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Abstract 
 

Hereby I present a PhD thesis by publication. This thesis includes seven journal publications, four of 

which have been published, two have been accepted for publication, and one which has been submitted 

for publication. 

This thesis is focussed on using mathematical techniques alongside laboratory tests to improve the 

modelling of microscale processes in porous media. Both deterministic and stochastic processes are 

used in order to most accurately model these processes. 

The laboratory tests are largely centred around investigating particle detachment. By developing a 

methodology to produce artificial sand-kaolinite cores with uniform and reproducible properties 

including clay content, the impact of clay content on low-salinity water induced permeability decline is 

investigated. It is found that above a certain clay threshold, between 1-3% total mass content, particle 

detachment and straining manifest in similar ways, evidenced by the measured drop in permeability. It 

also shown that only a fraction of clay particle can be potentially detached. 

Additional laboratory tests investigate in more detail the process by which changing the fluid salinity 

results in particle detachment. In both a single-phase environment and in the presence of residual oil, it 

is shown that when using calcium ions in the injected water, reduction of the fluid salinity does not 

detach particles. The opposite is found to be true for sodium ions. Investigations around these laboratory 

tests are presented, and a tentative conclusion is drawn that calcium ions adsorb on the clay surface with 

significant hysteresis during the loading and unloading stages. 

Novel analytical solutions are presented for fines migration accounting for the delay in particle 

detachment observed in experimental studies in the literature. Both the linear case and axi-symmetric 

flow cases are presented, and analytical solutions are given for the suspended and strained particle 

concentrations and the pressure drop. The solutions highlight the impact of the delay, which 

significantly affects the stabilisation time, but does not affect the stabilised strained particle profile or 

the final pressure profile. 
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The thesis also presents three models derived using Boltzmann’s kinetic equation applied to colloidal 

flows in porous media. The model allows for coupling of a distribution of particle velocities and a 

particle velocity dependent capture. The models are upscaled using Fourier transforms and Hilbert space 

projection operators. First, the base model is presented, compared with laboratory data, and 

investigated, revealing inherent relationships between the model coefficients. The upscaled model 

exhibits delayed advective velocity for the particles compared with the fluid. 

Two generalisations of this model are presented, in the form of an arbitrary dependence of the capture 

on velocity, and the general 3-Dimensional anisotropic case. The former allows for investigation of 

emergent macroscale behaviour using various microscale models for capture, and the latter is capable 

of modelling the effects of transverse flow on capture, which is shown to be significant even in quasi-

1-Dimensional flows. 

The models presented in this work are relevant and applicable to many industries, including water 

management, environmental and chemical engineering, and energy-generation technologies. The use of 

more accurate models provides better predictions and allow operators to make more informed decisions. 

The key findings include a greater understanding of particle detachment, and new models for fines 

migration with delayed particle detachment, and particle flow in porous media with simultaneous 

capture and dispersion. 
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1. Contextual Statement 

Significance of the project The significance and impact of this PhD project lie in the novel 

formulations of colloidal processes, outlining a stronger adherence to microscale physics. These 

formulations are supported by experimental works designed to both investigate phenomena and 

confirm the accuracy of modelling efforts. Modelling efforts are combined with mathematical 

techniques to produce analytical solutions to enhance the usability of the models. The combination of 

these efforts underpins a strong academic contribution, as well as novel techniques for industrial 

application. 

Colloidal formation damage is present both due to injection of foreign particles, and due to 

detachment of natural fines. Both processes are present in injection and production operations in the 

petroleum industry. Fines detachment and the associated formation damage is vital to low-salinity 

waterflooding projects, due to the propensity of the low-salinity water to detach fine particles. 

The underlying processes particle attachment, detachment, and colloidal flow are often available for 

observation only through indirect measurements of particle concentrations and pressure gradients. 

Accurate mathematical models provide not only the ability to better differentiate and understand the 

underlying processes, but also more accurate means to characterise the interaction between particles 

and the porous media. The development of these models and existence of analytical solutions allows 

researchers to develop a deep understanding of processes that are too often out of reach. 

Accurate and consistent models are also central to decision making in industrial processes. Whether it 

is through making predictive analysis of formation damage, uncertainty analysis of 

colloidal/contaminant transport, or assessing the viability of damage mitigation and prevention 

techniques, the ability of practitioners to model colloidal processes is crucial. In addition, the 

existence of analytical solutions improves the ease and speed with which these calculations can be 

made. 
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State of the art Modelling of colloidal processes has long garnered attention in industrial and 

theoretical areas. Strong modelling efforts have been driven by interest in environmental, agricultural, 

chemical, and petroleum applications (Civan, 2014; Hunt & Sahimi, 2017; Khilar & Fogler, 1998). 

Petroleum applications in particular has been concerned with injectivity decline in injection 

wells(Barkman, Abrams, Darley, & Hill, 1975; Pang & Sharma, 1997) and the potential for fines 

migration to improve sweep efficiency (Zeinijahromi, Nguyen, & Bedrikovetsky, 2013) and reduce 

residual oil saturation (Al-Sarihi et al., 2018), thus increasing oil production. Central to these 

modelling efforts is a mass continuity equation of the suspended particle population: 

( )
2

2a s

c c
c U D

t x x
  

  
+ + + =

  
                   (1.1) 

where t is time, ϕ is the porosity, c is the suspended particle concentration, σa is the attached particle 

concentration, σs is the strained, or captured particle concentration, U is the mean particle velocity, x 

is the spatial coordinate, and D is the diffusion coefficient. 

Two important questions in modelling flow and capture of suspended particles is the form of the 

detachment and attachment (capture) equations. Detachment is governed by the rate of decrease of 

attached particles, a

t




, while detachment is determined by s

t




. 

Particle detachment is governed by the balance of forces acting on attached particles(Bedrikovetsky, 

Siqueira, Furtado, & Souza, 2011; You, Yang, Badalyan, Bedrikovetsky, & Hand, 2016). Early 

approaches relied on an empirical detachment rate coefficient(Herzig, Leclerc, & Goff, 1970), which 

left the detachment rate without any physical intuition or more fundamental physical justification. 

More recent approaches have used explicit formulae for acting forces and formulated the so-called 

critical retention function, σcr. Using the equations, the critical retention function can be related to 

system parameters such as the fluid velocity or salinity. This approach however limits the kinetics of 

detachment to be equal to the rate with which these system parameters change. 

A less studied issue surrounding Equation (1.1) is the relationship between particle capture and 

dispersion. Individually, each process has been modelled successfully; particle capture is proportional 
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to the particle velocity and suspended particle concentration (Civan, 2014), while particle dispersion 

in the form presented in Equation (1.1) follows from a distribution of particle velocities on the pore 

scale, and any number of upscaling techniques (Einstein, 1905). What remains unclear is how to 

accurately model the co-existence of both processes. When particles move with varying velocities, the 

question arises, to which velocity is their capture proportional to? 

Careful examination of existing microscale models of capture reveals that many of them capture a 

non-linear dependence on the fluid velocity (Andrade, Araújo, Vasconcelos, & Herrmann, 2008; Tien 

& Payatakes, 1979; Tufenkji & Elimelech, 2004). These more complex velocity capture models also 

need to be combined with particle diffusion/dispersion to analyse any emerging macroscale 

phenomena. 

Scope of the work In light of the above presentation of the state of the art, the main 

achievements of this thesis are 

• Development of  a reproducible and reliable experimental technique which produces artificial 

sand-kaolinite cores with uniform attached particle profile with known concentration 

• A series of experimental tests which demonstrate the impact of total clay content on detached 

concentration, illustrating for the first time the small fraction of attached particle that are 

subject to detachment 

• Development and analytical solution of a 1-Dimensional model which accounts for delay in 

particle detachment while still utilising the critical retention function and which explicitly 

models the fluid salinity 

• Development and analytical solution of a 1-Dimensional axi-symmetric model which 

accounts for delay in particle detachment while still utilising the critical retention function in 

order to model injectivity decline in low-salinity water injection wells 

• Formulation and upscaling of Boltzmann’s kinetic equation for colloidal flow and capture as 

well as comparison with laboratory data and development of relationships between 

coefficients 
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• Formulation and upscaling of Boltzmann’s kinetic equation for arbitrary capture function 

• Formulation and upscaling of Boltzmann’s kinetic equation for 3-Dimensional flow and 

capture of particles in general anisotropic case 

1.1 Thesis Structure 
 

This is a PhD thesis by publication. Seven publications are presented in this thesis, of which four have 

been published in journals, two have been accepted for publication, and one has been submitted for 

publication. 

The thesis body is formed by five Chapters. The first Chapter includes an introduction to the problems 

addressed in the thesis and outlines their importance. The second Chapter presents a discussion of the 

contemporary literature surrounding the works of this thesis, including discussions of modelling 

efforts for particle attachment, detachment, and flow. A detailed literature review is included in this 

chapter. Chapters three, four, and five present the novel research performed as part of this thesis. 

Paper Chapter Title Status 

1 
Chapter 3 

Effects of kaolinite in rocks on fines migration Published 

2 Fines Stabilization by Ca Ions and Its Effect on LSW Injection Published 

3 

Chapter 4 

Colloidal-suspension flows with delayed fines detachment: 

Analytical model & laboratory study 
Published 

4 
Effects of delayed particle detachment on injectivity decline 

due to fines migration 
Published 

5 

Chapter 5 

Averaged Boltzmann’s kinetics for colloidal transport in 

porous media 

Accepted for 

Publication 

6 
Boltzmann’s colloidal transport in porous media with velocity-

dependent capture probability 

Accepted for 

Publication 

7 
Colloidal transport in anisotropic porous media: kinetic 

equation and its upscaling 
Submitted for 

Publication 

 

Accurate modelling of colloidal flows in porous media is of great importance to many industries, 

including petroleum engineering. However current models are not accurately modelling the 

underlying microscale processes that define the observed behaviour in laboratory and field studies. 

Particle detachment in particular has a large history of empirical modelling, with more recent attempts 

at accurate microscale models falling short due to a lack of laboratory works to support their 
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assumptions. As a result, two experimental studies are presented in Chapter three which allow for a 

better physical understanding of the detachment process. The results demonstrate that previous studies 

vastly overestimated the proportion of particles that can detach under any conditions, and that the 

influence of selective cation exchange can cause significant inconsistencies between experiments and 

current modelling efforts. In order to study the effect of total clay content on particle detachment, a 

novel laboratory methodology is developed which allows for reproducible production of artificial 

cores with uniform properties. Such cores allow for comparison across multiple tests, which carries 

significant uncertainty when using real cores due to unseen heterogeneity. 

In Chapter four, more rigorous mathematical models of particle detachment are formulated and 

consequently solved analytically. This model is first discussed in the linear case, as is appropriate for 

laboratory corefloods and fracture-linear flows in industrial applications. In this Chapter, the influence 

of a delay in particle detachment is emphasized. It has long been observed that changing the salinity 

of injected water will result in particle detachment, but over time scales substantially larger than 

expected. Previous works relied on the assumption that particles travel slower than the injected fluid. 

While this has backing in physical intuition, an incredibly slow particle velocity is typically required 

to explain experimental results. Thus, we investigate the long experimental times under the 

assumption that particles detach with delay. The combination of delayed detachment with the use of 

the critical retention function brings the model more in line with experimental evidence that changes 

to fluid salinity will impact particles only after some time. The delay is justified by the time-limiting 

cation exchange on the particle surface. During incompressible axi-symmetric flow, such as during 

water injection in an oilfield, particle detachment will occur in two stages, first by the induced 

velocity field, causing some particles to detach instantaneously within the formation fluid, and 

secondly by the injected fluid, which moves through the porous media causing detachment with some 

delay. This ‘dual-delay’ situation is also modelled in Chapter three, with an analytical solution 

presented alongside the formulation. 

Lastly, Chapter five addresses the co-existence of both significant particle capture and 

dispersion/diffusion. While each process has a strong microscale understanding and consequent 
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models, the existence of both processes results in complex interactions that have until now only been 

addressed intuitively. The models presented in this Chapter rely on Boltzmann’s kinetic equation, 

which is formulated to describe colloidal flow and capture. Upscaling of this equation results in an 

advection-diffusion equation with capture and delayed advective velocity. Each of the upscaled 

coefficients are presented as explicit functions of the microscale parameters directly associated with 

the underlying processes. Three major developments are presented in this Chapter. First the model is 

presented, compared with laboratory data, and analysed in detail with respect to the model 

coefficients. Analysis of the coefficients reveals that the interaction between processes on the 

microscale leads to an explicit relationship linking the macroscale parameters. Secondly the model is 

generalised to account for any velocity-dependent capture function, which is shown to be present in 

many existing models for particle capture. Lastly the model is generalised to three dimensions, where 

anisotropy is allowed. Reduction of the 3-Dimensional solution to a single spatial dimension produces 

a 1-D advection diffusion equation which accounts for capture in the two directions perpendicular to 

flow, a previously unaddressed phenomenon. 

1.2 How the Publications are related to the Thesis 
 

The paper “Effects of kaolinite in rocks on fines migration” presents the novel experimental technique 

to produce reproducible cores with controlled and uniform properties. The study utilised a number of 

coreflooding tests to analyse the impact of total clay content on the extent of formation damage and 

the total detached concentration. DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory, which 

describes the electrostatic interaction between two substrates, is used to analyse the effect of salinity, 

which is varied across different corefloods. The study shows that above a certain clay content 

threshold, here between 1 and 3% total mass, sufficient clay is available for detachment that the cores 

exhibit qualitatively similar behaviour. The results provide greater insight into the nature of particle 

detachment in porous media. 

While many studies are dedicated to investigating low-salinity waterflooding, recent works have paid 

more attention not only to the total salinity of the injected fluid, but also to the specific ionic content. 

Given their role in mitigating the charge of clay materials, cations are of more importance than their 
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negatively charged counterparts. In the paper “Fines Stabilization by Ca Ions and Its Effect on LSW 

Injection” the typical NaCl fluid composition is compared with the less common CaCl2. The tests are 

performed by decreasing the total salinity of each particular fluid stepwise, down to deionised water, 

which contains negligible amounts of each ion. The tests were performed in both single-phase, and in 

the presence of residual oil. All observed indicators of fines detachment being a spike in outlet 

suspended concentration, a sharp increase in pressure drop across the core, and a decrease in the 

residual oil saturation, all indicate that when saturated with CaCl2, no change in salinity, even down to 

deionised water, can release fines. On the contrary, when, in the same core, NaCl is injected, followed 

by deionised water, all measurements indicate significant fines detachment. Thus this experimental 

work reveals an important and novel result: that the cation exchange on the particle surface, which 

dictates its detachment, can exhibit hysteresis. Hysteresis in cation adsorption is exhibited by Ca2+ 

ions, which remain even during deionised water injection, maintaining the strong electrostatic force 

which holds particles to the surface. The inherent hysteresis may be a kinetic effect, not one of 

equilibrium, but its impact remains: accurate modelling of particle detachment in the presence of 

multiple cations must account for potential hysteresis. This effect is not evident in the traditional 

modelling using the critical retention function. 

The same cation exchange that detaches particles, has been shown in other works to occur with 

significant delay. This delay is accounted for quantitatively in the paper “Colloidal-suspension flows 

with delayed fines detachment: Analytical model & laboratory study”. The objective of the paper is 

not only to include the delay in detachment, but to do so in such a way as to include the critical 

retention function, a widely used formulation that allows for explicitly linking system parameters 

(velocity, salinity, etc.) to detached particle concentrations. This formulation requires explicitly 

modelling the salinity front as it progresses through the porous media. Neglecting both particle and 

ion diffusion/dispersion, an analytical solution is presented using the method of characteristics, 

allowing for explicit expressions for the suspended and strained concentrations as well as the pressure 

drop. Laboratory experiments are presented in this study and compared with the model in order to 

assess its accuracy. Good agreement is found. 
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A natural extension of such a model is an axi-symmetric coordinate system. This is the formulation 

most commonly used to model fluid flow in production and injection wells in the petroleum industry. 

In the paper “Effects of delayed particle detachment on injectivity decline due to fines migration” 

precisely this model is presented. The nuance of this model lies not only in the dependence of the 

velocity on the radial coordinate, but again in how particle detachment is formulated. Here we cannot 

rely solely on the first-order delay term used in the linear model, because the initiation of flow will 

cause particle detachment variably across the reservoir due to the induced flow field. These particles 

will detach instantly, according to the critical retention function. Once injection commences, the new 

injection fluid will travel through the reservoir, resulting in the same delayed detachment discussed 

earlier. Thus detachment occurs for two reasons, first due to increased drag on the attached particles, 

and secondly, due to a weaker electrostatic force holding them to the porous matrix. A physical 

understanding of these processes necessitates using two delays, one infinitesimally small, and one 

finite. Again, an analytical solution is presented using the method of characteristics, which in this case 

results in implicit equations for the suspended concentration. A by-product of this formulation is a 

requirement for a more thorough characterisation of the porous media. Whereas in previous studies 

the critical retention function would have to be defined at initial and injected salinities, velocities, etc., 

in this case, it is required that σcr is defined for all velocities encountered, and across the entire salinity 

range, even if the absence of diffusion means that only two salinity values are encountered. 

While the focus remains on more accurate modelling of the underlying physical processes, the above-

mentioned modelling efforts are deterministic. In the paper “Averaged Boltzmann’s kinetics for 

colloidal transport in porous media” a stochastic approach is used, not to introduce new phenomena, 

but to reconcile two existing microscale processes. Both particle attachment and transport and 

formulated in Boltzmann’s kinetic equation, with a linear BGK type relaxation term governing 

diffusion/dispersion. The equation is upscaled using Hilbert space projections and the Fourier 

transform, resulting in an advection-diffusion equation with delayed advective velocity. This new 

effect results exactly from the coupling of capture and transport, and vanishes in the absence of either 

capture, or varying microscale particle velocity variation. The upscaled coefficients are related 

explicitly to the microscale coefficients and much attention is paid to understanding their nature. 
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Comparison with laboratory results demonstrates the effectiveness of the model but also highlights 

potential shortcomings. 

The final two papers present generalisations to this theory. The first, “Boltzmann’s colloidal transport 

in porous media with velocity-dependent capture probability” presents the same derivations while 

allowing for the particle capture to depend on the velocity in any way. Careful inspection of existing 

models reveals that a number of velocity dependent capture processes have already been investigated 

and quantified. What is discussed in this paper is how these velocity dependent capture processes 

interact with a particle population with different velocities. While each model produces the same 

advection-diffusion equation with capture, the different microscale descriptions lead to widely 

varying macroscale behaviour in the form of the coefficients. We show that when the capture 

preferentially captures slower particles, as is the case for Tufenkji and Elimelech’s attachment model, 

then the mean advective velocity of the particles can be faster than that of the carrier fluid. The chosen 

models are compared with several laboratory tests, and significant deviation is found in their ability to 

match the breakthrough curves. The inherent correlations found between the coefficients provide a 

fingerprint for each microscale capture model, and consequently, laboratory tests studying different 

phenomena to those described in the models will produce datasets incompatible with the models. Thus 

the derived model provides a means to derive from laboratory data not just the system parameters, but 

also information on the potential underlying microscale phenomena. 

Lastly, the paper “Colloidal transport in anisotropic porous media: kinetic equation and its upscaling” 

generalises the model to three dimensions. The formulation allows for general anisotropy in capture, 

equilibrium flow properties, and relaxation, the effect which leads to diffusion/dispersion. The 

upscaling procedure results in a 3-Dimensional advective diffusion equation with capture, with cross 

diffusion terms and delayed velocity in each of the three advective terms. Each coefficient now 

accounts for the impact of particle capture in all three directions. It is shown that in certain simplified 

cases, the upscaled capture coefficient is equal to the scalar product of the three microscale capture 

coefficients and the three average velocities. The three-dimensional equation can be reduced to a one-

dimensional equation of the same form as the two previous papers, with the key difference that the 
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coefficients now account explicitly for the motion and capture of the particles in the two directions 

perpendicular to flow. This inclusion is shown to be significant to the emergent macroscale behaviour. 

The above-mentioned seven papers represent an effort to more accurately model particle capture and 

flow in porous media. The papers provide insight into microscale phenomena, and present 

formulations and subsequent analytical solutions for models that account for these phenomena to 

provide more accurate predictions of formation damage and fines transport in waterflooding and oil 

production processes. 
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2 Literature Review 
2.1 Introduction 
Particle detachment, transport, and capture occurs during a number of industrial processes. Particles 

are introduced into systems either through the injection particle-laden fluids (referred to as deep bed 

filtration), or through the detachment of natural fine particles that are attached to the inner surface of 

the porous matrix (referred to as fines migration). Once suspension flows are established within the 

porous media, particles can become captured through interaction with the porous matrix. Particle 

capture has long been reported to reduce the capability of the porous media to permit flow, 

quantitatively measured as a decline in permeability. 

Both the transport of fine particles, and their capture have drawn substantial attention due to their 

prevalence in industry. There are a number of studies that have shown fines detachment and 

subsequent injectivity decline during low-salinity water injection in oilfields (Akhmetgareev & 

Khisamov, 2015; Barkman, Abrams, Darley, & Hill, 1975). Fines migration can occur even before 

injection, as a result of the leak-off of drilling fluid, lifting fines and causing often undetected 

formation damage (Salimi & Ghalambor, 2011). Fines migration can also occur during underground 

water management and has been reported during fresh water storage in shallow aquifers (Prommer et 

al., 2013), during the encroachment of seawater into coastal aquifers (Goldenberg, Magaritz, & 

Mandel, 1983), and during contamination of fresh water aquifers (Kretzschmar, Borkovec, 

Grolimund, & Elimelech, 1999). 

Fines migration is not always a negative process and has been shown in several studies to potentially 

increase the volumetric sweep efficiency of waterflooding operations (Lemon, Zeinijahromi, 

Bedrikovetsky, & Shahin, 2011; Zeinijahromi, Al-Jassasi, Begg, & Bedrikovetski, 2015), or decrease 

the residual oil saturation. Both of these effects result in higher oil productivity and overall recovery 

(Al-Sarihi et al., 2018). 

Due to the presence of suspended particles in both seawater and produced water, oilfield injection 

wells are commonly prone to formation damage due to deep bed filtration (Ogletree & Overly, 1977; 
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Mukul M. Sharma, Pang, Wennberg, & Morgenthaler, 2000). Operators often turn to costly filtration 

methods to avoid or mitigate injectivity decline (Guan, Du, Wang, & Xu, 2006). 

Common to all colloidal flow problems is the need for accurate and reliable modelling supported by 

laboratory studies. Inverse modelling performed on laboratory data provides a means to characterise 

the porous medium, particles, and their interactions. With a proper and accurate characterisation, 

mathematical models can then be used to make predictions for field operations allowing for 

uncertainty quantification, assessment of treatment/mitigation strategies, and ultimately a quantifiable 

indication of the effectiveness and profitability of the operation. 

In the following subsections I provide more background on the physical understanding and 

mathematical modelling of colloidal processes that preceded this thesis. Section 2.2 presents the 

physics and existing efforts for particle detachment. Section 2.3 presents modelling of fines migration 

and Section 2.4 presents modelling and considerations for the co-occurrence of particle capture and 

diffusion/dispersion. 

2.2 Particle detachment 

2.2.1 Physics of particle detachment 

The detachment of particles is central to the process of fines migration as it provides a source for 

suspended particles. Figure 1b presents a schematic representation of an attached particle and the 

acting forces. 
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Figure 1: Schematic representation of particle detachment, transport, and capture: a) Schematic of 

suspended particles, attached, and strained particles (with concentrations c, σa, and σs respectively) 

within the porous space, b) schematic of an attached particle with acting forces and lever arm 

(Chequer, Vaz, & Bedrikovetsky, 2018) 

This figure shows two forces, the drag force, which results from the interaction between the moving 

fluid and the attached particle, and the electrostatic force between the particle and the rock matrix. 

The drag force acts to detach particles while the electrostatic force acts to detach particles. In addition, 

there exists a lifting force, being the vertical counterpart to the drag force, and a gravitational force. In 

most applications, the lifting and gravitational force are negligibly small compared to the drag and 

electrostatic (P. Bedrikovetsky, Zeinijahromi, Siqueira, Furtado, & de Souza, 2012; Kalantariasl & 

Bedrikovetsky, 2013), and thus they are neglected. 

The detachment of particles is determined by three balances: the balance of vertical and horizontal 

forces acting on the particle, and the balance of torques acting on the particle. These three balances 

represent the possibility for the particle lifting from the surface, moving across the surface, and 

rotating along the porous matrix respectively. Of particular interest is the conditions under which 
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particle will begin to detach, so the point at which the forces/torques are balanced exactly is 

considered, i.e. where their sum is zero. Analysis of these three equilibria has shown that in almost all 

cases, the torque balance is violated first (Mukul M Sharma, Chamoun, Sarma, & Schechter, 1992), 

meaning that analysis of particle detachment can be simplified to the single equation: 

( ) ( ) ( ) ( ) ( ), , , , ,d s d s e s L s g s nF U r l r F r pH T F U r F r l = − +                   (2.1) 

where Fd is the drag force, U is the fluid velocity, rs is the particle size, ld is the drag force lever arm, Fe 

is the electrostatic force, γ is the fluid salinity, pH=log10(H+) is a measure of the acidity of the fluid, T 

is the fluid temperature, FL is the lifting force, Fg is the gravitational force, and ln is the normal lever 

arm. 

The normal level arm can be calculated based on two different assumptions. First, as in Figure 1b, it 

can be assumed that the particle will rotate around some asperity. The second assumption is that the 

particle deforms due to the normal force which acts perpendicular to the rock surface. In this case, using 

Hertz’s theory of deformation, the normal lever arm can be calculated as (Boris V Derjaguin, Muller, 

& Toporov, 1975): 

3

4

e s
n

F r
l

K
=                       (2.2) 

where the composite Young’s modulus is calculated as 

2 2

1 2

1 2

4

1 1
3

K

E E

 
=

 − −
+ 

 

                     (2.3) 

where ν is the Poisson’s ratio, E is the Young’s modulus, and the subscripts 1 and 2 refer to the particle 

and rock surface respectively. 

The drag lever arm can be calculated from the normal lever arm following geometrical considerations, 

resulting in 

2 2

d s nl r l= −                       (2.4) 
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In most cases, the normal lever arm has been shown to be significantly smaller than the particle size, 

due to the negligible deformation of the particle. Thus in this case 

,s n d sr l l r                      (2.5) 

Assuming that the particle is spherical, the gravitational force can be expressed as 

34

3
g sF r g =                       (2.6) 

where Δρ is the density difference between the particle and surrounding fluid, and g is the gravitational 

acceleration.  

The lift and drag forces can be expressed as 

3
3

3L s

p

U
F r

r


=                      (2.7) 

2

s

d

p

r U
F

r


=                      (2.8) 

where χ is the lift coefficient, ρ is the particle density, μ is the fluid viscosity, U is the fluid velocity, rp 

is the pore radius, and ω is the drag coefficient. The lift and drag coefficients can be calculated from 

computational flow dynamics simulations. 

Equations (2.7) and (2.8) express explicitly the increasing lift and drag forces with increasing fluid 

velocity. This is the reason that increasing fluid velocity results in particle detachment. 

The electrostatic force is calculated using the extended DLVO (Dejaguin, Landau, Verwey, Overbeek) 

theory. This theory accounts for three contributions to the total electrostatic potential from the 

interaction between the particle and internal porous surface: the London-Van der Waals, Electrical 

Double Layer, and Born repulsive potential (B.V. Derjaguin & Landau, 1941; John Gregory, 1975; J. 

Gregory, 1981; Verwey, Overbeek, & Overbeek, 1999). The total potential energy is the sum of each 

component: 
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LVW EDL BRV V V V= + +                      

(2.9) 

where V is the total energy, VLVW is the London-Van der Waals potential, VEDL is the electrical double 

layer potential, and VBR is the Born repulsive potential. 

The London-Van der Waals potential is a largely attractive force that acts between two closely separated 

surfaces. It arises due to the spontaneous electrical and magnetic polarizations in the medium between 

the two surfaces, giving rise a to a fluctuating electromagnetic field. The expression for the retarded 

London-Van der Waals interaction potential between a sphere and plate is given by 

132 5.32
1 ln 1

6 5.32

s w

LVW

w

A r h
V

h h





  
= − − +  

  
                (2.10) 

where A132 is the Hamaker constant, λw is the characteristic wavelength of the interaction, and h is the 

separation distance between the two surfaces. 

The Hamaker constant is given by the following expression (Israelachvili, 2011): 

( )( )

( ) ( ) ( ) ( )

2 2 2 2

1 3 2 31 3 2 3
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− −  − −
= +  

+ +     + + + + +
  

   

(2.11) 

where kB is Boltzmann constant, ε1, ε2, and ε3 are static dielectric constants of the particle, surface, and 

fluid, respectively, n1, n2, and n3 are the refractive indices of particle, surface, and fluid, respectively, 

and ve is the constant value of absorption frequency. 

The next component of the total interaction energy is the Born repulsive force. This is a short-range 

interaction that results from the repulsion between atoms as their electron shells overlap. The expression 

for the Born repulsion is given below (Ruckenstein & Prieve, 1976) 
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where σLJ is the atomic collision diameter. 

The last component of the interaction potential is the electrical double layer. This interaction is perhaps 

the most important because it is the most sensitive to the ionic composition of the surrounding fluid, 

which results in the salinity dependence of the electrostatic force. 

Both the particle and internal surface of the porous medium will typically exhibit some electrical charge. 

Most commonly, this charge exists due to the dissociation of charged ions on the external surface of 

each species, resulting in an excess surface charge. Due to this surface charge, ionic species within the 

surrounding fluid will accumulate in the region around each species. The notion of the double layer 

follows from the concept that there exists a layer of fixed ions close to the surface, and a larger layer of 

diffuse ions, whose concentration differs from that of the bulk fluid. When the two species are close to 

each other, their double layers will overlap, resulting in a potential energy of interaction. As the two 

surfaces are brought closer to each other, the interaction potential increases. Given that most species in 

subterraneous rocks are negatively charged (e.g. clays, silica), the interaction will be repulsive. The 

concentration of ions within the double layer is determined by an equality of chemical potential between 

those ions and the free ions within the bulk fluid. This equilibrium results in the salinity dependence of 

the EDL interaction; as the fluid salinity increases, the chemical potential of the ions in bulk increases, 

resulting in diffusion more ions into the region between the particle and rock surface. 

An expression for the electrical double layer interaction potential for a sphere and plate is given below 

(John Gregory, 1975) 
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where κ is the inverse Debye length which is the characteristic length of the potential energy of each 

surface, n∞ is the bulk ion density, e is the elementary electric charge, ni0 is the concentration of ion 

species i in the bulk solution, z is the valence of symmetrical electrolyte solution, ε is the dielectric 

permittivity of vacuum, ε3 is the dielectric constant of the fluid, ψs and ψg are the reduced zeta 

potentials for the particle and grain, and ζs and ζg are the zeta potentials for the particle and grain. 

Below in Figure 2 a typical form for the total interaction potential plotted against the separation 

distance between the particle and surface is presented. 

 

Figure 2: Two plots of the total interaction potential energy, V, plotted against the separation distance, 

h (Russell et al., 2018) 
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The force acting on the particle is equal to the negative of the derivative of V over h. The system will 

tend towards an equilibrium point, where the force is zero. These points exist at the primary and 

secondary minima, and at infinite separation distance.  When particles reside in either of the two 

minima, detaching forces will move the particle to the inflection point, where the attractive force is 

maximum. If the force is sufficient, as determined by the mechanical equilibrium, then particles will 

detach. 

 

2.2.2 Modelling of particle detachment 

Early approaches to modelling particle detachment relied heavily on empirical parameters that could 

under ideal conditions be determined from laboratory tests. The traditional model for colloidal 

attachment and detachment is (Herzig, Leclerc, & Goff, 1970) 

a
det acU k

t


 


= −


                   (2.16) 

where t is time, λ is the filtration coefficient, and kdet is the detachment coefficient. 

This formulation has several important implications. First, it assumes that particles can 

simultaneously be detached and attached, and that any detached particle can become re-attached and 

vice-versa. The attachment takes the typical form, in that it is proportional to the advective flux of the 

suspended particles, cU (Bradford, Simunek, Bettahar, Van Genuchten, & Yates, 2003; Tufenkji, 

2007). The detachment portion of the equation is based simply on the idea that that particle 

detachment will occur more quickly the higher the number of particles there are to be detached, σa. 

The coefficient of proportionality, kdet is empirical and needs to be determined from laboratory data.  

A direct consequence of this model is that if attachment is small, then all attached particles will 

eventually detach. This picture is also inconsistent with the mechanical equilibrium or torque balance 

on particles that was described above. To remedy these issues, authors have introduced the critical 

retention function, σcr (P. Bedrikovetsky, Siqueira, Furtado, & Souza, 2011). This function describes 

the concentration of attached particles that will remain attached under a given set of system 
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parameters, such as fluid velocity, salinity, pH, temperature, etc. When the attached concentration is 

below the critical retention function, detachment does not occur, and in fact in certain systems 

attachment will take occur instead, and if the attached concentration is below the critical retention 

function, detachment will occur, resulting in equality between σa and σcr. Thus we arrive at a different 

model for particle detachment (P. Bedrikovetsky et al., 2011; P. Bedrikovetsky et al., 2012; You, 

Yang, Badalyan, Bedrikovetsky, & Hand, 2016): 

( )

( ) ( )

, , ,

, , , , , ,

a cra

a cr a cr

cU U pH T

U pH T U pH Tt

   

     

 
= 

=  
              (2.17) 

The dependence of the critical retention function on the fluid velocity comes largely from the drag 

and lifting force, while the dependence on the salinity, pH, and temperature comes from the 

electrostatic force. 

The advantage of this model for particle detachment is first that it allows for directly relating system 

parameters to the particle detachment, and secondly it allows for describing the sequential detachment 

of particles during sequential changes to the system parameters, as has been observed in many 

laboratory tests (Khilar & Fogler, 1983; Ochi & Vernoux, 1998; Oliveira et al., 2014). 

In order for the critical retention function to vary in magnitude across a range of velocities or 

salinities, etc., the detachment criteria for the population of attached particles must vary. That is, some 

effect must exist such that conditions that detach some particles will not detach others. Below we 

discuss two such models, first we proceed by assuming that all particles are the same size, but that 

they form a multiplayer internal filter cake within each pore, and secondly, we assume a monolayer of 

particles with varying particle size. 

First we consider the case where all particles are equal: they have the same size and electrostatic 

properties. The pores are modelled as a bundle of square capillaries all of equal size. This model of 

attached particles is reflected in Figure 3. 
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Figure 3: Mechanical equilibrium of particles on the rock surface forming a multilayer filter cake (P. 

Bedrikovetsky et al., 2011) 

The particles attach to the pore walls in a series of discrete layers. As more particles attach, the width 

of the filter cake increases, consequently decreasing the available space within the pore for fluid flow. 

This will result in an increase in the pore fluid velocity, which will increase the drag force, shifting 

the condition of mechanical equilibrium towards detachment. Thus, there exists a balance, as particles 

accumulate, the next layer will be less stable on the surface. 

Assuming that all particles are spherical and are arranged evenly on the inner surface of pores, it is 

possible to approximate the lever arm ratio, ld/ln as 3 . This allows writing the torque balance as: 

( )

3 23
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s s
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where H is the pore width, and hc is the filter cake width. 

For square pores, the critical retention function can be related directly to the pore and filter cake 

dimensions as per 

( )
2

1 1 1c
cr c

h

H
  

  
= − − −  

   

                 (2.19) 
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where ϕc and ϕ are the filter cake and rock porosity, respectively. 

If we assume that the gravitational and lift forces are negligible, then we can combine Equations 

(2.18) and (2.19) to arrive at an explicit expression for the critical retention function: 

( )
( )

( )
231

, , , 1 1
2 2 , ,

s
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e

r U
U pH T

F pH T H


   



  
= − + −   
   

              (2.20) 

This expression links the critical retention function to the system parameters, as required. Increasing 

the fluid velocity will increase the drag force, while decreasing the salinity will decrease the 

electrostatic force. Both of these actions will result in a monotonic decrease in the critical retention 

function, consistent with the picture of particle detachment. Figure 4 below shows typical forms for 

the critical retention function plotted against the fluid velocity and salinity. 

 

Figure 4: Typical forms for the critical retention function when plotted against the A) fluid velocity, U 

and B) fluid salinity, γ (Russell et al., 2018) 

The assumptions of constant pore and particle size can easily be relaxed. Given a particle size 

distribution fs(rs) and pore width distribution fH(H), we arrive at the integral expression (Russell et al., 

2018): 
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The second means of deriving the critical retention function is to begin with a distribution of particle 

sizes, which attach in monolayer. Each of the forces present in the equation for mechanical 

equilibrium is dependent on the particle size. A larger particle size will result in a higher value for 

each of the forces, at least for spherical particles. However, when calculations are performed it can be 

shown that larger particles exhibit a higher likelihood for detachment than smaller particles, true for 

any two particle sizes (Ochi & Vernoux, 1998). Thus during any gradual change in system 

parameters, such as increasing the fluid velocity, first larger particles will detach, followed by smaller 

and smaller particles. This leads naturally to the notion of the critical particle size: 

( ), , ,scr sr r U pH T=                    (2.22) 

For given conditions, particles larger than the critical particle size will detach, and those smaller will 

not. Thus we can express the critical retention function as (Russell et al., 2018) 

( ) ( )
( ), , ,

0

, , ,
scrr U pH T

cr aI s s sU pH T f r dr



  =                  (2.23) 

where σaI is the initial attached particle concentration. We visualise this representation of the critical 

retention function in Figure 5 below. 
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Figure 5: Calculation of the critical retention function from the critical particle size for a population of 

particles with size distribution f(rs) forming a monolayer on the internal surface of a porous medium 

(Russell et al., 2018) 

While the critical retention function can, in multiple ways, be expressed in terms of the system 

parameters, it loses the capability of previous modelling approaches to capture a finite rate of 

detachment. As it stands, the critical retention function predicts particle detachment at the same rate 

with which the system parameters change; an abrupt increase in the fluid velocity will result in an 

abrupt detachment of particles. While this may be true for some changes, some researchers have 

shown that particle detachment by salinity changes may occur with significant delay (Joekar-Niasar & 

Mahani, 2016; Mahani, Berg, Ilic, Bartels, & Joekar-Niasar, 2015). These works show that when the 

bulk fluid salinity is changed, the salinity between an oil droplet and flat surface changes gradually, 

with magnitudes up to days. This delay is a result of diffusion of the ionic species from the bulk 

solution to the region between the particle and surface. Diffusion rates alone are not enough to explain 

the significant delay, but accounting for the effect of electric charge on diffusion, through the Nernst-

Planck equation, these authors can explain the observed delay. The combination of a delay in particle 

detachment and adherence to an accurate physical description of particle detachment as with the 

critical retention function, is not available in the literature. 

2.3 Modelling colloid transport and capture 
In this section the basic model for particle capture and transport in porous media is presented. The 

primary equation used is a mass balance on the suspended particle concentration. The form of this 

equation is 

Rate of accumulation = Divergence of advective flux – Rate of detachment – Rate of straining 

Note here that it is assumed that particle diffusion/dispersion is negligible. This follows from the 

relatively large size of most colloids found in petroleum reservoirs. In the following section, the case 

where diffusion/dispersion is significant is discussed. The continuity equation in 1-Dimension can be 

written as 



 

25 
 

a sc cU

t x t t

    
= − − −

   
                  (2.24) 

where ϕ is the porosity, t is the time, x is the spatial coordinate, U is the fluid velocity, and c, σa, and 

σs are the suspended, attached, and strained particle concentrations respectively. The inclusion of 

porosity follows from the definition of the suspended particle concentration as the volume of 

suspended particles per unit pore volume, while the attached and strained concentrations are 

volumetric concentrations relative to the bulk rock volume. This difference is due to the means with 

which each variable is typically measured in laboratory studies. The distinction between attached and 

strained concentration follows from the notion that if particles are being captured by size exclusion or 

other irreversible processes, then attached and captured particles are qualitatively different, in that one 

population can become suspended, and the other cannot. 

It is assumed that the volume of particles and fluid are additive (Amagat’s law). The concentrations of 

each species is also assumed to negligibly small when compared with the mass of the carrier fluid. 

The detachment rate was discussed in the previous section, with most modern approaches using the 

assumption that the attached concentration is equal to the critical retention function 

( ) ( ), , , ,a crx t U pH T  =                   (2.25) 

The straining rate is taken to be proportional to the particle advective flux, cU (Herzig et al., 1970) 

( )s

s cU
t


 


=


                   (2.26) 

The coefficient of proportionality, λ, is referred to as the filtration coefficient. Its dependence on the 

strained concentration follows from the consideration that the number of available straining sites may 

be finite. Thus, as these sites are filled due to straining, straining becomes less and less likely as 

suspended particles encounter these sites less frequently. One common approach to model this 

dependence is by analogy to Langmuir adsorption, which similarly quantifies the finite number of 

adsorption sites for molecules in suspension. The resulting expression is 
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                   (2.27) 

where λ0 is the filtration coefficient in the absence of strained particles, and σm is the maximum 

strained concentration, determined from the quantity of straining sites. Commonly it is assumed that 

the strained particle concentration always remains low enough as to be negligible compared with the 

number of straining sites. In this case, it can be assumed that the filtration coefficient is constant. 

As was discussed earlier, one of the main industrial interests in colloidal transport follows from the 

induced permeability decline. Thus in addition to the continuity equation, an equation linking the 

attached and strained particle concentrations to the rock permeability is desired. This equation is most 

commonly derived using a Taylor series expansion (P. G. Bedrikovetsky, Vaz Jr, Machado, 

Zeinijahromi, & Borazjani, 2011; Pang & Sharma, 1997) 
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= + + +                 (2.28) 

Higher order terms are typically neglected. Combining this expression with Darcy’s law results in 

( )( )
0

1 a a s s

k p
U

c x    


= −

+ + 
                 (2.29) 

where p is the fluid pressure. For the sake of generality, the viscosity has been expressed as a function 

of the suspended concentration. In most cases, the suspended concentration is too low to affect the 

fluid viscosity, and so this dependence is neglected. In addition, the effect of attached particles, which 

line pores, on permeability is often significantly less than the effect of strained particles, who can plug 

pores. In this case, βa is assumed to be negligibly small and thus this term is neglected. 

Laboratory tests on fines migration have demonstrated long stabilisation times, beyond what can be 

explained from the above model (Oliveira et al., 2014; Yang, Siqueira, Vaz, You, & Bedrikovetsky, 

2016). This has led researchers to suggest that following detachment, suspended particles travel 

through the porous space at a velocity much lower than the fluid velocity. Thus their ratio is 

introduced as an unknown dimensionless parameter referred to as the drift delay factor 
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sU

U
 =                     (2.30) 

where Us is the particle velocity. 

This leads to the following system of equations 
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( ), , ,a cr U pH T  =                   (2.33) 

 
( )( )

0

1 s s

k p
U

c x  


= −

+ 
                  (2.34) 

The initial conditions correspond to a clean core: 

( ) ( ),0 , ,0 0sc x x =  =                   (2.35) 

where Δσ is the concentration of particles that detach when flow is initiated. 

The boundary condition posed at the inlet corresponds to the injection of particle-free water 

( )0, 0c t =                     (2.36) 

Introduce dimensionless variables 

, , , ,a s

a s

x Ut
X T S S L

L L

 


  
= = = =  =                 (2.37) 

where L is the system length. 

An analytical solution of this system can be obtained by using the method of characteristics. This 

method relies on comparing the continuity equation with the following equation, which follows from 

the definition of partial and total derivatives: 
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c c
dc dx dt

x t

 
= +
 

                   (2.38) 

Comparison with Equation (2.31) in the new dimensionless coordinates results in 

0,
dc dX

dT dT
= =                    (2.39) 

or 

1
0,

dc dT

dX dX 
= =                    (2.40) 

Integrating these two equations gives the analytical solution for the suspended concentration: 

Tc e  − =                      (2.41) 

This equation is valid behind the particle front, X=αT. Ahead of this front, the suspended particle 

concentration is zero. The strained concentration and pressure can be determined by subsequent 

integration of Equations (2.32) and (2.34). The full solution for each variable is provided in Table 1 as 

presented in Russell et al. (2018). 

Table 1: Analytical solution for fines migration with instantaneous detachment (velocity alteration) 

Line Term Zone Solution 

1 

C(X,T) 

X T  Te −   

2 X T  0  

3 

Ss(X,T) 

X T  1 Te − −  

4 X T  1 Xe−−  

5 J(T) 
1

T


  
1 1

1 1 1 T

cr T e    −   
+  − − − −     
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6 
1

T


  
1

1 1cr

e
 

− 
+  − − 

  
 

 

This model for fines migration assumes that particles detach throughout the core instantaneously 

when flow is initiated. This is consistent with the physical understanding of fines detachment by 

alteration of flow velocity. When particle detachment is induced by the injection of fluid with 

different properties such as salinity of pH, then the detachment will occur only once the injected fluid 

front reaches the core. This case has been studied by Chequer et al. (2018), who modelled this 

phenomenon by explicitly modelling the fluid salinity via another continuity equation 

0U
t x

 

 

+ =
 

                   (2.42) 

Again, diffusion and dispersion have been neglected. Under these conditions the fluid salinity behind 

and ahead of the fluid front X=T is simply the injected and initial salinities respectively. In this case, 

rather than particles detaching instantaneously throughout the core, they do so along the salinity front, 

when the new salinity reaches that area of the system. The full solution is presented in Table 2, 

following the full derivation presented in Chequer et al. (2018). 

