced from these specimens, additional isotopic data was collected from 

published literature (Barnes et al., 2002; Bocherens et al., 2011; Fox-Dobbs et al., 2008; 

Horton et al., 2009; Kirillova et al., 2015; Leonard et al., 2007; Mann et al., 2013; 

Matheus, 1995; Rey-Iglesia et al., 2019; Richards et al., 2008; Terlato et al., 2019) 

representing brown bears, coastal brown bears (Alexander Archipelago), cave bears 

(Ursus spelaeus), polar bears (Ursus maritimus), short-faced bears (Arctodus simus), 

horses (Equus spp.), and cave lions (Panthera spelaea). 
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Results and Discussion: 

Of the 149 samples we analysed, mitochondrial genomes with >60% coverage were 

obtained for 114, of which 110 had >85% coverage. Thirty-five samples either did not 

produce sufficient mitochondrial reads or were misidentified remains belonging to another 

species (e.g. cave bear, horse; Table S1). The 114 brown bear mitogenomes with >60% 

coverage were aligned with 103 mitogenomes produced in Chapter 2 and 310 published 

mitogenomes from brown and polar bears (total n = 517) (Table S2). However, only 

samples with >85% coverage were included in our Bayesian analysis (excluding nine 

undated samples that did not produce unimodal age estimate distributions; total n = 509). 

The age of samples included in our analyses ranged from modern day to beyond the limit 

of radiocarbon dating (including some with molecular age estimates >200 kya; Figure S2). 

 

Brown bear phylogeny and distribution 

Our Bayesian phylogenetic analyses revealed that all brown bear mitogenomic diversity 

coalesced 445.1 kya (95% HPD: 412–481.6 kya), representing the divergence of clade 6 

from the remaining samples (Figure 1). Our estimate for this node falls within the wide 

credibility interval of 336 to 1258 kya obtained by a previous study (Lan et al., 2017), 

though our mean estimate is much younger: 445.1 versus 658 kya. Our more precise 

estimate for the divergence of clade 6 is coincident with MIS 12, the Anglian Glacial in 

Britain and the Elster glaciation in North America. MIS 12 is known as one of the strongest 

glacial periods of the Quaternary, occurring after a prolonged period without full glacial 

conditions (Lang and Wolff, 2011; McManus et al., 1999; Naafs et al., 2014; Oppo et al., 

1998; Rodrigues et al., 2017; Stein et al., 2009). This divergence may therefore reflect the 

isolation of brown bears into separate glacial refugia during this severe glacial period (i.e. 

clade 6 may be representative of a Central Asian refugium, where the clade is currently 

found).  

 

The divergence of clade 6 was followed by the eastern (clade 3, 4, and 5) and 

western (clade 1 and 2) lineages 376 kya (95% HPD: 344.4–409 kya) (Figure 1). Our 

estimate for the divergence of the eastern and western lineages is much younger than 

previously published mitogenomic estimates of 556 kya (Hirata et al., 2013), 505 kya (Lan 

et al., 2017), 514 kya (Anijalg et al., 2018), and ~420 kya (Rey-Iglesia et al., 2019). The 

discrepancies between these estimates are likely the result of the loci used (control region 
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versus mitogenome) and/or the type of calibration used (fossil calibration or tip-dating 

using a single ancient specimen versus tip-dating using multiple ancient specimens). In 

the present study, by relying on a large number of radiocarbon dated tips to calibrate our 

analysis we have minimised the impact of rate time-dependency (Subramanian and 

Lambert, 2011), therefore, allowing more accurate dating of population splits when 

compared to studies using only a few tip-dated specimens or fossil calibrations. In any 

case, within the western lineage, our results suggest that clade 2c subsequently diverged 

from the remaining lineages 361.6 kya (95% HPD: 328–391.7 kya), resulting in paraphyly 

of clade 2 with respect to clade 1, in conflict with control region studies that place 2c as 

sister to clade 2a (Davison et al., 2011). The divergence of the eastern and western 

lineages, and the subsequent divergence of clade 2c from the common ancestor of the 

remaining western lineages, occurred during late MIS 11 or early MIS 10. MIS 11 

represents the longest and warmest of the interglacial periods (Lang and Wolff, 2011; 

McManus et al., 1999; Oppo et al., 1998; Rodrigues et al., 2017), with extreme reductions 

in sea ice and ice sheets resulting in areas such as Greenland being largely unglaciated 

(Raymo and Mitrovica, 2012; Robinson et al., 2017), as well as northerly expansion of 

forests (Kleinen et al., 2014). Therefore, the formation of the main lineages of brown bear 

and the establishment of their broad geographical distributions correlate with a period of 

warmer climate and forest expansion, when bears may have been able to expand out of 

glacial refugia following MIS 12 into a wide range of habitats across the Northern 

Hemisphere.  

 

Our results suggest that clade 1 split from the common ancestor of the polar bear 

clades 2a and 2b 235.5 kya (95% HPD: 215.4–258.2 kya), more recently than suggested 

by other mitogenomic studies using fossil calibrations (Anijalg et al., 2018; Hirata et al., 

2013), but comparable to previous estimates using tip-dating (Rey-Iglesia et al., 2019). 

This split has been purported to represent the initial introgression of a brown bear 

mitogenome into early polar bear populations (Hailer, 2015) and occurred during the 

transition from MIS 8 to MIS 7, a period of transition from cold to warm conditions. This 

transition likely caused the contraction of polar bear ranges and increasing terrestrial 

presence of polar bears as sea ice cover reduced in the arctic, likely resulting in 

interactions between polar and brown bears, as seen with current reductions in sea ice 

(Kelly et al., 2010; Post et al., 2013) 
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Figure 1: Bayesian phylogenetic tree inferred from full mitogenomes showing the divergence of 

the major brown bear mitochondrial. Bars on nodes represent 95% Highest Posterior 
Densities for node age estimates indicated for nodes with >0.7 posterior support. Previously 
published clades are collapsed and coloured corresponding to clade membership. 

 

Comparison of short control region and cytochrome b sequences to full mitogenomes 

To explore some of the differences observed between our results and those of previous 

studies, we created two additional datasets by trimming our new sequences to match 

published mitochondrial control region and cytochrome b alignments. Analysis of these 

additional datasets showed that full mitogenomes performed considerably better at 

resolving deeper branches compared to the control region and cytochrome b datasets, with 

many of the splits inferred using the control region dataset being especially problematic. 

Notably the relationship of clade 6 to the other lineages is uncertain and poorly supported 

by the results from both cytochrome b (Figure S6) and control region analyses (Figure 

S4), while analyses of full mitogenomes unequivocally place clade 6 as sister to all 

remaining brown bear diversity (with the exception of the North African clade). 

Furthermore, the results of control region analyses suggest that clade 2 is monophyletic 

(Figures S4), whereas analyses using full mitochondrial genomes strongly suggest that 

clade 2 is paraphyletic, with clade 2c the most basal in the western lineage, sister to the 

remainder of clade 2 and clade 1 (Figure 1).  
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When assigning clade membership to sequences, the use of the control region was 

again problematic. Rey-Iglesia et al. (2019) reported an ancient clade 3c bear in Yakutia, 

Russia, and while our control region analysis supports this grouping (Figure S4), our full 

mitogenome analysis unequivocally places this sample within clade 3b. Previous studies 

have also purported clade 4 haplotypes in Russian and Spanish bears based on control 

region sequences (Bray, 2010; García-Vázquez et al., 2019). The same Russian samples 

have been reanalysed in this study and instead possess haplotypes more closely related to 

clade 3a. When looking at the results of our control region analyses, these samples fall in 

a separate clade within clade 3 (Figure S4), or closely related to clades 3a, 4 and 5 (Figure 

S5). This highlights a consistent problem with using control region to assign 

mitochondrial clade membership: more divergent haplotypes within clades often appear 

to be more closely related to other clades or form unrelated clades.  

 

The differences we observed between results obtained using full mitogenomes and 

the control region are likely in part the result of substitution saturation of the control region 

due to the depth of the brown bear mitochondrial tree (TMRCA: 445.1 kya) and the 

relatively high mutation rate and short length of the control region. Additionally, these 

control region based studies have generally used traditional PCR and Sanger sequencing 

methods, meaning that their results may be more susceptible to damage-induced 

nucleotide misincorporations (Brotherton et al., 2007). These findings call into question 

previous reports of clade 4 and 3c bears in Spain (García-Vázquez et al., 2019; Valdiosera 

et al., 2008), which is a somewhat surprising result given the distribution of these clades, 

and suggest they may instead represent clade 3a, which has been widely reported in 

Europe. Full mitogenome sequences will need to be generated from these samples to 

confirm their clade membership and phylogeographic implications. 

 

Less common brown bear clades (North Africa and clade 6) 

Unfortunately, no published full mitogenomes were available for the extinct North African 

brown bear clade, so to deduce the clade membership of our Moroccan samples we created 

a contracted cytochrome b dataset (as low coverage prevented us from using the control 

region). Analyses of this dataset unequivocally placed our Moroccan samples as close 

relatives of the previously published data from extinct North African bears (Figure S6 & 

S7), meaning that our new data represent the first full mitogenomes from members of this 

clade. These two samples unfortunately have no radiocarbon dates associated with them, 



 CHAPTER 5 

 
181 

and due to their deep divergence and long branch lengths their age could not accurately 

be estimated using Bayesian analyses. However, as the North African clade forms the 

outgroup to all other brown bear lineages in the maximum-likelihood tree (Figure S8), we 

can assume that the origin of this clade predates 456 kya and possibly represents an early 

expansion of brown bears during the Middle Pleistocene following the origin of the 

species in Asia (McLellan and Reiner, 1994). This expansion into Africa from Eurasia 

could have occurred through Europe via the strait of Gibraltar during a glacial period when 

sea levels would have been lower, or alternatively through the Middle East. The latter 

route through the Middle East has been favoured on the basis of shared species 

assemblages (Dobson and Wright, 2000). 

 

Of the other more obscure and less well-represented brown bear clades, we also 

identified a clade 6 bear from the Ural Mountains dating to 238.7 kya (95% HPD: 176.3–

311.2 kya). Most previous evidence suggested that clade 6 was restricted to the Gobi 

Desert and Pakistan, meaning that this Urals specimen represents a substantial range 

expansion and suggests that this clade of brown bears was more widespread earlier during 

the Pleistocene. The observation that these more obscure, underrepresented, and often 

deeply-branching brown bear clades, such as clades 5, 6, and 7, are found nearly 

exclusively in Asia indicates that early migrations of brown bears occurred throughout 

Asia from their hypothesised source of speciation (McLellan and Reiner, 1994). 

Elsewhere, clades such as clade 6 in the Urals and the extinct North African clade were 

largely replaced by more common haplotypes seen in modern brown bears worldwide 

(Calvignac et al., 2008). 

 

Another unexpected result is the recovery of a clade 2b haplotype from a specimen 

from the Altai Mountains (A1947), with an estimated age of 58.4 ky (95% HPD: 37.1–

79.9 kya). Clade 2b is normally associated with polar bears (Cronin et al., 1991; Davison 

et al., 2011; Shields et al., 2000; Talbot and Shields, 1996), but has also been found in 

brown bears in Ireland as a result of hybridisation (Cahill et al., 2018; Edwards et al., 

2011). To exclude the possibility that A1947 may have incorrect provenance data – as the 

Altai Mountains are far outside the range of polar bears (e.g. the Artic Circle) – we 

compared the stable isotopic signature of the bone to those of other brown bears, polar 

bears, and a variety of other taxa (Figure 2). Similar approaches have identified an ancient 

North American Ursus sp. sample (A308) with incorrect provenance data (Barnes et al., 
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2002), which has isotopic values closer to polar bears despite supposedly having been 

collected well inland. Conversely, the isotopic signature of A1947 was typical of 

terrestrial brown bear populations and distant from those of polar bears from the Arctic 

Circle. These results suggest that A1947 is indeed a brown bear with a clade 2b haplotype.  

 

The clade 2b haplotype possessed by A1947 is only distantly related to those found 

in Irish brown bears, coalescing with the most closely related clade 2b haplotypes 75 kya 

(95% HPD: 64.3–85.1 kya), suggesting an independent and much more ancient 

hybridisation event between polar and brown bears than occurred in the Pacific Northwest 

and Ireland. This finding suggests the hybridisation of polar bears and brown bears was 

not isolated to the pacific Northwest (Cahill et al., 2013; Cahill et al., 2015; Hailer, 2015; 

Hailer et al., 2012; Hassanin, 2015; Kutschera et al., 2014; Lindqvist et al., 2010; Liu et 

al., 2014; Miller et al., 2012) and Ireland (Cahill et al., 2018; Edwards et al., 2011), but 

was likely common across the northerly range of brown bears (where they overlapped 

with the range of polar bears). As A1947 was found thousands of kilometres inland, it 

likely represents a hybrid individual that either migrated from or descended from a 

migrant from the original hybridisation zone (likely the northern Siberian coast within the 

Arctic Circle). This would support the expectation proposed by Cahill et al. (2013) that 

brown bears carrying polar bear alleles would disperse polar bear ancestry widely across 

the brown bear range. 
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Figure 2: Bivariate plot of stable carbon and nitrogen isotope values for two bears with suspect 

species identity plotted against published values from brown bears (including coastal brown 
bears from the Alexander Archipelago), horses, cave lions, cave bears, polar bears, and 
short-faced bears (Table S6). Shaded areas represent convex hulls for each species, which 
are the minimum area required to encompass all points. 

 

 

Asia as the heartland of brown bear matrilines  

Ancient brown bears in Asia (including the Ural and Caucasus mountains) fell into six 

clades: 2b, 3a, 3b, 4, 5, and 6, reflecting the diversity of brown bears that have been found 

in the region throughout prehistory. Previously, only clades 3a and 3b have been recovered 

from bears across North Asia, but results from Chapter 2 and the present study increase 

this to include clades 2b, 4, 6, and haplotypes basal to clade 1 and 3. In our dataset we 

found that clade 3 and clade 4 are closely associated with Siberia and the Russian Far East, 

while clade 5 and 6 have only been found in Asia. Clade 3 likely originated in Asia, 
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possibly in the Altai-Sayan region, before diversifying outwards to the Russian Far East 

and the Urals/Eastern Europe (Figure 6). The divergence of clade 5 and 6 at 248 and 445 

kya respectively may represent early migrations of brown bears into central and southern 

Asia or possibly represent remnants of the original brown bear populations that first 

evolved in Asia.  

 

Clade 3 

The split of clade 3a, 3b, and 3c dates to 133.6 kya (95% HPD: 124.4–144.4 kya), just 

prior to or during the Eemian (MIS5e), a warm period that is often climatically likened to 

the Holocene (Lang and Wolff, 2011; Rodrigues et al., 2017). This is similar to the age of 

divergence of clade 3 estimated by Davison et al. (2011), but younger than that estimated 

by other full mitogenome analyses (Anijalg et al., 2018; Hirata et al., 2013), although 

these older estimates were associated with large credibility intervals. The discrepancies 

between these estimates are likely the result of the loci used (control region versus 

mitogenome) or the type of calibration used (fossil calibration or tip dating using a single 

ancient specimen versus tip dating using multiple ancient specimens). This divergence 

would have been associated with the rapid deglaciation of ice sheets and northerly 

expansion of forests (Kukla et al., 2002; Lozhkin and Anderson, 1995; Nikolova et al., 

2013; Otto-Bliesner et al., 2006), potentially opening up available habitat for brown bears 

to expand into different areas resulting in the formation of the three subclades: 3a, 3b, and 

3c. Each of these subclades appears to be primarily associated with different regions: the 

Urals-Caucasus, Altai-Sayan, and Russian Far East, respectively (Figure 6). 
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Figure 3: Bayesian phylogenetic tree of clade 3a lineages inferred from mitochondrial genomes. 

Bars on nodes represent 95% Highest Posterior Densities for node age estimates indicated 
for nodes with >0.7 posterior support. Branches are coloured by geographic region and 
clades consisting of largely modern samples from the same region have been collapsed. For 
the remainder of the eastern lineage see Figure S9. 

 

 

Furthermore, we also present a specimen possessing a never before sampled 

haplotype sister to all clade 3 diversity, ACAD 1939, from Denisova Cave, in the Altai 

Mountains, dating to 116.1 kya (95% HPD: 89.6–141.1 kya). This specimen diverged 

from the rest of clade 3 149.6 kya (95% HPD: 139.1–161.2 kya). This could suggest that 

clade 3 as a whole originated in the Altai-Sayan region between MIS 7 and MIS 5, with 

an expansion during the Eemian during MIS 5 when climate conditions improved, with 

clade 3a representing the descendants of a westward migration into Eastern Europe and 

Caucasus, and clade 3c representing an eastward migration into Western Beringia. 

However, this hypothesis is highly speculative and is only based on one sample. 
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Clade 3a 

Clade 3a is the most widespread and common clade among modern brown bears, being 

distributed from North America to Europe. Our results suggest clade 3a originated 

somewhere in the region comprising the Ural Mountains, the East European Plain, and the 

Caucasus. This contrasts with Anijalg et al. (2018), who presented the Altai-Sayan region 

as a refugium for clade 3a bears, with migrations westward to the Urals and Eastern 

Europe starting around 29 kya. We instead suggest that the Altai-Sayan region was a 

refugium for clade 3b bears, with clade 3b being present in a large proportion of our 

samples from the Altai Mountains (Figures 2 & 3), and with clade 3b remaining a 

prominent fixture in historic and modern populations of the region (Tumendemberel et al., 

2019). In contrast, our ancient samples from the Ural Mountains largely possess basal 

clade 3a haplotypes, with some samples as old as ~90 kya, close to the divergence of clade 

3a from the rest of clade 3, 130 kya. The Ural Mountains were hypothesised to provided 

glacial refuge for numerous animal and plant species (Bilton et al., 1998; Danukalova et 

al., 2009; Jaarola and Searle, 2002; Korsten et al., 2009; Ledevin et al., 2010; Markova et 

al., 2020; Schmitt and Varga, 2012; Skrede et al., 2006), while the Caucasus has been 

known as a biodiversity hotspot that likely hosted a number of refugia during the 

Pleistocene (Antonosyan et al., 2019; Belmaker et al., 2016; Drovetski et al., 2018; Myers 

et al., 2000; Neiber and Hausdorf, 2015; Orth et al., 2002; Parvizi et al., 2018). Previous 

studies have estimated the MRCA of clade 3a at around 50 kya (Anijalg et al., 2018; 

Davison et al., 2011; Hirata et al., 2013; Rey-Iglesia et al., 2019), the inclusion of ancient 

specimens from the Urals and Caucasus pushed this date back to 120.3 kya (95% HPD: 

111.6–129.2 kya), over doubling the amount of time captured, bringing the MRCA very 

close to the divergence of clade 3a from the rest of clade 3. 

