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Abstract

This thesis develops a new method for estimating geophysical parameters based on La-
grangian Coherent Data Assimilation (LaCoDA), a nascent field combining data assimila-
tion and Lagrangian coherent structure techniques. Lagrangian coherent structure theory
deals with characterising and extracting fluid structures which have a dominant impact on
the transport of key flow properties (Balasuriya et. al., Physica D, 2018:31-51). Data as-
similation (DA) is a methodology for combining information from observational data with
that from a mathematical model to make predictions about dynamical systems (Lahoz &
Schneider, Front. Environ. Sci., Springer-Verlag, 2014). Lagrangian Coherent Data As-
similation attempts to combine these two areas to devise data assimilation schemes which
exploit information from Lagrangian coherent structures to improve data assimilation in
chaotic systems (Maclean et. al. Physica D, 2017:36-45).

The LaCoDA technique developed here combines the data assimilation algorithm
known as Approximate Bayesian Computation (ABC) with a Lagrangian coherent struc-
ture method, the Finite Time Lyaponov Exponent (FTLE). The new method, denoted
FTLE-ABC, is tested on estimating the ε parameter from the Rossby wave model, a math-
ematical model which simulates an important type of atmospheric flow. FTLE-ABC is
shown to outperform the benchmark methods, a standard particle filter and a standard
ABC scheme, for particular regimes of the true value of ε, the chaoticity of the flow and
the time step used in the DA scheme. In particular, the estimated chaotic timescale is
found to impact FTLE-ABC’s performance, with the algorithm often performing better
in parameter regimes for which the chaotic timescale is fairly constant with ε.
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Chapter 1

Introduction

Making predictions about geophysical systems has crucial applications in governance,
economics, agriculture and public health. Modeling geophysical systems is challenging,
however, due to erratically distributed data and complex, high-dimensional models. Addi-
tionally, geophysical systems exhibit chaotic behaviour which severely impacts prediction
accuracy and reliability. Chapter 1 outlines how understanding the mathematics of chaos
may allow insight into the predictability of geophysical systems. This motivates the main
aim of this thesis, the development of an algorithm which exploits the mathematical struc-
ture of time-dependent chaotic systems to improve geophysical predictions.

1.1 Making predictions about geophysical systems

Geophysical systems, such as the oceans, atmosphere and climate, have a significant im-
pact on governance and policy making. The Intergovernmental Panel on Climate Change
(IPCC) Reports, which are produced annually to provide recommendations to govern-
ments, policy-makers and industry on future climate scenarios, are a well known example
of this significance (IPCC 2020). In particular, the agricultural, public health and eco-
nomic sectors strongly rely on knowledge of geophysical forecasts to produce judicious
recommendations and decisions. Making timely and accurate predictions about geophys-
ical systems will only become of increasing concern as issues of climate security and
adaptation intensify.

Systems such as the climate, however, continue to present significant challenges to
mathematical modelers. One issue is that data on these systems may be erratically
distributed geographically, such that parts of the globe are abundant in information while
others are sparse. This is illustrated in Figure 1.1, which shows night-time total column
carbon monoxide data collected via satellite across Asia. As can be seen, due to the

1



2 Chapter 1. Introduction

Figure 1.1: Satellite data of the night-time total column carbon monoxide retrieved over
Asia. This illustrates the typical gaps in data collected via satellite. These gaps are
attributable to both the satellite path as well as blocking due to clouds and other such
measurement issues. (From Figure 1 in Lahoz & Schneider (2014))

path of the satellite and cloud coverage, there are large latitudinal strips where data is
absent. One common issue modelers face is how to make suitably accurate predictions
with limited information from data (Lahoz & Schneider 2014, Kalnay 2002).

A second, crucial issue is that geophysical models and data are often extremely high
dimensional, such that running models may be unreasonably computationally expensive
(Kalnay 2002, Carrassi et al. 2018). An example of this is shown in Figure 1.2, which
depicts the progression of resolution in climate models from the first IPCC assessment
report in 1990 (FAR) to the fourth assessment report in 2007 (AR4). The resolution of
the models used by the IPCC became around 5 times finer over the 17 years between
FAR and AR4, such that the UK is not resolved in the first image, but quite clearly
resolved in the last. This significant rate of increase in resolution strongly impacts the
computational expense of model running and analysis. Consequently, researchers must
continually develop more efficient methods of modeling geophysical systems to keep up
with burgeoning increases in dimension.

Lastly, geophysical systems exhibit chaotic properties which strongly impact predic-
tion error. Chaotic behaviour causes model predictions to be highly sensitive to slight
errors in the initial model inputs, such that small initial errors are magnified egregiously
as the model is propagated through time. The issues of high-dimensionality and sparse
data are also often magnified by chaotic behaviour, as chaos severely impacts system
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Figure 1.2: The progression of resolution from the first IPCC report (FAR, 1990), through
the second (SAR, 1996), third (TAR, 2001) and fourth (AR4, 2007) reports. As can be
seen, the resolution increases by around a factor of 5 from FAR to AR4, such that the UK
is not resolved in the first image but can be clearly seen in the last. (Taken from Figure
1.4 in IPCC AR4 (2007), available at https://www.ipcc.ch/report/ar4/wg1/)
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predictability. Increases in model accuracy due to increasing model resolution, for ex-
ample, are constrained by chaotic behaviour, such that the additional computational
expense of increasing resolution may not reap significant gains in accuracy if the system
is highly chaotic. The difficulty of making predictions about systems where data is sparse
is also worsened in highly chaotic systems, as small data sets will already have significant
initial error which is then magnified by chaotic behaviour. Chaos is an innate feature
of geophysical systems, however, and improving methods of modeling chaotic systems is
foundational to improving geophysical modeling (Sivakumar 2004, Mihailovic et al. 2014).

1.2 Chaos in geophysical models

Chaos is a much studied property of dynamical systems, associated with extreme sensitiv-
ity to initial conditions and seemingly random and disordered behaviour. Such perceived
randomness is an innate property of many deterministic physical systems and cannot
be eliminated by simply improving the model resolution (Alligood et al. 1997). One of
the first researchers to identify chaotic behaviour in geophysical systems was the mete-
orologist Edward Lorenz (Fowler & McGuinness 2019). As the story goes, Lorenz was
running computer simulations of a simple model of the atmosphere and began feeding
his simulation readouts from previous runs as initial conditions. His readouts, however,
were of lower resolution than the computer memory storage, so that the input figures
were rounded versions of the previous output. He found that the system behaved in a
completely different fashion when previous outputs of the same system were used as in-
puts, despite these inputs only differing from the originals by three decimal places (Gleick
2008). Based on his studies of simple chaotic models, Lorenz correctly postulated that
long-range weather forecasting would be inherently impeded by the non-periodic proper-
ties of the atmosphere and related systems. Indeed, a characteristic of chaotic systems is
complete unpredictability on sufficiently long timescales (Lorenz 1963) .

Although giving rise to randomness and unpredictability, chaotic behaviour is also
deeply connected to structure: the geometric structure of solutions to the differential
equations governing a dynamical system. Lorenz’s discovery of this feature of chaos was
documented in a 1963 paper on a now widely used, yet very simple, model of atmo-
spheric convection (Lorenz 1963). Lorenz plotted the model’s spatial solutions x, y, z in
three dimensional space as they evolved through time. This generated what is called a
strange attractor, shown in Figure 1.3, a complex yet highly structured object consist-
ing of solution trajectories which may orbit infinitesimally close to each other yet never
intersect. Attractors may contain fixed points or periodic orbits, discussed in detail in
Chapter 2, which shape the geometry and direction of trajectories in a local neighbour-
hood. Attractors assist in explaining how a completely deterministic system can exhibit
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Figure 1.3: The Lorenz attractor, a famous visualisation of the connection between solu-
tion structure and chaotic behaviour.

the ‘extreme sensitivity to initial conditions’ characteristic of chaos. Each trajectory rep-
resents a unique, deterministic time-evolution route for the model, yet, given the closeness
of such trajectories, a small perturbation to an initial condition may result in a completely
different traversal of the solution space. This deeply nested structure of attractors pro-
duces the erratic, seemingly random behaviour of chaotic systems (Stewart 1997).

Another characteristic of chaotic systems which may be elucidated from solution struc-
ture is how some initial conditions give rise to a greater level of unpredictability than
others, which is why the reliability of weather forecasts varies so greatly. The Lorenz
attractor can again be used to illustrate this property. Figure 1.4 shows three different
initial ensembles, or selections of nearby initial conditions, indicated by a round red cir-
cle. As each of the ensembles moves along its trajectory on the attractor (indicated by
perturbed red circles), some initial selections of conditions, such as the top right scenario,
are quickly spread out as they move along the attractor, while others remain reasonably
unperturbed, as in the top left scenario. Additionally, the cases at the top left and bot-
tom show very similar initial ensembles, yet the two evolve along very different paths,
with the bottom ensemble becoming spread between two wings of the attractor, while the
top left ensemble only moves to the right wing. Hence, some initial ensembles are very
sensitive to small pertubations, while others are not so much. In this way, analysing the
structure of objects like attractors reveals significant information about the predictability
of a geophysical system (Baines 2008).
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Figure 1.4: A comparison of the time evolution of a selection of different ensembles of
initial conditions. An initial ensemble is a group of initial points close by on the attractor,
denoted by a round red circle. The other red lines show how the initial ensemble is warped
as it traverses the attractor. Some initial circles become more warped than others, de-
pending on their initial position on the attractor. The bottom case, for example, becomes
very spread out. Some circles also traverse further in the same time, such as comparing
the upper left and right cases. Yellow dots are fixed points of the attractor, which de-
termining the shape and direction of trajectories in their neighbourhood. (Derived from
Figure 3 in Baines (2008).)

A key question which arises when considering the information captured by solution
structure in chaotic systems is Can we use this structure to quantify unpredictability?
and further, Can we use quantifications of unpredictability to improve model predictions?
An early development in quantifying uncertainty in chaotic systems, before chaos was
recognised as a discipline, was the Lyapunov exponent, originally devised in Alexandr
Lyapunov’s doctoral thesis (Lyapunov 1892). Lyapunov’s work considered regimes of sta-
bility and instability in differential equations, rigorously showing that stable solutions
exhibit resilience to sufficiently small perturbations, while unstable solutions do not (Bar-
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reira 2017). To quantify the stability of a solution, he developed the Lyapunov exponent,
a method still used to analyse a variety of dynamical systems. The maximal Lyapunov
exponent is effectively the maximal rate of divergence, in the limit as time approaches
infinity, between two points which are initially infinitesimally close. This quantifies the
expected rate of divergence for an initial condition when a small perturbation is applied.
A chaotic system must contain at least one positive maximal Lyapunov exponent, and
the magnitude of this suggests the degree of unpredictability in the corresponding initial
condition (Alligood et al. 1997).

1.3 Thesis overview

Many established definitions of chaos tend to be in the limit as time approaches infin-
ity. Attractors represent regions of a dynamical system’s solution space towards which
solutions tend to settle over long times (Stewart 1997). Similarly, Lyapunov exponents
represent the maximal divergence rate of initially very close points as time approaches
infinity (Barreira 2017). In both cases, transient fluctuations over short times are ignored
so as to focus on a system’s long-term structure. In practice, time is usually extended to
some sufficiently large number so as to reasonably apply infinite-time chaotic theory. This
approach, however, is problematic in systems whose governing equation is time-dependent,
which is the norm in geophysical systems. In this case an attractor represents a single
snapshot of the system structure at a particular time, but gives no information about how
such snapshots evolve into each other over time. A mathematical methodology known as
Lagrangian Coherent Structure Theory, the topic of Chapter 2, has been developed to in-
vestigate structures arising in time-dependent systems over finite times. Such structures
are common in nature, including hurricanes and ocean gyres, and have been shown to
contain significant information about geophysical flow behaviour (Balasuriya et al. 2018,
Haller 2015). Lagrangian coherent structures can be thought of as finite-time analogs
of infinite-time chaotic structures, revealing short-term information about a dynamical
system’s solution structure. Given the rich information about the long-term behaviour
of dynamical systems revealed by infinite-time chaotic structures, analogously, this thesis
explores the extent to which Lagrangian Coherent Structure Theory can be used to inform
predictions about time-dependent geophysical systems.

A common methodology for making predictions about time-dependent systems is
known as data assimilation, the topic of Chapter 3. Data assimilation employs math-
ematics from a range of sub-disciplines, including optimisation, statistics and dynamical
systems theory, to judiciously combine information from observational data and a math-
ematical model (Law et al. 2015). It is the dominant methodology for both predicting
the state of a geophysical system and estimating parameters associated with geophysical
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systems. A recent subset of the data assimilation literature develops data assimilation
methods which may incorporate Lagrangian data: data which tracks the individual tra-
jectories of initial conditions in a geophysical flow. Lagrangian data assimilation is of
interest as Lagrangian data is becoming increasingly common in areas such as oceanog-
raphy, and contains rich information regarding extant Lagrangian coherent structures.
Current techniques, however, tend to deal badly with highly chaotic, high dimensional
and/or highly non-linear models, all of which are common in geophysical systems. Ad-
ditionally, Lagrangian data assimilation methods which actively exploit the structural
information contained in Lagrangian data have not been widely researched. Recent stud-
ies, however, have suggested a significant advantage for such methods in chaotic systems
and systems with fine scale chaotic structures (Maclean et al. 2017, Gaultier et al. 2013,
2014, Schlueter-Kuck & Dabiri 2019). This thesis builds on a small but rapidly developing
literature which attempts to exploit Lagrangian coherent structure theory to improve the
performance of data assimilation schemes in chaotic systems. The latter half of Chapter
3 explores this literature to build groundwork for the premise of this thesis: the devel-
opment of a Lagrangian coherent structure based data assimilation algorithm to enhance
parameter estimation in chaotic geophysical models.

There are a variety of numerical methods for extracting Lagrangian Coherent Struc-
tures, which are discussed in Chapter 2. Of these methods, a finite-time analog of the
Lyapunov exponent, called the Finite Time Lyaponov Exponent (FTLE) (Shadden et al.
2005), is chosen as a basis for the geophysical parameter estimation algorithm developed
here. The FTLE has been used as a measure of uncertainty in data assimilation schemes
previously (Gaultier et al. 2013, 2014), but not for parameter estimation purposes. Coher-
ent structure methods have also previously been used for geophysical parameter estimation
(Maclean et al. 2017, Schlueter-Kuck & Dabiri 2019), but using quite simplistic methods
of coherent structure detection which cannot track spatially traversing structures. The
FTLE has the advantage of being a frame-independent method, allowing its use in flows
with spatially traversing structures. This method is integrated within a common statisti-
cal method for data assimilation, called Approximate Bayesian Computation (ABC), to
form a new algorithm for parameter estimation which is able to utilise information from
a variety of time-dependent chaotic flow structures.

In Chapters 4 and 5 the performance of this new algorithm is tested against two
benchmark data assimilation algorithms for parameter estimation, a particle filter and a
standard ABC scheme, with a focus on the algorithm’s aptitude for prediction when the
model is highly chaotic. The model chosen to test the method is the Rossby wave model,
introduced in Section 2.7, which is a simple model of an important type of atmospheric
flow. As is discussed, this model is useful because the flow demonstrates a variety of
spatially traversing structures, and the degree of chaotic behaviour the model exhibits
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may be tuned via an input parameter (Pierrehumbert 1991a). In particular, Chapters 4
and 5 seek to address the following research questions:

� Does an FTLE-based ABC scheme for parameter estimation offer a performance
advantage over the benchmarks in chaotic regimes of Rossby wave flow?

� What is the impact of the time-step length on the performance of the FTLE-based
ABC scheme?

� Can the FTLE-based ABC scheme deal with spatially traversing coherent structures,
such as spatially moving gyres?

� What is the impact of the initialisation scheme on the performance of the FTLE-
based ABC scheme?

Chapter 4 presents an initial investigation into parameter regimes in which the new al-
gorithm out performs the benchmarks, exploring the effect of the initialisation scheme,
magnitude of chaoticity, time step length and data noise. Chapter 5 further investigates
scenarios of interest identified in Chapter 4, using the statistical measure of root mean
squared error to quantitatively compare the new algorithm’s performance to the bench-
marks. Chapter 6 summarises the results of this thesis, discusses interpretations in the
context of Lagrangian coherent structure theory and presents potential pathways for fur-
ther research.
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Chapter 2

Lagrangian Coherent Structure
Theory

Lagrangian Coherent Structure (LCS) Theory is a mathematical framework for concep-
tualising and numerically extracting transient yet impactful structures in time-dependent
geophysical systems. Chapter 2 examines why such structures may be seen as finite-time
analogues of infinite-time chaotic structures, as well as crucial distinctions in the time-
dependent context. Definitions of LCS, applications of coherent structure theory and
common techniques used to numerically extract LCS are discussed to provide a theoret-
ical framework for understanding how LCS theory is being used to improve modeling of
chaotic geophysical systems. The model of choice in this investigation, Rossby wave flow,
is also introduced, with an emphasis on how LCS methods may be used to analyse the
flow’s chaotic structures.

2.1 Lagrangian Coherent Structures

Lagrangian Coherent Structures (LCS) are large-scale fluid structures that are ubiqui-
tous in nature. Figure 2.1 shows four well-studied structures which may be classified
within the LCS framework, including a structure formed during the Deepwater Horizon
Oil Spill (Figure 2.1a), Jupiter’s Great Red Spot (Figure 2.1b), nutrient eddies in the
ocean (Figure 2.1c) and Hurricane Florence (Figure 2.1d). From these images the impact
such structures may have on both geophysical systems and associated ecological and hu-
man systems can be appreciated. Such structures are often responsible for the transport
of key properties in geophysical flows, such as heat, nutrients and energy, and often are a
strong determinant of gross system behaviour (Balasuriya et al. 2018). Intuitively, the role
of LCS in determining the mixing and transport properties of geophysical flows suggests
these structures carry mathematically utilizable information for analysing flow behaviour.

11
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(a) (b)

(c) (d)

Figure 2.1: Four examples of Lagrangian Coherent Structures in nature. (a) an observed
sudden extension of the Gulf Oil Spill, which was found to possess a coherent strain
structure, (b) Jupiter’s Great Red Spot, a coherent rotational structure surrounded by
coherent shear structures, (c) a nutrient eddy in the ocean. (d) Hurricane Florence, a very
impactful rotational coherent structure. (Images from NASA Image of the day Gallery
(2020)).

‘Coherent structures’ have been of interest in fluid mechanics for a long time, both
for flow visualisation and as a means of deriving reduced-order models (Balasuriya et al.
2018). Traditionally, an Eulerian approach is taken, wherein only time snapshots of fluid
particle positions are considered. Generally, this involves analysing the streamlines of the
flow, which give the instantaneous tangent to the flow velocity. For steady flows, those
with a governing equation of the form dx

dt
= ν(x), we may use classic dynamical systems

methods to analyse the flow structure. In this methodology we plot a phase portrait, a
grid of spatial coordinates with vectors indicating the direction of the velocity field for
the flow at each grid point. Points x̃ at which dx

dt

∣∣
x=x̃

= 0, are called the fixed points or
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equilibria of the system. The nature of the phase space trajectories around each fixed
point determines its categorisation, which in turn may be used to describe the nature of
the flow locally. Depending on the type of equilibrium, the phase portrait may include
associated stable and unstable manifolds : material curves on surfaces along which fluid
particles asymptote towards fixed points in forwards or backwards time. These manifolds
demarcate fluid barriers which separate structurally distinct regions of fluid, and tend to
cause nearby fluid parcels to be stretched or contracted. Equilibria may also be enclosed
by periodic orbits or families of nested KAM tori, around which fluid particles will tend
to rotate, representing rotational, eddy-like structures in the flow (Beron-Vera et al. 2010).

As an illustration of this classic Eulerian analysis, the phase portraits for two very
common fixed point categorisations are shown in Figure 2.2, a saddle point equilibrium
(at left) and a centre fixed point (at right). In the case of the saddle fixed point, the stable
and unstable manifolds form a cross with its centre at the equilibrium. An infinitesimal
parcel of fluid, or fluid particle, will tend to travel towards the equilibrium along the
stable manifold and away from the equilibrium along the unstable manifold, so that it is
stretched out over time. For the centre fixed point, fluid particles tend to orbit the equilib-
rium while never approaching it, generating rotational flow structures. The possible phase
space trajectories become much more complicated with an added third dimension, giving
rise to the strange attractor type structures mentioned in Chapter 1, yet such structures
still contain invariant sets which control how an initial condition evolves through the
phase space. A key property of these steady systems is that, although trajectories may be
highly complex as in the Lorenz attractor, the phase space trajectories give information
about how fluid particles will travel for all times in the flow (Nolte 2019). Consequently,
identifying the nature of extant manifolds corresponding to invariant sets allows general
knowledge of how fluid particles will behave as they travel within the flow.

However, in unsteady systems, those with a governing equation which is time de-
pendent, the interpretation of equilibria and phase portraits becomes considerably more
complex. In this case phase portraits may be thought of as time snapshots of the system,
based only on current fluid particle positions and prevailing velocities, without any rela-
tion to the system’s long-term evolution in time. With time dependence, ‘fixed points’
of an Eulerian snapshot are no longer temporally fixed, and so the Eulerian approach
may give misleading information about the flow structure. Thus, the rich information
about flow behaviour discussed in the context of the Lorenz attractor in Chapter 1 is no
longer a reliable reference in time-dependent systems. This issue was recognised in a se-
ries of investigations by Haller and collaborators (Haller & Yuan 2000, Haller 2002, 2001),
who identified key cases where classic phase space analysis failed to give reliable infor-
mation about flow structure, such as where flows possessed spatially traversing structures.



