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INTRODUCTION 
 
Aggregated Tau helical filaments, referred to as 
neurofibrillary tangles (NFTs), contribute to the 
neurodegeneration in Alzheimer’s disease (AD) [1]. 
Tau pathology has also been implicated in other neuro-
degenerative diseases such as frontotemporal dementia 
(FTD) [2], progressive supranuclear palsy, Parkinson’s 
disease, Huntington’s disease, and Pick’s disease [3–6]. 
Tau is mainly found in the axons of neurons, and at low 
levels in glial cells, where it regulates the assembly of 
microtubules, the cytoskeleton reorganization and, the 
retrograde/anterograde transport of cargo through Tau’s 
interaction with dynein and kinesin [3, 7].   

 

 
The phosphorylation and dephosphorylation process of 
Tau, and the amount of Tau phosphorylated at different 
sites can all contribute to the physiological and the 
pathological functions of Tau [3]. When Tau is 
hyperphosphorylated by various kinases, it misfolds and 
forms paired helical filaments, which eventually 
aggregate into NFTs. The level of NFTs in the brain of 
AD patients positively correlates with cognitive 
impairment while the presence of Tau mutations has 
been implicated in neuronal dysfunction [8].  
Prominent kinases that are often implicated in other 
diseases have been reported to phosphorylate Tau and 
these include microtubule affinity-regulating kinases [9], 
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ABSTRACT 
 
p75 neurotrophin receptor (p75NTR) has been implicated in Alzheimer’s disease (AD). However, whether p75NTR is 
involved in Tau hyperphosphorylation, one of the pathologies observed in AD, remains unclear. In our previous 
study, the extracellular domain of p75NTR blocked amyloid beta (Aβ) toxicity and attenuated Aβ-induced Tau 
hyperphosphorylation. Here we show that, in the absence of Aβ, p75NTR regulates Tau phosphorylation in the 
transgenic mice with the P301L human Tau mutation (pR5). The knockout of p75NTR in pR5 mice attenuated the 
phosphorylation of human Tau. In addition, the elevated activity of kinases responsible for Tau phosphorylation 
including glycogen synthase kinase 3 beta; cyclin-dependent-kinase 5; and Rho-associated protein kinase was also 
inhibited when p75NTR is knocked out in pR5 mice at 9 months of age. The increased caspase-3 activity observed in 
pR5 mice was also abolished in the absence of p75NTR. Our study also showed that p75NTR is required for Aβ- and 
pro-brain derived neurotrophin factor (proBDNF)-induced Tau phosphorylation, in vitro. Overall, our data indicate 
that p75NTR is required for Tau phosphorylation, a key event in the formation of neurofibrillary tangles, another 
hallmark of AD. Thus, targeting p75NTR could reduce or prevent the pathologic hyperphosphorylation of Tau. 
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glycogen synthase 3 beta (GSK3β), cyclic adenosine 
monophosphate (AMP)-dependent protein kinase A 
(PKA), cyclin-dependent protein kinase 5 (Cdk5)  
[3, 10–12], rho-kinase (ROCK) [13], and c-Jun N-
terminal kinase (JNK) [14–16]. There is evidence 
showing Aβ mediates Tau phosphorylation induced by 
the interaction between PKA and JNK [17]. The 
inhibition of phosphatidylinositol kinase-3 (PI3K) also 
leads to the activation of GSK3β, inducing Tau 
hyperphosphorylation [18–21]. 
 
Several studies have shown that the accumulation of Aβ 
enhances Tau pathology while the excess of the latter 
shows no effects on Aβ toxicity, thus indicating that Aβ 
is upstream of Tau signaling [22–24]. However, the 
mechanism of how Aβ drives Tau pathology remains 
unclear. In addition, neurotrophins, proneurotrophins and 
their receptors can have an effect on Tau phosphorylation 
in different ways. In nerve growth factor (NGF)-deprived 
PC12 cells, Tau phosphorylation at Ser202 detected by 
monoclonal antibody AT8 is increased compared to non-
deprived cells [25, 26] suggesting that a lack of trophic 
support may also lead to pathologic Tau phosphorylation. 
p75NTR is a receptor belonging to a larger family of 
tumour necrosis factor receptors. Neurotrophins and 
proneurotrophins bind to p75NTR and function in cell 
survival and apoptosis, respectively [27, 28]. p75NTR is 
also reported to bind Aβ monomer [28]. The increased 
colocalization of p75NTR with hyperphosphorylated Tau 
in the neurons found in AD brain further supports the role 
of neurotrophins in AD [29]. One of the proneurotrophins 
that is known to induce neuronal apoptosis via p75NTR is 
the pro-brain derived neurotrophic factor (proBDNF). 

proBDNF was also reported to co-localize with Tau in 
the axons and soma of neurons [30], thus proBDNF may 
potentially regulate Tau phosphorylation via p75NTR. 
Inhibiting p75NTR with LM11A-31, a small molecule 
p75NTR ligand, has been found to reduce Aβ-induced Tau 
hyperphosphorylation and misfolding [31, 32]. More-
over, we have previously shown that the treatment of AD 
mice with the peptide containing the extracellular domain 
of p75NTR fused to human Fc region (p75ECD-Fc) 
reduced Tau hyperphosphorylation and Aβ plaque 
formation and reversed cognitive impairments [33]. 
Although these findings suggest that p75NTR has a role in 
AD pathology, it’s role in Tau hyperphosphorylation in 
AD needs further investigation. 
 
In this study, we aimed to investigate the changes in Tau 
phosphorylation and the kinases involved after deletion 
of p75NTR using a Tauopathy mouse model, pR5. 
Transgenic pR5 mice bear the human FTD Tau mutation 
P301L with Parkinsonism linked to chromosome 17, 
which results in Tau hyperphosphorylation and the 
formation of abnormal Tau filaments and in the absence 

of amyloid pathology [34, 35]. This makes pR5 mice an 
ideal model to elucidate the role of p75NTR in Tauopathy 
and in Aβ-induced-Tau phosphorylation. By knocking 
out p75NTR in pR5 mouse model we generated a new 
model, pR5p75-/-(pR75KO) for our study. We have found 
that the full-length p75NTR is required for the 
hyperphosphorylation of Tau in vivo and in vitro. The 
deletion of p75NTR also deactivated several kinases that 
mediate Tau phosphorylation such as GSK3β, Cdk5 and 
ROCK. We propose that p75NTR is a potential regulator 
of Tauopathy and is required for Aβ-induced Tau 
hyperphosphorylation. 
 
RESULTS 
 
Knockout p75NTR in pR5 mice reduced Tau staining 
in the brain 
 
In order to examine the role of p75NTR in Tau 
hyperphosphorylation, we crossed pR5 Tauopathy mice 
carrying the human Tau P301L mutation with p75KO 
mice which have a deletion of exon III of p75NTR to 
obtain pR5p75-/- (pR75KO) (Figure 1A). We selected 
pR75KO mice based on the genotyping results indicating 
the presence of the human Tau DNA band and p75NTR 
DNA band while the wild type (Wt) p75 exon III DNA 
band was not detected (Figure 1B). In addition, using 
immunohistochemistry we confirmed the absence of 
p75NTR protein expression in the substantia nigra of 
p75KO and pR75KO mice compared to Wt and pR5 
mice, which still expressed the p75NTR exon III DNA and 
protein in the brain (Supplementary Figure 1). We also 
showed that human Tau is expressed in neurons of the 
cortex and hippocampal regions of the brain of only pR5 
and the new transgenic pR75KO mice (Figure 1C, 1D). 
These results confirmed that we have successfully 
generated the pR5 Tauopathy model with p75NTR 
deletion. We found that there were substantially fewer 
neurons which stained positive for human Tau using the 
anti-human Tau HT7 antibody in the brain of pR75KO 
mice (Figure 1D). The western blot with the same HT7 
antibody which recognizes both human Tau and 
phosphorylated Tau further confirmed this observation 
(Figure 2C). To further examine whether the reduction in 
human Tau staining is a result of attenuated Tau 
phosphorylation or total Tau protein expression, we used 
different antibodies specific for Tau phosphorylated at 
various sites and an antibody against total human Tau. 
 