 

Within clade 3a we observed what appears to be a large expansion of clade 3a bears 

at the end of MIS 3 and/or start of MIS2, around 33.3 kya (95% HPD: 31.1–37 kya) 

(Figures 3 & 6). This expansion is associated with previous reports of clade 3a1, which 

comprises the majority of extant clade 3a diversity (Anijalg et al., 2018; Hirata et al., 

2013). However, we refrain from the subdivision of clade 3a due to the lack of truly 

monophyletic groups, especially more basally within the clade (Figure 3). Many of the 

more tipward branches of the clade 3a phylogenetic tree are poorly supported, suggesting 

a more star-like phylogeny, consistent with a rapid expansion. The timing of this 

expansion is associated with turnovers and extinctions of large mammals across Northern 
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Eurasia leading to the onset of the LGM: Neanderthal extinction, extinction of Eurasian 

spotted hyena (Crocuta crocuta), range reduction and extinction of cave bears (Bocherens 

et al., 2014; Mondanaro et al., 2019; Pacher and Stuart, 2009; Stiller et al., 2014), range 

reductions of woolly rhinoceros (Coelodonta antiquitatis) (Stuart and Lister, 2012), and 

turnovers of mammoth and bison (Cooper et al., 2015; Massilani et al., 2016; Palkopoulou 

et al., 2013; Soubrier et al., 2016). This period of faunal population change coincides with 

abrupt changes in the palaeoclimate. MIS 3 is associated with some of the most dramatic 

changes in climate, containing multiple Dansgaard-Oeschger (DO) events, which are 

abrupt changes from cold to mild-warm conditions, often with changes of up to 15°C 

within a few decades. Furthermore, there is evidence of a shift towards cold tundra-steppe 

across northern Eurasia and the breakup of grass and herb-dominated vegetation 

communities (Hubberten et al., 2004) and a loss of boreal forests in Eastern Europe during 

late MIS 3 (Obreht et al., 2017).  

 

Notably MIS 3 is associated with drastic declines in cave bears between 35 and 40 

kya, before their extinction during the LGM (Gretzinger et al., 2019; Mondanaro et al., 

2019; Stiller et al., 2010). The extinction of cave bears has been associated with the 

migration and expansion of anatomically modern humans in Europe and worsening 

climate during MIS 3/MIS 2 leading to vegetation changes, directly impacting the largely 

herbivorous cave bear (Mondanaro et al., 2019). Notably the extinction appears to have 

occurred in an east to west direction, with cave bears largely restricted to Western Europe 

after 30 kya (Bon et al., 2011; Mondanaro et al., 2019; Stiller et al., 2014). The last cave 

bears from the Urals date to between 30 and 37 kya (Pacher and Stuart, 2009), while the 

youngest sample from the Caucasus dates to 34 kya (Stiller et al., 2014). It appears that 

during MIS 3, cave bears were likely largely extirpated from the Urals, Caucasus, and 

Eastern European plain. Owing to a more herbivorous diet, the survival of cave bears 

would have been closely associated with vegetation changes, while the more omnivorous 

diet of brown bears possibly allowed them to survive drastic changes in palaeovegetation. 

The extinction of cave bears would have opened up territories and cave sites, allowing 

brown bear populations, which were likely clade 3a bears, to expand across Eurasia. 

 

The expansion of clade 3a after 33kya is associated with migrations eastward toward 

North America, Kamchatka, and the Russian Far East. Notably this expansion leads to the 

majority of Kamchatka clade 3a diversity, and ultimately North American clade 3a bears, 
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which form a clade with Kamchatka that coalesces around 23.5 kya (95% HPD: 18.8–29.3 

kya), suggesting a wave of migration into North America following the LGM (Figure 3). 

The MCRA of Eastern Beringian clade 3a brown bears dates to 14.4 kya (95% HPD: 9.5–

19.6 kya), supporting the hypothesis that clade 3a bears crossed the Bering Land Bridge 

around the same time as humans and wapiti (Anijalg et al., 2018; Meiri et al., 2014). 

 

Anijalg et al. (2018) found that clade 3a bears found elsewhere in the modern 

Russian Far East were not from the same migration into Kamchatka and Eastern Beringia. 

However, with our more comprehensive sampling of clade 3a bears, we could not 

confidently recover the split observed by Anijalg et al. (2018) between Kamchatka-

Eastern Beringian bears and other clade 3a bears associated with clade 3a1, possibly due 

to the inclusion of ancient basal clade 3a bears with very short branch lengths (Figure 3). 

Therefore, we cannot exclude the possibility that bears from Eastern Beringia, Kamchatka 

and modern Russian Far East were from the same migration. However, it is noteworthy 

that Anijalg et al. (2018) hypothesised that a 30 ky-old clade 3a bear described from the 

Indigirka area of Western Beringia by Bray (2010) was possibly ancestral to the bears of 

Kamchatka and Eastern Beringia.  

 

We produced a mitogenome from this clade 3a sample (A407) and found it was not 

directly related to modern bears from Kamchatka or Alaska, or any other Russian Far East 

bears, instead this specimen diverged more deeply within clade 3a, 73.8 kya (95% HPD: 

67.6-80.1 kya), possibly indicating an earlier migration of clade 3a bears eastward. 

Furthermore, there also appears to have been an additional migration out of the Urals into 

the Russian Far East and eventually Japan (Figure 3). Japanese clade 3a bears diverged 

from clade 3a bears in the Altai-Sayan region 39.2 kya (95% HPD: 32.1–45.8 kya), while 

the TMRCA of all Japanese clade 3a bears dates to 18.5 kya (95% HPD: 13.3–24.5 kya). 

These Japanese and Altai bears further split from clade 3a bears from the Urals 46.8 kya 

(95% HPD: 41.6–52.2 kya), suggesting an eastward migration from the Urals, through 

Siberia and the Russia Far East during MIS 3 and ultimately into Japan, likely during the 

LGM before the land bridge connecting Sakhalin and Hokkaido was submerged 11 kya 

(Hirata et al., 2013; Ohshima, 1990). This scenario is similar to that proposed by Hirata et 

al. (2013) who also suggested that clade 3a bears from Japan and North America were the 

result of separate migrations, although we were able to refine the timing with the inclusion 

of closely related Altai brown bears. 
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Notably there are several cases of clade continuity in the Urals and Caucasus region, 

with highly similar haplotypes found in the same area thousands of years apart, such as a 

46.5 cal kyBP basal clade 3a bear from the Caucasus (A4098) forming a monophyletic 

group with historic Caucasus bears, with a TMRCA of 53.4 kya (95% HPD: 48.2–60 kya), 

indicating this lineage has likely been in the region for at least 46.5 ky (Figure 3). 

Furthermore, ancient Urals specimens consistently fall in deeply diverging positions 

within subclades that encompass modern bears found in the Urals, the Caucasus, or 

Eastern European plain, further suggesting this region as a refuge for clade 3a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4: Timeline of radiocarbon and molecular dates for brown bears (Ursus arctos) from across 

their Holarctic range. Dates are shown with one standard error and are coloured by genetic 
clade.  
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Clade 3b 

Clade 3b is primarily found in North America and Japan today; however, a few studies 

have found representatives in the Russian Far East and in the Altai-Sayan region 

(Tumendemberel et al., 2019). Our Bayesian analysis revealed that clade 3b is well 

represented in ancient and historic Siberian and Russian Far East samples, also including 

an ancient Chinese sample from the Manchurian Plain (Figures 3, 4, & 6), as well as being 

well represented in modern bears found in the Altai-Sayan region (Tumendemberel et al., 

2019). Furthermore, it appears clade 3b likely arose in this broad area, more specifically 

the Altai-Sayan region, which has previously been hypothesised as a Pleistocene refugium 

for bears and other megafauna (Anijalg et al., 2018; Pavelkova Ricankova et al., 2014; 

Ricankova et al., 2015). From this population there appear to have been subsequent 

migrations into North America during the LGM (Chapter 2), as well as an earlier, separate 

migration to Japan and the Kuril Islands likely via Sakhalin (Hirata et al., 2013). Hirata et 

al. (2013) could not refine the timing of arrival of clade 3b into Japan beyond the 

divergence time from clade 3a due to a lack of published clade 3b mitogenomes from 

North America or Eurasia. We included 13 mitogenomes from North America and 8 

mitogenomes from eastern Eurasia, which show that Japanese clade 3b bears split from 

Eurasian and North American bears 58 kya (95% HPD: 49–68.6 kya) while Japanese clade 

3b bears coalesce 16 kya (95% HPD: 11.5–21.2 kya), suggesting that clade 3b bears 

migrated into Japan during MIS 3 or MIS 2. 

 

Clade 3c 

Clade 3c has currently only been found in ancient North American samples (Chapter 2, 

Barnes et al., 2002; Leonard et al., 2000); however, it is likely that this clade first arose in 

Asia, possibly western Beringia, and only entered North America after ~70 kya during the 

MIS 4 glacial, when the Bering Land Bridge would have been subaerial following a 

submerged state during MIS 5 (see Chapter 2). Despite likely arising in Asia, we found 

no evidence of clade 3c in Eurasia; however, this is likely to be an artefact of biased 

sampling. As clade 3c is the first of the clade 3 bears to enter North America, it is likely 

this clade’s distribution was centred in western Beringia and/or the Russian Far East. 

Beringia and/or north-eastern Asia has been postulated as a refugium for grey wolves 

during the Pleistocene, with all extant diversity stemming from this region (Loog et al., 

2020), as well as a refugium for collared lemmings (Fedorov et al., 2020). To date, only 

two brown bear specimens predating the LGM from western Beringia have been 
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genetically analysed (both from Yakutia, the western border of Western Beringia), 

representing clade 3b and clade 3a (Figures 3 & 4). Further sampling of ancient bears from 

more eastern Russian regions that make up Western Beringia (such as Magadan, 

Chukotka, and Kamchatka) may reveal the presence of clade 3c in the region.  

 

Clade 4 

Modern clade 4 bears are restricted to the contiguous USA, Southern Canada, and 

Hokkaido; however, ancient DNA has revealed clade 4 specimens in Eastern Beringia and 

mainland Eurasia (namely the Manchurian Plain of China) (Chapter 2, Barnes et al., 2002; 

Leonard et al., 2000). Clade 4 splits from clade 3 around 216.3 kya (95% HPD:198.4–

234.8 kya), and the presence of a basal representative of clade 4 on the Manchurian Plain 

from north-eastern Russia indicates clade 4 may reflect an early movement of bears to the 

Russian Far East and/or Western Beringia during MIS 7, when the climate was warmer 

and wetter, eventually leading to migrations into Japan and North America (Chapter 2). 

Although clade 4 likely arose in mainland Asia during MIS 7, only one sample associated 

with clade 4 has been found outside of Japan or North America. As discussed in Chapter 

2, this specimen is basal to the diversity of clade 4 bears from both North America and 

Japan, splitting 207.3 kya (95% HPD: 189.7–225.5 kya), with North American and 

Japanese bears diverging later during MIS 6 170.1 kya (95% HPD: 151.6–188.9 kya). 

Thus, it appears that Japanese and North American clade 4 bears may originate from the 

same population of mainland Eurasian bears and that clade 4 bears were the first to arrive 

in Hokkaido (Hirata et al., 2013). The original clade 4 Eurasian populations may have 

ultimately been replaced during the expansion of clade 3 across Eurasia ~130 kya. 

However, more extensive sampling of clade 4 bears from mainland Eurasia, especially 

during MIS 6 and 5 from the Russian Far East, would be required to fully investigate these 

hypotheses. As discussed for clade 3c, we lack sufficient sampling of ancient Russian Far 

East bears. Further sampling in this region may reveal greater diversity of clade 4 

haplotypes in Eurasia. Further, sampling in this region may also reveal clade 2c haplotypes 

in Eurasia, which, along with clade 4, comprised the first wave of dispersal into North 

America, predating the waves of clade 3 dispersal (Chapter 2). 

 

Colonisation of Europe and LGM range dynamics 

Ancient and modern brown bears from Europe fell into six clades with differing patterns 

spatially and temporally, as reported by previous studies (Benazzo et al., 2017; Bray et 
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al., 2013; Davison et al., 2011; Edwards et al., 2014; Edwards et al., 2011; Ersmark et al., 

2019; Fortes et al., 2016; García-Vázquez et al., 2019; Taberlet and Bouvet, 1994; 

Taberlet et al., 1997; Valdiosera et al., 2007; Valdiosera et al., 2008; Waits et al., 2000). 

Clade 3a was predominately found in eastern and central Europe, as well as Scandinavia, 

while clade 1a was detected in post-LGM specimens from the Iberian Peninsula, southern 

Scandinavia, and the British Isles. Clade 1b was found in modern bears from the Alps, 

Italy, and the Balkan Peninsula, and also ancient Scandinavian bears, while clade 1c was 

found exclusively in extinct bears from the Alps and clade 1e exclusively in pre-LGM 

bears from the Iberian Peninsula.  

 

Clade 3 

Clade 3 within Europe is largely restricted to Central and Eastern Europe and Scandinavia. 

However, we recovered one sample from pre-LGM Scotland bearing a clade 3a haplotype 

(Figure 3 & 4). This specimen shared a common ancestor with Russian brown bears 

around 52.3 kya (95% HPD: 49.7–55.5 kya) and appears to be unrelated to Holocene 

European clade 3a bears reported from Central Europe and Scandinavia. Therefore, it 

appears this specimen represents a pre-LGM migration of clade 3 into Europe, possibly 

associated with other reports of pre-LGM clade 3 bears in Western Europe (García-

Vázquez et al., 2019; Valdiosera et al., 2008). Our results suggest that the current diversity 

of clade 3 in Europe arises from westward migration following the LGM, as has 

previously been hypothesised (Anijalg et al., 2018; Korsten et al., 2009). 

 

Clade 3a bears appear to have entered the Scandinavian Peninsula from Eastern 

Europe during the Pleistocene/Holocene transition. There appear to be two groups of 

Scandinavian clade 3a bears: the more common group has a TMRCA of 12.3 kya (95% 

HPD: 10.1–15.1 kya), while the less common group coalesces 9.6 kya (95% HPD: 6.4–

13.2 kya). These dates coincide with the receding of the Fennoscandian ice sheet. The 

Fennoscandian icesheet starting to recede by 17 kya, with much of Sweden, Finland, and 

the Baltic states ice-free by the Younger Dryas (12.8–11.5 kya), and the ice sheet isolated 

to northerly mountains on the Scandinavian Peninsula by 9.7 kya (Stroeven et al., 2016), 

allowing the migration of fauna into the region. Interestingly, within the more common 

clade 3a Scandinavia group there appears to have been a back migration into Southern and 

Central Finland. This group of Finnish bears coalesces 1,030 years ago (95% HPD: 30–

2182 years ago) indicating a very recent arrival, possibly associated with human activity. 
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Keis et al. (2013) noted that modern Finnish brown bears showed greater heterogeneity 

than other Baltic states and western Russian oblasts, where this was attributed to 

migrations from Russian Karelia. Instead, we propose that the back migration from 

Scandinavia is likely the source of this increased heterogeneity, supplementing a 

population closely associated with Eastern European populations (Keis et al., 2013). This 

migration was likely facilitated by strong population declines leading to extirpation during 

the 19th Century predator extermination programs in southern and western regions of 

Finland (Saarma and Kojola, 2007). 

 

Modern clade 3a bears from Slovakia and ancient clade 3a bears form Austria appear 

to descend from bears that migrated from Eastern Europe during the Holocene, around 5.8 

kya (95% HPD: 2.9–9.4 kya). There also appears to be second group of clade 3a bears 

associated with the Balkan region. While, Anijalg et al. (2018) suggested that Bulgarian 

and Romanian brown bears may descend from bears in the Carpathian Mountains — 

which has been proposed as a refugium for the species — we find that these bears are 

most closely related to a bear from the Ural mountains dating to 10 kya. These clade 3a 

bears share a TMRCA 15.3 kya (95% HPD: 11.2–20.8 kya), indicating a post-LGM 

migration from the Urals region. However, we note that this could equally represent a 

migration eastward from the Carpathian Mountains into the Urals. 

 

The complicated history of clade 3a bears in Eastern, Central, and Northern Europe 

suggest that these populations have been shaped by numerous migrations following the 

LGM from more westerly regions (for example the Urals, and Western Russia) (Anijalg 

et al., 2018; Korsten et al., 2009). It also appears that predator extermination programs in 

historic times have resulted in changes to the phylogeography of the clade (Keis et al., 

2013; Xenikoudakis et al., 2015). An interesting observation is that the Caucasus did not 

appear to contribute to European clade 3a populations. Historic samples from the 

Caucasus were not associated with European clade 3a bears, falling in more deeply 

divergent positions within clade 3a more closely associated with ancient Urals and 

Caucasus brown bears. Basal clade 3a haplotypes have previously been reported in 

modern brown bears from the Caucasus (Murtskhvaladze et al., 2010). These findings 

may indicate that Caucasus is a remnant of the Pleistocene clade 3a populations. 

 

 



5.2 MANUSCRIPT 

 
194 

Clade 1 

Clade 1 is the most common clade found among ancient samples in Europe falling into 

four subclades: clades 1a, 1b, 1c, and 1e (Figure 5). The MRCA of clade 1, representing 

the split of Clade 1e from the rest of clade 1, dates to around 185 kya (95% HPD: 170.3–

200.4 kya). Potentially, clade 1e may represent the original migration of brown bears into 

Europe. This migration may have originated from the Caucasus and/or Middle East, owing 

to the relatively greater diversity of haplotypes in that region (i.e. clades 7, 3a, 1b, and 1d) 

(Ashrafzadeh et al., 2016; Calvignac et al., 2009; Çilingir et al., 2016). Sequencing of full 

mitogenomes of bears from the Middle East, and from clades 7 and 1d in particular, would 

allow this hypothesis to be tested.  