14 Chapter 2. Lagrangian Coherent Structure Theory

Figure 2.2: Two common examples of fixed points in steady dynamical systems. The blue
shapes represent a fluid parcel and its deformation as it moves with respect to the fixed
point. At left is a saddle fixed point, characterised by stretching in one direction and
contraction in the orthogonal direction. At right is a centre fixed point, characterised by
rotational motion around the fixed point. (Adapted from Figure 2 in Haller (2015)).

The key difference between steady and unsteady systems that Haller and his collabora-
tors discovered can be intuited by drawing analogies between classic steady structures and
those observed in unsteady systems. In Figure 2.1b, for example, it can be appreciated
that Jupiter’s Great Red Spot is analogous to a centre fixed point, in that it possesses a
rotationally-dominated structure. Similarly, it can be seen from Figure 2.1a that the LCS
observed in the Gulf Oil Spill is analogous to a saddle fixed point, dominated by stretch-
ing structures. However, as Haller and his associates point out, entities such as nested
streamlines or stable and unstable manifolds identified in snapshots of these systems do
not necessarily correspond to unsteady vortices or strain structures. This is because fluid
particles in the unsteady scenario are not confined to follow the streamlines of the instan-
taneous Eulerian snapshot for all times. The velocity at a particular point in space will
be changing with time, and so how fluid particles move depends not only on where they
are, but the time at which they are at that point. Essentially, in the unsteady case we are
interested in the Lagrangian perspective; a perspective which incorporates fluid particle
trajectories that are solutions to the system’s governing equation. In this framework we
keep track of the paths of fluid particles as they are moved through the flow over time,
thus incorporating time-dependence into the analysis.

Theory which uses the Lagrangian approach to extract fluid structures from unsteady
flows is now known as Lagrangian Coherent Structure Theory, a term coined by Haller
and Yuan (2000). Rather than assessing fixed points and their associated phase space
structures, this alternative approach seeks fluid structures which are “transient and time
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evolving yet exhibit some ‘coherence’ over a finite time interval” (Haller 2015). Such an
analysis strives to isolate “special surfaces of fluid trajectories that organize the rest of the
flow into ordered patterns”(Balasuriya et al. 2018), thus pursuing time-evolving structure
in the flow. As such structures require the consideration of a set of fluid trajectories,
rather than just initial points, the resulting theory becomes considerably more complex
than in the Eulerian perspective. Indeed, numerical methods are commonly used to iden-
tify LCS in all but the simplest cases.

Since Haller and associates’ (Haller & Yuan 2000, Haller 2002, 2001) initial develop-
ments in the theory of LCS, many researchers from various perspectives have focused on
the problem of defining, categorising and numerically extracting LCS. Notable theoretical
developments include Lekien and Ross’ (2010) generalisation of LCS to arbitrary Riemann
manifolds, allowing the study of LCS on challenging surfaces such as large-scale transport
in the curved atmosphere. Many studies have also applied the theory of transfer operators
to seek almost invariant manifolds in a range of geophysical flows, combining the theory
of Markov chains from stochastic modeling to identifying LCS (Froyland et al. 2014, for
example). Due to the area’s dependence on non-analytic methods, studies such as Ross
et. al. (2010) and Olcay et. al. (2010) have investigated the sensitivity of common ex-
traction techniques to data noise, developing methods to overcome associated resolution
issues. Many improvements have also been achieved in the computational efficiency of
methods. Brunton et. al. (2010) devise schemes to significantly increase the efficiency
of popular methods, while Lipinski et. al. (2010) have developed structure-tracking
algorithms that avoid wasting computations on regions too far from key structures. Re-
sponding to the field’s increasing applications in science and engineering, Onu, Hahn and
Haller (2014) created an LCS toolbox which allows the simple implementation of common
LCS extraction algorithms for a variety of applications. As the field continues to develop,
numerically extracted LCS are now routinely used in the study of time-dependent fluid
systems in a diverse range of areas, including to understand blood transport in the heart
(May-Newman et al. 2016), multi-body problems in astrodynamics (Lin et al. 2017) and
the development of oceanic algal blooms (Olascoaga et al. 2008).

2.2 Defining LCS mathematically

Unlike fixed points and their associated flow structures in steady systems, there is no
universally accepted definition for an LCS. Balasuriya et. al. (2018), however, set out a
generalised framework for defining LCS which provides a working basis for their mathe-
matical characterisation. The flow is considered within the flow domain U(t) ∈ Ω at time
t, for Ω the model state space. To implement the framework using Lagrangian machinery,
an LCS must be defined at an initial time t0, based on the flow from times t0 to t. Con-
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sequently, a crucial object in the Lagrangian framework is the deterministic Lagrangian
flow map from times t0 to t, defined as,

F tt0
(
x0

)
:= x(t0; t,x0) (2.1)

with respect to solutions x(t0; t; x0) to the governing equation

dx

dt
= ν(x, t), (2.2)

with initial condition x(t0; t0; x0) = x0. The flow map takes the set of initial particle
positions x0 ∈ U(t0), and evolves these positions to time t according to Equation (2.2).
The flow map allows tracking of fluid particle trajectories over time, making it central to
any Lagrangian formulation. Additionally, Balasuriya et al. (2018) require that the fluid
velocity field have continuous spatial and temporal derivatives and that all fluid particle
trajectories are defined and unique for all initial conditions in U(t0).

Accepting these requisites, an LCS may be conceptualised as a subset of U(t0), ex-
tracted by examining F tt0

(
U(t0)

)
. An LCS is therefore dependent not just on the initial

time t0, but on the time interval over which we consider the flow’s evolution. The LCS
itself may be identified according to some criterion imposed on the behaviour of the flow
map F tt0(x0). For example, an LCS could be defined as some subset S ∈ Ω such that
F tt0(S) is sufficiently similar to S as defined by connectivity and minimal filamentation of
the boundary ∂S in the time interval considered. Such a criterion would select for struc-
tures like vortex cores, which often possess a coherent core surrounded by a filamenting
boundary surface. Another example is seeking S such that F tt0(S) is more strongly at-
tracting than other sets of particles in the neighbourhood of S. This criterion would seek
to divide the flow domain into regions with barriers of maximal stretching dividing each
region. Essentially, an LCS theory should define a criterion based on the structure it seeks
to extract. It follows that, abstractly, an LCS at time t may be defined as a structure
resulting from the application of a criterion via some procedure P ,

LCS(t0; t) := P
(
F tt0(·)

)
,

where LCS(t0; t) is a subset of Ω.

The selection of specific criteria and computational procedures capable of applying
such criteria to the flow map has led to the development of many LCS extraction meth-
ods. There are, for example, trajectory average methods, which compute the time-average
of a quantity of interest over Lagrangian trajectories (Balasuriya et al. 2018). This allows
a field of Lagrangian averages to be plotted with respect to their corresponding initial
conditions, such that exceptionally large or small values in the field suggest extreme values



2.3. LCS Extraction methods: FTLE 17

of the chosen flow quantity and hence a notable structural difference in the flow. Com-
mon choices for flow quantities include the norm of the fluid particle speed or velocity.
A more complicated trajectory average method, called the Lagrangian Averaged Vortic-
ity Deviation (LAVD), considers the time-averaged norm difference in a fluid particle’s
vorticity and the average vorticity over the flow domain. LAVD is particularly useful for
elucidating rotationally-dominated structures in a flow, such as gyres and vortices, as its
formulation was derived specifically to give a frame-independent quantification of rotation
(Haller et al. 2016). Another common approach uses variational methods to define hyper-
bolic LCS as the most repelling or attracting curves (or surfaces) advected over a finite
time in a locality of the flow (Haller 2011, Haller & Beron-Vera 2012). Such surfaces are
often derived in terms of the Cauchy-Green strain tensor, defined in Section 2.3, which
quantifies the strain undergone by particles as they are advected by the flow. Methods
using the theory of transfer operators are popular when investigating structures arising in
density flows, such as chemical pollutants or salinity (Froyland et al. 2014). These stud-
ies approach LCS from a probabilistic standpoint, considering the probability of density
transitions between defined ‘boxes’ in the flow and seeking ‘almost invariant’ regions by
considering the corresponding transition matrices’ eigenvalues. Another notable method
is the recently introduced Stochastic Sensitivity, which quantifies the sensitivity of the
flow to stochastic noise. This approach elucidates coherent structures as ridges of max-
imal sensitivity of Lagrangian trajectories to small pertubations. Stochastic Sensitivity
is of particular interest in the context of oceanographic and atmospheric models as these
often rely on noisy Lagrangian velocity data and hence cannot assume perfect knowledge
of Lagrangian trajectories (Balasuriya 2020a). Perhaps the most commonly used method
in geophysical applications, however, is the Finite Time Lyapunov Exponent (FTLE),
which measures the magnitude of stretching fluid particles undergo as they are advected
by the flow. Due to its wide and varied use in the coherent structure literature the FTLE
is the method of choice in this investigation.

2.3 LCS Extraction methods: FTLE

As mentioned, the FTLE method uses a criterion which seeks structures with an excep-
tional impact on the deformation, or stretching, of nearby fluid elements. Generally, fluid
deformation is quantified by the Cauchy-Green strain tensor, C(x0), defined as,

C(x0, t0, t− t0) =
[
∇F tt0(x0)

]T
∇F tt0(x0).

C(x0, t0, t− t0) is a symmetric, positive definite tensor describing the strain undergone
by a fluid particle dependent on its initial condition.
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To define the FTLE field using this criterion, we wish to consider how a slight time-
dependent perturbation to an initial point will evolve as it is acted upon by the flow
map. To do this we consider a small perturbation δx(t0) about the spatial coordinate
vector x(t0), so that at time t, y(t) = x(t) + δx(t) is the new position, with x(t) and
y(t) being solutions to the governing equation (2.2). Using a Taylor series expansion for
F tt0(y0) = F tt0(y(t0)) about x0 = x(t0), we can write the deviation between the perturbed
and original trajectories as,

δx(t) = y(t)− x(t)

= F tt0(y0)−F tt0(x0)

= F tt0(x0) +∇F tt0(x0)δx(t0) +O
((
‖δx(t0)‖2

)2)−F tt0(x0)

= ∇F tt0(x0)δx(t0) +O
((
‖δx(t0)‖2

)2)
,

where O
((
‖δx(t0)‖2

)2)
is in Landau notation, and can be assumed to be negligible as

δx(t0) is an infinitesimal. The magnitude of the pertubation at time t is then given by
the L2-norm (Shadden et al. 2005),

‖δx(t)‖2 =
∥∥∇F tt0(x0)δx(t0)

∥∥
2
.

Recall that the definition of a matrix norm may be written as ||A|| = max|x|=1 ||Ax|| =√
λmax

(
ATA

)
. To find the maximal stretching we consider the maximum L2- norm of the

time-dependent perturbation,

max
||δx(t0)||=1

‖δx(t)‖2 = max
||δx(t0)||=1

∥∥∇F tt0(x0)δx(t0)
∥∥
2

=

√
λmax

([
∇F tt0(x0)

]T∇F tt0(x0)
)

=

√
λmax

(
C(x0, t0, t− t0)

)
,

where the second line uses the definition of the matrix norm and λmax

(
C
(
x0, t0, t−t0

))
is the maximum eigenvalue of the Cauchy-Green strain tensor evaluated at x0. The
quantity max||δx(t0)|| ‖δx(t)‖2 can then be rewritten as a maximum over a ratio of norms,

max
δx(t0)

‖δx(t)‖2
‖δx̄(t0)‖2

=

√
λmax

(
C(x0, t0, t− t0)

)
= eFTLE(x,t0,t)|t−t0|,
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where δx̄(t0) is aligned with the eigenvector corresponding to λmax

(
C
(
x0, t0, t− t0

))
and

FTLE(x, t0, t) =
1

|t− t0|
ln

(√
λmax

(
C(x0, t0, t− t0)

))
, (2.3)

is the FTLE field for the time interval [t0, t].

The FTLE gives the maximal stretching exponent for particles with initial position
x(t0) = x0 over the time interval [t0, t].

How the FTLE gives a measure of exponential stretching can be illustrated simplisti-
cally with the steady linear system,

ẋ = Ax. (2.4)

The system (2.4) would give the flow map as,

F tt0(x0) = eAtx0,

such that the perturbation evolution is,

δx(t) = eAT δx(t0).

The FTLE would then be,
FTLE(x, t0, t) = ||A||,

which measures the stretching induced by the largest eigenvalue of A.

If the FTLE is plotted as a field over a grid of initial positions then regions of con-
spicuously high FTLE values, often referred to as ‘ridges’, indicate regions of exceptional
stretching. Ridges generally indicate barriers between distinct regions on the flow, allow-
ing the partitioning of the flow into areas of differing structural characteristics. Ridges
were originally used as a diagnostic for structures in oceanographic and atmospheric stud-
ies (Pierrehumbert & Yang 1993, von Hardenberg et al. 2000), although much research
since has solidified the connection between FTLE ridges and extant coherent structures.

2.4 FTLE ridges and LCS

A crucial step in connecting a more rigorous LCS theory to the FTLE diagnostic was
the recognition that FTLE ridges closely correspond to hyperbolic (saddle-like) points
and their associated stable and unstable manifolds. As discussed in Section 2.1, in steady
flows fluid particles asymptotically approach these manifolds in forward or backward time,
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creating distinct barriers between regions of the flow. Similar behaviour occurs in ide-
alised unsteady flows, although in this case the hyperbolic point becomes a hyperbolic
trajectory moving through time, again with associated stable and unstable manifolds
(Balasuriya 2016). The close connection between FTLE ridges and hyperbolic trajecto-
ries was first suggested by studies illustrating the close correspondence between FTLE
contours and unstable manifolds of infinite time dynamical systems (Doerner et al. 1999).
In meteorological applications, FTLE plots over initial conditions had also previously
been investigated as indicators of barriers between mixing regions in the exosphere (Pier-
rehumbert & Yang 1993) and between transient eddy structures in baroclinic dynamics
(von Hardenberg et al. 2000).

Following these early studies, Haller (2001) set out analytic conditions necessary for
ridges and repelling and attracting material surfaces to coincide. Shadden et al. (2005)
followed with a more formal definition of the method which made the FTLEs’ relation-
ship to hyperbolic LCS explicit. Their study shows that FTLEs represent nearly invariant
manifolds even in systems with arbitrary time dependence. Later developments have fur-
ther solidified the connection between repelling LCS and FTLE fields. Several studies
(Haller 2011, Haller & Beron-Vera 2012, Karrasch 2012) use variational theory to give
criteria which must be satisfied for FTLE ridges and hyperbolic LCS to coincide. More
recently Balasuriya et. al. (2016) demonstrate that particles traveling within hyperbolic
neighbourhoods, regions of hyperbolic trajectories close to hyperbolic points, experience
exponential stretching. They show that a greater time spent within such regions directly
correlates to larger FTLE values, justifying the use of ridges as indicators of hyperbolic
structures.

The FTLE is now one of the most popular techniques for identifying hyperbolic LCS
in a variety of applications. For example, FTLE ridges have been used frequently to
assist in the tracking and control of pollutant releases (Lekien et al. 2005, 2007). Indeed,
a study by Mezic et al. (2010) uses the method to track the spread of oil in the infa-
mous Gulf Oil Spill. Other interesting applications include a study which demonstrates
how top marine predators often track oceanic FTLE structures to find food (Kew et al.
2009), studies using the technique to analyse sea-ice dynamics (Szanyi et al. 2016) and
studies investigating how FTLE ridges impact the transport of airborne microorganisms
(Bozorgmagham et al. 2013). A related technique called the Finite Size Lyapunov Ex-
ponent (FSLE) is also very common in the oceanographic and atmospheric literature.
Rather than finding the maximal separation of fluid particles over a finite time, the FSLE
method effectively finds the minimal time required for fluid particles in a flow to reach a
particular magnitude of separation (Cencini & Vulpiani 2013). FSLE ridges were shown
by Karrasch & Haller (2013) to coincide with FTLE ridges given certain conditions, and
hence with hyperbolic LCS given Haller’s further requirements (2001). The diversity of
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disciplines which now commonly use the FTLE and FSLE are a testament to the relative
ease of numerical implementation of these methods and their ability to capture a range
of significant hyperbolic LCS from Lagrangian data.

2.5 Issues with FTLEs

Although one of the most widely used numerical techniques for the extraction of LCS,
the use of FTLE ridges as indicators of hyperbolic LCS is only a heuristic unless certain
criteria are satisfied (Haller 2011, Haller & Beron-Vera 2012, Karrasch 2012). Studies by
Haller (2011) and Banicki and Wiggins (2010) detail various simple, analytic cases where
the FTLE may give misleading structural information, such as those in which ridges are
regions of high shear but do not correspond to attracting or repelling manifolds. Bala-
suriya et al. (2016) also address this issue by showing the FTLE diagnostic is only reliable
when the hyperbolic neighbourhoods associated with extant manifolds have a specific
geometrical structure. The criteria required to avoid such misdiagnosis, however, may
be difficult to ascertain in complex or non-analytic flows. Shadden et. al. (2005, 2007)
attempt to resolve issues of misdiagnosis by defining an LCS as a second derivative FTLE
ridge for a fixed integration time, although this idea is problematic as second derivative
FTLE ridges do not exist in all flows (Norgard & Bremer 2012).

Issues of noise sensitivity may also significantly impact the method’s accuracy. Ol-
cay, Pottebaum and Krueger (2010) found that the error in FTLE values when Gaussian
noise is added increases greatly in highly transient portions of the flow with high spatial
gradients. This local sensitivity to noise of the FTLE has been tackled by alterations to
the original FTLE algorithm, such as through adaptive meshes which track not just the
flow map and its gradient, but also the Hessian, to provide higher order corrections to the
flow map (Mirona et al. 2015). Although this higher order formulation is more computa-
tionally expensive, further alterations to the algorithm have increased its efficiency while
maintaining gains in accuracy (Fortina et al. 2015).

Other significant issues with the FTLE include difficulties in dealing with limited data
at domain boundaries. Because trajectory integration must be stopped at the domain
boundary, the edges of the domain act as attractors and are often misidentified as ridges
when they do not correspond to LCS. This was highlighted as an issue by Tang et. al.
(2010), who conceive a finite-domain version of the FTLE which they apply successfully
in a study of velocity data from aircraft landing at the Hong Kong International Airport.

To amend various issues with the FTLE in practice, Kuhn et. al. (2012) devise various
benchmarks for evaluating the best FTLE algorithm to use for a particular application.
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Additionally, Balasuriya (2020b) derives theoretical error estimates for the FTLE based
on parameters such as spatial resolution, allowing a characterisation of the degree of un-
certainty in identified ridges. Although the FTLE has various issues, due to its ease of
implementation and relevance to a range of applications it has continued to be a popular
choice for LCS extraction. More accurate methods for LCS extraction are certainly avail-
able, although often not as straight-forwardly implementable, computationally efficient or
easily interpreted (Peacock & Dabiri 2010).

2.6 Numerical calculation of FTLE fields

The FTLE may be numerically computed using a gridding approach similar to that used
in finite-difference schemes. For simplicity, we consider a single initial position in two
dimensions, labeled (x0, y0). A grid of perturbations in the x and y directions from this
initial point is then generated, as shown in Figure 2.3: {(x0+δx, y0), (x0−δx, y0), (x0, y0+
δy), (x0, y0− δy)}. This grid of perturbed points can be evolved forward in time to time t
using a numerical advection scheme, so that the final points are {F tt0(x0+δx, y0),F tt0((x0−
δx, y0),F tt0((x0, y0 + δy),F tt0(x0, y0 − δy)}. The generated grids of initial and final points
can then be used to approximate the gradient of the flow map as

∇F tt0 ≈

[
x(t;t0,(x0+δx,y0))−x(t;t0,(x0−δx,y0))

|2δx|
x(t;t0,(x0,y0+δy))−x(t;t0,(x0,y0−δy))

|2δy|
y(t;t0,(x0+δx,y0))−y(t;t0,(x0−δx,y0))

|2δx|
y(t;t0,(x0,y0+δy))−y(t;t0,(x0,y0−δy))

|2δy|

]
, (2.5)

where x(t; t0,x0) :=
[
F tt0(x0)

]
1

is the first component of the flow map and y(t; t0,x0) :=[
F tt0(x0)

]
2

is the second component, for initial condition x0 = (x0, y0)
T (Haller 2002,

2015). Using this approximation, the Cauchy-Green strain tensor can be approximated

by simply finding
[
∇F tt0

]T∇F tt0 for the approximate ∇F tt0 in (2.5), giving,

[
C
(
(x0, y0); t− t0

)]
(1,1)
≈

([
∇F tt0

]
(1,1)

)2

+

([
∇F tt0

]
(1,2)

)2

.

[
C
(
(x0, y0); t− t0

)]
(1,2)
≈
[
∇F tt0

]
(1,1)

[
∇F tt0

]
(1,2)

+
[
∇F tt0

]
(2,1)

[
∇F tt0

]
(2,2)

.[
C
(
(x0, y0); t− t0

)]
(2,1)
≈
[
∇F tt0

]
(1,1)

[
∇F tt0

]
(1,2)

+
[
∇F tt0

]
(2,1)

[
∇F tt0

]
(2,2)

.

[
C
(
(x0, y0); t− t0

)]
(2,2)
≈

([
∇F tt0

]
(2,1)

)2

+

([
∇F tt0

]
(2,2)

)2

.

