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Abstract 

Previous research has suggested that the cerebellum (CB) communicates extensively 

with interneuronal networks within the motor cortex (M1). These networks are referred to as 

early and late I-wave networks and are thought to be modified by CB during motor learning. 

However, it remains unclear which of these I-wave networks are being targeted by CB 

projections. Hence, the present study used transcranial magnetic stimulation (TMS) to assess 

the influence of CB on the excitability and neuroplasticity of different I-wave networks. 11 

young (21.1 ± 0.46 years), healthy adults participated in the study. We assessed how 

downregulating CB excitability with transcranial direct current stimulation (tDCSCB) 

influenced the response of early and late I-wave networks to a neuroplasticity-inducing TMS 

paradigm called I-wave periodicity TMS (iTMS). Changes in early and late I-wave plasticity 

were assessed by applying single pulse TMS with different coil orientations in addition to the 

application of the paired pulse TMS measure short intracortical facilitation (SICF). Changes in 

CB activity were also measured using  a TMS measure called cerebellar brain inhibition (CBI). 

Following the combined application of tDCSCB and iTMS, there was a general increase in the 

excitability of both early and late I-wave activity (P < 0.05). However, these increases featured 

different temporal dynamics and selectivity between early and late I-wave networks. These 

findings characterise early and late I-wave networks as separate neuroplastic networks which 

may both be subject to CB influence. 
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Introduction 

The ability to modulate patterns of motor behaviour is fundamental for effective motor 

control. This ability, referred to as error-based motor learning, involves the processing of 

sensory feedback during motor performance and is thought to be facilitated by the 

communication between the motor cortex (M1) and the cerebellum (CB), with CB projections 

targeting and fine-tuning the excitability of neurons within M11. This process allows CB to 

assess incoming sensory information and update commands in M1 by modifying the strength 

of communication between its synapses1 – a critical process referred to as neuroplasticity. To 

that effect, the communication between M1 and the CB is crucial for motor learning, 

whereupon CB likely influences M1 plasticity. However, the neuronal elements within M1 that 

are targeted by CB projections is currently unknown. 

 

To date, transcranial magnetic stimulation (TMS) has been useful in examining specific 

intracortical networks within M1. TMS is a non-invasive brain stimulation technique that uses 

electromagnetic pulses to activate neurons within the cortex. When applied over M1, TMS 

elicits a series of waves within the corticospinal tract which summate at the spinal cord to 

generate a motor evoked potential (MEP) in the target muscle2. Referred to as the descending 

volley, these waves are believed to reflect the activities of different intracortical networks 

within M13. The earliest wave of the descending volley is likely due to direct activation of 

corticospinal axons close to the soma. In contrast, subsequent waves, which typically follow a 

1.5 ms latency, are believed to be the result of indirect inputs on to corticospinal neurons from 

interneuronal networks3. These inputs are referred to as indirect (I) waves and are generally 

divided into early or late based on the order of their appearance in the descending volley3. 

Previous work has demonstrated that early and late I-wave networks can be selectively 

recruited by changing the direction of the cortical current induced by single pulse TMS3. For 
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example, when the induced current travels in a posterior to anterior (PA) direction across the 

central sulcus, early I-waves are preferentially recruited4. In contrast, a current in the opposite 

anterior-posterior (AP) direction tends to recruit late I-waves4. I-wave excitability has also been 

assessed using a paired pulse TMS technique called short intracortical facilitation (SICF)5. This 

protocol pairs two TMS pulses at an interstimulus interval (ISI) that corresponds to the I-wave 

periodicity of 1.5 ms, resulting in an MEP that is facilitated when compared to the response of 

a single TMS pulse5.  

 

Previous studies using TMS techniques have suggested that early and late I-waves 

likely represent activities of separate interneuronal networks that have different roles in 

neuroplasticity induction and motor learning3, 6-9. In particular, learning motor tasks that rely 

heavily on error-based processes appears to target late I-waves8. Furthermore, altering CB 

excitability has been shown to result in specific changes to late I-wave excitability9-12, 

suggesting that the CB may specifically modify the plasticity of these networks. However, 

direct evidence characterising the relationship between CB and the specific interneuronal 

networks within M1 is lacking. 

