

# The geological relationship between Kanmantoo Cu-Au deposit mineralisation, hydrothermal metasomatism and igneous intrusives

Extended version of thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology.

Benjamin James Kimpton November 2018



## THE GEOLOGICAL RELATIONSHIP BETWEEN KANMANTOO CU-AU DEPOSIT MINERALISATION, HYDROTHERMAL METASOMATISM AND IGNEOUS INTRUSIVES

## KANMANTOO CU-AU DEPOSIT MINERALISATION

## ABSTRACT

The Kanmantoo Cu-Au deposit has been in episodic operation since 1846, one decade after the capital city of Adelaide was established some 40 kilometres to the NW. Regionally and within the host stratigraphy there exists archetypal evidence of the Cambrian Delamerian Orogeny through a complex structural, metamorphic and intrusive history. Consequently, numerous theories exist within the literature regarding the syngenetic or epigenetic style of mineralisation and the debated contribution, if any, of magmatic hydrothermal fluids. This study has documented numerous felsic intrusive vein sets within the Kanmantoo Cu-Au deposit which have been utilised to constrain the role of igneous activity on mineralisation within a wider Delamerian context. Monazite U-Pb ages of felsic veins show intrusion of the system first occurred at syn-peak metamorphic, syn-orogenic conditions (495.11  $\pm$  2.79 Ma), continuing periodically until post-peak metamorphic, extensional conditions  $(483.43 \pm 2.52)$ Ma). Intrusions are coeval with mineralisation and are temporally and geochemically analogous to magmatic activity in the adjacent Monarto and Murray Bridge provinces. Analysis of monazite trace elements identifies the Kanmantoo Cu-Au deposit as a syn- to post-peak metamorphic hydrothermal anomaly, which combined with the presence of felsic veins indicate that mineralisation resulted partly from fluids generated by a pluton at depth. These findings broadly confirm the prospectivity of Delamerian affected terranes throughout large parts of South Eastern Australia where pervasive intrusive geology exists.

## **KEYWORDS**

Kanmantoo, Delamerian Orogeny, mineralisation, hydrothermal metasomatism, igneous intrusives, U–Pb geochronology, monazite trace element, exploration tool

# **TABLE OF CONTENTS**

| ABSTRACT                                            | i  |
|-----------------------------------------------------|----|
| KEYWORDS                                            | i  |
| 1 INTRODUCTION                                      |    |
| 2 REGIONAL GEOLOGICAL BACKGROUND                    | 4  |
| 2.1 Kanmantoo Trough                                | 4  |
| 2.2 Delamerian Orogeny                              | 6  |
| 2.2.1 Structural record                             | 7  |
| 2.2.2 Metamorphic record                            | 7  |
| 2.2.3 Intrusion record                              |    |
| 2.3 Mineralisation                                  | 9  |
| 2.3.1 Syngenetic model                              | 9  |
| 2.3.2 Epigenetic model                              |    |
| 3 METHODS                                           |    |
| 3.1 Sample collection                               |    |
| 3.2 Microscopy                                      | 14 |
| 3.2.1 Petrographic analysis                         | 14 |
| 3.2.2 SEM-MLA                                       | 14 |
| 3.3 Whole rock geochemistry                         | 14 |
| 3.4 LA-ICP-MS                                       | 14 |
| 3.4.1 U–Pb geochronology                            | 14 |
| 3.4.2 Monazite trace elements                       |    |
| 4 RESULTS                                           |    |
| 4.1 Petrology                                       |    |
| 4.1.1 Felsic veins                                  |    |
| 4.1.2 Quartz veins                                  |    |
| 4.1.3 Chlorite alteration                           |    |
| 4.1.4 Aluminous segregations                        |    |
| 4.1.5 Regional samples                              |    |
| 4.2 SEM-MLA                                         |    |
| 4.3 Whole rock geochemistry                         |    |
| 4.4 LA–ICP–MS                                       |    |
| 4.4.1 Monazite U–Pb geochronology                   |    |
| 4.4.2 Monazite trace elements                       |    |
| 4.4.3 Apatite U–Pb geochronology                    |    |
| 5 DISCUSSION                                        |    |
| 5.1 Geochronology                                   |    |
| 5.1.1 Relative ages                                 |    |
| 5.1.2 Absolute ages                                 |    |
| 5.1.3 Interpretation of monazite U–Pb geochronology |    |

| 5.1.4                                                              | Interpretation of apatite U–Pb geochronology             |     |
|--------------------------------------------------------------------|----------------------------------------------------------|-----|
| 5.2 Geo                                                            | chemistry                                                |     |
| 5.2.1                                                              | Felsic veins                                             |     |
| 5.2.2 Aluminous segregations, quartz veins and chlorite alteration |                                                          |     |
| 5.3 Mor                                                            | nazite trace elements as hydrothermal exploration guides |     |
| 5.4 Dela                                                           | amerian                                                  |     |
| 5.4.1                                                              | Felsic Vein Formation                                    | 45  |
| 5.5 Min                                                            | eralisation                                              |     |
| 6 CONCLU                                                           | USIONS                                                   |     |
| 7 FUTURE                                                           | E RESEARCH                                               |     |
| 8 ACKNO                                                            | WLEDGEMENTS                                              |     |
| 8 REFERE                                                           | NCES                                                     |     |
| Appendix A: 1                                                      | Historical background                                    | 53  |
| Appendix B: I                                                      | Extended petrographic descriptions                       |     |
| Appendix C: S                                                      | SEM-MLA parameters                                       | 65  |
| Appendix D: l                                                      | Extended whole rock geochemistry methods                 |     |
| Appendix E: V                                                      | Whole rock geochemistry results                          |     |
| Appendix F: E                                                      | Extended geochronology methods                           |     |
| Appendix G: 1                                                      | Monazite U–Pb results                                    | 70  |
| Appendix H: A                                                      | Apatite U–Pb results                                     |     |
| Appendix I: E                                                      | xtended LA-ICP-MS trace elements methods                 | 93  |
| Appendix J: N                                                      | Ionazite trace elements results                          | 94  |
| Appendix K: A                                                      | Apatite trace elements results                           | 127 |

## LIST OF FIGURES AND TABLES

| Figure 1: Geological map of the Kanmantoo Group                                   | 6  |
|-----------------------------------------------------------------------------------|----|
| Figure 2: Locations of samples within mine                                        | 13 |
| Figure 3: Felsic veins in hand sample                                             |    |
| Figure 4: Characteristic field relationships                                      |    |
| Figure 5: Representative photomicrographs of samples                              | 21 |
| Figure 6: SEM-MLA BSE images of samples                                           |    |
| Figure 7: Whole rock geochemical plutonic classification diagrams                 |    |
| Figure 8: Trace element tectonic discrimination diagrams                          |    |
| Figure 9: Normalised incompatible element variation diagram                       | 25 |
| Figure 10: Harker geochemical mass-transfer diagram                               |    |
| Figure 11: Wetherill concordia diagrams for monazite U-Pb analyses (felsic veins) |    |
| Figure 12: Wetherill concordia diagrams for monazite U-Pb analyses (other)        |    |
| Figure 13: Hydrothermal monazite trace element discrimination diagrams            |    |
| Figure 14: Terra-Wasserburg concordia diagrams for apatite U-Pb analyses          |    |
| Figure 15: Monazite trace element regional distribution block model               |    |
| Figure 16: Regional map and time-space diagram                                    | 43 |
| Figure 17: Mineralisation block model                                             | 47 |
| Table 1: List of samples and their classifications                                | 16 |
| Table 2: List of samples analysed for monazite U-Pb geochronology                 | 27 |

#### **1** INTRODUCTION

Despite almost two centuries of economic and scientific investigation, the style of mineralisation defining the Kanmantoo Cu-Au deposit (Appendix A) and its subsequent place in a provincial metallogenic framework remains the subject of debate. As with other meta-sediment hosted base metal deposits, the predominant paradigms can be broadly categorised as either syngenetic or epigenetic, with the complex tectonic history of the region providing evidence for both. Importantly, the two proposed models may be used to postulate a significantly different potential for regional exploration, ranging from trough to belt scale.

Early literature arguing for a syngenetic origin theorised that base metals were deposited simultaneously to metasediments in the Kanmantoo Trough and exist today as either disseminated or remobilised ore (Lindqvist, 1969). Ensuing research principally examining sulphur isotopes, microstructures and the local metallogenic record concluded that metals were likely incorporated in the sediments through submarine exhaution and subsequently metamorphosed and remobilised (Verwoerd and Cleghorn, 1975; Seccombe, Spry, Both, Jones & Schiller, 1985; Parker, 1986; Spry, Schiller & Both, 1988; Belperio et al., 1998; Pollock et al., 2018). The importance of a structural control on mineralisation has long been recognised by researchers (Dickinson, 1942; Thomson, 1975; Parker, 1986;). This understanding has underpinned literature arguing for an epigenetic origin and was modernised through the study of oxygen and sulphur isotopes with researchers concluding that mineralisation was the result of metasomatic infiltration of fluids derived from regional metamorphism and a local crystallising magma at the peak of metamorphism (Solomon & Groves, 1994; Oliver, Dipple, Cartwright & Schiller, 1998). Research based on succeeding structural analysis, geochemistry, geochronology and geothermometry has variously opted for a syn-peak metamorphism and compressional regime (Schiller, 2000) or a post-peak metamorphism and extensional regime for mineralisation (Tedesco, 2009; Wilson, 2009;

Focke, Schmidt Mumm, Tedesco, Seifert & Bradey, 2010; Arbon, 2011; Lyons, 2012). While a magmatic component of mineralising fluids has been routinely suggested, the direct role of intrusive geology within the deposit remains poorly constrained.

With this debate in mind, the following study aims to examine the physical evidence for hydrothermal and igneous activity exposed throughout the Kanmantoo Cu-Au deposit, namely numerous vein sets and alteration types. It is theorised that veins are of a magmatically derived origin, having formed alongside the regional suite of Delamerian syn to post-deformational intrusions. By understanding the age and geochemistry of intrusive rocks within the context of the Delamerian Orogeny, a temporal and spatial connection between mineralisation and a potential source for mineralising fluids may be identified. Consequently, the prospectivity of Delamerian-affected terranes for Kanmantoo-style mineralisation can be constrained. This has been achieved by combining petrography and whole rock geochemistry with in situ U–Pb geochronology and monazite trace element analysis which provide insights into the age and formation conditions of mineralisation, intrusive veins and alteration.

## 2 REGIONAL GEOLOGICAL BACKGROUND

#### 2.1 Kanmantoo Trough

The Kanmantoo Cu-Au deposit is hosted within the Kanmantoo Group, a Cambrian metaturbidite sequence consisting of eight separate formations with a structurally enhanced thickness of 7-8km (Jago, Gum, Burtt & Haines, 2003). Three of these formations, namely the Tapanappa, Talisker and Carrickalinga Head Formations, have been linked with mineralisation (Belperio et al. 1998), with the Kanmantoo Cu-Au deposit and several other base metal deposits being hosted within the Tapanappa Formation (Fig. 1). The Kanmantoo Group was deposited in the Kanmantoo Trough, an extensional rift basin contained within the Adelaide Rift Complex which formed along an outward margin of the simultaneously assembling supercontinent of Gondwana. Early signs of rifting are exhibited by intrusion of the Truro Volcanics into the clastic-dominated Normanville Group which underlies the Kanmantoo Group in a variably conformable fashion (Fig. 1). Dating of zircons contained within tuffs from the Normanville Group defined a lower age limit for the Kanmantoo Group of  $522 \pm 2$  Ma (Jenkins, Cooper & Compston, 2002). Foden, Sandiford, Dougherty-Page and Williams (1999) analysed zircons in the Rathjen Gneiss, suggested to be the oldest Delamerian related intrusion to define an upper age limit for the Kanmantoo Group of  $514 \pm$ 5 Ma, suggesting that Kanmantoo Group sediments may have been deposited in less than 10 Myr. Rifting, exceptionally rapid rates of sedimentation and initiation of orogeny are indicative of an increasingly dynamic tectonic regime. This activity directly reflects global plate reconfigurations occurring throughout this time (Foden, Elburg, Dougherty-Page & Burtt, 2006), marking the start of over 100 Myr of sustained mineralisation potential throughout large parts of South Eastern Australia (Solomon & Groves, 1994).



Figure 1: Geological map and stratigraphic log of the Kanmantoo Group adapted from Jago, Gum, Burtt and Haines (2003) including various associated mineral deposits and syn- to post-orogenic igneous intrusions. Green circles denote the location of regional schist samples used in this study (KMT1 = 2.64 km north of mine, BKDK1 = 9.22 km north of mine).

## 2.2 Delamerian Orogeny

Deposition in the Kanmantoo Trough was abruptly terminated by initiation of the Delamerian Orogeny and consequent basin inversion. Compressional deformation is interpreted to have taken place from between 514 to 490 Ma through intra-plate stress transfer (Foden et al., 2006). This deformation became archetypically observed within the Kanmantoo Trough as a series of pervasive structural, metamorphic and intrusive features described below.

#### 2.2.1 STRUCTURAL RECORD

The Kanmantoo Trough has undergone at least three phases of deformation  $(D_1, D_2 \text{ and } D_3)$ associated with the Delamerian Orogeny (Offler & Fleming, 1968; Mancktelow, 1979; Preiss, 1995; Oliver et al., 1998; Schiller, 2000). Regionally, the existence and significance of D<sub>3</sub> relative to proceeding phases of deformation is debated, however some authors have identified it in the vicinity of the Kanmantoo Cu-Au deposit and noted it as a structural control of ore (Oliver et al., 1998; Lyons, 2012). Relict bedding, S<sub>0</sub>, can still be recognised within the region and the Kanmantoo Cu-Au deposit ranging from fine sedimentary laminations to metre thick beds (Schiller, 2000). Of great significance to the Kanmantoo Cu-Au deposit is the regional-scale Kanmantoo Syncline (Mancktelow, 1979), the axial plane of which is just east of the pit with a roughly N-S strike (Schiller, 2000). The syncline is but one in a series within the tightly folded Eastern Mount Lofty Ranges and Kanmantoo Group which come to form part of the Adelaide Fold Belt. A relationship between regional scale deformation structures on mineralisation including the Kanmantoo Syncline, Kanmantoo Fault and Bremer Fault has been recognised by various authors (Oliver et al., 1998; Schiller, 2000). The Kanmantoo Cu-Au deposit is situated on the western limb of the Kanmantoo Syncline, near the axial plane (Solomon & Groves, 1994; Schiller, 2000). Foden et al. (2006) suggested that slab rollback of the Pacific plate at 490 Ma caused a cessation of compressional forces with the region transitioning into an extensional regime and this appears to have reactivated peak metamorphic structures and fabrics within the deposit (Lyons, 2012).

#### 2.2.2 METAMORPHIC RECORD

Metamorphism within the Kanmantoo Trough associated with the Delamerian Orogeny occurred exclusively at low pressure and high temperature (Offler & Fleming, 1968). Regionally, this has been described as a Barrovian metamorphic zonation, with the

Kanmantoo Cu-Au deposit being stratabound in an amphibolite facies garnet-andalusitebiotite schist (GABS) unit (Mancktelow, 1979) of anomalous chemistry rich in Fe and Mn but depleted in Na and Ca (Schiller, 2000). Evidence of peak metamorphism near the amphibolite facies andalusite–sillimanite transition (Spry, 1979) is observed within the Kanmantoo Cu-Au deposit. Estimates of peak metamorphic conditions vary slightly from pressures of 3–4 kbar and temperatures of 530–565 °C (Schiller, 2000), 3–5 kbar and 550– 600 °C (Sandiford et al., 1995) and up to 3.7 kbar and 635 °C in sillimanite bearing schists (Stinear, 2017). Peak metamorphism across the orogen has been linked spatially with the intrusion of mid-crustal granitic intrusions (Sandiford et al., 1995), with age estimates of peak metamorphism generally ranging from syn-D<sub>2</sub> (Schiller, 2000) to post D<sub>3</sub> (Oliver et al., 1998).

## 2.2.3 INTRUSION RECORD

A diverse suite of intrusions dated from syn- to post-Delamerian Orogeny or  $514 \pm 4$  to  $478 \pm 2$  Ma (Foden et al., 2006) are observed within approximately 50 km of the Kanmantoo Cu-Au deposit. This suite extends outwards to other Delamerian-affected terranes throughout South Australia and South Eastern Australia (Foden et al., 1990; Preiss, 1995). Intrusions range from felsic to mafic compositions, with syntectonic I- and S- type magmatism broadly transitioning to A-type magmatism with the cessation of orogenesis (Foden et al., 2006). Significant intrusions within 50 km of the Kanmantoo Cu-Au deposit include the Monarto, Mannum, Murray Bridge and Palmer Granites. Mineralisation is known to be associated with intrusions on a limited scale, with the Palmer Granite hosting the Kitticoola Cu-Au deposit (Griessmann, 2011) and the Monarto Granite having been associated with various historical Cu-Au workings (Schiller, 2000). Past literature has alluded to a pluton at depth as a possible

source of mineralising and metamorphic fluids at the Kanmantoo Cu-Au deposit, however a temporal and genetic link with known regional intrusives remains tentative.

## 2.3 Mineralisation

The Kanmantoo Cu-Au deposit is commonly described as a series of lenses and pods rich in chalcopyrite, pyrrhotite and magnetite with trace amounts of gold, silver, bismuthinite and molybdenite. Despite being classed as stratabound, veins of mineralisation are not stratiform but are observed to cross cut bedding throughout the deposit, running parallel or sub-parallel to various deformational fabrics (Seccombe et al., 1985; Oliver et al., 1998; Schiller, 2000).

#### 2.3.1 SYNGENETIC MODEL

Early research on the Kanmantoo Cu-Au deposit frequently supported a syngenetic model of mineralisation, with Lindqvist (1969) and Verwoerd & Cleghorn (1975) first suggesting that sulphides were deposited concurrently with Kanmantoo Group sediments before being remobilised into their current structural and stratigraphic configurations during later orogeny. Spry (1976) concluded that Cu was present in the country rock either during sedimentation or in the earliest stages of metamorphism, with sulphur isotope ratios suggesting a hydrothermal origin and mobilisation of disseminated sulphides (Seccombe et al., 1985). Seccombe et al. (1985) further developed this concept by examining sulphur isotopes from other localities within the Kanmantoo Group to conclude that sulphur was leached from pyritic horizons (Parker, 1986) during hydrothermal circulation, with a seawater component accounting for regional isotopic variations as the result of fluid mixing. In both cases, the lack of a proximal magmatic intrusion is cited as a primary reason for discounting a partial igneous source of sulphur and consequent isotopic variation (Spry, 1976; Seccombe et al., 1985). Seccombe et al. (1985) noted the importance of a relatively constant stratigraphic level of the various base

metal deposits within the Tapanappa Formation and noted that most deposits could have been stockworks, veins or disseminated zones within submarine exhalation vents. These vents are theorised to be part of 3–4 km deep circulation systems driven by convection or seismic pumping of seawater and discharged fluids. More direct evidence of sedimentary exhalative processes linked to mineralisation has been observed regionally, namely in the presence of laminated garnetiferous cherts transitioning into narrow magnetite BIFs within the wall rock surrounding Pb-Zn deposits of the Tapanappa Formation (Anderson, 1993). Laminated chert layers in proximity to the Aclare Ag Mine were observed to have a spatial relationship with disseminated sphalerite and galena (Toteff, 1994). More recently, Pollock et al. (2018) observed disseminated sulphides locally concordant with bedding in the Nugent lode, consistent with syngenetic mineralisation.

#### 2.3.2 EPIGENETIC MODEL

The idea of an epigenetic style of mineralisation at the Kanmantoo Cu-Au deposit can be traced back to Dickinson (1942), Thomson (1975) and Parker (1986) who suggested that structural features pervasive throughout the region would have played a major role in the concentration of metals during metamorphism. However, the epigenetic case was first strongly championed by Oliver et al. (1998), who concluded that mineralisation was the result of late to post-peak metamorphic, metasomatic infiltration of fluids derived from regional metamorphism and a local crystallising magma. Subsequent research has largely supported an epigenetic model for mineralisation either through the introduction of igneous derived fluids, metamorphic fluids or some combination of both during or after peak metamorphism (Solomon & Groves, 1994; Gum, 1998; Schiller, 2000; Burtt, 2008; Tedesco, 2009; Wilson, 2009; Focke, 2010; Arbon, 2011; Lyons, 2012).

Early analytical evidence for epigenetic mineralisation included the interpretation of anomalous  $\delta^{34}$ S (Oliver et al., 1998; Gum, 1998) and  $\delta^{18}$ O (Oliver et al., 1998) isotope signatures from within the Kanmantoo deposit as being indicative of a magmatic fluid source. Seccombe et al. (1985) considered an igneous source for the anomalously fractionated sulphur, but because of a lack of igneous source rocks within the area, concluded that the  $\delta^{34}$ S values were a result of crustal circulation of seawater. This was disputed by Oliver et al. (1998) who argued that the large amount of seawater circulation needed to replicate observed  $\delta^{34}$ S levels was not realistically achievable. Oliver et al. (1998) noted an abundance of Ferich minerals within the system that transgressed bedding and concluded that Fe metasomatism was spatially correlated with ore. The large variety of minerals within the deposit including andalusite and staurolite in veins (Oliver et al., 1998) and the limited amount of strain exhibited in rocks within the deposit relative to the region (Oliver et al., 1998; Schiller, 2000) may indicate that fluid assisted mineralisation occurred during or after peak metamorphism. Oliver et al. (1998) suggested a change from regional, metamorphicallyderived fluid flow at the peak of metamorphism to localised fluid flow derived from an igneous intrusion.

Recent research has largely supported the post-peak mineralisation model driven by the proposed intrusion of a magmatic pluton. Monazite U-Pb mineralisation ages from 469–498 Ma have been suggested by Wilson (2009) and Focke (2010) correlating approximately to known intrusions of granites within the wider region (Foden et al., 2006), but also with synto post-peak metamorphism (Sandiford et al., 1995). Ti in quartz thermometry has been used by various researchers (Focke, 2009; Schmidt Mumm, Tedesco & Focke, 2009; Tedesco, 2009) to establish peak mineralisation was concurrent with local shearing and quartz vein intrusion. Pervasive Fe-rich metasomatism (Oliver et al., 1998), which has a strong spatial and temporal connection with mineralisation is also proposed to be a signature of magmatic

thermal processes and mantle upwelling (Tedesco, 2009; Wilson, 2009). The presence of elevated bismuth throughout the Kanmantoo Cu-Au deposit has also been linked to a granitic or magmatic source (Arbon, 2011). Lyons (2012) suggests that magmatic fluids began infiltrating the Kanmantoo Cu-Au deposit around 492 Ma after termination of the Delamerian Orogeny, with sulphur isotopes suggesting an I-type magma source.

## 3 METHODS

## 3.1 Sample collection

Thirty-two rock samples were collected from existing diamond drill core or directly from the main pit walls. Geological logging records belonging to Hillgrove Resources Ltd. were utilised to find representative drill core samples containing veins and intrusions of perceived mineralogical uniqueness. Samples were sourced from across the deposit, including the East Kavanagh, Main Kavanagh, Spitfire and Nugent lodes (Fig. 2) from ten separate diamond drill holes. Hillgrove Resources Ltd. geologists assisted in selecting veins and intrusions from the pit walls that were not well represented within existing drill core. Two Tapanappa Formation schist samples from 2.64 km and 9.22 km north of the Kanmantoo Cu-Au deposit open pit (Fig. 1) were selected from existing University of Adelaide collections to serve as comparative representations of district suites. Eighteen samples were made into 30-35µm polished thin sections by Ingham Petrographics, Queensland. Four additional samples were made into 40 µm polished thin sections by Adelaide Petrographic Laboratories, South Australia. Detailed sample information is presented in Appendix B.



Figure 2: Locations of diamond drill hole and grab samples used in this study relative to deposit lodes and previously assayed copper concentrations adapted from Rolley and Wright (2017).

#### 3.2 Microscopy

#### 3.2.1 PETROGRAPHIC ANALYSIS

Petrographic analysis was conducted on an Olympus BX51 polarizing microscope at the University of Adelaide to confirm the mineralogy and paragenetic relationships of the twenty-two total thin sections.

#### 3.2.2 SEM-MLA

The FEI Quanta 600 Scanning Electron Microscope (SEM) at Adelaide Microscopy, University of Adelaide was used to conduct Mineral Liberation Analysis (MLA) on eighteen representative samples. Electron Backscatter (EBS) images were processed to broadly identify the location of monazite, apatite, zircon and xenotime with relation to veins, alteration, sulphides and host rock. Imaging parameters are detailed in Appendix C.

## 3.3 Whole rock geochemistry

Twelve vein samples were cut to remove unaltered host rock and non-disseminated sulphides before being sent to ALS Limited, South Australia for whole rock and trace element geochemical analysis. Extended methods are presented in Appendix D.

#### 3.4 LA-ICP-MS

#### 3.4.1 U-PB GEOCHRONOLOGY

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) was conducted using the Agilent 7900x with attached RESOlution LR 193 nm Excimer laser system at Adelaide Microscopy, University of Adelaide. A total of twelve individual samples were analysed by in situ laser ablation for monazite U–Pb (ten samples) and apatite U–Pb (seven samples) at a fluence of 2.0 J/cm<sup>2</sup> and 3.5 J/cm<sup>2</sup> respectively. Where possible, spots were taken from across the entirety of the sample including within vein sets, sulphides and adjacent altered host rock. Data processing and reduction was completed using *Iolite Software* (Paton, Hellstrom, Paul, Woodhead, & Hergt, 2011). Extended methods and data reduction techniques are presented in Appendix F.

## 3.4.2 MONAZITE TRACE ELEMENTS

In situ monazite grains from ten samples were analysed for trace elements concurrently to U– Pb analysis through LA-ICP-MS at Adelaide Microscopy, University of Adelaide. Data processing and reduction was completed using *Iolite Software* (Paton, Hellstrom, Paul, Woodhead, & Hergt, 2011). Extended methods and data reduction techniques are presented in Appendix I.

## 4 **RESULTS**

## 4.1 Petrology

Petrographic analysis was conducted on twenty-two samples (Table 1) using both optical microscopy and SEM-MLA imaging, resulting in the identification of four mineralogically distinct vein and alteration types which are described below. Extended petrographic descriptions are presented in Appendix B.

| Sample  | Lode                                           | Category              | Use                                           |
|---------|------------------------------------------------|-----------------------|-----------------------------------------------|
| BK01    | Spitfire                                       | Felsic vein           | SEM-MLA, Geochem, U-Pb monazite               |
| BK05    | Nugent                                         | Felsic vein           | SEM-MLA, Geochem, U-Pb monazite               |
| BK08    | Main Kavanagh                                  | Felsic vein           | -                                             |
| BK10    | Main Kavanagh                                  | Felsic vein           | -                                             |
| BK11    | Main Kavanagh                                  | Felsic vein           | SEM-MLA, U–Pb apatite                         |
| BK12    | Main Kavanagh                                  | Felsic vein           | -                                             |
| BK18    | Main Kavanagh                                  | Felsic vein           | SEM-MLA, U-Pb monazite, U-Pb apatite          |
| BK20    | Spitfire                                       | Felsic vein           | -                                             |
| BK21    | Spitfire                                       | Felsic vein           | SEM-MLA                                       |
| BK23    | Spitfire                                       | Felsic vein           | -                                             |
| BK25A   | East Haul Road                                 | Felsic vein           | SEM-MLA, Geochem, U-Pb monazite, U-Pb apatite |
| BK25B   | East Haul Road                                 | Felsic vein           | SEM-MLA, Geochem, U-Pb monazite, U-Pb apatite |
| KTDD089 | Nugent                                         | Felsic vein           | SEM-MLA, U–Pb monazite, U–Pb apatite          |
| BK17    | Main Kavanagh                                  | Quartz vein           | SEM-MLA, Geochem                              |
| BK27    | NE Pit Wall                                    | Quartz vein           | SEM-MLA                                       |
| BK06    | Nugent                                         | Chlorite alteration   | SEM-MLA, U-Pb monazite                        |
| BK14    | Main Kavanagh                                  | Chlorite alteration   | SEM-MLA, U-Pb monazite, U-Pb apatite          |
| BK29    | N Pit Wall                                     | Aluminous segregation | SEM-MLA, Geochem                              |
| BKBDG1  | S Pit Wall                                     | Aluminous segregation | SEM-MLA, Geochem                              |
| BKBDG2  | S Pit Wall                                     | Aluminous segregation | SEM-MLA, Geochem, U-Pb apatite                |
| KMT1    | 2.64 km N of mine:<br>(54H 0318294<br>6117492) | Regional sample       | SEM-MLA, U–Pb monazite                        |
| BKDK1   | 9.22 km N of mine:<br>(54H 0318258<br>6123907) | Regional sample       | SEM-MLA, U–Pb monazite                        |

Table 1: List of thin section samples used in this study and their determined petrographic classifications.

## 4.1.1 FELSIC VEINS

Felsic veins occur within all major lodes of the deposit as centimetre scale (1-10 cm wide), undeformed veins discordant to bedding. Veins range from parallel to deformational fabrics through to cross cutting all observable fabrics. Felsic veins are commonly quartzofeldspathic and fine grained (<2 mm) with rare feldspathic phenocrysts (up to 4 mm). Compositionally, veins contain variable proportions of albite, plagioclase, K-feldspar, quartz, biotite, tourmaline and muscovite. Albite is the dominant mineral in veins ranging from 30-60 %, with trace amounts of Ca-plagioclase. K-feldspar ranges from 15-60 %, quartz from 10-20 %

and mica being the smallest proportion of veins from 0-10 %. Chlorite alteration of mica and sericitic alteration of feldspars and chlorite is observed throughout samples, with varying levels of alteration and sample degradation. Considering the mineralogical compositions, fine grained texture and thin intrusive structure, felsic veins may be categorised as felsic aplites with a granitic to leucogranitic composition (Fig. 3b, a). They range from being devoid of sulphides to having large quantities of chalcopyrite, pyrrhotite and pyrite, while increasingly disseminated sulphides are concentrated heavily around vein contacts (Fig. 3c). Felsic veins are observed to overprint pervasive features in surrounding host rock such as schistosity and porphyroblasts, the latter replaced by feldspathic and phosphatic minerals including albite, K-feldspar, monazite, apatite and xenotime.



Figure 3: Representative photographs of felsic veins in hand sample. (a) BK25 - Leucogranitic vein comprised of albite and trace plagioclase (60 %), K-feldspar (20 %), tourmaline (10 %) and quartz (10 %) with sericitic and some chlorotic alteration and replacement throughout. Large (up to 3 mm) feldspar crystals have developed around sulphides (chalcopyrite, pyrrhotite and pyrite) with felsic veins fining outwards from the sulphides. Note the progressive alteration of surrounding host rock. (b) BK05 - Granitic vein comprised of altered primary and secondary K-feldspar and albite (2-4 mm), biotite, quartz, minor muscovite and limonite. Pervasive chlorite alteration throughout replacing biotite, with a later sericitic alteration of K-feldspar and chlorite shows that the sample is considerably degraded. Prealteration proportions are roughly estimated to be that of an alkali feldspar granite: K-feldspar (40-50 %), albite (10-15 %), quartz (15-20 %), biotite (15-20 %) with accessory ilmenite and minor tourmaline. (c) BK01 - comprised predominately of fine-moderately sized (40-200 μm) albite (60%), K-feldspar (20 %) and quartz (10 %) with chlorite replacing biotite (5 %), minor rutile and late carbonate (5 %). Sericitic alteration is seen to alter feldspars and chlorite throughout. Within hand sample, large (0.5 cm) grains of chalcopyrite are observed within the centre of veins.

## 4.1.2 QUARTZ VEINS

Numerous generations of quartz veins from centimetre to metre scale occur throughout the deposit. These veins are always discordant to bedding but exhibit various deformational histories ranging from undeformed to tightly folded or intensely boudinaged. The association between quartz veining and mineralisation is equally variable. Deformed quartz veins (sample BK27) are observed to have the largest range in width, but are generally

monomineralic and are devoid of, or overprinted by, mineralisation. Undeformed quartz veins (sample BK17) are commonly smaller and contain staurolite, and alusite and sulphides.

## 4.1.3 CHLORITE ALTERATION

Chlorite occurs throughout the mine and within many samples, but particularly in samples BK14 and BK06 where it is pervasive and occurs in vein like form, characterized by centimetre wide sections of coarse (up to 1 cm), monomineralic chlorite. Both BK14 and BK06 contain or are spatially associated with disseminated sulphides in surrounding host rock. Strong Berlin blue interference colours for chlorite are common throughout samples indicating that chlorite is Fe-rich. Chlorite alteration is observed to overprint and replace all metamorphic assemblages observed within the deposit.

#### 4.1.4 ALUMINOUS SEGREGATIONS

Aluminous segregations (samples BK29 and BKBDG) are exposed as intensely boudinaged, 1-15 cm width veins, running discordant to bedding throughout the main pit (Fig. 4b) consistent with an early orogenic formation. They are primarily composed of 65-75 % coarse pink andalusite, with the remainder being comprised of either quartz or mica.

#### 4.1.5 REGIONAL SAMPLES

Two distal Tapanappa Formation samples (Fig. 1) were studied to compare with mine samples in terms of age and the chemistry of regional metamorphism. KMT1, collected 2.64 km due north of the mine is a strongly foliated garnet–andalusite schist. BKDK1, collected 9.22 km due north of the mine is a strongly foliated garnet–staurolite schist. Both samples are devoid of mineralisation and any alteration type associated with the Kanmantoo Cu-Au deposit.



Figure 4: Characteristic field relationships between generations of veining and pervasive structural fabrics throughout the deposit. (a) Facing South Pit Wall - Relict bedding (S<sub>0</sub>) is folded by the dominant schistosity (S<sub>2</sub>). Note the undeformed quartz veins approximately sub-parallel to S<sub>2</sub> and offset by a late moderately steeply dipping normal fault. (b) Facing North Pit Wall - Segregation and boudinaging typical of post-folding, syn-S<sub>2</sub> veining including some quartz veins and aluminous segregations. (c) Facing East Pit Wall - Undeformed vein, observed generally as either sub-parallel to or cross cutting S<sub>2</sub> in joints typical of felsic veins and some quartz veins.



Figure 5: Representative photomicrographs showing examples of vein and alteration types. (a) BK25A -Felsic vein - K-feldspar, albite, quartz and sericite with syn to post pyrrhotite veining generating large feldspathic crystals. (b) BK25B - Felsic vein - Albite, K-feldspar, quartz with sericitic alteration. (c) BK01 - Felsic vein - Albite and K-feldspar with sericite replacing chlorite after biotite. (d) BK01 - Felsic vein -Disseminated pyrrhotite in host adjacent to vein overprinting a weak schistosity defined by biotite. (e) BK14 - Chlorite alteration - Radiating chlorite with intense Berlin (Prussian) blue interference indicative of Fe-rich hydrothermal fluids. (f) BK14 - Chlorite alteration - Pyrrhotite with late syn to post-chlorite replacing all host rock assemblages. (g) BK17 - Quartz vein - Quartz and staurolite with synchronous pyrrhotite. (h) BK29 - Aluminous segregation - Andalusite and quartz with interconnecting muscovite.

## 4.2 SEM-MLA



Figure 6: SEM-MLA BSE images showing relationships of datable minerals throughout representative samples. (a) BKBDG2 - Aluminous segregation - Large undeformed apatite enclosed by andalusite. (b) BK06 - Chlorite alteration - Monazite and zircon within chlorite and muscovite adjacent to tourmaline crystals. (c) BK01 - Felsic vein - Monazite, apatite and zircon in vein. (d) BK05 - Felsic vein - Monazite, apatite and zircon in vein. (d) BK05 - Felsic vein - Monazite, apatite and zircon and xenotime in vein. (f) BK21 - Felsic vein - Monazite, apatite, zircon and xenotime in vein. (h) KTDD089 - Felsic vein - Monazite and apatite in vein.

#### 4.3 Whole rock geochemistry

Whole rock and trace element geochemical data were collected for twelve samples representing the felsic vein (5 samples), quartz vein (1 sample) and aluminous segregation (6 samples) petrographic classifications. The full geochemical dataset is presented in Appendix E. Felsic veins are plotted alongside known regional intrusive values for relative plutonic and geotectonic classifications. BK25 samples are observed to plot broadly within the quartz diorite space whereas BK01 and BK05 have varying compositions in the syenite and syenodiorite classifications respectively (Fig. 7a). Felsic veins are observed to have a peraluminous composition and except for BK01, an increasingly S-type classification relative to regional intrusive values (Fig. 7b). Trace element geotectonic classifications for felsic veins indicate a syn-collisional to within plate granite classification, with the exception of BK01 which has a marked depletion across trace elements (Fig. 8; 9). Quartz veins and aluminous segregations are depleted across the entire suite of rare earth and incompatible elements, whereas felsic veins and regional intrusives contain a near order of magnitude higher level of Sr relative to mine host rocks, quartz veins and aluminous segregations (Fig. 9).



Figure 7: Selected whole rock geochemical plutonic classification diagrams. Regional Delamerian intrusives of various ages in red (Foden et al., 1990; Foden et al., 1999; Foden et al., 2002; Mancktelow, 1979) illustrate the known geochemical range of exposed felsic to felsic-intermediate bodies within 40-kilometres of the Kanmantoo open pit, not including the Black Hill suite. (a) Total alkali-silica (TAS) diagram after Cox, Bell and Pankhurst (1979) showing plutonic classification of mine and regional intrusives. (b) A/NK vs. A/CNK diagram after Shand (1943) showing distribution of mine and regional intrusive geochemistry from metaluminous to peraluminous and I to S-type.



Figure 8: Selected trace element discrimination diagrams for the tectonic classification of granitic rocks after Pearce, Harris & Tindle (1984) and Foden et al., (1990). Syn-COLG = syn-collisional granite, WPG = within-plate granite, VAG = volcanic-arc granite and ORG = ocean-ridge granite. Regional Delamerian intrusives of various ages in red (Foden et al., 1990; Foden et al., 1999; Foden et al., 2002; Mancktelow, 1979) illustrate the known geochemical range of exposed felsic to felsic-intermediate bodies within 40-kilometres of the Kanmantoo open pit, not including the Black Hill suite.



Figure 9: Average continental crust-normalised incompatible element variation diagram after Foden et al. (1990). Representative samples for the felsic vein, quartz vein and aluminous segregation petrographic classifications in contrast to regional intrusive and host rock values. Mannum granite and Reedy Creek granodiorite (Foden et al., 1990), Rathjen post-tectonic granite (Foden et al., 1999), garnet andalusite biotite schist - GABS (Tedesco, 2009), mine host rocks Sr values (Oliver et al., 1998; Schiller, 2000).

Aluminous segregations are characterised by low  $SiO_2$  (<50 wt%) and high  $Al_2O_3$  (> 50 wt%) relative to mine host rock (Fig. 10). Mine selvages, or host rock alteration halos surrounding ore shoots are observed to have a similar composition, marked principally by a depletion in  $SiO_2$  (Fig. 10).



Figure 10: Harker geochemical variation diagram emphasising a mass transfer gradient from host rock to observed mineralogical segregations through selective diffusion of aluminium and silica. Aluminous segregations as described in this study (4.1.4), regional aluminous segregations (Mancktelow, 1979), mine selvages (Oliver et al., 1998; Schiller, 2000), mine pelites and psammites (Oliver et al., 1998).

## 4.4 LA-ICP-MS

## 4.4.1 MONAZITE U-PB GEOCHRONOLOGY

A total of 433 individual analyses were performed for monazite U–Pb geochronology, conducted in situ on ten separate samples representing felsic veins, chlorite alteration and regional schists. Monazite is abundant in all analysed samples, with grains ranging in size from 15–50  $\mu$ m. High resolution imaging of individual grains to identify intergrowths and structural integrity was only conducted on a small number of grains. In vein samples, monazites were predominately located directly in the vein–host contact zone, whereas those in alteration and regional samples were found to be more evenly distributed. Examination of individual analyses during data processing indicated that monazite grains were sometimes

intergrown with zircon, or had strong mirrored zirconium and silicon contents, and where these signatures could not be isolated, a total of 91 analyses were removed during Iolite processing. A further 14 total monazite analyses were removed for anomalous silicon contents indicative of host rock contamination. Three individual analyses returned no readable data and were not included in calculations. The full dataset of monazite U-Pb geochronology of standards and unknowns is presented in Appendix G.

Six individual felsic veins, two chlorite alteration samples and two regional schists were selected for monazite U–Pb geochronology (Table 2). Two distinct generations of felsic veins were identified, the oldest ranging from  $495.11 \pm 2.79$  Ma to  $491.06 \pm 7.03$  Ma (Fig. 11a, b, c, f) and the youngest at  $485.35 \pm 2.46$  Ma and  $483.43 \pm 2.52$  Ma (Fig. 11d, e). Chlorite alteration (Fig. 12a, b) and regional schist ages (Fig. 12c, d) include overlapping uncertainties and range from  $503.44 \pm 3.32$  Ma to  $496.98 \pm 2.18$  Ma.

| Sample      | Total n | Discounted for Zr | Discounted for Si | Laser Error | Final n | Weighted mean age       |
|-------------|---------|-------------------|-------------------|-------------|---------|-------------------------|
| <b>BK01</b> | 37      | 4                 | 1                 | -           | 32      | 495.11 ± 2.79 Ma        |
| BK05        | 55      | 18                | 9                 | -           | 28      | $492.8\pm2.94~Ma$       |
| BK18        | 20      | 7                 | 1                 | -           | 12      | $491.17 \pm 5.54$ Ma    |
| BK25A       | 50      | 14                | -                 | -           | 36      | $485.35 \pm 2.46$ Ma    |
| BK25B       | 50      | 12                | 1                 | -           | 37      | $483.43 \pm 2.52$ Ma    |
| KTDD089     | 32      | 14                | 1                 | -           | 17      | $491.06 \pm 7.03$ Ma    |
| <b>BK06</b> | 39      | 7                 | 1                 | 1           | 31      | $501.1\pm4.04~Ma$       |
| <b>BK14</b> | 21      | 1                 | -                 | -           | 20      | $503.44 \pm 3.32$ Ma    |
| KMT1        | 60      | 8                 | -                 | 1           | 51      | $496.98 \pm 2.18 \; Ma$ |
| BKDK1       | 69      | 6                 | -                 | 1           | 62      | $499.09 \pm 1.54$ Ma    |

Table 2: List of samples analysed for monazite U-Pb geochronology.



Figure 11: Wetherill concordia diagrams (Wetherill, 1956) ( $^{206}$ Pb/ $^{238}$ U vs.  $^{207}$ Pb/ $^{235}$ U) for in situ monazite U–Pb analyses conducted on felsic vein samples. Orange ellipses used to calculate the quoted weighted mean age, discordant white ellipse in (b) removed due to Zr contamination not isolated during processing. All ellipses are presented with  $2\sigma$  errors on both axes.



Figure 12: Wetherill concordia diagrams ( $^{206}Pb/^{238}U$  vs.  $^{207}Pb/^{235}U$ ) for in situ monazite U–Pb analyses conducted on chlorite alteration and regional samples. Green and yellow ellipses used to calculate the quoted weighted mean age, all ellipses are presented with  $2\sigma$  errors on both axes. (a) BK06 - Chlorite alteration. (b) BK14 - Chlorite alteration. (c) KMT1 - 2.64 km north of mine. (d) BKDK1 - 9.22 km north of mine.

#### 4.4.2 MONAZITE TRACE ELEMENTS

Monazite trace element data was collected concurrently to U–Pb data across a suite of elements for the felsic vein, chlorite alteration and regional schist samples. Mine samples have high values of LREE and Gd/Lu and low values of HREE, Y<sub>2</sub>O<sub>3</sub> and Eu/Eu\* relative to regional samples (Fig. 13). Disparities between mine and regional samples are greatest for the most distal sample, BKDK1, whereas KTM1 contains more variable proportions of elements.



Figure 13: Selected monazite trace element and oxide discrimination diagrams across the entire monazite U–Pb sample suite including the felsic vein, chlorite alteration and regional schist samples. (a) HREE vs. LREE, highlights hydrothermal monazite as a function of LREE enrichment (Poitrasson et al., 2000) where Apfu = Atoms per formula unit. (b) Th/U vs.  $Y_2O_3$ , after Rubatto, Hermann & Buick (2006) highlights hydrothermal monazite as a function of Y depletion. (c) Gd/Lu vs. Eu/Eu\* after Rubatto et al. (2006), highlights hydrothermal monazite as a function of Gd/Lu and K-feldspar as a function of Eu/Eu\*, where Eu\* = ((Sm + Gd)/2).

#### 4.4.3 APATITE U-PB GEOCHRONOLOGY

A total of 317 individual analyses were performed for apatite U–Pb geochronology, conducted in situ on six separate samples representing the felsic vein, chlorite alteration and aluminous segregation classifications. From these six samples, three are presented below (Fig. 14) as interpretable data whereas three have been presented in the Appendix H due to excessive error. Apatite was found to be relatively abundant across all analysed samples, with grains generally ranging from 50 µm to 200 µm in diameter. Within vein and alteration samples, individual apatites were predominately located directly within the vein–host contact zone, with 1–5 analyses being taken per grain. The aluminous segregation, BKBDG2 (Fig. 14a), had a single large (2 mm) apatite grain which was analysed fifty-five times. Data reduction was straightforward for the samples presented in Figure 14, with only 11 individual analyses being removed during Iolite processing for host rock contamination as evidenced by anomalous silica contents. No analyses were removed for discordance. The full dataset of apatite U-Pb geochronology results and uninterpreted figures are presented in Appendix K.



Figure 14: Terra-Wasserburg concordia diagrams ( $^{207}Pb/^{206}Pb$  vs.  $^{238}U/^{206}Pb$ ) for in situ apatite U–Pb analyses conducted on aluminous segregation and felsic vein samples. Blue ellipses used to calculate the quoted age, all ellipses are presented with  $2\sigma$  errors on both axes. (a) BKBDG2 - Aluminous segregation. (b) BK18 - Felsic vein. (c) KTDD089 - Felsic vein.

## 5 DISCUSSION

This study has documented numerous felsic intrusive veins within the Kanmantoo Cu-Au deposit. The aim of this study is to provide a genetic and temporal constraint on felsic veins and other rock types within a regional Delamerian context to ascertain the significance of magmatic activity in relation to mineralisation.

#### 5.1 Geochronology

#### 5.1.1 RELATIVE AGES

The amount of structural deformation experienced by vein sets is interpreted as a proxy for their relative timing. Intensely boudinaged or tightly folded veins (Fig. 4b) represented by aluminous segregations and an early generation of quartz veining (sample BK27) are considered to have formed first. This was followed by the earliest felsic veins and a second generation of quartz veins (sample BK17) which run parallel or sub-parallel to syn-peak metamorphic fabrics (Fig. 4a) and finally a second generation of felsic veins which cut across all known fabrics (samples BK25A, B) (Fig. 4c).

#### 5.1.2 ABSOLUTE AGES

The Delamerian Orogeny was a relatively short-lived but intense event, with peak metamorphic ages and conditions varying spatially throughout the Kanmantoo Group (Sandiford et al., 1995; Stinear, 2017). Additionally, the Kanmantoo Cu-Au deposit records several pervasive alteration events which are variably recorded in mineral geochronometers. This complexity is best observed within monazite U–Pb concordia plots (Figures 11 & 12) which display a spread of concordant data points across the entire time-frame of the Delamerian Orogeny (550-450 Ma). Monazite U–Pb was selected as the primary

geochronological tool given the abundance of suitable monazites observed in samples relative to zircon and xenotime, which were numerous but commonly too small for ablation analysis. Unlike zircon, monazite reactivity allows for geochronological sensitivity in amphibolite facies rocks (Williams, Jercinovic, Harlov, Budzyń & Hetherington, 2011; Grand'Homme et al., 2016) which permits age dating for both felsic vein and metamorphic samples. Apatite was also abundant and was trialled in this study, primarily to investigate its utility by means of reconnaissance data.

## 5.1.3 INTERPRETATION OF MONAZITE U-PB GEOCHRONOLOGY

The existence of two generations of felsic intrusive veining is supported by both relative and absolute geochronological observations. Previous researchers had noted the possibility of two generations of fluid and mineralising activity within the Kanmantoo Cu-Au deposit, generally at peak and post-peak metamorphic conditions (Arbon, 2011; Booth, 2018) which aligns with monazite U-Pb ages of felsic veins in this study (Fig. 11). Wilson (2009) and Lyons (2012) suggested a progressive system of mineralisation beginning with Cu emplacement directly after peak metamorphism and continuing through to Au emplacement lasting until at least 485 Ma. Oliver et al. (1998) concluded that mineralisation occurred at peak metamorphism, likely continuing into post-peak metamorphic conditions. The emplacement of felsic veins throughout these periods adds weight to a progressive influx of hydrothermal fluids, with at least a proportion having magmatic origins in either the direct supply of magmatic fluids and/or partial melting of host meta-sediment. Samples which experienced the strongest chlorite alteration (samples BK06, 14) recorded the oldest ages (Fig. 12a, b). While overlapping of uncertainties with regional schist, peak metamorphic ages (Fig. 12c, d) suggests they are of the same generation, slightly older ages in chlorite samples may explained by partial U loss within monazites, shifting data further up concordia lines (Fig.
12a, b) and resulting in a significant proportion of analyses having a high Th/U ratio (Fig. 13b). Harrison et al. (2002) showed that U loss can be expected within monazites that have experienced fluid alteration of moderate temperature and chemical variability. Arbon (2011) conducted geothermometry on chlorite within the deposit and showed that temperatures of alteration ranged from roughly 300 to 400 °C, with Fe-rich chlorites associated with variable chemical compositions including those containing high-Bi forming at the lowest temperatures. Grand'Homme et al. (2016) concluded that temperatures below 400 °C may result in only partial resetting of monazites, potentially allowing for U loss. When considering data spread and accounting for U loss, chlorite alteration sample ages are likely to be altered representations of peak metamorphism within the Kanmantoo Cu-Au deposit that do not represent the later Fe-rich chlorite alteration and associated fluid influx. Monazite U-Th-Pb dating by Wilson (2009) produced an age of  $492 \pm 9$  Ma for unmineralized sections of the deposit while Stinear (2017) dated nearby metasediments at  $492.4 \pm 5.3$  Ma. Regional peak metamorphism likely occurred between 500 and 493 Ma regionally (Oliver et al., 1998; Lyons, 2012) and is discussed further below in section 5.4.

## 5.1.4 INTERPRETATION OF APATITE U-PB GEOCHRONOLOGY

Apatite U–Pb age data are not considered as reliable as monazite due to the clustering of data far from the lower intercept on Tera–Wasserburg plots (Fig. 14), which translates to relatively large uncertainties that cover much of the Delamerian Orogeny. Consequently, apatite U–Pb results have not been heavily relied upon to make interpretations in this discussion, except in relation to aluminous segregations which are included in Figure 16. Aluminous segregations do not contain monazite and were represented by BKBDG2 which contained a large (2 mm diameter) apatite grain allowing for over 50 individual analyses. This sample produced an age of  $499.09 \pm 16.7$  Ma, loosely consistent with relative ages and

the observations of Mancktelow (1979) who observed metamorphic segregations forming from the lowest metamorphic grades, but ultimately unreliable due to the large uncertainty.

## 5.2 Geochemistry

#### 5.2.1 FELSIC VEINS

Standing (2006) first described the presence of copper bearing felsic veins in the Kanmantoo Cu-Au deposit as late stage 10-20 cm wide porphyry dykes with a feldspathic composition including feldspar phenocrysts. Standing (2006) also documented a sheared pegmatite containing feldspar, biotite and copper sulphide within a mineralised shear zone in a cutting behind the Wheel of Fortune prospect. Lyons (2012) completed a more in-depth study by mapping a series of abundant copper bearing veins containing K-feldspar, quartz, biotite, muscovite and sulphides ranging from 10–30 cm in width. These veins were described as relatively young and either predated or were synchronous with the emplacement of the major ore bodies and the sulphide bearing quartz veins mentioned above (Lyons, 2012). Lindqvist (1969) described near-monomineralic albite veins infilling late joint sets within the mine and suggested their formation was due to the break down and chloritisation of biotite releasing alkalis and water into circulating ground fluids. Late joint infilling veins in this study, represented by BK25 although albite rich, were observed to contain interspersed K-feldspar, vuggy quartz, hypogene copper and trace amounts of Ca-plagioclase as well as abundant zircon, monazite, apatite and xenotime, more reminiscent of the descriptions given by Standing (2006). Whole rock discrimination plots of late stage veins (Fig. 7) reflect an albitised sample with increasing partial melting of metasediment (S-type) and peraluminous composition (Shand, 1943). Felsic veins are generally observed to have rare earth and incompatible element patterns like those of regional granitic intrusions (Fig. 7; 8; 9) as described by Foden et al. (1990), and do not match known metasomatic rocks which are

heavily depleted across the entire suite. However, the felsic vein sample BK01 shows a highly variable trace element composition which is hard to reconcile with other samples and may reflect sampling contamination by quartz or host rock. Most notably, all felsic veins contain elevated levels of Sr relative to Kanmantoo Group host rocks. It is possible that veins relate to felsic magmatism and not intermediate magmatism as represented by the regional granodiorite sample which varies considerably (Foden et al., 1990). Tectonic discrimination plots of felsic veins in Figure 8 closely match the regional intrusive suite across the syncollisional, within plate and volcanic arc granite classifications. Pearce et al. (1984) noted that post-orogenic granites are hard to distinguish from volcanic arc and syn-collisional granites in this context. In combination with field observations of previous authors (Standing, 2006; Lyons, 2012), whole rock and trace element compositions of felsic veins indicate an igneous intrusive origin for the majority of samples. In either case, felsic vein forming fluids show clear geochemical signatures of the known regional intrusive suite and this would suggest that broader hydrothermal fluids have a magmatic signature as alluded to previously (Oliver et al., 1998; Focke et al., 2009; Schmidt Mumm et al., 2009; Tedesco, 2009; Wilson, 2009; Arbon, 2011; Lyons, 2012).

# 5.2.2 ALUMINOUS SEGREGATIONS, QUARTZ VEINS AND CHLORITE ALTERATION

Aluminous segregations were extensively sampled for whole rock and trace element geochemical analysis together with one quartz vein. Mancktelow (1979) first described metamorphic segregations regionally, including aluminous segregations within Kanmantoo Group meta-sediments comparable to those of the Kanmantoo Cu-Au deposit. Segregations were observed to outcrop as veins and pods cross-cutting bedding with a mineralogy strongly reflecting that of the host metasediment but with a coarser grain size and a strong depletion in REE (Mancktelow, 1979), a description that matches aluminous segregations in this study. The four aluminous segregations sampled by Mancktelow (1979) are plotted alongside aluminous segregations from this study in Figure 10. As a classification, aluminous segregations contain low silica and high alumina contents, in a similar fashion to mine selvages described by various authors (Oliver et al., 1998; Schiller, 2000). Figure 9 highlights the marked depletion in rare earth and incompatible elements of aluminous segregations from this study relative to host rock. Nero (1993) and Lyons (2012) described three generations of quartz veining within the Kanmantoo Cu-Au deposit. Oliver et al. (1998) went further to describe highly aluminous selvages associated with syn-D<sub>3</sub> quartz veining which unlike earlier and later quartz veining, was observed to be sulphide bearing, strongly reminiscent of BK17. Lyons (2012) added that syn-D<sub>3</sub> sulphide bearing quartz veins commonly contained staurolite at their contacts with country rock and were of a similar generation to the Kfeldspar veins discussed below. Notably, Oliver et al. (1998) described aluminous selvages surrounding syn-D<sub>3</sub> quartz veining within the mine as containing pink and alusite and euhedral, honey brown staurolite. Aluminous segregation samples in this study are not associated with mineralisation but are comprised primarily of pink and alusite and occur as early, strongly boudinaged veins. BK27 is an early, intensely boudinaged quartz vein which does not contain sulphides and notably contains pink and alusite, whereas BK17 is a younger, undeformed quartz vein bearing sulphides and with staurolite at its contact with host rock. While these rocks may represent a different generation and mineralogy of veining, they are considered to be the outcome of a common physical process. Oliver et al. (1998) described in detail the mechanics of metasomatic mass transfer within the Kanmantoo Cu-Au deposit, and this provides a reasonable explanation for the presence of aluminous segregations and at least some generations of quartz veining within the deposit. Ague (1991) described the prevalence of mass transfer processes during regional metamorphism of pelites resulting in quartz veining, while Mancktelow (1979) suggested a silica-aluminium mass transfer exchange for

aluminous segregations (Figure 10). The changing composition of mass transfer products through metamorphism and the first observation of mineralisation at near syn-peak metamorphic conditions may indicate a changing input of fluids to the system from regional metamorphic to localised magmatic hydrothermal (Oliver et al., 1998).

