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Abstract 

 

 

Multiple myeloma (MM) is a largely incurable haematological malignancy 

characterised by the clonal proliferation of neoplastic immunoglobulin-producing 

plasma cells (PCs) within the bone marrow (BM). Previous studies from our laboratory, 

and those of others, have shown that gene and protein expression of the homophilic cell-

cell adhesion and signalling molecule, N-cadherin, is up-regulated in PCs in 

approximately 50% of newly-diagnosed MM patients. Notably, increased expression of 

N-cadherin is associated with inferior prognosis in these patients. In this thesis, 

bioinformatic and in vitro analyses were performed to determine the mechanisms 

responsible for the up-regulation of N-cadherin expression in MM. The histone 

methyltransferase MMSET, universally dysregulated in the 10-15% of MM patients 

which harbour the chromosomal translocation t(4;14), was a positive regulator of CDH2 

expression in human MM cell lines, suggesting it is a key driver of in N-cadherin 

expression in t(4;14)+ MM. Several additional candidate molecules and pathways (e.g. 

miR-190 and IL-6/JAK2/STAT3 signalling) were also identified which may represent 

previously unknown, MMSET-independent regulators of N-cadherin expression in 

t(4;14)- MM.  

 The development, progression and relapse of MM is underpinned by the 

trafficking, or dissemination, of MM PCs from one tumour site to distant BM sites via 

the circulation. Previous studies suggest that inhibition of MM PC adhesion to the 

endothelium may represent a potential therapeutic modality to prevent the extravasation 

and dissemination of MM PCs. In this thesis, pre-treatment of C57Bl/KaLwRij mice 

with the cyclic pentapeptide N-cadherin antagonist ADH-1 inhibited tumour 

development following intravenous injection of 5TGM1 MM PCs. This effect was not 

seen in mice treated with ADH-1 after tumour establishment, suggesting that N-

cadherin plays a role in the extravasation and BM homing of MM PCs. In support of 

this, N-cadherin was found to mediate the adhesion of MM PCs to endothelial cells 

(ECs), which represents a key step in the extravasation of circulating MM PCs. These 

studies suggest that ADH-1 may be clinically useful in the prevention of MM PC 

dissemination, thereby delaying disease progression and relapse. 

 In addition to its role in MM pathogenesis, N-cadherin is critical in the 

regulation of vascular integrity and permeability. Recently, studies have shown that 
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perturbation of N-cadherin function disrupts established EC-EC and EC-mural cell 

junctions resulting in increased permeability of the EC barrier to macromolecules in 

vitro and in vivo. This thesis describes the identification of a small molecule 

peptidomimetic of ADH-1, LCRF-0006, as a novel vascular disrupting agent which 

enhances vascular permeability in vitro and in vivo, and synergistically increases the 

efficacy of the anti-MM agent bortezomib in C57Bl/KaLwRij mice with established 

MM disease. To this end, LCRF-0006 may be clinically useful in increasing the depth 

of MM tumour response to bortezomib, which is currently used in MM patients as 

induction therapy, maintenance therapy, and in the relapse setting. In addition, we 

speculate that the potential ability of LCRF-0006 to augment the enhanced permeability 

and retention (EPR) effect could be utilised to increase the delivery, and therefore anti-

cancer efficacy, of various therapeutic agents in MM and other cancers in the clinical 

setting. 
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1.1 Abstract 
In many types of solid tumours, the aberrant expression of the cell adhesion molecule 

N-cadherin is a hallmark of epithelial-to-mesenchymal transition, resulting in the 

acquisition of an aggressive tumour phenotype. This transition endows tumour cells 

with the capacity to escape from the confines of the primary tumour and metastasise to 

secondary sites. In this review, we will discuss how N-cadherin actively promotes the 

metastatic behaviour of tumour cells, including its involvement in critical signalling 

pathways which mediate these events. In addition, we will explore the emerging role of 

N-cadherin in haematological malignancies, including bone marrow homing and 

microenvironmental protection to chemotherapeutic agents. Finally, we will discuss the 

evidence that N-cadherin may be a viable therapeutic target to inhibit cancer metastasis 

and increase tumour cell sensitivity to existing anti-cancer therapies. 
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1.2 Introduction 
Cancer metastasis is a leading cause of cancer-related mortality. The metastasis of 

cancer cells within primary tumours is characterised by localised invasion into the 

surrounding microenvironment, entry into the vasculature and subsequent spread to 

permissive distant organs (reviewed in Valastyan & Weinberg, 2011 and Friedl & 

Alexander, 2011).1,2 In many epithelial cancers, metastasis is facilitated by the genetic 

reprogramming and transitioning of cancer cells from a non-motile, epithelial phenotype 

into a migratory, mesenchymal-like phenotype, a process known as epithelial-to-

mesenchymal transition (EMT) (reviewed in Thiery et al., 2009 and De Craene & Berx, 

2013).3,4 A common feature of EMT is the loss of epithelial cadherin (E-cadherin) 

expression and the concomitant up-regulation or de novo expression of neural cadherin 

(N-cadherin). This so-called "cadherin switch" is associated with increased migratory 

and invasive behaviour (reviewed in Wheelock et al., 2008 and Gheldof & Berx, 

2013)5,6 and inferior patient prognosis.7-10 A major consequence of E-cadherin down-

regulation is the loss of stable epithelial cell-cell adhesive junctions, apico-basal cell 

polarity and epithelial tissue structure, thereby facilitating the release of cancer cells 

from the primary tumour site (reviewed in Kourtidis et al., 2017 and Perl et al., 

1998)11,12. In contrast to the migration-suppressive role of E-cadherin, N-cadherin 

endows tumour cells with enhanced migratory and invasive capacity, irrespective of E-

cadherin expression (reviewed in Hazan et al., 2004).13 Thus, the acquisition of N-

cadherin appears to be a critical step in epithelial cancer metastasis and disease 

progression. 

In this review, we will discuss how N-cadherin promotes the metastatic 

behaviour of tumour cells by directly mediating cell-cell adhesion, and by its 

involvement in modulating critical signalling pathways implicated in metastatic events. 

In addition, we will discuss the emerging relevance of N-cadherin in haematological 

malignancies, namely leukaemias and multiple myeloma. Finally, we will review the 

emerging evidence that N-cadherin may be a viable therapeutic target to inhibit cancer 

metastasis and overcome chemotherapeutic resistance. 

 

1.3 Structure and formation of the N-cadherin adhesive complex 
N-cadherin is a calcium-dependent adhesion molecule which directly mediates 

homotypic and heterotypic cellular interactions, thereby facilitating cell-cell recognition 
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and sorting. N-cadherin is a classical type I cadherin consisting of 5 extracellular 

domains linked to a functional intracellular domain. The engagement between N-

cadherin monomers on opposing cells occurs by reciprocal insertion of a Trp residue 

side-chain on its first extracellular domain (EC1) into the hydrophobic pocket of the 

partner N-cadherin EC1 (trans adhesion). In addition, the stabilization of N-cadherin-

mediated adhesion requires the interaction, or clustering, of adjacent monomers on the 

surface of the same cell, involving the His-Ala-Val (HAV) sequence on EC1 and a 

recognition sequence on the second extracellular domain (EC2) of the lateral N-

cadherin monomer (cis adhesion).14-16 The membrane expression and lateral clustering 

of N-cadherin is dependent upon p120 catenin, which localizes N-cadherin at 

cholesterol-rich microdomains.17,18 The initial ligation of N-cadherin extracellular 

domains triggers the activation of the Rho GTPase family member Rac, which 

stimulates localized actin filament assembly and the formation of membrane protrusions 

at points of cell-cell contact (reviewed in Yap & Kovacs, 2003 and Ratheesh et al., 

2013).19,20 The subsequent activation of the Rho GTPase family member RhoA, at the 

expense of Rac function, facilitates the maturation of N-cadherin-based cell-cell 

junctions by triggering the sequestration of β-catenin to the cadherin intracellular 

domain.21,22 β-catenin serves as a critical link to α-catenin which accumulates at nascent 

cell-cell junctions and suppresses actin branching. In addition, α-catenin facilitates the 

anchorage of the N-cadherin-catenin complex to the actin cytoskeleton via actin-binding 

proteins such as cortactin and α-actinin, thereby promoting the maturation of cell-cell 

contacts (reviewed in Niessen et al., 2011 and Pokutta & Weis, 2007)23,24 (Figure 1.1). 

The stability of the N-cadherin-catenin complex is highly dependent on the 

phosphorylation status of N-cadherin and the associated catenins, which is regulated by 

tyrosine kinases, such as Fer and Src, and the tyrosine phosphatase PTP1B (reviewed by 

McLachlan & Yap, 2007 and Lilien & Balsamo, 2005).25,26 

 

1.4 The functional role of N-cadherin in solid tumour metastasis 
In the normal physiological setting, N-cadherin plays a functional role in a variety of 

cell types including neuronal cells, myocytes, endothelial cells, stromal cells and 

osteoblasts.21,27-31 While N-cadherin is typically absent, or expressed at low levels, in 

normal epithelial cells, the aberrant expression of N-cadherin in cancer cells is a well-

documented feature of disease progression in many epithelial malignancies.32-35 In a 



Figure 1.1.  Schematic representation of the N-cadherin-catenin adhesive complex. 

The extracellular domains of N-cadherin monomers engage in trans and cis interactions 

with partner monomers, facilitated by p120-catenin (p120), resulting in a lattice-like 

arrangement. Interactions occur via a reciprocal insertion of tryptophan side-chains (in 

trans) and the HAV adhesion motif (in cis) (inset). Activation of RhoA sequesters β-

catenin (β-cat) and results in accumulation of α-catenin (α-cat) to the N-cadherin 

intracellular domain. This promotes anchorage of the N-cadherin-catenin complex to the 

actin cytoskeleton via actin-binding proteins, thereby stabilizing cell-cell contacts. 

Initial ligation of N-cadherin extracellular domains also triggers PI3K/Akt signalling 

which inactivates the pro-apoptotic protein Bad, resulting in activation of the anti-

apoptotic protein Bcl-2.    
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similar manner, studies have shown that the up-regulation of N-cadherin is also a 

feature of melanoma progression.36-38 Whilst the aberrant expression of N-cadherin in 

epithelial tissues is not considered to be oncogenic, or a promoter of solid tumour 

growth39-41, the up-regulated expression of N-cadherin expression in cancer is widely 

associated with cancer aggressiveness. Indeed, many studies have demonstrated a 

significant correlation between elevated N-cadherin levels in epithelial, and some non-

epithelial solid tumours, and clinicopathologic features such as increased localised 

tumour invasion and distant metastasis, and inferior patient prognosis. Multivariate 

analyses have also identified that elevated N-cadherin expression is independently 

associated with inferior patient prognosis in several epithelial malignancies including 

prostate, lung and bladder cancer7,8,42-76 (Table 1.1). The aggressive phenotype and 

inferior prognosis associated with up-regulated N-cadherin expression in solid tumours 

is also supported by a recent meta-analysis incorporating patients with various epithelial 

malignancies.77 

 Beyond the prognostic implications of aberrant N-cadherin expression, the 

relationship between N-cadherin and metastasis is not merely associative. Indeed, there 

is a wealth of evidence that increased N-cadherin expression endows tumour cells with 

a greater capacity to migrate. In addition to directly mediating cancer cell adhesion to a 

variety of cell types within tumour host microenvironments, including stromal cells, 

endothelial cells and osteoblasts29,78-81, early studies identified that increased N-cadherin 

expression enhances the migratory and invasive capacity of multiple tumour cell types 

in vitro.80,82-84 N-cadherin has also been shown to promote the capacity of melanoma 

cells to undergo in vitro trans-endothelial migration.85,86 The ability of N-cadherin to 

promote epithelial tumour metastasis in vivo was initially demonstrated using the MCF-

7 breast cancer cell line, following injection into the mammary fat pad of nude mice. In 

contrast to wild-type cells, MCF-7 cells ectopically expressing N-cadherin formed 

tumour metastases in several organs including the liver, pancreas and lymph nodes.78 

Similarly, N-cadherin expression in the mammary epithelium in the transgenic PyVmT 

murine breast cancer model resulted in a three-fold increase in the number of pulmonary 

metastatic foci without affecting the onset or growth of the primary tumour.40 Using an 

orthotopic mouse model of pancreatic cancer, the over-expression of N-cadherin in 

BxPC-3 cells increased the formation of disseminated tumour nodules throughout the 

abdominal cavity and induced the formation of N-cadherin-expressing lung micro-

metastases.84 Consistent with these findings, enforced expression of N-cadherin in 



 

Table 1.1.  Association of increased N-cadherin expression in cancer with clinicopathologic features and 
survival  

Cancer type 
Cohort information & treatment 

details 
No. of 

patients 

N-cadherin 
detection 
method 

Association with clinico-
pathologic features 

Association with  
survival 

Reference 

Epithelial cancers       

Breast cancer 
Pre-metastatic; 

resected 
574 IHC High grade & LN metastasis Shorter PFS (U) [42] 

 Early-stage invasive 1902 IHC 
Earlier development of distant 

metastasis 
n/a [43] 

 
Primary inoperable and LN 

negative 
275 IHC n.s. Shorter OS (U) [44] 

 Invasive; no prior therapy 94 IHC 
High grade, late stage & LN 

metastasis 
n/a [45] 

Prostate cancer 
Clinically localized; radical 

prostatectomy 
104 IHC 

Poor differentiation, seminal 
vesicle invasion & pelvic LN 

metastasis  

Shorter time to 
biochemical failure (U), 

clinical recurrence (M) & 
skeletal metastasis (U) 

[8] 

 
Castration-resistant; 

transurethral resection 
26 IHC 

Higher Gleason score & 
metastasis 

n/a [46] 

 
Localized; no therapy prior to 

radical prostatectomy   
157 IHC 

Later stage, higher PSA & 
Gleason score, seminal vesicle 

invasion and LN metastasis  
n/a [47] 

 
Blood from cancer follow-up 

patients 
179 

Serum 
ELISA 

(sN-cad) 
Higher PSA n/a [48] 

 
Radical prostatectomy, 

metformin-treated  
49 IHC n/a Increased recurrence [49] 

Lung cancer 
No therapy prior to surgery 

(adenocarcinoma & squamous 
cell carcinoma) 

68 IHC 
Higher TNM stage & poor 

differentiation 
Shorter OS (M) [50] 

 
Primary adenocarcinoma; no 

therapy prior to surgery 
147 IHC n/a Shorter OS (M) [51] 

 
Surgical resection of 

adenocarcinoma; no prior 
therapy 

57 qPCR LN metastasis n/a [52] 

 No post-operative surgery 186 IHC Higher TNM stage & metastasis n/a [53] 

 

Blood collected prior to or up to 
3 weeks after platinum-based 
therapy (adenocarcinoma & 
squamous cell carcinoma) 

43 
IF  

(on CTCs) 
n/a Shorter PFS [54] 

Urothelial  
cancers 

Radical cystecomy with pelvic LN 
dissection, clinically non-

metastatic bladder cancer 
433 IHC 

Higher clinical & pathologic 
tumour stage, LN metastasis & 

LN stage, lymphovascular 
invasion 

Shorter RFS (M), OS (U) 
& cancer-specific survival 

(U) 
[55] 

 
Invasive bladder cancer 

undergoing radical cystectomy; 
no prior treatment 

30 qPCR n/a Shorter OS [56] 

 
Transurethral resection of non-
muscle-invasive bladder cancer 

115 IHC 
Higher incidence of intravesical 

recurrence 
Shorter intravesical RFS 

(M) 
[57] 

 

Clinically-localized upper urinary 
tract carcinoma undergoing 

nephroureterectomy; cisplatin-
based therapy in late-stage 

patients 

59 IHC n/a 
Intravesical and 

extravesical RFS (M) 
[58] 

Liver cancer 
Resection of hepatocellular 

carcinoma 
100 IHC 

Higher histologic grade, 
multifocal tuimours & vascular 

invasion 

Shorter disease-free and 
OS 

[59] 

 
Surgical resection of  

hepatocellular carcinoma 
57 IHC n.s. 

Increased recurrence-
rate within 2 years of 

resection 
[60] 

 

Surgical resection of intrahepatic 
cholangiocarcinoma (no prior 
therapy); adjuvant therapy in 

patients with recurrence  

96 IHC 
Higher recurrence of vascular 

invasion 
Shorter OS [61] 

Head & neck 
cancer 

Surgical specimen of HNSCC, 
patients are +/- LN metastasis 

119 IHC 
Greater tumour size, higher 

clinical stage & LN metastasis 
Shorter OS (M) [62] 



 

Table 1.1.  Association of increased N-cadherin expression in cancer with clinicopathologic features and 
survival (continued) 

All clinicopathologic and survival data shown is positively associated with increased N-cadherin expression. All data is statistically 
significant (P < 0.05), unless otherwise indicated. Abbreviations: PFS (progression-free survival), RFS (recurrence-free survival), 
OS (overall survival), U (univariate analysis), M (multivariate analysis), IHC (immunohistochemistry), qPCR (quantitative PCR), IF 
(immunofluorescence), ELISA (enzyme-linked immunosorbent assay), sN-cad (soluble N-cadherin), PSA (prostate specific 
antigen), LN (lymph node), TNM (tumour, node and metastases), CTCs (circulating tumour cells), CK (cytokeratin), n/a (not 
applicable), n.s. (not significant).    

 

Cancer type 
Cohort information & 

treatment details 
No. of 

patients 

N-cadherin 
detection 
method 

Association with clinico-
pathologic features 

Association with 
survival 

Reference 

Epithelial cancers       

Head & neck 
cancer 

(continued) 

Blood collected following HNSCC 
resection (laryngeal, 

oropharyngeal & oral cancer)   
10 

IF  
(on CTCs) 

n/a Shorter OS [63] 

 
Radical surgery for laryngeal 

cancer; adjuvant therapy in 60% 
of cases 

50 IHC Higher grade Increased relapse [64] 

 Nasopharyngeal cancer 122 IHC 
LN involvement, distant 

metastasis & later clinical 
stage  

Shorter OS (nuclear N-
cadherin) 

[65] 

Gastrointestinal 
tract cancer 

Colorectal cancer; no therapy 
prior to surgery 

37 qPCR 
Local invasion, Dukes staging 

& vascular invasion 
n/a [66] 

 
Colorectal cancer; no therapy 

prior to surgery 
102 IHC 

Larger tumour size, poor 
differentiation, tumour 

invasion, LN metastasis & 
distant metastasis 

Shorter OS (M) & shorter 
disease-free survival 

[67] 

 
Colon carcinoma; no therapy 

prior to surgery  
90 IHC 

Greater depth of tumour 
invasion & higher TNM stage 

n/a [68] 

 
Gastric cancer surgery with LN 
metastasis; no prior therapy 

89 IHC (on LN) 
LN involvement, higher 

pathological stage, lymphatic 
invasion & venous invasion 

Shorter OS [69] 

 

Curative surgery for gastric 
adenocarcinoma; no prior 
therapy, stage II patients 

received adjuvant therapy 

146 IHC Hematogenous recurrence Shorter survival [70] 

Renal cancer 

Blood collected from metastatic 
renal cell carcinoma patients 
with prior nephrectomy and 

therapy 

14 
IF  

(on CTCs; also 
CK-) 

n/a Shorter PFS [71] 

Ovarian cancer 
Surgical specimens of high-grade 

serous carcinoma 
167 IHC n/a Shorter PFS and OS (U) [72] 

Gallbladder 
cancer 

Adenocarcinoma (+/- surgery) 80 IHC 
Poor differentiation, larger 

tumour size, TNM stage, 
invasion & LN metastasis 

Shorter OS (M) [73] 

Squamous cell/adenosquamous 
carcinoma (+/- surgery) 

46 IHC 
Larger tumour size, invasion 

and LN metastasis 
Shorter OS (M) [73] 

Non-epithelial 
solid cancers  

      

Melanoma 
Removal of primary melanoma, 

various stages of disease 
394 IHC Increased Breslow thickness 

Distant metastasis-free 
survival (M; p = 0.13) 

[7] 

Sarcoma 
Surgical resection of 

osteosarcoma 
107 qPCR 

Later stage and distant 
metastasis 

Shorter survival [74] 

 
Blood collected from a variety of 

bone & soft tissue sarcoma 
patients  

73 
Serum ELISA 

(sN-cad) 
Larger tumour size & higher 

grade 
Shorter disease-free 
survival (M) & OS (U) 

[75] 

Haematological 
malignancies 

      

Multiple 
myeloma 

Blood collected from newly-
diagnosed patients; no prior 

therapy 
84 

Serum ELISA  
(sN-cad) 

n/a Shorter PFS and OS [76] 

 
Bone marrow aspirate from 

newly-diagnosed patients; no 
prior therapy 

14 
qPCR (on 

CD38+/CD138+ 
tumour cells) 

n/a Shorter PFS [76] 
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androgen-responsive prostate cancer cells promoted invasion of underlying muscle and 

lymph node metastasis following subcutaneous injection in castrated mice.87 Moreover, 

the ability of melanoma cells to extravasate (a key step in the metastatic cascade) and 

form lung metastases following intravenous injection in NOD/SCID mice was 

attenuated following N-cadherin knock-down in tumour cells.88 

 To appreciate how N-cadherin, a bona fide cell adhesion molecule, may actively 

promote cancer cell migration, it is important to consider that the N-cadherin-catenin 

complex is situated at the cross-roads of cell adhesion and activation of pro-metastatic 

signalling cascades, in both a physical and functional context. Notably, the adhesive 

function and migration-related signalling capacity of N-cadherin can occur 

simultaneously, or as antagonistic events, adding further complexity to its role in cancer 

metastasis. In the following section, we describe three key mechanisms by which N-

cadherin has been shown to actively promote the migratory capacity of tumour cells: 

facilitation of collective cell migration, augmentation of fibroblast growth factor-

receptor (FGFR) signalling and modulation of canonical Wnt signalling. 

 

1.4.1 N-cadherin promotes collective cell migration 

While the mesenchymal phenotype of carcinoma cells, that have undergone EMT, 

promotes the migration of individual cancer cells, the localised invasion and metastasis 

of epithelial tumour cells is also facilitated by their ability to migrate as sheets, clusters 

or strands, a process known as collective cell migration (reviewed in Clark & Vignjevic, 

2015 and Friedl & Alexander, 2011).2,89 Collectively migrating groups of cells maintain 

adhesive interconnectivity, collective cell polarity and co-ordinated cytoskeletal 

activity, resulting in a 'leader-follower'-type cell arrangement which promotes more 

directional and efficient migration than that of an individual migrating cell (reviewed in 

Mayor & Etienne-Manneville, 2016 and Etienne-Manneville, 2014).90,91 Several studies 

have demonstrated the importance of N-cadherin in collective cell migration in cancer. 

For instance, N-cadherin has been shown to promote the ability of lung or ovarian 

cancer cells to form aggregates and collectively invade three-dimensional (3D) collagen 

matrices or penetrate peritoneal mesothelium-like cell layers in vitro.92,93 Similarly, 

studies in transformed canine kidney epithelial cells (MDCK cells) have shown that N-

cadherin promotes aggregate formation which allows directional collective cell 

migration in a 3D collagen matrix. In these cells, deletion of the entire N-cadherin 

intracellular domain, or the β-catenin binding domain alone, resulted in greater 
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individual cell detachment and migration from cell clusters, highlighting the importance 

of the N-cadherin-actin cytoskeleton interaction in collective cell migration. Moreover, 

over-expression of an N-cadherin mutant in which the extracellular domain was fused to 

the anti-binding domain of α-catenin hindered the movement of follower cells, 

demonstrating that dynamic N-cadherin-actin linkage is required for efficient collective 

cell migration.94 

 In addition to maintaining multi-cellular aggregates of tumour cells, studies in 

N-cadherin-expressing non-tumour cells demonstrate that N-cadherin also promotes 

collective cell migration by polarizing Rho-family GTPase signalling (e.g. Rac1 and 

cdc42), known to play an important role in the co-ordination of cytoskeletal remodelling 

in collectively migrating cells (reviewed in Ridley, 2015 and Combedazou et al., 

2017).95,96 For example, models of arterial smooth muscle wound-healing and neural 

crest migration have shown that the asymmetric distribution of N-cadherin-mediated 

cell-cell adhesion at the lateral and posterior aspects of leader cells promotes directional 

cell alignment and increased cdc42 and Rac1 activity and protrusion formation at the 

free leading cell edge, resulting in enhanced migration.97,98 Mechanistically, studies in 

mouse embryonic fibroblasts have demonstrated that N-cadherin-adhesive complexes at 

the rear of cells suppress localized integrin-α5 activity, thereby polarizing integrin and 

Rac activity towards the free leading edge of the cell.99 Indeed, functional inhibition of 

N-cadherin in transformed mammary cells has been shown to reduce integrin-α5-

dependent cell migration on fibronectin in vitro.100 In a similar manner, silencing of N-

cadherin expression in melanoma cells perturbs α2β1-integrin-dependent collagen 

matrix invasion in vitro.101 Reciprocally, integrin signalling at focal adhesions has been 

shown to regulate the ability of HeLa cells to engage in N-cadherin-based connections 

and to promote collective cell migration.102 Given that integrins play an important role 

in the activation of Rho signalling (reviewed in Moreno-Layseca & Streuli, 2014 and 

Grande-Garcia et al., 2005)103,104, it is plausible that N-cadherin may polarize Rho-

family GTPase signalling via intercommunication with integrins, thereby promoting the 

collective migration of cancer cells (Figure 1.2A). 

 

1.4.2 N-cadherin augments fibroblast growth factor receptor signalling 

Functional interaction between the extracellular domains of N-cadherin and receptor-

tyrosine kinase FGFRs was first recognised as a mechanism by which N-cadherin 

promoted axonal outgrowth of rat cerebellar neuronal cells. These studies identified that 



Figure 1.2.  Schematic representation of cell signalling events modulated by 

increased N-cadherin expression in the context of cell migration. In addition to 

mediating cellular aggregation, N-cadherin may facilitate the collective migration of 

tumour cells by excluding focal adhesions and Rac1 activity, and promoting RhoA 

activity, at sites of N-cadherin-mediated cell-cell contact. The asymmetric distribution 

of N-cadherin adhesive complexes polarizes integrin function and Rac1 activity towards 

the free edges of cells, thereby directing focal adhesion and lamellipodia formation 

away from the cell cluster and promoting cell migration. Similar to Rac1, N-cadherin-

mediated cell-cell adhesion promotes cdc42 activity at the free edges of cells, resulting 

in filipodia formation (A). Functional interaction between the extracellular domains of 

N-cadherin and FGFR-1 potentiates FGF-2-activated FGFR-1 signalling by attenuating 

ligand-induced receptor internalisation. The resulting augmentation of down-stream 

MAPK-ERK and PI3K-Akt signalling pathways promotes the metastatic behaviour of 

cancer cells by increasing the production of invasion-facilitating molecules such as 

MMPs (B). N-cadherin-mediated adhesive complexes and Wnt/β-catenin signalling are 

thought to compete for the same cellular pool of β-catenin. While N-cadherin sequesters 

β-catenin from the nucleus, the N-cadherin adhesive complex provides a reservoir of β-

catenin which, upon Wnt activation, becomes available for nuclear translocation and 

TCF/LEF-mediated gene transcription (eg. CD44 and MMP genes), resulting in the loss 

of N-cadherin-mediated cellular adhesion in cancer cells (C). 



RhoA

RhoA

Rac1

RhoA

Rac1
Rac1

Rac1

Rac1

Direction of migration

Protrusion 
formation

Extracellular matrix

Focal adhesions

N-cadherin-catenin
adhesive complexes

CYTOPLASM

NUCLEUS

Tcf

β-cat

β-cat

p120

α-cat

N-cadherin
monomer

NUCLEUS

CYTOPLASM

β-cat

Frizzled

LRP5/6 Wnt

Increased transcription (eg. CD44)

B C

A

CYTOPLASM

FGFR-1

NUCLEUS

MEK
PI3K

FGF-2

F-actin

Increased transcription (eg. MMPs)

Polarization of Rho family GTPase signalling

Augmentation of FGFR signalling Modulation of canonical Wnt signalling

RhoA

cdc42

FGFR-1

MEK

ERK

PI3K

AktERK
Akt

Akt ERK

N-cadherin
monomer

MEK
PI3K

FGF-2



CHAPTER 1: Introduction 

9 
 

the fourth extracellular domain of N-cadherin (EC4) trans-activated FGFRs to promote 

neurite outgrowth independent of FGF ligands, suggesting that N-cadherin can act as a 

surrogate ligand of FGFRs.28,105 Notably, the physical interaction of N-cadherin and 

FGFRs has also been shown in breast and pancreatic cancer cells.106-109 Evidence that 

FGFR played a functional role in N-cadherin-mediated cancer metastasis was initially 

demonstrated in breast cancer cells, whereby FGFR inhibition reduced the migratory 

capacity of N-cadherin-expressing human breast cancer cells, but not N-cadherin-

negative cells.83 In addition, FGF-2 increased the invasiveness of N-cadherin-expressing 

MCF-7 human breast cancer cells, but not control MCF-7 cells.78 To this end, it has 

been shown that N-cadherin potentiates FGF-2-activated FGFR-1 signalling by 

attenuating ligand-induced FGFR-1 internalisation, thereby stabilising FGFR-1 

expression.106,108 In turn, the sustained activation of the down-stream MAPK-ERK 

signalling pathway results in increased production of the extracellular matrix (ECM)-

degrading enzyme matrix metalloproteinase-9 (MMP-9) and enhanced breast cancer cell 

invasiveness.78,106 In line with these findings, the over-expression of N-cadherin in 

mammary epithelium in transgenic mouse models of breast cancer resulted in an 

increased propensity for lung metastasis, compared with control mice.40,110 Examination 

of tumour cell isolates from these mice showed that N-cadherin potentiates breast 

cancer cell migration and invasion in an FGFR-dependent manner.40 These studies 

suggested that the ability of N-cadherin-FGFR interactions to promote breast cancer 

metastasis may also involve activation of phosphatidylinositide-3 kinase (PI3K)/Akt 

signalling via Akt2110 (Figure 1.2B). 

Two lines of evidence suggest that N-cadherin-FGFR-1 interactions promote the 

invasive behaviour in both collectively migrating and individual cancer cells. Firstly, N-

cadherin-FGFR-1 interactions have been shown to occur over most of the cell 

membrane, but are excluded from sites of cell-cell adhesion, suggesting that the 

interaction is independent of N-cadherin-mediated cellular adhesion.107 Secondly, 

blocking antibodies directed at the FGFR-1-interacting domain of N-cadherin (EC4) 

have been shown to inhibit N-cadherin-mediated migration, but not N-cadherin-

mediated aggregation, of human breast cancer cells.111 Thus, it would appear that N-

cadherin-mediated cell-cell adhesion and N-cadherin-mediated cell migration via 

FGFR-1 are independent and mutually exclusive events. Further studies are warranted 

to identify whether N-cadherin potentiates FGFR-1 signalling in cancers other than 

breast and pancreatic cancer. 
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1.4.3 N-cadherin modulates canonical Wnt signalling 

In addition to stabilising cadherin-mediated cell-cell adhesion, β-catenin plays a central 

role in the canonical Wnt signalling pathway. Canonical Wnt signalling promotes the 

cytoplasmic accumulation and nuclear translocation of β-catenin which activates T cell 

factor/lymphoid enhancer factor (TCF/LEF)-mediated transcription of gene targets 

(reviewed in Murillo-Garzón & Kypta, 2017, Valenta et al., 2012 and Klaus & 

Birchmeier, 2008)112-114 including genes which promote tumour cell invasion and 

metastasis (e.g. MMPs and CD44).115-121 It has been proposed that cadherins and the 

canonical Wnt signalling pathway may compete for the same cellular pool of β-catenin, 

with cadherins sequestering β-catenin from the nucleus, thereby attenuating Wnt 

signalling.122,123 Indeed, enforced expression of N-cadherin in colon carcinoma cells 

resulted in the relocation of nuclear β-catenin to the plasma membrane and attenuated 

LEF-responsive trans-activation.124 Alternatively, studies suggest that the N-cadherin-β-

catenin complex may provide a stable pool of β-catenin which is available for 

TCF/LEF-mediated gene transcription in cancer cells.86,125 To this end, disruption of N-

cadherin-mediated adhesion in leukaemic cells was found to increase TCF/LEF reporter 

activity.126 Thus, given β-catenin is essential in the stabilization of N-cadherin-mediated 

cellular adhesion (discussed earlier), it is feasible that the ability of N-cadherin to 

modulate TCF/LEF-mediated gene transcription may play an important role in 

individual cell migration, at the expense of collective cell migration (Figure 1.2C). 

The ability of N-cadherin to modulate canonical Wnt signalling has been shown 

to play a role in the trans-endothelial migration of cancer cells, a key process in the 

metastatic cascade (reviewed in van Zijl et al., 2011).127 Studies in melanoma cells have 

shown that while β-catenin co-localizes with N-cadherin during the initial stages of 

endothelial cell adhesion, the activation of the tyrosine kinase Src phosphorylates the N-

cadherin cytoplasmic domain, leading to the dissociation of the N-cadherin-β-catenin 

complex.128 β-catenin is then translocated to the nucleus during trans-endothelial 

migration and activates TCF/LEF-mediated gene transcription, resulting in up-

regulation of the diapedesis-promoting adhesion molecule CD44.86,129-131 In line with 

these in vitro findings, N-cadherin knock-down in human melanoma cells has been 

shown to reduce lung nodule formation following intravenous injection in immuno-

compromised mice.88 While N-cadherin-expressing tumour cells have been detected in 

the circulation of patients with various epithelial cancers54,63,71, a role for N-cadherin in 

the trans-endothelial migration of epithelial cancer cells has not yet been demonstrated. 
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1.5 The emerging role of N-cadherin in haematological malignancies 
We have thus far summarised the functional role and clinical implications of aberrant 

N-cadherin expression in the context of solid tumour metastasis. There is now emerging 

evidence suggesting that N-cadherin plays a role in haematological malignancies, 

including leukaemia and multiple myeloma (MM). These cancers account for 

approximately 10% of all cancer cases and are typically characterized by the abnormal 

proliferation of malignant white blood cells within the bone marrow (BM) and the 

presence of tumour cells within the circulation. Specialised compartments, or ‘niches’, 

within the BM microenvironment play critical roles in housing and maintaining pools of 

quiescent haematopoietic stem cells (HSCs), and in regulating HSC self-renewal and 

differentiation.132,133 Notably, N-cadherin is expressed by various cell types associated 

with the HSC niche, including osteoblasts and stromal cells in the endosteal niche, and 

endothelial cells and pericytes in the perivascular niche.30,134-136 In the following 

section, we discuss the potential implications of aberrant N-cadherin expression in 

haematological cancer cells; namely, BM homing and the BM microenvironmental 

protection to chemotherapeutic agents.  

