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Abstract 

The highly invasive nature of glioblastoma makes it difficult to treat with strategies aimed at eliminating 

primary tumours. Discovery of pharmacological inhibitors that restrict tumour motility could improve 

clinical outcomes. Chlorotoxin (Cltx), isolated from Leiurus quinquestriatus venom, limits glioblastoma 

tumour cell motility albeit via elusive mechanisms. I hypothesised that aquaporin-1 (AQP1), a dual water 

and cation channel upregulated in glioblastoma, could be an unrecognised target of Cltx given its 

documented roles in facilitating cellular motility pathways. Transcriptomic database analyses identified 

membrane proteins in addition to AQP1 with elevated transcript levels in human glioblastoma biopsies and 

implications in pathways facilitative of tumour growth, including glutamate receptors, and Ca2+ and K+ 

channels. I hypothesised that selective antagonists of these membrane proteins would decrease glioblastoma 

cell invasion. Cell motility was measured with invasion and wound closure assays in cultured glioblastoma 

cells. Swelling assays and two-electrode voltage clamp assessed AQP1 channel function in AQP1-expressing 

oocytes. Studies investigated two aims: the proposed Cltx-mediated block of AQP1 ion channels and the 

invasion-limiting effects of selective inhibitors of ligand- and voltage-gated ion channels in glioblastoma cell 

lines. Results showed that Cltx impaired glioblastoma cell invasion by approximately-25% (p < 0.01) but did 

not affect cell migration or AQP1 water or ion channel activities, discounting AQP1 as a target of Cltx 

action. Antagonists of AMPA/kainate, Ca2+ and K+ channels inhibited cellular invasion by ≥ 25% (p < 0.001) 

at non-cytotoxic concentrations, suggesting promise as adjunct therapies to limit glioblastoma cell motility 

during administration of primary treatments.  

 

Words: 249 

 

Introduction 

Glioblastoma (also known as glioblastoma multiforme; GBM) is a highly malignant grade IV glioma that 

represents 15 to 20% of all intracranial tumours.1 Current treatment strategies combine surgical resection, 

radiation and chemotherapy; however, diffuse infiltration of glioma cells into healthy brain parenchyma 

makes successful interventions nearly impossible. Glioma often gain adaptive resistance via genetic changes 

following recurrent chemotherapy,2 imposing poor prospects for patient survival. Despite advances in 

surgery, radiotherapy and chemotherapy, the median survival expectancy of glioblastoma patients after 
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diagnosis is only 12 to 14 months.3 

 

Innovative therapeutic development is needed for clinically challenging diseases such as glioblastoma. An 

ideal candidate drug should elicit the desired physiological effects via selective and specific interactions with 

its protein targets in a complex molecular background to maximise efficacy and limit adverse side-effects.4 

Evoking desired effects at low concentrations is a favourable characteristic, provided high potency is without 

increased side-effects.5 Accessibility to the target via the route of therapeutic administration and a suitable 

response time following interaction are also critical factors.5 

 

A systematic correlation of phenotypes with molecular markers has identified diagnostic indicators of three 

major subtypes of GBM: proneural, classical and mesenchymal with the existence of a fourth, neural subtype 

remaining under question.6 The Human Protein Atlas (TCGA) database provides quantitative transcriptomic 

data from human glioblastoma biopsy samples, allowing identification of genes with altered expression 

levels (quantified as FPKM; fragments per kilobase of transcript per million fragments mapped). The GBM 

Bio Discovery portal supports user-specified interrogation of the TCGA database to define sets of 

glioblastoma-enriched genes and evaluate their prognostic index hazard ratio (PIHR), with larger ratios 

indicating poorer prognosis. Classes of ionotropic receptors, water channels and voltage-gated ion channels 

upregulated in glioblastoma (Table 1 and Figure 1) could serve as novel candidate targets for glioblastoma 

interventions.  
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Table 1: Ionotropic receptors, water channels and voltage-gated ion channels with enriched transcript levels 

in human glioblastoma biopsy samples (n = 153) and percent survival at 3 years for patients with FPKM > 

median analysed using TGCA RNAseq (Human Protein Atlas database); PIHR analysed with GBM Bio 

Discovery Portal. Adapted from Yool and Ramesh.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene Classification PIHR Median FPKM % survival 

