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Background and Aims. Apolipoprotein A-I (ApoA-I), themain component of high-density lipoprotein (HDL), not only promotes reverse
cholesterol transport (RCT) in atherosclerosis but also increases insulin secretion in pancreatic β-cells, suggesting that interventions
which raise HDL levels may be beneficial in diabetes-associated cardiovascular disease (CVD). Previously, we showed that TNF-
related apoptosis-inducing ligand (TRAIL) deletion in Apolipoprotein Eknockout (Apoe-/-) mice results in diabetes-accelerated
atherosclerosis in response to a “Western” diet. Here, we sought to identify whether reconstituted HDL (rHDL) could improve
features of diabetes-associated CVD in Trail-/-Apoe-/- mice. Methods and Results. Trail-/-Apoe-/- and Apoe-/- mice on a “Western” diet
for 12weeks received 3 weekly infusions of either PBS (vehicle) or rHDL (containing ApoA-I (20mg/kg) and 1-palmitoyl-2-linoleoyl
phosphatidylcholine). Administration of rHDL reduced total plasma cholesterol, triglyceride, and glucose levels in Trail-/-Apoe-/- but
not in Apoe-/- mice, with no change in weight gain observed. rHDL treatment also improved glucose clearance in response to insulin
and glucose tolerance tests. Immunohistological analysis of pancreata revealed increased insulin expression/production and a
reduction in macrophage infiltration in mice with TRAIL deletion. Furthermore, atherosclerotic plaque size in Trail-/-Apoe-/- mice was
significantly reduced associating with increased expression of the M2 macrophage marker CD206, suggesting HDL's involvement in
the polarization of macrophages. rHDL also increased vascular mRNA expression of RCT transporters, ABCA1 and ABCG1, in Trail-
/-Apoe-/- but not in Apoe-/- mice. Conclusions. rHDL improves features of diabetes-associated atherosclerosis in mice. These findings
support the therapeutic potential of rHDL in the treatment of atherosclerosis and associated diabetic complications. More studies are
warranted to understand rHDL’s mechanism of action.

1. Introduction

Diabetes is associated with an increased risk of cardiovascu-
lar diseases (CVD), including atherosclerosis. In diabetes,
the pathophysiological mechanisms that promote atheroscle-
rosis and CVD are numerous and in part still not completely
clarified [1–3]. Diabetic patients have elevated plasma levels
of low-density lipoprotein (LDL) and triglycerides and low
levels of high-density lipoprotein (HDL) [4]. Early animal

and human studies have shown HDL infusions to have favor-
able cardiovascular effects [5, 6], even in diabetes. Infusing
reconstituted HDL (rHDL) or increasing HDL levels with
overexpression of apolipoprotein A-I (ApoA-I), the major
HDL apolipoprotein, reduced plaque size by altering the
histological composition of experimental lesions in animal
models of atherosclerosis and restenosis [7–12]. The earliest
proof-of-concept studies in humans demonstrated that
infusing ApoA-I, rHDL, and its delipidated form could
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inhibit LDL oxidation, modulate inflammation, and elicit
plaque regression [13–15]. Furthermore, ApoA-I protected
against diabetes by reducing stress-induced pancreatic β-cell
apoptosis and increasing insulin secretion [16], and HDL
attenuated islet cell inflammation in type 2 diabetes via ATP-
binding cassette transporter-A1 and ATP-binding cassette
transporter-G1 (ABCA1 and ABCG1) [16, 17]. In addition,
ApoA-I improved insulin sensitivity with decreased systemic
and hepatic inflammation in mice fed a high-fat diet [18]. Col-
lectively, these suggest that interventions which raise HDL
levels may be beneficial in lowering cholesterol, reducing ath-
erosclerosis, and improving glucose homeostasis in diabetes.

TRAIL is a member of the TNF superfamily and was
initially thought to selectively induce apoptosis in cancer cells.
However, more recently, it has been discovered that TRAIL is
implicated in coronary artery disease, acute coronary syn-
dromes, and diabetes [19–22]. Studies have shown that TRAIL
deficiency is associated with type-1 autoimmune diabetes in
mice [23, 24]. Injections of soluble TRAIL receptor (an antag-
onist of TRAIL signaling) into nonobese diabetic (NOD) mice
or streptozotocin-treated Trail-/- mice increased incidence of
diabetes [23, 24]. In addition, TRAIL deficiency in mice on a
“Western” style high-fat diet for 12wmarkedly accelerated ath-
erosclerosis and promoted features of diet-induced diabetes
including weight gain, hyperglycemia, hypoinsulinemia, and
pancreatic β-cell dysfunction [25]. Using this mouse model of
physiologically induced diabetes-associated atherosclerosis,
we sought to determine the effects of reconstituted HDL
(rHDL) on improving atherosclerosis and features of diabetes.

2. Methods

2.1. rHDL Generation. HDL was isolated from autologously
donated, pooled blood samples from normal healthy donors
(Gribbles Pathology, South Australia, Australia) by sequen-
tial ultracentrifugation in the 1:063 < d < 1:21 g/mL density
range and delipidated using standard techniques [26].
ApoA-I was isolated by anion chromatography on a Q
Sepharose Fast Flow column (GE Healthcare Biosciences,
Waukesha, WI, USA) attached to a fast protein liquid
chromatography system [27]. Discoidal rHDLs containing
ApoA-I complexed to 1-palmitoyl-2-linoleoyl phosphatidyl-
choline (PLPC) (Avanti Polar Lipids, Alabaster, AL, USA)
were prepared using the cholate dialysis method [28]. The
phospholipid :ApoA-I molar ratio was 100 : 1. The resulting
rHDL was dialysed extensively against endotoxin-free
phosphate-buffered saline (PBS; pH7.4) before use.