 

1.5.1 Leukaemia 

Leukaemias are thought to arise by the malignant transformation of HSCs into 

leukaemic stem cells (LSCs) which occupy and modify BM HSC niches.137-140 

Adhesive interactions between LSCs and the BM microenvironment activate signalling 

cascades which contribute to LSC self-renewal and survival, and the capacity to evade 

the cytotoxic effects of chemotherapeutic agents.141, 142 Indeed, therapeutic targeting of 

adhesion molecules to disrupt interactions with the niche represents a potential strategy 

to eliminate LSCs.143  

Studies have demonstrated that N-cadherin is expressed in a subpopulation of 

primitive HSCs30, although its precise role within the HSC niche in normal 

haematopoiesis is controversial. To this end, the over-expression of N-cadherin in HSCs 

has been shown to increase HSC lodgement to BM endosteal surfaces in irradiated 

mice, enhance HSC self-renewal following serial BM transplantation and promote HSC 

quiescence in vitro.144 However, other studies have reported that deletion of N-cadherin 

in HSCs or osteoblastic cells has no effect on haematopoiesis or HSC quiescence, self-

renewal or long-term repopulating activity.31,134, 145 
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 While these studies suggest that N-cadherin is not essential for the maintenance 

of the HSC niche, emerging evidence implicates N-cadherin in the function of the LSC 

niche. Studies have reported that N-cadherin is expressed on primitive sub-populations 

of leukaemic cells including patient-derived CD34+ CD38- chronic myeloid leukaemia 

(CML) cells and CD34+ CD38- CD123+ acute myeloid leukaemia (AML) cells, 

suggesting that N-cadherin is a marker of LSCs.125,146,147 Similar to solid tumours, N-

cadherin is thought to facilitate engagement of leukaemic cancer cells with cells of the 

surrounding microenvironment. For example, treatment of primary human CD34+ CML 

cells with the N-cadherin blocking antibody GC-4 significantly reduced their adhesion 

to human BM stromal cells.125 Similarly, GC-4 treatment of a BCR-ABL-positive 

mouse acute lymphoblastic leukaemia (ALL) cell line was found to inhibit their ability 

to adhere to mouse fibroblasts.148 Pre-clinical mouse models also suggest that N-

cadherin may promote BM homing, engraftment and self-renewal of AML cells in 

vivo.149,150 Thus, N-cadherin represents a potential target to inhibit LSC interactions 

with the BM microenvironment. 

 

1.5.1.1 N-cadherin-mediated cell adhesive interactions promote microenvironmental 

protection of leukaemic cells to chemotherapeutic agents  

Adhesive interactions between leukaemic cells and cells of the BM microenvironment 

confers sub-populations of leukaemic cells with resistance to chemotherapy, leading to 

disease relapse.151,152 As such, there is growing interest in targeting molecules involved 

in leukaemic cell-BMSC interactions to enhance leukaemic sensitivity to 

chemotherapy.125,153 The role of N-cadherin in the microenvironmental protection of 

leukaemic cells to chemotherapeutic agents was first demonstrated in studies showing 

that N-cadherin expression was associated with resistance to treatment with a 

farnesyltransferase inhibitor in the murine lymphoblastic leukaemia cell line, B-1, when 

grown in co-culture with fibroblasts. Enforced N-cadherin expression in B-1 cells also 

conferred farnesyltransferase inhibitor-resistance when grown in the presence of 

fibroblasts.148 Notably, these findings are in line with reports showing that N-cadherin is 

up-regulated in solid tumour cancer cells resistant to chemotherapeutic agents154-157 and 

androgen deprivation therapy.46,158 Direct demonstration that N-cadherin-mediated cell-

cell adhesion facilitated microenvironmental protection of leukaemic cells to 

chemotherapy was provided in co-culture experiments with primary human CD34+ 

CML cells and BMSCs. Disruption of CML cell-BMSC adhesion, using an N-cadherin 
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antagonist peptide (containing the HAV sequence) or the N-cadherin function-blocking 

antibody GC-4 increased CML cell sensitivity to the tyrosine kinase inhibitor 

imatinib.125,126 An association between response to chemotherapy and LSC expression 

of N-cadherin has also been reported in AML patients. To this end, patients exhibiting a 

higher proportion of N-cadherin-expressing BM-derived CD34+ CD38- CD123+ LSCs at 

diagnosis were less responsive to induction chemotherapy.146 While the precise 

mechanism by which N-cadherin-mediated adhesion confers drug-resistance in 

leukaemic cells is unclear, studies in solid tumour cells suggest that N-cadherin-

mediated adhesion increases activity of the anti-apoptotic protein Bcl-2, by PI3K-Akt-

mediated inactivation of the pro-apoptotic protein Bad.80,155,159 

 

1.5.2 Multiple myeloma 

Multiple myeloma (MM), preceded by a benign precursor condition called monoclonal 

gammopathy of undetermined significance (MGUS), is a haematological malignancy 

characterised by the uncontrolled proliferation of transformed immunoglobulin-

producing plasma cells (PCs) within the BM. Clinical manifestations of MM include 

osteolytic bone lesions, hypercalcaemia, renal insufficiency and anaemia. While the 

introduction of so-called 'novel' anti-MM agents (e.g. the immunomodulatory drugs 

thalidomide and lenalidomide, and the proteasome inhibitor bortezomib) have 

significantly improved the overall survival prospects of MM patients over the past 10-

15 years, the long-term management of MM patients following disease relapse and 

progression remains a major challenge.160-164 Nevertheless, the identification of MM 

patients who are likely to experience rapid disease relapse is paramount to the success 

of therapeutically managing these patients in order to maximise their survival 

prospects.162 Notably, studies in our laboratory have demonstrated that stratification of 

newly-diagnosed MM patients based on plasma N-cadherin levels identifies a subset of 

individuals (> 6ng/ml plasma N-cadherin) with increased risk of earlier death, 

irrespective of disease stage, tumour burden or poor cytogenetic features.76 Moreover, 

data from our group, and others, suggest that N-cadherin gene and protein expression is 

elevated in CD138+ BM-derived PCs in approximately 50% of newly-diagnosed MM 

patients compared with BM PCs from healthy individuals, and is associated with poor 

prognosis76,81 (Table 1.1). Notably, the expression of the N-cadherin gene, CDH2, is up-

regulated in MM patients harbouring the high-risk t(4;14)(p16;q32) translocation. This 

translocation encompasses 15-20% of all MM patients and is characterised by the 
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dysregulated expression of the histone methyltransferase MMSET.81,165-167 Through yet 

to be defined mechanisms, CDH2 expression is also up-regulated in more than 50% of 

MM patients in the hyperdiploidy-related sub-group.81 

 

1.5.2.1 N-cadherin mediates cell-cell adhesion between MM PCs and the BM 

microenvironment 

Adhesive interactions between MM PCs and the BM microenvironment are critical in 

the permissiveness of the BM to the development of MM disease. These include cell-

cell interactions which support MM PC growth and resistance to chemotherapeutic 

agents, and promote the inhibition of osteoblast differentiation, thereby contributing to 

MM PC-mediated bone loss (reviewed in Noll et al., 2012 and Katz, 2010).168,169 In 

addition to endothelial cell adhesion, in vitro studies have demonstrated that N-cadherin 

mediates the adhesion of human MM PCs to osteoblasts and stromal cells, which 

constitute the endosteal MM niche.81,170 In a functional context, N-cadherin-mediated 

adhesion between MM PCs and pre-osteoblastic cells has been shown to inhibit 

osteoblast differentiation, suggesting that N-cadherin may contribute to MM-related 

bone loss in the clinical setting.81 Mechanistically, studies have demonstrated that N-

cadherin inhibits osteoblast function and impedes bone formation in vivo by negative 

regulation of canonical Wnt signalling in bone cells.171-174 Studies have also shown that 

treatment of human MM PC lines in co-culture with stromal cells or osteoblasts with the 

N-cadherin blocking antibody GC-4 induced a significant expansion of MM PCs in 

vitro.170 Thus, it has been proposed N-cadherin may maintain the proliferative 

quiescence of MM PC in contact with cells of the endosteal MM niche.170 In light of the 

role of N-cadherin in mediating leukaemic cell resistance to chemotherapeutic agents, 

these findings may provide a rationale to investigate whether N-cadherin-mediated 

adhesion potentiates chemotherapeutic resistance in MM. 

 

1.6 The regulation of N-cadherin expression in cancer 
A range of extracellular stimuli implicated in cancer pathogenesis have been shown to 

increase N-cadherin gene and protein expression in cancer cells including transforming 

growth factor β1 (TGF-β1)175-178, ligands for receptor tyrosine kinases (epidermal 

growth factor [EGF]179-181, insulin-like growth factor 1 [IGF-1]182-184 and hepatocyte 

growth factor [HGF]185,186), C-X-C and C-C chemokines (CXCL12187,188, CCL21189,190 
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and CCL18191), cytokines (receptor activator of nuclear factor κB [NF-κB] ligand 

[RANKL]192,193 and interleukin 6 [IL-6]88,194,195), Wnt3a157, ECM proteins196,197 and 

hypoxia.198-201 These stimuli up-regulate N-cadherin expression by activating a number 

of intracellular signalling cascades including, but not limited to, canonical and non-

canonical TGF-β1175,177,202,203, Wnt/β-catenin157,188,201,204, PI3K/Akt205-207, NF-κB193,199, 

Janus kinase 2/signal transducer and activator of transcription 3 

(JAK2/STAT3)88,180,184,195,205 and c-Jun N-terminal kinase (JNK)84,177,197,208,209 

signalling pathways. The expression of N-cadherin has also been shown to be up-

regulated by oncogenic transcription factors, histone-modifying enzymes and 

glycoproteins including SET (activator of JNK signalling)209-211, BTF3 

(JAK/STAT3)212-214, SATB2 (Wnt/β-catenin)215,216, FOXP3 (Wnt/β-catenin)217-219 and 

MUC-4 (JNK signalling).108,220 In turn, these signalling pathways orchestrate the 

activation of classical EMT-associated transcription factors Twist188,178,179,184,193,196,199 

and Slug68,176,195,208,209, which are well-established positive regulators of N-cadherin 

expression in cancer cells. In some cancers, the up-regulation of N-cadherin may also be 

potentiated by the EMT-associated transcription factor Snail, following the activation of 

PI3K/Akt and MAPK signalling.37,185,221 In addition, the dysregulated expression of the 

histone methyltransferase MMSET appears to play a major role in the up-regulation of 

N-cadherin expression in prostate cancer and MM81,166,167 (Figure 1.3). Notably, in vitro 

and in vivo studies have also demonstrated that N-cadherin expression is increased in 

prostate cancer cells following androgen deprivation, and suppressed following 

androgen re-introduction, suggesting N-cadherin may be negatively regulated by 

androgens.46,87,158 Here, we discuss some of the key transcriptional regulators of N-

cadherin gene expression, and the negative regulation of N-cadherin expression by 

microRNAs, in cancer cells. 

 

1.6.1 Twist1 

The basic helix-loop-helix transcription factor Twist1 is well-established as a central 

regulator of EMT and its expression is extensively associated with cancer metastasis.222-

227 In addition to Twist1 positively correlating with N-cadherin expression in clinical 

samples of various cancers50,228,229, over-expression and knock-down studies have 

demonstrated that Twist1 positively regulates N-cadherin expression in vitro in 

melanoma cells and in a number of epithelial cancers.37,50,196,226,230,231 Mechanistically, 

Twist1 has been shown to directly regulate transcription of the N-cadherin gene, CDH2, 



Figure 1.3.  A schematic overview of N-cadherin regulatory mechanisms in cancer. 

A multitude of extracellular stimuli implicated in cancer pathogenesis (shown in purple) 

activate numerous intracellular signalling pathways (green). In turn, these pathways 

converge to up-regulate classical EMT-related transcription factors (orange) which 

increase N-cadherin expression. Whether transcription factors intrinsically associated 

with these signalling pathways (eg. c-Jun, TCF/LEF, p50/p65 and STAT3) up-regulate 

N-cadherin independent of Twist1, Slug and Snail, is not known. It is also unknown 

whether Slug- and Snail-induced N-cadherin expression is independent of Twist1. 

Several microRNAs (maroon) also directly regulate N-cadherin expression in cancer. 

For simplicity, not all extracellular stimuli, transcription regulators, microRNAs (e.g. 

targeting Twist1, Slug or Smads), intracellular signalling pathways (including the 

involvement of the PI3K/Akt module in mediating these pathways) and cross-regulation 

of these signalling cascades, are shown. 
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through binding to an E-box within the first intron of CDH2. Twist1-mediated 

regulation of N-cadherin expression may be dependent on adhesion to ECM proteins, as 

both the nuclear accumulation of Twist1 and subsequent expression of N-cadherin was 

strongly up-regulated in PC-3 prostate cancer cells following adhesion to fibronectin.196 

Thus, tumour cell attachment to ECM proteins may play an important role in Twist1-

driven induction of N-cadherin in cancer cells. In prostate cancer cells, Twist1 also 

indirectly potentiates TGF-β1-mediated N-cadherin up-regulation by activation of the 

metastasis-associated protein clusterin.178,232 

 

1.6.2 Slug 

Slug is a member of the Snail family of transcription factors and putatively behaves as a 

transcriptional repressor.233 However, while it is well established that Slug induces 

EMT by directly repressing E-cadherin gene transcription234,235, over-expression and 

knock-down studies in a variety of epithelial and non-epithelial cancer cells have 

demonstrated that Slug positively regulates N-cadherin expression in vitro.62,236-239 Up-

regulation of Slug is also associated with increased N-cadherin expression in clinical 

samples of bladder and head and neck cancer.62,237 While it is unknown whether Slug 

directly activates CDH2 gene transcription, Slug has been shown to positively regulate 

Twist1 expression236, suggesting that Twist1 may mediate Slug-induced up-regulation 

of N-cadherin expression. Moreover, Twist1 positively regulates Slug expression240, 

implying a Twist1-Slug positive feedback loop may further potentiate the up-regulation 

of N-cadherin in cancer cells. 

 

1.6.3 Smads 

Smads, the intracellular effecter proteins of canonical TGF-β signalling which control 

gene transcription241, are important mediators of TGF-β-driven up-regulation of N-

cadherin expression in cancer. Notably, Smad complexes have been shown to bind to 

the CDH2 promoter and activate CDH2 transcription in lung cancer and immortalised 

pancreatic epithelial cells in vitro.175,242 Knock-down of Smad3 or Smad4, or inhibition 

of Smad2 and Smad3 phosphorylation, has also been shown to prevent the induction of 

CDH2 transcription in response to TGF-β in lung, ovarian and prostate cancer cell lines. 
175,243 Studies suggest that Smads may also indirectly promote N-cadherin expression in 

cancer cells by up-regulating the expression of Twist1, Slug or Snail.242-244  

 



CHAPTER 1: Introduction 

17 
 

1.6.4 MicroRNAs 

MicroRNAs (miRs) are small (~22 nucleotide long) single-stranded non-coding RNAs 

which mediate post-transcriptional gene silencing and are widely implicated in cancer-

associated EMT (reviewed in Fabbri et al., 2007 and Ceppi & Peter, 2014).245,246 To 

date, studies have identified several miRs that are down-regulated in epithelial cancer 

tissues, when compared with corresponding normal epithelium, and which suppress N-

cadherin expression and metastasis. These include miR-218, miR-194, miR-199a, miR-

199b, miR-145 and miR-124 which directly target CDH2 transcripts and down-regulate 

N-cadherin expression in various solid tumours.52,59,74,247-254 The expression of a number 

of these miRs is also inversely associated with N-cadherin levels in human cancer tissue 

samples52,74,247,253,254 (Figure 1.3). 

 Studies in cancer cell lines have also identified a number of miRs which 

indirectly down-regulate N-cadherin expression by targeting Twist1 (miR-106b, miR-

720)230,255, Slug (miR-140)256 and Smad gene transcripts (miR-125b, miR-34a and miR-

136).257-259 These miRs are down-regulated in cancer tissues, compared with normal 

tissues, and suppress cancer cell invasiveness.230,255-261 Additionally, studies using 

clinical colorectal cancer specimens identified two miRs, miR-135b and miR-210, 

which indirectly up-regulate N-cadherin expression by targeting the FOXN3 gene, a 

transcriptional repressor of CDH2. Expression of these miRs, in conjunction with down-

regulation of miR-218, was associated with elevated N-cadherin levels and metastasis in 

colorectal cancer.247 Recent studies have also shown that miR-181a positively regulates 

N-cadherin in prostate cancer cells, potentially by targeting PTEN, a PI3K/Akt pathway 

inhibitor and tumour suppressor.262,263 

 

1.7 N-cadherin as a therapeutic target in cancer 
As N-cadherin is widely implicated in cancer metastasis, the utility of N-cadherin 

antagonists as therapeutic drugs is being investigated in the oncology setting. Notably, 

N-cadherin-targeting agents have been shown to inhibit cell adhesion and to modulate 

cell signalling. Interestingly, studies have also shown that N-cadherin-targeting agents 

affect both tumour cells and tumour-associated vasculature. Here, we describe the 

current repertoire of N-cadherin antagonists that have displayed efficacy as anti-cancer 

agents in vivo. 
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1.7.1 Monoclonal antibodies 

Several monoclonal antibodies directed against N-cadherin have been investigated for 

their ability to block N-cadherin-dependent tumour migration and invasion in vitro and 

metastasis in vivo. The mouse monoclonal antibody, designated GC-4, binds to the EC1 

domain of N-cadherin monomers and subsequently blocks N-cadherin-mediated 

adhesion.30,81,264,265 GC-4 has been shown to suppress N-cadherin-mediated Akt 

signalling56,159, and inhibit the migration and invasion of melanoma, bladder, ovarian 

and breast cancer cells in vitro.56,78,86,92 In vivo, pre-treatment of AML cells with GC-4 

has been shown to inhibit BM homing of circulating tumour cells.149 Thus, treatment 

with GC-4 may by therapeutically relevant in the context of limiting the metastatic 

dissemination of tumour cells in melanoma and haematological malignancies, where N-

cadherin plays a role in trans-endothelial migration and BM homing of circulating 

tumour cells.81,86,149 Additionally, GC-4-mediated blocking of N-cadherin engagement 

between human CD34+ CML cells and stromal cells increased tumour cell sensitivity to 

imatinib, demonstrating a potential therapeutic strategy to overcome tyrosine kinase 

inhibitor resistance.126 Two additional monoclonal antibodies, 1H7 (targeting N-

cadherin EC1-3) and 2A9 (targeting N-cadherin EC4), have shown efficacy in a 

subcutaneous xenograft prostate cancer mouse model, whereby both antibodies reduced 

the growth of established tumours and inhibited localised muscle invasion and distant 

lymph node metastasis.87 

 

1.7.2 ADH-1 

The lateral clustering of N-cadherin monomers is essential in the stabilization and 

maturation of nascent N-cadherin-mediated adhesive junctions between neighbouring 

cells.14,16 Peptides containing the classical cadherin HAV motif are likely to complete 

with the cis adhesive interface of N-cadherin on EC1, thereby inhibiting the lateral 

clustering of N-cadherin monomers.266 On the basis that a HAV motif located on 

FGFR-1 is required for FGF-2 binding107, it is feasible that ADH-1 may also inhibit 

FGFR signalling. The cyclization of first-generation linear peptides harbouring the 

HAV sequence led to the development of a more stable cyclic pentapetide called ADH-

1 (N-Ac-CHAVC-NH2) which similarly inhibited N-cadherin-dependent function.267 In 

vitro, ADH-1 has been shown to induce apoptosis in a range of tumour cell types, and 

inhibits tumour cell migration at sub-cytotoxic concentrations, with cell sensitivity 

proportional to relative N-cadherin expression.268-270 The efficacy of ADH-1 to inhibit 
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primary tumour growth has been demonstrated in a number of pre-clinical mouse 

models including pancreatic, breast, colon, ovarian and lung cancer.268,271 Notably, 

ADH-1 has also been identified as a vascular disrupting agent, suggesting the 

compound may have effects on both tumour cells and tumour-associated 

vasculature.271,272 In phase I clinical trials, ADH-1 was shown to have an acceptable 

toxicity profile with no maximum tolerated dose achieved. ADH-1 treatment was 

associated with disease control in approximately 25% of patients with advanced 

chemotherapy-refractory solid tumours, independent of tumour N-cadherin expression 

status.273,274 

The therapeutic efficacy of ADH-1 as an anti-cancer agent has been most 

extensively evaluated in the melanoma setting. Pre-clinical studies suggest that ADH-1 

synergistically enhances melanoma tumour response to melphalan.275,276 These studies 

showed that ADH-1 enhances the permeability of tumour vasculature and increases 

melphalan delivery to the tumour microenvironment, as evidenced by increased 

formation of melphalan-DNA adducts in tumours. However, the combinatorial effects 

of ADH-1 and melphalan were not replicated in phase I/II clinical trials.277,278 In 

contrast to other tumour settings, studies have also suggested that ADH-1 may stimulate 

tumour growth in some mouse models of melanoma.275,276 These effects were associated 

with activation of pro-growth and survival intracellular signalling pathways including 

Akt signalling and the down-stream mTOR signalling pathway in vitro and in vivo.276 

These data suggest that ADH-1 may act as an N-cadherin agonist in certain tumour 

contexts. However, to date, ADH-1-mediated activation of tumour cell proliferation and 

signalling has not been reported in the clinical setting. 
 
 
1.8 Concluding remarks and future perspectives 
The up-regulation or 'de novo' expression of N-cadherin has significant negative 

implications in metastasis-related cancer relapse and progression, as well as overall 

survival of cancer patients. In addition to its prognostic significance in cancer, N-

cadherin actively promotes the metastatic capacity of tumour cells. Here, we have 

described three distinct mechanisms by which N-cadherin endows tumour cells with 

increased migratory capacity: facilitation of collective cell migration, augmentation of 

FGFR-1 signalling and modulation of canonical Wnt signalling. Unfortunately, our 

understanding of how N-cadherin influences cancer cell metastasis, and tumorigenesis 
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in general, remains incomplete. Studies in cardiomyocytes, stromal cells and epithelial 

cancer-like cells have ascribed focal adhesion-like properties to N-cadherin including 

mechano-transduction and traction-force transmission.279-282 Indeed, whether a 'traction 

and propulsion'-type system, via homotypic N-cadherin mediated cell-cell contacts, is 

utilised by cancer cells to facilitate migration is intriguing and warrants further 

investigation. Moreover, there is an emerging body of evidence demonstrating that N-

cadherin is expressed and is functionally relevant in the context of numerous 

haematological malignancies including lymphoblastic and myelogenous leukaemias, 

and MM. Notably, studies suggest that N-cadherin facilitates engagement of LSCs with 

the tumour microenvironment and promotes chemotherapeutic resistance of leukaemic 

cells. On the basis of observations in epithelial cancers, N-cadherin may mediate drug 

resistance in leukaemic cells, at least in part, by activation of the pro-survival protein 

Bcl-287,155,159, or modulation of Sonic Hedgehog signalling283, widely implicated in 

cancer stem cell function and maintenance.284 Interestingly, N-cadherin expression is 

induced in solid tumour cells resistant to standard chemotherapeutic agents including 

tyrosine kinase inhibitors.154-157 However, it remains to be determined whether N-

cadherin functionally contributes to microenvironmental cell adhesion mediated-drug 

resistance in these cancers. 

 Given the established role of N-cadherin in cancer, N-cadherin is continually 

being investigated as a therapeutic target. To date, peptides and mouse monoclonal 

antibodies have demonstrated some efficacy in the pre-clinical setting, by inhibiting 

cancer metastasis, enhancing cancer cell sensitivity to chemotherapeutic agents and 

delaying castration resistance in prostate cancer. However, the challenge remains to 

develop N-cadherin antagonists which are effective anti-cancer agents in the clinical 

setting. The humanization of N-cadherin blocking antibodies such as GC-4 may 

represent one such approach to utilize N-cadherin as a therapeutic target. Moreover, the 

development of next-generation N-cadherin-targeting small molecules with enhanced 

stability over existing peptide inhibitors show promise as potent inhibitors of N-

cadherin function.285-287 It remains to be seen whether these compounds have efficacy as 

anti-cancer agents in solid tumours and in haematological malignancies. Undoubtedly, 

further exploration of N-cadherin as a therapeutic target to inhibit metastasis and 

overcome chemotherapeutic resistance is warranted.   
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2.1 Abstract 
Elevated expression of the cell adhesion molecule N-cadherin (CDH2) is associated 

with poor prognosis in newly-diagnosed multiple myeloma (MM) patients. In this study, 

we investigated whether targeting of N-cadherin represents a potential treatment for the 

~50% of MM patients with elevated N-cadherin. Initially, we stably knocked-down N-

cadherin in the mouse MM plasma cell (PC) line 5TGM1 to assess the functional role of 

N-cadherin in MM pathogenesis. When compared with 5TGM1-scramble-shRNA cells, 

5TGM1-Cdh2-shRNA cells had significantly reduced adhesion to bone marrow 

endothelial cells. However, N-cadherin knock-down did not affect 5TGM1 cell 

proliferation or adhesion to bone marrow stromal cells. In the C57BL/KaLwRij murine 

MM model, mice intravenously inoculated with 5TGM1-Cdh2-shRNA cells showed 

significantly decreased tumour burden after four weeks, compared with animals bearing 

5TGM1-scramble-shRNA cells. Finally, the N-cadherin antagonist ADH-1 had no 

effect on tumour burden in the established disease setting, whereas up-front ADH-1 

treatment resulted in significantly reduced tumour burden after four weeks. Our findings 

demonstrate that N-cadherin may play a key role in the extravasation of circulating MM 

PCs promoting bone marrow homing. Moreover, these studies suggest that N-cadherin 

may represent a viable therapeutic target to prevent the dissemination of MM PCs and 

delay MM disease progression.            
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2.2 Introduction 
Multiple myeloma (MM) is an incurable haematological malignancy characterized by 

the clonal proliferation of immunoglobulin-producing plasma cells (PCs) within the 

bone marrow (BM).1 Despite recent advances in therapeutics and improvements in 

overall survival rates, the prognosis of patients with intermediate to high-risk MM 

remains relatively poor.2 During MM disease progression, MM PCs egress from the 

localized BM microenvironment, enter the circulation and disseminate to distal 

medullary sites.3 MM PC extravasation and BM homing is a multi-step process 

requiring attachment to the BM endothelial lumen, trans-endothelial migration and 

colonisation within the new stromal microenvironment. These processes are mediated 

by stromal cell-derived chemokines, which promote MM PC migration, as well as 

dynamic adhesive interactions.4-6 MM PCs express several adhesion molecules which 

mediate the physical interactions between PCs and the cellular (endothelial and stromal 

cells) and acellular (extracellular matrix proteins) components of the BM 

microenvironment. Previous studies have implicated the adhesion molecules CD44, 

VLA-4 and PSGL-1 in the attachment of MM PCs to BM endothelial cells (BMECs).7-9 

Studies have also demonstrated that functional blocking of CD44 and PSGL-1 inhibits 

MM PC extravasation and BM homing in vivo.8,9 Moreover, interactions between 

adhesion molecules expressed by MM PCs and their cognate adhesion partners activate 

numerous signal transduction cascades and positive feed-back loops which promote 

MM PC growth, survival, migration and resistance to chemotherapeutic agents.10-12 

Given that malignant transformation of normal PCs is often associated with the 

dysregulated expression of adhesion molecules13,14, the targeting of adhesion molecules 

represents an attractive therapeutic modality for MM. 

 N-cadherin (encoded by the gene CDH2) is a calcium-binding, single pass 

transmembrane glycoprotein expressed by a variety of cell types including neuronal, 

smooth muscle and endothelial cells.15-19 N-cadherin is a homophilic cell adhesion 

molecule that plays an important role in embryogenesis, morphogenesis and cancer 

pathogenesis.20 N-cadherin consists of 5 extracellular domains and mediates cell-cell 

binding through the reciprocal insertion of a Trp2 side chain located near the N-

terminus of the first extracellular domain (EC1) into the hydrophobic pocket of the 

apposed partner EC1 domain. Lateral clustering of N-cadherin through EC1 and the 

second extracellular domain (EC2) further strengthens the adhesive interaction.19,21-24 
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The cadherin cytoplasmic domain is functionally linked to the actin cytoskeleton via β-

catenin, α-catenin and p120 catenin, which also stabilizes the adhesive contacts.25 

Additionally, N-cadherin is implicated in the activation of several signal transduction 

pathways including MAPK-ERK (via cross-talk with FGF receptor) and PI3K/Akt, and 

signalling via Rho family GTPases, which regulates cell survival, proliferation, 

migration and differentiation.26-29 Sequestration of β-catenin to the plasma membrane by 

N-cadherin may also modulate β-catenin/TCF-dependent transcription of canonical 

Wnt-signalling gene targets.26,30 In the context of cancer, studies have shown that N-

cadherin mediates binding between tumour cells and stromal cells28,31,32, osteoblasts33 

and endothelial cells.34,35 Studies have also shown that N-cadherin promotes the 

survival, migration, invasion and metastatic capacity of solid tumour cell lines.28,34,36,37 

N-cadherin expression is up-regulated during tumour cell epithelial-to-mesenchymal 

transition (EMT) which involves a loss of cell polarity and an increase in dynamic 

cellular interactions, and consequently promotes tumour cell migration and 

dissemination.28,35,38-40. Indeed, aberrant expression of N-cadherin is strongly associated 

with highly aggressive forms of epithelial malignancies including breast, prostate, 

bladder and pancreatic cancer.41-45 Notably, the disulphide-linked N-cadherin antagonist 

ADH-1 (N-Ac-CHAVC-NH2) has been shown to inhibit tumour growth in pre-clinical 

models of pancreatic cancer and, when used in combination with melphalan, limits 

melanoma tumour growth.19,46,47 Moreover, phase I and II clinical trials with ADH-1 

have demonstrated disease control, and improved initial responses to melphalan, in 

some patients with advanced solid tumours.48-51 

 Our recent studies52, and those of others33, have shown that N-cadherin gene 

expression is up-regulated in PCs in approximately 50% of newly-diagnosed MM 

patients. In addition, we have recently demonstrated that circulating N-cadherin levels, 

which correlate with membrane N-cadherin expression in MM PCs, are up-regulated in 

approximately 30% of newly diagnosed MM patients. Moreover, these patients have 

decreased progression-free and overall survival compared with patients with normal 

circulating N-cadherin levels demonstrating that N-cadherin is a negative prognostic 

indicator in patients with MM.52 Previous studies have implicated N-cadherin in BM 

homing of MM PCs and in MM PC-osteoblast interactions.33 In this study, we 

investigated the effect of N-cadherin knock-down on MM PC behaviour in vitro using 

the murine MM PC line 5TGM1. Furthermore, utilising the C57BL/KaLwRij murine 

model of MM, we also assessed whether targeting of N-cadherin by knock-down or 
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pharmacological inhibition with ADH-1 is a potential therapeutic modality for the 

treatment of MM. 
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2.3 Methods 
2.3.1 Mouse tissue and PC isolation 

C57BL/KaLwRij mice, originally kindly provided by Andrew Spencer (Monash 

University, Clayton, Australia) were bred and housed at the SA Pathology Animal Care 

Facility (Adelaide, Australia). All procedures were performed with approval of the SA 

Pathology and University of Adelaide Animal Ethics Committees. Brain tissue from 

C57BL/KaLwRij mice was snap frozen in liquid nitrogen and homogenised in TRIzol® 

(Life Technologies, Carlsbad, CA). Murine BM PCs and BM stromal cells (BMSCs) 

were isolated from C57BL/KaLwRij mice as previously described.53,54 Briefly, mouse 

femora and tibiae were excised, the bone marrow was flushed and the bones were 

crushed prior to isolation of MSC cultures.53 The BM mononuclear fraction was isolated 

by Ficoll density gradient separation and the cells were blocked with 110µg/mL murine 

gamma globulin (Jackson Laboratories, Bar Harbor, ME, USA) and stained with rat 

anti-mouse CD138 (R & D Systems, Minneapolis, MN) followed by goat anti-rat IgG 

PE (Southern Biotech, Birmingham, AL). CD138+ BM PCs were then isolated by flow 

cytometry (FACSAria II, BD Biosciences, San Jose, CA) and total RNA was isolated 

from sorted cells using an RNAqueous Micro kit (Life Technologies). 

 

2.3.2 Cell culture 

All cell culture reagents were sourced from Sigma-Aldrich (St Louis, MO, USA), unless 

otherwise stated. All media were supplemented with 2mM L-glutamine, 100U/ml 

penicillin, 100µg/ml streptomycin, 1mM sodium pyruvate and 10mM HEPES buffer, 

unless otherwise specified. The mouse MM PC line 5TGM1 was maintained in Iscove's 

modified Dulbecco's medium (IMDM) with 20% foetal calf serum (FCS; Thermo Fisher 

Scientific, Waltham, MA, USA) and supplements. The human BM endothelial cell 

(BMEC) line TrHBMEC55 was maintained in M199 medium with 20% FCS and 

supplemented with 0.1% sodium bicarbonate, 1x MEM Non-Essential Amino Acids, 

100U/ml penicillin, 100ug/ml streptomycin, 1mM sodium pyruvate and 10mM HEPES 

buffer, 50µg/ml endothelial cell growth factor (BD Biosciences) and 100U/ml heparin. 