Ionotropic receptors     

GRIA1 AMPA receptor 1.12 7.5 7 

GRIA2 AMPA receptor 1.03 5.6 11 

GRIA3 AMPA receptor 0.96 8.5 10 

GRIK4 Kainate receptor 0.74 3.0 13 

GABRA1 GABAA receptor 1.01 0.3 12 

Water and voltage-gated ion channels 

AQP1 Aquaporin-1 1.06 240 12 

CLCN3 Cl– channel 0.90 19 13 

CACNA1A Ca2+ channel 0.99 1.2 6 

CACNA1G Ca2+ channel 1.08 0.97 6 

KCNA2 K+ channel 1.12 1.0 14 

KCND2 K+ channel 1.02 4.3 12 



Perturbing glioblastoma cell motility with ion channel antagonists 

 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 1: Evaluation of expression patterns for the classes of (A) ionotropic receptors and (B) water and ion 

channels presented in Table 1. Data were analysed using the GBM Bio Discovery Portal and are presented in 

heat maps (above) summarising transcript expression (FPKM, colour bars) in GBM subtypes and Kaplan 

Meier survival curves (below) for mesenchymal and proneural subtypes. Heat map columns represent 

individual GBM patient data and show transcript levels for each gene in the class as a Z-score relative to the 

average transcript level across the sample population, with predominantly low (blue) and high (red) 

expression on the left and right respectively. GBM subtypes6 are assigned to patients (topmost row) as per 

the colour key. 

100 - 
 

80 -  
 

60 -  
 

40 -  
 

20 -  
 

0 - 

Subtype 
Prog. Index 
 

AQP1 

B: Water and ion channels 

GBM subtype: 

Time (days) 

S
u
rv

iv
a
l 
(%

) 

Time (days) 

100 - 
 

80 - 
 

60 - 
 

40 - 
 

20 - 
 

0 - 

CLCN3 
 CACNA1A 

CACNA1G 

KCNA2 

KCND2 

Proneural subtype 
PIHR = 3.36 

 

Mesenchymal subtype 
PIHR = 1.48 

 

100 - 
 

80 - 
 

60 - 
 

40 - 
 

20 - 
 

0 - 

GBM subtype: 

Subtype 
Prog. index 
 

GRIA1 
 

GRIA2 
 

GRIA3 
 

GRIK4 
 

GABRA1 
 

A: Ionotropic receptors 

Time (days) 

S
u
rv

iv
a
l 
(%

) 

Time (days) 

100 
 

80 
 

60 
 

40 
 

20 
 

0 

 

Mesenchymal subtype 
PIHR = 1.72 

 

Proneural subtype 
PIHR = 2.82 

 



Perturbing glioblastoma cell motility with ion channel antagonists 

 6 

Aquaporin-1 (AQP1) 

Aquaporins are integral membrane proteins with fundamental roles in transporting water across biological 

membranes and regulating cellular volume.8 AQP1, one of fifteen mammalian aquaporins identified to date,9 

is permeable to water and monovalent cations K+, Cs+, Na+ and Li+.10,11 AQP1 is primarily expressed in cell 

types involved in water transport, including renal tubules and the choroid plexus,12 with amplified transcript 

levels observed in glioblastoma tumours (Table 1). AQP1 is implicated in migration and invasion events 

underpinning cell dispersal.13,14 AQP1 gene silencing reportedly decreased migration and invasion in glioma-

derived cell lines, and impaired tumourigenesis in vivo after xenographic implantation of shRNA-AQP1-

transfected human glioma cells into nude mice.13 Passage of glioma cells through narrow extracellular spaces 

in the brain is thought to be enabled by cell shrinkage following efflux of Cl–, K+ and water.14 K+ efflux 

occurs in part via AQP1, based on observations of potent block of glioma cell invasion by AQP1 ion channel 

blocker AqB011.15  

 

Voltage-gated chloride channels (ClCs) 

ClCs are ubiquitously expressed in all cells and are fundamental to osmoregulation. Cl– channel ClC-3, with 

increased transcript levels in glioblastoma (Table 1), is thought to facilitate Cl– efflux, enabling glioma cell 

shrinkage14 and facilitating cell movement through brain tissue. 