2.2. Animals. Male Trail-/-Apoe-/- or Apoe-/- mice aged 6
weeks and weighing approximately 18 to 20 g were placed
on a high-fat high-cholesterol “Western” diet (Semi-Pure
Rodent Diet SF00-219; 22% fat, 0.15% cholesterol; Specialty
Feeds, Glen Forrest, WA, Australia) as previously described
[25]. After 10 weeks on a Western diet, mice were randomly
assigned to receive either PBS vehicle or rHDL (20mg/kg) for
2 weeks (3 times weekly). Mice were monitored daily, and
body weights were recorded weekly. Mice were euthanised
by cardiac exsanguination and indicated tissues isolated. All
animal work was conducted according to the Animal Care

and Ethics Committee guidelines, the University of New
South Wales, or the Sydney Local Health District Animal
Welfare Committee (Sydney, NSW, Australia).

2.3. Plasma and Liver Analysis. Blood was collected by cardiac
puncture at the time of euthanasia. Plasma samples were
stored at −80°C in EDTA-Na2 until required for analysis. Tri-
acylglycerol and total cholesterol from plasma were measured
using commercial kits (Wako Chemicals, Osaka, Japan). Fast-
ing blood glucose was measured by a glucometer (Accu-check
Performa; Roche, Mannheim, Germany). Insulin was mea-
sured using commercially available ELISA (Mercodia).

2.4. Insulin and Glucose Tolerance Tests. At 10 and 12weeks
of high-fat feeding, either 1 g/kg body weight D-glucose
(Sigma-Aldrich, Sydney, NSW, Australia) was injected into
mice intraperitoneally following overnight fasting or 1U/kg
body weight human insulin was injected into non-fasted mice
intraperitoneally. Blood was collected by pinprick from the tail
vein and plasma glucose measured using a glucometer.

2.5. RNA Extraction and Real-Time Quantitative PCR. Liver
and thoracic aortae were snap-frozen in liquid nitrogen and
stored at −80°C. Tissue was homogenised (MP Biomedicals,
Sydney, NSW, Australia) and total RNA extracted in TRI
reagent (Sigma) [29]. RNA was then reverse transcribed to
cDNA using iSCRIPT (Bio-Rad, Sydney, NSW Australia).
Real-time PCR was performed in triplicate using iQSybr
Green Master Mix (Bio-Rad, Sydney, NSW Australia) in
the CFX96 thermocycler (Bio-Rad, Sydney, NSW Australia).
Relative changes in mRNA levels between groups were deter-
mined using the 2−ΔΔCt method [30]. Expression was normal-
ised to β-actin, and changes were compared with Apoe−/−

mice. Primer details can be found in Table 1.

2.6. Histology and Immunohistochemistry. Brachiocephalic
arteries were processed as described [31]. Pancreata were
removed and fixed in 10% formalin (wt/vol). Haematoxylin
and eosin stain was used to assess tissue architecture; pancreata
were stained for insulin (1 : 500; Cell Signalling) and macro-
phages (MAC3, 1 : 100; BD Pharmingen). All IgG controls were
negative. Digital images of sections were acquired using an
Olympus DP72 microscope (Olympus, Mount Waverley, Vic-
toria, Australia) and a Zeiss Axio Imager Z2 microscope.

2.7. Morphometric Analysis. Morphometric analysis of plaque
area : total artery area,media area : total artery area, and necrotic
core area : plaque area was performed on haematoxylin and
eosin-stained sections using ImageJ (NIH, Bethesda). The per-
centageofpositive staining in theplaqueor isletswasdetermined
using cellSens Software (Olympus). Thresholds for positive
staining for each antibody were determined, and sections were
analysed by an investigator blinded to the mouse genotype.

2.8. Statistics. All results are expressed as themean ± SEM. Sta-
tistical comparisons were made by Mann–Whitney t -tests and
one- or two-way ANOVA, with Bonferroni’s correction
where appropriate. The statistics program in GraphPad
Prism Version 6.0 was used (GraphPad Software, San Diego,
CA, USA). A value of p < 0:05 was considered significant.
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3. Results

3.1. HDL Reduces Plasma Glucose Levels and Improves Glucose
Tolerance in Western Diet-Fed Trail-/-Apoe-/- Mice. In response
to a Western diet, Trail-/-Apoe-/- mice display features of diabe-
tes typical of human disease [25], in particular, a marked degree

of glucose intolerance. As expected, fasting glucose levels in
Trail-/-Apoe-/- were significantly increased compared to Apoe-/-

mice, associating with impaired glucose tolerance (Supplemen-
tary Figure 1A-B). Importantly, treatment with rHDL
significantly reduced plasma glucose levels by ~30%, but not
plasma insulin in Trail-/-Apoe-/- mice (Figures 1(a) and 1(b)).
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Figure 1: rHDL reduces plasma glucose levels and improves glucose tolerance in Western diet-fed Trail-/-Apoe-/- mice. Trail-/-Apoe-/- and
Apoe-/- mice were fed a high-fat Western diet for 12 weeks. In the last 2 weeks of the study, mice received 3 weekly infusions of either
rHDL (20mg/kg) or PBS. At the conclusion of the study (a) fasting plasma glucose and (b) fasting plasma insulin were measured; n = 6
/group. (c) Glucose and (d) insulin tolerance tests were performed as described in the methods at 12 weeks where plasma glucose levels
were measured over 2 hours (n = 8-10). PBS-treated Trail-/-Apoe-/- (open circles); rHDL-treated Trail-/-Apoe-/- (closed squares). The area
under the curve (AUC) was quantified for each. Mouse pancreatic islets were stained for (e) insulin and (f) macrophages (MAC3). Left
panel: representative images of stained pancreata. Right panel: quantification (n = 6-8). Results are expressed as mean ± SEM; ∗p < 0:05,
∗∗p < 0:01, and ∗∗∗p < 0:001, Mann–Whitney t -test and ANOVA used in all conditions. rHDL: reconstituted high-density lipoprotein.