C57BL/KaLwRij BMSCs were maintained in alpha-modified Eagle’s medium (α-

MEM) with 10% FCS, 100mM L-ascorbate-2-phosphate and supplements. 
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2.3.3 Generation of a 5TGM1 N-cadherin (Cdh2) shRNA cell line 

The pFIV-H1-mCherry vector was created by excising the GFP cassette from pFIV-H1-

GFP (System Biosciences, Mountain View, CA) using XbaI and SalI and replacing it 

with the mCherry cassette from pMSCV-mCherry. To generate stable knock-down cell 

lines, an RNA duplex targeting mouse Cdh2 (AAGGATGTGCACGAAGGACAG)56 

was cloned into pFIV-H1-mCherry. A scrambled sequence 

(AAGCCACGGCCATAGAAGGCA) was used as a control. Following lentiviral 

infection of 5TGM1-luc cells (expressing a dual GFP and luciferase reporter 

construct)54,57, GFP and mCherry-expressing cells were sorted by FACS using a 

Beckman Coulter Epics AltraHyperSort (Beckman Coulter, Miami, FL, USA) and 

single cell clones were generated. A pool of 3 clonal 5TGM1-Cdh2-shRNA lines was 

used for subsequent in vitro and in vivo assays. 

 

2.3.4 Quantitative PCR 

Total RNA was isolated using TRIzol® and cDNA was synthesised using Superscript® 

III First-Strand Synthesis System (Life Technologies). Quantitative real-time PCR 

(qPCR) was performed using a Rotor-Gene (QIAGEN, Valencia, CA, USA) using 

primers for Cdh2 (Fwd 5'-ATCACTACTATTGCCGTTTTGG-3'; Rev 5'-

CTCCGGCTCTTGAGGTAACA-3') and Actb (Fwd 5'-

GATCATTGCTCCTCCTGAGC-3'; Rev 5'-GTCATAGTCCGCCTAGAAGCAT-3'). 

 

2.3.5 Western blotting 

Whole cell lysates were prepared and polyacrylamide gel electrophoresis was 

performed as described previously.54 Following transfer, the polyvinylidinedifluoride 

(PVDF) membrane was incubated in blocking buffer (2.5% ECL Blocking Agent [GE 

Healthcare, Little Chalfont, Buckinghamshire] in 0.1% Tween 20 Tris-buffered saline) 

for 2 hours at room temperature. The PVDF membrane was then probed overnight at 

4°C with a monoclonal rabbit anti-mouse N-cadherin antibody (Millipore; Billerica, 

MA, USA) diluted 1:10,000 in blocking buffer. Primary antibody binding was detected 

by incubating membranes with an alkaline phosphatase (AP)-conjugated anti-rabbit IgG 

(Millipore) diluted 1:2500 in blocking buffer for 1 hour at room temperature. Proteins 

were visualised with ECL detection reagent (GE Healthcare) on a Typhoon FLA 7000 

(GE Healthcare).  
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 To ensure equal loading of total protein, the membrane was stripped using 

Western Blot Recycling kit (Alpha Diagnostic International Inc., San Antonio, TX, 

USA) and probed for 1 hour at room temperature with rat anti-α-tubulin (Abcam; 

Cambridge, UK) at 200ng/ml in blocking buffer. The membrane was then incubated for 

1 hour at room temperature with AP-conjugated anti-rat IgG (Millipore; diluted 1:5000) 

and proteins visualised with ECL detection reagent. N-cadherin levels were quantitated 

and normalised to α-tubulin levels using ImageQuant TL Software (GE Healthcare).  

 

2.3.6 Proliferation assays 

For WST-1 assays, 5TGM1 cells were plated at 1x105 cells/ml in triplicate in phenol 

red-free IMDM containing 20% FCS and supplements using a 96-well plate. Relative 

cell numbers were assessed over 3 days using WST-1 (Roche, Basel, Switzerland) as 

per manufacturer's instructions.  

 To assess cell numbers by bioluminescence imaging (BLI), 5TGM1 cells were 

plated at 5x104/ml in triplicate in IMDM using black clear-bottomed 96-well plates 

(Corning Life Science, New York, USA). For proliferation assays in co-culture, BMSCs 

were irradiated at 30 Gy and seeded at 1.5x105/ml in black clear-bottomed 96-well 

plates 24 hours prior to the addition of the 5TGM1 cells. After 3 days, firefly D-

luciferin (Biosynth AG, Staad, Switzerland) was added to wells with a final 

concentration of 150ng/ml and incubated for 20 mins at 37°C. Bioluminescence 

(photons/sec) was measured and analysed using the Xenogen IVIS 100 (Caliper Life 

Sciences, Hopkinton, MA, USA) and Living Image software (PerkinElmer, Waltham, 

MA). Absolute cell numbers were calculated using a standard curve. 

5TGM1-scramble-shRNA cells and 5TGM1-Cdh2-shRNA cells displayed 

equivalent levels of basal mitochondrial dehydrogenase activity (WST-1 assay) and 

bioluminescence, allowing for direct comparison between the cell lines (data not 

shown). 

 

2.3.7 Adhesion assays 

Adhesion under static conditions was performed as previously described.57 For adhesion 

to cell monolayers, non-irradiated BMSCs or BMECs were plated at 1x105/ml 24 hours 

prior to adhesion assay. 5TGM1 cells were added at 1x106/ml in triplicate and incubated 

at 37°C. After 10 minutes, non-adherent 5TGM1 cells were gently removed by 

aspiration followed by 3 washes with IMDM with 20% FCS and supplements and cell 
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number was quantitated by BLI as described above. For adhesion to N-cadherin-Fc, 96-

well plates were coated with 10µg/ml recombinant human N-cadherin-Fc (R&D 

Systems, Northeast Minneapolis, MN, USA) or human IgG-Fc fragment (Rockland 

Immunochemicals, Limerick, PA, USA) for 2 hours at 37°C. After blocking wells with 

1% BSA in IMDM for 2 hours at 37°C, 5TGM1 cells were added at 1x106/ml in 

triplicate and incubated at 37°C. After 2 hours, non-adherent 5TGM1 cells were gently 

removed by aspiration and 1 wash with IMDM with 20% FCS and supplements and 

adherent cells were quantitated by BLI. The percentage of 5TGM1 cells adherent to cell 

monolayers or N-cadherin-Fc was calculated relative to total cell input, following 

subtraction of the untreated or IgG-Fc controls, respectively. 

 Adhesion under shear stress was performed using a parallel plate flow chamber 

assay (GlycoTech, Gaithersburg, MD, USA).58 Non-irradiated BMECs were seeded at 

6x104/cm2 (5x105 cells in total) in 35mm dishes (Corning) 24 hours prior to the 

adhesion assay. BMECs were stimulated with 5ng/ml TNF-α for 4 hours prior to the 

assay. Using a syringe pump (New Era Pump Systems, Farmingdale, NY, USA), a total 

of 6x106 5TGM1 cells in IMDM with 2% FCS and supplements were pre-warmed to 

37°C and were perfused across BMECs at 2 dynes/cm2 (1.25ml/min using a 10mm 

gasket window width) to mimic physiologic shear forces within the vasculature.59,60 

After flushing away non-adherent cells with IMDM + 2% FCS with supplements, the 

average number of adherent 5TGM1 cells was enumerated over 7 fields of view. 

5TGM1 cells were visualized using an inverted microscope and digital video recorder 

(Olympus, Tokyo, Japan). 

 

2.3.8 Trans-well and trans-endothelial migration assays 

Migration assays were performed using trans-wells (8 µm polycarbonate membrane; 

Costar) in a 24-well plate with a FCS concentration gradient (0% and 20% in upper and 

lower chambers, respectively), as previously described.57 For trans-well migration 

assays, 5TGM1 cells (1x105 per trans-well) were seeded in triplicate trans-wells in 

IMDM with supplements and cell migration towards IMDM with 20% FCS and 

supplements was assessed after 24 hours. For trans-endothelial migration assays, 1x104 

BMECs were plated per trans-well and were allowed to adhere for 24 hours. 5TGM1 

cells (5x105 per trans-well) were then added to triplicate trans-wells and cell migration 

to the lower chamber was assessed after 8 hours. The number of migrated cells was 
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enumerated using an inverted microscope and digital camera (Olympus) and ImageJ 

software (http://imagej.nih.gov/ij/). 

 

2.3.9 Gelatine zymography 

To assess matrix metalloproteinase 9 (MMP9) activity, 5TGM1 cells were cultured at 

2x105/ml in a 6-well plate and conditioned media was collected after 3 days. 

Conditioned media (20µl) was run on a gelatine-sodium dodecyl sulphate-

polyacrylamide gel (30% acrylamide and 1% gelatine) as previously described.61 The 

gel was incubated overnight in MMP9 activation buffer (1.25% Triton X-100, 10mM 

Tris-HCl, 5mM CaCl2, 1µM ZnCl2) at 37°C. The gel was then stained with 0.25% 

Coomassie Blue in de-stain solution (50% (v/v) methanol and 10% (v/v) acetic acid in 

water) for 2 hours and de-stained for 2 hours. Clear zones were imaged on a Typhoon 

FLA 7000. 

 

2.3.10 Animal studies 

C57BL/KaLwRij mice (6-8 weeks old) were inoculated with 5x105 5TGM1-scramble-

shRNA cells or 5TGM1-Cdh2-shRNA cells in 100µl phosphate-buffered saline (PBS) 

via tail vein injection as previously described.54,62 After 2, 3 and 4 weeks, mice were 

intraperitoneally administered 150mg/kg firefly D-luciferin (diluted in PBS; 100µl 

volume), bioluminescence was measured after 10 mins using the Xenogen IVIS 100 

system and total body MM tumour burden was assessed using Living Image software. 

Total body MM tumour burden, as assessed by BLI at 4 weeks, closely correlates with 

serum paraprotein levels as an independent measure of MM tumour burden (n = 34 

mice; P < 0.0001, R2 = 0.7874; supplementary Fig. 1). 

 For N-cadherin inhibition studies with the N-cadherin antagonist ADH-119, 6–8-

week-old C57BL/KaLwRij mice were inoculated with 5x105 parental 5TGM1-luc cells 

in 100µl phosphate-buffered saline (PBS) via tail vein injection. Mice were 

intraperitoneally injected once daily with either the N-cadherin antagonist ADH-1 (N-

Ac-CHAVC-NH2) (100mg/kg/day in PBS; CanPeptide, Pointe-Claire, Canada) or PBS 

vehicle alone, commencing immediately prior to 5TGM1 cell injection (up-front 

treatment group) or 1 week after 5TGM1 cell injection (delayed treatment group) for the 

duration of the experiment. Tumour burden was assessed 2, 3 and 4 weeks following 

tumour inoculation using BLI. 
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2.3.11 Statistical analyses 

Statistical analyses were performed using GraphPad Prism 6. In vitro assays were 

analysed using a paired t test or two-way ANOVA. Tumour burden was analysed using 

a two-way ANOVA with Bonferroni's multiple comparisons test. The correlation 

between total body MM tumour burden, as assessed by BLI and serum paraprotein 

levels, was analysed by Pearson correlation. 
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2.4 Results 
2.4.1 N-cadherin expression in 5TGM1 cell lines 

The expression of the N-cadherin gene, Cdh2, in 5TGM1 cells was assessed by qPCR. 

While Cdh2 was not expressed in normal murine BM PCs, Cdh2 expression in 5TGM1 

cells was approximately 5-fold higher than in mouse positive control cells (brain tissue 

and BMSCs) (Figure 2.1A). Expression of CDH2 was also detected in human BMECs 

(data not shown). C57BL/KaLwRij mouse-derived BMSC and human BMECs also 

exhibited considerable expression of N-cadherin protein (Figure 2.1B). Following stable 

5TGM1 Cdh2-shRNA knock-down, expression of N-cadherin protein was reduced by 

60%, as assessed by Western blot, when compared with 5TGM1-scramble-shRNA 

control cells (Figure 2.1B).  

 

2.4.2 5TGM1 cell proliferation and adhesion to BMSCs is unaffected by N-

cadherin knock-down 

Basal proliferation of 5TGM1 cells following N-cadherin shRNA-mediated knock-

down was unaffected, relative to 5TGM1-scramble-shRNA cells, over a 3 day time 

course as shown using a WST-1 assay (scramble-shRNA: 1.55 ± 0.14 A450 [mean ± 

SD]; Cdh2-shRNA: 1.51 ± 0.14; after 3 days; P = 0.99) (Figure 2.2A). Similarly, there 

was no difference between 5TGM1-scramble-shRNA and 5TGM1-Cdh2-shRNA cell 

numbers after 3 days of culture, as assessed by BLI (scramble-shRNA: 60.86 ± 11.00 

[x103] cells/well; Cdh2-shRNA: 50.82 ± 8.66; P = 0.22) (Figure 2.2B). Given that 

C57BL/KaLwRij mouse-derived BMSCs express abundant N-cadherin (Figure 2.1A,B) 

and that MM PC interactions with stromal cells are important in cell survival and drug 

resistance in MM63,64, we assessed the effect of N-cadherin knock-down on 5TGM1 cell 

proliferation in co-culture with BMSCs and on adhesion to confluent BMSC 

monolayers. We found no difference in 5TGM1 cell numbers, as assessed by BLI, 

between 5TGM1-scramble-shRNA and 5TGM1-Cdh2-shRNA cells after 3 days of co-

culture with BMSCs (scramble-shRNA: 41.84 ± 6.33 [x103] cells/well; Cdh2-shRNA 

32.92 ± 2.50; P = 0.20) (Figure 2.2C). In addition, there was no difference in the 

adhesion of 5TGM1-scramble-shRNA cells and 5TGM1-Cdh2-shRNA cells to BMSC 

monolayers (scramble-shRNA: 46.9 ± 1.7% adherence [mean ± SD]; Cdh2-shRNA: 

44.7 ± 2.3%; P = 0.13) (Figure 2.3A). 

 



Figure 2.1.  N-cadherin expression in C57BL/KaLwRij mouse tissues and 5TGM1 

cell lines. 5TGM1 cells express high levels of Cdh2 compared with positive control 

C57BL/KaLwRij mouse-derived brain tissue and BMSCs, and negative control 

C57BL/KaLwRij PCs, as shown by qPCR. Data was normalised to Actb expression. 

Graph depicts mean ± SD of 2 independent experiments (A). C57BL/KaLwRij mouse 

BMSCs and human BMECs express N-cadherin protein as shown by Western blot. 

Levels of N-cadherin protein is reduced by 60% in 5TGM1-Cdh2-shRNA cells 

compared with 5TGM1-scramble-shRNA cells. α-tubulin was used as a loading control 

(B). 
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Figure 2.2.  N-cadherin does not affect the proliferation of 5TGM1 cells in vitro. 

Basal proliferation of 5TGM1-Cdh2-shRNA cells is no different from that of 5TGM1-

scramble-shRNA cells after 3 days as assessed by WST-1 assay (A) and BLI (B). 

Graphs depict mean ± SEM of 3 and 5 independent experiments, respectively. shRNA-

mediated N-cadherin knockdown has no effect on proliferation of 5TGM1 cells in co-

culture with C57BL/KaLwRij mouse-derived BMSCs as assessed by bioluminescence 

imaging after 3 days. Graph depicts mean ± SEM of 4 independent experiments (C). 
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Figure 2.3.  N-cadherin expression modulates the adhesive capacity of 5TGM1 cells 

to BMECs in vitro. Adhesion of 5TGM1-Cdh2-shRNA cells to monolayers of 

C57BL/KaLwRij BMSCs is no different from that of 5TGM1-scramble-shRNA cells 

after 10 minutes. Graph depicts mean ± range of 2 independent experiments (A). 

Adhesion of 5TGM1-Cdh2-shRNA cells to immobilised N-cadherin-Fc (10µg/ml) after 

2 hours is significantly inhibited compared with 5TGM1-scramble-shRNA cells. Graph 

depicts mean ± range of 2 independent experiments (B). 5TGM1-Cdh2-shRNA cells 

adhere significantly less to monolayers of BMECs compared with 5TGM1-scramble-

shRNA cells after 10 minutes in a static adhesion assay (C) or under 2 dynes/cm2 of 

shear stress (D). Graphs depict mean ± SEM of 4 and 3 independent experiments, 

respectively. * P < 0.05 ** P < 0.01 (paired t test). 
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2.4.3 N-cadherin knock-down reduces 5TGM1 cell adhesion to BMECs 

A crucial step in the extravasation and BM homing of circulating MM PCs is their 

adhesion to BMECs.65 As BMECs express abundant N-cadherin (Figure 2.1B) and N-

cadherin has been implicated in the adhesion of tumour cells to endothelial cells28,34, the 

role of N-cadherin in the adhesion of 5TGM1 cells to BMECs was assessed. Initially, 

we confirmed N-cadherin-mediated binding in 5TGM1 cells by assessing adhesion to 

immobilised N-cadherin-Fc. Compared with 5TGM1-scramble-shRNA cells, 5TGM1-

Cdh2-shRNA cells displayed a reduced capacity to adhere to N-cadherin-Fc (scramble-

shRNA: 27.2 ± 3.5% adherence [mean ± range]; Cdh2-shRNA: 17.8 ± 3.1%; P < 0.05) 

(Figure 2.3B). 

Subsequently, we assessed 5TGM1 cell adhesion to BMECs under static 

conditions and under shear stress, representative of physiological flow in blood vessels. 

Compared with 5TGM1-scramble-shRNA cells, 5TGM1-Cdh2-shRNA cell adhesion to 

BMECs was significantly reduced (scramble-shRNA: 16.61 ± 0.61% adherence [mean 

± SEM]; Cdh2-shRNA:  9.85 ± 1.95%; P < 0.05) (Figure 2.3C). Using a parallel plate 

flow chamber, we assessed the ability of 5TGM1 cells to adhere to confluent 

monolayers of BMECs under 2 dynes/cm2 of shear stress. Compared with 5TGM1-

scramble-shRNA cells, 5TGM1-Cdh2-shRNA cells displayed a reduced capacity to 

adhere to BMECs under shear stress (scramble-shRNA: 26.81 ± 3.99 cells/field of view 

[mean ± SEM]; Cdh2-shRNA: 13.69 ± 3.28; P < 0.01) (Figure 2.3D). 

 

2.4.4 Trans-endothelial migration of 5TGM1 cells is unaffected by N-cadherin 

knock-down 

Following adhesion to BM endothelium, MM PCs penetrate the endothelial basement 

membrane and extravasate into the BM microenvironment.65 We assessed the functional 

role of N-cadherin in 5TGM1 cell migration using a FCS concentration gradient as a 

chemoattractant. We found no difference in basal migration of 5TGM1-scramble-

shRNA cells and 5TGM1-Cdh2-shRNA cells across a transwell membrane, after 24 

hours (scramble-shRNA: 252.3 ± 21.2 cells/well [mean ± SEM]; Cdh2-shRNA: 321.3 ± 

84.1 cells/well; P = 0.56) (Figure 2.4A). Furthermore, the ability of 5TGM1-Cdh2-

shRNA cells to migrate through a monolayer of BMECs was unchanged relative to 

5TGM1-scramble-shRNA cells (scramble-shRNA: 830.7 ± 134.4 cells/well [mean ± 

range]; Cdh2-shRNA: 717 ± 111 cells/well; P = 0.72) (Figure 2.4B).  



Figure 2.4.  N-cadherin does not affect the migration of 5TGM1 cells in vitro. 

Migration of 5TGM1 cells through trans-wells or through BMECs is unaffected by N-

cadherin shRNA. 5TGM1 cells (1x105) were seeded into the upper chamber of trans-

wells and migration to the bottom chamber was assessed after 24 hours. Graph depicts 

mean ± SEM of 3 independent experiments (A). 5TGM1 cells (5x105) were seeded onto 

a confluent monolayer of BMECs established on trans-well membranes (upper 

chamber) and trans-endothelial migration to the bottom chamber was assessed after 8 

hours. Graph depicts mean ± range of 2 independent experiments (B). 
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MM PC extravasation is dependent on the production of proteolytic enzymes 

such as matrix metalloprotease 9 (MMP9) to degrade the endothelial basement 

membrane 66. We found no difference in the MMP9 activity of 5TGM1 cells following 

N-cadherin knock-down compared to control 5TGM1 cells (data not shown). 

 

2.4.5 Targeting of N-cadherin reduces total body tumour burden in a 

C57BL/KalwRij murine model of MM 

To investigate whether therapeutic targeting of N-cadherin may represent a novel 

treatment modality for MM patients with high N-cadherin expression, we utilised the 

5TGM1-C57BL/KaLwRij murine model of MM. In this model, following intravenous 

injection, circulating 5TGM1 tumour cells home to the BM and establish at multiple 

sites throughout the skeleton. Initially, we investigated the effect of N-cadherin knock-

down in 5TGM1 cells on MM development in vivo. Total body tumour burden in mice 

inoculated with 5TGM1-Cdh2-shRNA cells was reduced by 73.1%, compared with 

mice inoculated with 5TGM1-scramble-shRNA cells (scramble-shRNA: 1.99x106 ± 

0.46x106 photons per second [photons/s]; Cdh2-shRNA: 0.54x106 ± 0.15x106 

photons/s; P < 0.0001), after 4 weeks (n = 5 mice/group; Figure 2.5A). 

 In order to investigate the effectiveness of the N-cadherin inhibition in 

suppressing MM establishment and disease progression in vivo, the effects of the N-

cadherin antagonist ADH-1 were assessed in C57BL/KaLwRij mice bearing parental 

5TGM1-luc cells, which express abundant N-cadherin. C57BL/KaLwRij mice were 

treated with ADH-1 (100mg/kg/day) or PBS vehicle control commencing immediately 

prior to inoculation with 5TGM1-luc cells (up-front treatment group) or one week after 

parental 5TGM1-luc cell inoculation (delayed treatment group). ADH-1 did not cause 

adverse effects, as assessed by weight loss or change in physical appearance. The total 

body tumour burden in the ADH-1 up-front treatment group (2.09x106 ± 0.43x106 

photons/s) was reduced by 68.6% compared with mice treated with PBS vehicle alone 

(6.67x106 ± 0.21x106 photons/s) as assessed by BLI after 4 weeks (n = 10-11 

mice/group; P < 0.01) (Figure 2.5B). In contrast, there was no reduction in total body 

tumour burden in the delayed ADH-1 treatment group (1.59x107 ± 0.43x107 photons/s) 

compared with mice treated with PBS vehicle alone (1.46x107 ± 0.13x107 photons/s) 

after 4 weeks (n = 6-7 mice/group) (Figure 2.5C).  

 



Figure 2.5.  Targeting of N-cadherin reduces total body MM tumour burden in 

C57BL/KaLwRij mice after 4 weeks. C57BL/KalwRij mice bearing 5TGM1-Cdh2-

shRNA cells had significantly reduced overall tumour burden compared with 5TGM1-

scramble-shRNA cell-bearing C57BL/KalwRij mice after four weeks, as shown by BLI. 

Graph depicts mean ± SEM. n = 5 mice/group (A). Daily treatment of C57BL/KalwRij 

mice with 100mg/kg/day ADH-1 commencing pre-5TGM1 cell injection significantly 

reduced overall tumour burden after 4 weeks compared with C57BL/KalwRij mice 

treated with PBS vehicle alone, as measured by BLI. Graph depicts mean ± SEM. n = 

10 and 11 PBS-treated and ADH-1-treated mice, respectively (B). Daily treatment of 

C57BL/KaLwRij mice with 100mg/kg/day ADH-1 commencing 1 week post-5TGM1 

cell injection did not reduce overall tumour burden after 4 weeks compared with 

C57BL/KaLwRij mice treated with PBS vehicle alone, as measured by BLI. Graph 

depicts mean ± SEM. n = 6 and 7 PBS-treated and ADH-1-treated mice, respectively 

(C). ** P < 0.01 **** P < 0.0001 (two-way ANOVA with Bonferroni's multiple 

comparisons test). BLI images of one representative animal from each group over the 4 

weeks of each experiment are also shown. 
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2.5 Discussion 

Approximately 30% of newly diagnosed MM patients display elevated levels of 

circulating N-cadherin, which correlate with membrane N-cadherin expression in MM 

PCs. Notably, these patients have significantly worse progression-free and overall 

survival compared with patients with normal circulating N-cadherin levels, 

demonstrating that elevated N-cadherin confers a poor prognosis in MM.52 Previous 

studies have also shown that N-cadherin plays a functional role in MM PC biology and 

behaviour such as BM homing, osteoblast interactions and, in certain contexts, 

proliferation.33,67 In this study, our findings suggest that N-cadherin plays an important 

role in the pathogenesis of MM in vivo by mediating MM PC adhesion to BMECs, a 

crucial step in the extravasation of circulating MM PCs and subsequent establishment 

within the BM microenvironment. Notably, this is the first pre-clinical study to target 

N-cadherin as a potential therapeutic modality in MM. The C57BL/KaLwRij murine 

model of MM was utilised as it replicates many of the clinical and histopathological 

features characteristic of human MM disease.68,69 The N-cadherin-expressing murine 

5TGM1 MM PC line is highly aggressive following intravenous inoculation into 

C57BL/KaLwRij mice resulting in extensive tumour burden in the spleen and 

throughout the skeleton after four weeks.54,70 Importantly, knock-down of N-cadherin in 

5TGM1 cells and up-front administration of the N-cadherin antagonist ADH-1 

significantly decreased total body MM tumour burden after four weeks compared with 

control animals. 

 Following intravenous inoculation into C57BL/KaLwRij mice, 5TGM1 cells 

extravasate, home to, and establish within BM microenvironment leading to the 

formation of multiple tumour foci throughout the axial and appendicular skeleton within 

four weeks.54 In this study, knock-down of N-cadherin in 5TGM1 cells resulted in a 

significant reduction in overall tumour burden in C57BL/KaLwRij mice demonstrating 

the functional role of N-cadherin in MM development in vivo. Pre-clinical studies have 

previously shown that targeting N-cadherin using the antagonist ADH-1 alone, or in 

combination with other chemotherapeutics, significantly inhibited the growth of 

pancreatic tumours and melanoma, respectively.46,47 ADH-1 is a disulfide-linked cyclic 

pentapeptide harbouring the His-Ala-Val (HAV) motif, found in the EC1 domain of 

type I classical cadherins, including N-cadherin.19 Previous studies have demonstrated 

that synthetic linear and cyclic peptides containing the HAV motif are potent N-
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cadherin antagonists, inhibiting N-cadherin-dependent neurite outgrowth and myoblast 

fusion, retarding Schwann cell and smooth muscle cell migration and inducing 

endothelial cell apoptosis in vitro.15,16,71-73 We investigated the effect of ADH-1 on MM 

pathogenesis using the C57BL/KaLwRij murine model. Notably, daily administration of 

5TGM1 cell-inoculated C57BL/KaLwRij mice with ADH-1 significantly reduced 

overall tumour burden demonstrating that N-cadherin function in MM development can 

be pharmaceutically inhibited in vivo. By commencing ADH-1 treatment of tumour-

bearing C57BL/KaLwRij mice before and (one week) after 5TGM1 cell inoculation, we 

were able to assess the functional role of N-cadherin in BM homing of circulating MM 

PCs (ADH-1 up-front treatment) and intramedullary growth (delayed ADH-1 treatment) 

in vivo. In contrast to up-front ADH-1 treatment, delayed ADH-1 administration did not 

reduce total body tumour burden in C57BL/KaLwRij mice suggesting that N-cadherin 

is particularly important in the BM homing of MM PCs. Notably, our findings are 

consistent with previous observations in which N-cadherin knock-down in NCI-H929 

MM PCs reduced their capacity to home to the BM following intravenous inoculation 

into Rag-2-/-γc-/- mice.33 Moreover, this is in line with evidence demonstrating the 

efficacy of N-cadherin inhibition in limiting metastasis in pre-clinical solid tumour 

models.34,36 

 We assessed the functional role of N-cadherin in 5TGM1 cells using a series of 

in vitro assays addressing individual aspects of MM PC behaviour, which contribute to 

MM development in vivo. Previous over-expression and knock-down studies have 

demonstrated that the proliferation of tumour and non-tumour cell lines can be either 

inhibited or promoted by N-cadherin in a cell context-specific manner.34,74,75 In our 

study, N-cadherin knock-down did not affect the proliferation of 5TGM1 cells under 

basal growth conditions or in co-culture with N-cadherin-expressing BMSCs in vitro, 

suggesting that N-cadherin-mediated homotypic binding (between 5TGM1 cells) and 

heterotypic binding (between 5TGM1 and BMSCs) does not appear to play a crucial 

role in 5TGM1 cell proliferation. These results are consistent with previous findings 

which showed that N-cadherin knock-down had no effect on basal proliferation of the 

human MM PC line NCI-H929.33 Moreover, there was no difference in the proliferation 

of N-cadherin-positive and negative human MM PC lines when cultured on 

immobilized N-cadherin-Fc.33 In contrast to these results, Sadler et al. found that the N-

cadherin blocking antibody GC-4 increased the proliferation of N-cadherin-expressing 

human MM cell lines when co-cultured with BMSCs or osteoblasts.67 However, the 
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interpretation of these results is complicated by the fact that while GC-4 blocks cell-cell 

binding67, it has also been shown to stimulate the adhesion and spreading of tumour 

cells76, suggesting that the antibody may behave as an agonist. To this end, while GC-4 

may promote cell proliferation, our in vitro data supports previous data suggesting that 

N-cadherin knock-down does not affect the proliferation of MM cell lines either basally 

or in the presence of BMSCs. 

 Stromal cells constitute the majority of the non-hematopoietic cellular 

compartment within the BM microenvironment and are essential in providing pro-

growth and survival cues to MM PCs.63,64,77 Studies using an N-cadherin blocking 

antibody have previously shown that N-cadherin mediates the adhesion of breast cancer 

and melanoma cell lines to stromal cells and dermal fibroblasts, respectively.28,31 In 

addition, studies using the N-cadherin antagonist ADH-1 have shown a role for N-

cadherin in the adhesion of CML progenitor cells to BMSCs.78 In contrast, our study 

shows that N-cadherin knock-down did not affect the ability of 5TGM1 cells to adhere 

to BMSCs. This finding is discordant with previous studies which reported that N-

cadherin knock-down or blocking with antibody decreased the adhesion of human MM 

PC lines to murine fibroblast cells.33 However, while our studies were performed in 

medium containing several divalent cations, the aforementioned study conducted 

adhesion assays in the presence of calcium only, that is, in the absence of other divalent 

cations that are required for integrin-mediated adhesion.79-81 Our findings therefore 

suggest that other adhesion interactions, such as VLA-4-VCAM-1/fibronectin and LFA-

1-ICAM-1, are potentially more important than N-cadherin-mediated binding in 

5TGM1 cell adhesion to BMSCs. 

 The BM-homing cascade of MM PCs involves adhesion to the BM endothelium, 

trans-endothelial migration and establishment within the local BM microenvironment.65 

Studies have previously established the importance of N-cadherin in mediating 

haematopoietic and tumour cell interactions with endothelial cells. For example, an N-

cadherin blocking antibody prevented the adhesion of neutrophil granulocytes to 

endothelial cells.82 Additionally, enforced expression of N-cadherin in MCF-7 breast 

cancer cells promoted adhesion to human umbilical vein endothelial cells (HUVECs), 

while antibody-mediated N-cadherin blocking impeded the adhesion of melanoma cells 

to HUVECs.28,34 Furthermore, previous studies have shown that N-cadherin 

accumulates at the initial heterotypic contact sites between melanoma cells and 

endothelial cells, suggesting a role in adhesion.18,35,83,84 In the current study, we found 
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that N-cadherin knock-down significantly reduced the adhesion of 5TGM1 cells to 

monolayers of BMECs under static conditions and under shear stress, representative of 

physiological stress encountered within the vasculature. Given that N-cadherin knock-

down reduced the ability of 5TGM1 cells to adhere to endothelial cells, it may impede 

the ability of 5TGM1 cells to undergo trans-endothelial migration. N-cadherin knock-

down or blocking with antibody in melanoma cell lines has previously been shown to 

decrease trans-endothelial migration without affecting adhesion to endothelial cells, 

suggesting a specific role of N-cadherin in diapedesis.35,84 However, consistent with 

previous studies using NCI-H929 MM PCs33, N-cadherin knock-down did not affect 

trans-endothelial migration of 5TGM1 cells in this study. Taken together, these data 

suggest that N-cadherin knockdown may decrease tumour homing in vivo by inhibiting 

MM cell adhesion to endothelial cells, and therefore arrest of the tumour cells in the 

vasculature, without affecting the rate of the subsequent diapedesis.  