 

We identified a previously unsampled clade 1 haplotype from the Ural Mountains 

(ACAD 1932) (Figure 1 & 5), which our molecular age estimation suggested is 

approximately 147 thousand years old (95% HPD: 118.1–178.7 kya). This sample appears 

to be sister to clades 1a and 1b, splitting around 168.1 kya (95% HPD: 157.1–179.4 kya). 

Control region analyses show that this sample is not closely related to clade 1d and instead 

forms its own lineage (Figure S4 & S5). This result could indicate that ancestor of clades 

1a and 1b originated in the Urals region, or bears from the original distribution of clade 1 

migrated to the Urals during MIS 6. Further sampling of pre-LGM Urals brown bears 

would help deduce whether this clade was more common in the region, or an exception. 

This finding combined with the presence of a clade 6 specimen dated to 238.7 kya 

indicates that the past mitogenomic structure of Urals populations was vastly different 

prior to the proliferation of clade 3 bears. Clade 1a and 1b coalesce, during MIS5, this 

MRCA may represent the original wave of bears migrating into Europe that eventually 

gave rise to clades 1a, 1b, and 1c, separating into unglaciated refuges as glacial conditions 

increased towards the end of MIS5 (Kukla et al., 2002; Lang and Wolff, 2011; Rodrigues 

et al., 2017). However, the regions where these refugia were located remain unknown, as 

does the source of these clade 1 bears. 

 

Clade 1a 

Clade 1a in our mitogenomic dataset is largely represented by post-LGM specimens from 

Spain and Northern Europe (Figure 5). However, there appear to be two main lineages 

within clade 1a, one represented by Iberia, and the other northern Europe (Scandinavia 

and the British Isles), which share a common ancestor during MIS 3, around 24.2 kya 
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(95% HPD: 20.3–28.9 kya). The northern European lineage coalesces 21.7 kya (95% 

HPD: 18.2–25.7 kya), but has relatively low posterior support, possibly indicating a more 

star-like rapid expansion of clade 1a during the LGM. We recovered two ancient clade 1a 

haplotypes from bears from Denmark in the northern lineage with a TMRCA of 18.3 kya 

(95% HPD: 15.9–21.3 kya). A modern clade 1a specimen from Sweden fell more closely 

related to Irish brown bears, but could not be excluded as being more closely related to 

these Danish specimens due to low posterior support. This may indicate the expansion of 

clade 1a in northern Europe was rapid, expanding into Scandinavia and the British Isles 

as the ice sheets in Northern Europe began to recede after 22 kya (Stroeven et al., 2016). 

 

Within the Iberian lineage, there appears to be a further split 19 kya (95% HPD: 

15.6–22.7 kya) between the Cantabrian Mountains and Pyrenees through to the French 

Alps (Figure 5). Notably there appears to be over 10,000 years of continuity of this lineage 

in the Cantabrian Mountains. Therefore, it appears that clade 1a structuring and expansion 

coincides with the LGM, which could be argued to be consistent with the E/C model of 

postglacial recolonization. The clade is relatively young, with all diversity coalescing 24.2 

kya. However, it remains difficult to estimate where clade 1a originated. Our data indicate 

it may have originated in Iberia, with a migration into northern Europe during the LGM. 

Alternatively, early arrival of clade 1a post-LGM in the British-Isles, as well as the 

presence of clade 1a in France and Belgium during the LGM, suggest a more northerly 

refugium (Edwards et al., 2014; Ersmark et al., 2019). Yet others have suggested that a 

cryptic Atlantic refugium may be the origin of clade 1a, as Iberia lacks brown bear fossils 

dating to the LGM (García-Vázquez et al., 2019). However, our estimates for the TMRCA 

of Iberian clade 1a bears indicate clade 1a brown bears were present on the peninsula 

during the LGM. Thus, it is likely that clade 1a originated somewhere in Western Europe 

and, leading up to the LGM, dispersed into Iberia and Northern Europe (in areas that 

remained ice-free during the LGM). To fully untangle the origin of clade 1a, mitogenomes 

from clade 1a bears from LGM France and Belgium, as well as the British Isles will be 

key. 
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Figure 5: Bayesian phylogenetic tree of clade 1 brown bears inferred from mitochondrial 

genomes. Bars on nodes represent 95% Highest Posterior Densities for node age estimates 
indicated for nodes with >0.7 posterior support. Branches are coloured by geographic 
region. 

 

Clade 1b 

In our dataset clade 1b is predominately represented by samples from the Alps, Italy, and 

the Balkans (Figure 5). Clade 1b coalesces around 68.9 kya (95% HPD: 60.7–77.7 kya) 

during MIS4, representing the divergence of the lineage leading to the haplotype 

possessed by a 42.2 thousand-year-old Irish bear. Clade 1b subsequently split into two 

lineages around 62.9 kya (95% HPD: 54.8–72.3 kya), seemingly corresponding to the 

Italian peninsula and the Balkan Peninsula as previously described. One pre-LGM Alps 

sample (KX641336) fell within the Italian lineage; however, posterior support for this 

branch is low, perhaps indicating a trichotomy between this sample, the Balkan lineage, 

and the Italian lineage. The TMRCAs of both the Italian and Balkan lineages date to the 

LGM — 25.1 kya (95% HPD: 20.5–30.6 kya) and 26.6 kya (95% HPD: 18.7–35.3 kya), 

respectively — indicating both these lineages expanded following the LGM, consistent 

with E/C model of postglacial recolonization (Hewitt, 1999, 2000, 2001; Taberlet et al., 

1998).   
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Figure 6: Map of Late Quaternary phylogeography of Eurasian brown bears during four time 

periods: A) MIS 5 and MIS 6 (191–71 kya); B) MIS 3 and MIS 4 (71–29 kya); C) MIS 2 
(29–11.7 kya); and D) the Holocene (11.7 kya to historic times). Different coloured circles 
represent ancient and historic subfossil brown bears of different mtDNA clades, 
corresponding to clade colouring in Figures 1 and 4. 
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Of our newly sequenced mitogenomes, only one clade 1b specimen from the Balkan 

lineage was identified, ACAD 147, a historic sample from Vologoda Oblast of Russia, 

extending the range of this clade further east (Figure 5). The rest of our newly sequenced 

mitogenomes grouped with published data from Italian Apennine and Alpine bears. These 

new sequences included 27 Holocene Alpine bears and three Holocene Danish bears 

(Figure 5). The published modern Alpine bear (MF593957) was nested within the ancient 

Holocene diversity of Alpine bears, suggesting the extant small alpine bear populations 

are a descendent of the larger Holocene populations. Bray et al. (2013) identified clade 1b 

of the Italian lineage in mid-Holocene southern Scandinavia (this sample is represented 

by A3931), which is supported by our results, including the detection of two additional 

specimens from Denmark possessing clade 1b. Notably, clade 1b Scandinavian bears are 

not monophyletic and are associated with those from the Alps. All clade 1b Scandinavian 

bears coalesce around 13.6 kya (95% HPD: 10.8–16.4 kya), consistent with the hypothesis 

that these bears represent an early Holocene migration from the Italian peninsula and/or 

Alps (Bray et al., 2013). Clade 1b bears have not been found in modern Scandinavian 

populations. These findings are in contrast to clade 1a bears in Scandinavia, which appear 

to have arrived earlier and have had a more permanent presence in the region (Ersmark et 

al., 2019). 

 

Clade 1c 

We further discovered a clade of bears from the Alps closely related to clade 1a, splitting 

from clade 1a 31.3 kya (95% HPD: 25–38.4 kya) during MIS 3 (Figure 5). Analysis with 

published control region sequences revealed this clade to be clade 1c, first described from 

ancient specimens from France (Valdiosera et al., 2007). Our tip-dating analysis reveals 

that this clade/subclade likely formed as a separation of clade 1a bears into a separate 

refugium prior to the LGM (possibly in the Alps or elsewhere in mid-latitude Europe). 

The TMRCA of the clade 1c bears in this study of 18.3 kya (95% HPD: 14.8–22.5 kya) 

coincides with a range expansion of the Alpine bear population following the LGM. After 

~11 kya clade 1c does not appear to be present in Alpine bears (Figure 4), indicating this 

clade may have gone extinct in the region following the end of the Pleistocene, while clade 

1b appears to expand across in the region. However, clade 1c has been reported to survive 

in France until historic times (Ersmark et al., 2019; Valdiosera et al., 2007) 
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Clade 1e 

As has previously been reported, pre-LGM Iberian brown bear samples fell into the extinct 

clade 1e (Figure 4 & 5). Previously published examples were exclusively from the 

northern regions of Spain (Fortes et al., 2016; Valdiosera et al., 2007; Valdiosera et al., 

2008); however, in the present study we include ancient mitogenomes from Cordoba, in 

the south of Spain, which also belong to clade 1e. This finding suggests that clade 1e was 

found throughout Spain during the Pleistocene and went extinct leading up to and/or 

during the LGM. Clade 1e from pre-LGM Iberia perhaps represent remnants of one of the 

original migrations of brown bears into Europe, while after the LGM clade 1a is found in 

Spain (Figure 4). Conceivably, the extinction of clade 1e may have allowed the subsequent 

expansion of clade 1a into Iberia, refuting the idea that clade 1a was repeatedly restricted 

to Iberia during glacial periods (Davison et al., 2011; Hewitt, 1999, 2000; Taberlet and 

Bouvet, 1994). 

 

Postglacial recolonisation 

Although it appears the traditional E/C model of postglacial recolonisation is far too 

simple to explain brown bear phylogeography and evolutionary history in Europe, our 

results suggest that it cannot be completely rejected. Indeed, expansions of clade 1a and 

1b, as well as migrations of clade 3a bears into Europe, date to during or just after the 

LGM. Indeed, clade 3a was present in Western Europe prior to the LGM, but these bears 

do not appear to contribute to post-LGM bears in Northern and Eastern Europe, while the 

LGM appears to have caused the extinction of clades 1c and 1e, with the latter being 

replaced by clade 1a on the Iberian Peninsula. Despite the population processes leading to 

current phylogeographic patterns in European brown bears being more complex than those 

of Hewitt’s E/C model of postglacial recolonization, it is evident the LGM, and 

presumably previous glacial periods, had a profound impact on the phylogeography and 

evolutionary history of brown bears in Europe. 
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Conclusion: 

This study underscores the importance of ancient DNA for understanding phylogeography 

and the evolutionary history of species. The diversity and phylogeography of Eurasian 

bears east of the Urals was especially poorly understood and lacked extensive ancient 

sampling. We extensively sampled subfossil material across Eurasia, increasing the 

mitogenomic representation of bears from across this area. Our results highlight Asia as 

the heartland for Late Pleistocene brown bear evolution. Further we find that extant brown 

bear diversity in Europe stems from the LGM, emphasising the prominent role that past 

glacial fluctuations had on European fauna. The evolutionary history of brown bears 

across the Eurasian continent is characterised by migrations, expansions, and turnovers, 

strongly associated with climatic and environmental changes during the Late Pleistocene.  
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Figure S1: Plots of median estimated ages from leave-one-out cross-validation in BEAST2 for 

brown bears mitogenomes. Error-bars represent 95% Highest Posterior Density (HPD). The 
real age of the specimen is within the 95% HPD of each estimate for all but ten of the 
specimens. The specimens for which the real age is outside the 95% HPD were still included 
in subsequent analyses as they fall in under-sampled regions of the tree. 
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Figure S2: Estimated ages from BEAST2 of specimens with no associated date or infinite 

radiocarbon dates. Error bars represent 95% higher posterior densities. Specimens are 
coloured according to whether they produced unimodal estimates that were not skewed to 
zero (pass = blue, fail = red). Specimens that failed were excluded from further analyses. 
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Figure S3: Comparison of mean clock rate estimations with 95% Highest Posterior Densities 

(HPD) from BEAST2 for the real data and the 15 date-randomized datasets from the date-
randomization test (DRT). The 95% HPD of the true clock rate does not overlap with the 
95% HPD of each randomization test. 

  

0e+00

1e−08

2e−08

3e−08

C
lo

ck
 R

at
e Type
Randomised

Real



5.3 SUPPLEMENTARY INFORMATION 
 

 
218 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4: Bayesian phylogenetic tree based on 158 bp of the mitochondrial control region from 

brown and polar bears. Branch labels represent posterior support for branches with greater 
than 0.5 posterior support. The time scale is in years before present. Note the placement of 
A96, A137, A154, A1927, and A4098, which are erroneously placed outside of clade 3a 
(compared to results obtained from full mitochondrial genomes). In addition, MH255807 
appears to be closely related to clade 3c. Further, clade 1b and 2b both appear to be 
paraphyletic. 
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Figure S5: Median-joining haplotype network for brown and polar bear 158bp mitochondrial 

control region sequence. The placements of A22313, A22315, and MH255807 are indicated 
with arrows.  
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Figure S6: Maximum likelihood phylogenetic tree based on 278 bp of the cytochrome b 

mitochondrial gene from brown and polar bears. Branch labels represent bootstrap support 
for branches with greater than 50% support. Note the placement of A22313 and A22315 
with ancient Atlas bear sequences from North Africa (from which no published 
mitogenomes are available). Further, clade 3 is poorly resolved 
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Figure S7: Median-joining haplotype network for brown and polar bear 278bp cytochrome b 

mitochondrial gene fragment. The placement of A22313 and A22315 is indicated with 
arrows. 
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Figure S9: Bayesian phylogenetic tree of eastern lineage brown bears inferred from mitochondrial 

genomes. Clade 3a has been collapsed for ease of view. Mitochondrial clade is indicated on 
the right. Bars on nodes represent 95% Highest Posterior Densities for node age estimates 
indicated for nodes with >0.7 posterior support. Branches are coloured by geographic 
region. 
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Figure S10: Bayesian phylogenetic tree of western lineage brown bears inferred from 
mitochondrial genomes. Clade 1 has been collapsed for ease of view. Mitochondrial clade 
is indicated on the right. Bars on nodes represent 95% Highest Posterior Densities for node 
age estimates indicated for nodes with >0.7 posterior support. Branches are coloured by 
geographic region. 
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Table S1: Information on brown bear bone and tooth samples analysed. 
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Table S1 cont. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S2: Information on published read data downloaded from EMBL-EBI 

Sample SRA number/ EBI run 
accession number Age Location mtDNA 

Clade Reference 

GP01 
SRR935602, SRR935609, 
SRR935616, SRR935617, 
SRR941811, SRR941814 

Modern 
Glacier National 
Park, Montana, 
USA 

Clade 4 Liu et al. (2014) 

Kunashir1 SRR7408266, SRR7408267, 
SRR7408268 Modern Kunashir Island, 

Russia Clade 3b Cahill et al. (2018) 

Kunashir2 SRR7408269, SRR7408270 Modern Kunashir Island, 
Russia Clade 3b Cahill et al. (2018) 

Clare11 SRR7408246, SRR7408247, 
SRR7408248, SRR7408249 13240+/-116 Newhall Cave, 

Ireland Clade 2b Cahill et al. (2018) 

Clare12 SRR7408250, SRR7408251, 
SRR7408258, SRR7408257 14533+/-355 Newhall Cave, 

Ireland Clade 2b Cahill et al. (2018) 

Cork38 SRR7408288, SRR7408289, 
SRR7408290, SRR7408291 42232+/-431 Mammoth Cave, 

Ireland Clade 1b Cahill et al. (2018) 

Leitrim4 SRR7408275, SRR7408277 4177+/-89 Pollnam Bear 
Cave, Ireland Clade 1a Cahill et al. (2018) 

Leitrim5 SRR7408273, SRR7408274, 
SRR7408280 5946+/-130 Pollnam Bear 

Cave, Ireland Clade 1a Cahill et al. (2018) 

Limerick10 SRR7408242, SRR7408243, 
SRR7408244, SRR7408245 11073+/-154 Red Cellar Cave, 

Ireland Clade 2b Cahill et al. (2018) 

Sligo5 SRR7408276, SRR7408278, 
SRR7408279, SRR7408281 5416+/-128 Polldownin 

Cave, Ireland Clade 1a Cahill et al. (2018) 

Sligo13 SRR7408255, SRR7408256, 
SRR7408261, SRR7408262 15886+/-166 Plunkett Cave, 

Ireland Clade 2b Cahill et al. (2018) 

Sligo14 SRR7408254, SRR7408253, 
SRR7408259, SRR7408260 16536+/-275 Plunkett Cave, 

Ireland Clade 2b Cahill et al. (2018) 

Waterford33 SRR7408284, SRR7408285, 
SRR7408286, SRR7408287 37311+/-780 Shandon Cave, 

Ireland Clade 2b Cahill et al. (2018) 
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Table S3: Information on mitogenomic sequences downloaded from GenBank. 
 
GenBank Codes Details Reference 

AP012559-AP012597 
35 Modern brown bears from Japan, 
Kuril Islands, Sakhalin, Tibet, Russia, 
and Bulgaria as well as 4 polar bears. 

Hirata et al. (2013) 

GU573485-GU573491 

Four Modern brown bears from 
Alexander Archipelago, two modern 
polar bears and one ancient polar bear 
from Svalbard 

Lindqvist et al. (2010) 

HQ685901-HQ685964 

95 brown bears from European Russia, 
Estonia, and Finland. Note: some 
sequences were duplicated to match 
samples with identical sequences in the 
original study. 

Keis et al. (2013) 

JX196367-JX196369 Three modern Alaskan brown bears Miller et al. (2012) 

KX641315-KX641329, 
KX641336 

15 mid-Holocene brown bears from 
northwestern Spain. One Pleistocene 
Austrian brown bear. 

Fortes et al. (2016) 

KY419593-KY419702 110 modern Eurasian brown bears Anijalg et al. (2018) 

MF593957-MF593979 

Twelve modern Appenine brown bears, 
four brown bears from Greece, five from 
Slovakia, one from the Alps, and one 
from western Spain. 