Table 1: Primer sequences.

Primer name Forward 5′–3′ Reverse 5′–3′
ABCA1 AAAACCGCAGACATCCTTCAG CATACCGAAACTCGTTCACCC

ABCG1 CGAGAGGGCATGTGTGACG CCGAGAAGCTATGGCAACC

SR-B1 TTTGGAGTGGTAGTAAAAAGGGC TGACATCAGGGACTCAGAGTAG

LDLR TGACTCAGACGAACAAGGCTG ATCTAGGCAATCTCGGTCTCC

TRAIL CAGGCTGTGTCTGTGGCTGT TGAGAAGCAAGCTAGTCCAATTTTG

SREBP-1 AGCAGCCCCTAGAACAAACAC CAGCAGTGAGTCTGCCTTGAT

β-Actin AACCGTGAAAAGATGACCCAGAT CACAGCCTGGATGGCTACGTA

CD68 CCATCCTTCACGATGACACCT GGCAGGGTTATGAGTGACAGTT

F4/80 CTTTGGCTATGGGCTTCCAGTC GCAAGGAGGACAGAGTTTATCGTG

CD206 CAGGTGTGGGCTCAGGTAGT TGTGGTGAGCTGAAAGGTGA
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No changes to plasma glucose or insulin in response to
rHDL in Apoe-/- mice were observed (data not shown). We
next performed glucose and insulin tolerance tests (GTT
and ITT) in Trail-/-Apoe-/- mice to assess glucose and
insulin sensitivity. Vehicle-treated Trail-/-Apoe-/- mice had
significantly increased plasma glucose levels at 15 and
30min following a glucose challenge (Figure 1(c)), which
was cleared over the 2h timepoint. In contrast, Trail-/-

Apoe-/- mice treated with rHDL demonstrated faster
glucose clearance (Figure 1(c)). When the area under the
curve was quantified, rHDL improved glucose tolerance in
Trail‐/‐Apoe‐/‐ > 2-fold compared with vehicle-treated mice
(Figure 1(c)). rHDL-treated mice also showed improved
insulin sensitivity with greater reductions in plasma glucose at
15min following an insulin bolus and a ~25% reduction
overall when the area under the curve was quantified
(Figure 1(d)). These findings were associated with a
significant increase in endogenous insulin protein expression
(Figure 1(e)) and reduced MAC3 staining indicating reduced
macrophage content in pancreatic islets of Trail-/-Apoe-/- mice
treated with rHDL (Figure 1(f)). In contrast, rHDL had no
effect on glucose or insulin tolerance in Apoe-/- mice
(Supplementary Figure 2A-B). Together, these findings
suggest that rHDL improves features of Western diet-induced
diabetes in Trail-/-Apoe-/- mice.

3.2. HDL Reduces Plasma Cholesterol, Triacylglycerol, and
Atherosclerotic Plaque in Trail-/-Apoe-/- Mice.We next exam-
ined whether rHDL could improve features of CVD. Two
weeks of rHDL infusion in Western diet-fed Trail-/-Apoe-/-

mice significantly reduced plasma cholesterol (PBS 13:75
mmol/L ± 0:86 vs. rHDL 9:71mmol/L ± 0:82; p < 0:01) and
triacylglycerol (PBS 5:53mmol/L ± 0:42 vs. rHDL 3:61
mmol/L ± 0:34; p < 0:05) levels, when compared to vehicle-
treated mice (Figures 2(a) and 2(b)). We assessed mRNA
expression of key genes responsible for cholesterol and lipid
production, namely, sterol regulatory element-binding protein
1 (SREBP1) and low-density lipoprotein receptor (LDLR).
Consistent with our findings at the plasma level, Trail-/-Apoe-/-

mice treated with rHDL had significantly reduced mRNA
expression for hepatic Srebp1 (Figure 2(c)) and Ldlr
(Figure 2(d)). Furthermore, rHDL infusion significantly
reduced the Trail-/-Apoe-/- plaque area (PBS 41:02% ± 3:16
vs. rHDL 20:78% ± 4:47; p < 0:05 Figure 2(e)), whereas no
change in medial expansion or necrotic core size was evi-
dent (Figures 2(f) and 2(g)). On the other hand, rHDL had
no effect on plasma cholesterol, triglycerides, or atheroscle-
rosis plaque size in Western diet-fed Apoe-/- mice
(Supplementary Figure 3A-C). These findings suggest that
rHDL infusion improves features of diabetes-accelerated
atherosclerosis, but not atherosclerosis alone.
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Figure 2: HDL reduces plasma cholesterol levels and atherosclerotic plaque in Western diet-fed Trail-/-Apoe-/- mice. Trail-/-Apoe-/- and
Apoe-/- mice were fed a high-fat Western diet for 12 weeks. In the last 2 weeks of the study, mice received 3 weekly infusions of either
rHDL (20mg/kg) or PBS. (a) Fasting plasma cholesterol (n = 6-10) and (b) triacylglycerol levels (n = 6) at euthanasia. rHDL reduced
hepatic mRNA expression for (c) Srebp1 and (d) Ldlr in 12w Trail-/-Apoe-/- mice. mRNA was extracted from liver as described in
Methods. mRNA expression was normalised to 18S; n = 5-7. (e) Right panel: representative cross-section of brachiocephalic arteries
stained with haematoxylin and eosin (10x magnification). Left panel: quantification of plaque area. No change in (f) medial or (g) necrotic
areas was observed (n = 7-11). Results are expressed as mean ± SEM; ∗p < 0:05 and ∗∗p < 0:01, Mann–Whitney t -test used in all
conditions. rHDL: reconstituted high-density lipoprotein.
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3.3. rHDL Alters Expression of Genes Modulating Cholesterol
Metabolism and Inflammation in the Vessel Wall. ABCA1,
ABCG1, and scavenger receptor class B type 1 (SRB1) pro-
mote cholesterol efflux and exchange of cholesterol to influ-
ence atherosclerosis in mice [32–34]. The removal of excess
cholesterol from macrophage foam cells by HDL is thought
to be one of the key mechanisms underlying the atheropro-
tective properties of HDL [35], mediated primarily by
ABCA1 and ABCG1 [36, 37]. There were no obvious
differences in mRNA expression of hepatic Abca1, Abcg1,
and Srb1 in 12w Western diet-fed Trail-/-Apoe-/- and
Apoe-/- mice (Figure 3); however, aortic expression of
Abca1 and Abcg1 was significantly decreased, >2-fold
with TRAIL deletion, whereas Srb1 mRNA levels remained
unchanged (Figures 4(a)–4(c)). In contrast, rHDL infusions
restored the reduced Abca1 and Abcg1 mRNA levels to
those of control Apoe-/- mice (Figures 4(a) and 4(b)).
These suggest that rHDL improves cholesterol homeostasis
in Trail-/-Apoe-/- by modulating the expression of ABCA1
and ABCG1.