 

Chlorotoxin (Cltx) is a 36-residue peptide isolated as a putative Cl– channel antagonist from Leiurus 

quinquestriatus venom.16 Cltx interferes with protein trafficking by binding a cell-surface macromolecular 

complex containing extracellular matrix-degrading metalloproteinase-2 and co-localised ClC-3, inducing 

internalisation and consequently disrupting glioblastoma invasion.17 Interaction between Cltx and annexin 

A2 is also documented, with siRNA knockdown of annexin A2 preventing Cltx derivative TM-601 from 

binding to glioma tumour cells.18 With multiple Cltx binding partners proposed,17,18 elucidating the 

mechanism(s) by which Cltx disrupts glioblastoma progression has proven challenging and suggests that 

additional targets of Cltx remain to be discovered. 

 

Cltx is positively charged at physiological pH16 and could show affinity for AQP1 cation channels. Given the 

established roles of AQP1 and ClC-3 ion channels in facilitating glioma cell motility,13,19 it is reasonable to 
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surmise an interaction between AQP1 ion channels and Cltx that suppresses invasion and migration of 

glioblastoma.  

 

Non-NMDA glutamate receptors  

Ionotropic glutamate receptors dispersed throughout the mammalian central nervous system are essential for 

generating postsynaptic neuron excitation by modulating ion channels.20 Receptors are categorised primarily 

by pharmacological agonist sensitivities into NMDA (N-methyl-D-aspartate) and non-NMDA subtypes. 

Non-NMDA receptors are activated by AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA), and kainate.21  

 

Analysis of ligand-gated ion channels in glioblastoma showed that non-NMDA receptors had the highest 

transcript levels, contrasting with comparatively low levels for GABAA receptors (Table 1). Ca2+ signalling 

via AMPA-type receptors was suggested to promote growth and motility of glioblastoma cells via activation 

of Akt, a protein kinase central to many anabolic pathways.22 Overexpression and activation of Ca2+-

permeable AMPA receptors in glioblastoma increased migration and proliferation whilst loss of AMPA-

mediated Ca2+ permeability curtailed glioblastoma cell locomotion and induced apoptosis.23 

 

Voltage-gated calcium (Ca
V
) channels  

CaV channels are expressed in most cells and serve distinct roles in signal transduction. In response to 

depolarised membrane potentials, CaV channels open and mediate influx of Ca2+, a second messenger that 

initiates many physiological events.24 Two general categories of CaV channels are defined by biophysical 

properties: (1) high voltage-activated that open in response to strong membrane depolarisation and (2) low 

voltage-activated that open upon weak depolarisation.25 CaV channel transcript levels are notably increased 

in glioblastoma (Table 1). CaV3-dependent Ca2+ influx has proven important to glioblastoma disease 

progression, with significantly decreased glioblastoma proliferation observed in vitro following inhibition of 

CaV3 channels with antisense oligonucleotides or non-selective antagonist mibefradil.26  
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Voltage-gated potassium (K
V
) channels  

KV channels, the largest group of human channel proteins, are widely distributed throughout the nervous 

system and other tissues,27 with particularly elevated expression in glioblastoma (Table 1). KV channels are 

best known for regulating neuronal firing patterns by facilitating K+ efflux after membrane depolarisation to 

rapidly repolarise the membrane and create the falling phase of action potentials.28 More broadly, KV 

channels participate in signalling pathways underlying cellular proliferation to allow progression of the cell 

cycle past the G1 checkpoint.29 In oligodendrocyte precursors, KV channel inhibition induces cell cycle arrest 

at G1 following accumulation of p27 and p21 cyclin-dependent kinase inhibitors.30  

 

The aforementioned studies characterising the significance of perturbing AMPA/kainate, CaV and KV 

channels in glioblastoma are within the vast majority of cancer drug discovery endeavours whose primary 

outcomes of interest are apoptosis and reducing proliferation.23,26,29,30 Contrarily, therapeutic methods for 

managing cancer cell metastasis, a major cause of cancer-related deaths, are scarce. Dexamethasone, a 

synthetic glucocorticoid used to treat glioblastoma-induced brain oedema, reportedly inhibits glioblastoma 

migration by reducing metalloproteinase-2 secretion31 and perturbing the MAPK/ERK pathway.32 However, 

these ideas remain controversial following starkly contrasting accounts of dexamethasone increasing glioma 

cell migration by upregulating AQP1 expression.33 A novel concept tested here was that pharmacologically 

antagonising glioblastoma-enriched ion channels should impair glioblastoma motility pathways. Modulating 

glioblastoma diffusion using this approach would constitute a powerful adjunct therapy when applied in 

parallel with existing procedures aimed at direct eradication of primary tumours. 