Benazzo et al. (2017) 

MG066702, MG066702, 
MG066705 

Three historic brown bears from the 
Tibetan Plateau–Himalaya region Lan et al. (2017) 

MH255807 Ancient brown bear (>48000) from 
Yakutia, Russia Rey-Iglesia et al. (2019) 
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Table S4: Information on brown bear control region sequences downloaded from GenBank. 
 

GenBank Codes Details Reference 

AM411397-AM411403 Seven ancient North African and 
European brown bears Calvignac et al. (2008) 

EF488487-EF488505 Sixteen ancient European brown 
bears Valdiosera et al. (2007) 

EU400211-EU400176 Thirty-six Iberian brown bears Valdiosera et al. (2008) 

FN292971, FN292974, 
FN292976-FN292982 

Nine historic and modern Middle 
Eastern brown bears Calvignac et al. (2009) 

HE657199-HE657216 Four North American brown bears 
and 14 European brown bears Hailer et al. (2012) 

HQ602651-HQ602653 Three modern Greek brown bears Kocijan et al. (2011) 
JF900158-JF900175 Fifteen ancient Irish brown bears Edwards et al. (2011) 

KJ638591-KJ638597 Seven modern Bulgarian brown 
bears Frosch et al. (2014) 

KM886400-KM886457 Fifty-eight historic Scandinavian 
brown bears Xenikoudakis et al. (2015) 

MK659705-MK659764 Sixty ancient European brown bear 
sequences Ersmark et al. (2019) 

 
 
 
Table S5: Information on brown bear cytochrome b sequences downloaded from GenBank. 
 

GenBank Codes Details Reference 

FJ792646 North American brown 
bear Unpublished 

FN292983-FN292993 
Eleven modern and 
historic Middle Eastern 
brown bears 

Calvignac et al. (2009) 

EU567098-EU567120 Twenty-three modern 
Eurasian brown bears Korsten et al. (2009) 

AB020905-AB020909 Five modern Japanese 
brown bears Matsuhashi et al. (1999) 

AM411404-AM411406, 
AM944505 

Three North African 
brown bears and a 
European brown bear 

Calvignac et al. (2008) 

HG008039-HG008044 Six modern brown bears 
from the Russian Far East Gus'kov et al. (2013) 

L21879 Modern brown bear Zhang and Ryder (1993) 
U12855 Modern brown bear Lento et al. (1995) 

U18870-U18899 Thirty modern North 
American brown bears Talbot and Shields (1996) 

X82308 Modern brown bear Arnason et al. (1995) 
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Table S6: Information on published carbon and nitrogen isotope sequences used in isotope 
analysis. In bold are the two bear specimens with uncertain provenance/species 
identification. 

Lab. # Field/Museum 
Accession 

Species d15N 
(‰) 

d13C 
(‰) 

Reference 

OxA-9261  AMNH F:AM 30771 Brown bear 7.38 -19.8 Barnes et al. (2002) 
OxA-9799  AMNH F:AM 95598 Brown bear 7.08 -18.2 Barnes et al. (2002) 
OxA-9801  AMNH F:AM 95599 Brown bear 6.45 -19.1 Barnes et al. (2002) 
AA-17509  AMNH F:AM 95601 Brown bear 3.3 -20.03 Barnes et al. (2002) 
OxA-9767  AMNH F:AM 95609   Brown bear 7.66 -19.2 Barnes et al. (2002) 
AA-17506  AMNH F:AM 95612 Brown bear 12.93 -16.8 Barnes et al. (2002) 
OxA-9828  AMNH F:AM 95628   Brown bear 7.47 -18.5 Barnes et al. (2002) 
OxA-9830  AMNH F:AM 95632 Brown bear 8.36 -18.6 Barnes et al. (2002) 
OxA-9797  AMNH F:AM 95639 Brown bear 6.82 -19.0 Barnes et al. (2002) 
OxA-9861  AMNH F:AM 95640 Brown bear 6.38 -19.6 Barnes et al. (2002) 
 OxA-9798  AMNH F:AM 95641 Brown bear 4.82 -18.4 Barnes et al. (2002) 
OxA-9262  AMNH F:AM 95642   Brown bear 8.28 -18.5 Barnes et al. (2002) 
 OxA-9800  AMNH F:AM 95653 Brown bear 8.03 -17.8 Barnes et al. (2002) 
OxA-9709  AMNH F:AM 95659   Brown bear 8.01 -18.5 Barnes et al. (2002) 
OxA-9260  AMNH F:AM 95666   Brown bear 6.25 -19.5 Barnes et al. (2002) 
OxA-9263  AMNH F:AM 95670   Brown bear 5.44 -19.4 Barnes et al. (2002) 
OxA-9796  AMNH F:AM 95671 Brown bear 6.1 -18.9 Barnes et al. (2002) 
OxA-9829  AMNH F:AM 95681 Brown bear 5.97 -19.4 Barnes et al. (2002) 
AA-17507 AMNH 30422 Brown bear 10.31 -19.2 Barnes et al. (2002) 
NA CMN 35965 Brown bear 4.39 -19.82 Barnes et al. (2002) 
NA CMN 38279 Brown bear 6.70 -20.0 Barnes et al. (2002) 
AA-17510 PM collected Brown bear 9.07 -19.1 Barnes et al. (2002) 
OxA-10036 A308/FAM 95657 Brown bear 21.47 -12.3 Barnes et al. (2002) 
SCH-8 NA Brown bear 3.3 -20.6 Bocherens et al. (2011) 
SCH-9 NA Brown bear 2.8 -20.3 Bocherens et al. (2011) 
TUB-82 NA Brown bear 4.0 -19.3 Bocherens et al. (2011) 
TUB-56 NA Brown bear 4.7 -18.7 Bocherens et al. (2011) 
Goyet-A3-29 NA Brown bear 9.0 -19.1 Bocherens et al. (2011) 
Goyet-B4-33 NA Brown bear 8.9 -19.9 Bocherens et al. (2011) 
Goyet-B4-35 NA Brown bear 4.6 -20.0 Bocherens et al. (2011) 
Goyet-B4-36 NA Brown bear 4.0 -20.3 Bocherens et al. (2011) 
Goyet-B4-37 NA Brown bear 6.2 -19.8 Bocherens et al. (2011) 
NA DGI-1 Brown bear 11.8 -20.2 Rey-Iglesia et al. (2019) 
NA CGG_1_0200005 / DGI-2 Brown bear 12 -19.9 Rey-Iglesia et al. (2019) 
NA CGG_1_0200006 / DGI-3 Brown bear 10.4 -19.8 Rey-Iglesia et al. (2019) 
NA DGI-4 Brown bear 9.3 -19.8 Rey-Iglesia et al. (2019) 
NA CGG_1_0200007 /DGI-5 Brown bear 9.65 -21.6 Rey-Iglesia et al. (2019) 
OxA-39369 A1947/ Brown bear 5.33 -19.65 This Study 
TUB-1 NA Cave bear 4.0 -21.0 Bocherens et al. (2011) 
TUB-2 NA Cave bear 1.7 -20.8 Bocherens et al. (2011) 
TUB-3 NA Cave bear 2.9 -20.8 Bocherens et al. (2011) 
TUB-4 NA Cave bear 3.4 -21.0 Bocherens et al. (2011) 
TUB-5 NA Cave bear 2.5 -20.3 Bocherens et al. (2011) 
TUB-6 NA Cave bear 1.8 -20.8 Bocherens et al. (2011) 
TUB-7 NA Cave bear 3.0 -20.3 Bocherens et al. (2011) 
TUB-9 NA Cave bear 2.8 -21.0 Bocherens et al. (2011) 
TUB-55 NA Cave bear 3.9 -21.1 Bocherens et al. (2011) 
TUB-10 NA Cave bear 2.0 -21.2 Bocherens et al. (2011) 
TUB-12 NA Cave bear 2.3 -20.6 Bocherens et al. (2011) 
TUB-13 NA Cave bear 2.3 -21.1 Bocherens et al. (2011) 
TUB-15 NA Cave bear 2.3 -20.7 Bocherens et al. (2011) 
TUB-16 NA Cave bear 1.1 -20.9 Bocherens et al. (2011) 
TUB-17 NA Cave bear 3.0 -20.8 Bocherens et al. (2011) 
TUB-18 NA Cave bear 3.1 -21.2 Bocherens et al. (2011) 
TUB-19 NA Cave bear 2.8 -20.8 Bocherens et al. (2011) 
TUB-54 NA Cave bear 4.0 -21.5 Bocherens et al. (2011) 
TUB-21 NA Cave bear 4.2 -21.1 Bocherens et al. (2011) 
TUB-22 NA Cave bear 4.8 -21.3 Bocherens et al. (2011) 
TUB-85 NA Cave bear 2.8 -20.6 Bocherens et al. (2011) 
TUB-86 NA Cave bear 2.0 -20.5 Bocherens et al. (2011) 
TUB-87 NA Cave bear 2.9 -20.4 Bocherens et al. (2011) 
TUB-89 NA Cave bear 3.1 -20.9 Bocherens et al. (2011) 
TUB-59 NA Cave bear 3.2 -20.7 Bocherens et al. (2011) 
TUB-62 NA Cave bear 2.7 -21.1 Bocherens et al. (2011) 
TUB-65 NA Cave bear 4.2 -20.7 Bocherens et al. (2011) 
TUB-67 NA Cave bear 4.9 -20.9 Bocherens et al. (2011) 
TUB-69 NA Cave bear 3.2 -20.8 Bocherens et al. (2011) 
TUB-70 NA Cave bear 3.7 -20.9 Bocherens et al. (2011) 
TUB-72 NA Cave bear 4.0 -20.6 Bocherens et al. (2011) 
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Lab. # Field/Museum 
Accession 

Species d15N 
(‰) 

d13C 
(‰) 

Reference 

TUB-60 NA Cave bear 2.9 -21.2 Bocherens et al. (2011) 
TUB-61 NA Cave bear 3.8 -20.8 Bocherens et al. (2011) 
TUB-63 NA Cave bear 3.6 -21.0 Bocherens et al. (2011) 
TUB-66 NA Cave bear 4.2 -21.1 Bocherens et al. (2011) 
TUB-68 NA Cave bear 4.4 -20.7 Bocherens et al. (2011) 
TUB-88 NA Cave bear 3.9 -20.8 Bocherens et al. (2011) 
TUB-90 NA Cave bear 4.1 -21.2 Bocherens et al. (2011) 
TUB-64 NA Cave bear 3.5 -21.1 Bocherens et al. (2011) 
TUB-71 NA Cave bear 4.3 -21.2 Bocherens et al. (2011) 
Goyet-A2-3 NA Cave bear 4.5 -22.1 Bocherens et al. (2011) 
Goyet-A2-4 NA Cave bear 3.4 -21.7 Bocherens et al. (2011) 
Goyet-A2-5 NA Cave bear 3.1 -21.6 Bocherens et al. (2011) 
Goyet-A2-6 NA Cave bear 3.0 -22.1 Bocherens et al. (2011) 
Goyet-A3-20 NA Cave bear 2.8 -21.8 Bocherens et al. (2011) 
Goyet-A3-22 NA Cave bear 2.6 -21.5 Bocherens et al. (2011) 
Goyet-A3-23 NA Cave bear 4.3 -21.9 Bocherens et al. (2011) 
Goyet-A3-24 NA Cave bear 4.9 -21.5 Bocherens et al. (2011) 
Goyet-A3-25 NA Cave bear 3.1 -21.4 Bocherens et al. (2011) 
Goyet-A3-26 NA Cave bear 5.8 -21.6 Bocherens et al. (2011) 
Goyet-A3-27 NA Cave bear 4.6 -21.5 Bocherens et al. (2011) 
Goyet-A3-28 NA Cave bear 5.3 -22.3 Bocherens et al. (2011) 
Goyet-B4-9 NA Cave bear 3.5 -21.3 Bocherens et al. (2011) 
Goyet-B4-10 NA Cave bear 4.4 -21.8 Bocherens et al. (2011) 
Goyet-B4-11 NA Cave bear 4.4 -20.9 Bocherens et al. (2011) 
Goyet-B4-12 NA Cave bear 3.7 -20.9 Bocherens et al. (2011) 
Goyet-B4-13 NA Cave bear 4.8 -21.0 Bocherens et al. (2011) 
Goyet-B4-14 NA Cave bear 4.5 -21.8 Bocherens et al. (2011) 
Goyet-B4-15 NA Cave bear 4.6 -21.0 Bocherens et al. (2011) 
Goyet-B4-16 NA Cave bear 6.0 -21.0 Bocherens et al. (2011) 
Goyet-B4-17 NA Cave bear 3.9 -20.8 Bocherens et al. (2011) 
Goyet-B4-32 NA Cave bear 5.2 -21.7 Bocherens et al. (2011) 
Goyet-B4-34 NA Cave bear 2.7 -22.0 Bocherens et al. (2011) 
SC3100 NA Cave bear 3.7 -22.5 Bocherens et al. (2011) 
SC3200 NA Cave bear 5.7 -22.1 Bocherens et al. (2011) 
SC3300 NA Cave bear 6.0 -22.2 Bocherens et al. (2011) 
SC3500 NA Cave bear 5.1 -21.8 Bocherens et al. (2011) 
SC3600 NA Cave bear 3.0 -21.8 Bocherens et al. (2011) 
SC3700 NA Cave bear 6.1 -22.0 Bocherens et al. (2011) 
SC3800 NA Cave bear 5.0 -22.2 Bocherens et al. (2011) 
S-EVA-113 N34.157 Cave bear 7.8 -21.1 Richards et al. (2008) 
S-EVA-114 N34.158 Cave bear 6.7 -21.4 Richards et al. (2008) 
S-EVA-115 N32.30 Cave bear 6.7 -21.2 Richards et al. (2008) 
S-EVA-116 N32.383 Cave bear 7.4 -21.6 Richards et al. (2008) 
S-EVA-117 N33.271 Cave bear 7.8 -21.5 Richards et al. (2008) 
S-EVA-121 O34.21 Cave bear 5.7 -21.2 Richards et al. (2008) 
S-EVA-122 N32.401 Cave bear 9.6 -22 Richards et al. (2008) 
S-EVA-123 N32.402 Cave bear 7.7 -21.5 Richards et al. (2008) 
S-EVA-127 O33.79 Cave bear 8.1 -21.4 Richards et al. (2008) 
S-EVA-128 O33.80 Cave bear 8.4 -21.4 Richards et al. (2008) 
S-EVA-1514 GC Cave bear 7.8 -21.7 Richards et al. (2008) 
S-EVA-1517 GC Cave bear 7.2 -21.6 Richards et al. (2008) 
S-EVA-1520 GC-nest 6 Cave bear 3.6 -20.6 Richards et al. (2008) 
S-EVA-1526 GC-nest 8 Cave bear 7.5 -21.4 Richards et al. (2008) 
S-EVA-1530 M36.1 Cave bear 9.7 -22.1 Richards et al. (2008) 
S-EVA-1534 M36.2 Cave bear 9 -22.1 Richards et al. (2008) 
S-EVA-1537 SM-nest Cave bear 8.4 -21.8 Richards et al. (2008) 
S-EVA-1543 GL Cave bear 8.1 -21.4 Richards et al. (2008) 
S-EVA-1546 GL Cave bear 9.8 -21.9 Richards et al. (2008) 
OxA-15189 N37.147 Cave bear 7.8 -21.1 Richards et al. (2008) 
OxA-15814 O35.28 Cave bear 9.7 -21.1 Richards et al. (2008) 
CBV1 314 Cave bear 3.9 -21.5 Terlato et al. (2019) 
CBV2 374 Cave bear 2.3 -20.4 Terlato et al. (2019) 
CBV4 60 Cave bear 1.9 -20.4 Terlato et al. (2019) 
CBV6 156 Cave bear 1.9 -20 Terlato et al. (2019) 
CBV11 547 Cave bear 7.2 -22.2 Terlato et al. (2019) 
CBV14 561 Cave bear 6 -22.1 Terlato et al. (2019) 
CBV37 TR288 Cave bear 3.4 -21.2 Terlato et al. (2019) 
CBV40 TR692 Cave bear 2.9 -20.7 Terlato et al. (2019) 
CBV41 TR37 Cave bear 2.4 -20.2 Terlato et al. (2019) 
CBV43 TR1166 Cave bear 2.1 -20.1 Terlato et al. (2019) 
CBV47 TR387 Cave bear 5.4 -19.6 Terlato et al. (2019) 
CBV52 TR439 Cave bear 4.2 -20.4 Terlato et al. (2019) 
NA UAM13789 Coastal brown bear 9.97 -18.93 Matheus (1995) 
NA UAM13791 Coastal brown bear 12.16 -17.04 Matheus (1995) 
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Lab. # Field/Museum 
Accession 

Species d15N 
(‰) 

d13C 
(‰) 