CD68 and F480 are macrophage markers. Because
Trail-/-Apoe-/- mice have increased inflammation and mac-
rophage accumulation in atherosclerotic lesions [25, 38],
we examined changes to these markers from vascular tis-
sues between Trail-/-Apoe-/- and control mice. An increased
but not significant change in Cd68 mRNA expression was
observed in Trail-/-Apoe-/- aortae (Figure 4(d)). In contrast,
a marked reduction, ~70%, in aortic F480 mRNA levels
was found in mice lacking TRAIL when compared to
Apoe-/- (Figure 4(e)). Strikingly, Cd206 mRNA levels mim-

icked those of F480, with Trail-/-Apoe-/- aortae expressing
~70% less compared with Apoe-/- aortae (Figure 4(f)).
CD206 is expressed on alternatively activated or M2 macro-
phages [39]. Remarkably, rHDL infusions restored both F480
and Cd206mRNA expression in Trail-/-Apoe-/- aortae to levels
observed in control mice (Figures 4(e) and 4(f)). These find-
ings suggest that rHDLmaymodulate inflammation andmac-
rophage phenotype in atherosclerotic Trail-/-Apoe-/- mice.

4. Discussion

Although epidemiological studies have shown that low HDL
levels correlate with increased risk of diabetes mellitus and
cardiovascular disease [40, 41], preclinical and clinical stud-
ies aimed at raising HDL levels as a potential therapeutic to
reduce diabetes and cardiovascular complications have been
conflicting [42]. It is now known that HDL has pleiotropic
functions, and HDL preparations can have multiple different
effects on disease. Here, we sought to identify whether rHDL
could improve features of diabetes-associated atherosclerosis
using Western diet-fed Trail-/-Apoe-/- mice. We identified 3
novel findings. First, rHDL reduced plasma glucose and
insulin levels and improved glucose and insulin tolerance in
these mice. Second, rHDL infusion reduced cholesterol and
triglyceride levels observed, as well as restoring ABCA1 and
ABCG1 mRNA in the vessel wall. Third, atherosclerosis
was only reduced in Trail-/-Apoe-/- mice with diabetic fea-
tures, but not Apoe-/- mice. Collectively, these suggest that
rHDL therapy could benefit patients with diabetes-
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Figure 3: Expression of genes regulating cholesterol metabolism. Trail-/-Apoe-/- andApoe-/-mice were fed a high-cholesterol diet for 12 weeks.
The liver was assessed for (a) Abca1, (b) Abcg1, and (c) Srb1mRNA expression. mRNA was extracted from the liver as described in Methods.
mRNA expression of candidate genes was normalised to 18S (n = 6-7). Results are expressed as the mean± SEM; Mann–Whitney t -test used
in all conditions. Apoe: apolipoprotein E; TRAIL: TNF-related apoptosis-inducing ligand.
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associated atherosclerosis, and a more targeted approach
may be necessary for treatment.

The beneficial effects of HDL on diabetes and changes to
metabolic disease are well known. For example, mice

deficient in ApoA-I—the main protein component on
HDL—have impaired glucose tolerance compared to wild-
type mice [43]. Furthermore, rHDL inhibited β-cell
apoptosis and enhanced insulin secretion in vitro16, 17, and
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Figure 4: rHDL alters expression of genes regulating cholesterol metabolism and inflammation. Trail-/-Apoe-/- and Apoe-/- mice were fed a
high-cholesterol diet for 12 weeks. In the last 2 weeks of the study, mice received 3 weekly infusions of either rHDL (20mg/kg) or
PBS. (a) Abca1, (b) Abcg1, (c) Srb1, (d) Cd68, (e) F4/80, and (f) Cd206 mRNA expression in aortae. Aortae were isolated and mRNA
extracted as described in Methods. mRNA expression was normalised to 18S (n = 4-6/group). Results are expressed as mean ± SEM;
∗p < 0:05 and ∗∗p < 0:01, ANOVA used in all conditions. rHDL: reconstituted high-density lipoprotein; Apoe: apolipoprotein E;
TRAIL: TNF-related apoptosis-inducing ligand.
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ApoA-I treatment of insulin-resistant mice increased insulin
secretion and glucose clearance [44]. Indeed, intravenous
infusions of rHDL to patients with type 2 diabetes stimulated
glucose uptake into skeletal muscle, reduced plasma glucose
levels, and increased insulin secretion [45] confirming pre-
clinical findings. rHDL treatment in Trail-/-Apoe-/- mice also
supports this view. We showed that improved glucose toler-
ance and insulin sensitivity occur in part, due to rHDL’s
anti-inflammatory effects on pancreata; rHDL reduced
macrophage accumulation and increased insulin expression
in β-cells in islets of Western diet-fed Trail-/-Apoe-/- mice.