 Our findings demonstrate that N-cadherin is an important mediator of MM PC 

adhesive interactions with the BM endothelium, a crucial step in the BM homing 

cascade. We propose a mechanism whereby functional inhibition of N-cadherin 

prevents the extravasation of circulating MM PCs, which subsequently inhibits homing 

and colonization within the BM microenvironment. From a therapeutic perspective, our 

findings suggest that targeting of N-cadherin with ADH-1 may be of particular benefit 

in MM patients with high N-cadherin expression and, hence, high-risk disease. Further 

studies are warranted to examine the effectiveness of ADH-1 as a maintenance therapy 

in order to inhibit the ability of MM PCs to disseminate to multiple BM sites. Our 

results also encourage the examination of orally available ADH-1 peptidomimetics19 for 

their ability to suppress MM disease. To this end, therapeutic targeting of N-cadherin 

may be a novel approach in delaying disease progression and relapse and improving 

overall survival in MM patients with aggressive disease. 
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Supplementary Figure 2.1.  Positive correlation between total body MM tumour 

burden assessed by BLI and serum paraprotein levels after 4 weeks. Serum 

paraprotein levels are presented as a percentage of total serum protein. n = 34 MM 

tumour-bearing C57BL/KaLwRij mice. **** P < 0.0001, R squared = 0.7874 (Pearson 

correlation). 
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3.1 Abstract 
N-cadherin is a homophilic cell-cell adhesion molecule which plays a critical role in 

maintaining vascular stability and modulating endothelial barrier permeability. Previous 

studies have demonstrated that the N-cadherin antagonist peptide ADH-1 enhances 

chemotherapeutic drug delivery to the tumour microenvironment by increasing vascular 

permeability to macromolecules, thereby enhancing tumour response. In the current 

study, we evaluated a synthetic small molecule peptidomimetic of ADH-1, LCRF-0006, 

as a novel vascular disrupting agent. We demonstrate that LCRF-0006 displays rapid, 

transient and reversible effects on endothelial cell junctions and increases vascular 

permeability in vitro and in vivo. Using a well-established C57Bl/KaLwRij/5TGM1 

mouse model of multiple myeloma (MM) disease, LCRF-0006 synergised with the anti-

MM agent bortezomib, significantly inhibiting MM tumour progression and leading to 

regression of disease in 100% of mice (co-efficient of drug interaction < 0.7). 

Moreover, LCRF-0006 and bortezomib synergistically induced 5TGM1 MM plasma 

cell apoptosis in vitro (co-efficient of drug interaction < 0.7). Our findings suggest the 

potential clinical utility of LCRF-0006 in a combinatorial approach to significantly 

increase bortezomib efficacy in MM. 
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3.2 Introduction 
The structural integrity and permeability of the vascular endothelial barrier plays an 

essential role in the supply of nutrients and the maintenance of fluid balance in tissues.1 

Endothelial barrier stability is tightly controlled and maintained through adhesive 

interactions between neighbouring endothelial cells (ECs), as well as between ECs and 

adjacent mural cells (pericytes and smooth muscle cells).2,3 In addition to molecules that 

mediate tight junctions between ECs (eg, occludin and claudins), the adhesive 

interactions in blood vessels involve N-cadherin and VE-cadherin, which mediate 

calcium-dependent, adherens junction-type cell-cell adhesion and inhibit EC 

proliferation and apoptosis by the activation of intracellular signalling cascades.3-8 

While VE-cadherin is the major cadherin expressed at established EC-EC junctions, N-

cadherin is diffusely expressed on the EC surface and is thought to facilitate adhesion in 

nascent EC-EC junctions.9-12 In addition, studies have proposed that N-cadherin may 

co-ordinate endothelial junction maturation by controlling VE-cadherin expression.13 N-

cadherin also plays a major role in the recruitment and adhesion of mural cells to ECs 

on the abluminal surface of blood vessels, which facilitates the remodelling, maturation 

and stabilisation of vascular networks.5,6,14-16 Notably, recent studies have shown that 

perturbation of N-cadherin function can also disrupt established EC-EC and EC-mural 

cell junctions, thereby destabilising vascular integrity.17,18 

Tumour-associated vasculature, essential to cancer cell growth, survival and 

metastasis, is widely recognised and investigated as a potential anti-cancer therapeutic 

target.19,20 In comparison to normal vasculature, tumour-associated vasculature is 

relatively immature and structurally abnormal, characterised by gaps between adjacent 

ECs and loosely-attached or absent pericytes, resulting in a weakened endothelial 

barrier.21-27 These characteristics are also thought to endow tumour-associated 

vasculature with greater sensitivity to vascular-disrupting agents, compared with normal 

vasculature.28,29 The importance of N-cadherin in establishing and maintaining vascular 

stability suggests that inhibition of N-cadherin function is a potential mechanism to 

disrupt tumour vasculature. In support of this, perturbation of N-cadherin function has 

been shown to increase vascular permeability to macromolecules in vitro and in 

vivo.17,18 Indeed, treatment of confluent human umbilical vein-derived EC monolayers 

with the cyclic pentapeptide N-cadherin inhibitor ADH-1 increased permeability to 

FITC-conjugated dextran in vitro.17 Additionally, ADH-1 treatment in a rat melanoma 
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xenograft model increased the permeability of the tumour vasculature to Evans blue dye 

and increased delivery of the chemotherapeutic melphalan to the tumour 

microenvironment.17 In support of these findings, a Phase I/II clinical trial found that 

intravenous ADH-1 treatment, in combination with isolated limb intravenous infusion 

of melphalan improved initial response rates in patients with advanced melanoma, when 

compared with melphalan alone. Notably, 60% of patients receiving the combination 

therapy achieved a partial response or greater, compared with 40% of patients receiving 

melphalan alone. However, the combination did not improve time to disease 

progression, compared with melphalan alone.30,31 While preliminary, these data suggest 

that therapeutic targeting of N-cadherin may increase chemotherapeutic drug delivery to 

the tumour microenvironment and enhance tumour response. 

Synthetic small molecule mimetics of peptide drugs may offer increased 

therapeutic efficacy in comparison to their peptide counterparts, due to enhanced 

proteolytic stability, bio-availability and potency.32,33 LCRF-0006 (compound number 

35 in patent US 7,446,120 B234) was originally identified as a potential ADH-1 mimetic 

in a screen of compounds with three-dimensional structures that were similar to the 

HAV sequence-containing region of ADH-1 (Figure 3.1A,B). LCRF-0006 was 

identified as a non-peptidyl, small molecular weight molecule with a simple chemical 

structure which significantly inhibited neurite outgrowth in N-cadherin over-expressing, 

but not control, NIH/3T3 cells in vitro, suggesting LCRF-0006 inhibits N-cadherin-

dependent processes.34 In the current study, we hypothesised that LCRF-0006 would 

function as a vascular disrupting anti-cancer agent in the haematological malignancy 

multiple myeloma (MM) which is characterised by the uncontrolled proliferation of 

clonal antibody-producing plasma cells within the bone marrow (BM). To this end, we 

evaluated the efficacy of LCRF-0006 as a vascular disrupting agent in vitro and in vivo, 

and as an anti-cancer agent using a well-established pre-clinical mouse model of MM. 

LCRF-0006 was evaluated as a monotherapy and in combination with the proteasome-

targeting, anti-MM agent bortezomib.  

 

 

 

 

 

 



Figure 3.1.  The structure of the cyclic pentapeptide ADH-1 (A) and the ADH-1 

peptidomimetic LCRF-0006 (B).  



BA ADH-1 LCRF-0006
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3.3 Methods 
3.3.1 Cell culture 

Cell culture reagents were sourced from Sigma-Aldrich (St Louis, MO, USA), unless 

otherwise specified. All media were supplemented with 2mM L-glutamine, 100U/ml 

penicillin, 100µg/ml streptomycin, 1mM sodium pyruvate and 10mM HEPES buffer, 

unless otherwise stated. The mouse MM plasma cell line 5TGM1 (expressing a dual 

GFP and luciferase reporter construct35,36) was maintained in Iscove's modified 

Dulbecco's medium (IMDM) with 20% foetal calf serum (FCS; Thermo Fisher 

Scientific, Waltham, MA, USA) and supplements (2mM L-glutamine, 100U/ml 

penicillin, 100µg/ml streptomycin, 1mM sodium pyruvate and 10mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES] buffer). The human MM 

plasma cell line RPMI-8226 was maintained in Roswell Park Memorial Institute 1640 

(RPMI-1640) with 10% FCS and supplements. The human BM EC line TrHBMEC 

(BMEC)37 was maintained in M199 medium with 20% FCS and supplements (BMEC 

medium), as previously described.38 All cell lines were maintained at 37°C in a 

humidified atmosphere with 5% CO2.  

 

3.3.2 Drugs 

For in vitro experiments, the N-cadherin antagonist LCRF-0006, kindly provided by 

Crocus Laboratories, Montreal, Canada, was solubilised in DMSO (Sigma-Aldrich). For 

in vivo experiments, LCRF-0006 was solubilised in saline containing 40% 2-

hydroxypropyl-β-cyclodextrin (2-HP-β-CD; Sigma). Bortezomib (Janssen-Cilag Pty 

Ltd, New Brunswick, NJ, USA) was reconstituted in 0.028% DMSO for in vitro studies 

and 1.33% DMSO for in vivo studies. 

 

3.3.3 Cell apoptosis assays 

To assess the effect of LCRF-0006 on 5TGM1 cell viability in vitro, 5TGM1 cells were 

cultured at 1x105 cells/ml with LCRF-0006, or vehicle alone, in IMDM with 20% FCS 

and additives in 12-well plates (Corning Life Science, New York, USA). After 3 days, 

1x105 cells/test were washed in IMDM with 20% FCS and additives, then washed and 

resuspended in 20µl annexin V binding buffer (Hank's balanced salt solution with 1% 

HEPES and 5mM CaCl2) containing 0.075µg/ml annexin V-PE (BioLegend; San Diego, 

CA, USA) and 10% (v/v) 7-AAD (Beckman Coulter; Brea, CA, USA) and were stained 
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for 20 minutes in the dark at 4°C. Cells were then diluted with ice-cold 200µl annexin V 

binding buffer and immediately analysed by flow cytometry using an LSRFortessa™ X-

20 flow cytometer (BD; Franklin Lakes, NJ, USA). For single-stained positive controls, 

5TGM1 cells were treated with DMSO (early apoptosis control) or 80% ethanol (dead 

cell control) for 10 minutes. For drug synergy assays, 5TGM1 cells were cultured, as 

described above, in combinations of various concentrations of LCRF-0006 and 

bortezomib. After 24 hours, 1x105 cells from each condition were stained and analysed, 

as described above. Drug synergy was defined as a co-efficient of drug interaction 

(CDI) value of less than 0.7, where CDI was the actual viability of 5TGM1 cells treated 

with the drug combination (AB) divided by their predicted viability (calculated as the 

product of 5TGM1 cell viabilities treated with each drug alone [A*B]). 

To assess the effect of LCRF-0006 on BMEC viability in vitro, BMECs were 

seeded at 1.2x105 cells/well (2.4x105 cells/ml) in BMEC medium in 24-well plates 

(Corning Life Science) and cultured for 24 hours. Confluent BMEC monolayers were 

then cultured with LCRF-0006, or vehicle alone, in M199 medium with 15% FCS and 

supplements (as previously described38). After 24 hours, BMECs were trypsinised and 

1x105 cells/test were washed in M199 medium with 15% FCS and supplements, and 

prepared and analysed for cell viability, as described above.  

 

3.3.4 Endothelial tube disruption assays 

Endothelial tubes were pre-formed on growth factor-reduced Matrigel® matrix in a 96-

well plate by seeding 3.5x104 BMECs in a 50:50 mix of BMEC medium and 

conditioned media from the human MM cell line RPMI-8226 as a stimulant, as 

described previously.39 To investigate the effect of LCRF-0006 on endothelial tube 

integrity, immature (5-hour-old) or established (24-hour-old) endothelial tubes were 

then treated with up 200µg/ml LCRF-0006. Tubes were then imaged over a 24 hour 

period using an Olympus CKX41 inverted microscope and DP21 imaging system 

(Tokyo Japan) and analysed using cellSens Entry 1.11 software (Olympus). 

 

3.3.5 Endothelial monolayer retraction and recovery assay 

BMECs were seeded into gelatinized 96-well plates (5x104 cells/well) and grown to 

confluence over 24 hours. BMECs were then treated with LCRF-0006 in IMDM with 

2% FCS and additives for 1 hour and imaged, as described above. After gently washing 

twice in IMDM with 2% FCS and additives, BMECs were allowed to recover for 1 hour 
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in M199 with 20% FCS and BMEC supplements and again imaged. BMEC monolayer 

confluency was assessed using cellSens Entry 1.11 software. 

 

3.3.6 Endothelial monolayer permeability assay 

BMECs (5x104 cells/well) were seeded onto gelatinized 0.4µm 6.5mm trans-wells 

(Corning Life Science) and grown to confluence over 24 hours. BMECs were then 

treated with LCRF-0006 in IMDM with 2% FCS and additives for 1 hour and gently 

washed twice in serum-free IMDM with additives. To measure endothelial monolayer 

permeability, 1 mg/mL 70 kDa FITC-dextran (Sigma) in phenol red-free IMDM with 

2% FCS and additives was added to the trans-wells and fluorescence in the bottom 

chamber (containing phenol red-free IMDM with 2% FCS and additives) was assessed 

after 1 hour using a FLUOstar® Omega microplate reader (BMG LABTECH; 

Ortenberg, Germany). 

 

3.3.7 Animal studies 

C57Bl/KaLwRij mice (aged 6-8 weeks) were used for all in vivo studies. For MM 

tumour studies, mice were inoculated with 5x105 5TGM1 cells in 100µl phosphate-

buffered saline (PBS) by intravenous injection (i.v.) via the tail vein. Total body tumour 

burden was assessed at days 14, 21 and 28 by bioluminescence imaging (BLI) using a 

Xenogen IVIS 200 imaging system (Perkin Elmer, Waltham, MA, USA), as previously 

described.38 

All animals used for therapy studies were randomised by age, sex and, where 

appropriate, tumour burden. For monotherapy studies, mice were administered LCRF-

0006 (100mg/kg/day) or vehicle alone i.p. (110-150µl volume), commencing 15 

minutes prior to 5TGM1 cell injection or at day 14 following establishment of disease 

until the conclusion of the experiment. For the combination studies, mice with 

established MM disease were administered LCRF-0006 (100mg/kg) or vehicle alone 

i.p. on day 14, followed by 6 cycles of LCRF-0006 and bortezomib combination 

therapy (or relevant vehicle controls) over the remaining 14 days of the experiment. 

Each treatment cycle consisted of LCRF-0006 (100mg/kg) or 2-HP-β-CD vehicle alone 

i.p. followed by low-dose bortezomib (0.5mg/kg)40 or 1.33% DMSO vehicle alone i.p. 1 

hour later. At day 28, cardiac blood was collected into tubes containing 50µl 0.5M 

EDTA (pH 8.0) and complete blood counts were performed using a HEMAVET®950 

automated blood analyzer (Drew Scientific; Miami Lakes, FL). Drug synergy was 
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defined as a co-efficient of drug interaction (CDI) value of less than 0.7, where CDI was 

the actual proportion of tumour remaining in C57Bl/KaLwRij mice treated with the 

drug combination (AB) relative to mice treated with vehicles alone (as assessed by 

BLI), divided by the predicted proportion of tumour remaining (calculated as the 

product of proportion of tumour remaining in C57Bl/KaLwRij treated with each drug 

alone [A*B]). 

 In vivo vascular permeability was assessed using an amended version of 

previously published protocols.41-43 Mice were injected once with 100mg/kg LCRF-

0006 or vehicle alone (as described above). After 1 hour, mice were injected with 

250mg/kg 70 kDa FITC-dextran i.v. via the tail vein and humanely killed 30 minutes 

later. Eyes were immediately enucleated and fixed for 2 hours in 4% PFA. The retinal 

tissues were then isolated44, dissected into maltese-cross formation and flat-mounted 

onto glass slides using Fluoroshield™ mounting medium (Sigma). Extravasated FITC-

dextran was immediately assessed by epi-fluorescence microscopy (Olympus).  

All animal procedures were performed in accordance with guidelines approved by 

the South Australian Health and Medical Research Institute (SAHMRI) Animal Ethics 

Committee (SAM165).   

 

3.3.8 Detection of circulating tumour cells 

Freshly collected blood was transferred to round-bottom polystyrene tubes and red 

blood cells were lysed by three rounds of 10 min incubation in 7.5ml red blood cell lysis 

buffer (0.15M NH4Cl 10mM KHCO3 1.1mM di-sodium EDTA in Milli-Q water) at 

room temperature. Samples were centrifuged for 5 minutes at 1400 rpm, washed once in 

10 ml ice-cold PFE buffer (2% FCS 2mM EDTA in PBS), resuspended in 0.5ml PFE 

buffer and were immediately analysed by flow cytometry using a FACSCanto™ II flow 

cytometer (BD). For gating purposes, a control sample (from a tumour-naïve mouse) 

was spiked with in vitro-cultured 5TGM1 cells. 

 

3.3.9 Cell composition analysis of compact bone 

Compact bone was isolated from the long bones (i.e. femora and tibiae) of both hind 

limbs from humanely killed mice and prepared for analysis of mesenchymal stromal 

cell (MSC) and osteoblast (OB) numbers, as previously described.35 Samples were run 

on a BD LSRFortessa™ X-20 flow cytometer using BD FACSDiva™ software v8.0 

(BD) and analysed using FlowJo V.10.0.8 software (FlowJo, LLC; Ashland, Oregon). 
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Non-haematopoietic cell populations were defined as: Lin-CD45-CD31+ (ECs), Lin-

CD45-CD31-Sca-1+CD51- (MSCs), Lin-CD45-CD31-Sca-1+CD51+ (osteoprogenitors; 

OPs) and Lin-CD45-CD31-Sca-1-CD51+ (OBs).  

 

3.3.10 Statistical analyses 

For in vitro studies, statistical significance was calculated using a one-way ANOVA 

with Dunnett's multiple comparisons test, or two-way ANOVA with Sidak's multiple 

comparisons test. For in vivo studies, statistical significance was calculated using a 

Mann-Whitney U test, Kruskal-Wallis test with Dunn's multiple comparisons test, one-

way ANOVA with Holm-Sidak’s multiple comparisons test or two-way ANOVA with 

Bonferroni's multiple comparisons test. Tumour burden data were log-transformed prior 

to conducting statistical analyses. All statistical analyses were performed using 

GraphPad Prism® v7.02 software (GraphPad Software, Inc.; La Jolla, CA). 
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3.4 Results 
3.4.1 LCRF-0006 disrupts EC junctions and increases monolayer permeability at 

sub-cytotoxic doses in vitro 

Previous studies have shown the ability of N-cadherin antagonists to rapidly 

compromise the integrity of confluent EC monolayers, resulting in increased vascular 

permeability in vitro.17,45 In order to assess whether LCRF-0006 can disrupt EC 

monolayers, we treated confluent BMEC monolayers with LCRF-0006 in vitro. 

Initially, we confirmed that LCRF-0006 did not affect the survival of BMECs in vitro, 

using Annexin V (early apoptosis) and 7-AAD (dead cell) staining. The treatment of 

confluent BMEC monolayers with LCRF-0006 for 24 hours had no significant effect on 

BMEC viability in comparison to vehicle-treated monolayers, as assessed by the 

AnnexinVneg 7-AADneg cell population, at concentrations up to 200µg/ml 

(Supplementary Figure 3.1). However, LCRF-0006 induced a dose-dependent 

dissociation of EC-EC contacts, resulting in increased EC rounding and monolayer 

retraction, and decreased monolayer confluency after 1 hour of treatment at 

concentrations of 50µg/ml and greater, when compared with vehicle-treatment (P < 

0.0001; Figure 3.2A,B). Notably, these effects were reversible, as monolayers treated 

with up to 100µg/ml LCRF-0006 completely reformed within 1 hour of removal of 

LCRF-0006 (Figure 3.2A,B). Previous studies have shown that EC retraction, rounding 

and gap formation is associated with increased vascular permeability to macromolecules 

in vitro.46-49 To this end, we assessed the effects of LCRF-0006-mediated BMEC 

monolayer disruption on macromolecular permeability in vitro, using a 70 kDa FITC-

dextran trans-well flow-through assay. The pre-treatment of confluent BMEC 

monolayers with LCRF-0006 for 1 hour significantly increased BMEC monolayer 

permeability to 70 kDa FITC-dextran in a dose-dependent manner, when compared with 

vehicle-treatment (P < 0.05) (Figure 3.2C). 

 

3.4.2 LCRF-0006 disrupts endothelial tube integrity at sub-cytotoxic doses in 

vitro 

We then assessed the effect of LCRF-0006 on pre-formed three-dimensional endothelial 

tubes grown on a basement membrane-like Matrigel® matrix in vitro. Initially, we 

assessed the effect of LCRF-0006 on immature (5-hour-old) endothelial tubes. Vehicle-

treated tubes matured normally into networks of thick tubes with smooth morphology 



Figure 3.2.  LCRF-0006 disrupts BMEC monolayers and increases their 

permeability to 70 kDa FITC-dextran in vitro. Confluent BMEC monolayers in 96-

well plates were treated with LCRF-0006, or vehicle alone, for 1 hour and then imaged. 

After removing LCRF-0006, monolayers were gently washed, allowed to recover for 1 

hour and imaged again. Images shown are representative of 3 independent experiments. 

Scale bars depict 100µm (A). BMEC monolayer confluency quantitated after treatment 

and recovery. Graph depicts mean ± SEM of 3 independent experiments (B). **** P < 

0.0001 compared with monolayers treated with vehicle alone (0µg/ml) #### P < 0.0001 

compared with monolayers after 1 hour of treatment (two-way ANOVA with Sidak's 

multiple comparisons test). Confluent BMEC monolayers established on 0.4µM trans-

well membranes were treated with LCRF-0006, or vehicle alone, for 1 hour. 

Monolayers were then gently washed, 70 kDa FITC-dextran (1 mg/mL) was added to 

the upper chamber of trans-wells and FITC-dextran flow-through was assessed 1 hour 

later by measuring fluorescence in the bottom chamber of triplicate trans-wells. Graph 

depicts mean ± SEM of 3 independent experiments (C). * P < 0.05 compared with 

monolayers treated with vehicle alone (0µg/ml) (one-way ANOVA with Dunnett's 

multiple comparisons test). 
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over 24 hours (Supplementary Figure 3.2A,B). In contrast, concentrations of 100µg/ml 

LCRF-0006 and greater compromised tube maturation, with EC rounding and 

detachment from tubes observed, resulting in a significant reduction in tube thickness 

after 24 hrs (P < 0.0001) (Figure 3.3A and Supplementary Figure 3.2A,B). However, 

addition of LCRF-0006 to immature tubes did not reduce the total length of EC tubes 

after 24 hrs (data not shown). Notably, the initial effects of LCRF-0006 treatment were 

rapid, with BMEC retraction and rounding seen as early as 30 minutes after LCRF-0006 

addition (data not shown), consistent with EC gap formation.46,50,51 LCRF-0006 was 

then added to established (24-hour-old) networks of endothelial tubes. Similar to the 

effects on immature tubes, treatment with 100µg/ml LCRF-0006 and greater for 24 

hours resulted in a loss of tube smoothness and a significant reduction of tube thickness 

(P < 0.0001) (Figure 3.3B and Supplementary Figure 3.3A,B), without affecting tube 

length (data not shown). 

 

3.4.3 LCRF-0006 is well tolerated and increases blood vessel permeability in vivo 

As LCRF-0006 disrupted endothelial integrity and increased permeability in vitro, we 

then postulated that LCRF-0006 may have effects on vascular permeability in vivo, 

consistent with previous findings using N-cadherin antagonists.14,17 Prior to conducting 

vascular permeability experiments, we assessed whether LCRF-0006 had any toxicities 

in C57Bl/KaLwRij mice. Mice treated with 100mg/kg/day LCRF-0006 for 28 days 

tolerated the dosing regimen well with no effects on weight (Supplementary Figure 

3.4A) or other adverse effects observed, in comparison with vehicle-treated animals. In 

addition, complete blood counts in C57Bl/KaLwRij mice were unaffected by 28 days of 

LCRF-0006 treatment, in comparison with vehicle-treated, or un-treated, mice 

(Supplementary Table 3.1). Given that N-cadherin plays a role in OB differentiation52-

55, we also assessed whether LCRF-0006 affected the proportion of MSCs, OPs and 

OBs within the long bones of LCRF-0006-treated C57Bl/KaLwRij mice. The 

proportion of MSCs, OPs and OBs within the Lin-CD45-CD31- fraction of compact 

bone isolated from the long bones was unaffected by 28 days of LCRF-0006 treatment, 

when compared with that of vehicle-treated animals (Supplementary Figure 3.4B-D). In 

addition, LCRF-0006 did not affect the proportion of CD31+ ECs within the Lin-CD45- 

fraction of compact bone or BM, relative to that of vehicle-treated controls 

(Supplementary Figure 3.4E,F). In line with these findings, histological analysis 



Figure 3.3.  LCRF-0006 disrupts immature and established endothelial tubes in 

vitro. BMECs were cultured on growth factor-reduced Matrigel® matrix in a 96-well 

plate and endothelial tube formation was induced using a 50:50 mix of BMEC culture 

medium and RPMI-8226 conditioned medium. Immature (5-hour-old) (A) or 

established (24-hour-old) (B) tubes were treated with LCRF-0006 for 24 hours, imaged 

and mean tube thickness was quantitated. Images shown are representative of 2 

independent experiments. Scale bars depict 250µm. Graphs depict mean ± range of 2 

independent experiments. * P < 0.05 ** P < 0.01 *** P < 0.001 **** P < 0.0001 

compared with tubes treated with vehicle alone (0µg/ml) (one-way ANOVA with 

Dunnett's multiple comparisons test). 
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revealed LCRF-0006 had no overt effects on blood vessel number or vascular 

morphology (data not shown). 

Fluorescence angiography of the retina is an established technique used to rapidly 

investigate vascular perfusion and permeability in response to cytokines and other 

agents in rodent models.41,42 To this end, we performed whole-mount retinal 

fluorescence angiography to assess the effect of LCRF-0006 on FITC-dextran 

extravasation in vivo. C57Bl/KaLwRij mice were infused with 70 kDa FITC-dextran 1 

hour after a single treatment with 100mg/kg LCRF-0006 or vehicle alone and, 30 

minutes later, whole mounts of the retinas were prepared for fluorescence imaging. 

Sites of retinal peri-vascular hyper-fluorescence, indicative of blood vessel leakiness, 

were only observed in mice pre-treated with LCRF-0006 (3/4 LCRF-0006-treated mice 

vs. 0/4 vehicle-treated mice) (Figure 3.4A-D).  

 

3.4.4 LCRF-0006 and low-dose bortezomib combination therapy synergistically 

induces tumour regression in mice with established MM disease 

Previous studies have reported the efficacy of ADH-1 to inhibit tumour establishment 

and growth in a range of pre-clinical mouse models including pancreatic cancer, lung 

cancer and MM.38,56,57 In addition to disrupting tumour-associated vasculature17,57, 

ADH-1 has been shown to induce apoptosis in several N-cadherin-expressing cancer 

cell types in vitro56,58,59 suggesting that N-cadherin antagonism may suppress tumour 

progression by targeting both tumour cells and the associated vasculature. To this end, 

we investigated the efficacy of LCRF-0006 as an anti-cancer agent in a pre-clinical 

mouse model of MM. Initially, we assessed the effect of LCRF-0006 treatment on the 

viability of the N-cadherin-expressing mouse myeloma cell line 5TGM1 in vitro. 

LCRF-0006 treatment significantly induced 5TGM1 cell apoptosis at concentrations of 

25µg/ml and greater after 72 hours (P < 0.01; IC50= 53.03µg/ml) (Figure 3.5A). 

However, daily treatment of 5TGM1 tumour-bearing C57Bl/KaLwRij mice with 

100mg/kg LCRF-0006 had no effect on tumour burden, as assessed by BLI, compared 

with vehicle-treated controls (Figure 3.5B). In addition, LCRF-0006 had no significant 

effect on the proportion of circulating tumour cells within the leukocyte fraction of 

peripheral blood at day 28 (Supplementary Figure 3.5A). Similar to MM tumour-naïve 

mice, LCRF-0006 did not affect the proportion of CD31+ ECs within the Lin-CD45- 

fraction of compact bone or BM in mice with established disease, relative to vehicle-

treated controls (Supplementary Figure 3.5B,C). 



Figure 3.4.  LCRF-0006 increases vascular permeability to 70 kDa FITC-dextran 

in vivo. C57BL/KaLwRij mice were injected with 250mg/kg 70 kDa FITC-dextran i.v., 

1 hour  after a single injection of 100mg/kg LCRF-0006 or vehicle (2-HP-β-CD [CD]) 

alone i.p., and humanely killed 30 minutes later. After fixation of eyes, the retinal 

tissues were isolated, flat-mounted and immediately assessed for fluorescence using epi-

fluorescence microscopy. Representative epi-fluorescence images of vehicle-treated 

mice (A,B) and LCRF-0006-treated mice (C,D) are shown. Sites of peri-vascular 

hyper-fluorescence are indicated (*). Scale bars depict 250µm (A,C) and 100µm (B,D). 
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Figure 3.5.  LCRF-0006 monotherapy induces 5TGM1 MM PC apoptosis in vitro 

but does not inhibit tumour progression in vivo. The viability of 5TGM1 cells 

following in vitro culture in the presence of LCRF-0006 for 72 hours was assessed by 

flow cytometry following annexin V and 7-AAD staining. Graph depicts mean ± SEM 

of 3 independent experiments (A). * P < 0.05 ** P < 0.01 *** P < 0.001 compared with 

5TGM1 cells treated with vehicle alone (0µg/ml) (one-way ANOVA with Dunnett's 

multiple comparisons test). C57BL/KaLwRij mice with established MM (day 14 post-

5TGM1 cell injection) were treated with LCRF-0006 (100mg/kg/day) or vehicle (CD) 

alone i.p. for 14 days. Tumour burden was assessed at day 14, 21 and 28 by BLI. Graph 

depicts mean ± SEM. n = 12 mice/treatment group (B). Data are not statistically 

significant (two-way ANOVA). 
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Previous studies have additionally demonstrated that ADH-1 administration 

increases the delivery of chemotherapeutic drugs and Evans blue dye to tumour sites 

suggesting that N-cadherin antagonism increases vascular permeability.17 In light of the 

increased vascular permeability observed with LCRF-0006 treatment in vitro and in 

vivo, we speculated that LCRF-0006 may enhance the delivery of anti-cancer drugs to 

tumour sites in vivo, thereby increasing drug efficacy. To this end, MM tumour-bearing 

C57Bl/KaLwRij mice were administered 3 cycles of combination therapy per week for 

2 weeks, whereby 1 cycle consisted of LCRF-0006 (100mg/kg) followed by a low dose 

of the anti-MM agent bortezomib (0.5mg/kg) 1 hour later (Figure 3.6A). The 

combination therapy regimen was well tolerated by mice with no adverse welfare 

effects. Notably, low-dose bortezomib and the combination of LCRF-0006 and low-

dose bortezomib did not affect the proportion of MSCs, OPs and OBs within the Lin-

CD45-CD31- fraction of compact bone isolated from the long bones, when compared 

with vehicle-treated animals (data not shown). Strikingly, while neither low-dose 

bortezomib nor LCRF-0006 alone significantly affected tumour burden, mice which 

received the combination of LCRF-0006 and low-dose bortezomib had significantly 

lower tumour burden at days 21 and 28 compared with mice treated with bortezomib 

alone, LCRF-0006 alone or vehicles only (all P < 0.001) (Figure 3.6B-C). Notably, the 

combination therapy also resulted in regression of tumour burden in 5/5 mice at day 28, 

with 2/5 mice administered the combination therapy having no BLI-detectable tumour 

at the conclusion of the study. Analysis of peripheral blood collected at day 28 revealed 

that mice administered the combination therapy had significantly fewer residual 

circulating tumour cells than mice treated with vehicles alone, LCRF-0006 alone or 

low-dose bortezomib alone (all P < 0.0001) (Figure 3.6D). CDI revealed synergism in 

the anti-MM effects of LCRF-0006 and low-dose bortezomib (at days 21 and 28) 

(Figure 3.6E). 

 

3.4.5 LCRF-0006 and bortezomib synergistically induce 5TGM1 cell apoptosis in 

vitro 

While we speculate that the synergistic effects observed in vivo may in large part be 

mediated by LCRF-0006-enhanced tumour delivery of bortezomib, previous studies 

have also demonstrated the ability of ADH-1 to enhance tumour response to 

chemotherapeutic agents independently of increasing drug delivery to tumours.17 To this 

end, we investigated the effect of LCRF-0006 in combination with bortezomib on 



Figure 3.6.  The combination of LCRF-0006 and low-dose bortezomib 

synergistically increases MM tumour response in vivo. Schematic representation of 

treatment regimen (A). C57BL/KaLwRij mice with established MM (day 14 post-

5TGM1 cell injection) were treated with LCRF-0006 (100mg/kg) and low-dose 

bortezomib (0.5mg/kg) (LCRF-0006 + bortezomib), LCRF-0006 and DMSO vehicle 

(LCRF-0006), CD vehicle and low-dose bortezomib (bortezomib) or CD and DMSO 

vehicles (vehicles) i.p., as per treatment regimen. Tumour burden was assessed at day 

14, 21 and 28 by BLI. Graph depicts mean ± SEM. n = 5-6 mice/treatment group (B). 

*** P < 0.001 **** P < 0.0001 compared with mice treated with LCRF-0006, low-dose 

bortezomib or vehicles (two-way ANOVA with Bonferroni's multiple comparisons 

test). Images depict tumour burden in individual mice at day 28, as assessed by BLI (C). 

Peripheral blood was collected from mice at day 28 and the proportion of circulating 

tumour cells within the leukocyte fraction was assessed by flow cytometry. Graph 

depicts mean ± SEM. n = 5-6 mice/treatment group (D). ** P < 0.01 **** P < 0.001 

(one-way ANOVA with Holm-Sidak’s multiple comparisons test). The co-efficient of 

drug interaction (CDI) was calculated using BLI data at day 21 and 28, and the 

proportion of circulating tumour cells (CTCs) within the leukocyte fraction of 

peripheral blood at day 28, to assess drug synergy. CDI < 0.7 (shown in shaded text) 

indicates drug synergy (E).  
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induction of 5TGM1 cell apoptosis in vitro, as assessed by Annexin V and 7-AAD 

staining. Initially, we determined the doses of LCRF-0006 (25-150µg/ml) and 

bortezomib (1-7nM) which individually had minimal to moderate pro-apoptotic effects 

on 5TGM1 cells, after 24 hrs (Figure 3.7A,B). Significantly, we found that LCRF-0006 

and bortezomib had synergistic effects on 5TGM1 cell apoptosis, with LCRF-0006 

concentrations of 50µg/ml and above enhancing the sensitivity of 5TGM1 cells to 

bortezomib, after 24 hrs (CDI < 0.7) (Figure 3.7C,D). 