 

This project initially focused on determining the effects of Cltx on the (1) percentage of invasion and 

migration in AQP1-enriched glioblastoma cell lines and (2) swelling rate (in hypotonic saline) and ionic 

conductance of AQP1-expressing Xenopus laevis oocytes. I hypothesised that prolonged Cltx exposure 

would decrease (1) motility of cultured glioblastoma cells and (2) ionic conductance via AQP1 ion channels 

in oocytes. A broader search for potent in vitro inhibition of glioblastoma invasion was then conducted using 

agents targeting glioblastoma-enriched ligand- and voltage-gated ion channels. Antagonistic agents were 

expected to potently decrease invasiveness of cultured glioblastoma cells given the roles of their protein 

targets in cellular motility pathways.  



Perturbing glioblastoma cell motility with ion channel antagonists 

9 

Table 2: Properties of selected compounds reported to affect glioblastoma-enriched ion channels in vitro 

Name Chemical/Molecular Structure Known Target(s) Effect(s) 

Cltx 

 

ClC-3, metalloproteinase-2, 

annexin A2 

Inhibits protein trafficking17 and annexin 

A2-mediated cellular migration18  

AqB011 

. 

AQP1 Cation transport antagonist15 

Cyanquixaline  

 

 

AMPA/kainate receptors 
Blocks responses to Ca2+, AMPA and 

kainate34 

Verapamil 

 

CaV channels Ca2+ transport antagonist35 

4-aminopyridine  

 

 

KV channels K+ transport antagonist36 
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Bicuculline 

 

GABAA receptors Cl– transport antagonist37 

Quisqualic acid 

 

AMPA/kainate glutamate receptors Cation transport agonist38 
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Materials & Methods 

Cell lines 

Human glioblastoma cell lines U-87MG and U-251MG were purchased from American Type Culture 

Collection (ATCC, Manassas, VA) and cultured in Dulbecco Modified Eagle Medium (DMEM, Gibco) 

containing 10% foetal bovine serum (FBS, Life Technologies), 1% GlutaMAX (Gibco) and 100 units/mL 

each of penicillin and streptomycin (Life Technologies). Cell cultures were grown at 37°C in a humidified 

5% CO2 incubator. 

 

Transwell Invasion Assay 

Invasion assays were performed as previously described39 in 24-well transwell inserts (6.5 mm, 8 µM pores; 

Corning® Transwell polycarbonate; Sigma-Aldrich) layered with extracellular matrix gel (Matrigel; Sigma-

Aldrich). Briefly, cultures were grown to 40% confluency before starvation in DMEM containing 2% FBS. 

After 24 h, cells were detached (with 1% trypsin and 0.5% EDTA in PBS) and resuspended in FBS-free 

DMEM. Cells were seeded in transwell inserts totalling 150 µL of cell suspension (5 x 104 cells/mL) per 

well, including 50 µL of FBS-free rehydration medium. Compounds of interest or 0.1% dimethylsulfoxide 

(DMSO; vehicle control) were added at appropriate concentrations. Compound concentrations were chosen 

based on results reported in the literature cited in Table 2 and with regard to solubility limits and ideal 

solvent information provided by suppliers; Sigma-Aldrich or in the case of Cltx, A/Prof. Mehdi Mobli 

(Centre for Advanced Imaging, The University of Queensland). Chemoattractant gradients were created with 

DMEM (10% FBS) containing the relevant compound of interest or control treatment. Following 4 h 

incubation, non-invasive cells were removed from upper surfaces of filters. Invasive cells on bottom surfaces 

were stained with crystal violet (0.2% w/v, Sigma-Aldrich) and live-imaged with EOS Utility 3 (Canon, 

USA) on an inverted microscope (ULWCD 0.30, Olympus Corp., Tokyo, Japan.). Percentage of invasion 

under each condition was calculated from the average number of invasive cells per well across three 

randomly selected fields (20x objective) appropriately standardised to the overall vehicle or untreated control 

mean. Independent experiments were repeated twice, with up to four replicates. 