In addition to type 2 diabetic features, Trail-/-Apoe-/-mice
have significantly increased total cholesterol and triglycerides
as well as increased VLDL and LDL compared to Western
diet-fed Apoe-/- mice [25]. HDL’s primary role is to mediate
cholesterol efflux from atherosclerotic plaques, initially
through interactions with ABCA1, then after remodelling
through cholesterol exchange via SR-BI and ABCG1 [46].
Indeed, a deficiency or inhibition of Abca1 and Abcg1
enhanced cholesterol accumulation in atherosclerotic plaque
via enhanced inflammation and monocyte/macrophage infil-
tration [47, 48]. Furthermore, Trail-negative macrophages
had reduced cholesterol efflux, in part due to reduced ABCA1
and ABCG1 mRNA expression when compared with Trail-
positive macrophages [38]. In the current study, ABCA1
and ABCG1 mRNA expression was significantly reduced in
the vascular tissues of Trail-/-Apoe-/- mice, and importantly,
rHDL administration restored this expression back to control
levels. Because plaque from Trail-/-Apoe-/- mice have
increased monocyte/macrophage accumulation and inflam-
mation and considering that ABCA1 and ABCG1 mRNA
was unaltered in the liver of Trail-/-Apoe-/- mice with rHDL
infusion, rHDL may target lipid-laden macrophages in the
vessel wall. This may also be relevant to lipid-laden macro-
phages in pancreata since downregulation of ABCA1 was
associated with cholesterol accumulation in pancreatic β-
cells, greater inflammation, and reduced insulin secretion
[41]. However, this requires further elucidation.

A large number of preclinical studies of atherosclerosis
suggest that HDL intervention reduces plaque size and
inflammation [11, 49, 50]. We also observed that rHDL-
treated Trail-/-Apoe-/- mice had significantly reduced athero-
sclerotic plaque size compared tomice that received PBS; how-
ever, no changes were observed in atheroscleroticApoe-/-mice.
This is in contrast with early studies where infusing rHDL in
cholesterol-fed rabbit models attenuated development of ath-
erosclerosis [8, 9] and in Apoe-deficient mice where single
infusions of HDL containing ApoA-I (apolipoprotein A-
I)Milano and dipalmitoyl phosphatidylcholine reduced plaque
size, lipid, and macrophage content in atherosclerotic plaques
[50]. As a caveat to these findings, other animal and HDL-
targeted gene therapy studies demonstrated that increasing
HDL with either infusions or overexpression of ApoA-I did
not reduce the formation of atherosclerotic lesions but rather
remodelled more advanced preexisting lesions similar to what
is observed in human plaques as a more stable plaque pheno-
type [11, 51, 52]. Diabetic patients with obstructive coronary
disease are known to have multiple metabolic features includ-
ing elevated levels of metabolic stressmarkers [53], endothelial

dysfunction [54], and increased inflammation in pericoronary
adipose tissue [55], highlighting the complexity of the disease
and its resulting cardiovascular complications. High fat diet-
fed mice lacking TRAIL have many of these contributing
metabolic changes including adiposity [25], endothelial dys-
function [56], and alterations in metabolic function [25, 57].
These are known to associate with atherosclerosis and CVD.
Our findings highlight that rHDL treatment may bemore use-
ful in CVD patients with metabolic dysfunctions.

In summary, we have highlighted the importance of using a
physiologically relevant diabetes-associated atherosclerosis
model to investigate therapeutic strategies. In this model,
HDL reduced features of diabetes associated with atherosclero-
sis.Withmuch controversy surrounding the use of HDL in car-
diovascular disease and the contradicting studies in preclinical
models, this study identifies a continuing need for HDL
research and a possible role for its use in targeted therapeutic
strategies in people with diabetes-accelerated atherosclerosis.

Data Availability

Data are available on request.

Disclosure

This manuscript was presented in part as a poster for the
Arteriosclerosis, Thrombosis, and Vascular Biology Scientific
Meeting.

Conflicts of Interest

The authors declare no conflicts of interest.

Authors’ Contributions

B.A.D., S.P.C., and M.M.K. were responsible for experimen-
tation, conception, design, analysis, and interpretation of
data, manuscript preparation, and intellectual input. S.G.
and P.M.C. were responsible for experimentation and
analysis. K.A.R. was responsible for interpretation of data,
intellectual input, and manuscript preparation. All authors
gave final approval for publication.

Acknowledgments

Trail−/− mice were originally sourced from Amgen. BAD was
supported by a National Health and Medical Research Coun-
cil of Australia Postdoctoral Fellowship (GNT1037074).
MMK was supported by a Heart Foundation of Australia
Career Development Award (Award ID: CR 12S 6833).

Supplementary Materials

Supplementary Figure 1: Western diet-fed Trail-/-Apoe-/-

mice have impaired glucose tolerance compared to Apoe-/-

mice. Supplementary Figure 2: HDL has no effect on glucose
and insulin tolerance in Apoe-/- mice. Supplementary Figure
3: rHDL has no effect on plasma cholesterol, plasma triacyl-
glycerol, or atherosclerosis in 12w Western diet-fed Apoe-/-

mice. (Supplementary Materials)

7Journal of Diabetes Research

https://downloads.hindawi.com/journals/jdr/2021/6668506.f1.docx


References

[1] R. Marfella, M. D' Amico, C. di Filippo et al., “The possible role
of the ubiquitin proteasome system in the development of ath-
erosclerosis in diabetes,” Cardiovascular Diabetology, vol. 6,
no. 1, 2007.

[2] R. Marfella, F. C. Sasso, M. Siniscalchi et al., “Peri-procedural
tight glycemic control during early percutaneous coronary
intervention is associated with a lower rate of in-stent resteno-
sis in patients with acute ST-elevation myocardial infarction,”
The Journal of Clinical Endocrinology and Metabolism, vol. 97,
no. 8, pp. 2862–2871, 2012.