The maximum eigenvalue of the approximate Cauchy-Green strain tensor is then found
numerically and used to calculate the FTLE as in the formula (2.3). This is done for
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(x0 + δx, y0)

(x0, y0 + δy)

(x0, y0 − δy)

(x0 − δx, y0)

F tt0(x0, y0 + δy)

F tt0(x0 − δx, y0)

F tt0(x0 + δx, y0)

F tt0(x0, y0 − δy)

tt0

Figure 2.3: Schematic of numerically approximating the flow map gradient via gridding.
A grid is drawn around each fluid particle’s initial position, using deformations in the x
direction (±δx) and y direction (±δy). This grid is propagated forward from t0 to t using
the flow map. The original and final grid positions, and the magnitude of δx and δy, are
used to approximate the flow map gradient over [t0, t].

every initial condition in the set of initial points, such that plotting the FTLE at each
corresponding initial point gives an FTLE field over U(t0).

2.7 The FTLE for Rossby Wave Flow

As Lorenz demonstrated with his analysis of the Lorenz attractor, toy mathematical
models are very useful in demonstrating structural properties of geophysical flows while
still being reasonably straightforward to represent mathematically. In the case of unsteady
systems, one such model is that for two-dimensional Rossby wave flow, representing an
important type of geophysical flow predominantly occurring in the atmosphere. This
simplistic model is convenient as it features significant stretching and rotational structures
and may be easily interchanged from steady to unsteady flow via a tunable parameter.

Geophysical Rossby wave flow arises from large-scale horizontal mixing and is central
to many of the processes which strongly impact the climate, oceans and atmosphere of
Earth. The flow arises from Earth’s rotation and curvature, and is often associated with
horizontally extensive, meandering streams which flow around mesoscale eddies (Bala-
suriya 2016). The study of atmospheric Rossby wave dynamics is of particular importance
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(a)
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Figure 2.4: (a) shows the phase space diagram for Ψ in (2.8) with ε = 0 in Equation 2.7.
Saddle-type fixed points exist at P1, P2, P5 and P6, tending to cause fluid particle stretch-
ing nearby. Centre fixed points are found at P3 and P4, tending to cause fluid particle
rotation nearby (Adapted from )Pierrehumbert (1991a)). (b) shows an FTLE field for Ψ
in (2.8) with ε = 0 for [t0, t] = [0, 24]. It can be seen that FTLE ‘ridges’ (yellow/orange)
draw out boundaries between the stream region, where stretching dominates, and gyre
regions, where rotation dominates.

in studies of climate as these are often responsible for planetary-scale energy transport
(Wang et al. 2013). Disturbances in Rossby wave amplitude, for example, have been linked
to sudden warming of the polar cap and break up of the circumpolar vortex (McIntyre &
Palmer 1983). Rossby wave patterns have also been shown to have dominant statistical
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(a) (b)

(c) (d)

Figure 2.5: FTLE fields for Ψ in (2.8) with ε = 0 based on flow times (a) [0, 3], (b) [0, 6],
(c) [0, 12] and (d) for [0, 24]. From this sequential extension of the calculation time it
can be seen how the FTLE ridge (orange/yellow) slowly extends to define the transport
barrier between gyres and inner stream.

association with ground temperature changes in the Southern Hemisphere (Wang et al.
2013) and have been linked to several heat waves in the Northern Hemisphere (Petoukhov
et al. 2013). More broadly, similar large-scale eddy structures are associated with the tur-
bulent atmospheric dynamics of other rapidly rotating planets, such as Jupiter’s Great
Red Spot and Neptune’s Great Dark Spot (Pierrehumbert 1991b).

Simple mathematical models of Rossby wave flow are useful for illustrating LCS ex-
traction techniques as they demonstrate spatially traversing coherent structures while still
possessing analytic flow velocity functions. The most simplistic mathematical model for
Rossby wave type flow is the single wave model, which provides a good approximation
to atmospheric meandering jets. Although quite simple, this form chooses waves which
are dynamically consistent in that the relationship between the parameters obeys quasi-
geostrophic dynamics, in which the Earth’s Coriolis force and horizontal pressure gradient
forces are almost in balance. This dynamic consistency gives the model relevance for many
geophysical applications (Pierrehumbert 1991b). The single wave model has the stream
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function,

Ψ0(x, y, t) = A sin[k0(x− c0t)] sin[l0y], (2.6)

where (x, y, t) are the local eastward and northward coordinates and time, and k0 and l0
are the wavenumbers for these directions respectively. The quantity c0 = −β/(k20 + l20)
is the wavespeed, where β, the Rossby parameter, describes the variation in the Coriolis
force due to Earth’s spherical shape (Samelson & Wiggins 2006). This stream function is
that of a single Rossby wave with wavelength 2π/k0 which propagates eastward at speed
c0, with any northward meanders being constrained by the value of l0.

A slightly more realistic extension of the model in equation (2.6) is that in which a
small time-periodic perturbation is added to the stream function, so that

Ψ(x, y, t) = Ψ0 + εΨ1 = A sin(k1(x− c1t)) sin(l1y) + ε sin(k2(x− c2t)) sin(l2y), (2.7)

for small ε and where ci = −β/(k2i + l2i ) for i = 1, 2 is the wavespeed for the dominant
and perturbing waves respectively. When this small wave perturbation is added, the
quasi-geostrophic dynamics of the single-wave model Ψ0 are obeyed to leading-order in
the small parameter ε. For the stream function Ψ, the velocity field is

u = −∂Ψ1

∂y
= −Al1 sin

(
k1(x− c1t)

)
cos
(
l1y
)
− εl2 sin

(
k2(x− c2t)

)
cos
(
l2y
)

v =
∂Ψ1

∂x
= Ak1 cos

(
k1(x− c1t)

)
sin
(
l1y
)

+ εk2 cos
(
k2(x− c2t)

)
sin
(
l2y
)
.

(2.8)

The quantity (u(x, y, t), v(x, y, t)) then represents x− and y− components of the flow ve-
locity at spatial coordinates x and y and time t.

The model (2.7) is also commonly considered in a frame which moves with the first
wave component of the flow, referred to as the co-moving frame (Samelson & Wiggins
2006). In this case we consider the transformation,

x∗ = x− c1t, y∗ = y,

so that the velocity field in the co-moving frame is,

u∗ =
dx∗

dt
=
dx

dt
(x∗, y∗)− c1

= −Al1 sin
(
k1x

∗) cos
(
l1y
∗)− εl2 sin

(
k2(x

∗ − (c2 + c1)t)
)

cos
(
l2y
∗)− c1.

v∗ =
dy∗

dt
=
dy

dt
(x∗, y∗)

= Ak1 cos
(
k1x

∗) sin
(
l1y
∗)+ εk2 cos

(
k2(x

∗ − (c2 + c1)t)
)

sin
(
l2y
∗).
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The streamlines of the stream function Ψ in the co-moving frame are shown in Figure
2.4a. The co-moving frame is advantageous as in this frame the streamlines of Ψ0 coincide
with those of Ψ when ε = 0 and completely describe the Lagrangian motion of the flow
for all times. I.e. for ε = 0 the flow Ψ is steady, characterised by impermeable boundaries
separating rotationally-dominated upper and lower gyres and a shear-dominated central
stream. A steady phase space analysis of Figure 2.4a indicates the two rotational gyre
structures in the presence of two centre fixed points, labeled P3 and P4, and the central
shear stream structure in four saddle-point type fixed points, labeled P1, P2, P5 and P6

(Pierrehumbert 1991a).

Comparing the FTLE field for Ψ with ε = 0 over [t0, t] = [0, 12] in Figure 2.4b to
the flow’s steady phase space in Figure 2.4a, it can be appreciated how the FTLE field
similarly designates distinct flow regions within which rotational or shear-type flow dom-
inates. The FTLE ridges in yellow/orange define the transport boundaries between the
outer gyres and inner stream, designating distinctly rotational and shear flow regions.
Being an LCS method, however, the structural information given by the FTLE, even in
the steady case, is dependent on the time interval over which the FTLE is calculated.
Figures 2.5 (a), (b), (c) and (d) show the FTLE field for ε = 0 with calculation times
[0, 3], [0, 6], [0, 12] and [0, 24] respectively. From these plots it can be appreciated how the
FTLE field paints out the evolving barriers in the flow as the calculation time is extended
and fluid parcels become increasingly stretched by the flow.

In the unsteady case with ε > 0, however, the rich structural information afforded by
the FTLE field compared to simply plotting phase space trajectories can be appreciated.
A comparison of Lagrangian trajectories for 36 fluid particles in the steady and unsteady
case for Ψ is shown in Figure 2.6. As can be seen, in the steady co-moving frame case
of Figure 2.6b, the particle trajectories perfectly match the structure of both the phase
space diagram in 2.4a and steady FTLE field in 2.4b. In the the unsteady cases of 2.6c
and 2.6d, however, the trajectories no longer give a clear picture of underlying flow struc-
ture. Here the trajectories of particles in the stream and gyre overlap and are difficult to
separate. The barriers between the rotational gyres and central shear stream begins to
break down, such that fluid initially in a gyre may now be pulled into the stream or vice
versa. This ‘porosity’ of the gyre-stream barrier to the exchange of fluid scales with ε,
and is best illustrated by considering FTLE fields (Samelson & Wiggins 2006).

FTLE fields for the unsteady flow with varied ε are shown in Figures 2.7a to 2.7d. As
ε is increased from 0 in Figure 2.7a to 0.5 in Figure 2.7d the shape of the gyre boundaries
becomes increasingly warped until they are nearly indiscernible from the inner stream.
For ε = 0.1 in Figure 2.7b, for example, we would expect a limited exchange of fluid
between gyres and inner stream, as the ridges present in the ε = 0 case are only slightly
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warped and the overall flow structure retains its integrity. Comparatively, for ε = 0.3 in
Figure 2.7c the ridges present in 2.7a are significantly warped, such that the gyre bound-
aries are clearly porous to the inner stream. In Figure 2.7d this warping is increasingly
extreme, such that parts of the FTLE field become a noisy expanse with small isolated
structures scattered throughout, suggesting a highly chaotic regime. The parameter ε in
Rossby wave flow is indeed closely linked to the degree of chaoticity of the flow, as it tunes
the magnitude of the time-dependent perturbation to the steady flow. This chaoticity is
in turn strongly connected to the magnitude of the FTLE field.

2.8 The parameter ε and the chaoticity of Rossby

wave flow

The FTLE field is strongly related to a flow’s degree of chaoticity as it measures the
amount of stretching fluid parcels undergo as they are advected by the flow. As discussed
in Chapter 1, a classic characteristic of chaos is exponential divergence of initial conditions
over infinite time, often quantified by the Lyapunov exponent. The Lyapunov exponent
is effectively the maximal rate of divergence between two points which are initially in-
finitesimally close in the limit as time approaches infinity. Thus, although the FTLE is
calculated over finite times, there is a significant link between the FTLE and a flow’s
chaoticity when the calculation time is sufficiently large for FTLE ridges to form. For
Rossby wave flow, the flow exhibits chaotic behaviour when ε > 0, but the FTLE may be
used to gain a more quantitative insight into how the degree of chaos in the flow scales
with the magnitude of ε and the computation time, [t0, t].

As the FTLE has units of 1/time, the quantities 1/FTLEmed and 1/FTLEav, where
FTLEav is the average FTLE over the flow domain and FTLEmed is the median, may be
considered a rough measure of the time scale over which a system becomes chaotic. Calcu-
lating 1/FTLEmed or 1/FTLEav for t0 = 0 and different integration times Tf = t−t0 gives
a measure of the timescale of chaotic behaviour in the system. The quantity 1/FTLEav
gives some measure of the average timescale of chaoticity for the set of initial conditions
considered for the flow, suggesting how the magnitude of chaotic timescales is distributed
over the set of initial conditions. The quantity 1/FTLEmed gives a slightly better estimate
of the timescale for chaoticity as it corresponds to the most frequently occurring FTLE
value, suggesting the most frequently occurring chaotic timescale over the initial condi-
tion set. The average will be impacted more by outliers than the median, and in highly
chaotic situations the FTLE calculations contain more uncertainty, so using the median
is a more robust approach. As the ε parameter scales the time-dependent perturbation
to the flow, it is expected that it is closely linked to the degree of chaos in the system.
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Motivated by these considerations, and that this relationship has not been investigated in
this way previously, the quantities 1/FTLEmed and 1/FTLEav are plotted for different ε
and Tf = 1, 2, 3, 6, 24, 36 and 48 in Figure 2.8.

Tf εmin
12 0.6
24 0.55
36 0.47
48 0.45

Table 2.1: Table of the parameter εmin giving the 1/FTLEav minimum for each of the
larger calculation times Tf .

As can be seen from Figure 2.8, for the smaller calculation times of Tf = 1, 2, 3 and 6,
both 1/FTLEmed (orange dashed) and 1/FTLEav (blue fill) decay for increasing ε. This
implies that for smaller calculation times the chaoticity only grows with ε. The plots
indicate that the timescale for chaotic behavior is largest for ε near zero and smallest for
ε > 1. Comparatively, for the larger calculation times of Tf = 12, 24, 36 and 48, minima
in the 1/FTLEmed and 1/FTLEav plots become apparent, suggesting that a particular
ε = εmin gives a minimum timescale for chaoticity to occur. For ε greater than this εmin,
the timescale for chaoticity grows slightly before beginning to asymptote with increasing
ε. Hence, unlike for smaller calculation times, there is no simple decay of the chaotic
timescale with increasing ε and so the ε regime considered for a particular Tf becomes
significant.

Table 2.1 details the εmin giving an approximate minimum in 1/FTLEmed for each
Tf . From Table 2.1 it can be seen that εmin decreases with increasing Tf , suggesting
that the ε giving the smallest timescale for chaotic behaviour decreases as Tf increases.
This implies that large calculation times require a smaller magnitude of perturbation to
the steady system for the highest possible chaoticity to occur than for lesser calculation
times. Above a certain magnitude of perturbation however, the timescale of chaotic be-
haviour remains fairly constant, suggesting that for longer calculation times increasing
the magnitude of perturbation to the steady system does not increase the chaoticity once
a certain level of chaoticity is reached. Interestingly, for Tf ≤ 6, 1/FTLEmed lies above
1/FTLEav, while for Tf > 6, 1/FTLEmed and 1/FTLEav almost overlap. This suggests
that for Tf ≤ 6 the distribution of chaotic timescales over all the initial conditions in the
domain is skewed towards higher than average chaotic timescales, while for Tf > 6 the
distribution of chaotic timescales is fairly symmetric.

Intuitively, the chaotic timescale should also be linked to how well-defined FTLE ridges
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are, as this is linked to the degree of exponential stretching of fluid particles over a fi-
nite time. The degree of exponential stretching of fluid particles will be impacted by the
parameter ε, as this determines how quickly chaoticity occurs in the flow, as well as the
time over which the model is run Tf , because, as shown above, this impacts how quickly
chaoticity is reached. The relationship between the magnitude of ε, Tf and the formation
of FTLE ridges is best illustrated by Figure 2.9, which shows a grid of FTLE fields with a
selection of Tf along the y-axis and a selection of ε along the x-axis. As can be seen, when
Tf is small, the FTLE ridges may be poorly defined for all ε, as there is insufficient time
for particle stretching to occur, as is the case for Tf = 0.5. For some Tf , the chaoticity
must be quite high for FTLE ridges to form, as in the case of Tf = 2, where ridges are
less developed for ε = 0 and ε = 0.3, but better defined for higher ε. If Tf is sufficiently
large, however, FTLE ridges form for most chaoticity regimes, as is the case of Tf = 6, 12
and 24, for which ridges form for all ε. Interestingly, for Tf > 6, the chaotic timescale
minimising ε identified in Table 2.1 seem to give a more noisy FTLE field, suggesting
FTLE fields corresponding to such ε contain more uncertainty. For ε = 0.5 for example,
which is near the chaotic timescale minimising ε for Tf = 12 and Tf = 24, the FTLE fields
seem to be undergoing a transition from a state in which the two gyres dominate the flow
(for ε = 0.3) to that in which multiple rotational eddies dominate the flow (for ε = 0.9).
This transition state is slightly noisy, containing elements of the two different structural
scenarios, particularly in the Tf = 24 case. These images can only provide an intuition
for regimes in which FTLE ridges will effectively form, but will assist in understanding
results presented in Chapters 4 and 5.

Overall, these findings motivate the calculation times used in the investigations in
Chapters 4 and 5, which use Tf values for FTLE calculations within 12 and 24. The
range of ε values used in Chapters 4-5 is within [0.1, 1.3], so that the shortest chaotic
timescale (and hence highest chaoticity regimes) occurs in the middle range of these val-
ues. This is important as the aim of this thesis is to explore techniques which are robust
in chaotic conditions. Using these timescales for this range of ε values thus provides some
assurance that chaotic behaviour is occurring for the parameter regimes being used.
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(a) (b)

(c) (d)

Figure 2.6: Lagrangian trajectories of 36 fluid particles initially placed on a uniform
grid for the time [t0, t] = [0, 6]. Different colours indicate trajectories of different initial
positions (indicated with open black cirles) on the grid. (a) for the stream function Ψ
in the original frame with ε = 0. (b) in co-moving frame with ε = 0, (c) in the original
frame with ε = 0.6 and (d) in the co-moving frame with ε = 0.6. It can be seen that
for ε = 0 in the co-moving frame the trajectories mirror the phase space diagram for the
steady system shown in Figure 2.4a.
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(a) (b)

(c) (d)

Figure 2.7: FTLE fields for [t0, t] = [0, 12] for (a) ε = 0, (b) ε = 0.1, (c) ε = 0.3 and
(d) ε = 0.5. These small incremental increases in ε illustrate the sensitivity of the time
perturbed Rossby wave model to changes in ε. Chaotic behaviour appears to occur more
quickly for higher ε, a phenomenon discussed in detailed in Section 2.8.
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Figure 2.8: 1/FTLEmed (orange dashed) and 1/FTLEav (blue fill) curves estimate the
chaotic timescale for a range of ε and for different total calculation times Tf . As can be
seen, for Tf ≤ 6 the chaotic timescale decreases with increasing ε, while for Tf > 6 the
chaotic timescale decreases until it is minimised by a particular εmin.
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ε = 0 ε = 0.3 ε = 0.5 ε = 0.9

Tf = 0.5

Tf = 2

Tf = 6

Tf = 12

Tf = 24

Figure 2.9: Table showing how the FTLE field varies with the calculation time Tf and
the parameter ε.



Chapter 3

Data Assimilation

Data assimilation (DA) is a dominant methodology for making predictions about geo-
physical systems that seeks to optimally combine information from observational data
and mathematical models. In particular, DA may be used to estimate geophysical model
parameters, which is crucial for running models of systems such as the climate. Chap-
ter 3 gives an overview of DA for geophysical systems and estimating geophysical model
parameters. This builds a basis for discussing the DA algorithms which will be used to
develop an FTLE-based data assimilation method for parameter estimation. In particu-
lar, two basic DA algorithms for parameter estimation, which will be used as benchmark
comparisons for the new algorithm, are discussed in detail. Current research in LCS-based
data assimilation methods is also reviewed to establish key areas for investigation for the
algorithm developed in this thesis.

3.1 Data Assimilation for Geophysical Systems

Generally two forms of information are available to supplement a prediction about a
geophysical system: observational data, such as temperature, wind speed and salinity,
and a mathematical model, built from an understanding of the physics, chemistry and
biology of a system. Both forms of information have their benefits and flaws. Observa-
tional data is a direct measurement of the system state, yet it contains measurement and
instrumentation errors and, as mentioned in Chapter 1, is often distributed irregularly.
Mathematical models can be used to fill these spatio-temporal gaps in data, yet, due to
the complexity and high-dimensionality of geophysical systems these are highly simplified
versions of the true system. Data Assimilation aims to combine the information captured
from both these sources in a way which exploits their respective benefits yet minimises
their downfalls (Lahoz & Schneider 2014) .

35
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An example of the data assimilation process in a geophysical context is shown in Figure
3.1, which illustrates a DA scheme for making a prediction about global ozone spread.
Ozone data, which possesses associated error due to the instrumentation used for data
collection and other factors, is collected via satellite (shown at left in Figure 3.1). This
collected data is often referred to as the observation. A mathematical model is also used
to create a prediction for the global distribution of ozone (at right in Figure 3.1), which
similarly possesses associated error due to model assumptions and other factors. This
physical model is referred to as the forecast, and is generally of a higher resolution than
the data. The data assimilation process combines the forecast and observation to produce
what is called the analysis (at bottom in Figure 3.1), an estimate of the current state
of the system. The analysis also possesses error, which may arise partially due to the
errors in the observations and forecast, as well as due to the technique used to combine
the two (Kalnay 2002). The key aim of data assimilation is to combine the observation
and forecast such that the errors present in either are optimally balanced, minimising the
error in the analysis. The specific process used to balance observation and forecast may
be drawn from a range of mathematical disciplines, including optimisation, dynamical
systems theory and Bayesian statistics.

Data assimilation for geophysical modeling predominantly arose due to researchers
attempting to amend error issues in numerical weather prediction (NWP). The prob-
lem faced was well summarised by the meterologist Charney, who in a 1951 review of
NWP comments that “Owing to their statistically indeterminate behaviour, the turbu-
lent properties of the atmosphere place an upper limit to the accuracy obtainable by
dynamical methods of forecasting, beyond which we shall have to rely upon statistical
methods.”(Charney 1951). By turbulent, indeterminate behaviour, Charney meant the
innately chaotic properties of the atmosphere. Essentially, both meteorological data, an-
alyzable using statistical methods, and model forecasts are needed to overcome the limits
of predictive models alone.