 

The aim of the present study, therefore, was to investigate the influence of CB activity 

on the excitability and plasticity of the interneurontal networks that produce early and late I-

waves. To achieve this, CB activity was downregulated using transcranial direct current 

stimulation (tDCS) whilst neuroplastic changes within the I-wave generating networks was 

concurrently induced using a repetitive TMS protocol called I-wave periodicity TMS (iTMS). 

Effects of this intervention on the early and late I-wave networks were quantified by 

investigating changes in the response to single pulse TMS applied with different coil 

orientations, in addition to SICF. Given that previous work suggests that CB projections 
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specifically influence late I-waves9-12, it was expected that downregulating CB excitability 

would result in changes in the excitability and neuroplastic response of late I-wave networks. 

 

Materials & Methods 

Ethical approval 

The study was conducted in accordance with the Declaration of Helsinki, and was 

approved by the University of Adelaide Human Research Ethics Committee (approval H-2019-

252)13. Participants were given an information sheet about the experiment and informed 

consent was attained prior to the experiment. 

 

Subjects 

11 young (21.1 ± 0.46 years), right-handed, healthy adults were recruited for this study. 

All subjects were recruited via advertisements placed online or on notice boards within the 

University of Adelaide. Exclusion criteria included a history of psychiatric or neurological 

conditions, current use of medications that affect the central nervous system, or left 

handedness. Participants were also administered the Transcranial Magnetic Stimulation Adult 

Safety Screen questionnaire to assess suitability for brain stimulation14.  

 

Experimental approach 

All participants completed three sessions of approximately 2.5 hours. These were 

separated by at least 1 week and completed at the same time of day to avoid confounding 

variation in cortisol13. The experimental protocol was the same for all three sessions with the 

exception of the iTMS intervention which was set to target early or late I-wave plasticity, or to 

have no effect on M1 plasticity (i.e. sham stimulation). The session order was randomised. 
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Each session included a set of baseline measures, the intervention, and repeated baseline 

measures post-intervention (Fig. 1). 

 

 

Figure 1. Experimental session procedure. RMT: resting motor threshold. MEP1mV: MEP 

response that produces 1 mV. MEPPA: MEP response in PA coil orientation. MEPAP: MEP 

response in AP coil orientation. SICF: short intracortical facilitation. CBI: cerebellar-brain 

inhibition. iTMS: I-wave periodicity TMS. tDCSCB: cerebellar transcranial direct current 

stimulation. 

 

For each session, participants were seated in a comfortable chair with their right hand 

in resting position. Surface electromyography (EMG) recordings were made from the first 

dorsal interosseous (FDI) muscle on the right hand using two Ag-AgCl surface electrodes 

arranged in a belly-tendon montage. An additional electrode was placed on the styloid process 

of the right ulnar to ground the electrodes. Subjects were asked to relax the FDI throughout the 

experiment. EMG signals were amplified (300x) and filtered (bandpass 20-1,000 Hz) using a 

CED 1902 signal conditioner (Cambridge Electronic Design, Cambridge, UK) then digitised 

at a rate of 2,000 Hz with a CED 1401 analogue-to-digital converter13. Data were stored on a 

PC for offline analysis13. Signal noise within the 50 Hz frequency band was removed via a 

Humbug mains noise eliminator (Quest Scientific, North Vancouver, Canada)13.  
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Experimental protocols 

Transcranial magnetic stimulation (TMS) 

TMS was applied to the left M1 via a figure-of-8 coil connected to two Magstim 200 

stimulators via a BiStim unit. The coil was held tangentially to the scalp at an angle of 45° from 

the sagittal plane, with the handle rotated 45° from the back to produce a PA current in the 

cortical representation for the right FDI muscle. The location producing the most consistent 

MEPs was marked on the scalp and closely monitored throughout the experiment. All baseline 

and post-intervention TMS was applied at a rate of 0.2 Hz, with a 10% jitter between trials in 

order to avoid anticipation of the stimulus13. 

 

Resting motor threshold (RMT) was recorded as the lowest stimulus intensity 

producing MEPs ≥50 µV in 5 out of 10 consecutive trials. RMT was assessed at the beginning 

of each session and expressed as a percentage of maximum stimulator output (% MSO). 

Following RMT, the intensity producing an MEP amplitude of approximately 1 mV when 

averaged across 20 trials in the PA direction was recorded (MEP1mV). This same intensity was 

used again at 5 minutes and 30 minutes post-intervention to measure generalised changes in 

corticospinal excitability. 