Chlorite alteration samples were not submitted for whole rock or trace element geochemical analysis, however petrographic observations can be used to infer some chemical properties. Chlorite alteration encountered in this study generally exhibited Berlin blue interference colours ranging from weak to strong during cross-polarised microscopy (Figure 5e). Kranidiotis and MacLean (1987) demonstrated that increasing Berlin blue optical properties indicated chlorite contained increasing Fe/Fe+Mg levels where Fe is primarily the product of Fe-rich hydrothermal fluids. Arbon (2011) concluded that the Kanmantoo Cu-Au deposit experienced two generations of chlorite alteration, the first being synchronous to major mineralisation and the result of Fe-Mg-rich fluids, while the second post-dated mineralisation and was the result of Fe-rich fluids. Petrographic descriptions in this study (Appendix B) suggest that chlorite ranges from being synchronous to mineralisation to considerably postdating mineralisation, approximately confirming the presence of variably Fe-rich hydrothermal fluids throughout peak to retrograde conditions (Arbon, 2011). Notably, sample BK14 contains a large sulphide content synchronous or post-dating second generation chlorite with strong Berlin blue interference. Fe-rich hydrothermal fluids are inferred to be a signature of magmatically derived fluids (Oliver et al., 1998; Tedesco, 2009; Wilson, 2009; Arbon, 2011). However, it remains unclear if host meta-sediments contained high Fe levels at the time of deposition (Lyons, 2012), or because of hydrothermal metasomatic mass-transfer driven by a pluton at depth (Oliver et al., 1998).

## 5.3 Monazite trace elements as hydrothermal exploration guides

Monazite trace element compositions are observed to vary significantly from regional samples through to mine alterations and felsic veins. Figure 13 shows a consistent and strong vector in the direction of the Kanmantoo Cu-Au deposit marked by LREE enrichment and Y depletion, indicative of hydrothermal monazite. Poitrasson et al. (2000) and Seydoux-Guillaume et al. (2012) demonstrate that monazite of hydrothermal origin can be discriminated from that of metamorphic origin by analysis of trace element and radiogenic distributions as displayed in Figure 13. A hydrothermal signature within veins is consistent with the principal location of monazite in vein contacts and alteration halos. Monazite within BKDK1 (9.22 km north of the mine) shows little to no evidence of hydrothermal alteration in its monazite chemistry whereas KMT1 (2.64 km north of the mine) aligns more closely to mine sample trace element compositions. Monazite of all recorded ages from within the mine show a strong hydrothermal signature (Figure 13), indicating a sustained influx of hydrothermal fluids. Cartwright, Vry and Sandiford (1995) suggested that metamorphic fluids in the Mount Lofty Ranges moved from low to high temperatures while Oliver et al. (1998) proposed a northward progression of metamorphic fluids moving through the Kanmantoo Cu-Au deposit (Fig. 15; 17) on a 20 km scale creating anomalous metasediment chemistry. The monazite trace element results appear to align with these findings. However, the possible existence of complex metamorphic subdomains within the orogen (Sandiford et al., 1995; Stinear, 2017) may affect data on a large scale. Further analysis of meta-sediment monazite trace element compositions east, south and west of the Kanmantoo Cu-Au deposit could help to constrain regional metamorphic fluid flow and elucidate whether hydrothermal alteration signatures continue to increase through and beyond the deposit or mark the deposit as a 'bullseye' along a roughly N-S strike, pointing to a vertical column of magmatic hydrothermal fluids moving upwards from depth and mixing with regional fluids as first

proposed by Oliver et al. (1998). Forbes et al. (2015) and Forbes et al. (2016) proposed that IOCG deposits throughout the Gawler Craton could be identified through analysis of glacially dispersed hydrothermal monazite (displaying LREE enrichment and Y depletion) in Permian cover sequences. Within the Olympic Dam deposit, sulphide bearing basaltic dikes relating to the Delamerian Orogeny were shown to contain hydrothermal monazite (Kamenetsky et al., 2015), monazite broadly contains a notable proportion of the deposit's REE enrichment (Schmandt et al., 2017). It is suggested here that monazite trace element analysis could serve as an exploration tool for hydrothermal and/or remobilised deposits hosted in complex metamorphic terranes such as the Kanmantoo Cu-Au deposit where monazites remain in situ and could be analysed in the context of whole rock geochemistry.



Figure 15: Block model illustrating the approximate spatial distribution of monazite trace element values (Fig. 13) from mine and regional samples. The black dashed lines represent a trend interpreted from data collected in this study (grey circles) with an apparent hydrothermal vector (increasing LREE, decreasing Y) in the direction of the Kanmantoo Cu-Au deposit. It is proposed that a pluton at depth provided a vertical column of magmatic hydrothermal fluids which mixed with regional metamorphic fluids moving laterally in a northerly direction as suggested by Oliver et al. (1998). This hypothesis could be tested by analysis of meta-sediment monazites at similar intervals south of the mine, completing the predicted bell curve and marking the deposit as a bullseye anomaly.





Figure 16: Regional map and time space plot detailing key igneous, metamorphic and cooling age data and their locations from this study (Fig. 1; 2) and literature values from within 70km of the Kanmantoo Cu-Au deposit. Overlaid metamorphic isograds after Preiss (1995). 01 (495.11±2.79), 05 (492.8±2.94), 06 (501.1±4.04), 14 (503.44±3.32), 18 (491.17±5.54), 25A (485.35±2.46), 25B (483.43±2.52), KT (KTDD089, 491.06±7.03), KM (KMT1, 496.98±2.18) and BK (BKDK1, 499.09±1.54) = Monazite U–Pb ages of felsic veins, chlorite alteration and regional samples from this study (see section 4.4.1). BD (BKBDG2, 498.6±16.7) = Apatite U–Pb age of aluminous segregation from this study (see section 4.4.3). Wi (492±9) = In-situ U-Th-Pb monazite age from unmineralized region of Kanmantoo Mine (Wilson, 2009). M1 (483.5±4.3), M2 (492.4±5.3), M3 (493.8±5.3) = Monazite U–Pb ages of Kanmantoo Group meta-sediments (Stinear, 2017). Tr (Truro volcanics, 422±2), TC (Tanunda Creek, 513.4±4), Ra (Rathjen, 514±4; 503±7), MB (Murray Bridge, 506±1; 495.37±1.14; 495.2±3.7; 492±6; 478±2), Wo (Woodside dykes, 500±7), Mo (Monarto, 492±6), BH (Black Hill, 487±5), PC (Petrel Cove, 497.8±2.6) = regional igneous intrusive and metamorphic ages (Foden et al., 1999; Foden et al., 2002; Foden et al., 2006; Burtt & Phillips, 2003; Turner & Foden, 2006; Milnes et al., 1977; George, 2018). Yellow circles - No (Normanville "sheared granite", 496±2), Ra (493±5), Pa (490±4), RC (480±4) = Ar-Ar cooling ages (Turner et al., 1996). White circles - No (Heatherdale Shale, 422±2), Ki (Kitticoola Au, 473±19), De (Deloraine Au, 471.3±4.1) = other assorted ages defining tectonic regimes and mineralisation (Jenkins et al., 2002; Griessmann, 2011).

#### Benjamin James Kimpton Kanmantoo Cu-Au Deposit Mineralisation

| atamorphic, | = Coolir | ng, 🗌 = Othe                                                                                                                | r)                                                                                                                                                                                 | Event                                       |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|             | το       | Wo =<br>MO =<br>MB = Murr<br>RC = Ree<br>Ki =<br>Pa<br>De =<br>Ra<br>De =<br>Ra<br>C = Tannur<br>BH =<br>PC = Pe<br>No = No | Woodside<br>= Monarto<br>ay Bridge<br>edy Creek<br>Kitticoola<br>= Palmer<br>Deloraine<br>= Rathjen<br>Mannum<br>oda Creek<br>Black Hill<br>Tr = Truro<br>etrel Cove<br>ormanville | Slab Rollback /<br>Extensional Reactivation |
| Ra<br>F     |          |                                                                                                                             |                                                                                                                                                                                    | Peak<br>Metamorphism                        |
| Ra          | Ţ        | C                                                                                                                           | Ţ                                                                                                                                                                                  | Delamerian Orogeny &<br>Crustal Shortening  |
| <b>•</b>    |          |                                                                                                                             |                                                                                                                                                                                    | Rifting &<br>Deposition                     |
|             |          |                                                                                                                             |                                                                                                                                                                                    | Passive<br>Margin                           |
| 40          | 5        | 0 6                                                                                                                         | 0+                                                                                                                                                                                 | kms                                         |

## 5.4 Delamerian

Past research on the Kanmantoo Cu-Au deposits metallogenesis has frequently noted the importance of Delamerian related activity either via the in situ remobilisation of metals or by the direct supply of external metal bearing fluids. Figure 16 is a schematic detailing the development of the Delamerian Orogeny within 70 radial kilometres of the Kanmantoo Cu-Au deposit and incorporates all major dates from the onset of Kanmantoo Trough rifting, peak metamorphism and the progression from syn to post-tectonic magmatism. Estimates for the onset, duration and modality of peak metamorphism within the Kanmantoo Cu-Au deposit vary somewhat between authors (Lyons, 2012), but can be summarised as reaching temperatures greater than 500 °C during compression over a roughly 10 Myr period between 500 to 490 Ma (Seccombe et al., 1985; Parker, 1986; Oliver et al., 1998; Foden, 2006; Wilson, 2009; Lyons, 2012). The first appearance of felsic veins (data from this study) between  $495.11 \pm 2.79$  Ma and  $491.06 \pm 7.03$  Ma is consistent with these estimates, and also with large-scale magmatic activity in the adjoining provinces of Monarto and Murray Bridge between  $495.2 \pm 3.7$  Ma and  $492 \pm 6$  Ma (Foden et al., 2006). This, along with the identification of chemical signatures indicative of mineralisation related to magmatic fluids within the deposit (Oliver et al., 1998; Focke et al., 2009; Schmidt Mumm et al., 2009; Tedesco, 2009; Wilson, 2009; Arbon, 2011; Lyons, 2012), suggests that peak-metamorphism at the local scale was generated as a direct result of the intrusion of a pluton or plutons at depth, as is observed regionally (Sandiford et al., 1995). Within the mine, peak metamorphism is generally correlated with the generation of key structural features from late D<sub>2</sub> through D<sub>3</sub> which have served, at least partially, as fluid pathways for ore precipitation during and after peak metamorphism (Oliver et al., 1998; Wilson, 2009; Arbon, 2011; Lyons, 2012). Collectively, Figure 16 highlights a complex set of individual processes that occurred

at peak metamorphism and were capable of providing the chemical, thermal and structural conditions that culminated in the generation of a hydrothermal deposit.

## 5.4.1 FELSIC VEIN FORMATION

Recent research has investigated the conditions under which pegmatite and aplite veins crystallised throughout different terranes globally. Hossain and Tsunogae (2008) concluded that felsic pegmatites in the Paleoproterozoic basement of Bangladesh crystallised at ~4.8 kbar and 660-670 °C, while Dill (2015) estimated temperatures of 660 °C for aplites in the Miesbrunn pegmatite-aplite swarm. Tuttle and Bowen (1958) demonstrated that wet melting and subsequently crystallisation within albite, orthoclase and quartz granite systems can occur at 660 °C. These conditions are not dissimilar to peak metamorphism within the Kanmantoo Cu-Au deposit as discussed above and are well below peak metamorphic temperatures in the intrusion-related core of the orogen which reach 790-860 °C (Stinear, 2017). Various authors have suggested the presence of a pluton at depth below the deposit at around this time (Oliver et al., 1998; Focke et al., 2009; Schmidt Mumm et al., 2009; Tedesco, 2009; Wilson, 2009; Arbon, 2011; Lyons, 2012) and this is thought to have released mineralising magmatic hydrothermal fluids. Notably, Gum (1998) observed pegmatites intruding along late shear zones 10 km to the west of the deposit and noted the pegmatite rich Monarto intrusive suite. The transition from a peak-metamorphic and compressional regime to an early post-peak metamorphic and extensional regime as described by Foden et al. (2006) could have reactivated peak-metamorphic structures and fabrics within the Kanmantoo Cu-Au deposit (Lyons, 2012). It is proposed that high temperatures, ample fluid pathways and pressure instabilities at this time would have provided the optimal conditions for fluids to travel from depth and crystallise/precipitate below and within the Kanmantoo Cu-Au deposit together with magmatic hydrothermal fluids.

## 5.5 Mineralisation

Central to the debate regarding the origin of the Kanmantoo Cu-Au deposit is the question as to whether metals were deposited together with Kanmantoo Trough sediments and locally remobilised or precipitated hydrothermally from external sources at a confluence of optimum temperature, redox and structural conditions. Marshall and Gilligan (1993) concluded that remobilisation of massive sulphide deposits is most effective under prograde and retrograde conditions from 350–500 °C, although recent research suggests that these conditions may not be ideal for Cu remobilisation in other terranes (Pitcairn, Craw, Olivo, Kerrich & Brewer, 2006). Regionally however, early remobilisation of massive sulphides is observed in the Wheal Ellen, South Hill and Strathalbyn deposits hosted in rocks of a similar metamorphic grade to that of the Kanmantoo Cu-Au deposit (Preiss, 1995) where major ore bearing veins are concordant with S<sub>0</sub> and S<sub>1</sub> (Seccombe et al., 1985). Sandiford et al. (1995) estimated peak metamorphic temperatures within the Kanmantoo Trough of 550-600 °C and so it is expected that prograde temperatures and chemistry, developing over some 10 Myr were enough to remobilise ore through pervasive metamorphic fluid flow (Ague, 1991; Oliver et al., 1998). Recent research suggesting the presence of non-remobilised mineralisation conformable to bedding in the Nugent lode (Pollock, 2018) is difficult to reconcile with all other structural and metamorphic literature on the deposit and warrants further investigation. The structural record within the Kanmantoo Cu-Au deposit is more complex than in surrounding deposits, with many early fabrics being replaced by a syn-peak metamorphic schistosity. However, relict bedding and multiple generations of veining are preserved. The majority of past research suggests that all mineralisation is roughly conformable to these later fabrics and structures rather than to bedding. Intensely boudinaged or tightly folded quartz veins and aluminous segregations consistent with an earlier metamorphic development are not observed to have a strong spatial and temporal relationship with ore as shown in this study and by

many other researchers (Seccombe et al., 1985; Oliver et al., 1998; Lyons, 2012). The major ore bodies, shear zones and their contemporaneous selvages in association with lightly deformed sulphide bearing quartz and felsic intrusive veins first appear as near syn-peak metamorphic structures and continue to form through retrograde conditions (Oliver et al., 1998; Lyons, 2012). Mass transfer products within the deposit transition from being devoid of mineralisation in the earlier stages of the Delamerian Orogeny, to being sulphide bearing near the peak of metamorphism and thereafter, possibly reflecting a changing input of hydrothermal fluids at ~492.8  $\pm$  2.94 Ma.



Figure 17: Block model illustrating the interpreted role of magmatic and metamorphic fluids on mineralisation within the Kanmantoo Cu-Au deposit at ~3–4 kbar (Schiller, 2000). Plutons at depth generating igneous intrusives, magmatic hydrothermal and metamorphic fluids permeating upwards, aided by pervasive and later reactivated structural features, to precipitate metals at the observed level as a series of partially structurally controlled ore bodies. Regional metamorphic fluids travelling laterally also contribute to mineralisation, with high metamorphic temperatures being partially driven by distal regional plutons. Northward direction of regional metamorphic fluids after Oliver et al. (1998).

## 6 CONCLUSIONS

The Kanmantoo Cu-Au deposit is a multifaceted structure that, in its final form, exists as the product of at least 45 Ma of sustained and intense geological activity. In this context, it is the product of hydrothermal fluid flow beginning at peak metamorphic conditions during the Delamerian Orogeny at ~495 Ma and continuing through post-peak conditions. The fluid flow can be identified through syn- to post-peak metamorphic, hydrothermal monazite signatures which vector toward the deposit, in contrast to regional metamorphic signatures. Mineralisation was precipitated as variable structurally-controlled ore shoots within a metaturbidite sequence. Mineralising fluids are likely to have been a combination of both metamorphic and magmatically derived fluids with the thermal and chemical energy to transport and precipitate ore, as indicated in part by the presence of late, metalliferous quartz and felsic veins. Some of the economic metals have likely travelled upwards from depth before mixing with lateral metalliferous metamorphic fluids at a regional stratabound confluence, generating unique Kanmantoo-style mineralisation. The Delamerian Orogeny is therefore a foremost component in the genesis of the Kanmantoo Cu-Au deposit through the creation and sustained reactivation of structural controls, pervasive regional metamorphism and magmatism. This confirms the continued prospectivity of Delamerian affected terranes, particularly where both magmatism and pervasive structural controls are present.

## 7 FUTURE RESEARCH

1. Succeeding research could expand the monazite trace element data set acquired in this study by sampling at regular intervals on a ~10 km radial scale around the Kanmantoo Cu-Au deposit. The deposit is hypothesised to be identifiable by a hydrothermal monazite 'bullseye' anomaly along N-S and E-W transects (Fig. 15). Proposed title: *Hydrothermal monazite as an exploration tool in complex metamorphic terranes; Kanmantoo Cu-Au deposit case study.* 

2. There remains a strong scientific and economic imperative to constrain the crustal

evolution and exploration potential of Delamerian Orogeny affected terranes throughout

South Eastern Australia.

# 8 ACKNOWLEDGEMENTS

My supervisors Dr Richard Lilly, Peter Rolley, Dr David Kelsey and colleague Maddy Booth are thanked for their invaluable assistance, scientific insights and personal guidance throughout the year. Funding, background knowledge and logistical support for this project has been provided by Hillgrove Resources Limited and its dedicated team of geologists and field staff who are all thanked including Hayden Arbon. Both the University of Adelaide and Adelaide Microscopy have provided the facilities, analytical equipment and training essential to undertaking this study, particularly Dr Sarah Gilbert. Within the Department of Earth Sciences, and in no particular order, thank you to Megan Williams, Brad Cave, Mitchell Bockmann and Prof Martin Hand for your invaluable guidance with data processing and interpretation. Furthermore, a sincere thanks is extended to Dr Anthony Milnes and Dr Wolfgang Preiss for their assistance in accessing the wealth of knowledge that already exists regarding the subject. Finally, a special thanks to the AusIMM and its EEF Scholarship Committee for providing exceptional financial, developmental and mentoring support throughout my Honours year.

# 8 **REFERENCES**

- AGUE, J. J. (1991). Evidence for major mass transfer and volume strain during regional metamorphism of pelites. *Geology*, 19(8), 855-858.
- ANDERSON, J. A. (1993). Kanmantoo Trough. In W. V. Preiss (Ed.), *South Australian Resources: Technical Sessions, Abstracts* (pp. 38-43). South Australia: Department of Mines and Energy.
- ARBON, H. (2011). Bismuth distribution in the Cu-Au mineralisation of the Kanmantoo deposit, South Australia (Honours thesis). University of Adelaide, Australia.
- BELPERIO, A. P., PREISS, W. V., FAIRCLOUGH, M. C., GATEHOUSE, C. G., GUM, J., HOUGH, J., & BURTT, A. (1998). Tectonic and metallogenic framework of the Cambrian Stansbury Basin Kanmantoo Trough, South Australia. AGSO Journal of Australian Geology & Geophysics, 17, 183-200.
- BOOTH, M. (2018). *Distribution and mineralogical association of Au at the Kanmantoo Cu-Au deposit* (Honours thesis). University of Adelaide, Australia.
- BURTT, A. C., & PHILLIPS, D. (2003). Ar/Ar dating of a pegmatite, Kinchina Quarry, Murray Bridge, South Australia. *MESA Journal*, 28, 50-52.
- BURTT, A. C. (2006). Chapter 8, Kanmantoo Trough. In: B. J. Cooper and M. A. McGeough (Eds.), South Australia Mineral Explorers Guide. 2nd Edition (pp. 1-20). Adelaide: South Australian Department of Primary Industries and Resources.
- CARTWRIGHT, I., VRY, J. K., & SANDIFORD, M. (1995). Changes in the stable isotope ratios of metapelites and marbles during regional metamorphism, Mount Lofty Ranges, South Australia: implications for crustal scale fluid flow. *Contributions to Mineralogy and Petrology*, 120, 292-310.
- CHEW, D., PETRUS, J., & KAMBER, B. (2014). U–Pb LA-ICPMS dating using accessory mineral standards with variable common Pb. *Chemical Geology*, 363, 185-199.
- COOPER, J. A., JENKINS, R. J., COMPSTON, W., & WILLIAMS, I. S. (1992). Ion-probe zircon dating of a mid-Early Cambrian tuff in South Australia. *Journal of the Geological Society of London*, 149, 185-192.
- COX, K. G., BELL, J. D., & PANKHURST, R. J. (1979). *The interpretation of igneous rocks*. London: Allen & Unwin.

- DICKINSON, S. B. (1942). The structural control of ore deposition in some South Australian copper fields. *Geological Survey of South Australia, Bulletin*, 20, 79-99.
- DILL, H. G. (2015). Pegmatitic rocks and their geodynamic setting in the Central European Variscides. In F. Pirajno (Ed.), *The Hagendorf-Pleystein province: the center of pegmatites in an Ensialic Orogen* (pp. 55-109). Switzerland: Springer International Publishing.
- FLÖTTMANN, T., HAINES, P., JAGO, J., JAMES, P., BELPERIO, A., & GUM, J. (1998). Formation and reactivation of the Cambrian Kanmantoo Trough, SE Australia: implications for early Palaeozoic tectonics at eastern Gondwana's plate margin. *Journal of the Geological Society, London*, 155, 525-539.
- FOCKE, D., SCHMIDT MUMM, A., TEDESCO, A., SEIFERT, T., & BRADY, R. (2009). Pressure, temperature and fluid composition variation of the mineralising system at the Kanmantoo Cu-Au deposit: Combining fluid inclusion analysis with Ti in quartz thermometry. *Journal of Geochemical Exploration*, 101, 35.
- FODEN, J. D., TURNER, S. P., & MORRISON, R. S. (1990). Tectonic implications of Delamerian magmatism in South Australia and western Victoria. *Geological Society of Australia Special Publication*, 16, 465-482.
- FODEN, J. D., SANDIFORD, M., DOUGHERTY-PAGE, J., & WILLIAMS, I. (1999). Geochemistry and geochronology of the Rathjen Gneiss: implications for the early tectonic evolution of the Delamerian Orogen. *Australian Journal of Earth Sciences*, 46, 377-389.
- FODEN, J. D., ELBURG, M. A., TURNER, S. P., SANDIFORD, M., O'CALLAGHAN, J., & MITCHELL, S. (2002). Granite production in the Delamerian Orogen, South Australia. *Journal of the Geological Society, London*, 159, 557-575.
- FODEN, J. D., ELBURG, M. A., DOUGHERTY-PAGE, J., & BURTT, A. (2006). The timing and duration of the Delamerian Orogeny: Correlation with the Ross Orogen and implications for Gondwana assembly. *The Journal of Geology*, 156, 10-33.
- FORBES, C., GILES, D., FREEMAN, H., SAWYER, M., & NORMINGTON, V. (2015). Glacial dispersion of hydrothermal monazite in the Prominent Hill deposit: an exploration tool. *Journal of Geochemical Exploration*, 81, 18-29.
- FORBES, C., GILES, D., FREEMAN, H., SAWYER, M., & NORMINGTON, V. (2016). Using REE chemistry of glacially dispersed hydrothermal monazite to target IOCG deposits in the Gawler Craton. *MESA Journal*, 81, 18-29.
- GEORGE, C. (2018). Adakitic rocks of Kinchina and their relationship to Gondwanan subduction. (Honours thesis). University of Adelaide, Australia.
- GRAND'HOMME, A., JANOTS, E., SEYDOUX-GUILLAUME, A., GUILLAUME, D., BOSSE, V., & MAGNIN, V. (2016). Partial resetting of the U-Th-Pb systems in experimentally altered monazite: Nanoscale evidence of incomplete replacement. *Geology*, 44(6), 431-434.
- GRIESSMANN, M. (2011). *Gold mineralisation in the Adelaide fold belt* (Doctoral dissertation). University of Adelaide, Australia.
- GUM, J. (1998). The sedimentology, sequence stratigraphy and mineralisation of the Silverton subgroup, South Australia (Doctoral dissertation). University of Adelaide, Australia.
- HARRISON, T. M., CATLOS, E. J., & MONTEL, J. (2002). U-Th-Pb dating of phosphate minerals. *Reviews in Mineralogy and Geochemistry*, 48(1), 524-558.
- HOSSAIN, I., & TSUNOGAE, T. (2008). Fluid inclusion study of pegmatite and pelite veins of Paleoproterozoic basement rocks in Bangladesh: Implications for magmatic fluid compositions and crystallization depth. *Journal of Mineralogical and Petrological Sciences*, 103, 121-125.
- JAGO, J. B., GUM, J. C., BURTT, A. C., & HAINES, P. W. (2003). Stratigraphy of the Kanmantoo Group: a critical element of the Adelaide Fold Belt and the Palaeo-Pacific plate margin, Eastern Gondwana. *Australian Journal of Earth Sciences*, 50, 343-363.
- JENKINS, R. J., COOPER, J. C., & COMPSTON, W. (2002). Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China. *Journal of the Geological Society of London*, 159, 645-658.
- JOCHUM, K. P., WEIS, U., STOLL, B., KUZMIN, D., YANG, Q., RACZEK, I., & FRICK, D. A. (2011). Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. *Geostandards and Geoanalytical Research*, 35(4), 397-429.
- KAMENETSKY, V. S., EHRIG, K., MAAS, R., MEFFRE, S., KAMENETSKY, M., MCPHIE, J., APUKHTINA, O., HUANG, Q., THOMPSON, J., CIOBANU, C. L., & COOK, N. J. (2015). The supergiant Olympic Dam Cu-U-Au-Ag ore deposit: toward a new genetic model. *Proceedings of the World Class Ore Deposits: Discovery to Recovery Conference*, Hobart, TAS: Society of Economic Geologists
- KRANIDIOTIS, P., & MACLEAN, W. H. (1987). Systematics of chlorite alteration at the Phelps Dodge massive sulphide deposit, Matagami, Quebec. *Economic Geology*, 82(7), 1898-1911.

- LINDQVIST, W. F. (1969). *Geology and metamorphic history of the Kanmantoo Copper Deposit, South Australia* (Doctoral dissertation). University of London, United Kingdom.
- LYONS, N. (2012). Evidence for magmatic hydrothermal mineralisation at Kanmantoo copper deposit, South Australia (Honours thesis). University of Adelaide, Australia.
- MANCKTELOW, N. S. (1979). *The structure and metamorphism of the Southern Adelaide Fold Belt* (Doctoral dissertation). University of Adelaide, Australia.
- MARSHALL, B., & GILLIGAN, L. B. (1993). Remobilization, syn-tectonic processes and massive sulphide deposits. *Ore Geology Reviews*, 8, 39-64.
- MILNES, A. R., COMPSTON, W., & DAILY, B. (1977). Pre- to syn-tectonic emplacement of early Palaeozoic granites in south-eastern South Australia. *Journal of the Geological Society of Australia*, 24, 87-106.
- NERO, L. (1993). Structure and metamorphism of the Kanmantoo Mine and surrounding area, Kanmantoo Group, South Australia (Honours thesis). Monash University, Australia.
- OLIVER, N. H. S., DIPPLE, G. M., CARTWRIGHT, I., & SCHILLER, J. (1998). Fluid flow and metasomatism in the genesis of the amphibolite-facies, pelite-hosted Kanmantoo copper deposit, South Australia. *American Journal of Science*, 298, 181-218.
- PARKER, A. J. (1986). Tectonic development and metallogeny of the Kanmantoo Trough in South Australia. Ore Geology Reviews, 1, 203-212.
- PATON, C., HELLSTROM, J., PAUL, B., WOODHEAD, J., & HERGT, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. *Journal of Analytical Atomic Spectrometry*, 26(12), 2508-2518.
- PAYNE, J. L., HAND, M., BAROVICH, K., & WADE, B. (2008). Temporal constraints on the timing of high-grade metamorphism in the northern Gawler Craton: implications for assembly of the Australian Proterozoic. *Australian Journal of Earth Sciences*, 55(5), 623-640.
- PEARCE, J. A., HARRIS, N. B. W., & TINDLE, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. *Journal of Petrology*, 25(4), 956-983.
- PITCAIRN, I. K., CRAW, D., OLIVO, G. R., KERRICH, R., & BREWER, T. S. (2006). Sources of metals and fluids in orogenic gold deposits: Insights from the Otago and Alpine Schists, New Zealand. *Economic Geology*, 101, 1525–1546.
- POITRASSON, F., CHENERY, S., & SHEPHERD, T. J. (2000). Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear ceramics. *Geochimica et Cosmochimica Acta*, 64(19), 3283-3297.
- POLLOCK, M. V., SPRY, P. G., TOTT, K. A., KOENIG, A., BOTH, R. A., & OGIERMAN, J. (2018). The origin of the sediment-hosted Kanmantoo Cu-Au deposit, South Australia: Mineralogical considerations. Ore Geology Reviews, 95, 94-117.
- PREISS, W. V. (1995). Early and Middle Palaeozoic Orogenesis: Delamerian Orogeny. In J. F. Drexel & W. V. Preiss (Eds.), *The geology of South Australia. Vol. 2, The Phanerozoic* (pp. 45-57). South Australia: Geological Survey, Bulletin 54.
- ROLLEY, P., & WRIGHT, M. (2017). Kanmantoo copper deposits. In N. Phillips (Ed.), *Australian Ore Deposits: Monograph 32* (pp. 667-670). Melbourne: Australasian Institute of Mining and Metallurgy.
- RUBATTO, D., HERMANN, J., & BUICK, I. S. (2006). Temperature and Bulk Composition Control on the Growth of Monazite and Zircon During Low-pressure Anatexis (Mount Stafford, Central Australia). *Journal of Petrology*, 47(10), 1973-1996.
- SCHMANDT, D., COOK, N. J., CIOBANU, C. L., EHRIG, K., WADE, B. P., GILBERT, S., KAMENETSKY, V. S. (2017). Rare earth element fluorocabonate minerals from the Olympic Dam Cu-U-Au-Ag deposit, South Australia. *Minerals*, 7(10), 202.
- SCHOENE, B., CROWLEY, J., CONDON, D., SCHMITZ, M., & BOWRING, S. (2006). Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. *Geochimica et Cosmochimica Acta*, 70(2), 426-445.
- SCHILLER, J. C. (2000). *Structural geology, metamorphism and the origin of the Kanmantoo copper deposit, South Australia* (Doctoral dissertation). University of Adelaide, Australia.
- SCHMIDT MUMM, A. S., TEDESCO, A. S., & FOCKE, D. (2009). Application of Ti-in-quartz thermometry to Au and Cu-Au mineralising systems. *Journal of Geochemical Exploration*, 101, 93.
- SECCOMBE, P. K., SPRY, P. G., BOTH, R. A., JONES, M. T., & SCHILLER, J. C. (1985). Base metal mineralization in the Kanmantoo Group, South Australia: a regional sulfur isotope study. *Economic Geology*, 80, 1824-1841.
- SEYDOUX-GUILLAUME, A. M., PAQUETTE, J. L., WIEDENBECK, M., MONTEL, J. M., & HEINRICH, W. (2002). Experimental resetting of the U-Th-Pb systems in monazite. *Chemical Geology*, 191, 165-181.

- SEYDOUX-GUILLAUME, A. M., MONTEL, J. M., BINGEN, B., BOSSE, V., DE PARSEVAL, P., PAQUETTE, J. L., JANOTS, E., & WIRTH, R. (2012). Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U–Pb and Th–Pb chronometers. *Chemical Geology*, 330-331, 140-158.
- SHAND, S. J. (1943). The Eruptive Rocks: 2nd Edition. New York: John Wiley.
- SOLOMON, M. & GROVES, D. I. G. (1994). Syndeformational, turbidite-hosted, gold deposits. In M. Solomon (Ed.), *The geology and origin of Australia's mineral deposits* (pp. 713-723). Oxford: Clarendon Press.
- SPRY, P. G. (1976). Base metal mineralisation in the Kanmantoo Group, S.A.: South Hill, Bremer and Wheal Ellen areas (Honours thesis). University of Adelaide, Australia.
- SPRY, P. G., SCHILLER, J. C., & BOTH, R. A. (1988). Structure and metamorphic setting of base metal mineralisation in the Kanmantoo Group, South Australia. *Proceedings of the Australasian Institute of Mining and Metallurgy*, 293, 57-65.
- STANDING, J. (2005). *Structural controls on copper mineralisation at the Kanmantoo project, S.A.* (Independent technical report). Adelaide: Fluid Focus Pty. Ltd.
- STANDING, J. (2006). Ongoing structural investigations at the Kanmantoo Cu-Au project, South Australia. (Independent technical report). Adelaide: Jigsaw Geoscience Pty. Ltd.
- STINEAR, M. D. (2017). *Refining the physical and temporal record of metamorphism during the Delamerian Orogeny* (Honours thesis). University of Adelaide, Australia
- TEDESCO, A. (2009). Late-stage orogenic model for Cu-Au mineralisation at Kanmantoo mine: new insights from titanium in quartz geothermometry, fluid inclusions and geochemical modelling (Honours thesis). University of Adelaide, Australia.
- THOMPSON, J., MEFFRE, S., MAAS, R., KAMENETSKY, V., KAMENETSKY, M., GOEMANN, K., EHRIG, K., & DANYUSHEVSKY, L. (2016). Matrix effects in Pb/U measurements during LA-ICP-MS analysis of the mineral apatite. *Journal of Analytical Atomic Spectrometry*, 31, 1206-1215.
- THOMSON, B. P. (1975). Kanmantoo Trough regional geology and comments on mineralisation. In C. L. Knight (Ed.), *Economic geology of Australia and Papua New Guinea: Vol. 1* (pp. 555-560). Melbourne: Australasian Institute of Mining and Metallurgy.
- TURNER, S., & FODEN, J. D. (1996). Petrogenesis of late-Delamerian A-type granites and granophyre, South Australia: magma mingling in the Mannum granite, South Australia. *Mineralogy and Petrology*, 56, 147-169.
- TURNER, S. P., KELLEY, S. P., VANDENBERG, A. H. M., FODEN, J. D., SANDIFORD, M., & FLÖTTMANN, T. (1996). Source of the Lachlan fold belt flysch linked to convective removal of the lithospheric mantle and rapid exhumation of the Delamerian-Ross fold belt. *Geology*, 24, 941-944.
- TUTTLE, O. F., & BOWEN, N. L. (1958). Origin of Granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. GSA Memoirs, 74(1), 1-145.
- TOTEFF, S. (1994). Synsedimentary mineralisation in the Kanmantoo Trough: Field Excursion Guide, September 1994 (Report Book 95/43). South Australia: Department of Mines and Energy.
- VERWOERD, P. J., & CLEGHORN, J. H. (1975). Kanmantoo Copper Orebody. In C. L. Knight (Ed.), *Economic geology of Australia and Papua New Guinea: Vol. 1* (pp. 560-565). Melbourne: Australasian Institute of Mining and Metallurgy.
- WETHERILL, G. W. (1956). Discordant uranium-lead ages, I. *Transactions of the American Geophysical Union*, 37(3), 320-326.
- WILLIAMS, M. L., JERCINOVIC, M. J., HARLOV, D. E., BUDZYN, B., & HETHERINGTON, C. J. (2011). Resetting monazite ages during fluid-related alteration. *Chemical Geology*, 283, 218-225.
- WILSON, G. L. (2009). *Structural setting and timing of the Kanmantoo Cu-Au deposit, Callington, SA* (Honours thesis). University of Adelaide, Australia.

# **APPENDIX A: HISTORICAL BACKGROUND**

As of writing this thesis, Kanmantoo is Australia's oldest, non-continually active, but currently operational mineral deposit. With the mine potentially approaching its end of life in coming years, it is important to reflect on the extensive history of mining in the region, as minerals will undoubtedly play a critical role in South Australia's future.

Besides coal, mining was non-existent within Australia until the early 1840s, when pioneering settlers helped drive economic development in the free province of South Australia by discovering and extracting various base and precious metal deposits. The first workings begun at Wheal Gawler, Australia's first metal mine just 5 km from the centre of Adelaide in Glen Osmond. Within a few short years several other mining operations had begun including Kanmantoo in 1846 and elsewhere throughout the Adelaide Hills and north toward Kapunda and Burra. Kanmantoo Mine was owned and operated by the South Australian Company which established the township of Kanmantoo as a miners' village and divided surrounding agricultural acreage as to avoid areas with visible mineralisation (Chilman, 1982). The name Kanmantoo was derived from 'Kungna Tuko' a local Peramangk Aboriginal people's word that described the long red hill which defined the area (Mills, 1981). In 1848 the first smelter in South Australia was built in Kanmantoo, allowing for production of a 50 % concentrate (Dickinson, 1942). Once processed, ore was exported directly to England via either Cape Horn or the Cape of Good Hope. Despite a brief exodus of labour in pursuit of the Victorian gold rush, high copper prices continued to spur production in the colony and by 1875 an estimated 24,000 tonnes of ore bearing an average grade of 8.5 % Cu had been extracted from the Kanmantoo group of mines alone (Verwoerd & Cleghorn, 1975).

"Indeed, this is so evidently a mineral district, and one, the position of which, offers so many advantages that, under circumstances of capital and labor different from those at present obtaining in the colony, I should not be surprised to see many of these old Mines tried again."

J. B. Austin, 1863.

Little did Austin know that the Kanmantoo Mine would still be operating 155 years later with a local workforce, spurred by its proximity to Adelaide and supplying smelters in China for the production of micro-chips and electric vehicle components. This quote was actually written of the wider Bremer and Kanmantoo region, specifically with respect to smaller inactive prospects such as the Paringa Mine which had often been the subject of small-scale operations in the preceding decades. The Kanmantoo Mines themselves were still profitable enough to remain active through this time when labour was leaving the colony for the Victorian goldrush, generating high wages locally in a familiar cyclical fashion. Austin (1863) detailed the average wage of a South Australian miner at this time, ranging from 5s 6d to 9s 6d per day for men (roughly \$30 to \$52AUD in 2018 after adjusting for inflation and converting from GBP) depending on remoteness and merit, while boys made from 2s to 3s and 6d per day (roughly \$13 to \$20AUD).

By 1874 the Kanmantoo Mine had changed ownership two times and operations ceased due to low copper prices. Prospecting and minor unsuccessful production occurred throughout the early 20th century, but the mine lay mostly dormant until the 1950's when Mines Exploration Pty. Ltd. (a subsidiary of Broken Hill South Ltd.) explored the area. Diamond drilling returned positive economic results and open pit mining led by Kanmantoo Mines Ltd. begun in 1971

before closing in 1976 due to falling copper prices, by which point the open pit was approximately 100m deep. Another long dormant period was broken when Hillgrove Resources Ltd. initiated exploration and later production at the mine from 2004. 10,764t of copper and 3,812oz of gold were produced from a total 3.5 million tonnes of ore in the half year ending 30th June 2018 (Half year report - Hillgrove Resources, 23/08/2018). As of 2018, the open pit is approximately 250m deep and projected to be up to 360m deep in sections by 2020; some 300m deeper than the extent of 19th Century operations.

#### Historical background references:

AUSTIN, J. B. (1863). The mines of South Australia, including also an account of the smelting works in that colony: Together with a brief description of the country, and incidents of travel in the bush. Adelaide: C. Platts., E. S. Wigg., G. Dehane., J. Howell., W. C. Rigby., & G. Mullett.

CHILMAN, J. K. (1982). *Silver and a trace of gold: A history of the Aclare mine.* South Australia: Department of Mines and Energy, Special Publication No. 1.

DICKINSON, S. B. (1942). The structural control of ore deposition in some South Australian copper fields. *Geological Survey of South Australia, Bulletin*, 20, 79-99.

MILLS, A. R. (1981). Kungna Tuko: A history of Kanmantoo. Adelaide: Aldis Printing

VERWOERD, P. J., & CLEGHORN, J. H. (1975). Kanmantoo Copper Orebody. In C. L. Knight (Ed.), *Economic geology of Australia and Papua New Guinea: Vol. 1* (pp. 560-565). Melbourne: Australasian Institute of Mining and Metallurgy.



Appendix Figure 1: Approximate location and depth of the modern mine relative to historical workings, adapted from Dickinson (1942).



Appendix Figure 2: Approximate location of the modern mine relative to historical workings, adapted from Dickinson (1942).



Appendix Figure 1: The Kanmantoo Mine in full operation, April 2018, 172 years after the first workings. Top: East haul road, facing ESE. Bottom: Excavation and drilling operations with the morning sun rising over the pit, facing S.

## **APPENDIX B: EXTENDED PETROGRAPHIC DESCRIPTIONS**

#### BK01

Drill hole: KTDD180 (318231.5E 6114755N), 60.22 - 60.38 metres, Spitfire Lode

#### Classification: Felsic vein

Observed in drill core as a 1cm wide vein sharply crosscutting adjacent schistosity at a near 90° angle with a diffusive alteration halo. Host is comprised of biotite (40%), quartz (30%), garnet (15%), staurolite (9%), muscovite (5%) and minor sapphirine (1%) with chlorite alteration and replacement of mica throughout. Alteration halo exhibits progressive exsolution and replacement of host with feldspathic assemblage. Disseminated sulphides including chalcopyrite and pyrrhotite are interspersed throughout the host and increasingly toward the vein contact.

Vein is comprised predominately of fine-moderately sized (40-200 $\mu$ m) albite (60%), K-feldspar (20%) and quartz (10%) with chlorite replacing biotite (5%), minor rutile and late carbonate (5%). Sericitic alteration is seen to alter feldspars and chlorite throughout. Within hand sample, large (0.5cm) grains of chalcopyrite are observed within the centre of veins, likely forming simultaneously.

#### BK05

Drill hole: KTRCD125 (318236E 6114437N), 99.35 - 99.45 metres, Nugent Lode

#### Classification: Felsic vein

Observed as a highly altered section (>10cm) of drill core with a breccia like fabric comprised of beige and dark green minerals, appearing to overprint a vein/intrusion.

Rock is comprised of altered primary and secondary K-feldspar and albite (2-4mm), biotite, quartz, minor muscovite and limonite. Pervasive chlorite alteration throughout replacing biotite, with a later sericitic alteration of K-feldspar and chlorite has made the sample considerably degraded. Pre-alteration proportions are roughly estimated to be that of an alkali feldspar granite: K-feldspar (40-50%), albite (10-15%), quartz (15-20%), biotite (15-20%) with accessory ilmenite and minor tourmaline.



Appendix Figure 2: BK01 - Top left: NQ (47.6mm) half drill core specimen. Top centre: Quarter core thin section outline. Top right: Thin section (28x48mm, 35µm). Bottom: Photomicrographic of felsic vein with albite, k-feldspar and sericite/chlorite replacing biotite.



Appendix Figure 3: BK05 - Top left: NQ (47.6mm) half drill core specimen. Top centre: Quarter core thin section outline. Top right: Thin section (28x48mm, 35µm). Bottom: Felsic vein with K-feldspar, albite, quartz, biotite and sericite alteration.

Drill hole: KTRCD125 (318236E 6114437N), 99.55 - 99.65 metres, Nugent Lode

#### Classification: Chlorite alteration

Observed ~10cm downhole from BK05 as a highly altered section (>20cm) of drill core. Sample pervasive late chlorite alteration contains throughout, 10cm downhole from BK05. Radiating chlorite makes up the entire groundmass of the sample (70%) and has been degraded/weathered. Large (up to 200µm) tournaline crystals with intense zonation are interspersed randomly throughout with pyrrhotite and chalcopyrite (4%) muscovite Pre-alteration and minor (1%). compositions cannot be determined.



Appendix Figure 4: BK06 - Top left: NQ (47.6mm) half drill core specimen. Top centre: Quarter core thin section outline. Top right: Thin section (28x48mm, 35 $\mu$ m). Bottom: Zoned tourmaline crystal in radiating chlorite with disseminated chalcopyrite.

#### BK11

Drill hole: KTDD102 (318274.9E 6115087N), 64.9 - 65 metres, Main Kavanagh Lode

#### Classification: Felsic vein

Observed as a series of small millimetre scale central veins with broad (up to 3cm), diffusive alteration halos permeating into surrounding host rock. Host rock is a quartz-rich garnet andalusite biotite schist with some chlorite alteration throughout. Approaching the vein, relict andalusite porphyroblasts are exsolved with a feldspathic mineralogy which permeates into the surrounding rock destroying fabrics and obscures the central vein contact.

Veins are comprised of albite (45%), K-feldspar (15%), quartz (35%) and chlorite replacing biotite (5%) with sericitic alteration of feldspars and some chlorite throughout.



Appendix Figure 5: BK11 - Top left: NQ (47.6mm) half drill core specimen. Top centre: Quarter core thin section outline. Top right: Thin section (28x48mm, 35µm). Bottom: Tourmaline crystal in radiating chlorite with disseminated chalcopyrite.

## Drill hole: KTDD105 (318203.8E 6115062N), 64.2 - 64.3 metres, Main Kavanagh Lode

## Classification: Chlorite alteration

Observed in drill core as a large (20cm) monomineralic vein/segregation comprised entirely of coarse grained (up to 1.5cm), undeformed and radiating chlorite. Forms a sharp contact with adjacent host rock, however, chlorite alteration is then pervasive throughout.

Host rock is comprised of chlorite alteration (35%), staurolite (25%), biotite (15%), garnet (15%) and muscovite (10%). Sulphides including chalcopyrite and pyrrhotite are observed to be disseminated throughout, increasing toward contact with chlorite segregation. Sulphides are syn to post-chlorite, exsolving all other minerals (see Figure  $\mathbf{X}$ ).



Drill hole: KTDD104 (318231.4E 6115093N), 28.4 - 28.5 metres, Main Kavanagh Lode.

#### Classification: Quartz vein

2cm wide sulphide bearing quartz vein sharply cutting through host rock. Host is comprised of finegrained ( $<5\mu$ m) quartz (60%), chlorite replacing mica (20%), disseminated pyrrhotite up to 25 $\mu$ m (10%), garnet (5%) and staurolite (5%).

Vein is internally and externally undeformed, comprised predominantly of large (up to  $200\mu$ m) quartz (75%), large (up to 0.5cm) staurolite grains (15%), minor andalusite (5%) and pyrrhotite and chalcopyrite (5%). Sulphides appear to have a latesyn to post-veining timing evidenced by vein mineral inclusions.



Appendix Figure 6: BK14 - Top left: NQ (47.6mm) drill core specimen. Top centre: Quarter core thin section outline. Top right: Thin section (28x48mm, 35µm). Bottom: Chlorite alteration and biotite, muscovite and staurolite host with pyrrhotite.



Appendix Figure 7: BK17 - Top left: NQ (47.6mm) half drill core specimen. Top centre: Quarter core thin section outline. Top right: Thin section (28x48mm, 35µm). Bottom: Quartz and staurolite vein with syn to post-vein pyrrhotite.

# Drill hole: KTDD104 (318228.3E 6115093N), 34.5-34.7 metres, Main Kavanagh Lode

## Classification: Felsic vein

70mm wide vein observed sharply cutting through host rock with dark alteration minerals on vein contacts. Host rock is a quartz rich (50%) schist with biotite (35%), garnets (10%) and chlorite replacing biotite throughout (5%). Vein contact is generally sharp however a diffusive alteration halo is seen to replace host with a feldspathic mineralogy in areas.

Vein is feldspar rich and highly altered with chlorite and sericite throughout. Comprised of albite (50%), K-feldspar (25%), tourmaline (20%) and quartz (5%). The vein is also observed to contain numerous large chalcopyrite and pyrrhotite grains up to 50mm. Dark alteration minerals congregating on the edges of veins are internally zoned tourmalines reminiscent of *BK06* and appear to have been introduced syn- to post-veining.



Appendix Figure 8: BK18 - Top left: NQ (47.6mm) whole drill core specimen. Top centre: Quarter core thin section outline. Top right: Thin section (28x48mm, 35 $\mu$ m). Bottom: Sulphide (black) replacing tourmaline, chlorite and felsic vein.

## BK21

Drill hole: KTDD140 (318313.9E 6114718N), 65.2-65.7 metres, Spitfire Lode

#### Classification: Felsic vein

1 cm wide vein observed sharply cutting through host rock with strings of sulphides permeating outwards into host. Host rock is a quartz rich (50%) garnet (5%), andalusite (15%), biotite (25%) schist with chlorite alteration and replacement of biotite, plus minor staurolite (5%). Vein contact is generally sharp however a thin alteration halo is seen to replace host with a feldspathic mineralogy in areas.

Vein is feldspar rich and highly altered with chlorite and sericite throughout entirely replacing some parts of the original composition. Comprised of albite (40%), K-feldspar (40%), chlorite after biotite (10%) and quartz (10%). The vein is also observed to contain numerous large chalcopyrite and pyrrhotite grains up to 50mm which appear coeval to early post veining.



Appendix Figure 9: BK21 - Top left: NQ (47.6mm) quarter drill core specimen. Top centre: Quarter core thin section outline. Top right: Thin section (28x48mm,  $35\mu m$ ). Bottom: Felsic vein with sericitic and chlorite alteration and pyrrhotite

#### BK25A

## Location: East Haul Road (318326.8E 6114809N)

#### Classification: Felsic vein

Observed within the pit wall as an undeformed vein (10cm wide) cross-cutting all fabrics within a late joint set (J2). Abundant sulphides including chalcopyrite, pyrrhotite and pyrite are found either disseminated throughout or as a late infilling vein/s running parallel to the length of the vein. Evidence of a very late introduction of sulphides as J2 veins are interpreted to be one of the oldest generations of veins within the deposit. Host rock is a garnet, andalusite, biotite schist which is exsolved and destroyed by the intense vein alteration halo within thin sections.

Vein is feldspar rich with albite and trace plagioclase (60%), K-feldspar (20%), tourmaline (10%) and quartz (10%) with sericitic and some chlorite alteration and replacement throughout. Large (up to 3mm) feldspar crystals have developed around sulphides which are thought to be late syn to postveining, with felsic veins fining outwards from the sulphides.



Appendix Figure 10: BK25A - Top left: Vein as observed in pit wall (facing east). Top centre: Cut grab sample (7cm wide). Top right: Thin section (28x48mm, 35µm). Bottom: Felsic vein with albite, K-feldspar, quartz, sericite and pyrrhotite.

#### BK25B

#### Location: East Haul Road (318326.8E 6114809N)

#### Classification: Felsic vein

As with *BK25A*, observed within the pit wall as an undeformed vein (10cm wide) cross-cutting all fabrics within a late joint set (J2). Abundant sulphides including chalcopyrite, pyrrhotite and pyrite are found either disseminated throughout or as a late infilling vein/s running parallel to the length of the vein. Evidence of a very late introduction of sulphides as J2 veins are interpreted to be one of the oldest generations of veins within the deposit. Host rock is a garnet, andalusite, biotite schist which is exsolved and destroyed by the intense vein alteration halo within thin sections.

Vein is feldspar rich with albite and trace plagioclase (60%), K-feldspar (20%), tourmaline (10%) and quartz (10%) with sericitic and some chlorite alteration and replacement throughout. Large (up to 3mm) feldspar crystals have developed around sulphides which are thought to be late syn to post-veining, with felsic veins fining outwards from the sulphides.



Appendix Figure 11: BK25B - Top left: Vein as observed in pit wall (facing east). Top centre: Thin section outline. Top right: Thin section (28x48mm, 35µm). Bottom: Felsic vein albite, Kfeldspar, quartz, sericite, chalcopyrite and pyrrhotite.

Location: NE Pit Wall (318315E 6115087N), East Kavanagh Lode

### Classification: Quartz vein

Exposed within the mine as a large metre scale, boudinaged vein. Hand sample shows predominant coarse grained (up to 2cm) quartz with minor coarse grained (1cm) muscovite on edges and rare pink andalusite.

Thin section is comprised of coarse grained (1cm) quartz (90%) with small inclusions (0.5cm) of andalusite, reminiscent of BK29/BKBDG (4%) tightly wrapped by sericite-muscovite and biotite (1%). A small (1cm) section/inclusion of host rock is comprised predominantly of biotite (70%) and garnet (30%) with minor muscovite.



Appendix Figure 12: Top: BK27 - Thin section outline (35x20mm) with pink andalusite and small black inclusion of host rock. Bottom: Photomicrograph of andalusite grain within quartz and minor biotite and muscovite which trails back toward host inclusion.

## BK29

#### Location: North Pit Wall (318136E 6115119N)

#### Classification: Aluminous segregation

Exposed as intensely boudinaged white veins with large pink andalusite porphyroblasts throughout. Sharply enclosed by a host of fine-grained biotite, garnet and honey-brown staurolite with large white andalusite porphyroblasts interspersed.

Internally, the vein exhibits large (up to 3cm) prismatic andalusite (65%) and large (up to 2cm) equant quartz (31%) with fine muscovite-sericite commonly filling the contact between the two major minerals (4%). Consistent with external strain partitioning, crystals are undeformed, with pink andalusite being distinctively non-poikiloblastic and exhibiting a clear cleavage running parallel to the length of the crystal. Devoid of opaque minerals and sulphides.



Appendix Figure 13: BK29 - Top: North Pit Wall exposure of boudinaged pink andalusite, aluminous segregation. Bottom: Representative photomicrograph of large andalusite and quartz (top middle) crystals with interjoining muscovite.

## BK-BDG1/2

#### Location: South Pit Wall (318100E 6114847N)

#### Classification: Aluminous segregation

Exposed as small (up to 5cm), pink, chocolate-tablet boudins. Sharply enclosed by a host of fine-grained biotite, garnet and large white andalusite porphyroblasts.

Internally, veins are comprised of fine grained (up to  $300\mu$ m) pink, equant-prismatic andalusite (65%) and coarser (up to 5mm) biotite. Biotite is observed to form linearly within the centre of tablets, with andalusite more evenly interspersed. Both minerals are observed to become increasingly fine moving outwards to the lengthwise edges of tablets. Despite having different accessory minerals, BKBDG and BK29 are both classified as aluminous segregations, reflective of their highly-aluminous composition (See Appendix E). Devoid of opaque minerals and sulphides.



Appendix Figure 14: BKBDG - Top left: Thin section billet (35x20mm). Top centre & right: Respective thin sections (28x48mm,  $35\mu m$ ). Bottom: Representative photomicrograph of andalusite and biotite (far left).

#### KTDD089

Drill hole: KTDD180 (318157.9E 6114270N), 60.22 - 60.38 metres, Nugent Lode.

## Classification: Felsic vein

2cm wide vein crosscutting adjacent schistosity at a near 90° angle with a broad diffusive alteration halo. Host is comprised of fine-grained quartz (40%) and biotite (40%) with poikiloblastic-andalusite porphyroblasts (10%), garnet (5%) and minor chlorite and carbonate alteration (5%). Alteration halo exhibits progressive exsolution and replacement of host with feldspathic assemblage and thinly disseminated copper sulphides.

Vein has experienced alteration but is comprised predominately of fine grained (up to  $80 \ \mu m$ ) albite (50%) with K-feldspar (20%), quartz (20%), chlorite and carbonate alteration (5%) and ilmenite (5%). Biotite has likely been altered to chlorite, plus minor sericitic alteration of feldspars.



Appendix Figure 15: KTDD089 - Top left: NQ (47.6mm) half drill core specimen. Top centre: Quarter core thin section outline. Top right: Thin section (28x48mm, 35µm). Bottom: Felsic vein with albite, K-feldspar and quartz.