 

Wound Closure Assay 

Cells were grown to 40% confluency in 96-well plates before starvation in DMEM (2% FBS) containing 
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mitotic inhibitor 5-fluoro-2-deoxyuridine (FUDR; 100 ng/mL) for 24 h. Confluent monolayers were 

wounded by aspirating ~80 µm2 with a 200 µL pipette tip. Medium was replaced with DMEM (2% FBS, 100 

ng/mL FUDR) containing drug-based or vehicle control (0.1% DMSO) treatments. Wound areas were 

imaged at 0 and 24 h (10x objective; Canon EOS 6D, Canon, Tokyo, Japan) on an inverted microscope 

(ULWCD 0.30, Olympus Corp., Tokyo, Japan). ImageJ software (U.S. National Institutes of Health (NIH), 

MD, USA) quantified wound closure resulting from cellular migration as the percentage of cell-occluded 

area at 24 h. Experiments were independently repeated twice, with six to eight replicates. 

 

Cytotoxicity Assay 

Cell viability was measured with the Alamar Blue assay40 according to the manufacturer’s instructions 

(Thermo Fisher Scientific). Cells were seeded in 96-well plates in DMEM (10% FBS). Following overnight 

incubation, drug-based and vehicle control treatments were applied and cultures were incubated for 4 h. 

After 90 min incubation with 10% Alamar Blue in DMEM (10% FBS), fluorescence was measured using 

FLUOstar Optima microplate reader. A control sample with DMEM only (no cells) was included for 

background colour subtraction. 

 

Osmotic Swelling Assays 

Oocytes were harvested from anesthetised Xenopus laevis frogs in accordance with the Australian Code of 

Practice for the Care and Use of Animals for Scientific Purposes. Wild-type AQP1-expressing oocytes were 

prepared as per previous methods.41 For double-swelling assays, each oocyte was its own control, with 

swelling rates in Cltx-free 50% hypotonic Na+ saline (isotonic Na+ saline diluted into an equal volume of 

water) measured first (S1). The second assay (S2) measured swelling rates following 20 min incubation in 

isotonic saline ± Cltx (1 µM). Swelling rates were quantified by relative increases in oocyte cross-sectional 

area following greyscale imaging with a camera (Cohu, San Diego, CA) mounted on a dissecting microscope 

(Olympus SZ-PT; Olympus, Macquarie Park, Australia). Images were captured at 1 frame per second for 30 

seconds at 0.5 Hz using NIH ImageJ software. Swelling rates were determined from slope values of linear 

regression fits of relative volume as a function of time using Prism (GraphPad Software Inc., San Diego, CA, 

USA). Experiments were performed once, with seven to eight replicates. 
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Electrophysiological Recordings 

Two-electrode voltage clamping was performed at room temperature in standard isotonic Na+ saline using a 

GeneClamp amplifier and pClamp 11 software (Molecular Devices, Sunnyvale, CA) as per published 

methods.42 Briefly, capillary glass pipettes (∼1 M) were filled with 1M KCl. From a holding potential of 

−40 mV, voltage steps from −120 to +60 mV were applied to measure conductance following stimulation 

with nitric oxide donor sodium nitroprusside (SNP; 200 µM) and extracellular applications of Cltx (1 µM). 

To investigate pharmacological inhibition by Cltx, after recording the initial response to SNP, oocytes were 

exposed to Cltx for 2 min. Additionally, selected oocytes (n = 3) were incubated with Cltx for 20 min prior 

to SNP application. Experiments were performed once, with at least three replicates. 

 

Statistical Tests 

Statistical analyses were performed with Prism using one-way ANOVA and appropriate post-hoc tests. 

Statistically significant results were represented as ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, and ns 

(not significant) unless indicated otherwise. All data are shown as mean ± standard deviation. n-values are 

bracketed above x-axes. Boxplot histograms show 50% of data (boxes), the full range of data (error bars), 

and median values (central horizontal bars). Maroon data show effects of DMSO-soluble AqB011, 

cyanquixaline, verapamil and bicuculline standardised to vehicle controls. Blue data show effects of water-

soluble Cltx, 4-aminopyridine and quisqualic acid standardised to untreated controls. 