 

I-wave excitability 

Specific changes in the excitability of early and late I-wave networks were assessed by 

changing the current direction used for single pulse TMS. When applied using low intensity 

stimulation, PA orientation preferentially recruits early I-waves (MEPPA) while AP recruits late 

I-waves (MEPAP)15. AP stimulation was achieved by rotating the coil 180°. For each 

orientation, stimulus intensity was adjusted at baseline to produce an MEP of approximately 
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0.5 mV16. Post-intervention responses were then recorded using the same intensity, with 

changes in response amplitude indicating alterations to interneuronal excitability. 

 

SICF was used as a secondary measure of excitability in early and late I-wave circuits. 

SICF involved a suprathreshold first stimulus (1 mV response) by a subthreshold second 

stimulus (90% RMT) at ISIs of 1.5 ms (SICF1.5) and 4.5 ms (SICF4.5). These intervals were 

used as they are thought to assess the excitability of early and late I-waves respectively5. SICF 

measures were recorded as a single block of 36 trial, with 12 trials per condition (24 paired, 12 

single) at baseline and 5 and 30 minutes post-intervention. 

 

Cerebellar-brain inhibition (CBI) 

CBI involved a conditioning stimulus to CB 5 ms preceding a test stimulus (1 mV) to 

M117. CB stimulation was applied with a double cone coil, with the centre of the coil 3 cm 

lateral and 1 cm inferior to the inion, ipsilateral to the right FDI. The coil was placed to induce 

an upwards current. The intensity of CB stimulus was set in the first session by identifying the 

highest MSO value between 60-70% that was tolerable by the participant18, but still below the 

level required to activate the corticospinal tract directly19. CBI was assessed as a single block 

of 30 trials (15 paired, 15 single) at baseline and 5 and 30 minutes post-intervention. 

 

I-wave periodicity repetitive TMS (iTMS) 

iTMS is a neuroplasticity paradigm involving the repeated application of paired-pulse 

TMS, with modification to the ISI allowing specific I-waves to be targeted20, 21. Here, iTMS 

consisted of 180 paired stimuli with an ISI of either 1.5 ms (to target early I-waves) or 4.5 ms 

(to target late I-waves). In addition, a sham iTMS setting (iTMSSham) which was not expected 

to modulate corticospinal excitability was also used. This involved application of paired stimuli 
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with ISIs that randomly varied between 1.8, 2.3, 3.3, 3.8 and 4.7 ms. These values were used 

as they represent the transition point between the peaks and troughs of MEP facilitation within 

a standard SICF curve13. Intensities were set at baseline to evoke a MEP1mV response. As it was 

impractical to set an intensity that produced a 1 mV MEP for all ISIs during iTMSSham, a single 

intensity was set using either 1.5 ms or 4.5 ms ISIs, which was randomised between 

participants. 

 

Cerebellar transcranial direct current stimulation (tDCSCB) 

tDCS is a neuroplasticity paradigm that uses a low electrical current to modulate 

neuronal activity22. Cathodal tDCS was applied to the right CB (tDCSCB) to downregulate CB 

activity during concurrent iTMS stimulation13. A Soterix Medical 1x1 DC stimulator (Soterix 

Medical, New York, NY) was used to apply tDCSCB
13. The current was applied through two 

saline-soaked sponge electrodes (EASYpads, 5 x 7 cm), with the cathode positioned 3 cm 

lateral and 1 cm down from the inion on the right cerebellar hemisphere, and the anode 

positioned on the right buccinators muscle23. Stimulation was applied at 2 mA for 15 minutes 

alongside iTMS to M113. 

 

Data analysis 

EMG data was analysed manually with visual inspection of offline recordings. Trials 

that included muscle activity greater than an amplitude of 25 μV in the 100 ms prior to stimulus 

were excluded to avoid potential interference with the recorded MEP13. All EMG recordings 

were measured in amplitude (peak-to-peak) and expressed in mV. For baseline SICF, the paired 

pulse measures were quantified as a ratio of the conditioned MEPs over the mean test MEPs. 

Baseline CBI measures were similarly expressed as a ratio of the conditioned MEPs over the 

mean test MEP responses. To quantify changes from baseline, all post-intervention data was 
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expressed as a percentage of the baseline responses recorded within the same session. MEP 

responses recorded during iTMS were collapsed into 10 epochs of 12 trials. 