[3] D. Torella, G. M. Ellison, M. Torella et al., “Carbonic anhy-
drase activation is associated with worsened pathological
remodeling in human ischemic diabetic cardiomyopathy,”
Journal of the American Heart Association, vol. 3, no. 2, article
e000434, 2014.

[4] C. Xiao, S. Dash, C. Morgantini, R. A. Hegele, and G. F. Lewis,
“Pharmacological targeting of the atherogenic dyslipidemia
complex: the next frontier in CVD prevention beyond lowering
LDL cholesterol,” Diabetes, vol. 65, no. 7, pp. 1767–1778, 2016.

[5] M. Nieuwdorp, M. Vergeer, R. J. Bisoendial et al., “Reconsti-
tuted HDL infusion restores endothelial function in patients
with type 2 diabetes mellitus,” Diabetologia, vol. 51, no. 6,
pp. 1081–1084, 2008.

[6] O. van Oostrom, M. Nieuwdorp, P. E. Westerweel et al.,
“Reconstituted HDL increases circulating endothelial progen-
itor cells in patients with type 2 diabetes,” Arteriosclerosis,
Thrombosis, and Vascular Biology, vol. 27, no. 8, pp. 1864-
1865, 2007.

[7] J. J. Badimon, L. Badimon, and V. Fuster, “Regression of ath-
erosclerotic lesions by high density lipoprotein plasma fraction
in the cholesterol-fed rabbit,” The Journal of Clinical Investiga-
tion, vol. 85, no. 4, pp. 1234–1241, 1990.

[8] J. J. Badimon, L. Badimon, A. Galvez, R. Dische, and V. Fuster,
“High density lipoprotein plasma fractions inhibit aortic fatty
streaks in cholesterol-fed rabbits,” Laboratory Investigation,
vol. 60, no. 3, pp. 455–461, 1989.

[9] S. J. Nicholls, B. Cutri, S. G. Worthley et al., “Impact of short-
term administration of high-density lipoproteins and
atorvastatin on atherosclerosis in rabbits,” Arteriosclerosis,
Thrombosis, and Vascular Biology, vol. 25, no. 11,
pp. 2416–2421, 2005.

[10] A. S. Plump, C. J. Scott, and J. L. Breslow, “Human apolipopro-
tein A-I gene expression increases high density lipoprotein and
suppresses atherosclerosis in the apolipoprotein E-deficient
mouse,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 91, no. 20, pp. 9607–9611, 1994.

[11] J. X. Rong, J. Li, E. D. Reis et al., “Elevating high-density lipo-
protein cholesterol in apolipoprotein E-deficient mice
remodels advanced atherosclerotic lesions by decreasing mac-
rophage and increasing smooth muscle cell content,” Circula-
tion, vol. 104, no. 20, pp. 2447–2452, 2001.

[12] E. M. Rubin, R. M. Krauss, E. A. Spangler, J. G. Verstuyft, and
S. M. Clift, “Inhibition of early atherogenesis in transgenic
mice by human apolipoprotein AI,” Nature, vol. 353,
no. 6341, pp. 265–267, 1991.

[13] S. E. Nissen, T. Tsunoda, E. M. Tuzcu et al., “Effect of recom-
binant ApoA-I Milano on coronary atherosclerosis in patients
with acute coronary syndromes: a randomized controlled
trial,” Journal of the American Medical Association, vol. 290,
no. 17, pp. 2292–2300, 2003.

[14] J. C. Tardif, J. Grégoire, P. L. L'Allier et al., “Effects of reconsti-
tuted high-density lipoprotein infusions on coronary athero-
sclerosis: a randomized controlled trial,” JAMA., vol. 297,
no. 15, pp. 1675–1682, 2007.

[15] R. Waksman, R. Torguson, K. M. Kent et al., “A first-in-man,
randomized, placebo-controlled study to evaluate the safety
and feasibility of autologous delipidated high-density lipopro-
tein plasma infusions in patients with acute coronary syn-
drome,” Journal of the American College of Cardiology,
vol. 55, no. 24, pp. 2727–2735, 2010.

[16] M. A. Fryirs, P. J. Barter, M. Appavoo et al., “Effects of high-
density lipoproteins on pancreatic β-Cell insulin secretion,”
Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30,
no. 8, pp. 1642–1648, 2010.

[17] J. K. Kruit, L. R. Brunham, C. B. Verchere, and M. R. Hayden,
“HDL and LDL cholesterol significantly influence beta-cell
function in type 2 diabetes mellitus,” Current Opinion in Lipi-
dology, vol. 21, no. 3, pp. 178–185, 2010.

[18] K. C. McGrath, X. H. Li, P. T. Whitworth et al., “High density
lipoproteins improve insulin sensitivity in high-fat diet-fed
mice by suppressing hepatic inflammation,” Journal of Lipid
Research, vol. 55, no. 3, pp. 421–430, 2014.

[19] A. Bisgin, A. D. Yalcin, and R. M. Gorczynski, “Circulating sol-
uble tumor necrosis factor related apoptosis inducing-ligand
(TRAIL) is decreased in type-2 newly diagnosed, non-drug
using diabetic patients,” Diabetes Research and Clinical Prac-
tice, vol. 96, no. 3, pp. e84–e86, 2012.

[20] Y. Michowitz, E. Goldstein, A. Roth et al., “The involvement of
tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) in atherosclerosis,” Journal of the American College
of Cardiology, vol. 45, no. 7, pp. 1018–1024, 2005.

[21] M. Schoppet, A. M. Sattler, J. R. Schaefer, and L. C. Hofbauer,
“Osteoprotegerin (OPG) and tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) levels in atherosclerosis,”
Atherosclerosis, vol. 184, no. 2, pp. 446-447, 2006.