Table 2: Analytical solution for fines migration with instantaneous detachment (salinity alteration) 

Line Term Zones Solution 

1 

( ),X T  

X T  1 

2 X T  0  

3 

( , )aS X T  

X T  ( )cr IS   

4 X T  ( )cr JS   

5 ( , )C X T  
X T  0  
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6 T X T    
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1 1
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7 X T  0  

8 
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1
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  −  
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Both solutions here are presented for linear flow, where the fluid velocity is independent on the spatial 

dimension. During injection in a well, whether for waterflooding, freshwater storage, or aquifer 

recharge, the flow profile around the well is such that the fluid velocity is larger the closer to the 

surface of the wellbore. Assuming axi-symmetric flow, then the fluid velocity becomes 

2

q
U

r
=                     (2.43) 

Where q is the volumetric injection rate per unit formation height, and r, used in place of x, is the 

radial distance from the wellbore. Using clever non-dimensionalisation (see Equation (2.44) below), 

the non-dimensionless system remains largely unchanged, with the exception that the equation for the 

straining rate. 
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− 

            (2.44) 

where re is the reservoir boundary, and rw is the wellbore radius. With these new variables, the 

straining rate becomes 

2

s

w

S c

T X X

 
=


                   (2.45) 

where Xw=(rw/re)
2. This equation reflects the higher velocity nearer to the wellbore, which results in a 

higher capture rate. 

For a full derivation and list of all analytical equations, see Russell et al. (2018). 

While these analytical solutions provide a useful tool for practitioners, there still remains a clear 

disjoint between the assumptions of the model and the observed behaviour of the underlying 

processes. As discussed earlier, changes to salinity ought to result in detachment with significant 

delay. While the above equations explicitly model the salinity front, correctly accounting for the 

detachment occurring only once the new salinity has arrived, they do not account for this delay. The 

extension of the above models both in linear and axi-symmetric forms to account for this delay is 

required to describe fines detachment more accurately. 

2.4 Particle capture and dispersion 
In the previous sections, particle diffusion and dispersion have been neglected. While diffusion is 

often neglected due to the large size of particles, dispersion, which arises due to the complex nature of 

the flow field within porous media, can be significant for colloidal flows. Dispersion and diffusion at 

their essence are quantifications of the macroscale behaviour arising from particles’ exhibiting 

different velocities on the pore scale. This distribution of velocities has been studied extensively, and 

can be upscaled in many ways to produce the diffusion/dispersion term in the continuity equation for 

suspended particles (Einstein, 1905) 

2

2

c c
D

t x

 
=

 
                    (2.46)  
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where D is the diffusion coefficient, and in this case advection has been neglected. 

An issue arises when one imagines this distribution of velocities alongside particle capture, which, as 

reasoned in the previous section, depends on the particle velocity. In this case, how is one to resolve 

the fact that particles ought to experience capture at different rates? 

Some authors have attempted to tackle this problem intuitively, by arguing that if in the absence of 

dispersion particles are captured according the advective flux, then in the presence of dispersion, 

particle capture should remain proportional to the total flux, which now includes a dispersive 

component (P Bedrikovetsky, Siqueira, de Souza, & Shecaira, 2006) 

s c
cU D

t x




 
= −

 
                   (2.47) 

where the absolute value is taken to reflect that capture is always positive, regardless of the direction 

of the total flux. 

This approach leads to a continuity equation of the form 

( )
2

2

c c c
U D D cU

t X x
  
  

+ − = −
  

                (2.48) 

Thus the presence of dispersion leads not only to the addition of the second order derivative of c in x, 

but also to a delay in the advective velocity proportional to the filtration and diffusion coefficients. 

This model presents several problems. First, it is derived intuitively, and thus has little physical 

justification, despite the reasoning behind the formulation. Secondly, when the quantity λD exceeds 

the fluid velocity U, then despite the fluid velocity moving in one direction, the mean movement of 

the suspended particles will be in the opposite direction. This is a paradox, and without a more 

thorough derivation, it is unclear from where it arises. Thirdly, if we imagine a population of particles 

that move with zero mean velocity, and whose initial profile is uniform in X, then the above equation 

predicts a total capture rate of zero. However these particles are still moving back and forth due to the 
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effects of diffusion/dispersion and so should experience capture during this movement. This is another 

shortcoming of this model. 
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A laboratory study has been undertaken on the effect of permeability variation during low-salinity water
injection as a function of kaolinite content in the rock. A novel methodology of preparing artificial sand-
packs with a given kaolinite fraction has been established. Sequential injections of aqueous solutions in
order of decreasing salinity were performed in six sand-packs with different kaolinite fractions varying
from 0 to 10 wt percents. The permeability declined by a factor of 9e54 during salinity alteration from
typical seawater conditions to deionized water. A new phenomenon of permeability increase during
injection of high salinity water into low kaolinite content rocks has been observed. The phenomenon is
explained by re-attachment of the mobilised fines at high salinities. As a result of the low-salinity water
floods, only 0.2e1.6% of the initial kaolinite fraction was recovered.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Fines migration and consequent permeability damage is one of
the most wide spread physical mechanisms of formation damage in
gas and oilfields (Khilar and Fogler, 1998; Civan, 2007; Byrne and
Waggoner, 2009). Lifting of natural reservoir fines at high injec-
tion/production rates or in the presence of low-salinity water with
resulting migration and straining usually yields a significant in-
crease in the flow trajectory tortuosity and resulting drastic
permeability decline (Zeinijahromi et al., 2016; Farajzadeh et al.,
2016). Numerous measures that fix the reservoir fines (against
finesmobilization) include injection of different salts or nano-fluids
(Habibi et al., 2013; Assef et al., 2014; Yuan et al., 2015, 2016).

Fig. 1 shows the sequential processes of fines detachment from
the pore surface, migration and straining in a thin pore throat.
Fines-sensitive technologies of oil and gas recovery are primarily
focused on enhancing or inhibiting the particle detachment pro-
cess (Zeinijahromi et al., 2015; Yuan et al., 2016). Understanding
the mechanics of particle detachment and under which conditions
this process occurs involves computing the forces acting on the
ovetsky).
attached particles. Fig. 2 shows an idealized case of an attached
particle and the four primary forces acting on it: the lifting force,
FL, the hydrodynamic drag force, Fd, the electrostatic force, Fe and
the gravitational force, Fg . The principle of the torque balance
approach is that particle detachment will occur if the torque
generated by forces acting to detach the particle, being the lifting
and drag forces, exceeds the torque generated by the forces acting
to retain the particle, being the electrostatic and gravitational
forces. It should be noted that the gravitational force can act to
detach the particle depending on the orientation of the particle in
the pore space.

Numerous laboratory studies exhibit fines migration accompa-
nied by permeability decline at high flow rates, where the large
drag force is sufficient to mobilize the attached fines (Gruesbeck
and Collins, 1982; Khilar and Fogler, 1998). This explains observed
productivity and injectivity impairment in high-rate wells.

Another reason for particle release is a decrease in the injected
fluid salinity. This results in a reduction of the electrostatic
attraction between the fine particles and the pore surface (Kia
et al., 1987; Mohan and Fogler, 1997). Permeability decline dur-
ing injection of low-salinity water has been observed in several
experimental coreflooding projects (Lever and Dawe, 1984; Valdya
and Fogler, 1990; Civan, 2007). Several field cases have exhibited
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Fig. 1. Particle mobilisation, migration, diffusion in stagnant areas and straining in thin
pore throats.

Fig. 2. Torques of drag, electrostatic, lift and gravity forces exerting particle on the
grain surface.
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well productivity decline after the low-salinity water break-
through (Galal et al., 2016).

Increasing the temperature also reduces the electrostatic
attractive force between particles and pore grains (Rosenbrand
et al., 2013). This explains why geothermal reservoirs are highly
susceptible to formation damage resulting from fines migration
(Rosenbrand et al., 2014). Fines release has also been reported as a
result of rock stress during methane production from coal beds
(Guo et al., 2015, 2016). Fines migration is thus inextricably linked
to many scenarios of fluid flow in the subsurface and should
therefore be a critical component of commercial investigations into
these areas.

Low-salinity waterflooding is one of the most prospective, cost-
effective methods of improved waterflooding. Under the current
low-oil-price environment, low-salinity waterflooding provides a
cost effecting alternative to increasing the oil recovery in petroleum
reservoirs. Migration of natural reservoir fines during low-salinity
waterflooding yields a decline of well injectivity and productivity
(Bedrikovetsky et al., 2011). However, it also results in a decelera-
tion of the injected water and a consequent increase in the volu-
metric sweep efficiency (Zeinijahromi et al., 2015). As such, the
prediction of the extent of permeability decline is critical in eval-
uating and designing low-salinity waterflooding projects. Predic-
tion of permeability decline also helps to characterize productivity
decline and to design stimulation programs during production.

The main fine mineral associated with fines migration related
formation damage is kaolinite (Kia et al., 1987; Khilar and Fogler,
1998; Civan, 2007). As such, one might expect that the extent of
permeability decline in kaolinite-bearing rocks would be signifi-
cantly impacted by the fraction of kaolinite present in the rock.
Planning and design of smart waterflooding with changing injected
water composition may be improved by incorporating knowledge
of the effect of kaolinite content on permeability decline However,
the current authors are not aware of any systematic studies of the
effect of kaolinite fraction on the permeability decline during fines
migration.

In the present work, laboratory analysis was performed to
investigate fines migration and the consequent permeability
decline in artificial rocks with different kaolinite fractions. The
methodology of preparing a consolidated sand-pack with a given
clay composition was established. A new phenomenon of non-
monotonic permeability variation during salinity decrease of the
injected water has been observed. The permeability increase has
been observed at high salinities in low kaolinite content cores. This
is explained by re-attachment of mobilised fines due to strong
electrostatic attraction under high salinity.

The structure of the text is as follows. Section 2 briefly presents
the physics of fines detachment in natural rocks. Section 3 presents
the methodology of the laboratory study, including preparation of
artificial rocks with given kaolinite content and sequence of water
injections with decreasing piece-wise constant salinity. Section 4
describes and analyses the obtained results which are discussed
in Section 5. Section 6 concludes the paper.
2. Physics of fines detachment in natural rocks

In this Section, the main physical phenomena for fines detach-
ment with further migration and straining in natural reservoir
rocks will be described.

Fig. 2 shows the simplified model used to investigate particle
detachment. Under the conditions of flow in porous media, the lift
and gravity forces are negligibly small when compared with the
drag and electrostatic forces. As such particle detachment is
balanced primarily by the torques generated by the hydrodynamic
drag force, which acts to detach particles, and the electrostatic
force, which acts to keep particles immobile on the pore wall.

The drag force is mostly velocity-, viscosity- and particle-size
dependent and has been quantified as (Goldman et al., 1967):

Fd ¼ 6pmrðr þ hÞ _g~F (1)

where m is the fluid viscosity, r is the particle radius, h is the
particle-surface separation distance, _g is the shear rate, and ~F is the
dimensionless shear force, for which values have been tabulated by
Goldman et al.

The electrostatic force is typically calculated by first quantifying
the potential energy of the interaction between the particle and the
pore grain. The electrostatic interaction energy is a total of Van der
Waals, electric-double-layer and Born repulsion energy potentials
(Derjaguin and Landau, 1941; Ruckenstein and Prieve, 1976;
Gregory, 1981; Elimelech et al., 1995):

Vtotal ¼ VVdW þ VEDL þ VBRN (2)
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where V is the potential energy, A132 is the Hamaker constant, h is
the particle-surface separation distance, lw is the characteristic
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wavelength of interaction, rs is the grain size, n∞ is the bulk number
density of ions, kB is the Boltzmann constant (4.116 � 10�21 J), T is
the absolute temperature of the system in degrees Kelvin, k is the
Debye-Hückel parameter, j1 and j2 are the surface potentials of
particles and grains respectively, and sc is the atomic collision
diameter.

Surface potentials (j1, j2) are estimated from the zeta potentials
using the following formulae (Elimelech et al., 1995):

j1 ¼ tanh
�
zezclay
4kBT

�
(6)

j2 ¼ tanh
�
zezsand
4kBT

�
(7)

where z is the valence of the cation in solution, e is the elementary
charge (1.602� 10�19 C), T is the temperature in degrees Kelvin and
zclay and zsand are the zeta potentials of the clay and sand particles
respectively in volts. Fig. 5 showsmeasured values of zeta-potential
for kaolinite and silica sand for different salinities.

The electrostatic force is quantified as the negative of the elec-
trical potential energy gradient:

Fe ¼ �vV
vh

(8)

Fig. 3 shows, schematically, the electrostatic interaction be-
tween two spherical particles. While these interactions are gener-
ally attractive due to the van der Waals force, the repulsion
resulting from the similar sign of the surface charges reduces the
net attractive force experienced by the fine particle. When in
electrolyte solutions, counter-ions (cations in this case) adsorb to
the surfaces of the particles and in essence ‘mask’ the negative
surface charge. The interactions between the surface charges and
the influence of aqueous ions are quantified as the Electrostatic
Double Layer force as above. The presence of adsorbed counter-ions
results in a contraction of the electrostatic double layer, reducing its
Fig. 3. Schematic for particle-grain electrostatic attraction at high (a) and low (b)
salinity.
contribution to the interaction, but has a negligible effect on the
attractive vdW component (Schembre and Kovscek, 2005). Hence
the presence of an electrolyte increases the total electrostatic
attractive force. The higher the salinity, themore ions are present to
adsorb to the charged surfaces and hence the stronger is the net
attractive force. This explains why the electrostatic force is highly
dependent on the water composition.

Quantitative predictions of particle detachment often assume
that the detached particle rotates around its neighbour at the
moment of mobilisation. Thus, the mechanical equilibrium condi-
tion for the particle on the grain/rock surface is the equation of
torque equality (Bergendahl and Grasso, 2000)

Fdld ¼ FelN (9)

where ld is the drag lever arm ratio and lN is the normal lever arm
ratio. A similar approach has been utilized to evaluate particle
immobilization in the form of a filter cake (Kalantariasl and
Bedrikovetsky, 2014; Kalantariasl et al., 2015).

Fig. 2 shows attaching and detaching forces, as well as the lever
arms for drag and electrostatic forces. Considering the SEM
photograph of kaolinite platelets in Fig. 4, it is clear that the
assumption that kaolinite particle is a sphere in the torque balance
can yield a significant overestimation of the drag force. Thus, it is
necessary to introduce a shape factor into expression for drag force
in torque balance equation (9).

The dependency of the total electrostatic interaction energy on
the particle-surface separation distance is presented in Fig. 6.

For a given particle size, salinity and fluid velocity, the torque
balance Eq. (9) defines whether particle detachment will occur. So,
Eq. (9) defines the volumetric concentration of particles which
remain attached for a given particle size, salinity, and velocity.
Averaging the attached concentration over particle size using the
particle size distribution results in the total volumetric concentra-
tion of attached particles as a function of salinity and velocity. This
function expresses the maximum attached concentration and is
referred to as the maximum retention function. The calculation of
the maximum retention function requires the expressions for the
velocity-dependency of drag force and the salinity-dependency of
electrostatic force, which can be seen in Eqs. (2)e(7). Fig. 7 presents
the typical form of the maximum retention function.

3. Laboratory study

In this section, a detailed description of the methodology for
preparing an artificial sand-pack with fixed kaolinite fraction,
Fig. 4. SEM photograph of kaolinite leaflets attached to the grain surface.



Fig. 5. Zeta-potentials for kaolinite particles and sand grains at different salinities.

Fig. 6. Electrostatic interaction between kaolinite fines and sand grain for different
salinities.

Fig. 7. Maximum retention curve for a function scr(g) versus salinity.
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properties of artificial cores and fluids used, laboratory set-up and
methodology of experimental study of fines mobilisation and
migration are presented.

3.1. Rock properties

Unconsolidated cores, made of a mixture of silica sand and
kaolinite, were used in all experiments.

The sand used in the present study is silica sand with >99% of
silica (brand 50N, SIBELCO, AUSTRALIA). The sand was first sieved
to constrain the particle size. This assisted reproducibility of the
core properties. Prior to chemical washing, a magnet was passed
over the sand to remove the visible ferromagnetic impurities.

This sand underwent several cleaning procedures to ensure its
purity. Initially, sand was washed with hexane to remove organic
impurities, followed by acetone to remove hexane, and conse-
quently with deionised water to remove the acetone. The sand was
then dried in an atmospheric oven at 60 �C for 24 h. Hydrochloric
acid was added to the dried sand to remove inorganic impurities,
followed by rinsing the sand in deionised water to remove the HCl.
This rinsing procedure continued until the pH of the rinsed water
was equal to that of fresh deionisedwater, ensuring that all acid had
been removed. Shani et al. (1998) demonstrated the significance of
removing impurities from sand samples but stressed that vigorous
processes such as boiling sand in acid would significantly alter the
surface roughness properties of the sand. As surface roughness has
been shown to significantly affect particle detachment kinetics
(Torkzaban and Bradford, 2016), these rigorous washing methods
were avoided here.

The kaolinite powder used in the present study was purchased
from Sigma-Aldrich, AUSTRALIA. The authors found that the mass
of kaolinite samples decreased by about 0.1% when dried in the
atmospheric oven at 60 �C for 24 h. As such, to maintain accuracy of
quoted clay concentrations, kaolinite was dried at 60 �C for 24 h
prior to its use.

For each experiment, set masses of kaolinite and silica sand
were weighed and mixed dry. Several studies have emphasized the
benefits of wet compaction (Haug and Wong, 1992; Chiu and
Shackelford, 1998) and so a high salinity (0.6 Mol/L NaCl) solution
was added to the mixture until the grains were just coated in fluid.
Adding too much fluid could create a layer of water which would
induce the separation of kaolinite and sand, which would signifi-
cantly alter the flow properties of the core.

3.2. Fluids

Injection fluids were created by adding ChemSupply 99.7% pu-
rity NaCl salt to MilliQ analytical grade deionised water. The fluids
were deaerated for a minimum of an hour to prevent dissolved air
from evolving within the core and damaging the core permeability.
Seven different sodium chloride solutions were injected sequen-
tially during the experiment: 0.6 M, 0.3 M, 0.1 M, 0.05 M, 0.01 M,
0.001 M and deionised water. Ionic concentrations given byM refer
to molar concentrations (mol/L) of sodium chloride.

3.3. Methodology for preparation of artificial rocks

A schematic of the core holder used in this study is shown in
Fig. 8. The main consideration to assist reproducibility was the
manner in which the core was compacted. For this setup, axial
compaction was provided by steel distributors with an incised
pattern designed to evenly distribute flow into the cross-
sectional area of the core. Tightening of ‘end caps’ into the core
holder body forces the distributors further into the core holder,
compacting the core. This process also allows direct



Fig. 8. Core holder with unconsolidated core: 1 e overburden inlet line; 2 e Viton
sleeve; 3 e core sample; 4 - coreholder; 5 e distributor and mesh; 6 e overburden
fluid; 7 e brass screw cap; 8 e end cap; 9 e overburden outlet line.
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measurement of core length, which is necessary to calculate
permeability.

A radial component of compression was provided by fresh wa-
ter, kept at high pressure (1000 psi) between the steel core body
and the Viton sleeve holding the core. This overburden pressure
assisted with compaction in a manner that could be controlled
across each experiment. The high pressure also caused grains to
embed slightly into the Viton sleeve, minimising the potential for
annular flow between grains and the core holder.

A 20 mm aperture size stainless steel mesh was adhered to the
distributors using a silica-based glue. Themesh size prevented sand
(mean diameter ¼ 123 mm) but would allow kaolinite (mean
diameter ¼ 2.064 mm) to enter the effluent stream. This would
allow fines migration to be studied without dealing with complete
or partial breakdown of the core itself.
Fig. 9. Laboratory set-up: a) schematic for all elements; b) photo
To prevent radial expansion of the Viton sleeve during
compression of the core, three layers of paper-based, non-
expandable tape were applied to the sleeve.

The sequencing of the core compaction is as follows. One of the
stainless-steel distributors was fastened into the steel core holder
using the end cap. A measured sample of 85 g of the sand-
kaolinite mixture was prepared and placed into the core holder.
The mixture was placed carefully, in small portions, with occa-
sional compression using a plastic cylindrical rod to prevent cavity
formation. The other stainless steel distributor was tightened into
the core holder using the other end cap, which consequently
compressed the sample. After both distributors were placed
within the core holder, the inlet and outlet lines were blocked and
the core holder was placed into position for coreflooding. At this
point, the end caps were tightened consecutively in small in-
crements until the core was at the desired length. The mass of the
sample (85 g) was held constant for all experiments in this study
to enhance reproducibility.
3.4. Laboratory set-up

Experimental studies on fines mobilization in artificial non-
consolidated sand-kaolinite cores were carried out using a real-
time permeability apparatus. A schematic of this setup is shown
in Fig. 9 and a photograph is shown in Fig. 9b References to com-
ponents on the schematic in the following section will be in
parentheses.

A core (1) is placed inside a 1.500 diameter Viton sleeve (2). Two
for pressure and rate measurements and sample collection.
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stainless steel fluid distributors (3) fix the core in place by
compression. A Hassler-type coreholder (4) (model RCH, CoreLab,
USA) accommodates the sleeve and core. This arrangement is rated
to 5000 psi maximum pressure. A manual HiP piston pressure
generator (5) rated to 5000 psi maximum pressure (model 87-6-5,
High Pressure Equipment Company, USA) develops an overburden
pressure by compressing deionised water (6). An overburden
pressure is fixed by amanual valve (7) andmeasured by an absolute
pressure transmitter (8) (model PA-33X, KELLER AG fur Druck-
messtechnik, SWITZERLAND) and Bourdon-type pressure indicator
(9). A pressure relief valve (10) is used for safety purposes. Inlet and
outlet pressures in the coreholder are measured and indicated by
pressure transmitters (11) and (13) (model PA-33X, KELLER AG fur
Druckmesstechnik, SWITZERLAND) and by Bourdon-type pressure
indicators (12) and (14). A high-pressure pump (15) (model Prep-
36, Scientific Systems, Inc., USA) pumps saline solutions (16)
through the unconsolidated core via a manual valve (17). A back-
pressure regulator (18) (model BP-series, CoreLab, USA) maintains
pressure inside the core at 300 psi. The pressure drop across the
unconsolidated core is measured by three differential pressure
transmitters (19e21) (model EJX110A, Yokogawa Electric Corpora-
tion, JAPAN) with measuring ranges 0e1, 0e10 and 0e100 psi.
Switching between differential pressure transmitters is carried out
via manual valves (22e24). An ADAM-4019 þ inlet data acquisition
module (25) (ADVANTECH™, TAIWAN) and an RS-232/RS/485
signal conditioner ADAM-5060 (26) (ADVANTECH™) receive elec-
trical signals from all transmitters in real-time and feed them into a
PC-based data acquisition system (27). A custom-built data acqui-
sition software (Advantech ADAMView Ver. 4.25 application
builder) recording of all experimental parameters in real-time
mode and performs all necessary calculations. Effluent suspen-
sions via a manual valve (28) are collected in plastic sampling tubes
(29) (15 and 50mL) located in the sampling carousel. Concentration
of kaolinite particles in collected effluent samples are measured by
a POLA-2000 particle counter/sizer (30) (Particle and Surface Sci-
ences, Australia).

3.5. Methodology of fines migration study

Cores were initially saturated by flowing high salinity (0.6 M
NaCl) solution at a low flow rate of 0.2 mL/min (superficial ve-
locity 2.93 � 10�6 m/s) to ensure complete saturation and
attachment of fine particles to sand grains. This flowrate is a
magnitude smaller than that used in the test, and was chosen to
minimize particle detachment prior to commencing the test.
Corefloods were carried out at constant superficial velocity of
2.9 � 10�5 m/s (volumetric flowrate Q ¼ 2 mL/min). The tests
were carried out at the following fluid ionic strengths (NaCl so-
lutions): 0.6M, 0.1M, 0.05M, 0.01M, 0.001M and deionised (DI)
water. The following effluent volumes were sampled: 10 samples
taken at 0.2 PVI, 5 samples taken at 0.6 PVI, 10 samples taken at 2.5
PVI; a bulk overnight sample until permeability stabilization was
achieved within experimental uncertainty (3.2%), and 5 samples
taken at 0.2 PVI after permeability stabilization to detect the
presence of kaolinite particles in the effluent. Here we use pore
volume injected (PVI) as a unit for dimensionless time. For each
collected sample, the fluid mass, electrolytic conductivity, and
particle concentration were measured. The fluid mass provided
estimates of fluid volumes for each sample and the electrolytic
conductivity was converted to fluid ionic strength. The particle
concentrations were either converted to total particle volumes
using fluid volumes or were used directly as particle concentra-
tion. Pressure transducers measured the differential pressure
across the core and along with the flow rate, core dimensions and
viscosity, allowed for calculation of permeability at intervals
throughout the experiment. Fluid viscosity was corrected in real-
time for changes in NaCl concentration, temperature and pressure
according to established correlations (Kestin et al., 1981;
Aleksandrov et al., 2012).

4. Analysis of results

In the following section, the results of the six corefloods with
piecewise-constant decreasing salinity will be presented.

4.1. Validation of experimental procedure

While other experimental procedures for creating artificial
sand-packs have been presented in the literature, none so far have
proven the reproducibility and stability of permeability to the de-
gree required to investigate the phenomena presented in this text.
Some authors used vibration to assist compaction (Al Sayari, 2009)
which is likely to be inappropriate for kaolinite-sand mixtures due
to separation of the two minerals as a result of the difference in
particle size. Other authors failed to purify sand samples (Mullins
and Panayiotopoulos, 1984) which, while more representative, in-
duces significant chemical heterogeneity on the sand samples
(Shani et al., 1998) which could alter particle detachment proper-
ties across several tests. While some authors have increased the
reproducibility of core permeability through standardized
compaction curves (Chiu and Shackelford, 1998), this process
significantly reduces the cores' ability to represent subsurface
sedimentary formations. While appropriate in other contexts, the
above described procedures do not provide the necessary qualities
to investigate the effect of kaolinite content on the degree of fines
migration within petroleum reservoirs.

The proposed methodology incorporates aspects of previous
methodologies to provide a means of investigating the phenome-
non described in this text. What remains is to validate that the
experimental method described in Section 3 provides reproducible
and stable permeability to allow comparison of separate experi-
mental results. To test reproducibility and stability, two pure sand-
packs were prepared and run using two separate sets of core-
flooding apparatus. The mean permeabilities of the results from the
two setups are 1477 mD for the first setup and 1517 mD for the
second. The two mean values coincide within the experimental
uncertainty of 3.2% (see Badalyan et al., 2014) and thus demonstrate
the reproducibility of the results. The permeability results,
normalized by respective mean values, presented in Fig. 10
demonstrate the stability of the results. The standard deviation of
permeability was 0.49% for the first setup and 0.2% for the second.

The reproducibility of the compaction procedurewas also tested
for cores with 5% kaolinite contents. Following the 0.6 M injection,
the stabilised permeabilities of the two tests were 499 and 484mD,
which suggests that the methodology produces reproducible re-
sults even when the cores contain kaolinite.

To validate the underlying assumption that the kaolinite is
initially distributed evenly throughout the core, the coreflooding of
one of the two above cores with 5% kaolinite was stopped following
permeability stabilisation after 0.6 M NaCl injection. The core was
then cut into five pieces whose clay content was determined
through sedimentation and filtration. The concentrations were,
from inlet to outlet, 4.86%, 5.05%, 5.06%, 5.16%, and 4.97%. These
results validate the above-mentioned assumption.

4.2. Pore and particle size distributions

The sieved sand particle size (radius) distributionwas measured
by a POLA 2000 particle counter/sizer (Particle & Surface Sciences,
AUSTRALIA). The distribution is shown in Fig. 11a. It allows



Fig. 12. Size distribution of kaolinite particles: 1 - placed in the core; 2 - collected in
effluent suspension.

Fig. 10. The normalised sand-pack permeability as obtained by independent mea-
surements at two different set-ups.
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calculation of the pore size distribution. For any three sphere-form
grains, touching each other, the pore size is determined as a min-
imum size sphere that can pass between the grains. It is equal to a
radius of inscribed circle in the plane crossing the sphere centres
(Descarte's theorem). Grain triples are randomly chosen from the
above-mentioned distribution, and the pore radii are calculated. A
more detailed algorithm is presented by Chalk et al. (2012). The
pore size distribution (Fig. 11b) is obtained from the grain size
distribution (Fig. 11a) by 100,00 iterations of the Monte-Carlo
method. The mean pore size is rp ¼ 11.1 mm.

The measured rock porosity (0.395) and stabilised permeability
(1497 md) of the sand-only porous medium also allow for esti-
mating the mean pore radius (Barenblatt et al., 1989):

rp ¼ 5

ffiffiffi
k
f

s
(10)

which yields a mean pore size of 9.7 mm. Both estimates are close.
Fig. 11. Half-size (radius) distribution for sand gra
As such, formula (10) is used further in the text for estimation of the
mean pore size.

Size distribution for kaolinite particles was also measured by
POLA-2000 particle counter/sizer. The size distribution of kaolinite
placed in the core and of produced kaolinite particles are shown in
Fig. 12a and b respectively. The calculated kaolinite particle
volume-mean radius prior to placement in the core is equal to
2.064 mm.

The sieving of sand was done to ensure that particle migration
and straining could occur simultaneously in the core. The jamming
ratio, defined as the ratio between kaolinite particle volume-mean

radius and mean pore throat, radius is equal to j ¼ 2:064 mm
11:1 mm ¼ 0:19.

Deep bed filtration, wherein particle both migrate and strain, oc-
curs when 1

7< j< 1
3 (or 0:14< j<0:33) (van Oort et al., 1993).

Therefore, for the kaolinite and sand used in the current experi-
mental study, deep bed filtration is expected. Fig. 12 shows that the
percentage of large particles in the effluent is lower than that in the
core. This can be explained by the presence of particle straining
within the core. The larger is the particle the larger is the proba-
bility of it straining in a thin pore throat. As such, smaller particles
ins (a) and for sand-formed pore radius (b).
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are more likely to be collected at the effluent. This explains why the
proportions of large and small particles are different at the outlet.

Eqs. (1)e(7) show the dependence of both the drag and elec-
trostatic forces on the particle size. For given conditions of flow
rate, U and fluid salinity, g, Eq. (9) can be used to identify the
particle size, rs which satisfies the torque balance and hence lies on
the boundary of imminent particle detachment. As the detaching
force increases monotonically with particle size, all particles larger
than this calculated particle size will be detached, and all those
smaller will remain attached. This process of calculating the critical
particle size can be repeated for several values of injected fluid
salinity to investigate trends in the detached particle size with
changes in fluid composition. The resulting function, describing the
dependence of detached particle size on the fluid salinity is called
the critical particle size curve. Given a constant injection rate, the
lower is the injected salinity, the smaller are the mobilized parti-
cles, i.e. the fine particles are released in the order of their size
decrease during the salinity decrease.

4.3. Core permeability variation

Variation of initial/undamaged rock permeability for artificial
cores as a function of kaolinite content is shown in Fig. 13 (red line,
circles). The cores with higher kaolinite fractions have lower initial
permeability. The final permeabilities for the 6 cores after fresh
water injection are presented in Fig. 13 (blue line, triangles). The
transition from initial to final permeability appears to be highly
variable and will be discussed in the next section.

Porosity values of the 6 cores calculated based on bulk-core and
solid volumes are presented in Fig. 14. These values allow calcu-
lating the mean pore radius of each core as per Eq. (10). The
calculated mean pore radii for the 6 cores are shown in Fig. 14b. The
higher is the kaolinite concentration in the rock, the lower is the
porosity. This effect is attributed to filling of the pore space by
attached kaolinite particles. A schematic representation of multi-
layer pore filling by kaolinite is presented in Fig. 15.

The permeability results of the corefloods by water with
piecewise constant decreasing salinity are presented in Fig. 16.
Around 100e150 PVI of constant-salinity water was injected
sequentially to allow for permeability stabilization within the
experimental uncertainty. The salinity varied from 0.6 M to DI
Fig. 13. Initial (following 0.6 Mol/L injection) and final (after de-ionised water injec-
tion) core permeabilities as functions of kaolinite concentration.

Fig. 14. Initial porosities (a) and mean pore radii (b) for six cores as a function of initial
volumetric kaolinite concentration in the core.

Fig. 15. Schematic of sand grains and kaolinite fines, attached to pore throats in sand-
packs.



Fig. 16. Core permeability variation during step-wise constant decrease in injected salinity as a function of PVI for various kaolinite contents: a) 1%; b) 3%; c) 5%; d) 7% and e) 10% of
kaolinite.
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water. While it appears that stabilisation has not been achieved for
some injection cycles, this is primarily due to the large time scales
in Fig. 16. The final permeability data for all tests at 0.6 M is shown
in Fig. 17 to demonstrate stabilisation of these measurements.
Comparison of each test can be done readily using the stabilized
permeability after each constant-salinity injection period. The
stabilised permeability versus salinity is shown in Fig. 18 for all
cores.

The accumulated breakthrough concentrations of produced
particles (Fig. 19) allow calculating the produced fraction of initial



Fig. 17. Permeabilities at the end of the 0.6 Mol/L NaCl injection period demonstrating
the stabilisation of permeabilities prior to alternating the injected salinity.

Fig. 18. Stabilised core permeabilities as a function of fluid ionic strength for different
kaolinite concentrations in cores.
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kaolinite. The percentage of kaolinite recovered during low-salinity
corefloods is given in Fig. 20.

5. Discussions

5.1. Initial permeability variation

Differences in the initial permeability for the 5 cores can be
explained by interpreting the differences in the calculated mean
pore radii. The electrostatic potential curves for the kaolinite-
silica interaction, presented in Fig. 6, show that in 0.6 M NaCl
solutions (curve [1]) kaolinite particles will experience a solely
attractive force upon approach to sand grains until deposition in
the primary potential energy minimum. This implies that under
the saturation conditions, the kaolinite particles will form a
multi-layer coat on each of the sand grains. The higher is the
kaolinite fraction in the core, the thicker these layers will be and
hence, the smaller will be the pore spaces available for fluid flow.
The smaller pore spaces explain the initial permeability variation
observed as a function of clay content.

5.2. Non-monotonic permeability variation

Fig. 16 demonstrates a degree of permeability increase at high
salinities for cores with low kaolinite fraction, which is present also
in the stabilised values presented in Fig. 18. Significantly, this im-
plies that the effect of fines migration on permeability can no
longer be thought of as monotonic. For cores with 1% and 3% of
kaolinite, the permeability increases for salinities 0.6 M, 0.3 M,
0.1 M and 0.05 M. For low salinities, the permeability of these cores
decreases. For cores with 5%, 7% and 10% of kaolinite permeability
increase is observed for only 0.6 M salinity, then, the permeability
monotonically declines with further decreases in injected fluid
salinity.

The above phenomena can be explained by the competitive
effects of particle detachment, re-attachment and straining mech-
anisms. Particle detachment will cause a minor permeability in-
crease due to the increase in the pore volume available for fluid
flow. While this process is typically taken to be negligible, particle
detachment from relatively small pore throats could produce
noticeable variations in the flow properties of the rock. Once
mobilized, a particle will migrate through the rock until it meets a
pore with diameter less than its own, wherein it will strain. This
results in the termination of the flow path and a consequent
decrease in the permeability. The permeability decline due to
straining is thought to significantly outweigh the permeability in-
crease due to particle detachment, and so the process of detach-
ment, migration and straining will result in a net permeability
decrease.

There is however a possibility of a secondary particle capture
mechanism, being particle re-attachment. In high salinity solutions,
the electrostatic attraction has no apparent energy barrier (see
Fig. 6, 0.6 M and 0.3 M). The consequence of this, alluded to pre-
viously, is that kaolinite particles require no energy to move from
any separation distance to the primary minimum, where it is
considered attached to the sand grain. In fact, the particle will be
encouraged to deposit in this minimum due to the attractive
electrostatic forces. As a consequence of this, at high salinities,
mobilized particles may re-attach to the sand surface prior to
straining.

Considering again the acting torques on the particle (see Fig. 2),
and recalling the velocity dependence of the drag force (Eq. (1)),
particle re-attachment is most likely to occur in low-velocity re-
gions of the pore space. The detachment and consequent re-
attachment of kaolinite particles is hence most likely to result in
the particle being transported from regions of higher velocity to
those in the pore spacewith lower fluid velocities. This will result in
a decrease in the pressure drop created by the kaolinite and hence
increase the core permeability.

Given that the permeability increase is dictated by particle
detachment, it may be possible that the observed permeability
increase could be the result of the detachment of small particles,
which pass freely through the core, without straining. Such an
explanation would not rely on the presence of particle re-
attachment, but rather on a significantly small probability of
straining. The primary issue with this hypothesis is that perme-
ability increase was observed only during the injection of high
salinity NaCl solutions. This could be a result of a change in the
straining probability, but as was explained earlier, particles
should detach in order of decreasing size, and so straining
probabilities should be at their highest during high salinity in-
jections. Thus, explaining the non-monotonicity of the perme-
ability requires a physical mechanism of particle capture which is
dependent on the fluid salinity. The proposed mechanism of



Fig. 19. Accumulated volume of produced particles versus salinity collected during injection of piece-wise constant decreasing salinity.

Fig. 20. Percentage of initial kaolinite recovered during corefloods of piece-wise
constant decreasing salinity injection fluids.
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particle re-attachment satisfies this condition.
A physical mechanism has been proposed to explain the

observed permeability increase. This explanation suggests that
particle capture occurs not only by particle straining, but also by
particle re-attachment. These two processes will inevitably
compete for the populations of mobilized particles. This provides a
convenient explanation as to why the permeability increase ap-
pears to be a function of the clay fraction of the core. As discussed
earlier, for high-kaolinite-fraction cores, pore throats are smaller
than those for cores with lower kaolinite fraction. As such, straining
rates will be substantial, and therefore particle re-attachment rates
are likely to be negligible in comparison. This could explain why
cores with higher fractions of clay exhibited mostly monotonic
permeability decline with decreasing injected fluid salinity.
5.3. Extent of permeability decline

For all cases of permeability decline, the decline is greater for
injection of lower salinities. This is explained by the typical form
of the maximum retention function versus salinity (see Fig. 7).
For a given change in salinity, the volume of detached particles
will be greater at lower salinities. Therefore, the majority of fines
are mobilised at low salinities, as is demonstrated in Fig. 19. A
larger volume of mobilized particles is expected to result in a
larger decrease in the core permeability. In order to validate this
hypothesis, it would be necessary to model the permeability
decline and effluent particle capture to calculate the detached
particle volumes for each injection, which is a subject of a
separate work.

Initial permeability increase in the 1% Kaolinite core at high
salinities is compensated by further permeability decrease at low
salinities, resulting in an insignificant difference between initial
and final permeabilities. For the four other cores, despite high
variation of initial permeability (k varies from 627 mD for the 3%-
kaolinite core to 188 mD for the core with 10% kaolinite) the final
permeability after fresh-water injection is very similar (k varies
from 6.6 mD for 10% kaolinite up to 50 mD for 5% of initial
kaolinite).

While changing salinity from 0.6 M to fresh water, if compared
with initial permeability, the permeability declines 38, 9.5, 55, and
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47 times for the cores with kaolinite contents 3, 7, 5, and 10%,
respectively.

The percentage of kaolinite recovered after the first flush with
DI water, presented in Fig. 20, varies from 0.2% to 1.6%. To place
these results into context, a similar test was done on a Berea
sandstone core. XRD analysis on this core demonstrated that 6.91%
of the core by weight was comprised of clay, with 4.49% being
kaolinite, 0.65% being chlorite and 1.76% being muscovite. After
flushing with 0.01M NaCl a total of 0.0039 g of clay was retrieved.
This corresponds to 0.0026% of the total core mass and 0.0382% of
the total mass of clay. In the 7% kaolinite core prepared in this study,
after flushing with 0.01M NaCl, 0.0179 g of clay was retrieved. This
amounts to 0.021% of the total core mass and 0.302% of the mass of
clay initially in the core. The percentage of clay collected at the
outlet was almost 8 times higher for the artificial core when
compared with the Berea sandstone core. This is most likely a result
of clay cementation induced via diagenetic processes in the Berea
core which would not be present in the artificial core. The differ-
ences in initial permeabilities (34.19 mD for the Berea core and
338.4 for the artificial core) also suggest that the pore sizes may be
larger in the artificial core, which would result in smaller straining
probabilities and higher suspended concentrations at the outlet.

The kaolinite recovery is ultimately determined by the form of
the maximum retention function and the relationship between the
attachment and straining probabilities. The form of the kaolinite
recovery factor versus initial kaolinite fraction cannot be explained
without rigorous mathematical modelling. The model must include
mass balance equation for suspended, attached, strained and re-
attached particles along with the kinetics equations for mass ex-
change between the rock and fluid (Bedrikovetsky, 1993, 2011). Yet,
this fines migration modelling is a subject of a separate work.

The effects of illite, chlorite and other clays causing fines
migration on reservoir formation damage, could be different than
those of kaolinite. The results depend on particle shape, zeta-
potential between the particle and brine, clay placing on the rock
surface among other factors. However, studies on these minerals
can be performed using the methodology developed in the present
work.

Very similar permeability damage processes occur in other areas
of gas and oil production. Behaviour of gas bubbles in water and oil
is also dominated by bubbles straining in pores and consequent
permeability reduction. CO2 bubble-plugging of thin pore throats
yields significant permeability damage (Farajzadeh et al., 2008,
2009). Gas bubbles decrease well productivity in foamy-oil fields.

6. Conclusions

Laboratory study of fines migration in rocks with different
kaolinite-contents allows drawing the following conclusions:

1. Stable and reproducible permeability during long-term flows in
the unconsolidated sand-packs validates the proposed meth-
odology of artificial rock preparation.

2. The higher the kaolinite fraction in the core, the lower is the
undamaged (initial) permeability. This effect is explained by
coating of the pore throats by attached kaolinite particles under
high kaolinite concentration in the rock.

3. Permeability decrease after fresh water injection (the difference
between the initial and final permeabilities) in rocks with high
kaolinite concentration is higher than that under small kaolinite
concentration. This is explained by larger pore radii associated
with lower kaolinite concentrations, yielding lower straining
intensity and, consequently, lower permeability damage.

4. During the sequential decrease in injected salinity, the perme-
ability varies non-monotonically in low-kaolinite cores, while it
only decreases in cores with high kaolinite content. This is
explained by re-attachment of already mobilized fines, yielding
a reduced concentration of suspended fines which consequently
decreases straining rates. Monotonic permeability decline in
high-kaolinite cores is a consequence of thinner pore throats
which results in intensive straining.
The permeability increase occurs under stronger electrostatic
attraction at high salinities, where the re-attachment is more
intensive. At low salinities, the reattachment probability is low
and so permeability increase from particle detachment is
dominated by permeability decline due to straining.

5. The percentage of kaolinite recovered during a decrease of
injected fluid salinity from 0.6 Mol/L to deionised water, varies
from 0.2% to 1.6%.
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Fines Stabilization by Ca Ions and Its Effect on LSW Injection
A. Al-Sarihi,* T. Russell, P. Bedrikovetsky, and A. Zeinijahromi

Australian School of Petroleum, The University of Adelaide, Adelaide, SA 5005, Australia

ABSTRACT: Fines mobilization during the injection of low-salinity water yields a decrease in well injectivity and productivity
but may cause an increase in the reservoir sweep efficiency during oilfield waterflooding. We investigate the stability of clay fines
under the combined alteration of Na and Ca concentrations. Consequent injections of Ca and Na solutions in natural and
engineered cores intercalated by deionized water (DIW) injections have been performed. Fines migration has not been
observed during DIW injection after preflush by CaCl2 solution; further consequent injection of NaCl and DIW yields a
significant fines mobilization and permeability decline. The tests demonstrate a strong hysteretic behavior of mutual
adsorption−desorption of Ca and Na cations on the reservoir clays and rock. The same phenomena have been observed in the
presence of residual oil, where fines migration has been accompanied by incremental oil production.