Attenuated phosphorylation of human Tau in 
pR75KO mice at 6 months of age 
 
We compared the transgenic human Tau including 
phosphorylated Tau in the forebrains of 6 months old Wt, 
p75KO, pR5 and pR75KO mice using western blot 
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Figure 1. Knock out of p75NTR in pR5 mice attenuated transgenic Tau protein staining in neurons. (A) pR5 mice is cross bred 
with p75KO mice to generate pR75KO mice. (B) PCR confirmation of transgenic tau and p75NTR knockout. (C) Transgenic Tau, detected using 
human-specific Tau and pTau antibody HT7, Scale bar = 200 μm. (D) Transgenic Tau expression in pR5 was much weaker in pR75KO mice in 
the cortex (CTX) and hippocampal regions CA1 and CA3 at higher magnification, Scale bar = 50 μm. 
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analysis (Figure 2A). The levels of phosphorylation of 
Tau at different sites known to occur in FTDP-17 [36] 
such as Ser262 (S262), Ser396 (S396) and 
Ser202/Thr205 (AT8) (S202/T205 (AT8)) were detected 
in all mouse strains. We compared the change in 
phosphorylated human Tau (pTau) at 75 kDA in pR5 
and pR75KO mice normalized against levels of total 
human Tau. We found that the levels of S262 
(p=0.0102), S396 (p=0.0149) and S202/T205 (AT8) 
(p=0.0076) were significantly attenuated in pR75KO 
mice compared to pR5 mice (Figure 2B). Since total 
human Tau when normalized against β-actin had no 
change (Figure 2E; n=6, p=0.8070; one-way ANOVA, 
Tukey’s post-hoc test) in pR75KO mice when compared 
to pR5, these data suggest that p75NTR mediates  
the phosphorylation of human Tau rather than the  
synthesis of human Tau protein. Furthermore, the 
hyperphosphorylation of human Tau in pR5 transgenic 
mice did not significantly affect the endogenous 
expression of total mouse Tau (Figure 2D) and mouse 
Tau phosphorylation (Supplementary Figure 2) at 6 and 
9 months old animals. Deletion of p75NTR in pR5 mice 
did not change total mouse Tau expression (Figure 2D) 
or the phosphorylation of mouse Tau at S396 and 
S202/T205 (AT8) (Supplementary Figure 2). This 
indicates Tau hyperphosphorylation is only occurring  
in the human protein as a result of the P301L Tau 
mutation. 
 
Reduction of caspase activity in pR75KO mice at 6 
months of age 
 
In the P301L mouse model, Tau mutation activates 
calpain, a protein reported to directly or indirectly 
activate caspase-3, thereby mediating the hyper-
phosphorylation of Tau [37]. We found that knocking out 
p75NTR can reduce the protein level of active caspase-3, 
shown here as cleaved caspase-3 (Figure 2F). The level 
of cleaved-caspase-3 was elevated in pR5 mice compared 
to Wt (p=0.0196) and p75KO (p=0.0013) and reduced in 
pR75KO mice (p=0.0075) (Figure 2G). Thus, the 
knockout of p75NTR is inhibiting the increase in caspase-3 
activity caused by human Tau mutation in the pR75KO 
model. There was no evidence of gliosis, measured by 
GFAP, or neuronal loss, measured by NeuN, as a result 
of the Tau mutation and knockout of p75NTR as shown by 
western blotting (Figure 2A, 2H, 2I) and IHC 
(Supplementary Figures 3–4). Therefore, it is hard to 
conclude based on the increased caspase-3 activity alone 
that hyperphosphorylation of Tau in pR5 mice resulted in 
apoptosis. These results are consistent with the previous 
findings showing that gliosis and significant neuronal 
loss in this P301L mouse model become evident only 
from 10 months of age [38, 39], thus in this transgenic 
mice at 6 or 9 months of age examined here, we did not 
observe such changes. 

Reduction of the activity of protein kinases in 
pR75KO mice involved in the phosphorylation of 
human Tau at 6 months of age 
 
Tau is phosphorylated by GSK3β, ROCK and Cdk5 [10, 
12, 13, 40]. To determine whether p75NTR is important 
for the phosphorylation of Tau mediated by these 
kinases, we probed the expression levels of GSK3β, 
RhoA and Cdk5 activators, p25 and p35 species, in the 
half-brain homogenates of 6 months old animals (Figure 
3A). The protein levels of phosphorylated GSK3β at Ser9 
(GSK3β pS9) in pR5 and pR75KO mice did not show 
clear changes at 6 months of age (Figure 3B). The 
enzymatic activity of Cdk5 is regulated by its activators, 
p35 and p39 [41]. Under neurotoxic conditions, p35 is 
cleaved by calpain to generate a 25 kDa fragment, 
referred to as p25 [41]. An increased ratio of p25 to p35 
has been linked to neurodegeneration in AD and 
Tauopathy [41, 42]. Therefore, we measured the protein 
levels of p25 and p35 and found that the p25/p35 ratio 
was not significantly altered in pR5 mice and pR75KO 
mice (p>0.05) at this age (Figure 3C). We next detected 
the levels of total RhoA and its active form RhoA-GTP. 
The conversion of RhoA from inactive state (GDP-
bound) to active state (GTP-bound) mediated by GTP 
binding also activates several downstream effectors 
including ROCK [43]. Activated ROCK could directly 
phosphorylate Tau [13, 44]. In this study, we found that 
the levels of RhoA-GTP were significantly higher in pR5 
compared to Wt mice (p=0.0021) and attenuated in 
pR75KO mice (p=0.0411) compared to pR5 mice while 
p75KO had slightly higher level than pR5 on the blot but 
did not reach statistical significance (Figure 3D). These 
data suggest that ROCK is downstream of p75NTR 
signaling [32, 45], and could potentially phosphorylate 
Tau through p75NTR. 
 
Synaptic proteins and neuronal markers are 
differentially expressed in mice strains at 6 months of 
age 
 
The levels of presynaptic proteins, SNAP25 and 
VAMP2 were determined by western blot analysis in 6 
months old mice. SNAP25 and VAMP2 protein 
expression were not altered by the transgenic strains 
compared to Wt mice (Figure 3F–3H). The post-synaptic 
protein PSD-95 was significantly elevated in p75KO 
compared to Wt (p=0.0002). However, PSD-95 protein 
expression in pR5 was suppressed compared to Wt 
(p=0.0484) and p75KO (p<0.0001). The deletion of 
p75NTR in pR5 mice elevated PSD-95 protein expression 
in pR75KO mice (p=0.0018) to levels comparable to Wt 
mice. It is interesting to note that the significant 
difference in PDS-95 expression between p75KO and 
pR75KO (p=0.0011) is due to the human Tau P301L 
mutation. These results suggest that, p75NTR may be a 
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Figure 2. Knock out of p75NTR in pR5 mice attenuated human Tau phosphorylation at 6 months. (A) Protein blots for total Tau, 
and phosphorylated Tau probed at 75 kDa for human and 50 kDa for mouse protein bands in the forebrains of Wt, p75KO, pR5 and pR75KO 
mice at 6 months. (B) Protein band intensity quantification of phosphorylated human Tau at S262, S396 and S202/T205 (AT8) in pR5 and 
pR75KO mice normalised with total human Tau and expressed as fold change relative to pR5. Protein band intensity quantification of total 
human Tau and pTau detected by HT7 (C), total mouse Tau detected by Tau5 (D), and total human Tau detected by sheep-anti human Tau (E) 
normalised to β-actin and expressed as fold change relative to Wt. (F) Protein blots of cleaved caspase-3, glial fibrillary acidic protein (GFAP) 
neuronal nuclei (NeuN). Protein band intensity quantification of cleaved caspase-3 (G), GFAP (H), and NeuN (I) normalised with their 
respective total β-actin and expressed as fold change relative to Wt. Data are represented as the mean ± SEM, n=6. Statistical comparisons 
were performed using one-way ANOVA and Tukey’s test. For human pTau, two-tailed unpaired t-test was used to compare pR5 and pR75KO 
mice. Statistical significance: *P<0.05, **P<0.01. 
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Figure 3. Synaptic proteins, neuronal markers and Tau kinase activity in pR75KO at 6 months. (A) Protein blots of kinases 
involved in Tau phosphorylation, GSK3β, RhoA and Cdk5 activators, p35 and p25 proteins in the forebrain of Wt, p75KO, pR5, and pR75KO 
mice. Protein band intensity quantification of inactive GSK3:GSK3β pS9 normalised with total GSK3β (B), Cdk5 activators, p25/p35 ratio (C), 
and active RhoA-GTP normalised with total RhoA (D). All band intensities showing B-D are expressed as fold change relative to Wt. F) Protein 
blots of post-synaptic protein, PSD-95 and pre-synaptic proteins, SNAP25 and VAMP2, tyrosine hydroxylase (TH) and choline acetyl 
transferase (ChAT). Protein band intensity quantification of PSD-95 (E), SNAP25 (G), VAMP2 (H), choline acetyl transferase (ChAT) (I), and 
tyrosine hydroxylase (TH) (J) normalised with total β-actin of respective blot and expressed as fold change relative to Wt. Data are 
represented as the mean ± SEM, n=6. Statistical comparisons were performed using one-way ANOVA and Tukey’s test. Statistical significance: 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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negative regulator of post-synaptic protein, PSD-95. A 
previous study showed that p75NTR is highly expressed in 
protein fraction from mouse hippocampus that was also 
rich in PSD-95 [46]. We have yet to show how the role 
of p75NTR influences PSD-95 transcription or post-
translational modification in pR5 mice. Cholinergic 
degeneration is associated with cognitive decline in AD 
and FTD [47] but western blot analysis of cholinergic 
neuron marker, choline-acetyl transferase (ChAT), in 
pR5 and pR75KO mice, showed no changes (Figure 3I). 
pR5 mice did not show any reduction in ChAT levels 
similar to a previous finding [47]. We also checked the 
levels of tyrosine hydroxylase (TH), which is expressed 
in dopaminergic neurons in the substantia nigra and 
striatum [48]. Loss of TH-positive neurons is a 
characteristic of a severe form of FTD present in K396I 
Tau mutant mice [49]. We did not observe any 
difference in TH expression levels in all strains (Figure 
3J), similar to another study that examined TH protein 
changes in wild type and p75KO mice [50]. At 6 months 
of age, knocking out of p75NTR increased the levels of 
post-synaptic proteins, like PSD-95 but had no impact 
on presynaptic proteins or the population of cholinergic 
and dopaminergic neurons. 
 