Figure 3.7.  LCRF-0006 synergistically increases bortezomib-induced 5TGM1 MM 

PC apoptosis in vitro. The viability of 5TGM1 cells following in vitro culture in the 

presence of increasing concentrations of LCRF-0006 (A) or bortezomib (B) for 24 

hours was assessed by flow cytometry following annexin V and 7-AAD staining. 

Graphs depict mean ± SEM of 3 independent experiments. * P < 0.05 ** P < 0.01 *** P 

< 0.001 compared with 5TGM1 cells treated with vehicle alone (0µg/ml) (one-way 

ANOVA with Dunnett's multiple comparisons test). Graphical representation of 

5TGM1 cell viability following in vitro culture in the presence of bortezomib and 

increasing concentrations of LCRF-0006 simultaneously for 24 hours (as assessed by 

flow cytometry following Annexin V and 7-AAD staining), relative to 5TGM1 cells 

treated with vehicle alone (C). Data is representative of 3 independent experiments. The 

co-efficient of drug interaction (CDI) was calculated using the relative viability of 

5TGM1 cells after 24 hours to assess drug synergy. CDI < 0.7 (shown in shaded text) 

indicates drug synergy (D). Data are representative of 3 independent experiments. 
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3.5 Discussion 
Tumour-associated vasculature is structurally abnormal, characterised by gaps between 

adjacent ECs and loosely attached or absent mural cells.22,28,60 These structural 

abnormalities, in addition to the disorganised, tortuous nature of tumour-associated 

vasculature, and the defective lymphatic drainage in tumours, result in abnormal 

pressure gradients and heterogeneous perfusion which can limit drug delivery to the 

tumour.19,60,61 Paradoxically, however, the compromised EC barrier of tumour-

associated vasculature is thought to mediate the passive and selective extravasation of 

macromolecules (> 40 kDa) into interstitial tumour spaces.23-27,62,63 Furthermore, the 

paucity of lymphatic drainage is considered to increase the retention of macromolecular 

drugs at the tumour site.63,64 Collectively, this phenomenon is known as the enhanced 

permeability and retention (EPR) effect.62,63 One hypothesised approach to increase the 

efficiency of tumour delivery of macromolecular drugs, or drug complexes, is by 

augmentation of the EPR effect.62,63,65 Pre-clinical studies have demonstrated that 

factors such as angiotensin II and nitric oxide can rapidly increase macromolecular 

extravasation in tumours by increasing tumour blood flow, thereby improving tumour 

delivery of, and response to, macromolecular drugs and drug complexes.66-70 Indeed, a 

nitric oxide delivery system which augments the EPR effect was recently shown to 

increase the anti-cancer efficacy of nanoparticle albumin-bound paclitaxel (Abraxane®) 

in several pre-clinical cancer models, including a colon cancer model possessing 

inherently high vascular permeability and a melanoma model characterised by 

inherently low vascular permeability.68,71 Notably, recent studies have demonstrated the 

efficacy of the N-cadherin antagonist ADH-1 to increase EC permeability in vitro, and 

rapidly enhance tumour blood vessel permeability to macromolecules in vivo, as 

demonstrated by the accumulation of albumin conjugated-Evans blue dye in melanoma 

tumours of mice treated with ADH-1. Moreover, ADH-1 improved melanoma tumour 

uptake of, and response to, the chemotherapeutic agent melphalan, which displays high 

affinity for plasma proteins.17,72 Taken together, these studies suggest that N-cadherin 

antagonists may increase the delivery of plasma protein-bound drugs to tumours by 

increasing the permeability of tumour-associated vasculature, thereby improving tumour 

response to chemotherapy.17 

 The primary objective of the current study was to evaluate the efficacy of a 

small molecule peptidomimetic of ADH-1, LCRF-0006, as a novel vascular disrupting 
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agent and to assess its ability to increase the effectiveness of the anti-MM agent 

bortezomib73,74 in a pre-clinical model of MM. We have demonstrated that LCRF-0006 

is a vascular disrupting agent which increases blood vessel permeability to 

macromolecules, as evidenced by LCRF-0006-mediated extravasation of 70 kDa FITC-

dextran in retinal tissues. Mechanistically, our in vitro studies using BMECs suggest 

that LCRF-0006 enhances vascular permeability by directly inducing the retraction of 

endothelial monolayers, thereby facilitating para-cellular macromolecule transport. It is 

well established that N-cadherin mediates the recruitment and adhesion of mural cells to 

the abluminal surface of ECs, which stabilises blood vessel integrity and modulates 

barrier function.5,6,14,15,18 Indeed, recent studies using three-dimensional bio-engineered 

microvessels suggest that abrogation of N-cadherin-mediated mural cell attachment to 

endothelial cells also enhances endothelial barrier permeability to macromolecules.18 As 

retinal microvessels have a relatively high pericyte coverage75, it is possible that LCRF-

0006 may also compromise endothelial barrier function by disrupting EC-mural cell 

interactions. 

 The observation that disrupted BMEC monolayers recovered in vitro following 

removal of LCRF-0006 suggests that the effects of LCRF-0006 on ECs are transient and 

reversible, in line with the proposed role of N-cadherin in endothelial barrier 

closure.76,77 Moreover, the disruptive effects of LCRF-0006 are not a consequence of 

EC apoptosis which may eventuate in vessel collapse. This is consistent with our 

findings that LCRF-0006 did not affect the EC composition of long bones or the overall 

vascular architecture of the bone marrow, either in the normal or malignant setting. 

Thus, the effects of LCRF-0006 differ from those of vascular disrupting agents such as 

microtubule-depolymerizing agents which induce necrosis of tumour-associated 

vasculature.28,51,78 Importantly, we also observed that the initial effects of LCRF-0006 

on EC retraction and rounding were more rapid in immature endothelial tubes than 

established tubes. As tumour-associated vasculature is considered to be relatively 

immature, in comparison to normal blood vessels28,29, these findings suggest that 

tumour-associated vasculature may have increased sensitivity to LCRF-0006-mediated 

disruption, compared with normal blood vessels. 

The anti-MM agent bortezomib, used as induction therapy, maintenance therapy, 

and in the relapse setting73,74,79,80, is a small, dipeptide boronic acid which becomes 

highly bound to plasma proteins upon clinical administration.81 On the basis of previous 

reports that ADH-1 increased melanoma tumour delivery of, and response to, 
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melphalan, which similarly has high plasma protein affinity17,72, we speculated that 

LCRF-0006 may enhance MM tumour delivery of bortezomib. Although LCRF-0006 

did not display single-agent anti-tumour efficacy in the C57Bl/KaLwRij/5TGM1 MM 

model, LCRF-0006 in combination with a sub-therapeutic dose of bortezomib induced a 

synergistic response in mice with established tumours, with tumour regression achieved 

in all animals. Importantly, the combination therapy was well tolerated with no adverse 

effects observed on animal welfare.  

While we speculate that the synergistic effects may, at least in part, be mediated 

by enhanced tumour delivery of bortezomib facilitated by LCRF-0006, potentially by 

augmentation of the EPR effect, N-cadherin antagonists may directly enhance tumour 

response to chemotherapeutic agents. For example, ADH-1 has previously been shown 

to significantly increase melanoma tumour response to the chemotherapeutic agent 

temozolamide in vivo, without altering tumour up-take of the drug.17 Consistent with 

these findings, our in vitro drug combination assays provide evidence that LCRF-0006 

and bortezomib can synergistically induce apoptosis in 5TGM1 cells, which may further 

contribute to the synergism observed in vivo. One potential mechanism by which 

LCRF-0006 and bortezomib may synergistically induce MM tumour cell apoptosis is by 

differential inhibition of the Bcl-2-family pro-survival proteins Bcl-2 and Mcl-1, shown 

to mediate MM tumour cell survival.82-85 Proteasome inhibition by bortezomib is 

thought to induce MM tumour cell apoptosis by increasing the expression of NOXA 

which neutralizes and degrades Mcl-1.86-89 In contrast, N-cadherin engagement has been 

shown to activate Bcl-2 by enhancing PI3K/Akt-mediated phosphorylation of the pro-

apoptosis protein Bad.90-92 Thus, LCRF-0006 may potentially inhibit the 

phosphorylation of Bad, resulting in inactivation of Bcl-2. Recent studies have also 

shown that N-cadherin potentiates prostate cancer cell resistance to metformin by 

activation of NF-кB signalling, which could be inhibited by perturbation of N-cadherin 

function.93 In light of this, LCRF-0006 may decrease activation of NF-кB signalling in 

5TGM1 cells, a pathway implicated in chemotherapeutic resistance of human MM 

cells94-97, thereby increasing sensitivity to bortezomib.  

In addition, it is also possible that LCRF-0006 may disrupt the physical 

engagement of MM cells with the BM microenvironmental niche, known to play critical 

roles in MM cell growth, proliferation and resistance to chemotherapeutic agents.98-101 

N-cadherin is expressed by numerous cell types within the BM milieu, including MSCs 

and OBs, and mediates MM tumour cell adhesion to OBs.52,53,102,103 Moreover, N-
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cadherin expression in MM tumour cells is a negative regulator of OB differentiation, 

which may potentiate tumour growth by maintaining the MSC pool.52,104 Our analyses 

revealed that LCRF-0006 treatment did not affect the relative proportion of MSCs, OPs 

and OBs within the long bones of MM tumour-bearing or tumour-naïve 

C57Bl/KaLwRij mice, which is consistent with our observed lack of single-agent 

LCRF-0006 efficacy to inhibit MM tumour growth in vivo. However, given the ability 

of N-cadherin antagonists to overcome BM stromal cell-mediated leukaemic cell 

resistance to chemotherapeutic agents105,106, we cannot exclude the possibility that 

LCRF-0006 treatment may disrupt MM tumour cell interactions with the supportive BM 

niche in vivo, thereby increasing tumour cell sensitivity to bortezomib. Importantly, 

while bortezomib has known bone anabolic effects in the clinical setting107,108, low-dose 

bortezomib did not affect the relative cellular composition of compact bone tissue. 

Thus, it is unlikely that low-dose bortezomib indirectly alters 5TGM1 cell response to 

LCRF-0006 therapy by modifying the endosteal BM niche.      

Despite significant progress in the development of novel therapeutic agents and 

effective combination strategies over the past decade, MM is still largely considered to 

be incurable with most patients relapsing and ultimately succumbing to the disease.79 

Notably, there is increasing evidence, both in vitro and in pre-clinical animal models, 

that N-cadherin antagonism represents a potential approach to increase the efficacy of 

chemotherapeutic agents.17,72,105,106 However, these findings have not been fully 

replicated in Phase I/II clinical trials to date.30,31 Given synthetic small molecule 

peptidomimetics may offer increased therapeutic efficacy over their peptide 

counterparts32,33, the use of an ADH-1 peptidomimetic is a rational proposition to 

potentially improve clinical efficacy. In the current study, we report that the small 

molecule ADH-1 mimetic LCRF-0006 is a novel vascular disrupting agent which 

increases vascular permeability in vitro and in vivo. Our findings demonstrate the 

potential clinical utility of LCRF-0006 in a combinatorial approach to significantly 

increase bortezomib efficacy and enhance the depth of tumour response in MM patients. 
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Supplementary Figure 3.1.  LCRF-0006 does not affect the viability of BMECs 

after 24 hours in vitro. Confluent BMEC monolayers grown in vitro in 24-well plates 

were treated with LCRF-0006, or vehicle alone, for 24 hours. BMECs were then 

trypsinised and cell viability was assessed by flow cytometry using annexin V and 7-

AAD staining. Graph depicts mean ± SEM of 3 independent experiments. Data are not 

statistically significant (one-way ANOVA). 
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Supplementary Figure 3.2.  Time-course of the effect of LCRF-0006 on immature 

(5-hour-old) endothelial tubes. BMECs were cultured on growth factor-reduced 

Matrigel® matrix supplemented with RPMI-8226 conditioned medium. Tubes were 

allowed to form for 5 hours and were then treated with LCRF-0006 and imaged after 0, 

5 and 24 hours (hrs). Images are representative of 2 independent experiments. Scale 

bars depict 250µm (A) and 100µm (B). 
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Supplementary Figure 3.3.  Time-course of the effect of LCRF-0006 on established 

(24-hour-old) endothelial tubes. BMECs were cultured on growth factor-reduced 

Matrigel® matrix supplemented with RPMI-8226 conditioned medium. Tubes were 

allowed to form for 24 hours and were then treated with LCRF-0006 and imaged after 

0, 5 and 24 hours (hrs).  Images are representative of 2 independent experiments. Scale 

bars depict 250µm (A) and 100µm (B). 
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Supplementary Figure 3.4.  Assessment of LCRF-0006 effects on non-tumour-

bearing C57Bl/KaLwRij mice. C57Bl/KaLwRij mice were treated with 100mg/kg 

LCRF-0006, or vehicle (CD) alone, by i.p. injection daily for 28 days. Animal weights 

are shown. Graph depicts mean ± SEM. n = 8 mice/treatment group (A). Data are not 

statistically significant (two-way ANOVA). After 28 days, the long bones were isolated 

and the proportion of MSCs (Sca-1+CD51-) (B), OPs (Sca-1+CD51+) (C) and OBs (Sca-

1-CD51+) (D) within the Lin-CD45-CD31- fraction of compact bone (CB) was 

quantified. The EC (CD31+) composition of the non-haematopoietic (Lin-CD45-) 

fraction of CB (E) and bone marrow (BM) (F) was also quantified. Graphs depict mean 

± SEM. n = 8 mice/treatment group. Data are not statistically significant (Mann-

Whitney U test). 
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Supplementary Figure 3.5.  Assessment of LCRF-0006 effects in tumour-bearing 

C57Bl/KaLwRij mice. C57BL/KaLwRij mice with established MM (day 14 post-

5TGM1 cell injection) were treated with LCRF-0006 (100mg/kg/day) or vehicle (CD) 

alone i.p. for 14 days. The proportion of circulating tumour cells within the leukocyte 

fraction of peripheral blood collected from mice at day 28 was assessed by flow 

cytometry. Graph depicts mean ± SEM. n = 12 mice/treatment group (A). The EC 

(CD31+) composition of the non-haematopoietic (Lin-CD45-) fraction of compact bone 

(CB) from the long bones (B), and bone marrow (BM) (C), was quantified. Graphs 

depict mean ± SEM. n = 5-9 mice/treatment group. Data are not statistically significant 

(Mann-Whitney U test). 
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Supplementary Table 3.1  Complete blood counts of C57Bl/KaLwRij mice1

following 28-day 100mg/kg/day LCRF-0006 treatment                                                                                           

WBCs (K/µl) 5.92 ± 0.35 4.99 ± 0.57 5.49 ± 0.61 n.s.

Neutrophils (K/µl) 1.05 ± 0.18 0.68 ± 0.11 1.02 ± 0.18 n.s.

Lymphocytes (K/µl) 4.54 ± 0.18 4.05 ± 0.44 4.15 ± 0.37 n.s.

Monocytes (K/µl) 0.25 ± 0.04 0.18 ± 0.03 0.17 ± 0.04 n.s.

Eosinophils (K/µl) 0.07 ± 0.03 0.06 ± 0.02 0.11 ± 0.04 n.s.

Basophils (K/µl) 0.02 ± 0.01 0.02 ± 0.01 0.04 ± 0.01 n.s.

RBCs (M/µl) 7.59 ± 0.20 7.97 ± 0.10 7.83±0.13 n.s.

Hemoglobin (g/dl) 9.13 ± 0.14 9.55 ± 0.09 9.53 ± 0.14 n.s.

Hematocrit (%) 37.96 ± 0.99 39. 2± 0.39 39.0 ± 0.63 n.s.

MCV (fl) 50.08 ± 0.29 49.2 ± 0.17 49.8 ± 0.21 n.s.

MCH (pg) 12.05 ± 0.19 12.0 ± 0.13 12.2 ± 0.14 n.s.

MCHC  (g/dl) 24.09 ± 0.44 24.4 ± 0.21 24.4 ± 0.33 n.s.

RDW (%) 16.41 ± 0.22 15.9 ± 0.20 16.9 ± 0.65 n.s.

Platelets (M/µl) 0.74 ± 0.06 1.05 ± 0.07 0.99 ± 0.09 n.s.

MPV (fl) 4.79 ± 0.16 4.95 ± 0.06 5.10 ± 0.15 n.s.
1 11-12 weeks of age at the �me of cardiac bleed
2 mean ± SEM
3 Kruskal-Wallis test (with Dunn's mul�ple comparisons test)

WBCs (white blood cells), RBCs (red blood cells), MCV (mean corpuscular volume), MCH 
(mean corpuscular hemoglobin), MCHC (mean corpuscular hemoglobin concentra�on), 
RDW (red blood cell distribu�on width), MPV (mean platelet volume), n.s. (not significant)

Parameter

Un-treated2

Treatment

Vehicle2 LCRF-00062

p-value3n =8               
(5m & 3f)

n =8               
(4m & 4f)

n =8               
(4m & 4f)
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4.1 Abstract 
Multiple myeloma (MM) is a largely incurable haematological malignancy 

characterised by the abnormal proliferation of immunoglobulin-producing plasma cells 

(PCs) within the bone marrow (BM). We have previously shown that expression of the 

homophilic cell-cell adhesion molecule N-cadherin (CDH2) is up-regulated in MM PCs 

in approximately 50% of newly-diagnosed MM patients and is associated with inferior 

patient prognosis. To date, the key drivers of aberrant N-cadherin expression in MM 

PCs are not fully understood. While 10-15% of CDH2-expressing MM cases are 

associated with the chromosomal translocation t(4;14)+, suggesting expression may be 

driven by the dysregulated oncogenes MMSET or FGFR3, an additional 35-40% of 

newly-diagnosed patients also express CDH2 despite having t(4;14)- status. Here, we 

combined bioinformatic analyses of publicly available microarray data from newly-

diagnosed MM patients with in vitro studies in human MM cell lines to confirm that 

MMSET is a key driver of CDH2 expression in t(4;14)+ MM. Additionally, we 

performed in silico analyses incorporating microarray data from over 900 MM patients 

to identify potential novel regulators of CDH2 in t(4:14)- MM. These analyses revealed 

more than 200 genes which were significantly correlated with CDH2 in t(4:14)- MM. 

These included the putative transcriptional regulator BTBD3, which positively 

correlated with CDH2 levels, and upstream modulators of the JAK/STAT3 signalling 

cascade (IL6ST, BTF3 and SGPL1). Furthermore, these analyses identified 8 miRNAs, 

including miR-190, which inversely associated with CDH2 expression and therefore 

may negatively regulate CDH2 levels in t(4:14)- MM. BTBD3 was selected for further 

investigation as a candidate driver of CDH2 expression as almost all t(4:14)- CDH2high 

MM patients expressed BTBD3, and that BTBD3 was strongly up-regulated in BM MM 

PCs, compared with normal BM PCs. While our BTBD3 over-expression and knock-

down studies suggest that BTBD3 is unlikely to be a key driver of CDH2 expression in 

t(4:14)- MM, this work provides insight into potential N-cadherin regulatory 

mechanisms in t(4;14)- MM and reveals a number of regulatory candidates which 

warrant future investigation. Given that the up-regulation of BTBD3 expression is 

associated with a trend towards poorer overall survival in t(4:14)- MM patients, the 

potential role of BTBD3 in MM pathogenesis also warrants investigation.   
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4.2 Introduction 
Multiple myeloma (MM) is the second-most common haematological malignancy after 

non-Hodgkin lymphoma, with approximately 1,700 new cases diagnosed in Australia 

each year.1 MM is characterised by the uncontrolled proliferation of immunoglobulin-

producing plasma cells (PCs) within the bone marrow (BM) leading to clinical 

manifestations such as osteolytic bone lesions, hypercalcaemia, renal insufficiency and 

anaemia. Chromosomal abnormalities including hyperdiploidy (eg. gain of chromosome 

3, 7, 9, 11, 15, 17 and 19) and translocations involving the immunoglobulin heavy chain 

(IGH) switch region on chromosome 14 encompass the primary initiating events of MM 

disease, leading to the aberrant up-regulation and activation of oncogenes such as 

MMSET (encoding the histone-modifying enzyme MMSET [also known as NSD2 and 

WHSC1]), the transcription factors MAF and MAFB, and D-group cyclins. Together 

with the acquisition of additional genetic lesions, these mutations lead to dysregulated 

cell signalling and result in aberrant PC growth, survival and behavioural 

characteristics, thereby driving MM pathogenesis and disease progression.2,3 

 N-cadherin (CDH2) is a calcium-dependent, adherens junction-type homophilic 

cell-cell adhesion and signalling molecule expressed by numerous cell types (e.g. 

neuronal cells, osteoblasts, endothelial cells and myocytes) which contributes to a 

variety of cellular processes including polarity establishment, migration and survival.4-13 

In epithelial cancers, the up-regulation or de novo expression of N-cadherin is widely 

associated with tumour invasiveness and metastasis and inferior patient prognosis.14-24 

In addition, there is an emerging body of evidence that N-cadherin is aberrantly 

expressed in haematological malignancies, particularly playing a role in tumour cell 

dissemination and chemotherapeutic resistance.25-33 In MM, N-cadherin gene and 

protein expression in CD138+ BM PCs is up-regulated in approximately 50% of newly-

diagnosed patients.25,26 Studies have also shown that CDH2 up-regulation in BM MM 

PCs and increased circulating N-cadherin levels (which correlate with CDH2 expression 

in BM MM PCs) at clinical diagnosis are significantly associated with inferior MM 

patient prognosis.25 N-cadherin is strongly implicated in the BM-homing capacity of 

circulating MM PCs, thereby facilitating dissemination.26 N-cadherin may also 

contribute to MM-associated bone disease by facilitating MM PC-mediated inhibition 

of osteoblast differentiation.26 However, while the deleterious implications of elevated 
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N-cadherin expression in MM are increasingly apparent, the key drivers of aberrant N-

cadherin expression in MM PCs are not fully understood. 

 Microarray analyses have previously demonstrated that CDH2 is highly 

expressed in approximately 90% of MM patients harbouring the chromosomal 

translocation t(4;14)(p16;q32), a genetic lesion observed in 10-15% of newly-diagnosed 

patients with intermediate to high-risk disease.26,34-36 This translocation involves a 

breakpoint in the IGH switch region and a breakpoint region between the genes MMSET 

and FGFR3 on chromosome 4, resulting in MMSET and FGFR3 being placed under the 

influence of strong IGH gene enhancers.37 MMSET is universally over-expressed in 

t(4;14)+ MM patients, whereas FGFR3 over-expression is lost in approximately 30% of 

cases. Notably, t(4;14)+ status in MM is an adverse prognostic factor, independent of 

FGFR3 expression, suggesting MMSET dysregulation is likely to be a primary mediator 

of oncogenesis in this sub-group of patients.35 MMSET encodes for the histone 

methyltransferase, MMSET, which is associated with a global H3K36me2/K27me3 

switch resulting in a more open chromatin structure favouring gene activation and 

promoting tumourigenesis.38-40 Indeed, targeted disruption of the translocated MMSET 

allele in the t(4;14)+ human MM cell line (HMCL) KMS-11 has been shown to inhibit 

MM PC clonogenicity in vitro and tumorigenicity in vivo.40,41 Notably, studies have also 

demonstrated that MMSET silencing reduces the expression of several adhesion 

molecule-encoding genes in KMS-11 cells including CDH2 41, suggesting MMSET may 

be a primary driver of N-cadherin expression in t(4;14)+ MM. 

 In addition to t(4;14)+ MM patients, CDH2 is also up-regulated in approximately 

40% of newly-diagnosed t(4;14)- patients.26 In particular, a distinct population of 

CDH2-overexpressing MM patients is observed in the hyperdiploidy sub-group.26 

Owing to the heterogeneity and lack of known genetic initiators of hyperdiploidy-

associated MM disease3, little is known regarding the potential mechanism(s) 

responsible for elevated CDH2 expression in these patients. Interestingly, CDH2 is also 

up-regulated at low frequency in other t(4;14)- MM subgroups harbouring a variety of 

primary genetic lesions.26 In addition to validating the dysregulated expression of 

MMSET as a key driver of up-regulated CDH2 in MM, the aim of the study was to 

reveal potential regulators of CDH2 expression in t(4;14)- MM by the identification of 

genes which significantly correlate with CDH2 expression in t(4;14)- MM patients, 

using publicly available microarray data. In silico analysis was also performed to 

identify potential microRNAs (miRNAs) which may additionally regulate N-cadherin 
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levels in t(4;14)- MM. In addition, we investigated the role of a putative transcriptional 

regulator emanating from our correlative studies, BTB/POZ domain-containing protein 

3 (BTBD3), as a potential regulator of CDH2 expression in t(4;14)- HMCLs in vitro. 
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4.3 Methods 
4.3.1 In silico analysis of microarray datasets 

For analysis of gene expression in CD138-purified BM PCs from newly-diagnosed MM 

or monoclonal gammopathy of undetermined significance (MGUS) patients, or normal 

controls, 5 independent microarray datasets were used: E-MTAB-363 (MM, n = 155; 

MGUS, n = 5; normal, n = 5)42, E-GEOD-19784 (MM, n = 368)43, E-GEOD-26863 

(MM, n = 304)44, E-MTAB-317 (MM, n = 227)45 and GSE4581 (MM, n = 414)46. For 

gene expression analysis in the HMCL KMS-11 following MMSET silencing, 3 

microarray datasets were used: GSE2914847, GSE5007240 and GSE2474639. For 

GSE4581, MAS5-normalised data were downloaded from Gene Expression Omnibus 

(GEO; NCBI) and log2 normalised prior to analysis. For all other datasets, CEL files 

from Affymetrix Human Genome U133 Plus 2.0 cDNA microarrays were downloaded 

from GEO or ArrayExpress (EMBL-EBI), and were processed using RMA as 

previously described.48-50 Analysis of overall survival in MM patients stratified on the 

basis of CD138+ BM PC gene expression at diagnosis was performed using the 

GSE4581 dataset. For analysis of miRNA expression in t(4;14)- MM patients, RMA-

processed Human Gene 1.0 ST Array (Affymetrix) mRNA expression data and TaqMan 

miRNA expression data from CD138+ BM PCs in newly-diagnosed MM patients 

(GSE16558) (n = 60) was analysed, as previously described 51. Patients were classified 

as MMSETlow, MMSEThigh/FGFR3low and MMSEThigh/FGFR3high using specific cut-offs 

for MMSET/NSD2 (209053_s_at) and FGFR3 (204379_s_at) for each dataset, as shown 

in Supplementary Figure 4.1A-F. Patients were defined as CDH2high or CDH2low and 

BTBD3high or BTBD3low based on the median expression of CDH2 (203440_at) and 

BTBD3 (202946_s_at) for the entire MM patient cohort, respectively. Patients were 

defined as miR-190high or miR-190low using a cut-off of zero. Gene set enrichment 

analysis (GSEA) was performed using the MSigDB Hallmark gene sets and Curated 

gene sets collections.52 Predicted miRNA targets were retrieved from three independent 

databases (TargetScan, version 7.1 (June 2016), http://targetscan.org53; PicTar (March 

2007), http://pictar.mdc-berlin.de54; miRdb (May 2016), http://mirdb.org55). 

 

4.3.2 Cell culture 

Cell culture reagents were sourced from Sigma-Aldrich (St Louis, MO, USA), unless 

otherwise specified. The HMCLs MOLP-8, EJM, KMM-1, ANBL6, JJN3, KMS-26, 

http://www.targetscan.org/
http://www.targetscan.org/
http://pictar.mdc-berlin.de/
http://mirdb.org/
http://mirdb.org/
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JIM-1, NCI-H929 and OPM-2 were a kind gift from Prof. Andrew Spencer (Monash 

University, Melbourne, VIC). The B-cell lines NALM-6 and Balm were kindly 

provided by Emeritus Prof. Leonie Ashman (University of Newcastle, Newcastle, 

NSW). The transformed B-cell line ARH-77 and HMCLs KMS-11, LP-1, RPMI-8226 

and U266 were obtained from the American Type Culture Collection. EJM cells were 

maintained in Iscove's Modified Dulbecco's Medium (IMDM) with 10% foetal calf 

serum (FCS) (Thermo Fisher Scientific, Waltham, MA, USA) and supplements (2mM 

L-glutamine, 100U/ml penicillin, 100µg/ml streptomycin, 1mM sodium pyruvate and 

10mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid [HEPES] buffer) at 37°C in 

a humidified atmosphere with 5% CO2. All other lines were maintained in Roswell Park 

Memorial Institute 1640 (RPMI-1640) medium with 10% FCS and supplements. 

 

4.3.3 Flow cytometry 

For analysis of N-cadherin expression, HMCLs cells were incubated in blocking buffer 

(2mM EDTA 2% FCS PBS) for 30mins on ice. Cells were then stained with mouse 

monoclonal anti-N-cadherin antibody (clone GC-4; 30µg/ml; Sigma-Aldrich), or mouse 

IgG1 isotype control (clone 1B556; a kind gift from Dr Graham Mayrhofer, The 

University of Adelaide, Adelaide, SA), for 45mins on ice in blocking buffer. After 

washing in Hank's Balanced Salt Solution with 5% FCS, cells were incubated with PE-

conjugated goat anti-mouse IgG (0.2µg/1x106 cells; SouthernBiotech; Birmingham, AL, 

USA) for 45 minutes on ice in blocking buffer. Cells were again washed, resuspended 

in 1% w/v neutral-buffered formalin 2% w/v sucrose 1% sodium azide PBS and 

analysed using a FACSCanto™ II flow cytometer (BD; Franklin Lakes, NJ, USA). For 

cell purification, cells were sorted using a FACSAria™ Fusion flow cytometer (BD). 

 

4.3.4 Quantitative PCR  

All reagents were sourced from Thermo Fisher Scientific, unless otherwise specified. 

Total RNA was isolated from HMCLs using TRIzol® Reagent. For detection of 

MMSET, BTBD3, CDH2 and ACTB mRNA, cDNA was synthesized using SuperScript® 

IV reverse transcriptase. MMSET primers were designed to detect full-length MMSET 

(MMSET II) transcripts (Forward (Fwd) 5'-AGAGGATACAGGACCCTACA-3', 

Reverse (Rev) 5'-GTGTTTCGTCTGCACTTTCG-3'). For detection of total BTBD3 

transcript levels, BTBD3-targeting primers for quantitative real-time PCR (qPCR) were 

designed to detect all 6 BTBD3 mRNA transcript variants (Fwd 5'-
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GCTGCTTTTCTCGCTATGCT-3', Rev 5'-AGGAGCACACAGGCATTCTT-3'). 

CDH2 primers were designed to detect total CDH2 mRNA transcripts (Fwd 5'-

GGCAGTAAAATTGAGCCTGAAG-3', Rev 5'-AGTTTTCTGGCAAGTTGATTGG-

3'). qPCR was performed using the RT2 SYBR® Green qPCR Mastermix (Qiagen, 

Hilden, Germany). For miRNA analysis, miRNAs were converted to cDNA using the 

TaqMan® MicroRNA Reverse Transcription Kit and expression assessed using the 

TaqMan® Universal Master Mix II, according to the manufacturer’s instructions. Pre-

designed TaqMan® primers were used to detect hsa-miR-190a-5p (miR-190) (Assay ID 

000489; UGAUAUGUUUGAUAUAUUAGGU) and U6 snRNA (Assay ID 001973). 

Gene and miRNA expression was calculated relative to ACTB and U6 snRNA, 

respectively, using the 2-ΔCt method.57 

 

4.3.5 Western blotting 

Nuclear protein lysates from HMCLs were prepared using the Nuclear Complex Co-IP 

Kit (Active Motif, Carlsbad, CA, USA) and polyacrylamide gel electrophoresis was 

performed as described previously.58 Following transfer, the PVDF membrane was 

incubated in blocking buffer (2.5% membrane blocking agent (GE Healthcare; Little 

Chalfont, UK) in 0.1% Tween 20 Tris-buffered saline) for 2 hours at room temperature. 

The membrane was then probed overnight at 4°C with a polyclonal rabbit anti-

human/mouse BTBD3 antibody (8µg/ml; Sigma, Cat. No. HPA042048) diluted in 

blocking buffer. After washing, the membrane was incubated with alkaline 

phosphatase-conjugated donkey anti-rabbit IgG (0.4µg/ml; Merck Millipore, 

Burlington, MA, USA) diluted in blocking buffer for 1 hour at room temperature. 

Proteins were visualized with ECL detection reagent (GE Healthcare) on a Gel Doc™ 

XR+ Imaging System (Bio-Rad; Hercules, CA, USA). The membrane was then stripped 

using Restore™ PLUS Western Blot Stripping Buffer (Thermo Scientific), re-blocked 

and probed for 1 hour at room temperature with rabbit anti-histone H3 (Cell Signaling 

Technology, Danvers, MA; 1:2500) as a nuclear protein-loading control. After washing, 

the membrane was incubated for 1 hour at room temperature with alkaline phosphatase-

conjugated donkey anti-rabbit IgG and protein was visualised, as described above. 

 

4.3.6 Over-expression of MMSET and BTBD3 in HMCLs 

The pRetroX-MMSET-DsRed vector harbouring full-length MMSET cDNA or 

pRetroX-DsRed empty vector (kind gifts from Prof. Jonathan Licht, University of 
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Florida Health Cancer Center, Gainsville, FL, USA)38, were transfected into HEK-293T 

cells. Supernatant containing viral particles was subsequently used to infect the HMCL 

RPMI-8226, as previously described.59 Following expansion, cells over-expressing the 

DsRed constructs were purified by flow cytometry.  