## BKDK-1

Location: 9.22 km north of mine (54H 0318258 6123907)

## Classification: Regional sample

Strongly foliated Garnet-*Staurolite* schist representing an unaltered, peak metamorphic assemblage. Biotite (40%), quartz (40%), garnet (10%), staurolite (9%) and andalusite (1%). Devoid of mineralisation.

#### KMT-1

Location: 2.64 km north of mine (54H 0318294 6117492)

#### Classification: Regional sample

Strongly foliated Garnet-*Andalusite* schist representing an unaltered, peak metamorphic assemblage. Biotite (45%), quartz (35%), garnet (8%), andalusite (8%), muscovite (3%) and staurolite (1%). Devoid of mineralisation.



Appendix Figure 16: Top: BKDK1 - Photomicrograph showing staurolite replacing quartz with biotite wrapping around and garnet overprinting. Bottom: KMT1 - Photomicrograph showing andalusite replacing quartz with biotite wrapping around and garnet and muscovite overprinting.

#### Appendix Table 1: Descriptions of specimens forgone at hand sample or thin section stage

| Sample | Lode      | Description                                                       | Reason forgone    |
|--------|-----------|-------------------------------------------------------------------|-------------------|
| BK02   | Spitfire  | 1cm thick feldspathic vein in altered GABS                        | Weathering        |
| BK03   | East Kav. | ~0.25cm thick opaque white vein in unaltered GABS                 | Size              |
| BK04   | East Kav. | 1.5cm thick feldspathic vein with breccia texture in altered GABS | Integrity         |
| BK07   | Main Kav. | 1cm thick red-white ferruginous vein in unaltered GABS            | Mineralogy        |
| BK08   | Main Kav. | Group of <1cm thick feldspathic veins in altered GABS             | Weathering        |
| BK09   | Main Kav. | 1.5cm thick feldspathic vein with breccia texture in altered GABS | Integrity         |
| BK10   | Main Kav. | Heavily altered 1cm thick feldspathic vein in altered GABS        | Weathering        |
| BK12   | Main Kav. | Heavily altered diffusive feldspathic vein in altered GABS        | Weathering        |
| BK13   | Main Kav. | ~0.25cm thick feldspathic vein with thin alteration halo in GABS  | Size + weathering |
| BK15   | Main Kav. | 2cm thick quartz vein in mildly altered GABSS                     | Weathering        |
| BK16   | Main Kav. | 1cm thick feldspathic and/or ferruginous vein in GABSS            | Integrity         |
| BK19   | Spitfire  | 1cm thick quartz vein in unaltered BGCS                           | Mineralogy        |
| BK20   | Spitfire  | <0.25cm thick feldspathic vein in altered GABSS                   | Size + weathering |
| BK22   | Spitfire  | 1cm thick feldspathic vein in altered BGCS                        | Integrity         |
| BK23   | Spitfire  | <0.25cm thick feldspathic vein in altered BGCS                    | Size + weathering |
| BK24   | Main Kav. | Coarse grained quartz vein                                        | Mineralogy        |
| BK26   | East Wall | Felsic vein (see: BK25A/B)                                        | Over represented  |
| BK28   | Main Kav. | Sulphide vein in unaltered BGCS                                   | Mineralogy        |

## **APPENDIX C: SEM-MLA PARAMETERS**

|                    | BK01, BK05, BK06, BK11, BK14, BK18, BK25A, |
|--------------------|--------------------------------------------|
| Samples            | BK25B, BK-BDG1, BK-BDG2, BKDK1, KMT1,      |
| -                  | KTDD089                                    |
| Spot size          | 7.2                                        |
| Beam energy        | 25 Kv                                      |
| Working distance   | 10 mm                                      |
| Minimum grain size | 4 μm                                       |
| Magnification      | 250x                                       |

#### Appendix Table 2: FEI Quanta 600 Scanning Electron Microscope (SEM) Parameters

# **APPENDIX D: EXTENDED WHOLE ROCK GEOCHEMISTRY METHODS**

Geochemical analysis was conducted by ALS Limited, South Australia on twelve vein samples. Whole rock analysis (ALS code: ME-ICP06) was conducted on an acid digested, fused bead using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). Samples were processed for trace element analysis (ALS code: ME-MS81) by lithium borate fusion and acid dissolution before Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Supplementary trace element data (ALS code: ME-4ACD81) was collected utilising four-acid digestion and ICP-AES.

# **APPENDIX E: WHOLE ROCK GEOCHEMISTRY RESULTS**

## Appendix Table 3: Whole rock geochemistry results (%)

| Sample  | SiO2 | Al2O3 | Fe2O3 | CaO  | MgO  | Na2O | K2O  | Cr2O3   | TiO2 | MnO  | P2O5   | SrO    | BaO    | Total  | LOI  |
|---------|------|-------|-------|------|------|------|------|---------|------|------|--------|--------|--------|--------|------|
| BK01    | 59.3 | 18.05 | 4.9   | 0.83 | 0.78 | 6    | 5.8  | < 0.002 | 0.01 | 0.03 | < 0.01 | 0.02   | 0.04   | 98.27  | 2.51 |
| BK05    | 48.5 | 17.6  | 12.5  | 3.34 | 2.72 | 0.22 | 8.39 | 0.015   | 0.65 | 0.07 | 2.45   | 0.02   | 0.1    | 99.4   | 2.82 |
| BK17    | 69.7 | 18.95 | 8.12  | 0.06 | 0.35 | 0.03 | 0.21 | 0.002   | 0.04 | 0.02 | 0.03   | < 0.01 | < 0.01 | 98.48  | 0.97 |
| BK25-A  | 61.5 | 19.05 | 5.2   | 0.48 | 0.32 | 7.75 | 1.59 | 0.011   | 0.65 | 0.05 | 0.19   | 0.02   | 0.01   | 99.68  | 2.86 |
| ВК25-В  | 66.2 | 16.5  | 5.79  | 0.54 | 0.35 | 6.49 | 1.31 | 0.012   | 0.67 | 0.07 | 0.27   | 0.01   | 0.01   | 101.37 | 3.15 |
| ВК25-С  | 64.1 | 18.7  | 4.77  | 0.51 | 0.35 | 7.71 | 1.19 | 0.016   | 0.82 | 0.05 | 0.21   | 0.02   | 0.01   | 101.39 | 2.93 |
| BK29-1  | 43.1 | 51.4  | 2.46  | 0.14 | 0.37 | 0.1  | 0.84 | 0.002   | 0.06 | 0.01 | 0.1    | 0.01   | 0.01   | 99.47  | 0.87 |
| BK29-2  | 51.4 | 43.8  | 1.45  | 0.14 | 0.23 | 0.06 | 0.59 | < 0.002 | 0.05 | 0.01 | 0.07   | < 0.01 | 0.01   | 98.59  | 0.78 |
| BK29-3  | 38.5 | 53.6  | 2.7   | 0.14 | 0.55 | 0.19 | 2.13 | < 0.002 | 0.14 | 0.01 | 0.08   | 0.01   | 0.04   | 99.81  | 1.72 |
| BKBDG-1 | 38.1 | 56.4  | 2.84  | 0.08 | 0.79 | 0.07 | 0.87 | 0.003   | 0.12 | 0.01 | < 0.01 | < 0.01 | 0.01   | 100.02 | 0.73 |
| BKBDG-2 | 37.8 | 56.6  | 2.64  | 0.13 | 0.73 | 0.05 | 0.79 | 0.002   | 0.11 | 0.01 | 0.03   | < 0.01 | 0.01   | 99.65  | 0.75 |
| BKBDG-3 | 38.7 | 55.6  | 2.11  | 0.13 | 0.62 | 0.04 | 0.64 | 0.002   | 0.09 | 0.01 | 0.02   | < 0.01 | 0.01   | 98.73  | 0.76 |

## Appendix Table 4: Trace element geochemistry results (ppm)

| Sample  | Ba   | Ce    | Cr  | Cs   | Dy   | Er     | Eu     | Ga   | Gd    | Hf    | Но     | La   | Lu     | Nb   | Nd   |
|---------|------|-------|-----|------|------|--------|--------|------|-------|-------|--------|------|--------|------|------|
| BK01    | 410  | 4.1   | 10  | 0.57 | 0.64 | 0.31   | 0.14   | 9.5  | 0.52  | 0.2   | 0.1    | 1.8  | 0.03   | 0.2  | 2    |
| BK05    | 905  | 107   | 110 | 0.76 | 10.3 | 4.01   | 2.2    | 19.7 | 11.95 | 9.3   | 1.6    | 52.6 | 0.42   | 15.5 | 47.8 |
| BK17    | 26   | 2.4   | 10  | 0.06 | 0.18 | 0.08   | 0.05   | 30.4 | 0.2   | 0.2   | 0.03   | 1.2  | 0.01   | 0.9  | 1.1  |
| BK25-A  | 107  | 158   | 80  | 0.42 | 3.39 | 1.29   | 1.6    | 14.9 | 7.03  | 4.5   | 0.49   | 86.1 | 0.2    | 10.7 | 59.6 |
| ВК25-В  | 87   | 118.5 | 90  | 0.37 | 5.71 | 2.99   | 1.35   | 13.9 | 7.09  | 5     | 1.02   | 64.1 | 0.41   | 13.7 | 46.2 |
| ВК25-С  | 90   | 145   | 110 | 0.38 | 5.17 | 2.36   | 1.52   | 14.9 | 7.56  | 5     | 0.84   | 78.6 | 0.31   | 16.5 | 56.4 |
| BK29-1  | 114  | 1.3   | 10  | 0.31 | 0.24 | 0.1    | 0.06   | 46.9 | 0.17  | < 0.2 | 0.03   | 0.6  | < 0.01 | 1.4  | 0.7  |
| BK29-2  | 65   | 0.6   | 10  | 0.29 | 0.21 | 0.07   | 0.05   | 42.4 | 0.17  | < 0.2 | 0.03   | 0.2  | < 0.01 | 1    | 0.4  |
| BK29-3  | 351  | 0.7   | 10  | 0.5  | 0.17 | 0.08   | 0.05   | 54.4 | 0.2   | < 0.2 | 0.03   | 0.3  | 0.01   | 3.8  | 0.4  |
| BKBDG-1 | 80.4 | 0.7   | 20  | 1.47 | 0.06 | < 0.03 | < 0.03 | 49.4 | 0.05  | < 0.2 | < 0.01 | 0.4  | < 0.01 | 2.9  | 0.3  |
| BKBDG-2 | 73.8 | 0.9   | 20  | 1.29 | 0.05 | < 0.03 | 0.03   | 50   | 0.1   | < 0.2 | 0.01   | 0.5  | < 0.01 | 2.7  | 0.4  |
| BKBDG-3 | 60.9 | 0.5   | 10  | 1.04 | 0.06 | 0.03   | < 0.03 | 48.4 | 0.08  | < 0.2 | < 0.01 | 0.2  | < 0.01 | 2.2  | 0.3  |

|         | Pr    | Rb    | Sm    | Sn | Sr    | Та    | Tb     | Th     | Tm     | U    | V  | W  | Y    | Yb     | Zr  |
|---------|-------|-------|-------|----|-------|-------|--------|--------|--------|------|----|----|------|--------|-----|
| BK01    | 0.47  | 180.5 | 0.58  | 1  | 123   | < 0.1 | 0.08   | 0.25   | 0.04   | 0.17 | <5 | <1 | 2.7  | 0.26   | 3   |
| BK05    | 11.5  | 305   | 11.15 | 8  | 112.5 | 1.3   | 1.93   | 32.1   | 0.47   | 4.6  | 95 | 7  | 42.5 | 3      | 318 |
| BK17    | 0.25  | 7     | 0.26  | 5  | 6     | 0.1   | 0.03   | 0.68   | 0.01   | 0.19 | 29 | 44 | 0.8  | 0.06   | 4   |
| BK25-A  | 15.9  | 72.7  | 10.45 | 3  | 122   | 0.9   | 0.81   | 18.35  | 0.18   | 2.4  | 45 | 15 | 12.7 | 1.33   | 157 |
| ВК25-В  | 11.95 | 67.4  | 8.38  | 3  | 92    | 1.3   | 1.03   | 13.65  | 0.41   | 2.22 | 50 | 16 | 28.4 | 2.79   | 178 |
| ВК25-С  | 14.8  | 55.7  | 9.9   | 3  | 122   | 1.3   | 1.04   | 17.65  | 0.32   | 17.1 | 66 | 26 | 22.5 | 2.32   | 174 |
| BK29-1  | 0.15  | 21.5  | 0.19  | 3  | 18.3  | 0.1   | 0.05   | 0.11   | 0.01   | 0.11 | 49 | 5  | 1.1  | 0.07   | <2  |
| BK29-2  | 0.08  | 16.5  | 0.14  | 2  | 13.6  | 0.1   | 0.04   | < 0.05 | 0.01   | 0.06 | 40 | 3  | 0.9  | 0.07   | <2  |
| BK29-3  | 0.07  | 51.4  | 0.13  | 8  | 34.7  | 0.2   | 0.03   | 0.08   | 0.01   | 0.07 | 86 | 12 | 0.9  | 0.07   | <2  |
| BKBDG-1 | 0.07  | 44.4  | 0.07  | 2  | 8.4   | 0.2   | < 0.01 | 0.12   | < 0.01 | 0.07 | 53 | 2  | 0.1  | < 0.03 | <2  |
| BKBDG-2 | 0.11  | 39.5  | 0.15  | 2  | 10    | 0.1   | 0.01   | 0.13   | < 0.01 | 0.08 | 52 | 1  | 0.2  | 0.04   | <2  |
| BKBDG-3 | 0.06  | 34.7  | 0.06  | 2  | 10.3  | 0.1   | < 0.01 | 0.07   | < 0.01 | 0.07 | 49 | 1  | 0.2  | 0.04   | <2  |

Appendix Table 5: Supplementary trace element geochemistry results (ppm)

| Sample  | Ag    | As  | Cd    | Со  | Cu     | Li  | Мо | Ni | Pb | Sc | Tl  | Zn  | Cu    |
|---------|-------|-----|-------|-----|--------|-----|----|----|----|----|-----|-----|-------|
| BK01    | < 0.5 | <5  | < 0.5 | 8   | 695    | 10  | <1 | 6  | 7  | 1  | <10 | 12  | -     |
| BK05    | < 0.5 | <5  | < 0.5 | 14  | 110    | 40  | 6  | 17 | 22 | 8  | <10 | 43  | -     |
| BK17    | 2.1   | <5  | < 0.5 | 108 | >10000 | 20  | <1 | 16 | 11 | <1 | <10 | 316 | 1.335 |
| BK25-A  | 0.5   | 55  | < 0.5 | 41  | 1400   | <10 | <1 | 8  | 74 | 3  | <10 | 31  | -     |
| BK25-B  | < 0.5 | 145 | < 0.5 | 100 | 1100   | <10 | <1 | 12 | 21 | 3  | <10 | 20  | -     |
| ВК25-С  | < 0.5 | 48  | < 0.5 | 36  | 1420   | <10 | <1 | 8  | 29 | 3  | <10 | 22  | -     |
| BK29-1  | < 0.5 | <5  | < 0.5 | 4   | 20     | 10  | <1 | 7  | 12 | 1  | <10 | 16  | -     |
| BK29-2  | < 0.5 | <5  | < 0.5 | 2   | 3      | 10  | <1 | 3  | 13 | 1  | <10 | 15  | -     |
| BK29-3  | < 0.5 | <5  | < 0.5 | 5   | 30     | 10  | <1 | 9  | 19 | 4  | <10 | 18  | -     |
| BKBDG-1 | < 0.5 | <5  | < 0.5 | 6   | 2      | 20  | <1 | 10 | <2 | 1  | <10 | 21  | -     |
| BKBDG-2 | < 0.5 | <5  | < 0.5 | 6   | 7      | 20  | <1 | 9  | <2 | 1  | <10 | 20  | -     |
| BKBDG-3 | < 0.5 | <5  | < 0.5 | 4   | 8      | 20  | <1 | 8  | <2 | 1  | <10 | 17  | -     |

# **APPENDIX F: EXTENDED GEOCHRONOLOGY METHODS**

# LA-ICP-MS Analysis

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) was conducted using the Agilent 7900x with attached RESOlution LR 193 nm Excimer laser system at Adelaide Microscopy, University of Adelaide. A total of twelve individual samples were analysed for monazite U–Pb (ten samples) and apatite U–Pb (seven samples) through in situ laser ablation, at a Fluence of 2.0 J/cm<sup>2</sup> and 3.5 J/cm<sup>2</sup> and spot size of 13 $\mu$ m and 40  $\mu$ m respectively. SEM-BSE composite images were utilised to locate datable minerals of sufficient area for ablation. Where possible, spots were taken from across the entirety of the sample including within vein sets, sulphides and adjacent altered host rock.

The primary standard for monazite was MAdel which recorded weighted mean ages across two separate runs of  $^{206}Pb/^{238}U = 518.4 \pm 1.2$  Ma (MSWD = 0.84) and  $^{207}Pb/^{235}U = 512.5 \pm 1.7$  Ma (MSWD = 0.94);  $^{206}Pb/^{238}U = 518.4 \pm 1.2$  Ma (MSWD = 1) and  $^{207}Pb/^{235}U = 512.9 \pm 1.8$  Ma (MSWD = 0.87) respectively. A secondary in-house monazite standard 94-222/Bruna-NW (~ 450 Ma: Payne et al., 2008) recorded weighted mean ages across two separate runs of  $^{206}Pb/^{238}U = 451.2 \pm 1$  Ma (MSWD = 0.58) and  $^{207}Pb/^{235}U = 449.9 \pm 1.5$  Ma (MSWD = 0.74);  $^{206}Pb/^{238}U = 446.4 \pm 1.2$  Ma (0.88) and  $^{207}Pb/^{235}U = 448.4 \pm 1.8$  Ma (MSWD = 0.68) respectively. Ambat, a final secondary in-house standard recorded weighted mean ages across two separate runs of  $^{206}Pb/^{238}U = 446.4 \pm 1.2$  Ma (MSWD =  $529 \pm 5.6$  (MSWD = 6.8) and  $^{207}Pb/^{235}U = 513.8 \pm 4.7$  Ma (MSWD = 7.2);  $^{206}Pb/^{238}U = 517.7 \pm 4$  (MSWD = 3.6) and  $^{207}Pb/^{235}U = 513.8 \pm 4.7$  Ma (MSWD = 2.2) respectively. Published data for these standards records a MAdel age of (updated from Payne, Hand, Barovich & Wade, 2008)

The primary standard for apatite was Madagascar (MAD) which recorded a concordant age of  $473.9 \pm 2.77$  Ma (MSWD = 0.58). The secondary standard Mclure Mountain (401) recorded a concordant age of  $532.37 \pm 3.43$  Ma (MSWD = 1.4). Olympic Dam (OD306) was included as a trial and recorded a discordant age of  $1582.72 \pm 7.04$  Ma (MSWD = 1.9). Published data for these standards records a MAD age of  $473.5 \pm 0.7$  Ma (Chew, Petrus & Kamber, 2014), 401 age of  $530.3 \pm 1.5$  Ma and OD306 age of  $1596.7 \pm 7.1$  Ma (Thompson et al., 2016) with Mclure Mountain being updated from Schoene et al. (2006), indicating the accuracy of apatite U–Pb data in this study.

# Data Processing and Reduction

Monazite and apatite U–Pb data were processed and reduced using Iolite software (Paton et al., 2011) in conjunction with IGOR Pro software at the Department of Earth Sciences, University of Adelaide. Down-hole elemental fractionation and instrument drift were corrected for by the addition of several known standards at periodic intervals between unknowns. A polynomial fit was applied during the data reduction scheme  $(X_U_Pb_Geochron4 DRS)$  before signals were bracketed to further account for sources of error and noise. Bracketing was utilised extensively for monazite data where the intergrowth and/or contamination of zircon, indicated by the presence of mirrored zirconium and silicon peaks, was found to be common throughout analyses and samples. Where these interferences could not be isolated through bracketing, entire analyses were removed due to extremely elevated  ${}^{207}Pb/{}^{235}U$  which tracked back toward to the age of the Earth, mimicking common

Pb contamination. To a lesser extent throughout monazite and apatite analyses, bracketing was also utilised to remove silicon spikes indicative of host rock contamination. The potential for zircon intergrowth and the structural integrity of dated grains is generally accounted for in advance of ablation by high resolution imaging of all selected grains, however, this was only done on a small number of representative grains across samples in this study, and therefore rigorous data reduction was necessary. Where obvious contamination was adequately isolated or not encountered, signals throughout both monazite and apatite analyses were found to be consistent, possibly reflective of small grain sizes without pervasive zonation.

# **APPENDIX G: MONAZITE U-PB RESULTS**

| Sandar #1 Standarda  | 207 DL /2351 I | 2-    | 206DL /238T | 2-      | Rho      | <sup>207</sup> Pb/ <sup>235</sup> U Age | 2σ   | <sup>206</sup> Pb/ <sup>238</sup> U Age | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> U Age | 2σ   |
|----------------------|----------------|-------|-------------|---------|----------|-----------------------------------------|------|-----------------------------------------|------|-----------------------------------------|------|
| Session #1 Standards | PD/ "U         | 26    | PD/ U       | 26      | KIIO     | (Ma)                                    | (Ma) | (Ma)                                    | (Ma) | (Ma)                                    | (Ma) |
| External Standards   |                |       |             |         |          |                                         |      |                                         |      |                                         |      |
| M_MAdel1_1           | 0.649          | 0.012 | 0.08382     | 0.0009  | 0.32103  | 507.4                                   | 7.6  | 518.8                                   | 5.3  | 472                                     | 48   |
| M_MAdel1_2           | 0.651          | 0.016 | 0.0835      | 0.001   | 0.16514  | 508.1                                   | 9.9  | 517                                     | 6.2  | 445                                     | 54   |
| M_MAdel1_3           | 0.657          | 0.015 | 0.08393     | 0.00095 | 0.40516  | 512.1                                   | 9.3  | 519.5                                   | 5.7  | 486                                     | 48   |
| M_MAdel1_4           | 0.661          | 0.016 | 0.08329     | 0.00098 | 0.15078  | 514.1                                   | 9.7  | 515.7                                   | 5.8  | 483                                     | 52   |
| M_MAdel1_5           | 0.648          | 0.018 | 0.08266     | 0.00095 | 0.36105  | 506                                     | 11   | 511.9                                   | 5.7  | 457                                     | 60   |
| M_MAdel1_6           | 0.653          | 0.017 | 0.08357     | 0.00084 | 0.2183   | 510                                     | 10   | 517.4                                   | 5    | 460                                     | 56   |
| M_MAdel1_7           | 0.664          | 0.015 | 0.08347     | 0.00093 | 0.10268  | 516.2                                   | 9.1  | 516.7                                   | 5.5  | 513                                     | 50   |
| M_MAdel1_8           | 0.654          | 0.015 | 0.0829      | 0.001   | 0.28475  | 511.8                                   | 9.9  | 513.6                                   | 6    | 491                                     | 54   |
| M_MAdel1_9           | 0.665          | 0.018 | 0.084       | 0.001   | 0.24529  | 517                                     | 11   | 519.9                                   | 6.2  | 488                                     | 57   |
| M_MAdel1_10          | 0.654          | 0.015 | 0.08427     | 0.00094 | 0.2296   | 510.4                                   | 8.8  | 521.5                                   | 5.6  | 451                                     | 49   |
| M_MAdel1_11          | 0.659          | 0.014 | 0.0832      | 0.001   | -0.08878 | 513.1                                   | 8.9  | 515.1                                   | 6.2  | 496                                     | 62   |
| M_MAdel1_12          | 0.665          | 0.014 | 0.0844      | 0.001   | 0.23986  | 517                                     | 8.6  | 522.6                                   | 6.1  | 483                                     | 48   |
| M_MAdel1_13          | 0.668          | 0.017 | 0.08337     | 0.00093 | 0.17933  | 520.3                                   | 9.9  | 516.2                                   | 5.5  | 527                                     | 53   |
| M_MAdel1_14          | 0.642          | 0.017 | 0.0835      | 0.0012  | 0.34983  | 502                                     | 11   | 516.7                                   | 7.1  | 426                                     | 57   |
| M_MAdel1_15          | 0.667          | 0.016 | 0.08365     | 0.00087 | 0.27157  | 517.9                                   | 9.6  | 517.9                                   | 5.2  | 517                                     | 49   |
| M_MAdel1_16          | 0.661          | 0.015 | 0.0844      | 0.0011  | 0.32775  | 514.6                                   | 9.4  | 522.5                                   | 6.6  | 471                                     | 50   |
| M_MAdel1_17          | 0.666          | 0.017 | 0.08342     | 0.00087 | 0.18045  | 518                                     | 10   | 516.5                                   | 5.2  | 520                                     | 54   |
| M_MAdel1_18          | 0.639          | 0.015 | 0.08337     | 0.00094 | 0.16137  | 501                                     | 9.3  | 516.2                                   | 5.6  | 431                                     | 56   |
| M_MAdel1_19          | 0.661          | 0.015 | 0.08397     | 0.00093 | 0.11095  | 514.4                                   | 9.2  | 519.7                                   | 5.6  | 481                                     | 53   |
| M_MAdel1_20          | 0.651          | 0.018 | 0.08423     | 0.0009  | 0.19942  | 508                                     | 11   | 521.3                                   | 5.4  | 435                                     | 61   |
| M_MAdel1_21          | 0.655          | 0.015 | 0.08368     | 0.00093 | 0.19909  | 512.6                                   | 9.8  | 518                                     | 5.5  | 473                                     | 54   |
| M_MAdel1_22          | 0.673          | 0.015 | 0.0848      | 0.0011  | 0.43626  | 522                                     | 8.9  | 524.9                                   | 6.4  | 502                                     | 44   |
| M_MAdel1_23          | 0.669          | 0.014 | 0.0848      | 0.001   | 0.36386  | 519.3                                   | 8.6  | 524.5                                   | 6    | 485                                     | 47   |
| M_MAdel1_24          | 0.663          | 0.016 | 0.08409     | 0.00097 | 0.029471 | 516                                     | 10   | 520.5                                   | 5.8  | 494                                     | 57   |
| M_MAdel1_25          | 0.653          | 0.015 | 0.084       | 0.0011  | 0.20332  | 509.2                                   | 9.2  | 520                                     | 6.5  | 449                                     | 54   |
| M_MAdel1_26          | 0.668          | 0.016 | 0.0841      | 0.0011  | 0.33846  | 518.8                                   | 9.6  | 520.3                                   | 6.3  | 510                                     | 52   |
| M_MAdel1_27          | 0.659          | 0.016 | 0.0844      | 0.0011  | 0.17653  | 513.4                                   | 9.6  | 522.6                                   | 6.3  | 465                                     | 55   |
| M_MAdel1_28          | 0.645          | 0.015 | 0.0845      | 0.00088 | 0.17307  | 504.6                                   | 9.3  | 522.9                                   | 5.2  | 411                                     | 53   |
| M_MAdel1_29          | 0.671          | 0.017 | 0.0845      | 0.001   | 0.10361  | 520                                     | 10   | 523                                     | 6.2  | 521                                     | 52   |
| M_MAdel1_30          | 0.659          | 0.015 | 0.0843      | 0.001   | 0.2698   | 513.2                                   | 9.4  | 521.6                                   | 6    | 464                                     | 53   |
| M_MAdel1_31          | 0.664          | 0.013 | 0.0846      | 0.001   | 0.21432  | 517.7                                   | 7.6  | 523.4                                   | 6.1  | 483                                     | 45   |
| M_MAdel1_32          | 0.666          | 0.014 | 0.0831      | 0.0011  | 0.077967 | 517.3                                   | 8.3  | 514.7                                   | 6.6  | 524                                     | 52   |
| M_MAdel1_33          | 0.653          | 0.014 | 0.0836      | 0.001   | 0.30312  | 509.7                                   | 8.6  | 517.5                                   | 6.2  | 469                                     | 47   |
| M_MAdel1_34          | 0.647          | 0.017 | 0.0821      | 0.001   | 0.30428  | 506                                     | 10   | 508.7                                   | 6    | 485                                     | 56   |
| M_MAdel1_35          | 0.644          | 0.015 | 0.08286     | 0.00087 | 0.36341  | 503.8                                   | 9.4  | 513.1                                   | 5.2  | 450                                     | 50   |
| M_MAdel1_36          | 0.656          | 0.016 | 0.0839      | 0.0011  | 0.33657  | 511                                     | 10   | 519.5                                   | 6.4  | 466                                     | 54   |
| M_MAdel1_37          | 0.659          | 0.016 | 0.0838      | 0.001   | 0.25762  | 513.1                                   | 9.8  | 518.7                                   | 6.1  | 484                                     | 52   |
| M_MAdel1_38          | 0.64           | 0.017 | 0.08255     | 0.00083 | 0.19413  | 502                                     | 10   | 511.3                                   | 4.9  | 444                                     | 58   |
| M MAdol1 30        | 0.661  | 0.017  | 0.0830  | 0.0011  | 0 3557   | 514   | 10  | 510.1 | 6.1 | 405  | 55  |
|--------------------|--------|--------|---------|---------|----------|-------|-----|-------|-----|------|-----|
| M_MAUCH_39         | 0.001  | 0.017  | 0.0859  | 0.0011  | 0.5557   | 514   | 10  | 519.1 | 0.4 | 475  | 55  |
| Internal Standards |        |        |         |         |          |       |     |       |     |      |     |
| X222 1             | 0.567  | 0.011  | 0.07286 | 0.00067 | 0 15889  | 455.6 | 68  | 453 3 | 4   | 453  | 44  |
| X222 2             | 0.557  | 0.012  | 0.07245 | 0.0008  | 0.17673  | 448.9 | 7.6 | 450.9 | 4.8 | 428  | 49  |
| X222 3             | 0.561  | 0.012  | 0.07279 | 0.00092 | 0.27018  | 451.6 | 7.9 | 452.9 | 5.6 | 454  | 46  |
| X222 4             | 0.562  | 0.01   | 0.07327 | 0.00081 | 0.24127  | 452.4 | 6.8 | 455.8 | 4.8 | 426  | 43  |
| X222 5             | 0.566  | 0.012  | 0.0732  | 0.00073 | 0.43808  | 454.5 | 8   | 455.4 | 4.4 | 444  | 43  |
| X222_6             | 0.556  | 0.012  | 0.07255 | 0.00082 | 0.33169  | 448.1 | 7.6 | 451.5 | 5   | 421  | 46  |
| X222_7             | 0.556  | 0.011  | 0.07293 | 0.00075 | 0.2788   | 448.7 | 7.1 | 453.8 | 4.5 | 415  | 43  |
| X222_8             | 0.564  | 0.011  | 0.07245 | 0.00073 | 0.44065  | 453.3 | 7   | 450.9 | 4.4 | 458  | 39  |
| X222_9             | 0.557  | 0.01   | 0.07205 | 0.00075 | 0.27241  | 449.3 | 6.5 | 448.5 | 4.5 | 447  | 41  |
| X222_10            | 0.564  | 0.012  | 0.0722  | 0.00075 | 0.33195  | 454.6 | 7.9 | 449.3 | 4.5 | 481  | 43  |
| X222_11            | 0.56   | 0.011  | 0.07267 | 0.0008  | 0.35878  | 451.2 | 7.1 | 452.2 | 4.8 | 439  | 42  |
| X222_12            | 0.5577 | 0.0099 | 0.07237 | 0.00071 | 0.40396  | 449.6 | 6.5 | 450.4 | 4.3 | 440  | 37  |
| X222_13            | 0.56   | 0.011  | 0.07272 | 0.00074 | 0.24434  | 450.8 | 7.4 | 452.5 | 4.5 | 435  | 45  |
| X222_14            | 0.559  | 0.01   | 0.07239 | 0.00077 | 0.38278  | 450.7 | 6.7 | 450.5 | 4.6 | 447  | 39  |
| X222_15            | 0.5466 | 0.0099 | 0.07189 | 0.00065 | 0.34731  | 442.4 | 6.5 | 447.5 | 3.9 | 411  | 38  |
| X222_16            | 0.565  | 0.011  | 0.07226 | 0.00067 | 0.22006  | 454.4 | 6.9 | 449.7 | 4   | 480  | 40  |
| X222_17            | 0.556  | 0.01   | 0.07218 | 0.00074 | 0.01756  | 448.2 | 6.8 | 449.3 | 4.5 | 437  | 48  |
| X222_18            | 0.5496 | 0.0091 | 0.07145 | 0.00073 | 0.091651 | 444.4 | 6   | 444.8 | 4.4 | 438  | 42  |
| X222_19            | 0.5599 | 0.0098 | 0.07283 | 0.00077 | 0.29273  | 451.1 | 6.4 | 454   | 4.9 | 433  | 39  |
| X222_20            | 0.562  | 0.011  | 0.07221 | 0.00087 | 0.45966  | 452.1 | 6.9 | 449.4 | 5.2 | 462  | 39  |
| X222_21            | 0.56   | 0.011  | 0.07236 | 0.00085 | 0.20472  | 450.8 | 7   | 450.3 | 5.1 | 459  | 42  |
| X222_22            | 0.5519 | 0.0085 | 0.0721  | 0.00075 | 0.35275  | 445.9 | 5.6 | 448.7 | 4.5 | 430  | 34  |
| X222_23            | 0.549  | 0.01   | 0.07291 | 0.00071 | 0.35795  | 443.9 | 6.5 | 453.6 | 4.3 | 402  | 40  |
| X222_24            | 0.563  | 0.01   | 0.07254 | 0.00079 | 0.42884  | 453.4 | 6.6 | 451.4 | 4.8 | 469  | 41  |
| X222_25            | 0.564  | 0.011  | 0.07312 | 0.00066 | 0.15272  | 453.8 | 7   | 454.9 | 3.9 | 437  | 46  |
| X222_26            | 0.548  | 0.011  | 0.07239 | 0.0007  | 0.27644  | 443.1 | 6.9 | 450.5 | 4.2 | 405  | 43  |
|                    |        |        |         |         |          |       |     |       |     |      |     |
| Ambat_1            | 0.68   | 0.013  | 0.08496 | 0.00092 | 0.34817  | 526.2 | 7.7 | 525.6 | 5.5 | 520  | 40  |
| Ambat_2            | 1.168  | 0.029  | 0.08947 | 0.00091 | 0.64108  | 784   | 13  | 552.4 | 5.4 | 1518 | 40  |
| Ambat_3            | 0.662  | 0.013  | 0.08434 | 0.00081 | 0.33313  | 515.3 | 8.2 | 522   | 4.8 | 488  | 41  |
| Ambat_4            | 0.66   | 0.014  | 0.08463 | 0.00084 | 0.47202  | 513.7 | 8.5 | 523.7 | 5   | 466  | 41  |
| Ambat_5            | 0.667  | 0.011  | 0.0841  | 0.001   | 0.31218  | 518.2 | 1   | 520.8 | 6.1 | 502  | 39  |
| Ambat_6            | 1.011  | 0.051  | 0.0881  | 0.0011  | 0.32636  | /03   | 26  | 544   | 6.6 | 1210 | 100 |
| Ambat_7            | 0.655  | 0.013  | 0.08572 | 0.00084 | 0.20406  | 510.8 | 8   | 530.1 | 5   | 418  | 45  |
| Ambat_8            | 0.666  | 0.011  | 0.08463 | 0.00087 | 0.27734  | 517.9 | 7   | 523.6 | 5.2 | 480  | 42  |
| Ambat_9            | 1.031  | 0.057  | 0.08816 | 0.00088 | 0.42184  | /11   | 29  | 544.6 | 5.2 | 1230 | 110 |
| Ambat_10           | 0.659  | 0.013  | 0.08441 | 0.00098 | 0.2/216  | 515.0 | 7.9 | 522.4 | 5.8 | 4/1  | 43  |
| Ambat_11           | 0.662  | 0.013  | 0.08498 | 0.00087 | 0.31468  | 515.2 | /.9 | 525.7 | 5.2 | 464  | 43  |
| Ambat_12           | 0.669  | 0.013  | 0.08528 | 0.00089 | 0.37096  | 519.2 | 8.2 | 527.5 | 5.5 | 479  | 41  |
| Ambat_15           | 0.045  | 0.012  | 0.06572 | 0.00097 | 0.43932  | 303   | /.4 | 316.2 | 3.0 | 439  | 30  |
|                    |        |        |         |         |          |       |     |       |     |      |     |

| Session #2 Standards | 207Pb/235U | 2σ     | 206Pb/238U | 2σ      | Rho     | <sup>207</sup> Pb/ <sup>235</sup> U Age<br>(Ma) | 2σ<br>(Ma) | <sup>206</sup> Pb/ <sup>238</sup> U Age<br>(Ma) | 2σ<br>(Ma) | <sup>207</sup> Pb/ <sup>206</sup> U Age<br>(Ma) | 2σ<br>(Ma) |
|----------------------|------------|--------|------------|---------|---------|-------------------------------------------------|------------|-------------------------------------------------|------------|-------------------------------------------------|------------|
| External Standards   |            |        |            |         |         |                                                 |            |                                                 |            |                                                 |            |
| M_MAdel1_1           | 0.658      | 0.012  | 0.08248    | 0.00084 | 0.36855 | 513.2                                           | 7.1        | 510.9                                           | 5          | 518                                             | 37         |
| M_MAdel1_2           | 0.658      | 0.011  | 0.08391    | 0.00073 | 0.3351  | 513                                             | 6.7        | 519.4                                           | 4.3        | 479                                             | 37         |
| M_MAdel1_3           | 0.65       | 0.012  | 0.084      | 0.00091 | 0.23526 | 507.8                                           | 7.2        | 519.9                                           | 5.4        | 447                                             | 42         |
| M_MAdel1_4           | 0.653      | 0.012  | 0.0831     | 0.0008  | 0.37224 | 509.8                                           | 7.2        | 514.6                                           | 4.7        | 482                                             | 37         |
| M_MAdel1_5           | 0.644      | 0.012  | 0.08336    | 0.00069 | 0.25092 | 504.1                                           | 7.2        | 516.1                                           | 4.1        | 436                                             | 38         |
| M_MAdel1_6           | 0.652      | 0.01   | 0.08359    | 0.00077 | 0.36117 | 509.5                                           | 6.4        | 517.5                                           | 4.6        | 487                                             | 33         |
| M_MAdel1_7           | 0.654      | 0.011  | 0.0839     | 0.00088 | 0.3511  | 510.4                                           | 6.8        | 519.3                                           | 5.2        | 466                                             | 37         |
| M_MAdel1_8           | 0.666      | 0.013  | 0.0827     | 0.00076 | 0.40633 | 517.9                                           | 7.9        | 512.2                                           | 4.5        | 536                                             | 39         |
| M_MAdel1_9           | 0.657      | 0.012  | 0.08325    | 0.00079 | 0.3512  | 512.5                                           | 7.2        | 515.4                                           | 4.7        | 497                                             | 39         |
| M_MAdel1_10          | 0.67       | 0.012  | 0.08399    | 0.00066 | 0.14839 | 521.7                                           | 7.4        | 519.9                                           | 3.9        | 522                                             | 40         |
| M_MAdel1_11          | 0.668      | 0.011  | 0.08506    | 0.00085 | 0.28266 | 518.8                                           | 6.6        | 526.2                                           | 5          | 481                                             | 36         |
| M_MAdel1_12          | 0.667      | 0.011  | 0.08459    | 0.00066 | 0.34695 | 518.4                                           | 7          | 523.4                                           | 3.9        | 494                                             | 35         |
| M_MAdel1_13          | 0.657      | 0.011  | 0.0836     | 0.00078 | 0.31712 | 512.3                                           | 6.9        | 517.5                                           | 4.6        | 486                                             | 39         |
| M_MAdel1_14          | 0.655      | 0.011  | 0.08437    | 0.00085 | 0.35251 | 511.3                                           | 6.6        | 522.1                                           | 5          | 457                                             | 35         |
| M_MAdel1_15          | 0.663      | 0.011  | 0.08408    | 0.00073 | 0.20362 | 516.1                                           | 6.7        | 520.4                                           | 4.3        | 498                                             | 37         |
| M_MAdel1_16          | 0.645      | 0.011  | 0.08417    | 0.00076 | 0.49658 | 505                                             | 7.1        | 520.9                                           | 4.5        | 423                                             | 34         |
| M_MAdel1_17          | 0.66       | 0.011  | 0.08393    | 0.00088 | 0.25178 | 515.5                                           | 7.4        | 519.5                                           | 5.2        | 492                                             | 40         |
| M_MAdel1_18          | 0.657      | 0.013  | 0.08419    | 0.00095 | 0.34449 | 512.4                                           | 7.7        | 521                                             | 5.7        | 467                                             | 42         |
| M_MAdel1_19          | 0.662      | 0.013  | 0.08392    | 0.00087 | 0.32391 | 515.1                                           | 7.7        | 519.5                                           | 5.2        | 495                                             | 39         |
| M_MAdel1_20          | 0.662      | 0.012  | 0.08412    | 0.00083 | 0.38111 | 515.4                                           | 7          | 520.6                                           | 4.9        | 492                                             | 34         |
| M_MAdel1_21          | 0.663      | 0.011  | 0.08403    | 0.00075 | 0.19433 | 516.1                                           | 6.6        | 520.1                                           | 4.5        | 492                                             | 37         |
| M_MAdel1_22          | 0.659      | 0.011  | 0.08416    | 0.00086 | 0.1516  | 513.7                                           | 6.5        | 520.8                                           | 5.1        | 470                                             | 37         |
| M_MAdel1_23          | 0.661      | 0.01   | 0.08378    | 0.00081 | 0.31096 | 514.6                                           | 6.4        | 518.6                                           | 4.8        | 492                                             | 36         |
| M_MAdel1_24          | 0.649      | 0.011  | 0.08337    | 0.00087 | 0.39437 | 508.4                                           | 6.9        | 516.2                                           | 5.2        | 468                                             | 32         |
| M_MAdel1_25          | 0.652      | 0.012  | 0.08327    | 0.00075 | 0.22476 | 509.4                                           | 7.3        | 515.6                                           | 4.5        | 478                                             | 42         |
| M_MAdel1_26          | 0.651      | 0.011  | 0.08295    | 0.00081 | 0.28219 | 508.5                                           | 6.8        | 513.6                                           | 4.8        | 479                                             | 38         |
| M_MAdel1_27          | 0.653      | 0.012  | 0.08261    | 0.00074 | 0.21342 | 509.9                                           | 7.3        | 511.7                                           | 4.4        | 494                                             | 40         |
| M_MAdel1_28          | 0.656      | 0.011  | 0.08329    | 0.00089 | 0.3236  | 511.6                                           | 6.5        | 515.7                                           | 5.3        | 494                                             | 37         |
| M_MAdel1_29          | 0.681      | 0.012  | 0.08438    | 0.00082 | 0.26437 | 527                                             | 7.3        | 522.2                                           | 4.9        | 563                                             | 39         |
| M_MAdel1_30          | 0.755      | 0.062  | 0.0856     | 0.0011  | 0.70615 | 568                                             | 33         | 529.4                                           | 6.4        | 680                                             | 120        |
| M_MAdel1_31          | 0.6606     | 0.0095 | 0.08366    | 0.00062 | 0.16324 | 514.6                                           | 5.8        | 517.9                                           | 3.7        | 487                                             | 34         |
| M_MAdel1_32          | 0.668      | 0.012  | 0.08396    | 0.00077 | 0.32845 | 518.9                                           | 7.3        | 519.7                                           | 4.6        | 508                                             | 38         |
| M_MAdel1_33          | 0.654      | 0.011  | 0.08386    | 0.0007  | 0.25757 | 511.6                                           | 6.8        | 519.1                                           | 4.1        | 470                                             | 36         |
| M_MAdel1_34          | 0.649      | 0.011  | 0.08312    | 0.00072 | 0.3203  | 507.6                                           | 6.7        | 514.7                                           | 4.3        | 469                                             | 37         |
| M_MAdel1_35          | 0.649      | 0.011  | 0.08364    | 0.00077 | 0.37007 | 507.7                                           | 6.6        | 517.8                                           | 4.6        | 467                                             | 33         |
| M_MAdel1_36          | 0.657      | 0.011  | 0.08382    | 0.00096 | 0.39824 | 512                                             | 7          | 518.8                                           | 5.7        | 471                                             | 37         |
| M_MAdel1_37          | 0.655      | 0.011  | 0.08404    | 0.00082 | 0.11031 | 511.3                                           | 7          | 520.1                                           | 4.9        | 464                                             | 43         |
| M_MAdel1_38          | 0.657      | 0.011  | 0.08306    | 0.00085 | 0.36143 | 512.2                                           | 6.5        | 514.3                                           | 5          | 497                                             | 35         |
| Internal Standards   |            |        |            |         |         |                                                 |            |                                                 |            |                                                 |            |
| X222_1               | 0.555      | 0.011  | 0.07164    | 0.0008  | 0.371   | 447.7                                           | 7.1        | 446                                             | 4.8        | 449                                             | 41         |
| X222_2               | 0.545      | 0.011  | 0.07133    | 0.00086 | 0.32341 | 441.4                                           | 7.2        | 444.1                                           | 5.2        | 419                                             | 44         |

| X222_3              | 0.547       | 0.011  | 0.07113     | 0.00079 | 0.17858    | 442.7                                   | 7.3  | 443                                     | 4.8  | 433                                     | 48   |
|---------------------|-------------|--------|-------------|---------|------------|-----------------------------------------|------|-----------------------------------------|------|-----------------------------------------|------|
| X222_4              | 0.543       | 0.011  | 0.07126     | 0.00083 | 0.30387    | 440.2                                   | 7.1  | 443.7                                   | 5    | 415                                     | 44   |
| X222_5              | 0.553       | 0.011  | 0.07156     | 0.00082 | 0.21712    | 446.7                                   | 6.9  | 445.5                                   | 5    | 446                                     | 46   |
| X222_6              | 0.55        | 0.012  | 0.07105     | 0.00081 | 0.26153    | 444.1                                   | 7.8  | 442.4                                   | 4.9  | 438                                     | 49   |
| X222_7              | 0.553       | 0.011  | 0.07187     | 0.00076 | 0.14587    | 446.6                                   | 7.5  | 447.4                                   | 4.6  | 434                                     | 48   |
| X222_8              | 0.553       | 0.011  | 0.07193     | 0.00079 | 0.30663    | 446.3                                   | 7.5  | 447.8                                   | 4.8  | 431                                     | 47   |
| X222_9              | 0.556       | 0.01   | 0.0724      | 0.00084 | 0.25199    | 448.7                                   | 6.9  | 450.5                                   | 5.1  | 432                                     | 45   |
| X222_10             | 0.555       | 0.011  | 0.07147     | 0.00081 | 0.35773    | 447.9                                   | 7.4  | 445                                     | 4.9  | 455                                     | 42   |
| X222_11             | 0.556       | 0.011  | 0.07223     | 0.00085 | 0.22036    | 448.1                                   | 7.4  | 449.5                                   | 5.1  | 432                                     | 48   |
| X222_12             | 0.567       | 0.012  | 0.07179     | 0.00086 | 0.39955    | 455.2                                   | 8.1  | 446.9                                   | 5.2  | 488                                     | 45   |
| X222_13             | 0.55        | 0.011  | 0.07183     | 0.00087 | 0.21356    | 444.6                                   | 7.3  | 447.1                                   | 5.2  | 423                                     | 46   |
| X222_14             | 0.565       | 0.012  | 0.07192     | 0.00086 | 0.43606    | 454                                     | 8    | 447.7                                   | 5.2  | 472                                     | 45   |
| X222_15             | 0.558       | 0.01   | 0.07088     | 0.00069 | 0.00030208 | 449.7                                   | 6.6  | 441.5                                   | 4.2  | 479                                     | 46   |
| X222_16             | 0.563       | 0.013  | 0.07158     | 0.00075 | 0.26086    | 452.9                                   | 8.4  | 445.7                                   | 4.5  | 478                                     | 52   |
| X222_17             | 0.564       | 0.013  | 0.0714      | 0.00081 | 0.12212    | 453.5                                   | 8.4  | 444.6                                   | 4.9  | 487                                     | 55   |
| X222_18             | 0.57        | 0.012  | 0.07202     | 0.0009  | 0.20726    | 457.2                                   | 7.8  | 448.3                                   | 5.4  | 493                                     | 49   |
| X222_19             | 0.56        | 0.013  | 0.07275     | 0.00084 | 0.36376    | 451                                     | 8.5  | 452.6                                   | 5    | 432                                     | 50   |
| X222_20             | 0.565       | 0.012  | 0.07204     | 0.00072 | 0.31343    | 454.1                                   | 7.7  | 448.4                                   | 4.3  | 474                                     | 46   |
| X222_21             | 0.564       | 0.012  | 0.07284     | 0.00084 | 0.18969    | 453.2                                   | 7.9  | 453.2                                   | 5    | 451                                     | 52   |
| X222_22             | 0.56        | 0.011  | 0.07262     | 0.00084 | 0.25753    | 450.8                                   | 7.2  | 451.9                                   | 5.1  | 432                                     | 46   |
| X222_23             | 0.562       | 0.012  | 0.07166     | 0.00086 | 0.40291    | 452                                     | 8.1  | 446.1                                   | 5.2  | 481                                     | 49   |
| X222_24             | 0.551       | 0.0097 | 0.07093     | 0.00067 | 0.21607    | 445.2                                   | 6.3  | 441.7                                   | 4.1  | 455                                     | 42   |
| X222_25             | 0.5447      | 0.0099 | 0.07145     | 0.00069 | 0.25241    | 441.1                                   | 6.5  | 444.9                                   | 4.2  | 425                                     | 40   |
| X222_26             | 0.558       | 0.013  | 0.07149     | 0.00082 | 0.38937    | 449.5                                   | 8.7  | 445.1                                   | 4.9  | 455                                     | 50   |
|                     |             |        |             |         |            |                                         |      |                                         |      |                                         |      |
| Ambat_1             | 0.663       | 0.011  | 0.08299     | 0.00082 | 0.31562    | 516.3                                   | 6.8  | 513.9                                   | 4.9  | 528                                     | 36   |
| Ambat_2             | 0.651       | 0.012  | 0.08253     | 0.00089 | 0.47409    | 508.7                                   | 7.2  | 511.1                                   | 5.3  | 495                                     | 34   |
| Ambat_3             | 0.654       | 0.011  | 0.08362     | 0.0009  | 0.27687    | 510.2                                   | 6.8  | 517.6                                   | 5.4  | 471                                     | 39   |
| Ambat_4             | 0.658       | 0.012  | 0.08303     | 0.0009  | 0.28459    | 514.1                                   | 6.9  | 514.1                                   | 5.3  | 497                                     | 41   |
| Ambat_5             | 0.647       | 0.012  | 0.0838      | 0.001   | 0.44166    | 507.2                                   | 7.2  | 518.6                                   | 6    | 443                                     | 38   |
| Ambat_6             | 0.659       | 0.012  | 0.08382     | 0.00084 | 0.2888     | 513.3                                   | 7.2  | 518.9                                   | 5    | 482                                     | 39   |
| Ambat_7             | 0.657       | 0.012  | 0.08331     | 0.00095 | 0.29186    | 512                                     | 7.1  | 515.8                                   | 5.7  | 495                                     | 37   |
| Ambat_8             | 0.637       | 0.012  | 0.0827      | 0.001   | 0.23904    | 499.6                                   | 7.7  | 512.2                                   | 5.9  | 433                                     | 44   |
| Ambat_9             | 0.663       | 0.012  | 0.08337     | 0.00098 | 0.39602    | 515.7                                   | 7.5  | 516.2                                   | 5.8  | 507                                     | 38   |
| Ambat_10            | 0.709       | 0.025  | 0.0904      | 0.0021  | 0.73126    | 543                                     | 15   | 558                                     | 12   | 478                                     | 53   |
| Ambat_11            | 0.658       | 0.01   | 0.08424     | 0.00087 | 0.26414    | 512.8                                   | 6.3  | 521.4                                   | 5.2  | 469                                     | 35   |
| Ambat_12            | 0.661       | 0.011  | 0.08389     | 0.00077 | 0.25833    | 514.6                                   | 6.5  | 519.3                                   | 4.6  | 484                                     | 36   |
| Ambat_13            | 0.685       | 0.013  | 0.0842      | 0.001   | 0.39391    | 529.1                                   | 7.6  | 521                                     | 6.2  | 559                                     | 39   |
|                     |             |        |             |         |            |                                         |      |                                         |      |                                         |      |
| Session #1 Unknowns | 207Pb/235U  | 26     | 206Pb/238U  | 26      | Rho        | <sup>207</sup> Pb/ <sup>235</sup> U Age | 2σ   | <sup>206</sup> Pb/ <sup>238</sup> U Age | 2σ   | <sup>207</sup> Pb/ <sup>206</sup> U Age | 2σ   |
|                     | 2011 012000 | 20     | 2001 0/2000 | 20      |            | (Ma)                                    | (Ma) | (Ma)                                    | (Ma) | (Ma)                                    | (Ma) |
| BK01_1              | 0.704       | 0.066  | 0.0787      | 0.003   | 0.1043     | 529                                     | 40   | 488                                     | 18   | 620                                     | 210  |
| BK01_2              | 0.612       | 0.029  | 0.0759      | 0.0025  | 0.42432    | 482                                     | 18   | 471                                     | 15   | 584                                     | 74   |
| BK01_3              | 0.672       | 0.013  | 0.0778      | 0.0012  | 0.37796    | 521.9                                   | 8    | 482.7                                   | 7.1  | 695                                     | 44   |
| BK01_4              | 0.636       | 0.021  | 0.0783      | 0.0014  | 0.2955     | 499                                     | 13   | 485.6                                   | 8.1  | 540                                     | 73   |