NWP is essentially an initial value problem, as initial values are needed to run weather
simulations into the future. An issue faced in the early history of geophysical data as-
similation was how to use collected atmospheric data, which was not necessarily located
at model grid points, to update states at model grid points. One might consider simply
interpolating the observations to the grid points, however, often the data available are
not sufficient if only interpolative methods are used. For example, NWP models may
have degrees of freedom of the order 107. Each grid point requires at least 4 initialisa-
tion values: 2 horizontal wind components, temperature and moisture, such that millions
of variables must be initialised. However, for a time window of 3 hours, typically only
around a million observations of the atmosphere are collected, far less than the number
of degrees of freedom of the model (Kalnay 2002). Additionally, as mentioned in Chapter
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Data

Ozone Observations + errors

Ozone Analysis + errors

Ozone Forecast + errors

Assimilation

Figure 3.1: A schematic of how data assimilation combines information from a mathe-
matical model with collected observational data. Ozone data (an ozone observation) is
combined with a mathematical model for the geographical distribution of ozone (an ozone
forecast). Both observations and forecast contain errors associated with data collection
methods and model assumptions respectively. The forecast and observations are com-
bined using a data assimilation scheme to form the ozone analysis, a prediction for global
ozone levels at the time of the forecast and observation. This analysis also has associated
error arising from a combination of measurement error, model assumptions and the data
assimilation scheme itself. (Adapted from Figure 2 in Lahoz & Schneider (2014))

1, these data are often erratically distributed, due to factors such as satellite paths and
cloud cover, as well as some parts of the Earth being relatively data-poor in comparison
to America and Eurasia.

To amend this mismatch between high-dimensional models and lower dimensional,
sparsely distributed data, DA takes a different approach to the interpolation problem.
Instead of attempting to interpolate the observations yn ∈ RN at time tn to the model
forecasts xn ∈ RM (where N ≤ M), the model forecasts are interpolated to the lower
dimensional observation space. This conversion of xn from model variables to observed
variables is generally described by the observation operator h : RM → RN , which acts
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Figure 3.2: Diagram showing the operation of the observation operator h(·) and the model
updateMn+1 in a generic DA scheme. The observation operator transfers the model state
vector at time tn, xn, from the model space, of dimension M , to observation space, of
dimension N ≤ M . Formulation of the analysis update to xn is then carried out in
observation space. xn+1 is then calculated by evolving the analysis update of the state
forward in time using Mn+1. This is repeated at each assimilation step.
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upon xn, giving h
(
xn
)
, the model forecast in observation space (Law et al. 2015, Kalnay

2002). Computations to formulate the analysis are then carried out in the lower dimen-
sional observation space, before transforming back to model space to calculate the model
update. A schematic detailing this process for a generic DA scheme is shown in Figure
3.2. This approach to the problem amends many of the dimensional issues associated
with interpolation, as well as reducing computational expense.

The defining quality of a particular data assimilation scheme is its update step at each
time tn; how it combines observations yn and forecasts xn to produce the analysis. There
are three general approaches to producing the analysis: the Kalman Gain, Variational
and Bayesian approaches. Kalman Gain approaches, such as the Kalman Filter described
in Section 3.2, formulate the update as a linear combination of xn and yn, where the
weighting of terms in the linear combination is calculated via a minimisation of the dif-
ference in observation and forecast. Variational approaches, although not used in this
thesis, balance information from the data and model via a cost function, which penalises
disparities in the model and observations. Bayesian approaches, such as particle filters
(described in Section 3.5) and Approximate Bayesian Computation (described in Section
3.6), differ from these first two approaches in that, rather than simply updating the sys-
tem state in the analysis step, the probability distribution of the system state is updated
(Law et al. 2015). This is useful as various summary statistics may then be calculated
from the distribution, such as expected values, variances and prediction intervals.

3.2 DA Methods

As the models and data being dealt with in DA are generally time-dependent, the analysis
is typically updated at regular intervals over time, called the assimilation window. At each
time tn the analysis from the previous time xan−1, where n denotes the assimilation window
index, is updated to the current time using the model update equations (3.1). The update
is denoted xpn, with the p standing for prediction:

xpn =Mn

(
xan−1

)
+ βn, (3.1)

whereMn : RM → RM is the deterministic model from time tn−1 to tn and βn represents
model error. It is generally assumed that the distribution of βn is known. At each time
an observation yn is also collected, which is related to the true state of the system xtruen

via,

yn = h
(
xtruen

)
+ ξn, (3.2)

where ξn is random noise representing measurement errors and potentially representational
errors if a truncated version of h is used (Leeuwen et al. 2019). One of the foundational
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methods of data assimilation, which provides a useful illustration of how the analysis may
be formulated from the forecast xpn and observations yn, is the Kalman Filter, the most
simple of the Kalman Gain methods (Evensen 2009). In this method Gaussian distributed
error in the model and observations is assumed, so that,

ξn ∼ N(0,Rn),

βn ∼ N(0,Qn),
(3.3)

for observational covariance matrix Rn and model covariance matrix Qn at time tn. A
linear observation operator is also assumed, so that,

yn = Hxtruen + ξn (3.4)

where H ∈ RN×M . At each time tn, the new analysis is obtained via the Kalman update
equations,

xan = xpn +Kn

[
yn −Hxpn

]
(3.5)

The Kalman gain matrix, Kn ∈ RM×N at time tn, is a weight matrix derived from
finding the solution to the least squares minimisation of the innovation, yn −Hxpn = In,
which gives a measure of how much the observed data yn differs from the model’s predic-
tion xpn (Law et al. 2015). The matrix Kn preferences model variables which are closest to
the observational data points in terms of a Euclidean distance. The basic process of the
Kalman Filter is shown in Figure 3.3, illustrating how the prediction, update and analysis
steps move between model space and observation space to exploit the lower dimensionality
of observation space .

A drawback of the regular Kalman filter, however, is that it requires a linear model
and observation operator. Many geophysical systems are highly non-linear and hence
DA for geophysical applications must be compatible with this characteristic non-linearity.
Due to this, many extensions of the Kalman Filter have been derived to accommodate
non-linearity, the most common of which are the extended Kalman Filter and the ensem-
ble Kalman Filter (EnKF). The extended Kalman Filter is the most simplistic extension
of the Kalman Filter in that it is basically the original Kalman Filter using a linearised
observation operator, in Equation (3.4), and model update equation (3.1). The evolution
of the error covariance in this approximation, however, is often unstable, rendering the
method unsuitable for many applications. In addition to this issue, for a large model
dimension the covariance may become too large to be realistically computable. Due to
these problems, the Ensemble Kalman Filter is more commonly used for geophysical DA
(Leeuwen 2015).

In the EnKF a Monte Carlo approach is taken to the regular Kalman Filter, with
the analysis distribution at each time approximated via an ensemble of N state vectors.
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Figure 3.3: Schematic showing one assimilation step of the Kalman filter. A prediction
xpn at time tn is produced by evolving the analysis from the previous time step forward
in time using the model Mn. The quantity xpn is transferred to observation space using
the observation operator h(·). The model in observation space h(xpn) is compared with
yn, data collected at time tn, via the innovation In = yn−h(xpn). The analysis xan is then
formulated in model space by acting Kn, the Kalman matrix, on In, which weights the
elements of In while also transferring In to model space. The process is repeated for each
time step in the assimilation scheme.

Each ensemble member evolves according to the full non-linear model equations, thus
ameliorating the instability issues associated with simply linearising the non-linear model
(Vetra-Carvalho et al. 2018). The analysis covariance is then updated as the covariance
of the ensemble, while several conditions assure that the mean analysis of the ensemble
satisfies the Kalman update equation (3.5) (Evensen 2009). The EnKF is also a popular
choice for parameter estimation in geophysical applications, where both the state and
parameters of a system must be estimated (Katzfuss et al. 2016).
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3.3 Bayesian Parameter Estimation

An important problem in many geophysical modeling applications is that of parameter
estimation, often called the ‘inverse problem’. While at times it may be of interest to pre-
dict the future state of a system given particular initial inputs (the ‘forward problem’),
often it is desirable to estimate the input parameters which would result in the observed
data. This is a common scenario in the modeling of climate, oceans and atmosphere, as
the models used often take in multiple parameters which must first be estimated from
data (Villagran et al. 2008).

Due to chaotic behaviour, key parameters may significantly impact model predictions
about the future state of a system, making it desirable to develop methods which estimate
such parameters with considerable accuracy. This is particularly the case with climate
models, for which even relatively small uncertainties in parameters may induce large un-
certainties in climate projections (Villagran et al. 2008). In estimating such parameters it
is desirable to also estimate their associated error so that this can be used to ascertain the
impact of estimation error on model predictions. Thus, statistical methods are common
in parameter estimation, as they allow various error statistics associated with an estimate
to be straightforwardly calculated .

As parameters are not directly observable, parameter estimation can only be carried
out in conjunction with state estimation, an approach referred to as joint state-parameter
estimation. In the Bayesian statistical framework, the ultimate aim is to estimate the
posterior distribution p(θn,xn|yn) for the parameter θn, model states xn and observations
yn at time tn. This is a probability density function (pdf) that gives the joint probability
of a model state xn and parameter θn given that yn has been observed. The posterior
concentrates probability density around the likely true state and parameter of the sys-
tem at time tn (Vetra-Carvalho et al. 2018, Law et al. 2015). Other statistical objects
which form the basis of parameter estimation methods are the joint state-parameter prior
p(θn,xn) and likelihood p(yn|θn,xn). The prior is a pdf selected based on beliefs about
θn before any analysis is done, which may arise from consideration of the physical mean-
ing of θn. The likelihood is a pdf which describes the probability of observing yn given
the joint model-parameter state is known to be (θn,xn). The likelihood and prior are
key mathematical objects in parameter estimation because they are related to the target
posterior p(θn,xn|yn) through Bayes’ Law:

p(θn,xn|yn) =
p(yn|θn,xn)p(θn,xn)

p(yn)
, (3.6)

where p(yn) is a pdf representing the probability of observing yn at time tn.
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With the aim of formulating the posterior from Bayes’ Law, many parameter estima-
tion methods assume Markovian model states, such that each step in the assimilation
scheme is conditioned only on the previous state for all variables and parameters (Kunsch
2013). In the Bayesian framework, this Markovian assumption means that the probability
of a particular model state xl at time tl, when conditioned on all previously occurring
states, only depends on the time tl−1. If p(x0:T , θ0:T ) is the joint probability of a series
of model-parameter states (xl, θl) from times tl = t0 to tl = tT , then the Markovian
assumption requires that

p(x0:T , θ0:T ) = p(x0, θ0)

T∏
l=1

p(xl, θl|xl−1, θl−1). (3.7)

The observations yn are also generally assumed to be conditionally independent in time,
so that

p(y1:T |x0:T , θ0:T ) =

T∏
l=1

p(yl|xl, θl), (3.8)

where y1:T is the set of observations collected over times t1 to tT . Using (3.7) and (3.8)
within Bayes’ Law (3.6), we can write

p(xT , θT |yT ) =
p(y1:T |x0:T , θ0:T )

p(y1:T )
p(x0:T , θ0:T )

∝ p(x0, θ0)

T∏
l=1

p(xl, θl|xl−1, θl−1)p(yl|xl, θl).
(3.9)

One of the reasons that the assumption of Gaussian error is common is that if the prior
p(x0:T , θ0:T ) or likelihood p(y1:T |x0:T , θ0:T ) are Gaussian then it follows that the posterior
p(xT , θT |yT ) will also be Gaussian, as the product in Equation (3.9) will allow additive
powers of the Gaussian exponential. This may significantly simplify the formulation of
the posterior, as its form will be known up to a proportionality constant (Vetra-Carvalho
et al. 2018).

3.4 Parameter estimation methods

The most common approach to DA for joint-state parameter estimation is to use a state-
estimation method but append any parameters θn to the state vector xn, add the pa-
rameter update equation to Mn in Equation (3.1) (which may be the identity if θn is
constant) and include state-parameter cross covariance terms in the covariance matrix.
Indeed, the most simplistic EnKF formulation for joint state-parameter estimation uses
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this method. If the system is highly non-linear however, augmented EnKF for state-
parameter estimation may seriously diverge, as the cross covariance between state and
parameters may grow exponentially. This is particularly the case for stochastic param-
eters and when observation frequency is low. Additionally, augmenting the state vector
with a large number of parameters may significantly increase the computational load of
an EnKF scheme (Santitissadeekorn & Jones 2015).

Various EnKF-based methods to overcome these issues have been formulated. The in-
teracting Kalman Filter, for example, instead implements two separate Kalman Filters to
update the state and parameters individually, with the two filters interacting so that state
and parameter updates have a physically meaningful association (Koyama & Watanabe
2010). Another option is a parameter augmented version of the local Ensemble Trans-
form Kalman Filter (LETKF), which calculates the Kalman update equation for local
regions of the spatial domain, reducing the dimension of calculations and increasing the
algorithm’s efficiency (Bellsky et al. 2013). An alternative is to avoid the augmentation
method entirely, thus bypassing the potentially erroneous assumption of a Gaussian joint
state-parameter model. Such methods instead estimate parameters based on approxi-
mate likelihood functions calculated from the output of a state-only EnKF scheme. This
approximation may be done using either a maximum likelihood approach or sequential
Bayesian methods (Katzfuss et al. 2016).

Other common Bayesian approaches for non-linear system parameter estimation in-
clude Markov Chain Monte Carlo (MCMC) methods and particle filter (PF) methods.
MCMC can be inefficient in high-dimensional geophysical models, however, as it requires
thousands of model evaluations to calculate the update. Several studies have approached
this issue via parallelisation (Solonen et al. 2012) and selective model simplifications (Ur-
ban & Keller 2010). Particle filters may also be inefficient in high-dimensional systems,
but are useful in that, unlike Kalman Filters, they do not require the assumption of
Gaussian error and tend to perform better for stochastic parameters (Santitissadeekorn
& Jones 2015). Indeed, PFs are often used as a comparison for testing new DA methods
as they can be proven to reproduce the true target posterior distribution in the limit of
large particle populations. This desirable property is difficult to prove for many other
methods (Law et al. 2015).

Hybrid approaches to parameter estimation are becoming increasingly popular to over-
come issues associated with highly non-linear models, combining several DA schemes to
exploit the advantages of a variety of methods within one algorithm. Such studies in-
clude Santitissadeekorn & Jones (2015), whose ‘two-stage’ method uses a PF to estimate
lower dimensional model parameters while updating the higher dimensional system state
using an EnKF. Similarly, Lu et al. (2019) perform a joint parameter-state estimation
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p(θn,xn|yn)

θnSampling

Resampling θn

θn

Figure 3.4: Diagram of the process of a simple particle filter. To estimate the posterior,
various realisations of the posterior are sampled, referred to as ‘particles’. This can be
done by sampling θin from a prior and then using θin within the model to compute the
corresponding xin. The particles are weighted according to how closely they match yt, the
observed data. Heavily weighted particles are then duplicated to retain the same number
of members in the particle ensemble. Resampling resets the weights to be uniform across
the ensemble, so that particle degeneracy is avoided.

on a stochastic PDE model for paleo-climate by combining an MCMC method with a
PF scheme. Such methods, however, require simplifications of the coupling between the
various DA schemes used, such as by passing ensemble means of parameters and states
between different DA schemes. Hybrid approaches are generally useful if the parameter
dimension is much smaller than the state dimension, but parameter estimation for sce-
narios where the parameter space is high-dimensional still presents significant research
challenges.

3.5 Particle Filters

As mentioned, particle filters are a common statistical method for parameter estimation
as, although suffering issues in high dimensional systems, they can be shown to converge
to the true posterior in the large sample limit. The process of a simple particle filter for
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parameter estimation is shown in Figure 3.4, which aims to estimate the target posterior
p(θn,xn|yn) at time tn. An initial sample of particles is produced from the model by first
generating a sample of N parameters θin from the prior p(θn) and then using these within
the model to generate N states (xn, θ

i
n) at time tn. The initial particles are then weighted

according to how closely h(xn, θ
i
n) ‘matches’ yn (shown in the top row of Figure 3.4), with

the degree of correspondence measured via the innovation yn−h(xn, θ
i
n). Heavier weights

imply the best matches, while lighter weights imply little correspondence between yn and
h(xn, θ

i
n). After the weights are calculated, the particle population is updated, so that the

greatest number of population members correspond to values of (xn, θ
i
n) with the highest

weights. An additional resampling step may also be performed at this point, which, if
there is a lack of diversity in the particle population, draws a population of the same size
with probabilities proportional to the weight vector. It then resets their weights to be
1/N , so that the majority of the weight does not become concentrated on a single particle
(shown in the bottom row of Figure 3.4) (Vetra-Carvalho et al. 2018, Leeuwen 2015).

Formally, the joint model-parameter posterior p
(
xl, θl

)
, as represented by N realisa-

tions of the system state and parameter, {xil, θil}Ni=1, at time tl, can be written as

p
(
xl, θl

)
≈ 1

N

N∑
i=1

δ
(
xl − xil, θl − θil

)
, (3.10)

where (xl, θl) ∈ RM+1 is the model state and δ(x − x̂, θ − θ̂) is the M + 1 dimensional
Dirac-delta distribution centred at x̂ and θ̂. This formulation is more generally used
in Monte-Carlo methods, and concentrates probability density around ensemble states
(xl, θ

i
l) which are closest to (xl, θl) (Vetra-Carvalho et al. 2018, Madja & Harlim 2012). It

follows that Bayes’ Law (3.6) gives the following formulation for the posterior at time tl,

p
(
xl, θ

i
l |yl
)

=
p
(
yl|xl, θil

)
p
(
yl
) p

(
xl, θ

i
l

)
.

Using (3.10) and the Markovian assumption of (3.7), the posterior may be approximated
as the weighted sum

p
(
xl, θ

i
l |yl
)
≈

N∑
i=1

wilδ
(
xl − xil, θl − θil

)
,

where the weights are given by

wil ∝ p
(
yl|xl, θjl

)
wil−1.

Each weight wil−1 is the product of the weights from all previous time steps t0 < tk ≤ tl−1.
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The algorithm which arises from this formulation is the simplest of the PF algorithms,
known as Sequential Importance Resampling or the Boot-strap PF (Law et al. 2015).
Suppose that at time tn−1 we have the posterior distribution represented by the par-
ticles ((xin−1, θ

i
n−1), w

i
n−1), where (x1

n−1, θ
1
n−1), . . . (x

N
n−1, θ

N
n−1) is the state ensemble and

w1
n−1, . . . w

N
n−1 are the N particle weights. These weights must satisfy win−1 ≥ 0, ∀i and∑N

i=1w
i
n−1 = 1. Using this set-up, the core steps of the Bootstrap PF algorithm are shown

in Algorithm 1 (Reich & Cotter 2015).

Algorithm 1 The Bootstrap PF/ Sequential Importance Resampling

for n in 1 : J do

1. Prediction step: Propagate the ensemble of N states forward from time tn−1
to time tn, (xin−1, θ

i
n−1) 7→ (xin, θ

i
n). The forecast probability distribution then

consists of:

� an ensemble of states {xin, θin}Ni=1 and

� a corresponding collection of weights {win−1}Ni=1.

2. Filtering step: Update the weights {win−1}Ni=1 using the observation yn. In the
standard PF win = cnw

i
n−1p(yn|xin, θin), where cn is a normalising constant such

that
∑N

i=1w
i
n = 1.

end for

Despite its effectiveness in non-linear applications, this standard PF algorithm suffers
from several issues. If the system is high-dimensional, PFs suffer from a phenomenon
known as particle degeneracy, where one of the particle weights approaches 1, while all
others approach zero. When this occurs the approximate posterior effectively has zero
width and future steps of the PF will tend to conserve the degenerate weighting. This
issue is commonly dealt with by monitoring the Effective Sample Size (ESS) and resam-
pling when the ESS drops below some threshold to refresh the particle ensemble. The
resampling step then draws a new ensemble which has the same mean and variance as
the old, and sets the weight of each member to be 1

N
when it is detected that particle

weights are becoming degenerate. The greater tendency of PFs towards degeneracy for
high-dimensional systems is often referred to as the curse of dimensionality, a phenomenon
suffered by all importance sampling algorithms in which efficiency decreases rapidly with
increasing dimension of the state space (Surace et al. 2019). In high-dimensional spaces, N
must be large to give an appropriate estimate of the posterior, which severely decreases the
computational efficiency. In fact, it has been shown that the theoretical required sample
size to avoid particle degeneracy scales exponentially with the state dimension, render-
ing PFs very computationally inefficient for high-dimensional systems (Snyder et al. 2008).
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3.6 ABC Algorithms

Perhaps one of the simplest Bayesian techniques for parameter estimation is an Approx-
imate Bayesian Computation (ABC) algorithm. ABC may provide an advantage over
other Bayesian methods for parameter estimation in that it can be used to compute the
posterior distribution, p(xn, θn|yn), when the likelihood p(yn|xn, θn) is unknown or in-
tractable. Rather than a likelihood, ABC only requires the ability to sample data from
the likelihood at a time tn. This sample data from the likelihood may be generated
by collecting realisations of the parameter θin from a prior distribution p(θn), and then
generating corresponding xin ∼ p(xn|θin) samples. Each realisation θin is then accepted if

ρ(yn, h(xin)) ≤ κ, (3.11)

where xin is the ith realisation of the model update for the system at time tn, ρ is a
distance function and κ is a fixed tolerance. The accepted values of θit will then be sam-
ples from the joint posterior p(θn,xn|ρ(yn, h(xn)) ≤ κ). If κ is sufficiently small then
p(θn,xn|ρ(yn, h(xn)) ≤ κ) should be a reasonable approximation to the target posterior
p(xn, θn|yn). Thus, a likelihood free route to the target posterior is achieved (Sisson et al.
2007).