Reduction of Tau phosphorylation, and kinase 
activities in pR75KO mice at 9 months of age 
 
To determine if the reduction in phosphorylated Tau 
levels and kinase activities were reflected in older 
animals, we also investigated the protein levels of the 
kinases and synaptic markers in half-brain homogenates 
of 9 months old mice by western blot analysis (Figure 
4A). Consistent with the results in 6 months old mice, 
Tau hyperphosphorylation at sites S262 (p=0.0111), 
S396 (p=0.0072) and S202/T205 (AT8) (p=0.0255) were 
all significantly reduced in pR75KO mice (Figure 4B) 
compared to pR5 mice. Again, using anti human Tau 
(HT7) which recognizes phosphorylated and non-
phosphorylated Tau (Figure 4C) we found the band 
intensity was weaker in pR75KO mice compared to pR5 
mice (p=0.0077). However, using specific antibodies 
against total mouse Tau (Figure 4D) and total human Tau 
(Figure 4E), we found the intensities were unaffected. 
Similar to 6 months old animals, phosphorylated mouse 
Tau at S396 and S202/T205 (AT8) were also unaffected 
in 9 months old animals (Supplementary Figure 2C–2D). 
 
Inactive GSK3β (pS9) levels were significantly higher in 
p75KO (p=0.0001) and pR75KO mice (p=0.0142) 
(Figure 4F, 4G) compared to pR5 mice, suggesting that 
GSK3β is involved in Tau hyperphosphorylation in 9 
months old pR5 mice. RhoA-GTP was significantly 
higher in pR5 mice compared to Wt (p=0.0171) and 
pR75KO (p=0.0126) (Figure 4F, 4H). The same 
reduction in p25/p35 ratio was observed in Wt 

(p=0.0181) and p75KO (p=0.0322) and pR75KO mice 
(p=0.0171) compared to pR5 mice (Figure 4F, 4I). These 
results confirmed that p75NTR functions in the 
hyperphosphorylation of Tau during aging possibly 
through the activation of kinases such as GSK3β, ROCK 
and Cdk5. Similarly, the level of cleaved caspase-3 was 
also elevated in aged pR5 mice (p=0.0066) compared to 
Wt mice (Figure 4F, 4J) while it was significantly 
reduced in aged pR75KO mice compared to pR5 mice 
(p=0.0049). In the older animals tested, p75NTR did not 
seem to influence presynaptic and post-synaptic 
proteins. SNAP25 and VAMP2 remained unchanged in 
all strains (Figure 4F, 4L, 4M). Although there is a 
subtle increase in PSD-95 in pR75KO mice, the increase 
remained insignificant (Figure 4F, 4K). TH, GFAP and 
ChAT remained unchanged in 9 months old animals 
similar to 6 months old animals (Figure 4F, 4N–4P). 
These results provide further evidence that the presence 
of p75NTR could promote the pathways that lead to the 
phosphorylation of Tau including activation of kinases, 
such as GSK3β, RhoA and Cdk5, and caspase-3. 
 
ProBDNF- and Aβ-induced Tau 
hyperphosphorylation requires p75NTR 

 
Amyloid beta induces Tau hyperphosphorylation, neurite 
degeneration and neurotoxicity, leading to AD [51–53]. 
The neurotoxic activity of Aβ is in part through p75NTR 

[54–57]. p75NTR is also a receptor to neurotrophins such 
as proBDNF. It is reported that proBDNF binds to 
p75NTR with greater affinity than mature neurotrophins 
[58, 59], inducing apoptosis by activating the receptor 
complex, p75NTR and sortilin [58]. Therefore, we 
investigated whether Aβ and proBDNF has a role in 
p75NTR-dependent Tau phosphorylation using SH-SY5Y-
APP cells and primary cortical neurons, isolated from 
pR5 and pR75KO mice. We treated SH-SY5Y-APP with 
Aβ42, proBDNF and a p75NTR antagonist, p75ECD-Fc 
(ECD). SH-SY5Y-APP cells were exposed to 1.0 µM 
Aβ, 30 ng/mL proBDNF (proB) and 30 ng/mL proBDNF 
with 10 µg/mL p75ECD-Fc (proBE) for 24 hours. The 
levels of phosphorylated Tau were determined by 
western blotting (Figure 5A). Amyloid beta treatment 
significantly increased hyperphosphorylation of human 
Tau at sites S262 (Figure 5B, p=0.0014), S396 (Figure 
5C, p=0.0053) and AT8 (Figure 5D, p=0.0049) compared 
to non-treated SH-SY5Y-APP cells. ProBDNF treatment 
increased S396 (Figure 5C, p=0.0093) and S202/T205 
(AT8) (Figure 5D, p=0.0047) compared to non-treated 
SH-SY5Y-APP cells. On the other hand, p75ECD-Fc 
treatment does not seem to reduce proBDNF-induced 
phosphorylation of Tau in these cells. Next, we also 
treated cortical neurons from pR5 and pR75KO mice 
with different doses of Aβ (0.3 μM, 2.0 μM) (Figure 5E). 
Amyloid beta increased S262 levels in pR5 cortical 
neurons at both concentrations at 0.3 μM compared to Wt 
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Figure 4. Knock out of p75NTR attenuated Tau hyperposphorylation and the elevated Tau kinases and caspase-3 activities observed in pR5 
mice with P301L Tau at 9 months. (A) Protein blots of phosphorylated and non-phosphorylated human Tau in in the forebrain of Wt, p75KO, 
pR5, and pR75KO mice. (B) Protein band intensity quantification of phosphorylated human Tau at sites S262, S396 and S202/T205 (AT8) 
normalised to the total human Tau and expressed as fold change relative to pR5. Protein band intensity quantification of total human Tau and 
pTau detected by HT7 (C), total mouse Tau detected by Tau5 (D), and total human Tau detected by sheep-anti human Tau (E) normalised to β-
actin and expressed as fold change relative to Wt. (F) Protein blots of kinases involved in Tau phosphorylation, GSK3, RhoA and Cdk5-activators, 
p25 and p35 proteins in the forebrain of Wt, p75KO, pR5, and pR75KO mice; of cleaved caspase-3; and of post-synaptic protein, PSD-95 and 
pre-synaptic proteins, SNAP25 and VAMP2, GFAP, TH ChAT. Protein band intensity quantification of inactive GSK3: GSK3β pS9 normalised with 
total GSK3β (G), active RhoA-GTP normalised with total RhoA (H), and Cdk5 activators, p25/p35 ratio (I). All band intensities showing (G–I) are 
expressed as fold change relative to Wt. Protein band intensity quantification of cleaved caspase-3 levels (J), PSD-95 (K), SNAP25 (L), VAMP2 
(M), TH (N), GFAP (O), ChAT (P) normalized with their respective β-actin and expressed as fold change relative to Wt. Data are represented as 
the mean ± SEM, n=3. Statistical comparisons were performed using one-way ANOVA and Tukey’s test. For human pTau, two-tailed unpaired t-
test was used to compare pR5 and pR75KO mice. Statistical significance: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 