   

Results 
 

Cltx significantly perturbed glioblastoma cell invasion but not migration  

Effects of Cltx on three-dimensional invasion were assessed using transwell chamber assays with ECM-

coated filters. In response to an FBS chemoattractant gradient, the invasiveness of U-87MG and U-251MG 

was measured in untreated and vehicle controls, and Cltx and AqB011 treatment conditions. Cells on 

undersides of filters (Figure 2A) were counted to determine percentages of invasion under the different 

treatment conditions. Compared to the untreated control, significantly decreased percentages of invasion 

were observed in response to 1 µM Cltx (p < 0.01) but not to 0.1 µM Cltx (Figure 2B). 
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Figure 2: Effects of Cltx on cellular invasion in glioblastoma cell lines. (A) Cells stained on undersides of 

transwell membranes after traversing the filter. (B) Compiled data shown in histograms with invasion 

appropriately standardised as a percentage to mean values of vehicle or untreated controls. Statistical 

significance was determined with one-way ANOVA and Dunnett’s post-hoc tests. ***p < 0.001, **p < 0.01 

and ns indicate statistical significance relative to untreated controls. ####p < 0.0001 and ###p < 0.001 indicate 

significant differences from vehicle controls.  

 

Wound closure assays assessed the effects of Cltx on two-dimensional cellular migration in U-87MG and U-

251MG cells. Migration was calculated as a function of percent wound closure after 24 h based on initial 

wound areas at 0 h (Figure 3A). No significant inhibition of migration was observed in either cell line 

following treatment with 1 µM Cltx, as evidenced by similar percentages of wound closure calculated for 

Cltx-treated and untreated groups (Figure 3B).  
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Figure 3: Effects of Cltx on cell migration in glioblastoma cell lines. (A) Wound areas imaged at 0 h and   

24 h post-treatment with corresponding digital representations of wounds below (ImageJ). (B) Boxplot 

summary of wound closure in control and treatment groups quantified as the percentage of cell-occluded 

area 24 h post-wounding. Statistical significance was evaluated with one-way ANOVA and Dunnett’s post-

hoc tests. ####p < 0.0001 and ns indicate statistical significance relative to vehicle and untreated controls 

respectively.   
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Cltx yielded no significant effects on AQP1 water or ion channel activity in Xenopus laevis oocytes 

Effects of Cltx on AQP1 water and ion channel activity were determined using double swelling assays and 

two-electrode voltage clamp respectively. In 50% hypotonic saline, similarity between swelling rates of 

oocytes pre-incubated in isotonic saline ± 1 µM Cltx (S2±Cltx) was indicated by the lack of significantly 

different swelling rates between S2±Cltx and S1 control oocytes seen in Figure 4.  

 

Figure 4: Lacking effects of Cltx on osmotic water 

permeability of oocytes. Boxplot data show oocyte 

swelling rates in 50% hypotonic saline ±AQP1 and 

±Cltx. Swelling rates were calculated as ratios of 

final to initial oocyte volume as a function of time 

(s–1). Statistical significance was determined with 

one-way ANOVA and Dunnett’s post-hoc tests. 

Significant differences from S1 control are 

indicated as ****p < 0.0001 and ns. Significant 

differences from AQP1–/Cltx– control are indicated 

as ####p < 0.0001 and O; not significant.  



Two-electrode voltage clamp recordings of AQP1-expressing oocytes illustrated a lack of inhibition of 

AQP1 ion channel activity in response to Cltx. Negligible amplitude changes were observed when Cltx was 

applied acutely to SNP-activated ion channels (Figure 5A) whilst SNP activation still occurred following 

incubation of oocytes in Cltx for 20 min (Figure 5B). Current-voltage relationships derived from 

electrophysiological recordings (Figure 5C) and ionic conductance calculated at voltage steps between –120 

and +60 mV compiled from at least three replicates illustrated that SNP stimulation was the only source of 

statistically significant difference (p < 0.05) in ionic conductance (Figure 5D). 
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Figure 5: Effects of Cltx on AQP1-mediated ionic conductance in oocytes. (A) Two-electrode voltage clamp 

currents recorded before (initial) and after application of SNP and Cltx. (B) Currents recorded before and 

after 20 min incubation with Cltx followed by SNP stimulation. (C) Current-voltage relationships for traces 

shown in (A); top and (B); bottom, each averaged with two additional replicates. (D) Boxplot histograms of 

ionic conductance responses derived from slopes of current-voltage curves. Statistical significance is 

indicated as **p < 0.01, *p < 0.05 and ns (one-way ANOVA with post-hoc Bonferroni tests). 
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Antagonists of AMPA/kainate, CaV and KV channels significantly impaired glioblastoma cell invasion 