An illustration of how this process operates is shown in Figure 3.5. We begin with
some prior distribution for θn based on its physical meaning, in this case assumed to be
Gaussian. Many realisations θin are then drawn from this initial distribution, three of
which are shown in Figure 3.5. For each realisation, a forecast xin is created by running
the model forward to the current time using θin, and then transforming xin to be in the
same space as the observations using the observation operator h(·). Each forecast is then
compared to collected observational data yn using a comparison which indicates how well
xin ‘matches’ yn. Based on this comparison the distribution of the parameter θn is updated
by selecting only the best matching θin. These steps are repeated iteratively to further
refine the parameter distribution.

Pseudo-code for this ABC algorithm in shown in Algorithm 2 (Gelman et al. 2013).
An alternative approach to this algorithm is to select the tolerance κ such that only the
‘best’ α% of realisations according to the distance function ρ are accepted. For example,
selecting the θins corresponding to the smallest 20% of distances. Instead of line 6 in
Algorithm 2, all θin are retained and then compared on line 10, with α% of the best θins
according to distance being retained to form the updated prior. The particle population
can then be replenished by replicating the new population of θins to make up the original
population size and adding a small amount of zero mean Gaussian noise to the replicates.

Although computationally expensive in its naive form, alterations to the basic ABC
algorithm have allowed ABC to be used to estimate parameters associated with complex
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Figure 3.5: Schematic of one assimilation step of an Approximate Bayesian Computation
(ABC) type DA scheme. Multiple realisations of the parameter θn are drawn from the
prior distribution and used within the model Mn to compute forecasts xin, for each θin.
These forecasts are compared to collected observational data yn via a distance measure
ρ, such as an L2-norm. Forecasts and observations which most closely match according
to the chosen measure are retained and their associated values of θin used to refine the
assumed distribution of θn.This is repeated at each time step.

Algorithm 2 The ABC algorithm

1: for n in 1 : J do
2: At time tn collect observational data yn .
3: for i in 1 : N do
4: Sample θin from the prior distribution p(θn).
5: Sample xn from the likelihood p(xn|θin).
6: if ρ(yn, h(xin)) ≤ κ then,
7: Retain θin.
8: end if
9: end for

10: Update prior distribution p(θn+1) to be for θin such that ρ(yn, h(xin)) ≤ κ.
11: end for



50 Chapter 3. Data Assimilation

dynamical systems. Tina et al. (2008), for example, develop an ABC type algorithm based
on Sequential Monte Carlo methods (SMC), which successfully estimates parameters from
biological experimental data. Similarly, Scranton et al. (2014) use SMC-ABC to estimate
parameters associated with a stage-structured population model. For such studies the
data is complex and the model multi-layered, such that a likelihood free approach is ben-
eficial despite the potential pitfalls of ABC.

3.7 Lagrangian Data Assimilation

Lagrangian data is data which carries information about the trajectory of a tracked ob-
ject. This data is very common in oceanographic studies, where instruments such as
surface and subsurface drifters, gliders and autonomous underwater vehicles are increas-
ingly becoming indispensable in data collection (Apte & Jones 2013). Such data contain
detailed information about flow dynamics, which is not captured in classic Eulerian data.
As discussed in Chapter 2, Lagrangian data carries not just tracer trajectory information,
but detailed information about evolving time-dependent structures in the flow, such as
eddies, vortices and gyres. This structural information illuminates barriers and transport
mechanisms of key physical quantities, such as energy, and may crucially impact mass
flow behaviour.

Lagrangian Data Assimilation (LaDA) is a framework of augmented DA schemes de-
signed to take advantage of the informational richness of Lagrangian data to estimate
a dynamical system’s state or associated parameters. Ide et. al. (2002) were the first
to formulate a formal framework for performing data assimilation on Lagrangian data.
They achieved this by augmenting the model governing equation with equations describ-
ing tracer advection and using these equations to track the evolving correlation between
tracers and the original flow state. This classic Lagrangian data assimilation set-up de-
fines the system state vector xt at time t as a vector comprised of both the original flow
state xFt and Lagrangian drifters xDt such that

x :=

[
xFt
xDt

]
.

The state xFt is some property of the fluid, such as temperature, position or velocity, and
can be thought of as the Eulerian state vector, which evolves through time according to
Eulerian governing equations. Comparatively, the tracer vector xDt is a set of Lagrangian
drifters following distinct Lagrangian trajectories. Essentially, the former contains the
evolving overall system state, while the latter tracks a state as it evolves along a particular
Lagrangian trajectory. The key difference in xFt and xDt is that xFt ’s evolution through
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time depends only on xF at previous times, such that

xFt =MF (xFt0 , t),

is the evolution equation for the flow state. Comparatively, the instantaneous tracer
position xDt at a given time t gives no information about the flow state xFt , although its
evolution equation is dependent on xFt :

xDt =MD(xDt0 ,x
F
t0
, t).

Hence, LaDA in its most general form may be thought of as DA where the state vector
tracks not just model states but also Lagrangian tracer positions, with consequential aug-
mentations to how the state and tracers are evolved through time (Kuznetsov et al. 2003).

The development of LaDA has been challenged predominantly by the complexity of
Lagrangian trajectories, which tend to not conform to various assumptions that most
non-Lagrangian assimilation schemes rely on (Apte et al. 2008). For example, most DA
schemes rely on variables being computed on a fixed grid, whereas Lagrangian obser-
vations are dispersed non-uniformly in space and often are not formulated in terms of
model variables (Kuznetsov et al. 2003). Many DA schemes also assume Gaussian noise
and zero correlation in accumulated error for observed drifter positions, which cannot
be assumed to hold generally for Lagrangian data (Kuznetsov et al. 2003, Salman et al.
2006). Additionally, the high order of the non-linearities associated with Lagrangian data
may significantly impact the prediction error of many DA schemes formulated for non-
Lagrangian non-linear models, like the EnKF (Apte & Jones 2013).

Ide et. al. revealed some of these issues in their seminal paper (2002), finding that
with low-quality data and large time intervals between observations, their Lagrangian
extended Kalman Filter scheme diverged. They attributed this to the non-linear effects
generated by the exponential divergence of tracer trajectories when in the neighbourhood
of hyperbolic points of the flow velocity field. Later work by Spiller et al. (2008) ap-
proached this issue with a Lagrangian assimilation scheme based on an ensemble Kalman
Filter, which allowed issues associated with linearly approximating the error covariance
matrix, that tracks correlations between drifter positions and state variables, to be ame-
liorated. More recently, Apte et al. (2008) developed a Bayesian approach to the issue
of non-linearly evolving correlations by using Markov Chain Monte Carlo to sample the
ensemble posterior. Other interesting approaches include the “hybrid filtering” methods
developed by Slivinski et al. (2015), which use a similar approach to methods developed
for parameter estimation in non-linear systems. Similarly to Santitissadeekorn & Jones
(2015), they use an EnKF to update high-dimensional state variables and a PF to update
lower dimensional drifter positions. Such methods, however, often rely on low dimensional
drifters and LaDA methods which are able to deal with high dimensional drifter systems
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are an active area of research. Such research aims to exploit the informativeness of La-
grangian data while managing the intertwined issues of non-linearity and error divergence.

3.8 Lagrangian Coherent Data Assimilation

Lagrangian Coherent Data Assimilation (LaCoDA) is a very recent area of LaDA which
attempts to tackle the challenges of assimilating Lagrangian Data while also exploiting
its inherent structural information through Lagrangian Coherent Structure Theory. This
area of research has shown success in tackling highly chaotic flow regimes, as well as flow
data which contains significant small scale structures, such as ocean data with sub-meso
scale eddies. A study by Maclean et. al. (2017), for example, estimates parameters from
Lagrangian ocean drifter data using Principle Component Analysis (PCA) to identify
relevant LCS. Their study shows that, when the model exhibits chaotic advection, the
incorporation of PCA into an ABC scheme yields improved error in estimating model
parameters compared to a Bootstrap PF. This suggests that the incorporation of LCS
into LaDA has promise for improving data assimilation error in chaotic regimes.

Studies by Gaultier et. al. (2013, 2014) have similarly attempted to integrate LCS
information into LaDA, using the FTLE to extract structural information from Sea Sur-
face Temperature gradients. The studies then use this structural information within
Bayesian DA schemes to correct predictions of Sea Surface Height. The latter study uses
a high-resolution numerical model of the Soloman Sea, while the former performs the
same analysis on altimetric data from the Western Mediterranean Sea. Both data sets
exhibit high variability on both submeso- and meso-scales, suggesting the potential for
using LCS in LaDA to better utilise fine-scale structural information.

Other studies have used heuristic clustering methods derived from machine learning
techniques to group regions of the flow according to coherent structures. Husic, Schleuter-
Cluck and Dabiri (2019) develop a Simultaneous Coherent Structure Colouring (SCSC)
method which clusters data so that the most dissimilar data points are in separate clusters.
Schleuter-Cluck and Dabiri (2019) then use SCSC within parameter estimation schemes,
finding that using their coherent colouring method provides a greater level of robustness
and accuracy than just using particle displacement alone.

Each of these studies suggest a meaningful advantage in consulting LCS techniques
when assimilating challenging Lagrangian data, particularly that exhibiting chaotic be-
haviour or complex fine scale structure. This motivates the main question postulated in
this thesis: is there a performance advantage to using an FTLE-based data assimilation
scheme for parameter estimation in chaotic systems? An FTLE-based scheme builds on
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the current literature of LaCoDA as the FTLE is designed to tackle spatially traversing
coherent structures, unlike the PCA method in Maclean et al. (2017). Such moving struc-
tures are a common feature of geophysical flows and particularly in Lagrangian data, so
methods which can exploit such structures are desirable. Although the FTLE had been
used previously to aid geophysical predictions in Gaultier et. al. (2013, 2014), they use
the FTLE as a means of correcting errors in velocity field data, rather than as a vari-
able, and do not consider multiple time-steps of an assimilation scheme. Additionally,
these studies only incorporate information about the positions of FTLE ridges, a process
which is itself ambiguous in finite-time flows, as discussed in Section 2.5. Comparatively,
the investigation herein will consider the use of the FTLE for parameter estimation over
multiple time steps of a DA scheme and using the entire FTLE field. Lastly, the FTLE
is a non-linear technique and hence may accommodate the non-linearity challenges which
thwart many LaDA schemes. Although this non-linearity makes the formulation of key
DA objects such as likelihoods challenging, the use of an ABC scheme may sidestep this
issue, as it only requires the ability to sample from the likelihood. These considerations
motivate Chapter 4, which develops the main premise of this thesis: an FTLE-based ABC
scheme for parameter estimation in chaotic regimes of Rossby wave flow.
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Chapter 4

FTLE-ABC

With the motivation of improving parameter estimation in highly chaotic geophysical
flows, Chapter 4 develops an FTLE-based ABC scheme for estimating the ε parameter
in chaotic regimes of Rossby wave flow. Following a formulation of the FTLE-ABC algo-
rithm, the predominant research questions associated with testing the algorithm’s efficacy
are discussed. The algorithm’s performance is then qualitatively compared to the bench-
mark algorithms of standard ABC and a standard particle filter in a variety of scenarios,
including for different values of the true parameter ε, varied assimilation time-steps, dif-
ferent initialisation schemes, and model reference frames.

4.1 The FTLE-ABC Algorithm

The method developed here, referred to as FTLE-ABC, is analogous to the ABC-type
assimilation scheme for parameter estimation first described in Figure 3.5 and Algorithm
2. Figure 4.1 shows the augmented scheme for FTLE-ABC. The assimilation process be-
gins identically to the standard ABC scheme, by drawing multiple realisations from some
chosen prior distribution for the parameter being estimated. As in the case of Figure 3.5,
the target posterior is that for the parameter being estimated, here the Rossby wave flow
parameter ε. However, rather than simply using the positions of fluid particles at the jth
time, tj, their FTLE field over the time period [tj−1, tj] is used.

Figure 4.1 illustrates in detail how the FTLE-ABC scheme proceeds numerically. Af-
ter realisations of the parameter ε are drawn from a prior distribution (shown here as
uniform), for each realisation εi the system is propagated forward in time using the model
Mn and the gridding method explained in Figure 2.3. The gridding method allows a
flow map gradient to be estimated and from this a forecast FTLE field, FTLE(xij), is
calculated for the model state xij corresponding to each realisation εi. Using the same
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Figure 4.1: Schematic of one assimilation step of the FTLE-ABC DA scheme. Realisations
of the parameter ε are drawn from a prior distribution (in this case uniform). For each
realisation the system is propagated forward in time using the gridding method explained
in Figure 2.3. This is used to calculate the flow map gradient and hence an FTLE field for
each parameter realisation, which will form the forecast FTLE. An observational FTLE
field is also calculated from tracer data collected at the same time. The forecast and
observed FTLE fields are compared via an L2-norm distance measure. The best α% of
these ε values according to the distance measure are retained to form the prior for the
next assimilation step .
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method, an observed FTLE field, FTLE(yj), is also calculated from tracer data yj. If
using real data for yj, corresponding velocities can be estimated by using a suitable finite
difference method, so that the observed flow map graident can be estimated and used
to calculate an observed FTLE field. If data is being simulated, as was done in the in-
vestigations in Chapters 4 and 5, the gridding method can be used with initial particle
positions calculated from the model with the true parameter as input and a small amount
of Gaussian noise added to simulate data error. The forecast and observed FTLE fields
are then compared via a distance measure ρ from the condition (3.11), which we choose
to be the L2-norm here. The forecast FTLE fields most similar to the observed FTLE
field according to this distance measure, and their associated εi values, are used to further
refine the target posterior distribution for ε. From Figure 4.1 it can be appreciated how
forecast FTLE fields corresponding to similar ε values appear structurally similar, while
those with strongly differing ε values bear little structural resemblance. A higher distance
between a particular forecast FTLE field and the observed FTLE field should imply the
structures present in each are poorly matched, suggesting εi differs strongly from εtrue. A
lower distance should similarly imply a good match between the structures in the observed
FTLE field and forecast FTLE field, suggesting the corresponding εi is closer to εtrue.

Algorithm 3 The FTLE-ABC Algorithm

for j = 1 : J , do
At time tj collect tracer observations yj.
Use the observations yj to calculate the forecast FTLE field, FTLE(yj).
for i in 1 : N , do

Sample εij from the prior distribution p(εj).
Sample xij from the likelihood p(xij, ε

i
j|yj) by forwarding the model to time tj

for εij.
Calculate the observed FTLE field for εij, FTLE(xij).
if ||FTLE(yj)− FTLE(xij)||2 < κ then

Retain εij
end if

end for
Update prior p(εj+1) to be retained εij only.
Replenish population size by creating replicates with added non-zero Gaussian noise.

end for

The relative magnitudes of the L2-norm for each parameter realisation are used to up-
date the target posterior here by retaining the best matched εi and discarding the worst.
This is done by selecting the best α% of εi according to distance and replenishing the
particle population by generating a sufficent number of replicates of this best α% and
adding Gaussian noise to avoid degeneracy. For example, for N = 100 and α = 20, the
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ε realisations corresponding to the smallest 20 distances are retained. To replenish the
population to size 100, 4 copies of the 20 selected ε are generated, with a small amount of
zero-mean Gaussian noise added to each. This FTLE-ABC algorithm is given in pseudo-
code in Algorithm 3. Note that in Algorithm 3 the value κ is chosen to be the minimum
L2-norm distance not included in the best α% of particles.

4.2 Research questions for FTLE-ABC

The investigation herein examines the performance of the FTLE-ABC algorithm when
estimating the ε parameter in Rossby wave flow, with the predominant aim of exploring
the algorithm’s efficacy in chaotic flow regimes. In Section 2.8 connections between the
flow chaoticity and the ε parameter of Rossby wave flow, as well as Tf , the time over which
the assimilation scheme is performed, were discussed. There it was emphasised how cer-
tain values of ε tend to maximise the chaoticity of the flow for a particular Tf . The time
frame over which chaotic behaviour occurs, the chaotic timescale, may be approximated
as 1/FTLEmed, and will impact how effectively the chosen assimilation time step, ∆T ,
captures the system dynamics. As the predominant aim of this thesis is to develop a pa-
rameter estimation method which is resilient in chaotic geophysical systems, the following
numerical investigations focus on comparing the performance of FTLE-ABC, standard
ABC and a standard particle filter for different magnitudes of the ε and ∆T . As ε scales
the degree of chaos in the flow, and ∆T affects how well the scheme captures the time
resolution of the chaotic dynamics, varying these parameters will give insight into how
FTLE-ABC’s performance is impacted by chaotic behaviour.

Finding DA schemes which perform well for large gaps between data collection times
is also of interest as this reduces the need for highly frequent (and hence more expensive)
data collection and storage. As discussed in Chapter 1, data with large times between
collection periods contains noise which is magnified by chaotic behaviour, particularly if
the model is run over many assimilation time steps for large final times. It is consequently
of interest whether FTLE-ABC may gain an advantage over standard methods for longer
times between assimilation steps (∆T ), as the technique relies on the formation of co-
herent structures, rather than just tracer positions. Longer times between assimilation
steps allows more time for evolving coherent structures to develop and hence may actually
enhance the information captured in an FTLE field, rather than hindering the method’s
performance. These factors are an additional motivation for analysing the algorithm’s
performance for different magnitudes of ∆T .

Apart from these primary concerns of dealing with chaoticity and infrequent data col-
lection, it is also of interest to assess FTLE-ABC’s ability to deal with spatially traversing
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coherent structures. Generally, geophysical fluid structures are temporally and spatially
dynamic, so LaCoDA methods which can deal with spatially dynamic fluid structures are
advantageous. In particular, such a property would improve on Maclean et al. (2017), as
the PCA method they use for structure detection is not frame independent and cannot
deal with spatially traversing structures. As the FTLE is frame independent, however,
the method can easily track spatially traversing structures, such as those occurring in the
moving frame of Rossby wave flow. To demonstrate that FTLE-ABC can deal with spa-
tially traversing structures, the algorithm’s performance is compared in the moving and
co-moving frames of Rossby wave flow here, as the moving frame case contains spatially
traversing structures while the co-moving frame case does not.

An additional concern is whether the initial placement of tracers will affect FTLE-
ABC’s performance. This issue is relevant to the problem of optimising methods of
collecting oceanographic data, where instruments such as temperature sensors may be
dropped by boats for data collection. Optimal placement of tracers may impact the
performance of LCS based methods and is a question of importance in geophysical ap-
plications (Salman et al. 2008). More generally, as is discussed in Chapter 1, geophysical
data may be erratically distributed and so gaining insight into how a new method deals
with non-uniform data is important. Here this is tested by comparing the assimilation
scheme results when all tracers are initially dropped inside the gyres in the Rossby wave
model to when initialisation is on a uniform grid. The former approach does not allow
uniform sampling of the initial domain, which may impact the formation of FTLE ridges
and hence the ability of the FTLE to identify significant structures. Additionally, the
gyres of Rossby wave flow tend to be less chaotic, more coherent regions of the flow
and so initialisation in gyres only may cause the method to underestimate ε, the mag-
nitude of which scales with the chaoticity. Knowledge of the algorithm’s sensitivity to
the initialisation scheme used will give insight into suitable applications for the algorithm.

These research questions are qualitatively investigated in Sections 4.3 and 4.4. Section
4.3 qualitatively compares the performance of FTLE-ABC and standard ABC by consid-
ering individual assimilation steps of the two schemes for different magnitudes of ∆T
and ε, the two initialisation schemes and the model in the co-moving and moving frames.
Section 4.4 compares FTLE-ABC and a standard particle filter, focusing on regimes in
which the particle filter becomes degenerate, such as for large ∆T or for high initial noise
in tracer positions. This different approach for the PF comparison, which allows insight
into how well FTLE-ABC deals with noisy tracer data, is discussed in further detail in
Section 4.4.
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4.3 Standard ABC versus FTLE-ABC

As an initial investigation into the impact of parameters such as ∆T and εtrue on the
performance of FTLE-ABC and standard ABC, plots of the L2-norm distance against
ε are generated for varied magnitudes of these parameters. For FTLE-ABC this means
the value of the distance ||FTLE(yj)−FTLE(xij)||2 is plotted against its corresponding
εij realisation at the jth time step of the algorithm. For standard ABC, the distance
||yj − xij||2 is plotted against its corresponding εij realisation. The algorithms are run for
a larger number of observations (J = 9) and then a small number of observations (J = 3),
so that their performance is compared for the small ∆T ≈ 1.3 in the former case, and the
large ∆T = 4 in the latter case. These ‘large’ and ‘small’ definitions are designated by the
1/FTLEmed curve for Tf = 12 in Section 2.8, which suggests ∆T ≈ 1.33 will be smaller
than the chaotic timescale for all ε, resolving the chaotic dynamics well, and ∆T = 4
will be larger than or of similar magnitude to the chaotic timescale for ε > 0.5. Different
magnitudes of εtrue (0.3, 0.9 and 1.3) are also compared, to gauge the effect of varying
the degree of chaoticity on the algorithms’ performance. For each of these comparisons,
the first and final assimilation steps (j = 1, J) for a final time of Tf = 12 are plotted, to
illustrate how efficiently each algorithm updates the distribution of ε as the assimilation
scheme is run. If a method performs well, we expect a distance minimum to form near the
true parameter in the first step of the assimilation scheme, as this would indicate particles
giving the lowest distances correspond to ε realisations very near to εtrue. In the final step
of the assimilation scheme, a well performing method should show a narrow distribution
with an average near the true parameter value, as this indicates low error in the scheme’s
estimate of εtrue.