www.aging-us.com 6770 AGING 

(Figure 5F, p=0.0026) but not in cortical neurons of 
pR75KO mice (Figure 5G). Similarly, proBDNF 
increased S262 (p=0.0001) (Figure 5I) and S396 (Figure 
5J, p=0.0260) in pR5 neurons but not pR75KO neurons 
(Figure 5K, 5L) compared to non-treated cortical 
neurons. The addition of p75ECD-Fc attenuated S262 
levels (Figure 5I, p=0.0016). However, the phospho-
rylation at S396 after proBDNF and p75ECD-Fc seemed 
to be reduced but did not reach statistical significance 
(p=0.0612) in pR5 neurons (Figure 5J). We also 
investigated the effect of proBDNF on mouse Tau 
phosphorylated at S396 using Wt neurons and we also 
found that proBDNF increased mouse Tau phospho-
rylation at S396 (p=0.0447) while the addition of 
p75ECD-Fc reversed the effect of proBDNF (p=0.0194) 
(Figure 5M, 5N). This indicates that Aβ- and proBDNF-
induced Tau phosphorylation is specifically through 
p75NTR. To determine if p75ECD-Fc alone affects the 
basal level of phosphorylated Tau, we exposed pR5 
neurons to 10 µg/mL of p75ECD-Fc and Human-Fc 
(negative control) (Figure 5O). We did not observe any 
effect on S262 and S396 levels (Figure 5P, 5Q). Overall, 
these results suggest that p75NTR is required for Aβ and 
proBDNF-induced phosphorylation of Tau. 
 
Inhibition of kinases downstream of p75NTR 
attenuates Aβ-mediated Tau phosphorylation 
 
SH-SY5Y-APP cells were used to determine the role of 
kinases in Aβ-mediated Tau hyperphosphorylation. Cells 
were subsequently treated with 1.0 μM Aβ42 and  
with various kinase inhibitors for JNK (SP600125), 
ROCK (Y27632), PI3K (LY294002) and PKA (KT5720)  
at the indicated concentrations (Figure 6A). Tau 
phosphorylation at S262 was detected by western blotting 
and corrected per total human Tau protein. Our 
preliminary results showed that Aβ treatment 
significantly increased S262 phosphorylation (p=0.0016), 
but was reduced when treated by the kinase inhibitors 
(Figure 6B). This result suggests that Aβ-induced 
phosphorylation of Tau involves activity of JNK, ROCK, 
PKA and PKC in vitro. We further confirmed this result 
using pR5 primary cortical neurons. We found that 
inhibitors for JNK (SP600125: 10, 50 μM), ROCK 
(Y27632: 10, 50 μM), PKA (KT5720: 10 μM), PKC 
(GF109203X; 10 μM) and PI3K (LY294002; 20 μM) 
inhibited Aβ-mediated Tau phosphorylation (Figure 6C, 
6D). To determine whether the kinase inhibitors affect 
the basal level of phosphorylated Tau at sites S262 and 
S396, we treated pR5 cortical neurons with inhibitors of 
ROCK (Y27632; 10, 50 μM), PKA (KT5720: 200 nM, 
10 μM), PKC (GF109203X; 10 μM) and PI3K 
(LY294002; 20 μM) (Figure 6E). Interestingly, basal 
S262 levels (Figure 6F) and S396 (Figure 6G) were  
also significantly reduced, suggesting that Tau 
phosphorylation is mediated through these kinases. 

A previous report showed that in AD, reduced PKA 
activation caused by overexpressed calpain resulted in 
decreased cAMP-response element-binding protein 
(CREB) function [60]. Decreased CREB is associated 
with cognitive impairment in AD [60], thus we also 
investigated whether PKA activity is altered in 6 months 
old pR5 mice with p75NTR deletion. We found that PKA 
is activated as shown by increased phosphorylation at 
T197 [61] in pR75KO mice compared to pR5 mice 
(Figure 6H), supporting a potential role of p75NTR in the 
regulation of PKA activity in pR5 mice (Figure 6I). 
However, at 9 months, PKA activity levels in pR75KO 
mice were comparable to pR5 (Supplementary Figure 5). 
This indicates that the increase in PKA activation as a 
result of p75NTR deletion is not a continuous process and 
the changes observed may be age-dependent. 
 
pR5 mice displayed hyperactivity but unaltered 
cognition 
 
To assess the difference in spatial reference memory 
among the mouse group, mice were subjected to Morris 
Water maze test, a commonly used test that relies on an 
intact hippocampus [62] at 3 and 6 months of age. Wild 
type and p75KO mice were used as controls for 
comparison of basal behavior. At the visible platform 
trial performed on Day 1, escape latency, path-length or 
total distance, and swimming speed were recorded. 3 
months old mice did not show any differences in 
performance on Day 1 (Figure 7A, 7B, Supplementary 
Figure 6A). During this trial, mice are not expected to 
show any difference, however, the phenotypic 
characteristic of p75KO might account for the difference 
as these animals have a greater susceptibility to stress 
[63]. However, at 6 months of age, p75KO mice have 
early signs of impairment as shown by the longer 
distance travelled (Figure 7C, p=0.0059) and latency to 
find the visible platform (Figure 7D, p=0.0343) and slow 
swimming speed compared to Wt mice (Supplementary 
Figure 6B, p=0.0013) (one-way ANOVA, Tukey’s post 
hoc test, p=0.05). In addition, the difference is also 
because the activity of Wt and pR5 mice were found 
increased at 6 months as indicated by the reduction in 
distance travelled and latency time to find the platform 
(Figure 7A–7D). Most of the p75KO mice tested showed 
stress-related behavior and had a tendency to float on the 
water instead of swimming. 
  
Training was done during the next 4 consecutive days 
with the platform submerged 1 cm below the surface. 
During the training, 3 months old p75KO mice covered 
the longest distance compared to Wt (p=0.0010) and pR5 
(p=0.0016) while pR5 and pR75KO mice performed 
similarly to Wt mice (Figure 7E). The latency to find  
the platform of Wt and pR5 mice were comparable while 
p75KO (p<0.0001) and pR75KO mice (p=0.0256) had
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Figure 5. p75NTR ligands, Aβ and pro-BDNF, induced Tau hyperphosphorylation of neurons in vitro. (A) Protein blots of 
phosphorylated human Tau at sites S262, S396 and S202/T205 (AT8) in SH-SY5Y-APP cell. Treatments were control (0), Aβ42 (1.0 μM), proBDNF 
(30 ng/mL, proB), and proBDNF (30 ng/mL,) with p75ECD-Fc (10 μg/mL) (proBE). Protein band intensity quantification of phosphorylated human 
Tau at S262 (B), S396 (C) and S202/T205 (AT8) (D) in SH-SY5Y-APP cell line normalised with total human Tau and expressed as fold change relative 
to non-treated control (0). Data are represented as the mean ± SEM, n=3. (E) Protein blots of phosphorylated human Tau at site S262 in primary 
cortical neurons from pR5 and pR75KO mice treated with different concentrations of Aβ42 (0, 0.3, 2.0 μM). Protein band intensity quantification 
of phosphorylated human Tau at S262 in neurons from pR5 (F) and pR75KO (G) mice normalized with total human Tau and expressed as fold 
change relative to non-treated control (0). Data are represented as the mean ± SEM. Experiment was done in 3 replicates, each replicate has 
n=12 animals. (H) Protein blots of phosphorylated human Tau at sites S262 and S396 in primary cortical neurons from pR5 and pR75KO mice 
treated with proB and proBE. Protein band intensity quantification of phosphorylated human Tau at S262 and S396 in neurons from pR5 (I, J) and 
pR75KO (K, L) mice normalized with total human Tau and expressed as fold change relative to non-treated control (0) Data are represented as the 
mean ± SEM. Experiment was done in 3 replicates, each replicate has n=12 animals. (M) Protein blots of phosphorylated human Tau at site S396 
in primary cortical neurons from Wt mice treated with proB and proBE. (N) Protein band intensity quantification of phosphorylated human Tau 
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S396 in Wt mice normalized with total human Tau and expressed as fold change relative to non-treated control (0). Data are represented as the 
mean ± SEM. Experiment was done in 3 replicates, each replicate has n=12 animals. (O) Protein blots of phosphorylated human Tau at sites S262 
and S396 in primary cortical neurons of Wt mice treated with p75ECD-Fc (10 μg/mL, ECD) and Human-Fc (10 μg/mL). Protein band intensity 
quantification of phosphorylated human Tau at sites S262 (P) and S396 (Q) in Wt mice normalized with total human Tau and expressed as fold 
change relative to non-treated control (0). Data are represented as the mean ± SEM, n=6 animals. All statistical comparisons were performed 
using one-way ANOVA and Tukey’s test. Statistical significance: Statistical significance: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
 