 BTBD3 transcript variants 1 and 6 were amplified from cDNA derived from the 

t(4;14)- HMCL KMS-26 (primer sets; Fwd 5'-

ACACGGATCCACCATGGTAGATGACAAGGAAAA-3' and Rev 5'- 

AAGTGAATTCTCAAGCATAGAATATAAGTT-3' (transcript variant 1); Fwd 5'- 

TGTGGGATCCACCATGTTTTACGGAGAACTTGC-3' and Rev 5'- 

AAGTGAATTCTCAAGCATAGAATATAAGTT-3' (transcript variant 6)) and initially 

cloned into pGEM®-T Vector System I (Promega; Madison, WI, USA), as per 

manufacturer's instructions. Each BTBD3 transcript was subsequently cloned into the 

pLeGO-iCer2 lentiviral vector60 (gift from Boris Fehse, Addgene plasmid # 27346) 

using the EcoRI and BamHI restriction sites, and sequence-verified by Sanger 

sequencing. Constructs were then transfected into HEK293T cells using the psPAX2 

(gift from Didier Trono, Addgene plasmid #12260) and pVSV-G (Clontech 

Laboratories, Inc.; Mountain View, CA, USA) packaging vectors and the viral 

supernatants were used to infect RPMI-8226 and U266 HMCLs. Following expansion, 

cerulean-positive cells were purified by flow cytometry. 

 

4.3.7 siRNA-mediated BTBD3 knock-down in HMCLs 

All reagents were sourced from Thermo Fisher Scientific, unless otherwise specified. 

Immediately prior to siRNA transfection at day 0, HMCLs were washed and 

resuspended in Opti-MEM™ at 2.5x105/ml in 25cm2 tissue culture flasks. Silencer® 

Select Negative Control No. 1 siRNA (Cat. 4390843)  and pre-designed BTBD3-

targeting siRNAs (Assay ID s22631, siRNA#1; Assay ID s22632, siRNA#2; Assay ID 

s22633, siRNA#3) were pre-incubated in Opti-MEM™ at 150nM with 15µl/mL 

Lipofectamine® RNAiMAX reagent for 15 minutes at room temperature. For no siRNA 

controls, siRNA was replaced with nuclease-free water. siRNA-lipid complexes (or no 

siRNA mock complexes) were then added drop-wise to HMCLs for a final 

concentration of 25nM siRNA and 2.5µl/mL Lipofectamine® RNAiMAX reagent and 

flasks were gently rocked to mix. After 6 hours at 37°C, cells were diluted 2-fold with 

antibiotic-free RPMI-1640 containing 10% FCS and supplements, as described above, 

and cultured for 2 days. At day 2, cells were washed and resuspended in Opti-MEM™ 
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and siRNA transfection was repeated, as described above. At day 4, cells were 

harvested for RNA isolation. 

 

4.3.8 Statistical analyses 

For analysis of genes which correlate with CDH2 expression in t(4;14)- MM patients, 

Spearman correlation analyses were performed using 4 microarray datasets (E-MTAB-

363, E-GEOD-19784, E-GEOD-26863 and E-MTAB-317), using the Benjamini-

Hochburg false discovery rate (FDR) correction for multiple testing. Differential 

expression of gene probesets between groups in microarray experiments was 

determined using linear models for microarray data analysis (LIMMA;61) in 

MultiExperiment Viewer (MeV;62). Survival curves were compared using the log-rank 

(Mantel-Cox) test with hazard ratios calculated using the Mantel-Haenszel calculation. 

All other analyses were performed using an ordinary one-way ANOVA with Dunnett's 

multiple comparisons test, performed using GraphPad Prism® v7.02 software 

(GraphPad Software, Inc.; La Jolla, CA, USA). 
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4.4 Results 
4.4.1 The histone methyltransferase MMSET is a key driver of CDH2 expression 

in t(4;14)+ MM 

Previous studies have identified that CDH2 expression is up-regulated in a high 

proportion of newly-diagnosed t(4;14)+ MM patients.26,34 Similarly, using qPCR and 

flow cytometry, we have found that t(4;14)+ HMCLs highly express N-cadherin mRNA 

(Figure 4.1A) and protein (Figure 4.1B), when compared with t(4;14)- MM and B-cell 

lines. Indeed, the mean expression of CDH2 is significantly higher in t(4;14)+ HMCLs 

relative to t(4;14)- HMCLs and B-cell lines (data not shown). t(4;14)+ MM is 

characterised by a reciprocal chromosomal translocations that leads to constitutive 

expression of both MMSET and FGFR3, although FGFR3 expression is lost in 

approximately 30% of these patients.35 In order to ascertain whether MMSET or FGFR3 

is the likely driver of CDH2 expression in t(4;14)+ MM, we analysed CDH2 expression 

in publicly available microarray data on CD138+ BM PCs from newly-diagnosed MM 

patients (GSE4581, E-MTAB-363, E-GEOD 19784, E-MTAB-317 and E-GEOD-

26863), characterised as MMSEThigh or MMSETlow, and further characterised on the 

basis of FGFR3 expression (as shown in Supplementary Figure 4.1A-E). Our analysis 

revealed that over 82% of MMSEThigh MM patients express high CDH2 levels (above 

the median for the entire MM cohort) (GSE4581: 66 CDH2high of 74 MMSEThigh 

patients, 89.2%; E-MTAB-363: 17/19, 89.5%; E-GEOD-19784: 33/35, 94.3%; E-

MTAB-317: 30/33, 90.9%; E-GEOD-26863: 28/32, 82.3%), irrespective of their 

FGFR3 expression (Figure 4.1C). These data imply that MMSET, and not FGFR3, is 

responsible for increased CDH2 expression in t(4;14)+ MM patients (Supplementary 

Figure 4.2A).  

 To directly investigate whether MMSET regulates CDH2 in t(4;14)+ MM, we 

then performed in silico analysis of publicly available microarray data in which MMSET 

was genetically modified in the t(4;14)+ HMCL KMS-11. We found that CDH2 

expression was markedly lower in KMS-11 cells following targeted knockout of the 

translocated MMSET allele alone (MMSET TKO) (GSE29148 and E-GEOD-50072) 

(Figure 4.2A,B), consistent with previous findings.41 Over-expression of full-length 

MMSET in MMSET-TKO KMS-11 cells also rescued CDH2 expression (E-GEOD-

50072 and GSE24746) (Figure 4.2B,C). Notably, over-expressing MMSET containing a 

histone-binding domain mutation (MMSET Y1118A) failed to rescue CDH2 expression 



Figure 4.1.  CDH2 expression is up-regulated in t(4;14)+ HMCLs and MMSEThigh 

MM patients. CDH2 expression (normalised to ACTB expression) in a panel of 

HMCLs, stratified based on t(4;14) status, and B-cell lines, as assessed by qPCR. Graph 

depicts mean ± SEM of 3 independent experiments (A). N-cadherin protein expression 

in representative t(4;14)- and t(4;14)+ HMCLs, as assessed by flow cytometry. Black 

line represents N-cadherin expression and shaded area represents isotype control (B). In 

silico analyses of publicly available microarray datasets demonstrating CDH2 

expression in CD138+ BM PCs isolated from newly-diagnosed MM patients, segregated 

into MMSETlow, MMSEThigh/FGFR3low or MMSEThigh/FGFR3high subsets (GSE4581, E-

MTAB-363, E-GEOD-19784, E-MTAB-317 and E-GEOD-26863). Graphs depict 

median with inter-quartile range. * P < 0.05 ** P < 0.01 *** P < 0.001 **** P < 0.0001 

compared with MMSETlow MM patients (LIMMA) (C). 
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Figure 4.2.  CDH2 expression is positively regulated by MMSET in HMCLs. In 

silico analyses of publicly available microarray datasets demonstrating CDH2 

expression in KMS-11 cells following targeted knockout of the translocated MMSET 

allele (TKO) (GSE29148, A; E-GEOD-50072, B) and add-back of full-length MMSET 

(E-GEOD-50072, B; GSE24746, C), or MMSET Y1118A mutant (GSE24746, C), in 

TKO KMS-11 cells. Graphs depict mean ± SEM of 3 independent experiments. * P < 

0.05 *** P < 0.001 **** P < 0.0001 compared with parental KMS-11 cells (A,B), or 

TKO KMS-11 cells (C) (one-way ANOVA with Dunnett's multiple comparisons test). 

MMSET and CDH2 expression (normalised to ACTB expression) in RPMI-8226-EV, 

RPMI-8226-MMSET and RPMI-8226-MMSET Y1118A cells, as assessed by qPCR. 

Graphs depict mean ± SEM of 3 independent experiments (D). **P < 0.01 **** P < 

0.0001 compared with RPMI-8226-EV cells (one-way ANOVA with Dunnett's multiple 

comparisons test). 
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in MMSET-TKO KMS-11 cells (GSE24746) (Figure 4.2C). To verify these findings, 

we utilised a t(4;14)- HMCL, RPMI-8226, to independently generate cell lines which 

over-expressed wild-type or Y1118A mutant MMSET. In concordance with our in 

silico analyses, up-regulation of CDH2 was observed in RPMI-8226 cells over-

expressing full-length MMSET (RPMI-8226-MMSET), but not MMSET Y1118A 

mutant (RPMI-8226-MMSET Y1118A), relative to empty-vector control RPMI-8226 

cells (RPMI-8226-EV) (Figure 4.2D). Taken together, these results demonstrate that 

MMSET is a key driver of CDH2 expression in MM and suggest that the ability of 

MMSET to up-regulate CDH2 expression in MM PCs is dependent on its functional 

histone-modifying domain. 

 

4.4.2 Identification of genes which significantly correlate with CDH2 in t(4;14)- 

MM 

While t(4;14)+ MM accounts for 15% of newly-diagnosed patients with up-regulated 

CDH2 expression in MM PCs, our analysis suggests that a further 41-46% of 

MMSETlow patients express high CDH2 levels (GSE4581: 141 CDH2high of 340 

MMSETlow patients, 41.5%; E-MTAB-363: 60/136, 44.1%; E-GEOD-19784: 131/293, 

44.7%; E-MTAB-317: 83/192, 43.2%; E-GEOD-26863: 124/270, 45.9%) (Figure 4.1C), 

in line with previous findings.26 In order to identify potential regulators of CDH2 

expression in t(4;14)- MM, we identified genes that correlated with CDH2 expression in 

BM MM PCs from MMSETlow MM patients in 4 of the microarray datasets included 

above (E-MTAB-363, E-GEOD-19784, E-MTAB-317 and E-GEOD-26863). GSE4581 

was excluded from this analysis as raw, unprocessed data was not available for this 

dataset. In total, we identified 186 genes which significantly positively correlated (Table 

4.1), and 32 genes which significantly inversely correlated (Table 4.2), with CDH2 

expression in all 4 datasets. Genes which positively correlated with CDH2 expression 

included transcriptional regulators (BTF3, E2F5, BTBD3, GFI1 and FLI1), protein 

kinases (PAK1 and PRKD2), growth factors (BMP4), modifiers of chromatin structure 

(FBXO22 and HMGA1) and ribosomal proteins (RPS17, RPL13A and RPL37). Notably, 

GSEA revealed an enrichment for genes associated with a hyperdiploidy-related MM 

gene signature amongst the genes which positively correlated with CDH2 expression 

(Supplementary Table 4.1). Genes which inversely correlated with CDH2 expression 

included transcriptional regulators (IRF2BP2 and TCFL5) and the kinase inhibitor 

CDKN1C (CDKN1C). GSEA also identified an enrichment for genes that are down-



Gene Probeset ID R1
FDR2-

adjusted P-
value

R
FDR-

adjusted P-
value

R
FDR-

adjusted P-
value

R
FDR-

adjusted P-
value

Mean 
correla�on 
co-efficient

XRCC4 205071_x_at 0.328 7.53E-04 0.478 7.71E-05 0.353 1.08E-06 0.492 8.91E-14 0.413
MGAT4C 207447_s_at 0.342 4.35E-04 0.515 8.34E-06 0.412 1.25E-09 0.359 6.39E-07 0.407
FER 206412_at 0.315 1.41E-03 0.538 1.92E-07 0.381 4.82E-08 0.387 4.89E-08 0.405
C21orf91 226109_at 0.437 2.18E-06 0.453 2.41E-04 0.310 3.55E-05 0.410 5.27E-09 0.402
MORC1 220850_at 0.303 2.21E-03 0.486 5.16E-05 0.398 8.17E-09 0.390 3.64E-08 0.394
SCYL2 224961_at 0.403 2.66E-05 0.398 2.91E-03 0.402 5.77E-09 0.374 1.57E-07 0.394
TNFSF10 202688_at 0.391 4.36E-05 0.413 1.26E-03 0.366 3.32E-07 0.389 4.26E-08 0.390
EPHB1 230425_at 0.432 2.88E-06 0.293 4.36E-02 0.423 2.89E-10 0.405 8.25E-09 0.388
CDC42SE2 1552612_at 0.342 4.30E-04 0.466 1.37E-04 0.325 1.14E-05 0.385 6.12E-08 0.380
BTBD3 202946_s_at 0.359 1.87E-04 0.436 5.66E-04 0.371 1.73E-07 0.336 4.05E-06 0.375
ELOVL7 227180_at 0.315 1.40E-03 0.403 2.31E-03 0.382 5.74E-08 0.401 1.26E-08 0.375
DLC1 210762_s_at 0.337 5.49E-04 0.368 7.06E-03 0.388 2.77E-08 0.380 9.36E-08 0.368
LOC346887 235205_at 0.481 5.95E-10 0.313 2.84E-02 0.281 2.41E-04 0.396 2.07E-08 0.368
COL4A6 213992_at 0.250 1.36E-02 0.462 1.59E-04 0.370 1.65E-07 0.379 9.68E-08 0.365
PAK1 226507_at 0.424 4.99E-06 0.292 4.44E-02 0.341 3.29E-06 0.403 1.01E-08 0.365
IDH3A 202070_s_at 0.443 1.27E-06 0.289 4.79E-02 0.344 2.60E-06 0.365 3.65E-07 0.360
ELOVL4 219532_at 0.295 3.03E-03 0.449 2.77E-04 0.414 1.05E-09 0.280 2.11E-04 0.359
COL4A5 213110_s_at 0.260 9.90E-03 0.408 1.85E-03 0.407 2.23E-09 0.362 4.69E-07 0.359
SPEF2 1552716_at 0.362 1.65E-04 0.365 7.61E-03 0.329 6.74E-06 0.374 1.51E-07 0.358
CCRL2 211434_s_at 0.264 8.81E-03 0.426 8.51E-04 0.357 7.43E-07 0.376 1.34E-07 0.356
PML 235508_at 0.425 4.66E-06 0.382 4.75E-03 0.310 3.16E-05 0.296 7.03E-05 0.353
MMP16 223614_at 0.243 1.67E-02 0.447 2.55E-04 0.395 8.17E-09 0.322 1.10E-05 0.352
MAB21L1 206163_at 0.311 1.63E-03 0.490 4.52E-05 0.318 1.86E-05 0.283 1.68E-04 0.351
ISL2 232352_at 0.329 7.46E-04 0.368 7.08E-03 0.309 3.92E-05 0.397 1.73E-08 0.351
RSL24D1 217915_s_at 0.377 7.99E-05 0.441 4.37E-04 0.287 1.69E-04 0.275 2.79E-04 0.345
GTPBP8 223486_at 0.388 4.97E-05 0.344 1.35E-02 0.330 7.77E-06 0.316 1.70E-05 0.344
PCDH9 219737_s_at 0.323 1.01E-03 0.403 2.31E-03 0.363 4.34E-07 0.279 2.14E-04 0.342
UBA7 1294_at 0.399 3.29E-05 0.320 2.40E-02 0.350 1.44E-06 0.293 8.51E-05 0.341
NCAM1 212843_at 0.365 1.45E-04 0.335 1.72E-02 0.274 3.91E-04 0.387 5.16E-08 0.340
SNAPC5 1554093_a_at 0.300 2.46E-03 0.412 1.51E-03 0.354 9.82E-07 0.289 1.15E-04 0.339
USE1 219348_at 0.369 1.22E-04 0.364 7.99E-03 0.283 2.09E-04 0.330 6.01E-06 0.337
NT5C3 223298_s_at 0.374 9.62E-05 0.436 5.60E-04 0.286 1.73E-04 0.246 1.50E-03 0.336
RPL37 224767_at 0.287 4.21E-03 0.344 1.35E-02 0.296 8.76E-05 0.415 3.83E-09 0.335
TRAT1 217147_s_at 0.295 2.97E-03 0.370 6.62E-03 0.371 1.73E-07 0.295 7.47E-05 0.333
GTF2F2 209595_at 0.298 2.70E-03 0.386 3.96E-03 0.225 5.03E-03 0.417 3.44E-09 0.332
SCAMP5 212699_at 0.292 3.39E-03 0.317 2.63E-02 0.398 8.17E-09 0.314 2.04E-05 0.330
GBA3 222943_at 0.361 1.69E-04 0.326 2.12E-02 0.334 5.45E-06 0.294 8.24E-05 0.329
CD200 209582_s_at 0.224 2.90E-02 0.499 1.92E-05 0.303 5.95E-05 0.290 1.10E-04 0.329
CNTN5 207452_s_at 0.281 5.16E-03 0.331 1.78E-02 0.358 5.00E-07 0.343 2.38E-06 0.328
RPL13A 200715_x_at 0.270 6.96E-03 0.378 5.41E-03 0.293 1.05E-04 0.369 2.60E-07 0.328
EIF2A 223015_at 0.267 7.91E-03 0.427 8.11E-04 0.283 2.07E-04 0.332 5.45E-06 0.327
CMPK2 226702_at 0.390 4.55E-05 0.347 1.24E-02 0.308 3.95E-05 0.262 6.14E-04 0.327

E-GEOD-19784 E-GEOD-26863
Table 4.1: Genes which posi�vely correlate with CDH2  expression in t(4;14)- MM pa�ents

E-MTAB-317 E-MTAB-363



RSAD2 242625_at 0.381 7.05E-05 0.356 9.49E-03 0.311 3.26E-05 0.255 9.23E-04 0.326
SAAL1 225614_at 0.389 4.63E-05 0.356 9.30E-03 0.309 3.83E-05 0.248 1.35E-03 0.326
C3orf17 225281_at 0.289 3.86E-03 0.372 5.85E-03 0.308 4.05E-05 0.334 4.68E-06 0.326
ISG20 204698_at 0.364 1.51E-04 0.351 1.11E-02 0.316 1.99E-05 0.271 3.69E-04 0.325
ICAM3 204949_at 0.297 2.81E-03 0.389 3.74E-03 0.323 1.34E-05 0.291 1.02E-04 0.325
CHSY3 242100_at 0.345 3.95E-04 0.322 2.28E-02 0.234 3.18E-03 0.387 5.23E-08 0.322
IDH2 210046_s_at 0.365 1.46E-04 0.314 2.74E-02 0.337 4.25E-06 0.264 5.45E-04 0.320
COPS2 202467_s_at 0.313 1.49E-03 0.394 3.24E-03 0.322 1.33E-05 0.252 1.09E-03 0.320
CCNDBP1 223084_s_at 0.308 1.85E-03 0.383 4.44E-03 0.308 3.95E-05 0.279 2.28E-04 0.320
RPL35A 238026_at 0.332 6.63E-04 0.318 2.54E-02 0.268 5.45E-04 0.356 7.77E-07 0.319
TMEM161B 236227_at 0.338 5.26E-04 0.339 1.54E-02 0.221 6.13E-03 0.375 1.51E-07 0.318
TTC9C 226175_at 0.363 1.58E-04 0.353 1.01E-02 0.258 9.89E-04 0.298 6.35E-05 0.318
ARHGAP25 204882_at 0.302 2.32E-03 0.374 5.85E-03 0.232 3.70E-03 0.363 4.51E-07 0.318
GFI1 206589_at 0.391 4.36E-05 0.293 4.39E-02 0.257 1.00E-03 0.330 6.13E-06 0.317
UBE2Q2 224747_at 0.335 5.96E-04 0.309 3.09E-02 0.310 3.55E-05 0.315 1.92E-05 0.317
SMOC1 222783_s_at 0.297 2.75E-03 0.339 1.46E-02 0.296 9.12E-05 0.336 3.91E-06 0.317
PALM2-AKAP2 202760_s_at 0.283 4.86E-03 0.303 3.53E-02 0.293 1.05E-04 0.382 7.19E-08 0.315
SQRDL 217995_at 0.335 5.92E-04 0.303 3.54E-02 0.294 9.77E-05 0.326 8.64E-06 0.315
ST8SIA4 206925_at 0.287 4.24E-03 0.387 3.85E-03 0.282 2.07E-04 0.301 5.13E-05 0.314
MOSC2 227417_at 0.320 1.10E-03 0.320 2.44E-02 0.296 9.05E-05 0.319 1.40E-05 0.314
GALT 203179_at 0.381 7.05E-05 0.317 2.58E-02 0.293 9.77E-05 0.259 7.58E-04 0.313
HOMER1 226651_at 0.300 2.52E-03 0.368 7.03E-03 0.274 3.97E-04 0.308 3.13E-05 0.312
ATP5L 207573_x_at 0.352 2.71E-04 0.335 1.68E-02 0.230 4.00E-03 0.328 7.28E-06 0.311
ZDHHC24 227549_x_at 0.278 5.66E-03 0.353 1.01E-02 0.294 9.98E-05 0.318 1.49E-05 0.311
CDV3 213554_s_at 0.232 2.27E-02 0.385 4.11E-03 0.275 3.69E-04 0.349 1.44E-06 0.310
C2orf89 227867_at 0.397 3.33E-05 0.321 2.38E-02 0.318 1.95E-05 0.199 1.48E-02 0.309
GMPR 204187_at 0.384 6.08E-05 0.330 1.90E-02 0.202 1.38E-02 0.317 1.56E-05 0.308
BTLA 236226_at 0.238 1.92E-02 0.365 7.68E-03 0.310 3.55E-05 0.319 1.38E-05 0.308
ST3GAL5 203217_s_at 0.271 7.03E-03 0.343 1.30E-02 0.260 8.90E-04 0.357 7.21E-07 0.308
PCMTD1 244706_at 0.335 5.92E-04 0.361 8.72E-03 0.291 1.22E-04 0.241 2.03E-03 0.307
COX7C 213846_at 0.281 5.17E-03 0.342 1.42E-02 0.244 2.05E-03 0.357 7.18E-07 0.306
IFNGR1 211676_s_at 0.243 1.64E-02 0.433 6.51E-04 0.281 2.40E-04 0.267 4.78E-04 0.306
RPS19 202649_x_at 0.294 2.98E-03 0.378 5.41E-03 0.274 3.87E-04 0.273 3.12E-04 0.305
MRPS27 212145_at 0.271 7.13E-03 0.327 2.07E-02 0.286 1.72E-04 0.331 5.69E-06 0.304
C11orf1 231530_s_at 0.290 3.84E-03 0.345 1.31E-02 0.247 1.72E-03 0.333 5.19E-06 0.304
THG1L 219122_s_at 0.311 1.67E-03 0.321 2.33E-02 0.243 2.17E-03 0.337 3.56E-06 0.303
KIAA1217 1554438_at 0.342 4.35E-04 0.304 3.48E-02 0.258 9.54E-04 0.306 3.49E-05 0.302
GNB2L1 200651_at 0.252 1.27E-02 0.346 1.27E-02 0.250 1.52E-03 0.361 5.18E-07 0.302
LOC728052 1558795_at 0.261 9.66E-03 0.381 4.98E-03 0.286 1.69E-04 0.280 2.10E-04 0.302
IVD 203682_s_at 0.338 5.26E-04 0.376 5.76E-03 0.231 3.93E-03 0.263 5.96E-04 0.302
TAF9 202168_at 0.282 4.91E-03 0.429 7.59E-04 0.273 4.21E-04 0.222 5.24E-03 0.301
SCN8A 1561820_at 0.270 7.26E-03 0.341 1.47E-02 0.345 1.83E-06 0.248 1.35E-03 0.301
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RPL36 219762_s_at 0.299 2.58E-03 0.376 5.78E-03 0.238 2.65E-03 0.291 1.02E-04 0.301
UBXN1 201871_s_at 0.315 1.40E-03 0.338 1.58E-02 0.238 2.78E-03 0.311 2.53E-05 0.301
EIF3K 212716_s_at 0.271 7.13E-03 0.348 1.23E-02 0.260 8.89E-04 0.322 1.14E-05 0.300
C19orf42 224717_s_at 0.308 1.85E-03 0.305 3.39E-02 0.237 2.91E-03 0.350 1.32E-06 0.300
GPR177 228949_at 0.294 3.19E-03 0.312 2.90E-02 0.253 1.30E-03 0.337 3.72E-06 0.299
C19orf53 217926_at 0.279 5.51E-03 0.395 3.17E-03 0.252 1.39E-03 0.269 4.13E-04 0.299
COX5A 203663_s_at 0.301 2.32E-03 0.314 2.79E-02 0.300 7.04E-05 0.279 2.22E-04 0.298
SPATA5L1 218933_at 0.321 1.06E-03 0.344 1.34E-02 0.293 1.08E-04 0.232 3.19E-03 0.298
BMP4 211518_s_at 0.293 3.27E-03 0.323 2.25E-02 0.252 1.37E-03 0.320 1.27E-05 0.297
PFKFB2 226733_at 0.342 4.35E-04 0.334 1.75E-02 0.296 9.10E-05 0.216 6.87E-03 0.297
RPL27A 203034_s_at 0.227 2.65E-02 0.346 1.30E-02 0.229 4.17E-03 0.384 6.63E-08 0.296
RPL4 200089_s_at 0.259 1.03E-02 0.364 7.47E-03 0.302 6.08E-05 0.260 7.01E-04 0.296
NOL6 222554_s_at 0.299 2.55E-03 0.383 3.92E-03 0.215 7.89E-03 0.284 1.55E-04 0.296
PDLIM2 219165_at 0.300 2.52E-03 0.293 4.36E-02 0.303 5.95E-05 0.286 1.34E-04 0.296
ERCC1 203720_s_at 0.287 4.21E-03 0.348 1.23E-02 0.239 2.62E-03 0.306 3.46E-05 0.295
LENG1 232018_at 0.273 6.48E-03 0.341 1.47E-02 0.258 9.71E-04 0.306 3.46E-05 0.295
RAB8B 226633_at 0.214 3.67E-02 0.356 9.53E-03 0.300 6.64E-05 0.307 3.17E-05 0.294
ZNF622 225152_at 0.358 2.04E-04 0.289 4.83E-02 0.238 2.72E-03 0.293 8.42E-05 0.294
RBM7 218379_at 0.335 5.92E-04 0.361 8.60E-03 0.225 4.99E-03 0.256 8.91E-04 0.294
RP3-398D13.1 1556366_s_at 0.260 9.85E-03 0.357 9.04E-03 0.318 1.75E-05 0.241 1.94E-03 0.294
NCRNA00219 225698_at 0.256 1.12E-02 0.333 1.78E-02 0.226 4.93E-03 0.361 5.08E-07 0.294
PIP5K1B 205632_s_at 0.253 1.24E-02 0.298 3.99E-02 0.249 1.56E-03 0.375 1.51E-07 0.294
CD48 204118_at 0.277 5.72E-03 0.391 3.57E-03 0.235 3.15E-03 0.267 4.75E-04 0.293
C19orf43 223003_at 0.275 6.26E-03 0.315 2.69E-02 0.213 8.57E-03 0.367 2.95E-07 0.292
RPL18 200022_at 0.240 1.83E-02 0.375 5.85E-03 0.254 1.16E-03 0.294 8.23E-05 0.291
CADM1 209031_at 0.322 1.06E-03 0.299 3.94E-02 0.291 1.28E-04 0.249 1.30E-03 0.290
GYG1 201554_x_at 0.296 2.93E-03 0.287 4.98E-02 0.252 1.33E-03 0.320 1.31E-05 0.289
NPM1 221691_x_at 0.314 1.44E-03 0.372 6.19E-03 0.240 2.33E-03 0.228 3.85E-03 0.289
STOM 201061_s_at 0.394 3.81E-05 0.295 4.19E-02 0.290 1.32E-04 0.175 3.74E-02 0.289
LOC399804 216387_x_at 0.333 6.48E-04 0.389 3.74E-03 0.192 1.99E-02 0.239 2.18E-03 0.288
PRKD2 38269_at 0.255 1.14E-02 0.303 3.52E-02 0.264 7.00E-04 0.326 8.27E-06 0.287
FLI1 210786_s_at 0.261 9.63E-03 0.315 2.70E-02 0.247 1.75E-03 0.325 9.28E-06 0.287
MTX3 226528_at 0.278 5.46E-03 0.308 3.15E-02 0.241 2.39E-03 0.317 1.57E-05 0.286
FBXO22 225737_s_at 0.299 2.61E-03 0.308 3.13E-02 0.245 1.96E-03 0.288 1.18E-04 0.285
BAI3 205638_at 0.305 2.05E-03 0.309 3.09E-02 0.268 5.59E-04 0.258 8.04E-04 0.285
GPM6A 209469_at 0.316 1.39E-03 0.294 4.33E-02 0.300 6.63E-05 0.224 4.76E-03 0.283
C1R 212067_s_at 0.217 3.43E-02 0.299 3.85E-02 0.344 2.54E-06 0.272 3.50E-04 0.283
FAU 200019_s_at 0.289 3.92E-03 0.339 1.53E-02 0.254 1.13E-03 0.247 1.42E-03 0.283
RPS17 201665_x_at 0.216 3.48E-02 0.355 9.90E-03 0.306 4.52E-05 0.251 1.15E-03 0.282
EAF2 219551_at 0.206 4.54E-02 0.349 1.16E-02 0.253 1.29E-03 0.319 1.40E-05 0.282
HIST1H2AC 215071_s_at 0.298 2.73E-03 0.340 1.51E-02 0.305 4.54E-05 0.183 2.81E-02 0.281
EIF3G 208887_at 0.296 2.92E-03 0.287 4.97E-02 0.258 9.70E-04 0.282 1.81E-04 0.281
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IFIT1 203153_at 0.354 2.33E-04 0.320 2.40E-02 0.240 2.42E-03 0.206 1.08E-02 0.280
C4orf14 223157_at 0.306 2.03E-03 0.314 2.77E-02 0.228 4.48E-03 0.273 3.28E-04 0.280
BTF3 211939_x_at 0.280 5.22E-03 0.344 1.30E-02 0.241 2.30E-03 0.250 1.26E-03 0.279
FHAD1 1564635_a_at 0.208 4.30E-02 0.314 2.66E-02 0.329 8.41E-06 0.263 5.80E-04 0.279
NOP10 217962_at 0.304 2.13E-03 0.335 1.71E-02 0.285 1.82E-04 0.189 2.20E-02 0.278
RPS17P5 216348_at 0.251 1.30E-02 0.292 4.52E-02 0.320 1.71E-05 0.250 1.23E-03 0.278
SOCS2 203372_s_at 0.241 1.75E-02 0.308 3.15E-02 0.276 3.18E-04 0.281 1.97E-04 0.277
TRPM3 216452_at 0.244 1.62E-02 0.294 4.28E-02 0.249 1.57E-03 0.318 1.52E-05 0.276
TMEM85 223857_x_at 0.266 8.38E-03 0.303 3.43E-02 0.282 2.26E-04 0.253 1.07E-03 0.276
RPS13 200018_at 0.247 1.47E-02 0.323 2.25E-02 0.254 1.14E-03 0.278 2.28E-04 0.276
PLSCR1 202430_s_at 0.344 3.95E-04 0.289 4.80E-02 0.239 2.49E-03 0.227 4.01E-03 0.275
POLR1D 224857_s_at 0.262 9.41E-03 0.309 3.09E-02 0.261 8.53E-04 0.266 5.05E-04 0.274
RARS 201330_at 0.328 7.76E-04 0.294 4.28E-02 0.228 4.52E-03 0.247 1.48E-03 0.274
CLNS1A 209143_s_at 0.313 1.49E-03 0.377 5.52E-03 0.207 1.12E-02 0.192 1.99E-02 0.272
EID1 208669_s_at 0.265 8.64E-03 0.292 4.51E-02 0.295 9.40E-05 0.237 2.46E-03 0.272
ZC3H12C 231899_at 0.322 1.05E-03 0.330 1.84E-02 0.230 3.94E-03 0.204 1.17E-02 0.272
RELL2 1564031_a_at 0.211 4.01E-02 0.293 4.36E-02 0.287 1.51E-04 0.293 8.51E-05 0.271
CCDC85A 235228_at 0.271 6.95E-03 0.305 3.39E-02 0.298 8.05E-05 0.207 1.04E-02 0.270
SSR3 217790_s_at 0.250 1.34E-02 0.308 3.09E-02 0.272 4.44E-04 0.248 1.36E-03 0.269
C6orf48 220755_s_at 0.247 1.45E-02 0.310 2.96E-02 0.229 4.17E-03 0.284 1.55E-04 0.268
MFNG 204153_s_at 0.237 1.97E-02 0.397 2.97E-03 0.264 6.88E-04 0.168 4.81E-02 0.267
RPS11 200031_s_at 0.216 3.43E-02 0.324 2.13E-02 0.205 1.19E-02 0.321 1.25E-05 0.266
EEF1D 203113_s_at 0.239 1.84E-02 0.306 3.35E-02 0.212 8.77E-03 0.308 3.12E-05 0.266
UBLCP1 227413_at 0.315 1.44E-03 0.287 4.94E-02 0.225 5.17E-03 0.236 2.57E-03 0.266
FBL 211623_s_at 0.297 2.74E-03 0.337 1.61E-02 0.233 3.50E-03 0.190 2.12E-02 0.264
PDCD2L 224467_s_at 0.306 2.02E-03 0.323 2.27E-02 0.205 1.20E-02 0.222 5.28E-03 0.264
KAT5 214258_x_at 0.252 1.26E-02 0.329 1.98E-02 0.244 2.07E-03 0.220 5.58E-03 0.261
HMGA1 206074_s_at 0.263 9.02E-03 0.361 8.72E-03 0.231 3.87E-03 0.186 2.49E-02 0.260
RPL35 200002_at 0.226 2.67E-02 0.290 4.66E-02 0.203 1.33E-02 0.317 1.58E-05 0.259
RPL31 221593_s_at 0.339 4.99E-04 0.314 2.78E-02 0.207 1.10E-02 0.175 3.81E-02 0.258
GAS5 224741_x_at 0.228 2.55E-02 0.360 8.96E-03 0.198 1.63E-02 0.248 1.38E-03 0.258
FAM96A 224779_s_at 0.243 1.66E-02 0.306 3.30E-02 0.290 1.32E-04 0.190 2.09E-02 0.257
SIX4 229796_at 0.295 2.92E-03 0.329 1.98E-02 0.193 1.99E-02 0.212 8.46E-03 0.257
CSNK1A1 243338_at 0.249 1.37E-02 0.313 2.77E-02 0.289 1.29E-04 0.170 4.44E-02 0.255
NKX6-2 235832_at 0.268 7.68E-03 0.295 4.24E-02 0.201 1.43E-02 0.250 1.23E-03 0.254
BNIP1 37226_at 0.248 1.41E-02 0.311 2.96E-02 0.261 8.19E-04 0.192 1.92E-02 0.253
APH1B 221036_s_at 0.223 2.97E-02 0.308 3.15E-02 0.299 7.14E-05 0.178 3.34E-02 0.252
TRIM13 203659_s_at 0.265 8.69E-03 0.290 4.59E-02 0.248 1.63E-03 0.201 1.35E-02 0.251
MRPS30 218398_at 0.289 3.92E-03 0.304 3.49E-02 0.196 1.77E-02 0.211 8.62E-03 0.250
CLTA 204050_s_at 0.255 1.16E-02 0.327 2.04E-02 0.168 4.97E-02 0.241 2.00E-03 0.248
TAPBP 1555565_s_at 0.252 1.27E-02 0.337 1.63E-02 0.204 1.26E-02 0.194 1.76E-02 0.247
MGC50722 1554681_a_at 0.267 8.11E-03 0.343 1.41E-02 0.207 1.13E-02 0.171 4.35E-02 0.247
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IL6ST 204864_s_at 0.283 4.88E-03 0.328 1.94E-02 0.189 2.26E-02 0.187 2.40E-02 0.247
TOMM70A 201512_s_at 0.290 3.81E-03 0.295 4.21E-02 0.213 8.64E-03 0.188 2.31E-02 0.246
E2F5 221586_s_at 0.247 1.47E-02 0.295 4.19E-02 0.222 5.97E-03 0.215 7.10E-03 0.245
ANP32A 201051_at 0.215 3.62E-02 0.302 3.65E-02 0.253 1.26E-03 0.207 1.05E-02 0.244
NCK1 204725_s_at 0.226 2.71E-02 0.321 2.33E-02 0.176 3.71E-02 0.253 1.07E-03 0.244
RPS28 208902_s_at 0.243 1.64E-02 0.329 1.97E-02 0.215 8.02E-03 0.186 2.47E-02 0.243
TNFAIP8 208296_x_at 0.280 5.28E-03 0.292 4.52E-02 0.174 4.00E-02 0.227 4.15E-03 0.243
PPP1CC 200726_at 0.259 1.03E-02 0.291 4.49E-02 0.238 2.78E-03 0.173 4.09E-02 0.240
PSMB9 204279_at 0.285 4.46E-03 0.312 2.90E-02 0.182 2.97E-02 0.174 3.87E-02 0.238
RPS9 217747_s_at 0.247 1.47E-02 0.294 4.33E-02 0.171 4.39E-02 0.236 2.64E-03 0.237
RPL29 200823_x_at 0.209 4.09E-02 0.289 4.79E-02 0.208 1.06E-02 0.236 2.64E-03 0.236
SEC11A 216274_s_at 0.265 8.44E-03 0.295 4.08E-02 0.172 4.25E-02 0.205 1.15E-02 0.234
C19orf12 225863_s_at 0.214 3.67E-02 0.295 4.24E-02 0.184 2.73E-02 0.229 3.69E-03 0.231
RPS5 200024_at 0.234 2.15E-02 0.321 2.33E-02 0.186 2.53E-02 0.181 2.99E-02 0.231
RPS2 217466_x_at 0.214 3.65E-02 0.289 4.80E-02 0.183 2.90E-02 0.233 3.03E-03 0.230
RPS3 208692_at 0.203 4.85E-02 0.292 4.36E-02 0.208 1.09E-02 0.215 7.06E-03 0.230
SCAMP1 1552978_a_at 0.222 3.02E-02 0.300 3.81E-02 0.197 1.63E-02 0.178 3.31E-02 0.224
CTDSPL2 223271_s_at 0.203 4.85E-02 0.289 4.86E-02 0.180 3.19E-02 0.169 4.66E-02 0.210
1 Spearman's rank correla�on co-efficient
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PITPNC1 219155_at -0.421 6.54E-06 -0.488 4.76E-05 -0.435 0.00E+00 -0.415 3.83E-09 -0.440
C1orf56 223459_s_at -0.456 3.68E-07 -0.314 2.76E-02 -0.332 6.53E-06 -0.346 1.76E-06 -0.362
TMEM107 239824_s_at -0.307 1.91E-03 -0.401 2.20E-03 -0.355 9.06E-07 -0.287 1.33E-04 -0.337
RAPH1 225188_at -0.355 2.30E-04 -0.390 3.57E-03 -0.310 3.55E-05 -0.277 2.51E-04 -0.333
TCFL5 235694_at -0.236 2.03E-02 -0.433 6.47E-04 -0.336 4.25E-06 -0.283 1.74E-04 -0.322
SEC61A2 230215_at -0.278 5.67E-03 -0.372 6.15E-03 -0.337 4.38E-06 -0.276 2.63E-04 -0.316
HGSNAT 218017_s_at -0.275 6.16E-03 -0.331 1.90E-02 -0.273 4.22E-04 -0.384 6.50E-08 -0.316
XPR1 226615_at -0.248 1.42E-02 -0.366 7.61E-03 -0.294 1.04E-04 -0.288 1.18E-04 -0.299
ARF3 200734_s_at -0.301 2.37E-03 -0.326 2.05E-02 -0.206 1.19E-02 -0.357 7.49E-07 -0.297
SFN 33323_r_at -0.255 1.16E-02 -0.429 7.58E-04 -0.251 1.41E-03 -0.254 1.01E-03 -0.297
IFNA1 208375_at -0.280 5.20E-03 -0.334 1.73E-02 -0.286 1.69E-04 -0.275 2.92E-04 -0.294
POLA1 204835_at -0.244 1.60E-02 -0.336 1.63E-02 -0.299 7.08E-05 -0.243 1.77E-03 -0.281
ZNRF1 225959_s_at -0.311 1.64E-03 -0.338 1.60E-02 -0.290 1.29E-04 -0.184 2.70E-02 -0.281
PHC1 218338_at -0.302 2.33E-03 -0.311 3.01E-02 -0.226 4.82E-03 -0.272 3.41E-04 -0.278
SGPL1 212321_at -0.235 2.07E-02 -0.388 3.77E-03 -0.216 7.50E-03 -0.262 6.30E-04 -0.275
GSTA4 202967_at -0.263 9.10E-03 -0.312 2.93E-02 -0.168 4.84E-02 -0.332 5.49E-06 -0.269
C1orf93 231835_at -0.241 1.79E-02 -0.310 2.98E-02 -0.232 3.58E-03 -0.280 2.10E-04 -0.266
SLC44A2 224609_at -0.243 1.65E-02 -0.324 2.25E-02 -0.246 1.87E-03 -0.247 1.43E-03 -0.265
CD28 206545_at -0.266 8.31E-03 -0.351 1.01E-02 -0.227 4.70E-03 -0.210 9.08E-03 -0.263
CDKN1C 213348_at -0.292 3.43E-03 -0.290 4.72E-02 -0.187 2.45E-02 -0.282 1.83E-04 -0.263
C16orf93 231300_at -0.300 2.52E-03 -0.294 4.33E-02 -0.191 2.09E-02 -0.256 8.80E-04 -0.260
B3GALT6 1553959_a_at -0.223 2.90E-02 -0.396 3.07E-03 -0.195 1.85E-02 -0.224 4.63E-03 -0.260
DHX32 218198_at -0.225 2.78E-02 -0.300 3.81E-02 -0.264 6.86E-04 -0.235 2.81E-03 -0.256
IRF2BP2 224570_s_at -0.219 3.27E-02 -0.288 4.89E-02 -0.236 2.89E-03 -0.277 2.51E-04 -0.255
KCNN3 205903_s_at -0.228 2.52E-02 -0.315 2.69E-02 -0.214 8.34E-03 -0.262 6.16E-04 -0.255
APBB1IP 1554571_at -0.323 9.78E-04 -0.291 4.59E-02 -0.197 1.63E-02 -0.204 1.18E-02 -0.254
CDCA7 224428_s_at -0.232 2.27E-02 -0.385 3.78E-03 -0.193 1.92E-02 -0.204 1.16E-02 -0.254
DHTKD1 209916_at -0.280 5.24E-03 -0.297 3.95E-02 -0.214 8.31E-03 -0.214 7.50E-03 -0.251
SLC8A1 1556583_a_at -0.297 2.83E-03 -0.301 3.67E-02 -0.227 4.60E-03 -0.173 3.96E-02 -0.250
RGS5 1558785_a_at -0.258 1.03E-02 -0.315 2.69E-02 -0.180 3.19E-02 -0.186 2.51E-02 -0.235
ETV6 235056_at -0.255 1.16E-02 -0.292 4.43E-02 -0.186 2.61E-02 -0.198 1.51E-02 -0.233
EP400NL 229892_at -0.246 1.51E-02 -0.287 4.86E-02 -0.208 1.06E-02 -0.178 3.39E-02 -0.230
1 Spearman's rank correla�on co-efficient
2 False discovery rate