■ INTRODUCTION

During fluid flow in subsurface reservoirs, small, naturally
occurring particles can detach from the internal surface of the
rock and become suspended in the flow.1−4 The resulting
suspension flow forces particles through narrow crevices in the
pore space, often resulting in particle capture, referred to here
as straining. Straining restricts fluid flow through the pore
spaces, causing a decrease in the rock permeability. The
process in its entirety is referred to as fines migration and can
have both positive and negative impacts on many industrial
processes.1,2,5

An understanding of fines migration has led to the insight
that the permeability decline often originates in the detach-
ment of in situ particles. The enhancement or mitigation of
fines migration thus relies on controlling the conditions of
particle detachment. Many studies have demonstrated that
high fluid velocities,6 low fluid salinities,3 and high fluid pH7

are all effective at detaching particles. These factors are the
primary explanation for why fines migration is often discussed
in the context of low-salinity (LS) waterflooding projects, as
these projects create conditions that favor particle detachment.
Several field studies have demonstrated that the permeability

decline resulting from fines migration can have severe
detrimental effects on injectivity8,9 and productivity10,11 during
petroleum operations. Many operators will thus seek to inhibit
fines detachment during these projects and often aim to
increase salt concentrations in the injected water as a means to
achieve this.
The role of fines migration during low-salinity waterflooding

is not simply as a detriment to injection and production rates.
While a myriad of mechanisms have been proposed to
demonstrate why low-salinity water increases oil recovery,12−26

several studies have shown that fines migration can act as the
mechanism for improved oil recovery during low-salinity
waterflooding (LSW).27−29 Initially, the electrostatic forces
attach the clay particles on the rock surface due to the
abundance of salt ions that lower ζ-potential and the repulsive
forces between clay fines and the rock surface, maintaining an
equilibrium between the torques of electrostatic and drag
(viscous) forces. When low-salinity brine is injected into

porous media, this equilibrium is disturbed and, as a result, clay
particles are detached and mobilized by the drag forces caused
by the displacing phase.1,12,30−35 Migration of fines leads to the
aforementioned fines straining in the rock. As a result, water-
permeable channels are plugged and the flow is directed
toward unswept zones where residual oil is trapped.27,30,36−43

This microscale flux diversion causes a decline in water relative
permeability and an increase in pressure drop, which improves
microscopic sweep efficiency by mobility control, resulting in
enhanced oil recovery.5,43−46

In contrast with this enhancement of microscopic sweep
efficiency, some simulation studies have demonstrated that by
progressively damaging the fastest swept layers, fines migration
can increase the reservoir scale sweep efficiency, thus unlocking
additional reserves.45

Due to the demonstrated effectiveness of fines migration in
increasing both the microscopic and macroscopic sweep
efficiencies, many low-salinity waterflooding projects aim to
maximize particle detachment. Typically, this is achieved
through minimization of the injected fluid salinity or by
combining the low-salinity flood with alkaline solutions.
Despite the wealth of research on fines migration and the

advent of new technologies designed to enhance or reduce it,
several open problems remain regarding the nature of particle
detachment. For instance, several studies have demonstrated
that when different ions are used during initial core saturation,
the cores show variable sensitivity to low-salinity water
injection.47−49 These tests showed that decreasing the salinity
of a CaCl2 solution results in negligible changes in the
permeability, whereas the same salinity decrease with a NaCl
solution results in a significant permeability decline. Thus, the
initiation of particle detachment is highly dependent on the
cations that the rock has been exposed to previously, not solely
on those in the solution during injection. Most injected fluids
for low-salinity waterflooding projects are still designed on the
basis that particle detachment is governed entirely by the
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injected fluid. Thus, maximizing the benefit of these
programmes by carefully controlling the ion composition will
require an understanding of the impact of the observed history-
dependent particle detachment.
The origin of this phenomenon as well as its dependence on

ion valence and type remains unresolved.
In this work, we perform an experimental study to

understand the phenomenon of clay fines stability under the
environment of Ca and Na cations. Several coreflooding tests
with CaCl2 and NaCl solutions, both in single and two phase,
are performed to investigate this phenomenon. We combine
two of the single-phase tests with ion chromatography
measurements to investigate the underlying ion exchange
processes governing particle detachment. Such an investigation
into the underlying processes during fines migration is not
currently available in the literature. Based on the results of the
tests, hysteresis in Ca2+ sorption is identified as the cause of the
history-dependent sensitivity.
Despite the intensive current research on the influence of

ion type on wettability alteration,2,17−23 a comprehensive study
of the impact of this phenomenon on oil recovery is currently
unavailable. In this study, we perform two-phase tests with
nonpolar oil to avoid the impact of wettability changes and
study the effect that ion-dependent fines migration can have on
oil recovery.

■ LABORATORY STUDY
Materials. Natural Core Plugs. Three outcrop Berea

sandstone core plugs were used in this study. One was used
for the single-phase test and the rest for the two-phase tests. All
cores were cut using a table saw cooled with a 3% KCl brine.
Table 1 shows the properties of these cores.

Synthetic Core Plugs. Unconsolidated, artificial cores were
prepared as part of this study to compare the effect of low-
salinity water on clay particle (kaolinite) mobilization with
natural core plugs. Artificially constructing cores results in a
more homogeneous and reproducible rock with both
controlled and consistent properties such as clay content and
permeability.
The cores comprised silica sand and kaolinite. The sand

used in this study has a silica content of >99% (brand 50N,
SIBELCO, Australia). The sand was first sieved to constrain
particle size, with a resulting mean diameter of 123 μm.
Following sieving, the sand was washed sequentially in hexane,
acetone, deionized water (DIW), 0.5 M HCl, and then
deionized water. Washing of the sand in the last stage was
repeated until the pH of the supernatant water returned to the
pH of the natural deionized water. The sand was then dried at
60 °C for 24 h before use.
Analytical-grade kaolinite powder (Sigma-Aldrich, Australia)

was used as the fines content of the cores. The mean diameter
of the kaolinite was 2.064 μm. The kaolinite powder was first
dried at 60 °C for 24 h before use.

The sand and kaolinite were first mixed dry and then
suspended in 0.6 mol/L CaCl2 solution before being placed
into a Viton sleeve, which was then installed into a Hassler-
type coreholder. The wet packing was performed under a side
overburden pressure of 1000 psi.
A range of kaolinite mass content from 5 to 10% was chosen

to emulate the kaolinite content of the Berea cores.
Brine. Aqueous solutions were prepared by dissolving NaCl

(ChemSupply, 99.7% purity) or CaCl2 (ChemSupply, 99%
purity) into Milli-Q deionized water. All injected solutions
were deaerated using a vacuum pump for at least 1 h to prevent
dissolved air from entering the cores. All injected solutions had
ionic strengths ranging between 0.6 M and that of deionized
water. Salt concentrations given by M refer to the ionic
strength of the solution in mol/L.

Oil. Mineral nonpolar paraffin oil (Light 15 LR from
ChemSupply) with a viscosity of 20 cP at 25 °C was used in
the two-phase tests.

Methodology. Figure 1 shows both a schematic and a
photograph of the laboratory setup used in the experiment.
The fluid was supplied by the pump (7) through the fluid
cylinders (8−10) into the coreholder (3). Effluent samples
were collected in a carrousel (21), and differential pressure was
measured using differential pressure transmitters (14,17).
Detailed specifications of the equipment used are provided
in the caption of the figure.
Four single-phase and two two-phase tests were performed

in this study. Three of the single-phase tests were on
unconsolidated cores and one on a Berea outcrop core
(Berea 1). Both two-phase tests were done on Berea cores.
Prior to each test, the cores were dried at 60 °C for at least

24 h, deaerated under vacuum for the same period, and then
saturated with 0.6 M CaCl2 under vacuum. The cores were
then installed in a Hassler-type coreholder, and a confining
pressure of 1000 psi was applied to prevent annular flow
between the core and the surrounding Viton sleeve. A
backpressure of 500 psi was applied to keep a constant
pressure at the outlet.
All tests were performed at constant room temperature.
Single-Phase Coreflooding Tests. The single-phase tests

were performed to study the influence of solution ionic
strength and injected composition on fines detachment and
permeability.
Two unconsolidated cores of differing clay mass contents (7

and 10%) were used to test the influence of injected
composition on fines detachment. Both pressure drop and
outlet fines concentration measurements were used to detect
the detachment and straining of particles. Different clay
contents were used to provide more generality to the test
results. Each test comprised saturating the cores with high-
salinity CaCl2 (0.6 M) and then injecting CaCl2 solutions of
progressively decreasing salinity to test the ionic strength
dependence of particle stability with CaCl2 solutions. This
sequence ended with deionized water to identify whether the
CaCl2 had an influence on particle detachment even when not
present in the injected solution. This was then followed with a
0.6 M high-salinity NaCl injection and then another deionized
water injection. These were performed to determine whether
the sensitivity of the cores to low-salinity water could be
restored after the exposure to CaCl2.
A third test on an unconsolidated 5% clay content core was

performed using a similar procedure. One difference is that the
sequential decrease in CaCl2 ionic strength was substituted

Table 1. Properties of Berea Rock Samples

Berea 1 Berea 2 Berea 3

permeability (mD) 120 40 21
porosity 0.19 0.19 0.19
length (cm) 5.05 12.10 12.05
diameter (cm) 3.80 3.80 3.80
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with a direct decrease from high-salinity CaCl2 to deionized
water. In addition, ion chromatography measurements were
performed on outlet samples to determine the Na+ and Ca2+

concentrations separately. This test thus provided additional
insight into the ion exchange mechanisms, as well as detecting
fines detachment.
The last single-phase test was performed in the same manner

as the 5% clay unconsolidated core but on a Berea outcrop
core. While potentially less homogeneous, the Berea core is
representative of many petroleum sandstone reservoirs and
thus allows the results to be readily interpreted in the context
of these systems.
During the single-phase tests, the brine solution was injected

with a constant flow rate into the cores using a high-accuracy
pump (Prep-36, Scientific Systems). The differential pressure
across the core was measured using a series of four Yokogawa
differential pressure transmitters. Having multiple differential
pressure transmitters of varying sensitivities allowed the
pressure across the core to be measured accurately over a
wide range of differential pressures. Samples were collected at
the outlet using a GE Healthcare Frac-920 fractional collector.
All samples were processed using a POLA-2000 particle
counter to determine the particle concentration and a
Metrohm 930 ion chromatograph to determine the concen-
tration of calcium and sodium ions.

The procedure of the single-phase test was as follows:

1. Injection of 0.6 M CaCl2 at a low flow rate of 0.2 mL/
min (superficial velocity 2.93 × 10−6 m/s) for a period
of 24 h to achieve stable permeability. A lower flow rate
is used to avoid particle detachment during permeability
stabilization.

2. Sequential injection of 0.6 M CaCl2 (and 0.3, 0.1, 0.05,
0.01, and 0.001 M CaCl2 for the first two tests) and then
deionized water at the test flow rate of 2 mL/min
(superficial velocity 2.93 × 10−5 m/s). Each injection
stage was performed until permeability had stabilized.

3. Injection of 0.6 M NaCl and then deionized water at the
test flow rate of 2 mL/min (superficial velocity 2.93 ×
10−5 m/s). Each injection stage was performed until
permeability had stabilized.

Two-Phase Coreflooding Tests. The two-phase tests were
conducted to determine the effect of calcium and sodium ions,
both at high and low salinities, on the residual oil saturation
(Sor).
The two-phase tests were performed on the Berea 2 and 3

cores.
The injected solutions were supplied using a pulse-free

syringe pump (Quizix Q6000 precision pump). A dome
backpressure regulator, supported by a nitrogen gas cylinder,

Figure 1. Laboratory setup used for two-phase coreflooding tests: (a) schematic and (b) photograph. (1) Core plug, (2) Viton sleeve, (3) Hassler-
type coreholder, (4) oven to keep the temperature constant, (5) manual HiP piston pressure generator, (6) port switching valve, (7) Quizix Q6000
precision pump for two-phase tests (Prep-36, Scientific Systems pump used in the single-phase tests), (8−10) oil transfer vessels, (11−13) port
switching valves, (14,17) absolute pressure transmitters, (15) port switching valve, (16) backpressure regulator, (18) ADAM-4019+ inlet data
acquisition module, (19) port switching valve, (20) PC-based data acquisition system, and (21) GE Healthcare Frac-920 fractional collector.
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was used to maintain a constant outlet pressure of 500 psi. The
pressure difference between the inlet and the outlet of the core
was measured by Yokogawa (low pressure range) and Keller
(high pressure range) pressure transducers. Darcy’s law was
applied to calculate the permeability of each core at the
stabilized pressure drop along the cores. Outlet samples were
collected in the same way as in the single-phase tests. Oil and
water volumes were determined from the volumetric incre-
ments provided on the outlet samples. The particle
concentration of the aqueous phase was measured using a
POLA-2000 particle counter, with oil being removed from
samples where necessary by syringe suction after centrifuga-
tion.
The procedure of the two-phase tests was as follows:

1. The core permeability was measured by injecting HS
(high-salinity) 0.6 M CaCl2 solution into the core at a
constant rate of 0.2 ml/min (superficial velocity 2.93 ×
10−6 m/s). This flow rate was used for the remainder of
the test.

2. The first drainage displacement was performed by
injecting nonpolar oil at the same constant rate until
no more water was produced from the cores and the
pressure drop stabilized, i.e., until the initial water
saturation Swi was obtained.

3. High-salinity waterflooding (HSW) was then performed
by displacing oil with HS 0.6 M CaCl2 brine until oil
production stopped, indicating that the core was at
residual oil saturation, Sor.

4. Another drainage stage was then performed to achieve
the same initial condition (Swi) before low-salinity
waterflooding (LSW) took place by injecting low-salinity
(LS) 0.05 M CaCl2 to displace the oil.

5. Low-salinity waterflooding was then performed by
injecting 0.05 M ionic strength CaCl2 to displace the
oil phase until residual oil was achieved.

6. Tertiary waterflooding with stepwise decreasing salinity
of CaCl2 brine was performed using solutions with ionic
strengths of 0.025, 0.01 M, and deionized water (DIW).
This step is important to provide insights into the
impact of low-salinity CaCl2 solutions on fines migration
and oil recovery. Each injection continued until the
pressure drop stabilized.

7. A 0.05 M NaCl solution was then injected followed by a
DIW injection to investigate any effect of Na+ ions on
detaching Ca2+ and fines migration. Again, each stage
was terminated only after the pressure drop had
stabilized.

The oil and water volumes of all of the effluent samples as
well as clay particle concentrations were measured immediately
after sampling.
Two drainages have been performed to restore the Swi

conditions before LSW injection. The aim is to compare
HSW and LSW injections for the identical reservoirs.
Hysteresis between first and second drainage displacements
can be significant. However, usually the difference between Swi
and Krowi after first and second drainage displacements is
insignificant.28,29 Table 3 shows very close agreement between
the Swi and Krowi values for Berea 3 core and reasonable
agreement for the Berea 2.
X-ray Diffraction (XRD) Study. To complement the

coreflooding tests done on the Berea cores, an XRD study
was performed on a cutting removed from the Berea core used

in the single-phase tests. The XRD analysis was conducted
qualitatively using a Bruker D8 ADVANCE Powder X-ray
diffractometer with a Cu-radiation source. The data was
processed using Bruker DIFFRAC.EVA software and Crys-
tallography Open Database reference patterns to identify
mineral phases. The quantification of the mineralogy was
calculated against an internal standard of zinc oxide at 10%
using RockJock software.

■ EXPERIMENTAL RESULTS
Single-Phase Coreflooding Tests. The results of the tests on

the 7 and 10% clay content cores are shown in Figures 2 and 3,

respectively. Changes to the pressure drop of the cores are presented
in a dimensionless form as the impedance, J

J
p
p0

=
Δ
Δ

where Δp0 is the stabilized initial pressure drop measured at the start
of the test.

Unconsolidated Cores. Figure 2 shows the results from the test on
the 7% clay content unconsolidated core. The undamaged
permeability of the core was 286 mD, and the porosity was 0.386.
Each injection stage lasted for at least 180 PVI. During the injection

Figure 2. Single-phase test on unconsolidated sand-kaolinite core (7%
kaolinite w/w, k = 286 mD): (a) normalized permeability, (b) outlet
particle concentration.
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of CaCl2 solutions of decreasing salinity, including the first DIW
injection stage, the pressure drop remains relatively constant. In
addition to the negligible outlet particle concentration, this indicates a
lack of fines detachment. A similar response is noted during the
injection of 0.6 M NaCl, suggesting a lack of particle detachment.
During the second deionized water injection, a significant rise in
pressure drop and outlet particle concentration was observed,
indicating that a substantial number of particles were detached due
to the change in injected solution. The final value of impedance was
65.6, corresponding to a permeability of 4.36 mD.
Figure 3 presents the results from the next single-phase test,

performed on the 10% clay unconsolidated core. The undamaged
permeability of the core was 149 mD, and the porosity was 0.385. A
relatively constant pressure drop and negligible outlet particle
concentration during the CaCl2 and the first DIW stages indicate
no fines detachment during these injections, similar to the previous
test. There is a noticeable exception in the outlet concentration during
the 0.3 M CaCl2 injection. This can be attributed to a slight
desorption of Ca2+ ions, which leads to some attached particles being
prone to detachment by the drag force. This persists during the NaCl
injection. Fines migration is detected during the second deionized
water injection, with a final stabilized impedance of 152,
corresponding to a permeability of 0.98 mD.
Figure 4 presents the results of the 5% clay content unconsolidated

core, with the additional ion chromatography results shown in Figure
4c. The initial permeability of the core was 537 mD, and the porosity
was 0.366. A minor increase in the pressure drop is noted during the

first DIW injection, suggesting that some particles were detached. The
NaCl injection shows no impact on the pressure drop. The second
injection of DIW again shows indications of fines migration, with an
increase of impedance to 1.7, with a final permeability of 358 mD.

The ion chromatography results in Figure 4c largely show that the
injected solutions are being produced at the outlet. A careful
examination of the Ca2+ concentration at the beginning of the NaCl
injection, shown in Figure 4d, shows a noticeable peak in Ca2+

concentration, indicating a release of calcium ions during this
injection stage that had not been desorbed during the first deionized
water injection.

Berea Core. The results of the XRD study performed on Berea core
1 are presented in Table 2.

The results of the single-phase test on Berea 1 are presented in
Figure 5. The initial permeability of the core was 120 mD.
Qualitatively similar results are observed for both the pressure drop
and outlet fines concentration, with indications of fines migration
present only during the DIW injection after the NaCl stage. The final
value of impedance was 3968, corresponding to a permeability of
0.03024 mD.

While showing some variation, the ion chromatography results
again largely show the production of the injected solutions. The
highlight of the NaCl injection stage shown in Figure 5d shows a
significant peak in the Ca2+ concentration. This is in agreement with
the 5% unconsolidated core test, indicating that the NaCl injection
results in a desorption of some residual Ca2+ ions in the core.

Two-Phase Coreflooding Tests. In the two-phase coreflooding
tests, the HSW and LSW effects of CaCl2 brine on fines migration and
oil recovery were compared in the secondary waterflooding processes
(HSW after the first drainage and LSW after the second drainage) as
well as in the tertiary waterflooding mode. To reach similar initial
saturation conditions before HSW and LSW, oil was injected into the
cores until the pressure drop stabilized at similar magnitudes for the
first and second drainage displacements and no more oil was
produced.

Berea 2. Figure 6a shows the pressure drop for these two oil
displacements for Berea 2. In the first drainage displacement of HS
CaCl2 brine by nonpolar oil, the pressure drop increased to ∼56 psi
before the breakthrough and then decreased and stabilized at ∼30 psi
after injecting 8 pore volumes. In the second drainage displacement,
the pressure drop increased to ∼39 psi before the breakthrough and
then stabilized at ∼30 psi as well. The initial water saturations were
0.16 and 0.21 for the first and second drainages, respectively. The oil
end-point relative permeabilities, Krowi, are 0.97 and 0.90, respectively.

Figure 6b shows the impedance and accumulated oil production for
the secondary waterflooding by HS and LS CaCl2 solutions. Each
stage involved injecting 8 PV of the solution after the drainage
displacement. The injection was stopped when the pressure drop
stabilized and when no more oil was produced. At the start of the
HSW, the initial pressure drop was ∼28 psi. The impedance increased
to ∼2.1 before the breakthrough and then it dropped and stabilized at
∼1.7. In the secondary LSW, the initial pressure drop was ∼27 psi and
the impedance increased to ∼2.4 before breakthrough after which it
dropped and stabilized at ∼2. There is a slight difference in both
impedance and oil recovery between the HSW and the LSW in the
secondary mode. Oil production was 0.34 PV for the HSW and 0.38
for the LSW, as shown in Figure 6b, which could be due to the release
of some fine particles during the LSW that slightly improved oil
recovery. However, residual oil saturation for both displacements is
0.49, as shown in Table 3, which indicates that there is no significant
effect of fines migration on oil recovery, unlike in the tertiary injection
mode as discussed below.

Tertiary waterflooding was conducted to investigate the effect of
CaCl2 and NaCl brine ionic strength on fines migration and
incremental oil recovery. The results of sequentially decreasing the
injected CaCl2 salinity down to DIW show no change in impedance
(stable at ∼1 with an initial pressure drop of ∼27). Cumulative oil
recovery also remains unaltered as shown in Figure 7a. The tertiary
waterflooding was continued by injecting 0.05 M NaCl followed by
DIW. Figure 7a shows that impedance increased significantly after the

Figure 3. Single-phase test on unconsolidated sand-kaolinite core
(10% kaolinite w/w, k = 149 mD): (a) normalized permeability, (b)
outlet particle concentration.
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second DIW injection, approximately 15 times higher than the
stabilized impedance during the CaCl2 injection stages. Figure 7b
shows that a substantial amount of clay particles was produced at the
core outlet during the second DIW but not in any injection stages
before that. This clearly demonstrates that fines migration occurred
during the second DIW stage. This coincided with an increase in oil
recovery such that the residual oil saturation decreased from 0.49 to
0.34.
Berea 3. Results similar to those of the Berea 2 test were observed

in the Berea 3 coreflood. Figure 8a shows the pressure drop of the
drainage displacements. In the first drainage, the pressure drop
increased to 84 psi before breakthrough and stabilized at 58 psi after
5.5 PVI. In the second drainage, the pressure drop rose to ∼95 psi
before the breakthrough and then stabilized at ∼63 psi after 8 PVI.
The initial water saturations for the first and second drainage
displacements are close, at 0.36 and 0.39, respectively, indicating a

reproducibility of the initial conditions. The oil end-point relative
permeabilities of these drainages are 0.89 and 0.93, respectively.

Injecting low-salinity CaCl2 in the secondary mode resulted in a
slightly higher impedance (stabilized at ∼1.5 after 8 PVI of LS CaCl2
solution injection with an initial pressure drop of ∼71 psi) compared
to HSW (stabilized at ∼1.3 after 8 PVI of HS CaCl2 with an initial
pressure drop of ∼63 psi) as shown in Figure 8b. The residual oil
saturations are 0.32 for the HSW and 0.24 for the LSW, which
correspond to 0.32 and 0.38 PV of oil production, respectively, as
illustrated in Figure 8b. Tertiary waterflooding of lower CaCl2
salinities had almost no impact on the impedance (stable at ∼2
with an initial pressure drop of ∼71 psi) or oil production, as was seen
in the Berea 2 test. However, injecting DIW after 0.05 M NaCl
resulted in a significant rise in impedance (∼11 times higher than the
stabilized impedance during CaCl2 LSW), fine particle production,
and, hence, incremental oil recovery as shown in Figure 9a,b. The
residual oil saturation decreased from 0.24 to 0.10.

For low permeability and HSW CaCl2, there is a particle
production in two phase, which is permeability dependent. At the
time of the 0.05 M CaCl2 injection, the only aqueous solution that the
cores had been exposed to was 0.6 M CaCl2. As a result, some Ca2+

can desorb during this injection, resulting in some particle
detachment. The fact that it is more significant for the lower
permeability core could be due to a higher clay content or due to a
higher detaching force resulting from particles being situated in
smaller pores.

Figure 4. Single-phase test on unconsolidated sand-kaolinite core (5% kaolinite w/w, k = 537 mD): (a) normalized permeability, (b) outlet particle
concentration, (c) outlet ion concentrations for sodium and calcium, (d) enlarged graph of outlet ion concentrations during the beginning of the
injection of 0.6 M NaCl.

Table 2. Mineralogy of Berea 1 Determined Using XRD

mineral weight %

quartz 84.6
K-feldspar (ordered microcline) 4.3
plagioclase (albite) 2.6
kaolinite (disordered) 2.3
illite 6.2
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■ DISCUSSION

Ion Sorption and Particle Detachment. The lack of
particle detachment during CaCl2 injections can be explained
by the strong electrostatic force between the particles and rock
surface due to the adsorbed calcium ions. The strong attraction
arises from the suppression of the repulsive components of the
electrostatic force by the adsorbed cations.50 Following the
injection of deionized water, neither the impedance nor outlet
particle concentration showed any indications that particle
detachment had occurred. In conjunction with the ion
chromatography results, this suggests that the calcium ions
were not fully desorbed during this injection cycle. The
remaining calcium ions maintain a sufficiently large electro-
static force such that particles remain attached to the rock
surface. The desorption of Ca2+ ions would in fact be an ion
exchange process with the H+ ions in solution. The
experimental results suggest that this exchange has not resulted
in the complete desorption of the calcium ions. During the
NaCl injection, the high concentration of Na+ ions present in
solution resulted in at least a partial desorption of the
remaining Ca2+ ions. The resulting adsorbed Na+ ions can be
readily desorbed during deionized water injection, resulting in
the observed particle detachment.

This explanation is supported by the data presented on the
outlet pH during the two-phase tests in Figures 7c and 9c.
These graphs show that the pH is largely constant during all
stages except the last, in which DIW is injected after 0.05 M
NaCl. Changes to pH indicate that the hydrogen ions in
solution are participating in the ion exchange. The lack of
change during the first DIW injection supports the argument
that very little Ca2+ ions are desorbed during this stage, as
otherwise hydrogen ions would replace them on the clay
surfaces, and a rise in pH would be observed at the outlet. This
rise is observed, however, during the second DIW injection,
where the Na+ ions are replaced by the H+ ions in solution.
The lack of a change in pH during the NaCl injection indicates
that the ion exchange occurring during this stage is primarily
between the previously adsorbed Ca2+ ions and the Na+ ions in
solution.
Hysteresis of ionic sorption on clays has been widely

reported in ion exchange in aquifers.51 In particular, Comans52

showed that the adsorption of cadmium ions onto illite will
appear partially irreversible unless given up to 54 days for
desorption. Gao et al.53 showed that the sorption of cadmium
and lead on soil samples showed significant hysteresis unless an
acidic solution was used to desorb the ions.

Figure 5. Single-phase test on Berea core 1 with k = 120 mD: (a) normalized permeability, (b) outlet particle concentration, (c) outlet ion
concentrations for sodium and calcium, (d) enlarged graph of outlet ion concentrations during the beginning of the injection of 0.6 M NaCl.
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This study similarly provides evidence of ion sorption
hysteresis but provides little information on the physical basis
and nature of the hysteresis. Of particular importance to
practical applications is whether the hysteresis is permanent or
is a result of ion desorption being substantially slower than
adsorption. Strawn and Sparks54 consider a multitude of
existing laboratory tests and support the notion that the

Figure 6. Berea 2 two-phase drainage and secondary displacements:
(a) drainage pressure drop, (b) secondary waterflooding pressure
drop and oil production.

Table 3. Saturations and End-Point Relative Permeabilities
of the Two-phase Displacement Samples

Berea 2 Berea 3

Krowi (drainage 1) 0.97 0.89
Swi (drainage 1) 0.16 0.36
Krwor (0.6 M CaCl2) 0.02 0.03
Sor (0.6 M CaCl2) 0.49 0.32
Krowi (drainage 2) 0.88 0.93
Swi (drainage 2) 0.21 0.39
Krwor (0.05 M CaCl2) 0.02 0.02
Sor (0.05 M CaCl2) 0.49 0.24
Krwor (0.025 M CaCl2) 0.02 0.02
Sor (0.025 M CaCl2) 0.49 0.24
Krwor (0.01 M CaCl2) 0.02 0.02
Sor (0.01 M CaCl2) 0.49 0.24
Krwor (DIW 1) 0.02 0.02
Sor (DIW 1) 0.49 0.24
Krwor (0.05 M NaCl) 0.01 0.01
Sor (0.05 M NaCl) 0.49 0.24
Krwor (DIW 2) 0.001 0.002
Sor (DIW 2) 0.34 0.10

Figure 7. Two-phase tests on Berea core 2 with k = 40 mD: (a)
pressure drop and oil production, (b) outlet particle concentration,
(c) outlet pH.
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apparent hysteresis is a result of slow desorption kinetics. A
slow desorption phase could be a result of diffusive mass
transfer into micropores followed by adsorption onto interior
surfaces as was investigated quantitatively by Joekar-Niasar and
Mahani55 for the desorption of oil droplets from clays. An
alternative explanation is that adsorbed ions transition between
different adsorption mechanisms while adsorbed to the particle
surface.54 This conceptual model involves a transition from
outer-sphere complexes, where adsorption is due to primarily
electrostatic bonding, to inner-sphere complexes, where ionic
or covalent bonding would provide a more stable ion-surface
complex. Several molecular dynamics studies have confirmed
the co-existence of multiple adsorption complexes on clays.56,57

Some authors have shown that while the total adsorbed ion
concentration remains constant after some time, the fraction
that can be desorbed increases as the clay is left in the
saturating solution.58,59 This supports the notion of a transition
between adsorption mechanisms. Given that rock saturation
occurs over geological time periods in petroleum reservoirs, the
ability to desorb certain ions may be overestimated by
relatively short laboratory tests such as those presented in
this study.
It should be noted that neither the complete desorption of

adsorbed calcium by the NaCl injection nor the complete
desorption of sodium during the second deionized water
injection can be confirmed from these tests. The only
inferences that can be made are that calcium sorption clearly

demonstrates hysteretic behavior and that the adsorbed
composition during the final deionized water injection favors
particle detachment.

Impact on Oil Recovery. The use of nonpolar oil ensures
that no wettability alteration takes place during low-salinity
injection,25,26 and any extra oil production can be solely
attributed to fines migration. The detachment of fine particles
and their capture leads to microscopic flux diversion because
the water flow is redirected away from blocked pores and into
the thin pores where residual oil is trapped. This leads to the
mobilization of oil ganglia and, therefore, a decrease in Sor.
During redisplacement of the residual oil by the redirected
water, the water−oil menisci will pass over a fraction of the
rock surface. Attached particles on this surface will be exposed

Figure 8. Berea 3 two-phase drainage and secondary displacements:
(a) drainage pressure drop, (b) secondary waterflooding pressure
drop and oil production.

Figure 9. Two-phase tests on Berea core 3 with k = 21 mD: (a)
pressure drop and oil production, (b) outlet particle concentration,
(c) outlet pH.
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to a capillary force acting to detach them. Such capillary forces
are significantly higher than the electrostatic forces acting to
keep the particles attached to the surface.60,61 Thus, oil
mobilization can lead to further fines detachment and capture.
During both two-phase tests, injection of LS CaCl2 brine

resulted in almost no change in residual oil saturation
compared to HSW. This is explained by a lack of particle
detachment, evident from both the impedance and outlet
particle concentration measurements (Figures 6b and 8b).
This is consistent with the behavior described above, wherein
hysteretic calcium sorption leads to a residual adsorbed
concentration that is sufficient to inhibit particle detachment.
Injection of NaCl results in ion exchange, favoring the
adsorption of Na+ ions. During the deionized water injection,
the desorption of these Na+ ions is sufficient to reduce the
electrostatic forces and, hence, detach clay particles. This is
reflected in an increase in the impedance and outlet fines
concentration, as well as a decrease in the residual oil
saturation.
It should be noted that in several tests, notably in the single-

phase test of the 5% clay content unconsolidated core and in
Berea 3, some evidence of fines migration is observed during
the decrease in CaCl2 salinity. This is evidence that while the
residual adsorbed calcium ions substantially reduce the
sensitivity of the cores to low-salinity water, they do not
completely inhibit fines migration. Nonetheless, the increase in
impedance is negligible compared to similar tests run with pure
NaCl solutions for both single phase62 and two phase.43

An understanding of the hysteretic nature of ion exchange
and its relation to fines migration is critical in designing field-
scale smart (low-salinity) water injection projects. This study
demonstrates that the sensitivity of sandstone rocks to low-
salinity water can be controlled by the type of ion in the
saturating solution.
Formation damage due to fines migration in the vicinity of

injection and production wells remains a major issue in
waterflooding projects. Pretreating the near-wellbore region
with a solution of high CaCl2 concentration could be used to
mitigate injectivity or productivity decline issues during low-
salinity waterflooding projects by stabilizing fines. Conversely,
far from injection and production wells, increases in macro-
and microscale sweep efficiencies can make enhancing fines
migration crucial to the success of a waterflood. In these cases,
pretreating the rock with NaCl could enhance the sensitivity of
the rock to low-salinity water, unlocking further potential for
reducing the residual oil saturation.
While calcium and sodium are two of the most abundant

cations found in most petroleum reservoirs, many other ions
are typically present, and the potential for hysteretic sorption
in more complex ionic solutions deserves proper investigation.
Furthermore, a quantitative investigation of the hysteresis and
potential long-term desorption kinetics would allow for more
rigorous modeling of fines migration during low-salinity
waterflooding.
Limitations of the Study. This study used both artificial

and Berea cores. We use Berea cores as a means to extend the
results of this study to petroleum reservoirs. However, the
Berea cores are outcrop cores, which are subject to weathering,
which might alter the detachment characteristics of the
kaolinite particles.63 This limitation does not prohibit studying
the hysteresis of Na−Ca ion exchange and its impact on fines
detachment, but it does limit the extension of these results to
field-scale applications. A comparison of the results of this

study with results from reservoir cores is the subject of further
work.
Additional limitations stem from differences between the

conditions of the tests in this study and common reservoir
conditions. These differences include the chemical composi-
tion of crude oil, which commonly includes polar components;
high reservoir temperatures; more complex ionic compositions,
including trivalent ions in the formation water; the presence of
reactive minerals such as feldspars and evaporates; and
additional clays not present in the cores used in this study
(e.g., montmorillonite). These factors can significantly impact
the detachment of fines. For example, the effectiveness of high
temperatures in increasing particle detachment has been well
studied.64,65 The application of fines migration coreflooding
results to a particular reservoir requires careful replication of
these important conditions in the laboratory.

Miscellaneous. Primary and secondary drainages have
been performed to create identical oil−water−rock systems
before HSW and LSW. Some hysteresis occurs between first
and second drainage displacements; however, the values Swi
and Krowi were close enough. The method can be improved by
HSW injection after the second drainage displacement and
then LSW.

■ CONCLUSIONS
In this study, we performed laboratory corefloods with
variation in the sodium and calcium concentrations of the
injected brine. Ion chromatography measurements allowed
observation of the underlying ion exchange processes. Similar
tests in the presence of residual oil were performed to
investigate the impact this ion exchange might have on oil
recovery. These tests allow concluding the following:

1. During the DIW injection that follows the CaCl2
injection, the impedance remains constant and clay
fines do not appear in the effluent. This indicates no
fines detachment.

2. Further DIW injection that follows the NaCl injection
exhibits a large increase in impedance and significant
fines concentration in the effluent, suggesting that the
permeability decline can be attributed to fines
mobilization and capture.

3. Some Ca2+ ions have been released during the NaCl
injection, suggesting competitive adsorption of Na+ and
Ca2+ ions on the clay and residual adsorbed Ca2+

concentration after the DIW injection.
4. Adsorption of Ca ions on kaolinite clay exhibits a

hysteretic behavior.
5. The same phenomena have been observed in the

presence of residual oil.
6. Induced fines migration results in a decrease in residual

oil.
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■ NOMENCLATURE
J = impedance
k = permeability
Krowi = oil relative permeability at initial water saturation
Krwor = water relative permeability at residual oil saturation
Sor = residual oil saturation
Swi = initial water saturation
Ca = calcium
Ca2+ = calcium ions
Na = sodium
Na+ = sodium ions

■ GREEK LETTERS
Δp0 = stabilized initial pressure drop
Δp = stabilized pressure drop

■ ABBREVIATIONS
DIW = deionized water
HS = high salinity (0.6 M ionic strength)
HSW = low-salinity waterflooding
LS = low salinity (0.05 M ionic strength)
LSW = low-salinity waterflooding
M = molar
PVI = pore volume injected
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The effects of confinement and electrostatic interactions on the ion diffusion in the particle-rock contact
area yields a delay in particle detachment during low-salinity water injection in porous media. The objec-
tive of the work is laboratory and mathematical modelling of the effects of delayed particle detachment
on colloid-suspension transport in porous media. We present the governing system for single-phase par-
ticulate flow accounting for non-equilibrium fines detachment. The exact solution for one-dimensional
flow with varying salinity is derived. Laboratory coreflood tests on low-salinity water injection are per-
formed. The measured breakthrough fine particle concentration and pressure drop across the core are
matched by the analytical model with high accuracy. Introduction of delay in the model removes the con-
centration shocks present in the instant fines detachment model as fines detach continuously throughout
the injection period.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

It is common during flows in natural porous media for colloidal
suspensions to be created by the detachment of fine particles. The
suspended particles are transported by the fluid and are subjected
to capture in pore throats which results in permeability decline.
This phenomenon is referred to as fines migration (Civan, 2014;
Khilar and Fogler, 1998).
Field studies have demonstrated that during low-salinity water
injection into petroleum reservoirs, fines migration can cause
serious injectivity decline (Akhmetgareev and Khisamov, 2015;
Barkman et al., 1975). Other applications of fines migration tech-
nologies and modelling include formation damage during fluid leak
off in drilling operations (Salimi and Ghalambor, 2011), the storage
of fresh water in shallow aquifers (Prommer et al., 2013), the con-
tamination of fresh water aquifers by contagions (Kretzschmar
et al., 1999; Yu et al., 2012), the encroachment of seawater into
coastal aquifers (Goldenberg et al., 1983), among others. Prediction
andmitigation of this damage poses a serious engineering problem.
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Nomenclature

C dimensionless suspended particle concentration [–]
c suspended particle concentration [–]
Cacc accumulated suspended particle concentration [–]
D slope of characteristic line [–]
Fd drag force [M][L]�1[T]�2

Fe electrostatic force [M][L]�1[T]�2

J impedance [–]
k0 initial core permeability [L]2

ld drag lever arm [L]
ln normal lever arm [L]
P dimensionless fluid pressure [–]
p fluid pressure [M][T]�2[L]
q0 initial injection rate [L]3[T]�1

R2 coefficient of determination [–]
Sa dimensionless attached particle concentration [–]
Ss dimensionless strained particle concentration [–]
T dimensionless elapsed time [–]
t elapsed time [T]
T0 dimensionless elapsed time (initial condition) [–]
U fluid velocity [L][T]�1

Up particle velocity [L][T]�1

X dimensionless distance from the core inlet [–]
x distance from the core inlet [L]

X0 dimensionless distance from core inlet (initial condi-
tion) [–]

DP dimensionless pressure drop [–]
Dp0 Initial pressure drop [M][T]�2[L]

Greek letters
a drift delay factor [–]
b formation damage coefficient [–]
C dimensionless fluid salinity [–]
c fluid salinity [N][L]�3

ci initial fluid salinity [N][L]�3

cinj Injected fluid salinity [N][L]�3

Drcr total detached particle concentration [–]
� dimensionless delay factor [–]
H temperature [H]
K dimensionless filtration coefficient [–]
k filtration coefficient [L]�1

l fluid viscosity [M][L]�1[T]�1

ra attached particle concentration [–]
rcr critical retention function [–]
rs strained particle concentration [–]
s delay factor [T]
/ porosity [–]
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The typical approach to quantify and manage the extent of fines
migration is mathematical modelling supported by laboratory
studies. Laboratory results provide a means to characterise the por-
ous medium, which is necessary to use mathematical models in a
predictive capacity.

Mathematical models for fines migration consist of formula-
tions for the processes of particle detachment, transport, and cap-
ture. These three processes are shown schematically in Fig. 1. The
mechanics of fines detachment is determined by the forces acting
on attached particles, which are: the hydrodynamic drag force, Fd,
the lifting force, Fl, the gravitational force, Fg, and the electrostatic
force, Fe. The drag and lifting force are the tangential and normal
components of the force exerted on the particle by the moving
fluid and will act to detach the particle. The electrostatic force con-
sists of non-electrostatic London-Van der Waals forces as well as
an electrostatic component arising from surface charges on both
the particle and the porous surface (Derjaguin and Landau, 1941;
Verwey and Overbeek, 1999). Overall the electrostatic force is
attractive and will thus act to prevent particle detachment. For
the conditions of porous media, the lifting and gravitational forces
Fig. 1. Schematic of fines detachment, migration, and straining processes in porous
media during the injection of low-salinity water.
are of negligible magnitude compared to the drag and electrostatic
forces, and so are neglected (Kalantariasl and Bedrikovetsky, 2013).
A diagram of the two remaining forces acting on an idealised,
spherical particle is given in Fig. 2. Whether conditions are favour-
able for particle detachment depends on the magnitude of these
two forces. The drag force increases with the fluid velocity
(Goldman et al., 1967) and so high velocity conditions, such as in
the near-wellbore region of injection or production wells, are par-
ticularly prone to fines migration. The electrostatic force decreases
with decreasing salinity (Bhattacharya et al., 2016; Kia et al., 1987)
or increasing pH (Kia et al., 1986), and so low salinity or alkaline
solutions will tend to intensify fines detachment. The electrostatic
force also weakens at elevated temperatures (You et al., 2015) and
consequently geothermal wells are likely to experience formation
damage due to fines migration.

A quantification of particle detachment follows from the bal-
ance of the abovementioned forces. Investigations into particle
mobilisation suggest that particle rotation is more likely than a
Fig. 2. Attached particle with acting forces and lever arms.
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horizontal or vertical translation (Bergendahl and Grasso, 2000).
Thus, the condition for detachment becomes the equality of acting
torques:

FdðUÞld ¼ Feðc;pH;HÞln: ð1Þ
Here ld and ln are the lever arms associated with each force, U is
the fluid velocity, c is the fluid salinity, and H is the temperature.
The expressions for the forces in Eq. (1) can be found in the liter-
ature (Goldman et al., 1967; Verwey and Overbeek, 1999; Xie
et al., 2017).

Fig. 2 shows the lever arms associated with each force.
When applied to all attached particles within a porous media,

condition (1) can quantitatively describe the concentration of
attached particles under certain flow conditions. The result is
that, under the condition of mechanical equilibrium, the
attached concentration is a function of all parameters that affect
the electrostatic and drag forces (velocity, salinity, pH, tempera-
ture, etc.). This equation is referred to as the critical retention
function:

ra ¼ rcrðU; c; pH;HÞ: ð2Þ
where ra is the attached particle concentration.

Two of the primary methods of upscaling the torque balance
to obtain the critical retention function are presented in
(Bedrikovetsky et al., 2011; You et al., 2015). The first assumes
that mono-sized attached particles form an internal filter cake
in cylindrical pores. When the filter cake is thicker, the velocity
within the pore increases, shifting the torque balance towards
particle detachment. The equilibrium filter cake thickness is cal-
culated by applying the torque balance equation (Eq. (1)). The
second method assumes that attached particles adhere only in a
single layer on the pore surface but are distributed by size.
According to the equations for the forces in Eq. (1), larger parti-
cles are more likely to detach than smaller ones. Thus, for any
injection conditions there exists a critical particle size above
which all particles detach. Using the torque balance equation
alongside the particle size distribution results in the critical
retention function, Eq. (2).

Several mathematical formulations of fines migration have been
presented which make use of the critical retention function
(Bedrikovetsky et al., 2011; Chequer et al., 2018; Yuan et al.,
2017; Zeinijahromi et al., 2015). The advantage of this formulation
over empirical forms presented previously (Kuo and Matijevic,
1979) is the explicit relation between the microscopic conditions
for detachment and the macroscopic attached concentration.

The transport of fine particles is described by a mass balance
equation:

@

@t
ð/c þ rs þ raÞ þ Up

@c
@x

¼ 0; ð3Þ

where / is the core porosity, c is the suspended particle concentra-
tion, rs is the strained particle concentration, Up is the particle
velocity, and x and t are the spatial and time coordinates
respectively.

The detachment rate follows from Eq. (2). The straining rate is
assumed to be proportional to the advective particle flux, cUp:

@rs

@t
¼ kðrsÞcUp: ð4Þ

The coefficient of proportionality, k, is referred to as the filtration
coefficient.

The dependence of the critical retention function on the fluid
salinity requires the inclusion of the solute mass balance:

/
@c
@t

þ U
@c
@x

¼ 0: ð5Þ
Finally, the effect of straining on the permeability is incorporated
using a Taylor’s series expansion of the permeability damage ratio

ko
kðrsÞ � 1þ brs; ð6Þ

where k0 is the undamaged core permeability and b is the formation
damage coefficient.

Implementing Eq. (6) into Darcy’s law gives

U ¼ k0
lðcÞð1þ brsÞ

@p
@x

; ð7Þ

where l is the fluid viscosity, and p is the fluid pressure.
Similar to previous formulations, we recognise that the particle

and fluid velocities will not necessarily be equal (Chequer et al.,
2018; Oliveira et al., 2014). We introduce their ratio, the drift delay
factor, as an additional parameter of the model

a ¼ Up

U
: ð8Þ

The rolling and sliding of particles along the pore surface would
suggest that a is smaller than one.

The system of five Eqs. (2)-(5) and (7) which describes the five
unknowns c, c, ra, rs, and p, is the traditional model for fines
migration. This system has previously been solved analytically
for linear flows and has shown good agreement with laboratory
results from coreflooding of consolidated sandstone rocks
(Chequer et al., 2018).