Motivated by the research questions in Section 4.2, FTLE-ABC’s performance is also
compared for different initial distributions of tracer data and in conditions where coherent
structures may spatially traverse the flow domain. Section 4.3.1 details the simplest
comparison between the algorithms, where tracers are initialised on a uniform grid, so
that there is uniform sampling of the flow domain, and the Rossby wave model is in the
co-moving frame, so that structures cannot spatially traverse the flow domain. In Section
4.3.2 a non-uniform initialisation scheme is used, with tracers being dropped randomly
in one of the two gyres of Rossby wave flow, again when the model is in the co-moving
frame. This provides a comparison to the uniform initialisation case, to investigate how
well FTLE-ABC deals with non-uniform sampling of the initial flow domain. Finally, in
Section 4.3.3 the algorithms are compared again for the uniform initialisation scheme,
but for the model in the moving frame, so that structures may spatially traverse the flow.
This allows a comparison to the performance of FTLE-ABC in Section 4.3.1, where the
co-moving frame is used, to determine how well the new algorithm deals with spatially
traversing structures.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Comparison of the first assimilation step (left) and last assimilation step
(right) for FTLE-ABC (blue and orange diamonds) and standard ABC (green and purple
crosses). The lines represent the average of the best 20% of particles according to distance
for FTLE-ABC (black) and standard ABC (black dashed). εtrue is denoted with a red
cross. (a), (b) use ε = 0.3, (c), (d) ε = 0.9 and (e), (f) ε = 1.3. The runs are for the model
in the co-moving frame with Tf = 12, J = 9, M = 100, when initialised on a uniform
grid.

4.3.1 Spatially stationary structures with uniform initialisation

Here we consider the most simple comparison between standard ABC and FTLE-ABC,
where tracers are initialised on a uniform 10-by-10 grid (M = 100). The dimension
M = 100 was chosen following qualitative investigations into the effect of the dimension,
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(a) (b)

(c) (d)
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Figure 4.3: Comparison of the first assimilation step (left) and last assimilation step
(right) for (a), (b) use ε = 0.3, (c), (d)ε = 0.9 and (e), (f) ε = 1.3, with the same colour
scheme as Figure 4.2. The runs are for the model in the co-moving frame with Tf = 12,
J = 3, M = 100, when initialised on a uniform grid.

which suggest this is a suitable number of points on the spatial grid to give a suitably high
resolution FTLE field, while not being unreasonably computationally time consuming. In
this first instance, the model is in the co-moving frame, so that extant structures are spa-
tially stationary. In each of the plots in the following sections, orange and blue diamonds
indicate particles from FTLE-ABC runs, while green and purple crosses indicate particles
from standard ABC. Orange and green symbols represent the best α =20% of particles
according to the L2-norm distance measure. The black filled line represents the average
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value of ε for the best 20% of particles in the FTLE-ABC scheme, while the black dashed
line represents the average ε for the best 20% of particles in the standard ABC scheme.
A red cross denotes εtrue.

Figures 4.2a, 4.2c and 4.2e show the L2-norm distance versus ε plots for the first assim-
ilation step with J = 9 observations, so that the assimilation step is ∆T ≈ 1.33. Figure
4.2a is for the relatively low εtrue = 0.3, Figure 4.2c for εtrue = 0.9 and Figure 4.2e for
the relatively high εtrue = 1.3. As expected, both schemes give a minimum very close to
the true value of ε, although the position of the minimum is slightly more diffuse for the
higher εtrue values of 0.9 and 1.3. The average value of the distributions on these plots is
also very near the true value of ε.

Figures 4.2b, 4.2d and 4.2f show the same three plots but for the final step of the 9 step
assimilation scheme. From these plots it can be seen that FTLE-ABC and standard ABC
perform similarly for εtrue = 0.3 and εtrue = 0.9, giving quite narrow final distributions
with an average ε which lies on the true value of the parameter. The narrow intervals for
these distributions suggests low error in the estimate for both methods. For εtrue = 1.3
the methods give slightly different final distributions, with standard ABC slightly over-
estimating εtrue and FTLE-ABC slightly underestimating εtrue. The final distribution for
FTLE-ABC is also marginally narrower than that for standard ABC, but not significantly
so. These plots suggest that for this small assimilation time step when a uniform initial-
isation scheme is used and only stationary structures are extant in the flow, FTLE-ABC
and standard ABC perform equivalently. This seems to hold even for higher chaoticity
regimes of the flow (higher ε).

Figures 4.3a, 4.3c and 4.3e show the same L2-norm distance versus ε plots for the first
assimilation step, but for a lower number of observations, J = 3, so that the assimilation
time step is now larger (∆T = 4). The minimum distance for both methods is again
quite near the true parameter for εtrue = 0.3, suggesting the methods perform similarly
in this low chaoticity regime. The initial distributions for the parameters are also again
more diffuse for εtrue = 1.3, spreading between 1 and 1.4, which can be attributed to this
being a higher chaoticity regime than for the lower εtrue values. For the larger εtrue values
of 0.9 and 1.3, standard ABC again tends to underestimate the true parameter, while
FTLE-ABC gives a more accurate estimate, with the average of the particle distribution
lying near to the true value.

Figures 4.3b, 4.3d and 4.3f show the same plots for the final assimilation step. For
εtrue = 0.3 the final distributions for FTLE-ABC and standard ABC are of a similar width,
spreading between 0.2 and 0.35, and have averages which lie on the value of the true pa-
rameter, suggesting the methods again perform similarly in this low chaoticity regime. At
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the higher εtrue values, however, the FTLE-ABC final particle distribution becomes nar-
rower than that for standard ABC, particularly for εtrue = 1.3, giving higher certainty in
the εtrue estimate. For εtrue = 0.9, standard ABC slightly underestimates εtrue as around
0.85, while FTLE-ABC estimates the true parameter quite accurately. For εtrue = 1.3 the
difference in the techniques’ estimates is more stark, with FTLE-ABC again estimating
εtrue quite accurately, while standard ABC underestimates the true parameter as 1.21.
Such differences in ε appear small, but have a significant impact on the nature of the flow,
as shown in Figure 2.9 in Chapter 2, so small errors in the estimate may have a signif-
icant impact on predictions. These plots suggest that for the higher chaoticity regimes
of Rossby wave flow, and when there are larger time steps between assimilation steps,
FTLE-ABC may more accurately estimate ε, and also give less error in this estimation (a
narrower final distribution). Thus, for the uniform initialisation and spatially stationary
structures case, FTLE-ABC’s performance is not severely effected when the time between
observations is longer, while standard ABC’s performance worsens in the more chaotic
regimes induced by longer ∆T and higher εtrue values.

4.3.2 Spatially stationary structures with non-uniform initiali-
sation

Here the model is again considered in the co-moving frame, so that structures are spatially
stationary, however now for the non-uniform initialisation scheme where all tracers are
initially placed randomly inside one of the two gyres. This will allow some insight into how
the new algorithm deals with non-uniform sampling of the initial flow domain. Figures
4.4a, 4.4c and 4.4e again show L2-norm distance versus ε plots for the first assimilation
step with the lower ∆T ≈ 1.33 (J = 9). For εtrue = 0.3 and εtrue = 0.9 FTLE-ABC and
standard ABC again perform similarly, giving minima around the true parameter value.
For εtrue = 1.3 however, the distribution of FTLE-ABC’s best 20% of particles tends to
be biased towards values of ε which are higher than the true value, which seems counter-
intuitive given that inside the gyres should be a less chaotic region of the flow domain.
Possibly the non-uniform sampling has biased the FTLE field such that the estimate for
ε is too high. Figures 4.4b, 4.4d and 4.4f show the same plots for the final assimilation
step. From these it can be see that when particles are initially placed randomly in gyres,
standard ABC will tend to underestimate εtrue, particularly for higher εtrue, possibly due
to the gyres being less chaotic regions of the flow. FTLE-ABC overestimates the true
parameter for the low εtrue = 0.3 value, but appears quite accurate for the higher values
εtrue = 0.9, 1.3. This is possibly due to the higher chaoticity allowing more even sampling
of the flow domain when the flow has been allowed to evolve for some time, so that FTLE
calculations are no longer as biased as in the first assimilation step.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Comparison of the first assimilation step (left) and last assimilation step
(right) for (a), (b) use ε = 0.3, (c), (d) ε = 0.9 and (e), (f) ε = 1.3, with the same colour
scheme as Figure 4.2. The runs are for the model in the co-moving frame with Tf = 12,
J = 9, M = 100, when initialised inside gyres.

Figures 4.5a, 4.5c and 4.5e show the same L2-norm distance versus ε plots for the
first assimilation step when initialised randomly within gyres, but for the larger ∆T = 4
(J = 3). Interestingly, for the case of εtrue = 0.3 the distance plot for FTLE-ABC
possesses two minima, one at the true value of 0.3 and another at ε = 0.5, possibly
due to the partitioned initialisation scheme causing the algorithm to assign a separate
εtrue for each of the gyres and creating a bi-modal distribution. For εtrue = 0.9 only one
minimum occurs, while for εtrue = 1.3 the single minimum is very dispersed. Despite
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Figure 4.5: Comparison of the first assimilation step (left) and last assimilation step
(right) for (a), (b) use ε = 0.3, (c), (d)ε = 0.9 and (e), (f) ε = 1.3, with the same colour
scheme as Figure 4.2. The runs are for the model in the co-moving frame with Tf = 12,
J = 3, M = 100, when initialised inside gyres.

the distribution becoming more dispersed for higher εtrue values, for standard ABC a
single minima occurs for all εtrue values and is generally centred on the true parameter
value. Figures 4.5b, 4.5d and 4.5f show the same plots for the final assimilation step.
Here FTLE-ABC tends to perform badly for higher εtrue but reasonably well for lower
values, which seems to contradict the lower ∆T case. This is possibly due to higher
∆T coupled with the uneven sampling of the flow domain biasing the FTLE field ridges
to particular portions of the domain. For example, large ridges may form around the
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gyres due to the large ∆T , while other portions of the domain remain empty. Overall
these results suggest the FTLE-ABC algorithm produces very mixed results when initial
sampling of the flow domain is non-uniform and ∆T is high, possibly because this biases
the stretching measures of the FTLE field and creates an incomplete picture of extant
coherent structures.

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Comparison of the first assimilation step (left) and last assimilation step
(right) for (a), (b) use ε = 0.3, (c), (d) ε = 0.9 and (e), (f) ε = 1.3, with the same colour
scheme as Figure 4.2. The runs are for the model in the moving frame with Tf = 12,
J = 9, M = 100, when initialised on a uniform grid.
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Figure 4.7: Comparison of the first assimilation step (left) and last assimilation step
(right) for (a), (b) use ε = 0.3, (c), (d) ε = 0.9 and (e), (f) ε = 1.3, with the same colour
scheme as Figure 4.2. The runs are for the model in the moving frame with Tf = 12,
J = 3, M = 100, when initialised on a uniform grid.

4.3.3 Spatially traversing structures with uniform initialisation

We now consider FTLE-ABC in the moving frame of Rossby wave flow, where extant
structures may spatially traverse the flow domain. Spatially traversing structures are
common in chaotic geophysical flows and LCS methods which may deal with such struc-
tures are desirable. Figures 4.6a, 4.6c and 4.6e show the L2-norm distance versus ε plots
for the first assimilation step in this scenario, with the uniform grid initialisation and
∆T ≈ 1.33. As can be seen, for the first assimilation step, the standard and FTLE-ABC
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methods appear to perform similarly for εtrue = 0.3, forming distinct minima about the
true parameter value. For εtrue = 1.3 the minima for both methods become very diffuse,
as expected due to the higher chaoticity, but the average for standard ABC in this case
underestimates εtrue by around 0.1, while FTLE-ABC estimates the true parameter quite
accurately. Figures 4.6b, 4.6d and 4.6f show the same plots for the final assimilation
step. For εtrue = 0.3 and εtrue = 0.9 the methods perform similarly, although FTLE-ABC
gives a narrower final distribution for εtrue = 0.9 than standard ABC. For εtrue = 1.3,
the minimum for standard ABC becomes much more diffuse than that for FTLE-ABC,
suggesting the higher chaoticity is causing the error in the algorithm’s estimation to grow.
In particular, the final distribution ranges from 1.25 to 1.37 for FTLE-ABC but from 1 to
1.3 for standard ABC. The average for the distribution for standard ABC is also around
0.2 lower than the true value here, while FTLE-ABC estimates the true value quite ac-
curately. These results suggest that, as expected, the performance of FTLE-ABC does
not change significantly when spatially traversing structures are extant in the flow, while
that of standard ABC is quite severely effected by spatially traversing structures when in
higher chaoticity flow regimes.

Figures 4.7a, 4.7c and 4.7e show the same L2-norm distance versus ε plots for the first
assimilation step, but now for the higher time step, ∆T = 4. The two methods perform
similarly in this first step, except for when εtrue = 1.3, where standard ABC underesti-
mates the true parameter by about 0.2 in this more chaotic regime. Figures 4.7b, 4.7d
and 4.7f show the same plots but for the final assimilation step. Here, both methods
perform similarly for εtrue = 0.3 and εtrue = 0.9, although standard ABC’s distribution
for εtrue = 0.9 is again more diffuse, giving higher variance in the method’s estimate for
εtrue. For εtrue = 1.3, standard ABC underestimates εtrue by about 0.2 and gives a dif-
fuse final distribution, while FTLE-ABC gives a more narrow distribution centred on the
true parameter value. These results suggest FTLE-ABC offers an even greater advantage
over standard ABC in high chaoticity regimes when structures are spatially traversing the
flow. This also demonstrates that FTLE-ABC can indeed deal with spatially traversing
chaotic structures and may provide an advantage over standard methods for parameter
estimation in geophysical flows with such structures. Due to this, only the model in the
moving frame, where structures are spatially traversing, is considered for the comparison
to the PF in Section 4.4.

4.4 Standard PF versus FTLE-ABC

Comparison of FTLE-ABC to a standard particle filter requires quite a different consider-
ation of the parameters involved. The main weakness of a PF in the context of parameter
estimation is associated with degeneracy. If a PF settles on an inaccurate parameter dis-
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tribution initially and becomes degenerate it is unlikely that the algorithm will recover
through further updates, due to constant re-sampling of the incorrect distribution. Hence,
if the initial parameter distribution is quite broad and the PF is degenerate, the param-
eter estimate will be inaccurate. For Rossby wave flow in the moving frame initialised
on a uniform grid the performance of the standard PF was found to be sensitive to noise
in the initial positions of particles (σ3) and the amount of time between observations
(∆T ). When both are sufficiently large the PF becomes degenerate and re-samples on
a significant proportion of the total number of assimilation steps. A large ∆T does not
necessarily mean the value the PF estimates for εtrue is inaccurate, but it does tend to
induce degeneracy, so that it becomes difficult to add information to the distribution of
εtrue at each update. This, coupled with a reasonably high level of initial noise, causes
the PF estimates for εtrue to become quite inaccurate.

In Section 4.3 it was shown that FTLE-ABC performs quite well for larger ∆T , sug-
gesting this is a parameter regime for which FTLE-ABC may provide an advantage over
a standard PF. FTLE-ABC should also be able to deal with a reasonable level of Gaus-
sian noise in the initial conditions, as the stretching of fluid particles, as measured by the
FTLE field, should not change significantly for zero-mean Gaussian noise. More generally,
algorithms which can deal with initial uncertainty in tracer positions are advantageous
in the context of geophysical parameter estimation, as tracer position data will naturally
contain errors which may be magnified by chaotic behaviour. With these considerations
in mind, varying ∆T and the initial noise added are the focus of the comparison of FTLE-
ABC to the standard PF.

To assure the comparisons are done in a chaotic regime of Rossby wave flow, εtrue = 0.5
is used for all the runs in this section. Also, as the results were quite mixed for FTLE-
ABC when tracers were initialised only within gyres in Section 4.3, for the PF comparison
tracers are only initialised on a uniform grid. All runs in this section use the low model
dimension of M = 4, so that the PF does not require a computationally unreasonable
number of ε realisations to avoid degeneracy (i.e. so that any degeneracy is induced by the
magnitude of ∆T rather than the high dimension). Additionally, only the Rossby wave
model in the moving frame is considered for the PF comparison, as it was established
in the previous section that FTLE-ABC’s performance is not effected by the presence
of spatially traversing structures, and the moving frame scenario is more applicable to
geophysical applications.

4.4.1 No initial noise and small versus large time steps

As a comparison to FTLE-ABC’s distance versus ε plots, the PF weights wij generated
at each assimilation step are plotted against their corresponding parameter realisations
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Comparison of 6 assimilation steps for the standard PF, in the moving frame
with Tf = 1, J = 6, M = 4, ε = 0.5, σ3 = 0.0 and N = 200. Green crosses are particles,
the black dashed line is the particle population average and the red cross is εtrue.

εij. The weights for the PF are equivalent to the distance measure for FTLE-ABC and
ABC, as they provide a measure of the closeness of the PF’s estimate for ε to the true
value. For the PF, however, a maximum in the weights near εtrue, rather than a mini-
mum, implies a good estimate, as higher weights imply a closer correspondence to εtrue.
A weights distribution where all weights are equal regardless of ε implies that the PF has
become degenerate and has resampled. In the PF plots in the following analysis, green
crosses represent particles and black dashed lines represent the average ε of the particle
population. In the FTLE-ABC plots, orange and blue diamonds again correspond to the
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(a) (b)

(c) (d)
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Figure 4.9: Comparison of 6 assimilation steps for FTLE-ABC, in the moving frame with
Tf = 1, J = 6, M = 4, ε = 0.5, σ3 = 0.0 and N = 200. Blue and orange diamonds are
particles, with orange representing the best 20% according to distance. The black line
denotes the average of the best 20% and the red cross is εtrue.

particle population, with orange diamonds representing the best α = 20% of particles
according to distance, as in Section 4.3. The dashed black line represents the average ε
for the best 20% of particles and εtrue is denoted with a red cross in all figures.

As a baseline comparison, conditions in which it is expected the PF will thrive are first
considered, with no noise added initially to tracer positions. This scenario is compared for
a long final time Tf = 24 and a short final time Tf = 1 for the same number of observations
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(e) (f)

Figure 4.10: Comparison of 6 assimilation steps for the standard PF, in the moving frame
with Tf = 24, J = 6, M = 4, ε = 0.5, σ3 = 0.0 and N = 200. Green crosses are particles,
the black dashed line is the particle population average and the red cross is εtrue.

J = 6, so that in the former case the flow should be fairly chaotic in the final steps, while
in the latter case the flow will not be particularly chaotic. With no initial noise added,
however, the PF may still perform well for the chaotic case, as it may settle on the correct
distribution for ε before the flow becomes too chaotic. This will provide a comparison
for the following section, in which initialisation with added noise is considered. Figures
4.8 and 4.9 compare each step of the PF scheme and FTLE-ABC scheme with ∆T = 1/6
while Figures 4.10 and 4.11 compare each step of the two schemes for ∆T = 4. As can
be seen from Figure 4.8, for the relatively small ∆T = 1/6 the PF resamples at only one
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Figure 4.11: Comparison of 6 assimilation steps for FTLE-ABC, in the moving frame
with Tf = 24, J = 6, M = 4, ε = 0.5, σ3 = 0.0 and N = 200. Blue and orange diamonds
are particles, with orange representing the best 20% according to distance. The black line
denotes the average of the best 20% and the red cross is εtrue.

assimilation step and forms a narrow maximum around εtrue = 0.5. Comparatively, for
these short time steps FTLE-ABC, shown in Figure 4.9, appears to fixate on an incorrect
distribution for εtrue for all steps of the scheme. This is possibly due to the system being
relatively stationary for small times, such that insufficient fluid-particle stretching occurs
for the FTLE-ABC method to be informative, while the PF thrives in this minimal dy-
namics scenario. This explanation is indeed suggested by Figure 2.9 in Chapter 2, which
shows that FTLE ridges will be poorly defined for this Tf . For the increased dynamics
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Figure 4.12: Comparison of 6 assimilation steps for the standard particle filter, in the
co-moving frame with Tf = 1, J = 6, M = 4, ε = 0.5, σ3 = 0.02 and N = 200. Green
crosses are particles, the black dashed line is the particle population average and the red
cross is εtrue.

of the larger ∆T = 4 scenario however, FTLE-ABC, shown in Figure 4.11, is able to
quite accurately estimate εtrue and forms a narrow final distribution. The PF, shown in
Figure 4.10, also estimates εtrue accurately for this larger final time with no initial noise,
but must resample at more steps. Overall these results show that FTLE-ABC does not
perform well where ∆T is too small to capture fluid particle stretching, but very well
for larger ∆T , forming a narrow distribution about εtrue. The PF performs well in both
regimes with no added initial noise, although the larger ∆T slightly increases the number
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Figure 4.13: Comparison of 6 assimilation steps for FTLE-ABC, in the co-moving frame
with Tf = 1, J = 6, M = 4, ε = 0.5, σ3 = 0.02 and N = 200. Blue and orange diamonds
are particles, with orange representing the best 20% according to distance. The black line
denotes the average of the best 20% and the red cross is εtrue.

of times it must resample.