| BK01_5  | 0.676 | 0.024 | 0.0781  | 0.0016  | 0.71166   | 524   | 15  | 484.6 | 9.5 | 701  | 58  |
|---------|-------|-------|---------|---------|-----------|-------|-----|-------|-----|------|-----|
| BK01_6  | 0.64  | 0.012 | 0.0775  | 0.0012  | 0.63748   | 501.6 | 7.5 | 481.4 | 7   | 606  | 31  |
| BK01_7  | 0.659 | 0.015 | 0.0795  | 0.0013  | 0.34891   | 513.6 | 9.1 | 493.2 | 7.6 | 600  | 49  |
| BK01_8  | 0.668 | 0.013 | 0.07979 | 0.00095 | 0.05726   | 518.7 | 8   | 494.9 | 5.7 | 619  | 48  |
| BK01_9  | 0.682 | 0.023 | 0.0791  | 0.0015  | 0.55831   | 527   | 14  | 490.7 | 9   | 679  | 61  |
| BK01_10 | 0.639 | 0.023 | 0.0777  | 0.0013  | 0.07621   | 500   | 14  | 482.6 | 7.6 | 562  | 84  |
| BK01_11 | 0.662 | 0.019 | 0.0793  | 0.0021  | 0.6007    | 515   | 11  | 492   | 12  | 622  | 50  |
| BK01_12 | 0.577 | 0.043 | 0.0786  | 0.0023  | 0.060143  | 457   | 28  | 488   | 14  | 310  | 170 |
| BK01_13 | 0.615 | 0.07  | 0.078   | 0.0036  | 0.004626  | 479   | 42  | 484   | 22  | 410  | 240 |
| BK01_14 | 0.645 | 0.015 | 0.0769  | 0.0011  | 0.28717   | 504.7 | 9   | 477.8 | 6.3 | 626  | 47  |
| BK01_15 | 0.645 | 0.016 | 0.0773  | 0.0014  | 0.17623   | 505.1 | 9.8 | 480.2 | 8.3 | 615  | 61  |
| BK01_16 | 0.684 | 0.02  | 0.0824  | 0.0013  | 0.3159    | 528   | 12  | 510.3 | 7.7 | 598  | 63  |
| BK01_17 | 0.659 | 0.021 | 0.081   | 0.0024  | -0.42272  | 513   | 13  | 502   | 14  | 570  | 110 |
| BK01_18 | 0.688 | 0.028 | 0.0816  | 0.0019  | 0.57423   | 531   | 17  | 505   | 11  | 644  | 70  |
| BK01_19 | 0.647 | 0.022 | 0.0811  | 0.0019  | 0.53653   | 506   | 13  | 502   | 11  | 522  | 61  |
| BK01_20 | 0.684 | 0.019 | 0.0804  | 0.0013  | 0.33294   | 529   | 12  | 498.3 | 7.9 | 656  | 59  |
| BK01_21 | 0.629 | 0.015 | 0.0761  | 0.0011  | 0.5226    | 494.7 | 9.5 | 472.6 | 6.3 | 594  | 44  |
| BK01_22 | 0.632 | 0.016 | 0.0755  | 0.0016  | 0.60381   | 497   | 10  | 469   | 9.5 | 614  | 36  |
| BK01_23 | 0.636 | 0.016 | 0.0777  | 0.0015  | 0.36707   | 499.3 | 9.6 | 482.2 | 8.8 | 592  | 44  |
| BK01_24 | 0.688 | 0.021 | 0.0819  | 0.0016  | 0.5483    | 531   | 12  | 507.4 | 9.8 | 627  | 53  |
| BK01_25 | 0.646 | 0.019 | 0.0786  | 0.0013  | 0.46434   | 504   | 12  | 487.7 | 8   | 564  | 60  |
| BK01_26 | 0.745 | 0.037 | 0.0785  | 0.0022  | 0.16186   | 563   | 22  | 487   | 13  | 870  | 110 |
| BK01_27 | 0.676 | 0.015 | 0.0789  | 0.0014  | 0.45724   | 523.8 | 9.2 | 489.4 | 8.5 | 684  | 48  |
| BK01_28 | 0.662 | 0.013 | 0.0782  | 0.0011  | 0.58498   | 515.3 | 7.9 | 485.2 | 6.5 | 657  | 32  |
| BK01_29 | 0.695 | 0.031 | 0.0807  | 0.0018  | 0.050495  | 535   | 19  | 500   | 11  | 680  | 110 |
| BK01_30 | 0.674 | 0.013 | 0.07961 | 0.00087 | 0.40088   | 522.7 | 7.9 | 493.8 | 5.2 | 652  | 43  |
| BK01_31 | 0.583 | 0.054 | 0.078   | 0.0029  | 0.055363  | 460   | 35  | 484   | 17  | 320  | 210 |
| BK01_32 | 0.61  | 0.023 | 0.0766  | 0.0015  | 0.35724   | 483   | 14  | 475.9 | 9.1 | 503  | 77  |
|         |       |       |         |         |           |       |     |       |     |      |     |
| BK06_1  | 0.693 | 0.033 | 0.0847  | 0.0017  | 0.19578   | 532   | 20  | 524   | 10  | 540  | 110 |
| BK06_2  | 0.581 | 0.061 | 0.0822  | 0.0028  | -0.095072 | 452   | 39  | 509   | 17  | 180  | 230 |
| BK06_3  | 0.613 | 0.035 | 0.0785  | 0.0018  | 0.032279  | 482   | 22  | 487   | 10  | 420  | 130 |
| BK06_4  | 0.701 | 0.081 | 0.0874  | 0.0043  | 0.40835   | 529   | 49  | 540   | 25  | 430  | 230 |
| BK06_5  | 0.696 | 0.055 | 0.0847  | 0.0029  | 0.11719   | 539   | 36  | 524   | 17  | 550  | 180 |
| BK06_6  | 0.901 | 0.084 | 0.0808  | 0.0041  | 0.7056    | 647   | 44  | 500   | 24  | 1140 | 120 |
| BK06_7  | 0.758 | 0.074 | 0.0773  | 0.0036  | 0.297     | 563   | 41  | 480   | 21  | 870  | 200 |
| BK06_8  | 0.614 | 0.028 | 0.0799  | 0.0016  | 0.35875   | 484   | 17  | 495.2 | 9.3 | 418  | 88  |
| BK06_9  | 0.645 | 0.012 | 0.0805  | 0.001   | 0.48111   | 504.9 | 7.2 | 499.3 | 6   | 528  | 36  |
| BK06_10 | 0.698 | 0.036 | 0.0871  | 0.0034  | 0.87869   | 534   | 20  | 538   | 20  | 534  | 50  |
| BK06_11 | 0.659 | 0.028 | 0.0835  | 0.0021  | 0.54376   | 512   | 17  | 517   | 12  | 532  | 64  |
| BK06_12 | 0.715 | 0.059 | 0.0865  | 0.0054  | 0.35721   | 544   | 34  | 534   | 32  | 580  | 180 |
| BK06_13 | 0.623 | 0.017 | 0.0797  | 0.0019  | 0.58516   | 491   | 10  | 494   | 11  | 478  | 54  |
| BK06_14 | 0.648 | 0.029 | 0.0834  | 0.0021  | 0.29477   | 506   | 18  | 517   | 12  | 449  | 89  |
| BK06_15 | 0.628 | 0.036 | 0.0805  | 0.0019  | 0.28603   | 492   | 22  | 499   | 12  | 420  | 120 |
| BK06_16 | 0.686 | 0.03  | 0.0858  | 0.0033  | 0.66276   | 528   | 18  | 530   | 19  | 535  | 68  |

| BK06_17 | 0.663    | 0.018  | 0.0806   | 0.0017  | 0.39999  | 516      | 11  | 500      | 10  | 584      | 59  |
|---------|----------|--------|----------|---------|----------|----------|-----|----------|-----|----------|-----|
| BK06_18 | 0.664    | 0.026  | 0.0822   | 0.0026  | 0.83886  | 516      | 15  | 509      | 16  | 567      | 51  |
| BK06_19 | 0.642    | 0.021  | 0.0806   | 0.0019  | 0.61509  | 503      | 13  | 500      | 11  | 511      | 55  |
| BK06_20 | 0.619    | 0.04   | 0.08     | 0.0021  | 0.27776  | 492      | 28  | 496      | 13  | 440      | 140 |
| BK06_21 | 0.67     | 0.089  | 0.0848   | 0.0056  | 0.11065  | 514      | 54  | 525      | 33  | 430      | 290 |
| BK06_22 | 0.658    | 0.031  | 0.0822   | 0.0017  | 0.55047  | 512      | 19  | 509      | 10  | 553      | 90  |
| BK06_23 | 0.659    | 0.058  | 0.0774   | 0.0021  | 0.19492  | 507      | 36  | 480      | 13  | 550      | 180 |
| BK06_24 | 0.749    | 0.054  | 0.0853   | 0.0032  | 0.57809  | 564      | 30  | 528      | 19  | 690      | 110 |
| BK06_25 | 0.708    | 0.025  | 0.0766   | 0.0017  | 0.20997  | 542      | 15  | 475      | 10  | 818      | 76  |
| BK06_26 | 0.6133   | 0.0092 | 0.07729  | 0.00094 | 0.6097   | 485.3    | 5.8 | 479.9    | 5.7 | 512      | 27  |
| BK06_27 | 0.648    | 0.043  | 0.0783   | 0.0026  | 0.20969  | 503      | 26  | 486      | 15  | 550      | 140 |
| BK06_28 | no value | NAN    | no value | NAN     | NaN      | no value | NAN | no value | NAN | no value | NAN |
| BK06_29 | 0.638    | 0.06   | 0.0873   | 0.0033  | 0.016329 | 496      | 38  | 539      | 20  | 260      | 220 |
| BK06_30 | 0.668    | 0.023  | 0.0825   | 0.0019  | 0.33347  | 518      | 14  | 511      | 11  | 533      | 73  |
| BK06_31 | 0.605    | 0.061  | 0.0784   | 0.0033  | 0.21083  | 469      | 40  | 486      | 20  | 360      | 210 |
| BK06_32 | 0.728    | 0.055  | 0.0867   | 0.0029  | 0.77002  | 553      | 31  | 536      | 17  | 610      | 120 |
|         |          |        |          |         |          |          |     |          |     |          |     |
| BK14_1  | 0.726    | 0.02   | 0.0823   | 0.0015  | 0.34892  | 553      | 12  | 509.9    | 9   | 733      | 45  |
| BK14_2  | 0.722    | 0.023  | 0.0796   | 0.0014  | 0.43812  | 551      | 14  | 493.7    | 8.4 | 786      | 60  |
| BK14_3  | 0.656    | 0.012  | 0.07953  | 0.00085 | 0.74387  | 513.5    | 7.6 | 493.3    | 5.1 | 604      | 29  |
| BK14_4  | 0.739    | 0.046  | 0.081    | 0.0017  | 0.65605  | 559      | 26  | 502      | 10  | 812      | 90  |
| BK14_5  | 0.743    | 0.03   | 0.0834   | 0.0023  | 0.70669  | 564      | 17  | 516      | 14  | 764      | 60  |
| BK14_6  | 0.815    | 0.037  | 0.0822   | 0.0022  | 0.63878  | 604      | 21  | 509      | 13  | 992      | 70  |
| BK14_7  | 0.735    | 0.016  | 0.0835   | 0.0013  | 0.6756   | 558.6    | 9.6 | 516.9    | 8   | 731      | 33  |
| BK14_8  | 0.689    | 0.023  | 0.0798   | 0.0019  | 0.80877  | 531      | 14  | 495      | 11  | 685      | 40  |
| BK14_9  | 0.659    | 0.011  | 0.0798   | 0.001   | 0.53104  | 513.3    | 6.9 | 495      | 6   | 596      | 32  |
| BK14_10 | 0.686    | 0.012  | 0.08192  | 0.00099 | 0.63397  | 530.1    | 7.1 | 507.5    | 5.9 | 628      | 31  |
| BK14_11 | 0.686    | 0.013  | 0.08136  | 0.00095 | 0.48873  | 529.9    | 7.5 | 504.2    | 5.6 | 633      | 31  |
| BK14_12 | 0.873    | 0.047  | 0.0829   | 0.0021  | 0.057146 | 635      | 25  | 513      | 13  | 1090     | 110 |
| BK14_13 | 0.735    | 0.023  | 0.0817   | 0.0018  | 0.67881  | 559      | 14  | 506      | 11  | 780      | 49  |
| BK14_14 | 0.725    | 0.034  | 0.0854   | 0.0029  | 0.78581  | 552      | 20  | 528      | 17  | 652      | 65  |
| BK14_15 | 0.713    | 0.03   | 0.0801   | 0.0018  | 0.62212  | 545      | 17  | 496      | 11  | 753      | 65  |
| BK14_16 | 0.651    | 0.0088 | 0.07933  | 0.00059 | 0.65696  | 508.8    | 5.4 | 492.1    | 3.5 | 585      | 23  |
| BK14_17 | 0.816    | 0.039  | 0.0853   | 0.0014  | 0.40346  | 604      | 21  | 527.4    | 8.4 | 889      | 84  |
| BK14_18 | 0.703    | 0.028  | 0.0835   | 0.0022  | 0.21295  | 540      | 17  | 517      | 13  | 638      | 93  |
| BK14_19 | 0.648    | 0.012  | 0.0785   | 0.0012  | 0.50971  | 507.2    | 7.2 | 487      | 7.3 | 599      | 36  |
| BK14_20 | 0.652    | 0.02   | 0.0797   | 0.0017  | 0.66817  | 509      | 12  | 494      | 10  | 578      | 49  |
|         |          |        |          |         |          |          |     |          |     |          |     |
| BK18_1  | 0.769    | 0.025  | 0.0806   | 0.0013  | 0.51149  | 579      | 15  | 499.5    | 7.9 | 888      | 63  |
| BK18_2  | 0.693    | 0.018  | 0.0786   | 0.0015  | 0.44355  | 534      | 11  | 487.8    | 8.7 | 731      | 47  |
| BK18_3  | 0.737    | 0.027  | 0.079    | 0.0019  | 0.038826 | 560      | 16  | 490      | 11  | 853      | 88  |
| BK18_4  | 0.842    | 0.058  | 0.0796   | 0.0018  | 0.55701  | 617      | 31  | 494      | 11  | 1090     | 120 |
| BK18_5  | 0.793    | 0.04   | 0.07744  | 0.00088 | 0.39521  | 589      | 21  | 480.8    | 5.3 | 1002     | 82  |
| BK18_6  | 0.739    | 0.027  | 0.079    | 0.0017  | 0.29645  | 561      | 16  | 490      | 10  | 860      | 76  |
| BK18_7  | 0.715    | 0.02   | 0.0785   | 0.0014  | 0.72638  | 547      | 12  | 487.4    | 8.3 | 796      | 42  |

| BK18_8   | 0.833  | 0.035  | 0.0788  | 0.0012  | 0.55795   | 612   | 19  | 488.8 | 7.4 | 1079 | 69  |
|----------|--------|--------|---------|---------|-----------|-------|-----|-------|-----|------|-----|
| BK18_9   | 0.839  | 0.021  | 0.0802  | 0.0013  | 0.29411   | 618   | 12  | 497.2 | 7.6 | 1088 | 51  |
| BK18_10  | 0.767  | 0.022  | 0.077   | 0.0013  | 0.20179   | 577   | 13  | 478   | 7.6 | 974  | 60  |
| BK18_11  | 0.662  | 0.025  | 0.0792  | 0.0016  | 0.11842   | 515   | 16  | 491   | 9.7 | 613  | 89  |
| BK18_12  | 0.696  | 0.021  | 0.079   | 0.0013  | 0.17904   | 539   | 11  | 490.2 | 7.7 | 752  | 58  |
|          |        |        |         |         |           |       |     |       |     |      |     |
| BK25A_1  | 0.618  | 0.012  | 0.077   | 0.001   | 0.33883   | 488.3 | 7.8 | 478.4 | 6.1 | 536  | 42  |
| BK25A_2  | 0.664  | 0.012  | 0.0767  | 0.00092 | 0.38756   | 516.7 | 7.6 | 476.3 | 5.5 | 692  | 38  |
| BK25A_3  | 0.741  | 0.043  | 0.0796  | 0.0025  | 0.10992   | 562   | 25  | 494   | 15  | 850  | 120 |
| BK25A_4  | 0.703  | 0.018  | 0.0816  | 0.0016  | 0.06744   | 540   | 10  | 505.4 | 9.3 | 690  | 69  |
| BK25A_5  | 0.601  | 0.031  | 0.0797  | 0.0021  | 0.25726   | 474   | 20  | 494   | 12  | 350  | 110 |
| BK25A_6  | 0.6093 | 0.0076 | 0.07785 | 0.00078 | 0.53226   | 482.9 | 4.8 | 483.3 | 4.7 | 477  | 25  |
| BK25A_7  | 0.591  | 0.013  | 0.0752  | 0.0015  | 0.57142   | 472.5 | 8.6 | 467.2 | 9   | 494  | 44  |
| BK25A_8  | 0.665  | 0.019  | 0.0742  | 0.0011  | 0.14999   | 517   | 11  | 461.1 | 6.3 | 750  | 64  |
| BK25A_9  | 0.642  | 0.021  | 0.0799  | 0.0018  | 0.26681   | 503   | 13  | 496   | 11  | 547  | 69  |
| BK25A_10 | 0.6155 | 0.0089 | 0.07589 | 0.00089 | 0.36585   | 486.8 | 5.6 | 471.5 | 5.4 | 554  | 35  |
| BK25A_11 | 0.606  | 0.029  | 0.078   | 0.0018  | 0.29256   | 480   | 18  | 484   | 11  | 450  | 110 |
| BK25A_12 | 0.661  | 0.029  | 0.0781  | 0.0016  | -0.02845  | 514   | 18  | 484.5 | 9.8 | 630  | 110 |
| BK25A_13 | 0.685  | 0.027  | 0.0813  | 0.0013  | 0.35289   | 529   | 16  | 503.8 | 8   | 633  | 82  |
| BK25A_14 | 0.619  | 0.011  | 0.0768  | 0.0011  | 0.54838   | 488.6 | 6.8 | 476.9 | 6.7 | 540  | 33  |
| BK25A_15 | 0.579  | 0.069  | 0.0766  | 0.0035  | 0.12919   | 467   | 49  | 476   | 21  | 370  | 260 |
| BK25A_16 | 0.647  | 0.03   | 0.0778  | 0.0022  | 0.4429    | 505   | 18  | 483   | 13  | 594  | 96  |
| BK25A_17 | 0.607  | 0.01   | 0.07496 | 0.00076 | 0.44961   | 481.4 | 6.5 | 465.9 | 4.6 | 546  | 34  |
| BK25A_18 | 0.699  | 0.021  | 0.076   | 0.001   | 0.4395    | 537   | 12  | 472.1 | 6.2 | 809  | 55  |
| BK25A_19 | 0.628  | 0.03   | 0.0791  | 0.0023  | 0.25237   | 494   | 19  | 491   | 13  | 500  | 120 |
| BK25A_20 | 0.642  | 0.02   | 0.0779  | 0.0014  | 0.55164   | 503   | 12  | 483.4 | 8.3 | 578  | 59  |
| BK25A_21 | 0.663  | 0.041  | 0.082   | 0.0022  | -0.057076 | 515   | 25  | 508   | 13  | 540  | 150 |
| BK25A_22 | 0.622  | 0.024  | 0.0769  | 0.002   | 0.48125   | 491   | 15  | 477   | 12  | 544  | 74  |
| BK25A_23 | 0.62   | 0.03   | 0.0799  | 0.0021  | 0.4341    | 489   | 19  | 495   | 13  | 448  | 98  |
| BK25A_24 | 0.703  | 0.018  | 0.0783  | 0.0013  | 0.36661   | 540   | 11  | 485.8 | 7.6 | 766  | 52  |
| BK25A_25 | 0.62   | 0.022  | 0.0787  | 0.0016  | 0.4302    | 489   | 14  | 488.1 | 9.6 | 486  | 67  |
| BK25A_26 | 0.653  | 0.015  | 0.0783  | 0.001   | 0.29866   | 509.6 | 9.1 | 485.7 | 6.3 | 609  | 55  |
| BK25A_27 | 0.634  | 0.028  | 0.0788  | 0.0018  | 0.2193    | 497   | 18  | 489   | 10  | 530  | 100 |
| BK25A_28 | 0.697  | 0.03   | 0.08137 | 0.00097 | 0.418     | 535   | 18  | 504.3 | 5.8 | 660  | 86  |
| BK25A_29 | 0.65   | 0.039  | 0.079   | 0.0025  | -0.048374 | 518   | 31  | 490   | 15  | 560  | 120 |
| BK25A_30 | 0.65   | 0.027  | 0.0778  | 0.0021  | 0.55996   | 507   | 16  | 483   | 12  | 610  | 76  |
| BK25A_31 | 0.722  | 0.048  | 0.0769  | 0.003   | 0.33429   | 550   | 28  | 477   | 18  | 850  | 130 |
| BK25A_32 | 0.612  | 0.013  | 0.0763  | 0.0013  | 0.26564   | 484   | 8.4 | 473.6 | 7.7 | 526  | 52  |
| BK25A_33 | 0.63   | 0.022  | 0.0756  | 0.0011  | 0.62082   | 495   | 13  | 469.7 | 6.4 | 631  | 65  |
| BK25A_34 | 0.746  | 0.073  | 0.0806  | 0.0021  | 0.34375   | 574   | 47  | 500   | 12  | 830  | 190 |
| BK25A_35 | 0.637  | 0.024  | 0.0806  | 0.0021  | 0.39427   | 500   | 15  | 500   | 12  | 501  | 76  |
| BK25A_36 | 0.659  | 0.035  | 0.0786  | 0.0018  | 0.084344  | 513   | 21  | 488   | 11  | 610  | 120 |
|          |        |        |         |         |           |       |     |       |     |      |     |
| BK25B_1  | 0.684  | 0.016  | 0.0788  | 0.0011  | 0.47962   | 528.5 | 9.6 | 489.1 | 6.4 | 685  | 42  |
| BK25B_2  | 0.628  | 0.047  | 0.0776  | 0.0025  | 0.17195   | 487   | 29  | 481   | 15  | 460  | 160 |

| BK25B_3   | 0.571 | 0.05  | 0.076   | 0.0024  | -0.032044  | 449   | 32  | 472   | 14  | 300  | 180 |
|-----------|-------|-------|---------|---------|------------|-------|-----|-------|-----|------|-----|
| BK25B_4   | 0.623 | 0.012 | 0.0779  | 0.0013  | 0.33356    | 491.3 | 7.5 | 483.6 | 7.6 | 509  | 35  |
| BK25B_5   | 0.667 | 0.043 | 0.0812  | 0.0021  | 0.51855    | 517   | 26  | 503   | 12  | 550  | 120 |
| BK25B_6   | 0.635 | 0.035 | 0.082   | 0.0021  | 0.13186    | 500   | 23  | 508   | 12  | 450  | 120 |
| BK25B_7   | 0.609 | 0.047 | 0.078   | 0.0027  | 0.4801     | 479   | 29  | 484   | 16  | 420  | 150 |
| BK25B_8   | 0.635 | 0.011 | 0.0786  | 0.001   | 0.44268    | 499   | 6.9 | 487.6 | 6.2 | 552  | 35  |
| BK25B_9   | 0.806 | 0.047 | 0.0789  | 0.0018  | 0.43001    | 597   | 25  | 489   | 11  | 1014 | 99  |
| BK25B_10  | 0.614 | 0.037 | 0.0779  | 0.0022  | 0.045345   | 488   | 26  | 484   | 13  | 480  | 150 |
| BK25B_11  | 0.59  | 0.049 | 0.0784  | 0.0027  | 0.19176    | 465   | 31  | 486   | 16  | 320  | 170 |
| BK25B_12  | 0.613 | 0.015 | 0.0765  | 0.0012  | 0.24856    | 484.7 | 9.2 | 475.3 | 7.3 | 510  | 56  |
| BK25B_13  | 0.628 | 0.031 | 0.0802  | 0.0026  | 0.54037    | 493   | 19  | 497   | 15  | 463  | 87  |
| BK25B_14  | 0.89  | 0.11  | 0.0757  | 0.0019  | 0.71716    | 621   | 51  | 470   | 11  | 1120 | 170 |
| BK25B_15  | 0.606 | 0.016 | 0.07645 | 0.00093 | 0.24598    | 480   | 10  | 474.9 | 5.6 | 492  | 58  |
| BK25B_16  | 0.636 | 0.021 | 0.0799  | 0.0015  | 0.228      | 498   | 13  | 495.4 | 9.1 | 487  | 74  |
| BK25B_17  | 0.666 | 0.022 | 0.0764  | 0.0018  | 0.050145   | 517   | 13  | 475   | 11  | 682  | 64  |
| BK25B_18  | 0.707 | 0.03  | 0.0773  | 0.0012  | 0.64015    | 541   | 18  | 480   | 7.3 | 781  | 70  |
| BK25B_19  | 0.623 | 0.012 | 0.079   | 0.001   | 0.46939    | 491.1 | 7.7 | 490.2 | 6   | 479  | 41  |
| BK25B_20  | 0.687 | 0.029 | 0.0784  | 0.0016  | 0.70896    | 530   | 17  | 486.4 | 9.6 | 709  | 61  |
| BK25B_21  | 0.686 | 0.052 | 0.0818  | 0.0029  | 0.075439   | 527   | 32  | 507   | 17  | 590  | 170 |
| BK25B_22  | 0.612 | 0.017 | 0.0754  | 0.00097 | 0.28574    | 484   | 11  | 468.6 | 5.8 | 551  | 62  |
| BK25B_23  | 0.693 | 0.066 | 0.0819  | 0.0027  | -0.24608   | 528   | 40  | 507   | 16  | 570  | 230 |
| BK25B_24  | 0.628 | 0.016 | 0.0776  | 0.0014  | 0.44618    | 494   | 10  | 481.6 | 8.2 | 535  | 59  |
| BK25B_25  | 0.615 | 0.02  | 0.0786  | 0.0021  | 0.61714    | 486   | 12  | 488   | 12  | 489  | 57  |
| BK25B_26  | 0.64  | 0.03  | 0.0798  | 0.0018  | 0.29047    | 502   | 20  | 495   | 11  | 510  | 100 |
| BK25B_27  | 0.633 | 0.029 | 0.0746  | 0.0011  | 0.65366    | 489   | 13  | 463.8 | 6.5 | 617  | 75  |
| BK25B_28  | 0.621 | 0.016 | 0.0777  | 0.0012  | 0.21909    | 489   | 10  | 482.4 | 7.1 | 509  | 60  |
| BK25B_29  | 0.665 | 0.036 | 0.0748  | 0.0014  | 0.42197    | 513   | 21  | 465   | 8.3 | 714  | 98  |
| BK25B_30  | 0.653 | 0.038 | 0.0783  | 0.0018  | 0.11567    | 505   | 23  | 486   | 11  | 560  | 130 |
| BK25B_31  | 0.72  | 0.04  | 0.078   | 0.0011  | 0.61815    | 549   | 23  | 484.3 | 6.6 | 794  | 93  |
| BK25B_32  | 0.668 | 0.015 | 0.0817  | 0.0011  | 0.56892    | 519.1 | 8.9 | 506.4 | 6.4 | 570  | 37  |
| BK25B_33  | 0.612 | 0.015 | 0.0796  | 0.0018  | 0.44635    | 484.2 | 9.3 | 494   | 11  | 438  | 54  |
| BK25B_34  | 0.64  | 0.029 | 0.0758  | 0.0013  | 0.43856    | 501   | 18  | 471.1 | 7.9 | 662  | 94  |
| BK25B_35  | 0.643 | 0.02  | 0.0759  | 0.0011  | 0.3091     | 503   | 12  | 471.7 | 6.7 | 630  | 65  |
| BK25B_36  | 0.613 | 0.014 | 0.07611 | 0.0008  | 0.33084    | 484.5 | 8.9 | 472.8 | 4.8 | 524  | 49  |
| BK25B_37  | 0.687 | 0.02  | 0.0831  | 0.0012  | 0.092902   | 530   | 12  | 514.3 | 7   | 587  | 66  |
|           |       |       |         |         |            |       |     |       |     |      |     |
| KTDD089_1 | 0.708 | 0.04  | 0.082   | 0.0028  | 0.11553    | 542   | 23  | 508   | 16  | 680  | 120 |
| KTDD089_2 | 0.626 | 0.021 | 0.0781  | 0.002   | 0.82242    | 493   | 13  | 485   | 12  | 525  | 49  |
| KTDD089_3 | 0.643 | 0.043 | 0.0776  | 0.0029  | 0.26463    | 501   | 26  | 481   | 18  | 540  | 150 |
| KTDD089_4 | 0.605 | 0.04  | 0.0776  | 0.0021  | 0.095507   | 474   | 25  | 481   | 13  | 400  | 140 |
| KTDD089_5 | 0.698 | 0.065 | 0.0797  | 0.0021  | 0.17429    | 539   | 36  | 494   | 12  | 660  | 190 |
| KTDD089_6 | 0.97  | 0.12  | 0.0786  | 0.0024  | -0.0078251 | 684   | 67  | 487   | 15  | 1220 | 260 |
| KTDD089_7 | 0.718 | 0.032 | 0.0786  | 0.0018  | 0.19131    | 547   | 19  | 488   | 11  | 790  | 97  |
| KTDD089_8 | 0.786 | 0.057 | 0.0775  | 0.0024  | 0.090921   | 587   | 31  | 481   | 14  | 970  | 160 |
| KTDD089_9 | 0.781 | 0.055 | 0.0734  | 0.0019  | -0.067947  | 581   | 31  | 457   | 12  | 1060 | 160 |

| KTDD089_10       0.73       0.066       0.0752       0.0041       0.37193       552       38       467       24       900         KTDD089_11       0.75       0.09       0.0825       0.0036       0.014018       578       63       510       21       740         KTDD089_12       0.617       0.048       0.0791       0.0025       0.17752       480       30       491       15       380         KTDD089_13       0.637       0.094       0.0791       0.0047       -0.080825       485       54       490       28       430         KTDD089_14       0.619       0.086       0.0037       -0.51624       481       55       499       22       370         KTDD089_15       0.594       0.072       0.0811       0.0034       0.039606       462       45       502       20       220         KTDD089_16       0.615       0.054       0.076       0.0027       0.003425       486       38       472       16       500         KTDD089_17       0.64       0.067       0.0783       0.0034       0.09965       493       44       485       20       440 | 170         280         160         300         340         230         220         20         2σ         (Ma)         46         41         57         38         33 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KTDD089_11       0.75       0.09       0.0825       0.0036       0.014018       578       63       510       21       740         KTDD089_12       0.617       0.048       0.0791       0.0025       0.17752       480       30       491       15       380         KTDD089_13       0.637       0.094       0.0791       0.0047       -0.080825       485       54       490       28       430         KTDD089_14       0.619       0.086       0.0806       0.0037       -0.51624       481       55       499       22       370         KTDD089_15       0.594       0.072       0.0811       0.0034       0.039606       462       45       502       20       220         KTDD089_16       0.615       0.054       0.076       0.0027       0.003425       486       38       472       16       500         KTDD089_17       0.64       0.067       0.0783       0.0034       0.09965       493       44       485       20       440         207Pb/235U Age       2σ       206Pb/238U Age       2σ       207Pb/26U Age                                    | 280<br>160<br>300<br>340<br>230<br>220<br>220<br>2σ<br>(Ma)<br>46<br>41<br>57<br>38<br>33                                                                             |
| KTDD089_12       0.617       0.048       0.0791       0.0025       0.17752       480       30       491       15       380         KTDD089_13       0.637       0.094       0.0791       0.0047       -0.080825       485       54       490       28       430         KTDD089_14       0.619       0.086       0.0806       0.0037       -0.51624       481       55       499       22       370         KTDD089_15       0.594       0.072       0.0811       0.0034       0.039606       462       45       502       20       220         KTDD089_16       0.615       0.054       0.076       0.0027       0.003425       486       38       472       16       500         KTDD089_17       0.64       0.067       0.0783       0.0034       0.09965       493       44       485       20       440         207Pb/235U Age       2σ       206Pb/238U Age       2σ       207Pb/26U Age                                                                                                                                                                      | $ \begin{array}{c} 160\\ 300\\ 340\\ 230\\ 220\\ 220\\ 2co\\ (Ma)\\ 46\\ 41\\ 57\\ 38\\ 33\\ \end{array} $                                                            |
| KTDD089_13       0.637       0.094       0.0791       0.0047       -0.080825       485       54       490       28       430         KTDD089_14       0.619       0.086       0.0806       0.0037       -0.51624       481       55       499       22       370         KTDD089_15       0.594       0.072       0.0811       0.0034       0.039606       462       45       502       20       220         KTDD089_16       0.615       0.054       0.076       0.0027       0.003425       486       38       472       16       500         KTDD089_17       0.64       0.067       0.0783       0.0034       0.09965       493       44       485       20       440                                                                                                                                                                                                                                                                                                                                                                                           | 300<br>340<br>230<br>220<br>220<br>220<br><b>2σ</b><br>(Ma)<br>46<br>41<br>57<br>38<br>33                                                                             |
| KTDD089_14       0.619       0.086       0.0806       0.0037       -0.51624       481       55       499       22       370         KTDD089_15       0.594       0.072       0.0811       0.0034       0.039606       462       45       502       20       220         KTDD089_16       0.615       0.054       0.076       0.0027       0.003425       486       38       472       16       500         KTDD089_17       0.64       0.067       0.0783       0.0034       0.09965       493       44       485       20       440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>340</li> <li>230</li> <li>220</li> <li>220</li> <li>2σ</li> <li>(Ma)</li> <li>46</li> <li>41</li> <li>57</li> <li>38</li> <li>33</li> </ul>                  |
| KTDD089_15       0.594       0.072       0.0811       0.0034       0.039606       462       45       502       20       220         KTDD089_16       0.615       0.054       0.076       0.0027       0.003425       486       38       472       16       500         KTDD089_17       0.64       0.067       0.0783       0.0034       0.09965       493       44       485       20       440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 230<br>220<br>220<br><b>2σ</b><br>(Ma)<br>46<br>41<br>57<br>38<br>33                                                                                                  |
| KTDD089_16       0.615       0.054       0.076       0.0027       0.003425       486       38       472       16       500         KTDD089_17       0.64       0.067       0.0783       0.0034       0.09965       493       44       485       20       440         Session #2 Unknowns       207Pb/235U       2σ       206Pb/238U       2σ       Bho <sup>207</sup> Pb/ <sup>235</sup> U Age       2σ <sup>207</sup> Pb/ <sup>236</sup> U Age       2σ <sup>207</sup> Pb/ <sup>206</sup> U Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220<br>220<br><b>2σ</b><br>(Ma)<br>46<br>41<br>57<br>38<br>33                                                                                                         |
| KTDD089_17       0.64       0.067       0.0783       0.0034       0.09965       493       44       485       20       440         Session #2 Unknowns       207Pb/235U       2σ       206Pb/238U       2σ       Bho       207Pb/235U Age       2σ       206Pb/238U Age       2σ       207Pb/206U Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220<br><b>2σ</b><br>(Ma)<br>46<br>41<br>57<br>38<br>33                                                                                                                |
| Session #2 Unknowns 207Pb/235U 2σ 206Pb/238U 2σ Bho <sup>207</sup> Pb/ <sup>235</sup> U Age 2σ <sup>206</sup> Pb/ <sup>238</sup> U Age 2σ <sup>207</sup> Pb/ <sup>206</sup> U Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>2σ</b><br>(Ma)<br>46<br>41<br>57<br>38<br>33                                                                                                                       |
| Session #2 Unknowns 207Pb/235U 2σ 206Pb/238U 2σ Bho <sup>207</sup> Pb/ <sup>235</sup> U Age 2σ <sup>206</sup> Pb/ <sup>238</sup> U Age 2σ <sup>207</sup> Pb/ <sup>206</sup> U Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>2</b> σ<br>( <b>Ma</b> )<br>46<br>41<br>57<br>38<br>33                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Ma)<br>46<br>41<br>57<br>38<br>33                                                                                                                                    |
| (Ma) (Ma) (Ma) (Ma) (Ma)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46<br>41<br>57<br>38<br>33                                                                                                                                            |
| <b>BKDK1_1</b> 0.623 0.013 0.0793 0.001 0.27177 491.4 8.1 493.2 6.3 479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41<br>57<br>38<br>33                                                                                                                                                  |
| <b>BKDK1_2</b> 0.617 0.011 0.07966 0.00092 0.26394 487.4 6.6 494 5.5 458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57<br>38<br>33                                                                                                                                                        |
| <b>BKDK1_3</b> 0.644 0.018 0.0811 0.0012 0.36476 504 11 502.9 7 521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38<br>33                                                                                                                                                              |
| <b>BKDK1_4</b> 0.645 0.013 0.0793 0.001 0.43432 504.8 7.7 492.2 6.1 565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                    |
| <b>BKDK1_5</b> 0.6244 0.0095 0.07921 0.00079 0.32607 492.3 5.9 491.4 4.7 492                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       |
| <b>BKDK1_6</b> 0.654 0.019 0.0846 0.0015 0.45809 511 11 523.7 8.7 478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59                                                                                                                                                                    |
| <b>BKDK1_7</b> 0.616 0.01 0.0789 0.00074 0.28804 487.2 6.5 489.5 4.4 470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37                                                                                                                                                                    |
| <b>BKDK1_8</b> 0.616 0.01 0.07791 0.00077 0.40748 486.7 6.4 483.6 4.6 495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                                                                                                                                                                    |
| <b>BKDK1_9</b> 0.612 0.024 0.0804 0.0014 0.5918 484 15 498.7 8.4 434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67                                                                                                                                                                    |
| <b>BKDK1_10</b> 0.653 0.011 0.0774 0.001 0.47074 510.3 6.6 480.4 6.2 647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                    |
| <b>BKDK1_11</b> 0.659 0.016 0.0782 0.0013 0.50706 513 10 485.4 7.8 646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44                                                                                                                                                                    |
| <b>BKDK1_12</b> 0.661 0.014 0.0831 0.0015 0.38803 514.9 8.5 514.3 8.6 522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47                                                                                                                                                                    |
| <b>BKDK1_13</b> 0.689 0.029 0.0793 0.0011 0.54556 530 17 492.1 6.6 686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                                                                                                                                                    |
| <b>BKDK1_14</b> 0.6009 0.0098 0.07806 0.0096 0.59552 477.4 6.2 484.5 5.8 454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                                                                    |
| <b>BKDK1_15</b> 0.6167 0.0095 0.07842 0.0092 0.47477 487.5 5.9 486.6 5.5 489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                                                                                                                                                                    |
| <b>BKDK1_16</b> 0.618 0.016 0.0775 0.0016 0.65278 488 10 481.2 9.5 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                                                                                                                                                    |
| <b>BKDK1_17</b> 0.6382 0.0094 0.082 0.0014 0.66684 501 5.9 507.8 8.3 477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                    |
| <b>BKDK1_18</b> 0.721 0.033 0.0839 0.0016 0.41915 550 19 519.4 9.4 693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84                                                                                                                                                                    |
| <b>BKDK1_19</b> 0.648 0.013 0.07877 0.00097 0.15806 506.8 8.2 488.8 5.8 583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38                                                                                                                                                                    |
| <b>BKDK1_20</b> 0.72 0.018 0.0845 0.0013 0.38836 549 10 523.1 7.6 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48                                                                                                                                                                    |
| <b>BKDK1_21</b> 0.666 0.016 0.0835 0.0013 0.49586 517.6 9.4 516.7 7.7 527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43                                                                                                                                                                    |
| <b>BKDK1_22</b> 0.663 0.014 0.07987 0.00083 0.46533 515.6 8.5 495.3 5 602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42                                                                                                                                                                    |
| <b>BKDK1_23</b> 0.738 0.038 0.0853 0.0015 0.28987 559 22 527.8 9.2 690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                   |
| <b>BKDK1_24</b> 0.722 0.021 0.0828 0.0014 0.49027 551 13 512.9 8.3 707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53                                                                                                                                                                    |
| <b>BKDK1_25</b> 0.608 0.012 0.07805 0.0096 0.42062 481.5 7.7 484.4 5.8 467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                    |
| <b>BKDK1_26</b> 0.617 0.012 0.0805 0.0011 0.46634 487.4 7.5 498.8 6.4 428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38                                                                                                                                                                    |
| <b>BKDK1_27</b> 0.718 0.032 0.083 0.001 0.69374 546 17 513.7 6.1 663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61                                                                                                                                                                    |
| <b>BKDK1_28</b> 0.666 0.04 0.081 0.0031 0.72185 519 22 501 19 633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 67                                                                                                                                                                    |
| <b>BKDK1_29</b> 0.676 0.016 0.0851 0.0013 0.52541 523.7 9.6 526.5 7.5 532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37                                                                                                                                                                    |
| <b>BKDK1_30</b> 0.723 0.027 0.0778 0.0015 0.49385 551 16 483.1 8.9 848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                    |
| BKDK1_31 0.712 0.016 0.0822 0.0013 0.56395 545.6 9.3 509.4 7.8 702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42                                                                                                                                                                    |
| <b>BKDK1_32</b> 0.622 0.011 0.07923 0.00081 0.40898 491 6.9 491.5 4.8 481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36                                                                                                                                                                    |
| <b>BKDK1_33</b> 0.661 0.026 0.0807 0.0016 0.92636 517 17 500 9.6 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                    |
| <b>BKDK1_34</b> 0.754 0.035 0.084 0.0019 0.45012 569 20 520 11 764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82                                                                                                                                                                    |

| BKDK1_35 | 0.723    | 0.039  | 0.0817   | 0.0022  | 0.95807  | 549      | 21  | 506      | 13  | 746      | 59  |
|----------|----------|--------|----------|---------|----------|----------|-----|----------|-----|----------|-----|
| BKDK1_36 | 0.696    | 0.039  | 0.0806   | 0.0019  | 0.80547  | 533      | 22  | 500      | 11  | 689      | 87  |
| BKDK1_37 | 0.686    | 0.021  | 0.0835   | 0.00087 | 0.47462  | 529      | 13  | 516.9    | 5.2 | 575      | 59  |
| BKDK1_38 | 0.697    | 0.031  | 0.0808   | 0.002   | 0.83078  | 536      | 19  | 501      | 12  | 738      | 71  |
| BKDK1_39 | 0.648    | 0.012  | 0.0814   | 0.001   | 0.42713  | 507.9    | 7.7 | 504.2    | 6   | 518      | 38  |
| BKDK1_40 | 0.637    | 0.012  | 0.078    | 0.0012  | 0.57192  | 499.8    | 7.7 | 484.3    | 7.5 | 572      | 35  |
| BKDK1_41 | 0.644    | 0.018  | 0.0799   | 0.001   | 0.31251  | 504      | 11  | 495.4    | 6.2 | 534      | 53  |
| BKDK1_42 | 0.657    | 0.016  | 0.08221  | 0.0008  | 0.74256  | 512.2    | 9.5 | 509.3    | 4.8 | 524      | 47  |
| BKDK1_43 | 0.708    | 0.025  | 0.0805   | 0.002   | 0.34908  | 543      | 15  | 499      | 12  | 753      | 79  |
| BKDK1_44 | 0.67     | 0.028  | 0.0831   | 0.0028  | 0.85268  | 520      | 17  | 515      | 17  | 562      | 45  |
| BKDK1_45 | 0.673    | 0.019  | 0.0842   | 0.0014  | 0.79753  | 522      | 11  | 521.2    | 8.5 | 524      | 42  |
| BKDK1_46 | 0.643    | 0.014  | 0.0823   | 0.0011  | 0.70454  | 503.6    | 8.4 | 509.8    | 6.4 | 474      | 32  |
| BKDK1_47 | 0.627    | 0.016  | 0.08     | 0.0018  | 0.86048  | 495      | 11  | 496      | 10  | 480      | 29  |
| BKDK1_48 | 0.651    | 0.035  | 0.0819   | 0.0016  | 0.36545  | 508      | 21  | 507.5    | 9.5 | 510      | 110 |
| BKDK1_49 | 0.61     | 0.015  | 0.0787   | 0.0016  | 0.78315  | 483.2    | 9.1 | 488.4    | 9.3 | 473      | 30  |
| BKDK1_50 | 0.644    | 0.013  | 0.08052  | 0.00077 | 0.34509  | 504.3    | 8   | 499.2    | 4.6 | 525      | 44  |
| BKDK1_51 | 0.806    | 0.016  | 0.0813   | 0.0012  | 0.36985  | 600      | 9.1 | 503.9    | 6.9 | 984      | 38  |
| BKDK1_52 | 0.658    | 0.013  | 0.08258  | 0.00086 | 0.4195   | 512.6    | 7.7 | 511.5    | 5.1 | 511      | 38  |
| BKDK1_53 | 0.619    | 0.013  | 0.0797   | 0.00078 | 0.2366   | 488.3    | 8.1 | 494.3    | 4.6 | 451      | 46  |
| BKDK1_54 | no value | NAN    | no value | NAN     | NaN      | no value | NAN | no value | NAN | no value | NAN |
| BKDK1_55 | 0.647    | 0.021  | 0.0803   | 0.0016  | 0.68001  | 505      | 13  | 498      | 9.7 | 543      | 50  |
| BKDK1_56 | 0.653    | 0.024  | 0.0824   | 0.0021  | 0.88074  | 510      | 14  | 510      | 13  | 529      | 36  |
| BKDK1_57 | 0.627    | 0.031  | 0.0815   | 0.0025  | 0.68801  | 497      | 17  | 505      | 15  | 417      | 83  |
| BKDK1_58 | 0.619    | 0.01   | 0.07942  | 0.00094 | 0.2949   | 488.8    | 6.4 | 492.6    | 5.6 | 465      | 37  |
| BKDK1_59 | 0.638    | 0.013  | 0.08091  | 0.00086 | 0.48051  | 500.5    | 8.1 | 501.5    | 5.2 | 492      | 38  |
| BKDK1_60 | 0.6491   | 0.0095 | 0.08081  | 0.00073 | 0.32708  | 507.6    | 5.8 | 500.9    | 4.4 | 534      | 31  |
| BKDK1_61 | 0.672    | 0.014  | 0.0842   | 0.0012  | 0.81797  | 521.3    | 8.3 | 521      | 7.2 | 534      | 38  |
| BKDK1_62 | 0.6302   | 0.0097 | 0.07927  | 0.00078 | 0.19601  | 495.9    | 6.1 | 491.7    | 4.6 | 508      | 38  |
| BKDK1_63 | 0.796    | 0.025  | 0.0824   | 0.0013  | 0.39136  | 594      | 14  | 510.2    | 7.9 | 944      | 52  |
|          |          |        |          |         |          |          |     |          |     |          |     |
| BK05_1   | 0.766    | 0.027  | 0.0837   | 0.0014  | 0.43319  | 577      | 15  | 518      | 8.2 | 830      | 67  |
| BK05_2   | 0.635    | 0.049  | 0.0782   | 0.0051  | 0.85057  | 493      | 30  | 484      | 30  | 532      | 86  |
| BK05_3   | 0.682    | 0.02   | 0.0814   | 0.0012  | 0.25438  | 527      | 12  | 504.5    | 6.9 | 631      | 60  |
| BK05_4   | 0.659    | 0.021  | 0.0776   | 0.0011  | 0.17239  | 513      | 12  | 481.8    | 6.5 | 640      | 59  |
| BK05_5   | 0.668    | 0.017  | 0.082    | 0.0013  | 0.43675  | 518      | 11  | 508.2    | 7.8 | 562      | 50  |
| BK05_6   | 0.619    | 0.021  | 0.0765   | 0.0025  | 0.84259  | 488      | 14  | 475      | 15  | 550      | 39  |
| BK05_7   | 0.782    | 0.047  | 0.0759   | 0.0013  | -0.25889 | 588      | 27  | 471.7    | 7.7 | 1040     | 120 |
| BK05_8   | 0.618    | 0.023  | 0.0794   | 0.0016  | 0.32247  | 488      | 15  | 492.2    | 9.5 | 476      | 85  |
| BK05_9   | 0.793    | 0.037  | 0.0822   | 0.0015  | 0.51973  | 591      | 20  | 509.2    | 9.1 | 930      | 81  |
| BK05_10  | 1.141    | 0.055  | 0.0781   | 0.0019  | 0.29393  | 778      | 26  | 485      | 12  | 1733     | 85  |
| BK05_11  | 0.678    | 0.056  | 0.0785   | 0.0019  | 0.68407  | 522      | 30  | 487      | 11  | 680      | 110 |
| BK05_12  | 0.667    | 0.037  | 0.0797   | 0.0018  | 0.82751  | 517      | 21  | 494      | 11  | 599      | 64  |
| BK05_13  | 0.717    | 0.032  | 0.0835   | 0.0029  | 0.59541  | 548      | 19  | 517      | 17  | 698      | 80  |
| BK05_14  | 0.794    | 0.045  | 0.081    | 0.0017  | 0.32468  | 591      | 26  | 502      | 9.9 | 950      | 110 |
| BK05_15  | 0.616    | 0.016  | 0.075    | 0.0016  | 0.12205  | 487      | 10  | 466.1    | 9.6 | 592      | 66  |

| BK05_16       | 0.663    | 0.015 | 0.0833   | 0.0012  | 0.47535  | 515.9    | 9.4 | 515.8    | 7   | 528      | 41  |
|---------------|----------|-------|----------|---------|----------|----------|-----|----------|-----|----------|-----|
| BK05_17       | 0.647    | 0.028 | 0.0795   | 0.0025  | 0.73385  | 506      | 17  | 493      | 15  | 585      | 60  |
| BK05_18       | 0.648    | 0.025 | 0.0784   | 0.0014  | 0.48214  | 506      | 15  | 486.6    | 8.5 | 590      | 75  |
| BK05_19       | 0.742    | 0.031 | 0.08     | 0.0024  | 0.61754  | 563      | 18  | 496      | 14  | 857      | 55  |
| BK05_20       | 0.631    | 0.014 | 0.0798   | 0.0014  | 0.49574  | 496.5    | 8.8 | 494.6    | 8.5 | 527      | 51  |
| BK05_21       | 0.675    | 0.03  | 0.0804   | 0.0014  | 0.50108  | 523      | 18  | 498.6    | 8.1 | 632      | 76  |
| BK05_22       | 0.602    | 0.014 | 0.0755   | 0.0014  | 0.76454  | 478.3    | 8.7 | 469.2    | 8.3 | 525      | 32  |
| BK05_23       | 0.811    | 0.038 | 0.0826   | 0.0012  | 0.57478  | 601      | 20  | 511.5    | 6.9 | 954      | 76  |
| BK05_24       | 0.685    | 0.023 | 0.0823   | 0.0014  | 0.24711  | 529      | 14  | 510      | 8.3 | 611      | 77  |
| BK05_25       | 0.633    | 0.014 | 0.0785   | 0.001   | 0.52396  | 497.3    | 8.9 | 487.2    | 6.2 | 544      | 42  |
| BK05_26       | 0.616    | 0.012 | 0.0759   | 0.00077 | 0.34872  | 487.1    | 7.7 | 471.6    | 4.6 | 553      | 42  |
| BK05_27       | 0.787    | 0.031 | 0.0838   | 0.0015  | 0.52559  | 592      | 19  | 518.4    | 9.2 | 881      | 73  |
| BK05_28       | 0.651    | 0.013 | 0.07617  | 0.00081 | 0.47923  | 508.8    | 7.9 | 473.2    | 4.8 | 660      | 40  |
| BK05_29       | 0.682    | 0.02  | 0.0793   | 0.0015  | 0.43863  | 527      | 12  | 491.9    | 9   | 663      | 59  |
|               |          |       |          |         |          |          |     |          |     |          |     |
| KMT1_1        | 0.655    | 0.023 | 0.084    | 0.0018  | 0.60703  | 511      | 14  | 520      | 10  | 459      | 60  |
| KMT1_2        | 0.646    | 0.014 | 0.0789   | 0.001   | 0.013044 | 505.5    | 8.6 | 489.4    | 6   | 580      | 53  |
| KMT1_3        | 0.69     | 0.022 | 0.0813   | 0.0019  | 0.56777  | 531      | 14  | 503      | 11  | 641      | 57  |
| KMT1_4        | 0.681    | 0.049 | 0.0832   | 0.0028  | 0.24667  | 523      | 29  | 515      | 17  | 610      | 140 |
| <b>KMT1_5</b> | 0.716    | 0.021 | 0.0805   | 0.0014  | 0.44441  | 547      | 12  | 499.1    | 8.5 | 762      | 55  |
| KMT1_6        | 0.654    | 0.013 | 0.07837  | 0.0009  | 0.24581  | 510.6    | 7.7 | 486.4    | 5.4 | 620      | 43  |
| <b>KMT1_7</b> | 0.694    | 0.039 | 0.0828   | 0.0051  | 0.89312  | 532      | 22  | 512      | 30  | 663      | 74  |
| KMT1_8        | 0.717    | 0.071 | 0.0837   | 0.0042  | 0.96264  | 543      | 37  | 518      | 25  | 608      | 67  |
| KMT1_9        | 0.744    | 0.068 | 0.0885   | 0.0066  | 0.96573  | 568      | 41  | 545      | 39  | 677      | 72  |
| KMT1_10       | 0.63     | 0.018 | 0.0778   | 0.0016  | 0.42888  | 496      | 11  | 482.8    | 9.6 | 572      | 56  |
| KMT1_11       | 0.656    | 0.027 | 0.0818   | 0.0025  | 0.84239  | 511      | 16  | 507      | 15  | 557      | 49  |
| KMT1_12       | 0.634    | 0.017 | 0.078    | 0.0017  | 0.72176  | 500      | 11  | 484      | 10  | 566      | 42  |
| KMT1_13       | 0.702    | 0.046 | 0.0837   | 0.0044  | 0.77135  | 538      | 26  | 518      | 26  | 680      | 100 |
| KMT1_14       | 0.634    | 0.015 | 0.0794   | 0.0013  | 0.45195  | 497.7    | 9.3 | 492.3    | 7.9 | 521      | 48  |
| KMT1_15       | 0.67     | 0.019 | 0.0825   | 0.0017  | 0.30938  | 520      | 11  | 511      | 10  | 559      | 53  |
| KMT1_16       | 0.653    | 0.022 | 0.0784   | 0.0012  | 0.26294  | 509      | 13  | 486.6    | 7.4 | 609      | 58  |
| KMT1_17       | 0.803    | 0.032 | 0.0798   | 0.0015  | 0.48607  | 596      | 18  | 494.7    | 9.1 | 985      | 70  |
| KMT1_18       | 0.662    | 0.035 | 0.0805   | 0.0034  | 0.83343  | 519      | 22  | 499      | 20  | 599      | 51  |
| KMT1_19       | 0.634    | 0.015 | 0.079    | 0.0012  | 0.35081  | 497.9    | 9.1 | 490.4    | 7.4 | 535      | 50  |
| KMT1_20       | 0.701    | 0.019 | 0.0792   | 0.0013  | 0.32457  | 538      | 12  | 491.3    | 7.6 | 750      | 57  |
| KMT1_21       | 0.639    | 0.015 | 0.0805   | 0.0016  | 0.19853  | 501.1    | 9.5 | 499.3    | 9.5 | 538      | 47  |
| KMT1_22       | 0.639    | 0.011 | 0.0786   | 0.0011  | 0.53974  | 501.2    | 7.1 | 487.5    | 6.4 | 564      | 35  |
| KMT1_23       | 0.712    | 0.045 | 0.0825   | 0.0028  | 0.46231  | 543      | 26  | 511      | 17  | 680      | 110 |
| KMT1_24       | 0.72     | 0.038 | 0.0835   | 0.0025  | 0.011826 | 548      | 23  | 516      | 15  | 650      | 130 |
| KMT1_25       | 0.612    | 0.016 | 0.0768   | 0.00096 | 0.28867  | 485      | 10  | 477      | 5.7 | 520      | 57  |
| KMT1_26       | 0.663    | 0.028 | 0.0811   | 0.0023  | 0.54474  | 520      | 19  | 503      | 13  | 611      | 54  |
| KMT1_27       | 0.61     | 0.017 | 0.076    | 0.0015  | 0.50095  | 483      | 11  | 472.2    | 8.8 | 546      | 56  |
| KMT1_28       | 0.649    | 0.031 | 0.0795   | 0.0024  | 0.32477  | 506      | 19  | 493      | 14  | 571      | 92  |
| KMT1_29       | no value | NAN   | no value | NAN     | NaN      | no value | NAN | no value | NAN | no value | NAN |
| KMT1_30       | 0.608    | 0.021 | 0.0767   | 0.0011  | 0.25608  | 480      | 13  | 476.5    | 6.7 | 480      | 74  |

| KMT1_31 | 0.634  | 0.019  | 0.0788  | 0.0014  | 0.29155 | 498   | 11  | 489.1 | 8.4 | 538 | 67  |
|---------|--------|--------|---------|---------|---------|-------|-----|-------|-----|-----|-----|
| KMT1_32 | 0.654  | 0.023  | 0.0814  | 0.0021  | 0.58103 | 510   | 14  | 504   | 12  | 546 | 65  |
| KMT1_33 | 0.631  | 0.017  | 0.0779  | 0.0012  | 0.42667 | 496   | 10  | 483.4 | 7.4 | 555 | 48  |
| KMT1_34 | 0.635  | 0.038  | 0.0809  | 0.0048  | 0.2948  | 498   | 24  | 501   | 28  | 510 | 160 |
| KMT1_35 | 0.682  | 0.035  | 0.0816  | 0.0026  | 0.87864 | 526   | 20  | 505   | 15  | 632 | 59  |
| KMT1_36 | 0.707  | 0.037  | 0.0897  | 0.0029  | 0.64613 | 542   | 21  | 553   | 17  | 501 | 82  |
| KMT1_37 | 0.633  | 0.015  | 0.0787  | 0.001   | 0.58617 | 497.5 | 9   | 488.3 | 6.1 | 535 | 40  |
| KMT1_38 | 0.642  | 0.017  | 0.0805  | 0.0015  | 0.61519 | 503   | 10  | 498.9 | 8.6 | 527 | 49  |
| KMT1_39 | 0.699  | 0.033  | 0.0854  | 0.0027  | 0.29994 | 537   | 20  | 528   | 16  | 578 | 90  |
| KMT1_40 | 0.668  | 0.013  | 0.08028 | 0.00091 | 0.4297  | 518.9 | 8   | 497.7 | 5.4 | 613 | 37  |
| KMT1_41 | 0.623  | 0.015  | 0.0788  | 0.0014  | 0.82174 | 491.5 | 9.6 | 489.1 | 8.5 | 519 | 46  |
| KMT1_42 | 0.644  | 0.014  | 0.0811  | 0.0011  | 0.53199 | 503.9 | 8.7 | 502.8 | 6.6 | 508 | 41  |
| KMT1_43 | 0.613  | 0.012  | 0.0791  | 0.001   | 0.22584 | 484.9 | 7.4 | 490.5 | 6.1 | 463 | 43  |
| KMT1_44 | 0.654  | 0.017  | 0.08059 | 0.00098 | 0.32224 | 510   | 10  | 499.6 | 5.8 | 557 | 55  |
| KMT1_45 | 0.6263 | 0.0094 | 0.0799  | 0.0011  | 0.35186 | 493.6 | 5.9 | 495.7 | 6.8 | 490 | 34  |
| KMT1_46 | 0.676  | 0.018  | 0.0816  | 0.0011  | 0.24881 | 524   | 11  | 505.7 | 6.4 | 592 | 59  |
| KMT1_47 | 0.661  | 0.016  | 0.0822  | 0.0014  | 0.62711 | 514.6 | 9.8 | 509.2 | 8.5 | 539 | 39  |
| KMT1_48 | 0.6317 | 0.0099 | 0.0805  | 0.0011  | 0.35792 | 496.9 | 6.2 | 499.3 | 6.7 | 504 | 39  |
| KMT1_49 | 0.617  | 0.015  | 0.0785  | 0.0015  | 0.65361 | 487.5 | 9.7 | 487.3 | 9.3 | 499 | 42  |
| KMT1_50 | 0.661  | 0.015  | 0.081   | 0.0011  | 0.24595 | 514.7 | 8.8 | 502   | 6.4 | 573 | 49  |
| KMT1_51 | 0.697  | 0.023  | 0.0836  | 0.0019  | 0.5879  | 536   | 14  | 518   | 11  | 601 | 58  |
| KMT1_52 | 0.667  | 0.026  | 0.0835  | 0.0021  | 0.80844 | 517   | 15  | 517   | 13  | 525 | 47  |

## **APPENDIX H: APATITE U-PB RESULTS**

Three apatite U–Pb data sets for the samples BK14, BK25B and BK11 were entirely discounted from interpretations and discussion for perceived unreliability. Samples were noted to have undergone sustained alteration events which may have resulted in some apatite grains existing within an open system, incorporating various sources of common-Pb or developing zonation with grains being too small to discriminate between rims and cores. The logistics of analysing dozens of small apatite grains (generally <200µm) throughout a sample, commonly being limited to a maximum of 4 analyses per grain or less, likely adds significant variability which results in some but not all data sets being unreliable. Samples are observed to contain multiple common-Pb trends and an inadequate spread of data along the fitted line resulting in large uncertainties and anomalously old dates that do not strongly align with known Delamerian Orogeny chronology within the Kanmantoo Cu-Au deposit region.