longer latency than Wt mice (Figure 7F). The swimming 
speeds of all mice groups were similar at 3 months of age 
(Supplementary Figure 6C). A change in behavior became 
apparent at 6 months of age. p75KO mice covered 
significantly longer distance compared to Wt (p=0.0217), 
pR5 (p<0.0001, not indicated on the graph) and pR75KO 
mice (p=0.0079, not indicated on the graph) while Wt, 
pR5 and pR75KO mice covered similar distance (Figure 
7G). In addition, p75KO mice took the longest time to 
find the platform as indicated by the latency time which 
was significantly longer than Wt mice at 6 months of age 
(p=0.0355). Wt mice showed similar latency to find the 
platform in comparison to pR75KO mice (Figure 7H). 
pR5 mice showed the shortest latency compared to Wt 
(p=0.0013) and p75KO mice (p<0.0001) while pR75KO 
mice also showed decreased latency compared to p75KO 
mice (p=0.0003). Interestingly, pR5 mice were the fastest 
swimmers and swam significantly faster than Wt 
(p<0.0001), p75KO (p=0.0003, statistical significance is 
not shown on the graph to avoid too many symbols) and 
pR75KO mice (p=0.0015) at 6 months of age 
(Supplementary Figure 6D). These data suggest p75KO 
mice showed the greatest cognitive impairment (Figure 
7G, 7H) compared to Wt. Interestingly, pR5 mice were 
faster than Wt with reduced latency time and increased 
swimming speed (Figure 7H, Supplementary Figure 6D) 
despite covering similar distances as Wt mice (Figure 
6G). This type of hyperactivity displayed by pR5 mice is 
also another evidence of an altered exploratory behavior 
[62]. However, during the Probe test, no difference in 
memory was observed among mice groups at both ages 
(Figure 7I–7L). The memory impairment in our animal 
models may not be severe enough at these ages to be 
shown using the MWM Test. Overall, the knockout of 
p75NTR impairs spatial learning similar to a previous 
finding [64] as we found that 3 and 6 months old p75KO 
mice displayed increased distance covered (Figure 7E, 
7G) and latency time (Figure 7F, 7H) to find the platform 
versus Wt and pR5 mice respectively. In addition, the 
knockout of p75NTR also reverses the hyperactivity 
observed in P301L Tau model [65], as indicated by the 
latency time (Figure 7H) and the pattern of the swimming 
speed in pR75KO which were not significantly different 
to Wt mice (Supplementary Figure 6D). 
 
DISCUSSION 
 
The neurotrophin receptor p75NTR has been found to 
mediate critical pathological conditions in AD, such as 

(1) neurite degeneration [55, 66], (2) neuronal death via 
Aβ [54, 67, 68] and via proNGF [55, 69, 70], and (3) 
increased Aβ production [71, 72]. It has also been  
shown that the use of antibody directed against the 
extracellular domain of p75NTR inhibited Aβ-induced 
neuronal death [54, 55]. The colocalization of p75NTR 

with phosphorylated Tau suggests that the receptor could 
potentially induce more signaling towards NFT 
formation in AD [29]. However, the mechanisms by 
which p75NTR modulates Tau hyperphosphorylation 
remain to be further elucidated. By deleting p75NTR in 
pR5 mice, human Tau hyperphosphorylation was 
significantly reduced while total human Tau protein 
expression was unaffected. We have also found that 
knocking out p75NTR also attenuated kinase activities of 
GSK3, Cdk5 and ROCK in pR5 mice at 9 months of age. 
Other kinases such as JNK, PI3K and PKC were also 
modulated by p75NTR in pR5 mice. We also found that 
p75NTR could also have a role at post-synaptic sites in 
younger pR5 mice. 
 
p75NTR regulates Tau phosphorylation and kinase 
activities 
 
We have found that the genetic reduction of p75NTR in 
pR5 mice resulted in the significant reduction of human 
Tau hyperphosphorylation. The reduction of human Tau 
phosphorylation in pR75KO mouse model as shown by 
reduced phosphorylation at Tau sites S262, S396 and 
S202/T205 (AT8) compared to pR5 mice suggests that 
p75NTR is a key receptor mediating this process. This 
process is regulated by several kinases such as GSK3, 
Cdk5, ROCK and potentially by JNK, PI3K, PKA and 
PKC. In pR5 mice at 9 months of age, the level of inactive 
GSK3β was elevated after p75NTR deletion. GSK3 kinase 
is a major kinase that phosphorylates Tau [73]. In 
previous studies, GSK3α and GSK3β were found to 
induce PHF-type hyperphosphorylation of Tau [74, 75]. 
GSK3β transgenic animals have also displayed increased 
Tau hyperphosphorylation and neurodegeneration [76]. 
We have also recently shown that the exposure of 
hippocampal neurons to proNGF, a ligand of p75NTR, 
could reduce pS9-GSK3β levels and increase Tau 
phosphorylation [77], which were also reduced in our 
pR75KO model. Other p75NTR ligand such as Aβ have 
been shown to induce GSK3β activation, which  
then activated Tau hyperphosphorylation and resulted in 
neuronal death at the hippocampus [76]. Older pR5  
mice also have decreased levels of active RhoA-GTP and
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Figure 6. Various kinase inhibitors attenuated Tau hyperphosphorylation of neurons in vitro. (A) Protein blot of phosphorylated 
human Tau at sites S262 in SH-SY5Y-APP cell line treated with or without Aβ42 (1 μM), and subsequently treated with several kinase inhibitors 
for JNK (SP600125, 10 and 50 μM), ROCK (Y27632, 10 and 25 μM), PI3K (LY294002, 20 μM), and PKA (KT5720, 10 μM) in the presence of Aβ42 

for 24 hours. (B) Protein band intensity quantification of phosphorylated human Tau at site S262 levels in SH-SY5Y-APP cell line. Data are 
represented as the mean ± SEM, n=3. (C) Protein blot of phosphorylated human Tau at sites S262 in primary cortical neurons from pR5 mice 
treated with or without with Aβ42 (0.3 and 2 μM), and subsequently treated with inhibitors for JNK (SP600125, 10 and 50 μM), ROCK (Y27632, 
10 and 25 μM), PKA (KT5720, 10 μM), PKC (GF109203X, 10 μM) and PI3K (LY294002, 20 μM) in the presence of Aβ42 (0.3 μM). (D) Protein 
band intensity quantification of phosphorylated human Tau at site S262 levels in primary cortical neurons from pR5 mice normalized with 
total human Tau and expressed as fold change relative to non-treated control (0). Data are represented as the mean ± SEM. Experiment was 
done in 3 replicates, each replicate has n=12 animals. (E) Protein blot of phosphorylated human Tau at sites S262 and S396 in primary cortical 
neurons from pR5 mice treated with inhibitors for ROCK (Y27632, 10 and 50 μM), PKA (KT5720, 200 nM and 10 μM), PKC (GF109203X, 10 
μM) and PI3K (LY294002, 20 μM). Protein band intensity quantification of phosphorylated human Tau at sites S262 (F) and S396 (G) in 
primary cortical neurons from pR5 mice normalized with total human Tau and expressed as fold change relative to non-treated control (0) 
Data are represented as the mean ± SEM. Experiment was done in 3 replicates, each replicate has n=12 animals. (H) Protein blot of PKA 
phosphorylated at site T197 and total PKA in 6 month old mice. (I) Protein band intensity quantification of phosphorylated PKA at site T197 
normalized with total PKA and expressed as fold change relative to Wt mice. Data are represented as the mean ± SEM, n=6. Statistical 
comparisons were performed using one-way ANOVA and Tukey’s test. Statistical significance: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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decreased p25/p35 ratio. The activation of ROCK, which 
phosphorylates Tau at threonine 245 (Thr245), Thr377 
and Ser409 [44], depends on the presence of RhoA-GTP. 
p75NTR interacts and activates RhoA, from its GDP-bound 
form to its GTP form, by displacing it from Rho-GDP 
dissociation inhibitor [45]. The absence of the full-length 
p75NTR in pR75KO mice resulted in the decreased 
conversion of RhoA-GDP to RhoA-GTP and sub-
sequently ROCK activation. In addition, we found that 
Cdk5 activity is reduced. The reduced Cdk5/p25 ratio in 
pR75KO animals also potentially supports the role of 
p75NTR in Cdk5 regulation of Tau hyperphosphorylation. 
A recent study has elucidated that the interaction of p35 

with p75NTR enhanced p25/Cdk5 signalling by promoting 
the dephosphorylation of p35 [78]. Thus, the knockout of 
p75NTR potentially suppresses the activity of kinases that 
are responsible for phosphorylating Tau. 
 