Reference 

NA UAM13793 Coastal brown bear 13.5 -16.91 Matheus (1995) 
NA UAM13794 Coastal brown bear 4.37 -20.04 Matheus (1995) 
NA UAM13795 Coastal brown bear 8.87 -17.77 Matheus (1995) 
NA ADFG60 Coastal brown bear 1.13 -21.06 Matheus (1995) 
NA UAM13943 Coastal brown bear 12.39 -19.11 Matheus (1995) 
NA UAM13947 Coastal brown bear 16.03 -15.67 Matheus (1995) 
NA UAM13948 Coastal brown bear 8.91 -18.48 Matheus (1995) 
NA UAM13949 Coastal brown bear 12.95 -15.59 Matheus (1995) 
NA UAM13950 Coastal brown bear 14.1 -15.35 Matheus (1995) 
NA UAM13953 Coastal brown bear 12.99 -13.9 Matheus (1995) 
NA UAM13961 Coastal brown bear 12.89 -17.14 Matheus (1995) 
NA F-2967 Horse 5.5 -21.1 Kirillova et al. (2015) 
NA F-2968 Horse 5.6 -21.1 Kirillova et al. (2015) 
NA F-2969 Horse 7.7 -20.5 Kirillova et al. (2015) 
NA F-2970 Horse 8.9 -20.7 Kirillova et al. (2015) 
NA F-2971 Horse 6.6 -21.1 Kirillova et al. (2015) 
NA F-2972 Horse 5.9 -21 Kirillova et al. (2015) 
NA F-2974 Horse 5.9 -20.9 Kirillova et al. (2015) 
NA F-2976 Horse 9 -22 Kirillova et al. (2015) 
NA F-2977 Horse 5.5 -20.7 Kirillova et al. (2015) 
NA F-2979 Horse 5.4 -21.3 Kirillova et al. (2015) 
NA F-2982 Horse 5.8 -21 Kirillova et al. (2015) 
NA F-2987 Horse 6.2 -21.2 Kirillova et al. (2015) 
NA F-2988 Horse 6.6 -20.9 Kirillova et al. (2015) 
NA F-2989 Horse 6.1 -21.3 Kirillova et al. (2015) 
NA F-2990 Horse 3.7 -21 Kirillova et al. (2015) 
NA F-2993 Horse 6.7 -21.1 Kirillova et al. (2015) 
NA F-3002 Horse 7.7 -21.1 Kirillova et al. (2015) 
NA F-3058 Horse 6.9 -22 Kirillova et al. (2015) 
NA F-3059 Horse 8.9 -20.8 Kirillova et al. (2015) 
CAMS119975 AMNH F:AM 142422 Horse 3 -21.5 Leonard et al. (2007) 
CAMS119985 AMNH F:AM 142431 Horse 3.9 -21.1 Leonard et al. (2007) 
CAMS119986 AMNH F:AM 142432 Horse 2.5 -21.5 Leonard et al. (2007) 
CAMS119987 AMNH F:AM 142433 Horse 2.9 -20.7 Leonard et al. (2007) 
CAMS119988 AMNH F:AM 142434 Horse 3.8 -21 Leonard et al. (2007) 
CAMS120077 AMNH F:AM 60003 Horse 1.4 -21.3 Leonard et al. (2007) 
CAMS119972 AMNH F:AM 60017 Horse 3.6 -21.6 Leonard et al. (2007) 
CAMS119984 AMNH F:AM 60019 Horse 1.7 -21.5 Leonard et al. (2007) 
CAMS120064 AMNH F:AM 60028 Horse 4.4 -20.6 Leonard et al. (2007) 
CAMS120069 AMNH F:AM 60033 Horse 2.6 -20.9 Leonard et al. (2007) 
CAMS120067 AMNH F:AM 60221 Horse 0.7 -21.7 Leonard et al. (2007) 
CAMS-92078  IK01-080 Horse 5.4 -21.1 Mann et al. (2013) 
CAMS-92079 IK01-121 Horse 6.8 -21.2 Mann et al. (2013) 
CAMS-92081 IK01-150 Horse 7.2 -21.2 Mann et al. (2013) 
CAMS-92083 IK01-183 Horse 5.3 -21.7 Mann et al. (2013) 
CAMS-120717  IK01-218 Horse 6 -20.9 Mann et al. (2013) 
CAMS-92089 IK01-282 Horse 4.5 -20.9 Mann et al. (2013) 
CAMS-120646   IK01-320 Horse 5.6 -20.9 Mann et al. (2013) 
CAMS-121733   IK01-320 Horse 5.6 -20.9 Mann et al. (2013) 
CAMS-121736 IK01-368 Horse 7.6 -21.2 Mann et al. (2013) 
CAMS-92093  IK01-369 Horse 5.9 -21.2 Mann et al. (2013) 
CAMS-91957 IK01-459 Horse 7.6 -20.9 Mann et al. (2013) 
CAMS-91959 IK02-026 Horse 1.7 -20.7 Mann et al. (2013) 
CAMS-120650  IK02-072 Horse 7.7 -21.3 Mann et al. (2013) 
Beta-331863 IK06-17 Horse 6.5 -20.9 Mann et al. (2013) 
Beta-331865 IK07-06 Horse 5.8 -21.1 Mann et al. (2013) 
Beta-331867 IK08-078 Horse 7 -20.6 Mann et al. (2013) 
Beta-331868 IK08-079 Horse 5.7 -21.2 Mann et al. (2013) 
Beta-331870 IK08-080 Horse 4.8 -21.1 Mann et al. (2013) 
Beta-331869 IK08-082 Horse 7.4 -21 Mann et al. (2013) 
Beta-331871 IK09-51 Horse 5.5 -21.6 Mann et al. (2013) 
Beta-331873 IK10-074 Horse 5 -20.6 Mann et al. (2013) 
Beta-331874 IK11-001 Horse 4.5 -20.8 Mann et al. (2013) 
Beta-331875 IK12-010 Horse 4.3 -20.4 Mann et al. (2013) 
Beta-331876 IK12-011 Horse 4.2 -20.9 Mann et al. (2013) 
Beta-331877 IK12-015 Horse 6.4 -20.7 Mann et al. (2013) 
Beta-339273 IK12-063 Horse 7.7 -20.5 Mann et al. (2013) 
CAMS-91789 IK98-0009 Horse 5.9 -21 Mann et al. (2013) 
CAMS-91790 IK98-0112 Horse 7.9 -21.1 Mann et al. (2013) 
CAMS-120721  IK98-0288 Horse 6.8 -21.5 Mann et al. (2013) 
CAMS-91791 IK98-0394 Horse 6 -21.4 Mann et al. (2013) 
CAMS-91793 IK98-0539 Horse 7.9 -21.2 Mann et al. (2013) 
CAMS-91796 IK98-1142 Horse 5.1 -21.1 Mann et al. (2013) 
CAMS-91797 IK98-1176 Horse 5.1 -20.9 Mann et al. (2013) 
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Lab. # Field/Museum 
Accession 

Species d15N 
(‰) 

d13C 
(‰) 

Reference 

CAMS-91799 IK99-111 Horse 3.1 -20.8 Mann et al. (2013) 
CAMS-91801 IK99-129 Horse 4.9 -20.3 Mann et al. (2013) 
CAMS-120675 IK99-244 Horse 8.2 -20.6 Mann et al. (2013) 
CAMS-91806 IK99-254 Horse 9.8 -21.2 Mann et al. (2013) 
CAMS-120679  IK99-367 Horse 5.3 -20.6 Mann et al. (2013) 
CAMS-120680  IK99-383 Horse 6.4 -21.3 Mann et al. (2013) 
CAMS-120681  IK99-404 Horse 8.3 -22.1 Mann et al. (2013) 
CAMS-92074 IK99-790 Horse 5.9 -20.7 Mann et al. (2013) 
CAMS-92075 IK99-806 Horse 5.8 -20.8 Mann et al. (2013) 
Beta-331879 KIK08-01 Horse 4.6 -21.6 Mann et al. (2013) 
Beta-331880 KIK12-02 Horse 5.7 -21 Mann et al. (2013) 
CAMS-91958 T02-001 Horse 3.7 -20.8 Mann et al. (2013) 
CAMS-120712 T04-004 Horse 6.1 -21.3 Mann et al. (2013) 
Beta-331884 TIT10-36 Horse 6.2 -21.4 Mann et al. (2013) 
Beta-331885 TIT10-37 Horse 9.1 -20.9 Mann et al. (2013) 
Beta-331886 TIT10-38 Horse 5.1 -21.3 Mann et al. (2013) 
Beta-331888 TIT11-070 Horse 7.4 -20.6 Mann et al. (2013) 
Beta-331889 TIT11-071 Horse 6.8 -20.9 Mann et al. (2013) 
Beta-331890 TIT11-072 Horse 8.1 -21.7 Mann et al. (2013) 
KSL-8 NA Lion 5.4 -18.8 Bocherens et al. (2011) 
KSL-9 NA Lion 5.8 -18.5 Bocherens et al. (2011) 
RAN-32lion NA Lion 7.0 -18.4 Bocherens et al. (2011) 
TUB-73 NA Lion 10.2 -18.8 Bocherens et al. (2011) 
TUB-74 NA Lion 8.4 -20.7 Bocherens et al. (2011) 
TUB-75 NA Lion 8.2 -18.1 Bocherens et al. (2011) 
TUB-76 NA Lion 7.9 -17.5 Bocherens et al. (2011) 
Goyet-A2-7 NA Lion 8.4 -18.5 Bocherens et al. (2011) 
Goyet-A3-1 NA Lion 8.4 -18.7 Bocherens et al. (2011) 
Goyet-B5-1 NA Lion 7.3 -18.7 Bocherens et al. (2011) 
Goyet-B5-2 NA Lion 9.6 -20.7 Bocherens et al. (2011) 
Goyet-B5-3 NA Lion 8.9 -19.2 Bocherens et al. (2011) 
Goyet-B5-4 NA Lion 6.3 -19.5 Bocherens et al. (2011) 
NA F-150 Lion 12.4 -19.8 Kirillova et al. (2015) 
NA F-2450 Lion 9.6 -19 Kirillova et al. (2015) 
NA F-2651 Lion 11.8 -20.4 Kirillova et al. (2015) 
NA F-2671 Lion 12 -19.1 Kirillova et al. (2015) 
NA F-2678/118 Lion 12.5 -19.8 Kirillova et al. (2015) 
NA F-2678/119 Lion 12.5 -19.9 Kirillova et al. (2015) 
NA F-2678/120 Lion 12.5 -19.9 Kirillova et al. (2015) 
NA F-2678/48 Lion 12.6 -19.9 Kirillova et al. (2015) 
NA F-2678/69 Lion 11.4 -19.2 Kirillova et al. (2015) 
NA F-278 Lion 12 -20.2 Kirillova et al. (2015) 
AA-48271 IK01-112 Lion 7.8 -18.8 Mann et al. (2013) 
CAMS-91784 IK02-164 Lion 11 -19.5 Mann et al. (2013) 
CAMS-53910 IK98-436 Lion 8.8 -18.1 Mann et al. (2013) 
Beta-339277 TIT12-07 Lion 9.2 -18.7 Mann et al. (2013) 
OxA-13473# IK01-409 Lion 8.03 -18.5 Mann et al. (2013) 
AMNH 42067 NA Polar bear 21 -15.3 Horton et al. (2009) 
AMNH 42068 NA Polar bear 21 -15.5 Horton et al. (2009) 
AMNH 15600 NA Polar bear 18.8 -14.3 Horton et al. (2009) 
AMNH 28105 NA Polar bear 19.4 -15.3 Horton et al. (2009) 
AMNH 22997 NA Polar bear 18.9 -15.8 Horton et al. (2009) 
AMNH 28104 NA Polar bear 18.2 -14.6 Horton et al. (2009) 
AMNH 34424 NA Polar bear 21.8 -16.6 Horton et al. (2009) 
AMNH 15601 NA Polar bear 19.5 -14.6 Horton et al. (2009) 
AMNH 80118 NA Polar bear 19 -15.2 Horton et al. (2009) 
AMNH 42081 NA Polar bear 20.6 -14.9 Horton et al. (2009) 
NMNH 275124 NA Polar bear 20.4 -15.5 Horton et al. (2009) 
NMNH 448769 NA Polar bear 20.1 -13 Horton et al. (2009) 
AMNH 34422 NA Polar bear 21.3 -17.4 Horton et al. (2009) 
NMNH 200770 NA Polar bear 22.4 -16.4 Horton et al. (2009) 
AMNH 14886 NA Polar bear 19.4 -14.3 Horton et al. (2009) 
NMNH 275117 NA Polar bear 20.2 -15 Horton et al. (2009) 
AMNH 42082 NA Polar bear 19.5 -14.2 Horton et al. (2009) 
MCZ 5792 NA Polar bear 19.8 -15 Horton et al. (2009) 
AMNH 42080 NA Polar bear 21 -15.4 Horton et al. (2009) 
AMNH 34423 NA Polar bear 21.3 -16.7 Horton et al. (2009) 
AmNH 34421 NA Polar bear 21.6 -16.5 Horton et al. (2009) 
NMNH 154207 NA Polar bear 23.4 -16.3 Horton et al. (2009) 
NMNH 154206 NA Polar bear 23.5 -17.5 Horton et al. (2009) 
AMNH 19255 NA Polar bear 19.3 -15.1 Horton et al. (2009) 
NMNH 13999 NA Polar bear 22 -15.5 Horton et al. (2009) 
NMNH 13361 NA Polar bear 19.6 -13.1 Horton et al. (2009) 
OxA-9259 CMN 49874 Short-faced bear 10.2 -17.9 Barnes et al. (2002) 
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d13C 
(‰) 

Reference 

AA17511 AMNH F:AM 30492 Short-faced bear 8 -17.8 Fox-Dobbs et al. (2008) 
AA17512 AMNH F:AM 30494 Short-faced bear 7.7 -17.8 Fox-Dobbs et al. (2008) 
AA17513 AMNH A-37-10 Short-faced bear 9.5 -18.3 Fox-Dobbs et al. (2008) 
AA17514 AMNH 99209 Short-faced bear 8.5 -18.1 Fox-Dobbs et al. (2008) 
NA NMC 7438 Short-faced bear 10.31 -18.49 Matheus (1995) 
NA NMC 36236 Short-faced bear 9.79 -18.07 Matheus (1995) 
NA NMC 37577 Short-faced bear 9.74 -18.96 Matheus (1995) 
NA FAM 30492 Short-faced bear 8.04 -17.80 Matheus (1995) 
NA FAM 30494 Short-faced bear 6.97 -18.14 Matheus (1995) 
NA FAM 95607 Short-faced bear 8.23 -18.10 Matheus (1995) 
NA FAM 99209 Short-faced bear 8.54 -18.12 Matheus (1995) 
NA FAM 127688 Short-faced bear 6.60 -17.63 Matheus (1995) 
NA FAM 127691 Short-faced bear 9.37 -19.04 Matheus (1995) 
NA FAM 127699 Short-faced bear 8.57 -18.79 Matheus (1995) 
NA AMNH30494 Short-faced bear 7.66 -17.82 Matheus (1995) 
NA A-37-10 Short-faced bear 9.51 -18.26 Matheus (1995) 
NA A-197-2972 Short-faced bear 8.37 -18.13 Matheus (1995) 
NA A-556 Short-faced bear 8.01 -18.49 Matheus (1995) 
NA L-gs-33 Short-faced bear 8.25 -18.39 Matheus (1995) 
NA "Birch" Short-faced bear 8.04 -18.07 Matheus (1995) 
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6.1 Thesis summary 

6.1.1 Research summary 

The use of ancient DNA (aDNA) has already contributed greatly to our understanding of 

faunal responses to climate and environmental change during the Late Quaternary, which 

would otherwise remain obscure. In my thesis I used phylogenetic, phylogeographic, and 

population genetic analyses to investigate a number of outstanding questions pertaining 

to the evolutionary history of bears. My results revealed pronounced responses to changes 

in the Pleistocene climate and environment and further add to the growing body of 

evidence suggesting hybridisation played a major role in the evolutionary history of bears. 

I further extended the methods I used to another non-model carnivoran, the lion (Panthera 

(leo) spp.), revealing analogous phylogeographic patterns to those observed in brown 

bears. Below I have summarised the findings of each of my chapters and discussed my 

findings in reference to the larger field of Quaternary biogeography. 

 

6.1.2 Chapter 2: Lions and brown bears colonised North America in multiple 

synchronous waves of dispersal across the Bering Land Bridge 

In Chapter 2, using phylogenetic analyses based on whole mitochondrial genomes, I 

identified multiple, synchronous waves of migration and extinction in Eastern Beringian 

brown bears (Ursus arctos) and lions (Panthera spp.). Phylogenetic model testing 

revealed that these migrations from Eurasia into North America were biased towards even-

numbered marine isotope stages (MIS) — colder glacial periods — when the Bering Land 

Bridge was likely subaerial. The rate of migration was 13 times higher during these cold 

periods compared to that during odd-numbered MISs, when the Bering Land Bridge was 

likely submerged or highly erratic. Additionally, both taxa went extinct in Eastern 

Beringia during MIS 3, before subsequently reinvading during MIS 2 (the LGM), hinting 

at larger ecosystem changes during this warmer and wetter period before the LGM. 

Notably many endemic North American taxa, such as Arctodus simus and New World 

stilt-legged horses, survived this period. My results indicate that the Bering Land Bridge 

played a pivotal biogeographic role in the formation and maintenance of North America 

Pleistocene megafauna guilds. Further, my results also refined the timing of arrival of 

brown bears and lions in North America, pushing back the time of colonisation for brown 
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bears (from ~70 kya to ~177 kya), and nearly halving the inferred time of colonisation by 

lions (from ~340 kya to ~165 kya). The synchronicity of the patterns observed in both 

taxa suggest that my results are not a singular oddity but may reflect a wider pattern 

followed by taxa that invaded North America during the Pleistocene, with suggestions of 

similar patterns in other taxa such as foxes. These findings demonstrate the merit of using 

ancient DNA to investigate the response of megafauna to the ever-changing environment 

of the Pleistocene. 

 

6.1.3 Chapter 3: Phylogeography of the extinct North American giant short-faced 

bear (Arctodus simus), with comments on their paleobiology 

In Chapter 3 I investigated the phylogeography and taxonomy of the giant short-faced 

bear, Arctodus simus. Within A. simus two subspecies have been described, largely based 

on morphological size (Richards et al., 1996): the smaller A. s. simus and the larger A. s. 

yukonensis. However, the size variation on which these subspecies were described has 

also been argued to represent sexual dimorphism in a single taxon (Schubert, 2010; 

Schubert and Kaufmann, 2003). I produced mitochondrial genomes from 31 Late 

Pleistocene A. simus specimens representing both putative subspecies (or size morphs) 

and combine the data with size estimates and genetic sex estimation. I found no evidence 

for the existence of distinct subspecies of A. simus during the Late Pleistocene, with the 

sole A. s. simus specimen sampled nested within the mitochondrial phylogeny. I also found 

that, without exception, large specimens were males and small specimens were females. 

Notably, only females were found associated with cave sites, suggesting that this species 

may have used caves for denning. Further, A. simus lacked any clear phylogeographic 

signal in the Late Pleistocene and harboured relatively low mitogenomic diversity, 

comparable to diversity observed in severely bottlenecked species and long-ranging 

carnivores. These findings suggest that A. simus had experienced severe bottlenecks 

leading up to its extinction during the Pleistocene/Holocene transition or that its low 

genetic diversity was a result of its paleoecology: likely a long-ranging, solitary carnivore. 