Appendix Figure 17: Terra-Wasserburg concordia diagrams ( $^{207}Pb/^{206}Pb$  vs.  $^{238}U/^{206}Pb$ ) for in situ apatite U–Pb analyses conducted on chlorite alteration and felsic vein samples. Not considered in interpretations and discussion due to perceived data unreliability. Blue ellipses used to calculate the quoted age, white ellipses removed from calculations due to excessive discordance or sample contamination, all elipses are presented with  $2\sigma$  errors on both axes. (a) BK14 - Chlorite alteration. (b) BK25B - Felsic vein. (c) BK11 - Felsic vein.

|                | <sup>238</sup> Pb/ <sup>206</sup> U | 2σ        | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ     | Rho       | 207Pb Age (Ma) | 2σ (Ma) |
|----------------|-------------------------------------|-----------|--------------------------------------|--------|-----------|----------------|---------|
| Standards:     |                                     |           |                                      |        |           |                |         |
| A_MAD_1        | 13.15789                            | 0.5020776 | 0.0565                               | 0.0046 | 0.14425   | -              | -       |
| A_MAD_2        | 12.82051                            | 0.4930966 | 0.0554                               | 0.0045 | 0.054868  | -              | -       |
| A_MAD_3        | 13.33333                            | 0.4977778 | 0.0563                               | 0.0058 | 0.1216    | -              | -       |
| A_MAD_4        | 12.8866                             | 0.4981932 | 0.0556                               | 0.0051 | 0.35388   | -              | -       |
| A_MAD_5        | 13.29787                            | 0.4951335 | 0.0588                               | 0.0054 | 0.33424   | -              | -       |
| A_MAD_6        | 13.22751                            | 0.4899079 | 0.0563                               | 0.0048 | 0.13843   | -              | -       |
| <b>A_MAD_7</b> | 12.95337                            | 0.5201482 | 0.0577                               | 0.0057 | 0.2597    | -              | -       |
| A_MAD_8        | 13.38688                            | 0.501784  | 0.057                                | 0.0058 | 0.2675    | -              | -       |
| A_MAD_9        | 12.57862                            | 0.5537756 | 0.0609                               | 0.0066 | 0.0053487 | -              | -       |
| A_MAD_10       | 12.8866                             | 0.4815868 | 0.0587                               | 0.0052 | 0.29836   | -              | -       |
| A_MAD_11       | 13.22751                            | 0.4899079 | 0.0567                               | 0.0046 | 0.2883    | -              | -       |
| A_MAD_12       | 12.95337                            | 0.4698113 | 0.0556                               | 0.0057 | 0.033353  | -              | -       |
| A_MAD_13       | 13.35113                            | 0.4991078 | 0.0591                               | 0.0049 | 0.43277   | -              | -       |
| A_MAD_14       | 13.29787                            | 0.5128169 | 0.0569                               | 0.0065 | 0.45293   | -              | -       |
| A_MAD_15       | 13.1406                             | 0.5180265 | 0.056                                | 0.0054 | 0.23063   | -              | -       |
| A_MAD_16       | 12.8041                             | 0.4754402 | 0.0592                               | 0.0039 | 0.34022   | -              | -       |
| A_MAD_17       | 13.17523                            | 0.5034014 | 0.0591                               | 0.0049 | 0.19749   | -              | -       |
| A_MAD_18       | 13.02083                            | 0.4916721 | 0.0583                               | 0.0049 | 0.14107   | -              | -       |
| A_MAD_19       | 13.36898                            | 0.5183162 | 0.0572                               | 0.0054 | 0.3234    | -              | -       |
| A_MAD_20       | 13.42282                            | 0.522499  | 0.0542                               | 0.0055 | 0.45672   | -              | -       |
| A_MAD_21       | 13.1406                             | 0.5007589 | 0.0587                               | 0.0058 | 0.29338   | -              | -       |
| A_MAD_22       | 12.93661                            | 0.4853321 | 0.0584                               | 0.0061 | 0.29457   | -              | -       |
| A_MAD_23       | 12.95337                            | 0.4865902 | 0.057                                | 0.005  | 0.17769   | -              | -       |
| A_MAD_24       | 12.83697                            | 0.4778847 | 0.0578                               | 0.0054 | 0.15132   | -              | -       |
| A_MAD_25       | 13.2626                             | 0.5101    | 0.0557                               | 0.0053 | 0.4408    | -              | -       |
| A_MAD_26       | 13.31558                            | 0.5141835 | 0.0579                               | 0.0058 | 0.40598   | -              | -       |
| A_MAD_27       | 13.17523                            | 0.5034014 | 0.0572                               | 0.0057 | 0.23079   | -              | -       |
| A_MAD_28       | 13.31558                            | 0.496453  | 0.0566                               | 0.005  | 0.32109   | -              | -       |
| A_MAD_29       | 12.93661                            | 0.4685965 | 0.0565                               | 0.0047 | 0.28438   | -              | -       |
| A_MAD_30       | 13.0039                             | 0.5073043 | 0.0558                               | 0.0047 | 0.31263   | -              | -       |
| A_MAD_31       | 13.38688                            | 0.501784  | 0.0564                               | 0.0052 | 0.28711   | -              | -       |
| A_MAD_32       | 13.38688                            | 0.5197049 | 0.06                                 | 0.0062 | 0.45954   | -              | -       |
| A_MAD_33       | 12.98701                            | 0.5059875 | 0.0553                               | 0.0052 | 0.16255   | -              | -       |
| A_MAD_34       | 12.97017                            | 0.4878533 | 0.0577                               | 0.0057 | 0.18245   | -              | -       |
| A McClume 1    | 11 73700                            | 0 4821574 | 0.0668                               | 0.0045 | 0.0087534 | 522            | 12      |
| A_MCClure_1    | 11.75709                            | 0.4621374 | 0.0000                               | 0.0045 | 0.0087554 | 522            | 12      |
| A_WICCIUIE_2   | 11.7090                             | 0.4001902 | 0.0000                               | 0.0055 | 0.015     | 525<br>520     | 12      |
| A_WitClure_5   | 11.00093                            | 0.4979517 | 0.0023                               | 0.0057 | 0.000317  | 529            | 14      |
| A_WICCIUFE_4   | 11./3088                            | 0.4970990 | 0.0001                               | 0.0032 | -0.040029 | 320            | 15      |

| A_McClure_5  | 11.69591  | 0.4787798  | 0.0769 | 0.005  | 0.16919   | 518  | 13  |
|--------------|-----------|------------|--------|--------|-----------|------|-----|
| A_McClure_6  | 11.96172  | 0.4721733  | 0.0668 | 0.0058 | 0.15522   | 510  | 11  |
| A_McClure_7  | 12.0048   | 0.5044034  | 0.073  | 0.006  | 0.23941   | 505  | 12  |
| A McClure 8  | 11.75088  | 0.4556746  | 0.0673 | 0.0046 | 0.19899   | 521  | 11  |
| A_McClure_9  | 11.44165  | 0.4843718  | 0.0651 | 0.0053 | 0.27123   | 535  | 15  |
| A_McClure_10 | 11.73709  | 0.4683815  | 0.062  | 0.005  | 0.11832   | 528  | 11  |
| A_McClure_11 | 11.89061  | 0.4807142  | 0.0621 | 0.0053 | -0.13444  | 516  | 12  |
| A_McClure_12 | 12.07729  | 0.4813415  | 0.0658 | 0.0056 | 0.36216   | 512  | 12  |
| A_McClure_13 | 12.0048   | 0.4899919  | 0.0645 | 0.0055 | 0.10342   | 507  | 12  |
| A_McClure_14 | 11.99041  | 0.4888176  | 0.0606 | 0.0052 | 0.31985   | 513  | 14  |
| A_McClure_15 | 11.8624   | 0.4925076  | 0.0671 | 0.0059 | 0.1527    | 511  | 12  |
| A_McClure_16 | 12.37624  | 0.5054652  | 0.0648 | 0.0055 | 0.067994  | 498  | 12  |
| A_McClure_17 | 11.79245  | 0.4728106  | 0.0687 | 0.0063 | 0.12786   | 519  | 12  |
| A_McClure_18 | 11.77856  | 0.4855709  | 0.061  | 0.0056 | 0.11623   | 524  | 12  |
| A_McClure_19 | 11.94743  | 0.5281421  | 0.0625 | 0.0053 | 0.21361   | 515  | 15  |
| A_McClure_20 | 11.66861  | 0.4629321  | 0.0674 | 0.0053 | 0.38286   | 524  | 12  |
| A_McClure_21 | 11.76471  | 0.4844291  | 0.0611 | 0.0057 | 0.38097   | 523  | 14  |
| A_McClure_22 | 11.83432  | 0.4901789  | 0.0645 | 0.0047 | 0.17614   | 516  | 13  |
| A_McClure_23 | 11.94743  | 0.4995939  | 0.0642 | 0.0054 | -0.012606 | 513  | 13  |
| A_McClure_24 | 11.90476  | 0.5102041  | 0.0692 | 0.0052 | 0.28673   | 517  | 15  |
| A_McClure_25 | 11.77856  | 0.4855709  | 0.0645 | 0.006  | 0.17367   | 521  | 13  |
| A_McClure_26 | 11.69591  | 0.4651004  | 0.0717 | 0.0053 | 0.40914   | 515  | 12  |
| A_McClure_27 | 11.75088  | 0.4694829  | 0.0675 | 0.0053 | 0.31872   | 521  | 12  |
| A_McClure_28 | 11.60093  | 0.5114098  | 0.066  | 0.0052 | 0.2373    | 523  | 15  |
| A_McClure_29 | 11.37656  | 0.478877   | 0.0679 | 0.0058 | 0.29894   | 536  | 15  |
| A_McClure_30 | 11.73709  | 0.4821574  | 0.0636 | 0.0048 | 0.24354   | 519  | 14  |
| A_McClure_31 | 11.52074  | 0.4778186  | 0.0698 | 0.0062 | 0.092498  | 529  | 14  |
| A_McClure_32 | 11.96172  | 0.5007898  | 0.0707 | 0.005  | 0.26374   | 508  | 13  |
| A_McClure_33 | 11.69591  | 0.4787798  | 0.0712 | 0.0063 | 0.13227   | 520  | 14  |
| A_McClure_34 | 11.44165  | 0.4581895  | 0.0671 | 0.0064 | 0.32186   | 536  | 13  |
|              |           |            |        |        |           |      |     |
| A_OD306_1    | 3.688676  | 0.1347027  | 0.0995 | 0.0042 | 0.40772   | 1552 | 25  |
| A_OD306_2    | 3.687316  | 0.135963   | 0.1043 | 0.0037 | 0.30591   | 1536 | 29  |
| A_OD306_3    | 3.694126  | 0.1364657  | 0.1036 | 0.0033 | 0.18794   | 1529 | 23  |
| A_OD306_4    | 3.713331  | 0.1378883  | 0.1015 | 0.0029 | 0.2771    | 1528 | 26  |
| A_OD306_5    | 3.759398  | 0.1399175  | 0.1025 | 0.0038 | 0.27274   | 1513 | 26  |
| A_OD306_6    | 3.698225  | 0.1367687  | 0.1043 | 0.0036 | 0.12566   | 1532 | 24  |
| A_OD306_7    | 3.779289  | 0.1428303  | 0.104  | 0.0035 | 0.3027    | 1497 | 32  |
| A_OD306_8    | 3.606203  | 0.130047   | 0.1037 | 0.0034 | 0.19602   | 1567 | 26  |
| A_OD306_9    | 2.725538  | 0.1039998  | 0.2095 | 0.0059 | -0.35688  | 1806 | 30  |
| A_OD306_10   | 0.8561644 | 0.04398105 | 0.4282 | 0.0051 | -0.56151  | 3060 | 230 |
| A_OD306_11   | 3.706449  | 0.1373777  | 0.0984 | 0.0035 | 0.35497   | 1537 | 26  |

| A_OD306_12 | 3.667033                            | 0.1344713  | 0.1007                               | 0.0036 | 0.14945   | 1544           | 27      |
|------------|-------------------------------------|------------|--------------------------------------|--------|-----------|----------------|---------|
| A_OD306_13 | 3.724395                            | 0.1387112  | 0.104                                | 0.0031 | 0.17615   | 1523           | 26      |
| A_OD306_14 | 3.721623                            | 0.1385047  | 0.1017                               | 0.0037 | 0.33048   | 1521           | 26      |
| A_OD306_15 | 3.667033                            | 0.1344713  | 0.1047                               | 0.0043 | 0.24213   | 1541           | 28      |
| A_OD306_16 | 3.642987                            | 0.1327136  | 0.1056                               | 0.0034 | 0.40546   | 1550           | 25      |
| A_OD306_17 | 3.71471                             | 0.1379907  | 0.1031                               | 0.0034 | 0.17699   | 1525           | 24      |
| A_OD306_18 | 3.144654                            | 0.1186662  | 0.1681                               | 0.0063 | -0.38134  | 1660           | 30      |
| A_OD306_19 | 0.9478673                           | 0.04402417 | 0.4169                               | 0.0048 | -0.55264  | 3350           | 170     |
| A_OD306_20 | 1.908397                            | 0.1129013  | 0.29                                 | 0.011  | -0.83225  | 2294           | 90      |
| A_OD306_21 | 3.536068                            | 0.1625491  | 0.1283                               | 0.0093 | -0.85846  | 1559           | 33      |
| A_OD306_22 | 3.652301                            | 0.1320591  | 0.1023                               | 0.0036 | 0.24614   | 1557           | 22      |
| A_OD306_23 | 3.676471                            | 0.1324611  | 0.1031                               | 0.0032 | 0.074335  | 1535           | 20      |
| A_OD306_24 | 3.735525                            | 0.138146   | 0.1038                               | 0.0033 | 0.090209  | 1515           | 24      |
| A_OD306_25 | 3.709199                            | 0.1348299  | 0.1105                               | 0.0034 | 0.40457   | 1510           | 22      |
| A_OD306_26 | 3.741115                            | 0.1357606  | 0.102                                | 0.0033 | 0.1571    | 1517           | 22      |
| A_OD306_27 | 3.284072                            | 0.1186364  | 0.1469                               | 0.0057 | -0.16831  | 1633           | 24      |
| A_OD306_28 | 1.173709                            | 0.07990037 | 0.3746                               | 0.007  | -0.76174  | 2939           | 73      |
| A_OD306_29 | 2.913753                            | 0.1273493  | 0.195                                | 0.011  | -0.52763  | 1727           | 40      |
| A_OD306_30 | 3.615329                            | 0.130706   | 0.1031                               | 0.0037 | 0.23084   | 1564           | 25      |
| A_OD306_31 | 3.588088                            | 0.1287437  | 0.1019                               | 0.0037 | 0.38137   | 1570           | 30      |
| A_OD306_32 | 2.344666                            | 0.08795933 | 0.2468                               | 0.0052 | 0.018265  | 1990           | 35      |
| A_OD306_33 | 3.606203                            | 0.130047   | 0.1052                               | 0.004  | 0.27228   | 1560           | 26      |
| A_OD306_34 | 3.616637                            | 0.1308006  | 0.1015                               | 0.0025 | 0.11306   | 1571           | 25      |
|            |                                     |            |                                      |        |           |                |         |
|            | <sup>238</sup> Pb/ <sup>206</sup> U | 2σ         | <sup>207</sup> Pb/ <sup>206</sup> Pb | 2σ     | Rho       | 207Pb Age (Ma) | 2σ (Ma) |
| Unknowns:  |                                     |            |                                      |        |           |                |         |
| BKBDG2_1   | 0.3660322                           | 0.01607755 | 0.8663                               | 0.0052 | -0.026286 | 590            | 95      |
| BKBDG2_2   | 0.5434783                           | 0.02126654 | 0.8465                               | 0.0069 | 0.32532   | 588            | 83      |
| BKBDG2_3   | 0.4970179                           | 0.0239616  | 0.8527                               | 0.0051 | -0.063442 | 536            | 63      |
| BKBDG2_4   | 0.6297229                           | 0.0226034  | 0.849                                | 0.0072 | 0.17033   | 484            | 79      |
| BKBDG2_5   | 0.2896871                           | 0.0125878  | 0.8526                               | 0.0077 | 0.21352   | 920            | 160     |
| BKBDG2_6   | 0.3453039                           | 0.01311582 | 0.8687                               | 0.0052 | 0.21174   | 600            | 100     |
| BKBDG2_7   | 0.4472272                           | 0.01780108 | 0.857                                | 0.0058 | 0.20277   | 562            | 80      |
| BKBDG2_8   | 0.4327131                           | 0.01760062 | 0.8558                               | 0.0059 | -0.14272  | 669            | 93      |
| BKBDG2_9   | 0.3759398                           | 0.01370908 | 0.8725                               | 0.0062 | 0.39797   | 520            | 110     |
| BKBDG2_10  | 0.4040404                           | 0.01452913 | 0.8609                               | 0.0049 | 0.049593  | 554            | 80      |
| BKBDG2_11  | 0.3762227                           | 0.01698522 | 0.8586                               | 0.0062 | -0.19651  | 684            | 98      |
| BKBDG2_12  | 0.4578755                           | 0.01719129 | 0.8577                               | 0.0068 | 0.10229   | 605            | 96      |
| BKBDG2_13  | 0.3508772                           | 0.01354263 | 0.864                                | 0.0058 | -0.040688 | 552            | 91      |
| BKBDG2_14  | 0.3134796                           | 0.01179234 | 0.8655                               | 0.005  | -0.01444  | 657            | 98      |
| BKBDG2_15  | 0.3863988                           | 0.01418388 | 0.8599                               | 0.0051 | 0.063071  | 604            | 93      |
| BKBDG2_16  | 0.2960332                           | 0.01226899 | 0.8632                               | 0.0085 | 0.36953   | 900            | 160     |

| BKBDG2_17 | 0.2857143 | 0.0155102  | 0.866  | 0.006  | -0.028866 | 800  | 140 |
|-----------|-----------|------------|--------|--------|-----------|------|-----|
| BKBDG2_18 | 0.3627131 | 0.01315608 | 0.8651 | 0.0054 | -0.014792 | 591  | 81  |
| BKBDG2_19 | 0.3214401 | 0.01136561 | 0.8731 | 0.0054 | 0.090454  | 550  | 110 |
| BKBDG2_20 | 1.936108  | 0.06747328 | 0.764  | 0.0098 | 0.47277   | 487  | 40  |
| BKBDG2_21 | 1.445087  | 0.05429517 | 0.7786 | 0.0088 | 0.53539   | 559  | 50  |
| BKBDG2_22 | 0.7072136 | 0.0255077  | 0.8357 | 0.007  | 0.19101   | 547  | 70  |
| BKBDG2_23 | 0.3909304 | 0.01421287 | 0.8576 | 0.007  | 0.12627   | 650  | 100 |
| BKBDG2_24 | 1.293661  | 0.05355389 | 0.7936 | 0.0099 | 0.040683  | 553  | 56  |
| BKBDG2_25 | 1.522533  | 0.0556346  | 0.7823 | 0.0095 | 0.31094   | 512  | 48  |
| BKBDG2_26 | 2.217295  | 0.1229099  | 0.7366 | 0.0076 | -0.38829  | 507  | 25  |
| BKBDG2_27 | 1.699813  | 0.06356601 | 0.788  | 0.01   | 0.32254   | 439  | 47  |
| BKBDG2_28 | 1.633987  | 0.07742749 | 0.778  | 0.011  | 0.048218  | 508  | 50  |
| BKBDG2_29 | 1.172333  | 0.05222585 | 0.7965 | 0.0097 | 0.23983   | 581  | 62  |
| BKBDG2_30 | 0.8305648 | 0.02966303 | 0.8322 | 0.0053 | 0.091188  | 497  | 47  |
| BKBDG2_31 | 0.8149959 | 0.02988983 | 0.8377 | 0.0055 | 0.12698   | 481  | 45  |
| BKBDG2_32 | 1.55521   | 0.06046695 | 0.7832 | 0.009  | 0.0079102 | 512  | 44  |
| BKBDG2_33 | 1.745201  | 0.06700596 | 0.7749 | 0.0077 | -0.037833 | 473  | 32  |
| BKBDG2_34 | 1.641767  | 0.05929874 | 0.7836 | 0.0094 | 0.18688   | 486  | 48  |
| BKBDG2_35 | 1.72117   | 0.06517341 | 0.765  | 0.01   | 0.51692   | 532  | 47  |
| BKBDG2_36 | 0.4308488 | 0.01577861 | 0.8613 | 0.0058 | 0.15889   | 592  | 78  |
| BKBDG2_37 | 0.8438819 | 0.03062187 | 0.8313 | 0.0053 | 0.35524   | 503  | 48  |
| BKBDG2_38 | 0.7751938 | 0.02884442 | 0.8402 | 0.0076 | 0.6646    | 508  | 67  |
| BKBDG2_39 | 0.3790751 | 0.0135076  | 0.8604 | 0.0063 | 0.11616   | 670  | 100 |
| BKBDG2_40 | 0.7745933 | 0.02699977 | 0.842  | 0.0044 | 0.40845   | 442  | 46  |
| BKBDG2_41 | 0.7462687 | 0.02673201 | 0.8399 | 0.0065 | 0.25015   | 470  | 64  |
| BKBDG2_42 | 0.8216927 | 0.02903269 | 0.8341 | 0.0055 | 0.43408   | 488  | 51  |
| BKBDG2_43 | 0.8077544 | 0.02936103 | 0.8322 | 0.0063 | 0.32887   | 526  | 58  |
| BKBDG2_44 | 1.230012  | 0.05597842 | 0.8052 | 0.0076 | 0.1099    | 511  | 56  |
| BKBDG2_45 | 0.6887052 | 0.02466437 | 0.8422 | 0.0068 | 0.3578    | 515  | 61  |
| BKBDG2_46 | 0.3892565 | 0.01454598 | 0.8623 | 0.0065 | 0.23038   | 659  | 90  |
| BKBDG2_47 | 0.8503401 | 0.03036929 | 0.8323 | 0.007  | 0.2418    | 486  | 61  |
| BKBDG2_48 | 0.3344482 | 0.02125256 | 0.87   | 0.012  | 0.014221  | 750  | 200 |
| BKBDG2_49 | 0.7898894 | 0.03618767 | 0.8297 | 0.0079 | 0.15344   | 541  | 75  |
| BKBDG2_50 | 0.8312552 | 0.03178532 | 0.8319 | 0.0072 | 0.69559   | 508  | 70  |
| BKBDG2_51 | 0.7541478 | 0.02729947 | 0.8477 | 0.007  | 0.0035326 | 432  | 65  |
| BKBDG2_52 | 0.4032258 | 0.02764048 | 0.851  | 0.011  | 0.19095   | 880  | 150 |
|           |           |            |        |        |           |      |     |
| BK11_1    | 0.2298851 | 0.01004096 | 0.87   | 0.0082 | 0.12937   | 900  | 240 |
| BK11_2    | 1.128668  | 0.05095567 | 0.8127 | 0.006  | -0.3514   | 461  | 34  |
| BK11_3    | 0.2666667 | 0.01635556 | 0.869  | 0.012  | 0.047796  | 980  | 180 |
| BK11_4    | 0.2531646 | 0.01153661 | 0.8622 | 0.0083 | 0.020882  | 1000 | 190 |
| BK11_5    | 7.407407  | 0.7681756  | 0.114  | 0.021  | -0.30373  | 730  | 67  |

| BK11_6  | 0.2724796 | 0.01484902  | 0.872  | 0.011  | 0.2108    | 970  | 180 |
|---------|-----------|-------------|--------|--------|-----------|------|-----|
| BK11_7  | 0.2403846 | 0.01271265  | 0.861  | 0.012  | 0.33709   | 1160 | 260 |
| BK11_8  | 1.587302  | 0.1864449   | 0.759  | 0.013  | -0.18228  | 565  | 70  |
| BK11_9  | 0.1754386 | 0.007386888 | 0.8736 | 0.0071 | 0.20652   | 870  | 250 |
| BK11_10 | 0.2118644 | 0.01122163  | 0.871  | 0.01   | 0.59476   | 1240 | 310 |
| BK11_11 | 0.2295684 | 0.008959281 | 0.8637 | 0.0075 | 0.10812   | 910  | 170 |
| BK11_12 | 0.2300437 | 0.008996418 | 0.8621 | 0.0068 | 0.14835   | 1020 | 190 |
| BK11_13 | 0.228833  | 0.009425614 | 0.8646 | 0.0072 | 0.060628  | 790  | 190 |
| BK11_14 | 0.2890173 | 0.01921214  | 0.868  | 0.014  | -0.14752  | 890  | 230 |
| BK11_15 | 0.3649635 | 0.02131174  | 0.8633 | 0.0077 | -0.1158   | 610  | 120 |
| BK11_16 | 0.1831502 | 0.008050558 | 0.878  | 0.01   | 0.006859  | 1190 | 280 |
| BK11_17 | 0.2114165 | 0.01028029  | 0.87   | 0.01   | 0.083659  | 1110 | 270 |
| BK11_18 | 0.243309  | 0.01183985  | 0.8628 | 0.0071 | 0.11117   | 870  | 180 |
| BK11_19 | 0.2375297 | 0.01354089  | 0.8529 | 0.0093 | -0.59255  | 1160 | 210 |
| BK11_20 | 0.2409639 | 0.01103208  | 0.8128 | 0.0077 | -0.26804  | 1770 | 210 |
| BK11_21 | 0.2020202 | 0.01061116  | 0.865  | 0.011  | -0.13476  | 1060 | 230 |
| BK11_22 | 0.2155172 | 0.01161192  | 0.863  | 0.012  | -0.16507  | 1340 | 320 |
| BK11_23 | 1.164144  | 0.1070633   | 0.778  | 0.02   | -0.38121  | 710  | 110 |
| BK11_24 | 0.2570694 | 0.01586032  | 0.836  | 0.012  | 0.31891   | 1270 | 250 |
| BK11_25 | 0.7874016 | 0.07440015  | 0.816  | 0.012  | -0.24576  | 590  | 90  |
| BK11_26 | 0.2298851 | 0.03170828  | 0.816  | 0.031  | -0.15963  | 1710 | 440 |
| BK11_27 | 0.1964637 | 0.008877533 | 0.8705 | 0.0078 | 0.48244   | 1070 | 250 |
| BK11_28 | 0.2475248 | 0.01592981  | 0.851  | 0.011  | 0.25805   | 1000 | 290 |
| BK11_29 | 0.1869159 | 0.008035636 | 0.8753 | 0.0063 | 0.30349   | 950  | 200 |
| BK11_30 | 0.2702703 | 0.01241782  | 0.86   | 0.012  | 0.31099   | 940  | 210 |
| BK11_31 | 0.3039514 | 0.04249776  | 0.836  | 0.015  | 0.069417  | 1290 | 230 |
| BK11_32 | 0.210084  | 0.01103383  | 0.866  | 0.013  | 0.33967   | 890  | 210 |
| BK11_33 | 5.649718  | 0.8937406   | 0.496  | 0.084  | 0.30202   | 566  | 91  |
| BK11_34 | 0.4833253 | 0.02195871  | 0.843  | 0.011  | 0.23252   | 790  | 160 |
| BK11_35 | 0.2842524 | 0.01211992  | 0.8708 | 0.0057 | 0.24525   | 630  | 120 |
| BK11_36 | 0.4405286 | 0.0388131   | 0.823  | 0.017  | -0.31664  | 1110 | 190 |
| BK11_37 | 0.838223  | 0.06183036  | 0.763  | 0.025  | 0.1772    | 1170 | 180 |
| BK11_38 | 7.352941  | 1.135381    | 0.411  | 0.075  | 0.5191    | 485  | 70  |
| BK11_39 | 3.952569  | 0.4686841   | 0.602  | 0.071  | -0.10534  | 570  | 110 |
| BK11_40 | 5.434783  | 1.417769    | 0.79   | 0.1    | 0.14224   | 285  | 80  |
| BK11_41 | 6.849315  | 2.204916    | 0.39   | 0.14   | -0.045001 | 563  | 86  |
| BK11_42 | 1.190476  | 0.255102    | 0.769  | 0.041  | -0.37187  | 750  | 190 |
| BK11_43 | 0.2132196 | 0.02591368  | 0.852  | 0.017  | 0.12091   | 1190 | 330 |
| BK11_44 | 0.2630887 | 0.01038235  | 0.844  | 0.0082 | 0.22575   | 1100 | 160 |
| BK11_45 | 0.6775068 | 0.03442616  | 0.8149 | 0.0088 | 0.57273   | 710  | 110 |
| BK11_46 | 8.196721  | 1.209352    | 0.35   | 0.031  | -0.76143  | 451  | 48  |
| BK11_47 | 6.896552  | 1.617122    | 0.68   | 0.035  | -0.58508  | 190  | 39  |

| BK11_48 | 0.3773585 | 0.03987184  | 0.849    | 0.027  | 0.078395  | 1110     | 300 |
|---------|-----------|-------------|----------|--------|-----------|----------|-----|
| BK11_49 | 1.876173  | 0.3132821   | 0.657    | 0.073  | -0.005046 | 910      | 170 |
| BK11_50 | 7.092199  | 0.7544892   | 0.424    | 0.085  | 0.50297   | 594      | 92  |
| BK11_51 | 0.7633588 | 0.03612843  | 0.828    | 0.015  | 0.34055   | 660      | 120 |
| BK11_52 | 4.310345  | 0.8174792   | 0.576    | 0.08   | 0.16444   | 590      | 120 |
| BK11_53 | 3.759398  | 0.6642546   | 0.534    | 0.069  | 0.10018   | 690      | 150 |
| BK11_54 | 0.2475248 | 0.01286639  | 0.858    | 0.012  | -0.21745  | 1110     | 270 |
| BK11_55 | 0.2277904 | 0.01400989  | 0.864    | 0.01   | 0.039697  | 1110     | 220 |
| BK11_56 | 0.1926782 | 0.007796229 | 0.8671   | 0.0063 | -0.055872 | 1020     | 190 |
| BK11_57 |           |             | no value | NAN    | NaN       | no value | NAN |
| BK11_58 | 0.2849003 | 0.01298691  | 0.8632   | 0.0056 | 0.2233    | 680      | 130 |
| BK11_59 | 0.22119   | 0.008806503 | 0.8664   | 0.0056 | 0.29702   | 840      | 150 |
| BK11_60 | 0.2868617 | 0.01234345  | 0.8679   | 0.009  | 0.043853  | 710      | 150 |
| BK11_61 | 0.2848191 | 0.01135707  | 0.8634   | 0.0063 | 0.19422   | 690      | 120 |
| BK11_62 | 0.2380952 | 0.01247166  | 0.8628   | 0.0073 | 0.42312   | 950      | 200 |
| BK11 63 | 0.1650165 | 0.02505201  | 0.859    | 0.019  | -0.18811  | 1100     | 310 |
| BK11_64 | 0.2332634 | 0.009250005 | 0.8763   | 0.0074 | 0.0088769 | 720      | 190 |
|         |           |             |          |        |           |          |     |
| BK14_1  | 0.3030303 | 0.01836547  | 0.872    | 0.011  | 0.52762   | 840      | 220 |
| BK14_2  | 0.3039514 | 0.01662956  | 0.867    | 0.01   | 0.25598   | 990      | 220 |
| BK14_3  |           |             | no value | NAN    | NaN       | no value | NAN |
| BK14_4  | 0.2933412 | 0.01204686  | 0.8708   | 0.007  | 0.24946   | 720      | 140 |
| BK14_5  | 4.651163  | 0.3677664   | 0.452    | 0.033  | -0.48084  | 652      | 51  |
| BK14_6  | 0.3449465 | 0.01427857  | 0.8703   | 0.006  | 0.41115   | 600      | 100 |
| BK14_7  | 0.3083565 | 0.01141004  | 0.8776   | 0.0066 | -0.29778  | 610      | 130 |
| BK14_8  | 0.3404835 | 0.01275219  | 0.8644   | 0.0077 | 0.21095   | 800      | 150 |
| BK14_9  | 0.3881988 | 0.01461773  | 0.8677   | 0.0057 | 0.040816  | 577      | 89  |
| BK14_10 | 0.4145937 | 0.01632935  | 0.8592   | 0.0072 | 0.47226   | 700      | 100 |
| BK14_11 | 0.456621  | 0.01688872  | 0.8647   | 0.0064 | 0.080597  | 565      | 96  |
| BK14_12 | 0.25      | 0.009375    | 0.8754   | 0.0048 | 0.32103   | 650      | 120 |
| BK14_13 | 0.3637686 | 0.01455604  | 0.8683   | 0.0083 | 0.073533  | 780      | 140 |
| BK14_14 | 0.6056935 | 0.02237874  | 0.8455   | 0.0066 | 0.20919   | 612      | 79  |
| BK14_15 | 0.4132231 | 0.01485554  | 0.8643   | 0.0061 | 0.18234   | 620      | 100 |
| BK14_16 | 0.3303601 | 0.01200516  | 0.8761   | 0.0057 | 0.42366   | 630      | 110 |
| BK14_17 | 2.680965  | 0.1868769   | 0.71     | 0.012  | -0.85878  | 505      | 16  |
| BK14_18 | 0.29036   | 0.01096016  | 0.8652   | 0.0055 | 0.20978   | 790      | 120 |
| BK14_19 | 0.4793864 | 0.01746566  | 0.8582   | 0.0054 | 0.042928  | 575      | 84  |
| BK14_20 | 0.2909514 | 0.01100485  | 0.8724   | 0.006  | 0.15522   | 750      | 130 |
| BK14_21 | 0.3277614 | 0.01396558  | 0.8667   | 0.0084 | 0.32907   | 810      | 180 |
| BK14_22 | 0.9861933 | 0.04765628  | 0.8274   | 0.0058 | -0.085767 | 505      | 45  |
| BK14_23 | 0.3521127 | 0.01363817  | 0.8705   | 0.0062 | 0.39423   | 640      | 120 |
| BK14_24 | 0.4068348 | 0.01506183  | 0.8706   | 0.0057 | 0.4193    | 552      | 95  |

| BK14_25 | 0.4683841 | 0.01908638 | 0.8568 | 0.0065 | 0.20979   | 630 | 95  |
|---------|-----------|------------|--------|--------|-----------|-----|-----|
| BK14_26 | 0.3376097 | 0.01253784 | 0.8688 | 0.0067 | 0.14789   | 760 | 100 |
| BK14_27 | 0.3331113 | 0.01331557 | 0.8726 | 0.0068 | 0.33497   | 690 | 120 |
| BK14_28 | 0.328084  | 0.01399308 | 0.8728 | 0.0083 | 0.16221   | 730 | 150 |
| BK14_29 | 0.3619254 | 0.0144089  | 0.8651 | 0.0071 | 0.31878   | 780 | 130 |
| BK14_30 | 0.3710575 | 0.01376837 | 0.8674 | 0.0071 | 0.12145   | 710 | 120 |
| BK14_31 | 0.297885  | 0.01153561 | 0.8763 | 0.0068 | 0.098328  | 700 | 130 |
| BK14_32 | 8.196721  | 1.478097   | 0.168  | 0.019  | -0.84428  | 638 | 85  |
| BK14_33 | 5.208333  | 0.8138021  | 0.427  | 0.056  | -0.69062  | 635 | 96  |
| BK14_34 | 0.3022061 | 0.01095942 | 0.8722 | 0.0051 | 0.0020478 | 640 | 110 |
| BK14_35 | 0.2738226 | 0.01049703 | 0.8757 | 0.0064 | -0.034198 | 840 | 140 |
| BK14_36 | 0.2983294 | 0.01157005 | 0.8701 | 0.0066 | 0.3286    | 870 | 140 |
| BK14_37 | 0.2936858 | 0.01121267 | 0.8677 | 0.0068 | 0.31032   | 910 | 140 |
| BK14_38 | 0.4163197 | 0.01733221 | 0.8628 | 0.0056 | 0.12588   | 569 | 93  |
| BK14_39 | 0.3256268 | 0.01272394 | 0.8721 | 0.0073 | 0.3832    | 780 | 150 |
| BK14_40 | 0.2924832 | 0.01026557 | 0.8758 | 0.0081 | 0.27776   | 900 | 160 |
| BK14_41 | 0.3119152 | 0.01167493 | 0.8659 | 0.0058 | 0.10196   | 770 | 120 |
| BK14_42 | 0.3167564 | 0.01204016 | 0.874  | 0.007  | 0.23388   | 740 | 140 |
| BK14_43 | 0.3865481 | 0.01464311 | 0.8709 | 0.0069 | 0.14563   | 620 | 110 |
| BK14_44 | 0.4409171 | 0.01788553 | 0.8667 | 0.0062 | 0.059545  | 582 | 95  |
| BK14_45 | 0.3773585 | 0.01367035 | 0.8735 | 0.0072 | 0.33083   | 650 | 120 |
| BK14_46 | 0.3042288 | 0.01110662 | 0.873  | 0.0061 | 0.012714  | 790 | 120 |
| BK14_47 | 0.391696  | 0.0148823  | 0.8642 | 0.0053 | 0.30026   | 638 | 94  |
| BK14_48 | 0.5621135 | 0.02053816 | 0.8561 | 0.0059 | 0.31772   | 552 | 69  |
| BK14_49 | 0.4761905 | 0.01746032 | 0.8601 | 0.0052 | 0.2238    | 589 | 74  |
| BK14_50 | 0.5050505 | 0.0181104  | 0.8567 | 0.0071 | 0.30494   | 608 | 90  |
| BK14_51 | 0.3780718 | 0.01415089 | 0.8656 | 0.0068 | 0.19076   | 690 | 120 |
| BK14_52 | 0.5344735 | 0.01942501 | 0.8564 | 0.0066 | 0.27934   | 561 | 83  |
| BK14_53 | 0.4016064 | 0.01499976 | 0.8649 | 0.006  | 0.22689   | 640 | 100 |
| BK14_54 | 0.3709199 | 0.01375816 | 0.8641 | 0.0054 | 0.36458   | 651 | 92  |
| BK14_55 | 0.4985045 | 0.01814099 | 0.8587 | 0.0063 | 0.32945   | 593 | 81  |
| BK14_56 | 0.5530973 | 0.01988458 | 0.8574 | 0.0051 | 0.2819    | 520 | 66  |
| BK14_57 | 0.4366812 | 0.016018   | 0.8541 | 0.007  | 0.31949   | 760 | 110 |
| BK14_58 | 0.335233  | 0.01236193 | 0.8649 | 0.0066 | 0.226     | 780 | 110 |
| BK14_59 | 0.4496403 | 0.01657846 | 0.8583 | 0.0058 | 0.23586   | 642 | 89  |
| BK14_60 | 0.2972652 | 0.01148765 | 0.8801 | 0.0059 | 0.21156   | 610 | 110 |
| BK14_61 | 0.24667   | 0.00912691 | 0.8784 | 0.0044 | 0.32149   | 690 | 110 |
| BK14_62 | 0.2780868 | 0.01005319 | 0.876  | 0.0049 | 0.073791  | 650 | 110 |
| BK14_63 | 0.3741115 | 0.01385598 | 0.8684 | 0.0061 | 0.3872    | 640 | 110 |
| BK14_64 | 0.3926188 | 0.01449005 | 0.8642 | 0.0068 | 0.27309   | 750 | 110 |
| BK14_65 | 0.3163556 | 0.0120097  | 0.8699 | 0.0063 | 0.23518   | 760 | 120 |
|         |           |            |        |        |           |     |     |

| BK18_1   | 4.719207   | 0.267251    | 0.606  | 0.032  | 0.44998    | 469  | 55  |
|----------|------------|-------------|--------|--------|------------|------|-----|
| BK18_2   | 7.407407   | 0.8230453   | 0.435  | 0.053  | -0.7564    | 391  | 30  |
| BK18_3   | 6.666667   | 0.6222222   | 0.494  | 0.055  | 0.60844    | 509  | 80  |
| BK18 4   | 0.1388889  | 0.007137346 | 0.8816 | 0.0044 | -0.045493  | 680  | 180 |
| BK18_5   | 0.3636364  | 0.02644628  | 0.849  | 0.012  | 0.17719    | 980  | 220 |
| BK18_6   | 0.07412898 | 0.003132211 | 0.8795 | 0.0058 | 0.22179    | 1210 | 390 |
| BK18_7   | 0.1968504  | 0.009687519 | 0.8719 | 0.0058 | 0.16779    | 910  | 160 |
| BK18_8   | 4.508566   | 0.243926    | 0.61   | 0.028  | 0.29008    | 452  | 50  |
| BK18_9   | 4.18235    | 0.1749206   | 0.62   | 0.016  | 0.42058    | 485  | 37  |
| BK18_10  | 4.366812   | 0.2478976   | 0.594  | 0.031  | -0.0080473 | 483  | 55  |
| BK18_11  | 0.2666667  | 0.01564444  | 0.8758 | 0.0078 | -0.098074  | 640  | 170 |
| BK18_12  | 0.1631321  | 0.01303993  | 0.8769 | 0.0061 | -0.4647    | 1080 | 230 |
| BK18_13  | 3.731343   | 0.2923814   | 0.638  | 0.022  | -0.43727   | 454  | 45  |
| BK18_14  | 6.21118    | 0.3356352   | 0.497  | 0.024  | 0.38113    | 466  | 42  |
| BK18_15  | 0.3816794  | 0.03350621  | 0.8582 | 0.0078 | -0.56424   | 620  | 120 |
| BK18 16  | 0.6578947  | 0.07358033  | 0.83   | 0.012  | -0.16463   | 640  | 110 |
| _        |            |             |        |        |            |      |     |
| BK25B_1  | 0.4314064  | 0.02233338  | 0.8626 | 0.0096 | -0.059929  | 580  | 160 |
| BK25B_2  | 0.4462294  | 0.02190327  | 0.846  | 0.013  | 0.10257    | 760  | 140 |
| BK25B_3  | 0.3773585  | 0.0256319   | 0.844  | 0.016  | -0.099027  | 950  | 230 |
| BK25B_4  | 0.3401361  | 0.02545236  | 0.876  | 0.023  | 0.021446   | 1280 | 320 |
| BK25B_5  | 5.291005   | 0.7558579   | 0.581  | 0.071  | -0.44084   | 427  | 68  |
| BK25B_6  | 0.3717472  | 0.04007684  | 0.882  | 0.039  | 0.7325     | 1510 | 300 |
| BK25B_7  | 1.020408   | 0.2082466   | 0.767  | 0.05   | -0.60552   | 660  | 140 |
| BK25B_8  | 1.190476   | 0.2267574   | 0.785  | 0.022  | -0.39236   | 518  | 94  |
| BK25B_9  | 0.6756757  | 0.1415267   | 0.8    | 0.039  | 0.14925    | 1030 | 230 |
| BK25B_10 | 0.3952569  | 0.05155525  | 0.885  | 0.06   | 0.36769    | 1360 | 510 |
| BK25B_11 | 0.7575758  | 0.09756657  | 0.785  | 0.044  | -0.11501   | 1110 | 220 |
| BK25B_12 | 1.298701   | 0.337325    | 0.637  | 0.098  | -0.20449   | 680  | 140 |
| BK25B_13 | 1.960784   | 0.3229527   | 0.533  | 0.063  | -0.49848   | 970  | 150 |
| BK25B_14 | 5.988024   | 0.8246979   | 0.49   | 0.079  | 0.014618   | 518  | 92  |
| BK25B_15 | 0.9090909  | 0.1900826   | 0.796  | 0.056  | 0.19944    | 1090 | 300 |
| BK25B_16 | 0.462963   | 0.09430727  | 0.853  | 0.054  | 0.079313   | 930  | 400 |
| BK25B_17 | 3.10559    | 0.7426411   | 0.497  | 0.075  | -0.31831   | 709  | 94  |
| BK25B_18 | 2.083333   | 0.8680556   | 0.473  | 0.083  | -0.59756   | 650  | 130 |
| BK25B_19 | 0.3773585  | 0.04556782  | 0.848  | 0.027  | 0.14971    | 1140 | 330 |
| BK25B_20 | 0.4975124  | 0.07673077  | 0.866  | 0.053  | 0.26694    | 1500 | 320 |
| BK25B_21 | 3.968254   | 0.393676    | 0.68   | 0.089  | 0.65152    | 710  | 120 |
| BK25B_22 | 6.329114   | 1.20173     | 0.53   | 0.13   | 0.1698     | 525  | 99  |
| BK25B_23 | 0.5938242  | 0.03878899  | 0.868  | 0.021  | 0.25934    | 870  | 220 |
| BK25B_24 | 0.9276438  | 0.06023661  | 0.812  | 0.013  | 0.10741    | 589  | 99  |
| BK25B_25 | 0.7194245  | 0.1138657   | 0.868  | 0.038  | 0.10386    | 1070 | 230 |

| BK25B_26   | 0.2808989 | 0.03629592 | 0.858  | 0.03   | 0.24997   | 1320 | 380 |
|------------|-----------|------------|--------|--------|-----------|------|-----|
| BK25B_27   | 0.6369427 | 0.0608544  | 0.851  | 0.038  | 0.1665    | 1260 | 300 |
| BK25B_28   | 0.3389831 | 0.03447285 | 0.884  | 0.029  | 0.44291   | 980  | 320 |
| BK25B_29   | 2.105263  | 0.3191136  | 0.767  | 0.077  | 0.16211   | 880  | 190 |
| BK25B_30   | 1.265823  | 0.1762538  | 0.779  | 0.019  | -0.63168  | 516  | 57  |
| BK25B_31   | 1.587302  | 0.4283195  | 0.585  | 0.072  | -0.25135  | 840  | 190 |
| BK25B_32   | 0.1930502 | 0.02608786 | 0.869  | 0.023  | -0.18201  | 1270 | 270 |
| BK25B_33   | 0.5494505 | 0.04226543 | 0.834  | 0.023  | 0.23314   | 1150 | 230 |
| BK25B_34   | 1.375516  | 0.1381192  | 0.767  | 0.051  | -0.1041   | 930  | 200 |
| BK25B_35   | 0.3095975 | 0.03546473 | 0.861  | 0.039  | 0.2199    | 1500 | 460 |
| BK25B_36   | 0.3378378 | 0.03424032 | 0.88   | 0.038  | 0.30453   | 1600 | 420 |
| BK25B_37   | 0.3021148 | 0.04198574 | 0.867  | 0.035  | 0.19828   | 1320 | 340 |
| BK25B_38   | 0.4201681 | 0.04236989 | 0.842  | 0.034  | 0.26254   | 1370 | 330 |
| BK25B_39   | 0.3412969 | 0.03145057 | 0.85   | 0.032  | 0.35185   | 1490 | 370 |
| BK25B_40   | 0.3597122 | 0.03364215 | 0.826  | 0.026  | 0.02992   | 1560 | 330 |
|            |           |            |        |        |           |      |     |
| KTDD089_1  | 2.28833   | 0.1466207  | 0.72   | 0.024  | 0.30651   | 524  | 78  |
| KTDD089_2  | 1.369863  | 0.2064177  | 0.751  | 0.061  | 0.45855   | 700  | 170 |
| KTDD089_3  | 1.046025  | 0.04704925 | 0.8179 | 0.0047 | -0.38435  | 474  | 29  |
| KTDD089_4  | 0.727802  | 0.03072236 | 0.8371 | 0.0061 | 0.096964  | 499  | 59  |
| KTDD089_5  | 1.113586  | 0.04216249 | 0.8083 | 0.0078 | 0.11201   | 510  | 53  |
| KTDD089_6  | 1.214772  | 0.04279443 | 0.8137 | 0.0052 | 0.28053   | 429  | 33  |
| KTDD089_7  | 0.9635768 | 0.03342529 | 0.8298 | 0.0048 | 0.22416   | 423  | 38  |
| KTDD089_8  | 0.9775171 | 0.03535497 | 0.8277 | 0.005  | -0.24073  | 437  | 38  |
| KTDD089_9  | 0.81103   | 0.05393711 | 0.829  | 0.018  | 0.23391   | 690  | 150 |
| KTDD089_10 | 0.3558719 | 0.02786186 | 0.852  | 0.018  | 0.18774   | 1380 | 230 |
| KTDD089_11 | 0.7604563 | 0.02717981 | 0.8367 | 0.0048 | 0.15179   | 463  | 46  |
| KTDD089_12 | 0.8136697 | 0.0317788  | 0.8334 | 0.0043 | -0.1795   | 470  | 37  |
| KTDD089_13 | 0.8169935 | 0.03137148 | 0.8237 | 0.0056 | 0.12006   | 547  | 53  |
| KTDD089_14 | 0.8183306 | 0.03214392 | 0.8411 | 0.0047 | 0.23641   | 397  | 45  |
| KTDD089_15 | 0.5824112 | 0.02272659 | 0.8482 | 0.0063 | 0.31602   | 473  | 81  |
| KTDD089_16 | 0.7627765 | 0.03025506 | 0.8302 | 0.0053 | 0.088424  | 521  | 53  |
| KTDD089_17 | 1.126126  | 0.0507264  | 0.81   | 0.011  | -0.10094  | 497  | 62  |
| KTDD089_18 | 0.7836991 | 0.04790637 | 0.8286 | 0.0053 | 0.10725   | 521  | 56  |
| KTDD089_19 | 0.8389262 | 0.03659745 | 0.8319 | 0.0044 | 0.010262  | 456  | 36  |
| KTDD089_20 | 0.990099  | 0.04607391 | 0.8204 | 0.0072 | -0.022374 | 477  | 60  |
| KTDD089_21 | 7.70416   | 0.5935409  | 0.485  | 0.055  | 0.25193   | 426  | 58  |
| KTDD089_22 | 0.7347539 | 0.02537357 | 0.843  | 0.0032 | 0.20646   | 426  | 35  |
| KTDD089_23 | 0.8103728 | 0.02889498 | 0.835  | 0.0047 | 0.1242    | 482  | 38  |
| KTDD089_24 | 0.8920607 | 0.03103512 | 0.8242 | 0.0039 | 0.34924   | 498  | 35  |
| KTDD089_25 | 2.193945  | 0.08664108 | 0.7366 | 0.0084 | -0.60739  | 504  | 25  |
| KTDD089_26 | 0.7132668 | 0.02899872 | 0.8263 | 0.0086 | 0.31599   | 662  | 93  |

| KTDD089_27 | 0.838223  | 0.02950995 | 0.8359 | 0.0041 | 0.22434   | 422 | 35  |
|------------|-----------|------------|--------|--------|-----------|-----|-----|
| KTDD089_28 | 1.74216   | 0.07587806 | 0.7651 | 0.0052 | 0.59744   | 513 | 37  |
| KTDD089_29 | 1.166861  | 0.0503779  | 0.8305 | 0.0061 | -0.032428 | 346 | 40  |
| KTDD089_30 | 9.033424  | 0.7262644  | 0.338  | 0.047  | -0.07081  | 463 | 40  |
| KTDD089_31 | 4.149378  | 0.2926947  | 0.644  | 0.033  | 0.23661   | 464 | 59  |
| KTDD089_32 | 0.8688097 | 0.03094804 | 0.8334 | 0.004  | 0.056066  | 446 | 36  |
| KTDD089_33 | 7.633588  | 0.6992599  | 0.396  | 0.063  | 0.26069   | 449 | 71  |
| KTDD089_34 | 1.322751  | 0.08398421 | 0.7891 | 0.0057 | -0.68252  | 506 | 21  |
| KTDD089_35 | 0.792393  | 0.02888279 | 0.8375 | 0.0044 | 0.042846  | 450 | 39  |
| KTDD089_36 | 0.7861635 | 0.02719434 | 0.8322 | 0.0035 | 0.22756   | 497 | 34  |
| KTDD089_37 | 1.158749  | 0.1101013  | 0.765  | 0.023  | -0.26639  | 734 | 96  |
| KTDD089_38 | 0.78125   | 0.03479004 | 0.825  | 0.011  | -0.26682  | 562 | 80  |
| KTDD089_39 | 1.219512  | 0.05353956 | 0.7966 | 0.0087 | 0.45419   | 536 | 63  |
| KTDD089_40 | 0.5473454 | 0.02965911 | 0.837  | 0.016  | 0.2944    | 740 | 130 |
| KTDD089_41 | 0.7824726 | 0.04408296 | 0.8278 | 0.0082 | -0.13201  | 556 | 75  |
| KTDD089_42 | 0.8058018 | 0.03051788 | 0.831  | 0.0074 | 0.29151   | 534 | 63  |
| KTDD089_43 | 1.068376  | 0.0376671  | 0.8216 | 0.006  | 0.26502   | 439 | 44  |
| KTDD089_44 | 1.112966  | 0.0383995  | 0.8171 | 0.0053 | 0.39828   | 453 | 37  |
| KTDD089_45 | 1.472754  | 0.07591516 | 0.7919 | 0.0054 | -0.4569   | 458 | 21  |
| KTDD089_46 | 0.9041591 | 0.03351765 | 0.8295 | 0.005  | 0.22067   | 458 | 41  |
| KTDD089_47 | 1.014199  | 0.09051673 | 0.785  | 0.024  | 0.60356   | 820 | 150 |
| KTDD089_48 | 0.5955926 | 0.03440886 | 0.823  | 0.013  | 0.47993   | 810 | 190 |
| KTDD089_49 | 1.831502  | 0.117404   | 0.766  | 0.0053 | -0.71304  | 468 | 18  |
| KTDD089_50 | 0.7722008 | 0.0399517  | 0.822  | 0.016  | 0.19804   | 610 | 110 |
| KTDD089_51 | 0.5988024 | 0.03944207 | 0.82   | 0.016  | 0.22237   | 860 | 210 |
| KTDD089_52 | 0.911577  | 0.03157696 | 0.8192 | 0.0074 | 0.32467   | 534 | 57  |
| KTDD089_53 | 0.7656968 | 0.0275557  | 0.8354 | 0.007  | 0.042014  | 507 | 62  |
| KTDD089_54 | 1.329787  | 0.09018504 | 0.8048 | 0.0072 | -0.65153  | 420 | 27  |
| KTDD089_55 | 0.8291874 | 0.03162738 | 0.853  | 0.013  | 0.44652   | 425 | 71  |
| KTDD089_56 | 0.8764242 | 0.03226101 | 0.8275 | 0.0073 | 0.12895   | 471 | 56  |
| KTDD089_57 | 0.7102273 | 0.03430075 | 0.824  | 0.013  | 0.41157   | 650 | 130 |
| KTDD089_58 | 1.197605  | 0.1434257  | 0.782  | 0.031  | 0.15358   | 790 | 160 |

## **APPENDIX I: EXTENDED LA-ICP-MS TRACE ELEMENTS METHODS**

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) was conducted using the Agilent 7900x with attached RESOlution LR 193 nm Excimer laser system at Adelaide Microscopy, University of Adelaide. A total of twelve individual samples were analysed for monazite trace elements (ten samples) and apatite trace elements (seven samples) through in situ laser ablation simultaneously to U–Pb geochronology data collection. Analyses were taken at a fluence of 2.0 J/cm<sup>2</sup> and 3.5 J/cm<sup>2</sup> and spot size of 13 $\mu$ m and 40  $\mu$ m respectively for monazite and apatite. SEM-BSE composite images were utilised to locate datable minerals of sufficient area for ablation. Where possible, spots were taken from across the entirety of the sample including within vein sets, sulphides and adjacent altered host rock. Data reduction for trace elements followed the same method as used for U– Pb analyses (Appendix F) with the X\_Trace\_Elements\_IS DRS used in place of the X\_U\_Pb\_Geochron4 DRS.