Inhibitors for kinases that are downstream of p75NTR can 
also block the Aβ-mediated hyperphosphorylation of 
Tau, similar to p75ECD. We showed that kinase 
inhibitors of JNK, ROCK, PKA, PKC and PI3K 
significantly reduced Aβ-induced and basal Tau 
phosphorylation. JNK activation leads to apoptosis, Tau 
hyperphosphorylation and amyloid plaque formation in 
AD [15]. The JNK/p38 pathway regulated by Aβ 

 

 
 
Figure 7. Deletion of p75NTR reversed hyperactivity in pR5 mice at 6 months. Wt, p75KO, pR5 and pR75KO mice at 3- and 6-months 
of age were subjected to MWM test. Performance of mice on Day 1 to locate the visible platform was assessed by measuring total distance 
travelled in meters (m) and escape latency in seconds (s) at 3 months (A and B) and at 6 months (C and D) of age. Performance of mice on 
training Days 2-5 to locate the platform where it is submerged was assessed by measuring the total distance travelled and the escape latency 
during training at 3 months (E and F) and 6 months (G and H) of age. To determine memory impairment in mice, Probe Test was performed 
where the number of island entries or platform crossing and the percentage of time spent at the platform area by each mouse, were 
recorded at training Day 6, at 3 months (I and J) and 6 months (K and L) of age. Data are represented as the mean ± SEM, n=12. Statistical 
comparisons were performed using one-way (Day 1 and Probe Test) or two-way ANOVA (Training) and Tukey’s test. Statistical significance: 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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activates p53 and translocates nuclear factor-kappaB 
(NF-κB) via p75NTR [79–81], leading to Tau pathology 
[82, 83]. Thus, in the absence of full-length p75NTR in 
pR75KO mice, Tau hyperphosphorylation via JNK is 
reduced or prevented. PKA activity in AD 
phosphorylates Tau early during paired helical filament 
formation [84]. On the other hand, PKA activity could 
also prevent Tau hyperphosphorylation as it can 
physically associate and phosphorylate GSK3 after 
cAMP activation [85]. This is further supported by our in 
vivo results showing that PKA activity is increased in 
p75KO and pR75KO mice; these results are consistent 
with the elevated phosphorylated GSKβ-pS9 (inactive 
kinase) detected in both strains at 6 months of age, which 
agrees with a recent study demonstrating that the deletion 
of p75NTR resulted in the dissociation and activation of 
the catalytic subunit of PKA [86]. While GSK3β activity 
did not increase in pR5 mice compared to Wt, it was 
evident that p75NTR plays a role in its activation and in 
regulating PKA activity which is upstream of GSK3β and 
involved in GSK3β phosphorylation/inactivation. This 
explains the upregulation of PKA activity in p75KO and 
pR75KO mice at 6 months shown in Figure 6I and the 
subsequent increase in phosphorylated GSK3β of these 
mice at 9 months (Figure 4G). In a previous study, the 
inhibition of PI3K and PKC resulted in over-activation of 
GSK3β in vivo, leading to Tau hyperphosphorylation and 
spatial memory impairment [87]. However, several 
studies showed opposing results on the role of PKC in 
GSK3β. In another study, PKC partially inhibited 
GSK3β-induced phosphorylation of Tau at the 
S202/T205 (AT8) and Thr181 sites, but enhanced the 
phosphorylation of Tau at Thr231 [88, 89]. Our result 
confirmed that PKC inhibition in cells resulted in reduced 
Tau phosphorylation. The activation of PI3K/Akt 
signaling in vitro and in vivo is known to inactivate 
GSK3β and cause reduced Tau phosphorylation [18, 20, 
21, 90]. It is also suggested that the role of p75NTR for 
neuroprotection against Aβ occurs in a PI3K-dependent 
manner [91]. However, our findings contradict this 
neuroprotective role, rather PI3K inhibition resulted in a 
decrease in Tau phosphorylation in Aβ-treated cell line 
and cortical neurons, as well as in non-treated cortical 
neurons. One likely explanation is that in pR5 mice, the 
inhibition of PI3K could activate other protein kinases 
favoring Tau phosphorylation. We did not examine the 
endogenous level of PI3K/Akt signals in our animal 
models so further investigation of this kinase would shed 
light on the role of p75NTR in PI3K/Akt signaling in pR5 
mice. 
 
Synaptic dysfunction was not observed in p75KO 
and pR5 mice 
 
The human P301L mutation is the key pathogenic factor 
in apoptosis and astrocytosis in pR5 mouse model [34]. 

This mutation also leads to increased levels of cleaved 
caspase-3, which is often co-localized with Tau [92]. 
Caspase activation has also been reported to truncate 
Tau, resulting in the generation of Tau aggregates and 
inducing tangle formation [93]. The reduction of cleaved 
caspase-3 levels with the knockout of p75NTR in this 
study in 9 months old pR75KO mice further supports the 
regulatory function of the receptor’s extracellular domain 
in activating caspases and mediating neural cell death 
[94]. Although caspase-3 activity was increased in pR5 
mice and subsequently attenuated in pR75KO, we did not 
see any change in expression of neuronal and astrocyte 
markers. Since not all cleavage of proteins by caspase-3 
will lead to apoptosis, this result is not sufficient to 
conclude that the P301L human Tau mutation induced 
neuronal apoptosis in pR5 mouse model at 6 and 9 
months of age. However, our work further supports the 
recent work done by Means JC et al., 2017 [95] showing 
the increase in caspase-3 activity correlated with the 
increase in truncated Tau, which is responsible for NFT 
formation, in aged mice. 
 
In animal models of AD and Tauopathy, synaptic 
dysfunction and decreased levels of synapse proteins are 
observed and the increased level of phosphorylated Tau 
in the synapses has direct correlation with dementia [96]. 
We found that knockout of p75NTR did not alter the 
expression of presynaptic proteins SNAP-25 and 
VAMP2 but increased the post-synaptic protein, PSD-95 
in 6 months old pR75KO mice. However, the increase in 
PSD-95 was not reflected in older animals. 
Phosphorylated Tau is suggested to physiologically link 
with PSD-95 through association with Fyn in a complex 
with N-methyl-D-aspartate receptors (Fyn-NMDR) at the 
dendrites [97, 98]. When phosphorylated pathologically, 
Tau shifts from dendrites to post-synaptic sites, inducing 
neurotoxicity [99]. In pR75KO mice, the increased PSD-
95 level is accompanied by reduction in phosphorylated 
Tau. It is possible that p75NTR contributes to microtubule 
dynamics in post-synaptic sites potentially through PSD-
95, altering Tau function. In another report, hippocampal 
neurons treated with BDNF, another p75NTR ligand, 
showed increased microtubule invasion of dendrites that 
results in the increased expression of PSD-95, a marker 
for synaptic strength [100]. The role of p75NTR in 
microtubule dynamics and Tau phosphorylation in 
synapses warrant further investigation. 
 
Tau hyperphosphorylation induced by proBDNF 
and Aβ is mediated through p75NTR 
 
We further investigated whether Tau hyper-
phosphorylation induced by proBDNF and Aβ is 
mediated through their interaction with the receptor, 
p75NTR. The function of proBDNF/p75NTR interaction in 
pR5 mice has not been shown. We found that treatment 
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of SH-SY5Y-APP cells and primary cortical neurons 
from Wt mice with Aβ and proBDNF increased Tau 
phosphorylation, but this increase was blocked  
by p75ECD, confirming that p75NTR mediates 
phosphorylation through ligand binding. Moreover, 
using cortical neurons from pR5 and pR75KO mice, we 
were able to show that Tau phosphorylation is p75NTR-
dependent (Figure 5H–5J). 
 
pR5 mice displayed hyperactivity behaviors which 
were reversed after p75NTR deletion 
 
pR5 mice mimic the Tau pathology observed in human 
AD such as Tau hyperphosphorylation, somato-dendritic 
localization of Tau and formation of NFTs [35, 101]. pR5 
mice have been demonstrated to develop impairment in 
spatial reference memory tested by MWM test at 6 and 11 
months old [62]. In our study pR5 mice did not present 
with learning/memory impairment but showed an increase 
in hyperactivity at 6 months. In fact, learning impairment 
was more evident in p75KO mice consistent with our 
previous study [67]. The reason could be that p75NTR is a 
critical receptor for NGF function, since NGF plays an 
important role in cognition. 
 