Eq. (2) assumes mechanical equilibrium of the particles
attached on the rock surface. However, various physical mecha-
nisms which influence the forces acting on the particle may pre-
vent the particle from instantly establishing this equilibrium.
Fig. 2 shows diffusive flux between the bulk fluid and the contact
area between the particle and rock surface, which will yield a delay
in establishing equilibrium of the salt concentration between these
two regions. Consequently, establishing a new equilibrium critical
retention function due to changes to the bulk salinity will occur
with some delay.

In the work by Mahani et al. (2015), it was shown that there is a
significant delay in the detachment of an oil droplet when low-
salinity water is introduced. A reduction in the diffusive flux result-
ing from electrostatic interactions was highlighted as a potential
cause. A similar effect is expected for fines detachment, however
a mathematical model for fines migration with delayed detach-
ment is not available.

The present paper derives new basic governing equations
for suspension-colloidal transport in porous media accounting
for delayed particle detachment. The one-dimensional (1D)
problem of coreflooding with varying salinity allows for an
exact solution. The solution permits the regularization of a
singular problem for the particular case where a = 1, where
particles move with the velocity of the carrier water. A labora-
tory coreflooding study with varying salinity was performed
and the experimental data exhibits a close match with the
analytical model.

The structure of the paper is as follows. Section 2 presents
the delayed detachment model for suspension-colloidal flows
and derives the exact solution for 1D system of fines transport
under varying salinity. Section 3 will discuss the general
behaviour of the derived solution and make comparisons with
the instant detachment model. Section 4 provides a brief
description of a laboratory study of fines migration. The results
of the laboratory tests are used to validate the model in Sec-
tion 5. The discussions in Section 6 and conclusions in Section 7
finalise the paper.
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2. Mathematical model for finesmigration with delayed particle
detachment

2.1. Rate description for delayed particle detachment

Particle detachment due to changes in the bulk fluid salinity
occurs due to the weakening of the attractive electrostatic force
between particles and the pore surface. This force is governed by
the concentration of ions in the region between the particle and
pore surface. Changes to the detachment conditions induced by
the fluid salinity are thus reliant on the ion transport between
the bulk solution and the inter-particle region.

The proximity of the attached particles to the pore surface sug-
gests that the advective flux will be negligible, so ion transport will
be diffusion dominated. Both the effect of confinement in the inter-
particle region as well as the influence of the surface charge on
both solid surfaces will slow the ion transport (Pellicer and
Aguilella, 1986; Tada et al., 1987).

An experimental study (Mahani et al., 2015) as well as a
numerical investigation (Joekar-Niasar and Mahani, 2016) of
the kinetics of wettability alteration by low-salinity water have
demonstrated the significance of these transport mechanisms
in producing a noticeable delay in changes to the electrostatic
force.

In this paper, the delay in particle detachment is described by a
non-equilibrium relationship between the attached concentration
and the fluid salinity. We propose that Eq. (2) is satisfied only after
some delay time, s:

raðx; t þ sÞ ¼ rcrðcðx; tÞÞ: ð9Þ
Under the assumption of a constant delay time, we produce the
relationship for the detachment kinetics by retaining the linear
terms from the Taylor series expansion of Eq. (9):

s @raðx; tÞ
@t

¼ rcrðcðx; tÞÞ � raðx; tÞ: ð10Þ

Eq. (10) is valid for small delay times (t�s). This equation
resembles a relaxation kinetics relation commonly used in
modelling chemical reactions (Bedrikovetsky, 1993; Bernasconi,
1976).

The reasoning presented for the delay in particle detachment
is valid only for chemically induced particle detachment that is
reliant on the diffusion of ionic species. Detachment induced
by increasing the flow velocity will be instantaneous
(Bedrikovetsky et al., 2012; Oliveira et al., 2014) and so the
use of Eq. (2) is valid.

2.2. Assumptions of the model

Assumptions of the model include the incompressibility of
the bulk fluid and the additivity of particle and fluid volumes
during the detachment, transport, and capture processes. Diffu-
sion and dispersion are neglected for both particle and salt
transport. In addition, the effect of the suspended particle con-
centration on the fluid viscosity is assumed to be negligible.
The dependency of the filtration coefficient on the strained par-
ticle concentration is neglected based on the assumption of a
small concentration of strained particles relative to the number
of straining sites. Similarly, distributions of filtration coefficients
throughout the porous media due to micro-scale heterogeneity
(Ding et al., 2018) are ignored. Fines straining and size exclusion
in thin pore throats are assumed irreversible for non-deformable
particles and rock (Zhou et al., 2017). Finally, the effect of the
attached particles on the permeability of the porous medium is
ignored.
2.3. Non-Dimensionalisation

We make use of the dimensionless variables

T ¼ Ut
/L

; X ¼ x
L
; C ¼ c

Drcr
; Sa ¼ ra

/Drcr
; Ss ¼ rs

/Drcr
; K ¼ kL

C ¼ c� cinj
ci � cinj

e ¼ Us
/L

; P ¼ Pk0
UlL

;

ð11Þ
where cinj and ci are the injected and initial fluid salinities respec-
tively, and

Drcr ¼ rcrðciÞ � rcrðcinjÞ; ð12Þ

is the total detached particle concentration.
In dimensionless form, the system (3)–(5), (7) and (10) becomes

@

@T
ðC þ Sa þ SsÞ þ a

@C
@X

¼ 0: ð13Þ

@C
@T

þ @C
@X

¼ 0: ð14Þ

e
@Sa
@T

¼ ScrðCÞ � Sa: ð15Þ

@Ss
@T

¼ KCa: ð16Þ

1 ¼ � 1
1þ b/DrcrSs

@P
@X

: ð17Þ

Initial conditions correspond to a constant fluid salinity, ci, and an
absence of suspended and strained particles. It will be assumed that
initially the attached concentration is equal to the critical retention
function at the initial salinity.

CðX;0Þ ¼ 1

CðX;0Þ ¼ 0; SsðX;0Þ ¼ 0: ð18Þ

SaðX;0Þ ¼ ScrðCiÞ
The inlet boundary condition corresponds to the injection of low
salinity water (c = cinj) with no suspended particles

Cð0; TÞ ¼ 0;Cð0; TÞ ¼ 0: ð19Þ
The inlet boundary condition for the strained particle concentration
can be obtained by substituting the boundary condition for the sus-
pended particles, Eq. (19), into the straining kinetics Eq. (16) and
integrating. This yields

Ssð0; TÞ ¼ 0: ð20Þ
2.4. Exact solution

The method of characteristics can be used to solve Eq. (14) for
the fluid salinity subject to the initial and boundary conditions
(18), (19):

CðX; TÞ ¼ 1; X > T
0; X < T

�
: ð21Þ

The attached concentration is calculated by integrating Eq. (15)
using separation of variables accounting for the initial condition
(18):

Sa ¼ ScrðCiÞe�T
e þ e�

T
e

Z T

0
e
T
e
ScrðCÞ
e

dT: ð22Þ



Table 1
Exact formulae for suspended, attached and strained concentration, and impedance in zones 0, I and II.

Variables Region Exact Solution

Attached Concentration, Sa X < T ScrðCinjÞ þ e
X�T
e

X > T ScrðCiÞ
Suspended Concentration, C X < aT 1

aKeþa�1 e
X�T
e � e

X
a�T
e �KX

� �
aT < X < T 1

aKeþa�1 e
X�T
e � e�aKð

X�T
a�1Þ

� �
X > T 0

Strained Concentration, Ss X < aT 1þ aK
aKeþa�1

1�a
aK e�KX � eeX�T

e þ e e�
T
eþX 1

ae�Kð Þ � e�KX
� �� �

aT < X < T 1þ aK
aKeþa�1 �eeX�T

e þ 1�a
aK e

aKðX�TÞ
1�a

� �
X > T 0

Impedance, J T < 1 1þ b/DrcraK
aKeþa�1

a�1
ðaKÞ2 e

�aKT þ e2e�T
e þ e

1
ae�K

� �
e�aKT � e�

T
e

� �
þ e

K e
�aKT þ T e� 1�a

aK
� �� a�1

ðaKÞ2 �
e
K � e2

� �
1 < T < 1

a 1þ b/DrcraK
aKeþa�1

1�a
aK

� �2
e
aKð1�TÞ

1�a þ a�1
ðaKÞ2 e

�aKT � e2 e
1�T
e � e�

T
e

� �
þ e

1
ae�K

� �
e�aKT � e�

T
e

� �
þ e

K e
�aKT � a�1

aK2 � e
Kþ e� 1�a

aK

� �
T > 1

a 1þ b/DrcraK
aKeþa�1

a�1
aK2 e�aK � 1

� �� e2 e
1�T
e � e�

T
e

� �
þ e

1
ae�K

� �
e�

T
eþ 1

ae�Kð Þ � e�
T
e

� �
þ e

K e�K � 1
� �þ e� 1�a

aK

� �
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The integration is performed separately in the two regions sepa-
rated by the fluid front, X = T. The resulting expressions are pre-
sented in Table 1.

Substituting the equation for the particle straining rate into the
mass balance equation for particles yields

@C
@T

þ a
@C
@X

¼ �aKC � @Sa
@T

: ð23Þ

With an explicit expression for the detachment rate, Eqs. (13), (15),
(16) are reduced to a single hyperbolic equation. This equation can
be solved with the method of characteristics (Polyanin and Zaitsev,
2011; Polyanin and Manzhirov, 2007).

The solution space is naturally divided into three regions: ahead
of the fluid front, (X > T, region 0), between the fluid front and the
suspended particle front, (T > X > aT, region I), and behind the sus-
pended particle front, (aT > X, region II). These regions are shown in
Fig. 3a. The solution for Eq. (23) will now be presented for all three
regions.

In region 0, evaluated along parametric curves given by,

dX
dT

¼ a; ð24Þ

the partial differential equation (PDE) (23) reduces to an ordinary
differential equation (ODE)

dC
dT

¼ �aKC: ð25Þ

Using separation of variables and accounting for initial condition
(18) yields the solution

C ¼ 0: ð26Þ
To solve for the suspended concentration in region I, an initial con-
dition is required along the salinity front X = T. This condition is
determined by applying a mass balance condition on this front
(Bedrikovetsky, 1993; Lake, 2010)

½C þ Sa þ Ss�D ¼ a½C�: ð27Þ
where square brackets indicate the change in a variable across the
parametric curve with slope D. In this case, the parametric curve
is the salinity front, and so this slope is equal to one.

Eq. (16) indicates that the strained concentration is continuous
wherever the suspended concentration is finite. Thus, along the
salinity front

½Ss� ¼ 0: ð28Þ
Similarly, the attached concentration is continuous by Eq. (15)

½Sa� ¼ 0: ð29Þ
Then the mass balance condition reduces to

½C� ¼ a½C�: ð30Þ
The solution of which is

½C� ¼ 0: ð31Þ
Thus, the suspended concentration is also continuous across the
salinity front. This analysis permits the use of the solution in region
0 for the initial condition in region I.

In this region, along parametric curves given by Eq. (24), the
PDE (23) reduces to

dC
dT

¼ �aKC � @Sa
@T

: ð32Þ

Using the expression for the attached concentration behind the
salinity front, this equation becomes

dC
dT

¼ �aKC þ 1
e
e
XðTÞ�T

e : ð33Þ

The equation X(T) is derived from Eq. (24)

X � X0 ¼ aðT � T0Þ; ð34Þ
where the initial conditions are provided along some curve T0 = f
(X0).

As specified above, the initial conditions for this region are
given along the salinity front:

X ¼ T : C ¼ 0: ð35Þ
It then follows that

X0 ¼ T0; ð36Þ
and therefore

XðTÞ ¼ aT þ T0ð1� aÞ: ð37Þ

Substituting this equation into Eq. (33) yields an ordinary differen-
tial equation in T that can be integrated to obtain an explicit expres-
sion for C.

In region II, evaluating the PDE (23) along characteristic curves
given by

dT
dX

¼ 1
a
; ð38Þ

reduces the PDE to an ODE of the form

dC
dX

¼ �KC � 1
a
@Sa
@T

: ð39Þ



Fig. 3. Exact solution for low-salinity induced fines migration: (a) X(dimensionless
distance) – T(dimensionless time) plane demonstrating the fluid (X = T) and particle
(X = aT) fronts, (b) Attached concentration profiles initially Sa(X,Tj) initially (Tj = 0),
at three intermediate times, j = 1, 2, 3 and at infinity (Tj ? 1), (c) Suspended
concentration profiles C(X,Tj), d) strained concentration profiles Ss(X,Tj). Dotted lines
show the behaviour of the model with no delay at moment T1.
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Substituting the solution for the attached concentration gives

dC
dX

¼ �KC þ 1
ae

e
X�TðXÞ

e : ð40Þ

Solving Eq. (38) yields the same expression for the characteristic
lines as was derived for region I. For region II, the boundary condi-
tion (19) is used, and so X0 = 0. Substituting the resulting expression
T(X) and integrating yields the final expression for the suspended
concentration in this region.

All expressions for the suspended concentration are explicit and
are presented in Table 1.

The solution for the strained concentration is obtained by sub-
stituting the expression for the suspended concentration into Eq.
(16) and integrating subject to the initial condition (18). This pro-
cess results in explicit expressions for the strained concentration
which can be found in Table 1.

The dimensionless pressure drop is then obtained by integrat-
ing Eq. (17). The resulting expression is

Pð0; TÞ � Pð1; TÞ ¼ DP ¼ 1þ /Drcrb
Z 1

0
SsdX: ð41Þ

Under the linear flow regime and constant injection rate conditions
used in this work, the dimensionless pressure drop is equivalent to
the impedance

J ¼ q0

Dp0

Dp
q

¼ DP: ð42Þ

The solution for the Impedance in each zone is presented in Table 1.

3. Qualitative analysis of the solution

3.1. General behaviour of the solution

Fig. 3a presents a schematic of the solution space (X,T) and
Fig. 3b–d present general profiles for the attached, suspended,
and strained particle concentrations respectively.

The attached concentration takes its initial value Scr(ci) at time
T = 0 and begins to decrease upon the arrival of the salinity front.
Due to differences in the arrival time of the salinity front, the
attached particle concentration will always monotonically increase
across the core. The profile of attached particles will tend asymp-
totically to the final value Scr(cinj), corresponding to the injected
fluid salinity.

The suspended concentration begins at zero throughout the
core and remains zero ahead of the salinity front and at the core
inlet. Behind the salinity front, the suspended concentration will
increase or decrease based on the balance between the transport,
detachment, and straining process. Due to the finite concentration
of detached particles, the suspended concentration will eventually
tend to zero, as all particles either strain or reach the core outlet.

The strained concentration also begins at zero, and due to the
absence of suspended particles, is also zero ahead of the salinity
front. As straining is an irreversible process, the strained particle
concentration will grow monotonically with time, tending to a
finite profile as time tends to infinity. This profile is zero at X = 0
and will tend to a constant value some distance from the core inlet.
The consequence of a variable strained concentration profile is that
the permeability of the porous medium following fines migration
will be location-dependent, even after an infinitely long injection
period. The non-uniform damage profile supports the necessity of
coupling laboratory testing with mathematical models such as
the one presented in this work. Simply using the permeability
damage ratio as an indication of the extent of fines migration is
not indicative of the extent of damage that will occur on larger
scales or for different flow regimes.
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3.2. Sensitivity analysis

To further elicit the behaviour of the model, sensitivity analysis
has been performed on two of the primary parameters of the
model. For all calculations, unless otherwise stated, the model
parameters are: / = 0.2, a = 0.03, e = 5, K = 100, b = 1000, and Drcr

= 10�3.
Sensitivity analysis on the dimensionless delay factor, e, is pre-

sented in Fig. 4. Both the impedance and the outlet suspended con-
centration, C(1,T) are shown for 50 pore volumes injected (PVI). A
larger delay time prolongs the time until stabilisation of the impe-
dance, however the final value is independent of the delay time.
Trends for the suspended concentration show a sharp increase
after 1 PVI followed shortly by an exponential decline to zero.
Higher delay times result in smaller peaks but show more pro-
nounced tails. Similar to the impedance, the area under each curve,
or the total concentration collected at the outlet, is independent of
the delay time.

Fig. 5 shows the sensitivity of the model with varying values of
the dimensionless filtration coefficient,K. A larger filtration coeffi-
cient implies a greater probability of straining. As a result, the total
strained concentration in the core is higher, and the resulting
impedance is also larger. When a higher proportion of detached
particles are strained, the total concentration of particles that
reaches the core outlet will be lower. Thus, the outlet concentra-
tion is strictly lower when the filtration coefficient is higher.
Fig. 4. Sensitivity of the analytical model with the dimensionless delay f

Fig. 5. Sensitivity of the analytical model with the dimensionless filtration co
3.3. Behaviour of the solution with instant detachment

It is interesting to note the behaviour of the solution with the
delay factor tending to zero. For comparison, profiles for the
attached, suspended, and strained particle concentrations are
shown in Fig. 3 at the time T1. The dashed curves correspond to
the case of zero delay, while the delay is non-zero for continuous
lines.

The solution for the suspended concentration in Table 1 has an
explicit expression for this limit:

CðX; TÞ ¼
0 X < aT
1

a�1 1� e�aKð
X�T
a�1Þ

� �
aT < X < T

0 X > T

8><
>: : ð43Þ

The absence of a finite detachment rate results in discontinuities in
the suspended concentration at both the fluid and particle front.
Due to the absence of suspended particles behind the particle front
(X = aT), all particle concentrations and consequently the impe-
dance will stabilise after time T = 1/a when particles detached at
the inlet reach the core outlet. This property is absent in the solu-
tion derived in this paper as particles continue to detach after the
arrival of the salinity front.

If we further allow the drift delay factor to be equal to one, the
suspended concentration profile will tend to a delta function, with
all suspended particles concentrated on the salinity front with an
actor, e: (a) Impedance, (b) Outlet suspended particle concentration.

efficient, K: (a) Impedance, (b) Outlet suspended particle concentration.
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infinite concentration. This special case, where a = 1 and e = 0, is
singular. Introduction of diffusion into the governing system will
smooth the concentration shock and regularise the solution
(Polyanin and Zaitsev, 2011). The solution with diffusion is
obtained by using the method of matched asymptotic expansions,
which will produce an approximate solution. In this work, we have
shown that the introduction of a delay in particle detachment can
also regularise the solution, and an exact solution is still
obtainable.

If the drift delay factor is set to one in the solution with delayed
detachment found in Table 1, the suspended concentration still has
a finite distribution. Thus, only the drift delay factor or a delay in
detachment is required to produce a finite solution for the sus-
pended particle concentration.

3.4. Comparison between exact and numerical solutions

The system of Eqs. (13)-(17) subject to initial and boundary
conditions (18)-(20) has been solved numerically using an implicit
first-order finite difference scheme implemented in Matlab. The
system of linear equations was solved using a forward substitution
solver in Matlab. The parameter values used are / = 0.2, a = 0.05, e
= 0.25, K = 10, b = 2000, and Drcr = 10�3. The (X,T) space was uni-
formly discretised with DX = 1 � 10�4 and DT = 5 � 10�3. The
resulting suspended and strained particle profiles for both the
Fig. 6. Comparison between the exact analytical and the numerical solutions: (a) Susp

Table 2
Core properties and fitted model parameters for the laboratory coreflooding tests.

Core Properties Core length, cm
Initial porosity
Initial permeability, mD

Injection Conditions Injected Salinity, Mol/L
Injection Velocity, cm/s

Model Parameters Drift delay factor, a
Delay factor, s (s)
Dimensionless delay factor, e
Filtration coefficient, k (1/m)
Dimensionless filtration coefficient, K
Formation damage coefficient, b
Detached particle concentration, Drcr

Coefficient of determination, R2 (Impedance)
Coefficient of determination, R2 (Accumulated Concentra
exact and numerical solutions is shown in Fig. 6. The curves coin-
cide well showing that the agreement between the two solutions is
high.
4. Laboratory study

A laboratory coreflooding study has been performed on four
consolidated sandstone cores. The methodology of these tests will
be presented below.
4.1. Rock and fluids

All cores were cut from the same Grey Berea sample. XRD anal-
ysis was conducted on a sample from the core using a Bruker D8
ADVANCE Powder X-ray Diffractometer with a Cu-radiation
source. The results demonstrated a dominance of quarts (78.2 wt
%) with a significant clay fraction primarily composed of kaolinite
(3.1%) and illite (2.6%). The cores have varying lengths and were
injected with solutions of varying salinity. The core properties
and injection conditions are presented in Table 2. The cores were
de-aerated using a vacuum pump for 24 h and consequently satu-
rated with a 0.6 mol/L NaCl solution under vacuum for a further 24
h. All solutions prepared for these tests used analytical grade
sodium chloride and MilliQ deionised water.
ended particle concentration profiles, (b) Strained particle concentration profiles.

Core 1 Core 2 Core 3 Core 4

1.84 3.899 5.854 10.191
0.185 0.185 0.186 0.193
74.38 74.08 78.82 100.07

0.005 0.01 0.03 0.03
2.93E�03 2.93E�03 2.93E�03 2.93E�03

0.1338 0.4386 0.7396 0.6265
438.02 359.12 578.91 1045.73
3.78 1.46 1.56 1.56
110.19 19.71 27.86 22.21
2.03 0.77 1.63 2.26
1.799E+07 3.131E+07 1.542E+07 2.588E+07
2.342E�04 2.427E�04 4.676E�05 3.937E�05

0.9801 0.9966 0.9768 0.9913
tion) 0.7156 0.7694 0.8487 0.9088
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4.2. Equipment and set-up

The laboratory set-up used in these tests is presented
schematically in Fig. 7. Aqueous salt solutions are injected into
the core at a constant flow rate using a Prep pump. The core is
held within a TEMCO HCH-1.5 coreholder, constrained axially
by two flow distributors, and radially by a viton sleeve. An
overburden pressure of 1000 psi was maintained around the
viton sleeve during the tests to minimise annular flow between
the core and the sleeve. The pressure difference across the core
was measured continuously using a series of Yokogawa EJX
110A differential pressure transmitters. Four differential pres-
sure transducers with capacities of 1, 10, 100, and 1000 psi
are used to accurately cover a wide range of pressure draw-
downs. Pressure differences above 1000 psi are measured using
two Keller PA-33X pressure transmitters at the inlet and outlet.
A thermocouple is connected to the inlet fluid line to measure
the fluid temperature continuously throughout the test. The
fluid viscosity used to calculate the core permeability is cor-
rected for temperature, pressure, and salinity in real-time
according to previously established correlations (Aleksandrov
et al., 2012; Kestin et al., 1981).

The fluid was collected at the outlet in test-tubes using a GE
Frac 920 sample collection carousel. The effluent suspended parti-
cle concentration for each sample was measured using a POLA-
2000 particle counter.
4.3. Laboratory-study methodology

Following the saturation of the core in 0.6 M NaCl, the core
was placed in the coreholder and the overburden pressure was
established. The test then began by injecting a 0.6 M NaCl solu-
tion into the core at a flow rate of 2 mL/min. The injection of the
low salinity solution commenced only after complete stabilisa-
tion of the core permeability had been achieved. In each core,
a period of 24 h was used to ensure complete stabilisation. Con-
tinuous pressure drop measurements were recorded using data
collection software.
Fig. 7. Schematic of experimental set-up
5. Matching the laboratory data by the analytical model

Two sets of data from the experiment were used to tune the
model parameters. These were the dimensionless, normalised
pressure drop, or the impedance, and the accumulated outlet
concentration

CaccðTÞ ¼ a
Z T

0
Cð1; TÞdT: ð44Þ

Both data sets were tuned simultaneously within Matlab (Math-
Works Inc, 2016) using a genetic least-squares algorithm. This algo-
rithmwas used because it has a greater ability to avoid convergence
to local minima. The algorithm minimised the observed difference
between the model and experimental data by tuning five model
parameters: the drift-delay factor, a, the dimensionless delay factor,
e, the dimensionless filtration coefficient, K, the formation damage
coefficient, b, and the total detached concentration, Drcr.

Figs. 8–11 show the experimental results alongside the fitted
model. The fitting parameters and coefficients of determination
are presented in Table 2. The results are presented only for the sec-
ond stage of injection, where the introduction of low-salinity water
resulted in significant permeability decline for all cores. During the
permeability decline, a significant volume of suspended particles
was collected at the outlet for all tests.

The model fitting demonstrates good agreement between the
model and the experimental data. This is supported by the high
value of R2 calculated for the two plots. The fitting of the impe-
dance curves is significantly better than for the accumulated con-
centration. Measurement of the suspended particle concentration
required significant dilution of the samples which would have
introduced a significant error beyond the measurement error of
the apparatus. This error supports the difference in fitting quality
of the two data sets. The discrepancy is most prominent in the
two shorter cores, suggesting that a portion of this error could be
a result of ignoring diffusion.

If compared with tuning of the same experimental data by the
model with instant fines release, introduction of the delay factor
increases the overall coefficient of determination by 0.02 to 0.1.
with labels for primary components.



Fig. 9. Experimental data and tuned theoretical model for core 2: (a) Impedance, and (b) Accumulated outlet concentration.

Fig. 10. Experimental data and tuned theoretical model for core 3: (a) Impedance, and (b) Accumulated outlet concentration.

Fig. 8. Experimental data and tuned theoretical model for core 1: (a) Impedance, and (b) Accumulated outlet concentration.
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6. Discussion

Planning and design of numerous technologies in environmental,
chemical and petroleum engineering, where suspension-colloidal
flows in porous media occur, are based on mathematical mod-
elling. Simultaneous application of numerical and analytical
models yields better understanding of the physical phenomena
and allows for multi-variant comparison of different technological



Fig. 11. Experimental data and tuned theoretical model for core 4 (a) Impedance, and (b) Accumulated outlet concentration.
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decisions. The above applications have motivated numerous
studies on exact solutions for one-dimensional (1D) suspension-
colloidal flows in porous media.

In this work, the exact solution has been used to tune laboratory
data to obtain model coefficients. This process requires computing
the direct (forward) model many times and consequently any
incremental computation time introduced by numerical tech-
niques can be prohibitive to convergence of the fitting procedure.
In addition, the exact solution presented here can be used as a
benchmark for numerical models. The analytical model developed
can also be used in three-dimensional (3D) reservoir simulation
using stream-line techniques (Datta-Gupta and King, 2007).

The analytical solution is presented in an explicit form, allowing
for direct implementation into widely available software like Mat-
lab or Microsoft Excel. This allows interpreting laboratory data or
making field-scale predictions without having to use computation-
ally expensive numerical methods.

The laboratory results presented in Figs. 8–11 impedance values
up to 450. Despite this substantial damage to the rock permeabil-
ity, inlet pressures did not exceed the pressure limits of the injec-
tion pump (4000 psi) and the differential pressure transducers
(1,10,100,1000 psi) of our experimental set-up. Similar papers
(Sarkar and Sharma, 1990) have shown Impedance values growing
up to �1000.

The laboratory test conducted in this work shows significant
variation in the stabilised value of impedance between the four
cores. While a portion of this variation could be a result of hetero-
geneity, the observed trends can be explained in the context of the
proposed model.

Firstly, for the same injection conditions, a longer core length
results in a larger stabilised impedance. This follows directly from
the strained concentration profiles presented in Fig. 3. While Ss
reaches a constant value far from the core inlet, even after stabi-
lization (T?1) the strained particle concentration is small close
to the inlet. The size of this low-damage zone does not change with
the core length, and so for longer cores, its effect on the overall
impedance will be small. Thus, when the only difference between
two cores is the core length (e.g. Cores 3 and 4), we expect the
longer core to have a greater stabilised impedance. Mathemati-
cally, the dependence of the stabilised impedance on the core
length follows from the fact that the solution presented in Table 1
is not self-similar.

The other important condition which varies across the labora-
tory tests is the injected salinity. As outlined in the introduction,
a lower injected salinity will result in more particle detachment
and consequently a higher impedance. This is reflected in the lab-
oratory results.

The variation in the model parameters obtained from tuning the
laboratory data is attributed to heterogeneity in the clay content
and pore structure of different rocks used in this study. This
heterogeneity is also noted to have an effect on the initial perme-
ability, which varies from 74 to 100 mD.

The laboratory test for full characterisation of the particulate
flow system with delayed particle detachment includes measure-
ments of breakthrough concentration and pressure drop across
the core. Pressure measurements require simple and robust equip-
ment providing high accuracy, while particle counters are cumber-
some and expensive with low accuracy of concentration
measurements. An alternative option is the use of pressure drop
across the core section together with the overall pressure drop.
This so-called 3-point-pressure method has been successfully
developed for suspension-colloidal flow without detachment
(Bedrikovetsky et al., 2001). Application of 3-point-pressure test
for fines migration could simplify the equipment an increase the
accuracy of measurements, yielding more reliable laboratory-
based field-scale predictions.

Retention profiles during suspension-colloidal flows can be
measured using X-ray computed micro-tomography (Al‐Yaseri
et al., 2016; Mikolajczyk et al., 2018). Tuning of the profiles Ss(x,
t) using the explicit formula, presented in Table 1, would improve
the accuracy of determining the model constants.

The presented single-phase model with delayed fines detach-
ment can be generalised for two-phase suspension-colloidal flows.
Besides electrostatic and drag forces, the attached particles are
subject to capillary forces, exerting from the menisci between
two phases (Zhang and Hassanizadeh, 2017). The particles
attached to menisci are transported by the phase-separating sur-
face, which is not determined by the Darcy velocity. The full sys-
tem of equations includes Maxwell constitutive equations
(Shapiro, 2015; Shapiro, 2016).
7. Conclusions

Mathematical and laboratory modelling of suspension-colloidal
transport in porous media accounting for the kinetics of particle
detachment allows drawing the following conclusions:

1. The one-dimensional problem for low-salinity water induced
fines migration with delay allows for an exact solution.



T. Russell, P. Bedrikovetsky / Chemical Engineering Science 190 (2018) 98–109 109
2. The solution provides explicit formulae for the suspended,
attached, and strained particle concentrations as well as the
impedance.

3. Introduction of the delay in detachment removes the disconti-
nuities in the suspended concentration present in the solution
with instantaneous detachment.

4. For the case where the particles and fluid propagate with the
same velocity, the introduction of the delay factor regularises
the problem.

5. The exact solution exhibits close agreement with laboratory
coreflooding data.
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A B S T R A C T

Colloidal-suspension flows in porous media occur in numerous areas of environmental, chemical and petroleum
engineering. The main processes are capture and detachment of particles, yielding permeability decline. We
developed a governing system of transport equations with particle detachment kinetics, where the detachment
by high velocities is instant, due to flow incompressibility, and the detachment by decreasing the fluid salinity is
delayed, due to micro-scale diffusion. The system allows for a semi-analytical solution for axi-symmetric low-
salinity water injection with fines migration. The model exhibits instant fines mobilization at the beginning of
injection by drag force, fines release with delay behind the salinity front by electrostatic force, and the inter-
action of two concentration waves. The model can be used for laboratory-based injectivity decline prediction
during injection of water in aquifers and oilfields, where the injected and formation water compositions are
different, and also for fines-migration during drilling fluid invasion.

1. Introduction

During injection operations into a reservoir, natural reservoir par-
ticles can detach and become suspended in the injected fluid. The
suspended particles strain in pore throats as they are carried through
the pore space in the case where the particles have sizes comparable to
the pore throats.

Straining results in a significant decline in the permeability of the
porous media. This process is referred to as fines migration and poses a
serious risk to the capability of injection wells to supply fluid to the
reservoir.

Fines migration has been shown to have a significant impact on the
injectivity of oil wells (Barkman et al., 1975) and of freshwater storage
wells (Prommer et al., 2013). Any operations involving porous media
that contains fine particles that are susceptible to both detachment and
straining are potentially prone to fines migration. Example applications
include groundwater flows (Kaplan and Muñoz-Carpena, 2014) and
contaminant transport (Zhang et al., 2016).

Decision-making during the injection of foreign water into aquifers
and oil-fields for displacement, storage, or disposal purposes is based on
numerical and analytical modelling at the reservoir scale (Hayek, 2014;
Hayek, 2015). The rheological relationships used for this modelling are
determined by matching laboratory and micro-scale modelling
(Mirabolghasemi et al., 2015).

Modelling fines migration required descriptions of the processes of
detachment, migration, and straining, which are shown schematically
in Fig. 1.

Particle detachment in response to changes to the flow conditions is
described by the total concentration of detached particles and the rate
of particle detachment.

It is helpful to imagine particles that remain attached under any
flow conditions to be in a state of equilibrium. Certain changes to the
flow conditions result in a shift in the equilibrium and a consequent
detachment of particles. In describing the nature of this equilibrium,
some authors have adopted empirical equations (Kuo and Matijevic,
1979), while others have neglected the equilibrium altogether
(Vardoulakis et al., 1996), resulting in the detachment of all in-situ
particles. More recent approaches have focused on the forces acting on
particles (Yuan and Shapiro, 2011; Zeinijahromi and Bedrikovetsky,
2016). The balance of these forces, often assumed to be in the form of a
torque balance, relates the prediction of particle detachment to state
variables such as the fluid velocity or salinity through established re-
lations for the acting forces.

The two primary forces acting on attached particles are the hydro-
dynamic drag force Fd, and the electrostatic force, Fe. Additional forces
such as the lifting, gravitational, or Brownian forces are neglected from
this discussion as they have been shown to be negligible for the con-
ditions of fines detachment in natural reservoirs (Kalantariasl and
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Bedrikovetsky, 2013).
The remaining two forces are shown acting on an attached particle

alongside their respective lever arms ld and ln in Fig. 1. The mechanical
equilibrium of the attached particle is determined by the balance of the
torques generated by these forces (Bedrikovetsky et al., 2011;

Sasidharan et al., 2017)

=F U l F γ pH l( ) ( , , Θ)d d e n (1)

where U is the fluid velocity, γ is the fluid salinity, and Θ is the tem-
perature.

Fines detachment occurs when the detaching torque generated by
the drag force exceeds the attaching torque generated by the attractive
electrostatic force. Higher fluid velocities result in a higher drag force
(Goldman et al., 1967), and hence increase the extent of particle de-
tachment (Zheng et al., 2014). Similarly, the electrostatic force de-
creases with decreasing fluid salinity (Khilar et al., 1983; Shen et al.,
2018), or increasing pH (Kia et al., 1986; Patil et al., 2011), resulting in
more particle detachment. This explains why low-salinity water-
flooding operations are particularly prone to formation damage re-
sulting from fines migration. Higher temperatures have also been
shown to decrease the electrostatic force (You et al., 2015), which is
important when injecting into deep reservoirs, or during geothermal
operations (You et al., 2016).

Applying the torque balance condition to all particles within the
porous medium allows the derivation of a macro-scale equation relating
the flow conditions to the attached particle concentration. This function
is referred to as the critical retention function

σ U γ pH( , , , Θ)cr (2)

In natural reservoir rocks, properties such as pore size, particle size
and geometry among others will be non-uniform. Thus, the properties
which determine the condition of mechanical equilibrium (1) will be
stochastically distributed. The torque balance can determine whether
each particle is attached based on their own properties. The population
of all particles whose mechanical equilibrium favours detachment gives
the attached concentration, given here as the critical retention function.
Therefore, despite the non-uniformity of micro-scale parameters, the
function (2) is still valid.

In most experimental studies of fines migration, the flow conditions
are controlled to study the effect of changing one variable on the

Nomenclature

c suspended particle concentration [–]
Cacc accumulated suspended particle concentration [–]
D slope of characteristic line [–]
Fd drag force [M][L]−1[T]−2

Fe electrostatic force [M][L]−1[T]−2

J impedance [–]
k0 initial core permeability [L]2

ld drag lever arm [L]
ln normal lever arm [L]
P dimensionless fluid pressure [–]
p fluid pressure [M][T]−2[L]
q volumetric injection rate per unit formation thickness

[L]2[T]−1

q0 initial injection rate [L]3[T]−1

r radial distance [L]
rd damaged zone radius [L]
re drainage radius [L]
rw wellbore radius [L]
Sa dimensionless attached particle concentration [–]
SaI dimensionless initial attached particle concentration [–]
Ss dimensionless strained particle concentration [–]
t elapsed time [T]
T pore Volumes Injected [–]
T0 [–]
U fluid velocity [L][T]−1

Um maximum velocity [L][T]−1

Up particle velocity [L][T]−1

X dimensionless radial distance [–]
X0 [–]

Greek Letters

α drift delay factor [–]
β formation damage coefficient [–]
Γ dimensionless fluid salinity [–]
γ fluid salinity [N][L]−3

Γ’ dimensionless pseudo-salinity
γ’ pseudo-salinity [N][L]−3

γi initial fluid salinity [N][L]−3

γinj injected fluid salinity [N][L]−3

ΔP dimensionless pressure drop [–]
Δp0 initial pressure drop [M][T]−2[L]
Δσcr total detached particle concentration [–]
ε dimensionless delay factor [–]
Θ temperature [Θ]
λ filtration coefficient [L]−1

μ fluid viscosity [M][L]−1[T]−1

σ0 maximum attached concentration [–]
σa attached particle concentration [–]
σaI initial attached particle concentration [–]
σcr critical retention function [–]
σs strained particle concentration [–]
τ delay factor [T]
ϕ porosity [–]

Fig. 1. Schematic of the process of fines migration.
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attached concentration. However, during uni-axial flows, such as
during injection operations, the fluid velocity is a decreasing function of
the distance from the wellbore. As such, a continuous relation between
the attached concentration and the fluid velocity is required. The cri-
tical retention function satisfies this requirement.

Previous studies have demonstrated a significant delay in the re-
sponse of attached oleic particles to changes in the fluid salinity
(Mahani et al., 2015). The authors argue that diffusive processes slow
the effect of decreasing salinity on altering the salinity between oil
particles and the pore surface, thus delaying the detachment of these
droplets. A similar argument will apply to the detachment of fines from
the pore surface, and therefore a delay in particle detachment should be
expected. Such a delay has been noted in several experimental works
(Gravelle et al., 2011; Pazmino et al., 2014). As a result, many authors
have adopted a first-order kinetics relation to describe particle de-
tachment due to the injection of low-salinity water (Gravelle et al.,
2011; Grolimund and Borkovec, 2006; Russell and Bedrikovetski,
2018). On the contrary, some authors assert that particle detachment by
velocity is instantaneous, based on the notion that changes to the fluid
velocity will instantly affect the drag force acting on particles (Yang
et al., 2016). Thus, the kinetics of particle detachment should be
evaluated in conjunction with the cause of the detachment. It follows
that in scenarios where particle detachment can occur by either salinity
or velocity, such as during the injection of low-salinity water, a single
expression for detachment kinetics will be inadequate. Nonetheless,
existing models for fines migration due to low-salinity water injection
make use of a single particle detachment kinetics regime. The purpose
of this work is to present a mathematical model for fines migration in
uni-axial coordinates that separately describes the kinetics of particle
detachment due to changes in both velocity and salinity.

The structure of the paper is as follows. The assumptions and gov-
erning equations for the mathematical model are presented in Sections
2.1 and 2.2 respectively. A semi-analytical solution for this system is
derived in Section 2.3. Section 2.4 presents the equations for calcu-
lating injectivity and a specific form of the critical retention is provided
in Section 2.5. Section 3 presents a laboratory study of fines migration,
the results of which are treated in Section 4. Section 5 presents pre-
dictions of injectivity decline based on the results of the treatment of
the laboratory data. A discussion of the model is presented in Section 6,
and Section 7 concludes the paper.

2. Mathematical model

In the current section, a mathematical model is presented to de-
scribe fines migration during single-phase uni-axial flow.

2.1. Assumptions of the model

Both the fluid and particles are assumed to be incompressible. In
addition, particle and fluid volumes are assumed to be additive during
detachment and straining.

Suspended particles are assumed to move through the porous space
with a velocity smaller than the fluid velocity (Oliveira et al., 2014)

=U αUp (3)

where Up is the particle velocity, U is the fluid velocity, and α is drift
delay factor, which is significantly less than one. The discrepancy be-
tween the particle and fluid velocities follows from rolling and sliding
of the suspended particles along the pore walls.

Particle straining is assumed to be an irreversible process. The
strained concentration is also assumed to be negligibly small compared
to the number of straining vacancies within the rock.

Particle attachment due to electrostatic attraction is ignored. As
outlined above, particle detachment can occur due to an increase in
fluid velocity or a decrease in the fluid salinity. Changes to the fluid
salinity are assumed to have a delayed effect on the detachment of

particles. This assumption follows from the diffusion-limited ion
transport between the bulk solution and the solution between the
particle and the grain (Mahani et al., 2015). The latter governs the
electrostatic force and hence the critical retention function. Changes to
the fluid velocity are however assumed to have an instantaneous effect
on particle detachment.

Finally, both particle and salt diffusion/dispersion are ignored as
these processes are assumed to be negligible compared to their re-
spective advective fluxes (Polyanin and Dilman, 1994).

2.2. Governing equations

Following the assumptions outlined in the previous section, we now
present the system of equation describing fines migration in uni-axial
flow with delayed particle detachment.

The uni-axial incompressible flow results in a fluid velocity varying
with radial distance:

=U
q
πr2 (4)

where q is the volumetric injection flow rate per unit formation thick-
ness, and r is the radial coordinate.

The mass balance of suspended, strained and attached particles
transported by incompressible fluid with velocity given by Eq. (4) with
drift delay factor (3) and neglecting particle dispersion is

∂
∂

+ + + ∂
∂

=
t

ϕc σ σ
αq
πr

c
r

( )
2

0s a (5)

where t is time, ϕ is the porosity, c is the suspended particle con-
centration, σs is the strained particle concentration, and σa is the at-
tached particle concentration.

The straining rate is assumed to be proportional to the incoming
suspended particle concentration

∂
∂

=σ
t

αλcq
πr2

s
(6)

where λ is the filtration coefficient. The assumption of a small strained
concentration compared to the number of straining sites leads to a
constant λ (Altoe et al., 2006).

The transport of salt in the reservoir is governed by the mass bal-
ance equation for the electrolyte

∂
∂

+
∂
∂

=ϕ
γ
t

q
πr

γ
r2

0 (7)

Following the assumptions in Section 2.1, any description of the
kinetics of particle detachment should satisfy the following statements.
Firstly, the attached concentration should be governed by the critical
retention function, which itself is a function of the fluid salinity and
velocity. Secondly, the particle detachment rate should be infinite with
respect to changes to velocity, and finite with respect to changes to
salinity.

To satisfy these requirements, we introduce the pseudo-salinity, γ′
such that:

= ′σ r t σ U γ( , ) ( , )a cr (8)

Thus, the attached concentration is governed by the velocity and
pseudo-salinity.

The pseudo-salinity is equal to the fluid salinity after some delay
time, τ:

′ + =γ x t τ γ x t( , ) ( , ) (9)

By assuming a constant delay time, we can use a first order Taylor’s
series approximation to obtain the rate equation (Bernasconi, 1976)

∂ ′
∂

= − ′τ
γ
t

γ γ (10)

This equation, which holds for small delay times (τ ≪ t), describes
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the rate at which changes to the fluid salinity translate into changes to
the pseudo-salinity.

Under this formulation, abrupt changes to the velocity translate to
abrupt changes in the attached concentration. However, abrupt changes
to the salinity have a gradual effect on particle detachment, as required.

Finally, the relationship between the strained concentration and the
rock permeability is given by a first order Taylor series approximation

≈ +k
k σ

βσ
( )

1o

s
s (11)

where k0 is the initial permeability, and β is the formation damage
coefficient.

Substituting this equation into Darcy’s law yields

= −
+

∂
∂

q
πr

k
μ βσ

p
r2 (1 )s

0

(12)

where μ is the fluid viscosity, and p is the fluid pressure
The system of Eqs. (5–8), (10) and (12) describes the 6 unknowns (c,

σs, σa, γ, γ′, p).
Prior to solving the system of equations, we introduce the following

dimensionless variables

= − = = =

= = = = =

∫

−

−

r r r X T S
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, , , ,
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n e w
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πϕr s
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qτ
πϕr

γ γ

γ γ
πpk
qμ

2
n n

s

a
n

inj

i inj

2
2 2

2
0

(13)

where re is the drainage radius of the reservoir, rw is the wellbore ra-
dius, and γinj is the injected fluid salinity, which is lower than the initial
fluid salinity γi. Dimensionless time T is expressed in pore volumes
injected πϕrn2 (PVI).