Transwell chamber assays were also used to analyse the effects of cyanquixaline, verapamil, 4-

aminopyridine, bicuculline and quisqualic acid on three-dimensional cellular invasion. Counting successfully 

invaded glioblastoma cells following exposure to these pharmacological agents (Figure 6A) revealed that in 

both cell lines, AMPA/kainate receptor antagonist cyanquixaline and CaV channel inhibitor verapamil 

significantly inhibited invasion (p < 0.0001), with invasion percentages comparable to that of AqB011 

(Figure 6B). KV channel inhibitor 4-aminopyridine curtailed invasion more significantly in U-251MG (p < 

0.0001) than U-87MG (p < 0.001). GABA antagonist bicuculline and AMPA/kainate receptor agonist 

quisqualic acid elicited no significant inhibition of invasion in either cell line. 
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Figure 6: Effects of the tested modulators of glioblastoma-enriched targets on invasion in glioblastoma cell 

lines. (A) Stained cells that successfully traversed transwell filters in the presence of the compounds at 

concentrations indicated in the figure key. (B) Compiled data shown in histograms with invasion 

appropriately standardised as a percentage to the mean value of the vehicle or untreated control. Statistical 

significance was determined with one-way ANOVA and Dunnett’s post-hoc tests. Significant differences 

from untreated controls are indicated by ****p < 0.0001, ***p < 0.001 and ns. Significant differences from 

vehicle controls are indicated by ####p < 0.0001 and O; not significant.  
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None of the tested compounds induced significant cytotoxicity at the highest concentrations used, as 

assessed by Alamar Blue assays (Figure 7). Impairment of cellular invasion observed following treatment 

with the antagonistic agents (including Cltx) was therefore not indirectly due to significantly reduced cell 

viability. 

 

 

 

 

 

 

 

 

 

Figure 7: Effects of the tested compounds on U-87MG and U-251MG cell viability. Compiled data are 

shown in histograms with cell viability responses appropriately standardised as percentages to the mean 

values of vehicle or untreated controls. One-way ANOVA with Dunnett’s post-hoc tests determined no 

significant differences between treatment groups and vehicle or untreated controls. 

 

Discussion 

Therapeutic strategies available to glioblastoma patients offer modest albeit measureable improvement to 

survival prospects. Radiotherapy and chemotherapy focus on abolishing rapidly dividing cells without 

necessarily eliminating risks of secondary neoplasms. Non-toxic inhibitors of cellular invasion that reduce 

glioblastoma motility within brain tissue are in high demand as adjuncts to these primary cancer therapies.  
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CCF-STTG-1 cell lines following interaction of Cltx (≤ 1 µM) with metalloproteinase-2.17 This 

established interaction might underlie the glioblastoma cell invasion observed here, with results of wound 

closure assays suggesting a lack of effect of Cltx on AQP1 ion channels. Cltx did not impede two-

dimensional wound closure in U-87MG or U-251MG at 1 µM (Figure 3B) to the same extent as AqB011, 

rendering AQP1, with established roles in both cellular invasion and migration,13,19 an unlikely target of Cltx.  

 

Results of oocyte experiments also indicated that AQP1 does not present a novel target of Cltx. AQP1-

expressing oocytes demonstrated similar swelling rates with and without Cltx exposure (Figure 4), 

indicating that Cltx had no significant effect on AQP1 water channels. Despite documentation of AQP1-

mediated water movement facilitating glioma cell motility,13,19 results of these swelling assays do not 

contradict the Cltx-mediated inhibition of invasion observed in the transwell invasion assays (Figure 2B). 

AqB011 potently inhibiting glioblastoma cell invasion without affecting AQP1-mediated water transport15 is 

one demonstration of the independence with which AQP1 ion and water channels function. Additionally, 

Cltx did not significantly inhibit or prevent SNP-activated ionic conductance in AQP1-expressing oocytes 

(Figure 5D), further indicating the lack of interaction between Cltx and AQP1 ion channels. Incubating 

oocytes in Cltx for 20 min did not affect swelling rates in hypotonic saline or prevent stimulation of AQP1 

ion channels with SNP, despite previous observations of Cltx eliciting its effects after approximately 20 min 

of exposure.14 

 

Antagonists of AMPA/kainate, CaV and KV channels (Table 2) inhibited invasion to varying extents in       

U-87MG and U-251MG at non-cytotoxic concentrations. Classification of U-87MG as mesenchymal43 and 

U-251MG as proneural44 indicates differences in gene and protein expression profiles and hence responses to 

pharmacological agents. These differences could underlie the diverse extents to which the antagonistic 

agents inhibited GBM cell invasiveness in U-87MG and U-251MG. However, this can only be conjectured 

on the basis of the transcriptomic information collected on the genes of interest from biopsied samples 