[22] S. Volpato, L. Ferrucci, P. Secchiero et al., “Association of
tumor necrosis factor-related apoptosis-inducing ligand with
total and cardiovascular mortality in older adults,” Atheroscle-
rosis, vol. 215, no. 2, pp. 452–458, 2011.

[23] S. E. Lamhamedi-Cherradi, S. Zheng, R. M. Tisch, and Y. H.
Chen, “Critical roles of tumor necrosis factor-related
apoptosis-inducing ligand in type 1 diabetes,” Diabetes,
vol. 52, no. 9, pp. 2274–2278, 2003.

[24] S. E. Lamhamedi-Cherradi, S. J. Zheng, K. A. Maguschak,
J. Peschon, and Y. H. Chen, “Defective thymocyte apopto-
sis and accelerated autoimmune diseases in TRAIL−/−

mice,” Nature Immunology, vol. 4, no. 3, pp. 255–260,
2003.

[25] B. A. Di Bartolo, J. Chan, M. R. Bennett et al., “TNF-related
apoptosis-inducing ligand (TRAIL) protects against diabetes
and atherosclerosis in Apoe -/- mice,” Diabetologia, vol. 54,
no. 12, pp. 3157–3167, 2011.

[26] J. C. Osborne Jr., “[9] Delipidation of plasma lipoproteins,”
Methods in Enzymology, vol. 128, pp. 213–222, 1986.

[27] K. A. Rye, K. H. Garrety, and P. J. Barter, “Preparation and
characterization of spheroidal, reconstituted high-density lipo-
proteins with apolipoprotein A-I only or with apolipoprotein
A-I and A-II,” Biochimica et Biophysica Acta, vol. 1167,
no. 3, pp. 316–325, 1993.

[28] C. E. Matz and A. Jonas, “Micellar complexes of human apoli-
poprotein A-I with phosphatidylcholines and cholesterol

8 Journal of Diabetes Research



prepared from cholate-lipid dispersions.,” The Journal of Bio-
logical Chemistry, vol. 257, no. 8, pp. 4535–4540, 1982.

[29] J. Chan, L. Prado-Lourenco, L. M. Khachigian, M. R.
Bennett, B. A. Di Bartolo, and M. M. Kavurma, “TRAIL
promotes VSMC proliferation and neointima formation in
a FGF-2-, Sp1 phosphorylation-, and NFkappaB-dependent
manner,” Circulation Research, vol. 106, no. 6, pp. 1061–
1071, 2010.

[30] S. A. Bustin, “Absolute quantification of mRNA using real-
time reverse transcription polymerase chain reaction assays,”
Journal of molecular endocrinology, vol. 25, no. 2, pp. 169–
193, 2000.

[31] M. C. Clarke, N. Figg, J. J. Maguire et al., “Apoptosis of vascu-
lar smooth muscle cells induces features of plaque vulnerabil-
ity in atherosclerosis,” Nature Medicine, vol. 12, no. 9,
pp. 1075–1080, 2006.

[32] X. Wang, H. L. Collins, M. Ranalletta et al., “Macrophage
ABCA1 and ABCG1, but not SR-BI, promote macrophage
reverse cholesterol transport in vivo,” The Journal of Clinical
Investigation, vol. 117, no. 8, pp. 2216–2224, 2007.

[33] L. Yvan-Charvet, T. A. Pagler, N. Wang et al., “SR-BI inhibits
ABCG1-stimulated net cholesterol efflux from cells to plasma
HDL,” Journal of Lipid Research, vol. 49, no. 1, pp. 107–114,
2008.

[34] L. Yvan-Charvet, M. Ranalletta, N. Wang et al., “Combined
deficiency of ABCA1 and ABCG1 promotes foam cell accumu-
lation and accelerates atherosclerosis in mice,” The Journal of
Clinical Investigation, vol. 117, no. 12, pp. 3900–3908, 2007.

[35] A. Rohatgi, A. Khera, J. D. Berry et al., “HDL cholesterol efflux
capacity and incident cardiovascular events,” The New
England Journal of Medicine, vol. 371, no. 25, pp. 2383–2393,
2014.

[36] X. M. Du, M. J. Kim, L. Hou et al., “HDL particle size is a crit-
ical determinant of ABCA1-mediated macrophage cellular
cholesterol export,” Circulation Research, vol. 116, no. 7,
pp. 1133–1142, 2015.

[37] R. Out, W. Jessup, W. le Goff et al., “Coexistence of foam cells
and hypocholesterolemia in mice lacking the ABC trans-
porters A1 and G1,” Circulation Research, vol. 102, no. 1,
pp. 113–120, 2008.

[38] S. P. Cartland, S. W. Genner, G. J. Martínez et al., “TRAIL-
expressing monocyte/macrophages are critical for reducing
inflammation and atherosclerosis,” iScience, vol. 12, pp. 41–
52, 2019.

[39] L. Willemsen and M. P. de Winther, “Macrophage subsets in
atherosclerosis as defined by single-cell technologies,” The
Journal of Pathology, vol. 250, no. 5, pp. 705–714, 2020.

[40] A. Abbasi, E. Corpeleijn, R. T. Gansevoort et al., “Role of
HDL cholesterol and estimates of HDL particle composition
in future development of type 2 diabetes in the general pop-
ulation: the PREVEND study,” The Journal of Clinical
Endocrinology and Metabolism, vol. 98, no. 8, pp. E1352–
E1359, 2013.

[41] M. Femlak, A. Gluba-Brzozka, A. Cialkowska-Rysz, and
J. Rysz, “The role and function of HDL in patients with diabe-
tes mellitus and the related cardiovascular risk,” Lipids in
Health and Disease, vol. 16, no. 1, 2017.

[42] B. A. Di Bartolo, P. J. Psaltis, C. A. Bursill, and S. J. Nicholls,
“Translating evidence of HDL and plaque regression,” Arterio-
sclerosis, Thrombosis, and Vascular Biology, vol. 38, no. 9,
pp. 1961–1968, 2018.