Using these variables, the Eqs. (5–8), (10) and (12) now take the
dimensionless form

∂
∂

+ + + ∂
∂

=
T

c S S α c
X

( ) 0s a (14)

∂
∂

=S
T

α c
X

Λ
2

s

(15)

= ′S X T S U γ( , ) ( , )a cr (16)

∂
∂

+ ∂
∂

=
T X
Γ Γ 0 (17)

∂ ′
∂

= − ′ε
T
Γ Γ Γ (18)

= −
+

∂
∂X βϕS

P
X

1 2
1 s (19)

The initial conditions for the system correspond to a reservoir in-
itially saturated with high-salinity water with an absence of suspended
and strained particles

= = = =T c S0: Γ 1, 0, 0s (20)

The attached concentration begins at some initial value

=S Sa aI (21)

The boundary condition for this problem is applied at the wellbore
radius. The injected fluid has salinity γinj and contains no suspended
particles

= = = =r r X X c: : Γ 0, 0w w (22)

The boundary condition for the strained particle concentration fol-
lows from substituting boundary condition (22) into Eq. (15) and in-
tegrating. This yields

=S X T( , ) 0s w (23)

2.3. Solution

The equation for salt transport de-couples from the system
(14–16,18,19) and so can be solved separately. Using the method of
characteristics, the solution separates for the two regions behind and
ahead of the injected salinity front, X-Xw=T. The final solution is

= ⎧
⎨⎩

− >
− <X T

X X T
X X TΓ( , )

1,
0,

w

w (24)

The discontinuity along the salinity front is a consequence of ne-
glecting diffusion.

The pseudo-salinity can then be solved by substituting the solution
for the salinity into Eq. (18) and integrating by separation of variables.
The initial condition used for the pseudo-salinity is the same as that for
the salinity. Ahead of the salinity front, the solution is

′ =Γ 1 (25)

Eq. (18) implies that the pseudo-salinity is continuous across the
solution space. As such, Eq. (25) can be used as the initial condition
ahead of the salinity front:

= ′ =T X : Γ 1 (26)

Using this condition to solve Eq. (18) yields the solution behind the
salinity front

′ = −eΓ X T
ε (27)

Hence an immediate decrease in the salinity along the salinity front,
X-Xw=T, results in an exponential decline in the pseudo-salinity from
Γ′ = 1 to Γ′ = 0.

Next the particle mass balance Eq. (14) and the straining rate Eq.
(15) are used to solve for the suspended particle concentration. The
resulting partial differential equation (PDE) is

∂
∂

+ ∂
∂

= − − ∂
∂

c
T

α c
X

α c
X

S
T

Λ
2

a

(28)

The solution space is naturally divided into three regions (shown in
Fig. 2): ahead of the salinity front (X-Xw > T, region 0), the inter-
mediate region between the salinity front and the suspended particle
front (T > X-Xw> αT, region I), and the region behind the suspended
particle front (αT>X-Xw, region II). The method of characteristics can
be used to derive the solution for each of these regions (Polyanin and
Zaitsev, 2011; Polyanin and Manzhirov, 2007; Tikhonov and Smarskii,
2011).

In Region 0, evaluating the PDE (28) along parametric curves given
by

=dT
dX α

1
(29)

reduces the PDE to an ordinary differential equation (ODE)

= − − ∂
∂

dc
dX

c
X α

S
T

Λ
2

1 a

(30)

The initial condition for this region is given along the X-axis. Due to
the assumptions that the fluid is incompressible and that particle de-
tachment due to velocity occurs instantaneously, particle detachment
by velocity at the initial salinity must be incorporated into the initial
conditions. As such, on the X-axis, the attached concentration is

= =
⎧

⎨
⎩

′ = >
′ = > ′ = >

> ′ =
S X T

S U X
S U X S U X S

S S S U X
( , 0)

0 (Γ 1, ( , 0)) 0
(Γ 1, ( , 0)) 0 (Γ 1, ( , 0))

(Γ 1, ( , 0))
a

cr

cr cr aI

aI aI cr

(31)

The excess attached particles, below SaI, become suspended in the
carrier fluid. For brevity, we present the initial condition as

= = − =T c S S X T0: ( , 0)aI a (32)

T. Russell et al. Journal of Hydrology 564 (2018) 1099–1109

1102



The pseudo-salinity and fluid velocity are independent of time
within region 0, and so the detachment rate in Eq. (30) is zero. In-
tegrating Eq. (30) subject to initial condition (20) yields the solution for
the suspended concentration ahead of the salinity front

= − =− − −c e S S X T( ( , 0))X X αT
aI a

Λ( ) (33)

The solution for region 0 along the salinity front serves as an initial

condition for region I. It is first necessary to demonstrate that the sus-
pended concentration is continuous along this front. To do so, we make
use of a mass balance condition derived from Eq. (14) (Bedrikovetsky,
1993)

+ + =c S S D α c[ ] [ ]a s (34)

where the square brackets indicate the change in a variable across the
curve with slope D.

Eqs. (15) and (25,27) respectively demonstrate that for all positive
(X,T), the strained and attached concentrations are continuous. There-
fore, along the salinity front we have

=c α c[ ] [ ] (35)

For α<1, the solution follows

=c[ ] 0 (36)

Thus, the suspended concentration is continuous along the salinity
front.

In region I, the characteristic curves are given by

=dX
dT

α (37)

Along these curves the PDE (28) reduces to

+ = − ∂
∂

dc
dT

α c
X

S
T

Λ
2

a

(38)

Eq. (37) can be solved to give the equation for the characteristics

− = −X X α T T( )0 0 (39)

where the set of points (Xw+X0, T0) define the location where the
initial condition is given. For this region, the initial condition is pro-
vided along the salinity front. As such, we have

+ =X X Tw 0 0 (40)

So

= + − +X αT T α X(1 ) w0 (41)

Substituting Eq. (41) into Eq. (38) allows eliminating the variable X
so that the ODE may be solved directly.

Performing the integration produces the implicit solution for the
suspended particle concentration in this region

∫
= − =

− ∂
∂

− − −

−

c e S S X T

e e S X T T
T

dT

( ( , 0))

( ( ), )

X X αT
aI a

X

T

T
X T a

[ Λ( )]

Λ( ) Λ ( )

0 (42)

The dependence of the variable X on T in the integral persists as the
integration is performed along the characteristics.

The solution is presented implicitly here due to the necessity of the
form of the critical retention function to be known. The equations are
presented generally for any form of this function, and a specific ex-
ample is presented in Section 2.5.

In region II, Eq. (28) is evaluated along curves given by

=dT
dX α

1
(43)

to reduce the PDE to the form

= − − ∂
∂

dc
dX

c
X α

S
T

Λ
2

1 a

(44)

Performing the integration and making use of the boundary condi-
tion (22) results in

∫= − ∂
∂

−
c e

α
e S X T X

T
dX( , ( ))X

X

X
X a

Λ
Λ

w (45)

Equations for the attached and suspended concentrations can be
found in Table 1.

Fig. 2. Profiles for the behaviour of the semi-analytical solution: a) X-T plane,
b) Attached particle concentration, c) Suspended particle concentration, and d)
Strained particle concentration.
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Once the suspended concentration is known, the strained con-
centration can be obtained by integrating Eq. (15).

2.4. Injectivity

Given any strained concentration profile, the dimensionless pressure
drop can be calculated by integrating Eq. (19). The impedance is then
calculated by normalising the dimensionless pressure drop by its initial
value

= =J
q
q

p
p

P
P

Δ
Δ

Δ
Δ

0

0 0 (46)

where the subscript 0 indicates the initial value, prior to any damage.
In order to calculate a dimensional output of the model, it is ne-

cessary to impose a boundary condition at the wellbore. The simplest
case is the condition of constant injection rate. Under this condition, the
pressure drop between the wellbore and the reservoir boundary is
calculated as
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+
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which reduces to
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Another common constraint on injection conditions is to maintain a
constant bottom-hole pressure. To maximise injection rate, it is often
maintained at a value just below the formation fracture pressure (Rose
et al., 1989). Fines migration will then result in a decrease of the in-
jection rate over time. The inclusion of a variable rate function q(t)
highlights a key assumption used in the solution procedure in Section
2.3. In order to de-couple the modified Darcy’s law Eq. (19) from the
rest of the system, it is necessary to assume that particle detachment is
governed by a single injection rate. For the case of constant injection
rate this poses no problem, but for constant bottom-hole pressure, the
decrease in injection rate violates this assumption.

In order to make use of the model to predict a decrease in injection
rate, we make an additional assumption that particle detachment is
determined only by the initial injection rate. Under this assumption, the
equations governing the fine particle concentrations, and Darcy’s law
can still be separated, and the analysis presented in Section 2.3 still
holds. After calculating the strained concentration, Eq. (12) can be in-
tegrated and re-arranged to obtain the expression for the injection rate

∫
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(49)

For the case of constant pressure drop, the relationship between the
time and the dimensionless time, given in Eq. (13), is not known until
the injection rate has been determined. As such, it is easier to perform
calculations in dimensionless coordinates to calculate q(T), and sub-
sequently calculate the relationship T(t) from Eq. (13). Taking the de-
rivative of this expression with respect to time yields

=dT
dt

q t
ϕπr

( )
n

2 (50)

Evaluating the derivative using a first order Taylor series approx-
imation yields a simple iterative formula

⎜ ⎟= + − ⎛
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1 1
2

(51)

2.5. Example form of the critical retention function

All equations thus far have been presented for any form of the cri-
tical retention function, σcr(U,γ). For the purposes of discussing the
model, we now present a simple form for this function. The dependency
of the critical retention function on the fluid velocity has been discussed
previously (Bedrikovetsky et al., 2011). The resulting critical retention
function takes the form of a parabola

⎜ ⎟⎜ ⎟= ⎛

⎝
−⎛

⎝
⎞
⎠

⎞

⎠
σ U σ U

U
( ) 1cr

m
0

2

(52)

where σ0 is the limit of the critical retention function with zero fluid
velocity, and Um is the maximum velocity, above which no more fine
particles are detached. The quadratic form of the critical retention
function follows from the velocity dependence of the drag force acting
on attached particles (Goldman et al., 1967).

The dependency of the critical retention function on the fluid sali-
nity follows from the dependency of the electrostatic force on the
salinity. A simple and general form for this dependency has not been
well developed for the purposes of fines migration. As such, we propose
a simplification in which the maximum velocity Um varies linearly with
the fluid salinity

= ′ = ′ = + ′ ′ = − ′ =

= + ′ −

U U γ U γ γ γ U γ γ U γ γ

U γ U U

( ) ( ) [ ( ) ( )]

( )

m m m inj m i m inj

m m m0 1 0 (53)

In dimensionless coordinates, the critical retention function then

Table 1
Semi-analytical solution for fines migration with delayed detachment during uni-axial, incompressible flow.

Variable Region Exact Solution

Salinity, Γ < +X X Tw 0
> +X X Tw 1

Pseudo-Salinity, Γ′ < +X X Tw −
e

X T
ε

> +X X Tw 1

Attached Concentration, Sa ′ ⩾X T S U X X T S{( , )| ( ( ), Γ ( , )) }cr aI SaI

< ′ <X T S U X X T S{( , )|0 ( ( ), Γ ( , )) }cr aI ′S U( , Γ )cr
′ ⩽X T S U X X T{( , )| ( ( ), Γ ( , )) 0}cr 0

Suspended Concentration, c < +X X αTw
∫−

− ∂
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e dXe X

α
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X
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takes the form
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(54)

The critical retention function is then characterised by the three
variables σ0, Um0, and Um1. A more complex description of the critical
retention function may be required for describing particle detachment
in some conditions. Regardless, Eq. (54) is used in the remainder of this
work to illustrate the behaviour of the model.

Based on this formulation, the parameter set required to char-
acterise fines migration is then (α, λ, β, τ, σ0, σaI, Um1, Um0).

3. Laboratory study

In this section, a laboratory study is presented that has been de-
signed to characterise the response of a sample porous media to low-
salinity water. A successful characterisation will result in reliable esti-
mates of the parameters outlined in Section 2.5.

3.1. Materials – Rock and fluids

The rocks used in this study were artificially created sand-kaolinite
sandpacks. The use of artificial cores provides significant confidence in
the reproducibility of the cores and hence allows multiple tests to be
interpreted as if they were performed on the same core.

The sand used in the study consisted of more than 99% silica and
was sieved prior to use to constrain the particle size distribution. A
washing procedure outlined in Russell et al. (2017) was performed to
remove impurities on the sand surface and enhance the reproducibility
of the sandpacks. The kaolinite used in this study was analytical grade
kaolinite powder which was dried at 60 °C prior to weighing to remove
excess water.

A fixed mass of 85 g was used for the sandpacks, and for both cores,
the kaolinite mass fraction was 10%. The sand-kaolinite mixture was
wet slightly with high salinity water (0.6 mol/L NaCl) before being
compacted in the core holder.

The homogeneous distribution of clay across the core, and the re-
producibility of the procedure were outlined in Russell et al. (2017).

Fig. 3. Apparatus used for laboratory coreflooding tests: a) Schematic of all components, b) Photograph showing primary components. 1-Coreholder, 2-Viton Sleeve,
3-Stainless steel distributors, 4-Hassler-type coreholder, 5-Manual HiP piston pressure generator, 6-Deionised water (overburden fluid), 7-Overburden pressure valve,
8-Absolute pressure transmitter, 9,12,14-Bourdon-type pressure indicator, 10-Pressure relief value, 11, ,13-pressure transmitters, 15-High pressure pump, 16-
Injection solutions, 17-Injection valve, 18- Back-pressure regulator, 19-21-Differential pressure transmitters, 22-24-Manual three-way valves, 25-ADAMView inlet
acquisition module, 26-Signal conditioner, 27-PC for data acquisition, 28-Effluent valve, 29-Plastic sampling tubes, 30-POLA-2000 particle counter.
Reproduced with permission from Russell et al., 2017
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3.2. Apparatus

The experimental study on fines migration was carried out using a
constant-rate coreflooding apparatus with real-time pressure measure-
ments. A schematic and photograph of the set-up used in the study is
provided in Fig. 3. A complete description of each component of the set-
up is provided in the caption of this figure. In brief, the injection so-
lutions were provided to the core with constant injection rate by the
injection pump while the differential pressure transmitters measured
the pressure difference between the core inlet and outlet. The pressure
difference measurements were recorded in real-time using data acqui-
sition software. Samples were collected at the effluent and then ana-
lysed using a particle counter to determine the suspended particle
concentration.

3.3. Laboratory procedure

The laboratory procedure began by injecting each core with
0.6 mol/L NaCl at a low flow rate 0.2mL/min, which corresponds to
linear velocity U=2.93× 10−6 m/s), to fully saturate the core. The
high salinity fluid and low flow rate were chosen to promote attach-
ment of the kaolinite to the sand grains and to minimise particle de-
tachment during saturation. After 24 h, the injected solution was
changed to the test salinity, which was then maintained for the re-
mainder of each test. The two cores were injected with 0.01mol/L and
0.001mol/L NaCl. These salinities cover the range of slightly brackish
water to fresh water that is typical for fresh water aquifers (Prommer
et al., 2013). After an additional 24 h, the test began by increasing the
injection velocity. During each stage, the velocity was held constant
and the pressure drop across the core and effluent suspended particle
concentration were measured. After 24 h, which was sufficient in all
cases for complete stabilisation of the pressure drop, the velocity was
increased, and the process repeated. The injection rates used in each
test were: 1, 5, 10, 15, 20, 30, 40, and 50mL/min which have re-
spective superficial velocities: 1.47×10−5, 7.34×10−5,
1.47×10−4, 2.2× 10−4, 2.93×10−4, 4.40×10−4, 5.87×10−4,
and 7.34×10−4 m/s. The fluid velocity range was designed to en-
compass velocities that might be encountered in the near-wellbore and
far-field regions during injection operations.

4. Treatment of laboratory data

The data sets obtained from the tests were the pressure drop and
outlet concentration curves for each injection stage. These were fit with
a 1-D model for fines migration with delayed detachment in linear
coordinates. This model is analogous to the system (5–8,10,12) with a
constant fluid velocity along the core. The output of this fitting pro-
cedure was the model parameters: α, τ, β, λ, and Δσcr. The latter de-
scribes the difference in the critical retention function at the velocity of
the current stage and that of the previous stage. The set of these values
for each injection stage facilitates the construction of the critical re-
tention function against the injection velocity. These curves for both
cores have been constructed and fit with the theoretical form given by
Eq. (52). Experimental and theoretical curves are presented in Fig. 4.
The experimental points show good agreement with the theoretical
form of the critical retention function. The parameter values obtained
from fitting were: σ0(0.01M)=0.01205, σ0(0.001M)=0.01178,
Um(0.01M)=0.001622m/s, and Um(0.001M)= 0.0008782m/s. The
effect of salinity is captured in the different values of Um, where a
higher velocity is required to detach all particles in the presence of a
higher salinity.

For the calculation of injectivity decline, the value of σ0 was taken
as the average of the two obtained from experiments. The other model
parameters obtained from fitting the experimental data varied between
injection cycles, so average values were taken from these ranges. The
parameters which are present in traditional models for fines migration

(α, λ, β, Δσcr) lie within ranges of parameters reported in the literature
(Al-Abduwani et al., 2005; Bradford et al., 2003; Bradford et al., 2013;
Chrysikopoulos and Katzourakis, 2015; Oliveira et al., 2014; Sotirelis
and Chrysikopoulos, 2015) The complete set of parameters used in the
calculations is presented in Table 2.

5. Predictions of wellbore injectivity

In this section predictions of wellbore injectivity both for the con-
ditions of constant injection rate and constant bottom-hole pressure are
presented.

The calculations for injectivity decline have been performed for
three different initial bottom-hole pressures, Pwf. This value determines
the initial injection rate, which for all calculations determines the de-
tachment of particles. The three values of Pwf (4000, 5000, 6000 psi)
correspond to initial injection rates of 2.504×10−4, 5.007×10−4,
and 7.511× 10−4 m2/s (equivalent to 136, 272, and 408 bbl/d/m).
The resulting critical retention profiles as a function of the radial dis-
tance, r, are presented in Fig. 5. As the velocity is a decreasing function
of the radial distance, all critical retention curves are increasing func-
tions of this distance. For larger values of Pwf, the pressure gradient (Pwf
-Pres) is larger and hence the flow rate is larger. This results in lower
values of the critical retention function.

5.1. Impedance

The impedance has been calculated as per the solution derived in
Section 2.3. The resulting curves are presented in Fig. 6. Higher injec-
tion pressures result in strictly higher values of impedance. This follows
straightforwardly from the higher concentrations of detached particles
as explained above. The atypically large slope during the initial stages
of injection is indicative of the instant detachment caused by the ve-
locity, while the more gradual impedance growth which follows is a
result of the detachment induced by the injected salinity. The stabili-
sation of the impedance corresponds to the injection of an insignificant
fraction of the reservoir pore volume. It follows that a majority of the
damage occurs in the near-wellbore region.

5.2. Injectivity for constant injection rate

Fig. 7 shows the increase in pressure drop that corresponds to the
model parameters derived from the laboratory study. As expected from
Eq. (46), these curves follow a similar trend to the impedance curves.
The curves show that for low salinity water injection at high injection

Fig. 4. Critical retention curves as a function of velocity at two different sali-
nities derived from experiments and theoretical curves fit using Eq. (52).
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rates, more than 3000 psi of additional pressure drawdown would be
required to maintain the initial injection rate. Such an increase is likely
to test the capabilities of surface equipment or result in a bottom-hole
pressure exceeding the formation fracture pressure.

5.3. Injectivity for constant bottom-hole pressure

The calculated decrease in injection rate due to fines migration is
presented in Fig. 8. Similar to the increase in pressure drop, the cal-
culations show that the injection rate can more than halve within only
several hours of injection time.

Stabilisation of the injection rate takes longer than for the pressure
drop discussed in the previous section. As outlined in Section 2.4, both
variables share the same impedance curve and therefore stabilise after
the same number of injected pore volumes. However, due to the de-
creasing injection rate, when the condition on the wellbore is of con-
stant bottom-hole pressure, the rate at which pore volumes are injected
decreases as per Eq. (50). The result is that while stabilisation occurs
after a fixed number of injected pore volumes, a constant bottom-hole
pressure results in a longer dimensional stabilisation time.

Table 2
Parameters used for the prediction of injectivity decline.

Fines Migration Parameters

Drift delay factor, α 0.02
Filtration coefficient, λ (1/m) 850
Formation damage coefficient, β 1100
Delay factor, τ (s) 1000
Maximum attached concentration, σ0 1.191E−02
Initial attached concentration, σaI 1.191E−02
Um1 (Initial reservoir salinity) (m/s) 1.622E−03
Um0 (Injected salinity) (m/s) 8.782E−04

Reservoir Properties
Porosity, ϕ 0.3854
Drainage radius, re (m) 500
Initial permeability, k0 (mD) 48
Fluid viscosity, μ (Pa.s) 8.9E−04
Reservoir pressure, Pres (psi) 3000
Well Parameters
Wellbore radius, rw (m) 0.1

Fig. 5. Critical retention curves used in the injectivity decline predictions for
different initial bottom-hole flowing pressures, Pwf. σcr,1 and σcr,0 are the critical
retention functions at the initial and injected salinities respectively.

Fig. 6. Calculated well impedance for three different values of the initial bottom-hole flowing pressure, Pwf and three different values of the delay factor, τ.

Fig. 7. Calculated bottom-hole pressures for three different values of the initial
bottom-hole flowing pressure, Pwf under the condition of constant injection
rate.
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5.4. Damaged zone

Another result of the model is how far the formation damage ex-
tends from the wellbore. Fines detachment (Eq. (52)), straining (Eq.
(6)), and the impact of permeability on pressure drawdown (Eq. (12))
are all increasing functions of velocity. Given the velocity distribution
in Eq. (4), it follows that the damage due to fines migration is limited to
within a certain distance from the wellbore. To that end we calculate
the damaged zone radius, rd, defined by (Nunes et al., 2010):

∫ ∫

∫

−
⩽ δX r

X r S X T
X X r

X r S X T
X

X r
X r S X T

X

( )
( ) ( , )

( )
( ) ( , )

( )
( ) ( , )

w
e s

w
d s

w
e s

(55)

which simplifies to

∫

∫
⩽ δX r

X r S X T
X

X r
X r S X T

X

( )
( ) ( , )

( )
( ) ( , )
d

e s

w
e s

(56)

where δ is a small number indicating the extent to which removal of
strained particles within the zone [rw,rd] will remove the effect of fines
migration on the well injectivity.

The damaged zone radius calculated from the laboratory data is
presented in Fig. 9 with δ=0.01. The damaged zone is the same for the
two lower values of Pwf but increases slightly when Pwf is increased to
6000 psi. All curves show a non-monotonic growth of the damaged
zone radius with time. This effect is induced by the introduction of the
delay factor. The initial growth is a result of detachment by the velo-
city. While these particles continue to strain, the effect of delay means
that particles continue to detach very close to the wellbore, where
damage is most significant. This results in a temporary decrease in rd,
which is quickly corrected by detachment by salinity further from the
wellbore. The stabilised value is determined by the form of the critical
retention function shown in Fig. 5, and the filtration coefficient, λ. The
low values of rd relative to the drainage radius, re support the notion
outlined in Section 5.1 that the majority of damage occurs in the near-
wellbore region.

Information of the damaged zone radius serves to guide re-per-
foration, acidizing, or backflow operations designed to mitigate in-
jectivity issues caused by fines migration (Oyeneyin et al., 1996; Zhu
et al., 2001). The values calculated for typical fines migration para-
meters indicates a damaged zone radius of less than 1metre which
suggests that damage due to fines migration is relatively shallow.

6. Discussion

Qualitative analysis of the solution Analysis of the solution for the
suspended concentration shows that the solution can be separated into
two solutions accounting for the detachment that occurs initially due to
high velocities near the wellbore, and the detachment that is further
induced by the low salinity water injection. The sum of the two solu-
tions provides the complete solution given in Table 1. The separation of
the two solutions is largely the consequence of the use of a constant
filtration coefficient. As a result, detached particles will be transported
and captured independently of each other.

Fig. 2 presents profiles for the particle concentrations at different
moments.

Profiles of the attached concentration are given in Fig. 2b at T=0,
at three intermediate times, T1 < T2 < T3, and after an infinite
duration (T → ∞). Immediately after injection has begun, particle de-
tachment occurs at any point in the reservoir where the particle con-
centration lies above the critical retention function of the reservoir fluid
(Scr(X,Γ = 1)). Subsequently, for all points behind the salinity front (X-
Xw=T), the attached concentration decreases exponentially towards
the critical retention function of the injected salinity (Scr(X,Γ = 1)).
This profile is reached only after an infinite injection period.

Fig. 2c shows the suspended particle concentration profiles. The
initial profile corresponds to the immediate detachment at the forma-
tion fluid salinity. This profile will tend to decrease due to particle
straining and migration, but additional detachment induced by the
injected fluid salinity can result in an increase in this profile at certain
points in the reservoir. The suspended concentration remains at zero at
the wellbore and tends to zero after an infinite injection period.

The strained concentration profiles are shown in Fig. 2d. The
strained concentration begins at zero and tends to a finite profile after a
sufficient injection period. As straining is modelled as an irreversible
process, these profiles increase monotonically with time. The velocity
dependence of the straining process results in profiles skewed towards
the wellbore, where fluid velocities are higher.

Effect of the delay factor The impedance curves presented in Fig. 6
are shown for 3 different values of the delay factor, τ. As expected,
smaller values of the delay factor result in faster stabilisation of the
impedance. Despite the difference in stabilisation time, τ has no effect
on the final value of the impedance, as it only changes the rate at which
particles detach, not the total detached particle concentration. The
sharp slope during the early times is independent of the delay factor,
which supports the notion outlined in Section 5.1 that this atypically
sharp increase in the impedance results from the straining of particles

Fig. 8. Calculated injection rate for three different values of the initial bottom-
hole flowing pressure, Pwf under the condition of constant bottom-hole pres-
sure.

Fig. 9. Calculated damaged zone radius for three different values of the initial
bottom-hole flowing pressure, Pwf.
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detached due to velocity at the beginning of injection. These particles
detach instantaneously, independent of τ.

Applications The developed model can be used for well injectivity
prediction during water injection with an ionic composition which is
different from that of formation water. The system of partial differential
Eqs. (14)–(19) has been reduced to a set of implicit integral expressions
using analytical techniques. The semi-analytical solution is much easier
to implement into commercial software and provides more accurate
and less computationally expensive results compared to a numerical
solution of the original system.

7. Conclusions

In this paper, we have developed an analytical model of well in-
jectivity decline due to fines migration with delayed detachment. Based
on the mathematical modelling and laboratory-based injectivity pre-
dictions, the following conclusions can be drawn:

1. Introduction of the pseudo-salinity into the critical retention func-
tion while maintaining the direct dependency of velocity allows
capturing physical effects of delayed detachment due to salinity
variation and instant detachment due to high velocity.

2. The resulting mathematical model allows for a semi-analytical so-
lution.

3. The solution allows predicting an increase in pressure drawdown or
a decrease in the injection rate caused by fines migration.

4. Particle populations, instantly mobilised at the beginning of injec-
tion at high velocities, and gradually mobilised with delay behind
the low-salinity front, perform deep bed filtration independently.
The suspended concentration is the total of the suspended con-
centrations in both waves.

5. The delay factor results in an increased time until the well injectivity
stabilises but has no effect on the final well injectivity.

6. Predictions of wellbore injectivity derived from a laboratory study
show that high injection rates can result in injectivity index being
reduced to less than half of its initial value.

7. The size of the formation damage zone due to fines migration, as
calculated from laboratory data, does not exceed 1metre.
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5 Stochastic modelling of colloidal transport 

using Boltzmann’s equation 
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Averaged Boltzmann’s kinetics for colloidal transport in porous media 

 

Russell, T. 2, Dinariev, O.Yu.1, Pessoa Rego, L. A.2, Bedrikovetsky, P.2 
1Institute of the Earth Physics, Russian Academy of Sciences; 2University of Adelaide, Australia 

Key words: porous media; Boltzmann’s equation;  stochastic modelling; colloid; upscaling; averaging 

 

Abstract   Due to the stochastic nature of pore space geometry, particle velocities in a colloidal-

suspension flux are also stochastically distributed. This phenomenon is captured by Boltzmann’s 

kinetic equation. We formulate a BGK-form of Boltzmann’s equation for particulate flow with a 

particle capture rate proportional to the particle speed and derive an exact method for the model’s 

averaging. The averaged equation is of the form of a reaction-advection-diffusion equation with the 

average particle speed lower than the carrier fluid velocity. This delay, reported in numerous 

laboratory studies, is explained by preferential capture of fast particles. The large-scale model 

coefficients of delay, dispersion, and filtration are explicitly expressed via the micro-scale mixing 

length, equilibrium velocity distribution, and filtration coefficient. The properties of the averaged 

coefficients are discussed, and emerging dependencies between them are presented. The derived 

large-scale equation resolves two paradoxes of the traditional model for suspension-colloidal transport 

in porous media. The large-scale equation closely matches the laboratory breakthrough curves.  

 

Nomenclature 

 

v Particle velocity, [L][T]-1 L Core length, [L] 

c Suspended particle concentration, [-] Pe Dimensionless Peclet number, [-] 

t Time, [T] v   Mean fluid velocity, [L][T]-1 

y Normalised particle velocity, [-] x Distance, [L] 

D Diffusion coefficient, [L]2[T]-1 Cv Coefficient of variation, [-] 

q Particle flux per unit area, [L][T]-1 M-1 Negative first moment 

A Cross sectional area, [L]2 W Lambert W function 

Δz  Incremental distance along flow direction, 

[L] 

w Laplace variable 

Δt Incremental unit of time, [T] R2 Coefficient of determination, [-] 

p Probability of particle capture, [-] H Hilbert space of solutions to Boltzmann’s 

equation 

Hc Hilbert subspace of averaged 

concentration 

f Suspended particle concentration, [-] 

Ha Hilbert subspace of deviation from 

average 

|v| Absolute velocity, [L][T]-1 

Pc Projection operation from H to Hc Pa Projection operation from H to Ha 

l Mixing length, [L] Jc Embedding operator from Hc to H 

s Initial and boundary conditions, [-] Ja Embedding operator from Ha to H 

a Deviation of concentration from mean k Fourier variable corresponding to x 

Rij  qF Fourier transform of particle flux 

v  Mean of the absolute particle velocity, 

[L][T]-1 

εF Fourier transform of particle capture rate 

T Dimensionless time, [-] Kij Inverse Fourier transform of Rij 

X Dimensionless distance, [-]   

 

Greek characters 

ψ0(v) Equilibrium velocity distribution, [L]-1[T] θ  Delay factor, [-] 

Ω Dimensionless Filtration Coefficient, [-] ψ1(v) Normalised equilibrium velocity 

distribution, [-] 

ϕ Porosity, [-] σ Standard deviation of the equilibrium 

velocity distribution, [L][T]-1 
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α Positive fraction of the equilibrium 

velocity distribution 

ε Particle capture rate, [T]-1 

σs Captured particle concentration, [-] δ(t) Delta function 

λ Filtration coefficient, [L]-1 τ Relaxation time, [T] 

φ Transformed suspended particle 

concentration, [-] 

ω Fourier variable corresponding to t 

 

1. Introduction 

During suspension flows through porous media, interaction of particles with the rock matrix leads to 

particle immobilisation. The capture of suspended particles leads to both a decrease in the suspended 

concentration, and a change in the rock properties by an alteration of the effective rock matrix. Both 

of these effects have granted particulate flows in porous media significant academic and industrial 

interest. 

Particle flow and capture is prevalent in a number of industries. For example, some researchers in 

contaminant hydrology have noticed the impact that migrating clays can have on the retention and 

thus stabilisation of contaminants in soils (Bianco et al. 2016, Chrysikopoulos et al. 2017, 

Chrysikopoulos et al. 2012, Goldberg et al. 2014) Joint transport of clays, viruses, bacteria, and 

nanoparticles occurs in industrial applications of nanotechnology to prevent aquifer contamination 

(Sethi et al. 2014, Tosco et al. 2014, Tosco and Sethi 2010). In addition, a reduction in the rock 

permeability as a result of particle capture is significant for freshwater storage in aquifers (Prommer et 

al. 2013), catalytic chemical reactors (Boccardo et al. 2019), drilling operations (Salimi and 

Ghalambor 2011), as well as injection and production wells (Akhmetgareev and Khisamov 2015, 

Barkman et al. 1975) used in the petroleum industry and water resources management. Accurate 

modelling of the underlying processes is fundamental to improving industry practices. While often 

broadly referred to as particle capture, retention of particles can occur by several different 

mechanisms. Figure 1a shows some of the most common of these, being straining (size-exclusion) of 

particles by thin pore throats, attachment to the rock via attractive electrostatic forces, bridging via the 

construction of mechanically stable structures at wider pore throats, and trapping in dead-end pore 

throats, typically facilitated by diffusion (Elimelech et al. 2013, Hilpert and Johnson 2018, Johnson et 

al. 2018). The discussion in this work is limited to particle capture by straining. 
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Figure 1: Pore scale processes occurring during particle transport in porous media: a) Various particle 

capture mechanisms, b) Distribution of particle velocities at the pore scale 

 

At the core of the present study is to investigate the interaction between the particle transport and 

capture and the resulting impacts on large-scale behaviour. Particle transport, like many processes, 

possesses more detail and complexity than is typically of interest to practitioners. This is most evident 

in the distribution of individual particle velocities at the pore-scale (Arns 2004, Arns et al. 2005). This 

is illustrated in Figure 1b, where the collection of particle velocities is represented by a probability 

distribution, ψ0(v). In most studies or applications of particle transport in porous media, a detailed 

description of this distribution is unnecessary and overly cumbersome. However, it is at this level of 

detail that physical models of particle transport are most accurate. As a result, a means of deriving 

averaged or macro-scale equations from detailed or micro-scale equations is required. 

An excellent example of this style of modelling employed to study particle flow without capture was 

provided by (Einstein 1905). He envisaged particle flow as a series of random jumps following a 

given jump distribution. Using this simple micro-scale model, he derived the advection-diffusion 

equation (ADE) 
2

2

c c c
v D

t x x

  
+ =

  
            (1) 

where c is the suspended particle concentration, t and x are the time and space coordinates 

respectively, v is the mean particle velocity, and D is the diffusion coefficient. We note here that in 

Einstein’s original derivation, he added the additional condition that the probability of jumps forward 

any distance was equal to that of jumps of equal distance backwards, resulting in zero mean velocity. 

This derivation shows how detailed micro-scale models can be used to describe the large-scale 
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behaviour of a system. An alternative approach is to modify existing macro-scale equations to account 

for additional processes. Such has largely been the case for particle capture in porous media. While 

still adhering to the physical principles of the underlying processes, this second approach can create 

unreasonable large-scale behaviour, as will be shown below. 

The basis for most models of particle flow with capture is a mass balance equation 

c q

t x
 
 

+ = −
 

            (2) 

where ϕ is the rock porosity, q is the total particle flux, and ε is the particle capture rate. 

In large-scale approximations, diffusion and dispersion are ignored, resulting in a purely advective 

particle flux; the corresponding scaling derivations are available from (Bedrikovetsky 1993, 

Tartakovsky and Dentz 2019) 

q vc= .              (3) 

Otherwise, the flux is as it is for the regular advective-diffusive equations (ADE) (Boso and 

Tartakovsky 2016, Polyanin and Dilman 1994): 

c
q vc D

x


= −


             (4) 

For the particle capture rate, consider a cross section of the porous media of thickness, Δz, and area A. 

During a time Δt, the volume of retained particles will change from AΔzσs (where σs is the retained 

particle concentration per unit volume) to s
sA z t

t




 
 +  

 
. During this time, a volume Avc t  

of particles enters the volume of interest. Defining the capture probability as the change in retained 

volume per unit volume of particle entering the control volume, we obtain: 

s

s

A z t
ztp

Avc t vc t





 

= =
 

.            (5) 

Defining the filtration coefficient, λ, as this probability per unit length of the particle path Δz, we 

arrive at the following expression for the capture rate (Bradford et al. 2011, Messina et al. 2015, Yuan 

et al. 2012) 

s c v
t


 


= =


            (6) 

Here v  is the mean particle speed. The absolute value sign around the mean velocity is used to 

signify that capture will occur regardless of the flow direction. This derivation was presented by 

(Herzig et al. 1970) and has largely formed the basis of models for particle capture in porous media 

since (Elimelech et al. 2013, Goldberg et al. 2014). 

(Altoé F et al. 2006) and (Zhang et al. 2018) argued that in cases where diffusion/dispersion are 

significant, that the flux of particles entering the cross section should include this term. Thus, the 

equation for the capture rate becomes 

s c
q vc D

t x


  

 
= = = −

 
.        (7) 

While the arguments above seem logically consistent with the physics of particle capture, the resulting 

model has several inconsistencies. Consider for example, the case of particle flow with zero mean 

velocity and a constant initial suspended concentration in x. Intuition would provide that particles 

jump randomly in space, slowly becoming captured. Thus the initial, uniform profile of suspended 

particles should remain uniform, but decrease slowly with time. However, both equations (6) and (7) 

predicts a capture rate of zero, thus predicting a constant suspended concentration. 

Another shortcoming of the model given by equations (2,4,7) is associated with the split of advection 

and diffusion/dispersion into additive terms in the mass balance equation, as described by (Zhang et 

al. 2018). Consider the motion of a single particle during a period Δt. As seen in Figure 2, the picture 

outlined by equation (4) is that of advection and diffusion occurring separately (dotted line), while in 

reality (solid line), the particle makes a single motion during this time period. This picture 

demonstrates that the model correctly models the final position of the particle. However, as was 
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shown earlier, particle capture via straining occurs with a fixed probability per unit travel distance. 

So, given that the total travel distance is over-estimated, so too will be the probability of capture. 

 
Figure 2: Diagrammatic depiction of the separation of particle transport into additive advective and 

diffusive components 

 

The capture rate given by equation (7) also presents another paradox. When the particle capture or 

diffusion are particularly high, the second term in the capture rate exceeds the mean velocity. Thus the 

effective advective velocity, meaning the coefficient of the first order derivative of c, is negative. This 

leads to the rather confusing result that a concentration pulse will move on average in the direction 

opposite to the mean fluid velocity. We are aware of no physical reasoning that could make this 

plausible. Therefore, the equation seems to be invalid for this case. A more rigorously derived model 

ought to remedy this paradox, or at the very least provide some insight into the origin thereof. 

Deriving a model for particle flow and capture by modifying the ADE clearly presents several 

paradoxes in the resulting large-scale behaviour. This suggests the need for the construction of an 

accurate micro-scale model for particle transport and capture and a consistent averaging procedure. 

This approach to modelling processes in porous media has had significant attention for several 

decades. Various micro-scale models have been presented to solve problems related to particle 

capture, including continuous random walk models (Shapiro 2007, Yuan et al. 2012, Yuan and 

Shapiro 2010), trajectory analysis models (Payatakes et al. 1974), as well as models with distributions 

of filtration coefficients to model pore-scale heterogeneity (Yuan and Shapiro 2010). The population 

balance models to explicitly account for the changes in the particle and pore size distributions have 

been derived by (Bedrikovetsky 2008, Bedrikovetsky et al. 2019, Bedrikovetsky et al. 2017, Shapiro 

and Yuan 2012, Sharma and Yortsos 1987a, Sharma and Yortsos 1987b).  A similar philosophy is 

also present in modelling  of  reactive flows (Kechagia et al. 2002) and biological processes (Knutson 

et al. 2007) in porous media. Another approach to upscaling is to introduce scale-dependent properties 

and perform stochastic averaging; the incomplete list of the related papers include (Arns and Adler 

2018a, Arns and Adler 2018b, Arns et al. 2005, Dagan et al. 2013, Hou 2005, Messina et al. 2016, 

Pan and Tartakovsky 2013, Rabinovich 2017, Rabinovich et al. 2013, Tartakovsky et al. 2017, Winter 

and Tartakovsky 2002).  

While numerous methods have been developed for modelling transport (Hunt and Sahimi 2017), 

reaction (Dentz et al. 2011), and colloid capture (Molnar et al. 2015) in porous media, no model has 

explicitly coupled the distribution of particle velocities with a velocity dependent capture rate. In this 

paper, we formulate the problem of particle transport with capture using Boltzmann’s kinetic 

equation. Through the addition of particle velocity as an additional internal variable, we can explicitly 

couple the particle velocity distribution with the velocity dependent capture rate. The Boltzmann 

equation can be averaged to provide an equation similar to the previous model (equations (2,4,7)) 

which resolves the paradoxes discussed above. Further, we discuss the properties of the model, make 

a comparison with laboratory data on colloidal flow, and in this context discuss the limitations of the 

model. 

This approach varies from the works described above in that it does not explicitly involve upscaling 

from a micro-scale model to a macro-scale one. Instead, we model particle transport with additional 

detail by modelling particle velocity in order to rigorously describe the interaction between particle 

diffusion and capture. This additional level of detail is then ‘averaged’ to arrive at an equation 

describing the evolution of the particle concentration. 
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The structure of the paper is as follows. Section 2 outlines the use of Boltzmann’s equation to derive 

an accurate micro-scale model for colloidal flow and capture in porous media. Section 3 provides a 

detailed discussion of the averaged model and the derived coefficients. Section 4 presents a 

comparison of the model with several laboratory coreflooding tests. Section 5 provides a discussion of 

the extent to which the model presented in this work resolves the paradoxes outlined in the paragraphs 

above, as well as limitations of the model in the context of modelling water resources. Finally, Section 

6 concludes the paper. 

 

2. Kinetics equation for colloidal transport in porous media 

 

Boltzmann originally formulated his famous equation to describe the kinetics of gases (Boltzmann 

2012). Different formulations for Boltzmann’s approach to transport in porous media have been 

undertaken by (Shapiro and Wesselingh 2008, Shapiro and Yuan 2012). In these works, the particle 

velocity distribution is a result of Brownian collisions. On the contrary, in the present work we 

discuss a distribution of particle velocities that results from the complex porous space. In 1996, 

(Dinariev 1996) formulated a novel averaging methodology for linear forms of Boltzmann’s equation 

to describe the averaged properties of the gas. He applied this methodology to describe the properties 

of relativistic and nonrelativistic plasma (Dinariev 1996, 1999, 2005). Recently, the same approach 

has been used to describe particle transport and capture in porous media (Dinariev et al. 2020). Below 

we provide a brief description of this equation, and the motivation behind its use. 

 

Boltzmann’s equation for colloidal transport in porous media accounting for particle capture is 

0

1f f
v v f fdv f

t x
  





−

  
+ = − + − 

   
          (8) 

where f(x,t,v) is the particle concentration, t and x are the coordinates for time and space respectively, 

v, is the fluid velocity, λ is the filtration coefficient, and τ is the mixing time. 

Here we have adopted a linear BGK relaxation term (Bhatnagar et al. 1954) to account for the 

tendency of the particle velocity distribution to ‘relax’ towards the equilibrium distribution, ψ0. 

In this context, the mixing time can be thought of as the average time for a population of particles, 

unimpeded by other factors, to achieve velocities distribution according to the equilibrium 

distribution. 

The relaxation term as well as any degree of width in the particle velocity distribution leads to 

spreading of the particle concentration. Diffusion is typically negligible for particles large enough to 

experience straining, so we consider that this spreading occurs only via dispersion. Under most 

conditions, dispersion is proportional to the mean fluid velocity, so we take 

l

v
 =             (9) 

where l is the mixing length and the mean velocity is given by 

( )0v v v dv


−

=  .          (10) 

The scale at which equation (8) is postulated encompasses several pore sizes, where the porosity is 

well established. This scale significantly exceeds the mixing length, l. 

In contrast with modelling approaches based on a mass balance equation, given by equation (2), this 

model describes the particle concentration as a function of fluid velocity. Thus particles are in essence 

divided not only in space and time, but also by their velocity. The advantage of this is that particles 

are captured according to their velocity, not in relation to the mean fluid velocity. This equation forms 

the description of particle flow and transport on the micro-scale. 

Integration of equation (8) with respect to v across all possible values of the velocity yields equation 

(2), with 

( ), ( , , )c x t f x t v dv



−

=            (11) 
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( ) ( ), , ,q x t vf x t v dv



−

=            (12) 

( ) ( ), , ,x t v f x t v dv 


−

=            (13) 

In order to derive a useful macro-scale equation, we wish to average equation (8) to express the flux, 

q, and capture rate, ε, in terms of the averaged particle concentration, c. 

 

3. Averaged system 

 

In this section we provide some details on the method used to average equation (8), provide the final 

form of the macro-scale equation, and then investigate various properties and consequences of this 

equation. 

A complete description of the mathematics of the averaging method has been provided in a previous 

paper by (Dinariev et al. 2020). Thorough details of the derivation are presented in the Appendices. 

 

3.1. Final form of the averaged model 

 

Following the derivation outlined in the Appendices, the flux and capture rate can be written as 

11 12

c
q vc R R c

x



= − −


         (14) 

2

21 22

c
vc R R c

x
   


= − −


         (15) 

where R11, R12, and R22 are constants that depend on the micro-scale filtration coefficient, λ, the 

mixing length, l, and the equilibrium particle velocity distribution, ψ0(v): 

 

0 0

0

0

1

ji

i j

ij

vv
dv dv

v v
v vv v l lR dv

v
v dv

l v
v

l

 

 


 



 

− −



−

−

+ +

= −

+

+

 




     (16) 

where v1=v and v2=|v|. 