 

Statistical analysis 

Kolmogorov-Smirnov tests were applied prior to statistical analysis to assess data 

normality, with log transformations applied when deviations from normal were indicated (P < 

0.05)13. Linear mixed models (LMM) was used to perform statistical comparisons.  

 

The effects of iTMS session (iTMS1.5, iTMS4.5 and iTMSSham) on baseline measures of 

MEP1mv, MEPPA, MEPAP and CBI, and the first 12 trials of the iTMS interventions were each 

assessed using one-factor repeated-measures LMM (LMMRM). Effects of iTMS session and ISI 

(1.5 and 4.5 ms) on baseline SICF was assessed using two-factor LMMRM. 

 

Changes in excitability during the intervention were investigated by assessing the 

effects of iTMS session and time (epochs 1-10)13. General changes in corticospinal excitability 

(MEP1mV) following the intervention were investigated by assessing the effects iTMS session 

and time (5 and 30 minutes) on baseline-normalised values13. Specific changes in the 

excitability of different I-wave networks measured using different coil orientations (MEPPA, 

MEPAP) were investigated by assessing the effects of iTMS session, time, and coil orientation 

(PA, AP) on baseline-normalised values13. Changes in SICF were investigated by assessing the 

effects of iTMS session, time, and ISI on baseline-normalised values13. Changes in CB 

excitability were investigated by assessing the effects of iTMS session and time on baseline-

normalised values13. Post hoc analyses, with Bonferroni corrections, were performed for 

significant main effects and interactions. Data are displayed as the estimated marginal means 

± standard error of the mean (SEM), and P < 0.05 was considered significant. 
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Results 

Baseline subject characteristics are shown in Table 1. There was no difference between 

sessions for the stimulus intensity required for RMT (P = 1), MEP1mV (P = 0.08), MEPPA (P = 

0.9), MEPAP (P = 0.9), and iTMS (P = 0.8). 

Characteristic iTMS1.5 iTMS4.5 iTMSSham 

RMT (% MSO) 44.6 ± 2.0 44.5 ± 2.2 44.6 ± 1.8 

MEP1mV (% MSO) 57.4 ± 3.1 57.0 ± 2.9 54.9 ± 3.0 

MEPPA (% MSO) 50.7 ± 2.7 50.0 ± 2.2 49.2 ± 2.2 

MEPAP (% MSO) 66.7 ± 2.4 68.0 ± 2.9 66.8 ± 2.9 

iTMS (% MSO) 51.0 ± 2.8 52.6 ± 2.5 50.0 ± 2.5 

Table 1. Baseline characteristics (mean ± STD) between iTMS sessions. 

 

Baseline MEPs are shown in Table 2. There was no significant effect of session on 

MEPPA (F2,215 = 2.6, P = 0.08), MEPAP (F2,482 = 0.73, P = 0.9), and CBI (F2,333 = 0.30, P = 0.7). 

However, MEP1mV varied between sessions (F2,199 = 3.3, P = 0.04), with post hoc comparisons 

showing that responses for iTMS4.5 were significantly larger than iTMSSham (P = 0.04). The 

first epoch of iTMS was also different between sessions (F2,296 = 14, P < 0.05), with post hoc 

comparisons revealing that iTMSSham was significantly smaller than both iTMS1.5 (P < 0.05) 

and iTMS4.5 (P < 0.05). In addition, SICF varied between sessions (F2,664 = 4.0, P = 0.02), with 

comparisons showing that iTMSSham was significantly larger than iTMS1.5 (P = 0.02). SICF 

also varied between ISIs (F1,234 = 89, P < 0.05), with SICF1.5 producing greater facilitation than 

SICF4.5 (P < 0.05). Lastly, there was a significant iTMS session × SICF ISI interaction (F2,694 

= 8.3, P < 0.05). Comparisons show that iTMSSham was significantly larger than both iTMS1.5 

(P < 0.05) and iTMS4.5 (P = 0.03) for SICF1.5. SICF1.5 also produced greater responses than 

SICF4.5 across all conditions (all P < 0.05). 
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TMS protocol iTMS1.5 iTMS4.5 iTMSSham 

MEP1mV 0.958 ± 0.039 1.01 ± 0.040 0.888 ± 0.037a 

MEPPA 0.527 ± 0.024 0.473 ± 0.027 0.511 ± 0.029 

MEPAP 0.545 ± 0.026 0.538 ± 0.028 0.584 ± 0.036 

SICF 1.5ms 142 ± 7.0 159 ± 6.8 193 ± 10a, b 

4.5ms 116 ± 5.1c 111 ± 5.4c 119 ± 6.2c 

CBI  80.9 ± 2.9 85.1 ± 2.9 91.1 ± 4.2 

iTMS first epoch 1.14 ± 0.047 1.12 ± 0.051 1.01 ± 0.078 

Table 2. Baseline MEP (mV) responses (mean ± SEM) between iTMS sessions. aP < 0.05 

compared to iTMS4.5, 
b P < 0.05 compared to iTMS1.5, 

c P < 0.05 compared to SICF1.5. 