Table 4.2: Genes which inversely correlate with CDH2  expression in t(4;14)- MM pa�ents
E-MTAB-317 E-MTAB-363 E-GEOD-19784 E-GEOD-26863
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regulated in MM patients with hyperdiploidy amongst the inversely-correlating gene 

group (Supplementary Table 4.2).  

 In order to identify potential drivers of CDH2 expression in t(4;14)- MM 

patients, genes which significantly positively correlated with CDH2 expression in 

MMSETlow MM patients, and were significantly up-regulated in CD138+ BM MM PCs 

compared with CD138+ BM PCs from healthy individuals, were further short-listed. In 

silico analysis of publically-available microarray data (E-MTAB-363) revealed that, of 

the 186 genes which significantly positively correlated with CDH2 expression, 13 genes 

were significantly up-regulated in BM MM PCs compared with normal BM PCs (Table 

4.3). BTBD3, encoding for the putative transcriptional regulator BTB/POZ domain-

containing protein 3 (BTBD3), was the most highly up-regulated gene (log2 4.61-fold; p 

= 0.002) which positively correlated with CDH2 expression in t(4;14)- MM patients 

(mean correlation co-efficient = 0.375; FDR-adjusted P value < 0.001) (Figure 4.3A,B). 

Notably, BTBD3 expression was consistently up-regulated in MMSETlowCDH2high MM 

patients (GSE4581: 100 BTBD3high of 141 MMSETlowCDH2high patients, 70.9%; E-

MTAB-363: 43/60, 71.7%; E-GEOD-19784: 85/131, 64.9%; E-MTAB-317: 54/83, 

65.1%; E-GEOD-26863: 78/124, 62.9%), suggesting that it may be responsible for up-

regulating CDH2 expression in t(4;14)- MM patients (Figure 4.3A). In order to 

determine the clinical significance of BTBD3 up-regulation in BM MM PCs, we 

assessed the overall survival of newly-diagnosed MM patients, stratified on the basis of 

MMSET and BTBD3 expression, in the microarray dataset GSE4581. While overall 

survival was not significantly affected by BTBD3 expression in the MMSEThigh patients 

(p = 0.76), there was a trend towards poorer survival in MMSETlowBTBD3high MM 

patients, when compared with the MMSETlowBTBD3low patients (p = 0.064; HR: 1.64 

[95% CI: 0.97-2.77]) (Figure 4.3C). Taken together, these findings suggest that BTBD3 

may be a potential driver of CDH2 expression in t(4;14)- MM (Supplementary Figure 

4.2B) and may play a role in MM pathogenesis. 

 

4.4.3 Identification of miRNAs which may regulate CDH2 expression in t(4;14)- 

MM 

While BTBD3 is consistently up-regulated in BM MM PCs from MMSETlowCDH2high 

patients, there are a large proportion of MMSETlowCDH2low patients that also express 

BTBD3 (GSE4581: 71 BTBD3high of 199 MMSETlowCDH2low patients, 35.7%; E-

MTAB-363: 27/76, 35.5%; E-GEOD-19784: 57/162, 35.2%; E-MTAB-317: 37/109, 



Gene Full gene name Probeset ID
Log2  

Mean
Log2 SD1 Log2  

Mean
Log2   SD

Adjusted  P-
value2

Log2 fold 
change in 

expression

BTBD3 BTB/POZ Domain-Containing 
Protein 3 202946_s_at 5.01 0.81 9.62 2.10 1.94E-03 4.61

HIST1H2AC
Histone Cluster 1 H2A Family 
Member C

215071_s_at 7.94 0.74 11.70 1.27 1.94E-03 3.76

RPL35A Ribosomal Protein L35a 238026_at 6.68 0.55 9.83 1.07 1.94E-03 3.14
LOC346887 LOC346887 235205_at 6.06 0.40 8.79 1.01 1.94E-03 2.73
ELOVL7 ELOVL Fa�y Acid Elongase 7 227180_at 4.41 0.33 8.46 1.99 2.70E-03 4.05
STOM Stoma�n 201061_s_at 8.24 0.54 11.23 1.16 7.50E-03 2.99
PLSCR1 Phospholipid Scramblase 1 202430_s_at 5.21 0.93 7.70 1.29 1.29E-02 2.49
SSR3 Signal Sequence Receptor Subunit 3 217790_s_at 7.86 0.67 10.12 0.77 1.50E-02 2.26

RSAD2
Radical S-Adenosyl Methionine 
Domain Containing 2

242625_at 4.68 0.40 8.06 2.04 1.91E-02 3.38

FBXO22 F-Box Protein 22 225737_s_at 5.40 0.27 7.37 0.95 1.91E-02 1.97
SPEF2 Sperm Flagellar 2 1552716_at 4.67 0.23 6.17 0.64 3.62E-02 1.50

CMPK2
Cy�dine/Uridine Monophosphate 
Kinase 2

226702_at 6.40 1.09 9.52 1.92 3.95E-02 3.11

GMPR
Guanosine Monophosphate 
Reductase

204187_at 6.36 0.35 8.18 0.93 4.02E-02 1.82
1 Standard devia�on
2 LIMMA

Table 4.3: Genes which posi�vely correlate with CDH2  expression in t(4;14)- MM pa�ents and are 
significantly up-regulated in MM PCs compared with normal PCs

normal MM normal v MM



Figure 4.3.  BTBD3 expression positively correlates with CDH2 expression in 

t(4;14)-MM patients, and is significantly up-regulated in MM PCs. BTBD3 and 

CDH2 correlation in 4 independent, publicly available microarray datasets of CD138-

selected BM-derived MM PCs from newly-diagnosed individuals (E-MTAB-363, E-

GEOD-19784, E-MTAB-317 and E-GEOD-26863) (Spearman's rank correlation co-

efficient (R), FDR-adjusted P value <0.001 for each dataset) (A). BTBD3 expression in 

CD138-selected BM-derived PCs from normal individuals (n = 5), and newly-diagnosed 

MGUS (n = 5) and MM (n = 155) patients (E-MTAB-363). **P < 0.05 compared with 

normal individuals (LIMMA) (B). Kaplan-Meier plot of overall survival for newly-

diagnosed MM patients in GSE4581, stratified on the basis of MMSET and BTBD3 

expression (MMSETlow/BTBD3low patients, n = 169; MMSETlow/BTBD3high, n = 171; 

MMSEThigh/BTBD3low, n = 38; MMSEThigh/BTBD3high, n = 39) (C). 
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33.9%; E-GEOD-26863: 58/146, 39.7%) (Figure 4.3A). Previous studies have 

demonstrated that N-cadherin gene and protein expression can be regulated by 

miRNAs, either by directly targeting the 3'-UTR of CDH2 or genes encoding for 

proteins which are known regulators of N-cadherin expression in cancer cells.22,63-73 In 

order to determine whether miRs may down-regulate CDH2 expression in t(4;14)- MM, 

we performed in silico analysis of a publicly available microarray dataset which 

included miRNA expression and mRNA expression in CD138-selected BM PCs from 

60 newly-diagnosed MM patients (GSE16558). Of the 60 patients in this dataset, 43 

(71.7%) were t(4;14)-, as determined by expression of MMSET and FGFR3 

(Supplementary Figure 4.1F) and by FISH (data not shown). Consistent with the data 

shown in Figure 4.3A, a large proportion (24/34, 70.6%) of t(4;14)- MM patients that 

express BTBD3 in this dataset do not express CDH2. In order to investigate whether the 

expression of specific miRNAs could be down-regulating CDH2 in these patients, we 

compared miRNA expression between the CDH2high (n = 14) and CDH2low (n = 29) 

t(4;14)- MM patients in this dataset. We identified 8 miRNAs that were more than two-

fold up-regulated in CDH2low t(4;14)- MM patients, when compared with CDH2high 

t(4;14)- MM patients (Table 4.4). In order to assess whether these miRNA could 

potentially directly regulate CDH2 expression, we examined the predicted targets for 

these miRNA in three independent databases (TargetScan, PicTar, miRdb) and 

identified those miRNA that were predicted to target CDH2 in at least two databases. 

Collectively, these miRNAs were predicted to target 40 genes identified in our CDH2 

correlative analysis, including BTBD3, IL6ST, FBXO22, COPS2 and E2F5 (Table 4.4). 

miR-190, which is up-regulated 2.26-fold in CDH2low t(4;14)- MM patients, is predicted 

to target CDH2. Notably, of the t(4;14)- MM patients that express miR-190, 10 of 11 

(91%) expressed low or undetectable levels of CDH2 (Supplementary Figure 4.3A and 

Table 4.5). Moreover, of the t(4;14)- MM patients that express CDH2, 13 of 14 (93%) 

expressed low or undetectable levels of miR-190. These data strongly suggest that miR-

190 may suppress CDH2 expression in t(4;14)- MM patients (Supplementary Figure 

4.2B). 

 We further hypothesised that expression of miR-190 may prevent the up-

regulation of CDH2 by BTBD3 in some t(4;14)- MM patients. In support of this, of the 

t(4;14)- MM patients that express both BTBD3 and miR-190, 8 of 8 (100%) expressed 

low or undetectable levels of CDH2 (Table 4.5). Moreover, of the t(4;14)- BTBD3high 

MM patients that express CDH2, 10 of 10 (100%) expressed low or undetectable levels 



hsa-miR-339 1.63 TAPBP
E2F5 FHAD1 BAI3 MTX3 ST8SIA4

COPS2 CMPK2 BTBD3
hsa-miR-6503 1.30 N/A

E2F5 IL6ST TRIM13 SIX4 CCDC85A
ZC3H12C BAI3 FBXO22 MTX3 FLI1
CADM1 SCN8A PALM2-AKAP2 SMOC1 TMEM161B
COPS2 CHSY3 CNTN5 SCAMP5 TRAT1
RPL37 COL4A5 CDH2 PCDH9

CTDSPL2 SIX4 FAM96A FLI1 CADM1
COPS2

SCAMP1 CCDC85A ZC3H12C RAB8B CMPK2
CNTN5 COL4A5 E2F5
NOL6 HOMER1 SMOC1 TMEM161B COL4A5

C21orf91
NCK1 ANP32A E2F5 MRPS30 SIX4

FBXO22 MTX3 CADM1 PIP5K1B RBM7
ZNF622 RAB8B CDV3 PALM2-AKAP2 COPS2
ELOVL7 CDC42SE2

1 miRNAs more than two-fold up-regulated in CDH2low t(4;14)- MM pa�ents, compared with CDH2high 

t(4;14)- MM pa�ents, and their predicted targets within the 218 genes which posi�vely or inversely
correlate with CDH2  expression in t(4;14)- MM pa�ents
2 Targets predicted in at least 2 of 3 databases (TargenScan; Pictar; MiRdb)
3 hsa-miR-650 was only anotated in one of 3 databases consulted

hsa-miR-181a 1.46

hsa-miR-190a 1.18

hsa-miR-545 1.04

hsa-miR-214 1.05

hsa-miR-17 1.14

hsa-miR-193b 1.17

Table 4.4: miRNAs that are inversely associated with CDH2  expression in t(4;14)- MM pa�ents, 
and their predicted targets1

Predicted targets2

Log2 fold change 

(CDH2 low vs 
CDH2 high)

miRNA



Table 4.5: CDH2  and miR-190 expression in BTBD3 low and 
 BTBD3high t(4;14)- MM pa�ents

Total miR-190+ miR-190- miR-190+ miR-190-

CDH2 low 29 2 3 8 16
CDH2 high 14 1 3 0 10

t(4;14)-

BTBD3 low BTBD3 high
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of miR-190 (Table 4.5). These data suggest that, while BTBD3 may drive CDH2 

expression in t(4;14)- MM patients, this may be suppressed in some patients by 

expression of miR-190. 

 

4.4.4 Modulation of BTBD3 expression in HMCLs does not alter CDH2 

expression  

To investigate whether BTBD3 is a regulator of CDH2 expression in vitro, we 

modulated BTBD3 expression in HMCLs. The BTBD3 gene encodes for 6 mRNA 

transcript variants that encode 4 different isoforms of BTBD3 protein (a [522 aa], 

predicted to be translated from transcript variant 1; b [461 aa], from transcript variants 3 

and 4; c [371 aa], from transcript variants 5 and 6; d [565 aa] from transcript variant 2). 

Initially, we assessed total BTBD3 mRNA expression levels in a panel of t(4;14)- and 

t(4;14)+ HMCLs, using primers to a region common to all 6 BTBD3 transcript variants 

(Supplementary Figure 4.4A). Additionally, we screened a panel of BTBD3+ HMCLs to 

identify the prominent BTBD3 protein isoforms endogenously expressed in these cells, 

using an antibody specific for isoforms a, b and d (Supplementary Figure 4.4B). A band 

corresponding to the predicted molecular weight of isoform b (52 kDa) and isoform a 

(58 kDa) was detectable in LP-1 cells, while isoform b alone was detectable in RPMI-

8226, U266 and OPM2 cells. As the smallest BTBD3 isoform (c) (41 kDa) does not 

contain the epitope recognised by the anti-BTBD3 antibody used, we could not confirm 

whether this isoform is endogenously expressed in HMCLs. 

 To investigate whether BTBD3 regulates CDH2 expression in vitro, we over-

expressed BTBD3 in t(4;14)- HMCLs which endogenously express low levels of total 

BTBD3 (Supplementary Figure 4.4A) and CDH2 (Figure 4.1A), with high (RPMI-8226) 

or low (U266) levels of miR-190 (Supplementary Figure 4.3B). To this end, we over-

expressed the predominant BTBD3 isoforms detected in HMCLs (a and b), as well as 

isoform c, in these HMCLs using BTBD3 transcript variants 1 (for isoforms a and b) 

and 6 (for isoform c). Over-expression of BTBD3 transcript variant 1 or 6 in RPMI-

8226 (RPMI-8226-BTBD3var.1 and RPMI-8226-BTBD3var.6) and U266 cells (U266-

BTBD3var.1 and U266-BTBD3var.6) resulted in more than a 300-fold increase in total 

BTBD3 transcript levels, compared with empty vector (EV)-containing cells (RPMI-

8226-EV and U266-EV), as shown by qPCR (P < 0.0001) (Figure 4.4A,B). At the 

protein level, RPMI-8226-BTBD3var.1 and U266-BTBD3var.1 cells demonstrated 

marked up-regulation of BTBD3 protein bands corresponding to isoforms a and b, 



Figure 4.4.  BTBD3 over-expression does not up-regulate N-cadherin mRNA or 

protein expression in HMCLs. Total BTBD3 expression in RPMI-8226 (A) and U266 

(B) cells (normalised to ACTB expression), as assessed by qPCR, following over-

expression of BTBD3 transcript variant 1 or 6 (BTBD3var.1 and BTBD3var.6). Graphs 

depict mean ± SEM of 3 independent experiments. ****P < 0.0001 compared with 

empty vector (EV)-containing cells (EV) (one-way ANOVA with Dunnett's multiple 

comparisons test) (A,B). BTBD3 expression in RPMI-8226 (C) and U266 (D) cells 

following over-expression of BTBD3 transcript variant 1 (var.1) or 6 (var.6), relative to 

EV-containing cells (top panels), as assessed by Western blot. Histone H3 (H3) was 

utilised as a nuclear protein load control (bottom panels) (C,D). CDH2 expression in 

RPMI-8226 (E) and U266 (F) cells (normalised to ACTB expression), as assessed by 

qPCR, following over-expression of BTBD3 transcript variant 1 or 6. Graphs depict 

mean ± SEM of 3 independent experiments. ****P < 0.0001 compared with EV-

containing cells (one-way ANOVA with Dunnett's multiple comparisons test) (E,F). N-

cadherin expression in RPMI-8226-EV cells (blue line) and RPMI-8226-BTBD3var.1 

cells (orange line), as assessed by flow cytometry. Shaded area represents RPMI-8226-

EV cells stained with isotype control antibody (G). 
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compared with the corresponding EV-containing cells (Figure 4.4C,D). Due to the 

limitation of the anti-BTBD3 antibody, we could not confirm over-expression of 

BTBD3 isoform c in RPMI-8226-BTBD3var.6 and U266-BTBD3var.6 cells at the 

protein level. qPCR revealed that CDH2 expression was down-regulated in RPMI-8226-

BTBD3var.1 and RPMI-8226-BTBD3var.6 cells, compared with RPMI-8226-EV cells 

(Figure 4.4E), while CDH2 expression was un-changed in U266-BTBD3var.1 and 

U266-BTBD3var.6 cells, compared with U266-EV cells (Figure 4.4F). In line with the 

qPCR data, N-cadherin expression was also reduced in RPMI-8226-BTBD3var.1 cells 

compared with RPMI-8226-EV cells, as shown by flow cytometry (Figure 4.4G). Taken 

together, these results suggest that BTBD3 over-expression in t(4;14)- HMCLs does not 

up-regulate N-cadherin gene or protein expression.  

 As miR-190 is expressed in both RPMI-8226 and U266 HMCLs, it is possible 

that miR-190 may be preventing the up-regulation of CDH2 in BTBD3-overexpressing 

t(4;14)- HMCLs. In order to independently investigate whether BTBD3 regulates CDH2 

expression in t(4;14)- MM, we performed siRNA-mediated knock-down studies using 

the t(4;14)- HMCL KMS-26 which co-expresses BTBD3 (Supplementary Figure 4.4A) 

and CDH2 (Figure 4.1A). Treatment of KMS-26 cells with BTBD3-targeting siRNA at 

days 0 and 2 resulted in a 62-68% knock-down of total BTBD3 mRNA levels at day 4 

using BTBD3 siRNA#1 and siRNA#2, compared with KMS-26 cells treated with 

negative control siRNA (P < 0.001) (Figure 4.5A). However, CDH2 expression was not 

significantly reduced at day 4 in KMS-26 cells following treatment with BTBD3-

targeting siRNA, compared with KMS-26 cells treated with negative control siRNA 

(Figure 4.5B). These data demonstrate that down-regulation of BTBD3 does not reduce 

CDH2 expression in a t(4;14)- HMCL, suggesting that miR-190 expression is therefore 

unlikely to account for the inability of BTBD3 over-expression to up-regulate N-

cadherin expression in t(4;14)- HMCLs. Taken together, these data demonstrate that 

BTBD3 is unlikely to be a key regulator of CDH2 expression in t(4;14)- MM. 

 

 

 



Figure 4.5.  BTBD3 knock-down does not down-regulate CDH2 expression in the 

t(4;14)- HMCL KMS-26. Total BTBD3 (A) and CDH2 (B) expression in KMS-26 cells 

(normalised to ACTB expression), as assessed by qPCR, following transfection with 

BTBD3-targeting siRNA (siRNA#1, siRNA#2 and siRNA#3). Graphs depict mean ± 

SEM of 3-6 independent experiments. ***P < 0.001 compared with KMS-26 cells 

transfected with negative control siRNA (NC siRNA) (one-way ANOVA with 

Dunnett's multiple comparisons test) (A,B). 
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4.5 Discussion 
In the solid tumour context, N-cadherin is up-regulated by a range of extracellular 

stimuli (e.g. TGF-β superfamily, ligands of receptor tyrosine kinases, chemokines and 

extracellular matrix proteins) and is often associated with the induction of a broader 

epithelial-to-mesenchymal cellular transition (EMT).74-84 These stimuli activate a 

number of intracellular signalling cascades which, in turn, orchestrate the activation of 

transcription factors Twist1 and Slug, which positively regulate N-cadherin 

expression.15,74,75,78,81-83,85-103 Previous studies have also shown that the histone 

methyltransferase MMSET promotes EMT in prostate cancer cells, including the up-

regulation of N-cadherin.38 Similarly, expression of the N-cadherin gene, CDH2, is up-

regulated in MM patients with the chromosomal translocation t(4;14), which leads to 

constitutive over-expression of MMSET and, in approximately 70% of patients, up-

regulation of FGFR3.26,41 In line with these findings, we found that CDH2 is up-

regulated in the majority of MMSEThigh MM patients irrespective of FGFR3 expression, 

suggesting that MMSET and not FGFR3 is responsible for up-regulation of CDH2 in 

these patients. Furthermore, we have demonstrated that MMSET is a bona fide regulator 

of CDH2 expression in MM, as evidenced by the up-regulation of CDH2 following the 

over-expression of MMSET in MMSETlow MM PCs, supporting previous findings.41 

Consistent with previous studies in human prostate cancer cells38, we demonstrated that 

mutation of the MMSET histone-binding domain abrogated MMSET-mediated up-

regulation of CDH2 in MM PCs, suggesting that the histone methyltransferase activity 

of MMSET is critical in regulating CDH2 expression in MM. Notably, studies in human 

prostate cancer cells have shown that Twist1 is a direct target of MMSET. However, 

while MMSET-over-expression has been shown to up-regulate both Twist1 and N-

cadherin expression in prostate cancer cells, siRNA-mediated knock-down of Twist1 

cells in MMSET-over-expressing cells did not reduce N-cadherin expression, 

suggesting that MMSET may directly target the N-cadherin gene, or activate an 

alternate inducer of N-cadherin expression.38 

 In addition to t(4;14)+ MM, our studies demonstrate that CDH2 is up-regulated 

in another 40-45% of newly-diagnosed patients despite having MMSETlow status. 

Previous studies have shown that CDH2 is up-regulated in a distinct population of MM 

patients in the hyperdiploidy-related sub-group.26 In line with these findings, our GSEA 

of genes which positively correlated with CDH2 expression in MMSETlow MM patients 
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revealed an enrichment in genes that are associated with a hyperdiploidy-related gene 

signature. Of the genes which positively correlated with CDH2 in MMSETlow MM 

patients, BTBD3 was the most strongly up-regulated in MM PCs, suggesting that 

BTBD3 may be a candidate 'driver' of CDH2 expression in t(4;14)- MM. Similar to 

CDH2 expression, gene expression profiling studies have previously reported an 

association between BTBD3 expression and hyperdiploidy-related MM patients 

subsets.104,105 Additionally, in MM patients, BTBD3 expression has previously been 

associated with elevated expression of NCAM1106, which also positively correlated with 

CDH2 expression in our analyses. On the basis of the observation that BTBD3 was 

consistently up-regulated in MMSETlowCDH2high MM patients and the up-regulation of 

BTBD3 in MM PCs, we hypothesized that BTBD3 may positively regulate CDH2 

expression in t(4;14)- MM. Collectively, however, our BTBD3 over-expression and 

siRNA-mediated BTBD3 knockdown studies in t(4;14)- HMCLs revealed that BTBD3 

is unlikely to be a key driver of CDH2 expression in t(4;14)- MM patients. 

 Further examination of our in silico analyses revealed other candidates which 

have previously been implicated in the regulation of CDH2 expression in other cancers. 

Janus kinase/signal transducer and activator 3 (JAK/STAT3) signalling is widely 

implicated in tumourigenesis, and has been shown to positively regulate N-cadherin 

expression in cancer cells.75,81,91,93,97,107 Indeed, studies have implicated an IL-

6/JAK/STAT3 signalling axis in the up-regulation of N-cadherin expression in 

melanoma and cancers of the pancreas, stomach, lung and ovary.75,81,91,93,97 In MM, IL-

6-mediated signalling also plays an important role in tumour cell growth and 

proliferation.108-112 Notably, our CDH2 correlative analyses identified several genes 

which functionally converge to participate in, or regulate, the JAK/STAT3 signalling. 

These include genes encoding for IL-6 signal transducer (IL6ST/gp130; IL6ST) and 

basic transcription factor 3 (BTF3; BTF3) (both positively correlated with CDH2 

expression) and the sphingolipid metabolism enzyme, sphingosine-1-phosphate lyase 1 

(S1PL; SGPL1) (inversely correlated with CDH2 expression). IL6ST is a critical 

signalling-transducer subunit of IL-6-family cytokine receptor complexes and has been 

shown to promote tumourigenesis in various cancers, including MM.113,114 The binding 

of IL-6 to its cognate IL-6 receptor-IL6ST complex activates JAK, which, in turn, 

activates STAT3-mediated gene transcription.107,113 BTF3 is an evolutionarily 

conserved transcription factor which is aberrently expressed in colorectal and prostate 

cancer.115-117 In addition to promoting cancer cell proliferation, recent studies have 
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shown that BTF3 positively regulates expression of CDH2 in a STAT3 signalling-

dependent manner, and promotes metastasis in vivo.118,119 Notably, down-regulation of 

CDH2 expression following BTF3 knock-down in gastric cancer cells was rescued 

following IL-6-induced activation of STAT3.119 Studies have also shown that the loss of 

S1PL, which degrades the cell signalling molecule, sphingosine-1-phosphate, 

potentiates STAT3 signalling and promotes oncogenesis.120-122 Thus, whether aberrant 

JAK/STAT3 signalling up-regulates CDH2 expression in t(4;14)- MM warrants 

investigation. 