Substituting the final expressions for the flux and capture rate into equation (2) yields 

( ) ( )
2

2

12 11 222
2

c c c
v R R v R c

t x x
   
  

+ − = − −
  

 .      (17) 

Introducing the dimensionless variables 

,
vt x

T X
L L

= =            (18) 

allows equation (17) to be written in dimensionless form 

( )
2

212 11
222

2
1

R Rc c c L
v R c

T v X vL x v


 

   
+ − = − − 

   
      (19) 

This equation contains three dimensionless parameters 

( )212 11
22

2 1
, ,

R R L
v R

v Pe vL v


  = =  = −        (20) 

We refer to θ as the delay number, Pe-1 is the inverse Peclet number, and Ω is the macroscopic 

filtration coefficient. Thus the final macro-scale equation is 

( )
2

2

1
1

c c c
c

T X Pe x


  
+ − = −

  
.        (21) 
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A detailed derivation for each of these parameters has been provided in a previous work by (Dinariev 

et al. 2020). Here we provide only the final forms. 

The delay number can be written as: 

( )

( ) ( )

( )

0 0

0 1

0

2

vv
v dv v dv

v v
v v

v v l l
v dv

vv vv v v dv
l l

 

  


 

 

− −

−

−

−

   
   
   
   + +

   = −
  + + 

  
 
  

 




   (22) 

 

The final expression depends only on the dimensionless product λl, and the equilibrium velocity 

distribution, ψ0(v). The term λl is referred to as the filtration-mixing number and quantifies the 

competition between the effects of capture and mixing on the velocity distribution. 

The inverse Peclet number can be written as: 

( )

( )

( )

2

0

2

0 1

0

1 1

v
v dv

v
v

l v l
v dv

vPe L v l vv v v dv
l l







 



−

−

−

−

  
  
  
  +
  = − 

 + + 
  
 
 
 






      (23) 

The right-hand side only depends on the filtration-mixing number, and the term l/L, or the 

dimensionless mixing number. This ratio can be interpreted as the micro-scale dimensionless 

diffusion coefficient, while Pe-1 serves as the macro-scale equivalent. 

Finally, the macro-scale filtration coefficient can be written as: 

 

( ) ( )

( )

( )

2

0

2

0 0 1

0

v
v dv

v
v

vL l
v v dv v dv

vv vv v v dv
l l



  


 



− 

−

− −

−

  
  
  
  +
   = − − 

 + + 
  
 
 
 



 


    (24) 

Again, this expression depends on the filtration-mixing number, as well as the term, λL, which, as 

with the inverse Peclet number, can be viewed as the dimensionless micro-scale equivalent of Ω. 

By making the substitution 

( ) ( )0 1

1
,

v
v y y

v v
 = =          (25) 

It can be shown that the terms in the square brackets in equations (22-24) are directly proportional to 

the mean fluid velocity (Dinariev et al. 2020). As such, the macro-scale coefficients are all 

independent of the mean fluid velocity. 

Table 1 presents asymptotic limits of the three macro-scale model coefficients. The results include the 

coefficient of variation, Cv, a standardised measure of the dispersion of the distribution. 
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vC
v


=             (26) 

where σ is the standard deviation, or the second central moment of the equilibrium velocity distribution. 

 

Table 1: Asymptotic limits of the macroscale model coefficients 

 

 λl→0 λl<<1 λl→∞ 

Pe-1 
2

v

l
C

L
  ( )2 3 2

1 1 2v v

l
C l y y dy C

L
   − + −
    

0 

θ 0 22 vlC  
( )( )

1
1

12 1 y y dy
−

− −
    

Ω 0 21 vL lC  −   ∞ 

Ω/λL 1 21 vlC−  
( )( )

1
1

1y y dy
−

−

  

 

While explicit forms for the integrals in equations (22-24) may be difficult to find for arbitrary 

equilibrium velocity distributions, they are relatively easy to calculate using any numerical software 

package. 

 

3.2. Properties of the transport coefficients 

 

In this section we perform sensitivity analysis on the coefficients in order to further understand the 

physical meaning of the model coefficients in the final averaged equation. 

First, let us be clear on the physical interpretation of each of the macro-scale coefficients. Each 

coefficient is a quantification of properties of the particle velocity distribution ‘after’ capture. In reality, 

the particle velocity distribution will vary substantially in time and space as capture and transport occur. 

However, as a result of the assumption (), the system loses its ‘memory’ (in order to be expressed as a 

finite partial differential equation), and the system models the post capture velocity distribution as per 

equations (22-24). The terms within each integral show the competing effects of the particle capture 

(λ|v|), which acts to unevenly reduce the number of particles,  and dispersion ( /v l ), which counters 

the effects of capture by normalising the distribution to its original form. 

As can be seen from equations (22-24), the coefficients Pe-1, θ, and Ω depend on λ, l, L, and ψ0(v). 

Dependency on the first three can be reformulated as dependency on the product λl, the ratio l/L (for 

Pe-1 only), and the product λL (for Ω only). Dependency on the latter two is a simple proportionality, 

demonstrating that for Pe-1 and Ω, the macro-scale coefficients derived using averaging are directly 

proportional to the micro-scale equivalents. Thus, for the following sensitivity analysis, we consider 

the ratio of the macro-scale to micro-scale coefficients where applicable. 

Dependency on the equilibrium velocity distribution is slightly more complex. Here we consider the 

effect of the first two moments on the coefficients. This is appropriate because the two forms of the 

distributions we investigate (lognormal and normal), can be uniquely determined by their first two 

moments. In general, a distribution cannot be uniquely determined even by an infinite set of its 

moments. We leave the study in the context of such distributions to the interested reader. 

As the coefficients do not depend on the first moment ( v ), we consider dependency on the second 

moment through the coefficient of variation.  

Applying the Cauchy-Schwarz inequality to the explicit formulae for the three large-scale model 

coefficients (equations (22-24)), yields positiveness of the Peclet number, coefficient R22, and filtration 

coefficient Ω (Dinariev et al. 2020). While no definite proof has been derived proving the positiveness 

of θ, all numerical calculations support this statement. 

First, we study the case where all particles move in the direction of the mean fluid velocity, or rather, 

where all particle velocities are positive. To this end, we use a lognormal distribution to describe ψ0(v).  

Figure 3 shows the results of the sensitivity study for this case.  
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Figure 3: Sensitivity study for the case where all particle velocities are positive (ψ0(v) is lognormal): 

a) Macro-scale/micro-scale diffusion coefficient, Pe-1l/L, b) Delay number, θ, c) Macro-scale/micro-

scale filtration coefficient, Ω/λL 

 

Figure 3a shows that the filtration coefficient decreases with the filtration-mixing number. Consider a 

fixed mixing number, l, with a varying filtration coefficient, λ. Given that particle capture is more 

significant for particles with higher velocities, naturally particle capture will disproportionally reduce 

the right tail of the velocity distribution. With higher capture, more of the larger velocities will be 

reduced, shifting the velocity distribution towards zero velocities. As the filtration coefficient tends to 

infinity, only particles with infinitely small velocities will avoid capture, resulting in a velocity 

distribution tending towards a delta function at v = 0. Particles sharing the same velocity will show no 

dispersion on the macro-scale, and thus the dispersion coefficient tends to zero.  

The same tendency is true at a fixed filtration coefficient and an infinite mixing length, l. If we 

consider mixing not as a continuous, ongoing process, but rather a discrete process, occurring 

chambers at a fixed distance, l, apart. In these chambers, the velocity distribution is ‘reset’ to the 

equilibrium velocity distribution. If the distance between chambers is small, then the effect of particle 

capture on the velocity distribution will be limited, as the particles will quickly relax back to the 

equilibrium velocity distribution. As this distance increases, particle capture will have a larger and 

larger effect on the particles’ distribution of velocity. As the distance between chambers tends to 

infinity, mixing will no longer have any effect on the velocity distribution, and even with a finite λ, 

the velocity distribution will tend to a delta function at v = 0, resulting in no macro-scale diffusion. 

In the limit of the filtration-mixing number tending to zero, we have the important result that the 

inverse Peclet number tends to  

( ) ( )

2

1 2 2

0 0
0

lim v
l

l l
Pe v v dv v v dv C

L L
 

 

−

→
− −

  
 = − = 
   
        (27) 

This is shown more clearly in the inset figure. 

As expected, for any λl, the inverse Peclet number is higher for a higher value of Cv, as the 

equilibrium velocity distribution is wider, creating a larger spread of particles on the macro-scale. 

Figure 3b shows the sensitivity study for the delay number, θ. The delay number represents the 

decrease in the effective mean velocity on the macro-scale as a result of the preferential capture of 

faster particles. When capture on the micro-scale is larger, the delay becomes more significant, with 

diminishing returns. When the mixing length is larger, the effect of capture on the particle velocity 

distribution will last for longer, so the effective mean velocity will be lower (larger θ). 

When the equilibrium velocity distribution is narrow, particle capture occurs relatively uniformly for 

all particles, and thus the mean velocity will be mostly unchanged. For wider distributions, or larger 

coefficient of variation, the preferential capture of larger particles will be more effective at shifting 

the velocity distribution to the left, thus resulting in a lower mean particle velocity. 

Lastly, Figure 3c shows the variation of the macro-scale filtration coefficient divided by the micro-

scale filtration coefficient. As expected, when the filtration coefficient, λ increases, then so too will Ω, 

as more capture on the micro-scale translates to more capture on the macro-scale. However, this 

figure shows that this relationship is not straightforward.  
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When the filtration-mixing number is zero, then the macro- and micro-scale filtration coefficients are 

equal. As the filtration-mixing number increases, the ratio decreases monotonically, to a finite 

asymptote for infinite λl. As discussed above, capture will shift the velocity distribution towards 

smaller velocities. Macro-scale capture depends on the mean of the absolute velocity (exactly the 

mean particle velocity for the case where ψ0(v)=0 for v<0). Thus given that capture decreases the 

mean velocity, a negative feedback loop appears, where capture partially reduces capture. However, at 

the point where further capture (larger λl) no longer reduces the mean fluid velocity, micro-scale 

capture will translate linearly into macro-scale capture. This can be observed in Figures 3b and 3c, as 

for the same value of Cv, the asymptotic behaviour of θ(λl) matches that of Ω/λL(λl). Similar to the 

logic made in discussing the delay number, a higher coefficient of variation will result in a larger 

impact of capture on the mean particle velocity, and thus a larger deviation between the macro- and 

micro- particle capture. 

We reiterate here for emphasis that the discussions here are true only for the case where all particle 

velocities are positive. As we will see below, many of these observations break down when negative 

velocities are present. 

A convenient means to quantify the degree of deviation from the case of all positive velocities is to 

define a new variable, α, as the area under the equilibrium velocity PDF to the right of the y-axis (for 

v>0). Thus the above discussions correspond to the case of α=1. Figure 4 shows α graphically for two 

typical velocity PDFs. 

 

 

 
Figure 4: Two velocity probability density functions demonstrating the variable α: the PDF on the 

right (α=1) describes the case where all particle move in one direction, while the other PDF (α<1) 

describes the case where a 1- α fraction of particles move in the opposite direction to the mean fluid 

velocity 

 

We now consider a normal distribution for the equilibrium particle velocity distribution as it can 

characterise systems with α<1. For any normal distribution with finite positive mean, as the 

coefficient of variation is increased from 0, α will decrease from 1 and asymptotically tend towards 

0.5. 

Figure 5 shows the sensitivity study of the macroscopic parameters against the filtration-mixing 

number. The inverse Peclet number, presented in Figure 5a, presents similar behaviour here as in the 

case of only positive velocities; it decreases monotonically towards zero as the filtration-mixing 

number increases, equation (27) for the lower limit still holds, and it is strictly higher for higher 

coefficients of variation. 

Figure 5b shows the results for the velocity delay number. Similar results are shown as with the above 

discussion for α = 1; a higher Cv or a higher λl, lead to a higher delay number. 

Figure 5c shows the macro- to micro-scale filtration coefficient ratio. While the monotonic 

dependency on λl is maintained from the α=1 case, the dependency on the coefficient of variation is 

not. At any given value of λl, Cv can result in either a monotonic increase, or a decrease then increase. 



12 
 

 
Figure 5: Sensitivity study for the case where particle velocities are both positive and negative (ψ0(v) 

is lognormal): a) Macro-scale/micro-scale diffusion coefficient, Pe-1l/L, b) Delay number, θ, c) 

Macro-scale/micro-scale filtration coefficient, Ω/λL 

 

3.3. Emergence of dependency of the coefficients 

 

In the case of only positive particle velocities (α = 1), the three macro-scale parameters exhibit an 

inter-dependency. That is to say that any of the three parameters can be expressed explicitly as a 

function of the other two. Consider equation (16). In the case of α = 1: 

11 12 21 22R R R R R= = = = .         (28) 

Using this result, the expressions in equation (20) can be collapsed to a single expression: 

2 2
1 1

D

 

 
= − 

 
          (29) 

In order to verify this relationship, and to understand the form of this dependency, we performed 

Monte Carlo simulation, generating pairs of the micro-scale parameters (λ, l, Cv) and calculating the 

corresponding macro-scale parameters (θ, Pe-1, Ω). The results are presented in Figure 6. 

 
 

Figure 6: Results of Monte Carlo simulation of macro-scale parameters (D,θ,Ω) from micro-scale 

parameters (λ,l,Cv) when all particle velocities are positive: a) Macro-scale points, b) Deviation of 

numerical points from the analytical equation (equation (29)) derived for the surface 

 

Figure 6a shows the subspace of possible macro-scale parameters. Equation (29) reduces the 

dimension of this space from three (θ, Pe-1, Ω) to two (θ(λ,R), Pe-1(λ,R), Ω(λ,R)). Thus what we see 

when we plot the simulation points is a 2-dimensional surface. The form of this surface affirms the 

physical intuitions established in the previous section. The discussion of parameter sensitivities was 

simpler for α = 1 because the dependencies are resolved by discussing the total magnitude of capture 

(λ) as well as some measure of the spread of the distribution (R).  

This result is particularly significant in the context of practical use of the model (equation (21)). 

Initially, it appeared that the derivation resulted in a more general advection-diffusion equation, where 

the mean velocity is an independent parameter, varying with capture. However the underlying 
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physical connection between the parameters results in a model which permits only certain sets of 

macro-scale parameters. This will be discussed further in Section 4 where we consider the matching 

of the model with laboratory data. 

Monte Carlo simulation was also performed using a normal distribution, to allow for negative 

velocities. The analytical derivation of the surface is not valid for this case, and a similar inspection of 

The expressions in equation (20) suggests that the ‘permissible’ subspace of macro-scale parameters 

does not reduce to two dimensions. Figure 7 shows the results for α = 1 (a)  and α ≤ 1 (b). The set of 

points is shown transparently, with 2-dimensional slices taken at fixed values of θ. This visualisation 

shows that allowing negative velocities expands the subspace of permissible parameters, but this 

subspace remains smaller than the set of all positive triples. This suggests that there is a set of macro-

scale parameters that is not supported in any case by the model presented in Section 3.2. 

 
 

Figure 7: Results of Monte Carlo simulation of macro-scale parameters (D,θ,Ω) from micro-scale 

parameters (λ,l,Cv): a) Only positive particle velocities, b) Negative and positive particle velocities 

 

 3.4. Estimating the delay factor: A useful rule of thumb for practitioners 

 

Superficially, the model presented here differs from the traditional ADE only by the introduction of 

the velocity delay factor, θ. In large scale systems, a slight variation of the mean particle velocity can 

have significant impacts on the evolution of the particle concentration. Thus it is useful to provide a 

means of estimating this parameter from existing system parameters more commonly encountered, 

such as the filtration coefficient and the inverse Peclet number. The ratio of θ to the product of these 

two parameters is presented in Figure 8a and 8b for the cases of α = 1, and α ≤ 1 respectively. 

For the case where all velocities are positive, the ratio is 2 at λl = 0, and increases monotonically, to 

an asymptote at large λl. This asymptote can be expressed as 

( )0

11
lim 2
l

v
dv M

Pe v




−−→
−

= =
           (30) 

where M-1 is the first negative moment of the equilibrium velocity distribution. 

For a lognormal distribution, the first negative moment can be approximated as: 
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where W is the Lambert W function. This approximation is derived in Appendix B. 

We can see in Figure 8a that the ratio θ/(ΩPe-1) is strictly higher for higher values of Cv. 

The case for α ≤ 1 is more complex, and the rather simple conclusion that θ ≈ 2ΩPe-1 is no longer 

valid.  
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Figure 8: Sensitivity of the ratio θ(ΩPe-1)-1 for different values of the filtration mixing number, λl: a) 

Dependence on the coefficient of variation of the velocity distribution, Cv where all velocities are 

positive, b) Dependence on  (through changing Cv) where particle velocities can be both negative 

and positive. 

 

3.5. Obtaining the micro-scale parameters 

 

While the averaged equation contains only a single additional unknown parameter in comparison with 

the traditional ADE, the micro-scale description involves more complexity. As discussed in the 

previous sections, by assuming a particular form of the equilibrium velocity distribution, the micro-

scale system can be parameterised with relative ease (See Section 4). These parameters can then be 

derived indirectly from laboratory or field-scale data through tuning. Alternatively, practitioners can 

use relations between the velocity distribution and the pore size distribution (de Anna et al. 2017, 

Siena et al. 2014), which can be measured using a variety of techniques (Basan et al. 1997). Some 

authors have even used confocal microscopy to measure the velocity distribution directly (Datta et al. 

2013), although this technique is naturally limited to particular, artificial porous media. 

Prediction of the filtration coefficient has received substantial attention across various fields (Molnar 

et al. 2015). Careful attention must be placed as to ensure that the estimates of the filtration coefficient 

correspond to the appropriate capture mechanism. As outlined earlier, the capture rate equation used 

in this study is most suitable for straining.  

 

3.6. Comparison with existing approaches 

 

While developments in upscaling and averaging techniques has led to a plethora of macroscale 

models for flow in porous media (Battiato et al. 2019), the central focus of this study has been the 

explicit coupling of a distribution of particle velocities and a velocity dependent particle capture rate. 

The resulting delay in advective velocity has been presented in a previous work by (Altoé F et al. 

2006), resulting in the model represented by equations (2,4,7). This leads to a dimensionless ADE of 

the form: 
2

2
1

c D c D c
Lc

T v X Lv x




   
+ − = − 

   
         (32) 

This differs from what can be considered the standard model only by the velocity delay factor. 

This model was developed using intuitive arguments regarding particle diffusion and capture. In this 

work, by use of the Boltzmann equation and averaging, we were able to derive an equation of the 

same form but with more accurate formulae for the coefficients. For practical applications it is of 

interest to understand the quantitative differences between these approaches. To compare the models, 

we consider a continuous injection into a porous media using a 3rd type inlet boundary condition of 

the form 

The outlet boundary condition used corresponds to a semi-infinite domain: 
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             (33) 

which corresponds to the inability of perturbations at the inlet to disturb the initial profile at infinite 

distances from the inlet. 

The initial condition corresponds to an absence of suspended particles in the core 

( ),0 0c X =             (34) 

Under these conditions, (Van Genuchten and Alves 1982) provide an analytical solution: 
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where v is the coefficient of the ADE in dimensionless form, and u is defined as follows: 
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Using this equation, we present outlet concentration (X=1) curves in Figure 9, for the model presented 

in this study (Boltzmann), equation (21), and the standard model, given by equations (2,4, 6) where 

the first order spatial derivative of c has coefficient 1. 

 

 
Figure 9: Comparison of existing approaches coupling particle diffusion and capture 

 

The results show that the standard model predicts an earlier arrival of the injected particles and lower 

total capture when compared with the other two models. The model presented by Altoe et al. still 

shows earlier arrival when compared to the model presented in this study, but for this example 

calculation, the total diffusion and capture are approximately equal. 

Figure 10 presents a comparison of the velocity delay factor for both of these models across a range of 

filtration coefficients. The non-linear dependence of θ on λ results in an overprediction of the velocity 

delay factor by the model of Altoe et al. when capture is low, and an overprediction when capture is 

more significant. This non-linearity discussed in detail in Section 3.2 results from accounting 

explicitly for the change in particle velocity distribution due to capture. Higher capture rates for faster 

particles results in their depletion, narrowing the distribution, reducing the effects of capture on the 

mean velocity. This leads to diminishing effects of capture on the mean velocity of the particle 
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population, and consequently, an ever-increasing overprediction of the delay by the model of Altoe et 

al. where these effects are not described. 

 
Figure 10: Comparison of Velocity Delay Factor from this study and from the model of Altoe et al. 

 

4. Treatment of laboratory data 

 

In this section we match the laboratory data using the derived mathematical model (equation (21)). 

The laboratory data involves particle injection via an instantaneous pulse; wherein a fixed mass of 

particles is injected instantly (relative to the injection period) and travels through the core, and the 

suspended concentration is measured at the core outlet. Figure 11 shows a general schematic of the 

laboratory test, as well as typical breakthrough curves of the outlet suspended concentration. 

 

 
Figure 11: Outline of experimental validation: a) Experimental scheme, and b) Typical breakthrough 

curves accounting for various effects 

 

The general features of these breakthrough curves are reflected by the macro-scale parameters in the 

equation (21); a wider plume at the outlet corresponds to a higher inverse Peclet number Pe-1, a lower 

total volume under the curve corresponds to more particle capture, i.e. a higher value of the macro-

scale filtration coefficient Ω, and a late pulse arrival after T=1 corresponds to large delay number θ,. 

As a result of the non-dimensionalisation of the system, a plume injected at T = 0 should arrive at the 

outlet at T = 1 as at this point a total injected volume equal to the porous volume of the rock has been 

injected. The model shows that the mean particle velocity can be less than that of the carrier fluid, and 

thus the plume would arrive with some delay, characterised by the delay number. 

 

As discussed earlier, while the averaged model contains 3 macro-scale parameters (θ, Ω, Pe-1), the 

model permits only certain sets of these parameters, which honour the simultaneous influence of 

capture, mixing, and transport on each parameter. In order to account for this, we instead tune the 

micro-scale parameters (λ, l, Cv), and calculate the corresponding macro-scale parameters using 

equations (22-24). This will be referred to as micro-scale fitting. We also fit with the macro-scale 
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parameters, ignoring the reduction of possible parameter sets induced by the model. This will be 

referred to as macro-scale fitting. 

The laboratory data is tuned using a 3rd type inlet boundary condition of the form: 

( )
( ) ( ) ( )0

0,1
1 0,

c T
c T c t

Pe X
 


− + − =


        (36) 

where δ(t) is the generalized Dirac delta function. In the following discussion, the concentration is 

normalised by the injected concentration. 

With these boundary conditions, equation (21) has an exact solution (Van Genuchten and Alves 

1982): 
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(37) 

 

This equation is tuned to the laboratory data using a gradient-based curve fitting algorithm 

implemented in Matlab (Mathworks, 2019). 

The experimental breakthrough curves considered below are taken from the work by (Bai et al. 2017). 

They considered the injection of red mud filtrate (series 1,2, presented in Figures 12,13) and silicon 

powders (series 3, presented in Figure 14) into cores comprised of quartz sand. They injected the 

particles during a period of 2 seconds, which is significantly less than the total injected period in all 

cases. Thus they considered this a pulse-type injection.  

The fitting results for three different experimental series are presented in Figures 12-14. The optimal 

parameters found through tuning, as well as the coefficient of determination (R2) are presented in 

Tables 2-4. 

 

 
Figure 12: Tuning of three experimental breakthrough curves from Bai et al., 2017 (series 1) using 

both Micro-scale fitting (tuning (λ, l, Cv)), and Macro-scale fitting (tuning (Pe-1, θ, Ω)) 

 

Table 2: Tuning parameters for fitting of experimental series 1 

 

 v = 0.076 cm.s-1 v = 0.148 cm.s-1 v = 0.23 cm.s-1 

 Micro-scale 

fitting 

Macro-scale 

fitting 

Micro-scale 

fitting 

Macro-scale 

fitting 

Micro-scale 

fitting 

Macro-scale 

fitting 

Pe-1 0.0166 0.0147 0.0175 0.0185 0.0174 0.0192 

θ 0.0199 0.0757 0.0086 0.0599 0.0041 0.0831 

Ω 0.5931 0.5249 0.2434 0.1641 0.1178 0.0000 

R2 0.8106 0.9666 0.8763 0.9528 0.7983 0.9519 
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Figure 13: Tuning of three experimental breakthrough curves from Bai et al., 2017 (series 2) using 

both Micro-scale fitting (tuning (λ, l, Cv)), and Macro-scale fitting (tuning (Pe-1, θ, Ω)) 

 

Table 3: Tuning parameters for fitting of experimental series 2 

 

  v = 0.076 cm.s-1 v = 0.148 cm.s-1 v = 0.23 cm.s-1 

  

Micro-scale 

fitting 

Macro-scale 

fitting 

Micro-scale 

fitting 

Macro-scale 

fitting 

Micro-scale 

fitting 

Macro-scale 

fitting 

Pe-1 0.0127 0.0135 0.0139 0.0136 0.0150 0.0151 

θ 0.0266 0.0499 0.0232 0.0879 0.0148 0.0853 

Ω 1.0351 0.9751 0.8267 0.6892 0.4898 0.3604 

R2 0.9420 0.9571 0.8463 0.9692 0.8431 0.9739 

 

 

 
Figure 14: Tuning of three experimental breakthrough curves from Bai et al., 2017 (series 3) using 

both Micro-scale fitting (tuning (λ, l, Cv)), and Macro-scale fitting (tuning (Pe-1, θ, Ω)) 

 

Table 4: Tuning parameters for fitting of experimental series 3 

 

 v = 0.076 cm.s-1 v = 0.148 cm.s-1 v = 0.23 cm.s-1 

 Micro-scale 

fitting 

Macro-scale 

fitting 

Micro-scale 

fitting 

Macro-scale 

fitting 

Micro-scale 

fitting 

Macro-scale 

fitting 

Pe-1 0.0652 0.0144 0.0526 0.0135 0.0457 0.0116 

θ 0.0553 0.1578 0.0194 0.1441 0.0183 0.1359 

Ω 0.4121 0.5529 0.1828 0.3141 0.1978 0.2855 

R2 0.3493 0.964 0.5334 0.9613 0.501 0.9552 

 

The micro-scale fitting was performed using a normal distribution to allow for optimal parameter sets 

with α < 1. Fitting was repeated using a lognormal distribution, and all parameter and R2 values were 

equal to those obtained using a normal distribution. 

The three data sets show significant variance in both optimal parameter sets as well as the agreement 

of the model with the experimental data. Consistent through all tests is that the macro-scale fitting 

procedure produced a better agreement with the data. This is expected, given that the space of 
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permissible parameters that will be searched by the micro-scale algorithm is a subspace of that 

searched by the macro-scale algorithm, such that 
2 2

micro macroR R   

with equality occurring when the optimal parameter set is permitted by the derived model. 

Regardless, for the first two experimental series, the agreement between the model and data is 

acceptable. We note that for these two data sets, the values of θ are relatively low, in agreement with 

the arrival time of the peak being roughly centred around T = 1. This is not the case for the third 

series, in which, for each velocity, the peak of the concentration plume arrives with a significant delay 

at the outlet. However, this significant delay is only captured by the macro-scale fitting; the micro-

scale model is unable to capture the relatively large value of θ . This can be understood in the context 

of the parameter dependency illustrated in Figure 6. In order to achieve a high value of θ, both the 

filtration coefficient, and the inverse Peclet number must be high. Despite the long core and high 

injection velocities, the spreading of the injected plume is quite significant. This is reflected in the 

high magnitude of Pe-1. The total concentration of particles collected at the outlet is only slightly less 

than the total injected concentration, which is reflected in the low values of Ω. Thus the permissible 

parameter sets involve only small values of θ, preventing the tuning procedure from attaining a good 

match with the data. 

The limited applicability of the model is likely related to the assumptions made in its derivation. Most 

importantly, particle capture has assumed to take place via straining, where arguments made in 

Section 1 arrive at the conclusion that capture should be directly proportional to the magnitude of the 

particle velocity. This will not be true in general for any other particle capture mechanism. In context 

of this, we note that while experimental series 1 and 2 were performed at pH 12, series 3 was 

performed at pH 7.2. The high pH used for the first two tests is highly prohibitive to particle 

attachment, meaning that where present, straining will dominate. In the third test, a lower pH will 

allow particle attachment to occur, for which the model presented in Section 1 may not be valid. 

 

5. Discussion 

This section considers how the averaged model resolves the paradoxes, formulated in Introduction for 

the traditional models, and the limitations of the averaged model. 

 

5.1. Resolution of paradoxes in previous models 

 

In Section 1, we outlined three paradoxes which are present in the existing models for particle 

transport and capture. In this section, we will outline the extent to which the model presented in this 

paper resolves these paradoxes. 

The first paradox relates to the inability of the existing models to correctly describe the situation in 

which the mean particle velocity is zero, and the initial concentration profile is constant. As noted 

earlier, both capture rates given in equations (6,7) predict no capture. This is because both the mean 

particle velocity, and the mean diffusive flux, are zero. However intuitively, we know that particles 

are still in motion, moving back and forth within the porous matrix such that their average position is 

constant. Thus if there is motion, there ought to be particle capture. This is correctly predicted by the 

capture rate derived in this work, equation (19). This is because the first term in equation (19) is 

proportional not to the mean particle velocity, but to the mean of the absolute velocity. For a 

symmetrical equilibrium velocity distribution centred on zero, the former is equal to zero, while the 

latter is positive. Thus the paradox is resolved. 

The second paradox relates to the apparent overestimation of particle travel distance inherent in the 

advection diffusion equation. This fault will lead to an overestimation of particle capture for particles 

that travel with a velocity less than the mean particle velocity (see Figure 2). In the introduction we 

attributed this to the decomposition of particle transport in the traditional ADE into advective and 

dispersive components. No such decomposition is made in the current paper. While these two 

components are still additive in the derived macro-scale equation (equation (21)), capture was 

included in the micro-scale model, where dispersion arises naturally as a result of the width of the 

equilibrium particle velocity distribution. 
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The third and final paradox is the particular case of large capture or dispersion which can lead to 

negative advective velocities. The parameter which encapsulates this paradox, the delay number θ, 

has been studied extensively throughout this paper. It is shown clearly in Figure 5, that it can exceed 

one, resulting in the same problem present with the capture rate given by equation (7). So this paradox 

is not resolved by the present model, but perhaps we can provide more insight as to its origins. 

Equation (21) is derived using the long waves, large times approximation, which equates to a 

limitation placed on the variance of the concentration in both space and time. Thus, while not 

explicitly expressed by equations (22-24), the averaged equation is only valid for parameter values 

which provide a suspended concentration that varies smoothly in both space and time. This will be 

violated by large values of the filtration coefficient, as large capture rates will lead to rapid decline in 

the concentration with time. Thus the model is only valid for small values of the filtration coefficient. 

As discussed in Section 4, in the limit of small capture, the delay number is limited. Therefore, the 

model is only valid for small θ, wherein the paradox is not present. 

 

5.2. Limitations of the model and future developments 

 

Despite the arguments that have led to equation (21), a poor match to certain laboratory tests 

presented in Section 4 suggests that the model has limited applicability. A possible explanation for 

this limitation is the micro-scale picture of capture utilized in this paper. Figure 1 shows multiple 

capture mechanisms, yet the argument leading to the direct proportionality of capture to the absolute 

value of particle velocity is only relevant for particle straining. For other particle capture mechanisms, 

different equations may prove to be more accurate. The averaging methodology employed relies on 

the linearity of Boltzmann’s equation in the particle concentration, f(x,t,v). Thus the employed 

methodology should permit various dependencies of the capture term on the particle velocity. A 

detailed investigation will be presented in a future work. 

Another possible source of the model’s limitation is the large waves, long times approximation made 

in Appendix A (equation (A-29)). This assumption translates to assuming that changes in the particle 

concentration are small both in space and time. Prior to this assumption, the large-scale equation is 

nonlocal, meaning that concentration changes at any point in time and space require knowledge of the 

concentration history for all X and at all times prior. The assumption of large waves and long times 

reduces the equation to a local one, where the impacts of capture and mixing to the particle velocity 

distribution are limited to a small region around each point (x, t). Relaxing this assumption will result 

in result in a final equation containing higher order partial derivatives. The impact of these higher 

order derivatives, reflecting the non-locality of the exact equation, is not clear. 

In order to investigate the model more rigorously, and to investigate potential limitations of the 

model, more specific laboratory tests would be required. According to the model, high dispersion and 

high capture rock-particle systems ought to yield high values of θ. Performance of such tests over a 

wide range of mean velocity, as well as particle capture rate (by variation of particle size, salinity, etc) 

would provide the opportunity for more rigorous validation of the model. 

The derivation presented here attempts to accurately model a largely unstudied phenomena related to 

particle flow and capture, namely the interplay between diffusion and capture. However other 

phenomena, such as non-zero initial suspended concentration and the decrease in capture rate with 

captured particle concentration (Yang and Bedrikovetsky 2017), or the impact of particle population 

heterogeneity (Malgaresi et al. 2019), are not captured within the current study. This is owed largely 

to mathematical complexity, but fusion of these various modelling efforts will likely result in a model 

that can accurately model particle transport and capture in ever more scenarios. 

The derived large-scale model can be used in water-resources area for tuning the model coefficients 

from laboratory data with delayed particle breakthrough. The tuned model coefficients can be used for 

laboratory-based prediction of the colloidal-suspension-nano transport at the reservoir scale. 
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6. Conclusions 

 

Exact homogenisation of Boltzmann’s equation that accounts for particle capture, physical 

interpretation of the large-scale equation, analysis of the model coefficients and validation by 

laboratory data allows drawing the following conclusions. 

The averaging produces the advection-diffusion equation with a linear capture term and a delayed 

advective velocity 

The averaged equation differs from the traditional advection-diffusion equation with capture by the 

delay in the particle advection, the diffusion-dependent filtration coefficient, and the capture-rate 

dependency for dispersion. 

The averaged model contains three dimensionless groups of delay, dispersion, and capture. 

The delay in the particle motion if compared with the carrier water speed is explained by preferential 

capture of fast particles. 

The averaged equation overcomes the shortcoming of the traditional and modified models under no 

fluid advection, which predict no particle capture from the diffusive flux, while the averaged equation 

predicts capture that is proportional to concentration.  

The averaged equation overcomes another shortcoming of the traditional models that accounts twice 

for capture of the particles that perform diffusive jumps against the advective flux 

The averaged model is valid for small filtration coefficients, where the delay is lower than one, and 

the particles are transported in the direction of the carrier fluid flow.  

If all particle velocities are positive, the three coefficients of the averaged equation become 

functionally dependent, reducing the subspace of possible sets of predicted values from three to two. 

For the particulate transport with positive velocities, the capture rate is proportional to the overall 

advective-diffusive flux. 

The averaged equation successfully reproduces the breakthrough curves with delay, exhibited in 

numerous laboratory tests. 

When fitting of the macro-scale model coefficients, the model highly agrees with the laboratory data, 

correctly capturing the delay in mean velocity. 

When fitting micro-scale model parameters, only experiments where straining is expected show good 

agreement with the model, which is consistent with the assumption of proportionality between the 

capture rate and particle speed. 

Appendix A. Relating the flux and capture rate to the averaged concentration 

 

Using the sink-source method, we include the initial and boundary conditions into the governing 

equation. We assume that particles introduced in the IBC are introduced with the equilibrium velocity 

distribution, ψ0. 

( )0 0,
f f v

v v f fdv f s x t
t x l

   


−

   
+ = − + − +  

     
                (A-1) 

Make the substitution 
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( ) ( ) 0, , , ,f x t v x t v =                     (A-2) 

resulting in 

( )0 ,
v

v v dv s x t
t x l

 
    



−

   
+ = − + − +  

     
                 (A-3) 

Assume that the function φ= φ (x,t,v) belongs to the Hilbert space H with scalar product 

( ) *

1 2 0 1 2, dv    


−

=                      (A-4) 

Consider the Hilbert space H as an orthogonal sum: 

c aH H H=                        (A-5) 

where Hc is a subspace of constants (with respect to velocity). Introduce the orthogonal projections 

into these two subspaces: 

:c cP H H→  , :a aP H H→                     (A-6) 

and the corresponding embeddings back into the original Hilbert space: 

:c cJ H H→  , :a aJ H H→                     (A-7) 

Based on the decomposition of the Hilbert space, we can write any function φ as 

c a = + , ( ) 01,c dv 


−

= =   , a c= −                   (A-8) 

where c represents the average of the function φ in regards to the scalar product defined earlier, and a 

represents the deviation of the function φ from its average in the velocity space. 

The projections to each subspace are 

cc P=  , aa P=                      (A-9) 

From equation (A-8) we can see that 

( ) ( )1,cP  =  , ( ) ( )1,aP   = −                  (A-10) 

Applying the 2-dimensional Fourier transform to equation (A-3) we obtain 

( )0 ,F F F F F F

v
i ikv v dv s x t

l
      



−

  
+ + − − =  

   
              (A-11) 

Which is in the form: 

F FL s =                     (A-12) 

Projecting equation (A-12) into Ha yields 

a F a FP L P s =                     (A-13) 

Given that sF is independent of velocity, it belongs to the Hc subspace and therefore its projection into 

Ha is zero 

0a FP L =                    (A-14) 

Based on the decomposition of the Hilbert space (equation (A-8)), we can decompose the operator L 

into its components projecting to and from each of the two subspaces: 

cc ca

ac aa

L L
L

L L

 
=  
 

                   (A-15) 

where the matrix elements are 

ik i kL PLJ=                     (A-16) 

The operator PaL can therefore be written as: 

  :a ac aa aP L L L H H= →                  (A-17) 

In addition to the operator, the function φF can be decomposed into the sum of its component in each 

subspace, which allows us to write equation (A-14) as follows: 
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0ac F aa FL c L a+ =                     (A-18) 

Thus  
1

F aa ac Fa L L c−= −                   (A-19) 

Consider the Fourier transform of equation (12) for the flux: 

0F Fq v dv 


−

=                    (A-20) 

Decomposing φF using equation (A-8), then using equation (A-19) results in  

( )( ) ( )( )1 1, 1, , 1,F F F a aa F a aaq c v ikc P v L v v c P v L v v− −  = − − − −                 (A-21) 

Introducing the Rij terms: 
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v i ikv v i ikvv v l lR k dv
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− −



−

−
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= −

+ + +

+ + +

 




 

(A-22) 

results in 

11 12F F F Fq c v ikR c R c= − −                  (A-23) 

The derivation of the Rij terms from the 
1

aaL−  operator is presented in detail in (Dinariev et al. 2020). 

Similarly, for the capture rate, we take the Fourier transform of equation (13): 

0F F dv  


−

=                    (A-24) 

Substituting equation (A-19): 

( )( ) ( )( )1 2 1, 1, , 1,F F F aa F aav c ik c v L v v c v L v v   − −  = − − − −                 (A-25) 

Lastly, simplifying, we get: 
2

21 22F F F Fv c ik R c R c   = − −                 (A-26) 

Taking the inverse Fourier transform of equations (A-23,A-26), we obtain:  

11 12* *
c

q vc K K c
x




= − −


                 (A-27) 

2

21 22* *
c

vc K K c
x

   


= − −


                (A-28) 

where the Kij terms are the inverse Fourier transformations of the Rij terms and * refers to convolution 

in space and time. 

We simplify this by taking the long waves and large times approximation 

, 0k →                    (A-29) 

This results in the Kij terms becoming equal to the Rij terms given by equation (16), and the 

convolution devolving into multiplication. This results in equations (A-27,A-28) becoming equal to 

the expressions given in equations (14,15). 

 

 

Appendix B. Upper limit of the coefficient ratio for a lognormal distribution 

 

Consider the case of α=1. Here, we have 

2 R

v


 = , 

R
D

vL
=                     (B-1) 
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Combining, we get 

2 LD =                      (B-2) 

We also have 

1
R

L
v




 
 = − 

 
                    (B-3) 

Consider the R term: 
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                (B-4) 

Note the change in the integration limits and the dropping of the absolute sign on the velocity to 

reflect that ψ0(v<0) = 0. 

 

In the limit of λ→∞, we can simplify the denominator in each integral 

0 02

0 0
0

0
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                  (B-5) 

Simplifying, we get 

0

0
0

0

1 1

1
R v dv

dv
v










 
 
 = −
 
 
 




                   (B-6) 

As per equation (25), we substitute the equilibrium velocity distribution, ψ0(v) in the second term for 

the unit-mean equivalent, ψ1(v): 

( )
0

0
1

0

1 1

1
R v dv

y dy
v










 
 
 = −
 
 
 




                  (B-7) 

( )1

1 11
v

R M 


−

−
 = −                       (B-8) 

where M-1 is the first negative moment of the normalised equilibrium velocity distribution. 

Thus 

( )1

1 1LM −

− =                      (B-9) 

Substituting this into equation (B-2) we get: 

12 DM −=                     (B-10) 

12M
D


−=


                   (B-11) 

According to (Cressie et al. 1981), the first negative moment can be calculated from the Laplace 

transform, L(w), of the PDF of a distribution as 

( ) ( ) ( )1

1 1

0

E y M L w dw


−

−= =                   (B-12) 
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where w is the Laplace variable. 

(Asmussen et al. 2016) provided an approximation of the Laplace transformation for a lognormal 

distribution, which when combined with equation (B-12), results in equation (31). 
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ABSTRACT  Mathematical modelling of suspension-colloidal-nano transport in porous media at 

different scales has long been a fascinating topic of fluid mechanics. In this study, we discuss the 

multi-pore scale, where Boltzmann’s approach of distributed velocities is valid, and average 

(homogenise) the micro-scale equation up to the core scale. The focus is on the filtration function 

(particle capture probability per unity trajectory length) that highly depends on the carrier fluid 

velocity. We develop a modified form of the Boltzmann equation for micro-scale particle capture and 

diffusion. An equivalent sink term is introduced into the kinetic equation instead of non-zero initial 

data, resulting in the solution of an operator equation in the Fourier space and an exact 

homogenization. The upper scale transport equation is obtained in closed form. The upscaled model 

contains the dimensionless delay number and large-scale dispersion and filtration coefficients. The 

explicit formulae for the large-scale model coefficients are derived in terms of the micro-scale 

parameters for any arbitrary velocity-dependent filtration function. We focus on three micro-scale 

models for the velocity-dependent particle capture rate corresponding to various retention 

mechanisms, i.e. straining, attachment, and inertial capture. The explicit formulae for large-scale 

transport coefficients reveal their typical dependencies of velocity and the micro-scale parameters. 

Treatment of several laboratory tests reveal close match with the modelling-based predictions.     

Nomenclature 

ϕ Porosity, [-] η0 Single-collector contact efficiency, 

[-] 

f Particle concentration, [-] dp Particle diameter, [L] 

t Time, [T] D∞ Bulk diffusion coefficient, [L2.T-1] 

v Velocity, [LT-1] A Hamaker constant, [ML2T-2] 

x Position, [L] k Boltzmann’s constant, [ML2T-2K-1] 

λ(v) Filtration coefficient, [L-1] T Absolute temperature, [K] 

τ Mixing time, [T] rp Particle radius, [L] 

ψ0 Equilibrium velocity 

distribution, [L-1T] 

ρp Particle density, [ML-3] 

l Mixing length, [L] ρf Fluid density, [ML-3] 

�̅� Average velocity, [LT-1] μ Fluid viscosity, [ML-1T-1] 

c Averaged particle 

concentration, [-] 

g Gravitational acceleration, [MT-2] 

q Total particle flux, [L.T-1] β Characteristic capture constant, [-] 

ε Total particle capture rate, 

[T-1] 

ψ* Modified particle velocity 

distribution, [L] 

s Initial and boundary 

conditions, [-] 

σ Standard deviation, [L.T-1] 

φ Modified particle 

concentration, [-] 

Cv Coefficient of variation, [-] 

a Particle concentration 

deviation from average, [-] 

H Hilbert space 

T Dimensionless time, [-] Hc Hilbert subspace of averaged 

concentration 

X Dimensionless position, [-] Ha Hilbert subspace of deviations from 

average 
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L Core length, [L] Pc Projection operator from H to Hc 

Rij [L-1.T] Pa Projection operator from H to Ha 

θ Velocity delay factor, [-] Jc Embedding operator from Hc to H 

Pe Peclet number, [-] Ja Embedding operator from Ha to H 

Ω Macro-scale filtration 

coefficient, [-] 

ω  Fourier variable corresponding to t 

dc Collector diameter  ̧[L] k Fourier variable corresponding to x 

α Attachment efficiency, [-] Kij Inverse Fourier transform of Rij 

 

I. INTRODUCTION 

 

Multiscale physics of transport in porous media is an area that has garnered much attention from 

researchers. The upscaled (homogenized) equations which describe transport processes in porous 

media and the estimates of transport coefficients from micro-scale models provide theoretical 

fundamentals and modelling tools for numerous natural and engineering processes. The focus of the 

current paper is on upscaling of suspension-colloidal-nano flows in porous media, which highly 

contributes to chemical, environmental, and civil engineering along with geology and water 

resources1-3.  

The traditional model for suspension-colloidal-nano flows in porous media consists of mass balance 

of suspended and retained particles and the rate equation for particle capture1, 4, 5 

c c
v vc

t x
 
 

+ = −
 

             (1) 

where ϕ is the porosity, c is the suspended concentration, t is time, x is the single spatial dimension, 

v is the carrier fluid velocity, and λ is the filtration coefficient. The capture rate in Eq. (1) is 

proportional to the mean flow velocity. It follows then that the filtration coefficient represents the 

capture probability per until length of the particles’ trajectory and has dimension 1/L 6, while an 

equivalent chemical reaction coefficient would have dimension 1/T 7. 