 

6.1.4 Chapter 4: Ancient genomes reveal hybridisation between extinct short-faced 

bears and the extant spectacled bear (Tremarctos ornatus) 

Ursid phylogenetics has long been problematic, with studies showing discordance 

between mitochondrial and nuclear loci (Kumar et al., 2017; Kutschera et al., 2014; Pages 
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et al., 2008). With the increasing use of whole genome data, much of the ursid 

phylogenetic tree has now been resolved, revealing an evolutionary history characterised 

by rapid speciation and hybridisation (Barlow et al., 2018; Kumar et al., 2017; Kutschera 

et al., 2014). However, research has largely focused on extant species, in particular ursine 

bears. In Chapter 4 I expanded our knowledge of ursid phylogenetics by focusing on the 

short-faced bears (Tremarctinae), sequencing whole genome data from two extinct taxa: 

Arctodus simus and Arctotherium sp. My results revealed further discordance between 

nuclear and mitochondrial data, with A. simus and the extant spectacled bear (Tremarctos 

ornatus) being more closely related according to most nuclear loci, whereas mitochondrial 

data suggests that the spectacled bear and Arctotherium are more closely related. I found 

that approximately one third of the genome data supported the mitochondrial topology, 

which combined with the results of genome-wide D-statistics, suggests extensive 

hybridisation. My findings suggest that mitochondrial-nuclear discordance among 

tremarctine bears likely stems from extensive hybridisation between the spectacled bear 

and one of the extinct short-faced bear lineages. 

 

Additionally, I found support for hybridisation between the extant spectacled bear 

and ursine bears, while the extinct lineages did not show this pattern. This suggests that 

during the Pleistocene, spectacled bears hybridised with ursine bears — likely brown or 

American black bears (Ursus americanus) — despite their phylogenetic distance. This 

finding in addition to the extensive hybridisation revealed within short-faced bears adds 

to the growing evidence that hybridisation in the animal kingdom is common across 

deeply divergent taxa and suggests that widely accepted species concepts requiring 

reproductive isolation may need to be revisited.  

 

6.1.5 Chapter 5: From Iberia to Siberia: Phylogeography and evolutionary history 

of Eurasian brown bears

In Chapter 5 I produced mitogenomes from subfossil brown bears across the Eurasian 

range of the species — from Western Beringia, the greatest extent of Siberia, to Iberia — 

and used these new data to refine the evolutionary history of brown bears. Using Bayesian 

phylogenetic analyses I resolved many of the deeper nodes within the brown bear 

phylogenetic tree and revealed finer scale population dynamics. This is the first study with 

extensive sampling of ancient and historic brown bear mitogenomes from Siberia, and 
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greatly increases the number of ancient and historic mitogenomes available, not only in 

terms of geography, but also phylogenetic representation. My results further support Asia 

(largely northern Asia) as a hotspot for the evolution of the brown bear. Brown bears are 

believed to have evolved in Asia from the Etruscan bear, with the oldest fossils being 

found in China (Kurtén, 1968; McLellan and Reiner, 1994; Pasitschniak-Arts, 1993). 

Clade 3 appears to have arisen in Siberia, splitting into three subclades during late MIS 6 

or early MIS 5: clades 3a, 3b, and 3c, centred around the Urals/Caucasus region, Altai-

Sayan region, and likely the Russian Far East respectively. Within these clades there were 

pronounced migrations out of their respective regions coinciding with drastic changes in 

environment, leading to migrations into North America and Europe. Compared to Russian 

bears, the evolutionary history of European bears is more recent, with a lot of pre-LGM 

diversity being replaced during the Pleistocene/Holocene transition. Although the patterns 

I observed do not strictly follow the traditional expansion/contraction (E/C) model of post-

glacial colonisation, the hypothesis cannot be entirely rejected. Most of recent European 

brown bear diversity coalesces during the LGM or immediately post-LGM, indicative of 

expansions associated with the retreat of ice sheets and warming climate, emphasising the 

important role glacial fluctuations had on the biogeography of temperate species. 

 

There has been a tendency in brown bear phylogeographic studies (this thesis included) 

to subdivide populations by mitochondrial clade membership (e.g., Clade 3a, Clade 4, 

Clade 1b, etc). This is likely an oversimplification of brown bear population dynamics 

and could be viewed as reductive. Although this would be a fatal practice in the study of 

many species, brown bears exhibit a strong degree of philopatry, and therefore, 

mitochondrial clades are often geographically structured and appear to reflect genuine 

demographic events (bottlenecks, migrations, etc.), as demonstrated in Chapter 2 and 

research investigating mitochondrial phylogeography in North American and Japanese 

brown bears (Barnes et al., 2002; Hirata et al., 2013; Leonard et al., 2000; Masuda et al., 

1998; Waits et al., 1998). Ultimately, to ascertain whether the assumptions required to 

refer to populations by their mitochondrial clade membership are reasonable in brown 

bears, the population structure would need to be tested using nuclear markers. The 

addition of nuclear markers could potentially hint at vastly different population dynamics 

to those inferred from mitochondrial studies or reiterate and support the findings of 

mtDNA studies. However, even if nuclear markers conflict mtDNA evidence, it does not 

render past findings incorrect or obsolete, merely suggesting the maternal and paternal 
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lineages underwent different demographic histories. Small-scale modern phylogeography 

studies utilising nuclear markers have found patterns both supporting (Norman et al., 

2013; Xenikoudakis et al., 2015) and conflicting (Hirata et al., 2017; Tumendemberel et 

al., 2019) mitochondrial studies, with conflicts being interpreted as male-specific 

geneflow. However, no studies have used nuclear markers to test widespread 

phylogeographic patterns with the incorporation of ancient specimens from across the 

historic brown bear range (akin to the ancient sampling in Chapter 5). 

 

 

6.2 Synthesis and General Discussion 

6.2.1 Carnivore guilds of the Pleistocene: Diversity and niche partitioning 

The role and importance of carnivores during the Pleistocene is often underestimated 

based off inferences drawn by comparison to the diversity of modern carnivore guilds, 

which are relatively depleted in both size and diversity (Dalerum et al., 2009; Van 

Valkenburgh et al., 2016). Today only two hypercarnivores (i.e. diet consisting of >80% 

animal protein) exist that exceed 100kg, the lion (Panthera leo) and tiger (Panthera 

tigris), the geographical ranges of which do not overlap. However, during the Pleistocene 

multiple hypercarnivores coexisted in the same ecosystems. For example, in North 

America, lions, dire wolves, sabre-toothed cats (Smilodon), scimitar-toothed cats 

(Homotherium), and giant short-faced bears (Arctodus simus) co-existed. Meanwhile in 

Eurasia, lions, scimitar-toothed cats, and massive spotted hyenas (or cave hyenas; Crocuta 

crocuta spelaea) all coexisted. In addition to these hypercarnivores there were also more 

large omnivorous taxa such as brown bear and cave bears, and smaller predators such as 

wolves, lynx, wolverines, and foxes. Many of these extinct species, or extinct forms of 

extant species, were much larger than modern counterparts, and therefore could likely 

predate on much larger prey species. Intuitively, these large and diverse carnivore guilds 

were supported by a greater diversity of megaherbivores, with the estimated prey size 

ranges of many of these large Pleistocene hypercarnivores including infant and juvenile 

proboscideans (elephants and their extinct relatives such as mammoths and mastodons) 

(Van Valkenburgh et al., 2016). 
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In Chapter 2 I showed synchronous waves of migration into North America by two 

large carnivorans, lions (Panthera spelaea) and brown bear (Ursus arctos). These species 

were invading an area with an already diverse carnivore guild, which included Smilodon, 

Homotherium, dire wolves, and Arctodus simus. Notably, the association and interactions 

between A. simus and brown bears has been discussed previously, with some evidence 

indicating competition between the two taxa (Barnes et al., 2002; Steffen and Fulton, 

2018). Comparing A. simus to lions and brown bears it is evident that A. simus does not 

show the same temporal phylogeographic patterns (see Chapter 3). This possibly indicates 

that A. simus populations were more established and stable in North America during the 

Late Pleistocene. Interestingly, when brown bears and lions went locally extinct in eastern 

Beringia during MIS 3, A. simus survived. This discrepancy may indicate that the 

ecological changes that caused the extirpation of brown bears and lions did not affect A. 

simus in the same way. Possibly A. simus was able to utilise prey species which did not 

experience the same population declines as other herbivores that lions and brown bears 

were not as efficient in hunting (for example, horses, which exhibit a more browsing 

lifestyle compared to other megaherbivores, which may be better supported by peatland 

type biomes).  

 

In Chapter 2 I revealed that not only did brown bears and lions appear to go extinct 

during MIS 3 in eastern Beringia, not reinvading the region until MIS 2, but that A. simus 

appeared to be unaffected. In Chapter 3 I investigated A. simus phylogeography and 

notably found a relative lack of diversity, which I interpreted as either being the result of 

bottlenecks or a function of their ecological niche. Notably, within the A. simus dataset, 

most samples dated to less than 50 thousand years old (kya), with most diversity 

coalescing 77 kya. However, two specimens returned estimated ages greater than 100 kya. 

Indeed, these older specimens (ACAD 183 and ACAD 439) show more divergent 

haplotypes, suggesting genetic and haplotypic diversity may have been greater earlier in 

the Pleistocene. Furthermore, there does appear to be a temporal grouping of samples in 

Eastern Beringia, with samples younger than ~33 kya falling more tipward in the tree and 

with older samples falling more basal. Indeed, all Eastern Beringia samples younger than 

33 kya coalesce 38 kya. This could indicate a haplotypic shift at this time, similar to that 

seen in brown bears (and lions) (Barnes et al., 2002), or a reduction in diversity leading 

up to the extinction of A. simus in Eastern Beringia by 20 kya. However, this observation 

could also be driven by five of the six samples from Cripple Creek in Alaska — all dating 
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to older than 45 kya — grouping together in a more basal clade. The fact that these five 

samples are of similar age and are all closely genetically related may be suggestive of 

finer scale population structure at certain times during the Pleistocene. 

 

It may be possible that A. simus experienced temporary local extinction during MIS 

3 as well but was able to quickly recolonise from South of the Ice. This would be difficult 

to detect as I have demonstrated that A. simus lacks clear phylogeographic patterns, 

although there does appear to be a haplotypic shift in the Eastern Beringian population of 

A. simus around 33 kya, as described above. Alternatively, this situation could reflect 

competition between A. simus and both lions and brown bears in Eastern Beringia, where 

the niche of A. simus overlaps the niches of both lions and brown bears. With the 

ecological changes in Eastern Beringia, the environment may have switched to one where 

the landscape could no longer support a large number of megacarnivore populations, and 

as A. simus populations may have been more established (due to A. simus possibly having 

been exposed to glacial cycles in situ throughout its evolution) it was possibly able to 

outcompete both brown bears and lions. It has been previously suggested that A. simus 

likely dominated meat resources over brown bears in North America during the 

Pleistocene, supported by differences in dietary isotopes, which suggest that brown bears 

filled a less carnivorous niche when A. simus was present (Barnes et al., 2002; Bocherens 

et al., 1995; Matheus, 1995). If A. simus filled a more carnivorous niche, it is highly likely 

it would have competed for meat resources with lions, potentially stealing kills from lions 

in North America, a tactic that has been proposed for A. simus previously (Matheus, 1995; 

Matheus, 2003; Sorkin, 2006). 

 

During MIS 2, as sea level fell and Bering Land Bridge once again connected 

Eurasia and North America, the landscape of Eastern Beringia cooled and dried, and 

peatlands were replaced with steppe environments, which supported larger megaherbivore 

communities (Mann et al., 2015), presumably allowing the reinvasion of brown bears and 

lions back into the region (Chapter 2). However, as these taxa were reinvading, A. simus 

went locally extinct. It is possible that the environmental conditions were unfavourable 

for A. simus populations at this time, although it might be expected that A. simus would 

have been exposed to similar environmental fluctuations throughout its evolution without 

being extirpated from the region. Competition with brown bears and/or lions may have 

played a part in the extirpation of A. simus from Eastern Beringia at this time. Lions and 
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brown bears had been coexisting in Eurasia for most of their evolutionary history, so it 

may be expected that the two taxa displayed sufficient niche partitioning to allow 

coexistence, where lions occupied a more active hypercarnivorous niche and brown bears 

occupied a more omnivorous, opportunistic niche. On the other hand, A. simus only 

coexisted with lions and brown bears when they first entered North America during MIS 

6, with most of their evolutionary history being separate. The niche of A. simus is 

somewhat less clear, although much evidence points towards a more hypercarnivorous, 

potentially scavenger niche, likely with overlapping the niches of both lions and brown 

bears (Barnes et al., 2002; Matheus, 1995). Isotopes have also shown that the brown bears 

migrating into North America during MIS 2 had elevated N15 signal, indicative of a more 

carnivorous diet that may overlap with that of A. simus, resulting in more direct 

competition between the species (Barnes et al., 2002). 

 

It must be noted that A. simus coexisted with brown bears and lions in Eastern 

Beringia for over 100 kya, beginning when the lions and brown bears invaded North 

America, likely during MIS 6 (Chapter 2). There has also been evidence for coexistence 

at sites across North America, with A. simus and brown bears found at the same sites at 

very similar times (Kurtén and Anderson, 1974; Steffen and Fulton, 2018). This suggests 

that there was likely at least some degree of niche partitioning between these taxa, which 

has been supported by isotopes (Barnes et al., 2002; Matheus, 1995). However, it may be 

that the changes in the palaeoenvironment during MIS 2 forced these taxa to become more 

direct competitors. One major factor that distinguishes MIS 2 from other glacial periods 

is that during this time humans arrived into Eastern Beringia likely for the first time 

(Ardelean et al., 2020; Hoffecker et al., 2016; Lesnek et al., 2018; Moreno-Mayar et al., 

2018; Vachula et al., 2019; Waters, 2019). Human presence in the region may have been 

the defining factor in tipping the balance for human-naïve A. simus populations, causing 

them to be extirpated while brown bear and lion populations — that had been exposed to 

humans in Eurasia for thousands of years — were able to coexist. Undoubtedly, one of 

the key factors in the extinction of A. simus is the lack of a Holarctic distribution, without 

Eurasian populations as a source for replenishment, as seen in lions and brown bears 

(Chapter 2), bison (Froese et al., 2017; Shapiro et al., 2011), foxes (Kutschera et al., 2013; 

Statham et al., 2014), and potentially wolves (Loog et al., 2020) throughout the Late 

Pleistocene.  
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Another widespread carnivore during the Pleistocene was the scimitar-toothed cat 

(Homotherium). It has been argued that scimitar-toothed cats went extinct in Eurasia 

during the Middle Pleistocene (Antón, 2013; Serangeli et al., 2015; Turner, 1997). 

However, a single Late Pleistocene specimen has been uncovered from the North Sea in 

Europe, dating to around 30 kya (Reumer et al., 2003). This Late Pleistocene sample was 

included in a recent study with samples from North America, which suggested they likely 

represented members of the same species (Paijmans et al., 2017). It has been argued that 

this specimen could represent a very small relict population surviving in Europe (Paijmans 

et al., 2017; Reumer et al., 2003), however, there is a temporal gap of over 200,000 years 

in the fossil record between this specimen and the next youngest, reliably dated specimens 

on the continent (Serangeli et al., 2015). Alternatively, it is possible the European 

specimen may have represented a migration from North America or Asia during the Late 

Pleistocene between 77–216 kya, replacing populations that went extinct during the 

Middle Pleistocene (Paijmans et al., 2017). This interval spans two major glacial stages 

corresponding to MIS 4 and 6, both of which were associated with migrations of brown 

bears and lions across the Bering Land Bridge into North America (Chapter 2). Although 

more Late Pleistocene Homotherium specimens from Eurasia and North America would 

need to be sampled to analyse the demographic scenario responsible for the observed 

pattern, it putatively appears that while brown bears and lions were invading North 

America from Eurasia, scimitar-toothed cats were reinvading Europe, possibly across the 

Bering Land Bridge in the opposite direction. 

 

Population replacements have been further uncovered in grey wolves (Canis lupus), 

another carnivoran with a Holarctic distribution. Mitogenomic studies have revealed that 

extant grey wolves descend from a single Pleistocene population (Fan et al., 2016; 

Freedman et al., 2014; Skoglund et al., 2015), with Loog et al. (2020) suggesting that an 

expansion occurred ~25 kya from a Beringian or Northeast Asian population. This 

expansion appears to have replaced earlier Pleistocene populations throughout Eurasia 

and North America (Loog et al., 2020). Although it is possible this population may have 

originated in Eastern Beringia/North America, when interpreted alongside my data from 

brown bears and lions (Chapter 2), Western Beringia/Northeast Asia may be the more 

likely source. It appears that as brown bears and lions were reinvading Eastern Beringia 

during the LGM, grey wolves were likely doing the same. However, sampling of North 

American ancient specimens has been biased towards the end of the Pleistocene/Holocene, 
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meaning the possibility of earlier waves of migrations into North America analogous to 

brown bears and lions could not be investigated (Loog et al., 2020). 

 

Chapter 2 may give the impression that Beringia was a form of a biotic highway, 

allowing the ubiquitous exchange of fauna between the old and new world. However, it is 

noteworthy that a number of otherwise widespread taxa never migrated across the Bering 

Land Bridge. Notably, within Carnivora, A. simus never migrated into Eurasia despite 

being a key member of the Eastern Beringian carnivore guild. While cave bears and cave 

hyenas never migrated into North America, despite being found in the Russian Far East 

(Baryshnikov, 2014; Boeskorov et al., 2012; Sher et al., 2011; Werdelin, 1991). This begs 

the question of why taxa such as brown bears, lions, wolves, foxes, wolverines, and 

(presumably) scimitar-toothed cats all crossed the Bering Land Bridge while the likes of 

A. simus, cave hyenas, and cave bears did not. The answer may lie in the ecological niches 

these taxa occupied. It may be that A. simus could never colonise Eurasia due to 

competitive exclusion. Two main theories on the ecological niche of A. simus have been 

proposed: 1) A. simus was a wide-ranging hypercarnivore (Barnes et al., 2002; Bocherens 

et al., 1995; Kurtén, 1967; Kurtén and Anderson, 1980; Matheus, 1995; Matheus, 2003), 

possibly with a high degree of scavenging (Matheus, 1995; Matheus, 2003; Sorkin, 2006), 

or 2) Some authors have argued that A. simus occupied a niche similar to cave bears of 

Eurasia, being relatively herbivorous (Emslie and Czaplewski, 1985; Figueirido et al., 

2009; Figueirido et al., 2010; Sorkin, 2006). The latter hypothesis has been supported by 

a lack of tooth wear patterns that would otherwise be expected if the diet of A. simus 

included a large proportion of scavenging (Donohue et al., 2013; Emslie and Czaplewski, 

1985; Figueirido et al., 2017). If A. simus did occupy a more herbivorous niche than has 

been previously assumed this could explain why neither cave bears nor A. simus migrated 

across the Bering Land Bridge: cave bears and A. simus may have been direct competitors. 