 

Intervention changes in corticospinal excitability 

Changes in MEP amplitude during each iTMS session are shown in Figure 2. These 

values varied between sessions (F2,1080 = 120, P < 0.05), with post hoc comparisons showing 

that iTMSSham responses were significantly smaller than both iTMS1.5 (P < 0.05) and iTMS4.5 

(P < 0.05) (Fig. 2A). While MEPs also varied across time (F9,2510 = 2.1, P = 0.03), all post hoc 

comparisons failed to achieve significance (all P > 0.05). There was no interaction between 

factors (F18,2470 = 1.4, P = 0.1). 
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Figure 2. Reducing cerebellar exictability influences corticospinal excitability during 

plasticity induction. (A) Data shows average MEP responses (mV) during iTMS1.5 (light gray 

bars), iTMS4.5 (dark gray bars) and iTMSSham (white bars). iTMS were set to evoke MEPs of 1 

mV (dashed line). *P < 0.05 compared to iTMS1.5. **P < 0.05 compared to iTMS4.5. (B) Data 

shows average iTMS responses (mV) at each time point. 

 

Post-intervention changes in corticospinal and intracortical excitability 

Post-intervention changes for corticospinal excitability (MEP1mV) are shown in Figure 

3. Analysis revealed a significant main effect of session (F2,287 = 4.8, P = 0.009) but no main 

effects for time (F1,348 = 0.5, P = 0.5) or interaction between factors (F2,320 = 0.5, P = 0.6). Post 

hoc comparisons showed that changes in MEP1mV were larger for iTMS1.5 compared to 

iTMSSham (P = 0.007). 

A 

B 
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Figure 3. Reducing cerebellar excitability has limited effects on corticospinal excitability. 

Data shows average changes in MEP1mV after application of iTMS1.5 (light gray bars), iTMS4.5 

(dark gray bars) and iTMSSham (white bars). Values are expressed as a percentage of the 

baseline response, indicated by dashed horizontal line. *P < 0.05 when compared to iTMS1.5. 

 

Post-intervention changes in MEPPA and MEPAP are shown in Figure 4 A and B 

respectively. There was a significant three-way interaction between session, time, and coil 

orientation (F2,2030 = 4.9, P = 0.0008). For MEPPA, post hoc comparisons within the post 5-

minute time point showed that responses following iTMS1.5 were significantly increased 

compared to iTMS4.5 (P = 0.03) and iTMSSham (P < 0.05), whereas the response to iTMS4.5 was 

also increased compared to iTMSSham (P < 0.05). At the 30-minute time point, responses to 

iTMS4.5 were greater than iTMSSham (P = 0.005). For MEPAP, responses at the 5-minute time 

point were increased following iTMS4.5 compared to iTMSSham (P = 0.01). At 30 minutes, both 

iTMS1.5 and iTMS4.5 were significantly greater than iTMSSham (both P < 0.05). Comparisons 

between time points revealed that the response to MEPPA was greater at 5 minutes than 30 

minutes (P = 0.001). Finally, the  response to iTMS1.5 was greater for MEPPA than MEPAP at 

the 5-minute time point (P = 0.001). There were no other significant main effects or 

interactions. 



Wei-Yeh Merrick Liao a1732404 

15 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Reducing cerebellar excitability differentially influences plasticity of early and 

late intracortical motor networks. Data shows changes in MEPPA (A) and MEPAP (B) 5 and 

30 mins after application of iTMS1.5 (light gray bars), iTMS4.5 (dark gray bars) and iTMSSham 

(white bars). Values are expressed as a percentage of the baseline response, indicated by dashed 

horizontal line. *P < 0.05. #P < 0.05 compared to MEPPA at same time point. ^P < 0.05 

compared to 5 min in same iTMS condition. 