One limitation of this work is that we were not able to 
determine any cognitive impairment of pR5 mice at 3 
and 6 months of age. This could be due to the difference 
in the breeding and percentage of C57BL6 background 
in the animals we tested compared to other laboratories 
and behavioral performance of Wt mice tested. In 
previous reports, mice harboring P301L Tau mutation at 
the ages 5 to 7 months old or before the onset of 
paralysis and cognitive impairment perform better than 
the control strains, suggesting that the presence of 
human Tau could initially improve mice cognition [102, 
103]. In this study, we also found that pR5 mice tend to 
perform better than Wt mice however when p75NTR is 
knocked out, the hyperactivity observed in these mice 
was reverted to the level comparable to Wt. To better 
demonstrate the impact of deleting p75NTR in pR5 mice, 
using older animals >12 months old may be more 
informative as the activity of GSK3β, and Cdk5 kinases 
responsible for the human Tau phosphorylation were 
found attenuated in pR5 mice with p75NTR deletion at 9 
months rather than at 6 months. 
 
CONCLUSIONS 
 
In summary, our results show that p75NTR plays a 
critical role in human Tau hyperphosphorylation in vitro 
and in vivo in pR5 mice. Thus, the new model, pR75KO 
mice is suitable and useful in understanding the 
mechanism of Tau hyperphosphorylation in the absence 
of neurodegenerative ligands such as high levels of Aβ 
and proneurotrophins. More importantly, this model 

uncovers the direct link between p75NTR and Tau 
hyperphosphorylation. The multiple roles of p75NTR in 
signal transduction makes it a key candidate for drug 
development aiming to prevent, reduce or reverse 
Tauopathies. 
 
MATERIALS AND METHODS 
 
Animals 
 
To elucidate the role of p75NTR in Tau phosphorylation, 
pR5 mice with the expression of P301L mutation of 
human Tau [34, 35] were crossed with 
p75NTR/ExonIII−/− (p75KO), a model expressing the 
short form of p75NTR, which lacks three of the four 
cysteine-rich domains with the first cysteine region 
followed by the stalk, transmembrane and intracellular 
domain, to generate pR5/p75-/- (pR75KO) mice [104, 
105] (Figure 1A). The pR5 mice were provided by Prof. 
Jurgen Goetz (Queensland Brain Institute, The 
University of Queensland, Brisbane, Queensland, 
Australia) [34, 62]. Resulting pR5 mice with p75 
heterozygous gene were backcrossed with p75KO mice 
to derive pR75KO mice. Genotyping of animals was 
performed by PCR (Figure 1B). The absence of full-
length p75NTR (Supplementary Figure 1) and the 
presence of the transgenic protein, human Tau (Figure 
1C) were also shown by immunohistochemistry (IHC) 
staining. C57BL6 (Wt) and p75KO mice were used as 
controls in all experiments. Equal number of males and 
females are used for all experiments except in cultured 
neurons. Ten animals were used for behavioural studies, 
6 animals for immunoblotting and 10 animals for 
immunostaining. Animals were maintained under 
standard conditions at 22 °C and a 12 h light:dark cycle 
with ad libitum food and water. Mice procedures were 
approved by the Animal Ethics Committee of the 
University of South Australia (U34/14) in accordance to 
the NHMRC guidelines. 
 
Immunohistochemistry (IHC) 
 
Hemi-brains were immersion-fixed in 4% 
paraformaldehyde for 24 h and dehydrated in 30% 
sucrose before embedding in optimal cutting temperature 
(OCT) compound. Sections were cut at 30 μm using a 
microtome-cryostat. Antigen retrieval method was 
performed using 0.1% SDS in PBS for 10 min followed 
by blocking in 5% BSA with 0.5% Triton-X in PBS 
overnight. Different sections were treated with the 
following primary antibodies: mouse anti-human Tau 
HT7 (Thermo Fischer Scientific Pty, Australia), rabbit 
anti-p75 ECD (9650) (a kind gift from Prof. Moses V. 
Chao, Department of Cell Biology, Skirball Institute, and 
New York, US). Sections were incubated overnight with 
primary antibodies at 4°C and further developed with 
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biotinylated secondary antibodies followed by treatment 
using the ABC Kit (Vector Laboratories, CA, USA). 
Sections were mounted on gelatin-coated slides, serially 
dehydrated with ethanol and xylene (3 min 75% ethanol, 
2 min 85% ethanol, 2 min 95% ethanol, 2 min 100% 
ethanol, 2 min 100% ethanol, 2 min xylene), and fixed 
with DPX mounting medium (Sigma-Aldrich, St Louis, 
MO, US). Images were obtained using Olympus BX53 
Light microscope (Olympus, NSW, Australia). 
 
Immunoblotting 
 
Frozen brain tissues were powdered in liquid nitrogen 
using a ceramic mortar and pestle, transferred into pre-
weighed homogenization tubes, and homogenized in 
radioimmunoprecipitation assay (RIPA) buffer (50 mM 
Tris (pH 7.4), 150 mM NaCl, 1% TritonX-100, 1% 
sodium deoxycholate, 0.1% SDS, 1% NP-40) containing 
protease inhibitor cocktail and phosphatase inhibitors 
(100 mg tissue in 1 mL buffer) using Precellys 24 Tissue 
Homogeniser (Bertin Technologies, France). Glass beads 
were added into the tube before the homogenization 
process. The homogenates were centrifuged at 13,000 
rpm for 20 min, at 4°C and the supernatants were 
collected and subjected to immunoblotting. Protein 
concentrations were measured in all samples using 
bicinchoninic acid assay (BCA kit) (Thermo Scientific, 
Rockford, USA) according to the manufacturer’s 
instructions. 10 μg of brain protein were separated on 
SDS polyacrylamide gel electrophoresis and then 
transferred to nitrocellulose membranes. The membranes 
were incubated with 5% skim milk (for non-
phophorylated proteins) or 5% BSA (for phosphorylated 
proteins) in Tris-buffered saline containing 0.1% Tween-
20 (TBST) for 1 h at room temperature. The blots were 
incubated with primary antibodies overnight at 4°C and 
washed with TBST for 10 min 3 times. Immunoblots 
were then incubated with corresponding secondary 
antibodies for 1 h at room temperature. The immunoblots 
were developed using enhanced chemiluminescence 
(ECL) detection reagent kit (Amersham, UK) and 
visualized using ImageQuant LAS 4000 imaging system 
(GE Healthcare, UK). Band densities were quantified 
using ImageJ software [106] relative to the density of 
control samples. Primary antibodies used were as 
follows: mouse anti-human Tau HT7 and mouse anti-pan 
Tau, Tau5 (Thermo Fischer Scientific Pty, Australia); 
phosphorylated Tau anti-S262 and anti-S396 (Abcam, 
VIC, Australia); mouse anti-Phospho-PHF-Tau 
pSer202+Thr205 monoclonal antibody (AT8) (Cat.No. 
MN1020, CiteAb, UK); sheep anti-human Tau (Antibody 
Technology Australia, Australia); cleaved caspase-3, 
rabbit anti-GSK3α/β (Ser21/9), rabbit anti-GSK3β pS9, 
rabbit anti-p25/35, anti-phosphorylated PKA T197, and 
anti-total PKA C-α (Cell Signalling Technology, QLD, 
Australia); rabbit affinity purified anti-ChAT was from 

Dr. John Oliver (Centre for Neuroscience, Department of 
Human Physiology, Flinders University); mouse anti-
tyrosine hydroxylase (TH) (Sigma-Aldrich, St Louis, 
MO, US) anti-neuronal nuclei antigen (anti-NeuN) 
(Merck Millipore, VIC, Australia); rabbit anti-glial 
fibrillary acidic protein (anti-GFAP) (DAKO, Denmark); 
rabbit anti-vesicle-associated membrane protein 2 
(VAMP2) and rabbit anti-synaptosomal-associated 
protein 25 (SNAP25) (OSS00035W, Osenses, Australia); 
anti-postsynaptic density protein 95 (PSD-95) (Sigma-
Aldrich, St Louis, MO, US);and mouse monoclonal anti-
RhoA-GTP and rabbit anti-total RhoA (New-East 
Biosciences, Malvern, Pennsylvania, US). Mature BDNF 
was from Santa Cruz Biotechnology (USA). Anti-
proBDNF was a kind gift from Prof. Ru-Ping Dai 
(Department of Anesthesiology, the Second Xiang-Ya 
Hospital of Central South University). Anti-β-actin 
(Sigma-Aldrich, St Louis, MO, US) or anti-
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
(Osenses, Australia) were used as loading controls. 
 
Oligomeric Aβ preparation 
 
In this study, oligomeric Aβ42 was prepared as previously 
described [107]. Briefly, 1 mg of synthetic Aβ42 peptide 
(Sigma-Aldrich) was dissolved in 1 mL 1,1,1,3,3,3-
hexafluoro-2-propanol (HFIP) (Sigma-Aldrich) and 
aliquoted in smaller volumes with the desired stock 
concentration (e.g. 5 or 20 μg). HFIP was evaporated 
completely in a fume hood and the Aβ pellets stored at -
80°C until use. To prepare the oligomeric species, Aβ42 
was dissolved in cold DMEM at 25 μM, vortexed 
vigorously and incubated at 4°C for 24 h. 
 