If the former hypothesis for the niche of A. simus is true, the niche of A. simus would 

potentially overlap largely with cave hyena (Stuart and Lister, 2014) and therefore may 

explain why cave hyenas never colonised North America. Although it currently appears 

cave hyenas did not occupy latitudes as far north as would be required to cross the Bering 

Land Bridge (Stuart and Lister, 2014; Werdelin, 1991), this may still explain why A. simus 

did not seem to establish populations in Eurasia. 
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6.2.2 Brown bear-polar bear relationship 

Brown bears are mitochondrially paraphyletic, with polar bears nested within the diversity 

of brown bears (Cronin et al., 1991; Shields et al., 2000; Talbot and Shields, 1996). The 

extant polar bear clade 2b is sister to clade 2a brown bears from the ABC islands, a 

relationship that has been concluded to result from capture of a polar bear mitochondrial 

genome by brown bears (Cahill et al., 2013; Cahill et al., 2015; Edwards et al., 2011; 

Hailer et al., 2012; Miller et al., 2012). However, assuming clade 2a is of polar bear origin, 

polar bears still remain paraphyletic. This has been described as possibly the result of the 

original ancestral polar bear mtDNA lineage being replaced by that of brown bears 

(Hailer, 2015; Hailer et al., 2012; Hailer and Welch, 2016). In this case, the TMRCA of 

the split between clade 1 and clade 2a plus 2b would represent the timing of this initial 

introgression of a brown bear mitogenome into polar bears, here 240.2 kya (95% HPD: 

218.7–263.6 kya; Chapter 5). It has also been suggested that the entirety of the western 

brown bear clade (clades 1 and 2) is of polar bear origin (i.e. clade 1 also represents an 

additional earlier major introgression of a polar bear mitochondrial clade into brown 

bears). In that case, clade 2a and clade 1 would represent separate introgression events of 

polar bear mitochondrial clades into brown bears, with the split between 2a and 2b 

representing the more recent introgression in North America (TMRCA: 102.2 kya, 95% 

HPD: 91.6–114.6 kya; Chapter 5), and the split between clade 1 and 2 representing the 

earlier introgression at 240.2 kya.  
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Figure 1: Mitochondrial phylogenies of brown and polar bears representing two hypotheses 

regarding the origin of western lineage clades. (A) The original polar bear mtDNA has not 
been sampled and the split of clade 1 with clade 2a and 2b represents introgressive 
hybridisation of brown bear mtDNA into polar bears, with subsequent capture of this clade 
2a back into brown bears on the Alexander Archipelago. (B) As per Hassanin (2015) the 
split of the eastern and western lineages represents the speciation of polar bears from brown 
bears. Subsequently, clade 2c, 1 and 2a are captured by brown bears throughout the 
Pleistocene. 

 

It is of note that clade 2 is not monophyletic (see Chapter 5), with clade 2c falling 

basal within the western lineage, sister to clade 1 and the rest of clade 2. Thus, under the 

hypothesis that the western brown bear clade is of polar bear origin we would expect clade 

2c to represent another introgression of a polar bear mitochondrial genome into brown 

bears. Furthermore, under this hypothesis the split of eastern and western lineages would 

represent the divergence of brown and polar bears. In Chapter 5 we estimated this split at 

376 kya (95% HPD: 344.4–409 kya), which lies within the credibility interval of more 

widely accepted population split estimates 343–479 kya (Hailer and Welch, 2016; 

Hassanin, 2015; Liu et al., 2014), but is considerably younger than other genomic 

estimates of the divergence of brown and polar bears (Kumar et al., 2017; Miller et al., 

2012). Under this hypothesis, the original polar bear mtDNA lineage would still be nested 

within brown bears, due to the presence of Clade 6 in Asia and the extinct North African 

clade. However, this paraphyly is not necessarily surprising considering that these basal 

clades likely diverged before the evolution of polar bears from Eurasian brown bears 

isolated in the eastern Siberian arctic during a glacial period (Kurtén, 1964; McLellan and 

Reiner, 1994). 
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Irrespective of the scenario that led to the patterns above, what is clear from both 

Chapter 2 and 5, as well as published data (Cahill et al., 2013; Cahill et al., 2018; Cahill 

et al., 2015; Edwards et al., 2011; Hailer, 2015; Hailer and Welch, 2016; Miller et al., 

2012), is that the capture of polar bear mitogenomes appears to be ubiquitous across the 

northerly range of brown bears. During the Pleistocene, clade 2a was not only restricted 

to the ABC islands of Alaska as today but appears to have been found across the Alexander 

Archipelago, the Haida Gwaii archipelago, and possibly onto mainland Alaska (Chapter 

2). Notably in Chapter 5 we recovered a clade 2b bear in the Altai Mountains. To eliminate 

the possibility that this Altai sample may actually be from a polar bear with incorrect 

provenance information, I compared the isotopic signature of the specimen to those of 

brown bears and polar bears (as well as other taxa). The isotopic signature of this specimen 

was typical of terrestrial brown bears, similar to other brown bears in the Altai region, and 

completely separate from those of polar bears, indicating this specimen is from a brown 

bear. Clade 2b has previously been found in ancient brown bears from Ireland, the result 

of hybridisation with polar bears (Cahill et al., 2018; Edwards et al., 2011). This Altai 

Clade 2b specimen indicates that brown bears likely hybridised with polar bears in other 

regions across their range, here likely in the Russian Arctic Circle where polar and brown 

bear ranges would have overlapped at different times during the Pleistocene. Hybrids 

dispersing out of the region likely carried this haplotype to the Altai Mountains, similar 

to hypotheses on how polar bear ancestry was dispersed from other hybridisation hotspots 

(Cahill et al., 2013; Cahill et al., 2018; Cahill et al., 2015). 

 

For admixture studies, the use of a non-admixed “control” genotype is essential for 

accurate estimation of admixture rates and direction, and in many recent studies Swedish 

brown bear genomes have been used as a baseline (Cahill et al., 2018; Cahill et al., 2015; 

Schaefer et al., 2017). The implications of additional brown-polar bear admixture hotspots 

and the possibility of widespread hybridisation across the northerly range of brown bears 

means that these Swedish brown bears are unlikely to be unadmixed. Consequently, many 

estimates of admixture proportions are likely inaccurate and require adjustment. The use 

of a more reliable baseline would produce more accurate results concerning the nature and 

degree of admixture. Ancient individuals, or individuals from more southerly extents of 

the brown bear range (e.g., Tibetan Plateau, Middle East) may provide a more reliable un-

admixed baseline than currently available genomic data. 
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In Chapter 2, the addition of ancient clade 2a sequences from Haida Gwaii and 

Alexander Archipelagos allowed me to refine age of this brown bear clade in the Pacific 

Northwest, indicating that clade 2a brown bears have likely been present in the region for 

at least 20 thousand years (ky). Notably, I also recovered a clade 2a specimen from the 

LGM of the interior of Alaska (specifically the Fairbanks area). The provenance of this 

Fairbanks sample has been previously questioned, and stable isotopes suggest a marine 

origin of this specimen, therefore it seems likely that this specimen originates from the 

coast (Barnes et al., 2002). What remains unknown regarding this specimen is whether it 

represents a brown bear, polar bear, or a hybrid. Cahill et al. (2013)’s hypothesis was that 

clade 2a resulted from a conversion of a polar bear population into brown bears after being 

isolated in the Pacific Northwest at the end of the Pleistocene. Consequently, if this 

Fairbanks specimen is from a brown bear, or a hybrid, the capture of clade 2a in browns 

bear would be moved back to at least the LGM. If this sample is genetically a polar bear, 

then this could represent the original polar bear population of the Pacific Northwest that 

was eventually converted to predominantly brown bear ancestry by extensive migration 

of male brown bears into the region. Isotopic data I analysed in Chapter 5 placed this 

Fairbanks specimen well outside the isotopic range for brown bears and closer to that of 

modern polar bears, suggesting this sample likely represents a polar bear. Therefore, based 

on the current evidence, I favour the hypothesis that this specimen represents the original 

polar bear population. 

 

6.2.3 Ancient DNA benefits museum collections 

Throughout my thesis, I have demonstrated that ancient DNA is useful for revealing 

unknown information about samples, including the true species identification. In Chapters 

2, 4, and 5, I revealed a number of specimens with incorrect species identification. This 

included misidentification of closely related species, such as putative brown bear samples 

that were actually cave bears, American black bears, or Asiatic Black bears, and putative 

A. simus specimens that were actually brown bears or American black bears. However, I 

also uncovered more surprising misidentifications. For example, when screening samples 

for Chapter 3, I found that several putative A. simus specimens were actually from lions, 

horses, and peccaries. Most notably in Chapter 3, one of the A. simus specimens analysed 

was actually from the enigmatic dire wolf (Canis dirus; Perri et al. (2021)), which had not 

previously been recorded from the site. Such misidentifications can have drastic impacts 
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on the understanding of faunal assemblages from sites as these identifications involve 

species from completely different ecological niches.  

 

Another noteworthy case of sample misidentification, which may have ecological 

explanations, was revealed in Chapter 2. Of the lion specimens that I extracted and 

sequenced, all the specimens that fell within the earlier, pre-LGM Eastern Beringian 

Panthera spelaea clade had been misidentified as brown bears. This finding is noteworthy 

as it may reflect morphological and ecological differences between the two different 

clades of P. spelaea that occupied Eastern Beringia during the Late Pleistocene. These 

earlier lions may have been larger, which resulted in their remains being misidentified as 

brown bears, a considerably more massive species. Measurement of these misidentified 

specimens, combined with isotopic analyses, may reveal whether these lions were larger 

on average, or the pattern of misidentification is purely coincidental. Differences in 

ecology between these temporally and genetically distinct populations of spelaea lions 

may not be entirely surprising. Isotopic analyses have revealed ecological difference 

between brown bears occupying pre-LGM Eastern Beringia and those from the LGM to 

present day (Barnes et al., 2002). 

 

The advent of high-throughput sequencing has undoubtedly been essential in 

genetically identifying misidentified specimens. Traditional PCR and Sanger sequencing 

methods are likely to fail on misidentified specimens depending on the phylogenetic 

distance of misidentification and specificity of the primers used. High-throughput 

sequencing can also reveal other information about samples that may benefit museum 

collections. For example, genetic sexing was used by Gower et al. (2019) (see Appendix 

1), revealing extensive biases in the sex ratios of mammalian fossil and museum 

collections. In both brown bears and bison, up to 75% of fossil specimens were male. 

Skewed sex ratios towards males have also been reported in mammoth collections 

(Pecnerova et al., 2017). In Appendix 1 we further showed that this deviation from a 1:1 

sex ratio is pervasive across mammalian museum collections, with the majority of 

collections across all mammalian orders showing a bias towards males. We attributed this 

bias to the general characteristic in mammals that males have wider geographic ranges, 

increasing the geographic spread of remains and therefore chance of detection when 

randomly sampling across a landscape. Further sexual dimorphic behaviours and 

appearance were argued as possible further drivers of biased sex ratios. In Chapter 3 I 
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extended the examination of sex ratios to A. simus specimens, finding 55% of the 

specimens were male. This is much lower than the 75% observed in brown bear 

collections (Appendix 1) and suggests no discernible sex bias in collections from this 

species. The observation of no clear sex bias in the A. simus dataset further supports the 

idea discussed in Chapter 3 that female A. simus did not show strong philopatry, with 

females possibly dispersing equal distances to males. However, the sample size of A. 

simus (n=29) was much lower than those in Appendix 1, meaning that further sampling 

across the range of A. simus may be necessary to gain more accurate estimates of sex 

ratios.  

 

I used Bayesian tip-dating analyses in three of my chapters, which involved both 

cross-validation methods and age estimation for specimens with no date information (or 

infinite radiocarbon dates). Cross-validation is done in order to determine whether a 

dataset has sufficient temporal information to estimate the age of undated specimens, 

however, it can also identify problematic radiocarbon dates. In Chapter 3, cross-validation 

allowed the identification of a likely incorrect radiocarbon date. In this case, the 

radiocarbon date of the specimen did not overlap with the credibility interval of the date 

estimation from the cross-validation procedure. This is likely an erroneous radiocarbon 

date rather than a failure of the cross-validation procedure, as radiocarbon dates from all 

other specimens were successfully recapitulated, and this specimen was very closely 

related to other specimens (radiocarbon dated to over 20 kya older) from the same site. 

Furthermore, the radiocarbon date was from 1999 (Harington et al., 2003), predating wide 

usage of ultrafiltration pre-treatment methods for radiocarbon dating, which drastically 

increase the accuracy of radiocarbon dating. Possibly, one of the most advantageous uses 

of Bayesian tip-dating analyses is the ability to estimate the ages of specimens that exceed 

the limit of radiocarbon dating (~50 kya). Under some circumstances (i.e. where 

comparative datasets exits), this method therefore represents a cheap and accurate 

alternative to direct date estimation (especially if genetic information is going to be 

generated anyway).
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6.3 Limitations and Future Directions 

6.3.1 Choice of loci 

Mitochondrial data are widely used in ancient DNA (aDNA) research, as due to 

degradation of DNA over time, the high copy number of the mitochondrial genome 

increases the chance of recovery from ancient specimens when compared to nuclear DNA 

(Ho and Gilbert, 2010). Furthermore, while the characteristics of mtDNA make it suitable 

for ancient genetic analysis, the mitochondrion’s maternal inheritance, lack of 

recombination, and high mutation rate make it ideal in evolutionary studies. However, due 

to these same characteristics of mitochondria, inferences based on mitochondrial data are 

biased towards the maternal line, lacking information from the paternal line, and only 

represent the evolutionary history of a single locus. As a result, demographic and 

evolutionary scenarios constructed from mtDNA are biased and come associated with 

considerable error, and therefore can be vastly different from those constructed using 

nuclear data (Heled and Drummond, 2008). 

  

The majority of ancient DNA research and phylogeographic research pertaining to 

brown bears has focused on small fragments of the mitochondrial genome (generally 

cytochrome b or control region). More recent adoptions of mitogenomics — the use of the 

full mitochondrial genome (or mitogenome) — have revealed more well resolved brown 

bear phylogenies and refined evolutionary scenarios (Anijalg et al., 2018; Benazzo et al., 

2017; Fortes et al., 2016; Hirata et al., 2013; Keis et al., 2013; Lan et al., 2017; Rey-Iglesia 

et al., 2019). Of these, only three studies utilised mitogenomes from ancient brown bear 

specimens (Anijalg et al., 2018; Fortes et al., 2016; Rey-Iglesia et al., 2019), a total of 17 

published ancient mitogenomes: 15 from Spain, one from Austria, and one from the 

Russian Far East. Between Chapter 2 and Chapter 5, I have produced 217 ancient/historic 

brown bear mitogenomes, representing a 13-fold increase in the number of ancient brown 

bear mitogenomes available. These included the first mitogenomes from a number of 

clades: clade 1c, 1e, 3c, 2c, and the extinct North African clade. My adoption of large-

scale ancient mitogenomics resulted in a refined branching order of the clades, revealing 

discordance between reconstructions based on the control region and the whole 

mitogenome.  
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For example, the phylogenetic placement of clade 2c as basal within the western 

lineage, resulting in the paraphyly of clade 2 (see Chapter 5). Furthermore, my full 

mitogenome approach identified problems with haplotyping more basal members of 

clades. Notably, Russian samples that had previously been haplotyped to clade 4 were 

found to actually represent basal clade 3a lineages, while a published putative clade 3c 

bear instead fell out as basal within clade 3b. These findings cast doubt on reports of clade 

3c and 4 bears in Iberia (García-Vázquez et al., 2019; Valdiosera et al., 2008), which 

mitogenomics will be able to verify. Together, my results suggest that inferences on deep 

phylogenetics and surprising haplogroup assignments based on small mitochondrial 

fragments need to be approached sceptically. One of the major limitations of Chapters 2, 

4, and 5, was my reliance on mitochondrial DNA (mtDNA) alone for testing 

phylogeography and forming hypotheses on the evolutionary history of bears.  

 

Despite the mitogenome’s high information content and utility in phylogeographic 

studies, it is not without its pitfalls. The mitogenome technically represents a single locus 

and therefore may not be an accurate reflection of the true species phylogeny. The 

mitogenome is often plagued by two phenomena: Incomplete Lineage Sorting (ILS) and 

introgression through hybridisation. Chapter 4 highlighted issues with building species 

phylogenies based on mitochondrial data alone, where the phylogeny based on 

mitogenomes and nuclear data were highly discordant: mitochondrial genomes suggest 

that extant spectacled bears and Arctotherium spp. are more closely related, while whole 

genome data suggested the extant spectacled bear and Arctodus simus are more closely 

related. In light of recent findings on how hybridisation can impact the genome of a 

species (Li et al., 2019), there remains a reasonable possibility that the mitochondrial 

phylogeny more closely represents the true species phylogeny. However, even if this is 

true, the reliance on mitochondrial data alone does not reveal the extensive hybridisation 

that would be required to result in approximately 70% of the genome supporting an 

alternative topology. Either way, the growing evidence of wide-scale hybridisation across 

the animal kingdom suggests that strict trees may not be the best representation of true 

species relationships.  