External standard NIST SRM610 was used to correct for elemental fractionation and mass bias across all analyses:  $P = 413 \pm 46$  ppm,  $La = 440 \pm 10$  ppm and  $Lu = 439 \pm 8$  ppm (Jochum et al. 2011).

## **APPENDIX J: MONAZITE TRACE ELEMENTS RESULTS**

|                         | Y (ppm)  | 2σ   | La (ppm) | 2σ   | Pr (ppm) | 2σ   | Nd (ppm) | 2σ   | Sm (ppm) | 2σ   | Eu (ppm) | 2σ   | Gd (ppm) | 2σ   |
|-------------------------|----------|------|----------|------|----------|------|----------|------|----------|------|----------|------|----------|------|
| Session #1<br>Standard: |          |      |          |      |          |      |          |      |          |      |          |      |          |      |
| NIST610 - 1             | 203000   | 1300 | 203000   | 1300 | 193600   | 1200 | 198000   | 1200 | 190400   | 1300 | 199100   | 1900 | 197340   | 960  |
| NIST610 - 2             | 204800   | 1200 | 204800   | 1200 | 194700   | 1000 | 197660   | 920  | 189200   | 1400 | 200800   | 1700 | 197400   | 1000 |
| NIST610 - 3             | 204100   | 1200 | 204100   | 1200 | 194800   | 1000 | 198390   | 930  | 190600   | 1400 | 200600   | 1500 | 197900   | 1200 |
| NIST610 - 4             | 203700   | 1100 | 203700   | 1100 | 193600   | 1100 | 196500   | 1200 | 188900   | 1600 | 199100   | 1500 | 196700   | 1200 |
| NIST610 - 5             | 203200   | 1300 | 203200   | 1300 | 193840   | 970  | 198000   | 1100 | 190200   | 1700 | 199700   | 1600 | 197500   | 1100 |
| NIST610 - 6             | 204700   | 1200 | 204700   | 1200 | 194700   | 1000 | 197970   | 990  | 189700   | 1300 | 201300   | 1700 | 197200   | 1100 |
| NIST610 - 7             | 203700   | 1100 | 203700   | 1100 | 194100   | 1000 | 197810   | 830  | 190400   | 1400 | 200500   | 1700 | 197900   | 1000 |
| NIST610 - 8             | 204300   | 1200 | 204300   | 1200 | 194500   | 1100 | 197300   | 1200 | 189200   | 1300 | 198500   | 1500 | 196700   | 1100 |
| NIST610 - 9             | 204400   | 1000 | 204400   | 1000 | 194670   | 950  | 198700   | 1100 | 191200   | 1400 | 201000   | 1600 | 198200   | 1100 |
| NIST610 - 10            | 203600   | 1000 | 203600   | 1000 | 193800   | 1000 | 197100   | 1100 | 188700   | 1400 | 200100   | 1500 | 196600   | 1100 |
| NIST610 - 11            | 203500   | 1200 | 203500   | 1200 | 193500   | 1100 | 197300   | 1200 | 190000   | 1400 | 200600   | 1700 | 198100   | 1000 |
| NIST610 - 12            | 204500   | 1300 | 204500   | 1300 | 194800   | 1000 | 198200   | 1100 | 189500   | 1700 | 199100   | 1800 | 196670   | 960  |
| NIST610 - 13            | 203700   | 1200 | 203700   | 1200 | 193700   | 1100 | 197420   | 870  | 189500   | 1200 | 200300   | 1600 | 197300   | 1100 |
| NIST610 - 14            | 204000   | 1100 | 204000   | 1100 | 194700   | 1000 | 198300   | 1100 | 190200   | 1400 | 199400   | 1700 | 197500   | 1100 |
| NIST610 - 15            | 203800   | 1300 | 203800   | 1300 | 194200   | 1100 | 198300   | 1100 | 191100   | 1400 | 200400   | 1700 | 197300   | 1100 |
| NIST610 - 16            | 204240   | 960  | 204240   | 960  | 194300   | 1000 | 197510   | 910  | 189100   | 1100 | 200100   | 1500 | 197380   | 860  |
| NIST610 - 17            | 203000   | 1000 | 203000   | 1000 | 193810   | 990  | 197300   | 1200 | 189500   | 1200 | 199100   | 1200 | 197490   | 920  |
| NIST610 - 18            | 204780   | 980  | 204780   | 980  | 194800   | 900  | 198110   | 960  | 190000   | 1200 | 200600   | 1500 | 197200   | 900  |
| NIST610 - 19            | 204200   | 1200 | 204200   | 1200 | 194150   | 850  | 198500   | 1100 | 190400   | 1500 | 200100   | 1800 | 198090   | 920  |
| NIST610 - 20            | 203800   | 1100 | 203800   | 1100 | 194370   | 880  | 197370   | 920  | 189300   | 1700 | 200400   | 1700 | 196500   | 1000 |
| NIST610 - 21            | 204000   | 1100 | 204000   | 1100 | 194780   | 950  | 198010   | 870  | 189800   | 1400 | 199800   | 1700 | 197610   | 880  |
| NIST610 - 22            | 203800   | 1200 | 203800   | 1200 | 193600   | 1100 | 197400   | 1000 | 189800   | 1700 | 199600   | 1500 | 197080   | 920  |
| NIST610 - 23            | 204600   | 1100 | 204600   | 1100 | 194900   | 1200 | 197880   | 910  | 189500   | 1600 | 200800   | 1300 | 197620   | 970  |
| NIST610 - 24            | 203400   | 1200 | 203400   | 1200 | 193500   | 1300 | 197800   | 1200 | 190300   | 1700 | 200200   | 1800 | 197100   | 1200 |
| NIST610 - 25            | 204300   | 1200 | 204300   | 1200 | 194440   | 950  | 197780   | 900  | 189500   | 1500 | 199500   | 1800 | 197610   | 830  |
| NIST610 - 26            | 203800   | 1000 | 203800   | 1000 | 194100   | 930  | 197770   | 970  | 190200   | 1500 | 199700   | 1600 | 197010   | 980  |
|                         |          |      |          |      |          |      |          |      |          |      |          |      |          |      |
|                         | Tb (ppm) | 2σ   | Dy (ppm) | 2σ   | Ho (ppm) | 2σ   | Er (ppm) | 2σ   | Tm (ppm) | 2σ   | Yb (ppm) | 2σ   | Lu (ppm) | 2σ   |
| NIST610 - 1             | 193020   | 960  | 193200   | 1200 | 198500   | 1000 | 201200   | 1100 | 192400   | 1100 | 199500   | 1500 | 194200   | 1100 |
| NIST610 - 2             | 192860   | 830  | 192780   | 940  | 198050   | 840  | 200600   | 1000 | 191700   | 1000 | 198100   | 1200 | 193500   | 1000 |

| NIST610 - 3  | 193500   | 1100 | 193800  | 1300 | 198700 | 1100 | 202500 | 1300 | 192800 | 1200 | 199500 | 1300 | 194800 | 1100 |
|--------------|----------|------|---------|------|--------|------|--------|------|--------|------|--------|------|--------|------|
| NIST610 - 4  | 192300   | 1200 | 192100  | 1300 | 197800 | 1000 | 199700 | 1100 | 191500 | 1100 | 197700 | 1300 | 192600 | 1200 |
| NIST610 - 5  | 193160   | 910  | 193400  | 1300 | 198300 | 1000 | 201500 | 1300 | 192310 | 990  | 199100 | 1100 | 194300 | 1100 |
| NIST610 - 6  | 192690   | 960  | 192600  | 1100 | 198100 | 1200 | 200400 | 1200 | 191700 | 1100 | 198200 | 1200 | 193300 | 1200 |
| NIST610 - 7  | 193550   | 930  | 193200  | 1000 | 198740 | 910  | 201300 | 1000 | 192410 | 890  | 199400 | 1200 | 194300 | 1000 |
| NIST610 - 8  | 192240   | 980  | 192600  | 1200 | 197690 | 920  | 200200 | 1100 | 191400 | 1100 | 198000 | 1100 | 193360 | 930  |
| NIST610 - 9  | 193810   | 970  | 194000  | 1100 | 199050 | 880  | 201400 | 1100 | 193000 | 1100 | 199400 | 1100 | 194410 | 960  |
| NIST610 - 10 | 192320   | 880  | 192100  | 1000 | 197000 | 1100 | 200400 | 1100 | 191360 | 950  | 197500 | 1300 | 193200 | 1000 |
| NIST610 - 11 | 193000   | 1000 | 193300  | 1100 | 199000 | 1100 | 200900 | 1200 | 192400 | 1100 | 198200 | 1100 | 194300 | 1200 |
| NIST610 - 12 | 192940   | 850  | 192600  | 1100 | 197670 | 990  | 200900 | 1100 | 191700 | 1100 | 199100 | 1100 | 193480 | 950  |
| NIST610 - 13 | 192900   | 1100 | 193300  | 1200 | 198200 | 1000 | 200860 | 920  | 192260 | 830  | 198600 | 1100 | 194260 | 920  |
| NIST610 - 14 | 192920   | 950  | 192660  | 990  | 198300 | 1000 | 200900 | 1100 | 191770 | 960  | 198800 | 1300 | 193500 | 920  |
| NIST610 - 15 | 193700   | 1100 | 193500  | 1100 | 198100 | 1100 | 201100 | 1100 | 192200 | 1100 | 199100 | 1200 | 194000 | 1200 |
| NIST610 - 16 | 192420   | 890  | 192510  | 960  | 198320 | 890  | 200600 | 1300 | 191960 | 820  | 198300 | 1000 | 193700 | 1000 |
| NIST610 - 17 | 192980   | 960  | 193300  | 1100 | 198050 | 950  | 200900 | 1100 | 191910 | 820  | 198700 | 1100 | 193700 | 1100 |
| NIST610 - 18 | 192900   | 890  | 192600  | 1100 | 198400 | 1000 | 200900 | 1100 | 192200 | 1000 | 198700 | 1300 | 193910 | 800  |
| NIST610 - 19 | 193500   | 1000 | 193500  | 1200 | 198200 | 990  | 201300 | 1200 | 192330 | 970  | 198680 | 960  | 194050 | 790  |
| NIST610 - 20 | 192580   | 810  | 192400  | 1100 | 198300 | 1200 | 200400 | 1300 | 191800 | 1000 | 198600 | 1200 | 193400 | 1100 |
| NIST610 - 21 | 193400   | 870  | 193500  | 1000 | 198670 | 870  | 201300 | 1100 | 192440 | 970  | 199100 | 1100 | 194290 | 900  |
| NIST610 - 22 | 192400   | 1000 | 192300  | 1100 | 197500 | 1100 | 200200 | 1300 | 191500 | 1000 | 198300 | 1100 | 193100 | 1100 |
| NIST610 - 23 | 193050   | 870  | 193100  | 1200 | 198580 | 900  | 201200 | 1000 | 192680 | 940  | 199200 | 1100 | 194000 | 1000 |
| NIST610 - 24 | 192820   | 890  | 192850  | 920  | 197800 | 1100 | 200400 | 1200 | 191200 | 1100 | 198200 | 1100 | 193700 | 1000 |
| NIST610 - 25 | 193080   | 850  | 193100  | 1200 | 198400 | 1000 | 201260 | 980  | 192390 | 790  | 198800 | 1100 | 194020 | 890  |
| NIST610 - 26 | 192770   | 960  | 192800  | 1000 | 198100 | 1000 | 200400 | 1100 | 191550 | 980  | 198500 | 1100 | 193600 | 960  |
|              |          |      |         |      |        |      |        |      |        |      |        |      |        |      |
|              | Th (ppm) | 2σ   | U (ppm) | 2σ   |        |      |        |      |        |      |        |      |        |      |
| NIST610 - 1  | 202500   | 1200 | 204200  | 1100 |        |      |        |      |        |      |        |      |        |      |
| NIST610 - 2  | 201500   | 1100 | 203300  | 1100 |        |      |        |      |        |      |        |      |        |      |
| NIST610 - 3  | 202900   | 1200 | 204800  | 1100 |        |      |        |      |        |      |        |      |        |      |
| NIST610 - 4  | 201000   | 1100 | 202900  | 1100 |        |      |        |      |        |      |        |      |        |      |
| NIST610 - 5  | 202300   | 1200 | 204130  | 910  |        |      |        |      |        |      |        |      |        |      |
| NIST610 - 6  | 201500   | 1200 | 203100  | 1200 |        |      |        |      |        |      |        |      |        |      |
| NIST610 - 7  | 202200   | 1100 | 204350  | 930  |        |      |        |      |        |      |        |      |        |      |
| NIST610 - 8  | 201200   | 1400 | 202900  | 1100 |        |      |        |      |        |      |        |      |        |      |
| NIST610 - 9  | 202900   | 1300 | 204500  | 1100 |        |      |        |      |        |      |        |      |        |      |

| NIST610 - 10 | 200700 | 1300 | 203000 | 1100 |  |
|--------------|--------|------|--------|------|--|
| NIST610 - 11 | 202300 | 1200 | 204100 | 1200 |  |
| NIST610 - 12 | 201500 | 1200 | 203400 | 1200 |  |
| NIST610 - 13 | 201800 | 1100 | 204100 | 1200 |  |
| NIST610 - 14 | 201900 | 1200 | 203300 | 1200 |  |
| NIST610 - 15 | 202000 | 1400 | 204200 | 1300 |  |
| NIST610 - 16 | 201800 | 1100 | 203530 | 950  |  |
| NIST610 - 17 | 201900 | 1000 | 203840 | 970  |  |
| NIST610 - 18 | 201800 | 1000 | 203700 | 1000 |  |
| NIST610 - 19 | 202200 | 1100 | 204210 | 930  |  |
| NIST610 - 20 | 201400 | 1000 | 203500 | 1100 |  |
| NIST610 - 21 | 202100 | 1100 | 204100 | 990  |  |
| NIST610 - 22 | 201500 | 1300 | 203200 | 1200 |  |
| NIST610 - 23 | 202200 | 1200 | 204200 | 1100 |  |
| NIST610 - 24 | 201600 | 1100 | 203400 | 1100 |  |
| NIST610 - 25 | 202200 | 1000 | 204000 | 1100 |  |
| NIST610 - 26 | 201500 | 1100 | 203500 | 1100 |  |

|                         | Y (ppm) | 2σ   | La (ppm) | 2σ   | Pr (ppm) | 2σ   | Nd (ppm) | 2σ   | Sm (ppm) | 2σ   | Eu (ppm) | 2σ   | Gd (ppm) | 2σ   |
|-------------------------|---------|------|----------|------|----------|------|----------|------|----------|------|----------|------|----------|------|
| Session #2<br>Standard: |         |      |          |      |          |      |          |      |          |      |          |      |          |      |
| NIST610 - 1             | 203500  | 1100 | 194500   | 1100 | 197600   | 1100 | 190900   | 1400 | 199100   | 1700 | 197700   | 980  | 198700   | 1700 |
| NIST610 - 2             | 204700  | 1100 | 194570   | 980  | 198290   | 970  | 189700   | 1400 | 200700   | 1600 | 197490   | 960  | 198800   | 1500 |
| NIST610 - 3             | 203800  | 1100 | 194200   | 1000 | 197550   | 980  | 189800   | 1300 | 200800   | 1700 | 197250   | 870  | 198200   | 1600 |
| NIST610 - 4             | 204200  | 1000 | 193940   | 930  | 197510   | 990  | 190400   | 1400 | 199500   | 1400 | 197060   | 840  | 198000   | 1500 |
| NIST610 - 5             | 202900  | 1100 | 193700   | 1100 | 197400   | 1100 | 189400   | 1300 | 200500   | 1500 | 196800   | 1200 | 196400   | 1600 |
| NIST610 - 6             | 203500  | 1300 | 194700   | 1300 | 198200   | 1100 | 189300   | 1500 | 200000   | 1500 | 197400   | 1100 | 197900   | 1600 |
| NIST610 - 7             | 204800  | 1200 | 194400   | 1100 | 198390   | 920  | 189600   | 1500 | 200000   | 1500 | 197200   | 1100 | 198800   | 1900 |
| NIST610 - 8             | 204800  | 1100 | 194850   | 860  | 198200   | 930  | 190800   | 1600 | 201000   | 1700 | 197700   | 960  | 197000   | 1600 |
| NIST610 - 9             | 203400  | 1100 | 194300   | 900  | 198600   | 1100 | 190400   | 1400 | 200400   | 1500 | 197680   | 930  | 198600   | 1900 |
| NIST610 - 10            | 204400  | 1100 | 193800   | 1000 | 197230   | 930  | 189100   | 1100 | 199700   | 1700 | 196850   | 870  | 198700   | 1500 |
| NIST610 - 11            | 203900  | 1100 | 194900   | 1100 | 197700   | 1000 | 189700   | 1300 | 199600   | 1800 | 197670   | 980  | 198500   | 1300 |
| NIST610 - 12            | 203800  | 1000 | 193580   | 990  | 197220   | 900  | 189600   | 1400 | 199300   | 1400 | 197370   | 870  | 199200   | 1100 |
| NIST610 - 13            | 204000  | 1100 | 193460   | 900  | 197300   | 1000 | 189000   | 1500 | 199400   | 1600 | 197110   | 980  | 197600   | 1500 |
| NIST610 - 14            | 203900  | 1100 | 194100   | 1000 | 197680   | 850  | 190000   | 1400 | 199500   | 1700 | 197030   | 970  | 197600   | 1500 |

| NIST610 - 15 | 203800   | 1100 | 194600   | 1100 | 198300   | 1100 | 190600   | 1700 | 200300   | 1500 | 197970   | 960  | 198600   | 1600 |  |
|--------------|----------|------|----------|------|----------|------|----------|------|----------|------|----------|------|----------|------|--|
| NIST610 - 16 | 204000   | 1000 | 194800   | 1100 | 197200   | 1000 | 189800   | 1400 | 200200   | 1600 | 197340   | 910  | 198300   | 1500 |  |
| NIST610 - 17 | 203800   | 1100 | 193900   | 1100 | 197400   | 1100 | 189500   | 1500 | 199500   | 1600 | 197900   | 1100 | 199200   | 1800 |  |
| NIST610 - 18 | 204500   | 1100 | 194300   | 1000 | 198600   | 1000 | 190200   | 1600 | 199800   | 1400 | 197190   | 980  | 198900   | 1700 |  |
| NIST610 - 19 | 204200   | 1100 | 194490   | 900  | 197890   | 980  | 190500   | 1400 | 200800   | 1600 | 197750   | 830  | 198900   | 1600 |  |
| NIST610 - 20 | 203600   | 1200 | 194100   | 1100 | 197300   | 1000 | 188900   | 1500 | 199100   | 1500 | 197030   | 990  | 197300   | 1600 |  |
| NIST610 - 21 | 204500   | 1000 | 193810   | 990  | 197730   | 880  | 189600   | 1300 | 200500   | 1600 | 197990   | 890  | 198400   | 1400 |  |
| NIST610 - 22 | 203200   | 1000 | 194400   | 1000 | 197620   | 950  | 188900   | 1200 | 199400   | 1400 | 196580   | 910  | 198200   | 1600 |  |
| NIST610 - 23 | 204600   | 1100 | 194400   | 1000 | 197960   | 970  | 190200   | 1300 | 200800   | 1600 | 196850   | 870  | 198600   | 1400 |  |
| NIST610 - 24 | 203800   | 1300 | 195330   | 940  | 198060   | 950  | 190700   | 1500 | 200200   | 1600 | 197400   | 1100 | 197000   | 1600 |  |
| NIST610 - 25 | 203300   | 1200 | 193900   | 1100 | 197420   | 910  | 190100   | 1500 | 200100   | 1400 | 197200   | 1100 | 197700   | 1500 |  |
| NIST610 - 26 | 204400   | 1300 | 193930   | 940  | 198380   | 970  | 190300   | 1500 | 200300   | 1500 | 197700   | 1100 | 198400   | 1700 |  |
|              |          |      |          |      |          |      |          |      |          |      |          |      |          |      |  |
|              | Tb (ppm) | 2σ   | Dy (ppm) | 2σ   | Ho (ppm) | 2σ   | Er (ppm) | 2σ   | Tm (ppm) | 2σ   | Yb (ppm) | 2σ   | Lu (ppm) | 2σ   |  |
| NIST610 - 1  | 192900   | 1000 | 193400   | 1200 | 198320   | 940  | 201000   | 1000 | 192370   | 990  | 199200   | 1100 | 194600   | 1100 |  |
| NIST610 - 2  | 193400   | 900  | 193050   | 960  | 198210   | 980  | 201100   | 1000 | 192020   | 870  | 198700   | 1200 | 193840   | 920  |  |
| NIST610 - 3  | 192760   | 810  | 193100   | 1000 | 198340   | 920  | 200900   | 1000 | 192340   | 890  | 198500   | 1000 | 193900   | 840  |  |
| NIST610 - 4  | 192260   | 910  | 192200   | 1100 | 198090   | 850  | 200300   | 1000 | 191400   | 890  | 198600   | 1100 | 193340   | 830  |  |
| NIST610 - 5  | 192300   | 1000 | 191700   | 1100 | 197300   | 1100 | 200400   | 1200 | 191690   | 980  | 198300   | 1200 | 193100   | 1100 |  |
| NIST610 - 6  | 193200   | 1000 | 193800   | 1200 | 198790   | 950  | 201500   | 1000 | 192400   | 1100 | 198700   | 1200 | 193900   | 1000 |  |
| NIST610 - 7  | 193190   | 940  | 192600   | 1100 | 198400   | 1100 | 200600   | 1100 | 192200   | 1000 | 198000   | 1200 | 193500   | 1100 |  |
| NIST610 - 8  | 193500   | 860  | 193000   | 1000 | 198130   | 820  | 201000   | 1000 | 192270   | 880  | 198600   | 1100 | 193970   | 960  |  |
| NIST610 - 9  | 193490   | 880  | 193300   | 1100 | 198700   | 950  | 201190   | 950  | 192330   | 850  | 198700   | 1300 | 194080   | 980  |  |
| NIST610 - 10 | 192680   | 780  | 193100   | 1200 | 197600   | 1000 | 200540   | 940  | 191300   | 1000 | 198600   | 1300 | 193400   | 1100 |  |
| NIST610 - 11 | 193500   | 870  | 193600   | 1000 | 198580   | 910  | 201200   | 1100 | 192650   | 830  | 199430   | 950  | 194910   | 910  |  |
| NIST610 - 12 | 192440   | 810  | 193200   | 1100 | 198430   | 810  | 201030   | 880  | 191980   | 800  | 199300   | 1100 | 193630   | 830  |  |
| NIST610 - 13 | 192840   | 870  | 192910   | 990  | 198090   | 830  | 201200   | 1000 | 192030   | 920  | 198200   | 1100 | 194100   | 870  |  |
| NIST610 - 14 | 192380   | 970  | 192700   | 1000 | 197450   | 870  | 200090   | 990  | 191420   | 770  | 198000   | 1100 | 193190   | 930  |  |
| NIST610 - 15 | 193750   | 870  | 193180   | 960  | 199130   | 880  | 202000   | 1100 | 192710   | 850  | 199000   | 1200 | 194100   | 1000 |  |
| NIST610 - 16 | 192950   | 840  | 192800   | 1100 | 198070   | 980  | 200300   | 1100 | 191870   | 870  | 198200   | 1100 | 194000   | 940  |  |
| NIST610 - 17 | 192500   | 1100 | 192900   | 1200 | 198000   | 1100 | 200800   | 1200 | 191960   | 960  | 199500   | 1200 | 193600   | 1000 |  |
| NIST610 - 18 | 192770   | 990  | 192700   | 990  | 198240   | 830  | 200600   | 1000 | 192200   | 800  | 198500   | 1100 | 193420   | 870  |  |
| NIST610 - 19 | 192520   | 900  | 193200   | 1100 | 198580   | 820  | 201560   | 970  | 192340   | 930  | 198600   | 1200 | 194100   | 1000 |  |
| NIST610 - 20 | 192670   | 980  | 192800   | 1100 | 197400   | 1000 | 200200   | 1200 | 191490   | 950  | 198600   | 1200 | 193280   | 990  |  |
|              |          |      |          |      |          |      |          |      |          |      |          |      |          |      |  |

|              | Y (ppm)  | 2σ   | La (ppm) | 2σ   | Pr (ppm) | 2σ   | Nd (ppm) | 2σ   | Sm (ppm) | 2σ   | Eu (ppm) | 2σ   | Gd (ppm) | 2σ   |   |
|--------------|----------|------|----------|------|----------|------|----------|------|----------|------|----------|------|----------|------|---|
| NIST610 - 26 | 202200   | 1200 | 203700   | 1200 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 25 | 201500   | 1200 | 203800   | 1100 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 24 | 200700   | 1400 | 203400   | 1000 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 23 | 202800   | 1200 | 204200   | 1100 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 22 | 201300   | 1100 | 203330   | 960  |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 21 | 202500   | 1200 | 204300   | 1100 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 20 | 201500   | 1000 | 203210   | 910  |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 19 | 202200   | 1200 | 204400   | 1000 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 18 | 202100   | 1200 | 203800   | 1000 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 17 | 201600   | 1200 | 203700   | 1100 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 16 | 201500   | 1200 | 203120   | 970  |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 15 | 202400   | 1400 | 204500   | 1000 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 14 | 201400   | 1100 | 203500   | 1000 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 13 | 202200   | 1100 | 203990   | 970  |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 12 | 201300   | 1200 | 203320   | 870  |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 11 | 202400   | 1100 | 204500   | 1100 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 10 | 200900   | 1100 | 203000   | 1000 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 9  | 202800   | 1200 | 204600   | 1100 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 8  | 202100   | 1100 | 203700   | 940  |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 7  | 201600   | 1100 | 203800   | 1100 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 6  | 202200   | 1400 | 204200   | 1100 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 5  | 201600   | 1400 | 203400   | 1200 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 4  | 201700   | 1100 | 203500   | 1000 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 3  | 202000   | 1200 | 203940   | 940  |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 2  | 202400   | 1100 | 203400   | 1100 |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 1  | 202400   | 1100 | 203400   | 26   |          |      |          |      |          |      |          |      |          |      |   |
|              | Th (nnm) | 2-   | U (nnm)  | 2-   |          |      |          |      |          |      |          |      |          |      |   |
| NIST610 - 26 | 193270   | 970  | 193300   | 1100 | 198300   | 980  | 200900   | 1200 | 192400   | 1000 | 199300   | 1100 | 194240   | 930  |   |
| NIST610 - 25 | 192780   | 980  | 192900   | 1100 | 198000   | 1000 | 201200   | 1100 | 191810   | 870  | 198400   | 1100 | 193470   | 980  |   |
| NIST610 - 24 | 192980   | 910  | 192200   | 1100 | 198300   | 1000 | 200500   | 1100 | 191600   | 1100 | 198600   | 1200 | 193300   | 1000 |   |
| NIST610 - 23 | 193060   | 910  | 193800   | 1000 | 198480   | 950  | 201000   | 1100 | 192490   | 910  | 198600   | 1100 | 194110   | 930  |   |
| NIST610 - 22 | 192650   | 930  | 192600   | 1100 | 197760   | 900  | 200200   | 970  | 191660   | 800  | 197700   | 1000 | 193930   | 940  |   |
|              |          |      |          |      |          |      |          |      |          |      |          |      |          |      | • |

| Session #1<br>Unknowns: |      |     |        |      |       |     |       |      |       |     |      |    |       |     |
|-------------------------|------|-----|--------|------|-------|-----|-------|------|-------|-----|------|----|-------|-----|
| BK01_1                  | 2708 | 44  | 107900 | 1700 | 22090 | 350 | 77900 | 1200 | 12840 | 210 | 1901 | 31 | 6890  | 130 |
| BK01_2                  | 2738 | 62  | 110800 | 2400 | 22420 | 480 | 82300 | 1100 | 13430 | 260 | 1881 | 41 | 6870  | 130 |
| BK01_3                  | 3570 | 140 | 110200 | 1400 | 22090 | 340 | 79700 | 1100 | 13290 | 230 | 2073 | 62 | 8300  | 320 |
| BK01_4                  | 6980 | 370 | 102200 | 1800 | 22200 | 320 | 81900 | 1400 | 14350 | 270 | 2175 | 38 | 10190 | 270 |
| BK01_5                  | 5990 | 250 | 106700 | 1400 | 22380 | 290 | 83700 | 1100 | 15170 | 310 | 2408 | 53 | 11320 | 220 |
| BK01_6                  | 7090 | 190 | 103900 | 1200 | 22040 | 340 | 80000 | 1400 | 14190 | 220 | 2185 | 32 | 10350 | 170 |
| BK01_7                  | 7080 | 120 | 105100 | 1600 | 22260 | 290 | 79800 | 1000 | 13780 | 170 | 2094 | 22 | 10050 | 150 |
| BK01_8                  | 7200 | 120 | 104400 | 1600 | 22440 | 310 | 80700 | 1100 | 14120 | 200 | 2120 | 23 | 10140 | 160 |
| BK01_9                  | 4400 | 120 | 106400 | 1600 | 22200 | 280 | 78900 | 1200 | 13170 | 180 | 1814 | 21 | 7950  | 130 |
| BK01_10                 | 2868 | 51  | 115400 | 1400 | 21300 | 280 | 73060 | 940  | 12080 | 170 | 1865 | 24 | 6670  | 100 |
| BK01_11                 | 2894 | 57  | 109700 | 2000 | 22130 | 370 | 77900 | 1300 | 12380 | 290 | 1762 | 34 | 6780  | 130 |
| BK01_12                 | 6400 | 190 | 106500 | 1600 | 22300 | 320 | 81500 | 1200 | 14310 | 210 | 2236 | 31 | 10190 | 160 |
| BK01_13                 | 6800 | 150 | 105400 | 1900 | 21930 | 320 | 79900 | 1600 | 13960 | 310 | 2061 | 34 | 9670  | 200 |
| BK01_14                 | 7310 | 160 | 103100 | 1400 | 22410 | 280 | 80800 | 1100 | 14110 | 210 | 2191 | 28 | 10280 | 200 |
| BK01_15                 | 7190 | 110 | 106000 | 1600 | 22290 | 320 | 81400 | 1100 | 14160 | 220 | 2176 | 30 | 10150 | 170 |
| BK01_16                 | 5510 | 290 | 104800 | 2300 | 22460 | 510 | 84400 | 1900 | 14770 | 360 | 2188 | 58 | 9720  | 270 |
| BK01_17                 | 5030 | 430 | 107800 | 2200 | 21880 | 360 | 80000 | 1400 | 13710 | 310 | 1971 | 28 | 9070  | 180 |
| BK01_18                 | 7570 | 160 | 105400 | 1900 | 22180 | 370 | 80200 | 1400 | 14080 | 190 | 2184 | 37 | 10290 | 180 |
| BK01_19                 | 7390 | 120 | 105500 | 1600 | 22120 | 290 | 79500 | 1200 | 13770 | 190 | 2084 | 33 | 9820  | 150 |
| BK01_20                 | 6730 | 130 | 105300 | 1700 | 22280 | 370 | 79500 | 1300 | 13940 | 200 | 2120 | 35 | 10000 | 170 |
| BK01_21                 | 8340 | 220 | 104600 | 2400 | 22440 | 400 | 83100 | 1600 | 15040 | 270 | 2521 | 61 | 12580 | 350 |
| BK01_22                 | 7120 | 320 | 107700 | 1900 | 22160 | 360 | 82800 | 1500 | 14110 | 340 | 2158 | 35 | 10370 | 210 |
| BK01_23                 | 7830 | 140 | 106400 | 1800 | 22250 | 400 | 82100 | 1400 | 14430 | 290 | 2201 | 34 | 10530 | 210 |
| BK01_24                 | 5610 | 360 | 103700 | 1400 | 22440 | 300 | 83300 | 1100 | 14530 | 180 | 2061 | 39 | 9360  | 300 |
| BK01_25                 | 7090 | 350 | 107200 | 1500 | 22590 | 390 | 82500 | 1800 | 14450 | 370 | 2271 | 38 | 10340 | 210 |
| BK01_26                 | 4380 | 140 | 102200 | 1400 | 22660 | 320 | 85400 | 1100 | 15880 | 230 | 2425 | 39 | 10610 | 200 |
| BK01_27                 | 6270 | 150 | 105700 | 2200 | 22900 | 420 | 83300 | 1300 | 14680 | 240 | 2297 | 35 | 10200 | 190 |
| BK01_28                 | 4530 | 380 | 103000 | 1400 | 22400 | 280 | 82200 | 1000 | 15280 | 200 | 2473 | 60 | 10350 | 320 |
| BK01_29                 | 5280 | 120 | 105200 | 1400 | 22190 | 270 | 79300 | 1200 | 14050 | 230 | 2336 | 38 | 9630  | 170 |
| BK01_30                 | 2860 | 58  | 111400 | 2300 | 22060 | 420 | 80400 | 1400 | 13360 | 270 | 2038 | 52 | 7200  | 190 |
| BK01_31                 | 3890 | 170 | 107400 | 1000 | 22250 | 300 | 79900 | 1100 | 13430 | 170 | 1984 | 23 | 8190  | 200 |
|                         |      |     |        |      |       |     |       |      |       |     |      |    |       |     |
| BK06_1                  | 5540 | 140 | 109600 | 1900 | 21890 | 340 | 79300 | 1500 | 14360 | 270 | 1198 | 30 | 9240  | 210 |

| BK06_2  | 3210 | 170 | 121300 | 1500 | 20380 | 280 | 66100 | 1300 | 10540 | 270 | 1421 | 42  | 6120  | 230 |
|---------|------|-----|--------|------|-------|-----|-------|------|-------|-----|------|-----|-------|-----|
| BK06_3  | 4722 | 72  | 117200 | 1300 | 21380 | 280 | 73300 | 1000 | 12760 | 170 | 1366 | 19  | 7630  | 140 |
| BK06_4  | 3841 | 67  | 119400 | 1400 | 21360 | 220 | 73820 | 950  | 12730 | 210 | 1684 | 22  | 7790  | 140 |
| BK06_5  | 4254 | 77  | 117700 | 1600 | 22210 | 400 | 84900 | 1400 | 14500 | 240 | 1862 | 29  | 10130 | 220 |
| BK06_6  | 2840 | 510 | 102800 | 2000 | 21880 | 330 | 78100 | 1200 | 10980 | 420 | 1130 | 100 | 5100  | 440 |
| BK06_7  | 5650 | 140 | 108900 | 1900 | 22370 | 380 | 83500 | 1800 | 14970 | 370 | 1938 | 36  | 10320 | 250 |
| BK06_8  | 7920 | 140 | 96100  | 1700 | 23440 | 360 | 85600 | 1300 | 15370 | 220 | 2262 | 34  | 10500 | 190 |
| BK06_9  | 7630 | 170 | 100900 | 2300 | 22720 | 490 | 82900 | 1700 | 14830 | 380 | 2331 | 63  | 10220 | 330 |
| BK06_10 | 6790 | 490 | 105500 | 3000 | 22650 | 660 | 84200 | 2500 | 14880 | 470 | 2216 | 98  | 10570 | 600 |
| BK06_11 | 4630 | 110 | 112200 | 2500 | 21410 | 490 | 80600 | 1800 | 14210 | 470 | 1869 | 26  | 9200  | 300 |
| BK06_12 | 6240 | 130 | 108700 | 2000 | 22110 | 330 | 78400 | 1800 | 13640 | 280 | 1453 | 91  | 9020  | 160 |
| BK06_13 | 8110 | 150 | 97040  | 940  | 23540 | 340 | 86400 | 1400 | 15490 | 220 | 2252 | 34  | 10680 | 180 |
| BK06_14 | 7630 | 390 | 99000  | 2100 | 22810 | 560 | 85000 | 2800 | 15440 | 480 | 2366 | 92  | 10880 | 450 |
| BK06_15 | 5220 | 320 | 108100 | 2600 | 22130 | 410 | 80400 | 2000 | 13860 | 430 | 2177 | 38  | 8970  | 400 |
| BK06_16 | 4075 | 98  | 120300 | 1900 | 21110 | 250 | 75100 | 1700 | 12190 | 300 | 1757 | 39  | 7480  | 240 |
| BK06_17 | 3994 | 57  | 124300 | 1600 | 19680 | 300 | 63390 | 840  | 10060 | 140 | 1476 | 17  | 5764  | 85  |
| BK06_18 | 3830 | 120 | 111500 | 1700 | 21450 | 250 | 73800 | 1100 | 12170 | 230 | 1868 | 29  | 6940  | 150 |
| BK06_19 | 8060 | 120 | 97900  | 1400 | 23180 | 280 | 86300 | 1300 | 15670 | 240 | 2477 | 32  | 11350 | 170 |
| BK06_20 | 1200 | 140 | 101600 | 2100 | 22930 | 540 | 82200 | 1800 | 12450 | 410 | 1165 | 69  | 6000  | 350 |
| BK06_21 | 3970 | 140 | 121200 | 3000 | 21280 | 620 | 76000 | 1400 | 12800 | 350 | 1553 | 50  | 7740  | 170 |
| BK06_22 | 2860 | 120 | 118600 | 2000 | 20720 | 360 | 69100 | 1100 | 10450 | 180 | 1570 | 35  | 5770  | 150 |
| BK06_23 | 5980 | 460 | 106800 | 1900 | 21950 | 380 | 78200 | 1900 | 13640 | 440 | 1957 | 49  | 8490  | 440 |
| BK06_24 | 3443 | 79  | 117400 | 1700 | 20300 | 300 | 69100 | 1000 | 11050 | 180 | 1506 | 17  | 6390  | 130 |
| BK06_25 | 3580 | 140 | 115300 | 1600 | 21990 | 310 | 83200 | 1200 | 14550 | 250 | 1831 | 34  | 9350  | 200 |
|         |      |     |        |      |       |     |       |      |       |     |      |     |       |     |
| BK14_1  | 5180 | 310 | 106600 | 1500 | 22720 | 380 | 83300 | 1600 | 14200 | 260 | 2470 | 37  | 9640  | 180 |
| BK14_2  | 5370 | 250 | 102000 | 2100 | 22620 | 510 | 84800 | 2100 | 15200 | 370 | 2493 | 69  | 10930 | 380 |
| BK14_3  | 7570 | 320 | 103000 | 3100 | 22410 | 530 | 85500 | 2800 | 15430 | 460 | 2753 | 85  | 12180 | 290 |
| BK14_4  | 3838 | 98  | 102200 | 1400 | 22590 | 330 | 82300 | 1300 | 14820 | 210 | 2468 | 29  | 10610 | 170 |
| BK14_5  | 4297 | 87  | 103500 | 1500 | 22570 | 320 | 82900 | 1100 | 15090 | 230 | 2336 | 32  | 9770  | 200 |
| BK14_6  | 5120 | 110 | 102500 | 1600 | 22370 | 480 | 82900 | 1400 | 14420 | 260 | 2461 | 40  | 10360 | 220 |
| BK14_7  | 5420 | 230 | 102200 | 1900 | 23030 | 450 | 83300 | 1800 | 15180 | 250 | 2418 | 55  | 10070 | 240 |
| BK14_8  | 7950 | 110 | 103000 | 1400 | 22810 | 260 | 83900 | 1100 | 14650 | 230 | 2555 | 28  | 10250 | 160 |
| BK14_9  | 6780 | 350 | 103200 | 1800 | 22760 | 340 | 85000 | 1600 | 15740 | 340 | 2688 | 37  | 11500 | 240 |
| BK14_10 | 6130 | 150 | 103800 | 2000 | 22990 | 610 | 87200 | 1900 | 15510 | 430 | 2551 | 63  | 10760 | 400 |

| BK18_1   | 5320 | 140 | 107100 | 1700 | 22720 | 370 | 85100 | 1800 | 15040 | 410 | 2739 | 70  | 11110 | 390 |
|----------|------|-----|--------|------|-------|-----|-------|------|-------|-----|------|-----|-------|-----|
| BK18_2   | 3980 | 150 | 122900 | 2000 | 20890 | 400 | 71300 | 2100 | 12190 | 360 | 1965 | 48  | 7530  | 310 |
| BK18_3   | 5580 | 230 | 118000 | 3000 | 20700 | 640 | 71700 | 1700 | 12370 | 330 | 1902 | 41  | 8400  | 320 |
| BK18_4   | 3769 | 85  | 102400 | 1300 | 22280 | 310 | 80100 | 1100 | 13350 | 210 | 2131 | 35  | 8180  | 160 |
| BK18_5   | 3630 | 140 | 105000 | 1300 | 22220 | 360 | 80000 | 1200 | 13840 | 190 | 2274 | 37  | 8920  | 190 |
| BK18_6   | 4660 | 110 | 103800 | 1200 | 22260 | 290 | 82200 | 1200 | 14390 | 240 | 2218 | 31  | 9120  | 160 |
| BK18_7   | 4770 | 130 | 114500 | 2000 | 21670 | 410 | 75600 | 1500 | 13750 | 330 | 2181 | 46  | 9340  | 180 |
|          |      |     |        |      |       |     |       |      |       |     |      |     |       |     |
| BK25A_1  | 2500 | 110 | 112400 | 1800 | 21860 | 360 | 77400 | 1700 | 13210 | 350 | 2020 | 160 | 7970  | 370 |
| BK25A_2  | 2859 | 40  | 122600 | 1700 | 20250 | 250 | 67430 | 940  | 11090 | 180 | 926  | 28  | 6040  | 120 |
| BK25A_3  | 2453 | 94  | 109300 | 1400 | 21720 | 270 | 77200 | 1100 | 13080 | 170 | 1518 | 51  | 7260  | 120 |
| BK25A_4  | 3371 | 53  | 120300 | 1500 | 21100 | 230 | 72500 | 1000 | 12240 | 160 | 953  | 12  | 6780  | 110 |
| BK25A_5  | 1847 | 42  | 105800 | 1200 | 22090 | 270 | 79700 | 1300 | 14020 | 200 | 3045 | 79  | 8640  | 200 |
| BK25A_6  | 3990 | 90  | 113000 | 1800 | 21650 | 400 | 78100 | 1300 | 13110 | 270 | 1742 | 54  | 8530  | 180 |
| BK25A_7  | 3001 | 42  | 110900 | 1600 | 21980 | 260 | 78500 | 1100 | 13080 | 220 | 1339 | 71  | 7300  | 150 |
| BK25A_8  | 3293 | 82  | 107600 | 1500 | 21810 | 330 | 78800 | 1200 | 13210 | 200 | 2100 | 100 | 8380  | 180 |
| BK25A_9  | 2484 | 47  | 112900 | 1700 | 21460 | 290 | 75800 | 1200 | 12050 | 170 | 1382 | 64  | 6670  | 150 |
| BK25A_10 | 2866 | 65  | 114000 | 1900 | 21380 | 240 | 73100 | 1100 | 12200 | 200 | 1115 | 54  | 6860  | 120 |
| BK25A_11 | 2040 | 130 | 105400 | 1500 | 22060 | 340 | 79700 | 1300 | 13910 | 250 | 2379 | 82  | 8300  | 160 |
| BK25A_12 | 2782 | 55  | 115400 | 1700 | 21140 | 260 | 73500 | 1000 | 12110 | 180 | 1345 | 28  | 6602  | 97  |
| BK25A_13 | 2603 | 39  | 112600 | 1900 | 21520 | 360 | 76500 | 1300 | 12920 | 230 | 1524 | 21  | 7180  | 120 |
| BK25A_14 | 2579 | 99  | 108600 | 1500 | 21820 | 270 | 78200 | 1100 | 13290 | 180 | 2230 | 63  | 8180  | 120 |
| BK25A_15 | 2980 | 130 | 112300 | 1700 | 21900 | 360 | 78300 | 1100 | 13020 | 260 | 1314 | 97  | 7350  | 150 |
| BK25A_16 | 3499 | 80  | 111400 | 2700 | 21760 | 330 | 76700 | 1300 | 13050 | 250 | 1780 | 77  | 8110  | 170 |
| BK25A_17 | 2657 | 88  | 116200 | 2000 | 21300 | 320 | 72400 | 1200 | 11890 | 210 | 1113 | 31  | 6550  | 160 |
| BK25A_18 | 3326 | 53  | 110900 | 1300 | 21320 | 310 | 75000 | 1100 | 12590 | 180 | 1272 | 63  | 7240  | 130 |
| BK25A_19 | 3247 | 68  | 110900 | 1700 | 21630 | 290 | 78570 | 990  | 13330 | 200 | 1159 | 27  | 7380  | 110 |
| BK25A_20 | 2000 | 44  | 107800 | 1400 | 21630 | 300 | 77600 | 1100 | 12610 | 210 | 1761 | 72  | 6990  | 150 |
| BK25A_21 | 2543 | 45  | 108700 | 1700 | 22160 | 330 | 80400 | 1200 | 13410 | 250 | 1547 | 27  | 7450  | 150 |
| BK25A_22 | 2599 | 45  | 110900 | 1600 | 21680 | 350 | 77300 | 1100 | 12740 | 210 | 1432 | 22  | 6960  | 130 |
| BK25A_23 | 3079 | 82  | 111300 | 1700 | 21730 | 320 | 78400 | 1200 | 12890 | 260 | 1440 | 110 | 7500  | 260 |
| BK25A_24 | 3000 | 170 | 108200 | 2100 | 22040 | 520 | 81900 | 1600 | 13560 | 330 | 2186 | 55  | 8610  | 230 |
| BK25A_25 | 2730 | 110 | 110500 | 1900 | 22170 | 400 | 79800 | 1400 | 13230 | 220 | 1582 | 60  | 7380  | 200 |
| BK25A_26 | 3150 | 120 | 110700 | 1400 | 22050 | 270 | 78800 | 1300 | 12880 | 210 | 1514 | 75  | 7400  | 140 |

| BK25A_27 | 2460 | 220 | 106200 | 1200 | 22360 | 310 | 81000 | 1200 | 13620 | 220 | 2182 | 72  | 8390  | 230 |
|----------|------|-----|--------|------|-------|-----|-------|------|-------|-----|------|-----|-------|-----|
| BK25A_28 | 2071 | 67  | 106400 | 1500 | 22590 | 400 | 82500 | 1500 | 13860 | 210 | 2879 | 64  | 8760  | 190 |
| BK25A_29 | 3400 | 370 | 102500 | 1400 | 22490 | 300 | 82300 | 1300 | 13980 | 230 | 2696 | 40  | 9660  | 320 |
|          |      |     |        |      |       |     |       |      |       |     |      |     |       |     |
| BK25B_1  | 3054 | 53  | 112700 | 1500 | 21510 | 310 | 74900 | 1200 | 13030 | 270 | 1740 | 190 | 7650  | 280 |
| BK25B_2  | 2644 | 59  | 116500 | 1300 | 21190 | 330 | 73000 | 1200 | 11650 | 210 | 1221 | 19  | 6310  | 150 |
| BK25B_3  | 2629 | 42  | 116800 | 1400 | 21200 | 280 | 73790 | 940  | 11960 | 150 | 1201 | 16  | 6410  | 100 |
| BK25B_4  | 2140 | 67  | 106200 | 1700 | 22060 | 320 | 79400 | 1100 | 13450 | 180 | 3002 | 81  | 8730  | 200 |
| BK25B_5  | 3592 | 85  | 110700 | 2100 | 21530 | 420 | 78300 | 1500 | 12700 | 280 | 1265 | 36  | 7250  | 220 |
| BK25B_6  | 2753 | 52  | 112400 | 1400 | 21400 | 290 | 74400 | 1100 | 11680 | 160 | 1266 | 20  | 6290  | 110 |
| BK25B_7  | 3125 | 76  | 108500 | 1200 | 21690 | 260 | 78100 | 1000 | 12930 | 280 | 1176 | 60  | 7170  | 210 |
| BK25B_8  | 2641 | 46  | 117700 | 1500 | 21150 | 330 | 73200 | 1300 | 11740 | 190 | 1315 | 39  | 6530  | 120 |
| BK25B_9  | 4420 | 170 | 102600 | 1500 | 22540 | 290 | 81600 | 1200 | 14320 | 220 | 2939 | 47  | 10280 | 210 |
| BK25B_10 | 2962 | 54  | 113100 | 1800 | 21220 | 350 | 73600 | 1200 | 12400 | 230 | 1309 | 41  | 7020  | 140 |
| BK25B_11 | 3170 | 110 | 118200 | 1400 | 21000 | 300 | 72500 | 1100 | 11300 | 230 | 1211 | 20  | 6180  | 120 |
| BK25B_12 | 2932 | 66  | 112200 | 2200 | 21280 | 360 | 75600 | 1200 | 12130 | 210 | 1077 | 38  | 6470  | 130 |
| BK25B_13 | 4120 | 390 | 108700 | 2200 | 22100 | 450 | 77800 | 1700 | 13730 | 340 | 2300 | 180 | 9170  | 440 |
| BK25B_14 | 3930 | 220 | 115300 | 1600 | 20910 | 300 | 72000 | 1400 | 12330 | 270 | 1198 | 80  | 7660  | 320 |
| BK25B_15 | 2452 | 57  | 116800 | 3600 | 21090 | 390 | 73200 | 1700 | 11250 | 340 | 911  | 20  | 5890  | 130 |
| BK25B_16 | 3129 | 88  | 111800 | 1500 | 21440 | 410 | 75500 | 1300 | 12490 | 230 | 1366 | 41  | 7180  | 130 |
| BK25B_17 | 4380 | 170 | 102100 | 1400 | 22720 | 320 | 80400 | 1300 | 13990 | 270 | 2613 | 39  | 10040 | 200 |
| BK25B_18 | 3010 | 110 | 111100 | 1200 | 21380 | 250 | 75740 | 910  | 12820 | 200 | 1580 | 36  | 7400  | 160 |
| BK25B_19 | 3660 | 210 | 108300 | 1600 | 22130 | 300 | 79600 | 870  | 13760 | 200 | 2060 | 150 | 8670  | 360 |
| BK25B_20 | 3822 | 84  | 106600 | 2000 | 22290 | 390 | 80800 | 1600 | 14580 | 180 | 2621 | 98  | 9790  | 270 |
| BK25B_21 | 2574 | 46  | 107600 | 1500 | 22300 | 300 | 79700 | 1200 | 13650 | 210 | 2809 | 54  | 9020  | 170 |
| BK25B_22 | 4360 | 240 | 107800 | 2700 | 21860 | 370 | 79800 | 1700 | 13850 | 280 | 2210 | 100 | 9410  | 370 |
| BK25B_23 | 3240 | 120 | 114400 | 3900 | 21550 | 590 | 76100 | 1700 | 13300 | 360 | 1219 | 55  | 7240  | 240 |
| BK25B_24 | 5290 | 370 | 106300 | 1900 | 22200 | 400 | 80700 | 1900 | 14220 | 290 | 2417 | 62  | 10350 | 380 |
| BK25B_25 | 2485 | 61  | 119700 | 2800 | 21010 | 450 | 73100 | 1000 | 11600 | 350 | 943  | 25  | 6070  | 180 |
| BK25B_26 | 3680 | 210 | 110500 | 1300 | 21460 | 370 | 75800 | 1300 | 12850 | 280 | 1690 | 130 | 8010  | 370 |
| BK25B_27 | 3285 | 71  | 112000 | 1700 | 21420 | 320 | 75300 | 1400 | 12870 | 220 | 1670 | 150 | 7750  | 260 |
| BK25B_28 | 4242 | 69  | 115600 | 1300 | 21240 | 300 | 73910 | 890  | 12810 | 160 | 1669 | 78  | 7890  | 130 |
| BK25B_29 | 3720 | 220 | 111500 | 1500 | 21580 | 300 | 74600 | 1200 | 12760 | 190 | 1907 | 37  | 8400  | 220 |
| BK25B_30 | 4250 | 300 | 109200 | 1300 | 22100 | 290 | 77500 | 1100 | 13550 | 190 | 2254 | 63  | 9170  | 280 |
| BK25B_31 | 3470 | 140 | 111100 | 1400 | 21740 | 320 | 76700 | 880  | 13000 | 210 | 1924 | 77  | 8050  | 220 |