Numerous works upscale (average) solute and particle transport over areal rock micro-heterogeneity, 

in both linear and nonlinear formulations; the incomplete list of the works is represented by 8-13. An 

important particular case is stochastic non-correlated properties of fluids and porous media, where the 

properties in different points are independent random processes5, 7, 11. Homogenization of micro-scale 

population balance model with distributed rock properties yields the tradition model (Eq. (1))4, 5, 14. 

Upscaling of the population balance model with distributed particle sizes substitutes suspension 

concentration c in right hand side of Eq. (2) by a function of c referred to as the filtration function5, 15. 

When accounting for the reduction in capture rate due to occupation of capture sites by a 

heterogeneous particle population, upscaling results in supplementing Eq. (1) with an occupation 

kinetics equation15, 16. Homogenisation of random walk model with the length- and time- jumps 

distribution yields the elliptic advective-diffusion-capture equation17.  

For suspension-colloidal transport in porous media, the suspended particles are distributed over 

velocity as a result of their transport through a complex, highly heterogeneous porous space. Particles 

are distributed over velocity in each elementary volume. Figure 1 shows a simplified cross-section of 

a porous media which is roughly equivalent to a system of capillaries of varying size, leading to the 

aforementioned distribution of particle velocity. Significant velocity variation across the porous media 

justify the relevance of the Boltzmann’s approach of physical kinetics18-24.  
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FIG 1. Network-model geometric description of porous media demonstrating a distribution of particle 

velocities v 

The Boltzmann kinetics equation describes the dynamics of the continuous particle ensemble during 

fluid flow in porous media25, 26: 

( ) 0

1f f
v v v f fdv f

t x
  





−

   
+ = − + −  

     
         (2) 

where ϕ is the porosity, f(x,t,v) is the particle concentration as a function of position, x, time, t, and 

particle velocity, v, | | refers to the magnitude of the variable, λ(v) is the filtration function, and τ is the 

mixing time. Compared with the linearized BGK version of the Boltzmann equation, Eq. (2) differs 

only in the addition of the particle capture term27. We make the distinction here between this 

formulation, and the popular Lattice Boltzmann formulation that is also used to study flow of particles 

in porous media28-30, albeit in an entirely different manner. 

The first term on the right-hand side describes a decrease in the particle concentration due to particle 

capture. The proportionality to the magnitude of velocity follows the general convention for particle 

capture in porous media wherein particle capture is conceptualized to occur at fixed locations along 

the particles’ trajectory. Travelling at greater speeds and higher concentrations, particles reach these 

locations at greater rates, thus increasing the particle capture rate. In general, the filtration function, 

λ(v) depends only on the magnitude of the velocity, but to preserve generality we write the 

dependence on the velocity itself. 
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The second term on the right-hand side of Eq. (2) represents the relaxation of the particle distribution 

towards the equilibrium velocity distribution, ψ0. In traditional applications of the Boltzmann equation 

in gas kinetics, this term describes the impact of molecular collisions26. In particulate flows in porous 

media, this term encapsulates both inter-particle collisions and particle collisions with the internal 

surface of the porous media31. The homogenization of the relaxation yields an effective 

diffusion/dispersion term. In most applications in porous media, dispersion is significantly more 

prominent than diffusion. Given that dispersion is proportional to the mean fluid velocity, we can 

substitute 

l

v
 =                (3) 

where l is the mixing length and v  is the mean particle velocity. While τ represents the time required 

for a population of particles to relax to the equilibrium velocity, l represents the average length the 

particles will need to travel in order to relax to the equilibrium velocity distribution. Here the mean 

particle velocity is given by: 

0v v dv


−

=                (4) 

We consider micro-scale with the reference size of tenths of pores (10-5-10-4 m) where the porosity is 

established as a volumetric average of the pore space, but the velocities are stochastically distributed.   

Integrating Eq. (2) with respect to velocity ‘averages’ the equation to produce a differential equation 

in terms of what will be referred to as the macroscopic variables 

c q

t x
 
 

+ = −
 

             (5) 

This includes the average particle concentration, the total particle flux, and the total capture rate, 

respectively  

c fdv



−

=  ,      q vfdv



−

=  ,   ( )v v fdv 


−

=                           (6) 

For the standard model presented in Eq. (1), the capture rate can be presented as32, 33 

cv =              (7) 

Equation (1) is obtained from Eqs. (5,7) assuming that q cv= .  It is well known that the inclusion of 

a distribution of particle velocities as described above can result in a diffusion/dispersion term being 

supplemented to Eq. (1). An important motivation for upscaling of micro-scale Boltzmann’s equation 

is how to reconcile the dependency of capture on particle velocity and the distribution of these 

velocities on the pore scale. To this end, some authors proposed an alternative particle rate equation, 

where the capture rate is proportional to the overall particle flux that consists of the advective and 

diffusive components6, 34: 

c
cv D

x
 


= −


            (8) 

Substitution of Eq. (8) into the mass balance, Eq. (5), yields a delay in the particle velocity with 

respect to carrier fluid velocity v by a factor (1-λD). Equation (8) is derived by averaging the micro-
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scale continuous Markov chains (Fokker-Plank equations)35, 36. Moreover, papers2, 37, 38 validated this 

model by comparison with laboratory corefloods. 

The model comprised of Eqs. (1,8) appended with a second order derivative of c with respect to x 

presents a seemingly logical model to account for the combined effects of particle diffusion/dispersion 

and particle capture. This model however has several inconsistencies. Firstly, consider the case of a 

population of particles with zero mean velocity and a constant initial concentration over some domain. 

While the particles on average experience no motion, we can imagine the particles moving back and 

forth as described by diffusion/dispersion. As the particles move, they will almost surely experience 

particle capture, resulting in a concentration profile that is uniform in space, and decreasing in time. 

However, the model described by Eqs. (1,8) predicts that the concentration profile will remain 

constant, with seemingly no capture. 

Another inconsistency is the strange result that when the product of the filtration coefficient and 

diffusion coefficient is high, then particle capture can result in a negative velocity delay factor, (1-

λD). This would imply that due to the large extent of particle capture and diffusion, the mean particle 

motion is in the opposite direction to the carrier fluid. These inconsistencies suggest that a more 

rigorous approach is required to describe the coexistence of particle capture and diffusion/dispersion. 

The benefit of the use of the Boltzmann equation over this approach is that at the scale of Eq. (2), the 

velocity dependence of particle capture is modelled explicitly. Thus, upon averaging this equation, we 

can investigate the impact that this velocity dependence has on the evolution of the averaged 

concentration. 

Numerous works have developed numerical Boltzmann models for transport in porous media22, 24, 39-

41  . In particular, BCs for Boltzmann’s equation have been formulated on solid rough walls21, 23, 42, 43 

including slip effects during gas flow19, 25, 44, 45.Similar numerical kinetics models are formulated for 

micro channels46, 47 including slip phenomena in rarefied gases48-50 and micro-channels . Micro-scale 

numerical modelling yields the estimates of transport coefficients at the upper scale8-10, 41. 

Under the assumption of constant filtration coefficient, Dinariev et al. upscaled the micro-scale 

model27, i.e. they derived explicit expressions for the flux q and capture rate  as functions of the 

average concentration c and its derivatives, yielding closure of Eq. (5) and providing the macro-scale 

equation. 

However, the filtration coefficient can be strongly dependent on the fluid velocity. Different 

theoretical and empirical models for velocity-dependent filtration coefficient have been obtained by 

various authors in attempts to model different particle capture mechanisms. While these authors rarely 

focus on the velocity dependence of their expressions, as we will show, such dependencies can result 

in widely varying macro-scale behavior. Figure 2 shows a schematic of several of these capture 

mechanisms. 
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FIG 2. Schematic for the primary mechanisms of particle capture in porous media 

In addition to variation of individual particle velocities within a reference volume, the macroscopic 

flow velocity can significantly vary in natural and engineering processes that involve suspension-

colloidal-nano transport in porous media. For flow in a system of injection and production wells, the 

flow velocity can decrease by up to three orders of magnitude from the well to the natural reservoir. 

For flow of an incompressible fluid in a 3D domain, an increase in the average viscosity yields a 

proportional velocity increase in each point of the domain. Thus, any potential dependency of the 

macroscopic variables on the fluid velocity that arises from a general λ(v) could have significant 

impacts on field predictions and design. However, the upscaled model for velocity-dependent particle 

capture is not available. 

The present paper fills the gap. We derive the large-scale equation for suspension-colloidal-nano 

transport in porous media, which accounts for velocity dependent particle capture probability. The 

upscaled model includes explicit expressions for transport coefficients as functions of the micro-scale 

transport properties. We investigate the behavior of the macro-scale transport coefficients for different 

models for the velocity dependency of the filtration coefficient, which correspond to various particle-

capture mechanisms. The averaged equation matches the experimental data with high accuracy yet 

matching using the micro-scale coefficients can result in high deviation. 

The structure of the text is as follows. Section II presents the exact averaging of the Boltzmann’s 

equation and the upper-scale equation. Section III presents different micro-scale models for particle 

capture and investigates their effect on upscaled transport coefficients. Section IV presents the results 

of matching the laboratory data. Section V concludes the paper.           

 

II. KINETIC FORMULATION OF COLLOIDAL TRANSPORT IN POROUS MEDIA   

In this Section, we introduce the Boltzmann equation as we apply it to particulate flow and capture in 

porous media. We also present the averaged equation and the macro-scale coefficients present therein. 

A. Exact averaging of the Boltzmann equation with velocity-dependent capture probability  

  

In this Section we provide a brief outline of the averaging methodology. The methodology largely 

follows that presented by Dinariev et al., 2020. A detailed description is provided in Appendices A, B, 

and C. 

The assumptions of the micro-scale formulation are as follows: 

The flow domain is a multiply connected manifold, like an irregular pore network with distributed 

capillary sizes. Equations of viscous incompressible flow determine filling of the porous space by 

smooth streamlines. The particles move along the streamlines. The particle size is negligible if 

compared with the pore size, all streamlines are accessible for the particles movement, i.e. there is no 

inaccessible volume due to particle size. The particle concentration is small, so the particle flow does 

not change the position of streamlines. It also allows assuming no effect of particle concentration on 

suspension density. Besides, small concentration of captured particles does not change the capture 

probability, so the filtration coefficient is constant. As it follows from the mechanical equilibrium 

equations for attached particles, attachment and detachment do not occur simultaneously51. So, only 

capture is assumed in the model. The capture rate is proportional to  

The streamlines determine the equilibrium particle distribution between the channels according to 

fluxes in the channels. This determines the equilibrium particle-velocity distribution 0(v). The 

current particle velocity distribution, which differs from 0(v) due to a flux perturbation 
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asymptotically tends to the equilibrium distribution; the stabilisation occurs after the particles move 

over the mixing length l, such that the relaxation time =l/<v> is the reference time of stabilisation. 

So, the particle velocity distribution is caused by mixing in a multiply connected domain due to 

dispersion; the mean “drift” velocity has the same order of magnitude as the local flow velocities. 

This determines the difference between Boltzmann’s equation for colliding particles in gases and that 

for the colloidal transport in porous media. 

The domain size is large enough to introduce stable porosity value, which comprises several pore 

lengths. So, porosity is already present in the micro-scale formulation as a volumetric fraction of the 

pore space in reference volume. 

The goal of the averaging is to express the total flux, q(x,t) and total capture rate, ε(x,t) in terms of the 

averaged concentration, c(x,t) and its derivatives. 

Firstly, we make use of the sink-source method, to include initial and boundary conditions (IBC) into 

the equation. It is assumed that all particles introduced through the IBC are distributed over velocity 

according to the equilibrium velocity distribution, ψ0(v), such that Eq. (2) is appended by adding 

( ) ( )0,s x t v               (9) 

where s(x,t) describes the manner in which particles are introduced via the IBC. By including the 

initial and boundary conditions into the Boltzmann equation prior to upscaling, we can investigate 

whether or not posing them has any effect on the final upscaled equation. 

A distinguishing feature of the modified Boltzmann equation, Eq. (2), is that even if the IBCs are 

posed such that the particles are introduced with the equilibrium velocity distribution, then this 

distribution will still not be a solution of the equation. This is in contrast with the same equation 

without particle capture, wherein posing the IBCs in this way would indeed lead to ψ0(v) being a 

solution of the equation.  This distinction is due to the velocity dependence of the capture rate as 

given in Eq. (2), resulting in preferential capture of either slow or fast particles, consequently 

changing the velocity distribution of particles remaining in suspension. 

For simplicity, we make the substitution: 

( ) ( ) ( )0, , , ,f x t v x t v v =          (10) 

The next step in the averaging methodology is to consider the solution of Eq. (2) as a general function 

belonging to a Hilbert space. Doing so allows us to decompose the solution into two orthogonal 

subspaces. In this case, we choose solutions with no dependence on velocity, c(x,t), and those with 

zero velocity average. In this sense we can decompose the solution into the average and fluctuations 

around the average: 

( ) ( ) ( ), , , , ,x t v c x t a x t v = +          (11) 

By making use of the projection and embedding operators into and out of the Hc and Ha subspaces, as 

well as Fourier transforms we can arrive at an expression relating a(x,t,v) in terms of c(x,t). 

Substitution into Eq. (6) for the flux and total capture rate and then taking the inverse Fourier 

transform results in the desired expressions (Eqs. (B-30,31)).The brief derivations follow Dinariev et 

al. 2020 and are presented in Appendixes A, B, and C. Appendix A presents the Hilbert space 

decomposition of the solutions φ into the two orthogonal subspaces Hc and Ha, according to Eq. (11). 

Appendix B transforms Eq. (2) into an operator equation in Fourier images, and presents the solution. 

Appendix C presents detailed derivations of the Rij terms which form the basis for the macroscale 
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coefficient. The final form of the upscaled transport equation for colloids in porous media is presented 

in the next Section. 

B. Large-scale colloidal transport equation 

 

Following the averaging procedure outlined in Appendices A and B, the final form of the equation can 

be presented as follows 

( ) ( )
2

12 11 222
2

c c c
v R R v R c

t x x
 
  

+ − = − −
  

       (12) 

Introducing dimensionless variables 

,
vt x

T X
L L

= =            (13) 

reduces Eq. (12) to a dimensionless form 

2

12 11 22

2

2
1

L vR R LRc c c
c

T v X vL X v v

    
+ − = − −         

      (14) 

The equation can be simplified by introducing symbols for the three dimensionless groups present 

( )
2

2

1
1

c c c
c

T X Pe X


  
+ − = −

  
        (15) 

where the dimensionless coefficients are  

( )12 11
22

2 1
, ,

R R L
v R

v Pe vL v
 = =  = −        (16) 

We refer to θ as the dimensionless velocity delay factor, Pe here is the Peclet number, and Ω is the 

macroscale filtration coefficient. 

The Rij terms can be calculated using the following equation (see Appendix C for a derivation) 

0 0

0

0

1

ji

i j

ij

uu
dv dv

u u
R dv

dv

 





 



− −



−

−

 
= −





 




       (17) 

where  

  1u v= , ( )2u v v=  ( )
v

v v
l

 = +  .       (18) 

Using Eq. (17), we can write each of the macro-scale coefficients explicitly: 
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( )
( )( )

( )

( )

( )

( )

2

0

2

0

0

1

v v
dv

v
v vv vL l

v v dv
vv

v v dv
l v

v v
l





 

 





−



−

−

   
   
   
   +
   

 = − −  
 + 
  +  
  

  






    (21) 

We note here that as discussed by Dinariev et al., Eqs. (15,16) immediately resolve one of the 

inconsistencies with previous models outlined in the introduction27. That is, that for a population of 

particles with zero mean velocity and a uniform initial concentration profile, Eqs. (15,16) correctly 

predict that the concentration profile will decrease with time. 

III. PROPERTIES OF TRANSPORT COEFFICIENTS 

In this Section, we discuss the dimensionless coefficients present in the averaged equation.  We 

present three models for the velocity-dependence of particle capture (Section A). Section B explores 

the ramifications of each model on the behavior of the macro-scale coefficients. Further, we discuss a 

simple model that accounts simultaneously for two major primary mechanisms of particle capture – 

size exclusion and attachment (Section C). 

A. Three models for particle-speed dependency of filtration coefficient 

 

The generality of Eq. (2) with respect to the filtration function λ(v), allows us to explore a variety of 

filtration mechanisms. Equipped with Eqs. (19-21), we can utilize the velocity-dependence of the 

filtration mechanisms as described by other authors to explore the emerging macro-scale behavior. 

The straining model that we consider is the simplest and is used to describe straining and size 

exclusion. We use the term straining to refer to mechanical capture of particles that encounter pores 

larger than their largest radius in the cross-section to flow; this term also describes particle capture 

between two asperities. Previous authors have made the argument that capture by straining will be 
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directly proportional to the magnitude of the particles velocity52, 53. This follows from two arguments: 

firstly, that during laminar flow in porous media, particles travel along fixed streamlines, regardless of 

the average fluid velocity, and secondly, that the higher the fluid velocity, the faster particles 

encounter pore throats. Thus for straining, the filtration function is simply a constant: 

( )v =             (22) 

which is equal to particle capture probability per unit length of the particle trajectory. 

The attachment model54 is given by the correlation equation to describe the capture rate of particles 

undergoing physico-chemical filtration in porous media. The authors expressed the filtration 

coefficient as 

( )
0

13

4 gr


 

−
=           (23) 

where dc is the grain radius, α is the attachment efficiency, and η0 is the single-collector contact 

efficiency. The attachment efficiency α describes the fraction of particles which become attached 

following collision with grains, and the single-collector contact efficiency describes the fraction of 

particles which come into contact with a grain while flowing past it. Following Tufenkji and 

Elimelech, we consider the case where α = 1. 

They investigated the dependence of the single-collector contact efficiency due to diffusion, 

interception resulting from finite particle size, and gravity, with the single-collector contact efficiency 

given empirically as: 

1/3 0.081 0.715 0.052 1.675 0.125 0.24 1.11 0.053

0 2.4 0.55 0.22S R Pe vdW S R A R G vdWA N N N A N N N N N − − −= + + .   (24) 

Here the dimensionless numbers are defined as follows: 
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=          (25) 

where γ=(1-ϕ)1/3, rp is the particle radius, D∞ is the bulk diffusion coefficient (described by the 

Stokes-Einstein equation), A is the Hamaker constant, k is Boltzmann’s constant, T is the absolute 

fluid temperature, ρp and ρf are the particle and fluid densities respectively, μ is the fluid viscosity, and 

g is gravitational acceleration. We have replaced the velocity with its magnitude. 

The inertial capture model by presented by Andrade Jr et al.55reflects particle capture for non-

Brownian, inertial particles. Inertial particles are likely to deviate from fluid streamlines that curve 

through the porous space of porous media. Larger particles, travelling at higher velocities, are more 

likely to deviate from their streamlines and collide with grains. These authors developed the following 

equation for the filtration coefficient: 

( ) 2

2

110

9

p f

g

r
v

r

 


 

−
=           (26) 

where β is a characteristic constant of the capture process, identified by the authors to be 

approximately 0.058. 
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As before, we exchange the velocity for its absolute value to account for capture resulting from 

particles moving in the direction opposite to the mean velocity. 

These three models by no means present a comprehensive review of particle capture mechanisms, nor 

the modelling thereof. They do however provide explicit formulae for the filtration functions of three 

distinct capture mechanisms (straining, attachment, and inertial capture). The shape of the filtration 

coefficients for each of the capture mechanisms is shown below in Fig. 3. 

 

 

FIG 3. Three examples of microscale filtration coefficient functions: Straining (direct proportionality 

of modulus of velocity) following Dinariev et al., 2020 (mechanical size exclusion of particles), 

Attachment (accounting for capture by diffusion, interception with grains, and gravity)as described by 

Tufenkji and Elimelech, 2004, and Inertial Capture (accounting for capture of non-Brownian particles 

by deviation from fluid streamlines by inertia) as described by Andrade et al., 2008 

B. Effects of mean velocity, mixing length and coefficient of variation on macroscale 

transport parameters 

 

In this section we perform sensitivity analysis of the macro-scale parameters, (θ, Pe-1,Ω) for the 

different capture models presented in the previous section. All results use a normal distribution for the 

equilibrium velocity distribution, ψ0(v). 

Dinariev et al., 2020 demonstrated that for the straining model, each of the macro-scale parameters is 

independent of the mean fluid velocity27. The mean fluid velocity is a known parameter in laboratory 

coreflooding studies (with the exception of constant drawdown tests) and is easy to vary. In addition, 

fluid velocities in laboratory studies are often orders of magnitude lower than fluid velocities in the 

near-wellbore environment of industrial production or injection wells. Thus the fluid-velocity 

dependence of macro-scale behavior of suspensions is of critical importance both to laboratory studies 

of particle capture, and to industrial applications. The dependence for the three mechanisms 

considered in this study is presented below in Fig. 4. 
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FIG 4. Variation of macro-scale parameters with mean fluid velocity for a normal equilibrium 

velocity distribution for three different capture models, a) Inverse Peclet number, b) Macroscopic 

velocity delay factor, c) Macroscopic filtration coefficient 

For the straining model, the particle capture probability per unit length is independent of the fluid 

velocity. For the attachment model, to a good approximation, particles are captured with a fixed 

probability per unit time. Given that, for higher fluid velocities, particles spend a smaller time period 

travelling along a fixed trajectory, the probability of capture per unit length will be lower for 

attachment. Lastly, for inertial capture as described by Andrade et al., the probability for capture per 

unit length increases with fluid velocity. This is a consequence of a deviation of particle trajectories 

from the streamlines, resulting in their collision with the rock surface, resulting in particle capture. 

These statements provide the basis for the behaviour in Fig. 4. 

In Fig. 4(a), we can see that higher mean fluid velocities lead to constant, increasing, and decreasing 

diffusion for the straining, attachment, and inertial capture models respectively. This follows from the 

idea that selective particle capture, either of faster (straining, inertial capture) or slower particles 

(attachment) results in a reduction in the width of the particle velocity distribution, and consequently, 

less spreading of particles. The linear dependency of straining to particle velocity leads to a direct 

proportionality of the diffusion coefficient to the mean fluid velocity. Division by the mean velocity 

during the non-dimensionalisation (see Eq. (13)) results in the independence of velocity presented in 

Fig. 4a. In fact, this is true for each of the macro-scale variables. 

Figure 4(b) presents the dependency of the velocity delay factor with the mean fluid velocity. While 

unproven, Dinariev et al. argued that θ was non-negative as a result of straining selectively capturing 
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faster particles. This is consistent with our results. In addition, inertial capture also results in a positive 

θ, and thus a reduction in the mean particle velocity due to capture. Higher velocities further 

accentuate the effect of inertial capture, resulting in additional deceleration of the particle front. 

Attachment, however, shows an acceleration of the particle front, provided by a negative value of the 

velocity delay factor. As the mean fluid velocity increases, more and more particles move too quickly 

to have any significant risk to be captured by attachment, and thus θ tends to zero. 

Figure 4(c) presents the sensitivity analysis for the macro-scale filtration coefficient. Consistent with 

the above comments, the observed particle capture rate increases with mean fluid velocity for inertial 

capture, decreases for attachment, and is constant for straining (once non-dimensionalised). 

In addition to investigating the dependence on the mean fluid velocity, we also investigate the impact 

of various flow properties. First, let us consider the mixing length, l, which describes the travel 

distance required for the particle velocity distribution to relax to the equilibrium velocity distribution, 

ψ0. Many of the impacts of particle capture observed in the macro-scale behaviour are due to the 

effect of capture on the fluid velocity distribution. Thus, we expect that for larger mixing lengths, 

these effects will persist for longer, and the resulting impact on transport will be more pronounced. 

The result of the sensitivity study is presented below in Fig. 5. 

 

FIG 5. Variation of macro-scale parameters with mixing length for a normal equilibrium velocity 

distribution for three different capture models, a) Inverse Peclet number, b) Macroscopic velocity 

delay factor, c) Macroscopic filtration coefficient 

Equation (18) for the Λ term located in the denominator of all integrals Eqs. (19-21) highlights the 

competition between capture (first term) and relaxation (second term) on the effective particle 
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velocity distribution. When relaxation is large (small l), then the effective distribution is essentially a 

constant multiple of the original.  In this case, dispersion negates the impact of capture on the velocity 

distribution. 

Figure 5(a) presents the results for the impact of mixing length on the inverse Peclet number. For all 

capture models, increasing the mixing length increases the effective diffusion. Imagine a small pulse 

of particles injected into a porous media. When the mixing length is small, fast particles that move 

ahead of the pulse will quickly ‘relax’, reducing their velocity towards the mean particle velocity due 

to the last term in Eq. (2). Similarly, slow particles that fall behind the pulse will accelerate. Thus, the 

relaxation process reduces the spread of the pulse by shifting the particle velocity distribution 

everywhere in the porous media towards ψ0(v). This explains why the inverse Peclet number increases 

monotonically with the mixing length. When capture is non-existent, this process will result in Pe-1 

diverging. However, with finite capture, the diffusion will tend asymptotically to some value 

depending on the magnitude of the capture, λ(v)|v| over the range where ψ0(v) is non-zero. 

Figure 5(b) presents the results for the velocity delay factor. This factor arises due to the alteration of 

the velocity distribution due to capture. It follows from Fig. 5(b) that this alteration is more significant 

as the mixing length increases. This effect has diminishing returns, and at very large values of the 

mixing length, θ stabilizes for all three models. 

Figure 5(c) presents the results for the macro-scale filtration coefficient. Equation (16) shows that Ω is 

comprised of two additive terms. The first term represents capture due to the velocity average of the 

λ|v| term. The second term is more complex. Changes to the velocity distribution due to capture occur 

when capture is selective with respect to velocity. When these changes occur, the proportion of 

particles moving at fluid velocities more prone to capture decreases (i.e. when fast particles are 

captured preferentially, there will be fewer fast particles). This results in less capture. This is the 

effect described by the second term in Eq. (16). It is only the second of the two terms that depends on 

the mixing length. Figure 5(c) shows the at large values of the mixing length, this second term 

becomes significant (except for the attachment model) and Ω decreases. 

Lastly, we consider the effect of the coefficient of variation of the equilibrium particle velocity 

distribution, Cv: 

vC
v


=             (27) 

Where σ is the standard deviation of ψ0(v). This is a normalized measure of the width of the 

distribution. The sensitivity analysis for Cv is presented below in Fig. 6.  
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FIG 6. Variation of macro-scale parameters with the coefficient of variation of the velocity 

distribution for a normal equilibrium velocity distribution for three different capture models, a) 

Inverse Peclet number, b) Macroscopic velocity delay factor, c) Macroscopic filtration coefficient 

As Cv increases, the proportion of particles with high velocity magnitude will increase. This will 

increase the extent of capture for straining and inertial capture but decrease it for attachment. In the 

absence of capture, increasing the coefficient of variation will increase the inverse Peclet number. 

This is evident in Fig. 6(a) for both attachment and straining. The sharp increase for straining occurs 

at higher values of Cv due to the increasing capture, which acts to decrease diffusion. For inertial 

capture, as capture increases more significantly with the magnitude of particle velocity, Pe-1 increases, 

then stabilises at higher Cv. 

Similarly, in Fig. 6(b), as Cv increases, the velocity delay factor increases for both straining and 

inertial capture, due to an increasing extent of capture. For attachment, θ reaches a minimum at a 

fixed value of Cv. At lower values, the distribution is not wide enough for particle capture to 

significantly alter the mean particle velocity. At higher values, most particles are moving at speeds too 

large to experience attachment to any consequential degree. 

The results for Ω presented in Fig. 6(c) follow directly from the above statements. The macroscopic 

filtration coefficient increases rapidly for both straining and inertial capture, and as expected, the 

increase is faster for inertial capture. The total capture for attachment is negligible in comparison.  

C. A simple approach to account for simultaneous straining and attachment 
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While there are a plethora of possible particle capture mechanisms and modelling approaches towards 

them, many practical applications are focused on straining and attachment. These two mechanisms are 

by no means mutually exclusive. While we have already presented a model developed by Tufenkji 

and Elimelech to describe attachment, in this Section we will discuss a simpler method to illustrate the 

behavior when both straining and attachment are present. 

It was argued in Section I that straining occurs with a fixed capture probability per unit particle travel 

distance. However, for attachment, particles are not captured along the fluid streamlines, but instead 

are captured when they deviate from them. Here we consider that deviation being a result of diffusion, 

which is independent of the particles’ velocity. It follows that particle capture will occur at a fixed 

probability per unit time. Therefore, the filtration coefficient for attachment becomes: 

( ) 0v
v


 =            (28) 

Substitution into Eq. (17) results in 

( )
0

1
cov ,ij i jR u u

v

l


=

+

         (29) 

where cov is the covariance between two variables weighted by ψ0(v). Given that u2=λ0 and thus is 

constant, R12 and R22 become zero. This simplifies greatly the analysis of the macro-scale variables 

and their dependence on other variables. We can express each of the macro-scale variables as: 

2 0

0

1 1
, 0,

L

vPe v
vL

l


 



= =  =
 

+ 
 

        (30) 

Combining Eq. (28) with the straining model presented in Eq. (22) results in: 

( ) 0
1v

v


 = +           (31) 

Note here that we have assumed that the filtration coefficient in the presence of two mechanisms is 

the sum of their individual filtration coefficients. Similar reasoning was used by Tufenkji and 

Elimelech to derive Eq. (24)54. While this approach may seem intuitive, strictly speaking it is rigorous 

only when each individual filtration coefficient is small, in which case Eq. (31) results from the 

truncation of the Taylor series expansion of the general λ(v) centered around each individual λ equal 

to zero. 

We will now present a sensitivity study on this combined model, the results of which are shown 

below in Fig. 7. 
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FIG 7. Sensitivity study of the impact of straining and attachment in hybrid model presented in Eq. 

(31), a) Inverse Peclet number, b) Macroscopic velocity delay factor, c) Macroscopic filtration 

coefficient 

Interpretation of the hybrid model begins with an understanding of each of two components of particle 

capture.  

The filtration coefficient for attachment is independent of particle velocity. This reflects the concept 

that straining occurs at fixed sites along fluid streamlines. Thus, the total particle capture rate 

increases with particle velocity, as these particles will encounter straining sites more frequently. 

Attachment on the other hand scales inversely with fluid velocity, as slower particles have more time 

to diffuse from fluid streamlines and collide with the porous matrix. This results in a total particle 

capture rate that is independent of particle velocity. 

In context of these statements, we now consider Fig. 7(a) which shows the effect of both λ1 and λ0 on 

the inverse Peclet number. The effect of λ0 on Pe-1, as outlined in Eq. (30) can be seen to be roughly 

equivalent to the term /v l . The latter describes the relaxation of the particle velocity distribution 

towards ψ0(v). Thus faster particles that move ahead of the front are shifted, by this term, towards slower 

velocities and vice versa. The effect of λ0 is similar, but rather than shifting the velocity of these particles, 

they are simply removed due to capture. The result is a direct equivalence of these two terms in the case 

of λ1=0. The effect of λ1 is two-fold: firstly, it acts similarly to λ0 in that straining captures particles 

which move faster or slower than the average particle front, secondly, straining preferentially captures 

faster particles, so that it acts to reduce the proportion of faster particles. This will narrow the particle 

velocity distribution, reducing particle spread, and hence diffusion. The decrease in diffusion resulting 

from both straining and attachment on diffusion is diminishing. 
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Figure 7(b) presents the results for the macroscopic velocity delay factor, θ. This factor arises due to 

the selectivity of particle capture based on particle velocity. It follows that the greater the impact of 

straining, the greater the impact of preferential capture, and thus the greater the value of θ. When there 

is only attachment, Eq. (30) shows that θ=0, as particles are captured independently of their velocity. 

Thus, regardless of the extent of particle capture, the resulting population of particles will have an 

unchanged mean velocity. However, Fig. 7(b) shows that when straining is present, the magnitude of 

λ0 can impact the value of θ. This results from the competition between straining and attachment. When 

straining is present, increasing the magnitude of attachment reduces the total concentration of particles 

affected by straining, thus reducing the extent of preferential capture, resulting in a lower value of θ. 

Lastly, Fig. 7(c) shows the results for the macroscopic filtration coefficient, Ω. It should first be noted, 

that Ω does not in general scale linearly with λ1, but the degree of nonlinearity arising from the R22 term 

in Eq. (16) is minimal for these example calculations. The curves show an expected result, that 

increasing the extent of attachment or straining results in an increase in the total capture rate. 

IV. Treatment of laboratory data by the upscaled colloidal transport model 

In this Section we will perform tuning of laboratory results using the models presented in Section 

IIIA. 

The laboratory tests considered here were performed in a work by Bai et al.56.An instantaneous pulse 

(or approximation thereof) of particles was injected into a porous medium (L = 30 cm) followed by 

particle-free water. The porous media was comprised of qurartz grains, with a porosity of 0.421 with 

particle sizes ranging from 1 to 3.5 mm. The quartz was pretreated with a H2SO4 solution for 24 hours 

and rinsed several times to remove impurities. The particles used here were red-mud filtrate with a 

median diameter of 5 μm. The tests were performed at velocities varying from 0.076 to 0.230 cm/s, 

injected concentrations of 0.2 to 3 mg/L, and solution pH from 9 to 12. A significant number of tests 

show significant delay in the arrival of the particle front indicating a decrease in the mean particle 

velocity. 

Coreflooding tests are tuned by varying the macro-scale parameters until maximum agreement is 

achieved between the measured effluent breakthrough concentration curve (BTC) and that predicted 

by the model. While only the macro-scale variables are present in this process, it is important to 

recognize that by using a particular model for λ(v) we are inadvertently establishing an 

interdependence between the macro-scale parameters. This dependence will in general depend on the 

form of the filtration coefficient. The dependence results in a reduction of the possible vectors (Pe-

1,θ,Ω) that the model permits. This is expressed formally as: 

( )

31 1
, , , ,

v
Pe Pe



  +

   
   =   

   
        (32) 

We can conceptualize this by considering the origin of θ. The velocity delay factor becomes non-zero 

only when two things are present: first, particles must move at different velocities at equilibrium 

(ψ0(v) ≠ δ(v)), and second, particles must be captured preferentially based on their velocity. Consider 

then a theoretical case resulting in large Pe-1 and small Ω, here it follows that we satisfy the first 

condition, but not the second, as there is clearly very little particle capture. While inexact, it is clear 

that this region of the (Pe-1,θ,Ω) space is unlikely to be feasible for most functions λ(v). 

Thus when tuning laboratory data, it is most correct to choose a filtration coefficient and tune the 

micro-scale coefficients present in Eqs. (19-21). While two of the three models presented in Section 

IIIA contain no tuning parameters, for the sake of comparison, we reduce them only to their 

dependence on the particle velocity. Thus the tuning equations for straining, attachment, and inertial 

capture are, respectively: 



19 
 

( ) 1v =            (33) 

( )
0.715 0.125 1.11

v A v B v C v
− − −

= + +          (34) 

( )v D v =             (35) 

Where depending on the model used, λ1, A, B, C, and D are treated as tuning parameters.  In addition, 

we tune the mixing length, l, and the coefficient of variation of the equilibrium particle velocity 

distribution, Cv. 

For the purposes of comparison, we also include fitting purely by the macro-scale variables. This 

serves as a theoretical ‘best-fit’, regardless of λ(v). As per Eq. (32), using any particular function λ(v) 

will restrict the search space for the optimization algorithm. Such a restriction will impose an upper 

limit to the quality of fit. 

Fitting was performed using a gradient-based optimization algorithm within Matlab (Mathworks Inc, 

2019). Following the fitting, we calculate the coefficient of determination, R2 for each test, to 

determine the quality of the fit: 

2

0 02

2

0 0

1
data model

data data

c c

c c
R

c c

c c

    
−     

    = −
    
 −        





         (36) 

where c here is the outlet, or breakthrough, concentration of particles, and c0 is the injected 

concentration of particles.  

The results are shown below in Fig. 8. 
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FIG 8. Coefficient of determination, R2, for the tuning of laboratory coreflooding tests from Bai et al., 

using the models presented in Section IIIA as well as freely fitting with the macro-scale coefficients 

(Pe-1,θ,Ω) 

For every test, inertial capture results in the best fit, disregarding macro-scale fitting. These tests were 

performed at flow velocities of 0.076, 0.148, and 0.23 cm/s. These velocities are relatively large for 

colloidal flows in porous media. The superiority of inertial capture in combination with this would 

suggest that this mechanism is both present and dominant. 

The high quality of fit using macro-scale fitting suggests that the form of Eq. (15) is well-suited for 

the experimental data. The significant deviations between the black and colored curves indicates a 

discrepancy between the choice of (λ(v),ψ0(v)) used to fit and those that correctly model the 

underlying behavior present in the laboratory tests. 

To better visualize the appropriateness of each model, Fig. 9 presents three example breakthrough 

curves with the optimal curves for each model. 

 

FIG 9. Three sample breakthrough curves taken from 56fitted by the three models considered in 

Section IIIA as well as freely fitting with the macro-scale coefficients (Pe-1,θ,Ω) , a) v = 0.076 cm/s, 

c0 = 3 mg/L, pH = 10, b)  v = 0.248 cm/s, c0 = 2 mg/L, pH = 12, c) v = 0.230 cm/s, c0 = 2 mg/L, pH 

= 10 

The three breakthrough curves demonstrate qualitatively the behavior of each model when tuning this 

data. Firstly, it can be seen immediately that the macro-scale fitting better suits the data. The 

difference between this method and the three micro-scale models is less evident in Figs. 9(b,c), where 

all models fit reasonably well. In both of these cases, the value of θ, while positive, is relatively low. 

For Fig. 9(a) however, θ is significant, and the delay in the arrival of the peak of the concentration 

plume is easily verified visually. In this case, while the macro-scale fitting reproduced the behavior 

well, each of the micro-scale models failed to do so. This is explained by the limitations placed on the 

variables (Pe-1,θ,Ω) imposed by the particular function λ(v) used in each case. It is clear that while the 

match is still poor, the model for inertial capture is more appropriate, and the model for attachment is 

least appropriate for this data set. 

The physical origin of the difference between the first two tests potentially lies in the solution 

chemistry. The first test was performed using a fluid with a lower pH (pH = 10) compared with the 

following two tests (pH = 12). The literature on particle attachment in porous media has consistently 

shown that lower pH increases the extent of particle attachment as a result of changes to the 

electrostatic force between the particles and the porous matrix57, 58. An increase in the total capture 

rate with lower pH is consistent with the tests presented in Fig. 9. 

While not presented here, comparison of different capture mechanisms or models in the context of 

laboratory results could in theory be used to identify the underlying capture mechanism by identifying 

the most appropriate model. 
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V. CONCLUDING REMARKS 

Exact averaging of the Boltzmann physical kinetics equation for colloidal-suspension-nano transport in 

porous media with particle-speed-dependent particle capture probability allows concluding as follows. 

• Introduction of sink-source term in the Boltzmann equation with stochastic particle speeds and 

any arbitrary speed-dependency of the filtration coefficient λ(v) instead of solving the initial-

value problem yields linear operator equation in Hilbert space, which is solved by 

decomposition of the operator. This yields the exact averaging over the distributed velocity and 

leads to closed macroscale equation for average particle concentration 

• The large-scale equation is of the form of a linear advection-diffusion equation with a reaction 

term; the upscaled model coefficients of drift velocity, dispersion and capture probability are 

explicitly expressed via the micro-scale model parameters 

• The distinguishing feature of the upscaled equation is that the average particle velocity differs 

from the carrier fluid velocity. The particles can move faster or slower than the mean fluid 

velocity depending on whether faster or slower particles are capture preferentially 

• The coefficients have been calculated for existing models for attachment, straining, and 

inertial capture and the coefficients show very distinct trends for different mean flow 

velocities, mixing lengths, and equilibrium velocity coefficient of variation 

• For straining and inertial capture, where faster particles are capture preferentially, increasing 

capture results in a deceleration of the particle velocity front 

• For particle capture by attachment to the surface, the upscaled equation allows for 

acceleration of the particles, by preferential capture of the slowest particles 

• Utilizing micro-scale models for different capture mechanisms allows for more accurate 

tuning of a wide-set of laboratory data 
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Appendix A. Splitting / decomposition of operator equation in Hilbert space 

We begin by making the substitution 

( ) ( ) 0, , , ,f x t v x t v =                     (A-1) 

resulting in 



22 
 

( ) ( )0 ,
v

v v v dv s x t
t x l

 
    



−

   
+ = − + − +  

     
                (A-2) 

The distinguishing feature of this model compared to that presented in Dinariev et al.27 is the general 

dependency of the filtration coefficient, λ on the fluid velocity. As we will see below, this 

generalization poses no additional difficulties in following the averaging procedure presented in this 

previous work; the inability to remove the filtration coefficient from velocity integrals simply changes 

the constants present in the final equation. 

Assume that the function φ=φ(x,t,v) belongs to the Hilbert space H with scalar product 

( ) *

1 2 0 1 2, dv    


−

=                      (A-3) 

Under this definition, we can express the macroscopic variables defined earlier in terms of the scalar 

product: 

( ) 01,c dv 


−

= =                        (A-4) 

( ) 0,q v v dv 


−

= =                     (A-5) 

( )( ) ( ) 0,v v v v f dv     


−

= =                    (A-6) 

Consider the Hilbert space H as an orthogonal sum: 

c aH H H=                        (A-7) 

where Hc is a subspace of constants (with respect to velocity). Introduce the orthogonal projections 

into these two subspaces: 

:c cP H H→ , :a aP H H→                     (A-8) 

and the corresponding embeddings back into the original Hilbert space: 

:c cJ H H→ , :a aJ H H→                     (A-9) 

Based on the decomposition of the Hilbert space, we can write any function φ as 

c a = + , ( ) 01,c dv 


−

= =   , a c= −                 (A-10) 

where c represents the average of the function φ in regards to the scalar product defined earlier, and a 

represents the deviation of the function φ from its average in the velocity space. 

The projections to each subspace are 

cc P= , aa P=                    (A-11) 

From Eqs. (A-10,11) we can see that 
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( ) ( )1,cP  =  , ( ) ( )1,aP   = −                  (A-12) 

Appendix B. Solution of operator equation in Fourier images 

Applying the 2-dimensional Fourier transform to Eq. (A-2) we obtain 

( ) ( )0 ,F F F F F F

v
i ikv v v dv s x t

l
      



−

  
+ + − − =  

   
               (B-1) 

where the subscript F refers to variables in Fourier space.  

Equation (B-1) is in the form: 

F FL s =                       (B-2) 

Where the operator L(y) is 

( ) ( ) 0

v
L y i y ikvy v v y y dv y

l
  



−

 
= + + − − 

 
                (B-3) 

Projecting Eq. (B-2) into Ha yields 

a F a FP L P s =                       (B-4) 

Given that sF is independent of velocity, it belongs to the Hc subspace and therefore its projection into 

Ha is zero 

0a FP s =                       (B-5) 

Therefore the solution φF belongs to the kernel of the operator PaL 

0a FP L =                       (B-6) 

Based on the decomposition of the Hilbert space (Eq. (A-7)), we can write the decompose the 

operator L into its components projecting to and from each of the two subspaces: 

cc ca

ac aa

L L
L

L L

 
=  
 

                     (B-7) 

where the matrix elements are 

ik i kL PLJ=                       (B-8) 

The operator PaL can therefore be written as: 

  :a ac aa aP L L L H H= →                    (B-9) 

In addition to the operator, the function φF can be decomposed into the sum of its component in each 

subspace, which allows us to write Eq. (B-6) as follows: 

0ac F aa FL c L a+ =                     (B-10) 

Thus  
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1

F aa ac Fa L L c−= −                   (B-11) 

With Eq. (B-11), we can now return to Eqs. (A-5) and (A-6) with the goal of describing the total flux 

and capture rates in terms of the averaged concentration. 