(Figure 1) and under the assumption that the resulting proteins localised to membranes of cultured cells to 

function correctly. 
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In various glioblastoma cell lines, Ca2+ signalling via Ca2+-permeable AMPA/kainate receptors has proven 

important to the cellular elongation processes that result in fusiform morphologies facilitative of 

invasiveness.23,45 Perturbation of such pathways could extend to U87-MG and U251-MG and underlie 

cyanquixaline-mediated inhibition of invasion (Figure 6B). Reduced invasion in U-87MG upon exposure to 

AMPA/kainate receptor agonist quisqualic acid is attributable to excitotoxicity (Figure 7), with quisqualic 

acid being one of the most potent AMPA agonists known.46 Lack of significant inhibition of invasion by 

GABAA receptor antagonist bicuculline reflects the low expression levels of GABRA1 by comparison to 

AMPA/kainate receptors seen in glioblastoma patient data (Figure 1; raw data available on the GBM Bio 

Discovery Portal).  

 

Reduced U87-MG and U251-MG invasiveness following exposure to verapamil (Figure 6B) could have 

resulted from inhibition of Ca2+ flux via low voltage-activated CaV3 channels, a downstream effect of CaV3 

channel blocker nifedipine that previously impaired in vitro glioblastoma cell proliferation.47 However, with 

Ca2+ signalling involved in many cellular regulatory pathways,24 inhibition of CaV channels with verapamil 

likely perturbs multiple downstream signalling cascades that facilitate glioblastoma motility in addition to 

proliferation, resulting in the verapamil-mediated impairment of invasion observed here.  

 

Whilst cell cycle arrest following KV channel inhibition is well established,29,30 the anti-invasive mechanisms 

of KV channel inhibitor 4-aminopyridine are yet to be documented. Based on previous studies implicating K+ 

efflux in the cellular shrinkage processes facilitative of glioblastoma invasion,14 the significant impediment 

of glioblastoma cell invasion by 4-aminopyridine seen herein (Figure 6B) could be attributable to inhibition 

of K+ efflux via KV channels. 

 

In summary, the results herein reject the hypothesis that Cltx inhibits glioblastoma motility through a novel 

interaction with AQP1 ion channels. Results of transwell invasion and wound closure assays employed here 

showed that Cltx achieved significant inhibition of cellular invasion but not migration in U-87MG and       

U-251MG glioblastoma cell lines. Oocyte swelling assays and two-electrode voltage clamping showed that 

neither AQP1 water or ion channels were sensitive to 1 µM Cltx. Although effects of greater Cltx 

concentrations on cellular migration in U-87MG and U-251MG cells, and on AQP1-mediated oocyte 
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swelling rates and ionic conductance were not investigated on this occasion, the plausibility of AQP1 being 

an alternate target of Cltx is still unlikely given (1) the cellular responses evoked at lower Cltx 

concentrations upon interaction with known targets17,18 and (2) failure to inhibit in vitro glioblastoma 

migration to the same extent as AQP1 ion channel antagonist AqB011.48 Cyanquixaline, verapamil and 4-

aminopyridine significantly impaired cellular invasion in U-87MG and U-251MG at non-cytotoxic 

concentrations and to varying extents following perturbance of signalling pathways downstream of 

AMPA/kainate, CaV and KV channels.   

 

Elucidating the (1) lowest concentrations of these agents that elicit significantly potent inhibition of 

glioblastoma invasion and (2) off-target effects arising from widespread expression of AMPA/kainate, CaV 

and KV channels in complex in vivo systems present a challenge going forward. Additionally, with survival 

plots for the gene clusters in Figure 1 showing stronger PIHRs than that of any gene alone (Table 1), 

combining pharmacological agents that modulate multiple glioblastoma-enriched signalling proteins 

implicated in key motility pathways could prove more effective in realising clinically relevant inhibition of 

glioblastoma invasiveness. Defining an optimised combination of agents that acts synergistically to halt 

glioblastoma invasion without cytotoxic side-effects could initiate a novel way of limiting glioblastoma 

motility during administration of primary clinical treatments. On a broader scale, tailoring pharmacological 

interventions to the genetic make-ups of different of tumour types could significantly advance large-scale 

management of tumour invasiveness. 
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