| BK25B_32       | 2942 | 54  | 116300 | 1800 | 21340 | 280 | 73700 | 1100 | 12220 | 210 | 1354 | 22  | 6842  | 99  |
|----------------|------|-----|--------|------|-------|-----|-------|------|-------|-----|------|-----|-------|-----|
| BK25B_33       | 3720 | 110 | 106800 | 2600 | 22150 | 390 | 78000 | 1800 | 13410 | 300 | 2369 | 61  | 8810  | 200 |
| BK25B_34       | 3840 | 120 | 102700 | 2100 | 22050 | 480 | 80400 | 1700 | 13890 | 260 | 3082 | 91  | 9250  | 190 |
| BK25B_35       | 4030 | 160 | 104900 | 1600 | 22120 | 370 | 81500 | 1500 | 14210 | 280 | 2860 | 110 | 9910  | 230 |
| BK25B_36       | 3281 | 56  | 112400 | 1900 | 20950 | 410 | 73000 | 1500 | 12530 | 280 | 1770 | 130 | 7670  | 220 |
| BK25B_37       | 3026 | 69  | 111300 | 2700 | 21970 | 520 | 81100 | 1500 | 13710 | 250 | 1363 | 22  | 7170  | 120 |
| BK25B_38       | 2940 | 290 | 102100 | 1600 | 22530 | 360 | 81600 | 1300 | 14100 | 210 | 2919 | 36  | 9190  | 240 |
| BK25B_39       | 2550 | 130 | 106100 | 1400 | 22130 | 290 | 78300 | 1100 | 13540 | 220 | 1771 | 69  | 7840  | 130 |
| BK25B_40       | 1710 | 140 | 108600 | 1700 | 21720 | 300 | 75900 | 1100 | 12880 | 180 | 2147 | 77  | 7240  | 120 |
|                |      |     |        |      |       |     |       |      |       |     |      |     |       |     |
| KTDD089_1      | 4040 | 110 | 127100 | 2000 | 19240 | 240 | 59900 | 1000 | 9850  | 230 | 1566 | 29  | 6340  | 240 |
| KTDD089_2      | 9790 | 460 | 112000 | 1800 | 21170 | 310 | 74900 | 1200 | 13900 | 380 | 2286 | 66  | 11580 | 470 |
| KTDD089_3      | 5050 | 260 | 124200 | 1700 | 19720 | 250 | 62770 | 860  | 10020 | 190 | 1717 | 27  | 6006  | 91  |
| KTDD089_4      | 4864 | 80  | 130700 | 1700 | 19010 | 290 | 59670 | 960  | 10600 | 180 | 1894 | 26  | 7020  | 100 |
| KTDD089_5      | 4190 | 130 | 130300 | 1800 | 19450 | 230 | 60970 | 950  | 9850  | 170 | 1486 | 28  | 5910  | 130 |
| KTDD089_6      | 3613 | 95  | 134500 | 1900 | 18630 | 370 | 57200 | 1000 | 9470  | 160 | 1511 | 35  | 5570  | 100 |
| KTDD089_7      | 5690 | 260 | 119300 | 1800 | 20240 | 310 | 66300 | 1700 | 11250 | 370 | 1732 | 50  | 7210  | 330 |
| KTDD089_8      | 4620 | 120 | 126500 | 1600 | 19450 | 230 | 61000 | 1000 | 10610 | 150 | 1832 | 41  | 6750  | 140 |
| KTDD089_9      | 5190 | 160 | 127100 | 1800 | 19390 | 270 | 60910 | 840  | 10870 | 220 | 1855 | 53  | 6950  | 210 |
| KTDD089_1<br>0 | 2592 | 45  | 138100 | 1900 | 18190 | 230 | 53020 | 650  | 8180  | 110 | 1280 | 17  | 4586  | 83  |
| KTDD089_1<br>1 | 4052 | 72  | 135400 | 2000 | 18490 | 280 | 55300 | 1000 | 8480  | 140 | 1423 | 21  | 5005  | 71  |
| KTDD089_1<br>2 | 3910 | 140 | 127500 | 1600 | 19040 | 290 | 58470 | 860  | 9390  | 150 | 1400 | 35  | 5600  | 110 |
| KTDD089_1<br>3 | 2830 | 160 | 127400 | 2000 | 19050 | 350 | 60200 | 940  | 9380  | 190 | 1532 | 24  | 5327  | 91  |
| KTDD089_1<br>4 | 4834 | 96  | 126300 | 1600 | 19610 | 250 | 59900 | 1100 | 9550  | 160 | 1587 | 24  | 5646  | 95  |
| KTDD089_1<br>5 | 3550 | 250 | 134300 | 2000 | 18320 | 240 | 53260 | 930  | 8080  | 260 | 1336 | 48  | 4650  | 180 |
| KTDD089_1<br>6 | 5410 | 140 | 124900 | 1400 | 19350 | 300 | 59860 | 810  | 9860  | 140 | 1744 | 22  | 6178  | 93  |
| KTDD089_1<br>7 | 3280 | 190 | 134900 | 2600 | 18530 | 290 | 54140 | 880  | 8450  | 170 | 1294 | 30  | 4830  | 110 |
| KTDD089_1<br>8 | 2708 | 44  | 107900 | 1700 | 22090 | 350 | 77900 | 1200 | 12840 | 210 | 1901 | 31  | 6890  | 130 |
|                |      |     |        |      |       |     |       |      |       |     |      |     |       |     |

|         | Tb (ppm) | 2σ | Dy (ppm) | 2σ  | Ho (ppm) | 2σ | Er (ppm) | 2σ | Tm (ppm) | 2σ | Yb (ppm) | 2σ | Lu (ppm) | 2σ |
|---------|----------|----|----------|-----|----------|----|----------|----|----------|----|----------|----|----------|----|
| BK01_1  | 562      | 10 | 1635     | 25  | 139      | 2  | 167      | 4  | 10       | 0  | 27       | 2  | 2        | 0  |
| BK01_2  | 570      | 10 | 1662     | 37  | 141      | 4  | 167      | 5  | 9        | 1  | 30       | 2  | 2        | 0  |
| BK01_3  | 722      | 30 | 2046     | 71  | 165      | 5  | 188      | 6  | 10       | 1  | 25       | 2  | 2        | 0  |
| BK01_4  | 1044     | 41 | 3450     | 160 | 301      | 15 | 337      | 17 | 16       | 1  | 42       | 3  | 2        | 0  |
| BK01_5  | 1099     | 16 | 3220     | 99  | 259      | 10 | 258      | 10 | 11       | 1  | 26       | 2  | 1        | 0  |
| BK01_6  | 1051     | 20 | 3486     | 74  | 300      | 8  | 320      | 10 | 15       | 1  | 35       | 2  | 2        | 0  |
| BK01_7  | 1041     | 14 | 3479     | 47  | 295      | 5  | 307      | 6  | 14       | 1  | 30       | 2  | 2        | 0  |
| BK01_8  | 1067     | 14 | 3575     | 51  | 305      | 5  | 317      | 5  | 15       | 1  | 32       | 2  | 2        | 0  |
| BK01_9  | 732      | 12 | 2299     | 49  | 198      | 4  | 228      | 5  | 11       | 0  | 28       | 1  | 2        | 0  |
| BK01_10 | 567      | 8  | 1708     | 26  | 149      | 3  | 169      | 4  | 9        | 0  | 24       | 1  | 1        | 0  |
| BK01_11 | 558      | 12 | 1643     | 30  | 144      | 3  | 170      | 5  | 10       | 1  | 29       | 2  | 2        | 0  |
| BK01_12 | 996      | 21 | 3244     | 82  | 274      | 7  | 291      | 7  | 14       | 1  | 34       | 2  | 2        | 0  |
| BK01_13 | 994      | 16 | 3372     | 61  | 277      | 7  | 280      | 6  | 13       | 1  | 29       | 2  | 2        | 0  |
| BK01_14 | 1047     | 16 | 3469     | 57  | 307      | 7  | 338      | 10 | 17       | 1  | 38       | 2  | 2        | 0  |
| BK01_15 | 1030     | 13 | 3493     | 46  | 302      | 4  | 323      | 6  | 16       | 1  | 36       | 2  | 2        | 0  |
| BK01_16 | 906      | 34 | 2870     | 130 | 242      | 12 | 269      | 12 | 14       | 1  | 37       | 3  | 2        | 0  |
| BK01_17 | 846      | 24 | 2570     | 130 | 218      | 16 | 237      | 20 | 11       | 1  | 32       | 2  | 2        | 0  |
| BK01_18 | 1075     | 18 | 3615     | 55  | 327      | 6  | 359      | 9  | 17       | 1  | 44       | 3  | 3        | 0  |
| BK01_19 | 1032     | 15 | 3576     | 54  | 313      | 5  | 336      | 7  | 16       | 1  | 39       | 2  | 2        | 0  |
| BK01_20 | 975      | 18 | 3277     | 68  | 290      | 5  | 318      | 7  | 16       | 0  | 36       | 2  | 2        | 0  |
| BK01_21 | 1271     | 38 | 4040     | 110 | 355      | 10 | 388      | 17 | 19       | 1  | 51       | 3  | 3        | 0  |
| BK01_22 | 1036     | 23 | 3523     | 93  | 301      | 9  | 314      | 12 | 14       | 1  | 33       | 2  | 2        | 0  |
| BK01_23 | 1098     | 17 | 3699     | 55  | 333      | 7  | 358      | 9  | 17       | 1  | 45       | 3  | 3        | 0  |
| BK01_24 | 899      | 38 | 2880     | 150 | 252      | 13 | 275      | 13 | 14       | 1  | 34       | 2  | 2        | 0  |
| BK01_25 | 1038     | 24 | 3440     | 130 | 297      | 15 | 317      | 19 | 15       | 1  | 35       | 3  | 2        | 0  |
| BK01_26 | 894      | 19 | 2529     | 68  | 204      | 5  | 223      | 6  | 12       | 0  | 32       | 2  | 2        | 0  |
| BK01_27 | 1003     | 17 | 3138     | 46  | 250      | 5  | 243      | 6  | 10       | 1  | 22       | 1  | 1        | 0  |
| BK01_28 | 896      | 41 | 2550     | 150 | 202      | 13 | 212      | 11 | 11       | 1  | 27       | 2  | 1        | 0  |
| BK01_29 | 931      | 18 | 2794     | 50  | 212      | 4  | 194      | 5  | 8        | 0  | 17       | 1  | 1        | 0  |
| BK01_30 | 600      | 11 | 1790     | 41  | 150      | 4  | 173      | 5  | 10       | 1  | 30       | 2  | 2        | 0  |
| BK01_31 | 744      | 24 | 2220     | 78  | 176      | 6  | 181      | 4  | 9        | 0  | 23       | 1  | 1        | 0  |
|         |          |    |          |     |          |    |          |    |          |    |          |    |          |    |
| BK06_1  | 904      | 20 | 2990     | 61  | 279      | 7  | 359      | 8  | 23       | 1  | 71       | 3  | 5        | 0  |
| BK06_2  | 549      | 21 | 1778     | 81  | 164      | 8  | 212      | 10 | 13       | 1  | 38       | 2  | 2        | 0  |

| BK06_3  | 720  | 10 | 2467 | 32  | 238 | 4  | 319 | 6  | 20 | 1 | 62  | 2 | 4  | 0 |
|---------|------|----|------|-----|-----|----|-----|----|----|---|-----|---|----|---|
| BK06_4  | 690  | 8  | 2189 | 36  | 197 | 3  | 241 | 5  | 14 | 0 | 40  | 2 | 3  | 0 |
| BK06_5  | 829  | 14 | 2511 | 41  | 220 | 5  | 269 | 6  | 16 | 1 | 49  | 2 | 3  | 0 |
| BK06_6  | 413  | 57 | 1390 | 250 | 134 | 26 | 183 | 38 | 11 | 2 | 37  | 8 | 4  | 1 |
| BK06_7  | 908  | 18 | 2981 | 70  | 276 | 5  | 350 | 8  | 21 | 1 | 64  | 3 | 5  | 0 |
| BK06_8  | 1067 | 18 | 3729 | 65  | 353 | 7  | 439 | 9  | 25 | 1 | 67  | 3 | 4  | 0 |
| BK06_9  | 1031 | 29 | 3587 | 67  | 351 | 6  | 483 | 10 | 32 | 1 | 105 | 5 | 8  | 0 |
| BK06_10 | 990  | 55 | 3410 | 190 | 313 | 20 | 403 | 23 | 24 | 2 | 72  | 4 | 5  | 1 |
| BK06_11 | 823  | 24 | 2609 | 57  | 231 | 6  | 295 | 7  | 17 | 1 | 53  | 3 | 3  | 0 |
| BK06_12 | 902  | 16 | 3139 | 50  | 304 | 6  | 384 | 7  | 24 | 1 | 76  | 4 | 5  | 0 |
| BK06_13 | 1048 | 19 | 3714 | 56  | 361 | 7  | 455 | 10 | 26 | 1 | 70  | 3 | 5  | 0 |
| BK06_14 | 1105 | 42 | 3670 | 160 | 334 | 15 | 390 | 16 | 23 | 1 | 60  | 4 | 4  | 1 |
| BK06_15 | 846  | 38 | 2700 | 130 | 248 | 13 | 305 | 15 | 17 | 1 | 52  | 3 | 3  | 0 |
| BK06_16 | 687  | 15 | 2282 | 40  | 208 | 5  | 267 | 7  | 16 | 1 | 45  | 2 | 3  | 0 |
| BK06_17 | 565  | 10 | 2001 | 32  | 193 | 3  | 252 | 5  | 15 | 1 | 43  | 2 | 3  | 0 |
| BK06_18 | 625  | 17 | 1995 | 67  | 187 | 7  | 230 | 8  | 13 | 1 | 39  | 2 | 3  | 0 |
| BK06_19 | 1129 | 17 | 3796 | 61  | 362 | 5  | 467 | 9  | 28 | 1 | 88  | 3 | 6  | 0 |
| BK06_20 | 401  | 31 | 869  | 84  | 56  | 6  | 45  | 6  | 2  | 0 | 4   | 1 | 0  | 0 |
| BK06_21 | 708  | 18 | 2309 | 70  | 210 | 7  | 259 | 11 | 15 | 1 | 44  | 4 | 3  | 0 |
| BK06_22 | 507  | 14 | 1584 | 54  | 147 | 6  | 185 | 8  | 11 | 1 | 32  | 2 | 2  | 0 |
| BK06_23 | 841  | 49 | 2940 | 190 | 285 | 20 | 349 | 27 | 21 | 2 | 57  | 4 | 3  | 0 |
| BK06_24 | 576  | 11 | 1905 | 40  | 179 | 4  | 226 | 5  | 14 | 1 | 42  | 2 | 3  | 0 |
| BK06_25 | 749  | 16 | 2253 | 71  | 195 | 8  | 236 | 10 | 13 | 1 | 41  | 3 | 3  | 0 |
|         |      |    |      |     |     |    |     |    |    |   |     |   |    |   |
| BK14_1  | 918  | 14 | 2790 | 110 | 244 | 17 | 314 | 29 | 20 | 2 | 69  | 8 | 5  | 1 |
| BK14_2  | 1017 | 37 | 3060 | 110 | 246 | 9  | 269 | 17 | 14 | 1 | 37  | 3 | 2  | 0 |
| BK14_3  | 1177 | 33 | 3590 | 93  | 325 | 10 | 410 | 18 | 25 | 1 | 83  | 5 | 5  | 0 |
| BK14_4  | 976  | 14 | 2545 | 41  | 173 | 5  | 173 | 6  | 9  | 0 | 24  | 2 | 2  | 0 |
| BK14_5  | 902  | 15 | 2651 | 44  | 216 | 3  | 280 | 7  | 23 | 1 | 112 | 5 | 15 | 1 |
| BK14_6  | 976  | 24 | 2837 | 57  | 231 | 5  | 279 | 7  | 17 | 1 | 53  | 2 | 4  | 0 |
| BK14_7  | 944  | 30 | 2970 | 100 | 257 | 10 | 298 | 14 | 17 | 1 | 48  | 4 | 3  | 0 |
| BK14_8  | 1031 | 13 | 3671 | 42  | 377 | 6  | 538 | 10 | 38 | 1 | 132 | 3 | 10 | 1 |
| BK14_9  | 1099 | 21 | 3322 | 80  | 292 | 13 | 364 | 22 | 23 | 2 | 76  | 7 | 5  | 1 |
| BK14_10 | 1022 | 28 | 3141 | 83  | 285 | 8  | 356 | 10 | 25 | 2 | 84  | 5 | 6  | 1 |
|         |      |    |      |     |     |    |     |    |    |   |     |   |    |   |

| BK18_1   | 979 | 23 | 2969 | 92  | 245 | 7  | 270 | 10 | 13 | 1 | 38 | 3 | 2 | 0 |
|----------|-----|----|------|-----|-----|----|-----|----|----|---|----|---|---|---|
| BK18_2   | 709 | 30 | 2357 | 83  | 205 | 6  | 257 | 8  | 15 | 1 | 47 | 2 | 3 | 0 |
| BK18_3   | 839 | 22 | 3020 | 130 | 281 | 15 | 352 | 25 | 22 | 2 | 72 | 7 | 5 | 1 |
| BK18_4   | 736 | 13 | 2138 | 38  | 179 | 4  | 208 | 7  | 11 | 1 | 33 | 2 | 2 | 0 |
| BK18_5   | 795 | 21 | 2165 | 54  | 170 | 6  | 188 | 10 | 11 | 1 | 31 | 4 | 2 | 0 |
| BK18_6   | 836 | 13 | 2643 | 46  | 232 | 4  | 268 | 8  | 15 | 1 | 43 | 2 | 3 | 0 |
| BK18_7   | 895 | 12 | 2816 | 61  | 241 | 7  | 284 | 10 | 18 | 1 | 60 | 3 | 4 | 0 |
|          |     |    |      |     |     |    |     |    |    |   |    |   |   |   |
| BK25A_1  | 630 | 22 | 1618 | 41  | 119 | 6  | 128 | 10 | 7  | 1 | 18 | 2 | 1 | 0 |
| BK25A_2  | 545 | 9  | 1737 | 23  | 156 | 3  | 191 | 3  | 11 | 0 | 29 | 2 | 2 | 0 |
| BK25A_3  | 593 | 8  | 1637 | 41  | 128 | 5  | 149 | 6  | 9  | 1 | 24 | 2 | 2 | 0 |
| BK25A_4  | 624 | 8  | 2008 | 25  | 184 | 3  | 233 | 4  | 14 | 1 | 39 | 2 | 2 | 0 |
| BK25A_5  | 704 | 17 | 1646 | 32  | 101 | 3  | 91  | 4  | 4  | 0 | 11 | 1 | 1 | 0 |
| BK25A_6  | 770 | 20 | 2306 | 56  | 182 | 3  | 199 | 5  | 10 | 0 | 27 | 2 | 2 | 0 |
| BK25A_7  | 617 | 10 | 1800 | 24  | 153 | 3  | 179 | 4  | 10 | 0 | 30 | 2 | 2 | 0 |
| BK25A_8  | 728 | 17 | 1952 | 42  | 145 | 4  | 146 | 7  | 7  | 0 | 22 | 2 | 1 | 0 |
| BK25A_9  | 546 | 12 | 1544 | 21  | 125 | 3  | 143 | 4  | 8  | 0 | 25 | 2 | 2 | 0 |
| BK25A_10 | 586 | 9  | 1776 | 32  | 154 | 4  | 183 | 7  | 10 | 1 | 29 | 2 | 2 | 0 |
| BK25A_11 | 635 | 9  | 1423 | 51  | 93  | 8  | 96  | 11 | 6  | 1 | 15 | 2 | 1 | 0 |
| BK25A_12 | 548 | 8  | 1628 | 24  | 142 | 3  | 172 | 4  | 9  | 0 | 25 | 2 | 2 | 0 |
| BK25A_13 | 569 | 8  | 1612 | 19  | 133 | 3  | 155 | 4  | 9  | 0 | 24 | 2 | 1 | 0 |
| BK25A_14 | 644 | 8  | 1640 | 42  | 123 | 6  | 136 | 8  | 8  | 0 | 21 | 2 | 1 | 0 |
| BK25A_15 | 611 | 11 | 1759 | 41  | 148 | 7  | 179 | 12 | 11 | 1 | 30 | 3 | 2 | 0 |
| BK25A_16 | 722 | 18 | 2070 | 48  | 166 | 4  | 185 | 5  | 10 | 0 | 27 | 2 | 2 | 0 |
| BK25A_17 | 543 | 16 | 1643 | 56  | 140 | 5  | 173 | 6  | 10 | 1 | 32 | 2 | 2 | 0 |
| BK25A_18 | 618 | 14 | 1852 | 34  | 162 | 3  | 193 | 4  | 11 | 0 | 29 | 2 | 2 | 0 |
| BK25A_19 | 619 | 10 | 1901 | 30  | 166 | 3  | 203 | 5  | 13 | 1 | 36 | 2 | 3 | 0 |
| BK25A_20 | 544 | 11 | 1336 | 24  | 97  | 2  | 109 | 3  | 6  | 0 | 17 | 1 | 1 | 0 |
| BK25A_21 | 583 | 8  | 1622 | 27  | 129 | 2  | 153 | 4  | 9  | 0 | 27 | 2 | 2 | 0 |
| BK25A_22 | 552 | 9  | 1554 | 29  | 131 | 2  | 156 | 4  | 9  | 0 | 26 | 2 | 1 | 0 |
| BK25A_23 | 632 | 21 | 1799 | 43  | 153 | 4  | 176 | 6  | 10 | 1 | 29 | 2 | 2 | 0 |
| BK25A_24 | 735 | 17 | 1845 | 76  | 121 | 9  | 118 | 12 | 6  | 1 | 15 | 2 | 1 | 0 |
| BK25A_25 | 623 | 21 | 1683 | 62  | 131 | 5  | 155 | 6  | 8  | 0 | 28 | 2 | 2 | 0 |
| BK25A_26 | 613 | 8  | 1795 | 45  | 153 | 7  | 189 | 11 | 10 | 1 | 31 | 2 | 2 | 0 |
| BK25A_27 | 676 | 29 | 1610 | 110 | 102 | 9  | 98  | 11 | 5  | 1 | 13 | 2 | 1 | 0 |
| BK25A_28 | 663  | 14 | 1433 | 37  | 85  | 3  | 78  | 4  | 4  | 0 | 11 | 1 | 1 | 0 |
|----------|------|----|------|-----|-----|----|-----|----|----|---|----|---|---|---|
| BK25A_29 | 831  | 43 | 2020 | 170 | 128 | 15 | 114 | 15 | 5  | 1 | 11 | 2 | 1 | 0 |
|          |      |    |      |     |     |    |     |    |    |   |    |   |   |   |
| BK25B_1  | 669  | 27 | 1918 | 37  | 150 | 3  | 169 | 8  | 9  | 1 | 27 | 2 | 2 | 0 |
| BK25B_2  | 514  | 12 | 1545 | 36  | 138 | 3  | 160 | 4  | 9  | 0 | 24 | 2 | 2 | 0 |
| BK25B_3  | 526  | 8  | 1553 | 22  | 133 | 2  | 159 | 4  | 9  | 0 | 26 | 1 | 2 | 0 |
| BK25B_4  | 741  | 16 | 1770 | 41  | 100 | 4  | 78  | 6  | 3  | 0 | 9  | 2 | 0 | 0 |
| BK25B_5  | 620  | 17 | 1875 | 46  | 172 | 4  | 211 | 4  | 13 | 1 | 38 | 2 | 2 | 0 |
| BK25B_6  | 521  | 8  | 1568 | 24  | 140 | 2  | 168 | 4  | 9  | 0 | 22 | 1 | 1 | 0 |
| BK25B_7  | 602  | 20 | 1786 | 55  | 155 | 4  | 191 | 4  | 11 | 0 | 35 | 2 | 2 | 0 |
| BK25B_8  | 531  | 8  | 1611 | 24  | 138 | 3  | 162 | 4  | 9  | 0 | 22 | 1 | 1 | 0 |
| BK25B_9  | 953  | 18 | 2525 | 62  | 171 | 5  | 145 | 6  | 7  | 0 | 16 | 1 | 1 | 0 |
| BK25B_10 | 584  | 11 | 1762 | 20  | 152 | 3  | 178 | 4  | 10 | 0 | 26 | 2 | 2 | 0 |
| BK25B_11 | 510  | 13 | 1642 | 47  | 154 | 6  | 197 | 7  | 11 | 1 | 30 | 2 | 1 | 0 |
| BK25B_12 | 536  | 11 | 1655 | 40  | 147 | 4  | 179 | 4  | 11 | 1 | 33 | 2 | 2 | 0 |
| BK25B_13 | 834  | 53 | 2380 | 170 | 176 | 13 | 173 | 14 | 9  | 1 | 20 | 3 | 1 | 0 |
| BK25B_14 | 704  | 36 | 2270 | 110 | 197 | 8  | 227 | 7  | 13 | 0 | 33 | 1 | 2 | 0 |
| BK25B_15 | 461  | 9  | 1374 | 32  | 122 | 3  | 152 | 4  | 9  | 0 | 30 | 3 | 2 | 0 |
| BK25B_16 | 596  | 9  | 1797 | 46  | 161 | 5  | 193 | 8  | 11 | 1 | 31 | 2 | 2 | 0 |
| BK25B_17 | 951  | 21 | 2533 | 78  | 173 | 7  | 150 | 6  | 6  | 0 | 17 | 2 | 1 | 0 |
| BK25B_18 | 633  | 18 | 1819 | 58  | 148 | 6  | 166 | 7  | 9  | 1 | 24 | 2 | 2 | 0 |
| BK25B_19 | 764  | 42 | 2120 | 110 | 160 | 6  | 175 | 5  | 9  | 0 | 25 | 1 | 1 | 0 |
| BK25B_20 | 891  | 20 | 2345 | 40  | 157 | 3  | 157 | 6  | 8  | 1 | 24 | 2 | 2 | 0 |
| BK25B_21 | 761  | 12 | 1826 | 28  | 108 | 2  | 91  | 3  | 4  | 0 | 10 | 1 | 1 | 0 |
| BK25B_22 | 878  | 41 | 2450 | 110 | 181 | 7  | 194 | 6  | 10 | 1 | 27 | 2 | 2 | 0 |
| BK25B_23 | 632  | 13 | 1981 | 45  | 173 | 7  | 197 | 8  | 11 | 1 | 32 | 3 | 2 | 0 |
| BK25B_24 | 1014 | 48 | 2920 | 170 | 213 | 14 | 204 | 15 | 9  | 1 | 23 | 2 | 1 | 0 |
| BK25B_25 | 511  | 11 | 1511 | 44  | 131 | 3  | 160 | 6  | 10 | 0 | 29 | 2 | 2 | 0 |
| BK25B_26 | 732  | 42 | 2130 | 120 | 170 | 6  | 184 | 4  | 9  | 0 | 28 | 2 | 2 | 0 |
| BK25B_27 | 685  | 25 | 1928 | 49  | 156 | 4  | 170 | 9  | 9  | 1 | 25 | 3 | 2 | 0 |
| BK25B_28 | 756  | 12 | 2414 | 33  | 217 | 4  | 264 | 6  | 16 | 1 | 48 | 3 | 4 | 0 |
| BK25B_29 | 773  | 28 | 2196 | 99  | 163 | 8  | 162 | 8  | 8  | 1 | 20 | 2 | 1 | 0 |
| BK25B_30 | 877  | 37 | 2470 | 130 | 175 | 10 | 166 | 10 | 8  | 1 | 21 | 2 | 1 | 0 |
| BK25B_31 | 717  | 26 | 2031 | 70  | 157 | 4  | 162 | 3  | 8  | 0 | 21 | 1 | 1 | 0 |
| BK25B_32 | 575  | 8  | 1748 | 25  | 151 | 3  | 183 | 4  | 10 | 0 | 27 | 1 | 2 | 0 |

| BK25B_33       | 815      | 18 | 2186    | 59  | 148 | 5  | 130 | 5  | 6  | 0 | 14 | 2 | 1 | 0 |
|----------------|----------|----|---------|-----|-----|----|-----|----|----|---|----|---|---|---|
| BK25B_34       | 835      | 20 | 2337    | 61  | 176 | 5  | 195 | 11 | 12 | 1 | 47 | 5 | 5 | 1 |
| BK25B_35       | 911      | 29 | 2405    | 79  | 160 | 7  | 148 | 9  | 7  | 1 | 18 | 2 | 1 | 0 |
| BK25B_36       | 685      | 15 | 2006    | 26  | 157 | 5  | 168 | 9  | 9  | 1 | 21 | 2 | 1 | 0 |
| BK25B_37       | 607      | 14 | 1855    | 41  | 163 | 3  | 197 | 5  | 11 | 1 | 31 | 2 | 3 | 0 |
| BK25B_38       | 803      | 36 | 1970    | 130 | 113 | 11 | 90  | 11 | 4  | 1 | 8  | 1 | 0 | 0 |
| BK25B_39       | 635      | 18 | 1668    | 68  | 128 | 8  | 140 | 10 | 8  | 1 | 22 | 3 | 1 | 0 |
| BK25B_40       | 544      | 10 | 1249    | 64  | 84  | 8  | 86  | 10 | 4  | 1 | 11 | 2 | 1 | 0 |
|                |          |    |         |     |     |    |     |    |    |   |    |   |   |   |
| KTDD089_1      | 605      | 19 | 2080    | 53  | 195 | 4  | 228 | 5  | 12 | 0 | 30 | 1 | 2 | 0 |
| KTDD089_2      | 1332     | 66 | 4760    | 220 | 447 | 19 | 549 | 24 | 32 | 2 | 92 | 5 | 6 | 0 |
| KTDD089_3      | 621      | 14 | 2297    | 71  | 238 | 9  | 290 | 14 | 17 | 1 | 40 | 3 | 2 | 0 |
| KTDD089_4      | 736      | 11 | 2652    | 36  | 248 | 3  | 274 | 6  | 13 | 1 | 24 | 2 | 1 | 0 |
| KTDD089_5      | 585      | 16 | 2067    | 57  | 204 | 6  | 247 | 9  | 14 | 1 | 35 | 2 | 2 | 0 |
| KTDD089_6      | 563      | 14 | 2007    | 57  | 188 | 6  | 214 | 6  | 11 | 0 | 27 | 2 | 1 | 0 |
| KTDD089_7      | 724      | 34 | 2630    | 110 | 268 | 12 | 350 | 19 | 22 | 2 | 67 | 8 | 5 | 1 |
| KTDD089_8      | 685      | 15 | 2458    | 58  | 234 | 5  | 265 | 7  | 13 | 0 | 28 | 2 | 1 | 0 |
| KTDD089_9      | 719      | 24 | 2630    | 100 | 254 | 8  | 295 | 8  | 14 | 1 | 31 | 1 | 1 | 0 |
| KTDD089_1<br>0 | 437      | 7  | 1481    | 26  | 136 | 2  | 152 | 4  | 8  | 0 | 17 | 1 | 1 | 0 |
| KTDD089_1<br>1 | 513      | 8  | 1890    | 32  | 190 | 3  | 231 | 5  | 13 | 1 | 29 | 1 | 1 | 0 |
| KTDD089_1<br>2 | 552      | 14 | 1944    | 58  | 189 | 6  | 233 | 8  | 12 | 1 | 30 | 1 | 2 | 0 |
| KTDD089_1<br>3 | 490      | 9  | 1565    | 43  | 144 | 6  | 174 | 9  | 10 | 1 | 25 | 2 | 1 | 0 |
| KTDD089_1<br>4 | 595      | 10 | 2197    | 38  | 221 | 4  | 285 | 6  | 16 | 1 | 40 | 2 | 2 | 0 |
| KTDD089_1<br>5 | 474      | 23 | 1686    | 99  | 167 | 11 | 206 | 15 | 11 | 1 | 23 | 2 | 1 | 0 |
| KTDD089_1<br>6 | 640      | 12 | 2438    | 44  | 248 | 5  | 304 | 8  | 16 | 1 | 37 | 2 | 2 | 0 |
| KTDD089_1<br>7 | 459      | 14 | 1608    | 62  | 152 | 7  | 186 | 11 | 9  | 1 | 23 | 2 | 1 | 0 |
| KTDD089_1<br>8 | 562      | 10 | 1635    | 25  | 139 | 2  | 167 | 4  | 10 | 0 | 27 | 2 | 2 | 0 |
|                |          |    |         |     |     |    |     |    |    |   |    |   |   |   |
|                | Th (ppm) | 2σ | U (ppm) | 2σ  |     |    |     |    |    |   |    |   |   |   |

| BK01_1  | 16610 | 390  | 113   | 3    |  |
|---------|-------|------|-------|------|--|
| BK01_2  | 22530 | 500  | 117   | 4    |  |
| BK01_3  | 25080 | 860  | 4200  | 890  |  |
| BK01_4  | 42000 | 1400 | 1480  | 160  |  |
| BK01_5  | 42500 | 1400 | 4290  | 310  |  |
| BK01_6  | 50600 | 2000 | 1956  | 63   |  |
| BK01_7  | 39860 | 750  | 1537  | 19   |  |
| BK01_8  | 39260 | 960  | 1595  | 26   |  |
| BK01_9  | 28370 | 860  | 673   | 53   |  |
| BK01_10 | 12490 | 490  | 142   | 4    |  |
| BK01_11 | 20760 | 350  | 187   | 10   |  |
| BK01_12 | 35600 | 490  | 2080  | 130  |  |
| BK01_13 | 14800 | 650  | 2162  | 73   |  |
| BK01_14 | 40900 | 1600 | 2280  | 130  |  |
| BK01_15 | 42600 | 1100 | 2140  | 110  |  |
| BK01_16 | 36600 | 1300 | 1680  | 220  |  |
| BK01_17 | 28500 | 1200 | 2290  | 190  |  |
| BK01_18 | 30350 | 940  | 2970  | 140  |  |
| BK01_19 | 24000 | 2400 | 1627  | 36   |  |
| BK01_20 | 33150 | 890  | 3520  | 290  |  |
| BK01_21 | 27700 | 2100 | 11500 | 1200 |  |
| BK01_22 | 24510 | 640  | 3280  | 550  |  |
| BK01_23 | 37500 | 1300 | 3170  | 270  |  |
| BK01_24 | 29360 | 790  | 1450  | 220  |  |
| BK01_25 | 50600 | 2900 | 3020  | 430  |  |
| BK01_26 | 41100 | 970  | 2390  | 230  |  |
| BK01_27 | 45600 | 1700 | 3109  | 69   |  |
| BK01_28 | 45700 | 2800 | 690   | 100  |  |
| BK01_29 | 38800 | 1300 | 2210  | 120  |  |
| BK01_30 | 24140 | 550  | 145   | 5    |  |
| BK01_31 | 20080 | 410  | 859   | 88   |  |
|         |       |      |       |      |  |
| BK06_1  | 18330 | 990  | 482   | 27   |  |
| BK06_2  | 19130 | 390  | 92    | 2    |  |
| BK06_3  | 18170 | 340  | 314   | 7    |  |

| BK06_4  | 22080 | 560  | 110  | 5   |  |
|---------|-------|------|------|-----|--|
| BK06_5  | 28720 | 450  | 148  | 11  |  |
| BK06_6  | 21800 | 3300 | 490  | 110 |  |
| BK06_7  | 32310 | 960  | 858  | 39  |  |
| BK06_8  | 60500 | 1700 | 3040 | 140 |  |
| BK06_9  | 48800 | 1600 | 5070 | 770 |  |
| BK06_10 | 43200 | 4700 | 3790 | 640 |  |
| BK06_11 | 29300 | 1000 | 436  | 57  |  |
| BK06_12 | 29700 | 2400 | 1080 | 170 |  |
| BK06_13 | 60300 | 1200 | 2838 | 87  |  |
| BK06_14 | 52400 | 4000 | 4630 | 850 |  |
| BK06_15 | 36200 | 2600 | 3120 | 460 |  |
| BK06_16 | 23920 | 550  | 162  | 9   |  |
| BK06_17 | 12500 | 230  | 81   | 4   |  |
| BK06_18 | 17630 | 700  | 675  | 68  |  |
| BK06_19 | 64500 | 2300 | 7350 | 220 |  |
| BK06_20 | 11600 | 1500 | 93   | 30  |  |
| BK06_21 | 19230 | 550  | 165  | 20  |  |
| BK06_22 | 12540 | 690  | 130  | 12  |  |
| BK06_23 | 39700 | 3900 | 1000 | 160 |  |
| BK06_24 | 17550 | 370  | 102  | 5   |  |
| BK06_25 | 26100 | 1500 | 275  | 55  |  |
|         |       |      |      |     |  |
| BK14_1  | 30330 | 680  | 5610 | 160 |  |
| BK14_2  | 29300 | 2000 | 4150 | 340 |  |
| BK14_3  | 37810 | 780  | 7740 | 260 |  |
| BK14_4  | 26130 | 710  | 5450 | 150 |  |
| BK14_5  | 44900 | 1800 | 1880 | 160 |  |
| BK14_6  | 28940 | 600  | 5130 | 340 |  |
| BK14_7  | 23400 | 1900 | 2210 | 280 |  |
| BK14_8  | 35120 | 620  | 6978 | 94  |  |
| BK14_9  | 31450 | 750  | 7150 | 220 |  |
| BK14_10 | 36100 | 1100 | 8190 | 370 |  |
|         |       |      |      |     |  |
| BK18_1  | 34750 | 900  | 3450 | 170 |  |

| BK18_2   | 17040 | 810  | 1350 | 110 |  |
|----------|-------|------|------|-----|--|
| BK18_3   | 11300 | 1600 | 1430 | 200 |  |
| BK18_4   | 19260 | 460  | 2330 | 120 |  |
| BK18_5   | 21400 | 1100 | 2900 | 170 |  |
| BK18_6   | 16110 | 930  | 1083 | 65  |  |
| BK18_7   | 18290 | 440  | 2258 | 94  |  |
|          |       |      |      |     |  |
| BK25A_1  | 27700 | 2800 | 2500 | 150 |  |
| BK25A_2  | 15000 | 380  | 297  | 83  |  |
| BK25A_3  | 19300 | 270  | 718  | 52  |  |
| BK25A_4  | 11220 | 180  | 228  | 3   |  |
| BK25A_5  | 9070  | 300  | 6410 | 270 |  |
| BK25A_6  | 33640 | 930  | 1790 | 140 |  |
| BK25A_7  | 17710 | 800  | 870  | 140 |  |
| BK25A_8  | 26960 | 540  | 2780 | 220 |  |
| BK25A_9  | 18610 | 640  | 673  | 88  |  |
| BK25A_10 | 19120 | 310  | 395  | 71  |  |
| BK25A_11 | 30900 | 1700 | 3200 | 210 |  |
| BK25A_12 | 19830 | 270  | 284  | 44  |  |
| BK25A_13 | 20220 | 360  | 656  | 25  |  |
| BK25A_14 | 24060 | 410  | 4800 | 330 |  |
| BK25A_15 | 16560 | 850  | 640  | 130 |  |
| BK25A_16 | 28140 | 810  | 1240 | 150 |  |
| BK25A_17 | 16330 | 590  | 424  | 29  |  |
| BK25A_18 | 20300 | 1600 | 930  | 170 |  |
| BK25A_19 | 16730 | 570  | 364  | 36  |  |
| BK25A_20 | 18290 | 310  | 1453 | 85  |  |
| BK25A_21 | 15940 | 330  | 833  | 22  |  |
| BK25A_22 | 18780 | 340  | 511  | 31  |  |
| BK25A_23 | 24900 | 2500 | 750  | 150 |  |
| BK25A_24 | 43800 | 1100 | 1546 | 50  |  |
| BK25A_25 | 22300 | 1500 | 895  | 82  |  |
| BK25A_26 | 18080 | 590  | 630  | 100 |  |
| BK25A_27 | 35500 | 2600 | 1840 | 160 |  |
| BK25A_28 | 33700 | 1200 | 5310 | 110 |  |

| BK25A 20  | 49400 | 1800 | 3240 | 210 |  |
|-----------|-------|------|------|-----|--|
| DIX25A_2) | 17100 | 1000 | 3240 | 210 |  |
| BK25B 1   | 17030 | 710  | 2950 | 660 |  |
| BK25B 2   | 21410 | 330  | 133  | 2   |  |
| BK25B 3   | 20910 | 340  | 130  | 3   |  |
| BK25B 4   | 14600 | 1200 | 4220 | 190 |  |
| BK25B 5   | 14230 | 670  | 509  | 81  |  |
| BK25B 6   | 6040  | 350  | 223  | 5   |  |
| BK25B 7   | 20840 | 800  | 710  | 180 |  |
| BK25B 8   | 19730 | 400  | 499  | 47  |  |
| BK25B 9   | 45100 | 1600 | 4360 | 220 |  |
| BK25B_10  | 17740 | 570  | 588  | 54  |  |
| BK25B_11  | 16110 | 460  | 207  | 6   |  |
| BK25B_12  | 16630 | 580  | 169  | 7   |  |
| BK25B_13  | 31100 | 2300 | 2040 | 260 |  |
| BK25B_14  | 22500 | 2000 | 550  | 110 |  |
| BK25B_15  | 17510 | 670  | 227  | 19  |  |
| BK25B_16  | 18180 | 380  | 568  | 79  |  |
| BK25B_17  | 31500 | 1100 | 2030 | 100 |  |
| BK25B_18  | 22770 | 760  | 715  | 84  |  |
| BK25B_19  | 30400 | 2800 | 2590 | 410 |  |
| BK25B_20  | 26790 | 610  | 5160 | 310 |  |
| BK25B_21  | 13080 | 330  | 3327 | 95  |  |
| BK25B_22  | 27600 | 2800 | 3430 | 270 |  |
| BK25B_23  | 19110 | 510  | 399  | 67  |  |
| BK25B_24  | 34700 | 2600 | 1781 | 50  |  |
| BK25B_25  | 16480 | 540  | 166  | 11  |  |
| BK25B_26  | 23400 | 1500 | 1230 | 180 |  |
| BK25B_27  | 22400 | 1800 | 1620 | 280 |  |
| BK25B_28  | 21230 | 750  | 548  | 25  |  |
| BK25B_29  | 26000 | 1300 | 1298 | 41  |  |
| BK25B_30  | 26300 | 2200 | 1993 | 82  |  |
| BK25B_31  | 20390 | 510  | 1390 | 140 |  |
| BK25B_32  | 20410 | 270  | 202  | 10  |  |
| BK25B_33  | 20240 | 650  | 1912 | 83  |  |

| BK25B_34       | 30300        | 1300 | 3590                | 230 |          |    |          |    |          |    |          |    |          |    |
|----------------|--------------|------|---------------------|-----|----------|----|----------|----|----------|----|----------|----|----------|----|
| BK25B_35       | 28000        | 1200 | 4590                | 250 |          |    |          |    |          |    |          |    |          |    |
| BK25B_36       | 28480        | 990  | 1350                | 180 |          |    |          |    |          |    |          |    |          |    |
| BK25B_37       | 24600        | 1100 | 154                 | 6   |          |    |          |    |          |    |          |    |          |    |
| BK25B_38       | 46300        | 2100 | 2906                | 89  |          |    |          |    |          |    |          |    |          |    |
| BK25B_39       | 40300        | 3100 | 1210                | 130 |          |    |          |    |          |    |          |    |          |    |
| BK25B_40       | 38900        | 1600 | 1558                | 76  |          |    |          |    |          |    |          |    |          |    |
|                |              |      |                     |     |          |    |          |    |          |    |          |    |          |    |
| KTDD089_1      | 18000        | 1200 | 191                 | 24  |          |    |          |    |          |    |          |    |          |    |
| KTDD089_2      | 17030        | 780  | 3110                | 300 |          |    |          |    |          |    |          |    |          |    |
| KTDD089_3      | 14850        | 630  | 168                 | 14  |          |    |          |    |          |    |          |    |          |    |
| KTDD089_4      | 1970         | 200  | 170                 | 4   |          |    |          |    |          |    |          |    |          |    |
| KTDD089_5      | 12160        | 260  | 158                 | 5   |          |    |          |    |          |    |          |    |          |    |
| KTDD089_6      | 7410         | 630  | 144                 | 8   |          |    |          |    |          |    |          |    |          |    |
| KTDD089_7      | 38600        | 5300 | 481                 | 66  |          |    |          |    |          |    |          |    |          |    |
| KTDD089_8      | 5210         | 180  | 165                 | 5   |          |    |          |    |          |    |          |    |          |    |
| KTDD089_9      | 4540         | 480  | 213                 | 1   |          |    |          |    |          |    |          |    |          |    |
| 0 KIDD089_1    | 4634         | 84   | 56                  | 2   |          |    |          |    |          |    |          |    |          |    |
| KTDD089_1      | 4730         | 160  | 94                  | 3   |          |    |          |    |          |    |          |    |          |    |
| 1              | 4750         | 100  | 24                  | 3   |          |    |          |    |          |    |          |    |          |    |
| KTDD089_1<br>2 | 8190         | 990  | 132                 | 5   |          |    |          |    |          |    |          |    |          |    |
| L<br>KTDD089_1 | 10010        | 200  | <i>(</i> <b>7</b> ) | 4   |          |    |          |    |          |    |          |    |          |    |
| 3              | 10010        | 300  | 67                  | 4   |          |    |          |    |          |    |          |    |          |    |
| KTDD089_1      | 12740        | 450  | 124                 | 4   |          |    |          |    |          |    |          |    |          |    |
| 4<br>KTDD089 1 |              |      |                     | -   |          |    |          |    |          |    |          |    |          |    |
| 5              | 4970         | 470  | 73                  | 8   |          |    |          |    |          |    |          |    |          |    |
| KTDD089_1      | 8850         | 440  | 140                 | 3   |          |    |          |    |          |    |          |    |          |    |
| 6<br>KTDD080-1 |              |      |                     |     |          |    |          |    |          |    |          |    |          |    |
| 7 KIDD089_1    | 5600         | 340  | 70                  | 6   |          |    |          |    |          |    |          |    |          |    |
| KTDD089_1      | 16610        | 390  | 113                 | 3   |          |    |          |    |          |    |          |    |          |    |
| 8              | 10010        | 570  | 115                 | 5   |          |    |          |    |          |    |          |    |          |    |
|                | <b>X</b> 7 ( | 2    |                     | 2   |          | 2  |          | 2  | Sec. (   | 2  |          | 2  |          | 2  |
| Sossion #2     | r (ppm)      | 2σ   | La (ppm)            | 2σ  | Pr (ppm) | 2σ | Na (ppm) | 2σ | Sm (ppm) | 2σ | Eu (ppm) | 2σ | Ga (ppm) | 2σ |
| Unknowns:      |              |      |                     |     |          |    |          |    |          |    |          |    |          |    |
|                |              |      |                     |     |          |    |          |    |          |    |          |    |          |    |

| BKDK1_1  | 11720 | 190 | 97100  | 1200 | 23570 | 330 | 89000 | 1200 | 16540 | 230 | 4173 | 67  | 13010 | 190 |
|----------|-------|-----|--------|------|-------|-----|-------|------|-------|-----|------|-----|-------|-----|
| BKDK1_2  | 11550 | 190 | 96700  | 1400 | 23030 | 280 | 89200 | 1300 | 15410 | 240 | 3412 | 66  | 11920 | 200 |
| BKDK1_3  | 11650 | 190 | 95700  | 1400 | 23130 | 310 | 89200 | 1100 | 16160 | 250 | 3710 | 68  | 12470 | 200 |
| BKDK1_4  | 11320 | 220 | 98000  | 1900 | 23750 | 470 | 90400 | 1700 | 16770 | 340 | 4147 | 76  | 12990 | 260 |
| BKDK1_5  | 10550 | 160 | 97100  | 1500 | 23170 | 350 | 86000 | 1200 | 16100 | 250 | 4030 | 61  | 12060 | 180 |
| BKDK1_6  | 13360 | 480 | 95600  | 1900 | 23010 | 330 | 89400 | 1700 | 16690 | 510 | 4090 | 250 | 15010 | 840 |
| BKDK1_7  | 7330  | 170 | 96100  | 1300 | 22730 | 360 | 82800 | 1300 | 14890 | 240 | 2856 | 42  | 9030  | 160 |
| BKDK1_8  | 8420  | 200 | 97700  | 1400 | 23100 | 310 | 83700 | 1300 | 15170 | 230 | 3411 | 66  | 10190 | 230 |
| BKDK1_9  | 8200  | 130 | 98600  | 1400 | 22220 | 290 | 78800 | 1200 | 14070 | 200 | 3307 | 39  | 8560  | 130 |
| BKDK1_10 | 6670  | 550 | 94600  | 1700 | 22930 | 500 | 83100 | 1600 | 14590 | 320 | 3010 | 170 | 10470 | 420 |
| BKDK1_11 | 8970  | 170 | 96700  | 1700 | 23200 | 420 | 85300 | 1900 | 16160 | 330 | 3712 | 62  | 10700 | 240 |
| BKDK1_12 | 10910 | 270 | 96600  | 2100 | 23390 | 480 | 87300 | 1900 | 16280 | 370 | 4212 | 78  | 12370 | 250 |
| BKDK1_13 | 11460 | 270 | 96300  | 1700 | 23390 | 480 | 88400 | 1800 | 16000 | 320 | 3730 | 120 | 12760 | 280 |
| BKDK1_14 | 11070 | 230 | 97500  | 2000 | 23440 | 460 | 87800 | 1700 | 16460 | 310 | 4413 | 96  | 12700 | 340 |
| BKDK1_15 | 11340 | 300 | 96600  | 2300 | 23130 | 510 | 87700 | 1800 | 16010 | 340 | 4199 | 99  | 12550 | 340 |
| BKDK1_16 | 9540  | 180 | 97100  | 1500 | 23010 | 330 | 85800 | 1300 | 15690 | 230 | 3971 | 54  | 11320 | 190 |
| BKDK1_17 | 10310 | 140 | 96400  | 1500 | 22950 | 300 | 84800 | 1200 | 15770 | 250 | 3898 | 46  | 11370 | 180 |
| BKDK1_18 | 9930  | 200 | 97300  | 2000 | 22850 | 450 | 86800 | 1500 | 15900 | 330 | 3975 | 74  | 11680 | 220 |
| BKDK1_19 | 9600  | 220 | 96100  | 1600 | 23100 | 410 | 85600 | 1500 | 16040 | 280 | 4150 | 68  | 12020 | 230 |
| BKDK1_20 | 12110 | 260 | 96600  | 2000 | 23420 | 510 | 89600 | 1900 | 16960 | 440 | 4000 | 100 | 13200 | 340 |
| BKDK1_21 | 11200 | 200 | 96500  | 1400 | 23190 | 330 | 87500 | 1300 | 16440 | 290 | 4055 | 66  | 12450 | 230 |
| BKDK1_22 | 10260 | 250 | 96600  | 1400 | 22790 | 330 | 87100 | 1100 | 15590 | 230 | 4030 | 100 | 11950 | 300 |
| BKDK1_23 | 11480 | 250 | 97200  | 1800 | 23220 | 450 | 86700 | 1400 | 16300 | 330 | 4121 | 84  | 12860 | 370 |
| BKDK1_24 | 10790 | 210 | 95200  | 1400 | 23150 | 350 | 86300 | 1200 | 16080 | 230 | 4115 | 58  | 11920 | 200 |
| BKDK1_25 | 11730 | 400 | 95800  | 3300 | 22960 | 770 | 88400 | 2700 | 16940 | 590 | 4410 | 150 | 13670 | 470 |
| BKDK1_26 | 11980 | 370 | 99870  | 2600 | 23580 | 560 | 88600 | 2100 | 15550 | 370 | 3696 | 84  | 12910 | 370 |
| BKDK1_27 | 10960 | 180 | 96000  | 1300 | 23010 | 330 | 87500 | 1300 | 16260 | 210 | 4044 | 54  | 12410 | 220 |
| BKDK1_28 | 11310 | 190 | 96800  | 1200 | 23530 | 340 | 88700 | 1300 | 16530 | 230 | 4135 | 49  | 12650 | 180 |
| BKDK1_29 | 11450 | 210 | 96600  | 1600 | 23130 | 460 | 86800 | 1700 | 16130 | 270 | 4037 | 74  | 12170 | 250 |
| BKDK1_30 | 7300  | 510 | 107300 | 2100 | 22260 | 340 | 81800 | 1600 | 13290 | 380 | 3170 | 170 | 10360 | 490 |
| BKDK1_31 | 11580 | 160 | 95700  | 1600 | 22890 | 370 | 87400 | 1200 | 16290 | 270 | 4070 | 67  | 12680 | 220 |
| BKDK1_32 | 11790 | 380 | 95800  | 2700 | 23140 | 560 | 87500 | 2000 | 17120 | 500 | 4580 | 120 | 14350 | 600 |
| BKDK1_33 | 11200 | 240 | 96700  | 1600 | 23230 | 460 | 85900 | 1700 | 15860 | 320 | 4209 | 86  | 11650 | 220 |
| BKDK1_34 | 11030 | 240 | 97600  | 1500 | 23200 | 330 | 87800 | 1400 | 16410 | 300 | 4053 | 54  | 12580 | 230 |
| BKDK1_35 | 10800 | 270 | 97200  | 1400 | 23150 | 320 | 86200 | 1300 | 15940 | 300 | 4086 | 77  | 11530 | 290 |

| BKDK1_36 | 11500 | 290 | 97200  | 1900 | 23740 | 510 | 90200 | 1800 | 16650 | 340 | 4020 | 120 | 12820 | 250 |
|----------|-------|-----|--------|------|-------|-----|-------|------|-------|-----|------|-----|-------|-----|
| BKDK1_37 | 10140 | 240 | 97600  | 1900 | 23360 | 490 | 88000 | 1800 | 15980 | 320 | 4121 | 74  | 11940 | 330 |
| BKDK1_38 | 11110 | 170 | 97000  | 1400 | 23540 | 340 | 88600 | 1200 | 16110 | 270 | 3689 | 55  | 12330 | 200 |
| BKDK1_39 | 12390 | 390 | 96800  | 2900 | 23330 | 650 | 89600 | 1700 | 17790 | 530 | 4570 | 120 | 14540 | 470 |
| BKDK1_40 | 11400 | 210 | 95400  | 1400 | 23090 | 330 | 87000 | 1300 | 16450 | 280 | 4028 | 48  | 12410 | 260 |
| BKDK1_41 | 11190 | 200 | 96300  | 1400 | 23160 | 420 | 87500 | 1600 | 16630 | 290 | 4373 | 72  | 12790 | 260 |
| BKDK1_42 | 10980 | 220 | 95700  | 1500 | 23290 | 430 | 87800 | 1600 | 16200 | 250 | 3930 | 71  | 12160 | 230 |
| BKDK1_43 | 11300 | 190 | 97600  | 1700 | 23390 | 370 | 88500 | 1300 | 16220 | 300 | 3678 | 55  | 12140 | 230 |
| BKDK1_44 | 12270 | 530 | 95700  | 2100 | 23090 | 640 | 86800 | 2400 | 16880 | 520 | 4410 | 130 | 14600 | 700 |
| BKDK1_45 | 11460 | 180 | 95100  | 1400 | 23410 | 430 | 87900 | 1300 | 17100 | 380 | 4339 | 65  | 13160 | 250 |
| BKDK1_46 | 11510 | 180 | 96500  | 1400 | 22890 | 350 | 87700 | 1400 | 16490 | 280 | 4240 | 62  | 12960 | 230 |
| BKDK1_47 | 12980 | 480 | 97900  | 1900 | 23680 | 450 | 89800 | 1700 | 17140 | 360 | 4440 | 150 | 14930 | 680 |
| BKDK1_48 | 13250 | 230 | 96300  | 1600 | 23430 | 450 | 87600 | 1800 | 17020 | 320 | 4390 | 120 | 14750 | 420 |
| BKDK1_49 | 11390 | 240 | 98200  | 1800 | 23770 | 500 | 89500 | 1700 | 16380 | 310 | 3862 | 63  | 12440 | 240 |
| BKDK1_50 | 10540 | 160 | 96800  | 1300 | 23010 | 350 | 87300 | 1400 | 16140 | 230 | 4068 | 66  | 12150 | 170 |
| BKDK1_51 | 11690 | 180 | 98500  | 1500 | 22970 | 340 | 87900 | 1200 | 14960 | 230 | 3002 | 41  | 11510 | 170 |
| BKDK1_52 | 10580 | 210 | 95100  | 1500 | 22970 | 340 | 86100 | 1400 | 16480 | 310 | 4170 | 110 | 13400 | 430 |
| BKDK1_53 | 10530 | 560 | 94700  | 2300 | 22840 | 610 | 90000 | 2100 | 17570 | 490 | 4860 | 140 | 15500 | 370 |
| BKDK1_54 | 9540  | 600 | 95900  | 2700 | 23380 | 520 | 89300 | 2100 | 16920 | 550 | 4550 | 170 | 13570 | 630 |
| BKDK1_55 | 11760 | 160 | 95500  | 1300 | 23640 | 380 | 88600 | 1300 | 16460 | 270 | 3862 | 48  | 12490 | 200 |
| BKDK1_56 | 10860 | 190 | 96700  | 1400 | 22870 | 300 | 85800 | 1000 | 16180 | 250 | 4105 | 56  | 12150 | 210 |
| BKDK1_57 | 11510 | 270 | 96300  | 1500 | 23260 | 350 | 87000 | 1300 | 17050 | 270 | 4460 | 83  | 13650 | 360 |
| BKDK1_58 | 10910 | 290 | 94900  | 2100 | 23030 | 410 | 87400 | 1800 | 16330 | 320 | 4207 | 75  | 12810 | 320 |
| BKDK1_59 | 11030 | 160 | 96600  | 1400 | 23230 | 340 | 87600 | 1400 | 16230 | 260 | 4044 | 53  | 12400 | 200 |
| BKDK1_60 | 12280 | 350 | 95800  | 1900 | 23490 | 590 | 88800 | 2200 | 16760 | 400 | 4330 | 130 | 14130 | 450 |
|          |       |     |        |      |       |     |       |      |       |     |      |     |       |     |
| BK05_1   | 6800  | 260 | 100600 | 2500 | 22520 | 620 | 83600 | 2000 | 14240 | 410 | 2181 | 59  | 9070  | 200 |
| BK05_2   | 7270  | 220 | 101100 | 1500 | 22600 | 550 | 84400 | 1900 | 13880 | 320 | 2114 | 55  | 9020  | 250 |
| BK05_3   | 3900  | 150 | 107600 | 2800 | 22250 | 450 | 79700 | 2100 | 13510 | 360 | 1614 | 36  | 7970  | 230 |
| BK05_4   | 3010  | 260 | 103400 | 1900 | 22620 | 420 | 83100 | 1400 | 13240 | 280 | 2009 | 54  | 7000  | 160 |
| BK05_5   | 6580  | 330 | 101800 | 1500 | 22410 | 290 | 82800 | 1400 | 14300 | 220 | 2120 | 31  | 9380  | 200 |
| BK05_6   | 4600  | 170 | 102600 | 1300 | 22710 | 350 | 84100 | 1100 | 14510 | 210 | 2482 | 38  | 9400  | 200 |
| BK05_7   | 4400  | 290 | 98600  | 3000 | 22220 | 770 | 82100 | 2200 | 13340 | 480 | 2050 | 110 | 7790  | 210 |
| BK05_8   | 5670  | 500 | 100200 | 1300 | 22630 | 270 | 84300 | 1200 | 14610 | 240 | 2111 | 68  | 9460  | 320 |
| BK05_9   | 5850  | 390 | 98900  | 1600 | 22740 | 350 | 85800 | 1500 | 15580 | 270 | 2422 | 44  | 10350 | 210 |