[43] R. Han, R. Lai, Q. Ding et al., “Apolipoprotein A-I stimu-
lates AMP-activated protein kinase and improves glucose
metabolism,” Diabetologia, vol. 50, no. 9, pp. 1960–1968,
2007.

[44] K. G. Stenkula, M. Lindahl, J. Petrlova et al., “Single injec-
tions of apoA-I acutely improve in vivo glucose tolerance
in insulin-resistant mice,” Diabetologia, vol. 57, no. 4,
pp. 797–800, 2014.

[45] B. G. Drew, S. J. Duffy, M. F. Formosa et al., “High-density
lipoprotein modulates glucose metabolism in patients with
type 2 diabetes mellitus,” Circulation, vol. 119, no. 15,
pp. 2103–2111, 2009.

[46] R. S. Rosenson, H. B. Brewer Jr., W. S. Davidson et al., “Choles-
terol efflux and atheroprotection: advancing the concept of
reverse cholesterol transport,” Circulation, vol. 125, no. 15,
pp. 1905–1919, 2012.

[47] M. Westerterp, K. Tsuchiya, I. W. Tattersall et al., “Deficiency
of ATP-binding cassette transporters A1 and G1 in endothelial
cells accelerates atherosclerosis in mice,” Arteriosclerosis,
Thrombosis, and Vascular Biology, vol. 36, no. 7, pp. 1328–
1337, 2016.

[48] L. Huang, B. Fan, A. Ma, P. W. Shaul, and H. Zhu, “Inhibition
of ABCA1 protein degradation promotes HDL cholesterol
efflux capacity and RCT and reduces atherosclerosis in
mice,” Journal of Lipid Research, vol. 56, no. 5, pp. 986–
997, 2015.

[49] J. E. Feig, J. X. Rong, R. Shamir et al., “HDL promotes rapid
atherosclerosis regression in mice and alters inflammatory
properties of plaque monocyte-derived cells,” Proceedings of
the National Academy of Sciences of the United States of Amer-
ica, vol. 108, no. 17, pp. 7166–7171, 2011.

[50] P. K. Shah, J. Yano, O. Reyes et al., “High-dose recombinant
apolipoprotein A-I Milano mobilizes tissue cholesterol and
rapidly reduces plaque lipid and macrophage content in apoli-
poprotein e-deficient mice,” Circulation, vol. 103, no. 25,
pp. 3047–3050, 2001.

[51] R. Li, H. Chao, K. W. Ko et al., “Gene therapy targeting LDL
cholesterol but not HDL cholesterol induces regression of
advanced atherosclerosis in a mouse model of familial hyper-
cholesterolemia,” Journal of genetic syndromes and gene ther-
apy, vol. 2, no. 2, p. 106, 2011.

[52] E. Van Craeyveld, S. C. Gordts, E. Nefyodova, F. Jacobs, and
B. De Geest, “Regression and stabilization of advanced murine
atherosclerotic lesions: a comparison of LDL lowering and
HDL raising gene transfer strategies,” Journal of Molecular
Medicine, vol. 89, no. 6, pp. 555–567, 2011.

[53] C. Sardu, N. D’Onofrio, M. Torella et al., “Pericoronary fat
inflammation and major adverse cardiac events (MACE) in
prediabetic patients with acute myocardial infarction: effects
of metformin,” Cardiovascular Diabetology, vol. 18, no. 1,
2019.

[54] C. Sardu, P. Paolisso, C. Sacra et al., “Effects of metformin
therapy on coronary endothelial dysfunction in patients
with prediabetes with stable angina and nonobstructive
coronary artery stenosis: the CODYCE multicenter pro-
spective study,” Diabetes Care, vol. 42, no. 10, pp. 1946–
1955, 2019.

[55] F. C. Sasso, P. C. Pafundi, R. Marfella et al., “Adiponectin and
insulin resistance are related to restenosis and overall new PCI
in subjects with normal glucose tolerance: the prospective
AIRE study,” Cardiovascular Diabetology, vol. 18, no. 1, article
826, p. 24, 2019.

9Journal of Diabetes Research



[56] P. Manuneedhi Cholan, S. P. Cartland, L. Dang et al., “TRAIL
protects against endothelial dysfunction in vivo and_ inhibits
angiotensin-II-induced oxidative stress in vascular endothelial
cells in vitro,” Free Radical Biology & Medicine, vol. 126,
pp. 341–349, 2018.

[57] S. P. Cartland, H. H. Harith, S. W. Genner et al., “Non-alco-
holic fatty liver disease, vascular inflammation and insulin
resistance are exacerbated by TRAIL deletion in mice,” Scien-
tific Reports, vol. 7, no. 1, p. 1898, 2017.

10 Journal of Diabetes Research


	HDL Improves Cholesterol and Glucose Homeostasis and Reduces Atherosclerosis in Diabetes-Associated Atherosclerosis
	1. Introduction
	2. Methods
	2.1. rHDL Generation
	2.2. Animals
	2.3. Plasma and Liver Analysis
	2.4. Insulin and Glucose Tolerance Tests
	2.5. RNA Extraction and Real-Time Quantitative PCR
	2.6. Histology and Immunohistochemistry
	2.7. Morphometric Analysis
	2.8. Statistics

	3. Results
	3.1. HDL Reduces Plasma Glucose Levels and Improves Glucose Tolerance in Western Diet-Fed Trail-/-Apoe-/- Mice
	3.2. HDL Reduces Plasma Cholesterol, Triacylglycerol, and Atherosclerotic Plaque in Trail-/-Apoe-/- Mice
	3.3. rHDL Alters Expression of Genes Modulating Cholesterol Metabolism and Inflammation in the Vessel Wall

	4. Discussion
	Data Availability
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