 

Phylogenetic trees are often used to describe the evolutionary history of taxa, 

although it is becoming increasingly evident that trees often fail to accurately describe 

more complex evolutionary histories involving phenomena such as hybridisation, 
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introgression, horizontal gene transfer, where discordance among different loci is 

common. In order to address situations plagued by phylogenetic discordance, some 

authors have used phylogenetic clouds, such as those implemented in DensiTree, which 

overlay all trees on top of one another instead of forming a single consensus tree 

(Bouckaert, 2010). In other cases phylogenetic networks have been implemented, which 

still retain some of the tree like structure (Huson and Bryant, 2006). Network analyses 

have even been produced that take into account ILS, resulting in networks focused on 

detecting phenomena such as hybridisation (Than et al., 2008). These methods create clear 

indications of phylogenetic discordance, however, it is often difficult to quantify and 

interpret the output of such analyses when compared to traditional phylogenetic methods. 

Other, more easily interpreted approaches have been produced, such as the DiscoVista 

analyses I used in Chapter 4, which quantify gene tree discordance using simple summary 

statistics (Sayyari et al., 2018). Although this method does not produce a consensus tree 

and is far more user-driven (i.e., requires user to input hypothetical topologies to be 

tested), it creates simple, easy to interpret results for focal branches, which were sufficient 

for the hypotheses I tested in Chapter 4. 

 

6.3.2 Limitations of different loci 

Increasing the number of loci in analyses greatly reduces the amount of error of associated 

with demographic and evolutionary inferences (Gill et al., 2013; Heled and Drummond, 

2008). Therefore, adoption of nuclear SNP assays or whole genome data can greatly 

improve inferences of demographic and evolutionary history and allow more complex 

analyses such as explicit tests of admixture (Durand et al., 2011), PSMC (Li and Durbin, 

2011), and MSMC (Schiffels and Durbin, 2014), while also providing a more holistic 

reconstruction (including both the maternal and paternal lines). However, the recovery of 

nuclear DNA from ancient specimens is much more challenging and expensive than for 

mtDNA, due to the lower copy number and greater sequence length of the former. After 

an organism dies, cellular repair mechanisms no longer function and the DNA is exposed 

to numerous factors that threaten its stability (Dabney et al., 2013; Hofreiter et al., 2001; 

Paabo et al., 1989; Paabo et al., 2004), including digestion by intracellular nucleases and 

microorganisms. Under certain conditions (e.g., extreme cold, anoxia) the impact of these 

digestive mechanisms may be inhibited, however, even then the DNA is still exposed to 

hydrolytic and oxidative damage (Dabney et al., 2013; Hofreiter et al., 2001; Paabo et al., 
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1989; Paabo et al., 2004). As a result, aDNA is highly fragmented (average fragment 

length often <100 bp), contains lesions that block DNA replication, and contains 

miscoding lesions primarily resulting from cytosine deamination (Hofreiter et al., 2001; 

Paabo et al., 1989; Paabo et al., 2004). Therefore, endogenous molecules frequently make 

up less than 1% of the total DNA extracted from many ancient specimens. 

 

Despite challenges involved with obtaining nuclear data from ancient samples, 

advances in sequencing technologies and the development of hybridisation enrichment 

techniques have resulted in the sequencing of ancient nuclear DNA becoming more 

common (Briggs et al., 2009; Carpenter et al., 2013; Knapp and Hofreiter, 2010; Lan and 

Lindqvist, 2019; Orlando et al., 2015). Although, shotgun sequencing (as implemented in 

Chapter 4) is only cost effective for the best-preserved samples, hybridisation enrichment 

can potentially overcome many of the technical downfalls and expenses associated with 

shotgun sequencing. Hybridisation enrichment involves enriching the relative proportion 

of preselected loci in an aDNA library, lowering the sequencing effort required to obtain 

useful genetic information from a specimen (Briggs et al., 2009; Carpenter et al., 2013; 

Knapp and Hofreiter, 2010; Lan and Lindqvist, 2019; Orlando et al., 2015). However, the 

pre-selection of loci can result in ascertainment bias which can make inferences of 

hybridisation, demographic history, and natural selection erroneous when compared to 

whole genome data (Lachance and Tishkoff, 2013). This is especially important for brown 

bears where polar bear ancestry is widespread (Cahill et al., 2013; Cahill et al., 2018; 

Cahill et al., 2015). The development of methods to produce panels of unascertained SNPs 

will be crucial to overcome this problem and allow reliable use of nuclear SNP panels for 

ancient ursid specimens (potentially in combination with whole genome data). 

 

The degradation of DNA is correlated with temperature (Hofreiter et al., 2015), with 

DNA surviving longer in colder conditions (Figure 2). Therefore, the geographic 

distribution of well-preserved specimens is biased towards colder regions (such as 

permafrost regions of Russia and North America). While older specimens in warmer 

regions such as the contiguous USA, Middle East, North Africa, much of South America, 

and Southern Europe are much less likely to harbour well preserved DNA molecules. In 

these cases, mitogenomics is more practical due to the higher copy number of 

mitochondria, though even targeting mitogenomes does not guarantee sufficient DNA for 

molecular analyses. Therefore, although samples from colder regions may be sufficient 
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for nuclear analyses, it is unlikely that samples from warmer regions will have sufficient 

DNA preservation for many nuclear analyses, even when using hybridisation enrichment 

methods. Therefore, for large portions of brown bears range and that of many other bear 

species, which include large regions in the lower latitudes, where the preservation of 

nuclear DNA is limited. Other taxa are exclusively found in the mid to lower latitudes, 

meaning the retrieval of nuclear DNA is unlikely, let alone on a large-scale required for 

investigations of phylogeography. This ultimately means that mitochondrial DNA will 

continue to be an important locus in ancient DNA research as it’s the only DNA that will 

likely be amplified from subfossils in many regions across the world. This is epitomised 

in Chapter 4, where the preservation of the sample from Natural Trap Cave (South of the 

Ice) was considerably lower than the samples from Eastern Beringia. As the purpose of 

Chapters 2, 3, and 5 was to investigate phylogeography and evolutionary history across 

large geographic regions — where DNA from lower latitudes was required — I used 

mitogenomes as nuclear DNA would likely be nearly impossible or cost ineffective to 

amplify from many of the samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Estimations of the survival of DNA fragments of 150 bp (A) and 25 bp (B) after 

10,000 years based on long-term environmental temperature fluctuations for open 
(surface) and cave (deep) sites. Figure reproduced from Hofreiter et al. (2015). 

 
 

may have been recovered from the horse had a more efficient
extraction method been used (Fig. 2). Furthermore, there is
evidence that – at least in some cases – only a small portion
(or even none) of the endogenous DNA in a bone can be
solubilised into extraction buffer [44], and even if DNA is
obtained, most methods recover only a small proportion of
the aDNA present [45]. Improvements in DNA extraction
techniques are probably still possible for all ancient
substrates; thus, although these experiments are often
tedious, we strongly encourage systematic studies aimed at
optimising aDNA recovery from all types of substrates in
order to increase time depth, breadth of sampling locations
and endogenous DNA recovery. If possible, selection of
samples with high levels of endogenous DNA also reduces
sequencing costs. Hair, although rarely preserved has proved
easy to decontaminate [46, 47], while a recent paper
highlights the value of using the non-vascularised petrous
bone within the skull [48].

Next generation sequencing has radically
changed aDNA research

Following DNA extraction, the next step in aDNA analyses is
either PCR amplification or, increasingly, the construction of
next generation sequencing libraries (a trend that is likely to
accelerate). Although the first aDNA studies applying NGS
methods used standard library construction protocols, it soon
became clear that these result in the loss of a substantial

percentage of DNA, and are therefore not really suitable for
subfossil samples [49, 50]. However, only a small number of
studies have aimed at improving the conversion efficiency of
aDNA into NGS libraries [51–53]. For the most commonly used
NGS technology in aDNA studies, the Illumina platform, the
method currently believed to be the most efficient is a protocol
based on single stranded DNA ligation [54] with conversion
efficiencies of about 30–70% [55]. Although it is unlikely that
values close to 100% are realistic, it might be possible to
further improve conversion efficiency.

NGS libraries can be sequenced directly (shotgun
metagenomics) or be enriched for certain sequence regions
using hybridisation capture and then sequenced. Since
introduction of NGS technologies, the most critical parameter
for aDNA analyses – the number of reads that can be
processed in a single sequencing run – has increased from
about 300,000 in the first generation of 454 sequencers [14] to
an announced 1.8 billion reads for the next upgrade of the
Illumina HiSeq (HiSeqXTMTen: http://investor.illumina.com/
phoenix.zhtml?c¼ 121127&p¼ irol-newsArticle&ID¼ 1890696).
Although there has been a lot of discussion about true single
molecule and nanopore sequencing [56, 57], it is uncertain
when these technologies may be routinely available for aDNA
studies. Independent of the development of new technologies,
the current throughput together with foreseeable progress
makes whole genome sequencing (of both nuclear and
mitochondrial genomes) increasingly cost-effective (Fig. 3).
However, unless there is another substantial increase in the
number of reads that can be processed, the low percentage of
endogenous DNA in many ancient samples makes population
genomic projects based on aDNA unfeasible for most species.
There may be some exceptions to this prediction though, for
example humans and domesticated species for which an
increasing number of modern genomes are available for
comparison [58] or samples with favourable preservation,
such as mammoths with a large fossil record from permafrost
regions. For the former species, biological insights are

Figure 1. Estimation of DNA survival. Expected survival of DNA
after 10,000 years, for 150 bp fragments (A) and 25bp fragments
(B). While it is clear that the chances of any DNA surviving in desert
and tropical regions is minimal for any fragment length, in temperate
regions the recovery of short fragments is much more likely than that
of longer ones.

M. Hofreiter et al. Prospects & Overviews....

286 Bioessays 37: 284–293,! 2014 WILEY Periodicals, Inc.
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6.3.3 Evolutionary history of tremarctine bears 

Although the sequencing of the first whole genome data from extinct short-faced bears in 

Chapter 4 greatly increased our understanding of evolution of Tremarctinae, my study was 

limited by a number of factors. Firstly, bears are non-model organisms, and the reference 

genomes available do not have the necessary associated information available to 

disentangle which of the two dominant topologies definitively reflects the species tree. 

For example, currently there is no linkage map for either the polar bear or giant panda 

reference genomes. If a linkage map were to be produced it could be used to determine 

which tremarctine bear topology was enriched in autosomal low recombining regions, 

likely representing the species tree (Li et al., 2019). The sequencing of genomic material 

from other extinct short-faced bears could also help disentangle the relationships within 

Tremarctinae. For example, sequencing DNA from the Florida spectacled bear 

(Tremarctos floridanus) — hypothesised to be the ancestor of the modern spectacled bear 

(Tremarctos ornatus) (Kurtén, 1966) — would provide considerable information about 

the evolutionary history of these bears. If the Florida spectacled bear showed similar levels 

of hybridisation with Arctotherium as the modern spectacled bear, we might then favour 

the hypothesis that Tremarctos and Arctotherium are sister taxa with extensive 

hybridisation with Arctodus in North America. While if the Florida spectacled bear 

genome supported the dominant topology (Arctodus and Tremarctos as sister taxa) and 

showed an absence of hybridisation with Arctotherium this would almost certainly suggest 

the results of Chapter 3 are the result of extensive hybridisation between Arctotherium 

and the spectacled bear. A Florida spectacled bear genome would also allow the 

hybridisation of tremarctine bears with ursine bears to be scrutinised with more accuracy.  

 

In addition to the Florida spectacled bear, the sequencing of genomic data from more 

northerly Arctotherium populations would help in further understanding the timing and 

degree of hybridisation with the spectacled bear (assuming the dominant topology 

represents the species tree). Although the sequencing of genomic data from other extinct 

short-faced bears would be highly beneficial to disentangling the evolutionary history of 

Tremarctinae, the likelihood of obtaining genomic data from crucial specimens is 

extremely low. Because this hybridisation likely occurred in tropical or subtropical 

regions of the Americas, poor DNA preservation will likely hamper any efforts to recover 
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usable DNA (as discussed in 6.3.2). It may be that producing linkage maps for extant bears 

represents the best avenue for disentangling the evolutionary history of Tremarctinae. 

 

6.3.4 Future directions for brown bear mitogenomics 

Although in this thesis I undertook an extensive investigation of brown bear 

mitogenomics, there are still many questions that remain to be answered. More extensive 

sampling of LGM and pre-LGM samples from Europe will offer a more complete picture 

of the how European brown bears responded to the changing climate and extent of the 

European ice sheets, reveal how European brown bears are related to bears from the west, 

and provide more evidence about the existence and location of potential European glacial 

refugia. More extensive sampling of ancient bears from the Middle east, North Africa, and 

Central Asia would help deduce the origin and spread of the less well represented brown 

bear clades (Clade 5, 6, 7, and the extinct North African Clade), while dates from extinct 

North African clade specimens would help refine the brown bear mitochondrial phylogeny 

as a whole. More extensive sampling of Pleistocene Russian Far East (Western Beringian) 

brown bears will be pivotal for understanding the origin and spread of clade 2c and clade 

3c bears into North America, while sampling of ancient individuals from Japan would 

clarify the timing and number of waves of migration of brown bears into Japan. With 

respect to Japan, of particular interest is whether the extinct clade 2c and clade 3c bears 

dispersed to Japan as they did to North America, and whether the timing of arrival of 

extant clades in Japan matches that seen in North America. Finally, extensive sampling of 

ancient polar bears, although difficult due to the marine niche occupied by the species, 

would help refine the mitochondrial relationship between brown bears and polar bears. In 

particular, it would reveal whether the entire eastern brown bear lineage is polar bear in 

origin, as hypothesised by Hassanin (2015), or whether the original polar bear 

mitogenome was replaced by one of brown bear origin, as hypothesised by others (Hailer, 

2015; Hailer et al., 2012; Hailer and Welch, 2016).  

 

6.3.5 Extending ancient mitogenomics to other animal taxa 

One of the major strengths of Chapters 2 and 5 is my use of large aDNA datasets from a 

Holarctic species (brown bear) to investigate how megafauna respond to climate and 

environmental change. In Chapter 2 I extended this approach to include lions, revealing a 

strikingly similar evolutionary history and responses to the changing Late Quaternary 
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environment of North America to those observed in brown bears. This approach could be 

further extended to include more extensive sampling of European cave lions, as well as 

other Holarctic species. Molecular analyses of modern red foxes have alluded to waves of 

migration from Eurasia into North America analogous to Chapter 2. Similar ancient DNA 

analyses of red foxes could potentially therefore reveal similar evolutionary scenarios to 

brown bears and lions, but in a smaller carnivore (i.e. these patterns may not be restricted 

to large taxa). Other Holarctic taxa that these analyses could be extended to include: 

moose, scimitar-toothed cats (Homotherium), caribou, and wolverine. Large aDNA 

datasets from such taxa could further support common paradigms in the evolutionary 

history of Pleistocene megafauna or provide contrasting patterns. Ancient DNA datasets 

from extant and extinct taxa could identify contrasting responses to changing 

environments that could further help explain the survival or extinction of some taxa over 

others.  

 

Although in Chapter 5 I could not provide definitive answers on the suitability of 

Hewitt’s E/C model of postglacial recolonisation, which has long been debated, it is 

important to note that this model was not solely built upon evidence from brown bears. 

Grasshoppers and hedgehogs were central to the formation of this evolutionary model. 

While large-scale aDNA datasets from grasshoppers are unlikely, hedgehogs represent a 

natural progression in the investigation of the suitability of this model in temperate 

European fauna. Modern European hedgehog phylogeography has been extensively 

studied and there is a relative wealth of subfossil material that may be suitable for aDNA 

analysis. The analysis of ancient hedgehog material would allow the comparison of 

molecular data and Late Quaternary climate changes to better understand the responses of 

fauna to climate and environmental change. Furthermore, this would add evidence from 

less studied smaller species to understand how non-megafaunal taxa responded to changes 

in environment.
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6.4 Conclusion 

Ancient DNA provides a unique opportunity to genetically look back in time to help 

investigate how species respond to climate and environmental change and help explain 

the origin and current status of populations and species. In this thesis I predominantly used 

ancient DNA techniques to investigate questions relating to the evolutionary history of 

bears. In Chapters 2 and 5 I investigated the phylogeographic structure of brown bears 

across North America and Eurasia respectively, finding pronounced responses to changes 

in climate and environmental change throughout the Late Quaternary. In Chapter 2 this 

was extended to lions, revealing analogous patterns in North America. Chapters 3 and 4 

investigated the evolutionary history of Arctodus simus and the short-faced bear subfamily 

respectively. Notably, in Chapter 4 I used whole genome data, which with improving 

sequencing technology and ancient DNA techniques is becoming a key tool in 

understanding of Late Quaternary biogeography and evolutionary history. My research 

greatly increases our understanding of the evolutionary history of bears and carnivores, 

and the understanding of the Late Quaternary biogeography and population dynamics of 

brown bears. 

 

The world is currently experiencing an unprecedented rapid decline in biodiversity 

intertwined with anthropogenic encroachment and climate change. It is imperative that we 

act to preserve as many taxa as possible, as even with intervention many taxa will be lost. 

Taxa that survive will likely experience massive changes in biogeography and diversity. 

By studying species that went extinct during the Quaternary (such as Arctodus, 

Arctotherium, and extinct lions) and investigating the responses of species that survived 

through to the Holocene (such as brown bears), factors may be identified that help explain 

the differential survival of species. These results can then inform the allocation of 

conservation spending to better protect and manage current biodiversity. I hope the 

findings from my thesis can contribute to the essential understanding of faunal responses 

to climatic and environmental change and further stimulate research and efforts to better 

understand our rapidly changing world and how we can act to preserve the natural world. 
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Appendix 

 

Widespread male sex bias in mammal 
fossil 

and museum collections 
 
 
 
 
 

This appendix contains published research investigating sex ratios in 
mammalian fossil and museum collections. I contributed the brown bear data 
in this study — extraction, DNA library preparation, shotgun sequencing, 
bioinformatic processing of sequencing data, and genetic sexing of 
specimens.  

 
 
 
 
 
 
 

Gower, G., Fenderson, L.E., Salis, A.T., Helgen, K.M., van Loenen, A.L., 
Heiniger, H., Hofman-Kaminska, E., Kowalczyk, R., Mitchell, K.J., 
Llamas, B., Cooper, A., 2019. Widespread male sex bias in mammal 
fossil and museum collections. Proc. Natl. Acad. Sci. U. S. A. 116, 
19019-19024. 
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