 Other genes of interest emanating from our studies include PAK1 (p21-activated 

kinase-1; Pak1), FER (tyrosine-protein kinase Fer; Fer) and ZNF622 (zinc finger protein 

622; ZNF622) which positively correlate with CDH2 in t(4;14)- MM. In concordance 

with our findings, studies have recently reported a positive correlation between Pak1 

and N-cadherin levels in clinical samples of non-small cell lung carcinoma.123 In 

prostate cancer cells, the Rac1-Pak1 signalling axis has been shown to potentiate TGF-

β1-mediated up-regulation of N-cadherin, which can be suppressed by functional 

inhibition of Pak1.88 Notably, Fer is an upstream mediator of Rac1-Pak1 signalling124, 

suggesting a potential Fer-Rac1-Pak1-N-cadherin signalling axis may exist in MM. 

KRAS, mutated in approximately 20% of MM patients3, is another activator of Rac1-

Pak1 signalling in epithelial cancers125, further implicating Rac1-Pak1 in CDH2 

regulation in MM. ZNF622 is also of interest as it binds to and activates the 

transcription factor B-Myb.126 Previous studies have shown that B-Myb knock-down 

reduces N-cadherin expression in both glioma and breast cancer cells127,128, suggesting 

that ZNF622-mediated activation of B-Myb may be another mechanism whereby CDH2 

is up-regulated in MM. To date, however, a functional role for these genes in MM has 

not been investigated.  

 Our in silico analysis of miRNA expression profiles revealed an 8-miRNA 

expression signature which was inversely associated with CDH2 levels in newly-

diagnosed t(4;14)- MM patients. miR-190, previously implicated in colorectal, breast 

and pancreatic cancer129-131, is of particular interest as it is predicted to target the 3'-

UTR of CDH2. Tellingly, CDH2 expression was low or undetectable in over 90% (10 

of 11) of miR-190-expressing t(4;14)- MM patients in our analysis, suggesting that miR-

190 may suppress CDH2 expression in these patients. IL6ST is also a predicted target of 

miR-190, suggesting miR-190 may negatively regulate IL-6/JAK/STAT3 signalling in 

MM. Another candidate regulator of CDH2 expression in t(4;14)- MM is miR-214, 
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which was recently shown to negatively regulate N-cadherin expression in cervical 

cancer cells.132 miR-214 is also down-regulated, and inhibits tumour cell invasion and 

metastasis, in several cancers including liver, bladder and colon cancer.132-137 While not 

predicted to target CDH2, miR-339 and miR-193b may also be of interest, as down-

regulation of these miRNAs is associated with increased cancer invasivness.138-143 In 

addition, miR-545 is predicted to target ZNF622, suggesting that a miR-545/ZNF622/B-

Myb axis may regulate CDH2 expression in t(4;14)- MM. Notably, a number of other 

genes identified in our CDH2 correlative analyses are also predicted to be targeted by 

one or more miRNAs within the 8-miRNA expression signature, including E2F5 (E2F 

transcription factor 5) and FBXO22 (F-box protein 22). While a role for these genes in 

CDH2 regulation has not been demonstrated, their functional role as transcriptional 

regulators144-148 and their strong correlation with CDH2 expression in t(4;14)- MM, 

suggests that further investigation of their potential regulation of CDH2 in MM is 

warranted.  

 While our studies demonstrated that BTBD3 does not regulate CDH2 expression 

in HMCLs, our analyses show, for the first time, that BTBD3 expression is strongly up-

regulated in BM PCs from MM patients, compared with normal controls. Furthermore, 

we found that elevated BTBD3 expression in BM MM PCs is associated with a trend 

towards poorer overall survival in t(4;14)- patients, suggesting a role for BTBD3 in MM 

pathogenesis. Structurally, BTBD3 contains an evolutionarily-conserved BTB/POZ 

(Broad-complex, Tramtrak, Bric-a-brac/poxvirus and zinc finger; BTB) protein-protein 

interaction domain at the N-terminus, a postulated substrate adaptor for cullin3 E3 

ubiquitin ligase which targets proteins for proteasome-mediated degradation.149,150 

Cullin3 E3 ubiquitin ligase complexes are implicated in the destruction of a wide range 

of substrates including transcriptional regulators and signalling proteins, thereby 

regulating developmental and cancer-associated signalling pathways.151-154 BTB 

domains are also found in 5-10% of C2H2-type zinc-finger transcription factors (e.g. 

BCL6 and PLZF) which function as transcriptional repressors by interacting with co-

repressor complexes such as histone deacetylases.155,156 Towards its C-terminus, 

BTBD3 also contains a BACK domain and a PHR domain which are also speculated to 

play a role in cullin3 E3 ubiquitin ligase function.157,158 Thus, it is plausible that BTBD3 

also functions as a repressor of gene transcription or cell signalling. While the function 

of BTBD3 has not been fully elucidated, BTBD3 is highly expressed in the brain159-161 

and has been implicated in dendritic field orientation within the visual cortex162 and the 
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barrel cortex161,162 in mice. In cancer, BTBD3 knock-down has been reported to 

decrease the migration of hepatocellular carcinoma cells in vitro.163 Given our 

observation that BTBD3 is strongly up-regulated in MM patients, and may be associated 

with poor prognosis in at least some MM patients, further studies investigating the role 

of BTBD3 in MM are warranted. 

 In summary, we have demonstrated that MMSET, universally dysregulated in 

t(4;14)+ MM patients, is a bona fide regulator of CDH2 expression in MM cells, 

suggesting it is a key driver of up-regulated N-cadherin in t(4;14)+ MM. While our 

studies suggest that BTBD3 is unlikely to be a key driver of CDH2 expression in 

t(4;14)- MM, we have identified several other pathways that may represent previously 

unknown, MMSET-independent regulators of N-cadherin expression in MM. In 

addition, we have identified that miR-190 is strongly associated with down-regulation 

of CDH2 expression in t(4;14)- MM patients, which may represent an alternative 

mechanism of N-cadherin regulation in these patients. Finally, our studies have 

identified BTBD3 as a novel factor that may play a role in the pathogenesis of MM. To 

this end, future studies are waranted to investigate the effect of this gene on MM disease 

progression. 
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Supplementary Figure 4.1. MMSET and FGFR3 expression in MM patients. 

Newly-diagnosed MM patients were categorised as MMSETlow or MMSEThigh, and 

FGFR3low or FGFR3high, based on their expression of MMSET/NSD2 (209053_s_at) and 

FGFR3 (204379_s_at) in CD138-selected BM MM PCs, as determined by microarray 

analysis. The cut-off (grey line) used to delineate high and low MMSET and FGFR3 

expression is shown for microarray datasets GSE4581 (MMSEThigh/FGFR3high, n = 55 

patients; MMSEThigh/FGFR3low, n = 19; MMSETlow, n = 340), E-MTAB-363 

(MMSEThigh/FGFR3high, n = 15; MMSEThigh/FGFR3low, n = 4; MMSETlow, n = 136), E-

GEOD-19784 (MMSEThigh/FGFR3high, n = 23; MMSEThigh/FGFR3low, n = 12; 

MMSETlow, n = 293), E-MTAB-317 (MMSEThigh/FGFR3high, n = 26; 

MMSEThigh/FGFR3low, n = 8; MMSETlow, n = 192), E-GEOD-26863 

(MMSEThigh/FGFR3high, n = 24; MMSEThigh/FGFR3low, n = 10; MMSETlow, n = 270) and 

GSE16558 (MMSEThigh/FGFR3high, n = 14; MMSEThigh/FGFR3low, n = 3; MMSETlow, n 

= 43). 
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Supplementary Figure 4.2.  A schematic overview of the hypothesised CDH2 

regulatory mechanisms in MM based on in silico analysis of publicly available 

microarray data of CD138+ BM PCs from newly-diagnosed MM patients. MMSET 

is hypothesised to be a key positive regulator of CDH2 expression in t(4;14)+ MM (A). 

In t(4;14)- MM, BTBD3 is hypothesised to be a potential driver of CDH2 expression, 

while miR-190 may suppress CDH2 expression (B). 
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Supplementary Figure 4.3.  miR-190 and CDH2 expression in t(4;14)- MM 

patients, and expression of miR-190 in a panel of t(4;14)- HMCLs. Newly-diagnosed 

MM patients were categorised as miR-190low or miR-190high, and CDH2low or CDH2high, 

based on their expression of miR-190 and CDH2 (203440_at) in CD138-selected BM 

MM PCs, as determined by microarray analysis. The cut-off (grey line) used to 

delineate high and low miR-190 and CDH2 expression is shown for the microarray 

dataset GSE16558 (A). miR-190 expression levels (normalised to the U6 snRNA 

reference gene), as assessed by qPCR, in a panel of t(4;14)- HMCLs. Graph depicts 

mean ± SEM of 3 independent experiments (B). 
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Supplementary Figure 4.4.  Expression of BTBD3 mRNA and protein in a panel of 

HMCLs. BTBD3 expression (normalised to ACTB expression), as assessed by qPCR, in 

a panel of HMCLs, stratified based on t(4;14) status. Graph depicts mean ± SEM of 3 

independent experiments (A). Expression of BTBD3 isoforms in representative HMCLs 

(top panel), as assessed by Western blot. Histone H3 was utilised as a nuclear protein 

load control (bottom panel) (B). 
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Supplementary Table 4.1: GSEA of genes which posi�vely correlate with CDH2  expression in 
t(4;14)- MM pa�ents
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Supplementary Table 4.1: GSEA of genes which posi�vely correlate with CDH2  expression in 
t(4;14)- MM pa�ents (con�nued)
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1. Top 50 down-regulated genes in cluster HP of mul�ple myeloma samples characterized by a hyperploid signature.
2. Genes up-regulated in hepatocellular carcinoma (HCC) compared to normal liver samples.
3. Transcripts depleted from pseudopodia of NIH/3T3 cells (fibroblast) in response to haptotac�c migratory s�mulus 
by fibronec�n, FN1.
4. Genes down-regulated in anaplas�c thyroid carcinoma (ATC) compared to normal thyroid �ssue.
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5.1 General discussion 
In Australia alone, approximately 10,000 individuals are living with MM, with 

approximately 1,700 new cases of MM diagnosed each year.1 The advent of so-called 

'novel' anti-MM agents, including the immunomodulatory drugs thalidomide and 

lenalidomide, and the proteasome inhibitor bortezomib, has significantly changed the 

therapeutic landscape of MM patient management over the past 15-20 years.2,3 The use 

of bortezomib, the first-in-class proteasome inhibitor approved by the US FDA in 2003, 

is considered to be a major breakthrough in the treatment of patients with MM. 

Currently, bortezomib forms an integral backbone of many chemotherapeutic regimens 

in MM, used as induction therapy in both autologous stem cell transplantation (ASCT)-

eligible and -ineligible patients, as a maintenance therapy and in the relapse setting.4-7 

Notably, the use of bortezomib-based treatment regimens in newly diagnosed MM 

patients appears to overcome the poor prognosis associated with high-risk cytogenetic 

features (e.g. t(4;14)+ status or deletion of chromosome 17p) and improves overall 

survival (OS) rates in both ASCT-eligible and -ineligible patients, in comparison to 

non-bortezomib-based therapies.8-12 Importantly, such advancements in the therapeutic 

management of MM continue to improve the OS prospects of individuals diagnosed 

with the disease.13-15 Currently, the median overall survival (OS) of newly diagnosed 

MM patients is approximately 6-10 years.4,15 

 While some patients achieve long-term disease remission, with OS of greater 

than 15 years, approximately 15-20% of patients experience rapid disease relapse, or 

respond poorly to induction therapy, resulting in early death.15-17 The identification of 

MM patients who are likely to do poorly, namely those with 'high-risk' disease, is 

paramount to the success of therapeutically managing these patients in order to 

maximise their survival prospects.15 A combination of determinants are used to 

clinically define high-risk MM including advanced disease stage (ISS stage III), poor 

genetic profile (e.g. t(4;14), t(14;16), del(17p), 1q21 amplification) and the presence of 

extramedullary disease.15 Other features associated with high-risk disease include high 

numbers of circulating tumour cells (CTCs) and failure to respond to an induction 

therapy containing a proteasome inhibitor or immunomodulatory agent.18 Notably, 

studies emanating from our laboratory have shown that stratification of newly 

diagnosed MM patients based on plasma N-cadherin levels identify a subset of 

individuals (> 6ng/ml plasma N-cadherin) with increased risk of earlier death, 
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irrespective of ISS stage, tumour burden or poor cytogenetic features.19 N-cadherin gene 

(CDH2) expression in CD138+ PCs is also up-regulated in approximately 50% of newly 

diagnosed MM patients, compared with CDH2 levels in normal individuals.19,20 

Collectively, these findings raise several important issues, including how N-cadherin 

expression is dysregulated in MM, what functional role(s) N-cadherin plays in MM 

pathogenesis and whether N-cadherin represents a potential therapeutic target in MM. 

 

5.2 The regulation of N-cadherin expression in t(4;14)+ and t(4;14)- 

MM 
A key aim of this thesis research was to determine how N-cadherin expression is 

dysregulated in both t(4;14)+ and t(4;14)- MM (Chapter 4). CDH2 is highly expressed in 

approximately 85% of patients featuring the reciprocal chromosomal translocation 

t(4;14), observed in 10-15% of MM cases, whereby the genes MMSET (encoding for the 

histone methyltrasferase MMSET) and FGFR3 (encoding for fibroblast growth factor 

receptor 3) are placed under the control of strong enhancers.20-22 This translocation 

universally results in the over-expression of MMSET and, in 70% of cases, the over-

expression of FGFR3.23,24 Given t(4;14)+ status in MM is an adverse prognostic factor, 

independent of FGFR3 expression, MMSET dysregulation is considered to be the 

primary mediator of oncogenesis and aberrant gene expression in this subset of MM 

patients.25-27 Using a combination of in silico and in vitro analyses, we have confirmed 

that MMSET is a key regulator of CDH2 expression in MM cells, suggesting it is an 

important driver of up-regulated N-cadherin in t(4;14)+ MM. 

 In addition to t(4;14)+ MM patients, CDH2 up-regulation is a feature in another 

35-40% of newly diagnosed patients despite having t(4;14)- status.20 In particular, a 

distinct population of CDH2-overexpressing MM patients is observed in the 

hyperdiploidy subset, accounting for approximately 50% of patients in the subset.20,28 

Owing to the genetic heterogeneity between CDH2+ patients in the t(4;14)- MM 

subsets29, little is currently known regarding the mechanism(s) by which CDH2 

expression is up-regulated in these patients. To this end, we performed in silico analysis 

of newly diagnosed t(4;14)- MM patients to reveal potential regulators of CDH2 

expression in t(4;14)- MM PCs. While in vitro studies in HMCLs did not validate our 

leading candidate, BTBD3, as a critical regulator of CDH2 expression in MM, our 

studies revealed several other mechanisms by which CDH2 expression may be 
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regulated in t(4;14)- MM. For example, several genes identified as being significantly 

associated with CDH2 expression in t(4;14)- MM patients (IL6ST, BTF3 and SGPL1) 

functionally converge to regulate the JAK/STAT3 signalling cascade30-32, which is 

implicated in MM PC growth and survival33-35, and has previously been shown to 

positively regulate N-cadherin expression in solid tumours.36-39 Other potential 

mechanisms of CDH2 up-regulation in t(4;14)- MM include the Fer/Rac1/Pak1 and 

ZNF622/B-myb signalling axes, which have previously been implicated in positively 

regulating N-cadherin expression in other cancers.40-44 miR-190 is also of particular 

interest, as the majority of t(4;14)- MM patients which express miR-190 have low or 

undetectable CDH2 expression. Moreover, miR-190 is predicted to target the CDH2 3'-

UTR. Further studies are required to investigate whether these pathways and molecules 

regulate N-cadherin expression in t(4;14)- MM.  

 While BTBD3, a putative transcriptional regulator45-52, is unlikely to be a critical 

regulator of CDH2 expression in MM, our analyses show, for the first time, that BTBD3 

expression is strongly up-regulated in bone marrow (BM) PCs from MM patients, 

compared with normal controls. Moreover, the up-regulation of BTBD3 in MM PCs is 

associated with a trend towards poorer overall survival in t(4;14)- MM patients, 

suggesting a role for BTBD3 in MM pathogenesis. Thus, future studies investigating the 

functional role of BTBD3 in MM are also warranted. 

 

5.3 The therapeutic utility of ADH-1 in the prevention of MM PC 

dissemination 
The development and progression of MM is underpinned by the continuous trafficking, 

or dissemination, of MM PCs from one tumour site to distant BM sites via the 

circulation. For instance, MM PCs egress from a primary BM site and disseminate to 

multiple skeletal sites to form micrometastases, leading to the asymptomatic precursor 

stage of MM, called monoclonal gammopathy of undermined significance (MGUS). 

The subsequent growth of these metastases results in the transition to symptomatic 

MM53, which occurs at a relatively slow rate in individuals with MGUS (1% per 

annum).54 Elevated numbers of CTCs are also associated with more rapid progression 

from MGUS, or the pre-malignant stage of MM called smouldering MM, to overt 

MM.55,56 Further growth and dissemination of MM PCs promotes disease progression 

and, in advanced cases, the development of plasma cell leukaemia and extramedullary 
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disease.53,57-61 The dissemination of MM PCs is also likely to facilitate the re-population 

and growth of therapy-resistant MM PCs within the BM, thereby promoting disease 

relapse. Indeed, elevated numbers of CTCs in previously treated MM patients are 

associated with inferior prognosis.62 

 Therapeutic targeting of tumour cell adhesion to endothelium has been 

suggested as a modality to prevent the extravasation and dissemination of MM PCs. For 

example, functional inhibition of PSGL-1-mediated MM PC interaction with P-selectin, 

important in leukocyte tethering to endothelial cells (ECs), inhibits MM PC adhesion to 

ECs and reduces MM PC extravasation and BM homing in vivo.63 In addition, studies 

have shown that blocking MM PC adhesion to ECs with an anti-CD44v10 antibody 

inhibits the homing of circulating MM PCs to the BM and reduces tumour 

development.64 In line with the aforementioned studies, we found that pre-treatment of 

C57Bl/KaLwRij mice with the N-cadherin antagonist ADH-1 (N-Ac-CHAVC-NH2) 

inhibited tumour development following intravenous injection of 5TGM1 MM PCs. 

This effect was not seen in mice treated with ADH-1 1 week after injection of tumour 

cells, suggesting that N-cadherin plays a role in the initial BM homing or establishment 

of the tumour cells within the BM. While our in vivo studies did not specifically 

investigate the role of N-cadherin in extravasation and BM homing, we have shown that 

N-cadherin mediates the adhesion of MM PCs to ECs, which is likely to play a role in 

the extravasation and intravasation of MM PCs (Chapter 2).65 In support of this, pre-

clinical studies have previously demonstrated that N-cadherin knock-down in MM PCs 

decreases the capacity of CTCs to home to the BM in vivo, resulting in increased 

residual cells within the peripheral blood.20 As well as preventing the establishment of 

MM PCs within the BM, the inability of circulating MM PCs to rapidly extravasate and 

home to the BM is likely to increase their vulnerability to anoikis (a form of 

programmed cell death induced by the lack of integrin-mediated cell adhesion), shear 

stress and attack by immune cells66,67, thereby potentially inhibiting MM disease 

progression.  

 Although we found that ADH-1 treatment did not decrease tumour development 

in C57Bl/KaLwRij mice with established MM, the limited sensitivity of 

bioluminescence imaging (BLI) prevented the assessment of the effects of ADH-1 on 

MM PC dissemination and the formation of micro-metastases in this model. In addition, 

recent bar-coding studies conducted in our laboratory have demonstrated that while the 

systemic dissemination of individual 5TGM1 cell clones is a feature of the 
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C57Bl/KaLwRij model, it does not contribute to the bulk of the tumour burden 

observed at the conclusion of the study.68 Thus, any inhibitory effects of ADH-1 on the 

ability of 5TGM1 cells to disseminate in C57Bl/KaLwRij mice with established disease 

is unlikely to result in decreased BLI signal at the conclusion of the study. In addition to 

ECs, ADH-1 may also antagonise N-cadherin function in other host-derived cell types, 

including BM stromal cells that support MM PC proliferation and survival.69-72 

However, our in vitro co-culture studies suggest that N-cadherin-mediated adhesion 

between 5TGM1 cells and BM stromal cells is unlikely to play a critical role in 5TGM1 

cell proliferation. Moreover, in the context of MM pathogenesis, the inability of ADH-1 

treatment to inhibit MM progression in C57Bl/KaLwRij mice with established disease 

suggests that N-cadherin-mediated adhesion between 5TGM1 cells and BM stromal 

cells in the BM microenvironment is less important than N-cadherin-mediated 5TGM1 

cell-EC interactions. 

 Further studies are warranted to determine whether therapeutic targeting of N-

cadherin may be useful as a maintenance therapy in the clinical MM setting. To this 

end, ADH-1 could be used to prevent the dissemination of residual therapy-resistant 

MM PCs, thereby inhibiting or delaying tumour re-population of the BM and limiting 

disease relapse. Theoretically, the introduction of ADH-1 as a maintenance therapy 

could be particularly useful for those 50% of MM patients in which N-cadherin 

expression in MM PCs is elevated. In addition to MM, the extravasation of CTCs plays 

a critical role in dissemination and metastasis formation in many solid tumours.73-76 

Notably, N-cadherin has been implicated in the adhesion of breast cancer cells and 

melanoma cells to ECs and in the formation of lung metastases following intravenous 

injection of melanoma cells in mice.77-80 Thus, it is possible that ADH-1 may be 

therapeutically useful in the context of preventing tumour cell dissemination and 

metastasis formation in solid tumours.     

 

5.4 The use of LCRF-0006 as a novel vascular disrupting agent 
Unlike normal blood vessels, which consist of a layer of tightly associated ECs that are 

structurally supported by mural cells (e.g. pericytes and smooth muscle cells), tumour-

associated vasculature is structurally abnormal, characterised by gaps between adjacent 

ECs and loosely attached or absent mural cells.81-83 These structural abnormalities, in 

addition to the disorganised, tortuous nature of tumour-associated vasculature, and the 
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defective lymphatic drainage in tumours, result in abnormal pressure gradients and 

heterogeneous perfusion which can limit drug delivery to the tumour.81,84,85  

 Paradoxically, however, these structural abnormalities can lead to increased 

permeability of tumour-associated vasculature which, combined with the paucity of 

lymphatic drainage in tumours, is thought to contribute to the passive and selective 

accumulation of macromolecules (> 40 kDa) in sites of tumour, known as the enhanced 

permeability and retention (EPR) effect.81,86,87 Notably, augmentation of the EPR effect 

is widely recognised, and increasingly investigated, as a potential therapeutic strategy to 

increase tumour delivery, and therefore efficacy, of macromolecular drugs or drug 

complexes.87-93 To this end, augmentation of the EPR effect may be therapeutically 

useful for tumour delivery of large drugs such as monoclonal antibodies (e.g. rituximab, 

daratumamab and elotuzamab)94-96, or drugs with high affinity (> 80%) for large plasma 

proteins (e.g. albumin), including tyrosine kinase inhibitors (e.g. imatinib and nilotinib), 

proteosome inhibitors (e.g. bortezomib and carfilzomib) and melphalan.97-101 

Additionally, augmentation of the EPR effect may also increase tumour delivery of 

drugs in nanoparticle delivery systems.91,102 Importantly, pre-clinical studies suggest 

that agents which augment the EPR effect may improve the efficacy of anti-cancer 

agents in tumours characterised by either inherently low, or high, vascular 

permeability.90,103 Notably, recent studies have demonstrated the ability of vascular 

disrupting agents to increase tumour accumulation, and anti-cancer efficacy, of 

macromolecular drugs and drug complexes in vivo, suggesting that such agents can 

augment the EPR effect.91,104 

 LCRF-0006 is a synthetic, metabolically stable compound which structurally 

mimics the HAV domain of ADH-1.105 Synthetic small molecule mimetics of peptide 

drugs are thought to offer increased therapeutic efficacy in comparison to their peptide 

counterparts, due to enhanced proteolytic stability, bio-availability and potency.106,107 

Indeed, LCRF-0006 has been found to inhibit N-cadherin-dependent processes four-fold 

more potently than ADH-1 (Orest Blaschuk; personal communication). N-cadherin is 

expressed by both ECs and mural cells and is a critical regulator of vascular integrity 

and endothelial barrier function.104,108-111 To this end, in vitro studies have demonstrated 

that endothelial barrier permeability to macromolecules can be enhanced by functional 

perturbation of N-cadherin in blood vessels.104,111 Moreover, ADH-1 has been shown to 

rapidly enhance tumour blood vessel permeability to macromolecules in vivo.104 

Notably, we found that LCRF-0006 acts as a vascular disrupting agent which increases 
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blood vessel permeability to macromolecules, as evidenced by LCRF-0006-mediated 

extravasation of 70 kDa FITC-dextran in mouse retinal tissues (Chapter 3). In contrast 

to vascular disrupting agents such as microtubule-depolymerizing agents which induce 

necrosis of tumour vasculature84,112,113, the disruptive effects of LCRF-0006 on ECs are 

transient and reversible, which is consistent with the proposed role of N-cadherin in 

endothelial barrier closure.79,114 Thus, the effects of LCRF-0006 may be more 

comparable to the transient effects of inflammatory mediators (e.g. histamine and 

thrombin) which induce reversible cell retraction and inter-endothelial gap 

formation.115-117 

 In line with the ability of ADH-1 to increase the efficacy of melphalan104, the 

data presented here shows that LCRF-0006 synergistically increased the depth of MM 

tumour response in C57Bl/KaLwRij mice to the anti-MM agent bortezomib. We 

speculate that these synergistic effects may, at least in part, be mediated by LCRF-0006-

enhanced tumour delivery of bortezomib, potentially by augmentation of the EPR 

effect. As bortezomib is highly bound to plasma proteins in vivo99, we hypothesise that 

an increase in the permeability of tumour-associated vasculature caused by pre-

treatment with LCRF-0006 may enhance accumulation of plasma protein-bound 

bortezomib in sites of tumour, consistent with the ADH-1-mediated increase in delivery 

of melphalan in a pre-clinical model of melanoma.104 Given LCRF-0006 synergistically 

increased MM tumour response to a sub-therapeutic dose of bortezomib, these findings 

may also be clinically relevant in increasing MM patient depth of response to low doses 

of bortezomib, thereby potentially alleviating detrimental side-effects such as peripheral 

neuropathy. In support of this, recent studies using a pre-clinical mouse model of colon 

cancer demonstrated the ability of an EPR-augmenting agent to increase the anti-tumour 

efficacy of albumin-bound paclitaxel, without increasing the myelosuppressive effects 

of paclitaxel treatment.90 An important observation emanating from our endothelial tube 

disruption assays was that the initial effects of LCRF-0006 on EC retraction and 

rounding were more rapid in immature (5-hour-old) endothelial tubes than established 

(24-hour-old) tubes, suggesting that tumour-associated vasculature may have increased 

propensity to LCRF-0006-mediated disruption. However, given our findings that 

LCRF-0006 increased the permeability of normal micro-vessels to macromolecules, 

further studies are warranted to determine whether LCRF-0006 may selectively enhance 

the delivery of anti-cancer agents such as bortezomib to tumour sites while minimising 

side-effects on healthy tissues. 
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5.5 The use of LCRF-0006 to increase MM PC sensitivity to anti-

cancer agents  
In addition to increasing vascular permeability, LCRF-0006 acted synergistically with 

bortezomib to directly induce 5TGM1 MM PC apoptosis in vitro, which may further 

contribute to the synergism observed in vivo. In line with these findings, ADH-1 has 

previously been shown to significantly increase melanoma tumour response to the 

chemotherapeutic agent temozolamide in vivo, without altering tumour up-take of the 

drug.104 To date, a role for N-cadherin in MM PC resistance to chemotherapeutics has 

not been demonstrated. One potential mechanism by which LCRF-0006 and bortezomib 

may synergistically induce MM tumour cell apoptosis is by differential inhibition of the 

Bcl-2-family pro-survival proteins Bcl-2 and Mcl-1, shown to mediate MM PC 

survival.118-121 In other cancer cell types, N-cadherin engagement has been shown to 

activate Bcl-2 by enhancing PI3K/Akt-mediated phosphorylation of the pro-apoptosis 

protein Bad.78,122,123 Interestingly, the combination of the Bcl-2 inhibitor venetoclax and 

bortezomib has recently shown promising efficacy in relapsed/refractory MM and is 

now being evaluated in Phase III clinical trials.124 These studies were conducted on the 

basis of encouraging pre-clinical findings which demonstrated that venetoclax increased 

MM tumour sensitivity to bortezomib, despite having limited single-agent efficacy.119 

Further studies are required to assess the mechanisms whereby LCRF-0006 synergises 

with bortezomib and induces apoptosis in MM cells. 

N-cadherin has also been implicated in the resistance of other cancer cell types to 

anti-cancer agents. For example, studies have shown that N-cadherin potentiates 

prostate cancer cell resistance to metformin in vitro and in vivo, by activation of NF-кB 

signalling.125 In addition, studies have demonstrated the ability of N-cadherin 

antagonists, including ADH-1, to decrease micro-environmental protection of chronic 

myeloid leukaemia cells to the tyrosine kinase inhibitor imatinib.126,127 In line with these 

findings, N-cadherin silencing has been shown to induce apoptosis in lung cancer cell 

lines resistant to the tyrosine kinase inhibitor gefitinib.123 To this end, further studies are 

warranted to determine whether LCRF-0006-mediated inhibition of N-cadherin function 

can increase tumour cell sensitivity to tyrosine kinase inhibitors. 
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5.6 Future directions and concluding remarks 
MM is still largely considered to be incurable with most patients relapsing and 

ultimately succumbing to the disease.6 However, it is evident that deeper tumour 

responsiveness to induction therapy results in more durable responses and improved 

long-term prospects for MM patients.128-132 Thus, an important goal of modern 

combination therapy regimens in the management of MM patients is to achieve the 

maximum possible depth of tumour response to induction therapy.6 To this end, our 

finding that a significantly deeper tumour response was achieved in mice which 

received the LCRF-0006-bortezomib combination therapy, suggests that the addition of 

LCRF-0006 to current chemotherapeutic regimens incorporating bortezomib may 

represent a novel strategy to increase the depth of MM patient response to bortezomib 

therapy. To this end, LCRF-0006 may therapeutically be useful in newly diagnosed 

patients, during maintenance therapy and in the relapse setting. Furthermore, the 

potential ability of LCRF-0006 to augment the EPR effect, increasing extravasation of 

macromolecular drugs and drug complexes (e.g. plasma protein-bound drugs), suggests 

that it could also improve the efficacy of 75% of the pharmaceutical industry's current 

20 top-selling anti-cancer drugs.133 

 In addition to initial response to treatment, the subsequent rapidity of the 

outgrowth and spread of resistant clones is an important determinant of the outcomes 

for myeloma patients.134-137 Treatment relapse is likely to be dependent upon the ability 

of therapy-resistant MM PC to re-enter the circulation, disseminate and repopulate sites 

throughout the BM.62 Therefore, limiting the dissemination of MM PCs presents a 

promising opportunity to prevent overt relapse and improve overall survival. Our 

findings demonstrate that N-cadherin is likely to facilitate the adhesion of circulating 

MM PCs to ECs during extravasation, a critical step in the BM homing cascade.65 To 

this end, ADH-1 could be utilised to prevent the dissemination of MM PCs via the 

circulation, thereby inhibiting MM disease relapse in those 50% of MM patients that 

express up-regulated levels of N-cadherin. 

 

 This thesis research demonstrates that MMSET, universally dysregulated in 

t(4;14)+ MM patients, is a critical regulator of CDH2 expression in MM PCs, suggesting 

it is the key driver of up-regulated N-cadherin in t(4;14)+ MM. This thesis has also 

identified several potential molecules and pathways which may represent previously 
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unknown, MMSET-independent regulators of N-cadherin expression in t(4;14)- MM. 

While BTBD3 is unlikely to be a critical regulator of CDH2 in t(4;14)- MM, this thesis 

suggests that BTBD3 is potentially important in MM pathogenesis, which warrants 

future investigation. In addition, this thesis research suggests that therapeutic targeting 

of N-cadherin using the antagonist ADH-1 could potentially be utilised to prevent the 

dissemination of PCs, thereby delaying MM progression and relapse.65 Finally, this 

thesis research has identified a small molecule peptidomimetic of ADH-1, LCRF-0006, 

as a novel vascular disrupting agent which enhances vascular permeability and 

synergistically increases the efficacy of the anti-MM agent bortezomib in a pre-clinical 

mouse model of established MM disease. To this end, LCRF-0006 may be clinically 

useful in increasing the depth of MM tumour response to bortezomib, which is currently 

used in MM patients as induction therapy, maintenance therapy, and in the relapsed 

setting. In addition, we speculate that the potential ability of LCRF-0006 to augment the 

EPR effect could be utilised to increase the delivery, and anti-cancer efficacy, of various 

chemotherapeutic agents in MM and other cancers in the clinical setting. Together with 

our collaborators, we are currently developing next-generation small molecules which 

inhibit N-cadherin-dependent processes more potently than LCRF-0006 or ADH-1. 

These will be explored more extensively in the context of dissemination and 

chemotherapy combination therapies in MM and other pre-clinical cancer models.  
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