Cell and primary neuronal cultures 
 
SH-SY5Y-APP cells were from Prof. Nigel Hooper 
(Institute of Molecular & Cellular Biology, University of 
Leeds). Cells were grown in Dulbecco modified eagle’s 
medium (DMEM) (Invitrogen, Mulgrave, VIC, 
Australia) supplemented with 10% FBS and 2 mM L-
glutamine and 1% penicillin/streptomycin and incubated 
at 37°C in a humidified atmosphere of 95% air and 5% 
CO2. After overnight seeding of SH-SY5Y-APP cells in 
6-well plates (1x106/well) (Invitrogen, Mulgrave, VIC, 
Australia), cells were co-treated with 1.0 μM Aβ42 and 
kinase inhibitors: JNK inhibitor (SP600125), ROCK 
inhibitor (Y27632) and, PKA inhibitor (KT 5720) all 
obtained from Sigma-Aldrich (St Louis, MO, US), PI3K-
Akt inhibitor (LY294002, A.G. Scientific, San Diego, 
CA) and PKC inhibitor (GF109203X) (Tocris 
Bioscience, UK) for 24 h. Primary cortical neurons were 
obtained from Wt, pR5 and pR75KO pups aged 0-1 day. 
Cortical neurons were separated from cortices in DMEM 
on ice by using trypsin digestion at 37°C for a maximum 
of 20 min with agitation every 5 min. Digestion was 



www.aging-us.com 6778 AGING 

stopped by adding 15% fetal bovine serum (FBS). Cell 
debris were allowed to settle for 5-10 min, afterwards, 
cell suspension was collected and centrifuged at 2000 
rpm, 2 min at 4°C. Cells were re-suspended in 
Neurobasal medium (Invitrogen, Mulgrave, Australia) 
supplemented with 2% B27, 1% penicillin/streptomycin 
and 2 mM L-glutamine. The cortical neurons were then 
seeded on PDL-coated 6-well plates at 1.0 X106 cell per 
well for Western blotting. Cells were lysed in RIPA 
buffer. Neurons were treated at DIV4 (4 days in vitro), 
when primary neurons are considered mature, with either 
1.0 μM Aβ42, 50 ng/ml of proBDNF (Virovek, USA) or 
co-treated with p75ECD-Fc protein for 24 h. 
Supernatants were collected after centrifugation of the 
lysates at 14,000 rpm for 20 min at 4°C. Protein 
concentration was measured using BCA Assay Kit 
(Thermo Fischer Scientific, Rockford, USA). Equal 
amounts of protein mixed with 5 x SDS Loading buffer 
(0.2 M Tris-HCl, pH 6.8, 10% w/v SDS, 20% v/v 
glycerol, 5% β-mercaptoethanol, 0.05% w/v 
bromophenol blue) were boiled for 5 min and stored at -
20 °C until analysis. 
 
Behavioral analysis 
 
Morris Water Maze (MWM) test was performed 
according to published protocols with minor 
modifications [108, 109]. The test was conducted using a 
black circular pool with a diameter of 100 cm and height 
of 60 cm filled with water to provide a depth of 21 cm. A 
non-toxic tempera paint powder (Eckersley’s Art and 
Craft, Adelaide, SA) was used to make the water opaque. 
The water temperature was maintained at 22 ± 1°C. The 
tank was surrounded by a set of spatial cues [110]. The 
test consisted of one-day pre-training phase with 4 trials, 
4 days hidden platform trial with 4 trials and a probe test 
with single trial. During the pre-training phase, the 
platform fixed in the designated platform quadrant was 
placed 1 cm above the water level with a red flag to 
increase its visibility. Mice were allowed to swim for 60 
sec for each trial. If the mouse failed to find the platform 
within the allotted time, mice were gently guided towards 
the platform or placed gently onto the platform for 
additional 20 sec. Mice that found the platform were 
allowed to remain for 5 sec on the platform before 
returning them to their cages. During the platform trial, 
the platform was immersed 1 cm below the water level 
and similar steps performed during the pre-training were 
done. During the Probe test, the platform was removed 
and the mice starting position was at the furthest position 
from the platform and the mice were allowed to swim 
freely for 60 sec. The performance in all tasks was video-
recorded and analyzed by a computer-based video 
tracking system and image analyzing software, ANY-
maze (Stoelting, Co., Wood Dale, IL, USA). In platform 
trials, distance of path from the start location to the 

platform (in centimeters), latency of the time taken to 
reach the platform from the start location (in seconds) 
were measured, while in probe trials quadrant time 
(percentages of time spent in the platform quadrant) and 
platform crossings (the number of times that the mice 
crossed the exact location of the platform) were 
measured. 
 
Statistical analyses 
 
All data were presented as mean ± SEM. A majority of 
the western blot data was analysed using one-way 
ANOVA followed by Tukey’s post-hoc test, or 
Dunnet’s test when applicable. When comparing two 
groups, two-tailed unpaired t-test was also utilized. For 
behavioral phenotyping result, test was evaluated 
using either one-way ANOVA or two-way ANOVA 
(factors: genotype, and treatment) with Tukey’s post-
hoc test. Significance was set at p <0.05. For all 
figures, *p is <0.05, **p is <0.01, ***p <0.001 and 
****p is <0.0001. 
 
Abbreviations 
 
p75NTR: p75 neurotrophin receptor; AD: Alzheimer’s 
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SUPPLEMENTARY MATERIALS 
 

 
 

Supplementary Figure 1. p75NTR expression in mice. p75NTR expression detected by p75NTR ECD (9650) in (A–B) wild type (Wt), (C-D) 
p75KO, (E–F) pR5 and (G–H) pR75KO mice was mainly observed in the substantia nigra (SN) of Wt and pR5 mice. Scale bar = 200, 50 μm. 
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Supplementary Figure 2. Human Tau mutation and p75NTR deletion does not affect endogenous mouse Tau phosphorylation. 
Protein band intensity quantification of mouse pTau at S396 and at S202/T205 (AT8) of Wt, P75KO, pR5 and pR75KO mice at 6 months (Data 
are represented as the mean ± SEM, n=6) (A and B) and at 9 months (Data are represented as the mean ± SEM, n=3) (C and D). Statistical 
comparisons were performed using one-way ANOVA and Tukey’s test. Statistical significance: *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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Supplementary Figure 3. Astrocyte staining patterns were similar across all strains at 6 months. Brain sections from 6 months 
old mice were subjected GFAP IHC-DAB as GFAP is an astrocyte marker. Images were taken from the corpus collosum (CC), cortex (CTX), 
hippocampus regions (CA1, CA3) and dentate gyrus (DG) in brain sections of Wt, p75KO, pR5 and pR75KO mice. Scale bar = 50 μm. 
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Supplementary Figure 4. Mature neurons staining were similar across all strains at 6 months. Brain sections from 6 months old 
mice were stained with neuronal nuclei antigen marker, NeuN using IHC-DAB. Images were taken from the cortex (CTX), hippocampus 
regions (CA1, CA3) and dentate gyrus (DG) in brain sections of Wt, p75KO, pR5 and pR75KO mice. Scale bar = 50 μm. 
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Supplementary Figure 5. PKA activity in 9 months old mice. (A) Protein blot of PKA phosphorylated at site T197 and total PKA in 9 
months old mice. (B) Protein band intensity quantification of phosphorylated PKA at site T197 normalized with total PKA and expressed as 
fold change relative to Wt mice. Data are represented as the mean ± SEM, n=6. Statistical comparisons were performed using one-way 
ANOVA and Tukey’s test. Statistical significance: P=0.05 
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Supplementary Figure 6. Swimming speeds of mice – Morris Water maze test. Wt, p75KO, pR5 and pR75KO mice at 3 and 6 months 
of age were subjected to MWM test. Swimming speeds (m/s) of mice on Day 1 to locate the visible platform were assessed at 3 months (A) 
and at 6 months (B) of age. Swimming speeds (m/s) of mice on training Days 2-5 to locate the platform where it is submerged were assessed 
at 3 months (C) and 6 months (D) of age. Data are represented as the mean ± SEM, n=12. Statistical comparisons were performed using one-
way (Day 1 and Probe Test) or two-way ANOVA (Training) and Tukey’s test. Statistical significance: *P<0.05, **P<0.01, ***P<0.001, 
****P<0.0001. 
 