Beginning with the total flux 

0F Fq v dv 


−

=                    (B-12) 

We begin by making use of the decomposition in Eq. (A-10): 

( ) 0F F Fq v c a dv


−

= +                  (B-13) 

Separating the two integral terms 

0 0F F Fq c v dv va dv 
 

− −

= +                  (B-14) 

The first integral term is simply the average particle velocity 

0F F Fq c v va dv


−

= +                    (B-15) 

We then consider the second term as an inner product 

( ),F F Fq c v v a= +                   (B-16) 

Substituting Eq. (B-11) 

( )1,F F aa ac Fq c v v L L c−= −                  (B-17) 

The L operators were derived in Dinariev et al., 2020. They are as follows 

( ) ( ) ( ) ( )( )1, 1,acL y iky v v y v v v v  = − + −    
              (B-18) 

( )
( )
( )

1

1 1 1

1

,

1,
aa

y
L y y

−

− − −

−


=  −


                  (B-19) 

Substituting and rearranging, results in 

( )( ) ( ) ( )( )( )1 1, 1, , 1,F F F aa F aaq c v ikc v L v v c v L v v − −  = − − − −    
            (B-20) 

Here we introduce the Rij terms 

1 1
, ,

,
1

1,

j i
j

ij i

u u
u i ikv i ikv

R u
i ikv

i ikv

 





  
     + +  + +  

= − 
 + +   

 
 + + 

            (B-21) 
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where  

 1u v= , ( )2u v v=  ( )
v

v v
l

 = +                 (B-22) 

11 12F F F Fq c v ikR c R c= − −                  (B-23) 

We return now to Eq. (A-6) for the total particle capture rate 

( ) 0F Fv v dv   


−

=                   (B-24) 

As the derivation is almost identical as to that for the flux, we will present only the final result 

( ) ( )( ) ( ) ( ) ( )( )( )1 1, 1, , 1,F F F aa F aac v ikc v L v v c v L v v     − −  = − − − −    
          (B-25) 

21 22F F F Fc v ikR c R c = − −                  (B-26) 

What remains is to transform the two Eqs. (B-23) and (B-26) from the Fourier space (ω,k) to the 

original coordinates (x,t). Doing so results in  

11 12* *
c

q vc K K c
x


= − −


                 (B-27) 

21 22* *
c

vc K K c
x

 


= − −


                 (B-28) 

where * refers to convolution in both space and time. 

As per the derivation presented in Dinariev et al., 2020, we approximate Equations (B-27,28) by 

considering the solution only under the conditions of large waves and long times. This is equivalent to 

, 0k →                    (B-29) 

Under these conditions, Eq. (B-21) for the Rij terms reduces to a constant. Thus the convolution in 

Eqs. (B-27,28) reduces to multiplication and the flux and total particle capture rate can be expressed 

as follows 

11 12

c
q vc R R c

x


= − −


                  (B-30) 

21 22

c
vc R R c

x
 


= − −


                 (B-31) 

Substitution of Eqs. (B-30,31) into Eq. (5) results in the modified advection-diffusion equation, Eq. 

(12). 

 

Appendix C. Calculation of transport coefficients Rij 

First, we derive the Lac and Laa
-1 operators presented in Appendix B. 

ac a cL P LJ=                       (C-1) 

Substituting Equation (B-3) for the L operator: 
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( ) 0ac a c a

v
L P LJ P iwc ikvc v v c c dv c

l
  



−

  
= = + + − −  

   
               (C-2) 

We now perform the projection into Ha. This projection is given explicitly by Eq. (A-12). The process 

is made simpler by the fact that projecting terms with no velocity dependence results in zero. 

( ) ( ) ( ) ( )( )1, 1,acL y iky v v y v v v v  = − + −    
                (C-3) 

Returning to the definition of Laa: 

aa a aL P J=                        (C-4) 

In this case, we wish to solve the inverse of this relation, such that we wish to solve for p in the 

following equation 

a aP J p q =                       (C-5) 

where  

( )
v

i ikv v v
l

  = + + +                     (C-6) 

Given that p already belongs to Ha, and that Ja(p) = p, we have 

aP p q =                       (C-7) 

Performing the projection into the Ha space 

( ),p p q −  =                      (C-8) 

Thus 

( ), p q
p

 +
=


                     (C-9) 

Taking the inner product with unity: 

( ) ( )
1 1

1, , 1, ,p p q
   

=  +   
    

                (C-10) 

Given that p belongs in Ha, its inner product with unity is zero 

( )
1 1

0 , 1, ,p q
   

=  +   
    

                 (C-11) 

Which allows us to write 

( )
( )
( )

1

1

,
,

1,

q
p

−

−


 = −


                  (C-12) 

Substituting this into Eq. (C-9) results in 
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( )
( )

1

1

,1

1,

qq
p

−

−


= −
  

                  (C-13) 

Thus 

( )
( )
( )

1

1

1

,1

1,
aa

yy
L y

−

−

−


= −
  

                 (C-14) 

Finally, we may return to Eqs. (B-20,25) where we introduced the Rij operators 

( )( )1, 1,ij i aa j jR u L u u−  = −
                   (C-15) 

Substituting the expression for Laa
-1: 

( ) ( )( )
( )

1

1

1, ,1, 1
,

1,

j jj j

ij i

u uu u
R u

−

−

 − −
 = −
   
 

               (C-16) 

Separating each term 

( )( )
( )( )

( )
( )( )

1 1

1 1

1

, ,
, 1, , 1, ,

1,

j ij

ij i j i j i

u uu
R u u u u u

− −

− −

−

  
= −  − +  

  
            (C-17) 

Finally, we arrive at 

( )( )
( )

1 1

1

, ,
,

1,

j ij

ij i

u uu
R u

− −

−

  
= − 

  
                (C-18) 
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Abstract We discuss three-dimensional suspension-colloidal-nano transport in anisotropic porous 

media. The Boltzmann kinetic equation captures stochastic particle velocity distribution on the micro-

scale due to the stochastic nature of the pore-space geometry. The anisotropy is expressed by tensorial 

micro-scale transport coefficients and a direction-dependent velocity distribution. We formulate a 

BGK-form of Boltzmann’s equation for particle transport with a particle capture rate which is 

proportional to the particle velocity. The exact probabilistic averaging is performed by solution of a 

functional equation in Fourier space. The homogenised macro-scale model has the form of a 3-D 

advective-diffusive-reactive equation, where the particle flow in all directions is slower than the 

carrier fluid speed. This delay is the collective result of particle flow and capture and is explained by 

preferential capture of faster particles. For the particular case of quasi-one-dimension flow, where the 

total of the transverse flux is zero, we derive the effective equation and investigate the continuous and 

pulse colloidal injection.  

Nomenclature 

ϕ Porosity, [-] L Fourier Boltzmann operator 

f Particle concentration, [-] a Particle concentration deviation from 

average, [-] 

t Time, [T] Pc Projection operator from H to Hc 

x First spatial coordinate, [L] Pa Projection operator from H to Ha 

y Second spatial coordinate, [L] Jc Embedding operator from Hc to H 

z Third spatial coordinate, [L] Ja Embedding operator from Ha to H 

v Velocity, [LT-1] Rij  

λ Filtration coefficient, [L-1] v  Average velocity, [LT-1] 

τ Relaxation time, [T] v  Average of absolute velocity, [LT-1] 

ψ0  Equilibrium velocity distribution, [L-3T3] θ Velocity delay factor, [-] 

c Averaged particle concentration, [-] D Diffusion matrix, [-] 

q Total particle flux, [L.T-1] Ω Macroscale filtration coefficient, [-] 
ε Total particle capture rate, [T-1] T Dimensionless time, [-] 

s Initial and boundary conditions, [-] Lc Core length, [L] 
φ Modified particle concentration, [-] X Dimensionless position, [-] 

ω Fourier variable corresponding to t Pe Peclet number, [-] 

k Fourier variable corresponding to x Cv Covariance matrix, [L2T-2] 

p Fourier variable corresponding to y σ Covariance, [LT-1] 

h Fourier variable corresponding to z ρ Correlation. [-] 

i Imaginary unit   

 

Subscripts 

x Pertaining to first spatial coordinate  

y Pertaining to second spatial coordinate 

z Pertaining to third spatial coordinate 

F In Fourier space 

 



I. Introduction 

Suspension-colloidal-nano flows in porous media are commonplace during a number of natural and 

industrial processes. Interactions between the suspended particles and the porous matrix can result in 

significant changes to the rock properties. Knowledge of the dynamics for suspended concentration 

and permeability decline is critical for informed decision-making in several environmental, chemical, 

and energy-generation technologies. Performing predictive analysis and understanding the laboratory 

and field data requires an accurate mathematical model of fines transport and capture by the rock.  

Pore and particle sizes and shapes, surface charges of particles and rocks, micro-heterogeneity of 

mineral rock composition, irregularity of pore space geometry, among other properties vary over 

several orders of magnitude and are randomly distributed at the micro scale1. These effects are 

captured by stochastic mathematical models with randomly distributed rock and fluid properties. The 

stochastic micro-scale models include population-balance models2-5, transport equations with fast-

oscillating coefficients6-9, coupled flow and capture equations with random coefficients8, 10-12, random-

walk equations13, and Boltzmann’s kinetic equations14-17. Exact upscaling (homogenisation) of 

population balance models is performed for the cases of distributed pore sizes2 and particle sizes5, 18. 

Probabilistic averaging of a random walk model with the length- and time- jump distribution yields 

the elliptic advective-diffusion-capture equation13, 19.  

Derivations of governing equations for colloidal flow in porous media revolve around modelling 

particle transport and capture20-22. Previous modelling efforts and experimental studies have indicated 

a velocity dependence, often linear, of the particle capture on velocity23. This intrinsic connection 

between capture and transport is reflected a kinetic formulation for particle transport and capture 

using Boltzmann’s equation15, 24 arising from the pore size distribution25. Justification for the 

appropriateness and relevance of Boltzmann’s equation for flow in porous media follows from the 

wide variation in pore-scale velocities26-29. Averaging of this equation for one-dimensional (1-D) 

flows leads to an advective-diffusion equation with linear reaction and a delayed advective velocity. 

This modelling approach leads to explicit expressions for three key phenomena: the reduction of the 

mean particle velocity due to preferential capture of faster particles, a reduction in the diffusion 

coefficient due to capture, and a non-linear relationship between micro- and macro-scale filtration 

coefficients. These phenomena were discovered as a result of the explicit coupling of transport and 

capture. What remains unclear is the result of this coupling when both transport and capture occur in 

multiple directions. 

Besides, rock anisotropy is a natural wide-spread feature of geological formations. Direction-

dependent sedimentation, deformation, and micro-fracturing yield tensorial rock properties of 

permeability, diffusivity, and filtration coefficient. However, the governing equation for suspension-

colloidal-nano transport in anisotropic porous media is unavailable.    

The present paper fills the gap. We formulate Boltzmann’s kinetic equation for three-dimensional (3-

D) transport with an arbitrary 3-D equilibrium particle velocity distribution. Exact probabilistic 

averaging yields a 3-D advective-diffusive-reaction equation at the upper scale. The upscaled 

transport coefficients are functions of the micro-scale parameters and the equilibrium distribution of 

particle velocity distributions in different directions. The analytical models are developed by quasi 1-

D flow where the total flux in the transverse directions is equal to zero. The dependencies of the 

macro-scale transport coefficients on the micro-scale parameters are investigated and explained.    

The structure of the paper is as follows. Section II formulates the main assumptions of 3-D 

Boltzmann’s equation with anisotropic flow and particle capture and performs probabilistic averaging 

by solving an operator equation in Fourier space. Section III formulates quasi 1-D flow problem with 

zero averaged transversal flux and investigates the dependency of the macro-scale transport 

coefficients on the micro-scale parameters. Conclusive remarks close the paper. 

 

 



II. Kinetic formulation of anisotropic colloidal flow in porous media 

We consider the flow of a colloidal suspension within a multiply connected manifold, namely an 

irregular pore network with a distribution of pore sizes and directions. The distribution of fluid flow 

within the pore network is determined by the equations of viscous incompressible flow. These 

equations determine a set of smooth, static streamlines along which the suspended particles move 

through the porous medium. The assumption of static streamlines ignores the potential impact of 

captured particles. We make this assumption based on the small fraction of captured particles relative 

to the total pore volume. Fig. 1 shows a schematic representation of the porous media, with particle 

flow and capture in multiple directions. 

 

FIG 1. Schematic representation of porous media with particle transport and capture along fluid 

streamlines 

Particle sizes are negligibly small compared to the pore size, such that particles and travel along each 

streamline and are not excluded from any portion of the porous space. The concentration of particles 

is sufficiently small that they do not influence the position of the fluid streamlines or the suspension 

density. The small particle concentration also means that the captured particle concentration is small 

enough for the filtration coefficient to be constant. Following the mechanical equilibrium of attached 

particles, under set conditions, attachment and detachment cannot co-occur. Thus we neglect particle 

detachment. The particle capture rate in each direction is proportional to the particle velocity in that 

direction30, 31. 

The distribution of flux within the pore network determines the equilibrium particle velocity 

distribution, ψ0. When the instantaneous particle velocity distribution differs from the equilibrium it 

will tend asymptotically towards the equilibrium. This relaxation occurs with characteristic time τ and 

results from mixing within the multiply connected pore space due to dispersion. 



The reference volume is sufficiently large that we can introduce the porosity, the ratio of pore volume 

to bulk volume, as an averaged rock property. This reference volume comprises multiple pores. 

Boltzmann’s kinetic equation formulated in three dimensions with a modified BGK relaxation term32 

can be written as follows33, 34 

0

1
x y z x x y y z z x y z

f f f f
v v v v f v f v f fdv dv dv f

t x y z
    



  

− − −

    
+ + + = − − − + − 

     
      (1) 

where ϕ is the rock porosity, t is time, x, y, and z are the three spatial dimensions, f(x,t,v) is the particle 

concentration, v is the particle velocity, and λ is the filtration coefficient. The relaxation time, τ 

represents the average time required for particles to relax towards the equilibrium velocity 

distribution, ψ0(vx,vy,vz). This formulation, and the averaging procedure that follows allow for τ to be 

any arbitrary function of each velocity (vx,vy,vz) given that it is positive and finite. 

The equilibrium velocity distribution has the following property 

0 1x y zdv dv dv
  

− − −

=                   (2) 

This quantity describes the distribution of particles by velocity in the ‘equilibrium’ state, achieved by 

collisions between the particles and the rock matrix. 

Integrating Eq. (1) over velocity results in 
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where  

x y zc f dv dv dv

  

− − −
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is the averaged particle concentration, and 

i i x y zq v f dv dv dv

  

− − −

=               (5) 

i i i x y zv f dv dv dv 
  

− − −

=               (6) 

are the flux and capture terms in each direction. 

Equation (3) is the averaged equation, with 7 unknown variables. The goal of averaging is to derive 

relationships between the flux and capture terms and the suspended concentration, c and its 

derivatives. 

Averaging 

Central to the averaging procedure presented by Dinariev, Rego and Bedrikovetsky15 is the sink-

source method. Rather than posing initial and boundary conditions (IBC) alongside Eq. (1) as would 

be done normally29, 35, 36, we pose these conditions by adding to Eq. (1) a term that encapsulates all 

particles that would be introduced to the system through the IBC. Using this method, any effects of 

the IBC on the averaging will be quantified explicitly. We do not make any assumptions about the 

form of the IBC, only that particles introduced through them have the equilibrium velocity 

distribution. Thus, Eq. (1) becomes 
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Making the substitution 
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and dividing by 0  : 
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Next we perform the four-dimensional Fourier transform, ( ) ( ), , , , , ,x y z t k p h w→  resulting in 
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This equation can be written as 

F FL s =             (11) 

where the operator L is 
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Next we propose that the set of all solutions,  , is a Hilbert space with an inner product defined as 

( )1 2 1 2 0, x y zdv dv dv   
  

− − −

=             (13) 

This allows us to decompose the set of solutions 

F F Fa c = +             (14) 

where aF describes the deviation of the solution φF around its mean cF defined by the inner product. 

This decomposition is central to the derivation and is illustrated in Fig. 2 below. 



 

FIG 2. Schematic illustration of decomposition of solution φ(x,t,v) of the Boltzmann equation into its 

velocity average, c(x,t), and fluctuations around the average, a(x,t,v). The P and J terms refer to 

projection and embedding operators into and out of the respective subspaces of the decomposition 

Next we project Eq. (11) into the space of deviations (containing aF) 

a F a FP L P s =             (15) 

The term sF is independent of velocity, and thus lies within the kernel of this projection operator, so 

0a FP L =             (16) 

Following the decomposition in Eq. (14), we can decompose the L operator 

0ac F aa FL c L a+ =            (17) 

rearranging  

1

F aa ac Fa L L c−= −            (18) 

Expressions for 
1

aaL−  and acL  are derived in Appendix A. 

Thus for any solution, φF, we have derived an expression relating the velocity average, cF, and the 

fluctuations around this average, aF. Using this relationship, Eqs. (5,6) for the flux and capture rate 

terms can be written in terms of the suspended concentration, c. The derivation of these terms is 

presented in Appendix B. 

The resulting expressions are 
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Substituting these expressions into Eq. (3) and making use of the fact that 
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Assuming the continuity of all second derivatives of c, then by Schwarz’s theorem, the second 

derivatives are symmetric, resulting in the final expression 
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where we have exact expressions for the velocity delay factors, 
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the symmetric diffusion matrix, 
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and the macroscale filtration coefficient, 
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           (33) 
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The constant coefficients are given by the following equation: 
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which in integral form is 
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(36)   

where v1=v, and v2=|v|.  

Note that both the diffusion matrix and the R22 matrix are symmetric. 

We note here two important simplified cases. First, if all λ terms are small, then all terms of O(λ2) can 

be neglected. This results in the macroscopic filtration coefficient, Ω, being equal to the scalar product 

of the λ vector and the vector of absolute mean velocities. Secondly, if all particles move with 

approximately the same velocity, i.e. ψ0=δ(vx-v1,vy-v2,vz-v3) then the Rij terms vanish, resulting again 

in a macroscopic filtration coefficient equal to the scalar product of the λ vector and the vector 

(v1,v2,v3). 

III. Impact of cross-flow in one-dimensional case 

In this section we consider one-dimensional flow and compare the results of this study with the one-

dimensional equations derived in the previous work15, which doesn’t account for flow in directions 

perpendicular to flow. 

Suppose that the particle concentration is uniform in each cross-section perpendicular to the x-

direction, such that 



0
c c

y z

 
= =

 
            (37) 

This highly simplifies Eq. (25), resulting in 
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  (38) 

Note that we have simplifications following from the fact that
12 21

kl lkR R=  and
22 22

ij jiR R= . 

Introduce dimensionless variables: 

,x

c c

tv x
T X

L L
= =            (39) 
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which is of the form 
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1
1

c c c
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T X Pe X


  
+ − − = −
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where Pe is the Peclet number.  

Thus we obtain the same equation as in the 1-D case 15, except that the coefficients of the PDE now 

account for capture due to the zero-mean displacement particle movement in the y and z directions. 

We can compare this with the dimensionless 1D equation derived from the 1D Boltzmann equations: 

( )
2

212 11
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where the Rij terms are defined as: 
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Next we wish to illustrate the differences between the two formulations. The equations presented 

assume nothing about either the equilibrium velocity distribution, ψ0(vx,vy,vz) or the relaxation time, τ 

(vx,vy,vz). In order to perform calculations, we assume that the velocity distribution takes the form a of 

a multivariate normal distribution, and that the relaxation time is a constant. The multivariate normal 

distribution is parameterised by the three mean velocities, 
xv , yv , 

zv , and the covariance matrix: 
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=  
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where σ is the covariance, and ρ is the correlation between velocities in two directions. 

Unless otherwise stated, the variables used in each of the calculations are presented in Table 1. 

 

Table 1: Default coefficients used in sensitivity study 

Variable Value Units 

x-filtration coefficient, λx 10 m-1 

y-filtration coefficient, λy 10 m-1 

z-filtration coefficient, λz 10 m-1 

x-mean velocity, 
xv  10-3 m.s-1 

y-mean velocity, yv  0 m.s-1 

z-mean velocity, 
zv  0 m.s-1 

xx-covariance, σxx 5×10-4 m.s-1 

yy-covariance, σyy 5×10-4 m.s-1 

zz-covariance, σzz 5×10-4 m.s-1 

xy-correlation, ρxy 0.5 - 

xz-correlation, ρxz 0.5 - 

yz-correlation, ρyz 0.2 - 

Relaxation time, τ  104 s 

 

In order to have as much equivalence between the two models, the equilibrium velocity distribution 

for the 1-D formulation is calculated as follows: 

( ) ( )0,1 0,3 , ,D x D x y z y zv v v v dv dv 
 

− −

− −

=           (45) 

Fig. 3 shows approximate iso-density points of the equilibrium velocity distribution. 



 

FIG 3. Three-dimensional equilibrium velocity distribution ψ0(vx,vy,vz). Different colours present 

numerical values of the distribution at selected intervals of fractions of ψ0(vx,vy,vz) 

First we compare the models by calculating effluent concentration that would be predicted during 

coreflooding tests. Coreflooding tests with particle injection are typically done one of two ways; either 

by injecting a fixed concentration uninterrupted (continuous injection), or by injecting a small 

concentration during a negligibly small time period followed by particle-free water (pulse injection). 

We present calculations for both cases. Regardless of the injection program, we consider the core to 

initially be free of particles: 

( ), 0 0c x t = =            (46) 

The inlet boundary condition for the continuous injection is taken to be a third type boundary condition 
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− + − =
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where the initial condition for the pulse injection is 
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For both cases we consider a semi-infinite domain and pose the boundary condition 
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For the continuous injection, Van Genuchten and Alves37 provide an analytical solution: 
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where  

( )1v = −            (51) 

and 

1/2
1

2

4
1

Pe
u v

v

− 
= + 

 
          (52) 

For the pulse injection, we also have an analytical solution37 
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(53) 

Using the parameters in Table 1, we get the results presented in Fig. 4. 

 

FIG 4. Effluent concentration curves for the 1-Dimensional advection-diffusion equation with capture 

derived from the 3-D and 1-D formulations of the Boltzmann equation, a) Continuous injection, b) Pulse 

injection. Sensitivity for the 3-D case is shown with the transverse filtration coefficients λy,λz. The case 

where they are zero is exactly the 1-D case.  

The parameters in Table 1 provide (θ, Pe-1, Ω) for the 3-D model: for λy=λz=1, (0.6727, 0.3620, 0.7548), 

for λy=λz=5, (0.4112, 0.5037, 1.1474), for λy=λz=10, (0.2923, 0.1694, 1.5231), and for the 1D model: 

(0.9502, 0.5037, 0.5467). The correlation variables for the equilibrium velocity distribution were set to 

zero here, so that the case of λy=λz=1 would align with the 1-D case. We note here the significance of 

the delay factor, θ. Despite a higher value of Ω, the 3-D formulation shows a larger effluent 

concentration, indicating less capture. This is a direct result of the significantly higher value of θ that is 



calculated using the 1-D formulation. These calculations are entirely dependent on the parameters 

chosen, and such a significant difference is not always expected. 

Below we compare the two models by performing sensitivity analysis with the primary variables. In 

the following, we make little distinction between the two directions perpendicular to the mean flow 

(y,z), as they play the same role in the following calculations. First, we consider the effect of the 

filtration coefficient in the x-direction. The results of the sensitivity study for the dimensionless delay 

factor, θ, macroscale filtration coefficient, Ω, and the inverse Peclet number, Pe-1 are presented in Fig. 

5. 

Before discussing the sensitivities on each particular variable, we briefly discuss the physical 

interpretation of each variable. The Rij terms are in essence a measure of interdependence. If we 

define a second velocity distribution: 

0 0
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*( , , )

x y z x y z

x y z

x x y y z z

v v v v v v
v v v
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= =
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      (54) 

Then the Rij terms become equivalent to covariances, calculated according to this modified velocity 

distribution. This modified distribution accounts for ‘local’ or ‘first-order’ effects of particle capture 

and velocity relaxation on the velocity distribution. In truth, particle capture, transport, and relaxation 

will result in an instantaneous velocity distribution at any point (x,y,z,t) that can vary greatly from ψ0. 

This is captured in the original formulation, but is simplified to this ‘local’ quantification following 

the long waves, large times approximation made during the derivation (see Eq. (B-17)). 

The dimensionless velocity delay factor, θ represents a delay in the effective advective velocity in the 

x-direction. This arises due to the preferential capture of faster particles, which shifts the 

instantaneous particle velocity distribution towards lower values. The first term in θ in Eq. (40) 

describes covariance between vx and the x-directional capture term, λx|vx|. The correlation between 

these terms quantifies precisely the effect of faster particles being captured, or the co-occurrence of 

fast particles and particle capture. The second and third terms in θ are unique to the three-dimensional 

formulation. They describe respectively, the covariance between the velocity vx, and capture in the y 

and z directions. It is important to note here that this covariance is measured with respect to the 

modified velocity distribution, such that even with no correlations between the velocities, such that  

( ) ( ) ( ) ( )0 0, 0, 0,, ,x y z x x y y z zv v v v v v   =         (55) 

then the Rij terms can still be non-zero. 

The inverse Peclet number is of a similar form for both the 3-D and 1-D formulations. The R11 term 

describes the covariance between vx and itself, a common feature of a statistically derived diffusion 

coefficient. In this case, we measure this covariance relative to the modified velocity distribution, 

which accounts for particle capture and relaxation. 

The macroscale filtration coefficient, Ω contains two types of terms. The first are the product between 

microscale filtration coefficients and the mean of the absolute velocity. These are the ‘zero-order’ 

capture terms, that are simply the averaged representation of particle capture. The second set of terms 

involve two filtration coefficients, and an R22 term. These second terms include every combination of 

each direction, with cross-direction terms being represented twice. These terms describe the extent to 

which capture in the two directions occurs simultaneously. This co-occurrence describes the ‘first-

order’ capture effect, wherein particle capture changes the instantaneous particle velocity distribution 

thus changing the extent of capture. In this case, particle capture reduces the proportion of fast 

particles, and given that these particles are captured at higher rates, this reduces the overall capture 

rate. 



 

FIG 5. Sensitivity of the parameters of the 1-Dimensional advection-diffusion equation with capture 

derived from the 3-D and 1-D formulations of the Boltzmann equation with respect to the filtration 

coefficient in the direction parallel to flow (x) 

Dependencies of the two approaches on λx are qualitatively the same; θ increases with increases 

capture. This follows directly from the physical interpretation outlined above; θ arises from 

preferential capture of faster particles, so increasing capture increases this effect. Both models predict 

a θ of zero with no capture in the x-direction. The asymptotic tendency at high values of λx indicates 

exhaustion of faster particles whose capture leads to θ. 

The results for the inverse Peclet number are presented in Fig. 5(b). Both curves show a decreasing 

trend, consistent with the idea that capture narrows the particle velocity distribution, resulting in less 

dispersion.  

Fig. 5(c) shows the sensitivity of the macro-scale filtration coefficient. Again, both methods show the 

same general positive tendency. A key difference is that while macroscale capture is zero when λx is 

zero for the 1-D formulation, it is finite for the 3-D formulation due to capture in the two cross-flow 

directions. Both curves are non-linear, with diminishing returns resulting from the ‘first-order’ terms. 

This balancing effect of capture is slightly stronger for the 3-D formulation, as capture in each of the 

three-directions can reduce the propensity of capture. 

Next we consider the effect of the capture in the two cross-flow directions (y,z). Again, all variables 

for these two variables are the same for these calculations, so sensitivity is done similarly by varying 

both simultaneously. The results are presented in Fig. 6. 

 

FIG 6. Sensitivity of the parameters of the 1-Dimensional advection-diffusion equation with capture 

derived from the 3-D and 1-D formulations of the Boltzmann equation with respect to the filtration 

coefficient in the directions perpendicular to flow (y,z) 

The first observation is that variation of λy and λz has no effect on the 1-D formulation.  For the 3-D 

formulation, the velocity delay factor shows a decreasing trend, contrary to the trend with λx. While 

capture in the two cross-directions are also proportional to velocity, it is independent on the x-

directional velocity. The dimensionless velocity delay factor arises due to preferential capture of 

particles moving quickly in the x-direction. Thus while increasing λy and λz increases the total amount 

of particle capture, it decreases the selectivity of particle capture on large values of vx, thus decreasing 

θ. 



Suppose we introduce at a point a finite concentration of particles into a porous medium with velocity 

distribution ψ0. The concentration pulse will have an average motion, however faster and slower 

particles will tend to drift from the centroid of the pulse. While they separate from the concentration 

pulse due to their x-direction velocity, their movement in the y,z-directions will result in their capture. 

This results in a reduction of the dispersion of particles, as seen in Fig. 6(b). 

Lastly, Fig. 6(c) shows that under the 3-D formulation, capture in the cross-directions translates 

directly into the total capture rate, with some non-linearity noted at low values.  

Next we present sensitivity on the width of the equilibrium velocity distribution. The three 

dimensional velocity distribution used in this study is parameterised by 9 variables

( ), , , , , , , ,x y z x y z xy xz yzv v v       , however, there is no observed dependency on 
xv , and yv  and 

zv  are zero, so we will restrict our investigation to the three covariances, σx, σy, and σz. 

First we consider the results for the primary flow direction. Results are presented in Fig. 7. 

 

FIG 7. Sensitivity of the parameters of the 1-Dimensional advection-diffusion equation with capture 

derived from the 3-D and 1-D formulations of the Boltzmann equation with respect to the covariance 

of the equilibrium velocity distribution in the direction parallel to flow (x) 

Both models exhibit an increasing tendency on advective velocity delay with the width of velocities in 

the x-direction. A greater variance in velocities implies that the velocity preference of capture can 

have a greater effect on the velocity distribution. On the contrary, when particles all move with 

approximately the same velocity, then their capture rate will be equal, and θ will be negligibly small.  

The results for the inverse Peclet number in Fig. 7(c) illustrate a positive trend, which is expected 

even in the absence of particle capture. Both trends are lower than the no-capture trend 
1 2

xPe −   

directly as a result of the reduction of dispersion due to capture. 

The macroscale filtration coefficient, presented in Fig. 7(b), is finite at zero σx under either 

formulation. Given that the distribution ψ0 is centred around a positive value of vx, increasing it will 

initially result in an increase in number of both fast and slow particles, but a disproportionate increase 

in slower particles, decreasing the overall effectiveness of capture. Once σx increases sufficiently, 

given that our choice of ψ0 permits negative values of vx, increasing the width of the distribution 

results in an ever-increasing proportion of velocities with large magnitudes, thus increasing particle 

capture. While normal distributions are common, it is important to note that this sensitivity study, 

while illustrative of some physical properties of the coefficients, is dependent on our choice of 

distribution. 

Next we investigate the effect of σy and σz, which we vary simultaneously. The results are presented in 

Fig. 8. 



 

FIG 8. Sensitivity of the parameters of the 1-Dimensional advection-diffusion equation with capture 

derived from the 3-D and 1-D formulations of the Boltzmann equation with respect to the covariance 

of the equilibrium velocity distribution in the directions perpendicular to flow (y,z) 

Again, we note that the 1-D formulation is independent on the covariance of ψ0 in the two cross-flow 

directions, as expected. For all three coefficients, the trend is the opposite when compared with the 

sensitivity performed on σx. First, we consider the effect on Ω. With increasing σy and σz, a larger 

proportion of particles will exhibit cross-flow velocities with high magnitudes, thus increasing the 

total extent of capture. This is reflected in the results of the sensitivity study presented in Fig. 8(c). 

The negative tendency observed in Fig. 8(a) for θ is a result of an increase in capture that is largely 

independent on the velocity of particles in the x-direction. When particles begin to move faster in the 

y- and z-directions, they begin to be captured regardless of their velocity in the x-direction. The 

velocity delay factor arises due to the selective capture of particles whose velocity magnitude in the x-

direction is high, so reducing this selectivity naturally reduces θ. It is of interest that while increasing 

σy and σz increases the total capture, it decreases θ, a parameter that arises specifically due to capture. 

Similar to the discussions surrounding σx, the increased capture from a wider particle velocity 

distribution leads to a narrower effective distribution, leading to less dispersion, as illustrated in Fig. 

8(b). 

Lastly we present a sensitivity study on the relaxation time, τ, presented in Fig. 9. 

 

FIG 9. Sensitivity of the parameters of the 1-Dimensional advection-diffusion equation with capture 

derived from the 3-D and 1-D formulations of the Boltzmann equation with respect to the relaxation 

time 

The impact of this relaxation time is to counteract the effect of particle capture on the effective 

particle velocity distribution, as highlighted in Eq. (54). When the relaxation time is small, the effect 

of capture on the particle velocity distribution becomes negligible, as induced perturbations are 

removed almost instantly. This is reflected in Fig. 9(a) which presents the sensitivity of θ with respect 

to τ. As θ arises exactly due to a change in the effective velocity distribution, being a shift to lower 

velocities, it follows that when such perturbations are dampened by the effects of relaxation, θ 

reduces. Increasing τ results in an asymptotic tendency towards a limit where relaxation plays no role, 

and the effect of capture on transport is fully realised. 



The trend for the inverse Peclet number is similar to that of θ, although the physical interpretation 

differs. Consider a particle concentration front moving through the porous media. On the front, we 

consider a particle moving in the x-direction faster than average. After some time, this particle will 

move ahead of the front, alongside other fast particles. Relaxation will cause these particles to 

decelerate, moving the instantaneous velocity distribution back towards the equilibrium distribution. 

The same effect is true for slow particles which fall behind the progressing concentration front. 

Without the relaxation, these fast and slow particles would spread ever quicker from the centroid of 

the concentration front, in essence enhancing dispersion. This is why in Fig. 9(b), we see that 

decreasing τ decreases the dispersion coefficient. When capture is absent, this positive tendency 

continues, with Pe-1 diverging. With capture present, both the 3-D and 1-D formulations show an 

asymptotic tendency. 

As discussed earlier, the derived equations for Ω account for the depletion of faster particles by 

capture, which consequently reduces the total capture rate. Relaxation of the particle velocity 

distribution counteracts this effect, increasing the concentration of faster particles, and thus increasing 

capture. This is evident in Fig. 9(c), which shows a negative tendency for Ω in both the 3-D and 1-D 

formulations. 

For all three coefficients, the effect of τ is much greater in the 1-D formulation than in the 3-D. This is 

clear mathematically from Eq. (54) for the effective particle velocity distribution, where the analogue 

for the 1-D formulation is the same albeit without the cross-flow capture terms in the denominator. 

We expect from this equation, that the two cross-flow terms act in a similar way to τ, dampening the 

effect of capture in the x-direction on the particle velocity distribution. In effect this is true, but they 

do this in two different ways; τ directly relaxes the particle velocity distribution back to the 

equilibrium distribution, ψ0 as a result of dispersion, while the λy|vy| and λz|vz| terms create a 

competition, wherein some of the particles are now being captured with little regard for their velocity 

in the x-direction, and so the resulting impact of x-directional capture is lessened. 

IV. Concluding Remarks 

Formulation of Boltzmann’s kinetics equation in 3-dimensions with anisotropic capture and diffusion 

and exact upscaling allows us to conclude the following: 

 

• Introduction of a sink-source term into the Boltzmann equation and solution of functional 

equation in Fourier images allows for exact upscaling;   
• The upscaled equation takes the form of a 3-Dimensional advection-diffusion equation with a 

linear capture term and mixed-derivative diffusion terms; 
• The upscaling procedure yields explicit formulae for upper-scale transport coefficients versus 

micro-scale coefficients and the equilibrium velocity distribution in all basic dirtections;  
• As with the 1-Dimensional formulation, the resulting ADE equation has delayed advective 

velocity, resulting from the preferential capture of fast particles  
• In the case where the suspended concentration of particles is uniform in the y and z directions, 

then the upscaled equation devolves into a 1-Dimensional ADE with three dimensionless 

coefficients describing diffusion, capture, and velocity delay  
• The three coefficients in the 1-D case account for the impacts of capture and diffusion in 

the y and z directions, which can significantly change the magnitude of each parameter, even 

in the presence of zero mean velocity in these two directions  
• Several sensitivity studies illustrate the relationships between the dimensionless coefficients 

and the microscale parameters, for both the 1-Dimensional ADE’s derived from the 3-

Dimensional and 1-Dimensional formulations of the Boltzmann equation 
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Appendix A. Determination of acL  and 
1

aaL−  operators 

First we derive the acL term. From the derivation of the decomposition of the Hilbert space in Eq. 

(14), it follows that the projection Pa can be written as 

( ) ( )1,aP x x x= −                      (A-1) 

where the brackets denote the inner product defined in Eq. (13). 

Due to the linearity of both terms, we perform this projection on each of the terms in L, where we 

make note that we are considering the embedding of the solution φF in the c-subspace: 

0aP i c  =                       (A-2) 

( )( )1,a x x xP v ikc ikc v v= −                    (A-3) 

( )( )1,a y y yP v ipc ipc v v= −                    (A-4) 

( )( )1,a z z zP v ihc ihc v v= −                    (A-5) 

( )( )1,a x x x x xP v c c v v = −                    (A-6) 

( )( )1,a y y y y yP v c c v v = −                               (A-7) 

( )( )1,a z z z z zP v c c v v = −                    (A-8) 

0

1
0a x y zP c dv dv dv c



  

− − −

 
− = 

 
                      (A-9) 

Thus we get 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )
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            (A-10) 

Now let us derive
1

aaL− . We seek to derive an explicit form for p in the equation: 

aaL p q=                    (A-11) 

aaL can be written as 
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         (A-12) 

We write 

aa a aL P J=                     (A-13) 

which is equivalent to solving the following equation for p 

a aP J p q =                    (A-14) 

We consider the term p to be within the a-subspace 

aP p q =                    (A-15) 

Performing the projection (see Eq. (A-1)) 

( ),p p q −  =                   (A-16) 

Rearranging, we get 

( ), p q
p

 +
=


                  (A-17) 

Next we take the inner product of both sides with unity 

( ) ( )
1 1

1, , 1, ,p p q
   

=  +   
    

                (A-18) 

Given that p lies within the a-subspace, its inner product with unity is zero 

( )
1 1

0 , 1, ,p q
   

=  +   
    

                 (A-19) 

Rearranging 
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−
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                  (A-20) 

Substituting this into Eq. (A-17) we obtain 
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qq
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= −
  

                  (A-21) 

Which is equivalent to 
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                 (A-22) 

where  



1
x y z x x y y z zi v ik v ip v ih v v v    


 = + + + + + + +              (A-23) 

 

Appendix B. Determination of fluxes and capture terms in Fourier space 

We begin with the Fourier transform of the x-directional flux 

, 0x F x F x y zq v dv dv dv 
  

− − −

=                      (B-1) 

We make the decomposition given in Eq. (14) 

( ), 0x F x F F x y zq v a c dv dv dv
  

− − −

= +                    (B-2) 

We can separate these two terms 

, 0 0x F x F x y z x F x y zq v c dv dv dv v a dv dv dv 
     

− − − − − −

= +                     (B-3) 

The averaged concentration, cF is independent of velocity, and so can be taken out of the integral, 

leaving the average velocity in the x-direction.  

Next, we add and subtract (1,vx) in the second integral 

( ) ( )( ), 01, 1,x F F x x x x F x y zq c v v v v a dv dv dv
  

− − −

= + − +                  (B-4) 

Rearranging the integral terms 

( )( ) ( ), 0 01, 1,x F F x x x F x y z x F x y zq c v v v a dv dv dv v a dv dv dv 
     

− − − − − −

= + − +                  (B-5) 

The third time is zero, and the second term can be simplified using the definition of the inner product 

(Eq. (13)) and the Pa projection operator (Eq. (A-1)) 

( ), ,x F F x a x Fq c v P v a= +                    (B-6) 

Substituting Eq. (18) 

( )1

, ,x F F x a x aa ac Fq c v P v L L c−= + −                   (B-7) 

Substituting Eq. (A-10) for the Lac operator 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )
1

,

1, 1, 1,
,

1, 1, 1,

x x y y z z

x F F x a x aa F

x x x y y y z z z

ik v v ip v v ih v v
q c v P v L c

v v v v v v  

−

   − + − + −
   

= + −    
+ − + − + −      

 (B-8) 



Lastly, we substitute the 
1

aaL− operator

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 1 1

,
1 1 1

, 1, , 1, , 1,

, 1, , 1, , 1,

x a x aa x x a x aa y y a x aa z z

x F F

x a x aa x x y a x aa y y z a x aa z z

v ik P v L v v ip P v L v v ih P v L v v

q c
P v L v v P v L v v P v L v v  

− − −

− − −

  − − − − − −        
=  

    − − − − − −      

(B-9) 

Here we introduce terms: 

( )( )1, 1,kl k l l

ij a i aa j jR P v L v v−  = −
 

                 (B-10) 

where ( ), 1,2i j  with 1v v= , 
2v v=  , and ( ), , ,k l x y z  . This results in 

( ), 11 11 11 12 12 12

xx xy xz xx xy xz

x F F x x y zq c v ikR ipR ihR R R R  = − − − − − −              (B-11) 

Similarly: 

( ), 11 11 11 12 12 12

yx yy yz yx yy yz

y F F y x y zq c v ikR ipR ihR R R R  = − − − − − −              (B-12) 

( ), 11 11 11 12 12 12

zx zy zz zx zy zz

z F F z x y zq c v ikR ipR ihR R R R  = − − − − − −              (B-13) 

The same procedure can be performed to derive expressions for the Fourier transforms of the capture 

terms 

( ), 21 21 21 22 22 22

xx xy xz xx xy xz

x F x F x x y zc v ikR ipR ihR R R R    = − − − − − −             (B-14) 

( ), 21 21 21 22 22 22

yx yy yz yx yy yz

y F y F y x y zc v ikR ipR ihR R R R    = − − − − − −             (B-15) 

( ), 21 21 21 22 22 22

zx zy zz zx zy zz

z F z F z x y zc v ikR ipR ihR R R R    = − − − − − −             (B-16) 

We make the long waves, large times approximation, which is equivalent to 

, , , 0k p h →                    (B-17) 

Consequently, the Rij terms become constants. 
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6 Conclusions 
 

The laboratory experiments and mathematical modelling of particle detachment, transport, and 

capture in porous media allows drawing the following conclusions: 

1. In artificial sand-kaolinite cores, above kaolinite contents of 3%, cores show very similar 

permeability decline in response to the injection of low-salinity water, suggesting that clay 

content is not in itself a good indicator for the sensitivity of rocks to formation damage by 

fines migration. In addition, only a fraction of the present clay is detached during low-salinity 

water injection, suggesting that a majority of the clay within the rock does not contribute to 

fines migration directly. 

2. The detachment of particles due to the reduction of injected fluid salinity is dependent on the 

type of ions within the injected fluid. Bivalent Ca2+ ions demonstrate a hysteretic adsorption 

behaviour, wherein cores saturated with calcium salts exhibit no sensitivity even to extremely 

low salinity fluids. This hysteresis is not present with Na+ ions to the extent that low-salinity 

sensitivity can be averted. Saturation of cores previously saturated with Ca2+ ions with Na+ 

ions can restore the rock’s sensitivity to low-salinity water. 

3. Including a finite particle detachment kinetics rate while retaining the critical retention 

function within the 1-Dimensional formulation of fines migration allows for an exact solution. 

The discontinuity present in the solution without delay is no longer present once the delay in 

detachment is introduced. The effect of the delay is to increase the stabilisation time, with no 

effect on the final strained particle profile or impedance. The model exhibits good agreement 

with laboratory coreflooding data. 

4. Formulation of the axisymmetric fines migration problem with two delay factors also allows 

for an analytical solution, albeit with implicit expressions for all concentrations and 

impedance. The instantaneous detachment of particles once flow commences is formulated in 

the initial conditions, while the subsequent detachment due to the injected fluid salinity 

occurs with delay. This formulation requires the critical retention function to be defined over 
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the entire range of velocities and salinities encountered during the injection. Calculations 

using laboratory data show decreases of injectivity more than twice, with stabilisation 

occurring in less than three hours in all cases. 

5. The formulation of colloidal transport using Boltzmann’s kinetic equation allows for a direct 

coupling of particle capture and diffusion/dispersion. Using Hilbert space projections, the 

equation can be upscaled to produce an advection diffusion equation with capture and a 

delayed advective velocity. The coefficients of the upscaled equation can be expressed 

explicitly in the microscale parameters for capture and transport. The three macroscale 

parameters exhibit an inherent relationship, which reduces to a two-dimensional space when 

all particle velocities are positive. The model shows good agreement with laboratory data that 

exhibits a delayed advective velocity. 

6. Generalising the Boltzmann model to allow for arbitrary dependence of capture on the 

particle velocity permits the same upscaling procedure, resulting in an upscaled equation of 

the same form, with different relationships for the coefficients. Several existing models for 

capture which exhibit velocity dependence are presented and are shown to exhibit different 

macroscale behaviour including an attachment model which results in an advective particle 

velocity greater than that of the carrier fluid. Use of the existing models is shown to improve 

agreement with laboratory data. Agreement between laboratory data and the model can be 

used to identify the underlying physical processes that occur during the coreflood. 

7. Further generalisation of the model to three dimensions results in a 3-Dimensional advection 

diffusion equation with capture, cross diffusion terms, delayed advective velocity in each 

principal direction, and macroscale coefficients that now account for capture in all three 

directions. Under the assumption that particles move with the same velocity in each direction, 

the upscaled capture term is equal to the scalar product of the filtration coefficients and 

particle velocities in each direction. Reduction of the 3-Dimensional equation to 1-Dimension 

results in the familiar ADE with capture, with the addition that now the capture of particles 

due to diffusion in the two directions perpendicular to flow is now accounted for in all three 

coefficients. 
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Recommendations 

• Investigation and experimental validation of more complex formulations for particle 

detachment delay 

• Experimental tests that are designed specifically for high diffusion and high capture to 

validate the delayed advection derived using Boltzmann’s equation 

• Experimental regime designed to determine all coefficients in the 3-Dimensional formulation 

of the ADE derived using Boltzmann’s equation 

• Comparison of the modelling results from Boltzmann’s equation (as in this thesis) and other 

statistical approaches such as random walks and population balance 
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