A 

B 
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Post-intervention changes in SICF are shown in Figure 5. Analysis of these data 

identified an interaction between session and SICF ISI (F2,985 = 6.2, P = 0.02). Post hoc 

comparisons showed that SICF4.5 was increased for iTMSSham (P = 0.002) and iTMS4.5 (P = 

0.04) compared to iTMS1.5. In addition comparisons between SICF ISI were all significantly 

different (P < 0.05). 

 

 

 

 

 

 

 

 

 

 

Figure 5. Reducing cerebellar excitability influences plasticity of late I-wave networks. 

Data shows average changes in SICF after of iTMS1.5 (light gray bars), iTMS4.5 (dark gray 

bars) and iTMSSham (white bars) for SICF1.5 and SICF4.5. Values are expressed as a percentage 

of the mean baseline SICF responses, indicated by dashed horizontal line. *P < 0.05. #P < 0.05 

for comparisons to SICF1.5 within the same iTMS session.  

 

Changes in CBI following the intervention are displayed in Figure 6. An interaction 

between iTMS session and time (F2,846 = 6.4, P = 0.002) was found for these data, with post 

hoc analysis showing that iTMS1.5 had reduced inhibition compared to iTMS4.5 (P = 0.003) 
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after 30 minutes. Further, the response to iTMS1.5 was greater at 30 minutes compared to 5 

minutes (P = 0.001).  

 

 

 

 

 

 

 

 

 

 

Figure 6. Reducing cerebellar excitability reduces cerebellar inhibition. Data shows 

changes in CBI 5 and 30 mins after application of iTMS1.5 (light gray bars), iTMS4.5 (dark gray 

bars) and iTMSSham (white bars). Values are expressed as a percentage of the baseline response, 

indicated by dashed horizontal line. *P < 0.05. #P < 0.05 for comparison to 5 min of the same 

iTMS condition. 

 

Discussion 

The present study investigated the influence of CB on the excitability and plasticity of 

early and late I-wave networks within M1. We assessed the effects of downregulating CB 

excitability (tDCSCB) during a concurrent I-wave plasticity inducing protocol (iTMS). Changes 

in I-wave excitability were assessed using single pulse TMS in different coil orientations (PA, 

AP) and SICF. Changes in CB activity were measured with CBI. Results show that cathodal 

tDCSCB, when paired with iTMS, resulted in a generalised increase in I-wave activity. Further 
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inspection shows that early and late I-wave networks feature different temporal dynamics and 

selectivity. 

 

Cerebellar stimulation has a limited effect on corticospinal excitability 

MEP amplitudes during iTMS1.5 and iTMS4.5 were significantly increased compared to 

iTMSSham (Fig. 2A). This suggests that corticospinal excitability increased during the 

intervention, which is consistent with previous studies applying iTMS24. Conversely, increases 

in MEP1mV were only observed following iTMS1.5 compared to iTMSSham (Fig. 3). These 

changes likely reflect a sustained increase in corticospinal excitability following the 

intervention, which is also consistent with previous iTMS findings21. A lack of facilitation 

following iTMS4.5 may be due to the selectivity of iTMS4.5 to AP stimulation25. Taken together, 

these findings suggest that the changes in corticospinal excitability may be predominantly a 

result of iTMS, as the effects of tDCSCB have not been clearly demonstrated. Therefore, further 

studies featuring alternative methods that more precisely disentangle the effects of M1 and CB 

plasticity paradigms, such as including a sham condition for tDCSCB, are needed to confirm the 

effects of tDCSCB. 

 

I-wave excitability is altered following the intervention 

Compared to MEP1mV during and after the intervention, MEPs recorded with different 

coil orientations revealed a more complex response. MEPPA showed strong facilitation 5 

minutes after both iTMS1.5 and iTMS4.5, with these responses reducing at 30 minutes (Fig. 4). 

In contrast, early facilitation of MEPAP was only demonstrated for iTMS4.5, before a general 

facilitation was shown for both iTMS1.5 and iTMS4.5 at 30 minutes. Furthermore, there 

appeared to be inhibitory effects following iTMSSham across both coil orientations. These 

findings are consistent with previous work and suggest that early and late I-wave networks are 
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likely separate networks26. Moreover, the complex responses from MEPPA and MEPAP 

compared to MEP1mV may likely be due to the differences in TMS intensity. These measures 

are believed recruit a mix of early and late I-waves27. However, lower intensities are suggested 

to be more selective than higher intensities28, 29. Therefore, the present findings support the idea 

that MEPPA and MEPAP are likely recruiting from different neuronal populations27. 