4.4.2 Added initial noise and small versus large time steps

Here we consider the effect of adding zero-mean Gaussian noise in initial particle positions
on the PF’s performance compared to FTLE-ABC. It is expected that if the PF becomes
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Figure 4.14: Comparison of 6 assimilation steps for the standard particle filter, in the
co-moving frame with Tf = 24, J = 6, M = 4, ε = 0.5, σ3 = 0.02 and N = 200. Green
crosses are particles, the black dashed line is the particle population average and the red
cross is εtrue.

degenerate on an incorrect initial distribution it will not be able to recover, while infor-
mation from the FTLE, on which FTLE-ABC relies, will not be severely effected. This is
important as chaotic flows may magnify error in initial conditions as the model is run over
time, such that a degenerate PF may drift increasingly far from an accurate estimate of
a parameter, while a coherent structure method may recover from initial inaccuracy. Fig-
ures 4.12, 4.13, 4.14 and 4.15 again compare each step of the PF scheme and FTLE-ABC
scheme for ∆T = 1/6 and ∆T = 4, but now with Gaussian noise of variance σ3 = 0.02
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Figure 4.15: Comparison of 6 assimilation steps for FTLE-ABC, in the co-moving frame
with Tf = 24, J = 6, M = 4, ε = 0.5, σ3 = 0.02 and N = 200. Blue and orange diamonds
are particles, with orange representing the best 20% according to distance. The black line
denotes the average of the best 20% and the red cross is εtrue.

added to initial tracer positions. When this small amount of Gaussian noise is added ini-
tially the performance of the standard PF changes considerably. For ∆T = 1/6 in Figure
4.12 the PF now must resample in all of the assimilation steps, and only becomes close
to εtrue in the final two steps. FTLE-ABC, shown in Figure 4.13, also does not estimate
the correct εtrue with this small final time, tending to overestimate εtrue despite seeming
to drift closer to the true value as the assimilation scheme progresses. As in the case
where no noise is added initially, for this small final time the system is not sufficiently
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dynamic for FTLE ridges to form and inform FTLE-ABC’s estimate. For ∆T = 4 the
PF is again highly degenerate, shown in Figure 4.14, with resampling occurring on all
assimilation steps. Due to the higher ∆T coupled with added noise, each assimilation
step for the PF now shows estimates for εtrue around 0.1 lower than the true value in all
steps, compared to 0.07 − 0.01 lower in the small ∆T with noise case. Comparatively,
FTLE-ABC, shown in Figure 4.15, selects out the true parameter quite accurately at each
assimilation step for ∆T = 4, with the distribution becoming increasingly narrow about
εtrue. As expected, FTLE-ABC is not severely effected by the added noise, and performs
far better with added noise and a large final time than with added noise and a small final
time. This large final time would allow FTLE ridges sufficient time to develop, so that
FTLE-ABC may fully exploit them, while the increased dynamics of the larger final time
worsens the inaccurate estimates of the PF when noise is added initially.

Overall, the investigations in Chapter 4 suggest that ε and ∆T have a particularly
significant impact on the performance of FTLE-ABC compared to standard ABC, and
that the algorithm shows the greatest advantage when in the moving frame of Rossby
wave flow with the uniform initialisation scheme. For comparison to the standard PF,
the amount of noise in initial tracer positions has a significant impact on the performance
of the PF, but little impact on the performance of FTLE-ABC. These findings motivate
Chapter 5, which uses a statistical measure of error, the root-mean squared error, to
quantitatively compare the performance of FTLE-ABC to the benchmark algorithms in
a range of ε and ∆T regimes.
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Chapter 5

Quantifying FTLE-ABC’s
performance in chaotic regimes

Chapter 4 found that the quantities εtrue and ∆T have a significant impact on the per-
formance of FTLE-ABC compared to the benchmark algorithms. To better quantify the
relationship between εtrue, ∆T and FTLE-ABC’s performance in parameter estimation,
Chapter 5 introduces a statistical measure for the expected performance of each algorithm
given many runs: the root-mean squared error (RMSE). The RMSE is used to quanti-
tatively compare the performance of FTLE-ABC to that of the standard algorithms for
various εtrue and ∆T regimes.

5.1 The root-mean squared error

The RMSE is a common measure of statistically relevant error arising from numerical
processes. It is essentially a measure of the average distance between the approximate
values of a parameter that a numerical process generates and the true parameter value.
In the case of the algorithms employed here to estimate the true value of ε for Rossby
wave flow, the RMSE considers the difference between εtrue, and K realisations of the
DA scheme. From each realisation of the DA scheme, the quantity ε̄(εJ)k is calculated,
where k is the realisation number (k = 1, ..., K), and J is the index corresponding to the
final time step of the assimilation scheme. The quantity ε̄(εJ)k is the average value of ε
over the N particles generated by the kth independent run of the parameter estimation
algorithm, calculated as

ε̄(εJ)k =
1

N

N∑
i=1

εi,J ,

where i indexes members of the particle ensemble, J is the final assimilation time step
and k indexes the number of times the parameter estimation scheme is run independently.

81
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The form of the RMSE is then

χ(εtrue,∆T ) =

√√√√ 1

K

K∑
k=1

(
ε̄(εJ)k − εtrue

)2
, (5.1)

where ∆T is the assimilation time step.

Equation (5.1) gives a measure of how effectively a numerical scheme estimates εtrue
over K independent runs of the scheme. This equation provides a performance comparison
between the three algorithms as it measures the average error in an algorithm’s estimate
for εtrue over a large number of runs of the algorithm, rather than comparing single runs
as in Chapter 4. To compare the RMSEs of the algorithms for a range of ∆T and εtrue, in
Sections 5.2 and 5.4 RMSE contours against ∆T and εtrue are plotted for standard ABC, a
standard PF and FTLE-ABC, denoted χABC , χPF and χF−ABC respectively. In Sections
5.3 and 5.5 contour plots of the ratios χF−ABC/χABC and χF−ABC/χPF are also plotted
against ∆T and εtrue, denoted τF/ABC and τF/PF respectively. These ratio contours indi-
cate regions where FTLE-ABC produces a lower RMSE than a standard method, as the
ratio will be less than 1 in regions where this is true. The magnitude of the ratio also
indicates the proportion by which FTLE-ABC provides a reduction in RMSE for regions
where the ratio is less than 1.

Although the RMSE plots in the following sections generally support the findings of
Chapter 4, they also reveal a complex relationship between FTLE-ABC’s performance, ε,
∆T and the chaotic timescale, as estimated by the 1/FTLEmed curve from Section 2.8.
As discussed in detail in the following sections, FTLE-ABC tends to give a lower RMSE
than the standard methods for regions of ∆T and ε which lie below the 1/FTLEmed curve,
or where the 1/FTLEmed curve asymptotes.

5.2 Comparing RMSEs: standard ABC comparison

For the comparison to standard ABC, RMSE contour plots were produced using N = 200
particles, a spatial dimension of 100, initially added Gaussian noise in tracer positions
with variance σ3 = 0.01 and a final time of Tf = 24 for the assimilation scheme. As it
was demonstrated in Chapter 4 that the performance of FTLE-ABC is independent of the
choice of frame, the moving frame of Rossby wave flow, for which structures may spatially
traverse the flow domain, is used for all the runs considered in Chapter 5. Additionally,
Chapter 4 suggests FTLE-ABC struggles with non-uniform initialisation, so the uniform
initialisation scheme is used for all runs in Chapter 5.
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Figure 5.1: Plots of χF−ABC (orange dashed) and χABC (blue filled) over a range of εtrue
values for a selection of ∆T . A fairly consistent peak in RMSE for FTLE-ABC occurs
around ε = 0.5 and trough around ε = 0.2.

To plot the grid of RMSE contours with respect to ∆T and εtrue, the algorithms were
run 180 times for each combination of (∆T , εtrue) for ∆T ∈ [1, 12] and εtrue ∈ [0, 0.7].
These 180 runs were then used to calculate an RMSE for each parameter combination to
form a grid of RMSEs in (∆T , εtrue)-space. Before analysing the RMSE contour plots
themselves, notable elements of these plots can be seen from Figure 5.1, which shows the
RMSE for both methods against εtrue for a selection of individual ∆T values used in the
contour plots. Here, the best performance according to RMSE for FTLE-ABC occurs
around ε ∈ [0.2, 0.3] for ∆T ∈ [2.67, 6]. This is interesting as ε ∈ [0.2, 0.3] is around the
turning point of the 1/FTLEmed plot for Tf = 24, where the slope of the plot begins to
decay less quickly with ε as it approaches a minimum. Also, ∆T ∈ [2.67, 6] are all smaller
than the chaotic timescale (≈ 8 − 10) for ε = 0.2 and so would give a sufficient resolu-
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tion of the chaotic dynamics. Possibly the RMSE for FTLE-ABC is small here because
this range of ∆T is smaller than the chaotic timescale for εtrue ∈ [0.2, 0.3], but not too
small for FTLE ridges to be well-defined, thus allowing key structures to be captured by
FTLE-ABC.

A peak in RMSE for FTLE-ABC around ε = 0.5 also consistently occurs in these
plots for ∆T ∈ [2.67, 6], which is around the chaotic timescale minimising ε for Tf = 24.
This value of ε possibly gives a peak in RMSE because it is where the chaotic timescale is
smallest on the 1/FTLEmed curve for Tf = 24. With this small chaotic timescale (≈ 5),
∆T ∈ [2.67, 6] would not be much smaller than the chaotic timescale and hence may not
sufficiently resolve the chaotic dynamics. Indeed, the peak grows in magnitude with grow-
ing ∆T , being smallest for ∆T = 2.67 and largest for ∆T = 6 (which would be greater
than the chaotic timescale). Additionally, it was suggested in the analysis of Figure 2.9,
where FTLE fields are plotted for various ε and Tf , that for ε = 0.5 and Tf = 24 the
flow appears to be transitioning between two structural formations, causing higher noise
in the FTLE field, which could impact the RMSE for FTLE-ABC.

After this peak in RMSE, however, the RMSE curve for FTLE-ABC begins to decay
again, particularly for ∆T > 3.43. This is possibly because the 1/FTLEmed curve begins
to asymptote to around 5 and so the chaotic timescale is no longer changing strongly with
ε. It is not obvious why a chaotic timescale which is approximately constant in ε would
improve FTLE-ABC’s performance, but it is possibly linked to how the algorithm relies
on realisations of ε near εtrue to form an estimate of εtrue. If the chaotic timescale changes
quickly with ε, a particular ∆T chosen for the assimilation scheme may not be small
enough to capture the system dynamics for all of the ε realisations considered, which will
cause varying error in the FTLE fields and the quality of FTLE ridges depending on the
ε realisation. This may bias the scheme towards certain ε values and impact the RMSE.
To investigate this, the impact of changing the width of the distribution from which ε
realisations are drawn on the RMSE could be further examined. Additionally, it would be
interesting to investigate whether the 1/FTLEmed curve plays a similar role in shaping
the RMSE contours for FTLE-ABC for different final times Tf , which would indicate if
the trends noted here extend more generally. For standard ABC the RMSE grows slowly
but steadily with ε for ∆T ∈ [3, 4], but seems to asymptote to around 0.05 for other times.
Overall these plots suggest a complex relationship between the RMSE, chaotic time scale,
∆T and ε for FTLE-ABC, which in particular combinations of these parameters give the
algorithm a performance advantage over standard ABC.

Figure 5.2 shows RMSE contours for FTLE-ABC and standard ABC, created by plot-
ting curves like those in Figure 5.1 as a contour plot in ε and ∆T . For FTLE-ABC, the
RMSE plot peaks predominantly around ∆T = 6 for εtrue ∈ [0.4, 0.55] which are values
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(a)

(b)

Figure 5.2: RMSE contours (a) χF−ABC and (b) χABC against the assimilation time step
∆T and εtrue. The model is in the moving frame with particles initialised on a standard
grid, for a final time of Tf = 24. The 1/FTLEmed vs. ε curve for Tf = 24 is also plotted
in red in (a).



86 Chapter 5. Quantifying FTLE-ABC’s performance in chaotic regimes

nearby the chaotic timescale minimising ε for Tf = 24 on the 1/FTLEmed curve (shown
in red). As suggested by the plots in Figure 5.1, FTLE-ABC performs worse in regions
for which the 1/FTLEmed curve is approaching the minimum chaotic timescale and ∆T
is larger than or of a similar magnitude to this chaotic timescale. Possibly the FTLE
calculations require ∆T large enough for ridges to be defined but not so large as to poorly
resolve the chaotic dynamics. Once the 1/FTLEmed curve has begun to asymptote fol-
lowing this minimum, however, the RMSE of FTLE-ABC improves, again suggesting that
the method performs badly in regimes where the chaotic timescale is changing quickly
with ε, but may recover if the chaotic timescale is fairly constant, even for fairly large ∆T .
For standard ABC, an RMSE peak spreads over εtrue > 0.3 for ∆T ∈ [3, 6]. This peak also
grows in magnitude fairly smoothly with εtrue, with the lowest values in RMSE tending
to occur for the lowest ε values and higher RMSE values tending to occur for higher ε.
This is expected, as in the lower ε regimes structural information is not as important
and standard ABC may perform as well as FTLE-ABC, while such information should
become significant for higher ε.

For FTLE-ABC the lowest RMSE region occurs for εtrue ∈ [0.1, 0.3] and ∆T ∈ [2, 6],
which is entirely below the 1/FTLEmed curve. This again suggests that for lower ε,
where the chaotic timescale is changing quickly with ε, FTLE-ABC performs better when
∆T is smaller than the chaotic timescale. FTLE-ABC’s RMSE is also fairly low around
εtrue ≥ 0.6 for most ∆T , a region where the 1/FTLEmed curve is asymptoting. Comparing
the two contour plots, the behaviour of the RMSE for FTLE-ABC with εtrue and ∆T is
much more varied than for standard ABC, and an overall trend is difficult to describe but
seems linked to the chaotic timescale, as approximated by the 1/FTLEmed curve. Due to
this complex behaviour, parameter regions for which FTLE-ABC gives a smaller RMSE
than standard ABC are much more easily deduced from the ratio contour plots described
in the following section.

5.3 RMSE ratios: standard ABC comparison

In developing a new LCS-based data assimilation method we are most interested in regimes
in which the method out performs the standard methods and by how much the new
method provides a performance advantage. In the context of this investigation we are
interested in regimes in which FTLE-ABC provides a smaller RMSE than a standard
method and how much smaller the method’s RMSE is compared to a standard method.
With this motivation, the contour plots of RMSE from the previous section were also
plotted as ratio contours, with the contour colour indicating the magnitude of the ratio
χF−ABC/χABC = τF/ABC . A ratio τF/ABC > 1 implies a worse performance as measured
by the RMSE than the standard ABC algorithm, while a ratio τF/ABC ≤ 1, implies a per-
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formance equal to or better than standard ABC. To delineate these two scenarios visually,
the contours are plotted so that a green gradient implies a ratio τF/ABC < 1, a red gradient
implies a ratio τF/ABC > 1 and white space implies the borderline case τF/ABC = 1. A
colour bar is also shown on the plots to detail the magnitude of the ratio.

Figure 5.3: Contours of τF/ABC for the model in the moving frame, for a final time
of Tf = 24, initialised on a uniform grid with M = 100 tracers. The red line is the
1/FTLEmed vs ε plot for Tf = 24.

The contour plot in Figure 5.3 shows the contours of the ratio τF/ABC with εtrue and
∆T , along with the 1/FTLEmed line for Tf = 24 overlaid in red. In this plot regions for
which FTLE-ABC gives a lower RMSE than standard ABC become more obvious, as well
as those for which FTLE-ABC gives a much higher RMSE. For low εtrue (0.1-0.3), and
a low to medium range of ∆T (2-6), FTLE-ABC gives an RMSE 0.8 to 0.5 times that
of standard ABC. This region is entirely for ∆T smaller than the approximate chaotic
timescale (below the 1/FTLEmed line) and for εtrue not near the chaotic timescale min-
imising ε identified in Section 2.8 (≈ 0.5). This agrees well with the postulation made
in Section 5.2 that for smaller ε, where the 1/FTLEmed curve has not yet asymptoted,
FTLE-ABC performs well when ∆T is smaller than the chaotic timescale but still large
enough for the formation of FTLE ridges.

There is a portion of the τF/ABC contour plot for which standard ABC and FTLE-
ABC perform similarly or FTLE-ABC performs worse than standard ABC, which lies
predominantly above the red 1/FTLEmed line and is focused around the chaotic timescale
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minimising ε for Tf = 24. There is also a region around εtrue ≥ 0.6 for which FTLE-ABC
gives an RMSE 0.5 to 0.8 times that of standard ABC for almost all ∆T , which occurs
where the 1/FTLEmed line begins to asymptote and no longer change significantly with
ε. Although not done here, it would be interesting to extend the range of εtrue to see
if this region where FTLE-ABC achieves a lower RMSE for most ∆T continues as the
1/FTLEmed line asymptotes for ε > 0.7. Overall, the ratio contours suggest that for lower
ε, where the chaotic timescale is still changing rapidly with ε, FTLE-ABC requires a ∆T
smaller than the chaotic timescale to out perform standard ABC but, when the chaotic
timescale begins to become constant with ε, FTLE-ABC seems to out perform standard
ABC for a much wider range of ∆T . As discussed in section 5.2, this may be linked to
the width of the interval from which the ε realisations are drawn in FTLE-ABC, although
further investigations would be required to confirm this.

5.4 Comparing RMSEs: standard PF comparison

For the standard PF comparison again a final time of Tf = 24 was used for both schemes,
but with a spatial dimension of 36 (due to the PFs tendency to be degenerate for high
model dimensions). In these runs N = 50 particles were used and Gaussian noise in
initial drifter positions with variance σ3 = 0.2. In addition to posing challenges for the
PF, this high initial error regime mimics aspects of real-world scenarios. A common is-
sue in modeling drifters is that uncertainty in drifter positions often grows large as the
model is simulated, worsened in the presence of numerical error, model error and chaotic
behaviour. Rather than adding, for example, additional model error at each time step,
we mimic the effect of this by using large initial uncertainty in our chaotic model. Ad-
ditionally, the lower number of particles used (N = 50), which may induce degeneracy
in the PF, is more practical given the high-dimensionality of many geophysical models.
Using these conditions for comparison to the PF thus allows insight into FTLE-ABC’s
performance when the number of realisations used, N , is reduced (giving a more compu-
tationally efficient algorithm) and when the error in drifter positions grows large as the
model is simulated.

As in Section 5.2, to plot the RMSE contours for the PF comparison the algorithms
were run 180 times for each combination of (∆T, εtrue) for ∆T ∈ [1, 12] and εtrue ∈ [0, 0.7].
Before analysing the resulting contours, notable elements of the RMSE trends for the PF
and FTLE-ABC can be discerned from Figure 5.4, which shows plots of the RMSE against
ε for a selection of ∆T values. Here, for ∆T ∈ [2, 8] and εtrue > 0.4, FTLE-ABC tends to
give a lower RMSE than the standard PF, and its RMSE tends to be minimised around
ε = 0.5. This is quite different from the comparison to standard-ABC, in which FTLE-
ABC’s RMSE tended to peak around ε = 0.5. FTLE-ABC’s RMSE now peaks around
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Figure 5.4: Plots of χF−ABC (orange dashed) and χPF (blue filled) over a range of εtrue
values. As can be seen, for ∆T ∈ [2, 8] and εtrue > 0.4, FTLE-ABC tends to out-perform
the standard PF, while for lower ∆T and ε the PF performs better.

ε = 0.3 for ∆T ∈ [3, 8], possibly due to the high level of noise added initially causing
conditions similar to higher ε regimes in the lower initial noise case. Despite this differ-
ence, the ε value at which the FTLE-ABC and PF RMSE curves tend to cross over, with
FTLE-ABC’s RMSE becoming lower than that of the PF, is around ε ∈ [0.4, 0.5], which is
around the ε value for which the 1/FTLEmed curve begins to flatten for Tf = 24. This is
similar to the FTLE-ABC comparison, in which regions where the chaotic timescale is not
changing rapidly with ε give FTLE-ABC a lower RMSE for a wider range of ∆T . Unlike
in the ABC comparison however, FTLE-ABC’s RMSE appears to grow again following
this minimum, although for ∆T ∈ [3, 8] the RMSE grows more slowly than that for the
standard PF and so stays lower than its RMSE.
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(a)

(b)

Figure 5.5: Contours of RMSE for (a) χF−ABC and (b) χPF against the assimilation
time step ∆T and εtrue, for the model in the moving frame with particles initialised on a
standard grid, for a final time of Tf = 24.

RMSE contours against ε and ∆T are shown in Figure 5.5 for FTLE-ABC (5.5a), and
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the standard PF (5.5b). As suggested by the individual RMSE curves, the εtrue region
for which FTLE-ABC performs the worst occurs around εtrue ∈ [0.3, 0.4] for ∆T ∈ [6, 12],
compared to around εtrue = 0.55 and ∆T ∈ [4, 8] for the comparison to standard ABC.
The method again performs fairly well for εtrue ∈ [0, 0.3] for most ∆T , but also performs
well for a region of higher ε ∈ [0.4, 0.65] for ∆T ∈ [2, 8]. This trough in the RMSE is
notable as it occurs in the region of εtrue and ∆T for which the 1/FTLEmed curve begins
to asymptote for Tf = 24, as suggested by the plots in Figure 5.4. Indeed, the RMSE is
generally smaller for FTLE-ABC below regions where the 1/FTLEmed curve is flat.

Comparing to Figure 5.5b, the trend in RMSE with ∆T and εtrue is very different
for the standard PF, which predominantly shows changes in RMSE with the magnitude
of εtrue. The PF gives a lower RMSE when εtrue is small and higher RMSE when εtrue
is large, which is expected as the higher ε regimes will be more chaotic and induce de-
generacy in the PF, which will have initially settled on an inaccurate distribution for ε.
Interestingly, the RMSE magnitude does not change significantly with ∆T for the PF,
although for higher ε, higher ∆T produces a slightly lower RMSE than lower values. This
seems to contradict the findings of Chapter 4, but is perhaps because larger time steps
with higher chaoticity allow the PF’s distribution for ε to become wider and hence more
able to move away from an incorrect distribution it has settled on initially due to being
degenerate. For lower ε, however, and ∆T ≤ 6 the RMSE does increase slightly with ∆T ,
which agrees with the parameter regimes of Chapter 4. Overall these trends support the
postulation in Chapter 4 that for approximately stationary scenarios, which would occur
for small ε, the PF should perform similarly or better than FTLE-ABC, while for larger
ε we would expect FTLE-ABC to provide an advantage.

5.5 RMSE ratios: standard PF comparison

As in Section 5.3, to discern regions of ∆T and εtrue for which FTLE-ABC’s RMSE is
better than that of the standard PF, and the magnitude of the performance gain, contours
of the ratio χF−ABC/χPF = τF/PF are also plotted. Figure 5.6 shows the contours of τF/PF
with the 1/FTLEmed curve overlaid in red, and the same colour gradient to indicate the
magnitude of the ratio as in Section 5.3. Although quite different from the ratio contours
generated for the standard ABC comparison, there are subtle similarities to the τF/ABC
contours in Section 5.3. There is a region around ε ∈ [0.5, 0.7] for which FTLE-ABC’s
RMSE is around 0.8-0.5 times that of the standard PF for most ∆T < 12. This is simi-
lar to the band for ε > 0.5 in the ABC comparison but slightly wider, which occurs for
regions where the 1/FTLEmed curve asymptotes. The region around ε ∈ [0.1, 0.3] and
small ∆T where FTLE-ABC’s RMSE was smallest in the ABC comparison, however, is
not present here. Instead there is a small band for ∆T ∈ [8, 12] and ε ∈ [0, 0.1] for which
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Figure 5.6: Contours of τF/PF for the model in the moving frame, for a final time of
Tf = 24, initialised on a standard grid for M = 36 tracers. The red line is the 1/FTLEmed
vs ε plot for Tf = 24.

FTLE-ABC’s RMSE is smaller than that of the PF. This is possibly due to the higher
magnitude of initial noise causing the FTLE to require a larger ∆T to produce well-defined
ridges for the smaller ε regimes. Interestingly, the two parameter regions for which the
overlaid 1/FTLEmed curve flattens approximately line up with the regions of the τF/PF
plot where FTLE-ABC gives a lower RMSE than the PF. Again this is possibly due to
the width of the distributions from which ε realisations are drawn in the FTLE-ABC
algorithm and how quickly the chaotic timescale is changing with ε within the range of
these distributions. Whether this observation is a general trend could be investigated by
comparing the RMSE contours to 1/FTLEmed curves for different Tf values and different
widths of the distributions used for ε realisations, as mentioned in Section 5.3.

Overall, although Chapter 5 confirms some of the trends suggested by the initial in-
vestigations in Chapter 4, a much more complex relationship between the algorithm’s
RMSE, ∆T and ε is suggested by the findings of Sections 5.3-5.5, with the 1/FTLEmed
curve with ε potentially giving some insight into this relationship. For the comparison to
standard ABC, there are distinct parameter regions for which the method outperforms
standard ABC, which depend strongly on both the value of εtrue and ∆T and seem to oc-
cur predominantly below the 1/FTLEmed curve or where it is asymptoting. The method
particularly struggles for εtrue ∈ [0.4, 0.55], which corresponds to the chaotic timescale
minimising εtrue from the 1/FTLEmed curve for Tf = 24. FTLE-ABC may also outper-
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form the standard PF for particular regions of ∆T and ε, which seem to correspond to
where the 1/FTLEmed curve flattens. Although the 1/FTLEmed curve has some pre-
dictive power when it comes to the error structure of FTLE-ABC, the curves tend to
suggest where FTLE-ABC’s RMSE will be better but not necessarily where FTLE-ABC
will give a lower RMSE than a standard method (i.e. the χF−ABC contours tend to line
up better with the 1/FTLEmed curves than the τF−ABC contours). Thus it seems that
the chaoticity (as estimated by 1/FTLEmed) seems necessary but not sufficient for better
performance by FTLE-ABC. These findings, their interpretations and potential further
research directions are discussed in Chapter 6.
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Chapter 6

Summary, Discussion and
Conclusions

Chapter 6 summarises the results of this thesis and discusses interpretations, limitations
and potential future research avenues. The technique developed, FTLE-ABC, is found
to outperform the benchmark algorithms for particular regions of εtrue and ∆T . These
regions are possibly related to the rate of change of the chaotic timescale with εtrue, as
measured by the 1/FTLEmed curve, although further investigations would be needed
to confirm this. Overall the results presented here add a frame-independent, non-linear
method to a growing literature in techniques amalgamating LCS and LaDA methods to
improve predictions in chaotic geophysical systems.

6.1 Summary: LaCoDA and FTLE-ABC

The primary aim of this thesis is to build on current research in Lagrangian coherent
data assimilation methods for parameter estimation. In particular, this thesis develops
a Lagrangian coherent structure-based data assimilation technique aimed at overcoming
issues associated with parameter estimation in highly chaotic geophysical systems. The
particular LCS method used here is the Finite Time Lyapunov Exponent, a widely used,
versatile and frame-independent technique commonly implemented to track structures in
Lagrangian oceanographic data. The FTLE is used within an ABC-type data assimilation
scheme for parameter estimation, denoted FTLE-ABC, which is implemented to estimate
the ε parameter of Rossby wave flow for various parameter regimes.

The development, theory and utility of Lagrangian coherent structure methods in geo-
physical systems is discussed in Chapter 2, with an emphasis on how such methods seek
to extract transient yet coherent structures extant in chaotic, time-dependent fluid flows.
Data assimilation methods, theory and applications are detailed in Chapter 3, with an em-
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phasis on Lagrangian data assimilation and the importance of such techniques in wholly
utilising the rich information available in Lagrangian data. This leads to Chapter 4, which
develops a formal algorithm for FTLE-ABC and compares the algorithm’s performance to
the benchmarks of a standard particle filter and a standard ABC scheme. Here it is found
that ∆T , the assimilation time step, and εtrue, the true value of the parameter being esti-
mated, appear to most strongly impact FTLE-ABC’s parameter estimation performance.
Chapter 5 details further investigations into how ε and ∆T influence the new algorithm’s
performance, which is quantified by the RMSE. The predominant findings of Chapters 4
and 5 are summarised in Sections 6.1.1 and 6.1.2 below.

6.1.1 FTLE-ABC versus standard ABC

In Chapter 4 individual runs of the FTLE-ABC scheme and standard ABC scheme were
compared for the following different scenarios:

� For the low, middle and high values of ε: 0.3, 0.9 and 1.3. ‘Low’ and ‘high’ are
measured here by the plots in Figure 2.8 for Tf = 12, which suggest 0.3 will have a
longer chaotic timescale and 0.9 and 1.3 will have a very low chaotic timescale.

� For large ∆T = 4, and smaller ∆T = 1.33. This is again dictated by the plots in
Figure 2.8 for Tf = 12, which suggest ∆T = 4 is larger than the chaotic timescale for
ε = 0.9 and 1.3, while ∆T = 1.33 is smaller than the chaotic timescale for ε = 0.3,
0.9 and 1.3.

� For Rossby Wave flow in the co-moving frame and in the moving frame, for which
the gyres are stationary and spatially traverse the flow domain respectively.

� For a uniform grid initialisation scheme, which evenly samples the flow domain, and
for a non-uniform initialisation solely in the flow gyres.

For these individual runs it was found that FTLE-ABC generally provided a better
estimate of the higher values of εtrue (0.9 and 1.3) when the larger time step of ∆T = 4
was used. A potential cause of this behaviour is suggested by the plot for Tf = 12 in
Figure 2.8, which implies a chaotic timescale around 6 for ε < 0.5, less than 4 for ε = 0.9
and around 3 for ε = 1.3. Hence the smaller time step ∆T = 1.33 is less than the esti-
mated chaotic timescale for all the ε considered and should allow a sufficient resolution
of the system dynamics. Comparatively, ∆T = 4 is larger than the chaotic timescale for
ε > 0.5, suggesting that coherent structure information may be useful here. This is indeed
the case for ∆T = 4 and ε = 0.9 and 1.3, with FTLE-ABC and standard ABC seeming
to perform similarly for ε = 0.3, but FTLE-ABC significantly out-performing standard
ABC for the higher values of ε.
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To captitalise on the additional structural information granted by the FTLE, however,
it seems from the results in Chapter 4 that FTLE-ABC requires fairly uniform sampling
of the flow domain. For scenarios in which FTLE-ABC out-performed standard ABC
with the uniform grid initialisation, all such performance gains were lost when the non-
uniform gyre initialisation scheme was used. This is perhaps due to the fact that the
FTLE structural information relies on a contrast in FTLE magnitude between ridges and
other portions of the field. With a non-uniform initialisation, higher magnitude ridges
may have been biased towards certain portions of the domain, so that structural informa-
tion was lost.

Despite this required specificity of initialisation scheme, the results in Chapter 4 show
that FTLE-ABC performs almost identically when the Rossby wave model is in the mov-
ing and co-moving frames. This implies that the method is indeed able to successfully deal
with spatially traversing structures, while standard ABC struggles in this scenario. Such
a property is a useful addition to available structure-based parameter estimation methods,
as methods such as the Principle Component Analysis technique used in Maclean et al.
(2017) cannot deal with such structures.

In Chapter 5 potential performance advantages of FTLE-ABC over a standard ABC
scheme are quantified by considering the RMSE for both parameter estimation methods
over a range of ∆T and ε. The RMSEs are compared for the Rossby wave model in the
moving frame with the uniform initialisation scheme for the following different scenarios:

� For εtrue ∈ [0, 0.7].

� For ∆T ∈ [1, 12] for Tf = 24.

� With a small amount of initial noise added (σ3 = 0.01), and reasonably high model
dimension M = 100.

From this more quantitative approach it was found that the relationship between the
RMSE, ∆T and ε is complex, and may possibly be related to the rate of change of the
chaotic timescale with ε, as estimated here by the 1/FTLEmed curve. RMSE contour plots
for FTLE-ABC and standard ABC against ∆T and ε showed that FTLE-ABC tends to
give a higher RMSE than standard ABC around εtrue = 0.5 and ∆T ≥ 6, a region above
where the 1/FTLEmed curve is decreasing strongly with ∆T . Additionally, εtrue = 0.5
is around the chaotic timescale minimising ε identified for Tf = 24 in Figure 2.8 ,which
may have caused this high RMSE for the algorithm. FTLE-ABC tends to give a lower
RMSE than standard ABC around εtrue ∈ [0.1, 0.3] and ∆T ∈ [2, 6], a region entirely
below the 1/FTLEmed curve. The algorithm also gives a lower RMSE than standard
ABC for ε ≥ 0.6 for all ∆T , a region where the 1/FTLEmed curve is flat and appears to
asymptote. As suggested in Chapter 5, a potential explanation for this is that, because ε
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realisations are drawn from a range of values near εtrue, if the chaotic timescale is changing
rapidly with ε the particular ∆T chosen for the scheme may not sufficiently resolve the
dynamics for all of the ε realisations considered, giving varied error in the FTLE fields
used to update the distribution. Such issues would not be present if the chaotic timescale
is not changing rapidly with ε. A further investigation could be to examine how far this
region expands for ε > 0.7 as the 1/FTLEmed curve continues to asymptote, and also
how changing the width of the distribution from which ε realisations are drawn impacts
this trend.

More simplistically, these results agree well with the FTLE fields in Figure 6.1 (also
shown in Figure 2.9 in Chapter 2), which show that the most well-defined ridges tend to
occur for ranges of ε away from the chaotic timescale minimising ε. The plots in Figure
6.1 also suggest ridges are well-defined for ∆T large enough for structures to form, but
not so large that the field becomes noisy. For example, for ∆T = 2, ridges are most
defined for ε ∈ [0.3, 0.9], while for the higher ∆T = 12, structures are difficult to see when
ε = 0.5, but discernible for ε ∈ [0, 0.3]. Additional structures then seem to reemerge for
ε = 0.9 surrounded by a background of noise, which would be a region of ∆T and ε for
which the 1/FTLEmed curve asymptotes. How well-defined FTLE ridges are thus may
be linked to the chaotic time scale and in turn could impact FTLE-ABC’s performance.
With this in mind, further insight into the regimes in which the algorithm’s performance
exceeds the standard methods could be gained by further investigating the impact of the
1/FTLEmed curve on the formation of FTLE ridges.

6.1.2 FTLE-ABC versus standard PF

Individual runs of the FTLE-ABC scheme and standard PF scheme were also compared
for Rossby wave flow in the moving frame with the uniform initialisation scheme for the
following different scenarios:

� For small final time Tf = 1, so that for J = 6, ∆T = 1/6, and a larger final
time Tf = 24, so that with J = 6, ∆T = 4. These timescales are again smaller
and larger than the approximate chaotic timescale respectively, as measured by the
1/FTLEmed curves in Figure 2.8.

� For no initial noise σ3 = 0 and for higher initial noise σ3 = 0.002.

For these individual runs it was found that for the very small final time of Tf = 1, giving
∆T = 1/6, the PF out performs FTLE-ABC, both when no initial noise is added and with
small initial noise. This is possibly because the system is effectively stationary for such a
short run time and the FTLE field ridges may be poorly defined for Tf < 2. More insight
on this is available in Figure 6.1, where the FTLE fields are shown for different values



6.2. Further research pathways 99

of ε and Tf . From this grid of FTLE fields it can be seen that for ∆T = 0.5 the FTLE
ridges are poorly defined for all ε, such that the FTLE-ABC algorithm would struggle
to gain information from the FTLE. For the much larger final time of Tf = 24, giving
∆T = 4, the PF becomes quite degenerate, although FTLE-ABC and the PF perform
similarly in terms of selecting out the true parameter if no initial noise is added. With
some initial noise and a large final time, FTLE-ABC generally outperforms the PF, most
likely because the PF tends to become degenerate on an incorrect range of ε, while the
FTLE structures which inform FTLE-ABC are not significantly effected by the added
initial noise.

In Chapter 5 potential performance advantages of FTLE-ABC over a standard PF
scheme are quantified by considering the RMSE of both parameter estimation methods
for a range of ∆T and ε. The RMSE’s for the model in the moving frame with the uniform
initialisation scheme are compared for the following different scenarios:

� For εtrue ∈ [0, 0.7].

� For ∆T ∈ [1, 12] for Tf = 24.

� With a high amount of initial noise added σ3 = 0.2 and lower model dimension
M = 36.

Here, FTLE-ABC tends to give a lower RMSE than the standard PF in regimes of ε and
∆T for which the 1/FTLEmed curve flattens, and a higher RMSE than the standard PF
for regions where the 1/FTLEmed curve has a high gradient. This somewhat agrees with
the findings for the comparison to standard ABC, although the contour plots for the two
comparisons have significant differences, most likely due to different model dimensions
and magnitudes of noise added to tracer positions initially. The very high RMSE seen for
FTLE-ABC in the standard ABC comparison case around εtrue = 0.5 is now shifted to
ε = 0.3, possibly due to the high noise in initial positions causing conditions similar to a
higher ε regime.

6.2 Further research pathways

The findings in this thesis suggest a complex relationship between the chaotic timescale
and the performance of FTLE-ABC, with particular ∆T and ε regimes allowing the al-
gorithm’s performance to be better than the standard algorithms. To further elucidate
these favourable parameter regimes an even finer grid in ∆T and ε for the RMSE plots
generated in Chapter 5 could be considered, with a larger range of ∆T and ε values. A
finer grid may resolve the fluctuations of the contour plots with εtrue, potentially giving
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ε = 0 ε = 0.3 ε = 0.5 ε = 0.9

∆T = 0.5

∆T = 2

∆T = 6

∆T = 12

Figure 6.1: Table showing how the FTLE field varies with the calculation time ∆T = Tf−0
and the parameter ε.

deeper insight into the relationship between the RMSE and the 1/FTLEmed curves in
Chapter 2. Further to this, computing RMSE contour plots against ∆T vs. ε for different
Tf values and attempting to find a trend in the RMSE contour plots and their corre-
sponding 1/FTLEmed curves with changing Tf may be a route to a deeper understanding
of how the chaotic time scale effects the algorithm’s performance. Additionally, although
the chaoticity, as estimated by the 1/FTLEmed curve, was shown to have predictive power
in suggesting parameter regions for which FTLE-ABC would give a lower RMSE, it could
not always predict where FTLE-ABC would do better than a standard method. A deeper
investigation into how well defined FTLE ridges are for particular ∆T and ε values could
give further insight into FTLE-ABC’s performance against the standard methods.

Another avenue for future research is the question of how to best target observations
at each assimilation step. As shown by Salman et al. (2008), targeting observations by
placing tracers to minimise uncertainty in observations can produce major benefits for
LaDA schemes generally. A question which arises then is how to target observations to
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optimise FTLE-ABC’s performance. One way of doing this for FTLE-ABC might be to
find methods of placing tracers such that the FTLE ridges are always well-defined. There
are many possible ways to approach this problem, but it would require quite a different
set of research questions to those considered here.

Another question not addressed here is how the new algorithm would perform on a real-
world data set. Trialing the algorithm with the Rossby wave model but with experimental
fluid data rather than simulated data would test how the algorithm deals with potentially
non-Gaussian noise in observational data. As FTLE-ABC is based on ABC, which can
deal with non-Gaussian likelihoods, and the FTLE, which is a non-linear method, the
algorithm should theoretically be able to deal with such a scenario. This would be a
considerable advantage over standard methods as many parameter estimation schemes
are based on the Kalman Filter, which assumes Gaussian distributed noise. Additionally,
trialing FTLE-ABC for parameter estimation in a model where multiple parameters must
be estimated is of interest. This is because, as mentioned in Chapter 3, current param-
eter estimation methods generally rely on the parameter space being low dimensional so
as to avoid issues in tracking highly non-linear covariances (Santitissadeekorn & Jones
2015). As FTLE-ABC does not require covariance tracking the algorithm may not suffer
from such issues and could offer potential advantages over current methods. The gridding
method used to calculate the FTLE here may in this case become too computationally
expensive, but using a more computationally efficient method such as those discussed
in Section 2.5 may still allow FTLE-ABC to provide an advantage when the parameter
dimension is high (Fortina et al. 2015).

More generally, implementing the algorithm with other coherent structure extraction
techniques may allow the algorithm to be retro-fitted to the geophysical flow it is being
applied to. For example, the Stochastic Sensitivity method mentioned in Section 2.2 (Bal-
asuriya 2020b) is designed for systems with uncertainty in Lagrangian tracer trajectories
and hence an ABC algorithm for parameter estimation based on this method may allow
performance advantages when using data sets with high uncertainty in tracer positions.
Similarly, another method mentioned in Section 2.2, the Lagrangian Averaged Vorticity
Deviation (Haller et al. 2016), is designed for extracting rotational coherent structures
and hence may afford an advantage for parameter estimation in systems dominated by
rotational flow. If the algorithm is sufficiently generalised, the LCS method used within
it could be selected to optimally exploit structural information present in the geophysical
system of interest.

Drawing from the current literature in LaDA techniques, most successful techniques
use a combination of methods within the same DA scheme, an approach which may also
allow FTLE-ABC better performance. Slivinski et al. (2015) for example, find using an
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EnKF to update high dimensional state variables and a PF to update lower dimensional
Lagrangian drifters yields better results than a single method for updating drifters and
states. Similarly, FTLE-ABC and potential variants may be more successful as the La-
grangian update component of a hybrid LaDA scheme.

There is a rich literature of computational methods, theory and applications of La-
grangian coherent structures from which the Lagrangian data assimilation literature could
benefit. Few studies have rigorously investigated theoretical links between Lagrangian
data assimilation methods, Lagrangian coherent structure theory and how interconnec-
tions between these two fields could be used to enhance the applicability and accuracy
of current LaDA methods. A stronger theoretical basis for Lagrangian coherent data
assimilation, such as by formulating the observation operator, forecast and observation
covariance matrices in the language of LCS, could help guide the development of new
LaCoDA methods. In Chapter 4, for example, all LaCoDA algorithms are formulated so
that the coherent structure is calculated from one observation time to the next, to preserve
the usual data assimilation assumption of independence between observations. However,
coherent structures have their own time scales (c.f. Figure 6.1) that may be much longer
than the time between observations. A potential question which arises then is how to
set up the data assimilation problem if the observed coherent structures may have been
calculated using observations from previous time steps. Similarly, how could the classic
DA setup be altered if there are fine-scale coherent structures on a short timescale, and
large-scale coherent structures on a longer timescale to exploit both kinds of structure?
Such higher-level amalgamations of Lagrangian coherent structure theory and DA will
benefit greatly from a strong theoretical basis connecting the two areas.

Although much is still to be investigated, the methods considered here are promising
early developments in using LCS theory to improve LaDA techniques. This thesis realises
one of many potential amalgamations of LCS and DA numerical methods and suggests
such interdisciplinary fusions may continue to progress research which tackles chaos in
geophysical modeling.
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