 

The findings of MEPPA and MEPAP suggest that CB may influence both early and late 

I-wave networks. Notably, inhibition of MEPPA and MEPAP following iTMSSham suggests that 

cathodal tDCSCB may result in M1 inhibition. In addition, it is also possible that this effect may 

have reduced the extent of facilitation following iTMS1.5 and iTMS4.5. However, evidence of 

the polarity effects of cathodal tDCSCB is unclear and is seemingly dependent on numerous 

factors such as current size23, 30. Therefore, further investigation involving a sham tDCSCB is 

required. Despite this, inhibition during iTMSSham is suggestive of CB influence to both early 

and late I-wave networks, as suggested by previous work26. As such, the differences in temporal 

characteristics between MEPPA and MEPAP may reflect different processing of CB inputs. 

However, further characterisation of how tDCS influences CB is required to better understand 

the nature of these projections. 

 

While both MEPPA and MEPAP facilitated following the intervention, previous work 

has also shown that modulating cerebellar excitability specifically modulates late I-waves. One 

possibility for this inconsistency is that MEPPA and MEPAP still recruited a mix of both early 

and late I-wave networks at 0.5 mV. In particular, these measures were made from a resting 

muscle, thus raising the threshold of corticospinal activation2. In contrast, a general alternative 

approach to recording MEPPA and MEPAP uses active muscle recordings which requires lower 

intensities31. However, resting muscle was necessary to avoid confounding influence of muscle 
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activation on the response to plasticity induction32. Therefore, the responses of MEPPA and 

MEPAP, recruited at higher stimulus intensities, may reflect an overlap of early and late I-wave 

facilitation. 

 

Late I-waves in SICF are modulated by cerebellar stimulation 

In contrast to the measures of I-wave excitability with different coil orientations, 

tDCSCB alone (iTMSSham) resulted in a specific facilitation of SICF at 4.5 ms (Fig. 5). As they 

likely target the same I-wave networks, it is unclear why the responses for SICF were different. 

One possibility may be due to the different intensities used for these measures. Despite this, 

the effect is consistent with previous work11, suggesting that CB projections target late I-waves, 

at least those recruited by SICF. However, it is unclear why SICF4.5 following iTMS4.5 had 

reduced facilitation while iTMS1.5 showed no facilitation. It is possible that this may be due to 

an interaction with tDCSCB. Further, it is also unclear why SICF1.5 did not facilitate as previous 

work suggests that SICF1.5 can be modulated by iTMS21. As iTMSSham did not result in 

facilitation, this suggests that tDCSCB did not influence SICF1.5, consistent with previous 

findings11. Consequently, further investigation into the effects of iTMS and tDCSCB on SICF 

are required. 

 

Cerebellar stimulation has a limited effect on cerebellar excitability 

CBI was reduced at the 30-minute time point following iTMS1.5 compared to iTMS4.5 

(Fig. 6). This is inconsistent with previous work, which demonstrated that CBI was reduced 

immediately following different motor learning tasks26. One possibility for this difference may 

be due to the way in which CBI data was calculated in this study. Here, CBI was quantified as 

a ratio of the mean single-pulse test MEP1mV to paired-pulse MEPs within the same block at 

each time point. As the mean test MEP1mV increased following the intervention, the CBI ratio 
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was increased. Effectively, the change in CBI may have been driven by the change in test 

MEP1mV as a result of iTMS1.5. This is consistent with our other finding for MEP1mV which also 

increased following iTMS1.5. Consequently, this infers a limited efficacy of tDCSCB as no other 

significant differences were observed. Though tDCSCB has been shown to influence M1 

plasticity9, its effects are highly variable and further research is needed to understand its 

mechanisms of action30.  

 

Conclusion 

In conclusion, the present study investigated the role of CB-M1 communication in the 

plasticity of I-wave networks. Our results suggest that early and late I-wave networks are 

distinct, separate networks which are both possibly targeted by the cerebellum. Further, these 

results indirectly suggest that early and late I-wave networks may process CB inputs 

differently. These findings reiterate the complexity of CB-M1 connections and the need for 

further examination, but suggest that it may be possible to modulate I-wave plasticity by 

modulating CB excitability. 
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