| BK05_10 | 4290 | 260  | 102000 | 2000 | 22420 | 380 | 80700 | 1400 | 13010 | 310 | 1579 | 43  | 7150  | 320 |
|---------|------|------|--------|------|-------|-----|-------|------|-------|-----|------|-----|-------|-----|
| BK05_11 | 7400 | 230  | 99740  | 1400 | 22530 | 320 | 82600 | 1200 | 14440 | 210 | 2330 | 41  | 9560  | 150 |
| BK05_12 | 4820 | 280  | 101900 | 1800 | 22530 | 370 | 83300 | 1300 | 14050 | 250 | 1862 | 41  | 8400  | 150 |
| BK05_13 | 3450 | 460  | 101900 | 1600 | 22650 | 450 | 83800 | 1500 | 14280 | 230 | 1929 | 51  | 8510  | 240 |
| BK05_14 | 4380 | 290  | 107700 | 1500 | 21810 | 320 | 79400 | 1200 | 13760 | 230 | 2053 | 33  | 8360  | 250 |
| BK05_15 | 3320 | 160  | 98200  | 2700 | 22350 | 730 | 80000 | 2600 | 12270 | 380 | 1693 | 63  | 6420  | 230 |
| BK05_16 | 7950 | 300  | 103600 | 3300 | 23500 | 910 | 83800 | 3200 | 15340 | 560 | 2053 | 63  | 9970  | 200 |
| BK05_17 | 3050 | 240  | 99550  | 2700 | 23040 | 750 | 85800 | 2100 | 15070 | 580 | 1940 | 81  | 9340  | 290 |
| BK05_18 | 532  | 22   | 98100  | 1800 | 22150 | 480 | 79700 | 1400 | 10270 | 220 | 713  | 19  | 3431  | 83  |
| BK05_19 | 506  | 70   | 98900  | 3700 | 21210 | 640 | 77300 | 2900 | 8860  | 280 | 723  | 25  | 2980  | 140 |
| BK05_20 | 4344 | 83   | 108400 | 1600 | 21540 | 300 | 75400 | 1100 | 13010 | 180 | 1928 | 38  | 7350  | 120 |
| BK05_21 | 4570 | 220  | 109100 | 1700 | 21440 | 450 | 72900 | 1400 | 12730 | 290 | 1860 | 36  | 7260  | 180 |
| BK05_22 | 5500 | 240  | 103800 | 2100 | 22550 | 460 | 83300 | 1900 | 14320 | 360 | 2030 | 99  | 9600  | 360 |
| BK05_23 | 6660 | 240  | 105700 | 2100 | 22200 | 400 | 81200 | 1900 | 14370 | 300 | 1610 | 100 | 9900  | 240 |
| BK05_24 | 4340 | 600  | 103700 | 2200 | 22530 | 470 | 82400 | 2100 | 13970 | 270 | 2870 | 110 | 8670  | 340 |
| BK05_25 | 5610 | 450  | 107500 | 2600 | 21820 | 450 | 79400 | 1900 | 13370 | 370 | 2087 | 42  | 8430  | 310 |
| BK05_26 | 4850 | 220  | 106100 | 2200 | 22520 | 450 | 82500 | 1700 | 14180 | 360 | 2134 | 40  | 8770  | 340 |
| BK05_27 | 7620 | 260  | 100300 | 1900 | 22870 | 370 | 84800 | 1500 | 14450 | 250 | 2276 | 28  | 9290  | 190 |
| BK05_28 | 1940 | 110  | 104700 | 3400 | 22110 | 790 | 77600 | 2600 | 11540 | 490 | 1158 | 55  | 5410  | 290 |
| BK05_29 | 9500 | 4200 | 99920  | 1700 | 22520 | 460 | 82100 | 1700 | 12570 | 390 | 1710 | 100 | 7000  | 760 |
| BK05_30 | 3260 | 250  | 102700 | 2000 | 22710 | 400 | 83700 | 1900 | 14100 | 290 | 2355 | 68  | 8150  | 190 |
| BK05_31 | 912  | 51   | 100200 | 1700 | 22130 | 400 | 79200 | 1500 | 10600 | 190 | 814  | 24  | 3800  | 100 |
| BK05_32 | 4970 | 440  | 104000 | 1400 | 22730 | 370 | 83900 | 1400 | 14720 | 300 | 2572 | 38  | 9090  | 240 |
| BK05_33 | 5560 | 350  | 99730  | 1700 | 22430 | 430 | 83800 | 1800 | 13370 | 380 | 1923 | 79  | 8490  | 410 |
| BK05_34 | 1910 | 190  | 96900  | 1500 | 22720 | 280 | 79700 | 1100 | 10520 | 170 | 951  | 36  | 4350  | 160 |
| BK05_35 | 4330 | 200  | 103100 | 2000 | 22780 | 610 | 80800 | 1400 | 13760 | 400 | 2407 | 64  | 8070  | 180 |
| BK05_36 | 2550 | 200  | 104300 | 2300 | 21960 | 610 | 80400 | 2400 | 13520 | 360 | 2110 | 40  | 7360  | 280 |
| BK05_37 | 1750 | 120  | 108400 | 2000 | 21670 | 660 | 77900 | 2300 | 13050 | 420 | 2293 | 50  | 7190  | 200 |
| BK05_38 | 6420 | 300  | 105300 | 1700 | 22590 | 350 | 85920 | 980  | 15440 | 210 | 2270 | 51  | 10910 | 210 |
| BK05_39 | 6420 | 230  | 99200  | 1500 | 22360 | 330 | 82200 | 1600 | 14000 | 270 | 2196 | 44  | 8850  | 130 |
| BK05_40 | 3110 | 350  | 104500 | 1400 | 22230 | 270 | 81000 | 1000 | 14350 | 210 | 2496 | 30  | 8390  | 190 |
| BK05_41 | 3910 | 270  | 98000  | 3500 | 21990 | 720 | 80500 | 2100 | 12120 | 640 | 1640 | 110 | 5780  | 320 |
| BK05_42 | 6570 | 260  | 100500 | 1600 | 22450 | 350 | 82800 | 1300 | 14160 | 270 | 2151 | 34  | 9240  | 200 |
| BK05_43 | 6970 | 280  | 99510  | 2200 | 22610 | 550 | 83500 | 1900 | 13860 | 430 | 2094 | 45  | 8910  | 230 |
| BK05_44 | 7890 | 130  | 99740  | 1300 | 22590 | 310 | 81900 | 1400 | 14300 | 220 | 2160 | 30  | 9540  | 140 |

| BK05_45       | 7930 | 310 | 100500 | 1800 | 22860 | 360 | 84000 | 1700 | 14800 | 320 | 2320 | 60  | 10290 | 200 |
|---------------|------|-----|--------|------|-------|-----|-------|------|-------|-----|------|-----|-------|-----|
| BK05_46       | 5290 | 230 | 100200 | 2200 | 22680 | 430 | 83500 | 1700 | 13790 | 240 | 2021 | 52  | 8700  | 270 |
| BK05_47       | 6620 | 260 | 101200 | 1500 | 22690 | 340 | 83200 | 1200 | 14380 | 250 | 2347 | 48  | 9440  | 230 |
| BK05_48       | 3620 | 280 | 106000 | 1800 | 22470 | 430 | 81800 | 1500 | 14140 | 260 | 2287 | 42  | 8120  | 180 |
|               |      |     |        |      |       |     |       |      |       |     |      |     |       |     |
| <b>KMT1_1</b> | 5920 | 190 | 102300 | 2400 | 22770 | 460 | 86600 | 1900 | 14980 | 400 | 2423 | 60  | 9860  | 320 |
| <b>KMT1_2</b> | 6230 | 180 | 101400 | 2200 | 22650 | 420 | 83900 | 1200 | 14920 | 240 | 2408 | 37  | 10070 | 170 |
| KMT1_3        | 5605 | 80  | 103100 | 1400 | 22760 | 350 | 84100 | 1300 | 14580 | 240 | 2338 | 36  | 9120  | 160 |
| KMT1_4        | 6730 | 200 | 105200 | 2900 | 22820 | 600 | 86400 | 2200 | 15090 | 360 | 2377 | 56  | 10060 | 320 |
| <b>KMT1_5</b> | 6730 | 200 | 101500 | 2400 | 23020 | 580 | 86800 | 1900 | 15610 | 360 | 2587 | 59  | 10610 | 220 |
| KMT1_6        | 5580 | 240 | 104300 | 2800 | 22440 | 780 | 84400 | 2500 | 14820 | 530 | 2266 | 69  | 9120  | 400 |
| <b>KMT1_7</b> | 6040 | 360 | 102500 | 2500 | 22790 | 690 | 86400 | 3400 | 15500 | 860 | 2719 | 93  | 11100 | 440 |
| KMT1_8        | 7880 | 240 | 102900 | 3000 | 22690 | 720 | 88900 | 3200 | 16080 | 470 | 2531 | 79  | 11430 | 380 |
| KMT1_9        | 5130 | 340 | 104300 | 3800 | 22760 | 970 | 89300 | 4200 | 16050 | 730 | 2630 | 110 | 10620 | 380 |
| KMT1_10       | 6160 | 200 | 103500 | 3800 | 23470 | 710 | 89400 | 2500 | 16080 | 470 | 2602 | 71  | 11310 | 400 |
| KMT1_11       | 4530 | 150 | 101200 | 2400 | 23190 | 460 | 86500 | 1900 | 15520 | 360 | 2563 | 70  | 10180 | 270 |
| KMT1_12       | 3970 | 100 | 102800 | 1700 | 22740 | 360 | 85700 | 1700 | 15190 | 270 | 2560 | 66  | 9680  | 310 |
| KMT1_13       | 5360 | 190 | 101000 | 1800 | 22450 | 390 | 83800 | 1600 | 15060 | 370 | 2502 | 47  | 9780  | 230 |
| KMT1_14       | 6420 | 140 | 101900 | 2400 | 22430 | 480 | 85900 | 2100 | 15250 | 370 | 2474 | 61  | 10570 | 360 |
| KMT1_15       | 5990 | 100 | 101000 | 1600 | 22570 | 350 | 84400 | 1300 | 14830 | 250 | 2409 | 38  | 9260  | 180 |
| KMT1_16       | 6650 | 140 | 102900 | 2400 | 22610 | 410 | 83700 | 1700 | 14770 | 330 | 2572 | 54  | 10170 | 220 |
| KMT1_17       | 5260 | 110 | 102600 | 1900 | 22790 | 350 | 85600 | 1400 | 14840 | 240 | 2433 | 36  | 9210  | 150 |
| KMT1_18       | 5790 | 390 | 103400 | 3400 | 23100 | 800 | 86100 | 2700 | 15650 | 660 | 2532 | 81  | 10980 | 240 |
| KMT1_19       | 4980 | 120 | 100600 | 1500 | 22560 | 340 | 84600 | 1200 | 15040 | 240 | 2660 | 43  | 10150 | 190 |
| KMT1_20       | 1390 | 160 | 109200 | 2600 | 21520 | 450 | 77500 | 2000 | 10340 | 260 | 312  | 45  | 4970  | 150 |
| KMT1_21       | 6610 | 170 | 101900 | 3100 | 23040 | 670 | 87100 | 2300 | 15700 | 410 | 2635 | 51  | 11300 | 340 |
| KMT1_22       | 7230 | 210 | 102400 | 2200 | 22610 | 520 | 85900 | 2600 | 15270 | 380 | 2632 | 61  | 10880 | 290 |
| KMT1_23       | 7650 | 220 | 103200 | 2200 | 23270 | 590 | 86000 | 2300 | 15370 | 390 | 2758 | 68  | 11640 | 280 |
| KMT1_24       | 5950 | 160 | 98200  | 1300 | 22480 | 340 | 81600 | 1200 | 15070 | 200 | 1899 | 77  | 8940  | 150 |
| KMT1_25       | 8050 | 260 | 102600 | 2400 | 23340 | 470 | 86200 | 1900 | 16060 | 350 | 2490 | 51  | 11030 | 250 |
| KMT1_26       | 7330 | 160 | 101000 | 2100 | 22560 | 420 | 83700 | 1400 | 14970 | 280 | 2468 | 41  | 10500 | 190 |
| KMT1_27       | 5680 | 110 | 103100 | 1900 | 22890 | 430 | 85500 | 1700 | 15010 | 320 | 2541 | 56  | 10490 | 270 |
| KMT1_28       | 7480 | 260 | 102300 | 2800 | 22820 | 840 | 83400 | 1900 | 15170 | 450 | 2685 | 98  | 11300 | 280 |
| KMT1_29       | 5800 | 280 | 101300 | 1300 | 22630 | 310 | 84000 | 1200 | 14910 | 250 | 2456 | 57  | 9680  | 270 |
| KMT1_30       | 6590 | 160 | 102700 | 1700 | 22640 | 340 | 84500 | 1400 | 14940 | 230 | 2507 | 43  | 10280 | 200 |

| KMT1_31  | 4740     | 150 | 103900   | 2000 | 22960    | 370 | 85200    | 1500 | 14920    | 300  | 2521     | 38  | 9950     | 190  |
|----------|----------|-----|----------|------|----------|-----|----------|------|----------|------|----------|-----|----------|------|
| KMT1_32  | 5720     | 380 | 102700   | 1700 | 23050    | 390 | 86000    | 1600 | 15380    | 270  | 2622     | 57  | 9690     | 280  |
| KMT1_33  | 8690     | 430 | 101700   | 2000 | 22820    | 430 | 85800    | 1500 | 16280    | 300  | 3073     | 65  | 12600    | 320  |
| KMT1_34  | 6240     | 850 | 87900    | 4700 | 20800    | 830 | 72900    | 4700 | 13600    | 1000 | 2670     | 140 | 9000     | 1000 |
| KMT1_35  | 10010    | 210 | 100700   | 2100 | 22970    | 490 | 85700    | 1500 | 15780    | 280  | 3027     | 46  | 11900    | 200  |
| KMT1_36  | 8350     | 350 | 100600   | 1700 | 23110    | 390 | 86400    | 1500 | 15910    | 330  | 3086     | 50  | 12110    | 270  |
| KMT1_37  | 8630     | 230 | 100400   | 2000 | 22750    | 450 | 85800    | 1800 | 15240    | 330  | 2475     | 86  | 10730    | 210  |
| KMT1_38  | 8140     | 230 | 101400   | 2300 | 22440    | 440 | 83200    | 1500 | 15270    | 370  | 2984     | 48  | 11610    | 270  |
| KMT1_39  | 6640     | 130 | 101200   | 1500 | 22660    | 400 | 85300    | 1400 | 15090    | 250  | 2366     | 37  | 9940     | 200  |
| KMT1_40  | 6370     | 340 | 101500   | 1900 | 22520    | 510 | 84000    | 1600 | 14980    | 370  | 2453     | 46  | 10200    | 270  |
| KMT1_41  | 9700     | 240 | 99600    | 2100 | 23270    | 410 | 87600    | 1700 | 16340    | 330  | 3006     | 73  | 12490    | 310  |
| KMT1_42  | 8420     | 420 | 99560    | 2800 | 22510    | 540 | 82900    | 2200 | 15870    | 390  | 3062     | 89  | 11910    | 390  |
| KMT1_43  | 5350     | 130 | 102500   | 1800 | 22780    | 460 | 86700    | 1800 | 15390    | 330  | 2450     | 70  | 9540     | 240  |
| KMT1_44  | 9070     | 200 | 101000   | 2100 | 22270    | 560 | 83600    | 1500 | 15160    | 280  | 2947     | 52  | 11290    | 300  |
|          |          |     |          |      |          |     |          |      |          |      |          |     |          |      |
|          | Tb (ppm) | 2σ  | Dy (ppm) | 2σ   | Ho (ppm) | 2σ  | Er (ppm) | 2σ   | Tm (ppm) | 2σ   | Yb (ppm) | 2σ  | Lu (ppm) | 2σ   |
| BKDK1_1  | 1404     | 17  | 5336     | 70   | 544      | 9   | 718      | 17   | 46       | 2    | 142      | 7   | 10       | 1    |
| BKDK1_2  | 1231     | 17  | 4812     | 68   | 532      | 7   | 770      | 13   | 53       | 1    | 175      | 5   | 13       | 1    |
| BKDK1_3  | 1322     | 21  | 5028     | 75   | 532      | 7   | 743      | 14   | 49       | 2    | 161      | 6   | 12       | 1    |
| BKDK1_4  | 1404     | 24  | 5227     | 91   | 521      | 11  | 684      | 20   | 42       | 2    | 137      | 6   | 9        | 1    |
| BKDK1_5  | 1315     | 20  | 4990     | 84   | 498      | 8   | 636      | 12   | 39       | 1    | 124      | 5   | 8        | 0    |
| BKDK1_6  | 1564     | 89  | 5470     | 200  | 544      | 9   | 735      | 23   | 48       | 3    | 165      | 12  | 12       | 1    |
| BKDK1_7  | 934      | 19  | 3408     | 66   | 356      | 7   | 495      | 12   | 33       | 1    | 102      | 4   | 8        | 0    |
| BKDK1_8  | 1071     | 23  | 3767     | 63   | 373      | 5   | 514      | 12   | 34       | 1    | 111      | 6   | 8        | 1    |
| BKDK1_9  | 940      | 13  | 3625     | 54   | 396      | 6   | 614      | 11   | 47       | 1    | 166      | 5   | 13       | 1    |
| BKDK1_10 | 1030     | 59  | 3150     | 190  | 266      | 17  | 303      | 24   | 17       | 2    | 52       | 5   | 4        | 0    |
| BKDK1_11 | 1133     | 19  | 4095     | 73   | 405      | 9   | 565      | 17   | 38       | 2    | 123      | 6   | 9        | 1    |
| BKDK1_12 | 1353     | 28  | 5102     | 99   | 502      | 11  | 639      | 16   | 37       | 1    | 116      | 5   | 8        | 1    |
| BKDK1_13 | 1329     | 29  | 5060     | 110  | 522      | 14  | 722      | 22   | 49       | 2    | 158      | 8   | 12       | 1    |
| BKDK1_14 | 1378     | 29  | 4982     | 88   | 488      | 14  | 613      | 18   | 38       | 2    | 119      | 5   | 8        | 1    |
| BKDK1_15 | 1357     | 32  | 4986     | 92   | 499      | 12  | 654      | 17   | 41       | 1    | 136      | 6   | 9        | 0    |
| BKDK1_16 | 1207     | 14  | 4496     | 68   | 442      | 8   | 548      | 12   | 33       | 1    | 103      | 4   | 7        | 0    |
| BKDK1_17 | 1234     | 16  | 4704     | 59   | 472      | 7   | 616      | 10   | 38       | 1    | 119      | 4   | 8        | 0    |
| BKDK1_18 | 1231     | 18  | 4448     | 83   | 446      | 10  | 559      | 14   | 35       | 1    | 111      | 5   | 8        | 1    |
| BKDK1_19 | 1253     | 20  | 4421     | 97   | 415      | 12  | 525      | 21   | 32       | 1    | 98       | 5   | 7        | 0    |

| BKDK1_20 | 1403 | 35 | 5210 | 130 | 541 | 12 | 733 | 18 | 46 | 2 | 154 | 6  | 11 | 0 |
|----------|------|----|------|-----|-----|----|-----|----|----|---|-----|----|----|---|
| BKDK1_21 | 1321 | 20 | 5113 | 74  | 516 | 10 | 674 | 15 | 42 | 1 | 133 | 5  | 9  | 1 |
| BKDK1_22 | 1275 | 24 | 4677 | 74  | 475 | 14 | 616 | 27 | 38 | 2 | 119 | 9  | 8  | 1 |
| BKDK1_23 | 1380 | 31 | 5187 | 98  | 522 | 12 | 673 | 16 | 42 | 2 | 131 | 5  | 9  | 1 |
| BKDK1_24 | 1325 | 18 | 5048 | 79  | 509 | 11 | 637 | 14 | 39 | 1 | 119 | 5  | 8  | 0 |
| BKDK1_25 | 1477 | 47 | 5490 | 140 | 537 | 14 | 652 | 18 | 41 | 2 | 126 | 5  | 8  | 1 |
| BKDK1_26 | 1344 | 33 | 5070 | 130 | 528 | 13 | 735 | 19 | 50 | 2 | 169 | 7  | 13 | 1 |
| BKDK1_27 | 1355 | 18 | 5111 | 79  | 512 | 9  | 667 | 13 | 42 | 1 | 132 | 5  | 9  | 1 |
| BKDK1_28 | 1378 | 20 | 5242 | 70  | 536 | 7  | 685 | 13 | 43 | 1 | 136 | 5  | 9  | 0 |
| BKDK1_29 | 1383 | 27 | 5253 | 91  | 523 | 12 | 654 | 12 | 40 | 1 | 126 | 5  | 8  | 1 |
| BKDK1_30 | 1037 | 56 | 3270 | 180 | 280 | 15 | 324 | 18 | 19 | 1 | 57  | 5  | 4  | 1 |
| BKDK1_31 | 1390 | 20 | 5220 | 72  | 537 | 8  | 695 | 12 | 44 | 1 | 136 | 5  | 9  | 1 |
| BKDK1_32 | 1504 | 63 | 5360 | 150 | 498 | 10 | 609 | 18 | 38 | 2 | 114 | 7  | 8  | 1 |
| BKDK1_33 | 1281 | 24 | 4994 | 98  | 508 | 9  | 662 | 14 | 40 | 1 | 129 | 5  | 9  | 1 |
| BKDK1_34 | 1365 | 21 | 5075 | 98  | 501 | 13 | 647 | 17 | 40 | 1 | 133 | 5  | 9  | 0 |
| BKDK1_35 | 1268 | 30 | 4940 | 110 | 500 | 12 | 639 | 15 | 40 | 1 | 127 | 5  | 9  | 0 |
| BKDK1_36 | 1368 | 25 | 5110 | 110 | 524 | 15 | 690 | 27 | 44 | 2 | 140 | 9  | 10 | 1 |
| BKDK1_37 | 1258 | 27 | 4650 | 88  | 450 | 11 | 558 | 18 | 34 | 1 | 105 | 4  | 7  | 0 |
| BKDK1_38 | 1296 | 19 | 4882 | 63  | 506 | 7  | 689 | 11 | 47 | 1 | 151 | 5  | 10 | 1 |
| BKDK1_39 | 1583 | 46 | 5450 | 120 | 512 | 12 | 630 | 22 | 39 | 2 | 116 | 7  | 8  | 1 |
| BKDK1_40 | 1352 | 22 | 5163 | 74  | 527 | 9  | 694 | 17 | 44 | 2 | 140 | 6  | 10 | 1 |
| BKDK1_41 | 1399 | 27 | 5236 | 82  | 512 | 9  | 634 | 11 | 39 | 1 | 113 | 4  | 7  | 0 |
| BKDK1_42 | 1313 | 21 | 5014 | 89  | 513 | 9  | 682 | 16 | 43 | 2 | 138 | 5  | 9  | 1 |
| BKDK1_43 | 1298 | 22 | 4967 | 78  | 524 | 9  | 730 | 12 | 47 | 1 | 154 | 4  | 11 | 0 |
| BKDK1_44 | 1565 | 50 | 5500 | 160 | 517 | 16 | 639 | 24 | 38 | 3 | 121 | 10 | 8  | 1 |
| BKDK1_45 | 1470 | 23 | 5529 | 87  | 539 | 10 | 652 | 13 | 39 | 1 | 118 | 4  | 7  | 1 |
| BKDK1_46 | 1432 | 21 | 5302 | 87  | 524 | 8  | 673 | 14 | 42 | 1 | 127 | 5  | 9  | 0 |
| BKDK1_47 | 1618 | 74 | 5680 | 170 | 556 | 11 | 707 | 15 | 45 | 2 | 137 | 5  | 10 | 1 |
| BKDK1_48 | 1597 | 37 | 5645 | 91  | 541 | 11 | 709 | 21 | 45 | 2 | 141 | 9  | 10 | 1 |
| BKDK1_49 | 1320 | 21 | 5057 | 94  | 525 | 10 | 716 | 19 | 47 | 2 | 156 | 7  | 12 | 1 |
| BKDK1_50 | 1319 | 20 | 4978 | 70  | 492 | 7  | 628 | 10 | 39 | 1 | 118 | 4  | 8  | 1 |
| BKDK1_51 | 1191 | 16 | 4684 | 61  | 531 | 9  | 798 | 15 | 58 | 2 | 200 | 6  | 15 | 1 |
| BKDK1_52 | 1397 | 35 | 4884 | 83  | 466 | 16 | 594 | 27 | 36 | 2 | 111 | 8  | 8  | 1 |
| BKDK1_53 | 1569 | 44 | 4730 | 170 | 382 | 19 | 430 | 32 | 27 | 3 | 84  | 9  | 6  | 1 |
| BKDK1_54 | 1358 | 34 | 4630 | 230 | 415 | 39 | 496 | 65 | 27 | 4 | 84  | 13 | 6  | 1 |

| BKDK1_55 | 1354 | 17 | 5198 | 76  | 544 | 7  | 744 | 13 | 48 | 1 | 155 | 5  | 11 | 0 |
|----------|------|----|------|-----|-----|----|-----|----|----|---|-----|----|----|---|
| BKDK1_56 | 1343 | 21 | 5105 | 83  | 511 | 8  | 652 | 12 | 41 | 1 | 126 | 4  | 8  | 0 |
| BKDK1_57 | 1494 | 32 | 5504 | 96  | 522 | 9  | 641 | 14 | 37 | 1 | 115 | 3  | 7  | 0 |
| BKDK1_58 | 1400 | 28 | 5184 | 99  | 490 | 12 | 596 | 17 | 35 | 2 | 102 | 5  | 7  | 1 |
| BKDK1_59 | 1337 | 19 | 5155 | 81  | 518 | 8  | 678 | 13 | 42 | 1 | 129 | 4  | 9  | 1 |
| BKDK1_60 | 1526 | 50 | 5530 | 110 | 531 | 11 | 681 | 21 | 44 | 2 | 138 | 7  | 10 | 1 |
|          |      |    |      |     |     |    |     |    |    |   |     |    |    |   |
| BK05_1   | 877  | 21 | 3008 | 79  | 274 | 9  | 331 | 14 | 21 | 1 | 72  | 5  | 7  | 1 |
| BK05_2   | 888  | 28 | 3170 | 130 | 286 | 10 | 334 | 24 | 19 | 4 | 81  | 32 | 10 | 5 |
| BK05_3   | 695  | 15 | 2179 | 50  | 190 | 6  | 232 | 9  | 15 | 1 | 47  | 4  | 5  | 1 |
| BK05_4   | 555  | 14 | 1591 | 73  | 129 | 9  | 143 | 14 | 9  | 2 | 38  | 14 | 4  | 2 |
| BK05_5   | 938  | 34 | 3140 | 130 | 271 | 11 | 293 | 9  | 15 | 1 | 38  | 3  | 2  | 0 |
| BK05_6   | 837  | 22 | 2429 | 66  | 191 | 6  | 188 | 6  | 9  | 1 | 21  | 1  | 1  | 0 |
| BK05_7   | 675  | 24 | 2180 | 100 | 189 | 11 | 201 | 10 | 9  | 1 | 23  | 2  | 1  | 0 |
| BK05_8   | 883  | 47 | 2790 | 200 | 228 | 19 | 232 | 21 | 10 | 1 | 21  | 2  | 1  | 0 |
| BK05_9   | 955  | 30 | 2950 | 140 | 249 | 13 | 271 | 14 | 14 | 1 | 37  | 3  | 3  | 0 |
| BK05_10  | 632  | 38 | 2100 | 150 | 190 | 14 | 231 | 17 | 16 | 2 | 60  | 8  | 5  | 1 |
| BK05_11  | 958  | 20 | 3330 | 94  | 298 | 8  | 348 | 12 | 21 | 2 | 70  | 9  | 8  | 2 |
| BK05_12  | 740  | 22 | 2350 | 100 | 202 | 11 | 220 | 12 | 12 | 1 | 38  | 5  | 4  | 1 |
| BK05_13  | 697  | 41 | 1960 | 180 | 150 | 17 | 146 | 19 | 7  | 1 | 13  | 2  | 1  | 0 |
| BK05_14  | 745  | 33 | 2330 | 130 | 196 | 11 | 219 | 11 | 12 | 1 | 31  | 2  | 2  | 0 |
| BK05_15  | 552  | 15 | 1681 | 52  | 142 | 5  | 148 | 7  | 8  | 1 | 25  | 3  | 2  | 0 |
| BK05_16  | 1009 | 30 | 3730 | 120 | 356 | 14 | 399 | 20 | 20 | 1 | 57  | 3  | 4  | 1 |
| BK05_17  | 747  | 18 | 1984 | 63  | 156 | 10 | 185 | 21 | 14 | 3 | 55  | 17 | 4  | 2 |
| BK05_18  | 174  | 4  | 368  | 11  | 23  | 1  | 22  | 2  | 1  | 0 | 2   | 1  | 0  | 0 |
| BK05_19  | 144  | 6  | 303  | 16  | 23  | 3  | 27  | 6  | 2  | 1 | 8   | 4  | 1  | 0 |
| BK05_20  | 684  | 10 | 2231 | 32  | 219 | 4  | 355 | 7  | 32 | 1 | 134 | 4  | 12 | 1 |
| BK05_21  | 695  | 23 | 2295 | 81  | 228 | 11 | 355 | 23 | 29 | 2 | 105 | 8  | 8  | 1 |
| BK05_22  | 896  | 32 | 2840 | 100 | 239 | 8  | 261 | 7  | 14 | 1 | 38  | 4  | 2  | 0 |
| BK05_23  | 983  | 26 | 3318 | 98  | 303 | 9  | 361 | 8  | 20 | 1 | 56  | 3  | 4  | 0 |
| BK05_24  | 744  | 59 | 2250 | 240 | 186 | 24 | 201 | 24 | 10 | 1 | 23  | 3  | 2  | 0 |
| BK05_25  | 834  | 42 | 2750 | 180 | 242 | 18 | 261 | 19 | 13 | 1 | 32  | 2  | 2  | 0 |
| BK05_26  | 792  | 31 | 2480 | 110 | 214 | 10 | 234 | 10 | 13 | 1 | 33  | 2  | 2  | 0 |
| BK05_27  | 947  | 23 | 3413 | 94  | 316 | 10 | 342 | 13 | 17 | 1 | 38  | 3  | 2  | 0 |
| BK05_28  | 417  | 25 | 1176 | 72  | 94  | 8  | 105 | 8  | 6  | 1 | 18  | 3  | 1  | 0 |

|         | < <b>7</b> 0 | 150 | 2000 | 1000 | 120 | 100 | 1010 | 150 | 0.0 | 10 | 0.00 | 410 | 00 |    |
|---------|--------------|-----|------|------|-----|-----|------|-----|-----|----|------|-----|----|----|
| BK05_29 | 670          | 150 | 2900 | 1000 | 420 | 190 | 1010 | 470 | 99  | 49 | 820  | 410 | 88 | 45 |
| BK05_30 | 635          | 16  | 1798 | 69   | 149 | 9   | 159  | 13  | 8   | 1  | 23   | 3   | 2  | 0  |
| BK05_31 | 234          | 10  | 578  | 33   | 42  | 3   | 43   | 4   | 2   | 0  | 6    | 1   | 0  | 0  |
| BK05_32 | 824          | 39  | 2530 | 170  | 212 | 16  | 223  | 16  | 11  | 1  | 26   | 2   | 2  | 0  |
| BK05_33 | 815          | 46  | 2690 | 150  | 223 | 13  | 226  | 13  | 10  | 1  | 23   | 2   | 1  | 0  |
| BK05_34 | 307          | 20  | 937  | 75   | 81  | 8   | 89   | 9   | 7   | 2  | 41   | 18  | 3  | 1  |
| BK05_35 | 696          | 23  | 2145 | 76   | 187 | 8   | 223  | 15  | 14  | 2  | 54   | 10  | 6  | 2  |
| BK05_36 | 559          | 32  | 1570 | 110  | 123 | 9   | 150  | 10  | 10  | 1  | 37   | 2   | 4  | 1  |
| BK05_37 | 506          | 18  | 1222 | 65   | 91  | 6   | 108  | 10  | 7   | 1  | 23   | 4   | 2  | 0  |
| BK05_38 | 1003         | 28  | 3170 | 110  | 276 | 9   | 328  | 9   | 18  | 1  | 49   | 3   | 3  | 0  |
| BK05_39 | 877          | 20  | 3000 | 84   | 261 | 10  | 267  | 8   | 13  | 1  | 30   | 2   | 2  | 0  |
| BK05_40 | 679          | 36  | 1840 | 140  | 140 | 13  | 143  | 13  | 7   | 1  | 19   | 2   | 1  | 0  |
| BK05_41 | 464          | 29  | 1525 | 86   | 169 | 9   | 286  | 25  | 32  | 2  | 171  | 12  | 21 | 3  |
| BK05_42 | 910          | 24  | 3075 | 98   | 271 | 9   | 288  | 11  | 14  | 1  | 32   | 2   | 2  | 0  |
| BK05_43 | 891          | 25  | 3193 | 97   | 268 | 10  | 289  | 14  | 15  | 2  | 47   | 8   | 5  | 1  |
| BK05_44 | 1001         | 14  | 3543 | 56   | 315 | 5   | 333  | 6   | 15  | 1  | 36   | 2   | 2  | 0  |
| BK05_45 | 1046         | 27  | 3590 | 130  | 315 | 11  | 343  | 11  | 16  | 1  | 41   | 2   | 2  | 0  |
| BK05_46 | 816          | 28  | 2610 | 110  | 215 | 7   | 231  | 10  | 11  | 1  | 29   | 4   | 2  | 0  |
| BK05_47 | 918          | 20  | 3061 | 86   | 273 | 8   | 310  | 9   | 16  | 1  | 43   | 3   | 3  | 0  |
| BK05_48 | 679          | 26  | 1970 | 110  | 156 | 10  | 159  | 11  | 7   | 1  | 17   | 2   | 1  | 0  |
| _       |              |     |      |      |     |     |      |     |     |    |      |     |    |    |
| KMT1_1  | 899          | 33  | 2872 | 79   | 270 | 8   | 342  | 10  | 22  | 1  | 71   | 4   | 5  | 0  |
| KMT1_2  | 935          | 17  | 2988 | 57   | 281 | 7   | 379  | 10  | 26  | 1  | 90   | 4   | 7  | 0  |
| KMT1_3  | 838          | 12  | 2718 | 37   | 262 | 4   | 356  | 7   | 25  | 1  | 78   | 2   | 6  | 0  |
| KMT1_4  | 975          | 29  | 3127 | 90   | 288 | 8   | 368  | 13  | 25  | 1  | 82   | 6   | 7  | 1  |
| KMT1_5  | 1023         | 23  | 3221 | 68   | 271 | 8   | 319  | 11  | 18  | 1  | 54   | 3   | 4  | 0  |
| KMT1 6  | 816          | 38  | 2610 | 120  | 246 | 11  | 340  | 14  | 23  | 2  | 86   | 5   | 7  | 1  |
| KMT1 7  | 1016         | 40  | 3010 | 130  | 228 | 18  | 235  | 19  | 13  | 2  | 35   | 4   | 3  | 0  |
| KMT1 8  | 1129         | 35  | 3700 | 120  | 322 | 10  | 381  | 16  | 19  | 1  | 55   | 6   | 4  | 1  |
| KMT1 9  | 938          | 26  | 2660 | 110  | 201 | 13  | 233  | 23  | 13  | 2  | 38   | 7   | 3  | 1  |
| KMT1 10 | 1024         | 32  | 3027 | 85   | 251 | 9   | 283  | 13  | 16  | 2  | 43   | 5   | 3  | 0  |
| KMT1 11 | 875          | 21  | 2364 | 72   | 184 | 8   | 207  | 11  | 13  | 1  | 40   | 3   | 3  | 0  |
| KMT1 12 | 830          | 26  | 2339 | 62   | 173 | 5   | 183  | 7   | 10  | 1  | 31   | 2   | 3  | 0  |
| KMT1 13 | 874          | 24  | 2716 | 86   | 238 | 9   | 280  | 14  | 17  | 1  | 56   | 4   | 4  | 0  |
| KMT1_14 | 987          | 25  | 3047 | 73   | 265 | 7   | 333  | 16  | 21  | 1  | 74   | 8   | 6  | 1  |

| KMT1_15 | 842      | 13   | 2780    | 39  | 274 | 5  | 376 | 9  | 26 | 1 | 89  | 3  | 7  | 0 |
|---------|----------|------|---------|-----|-----|----|-----|----|----|---|-----|----|----|---|
| KMT1_16 | 969      | 19   | 3032    | 55  | 259 | 5  | 284 | 9  | 15 | 1 | 42  | 2  | 3  | 0 |
| KMT1_17 | 806      | 12   | 2504    | 43  | 241 | 5  | 341 | 9  | 25 | 1 | 91  | 3  | 8  | 0 |
| KMT1_18 | 1004     | 32   | 2980    | 140 | 238 | 19 | 258 | 24 | 14 | 2 | 40  | 5  | 3  | 0 |
| KMT1_19 | 910      | 15   | 2593    | 46  | 207 | 6  | 235 | 10 | 14 | 1 | 39  | 3  | 3  | 0 |
| KMT1_20 | 348      | 14   | 927     | 56  | 76  | 7  | 83  | 10 | 5  | 1 | 14  | 2  | 1  | 0 |
| KMT1_21 | 1066     | 27   | 3120    | 87  | 248 | 7  | 277 | 7  | 16 | 1 | 46  | 4  | 3  | 0 |
| KMT1_22 | 1070     | 18   | 3378    | 79  | 281 | 8  | 317 | 14 | 17 | 1 | 49  | 4  | 3  | 1 |
| KMT1_23 | 1114     | 18   | 3549    | 80  | 306 | 8  | 342 | 11 | 17 | 1 | 52  | 4  | 4  | 0 |
| KMT1_24 | 905      | 15   | 3143    | 57  | 302 | 7  | 449 | 14 | 38 | 2 | 159 | 10 | 14 | 1 |
| KMT1_25 | 1063     | 31   | 3700    | 110 | 346 | 9  | 415 | 14 | 24 | 2 | 75  | 6  | 5  | 1 |
| KMT1_26 | 1023     | 15   | 3433    | 57  | 314 | 6  | 391 | 7  | 22 | 1 | 63  | 3  | 5  | 0 |
| KMT1_27 | 980      | 28   | 2958    | 61  | 241 | 5  | 274 | 8  | 17 | 1 | 56  | 3  | 4  | 0 |
| KMT1_28 | 1105     | 25   | 3590    | 99  | 296 | 9  | 316 | 15 | 16 | 1 | 41  | 6  | 3  | 0 |
| KMT1_29 | 879      | 29   | 2840    | 120 | 266 | 11 | 337 | 13 | 20 | 1 | 66  | 4  | 5  | 1 |
| KMT1_30 | 987      | 22   | 3154    | 68  | 276 | 5  | 324 | 8  | 19 | 1 | 56  | 3  | 4  | 0 |
| KMT1_31 | 891      | 17   | 2559    | 58  | 203 | 7  | 225 | 12 | 13 | 1 | 39  | 4  | 3  | 0 |
| KMT1_32 | 877      | 32   | 2820    | 140 | 271 | 19 | 356 | 31 | 23 | 2 | 73  | 8  | 6  | 1 |
| KMT1_33 | 1308     | 45   | 4010    | 160 | 337 | 17 | 388 | 22 | 22 | 2 | 69  | 5  | 5  | 1 |
| KMT1_34 | 930      | 110  | 2980    | 370 | 237 | 34 | 242 | 40 | 14 | 2 | 39  | 7  | 3  | 1 |
| KMT1_35 | 1300     | 26   | 4490    | 110 | 389 | 11 | 416 | 13 | 21 | 1 | 50  | 3  | 3  | 0 |
| KMT1_36 | 1242     | 27   | 3920    | 130 | 321 | 15 | 345 | 15 | 17 | 1 | 46  | 3  | 3  | 0 |
| KMT1_37 | 1105     | 23   | 3797    | 76  | 347 | 7  | 403 | 12 | 22 | 1 | 62  | 5  | 4  | 1 |
| KMT1_38 | 1216     | 27   | 3890    | 110 | 319 | 10 | 324 | 10 | 15 | 1 | 38  | 2  | 3  | 0 |
| KMT1_39 | 925      | 17   | 3044    | 51  | 293 | 5  | 401 | 8  | 28 | 1 | 97  | 4  | 8  | 0 |
| KMT1_40 | 961      | 28   | 3030    | 150 | 261 | 15 | 298 | 14 | 17 | 1 | 50  | 3  | 3  | 0 |
| KMT1_41 | 1319     | 28   | 4450    | 100 | 385 | 10 | 427 | 13 | 22 | 1 | 59  | 4  | 4  | 0 |
| KMT1_42 | 1232     | 45   | 4020    | 150 | 332 | 17 | 359 | 21 | 19 | 1 | 47  | 4  | 4  | 0 |
| KMT1_43 | 855      | 21   | 2725    | 63  | 247 | 6  | 316 | 11 | 20 | 1 | 63  | 3  | 5  | 0 |
| KMT1_44 | 1226     | 24   | 4127    | 84  | 361 | 8  | 400 | 10 | 20 | 1 | 49  | 3  | 4  | 0 |
|         |          |      |         |     |     |    |     |    |    |   |     |    |    |   |
|         | Th (ppm) | 2σ   | U (ppm) | 2σ  |     |    |     |    |    |   |     |    |    |   |
| BKDK1_1 | 109000   | 4200 | 3440    | 120 |     |    |     |    |    |   |     |    |    |   |
| BKDK1_2 | 140800   | 3600 | 2549    | 47  |     |    |     |    |    |   |     |    |    |   |
| BKDK1_3 | 121600   | 3100 | 3027    | 97  |     |    |     |    |    |   |     |    |    |   |

| BKDK1_4  | 102500 | 3400 | 4060  | 260  |
|----------|--------|------|-------|------|
| BKDK1_5  | 80700  | 1900 | 3136  | 76   |
| BKDK1_6  | 134600 | 6800 | 11900 | 2200 |
| BKDK1_7  | 3160   | 150  | 3058  | 49   |
| BKDK1_8  | 4190   | 490  | 7090  | 700  |
| BKDK1_9  | 668    | 20   | 3459  | 71   |
| BKDK1_10 | 6060   | 330  | 14010 | 800  |
| BKDK1_11 | 10200  | 1000 | 7010  | 660  |
| BKDK1_12 | 78400  | 1800 | 4250  | 190  |
| BKDK1_13 | 127800 | 4500 | 4170  | 430  |
| BKDK1_14 | 79500  | 3700 | 6770  | 940  |
| BKDK1_15 | 29100  | 2800 | 10120 | 500  |
| BKDK1_16 | 37100  | 1600 | 6120  | 250  |
| BKDK1_17 | 22100  | 1100 | 6640  | 200  |
| BKDK1_18 | 68000  | 1900 | 4670  | 220  |
| BKDK1_19 | 71800  | 3200 | 7700  | 640  |
| BKDK1_20 | 122300 | 3000 | 4880  | 180  |
| BKDK1_21 | 107900 | 3700 | 3630  | 190  |
| BKDK1_22 | 86400  | 6300 | 4180  | 650  |
| BKDK1_23 | 100600 | 2400 | 4560  | 620  |
| BKDK1_24 | 92500  | 3000 | 3445  | 57   |
| BKDK1_25 | 113900 | 4400 | 6310  | 730  |
| BKDK1_26 | 135800 | 4600 | 4870  | 490  |
| BKDK1_27 | 96300  | 3100 | 3345  | 82   |
| BKDK1_28 | 96600  | 1700 | 3421  | 55   |
| BKDK1_29 | 28600  | 1300 | 6640  | 180  |
| BKDK1_30 | 6310   | 710  | 11600 | 1400 |
| BKDK1_31 | 113000 | 2800 | 4230  | 150  |
| BKDK1_32 | 101400 | 2400 | 8400  | 1000 |
| BKDK1_33 | 86000  | 3000 | 4100  | 100  |
| BKDK1 34 | 104700 | 2500 | 5460  | 360  |
| BKDK1_35 | 69200  | 6900 | 4720  | 240  |
| BKDK1 36 | 108900 | 7400 | 4520  | 560  |
| BKDK1 37 | 50600  | 2300 | 5080  | 710  |
| BKDK1_38 | 118000 | 2300 | 3670  | 250  |

| BKDK1_39 | 94800  | 5500  | 9520  | 830  |  |
|----------|--------|-------|-------|------|--|
| BKDK1_40 | 108400 | 5500  | 3625  | 91   |  |
| BKDK1_41 | 87000  | 1800  | 5240  | 180  |  |
| BKDK1_42 | 110100 | 4200  | 3135  | 71   |  |
| BKDK1_43 | 129000 | 2500  | 2951  | 68   |  |
| BKDK1_44 | 102800 | 5000  | 9700  | 1700 |  |
| BKDK1_45 | 83300  | 2600  | 4340  | 280  |  |
| BKDK1_46 | 96000  | 1800  | 4620  | 330  |  |
| BKDK1_47 | 115200 | 2600  | 10000 | 2000 |  |
| BKDK1_48 | 119100 | 5600  | 11930 | 520  |  |
| BKDK1_49 | 120700 | 4700  | 3101  | 62   |  |
| BKDK1_50 | 75300  | 4000  | 3990  | 160  |  |
| BKDK1_51 | 137300 | 2700  | 2211  | 46   |  |
| BKDK1_52 | 98200  | 2900  | 8100  | 1500 |  |
| BKDK1_53 | 100000 | 10000 | 15000 | 1200 |  |
| BKDK1_54 | 87300  | 4400  | 8900  | 2000 |  |
| BKDK1_55 | 132200 | 2300  | 3205  | 43   |  |
| BKDK1_56 | 84700  | 1700  | 3300  | 170  |  |
| BKDK1_57 | 95000  | 3800  | 6860  | 550  |  |
| BKDK1_58 | 70600  | 3100  | 5880  | 730  |  |
| BKDK1_59 | 97200  | 2000  | 3201  | 55   |  |
| BKDK1_60 | 111300 | 4200  | 7300  | 1000 |  |
|          |        |       |       |      |  |
| BK05_1   | 13350  | 400   | 2498  | 79   |  |
| BK05_2   | 14200  | 1700  | 4040  | 900  |  |
| BK05_3   | 22000  | 580   | 667   | 81   |  |
| BK05_4   | 16200  | 1300  | 990   | 130  |  |
| BK05_5   | 19780  | 440   | 2470  | 150  |  |
| BK05_6   | 22360  | 750   | 3050  | 180  |  |
| BK05_7   | 12420  | 420   | 1336  | 55   |  |
| BK05_8   | 17800  | 1600  | 1810  | 220  |  |
| BK05_9   | 23700  | 1100  | 3690  | 260  |  |
| BK05_10  | 14600  | 1700  | 1190  | 100  |  |
| BK05_11  | 15710  | 590   | 2922  | 99   |  |
| BK05_12  | 9020   | 410   | 1890  | 190  |  |

| BK05_13 | 9020   | 910   | 780  | 180  |  |
|---------|--------|-------|------|------|--|
| BK05_14 | 16990  | 380   | 1830 | 240  |  |
| BK05_15 | 11670  | 500   | 1076 | 52   |  |
| BK05_16 | 16190  | 620   | 2790 | 110  |  |
| BK05_17 | 18600  | 1000  | 1240 | 150  |  |
| BK05_18 | 2300   | 54    | 57   | 24   |  |
| BK05_19 | 4200   | 360   | 105  | 46   |  |
| BK05_20 | 13010  | 290   | 272  | 5    |  |
| BK05_21 | 12400  | 1700  | 310  | 22   |  |
| BK05_22 | 24370  | 930   | 2460 | 270  |  |
| BK05_23 | 28950  | 610   | 1770 | 220  |  |
| BK05_24 | 17000  | 1900  | 1670 | 310  |  |
| BK05_25 | 20100  | 1200  | 1390 | 170  |  |
| BK05_26 | 19600  | 1800  | 1540 | 160  |  |
| BK05_27 | 11360  | 470   | 2860 | 160  |  |
| BK05_28 | 9590   | 840   | 134  | 34   |  |
| BK05_29 | 104000 | 47000 | 9700 | 4100 |  |
| BK05_30 | 12340  | 510   | 1190 | 140  |  |
| BK05_31 | 5460   | 290   | 570  | 170  |  |
| BK05_32 | 18100  | 1200  | 1760 | 210  |  |
| BK05_33 | 17500  | 1000  | 1920 | 190  |  |
| BK05_34 | 5190   | 410   | 401  | 49   |  |
| BK05_35 | 16600  | 2100  | 1510 | 150  |  |
| BK05_36 | 15050  | 920   | 561  | 83   |  |
| BK05_37 | 8100   | 530   | 199  | 39   |  |
| BK05_38 | 30400  | 1100  | 4210 | 430  |  |
| BK05_39 | 13450  | 580   | 2615 | 64   |  |
| BK05_40 | 18100  | 1300  | 1140 | 220  |  |
| BK05_41 | 14030  | 510   | 1625 | 68   |  |
| BK05_42 | 17400  | 1100  | 2444 | 79   |  |
| BK05_43 | 14200  | 1200  | 2480 | 160  |  |
| BK05_44 | 18450  | 540   | 2659 | 56   |  |
| BK05_45 | 20700  | 1000  | 4420 | 250  |  |
| BK05_46 | 19400  | 1200  | 2910 | 230  |  |
| BK05_47 | 20600  | 1400  | 4280 | 260  |  |

-

| DV05 49 | 10010 | 240  | 1000 | 120 |  |
|---------|-------|------|------|-----|--|
| DK05_40 | 10910 | 340  | 1000 | 120 |  |
| ZMT1 1  | 26400 | 1700 | 1970 | 450 |  |
| KMII_I  | 20400 | 1/00 | 1870 | 450 |  |
| KM11_2  | 8400  | 180  | 1553 | 34  |  |
| KMT1_3  | 10350 | 190  | 709  | 49  |  |
| KMT1_4  | 29700 | 2300 | 2450 | 220 |  |
| KMT1_5  | 40900 | 1100 | 3570 | 120 |  |
| KMT1_6  | 25400 | 3500 | 1650 | 210 |  |
| KMT1_7  | 39200 | 3000 | 4830 | 230 |  |
| KMT1_8  | 42600 | 2400 | 2530 | 140 |  |
| KMT1_9  | 39000 | 2000 | 4570 | 290 |  |
| KMT1_10 | 45100 | 2400 | 4540 | 160 |  |
| KMT1_11 | 32650 | 960  | 4150 | 220 |  |
| KMT1_12 | 21580 | 890  | 2620 | 300 |  |
| KMT1_13 | 24900 | 1300 | 2030 | 270 |  |
| KMT1_14 | 31900 | 1800 | 2960 | 320 |  |
| KMT1_15 | 8820  | 250  | 638  | 40  |  |
| KMT1_16 | 14820 | 390  | 3113 | 66  |  |
| KMT1_17 | 17330 | 390  | 1642 | 56  |  |
| KMT1_18 | 39800 | 2400 | 4290 | 310 |  |
| KMT1_19 | 27900 | 1000 | 2860 | 150 |  |
| KMT1_20 | 12650 | 670  | 650  | 120 |  |
| KMT1_21 | 34800 | 1100 | 4440 | 150 |  |
| KMT1_22 | 11050 | 320  | 3105 | 94  |  |
| KMT1_23 | 15750 | 640  | 3603 | 78  |  |
| KMT1_24 | 8490  | 150  | 785  | 63  |  |
| KMT1_25 | 42600 | 2000 | 1970 | 130 |  |
| KMT1_26 | 15510 | 640  | 2402 | 63  |  |
| KMT1_27 | 14330 | 600  | 3090 | 260 |  |
| KMT1_28 | 31500 | 2000 | 4000 | 120 |  |
| KMT1_29 | 13200 | 1700 | 950  | 180 |  |
| KMT1_30 | 13760 | 440  | 2460 | 140 |  |
| KMT1_31 | 14820 | 540  | 2600 | 110 |  |
| KMT1_32 | 11700 | 1500 | 640  | 110 |  |
| KMT1_33 | 23330 | 890  | 7470 | 320 |  |

| KMT1_34 | 27600 | 3900 | 4770 | 240 |  |
|---------|-------|------|------|-----|--|
| KMT1_35 | 70500 | 2300 | 3490 | 180 |  |
| KMT1_36 | 30300 | 1500 | 4760 | 130 |  |
| KMT1_37 | 37500 | 1700 | 2400 | 100 |  |
| KMT1_38 | 24380 | 730  | 4160 | 210 |  |
| KMT1_39 | 26740 | 690  | 1760 | 110 |  |
| KMT1_40 | 34310 | 860  | 3400 | 130 |  |
| KMT1_41 | 66500 | 4100 | 4640 | 260 |  |
| KMT1_42 | 46300 | 3100 | 6650 | 360 |  |
| KMT1_43 | 25500 | 2100 | 1170 | 280 |  |
| KMT1_44 | 24870 | 820  | 3690 | 120 |  |

## **APPENDIX K: APATITE TRACE ELEMENTS RESULTS**

|            | Mn<br>(ppm) | 2σ  | Sr (ppm) | 2σ  | <sup>206</sup> Pb<br>(ppm) | 2σ  | <sup>207</sup> Pb<br>(ppm) | 2σ  | <sup>208</sup> Pb<br>(ppm) | 2σ  | Th (ppm) | 2σ  | U (ppm) | 2σ  |
|------------|-------------|-----|----------|-----|----------------------------|-----|----------------------------|-----|----------------------------|-----|----------|-----|---------|-----|
| Standard:  |             |     |          |     |                            |     |                            |     |                            |     |          |     |         |     |
| NIST610_1  | 450.1       | 6.3 | 516.2    | 7.6 | 422.3                      | 6.3 | 423.5                      | 5.6 | 421.4                      | 6.4 | 452.6    | 6   | 457.9   | 6.5 |
| NIST610_2  | 449         | 6.3 | 519.2    | 7.8 | 429.4                      | 5.8 | 428.2                      | 5.8 | 428.6                      | 6.1 | 461.2    | 6.1 | 464.6   | 6.3 |
| NIST610_3  | 435.5       | 6.1 | 509.8    | 8.2 | 422.2                      | 5.9 | 422                        | 5.9 | 420.8                      | 6.8 | 453.7    | 6.7 | 456.7   | 6.7 |
| NIST610_4  | 440         | 5.8 | 515      | 7.8 | 428.6                      | 5.5 | 430.5                      | 5.2 | 431.5                      | 5.9 | 460.8    | 5.7 | 466.2   | 5.7 |
| NIST610_5  | 440.9       | 6.9 | 519.8    | 7.1 | 422.1                      | 6.2 | 422.9                      | 5.7 | 424.4                      | 6.4 | 453.6    | 6.7 | 457.5   | 7.3 |
| NIST610_6  | 442.7       | 7.1 | 513.6    | 7.3 | 426.9                      | 5.3 | 425.1                      | 4.9 | 425.4                      | 5.4 | 457.3    | 5.9 | 460.8   | 5.6 |
| NIST610_7  | 442.3       | 6.5 | 515.2    | 6.5 | 427.3                      | 5.1 | 427.9                      | 5.9 | 427.5                      | 6.1 | 458.9    | 5.7 | 462.6   | 5.7 |
| NIST610_8  | 446.6       | 6.2 | 516.2    | 7.6 | 429.1                      | 6.2 | 428.9                      | 6.1 | 428.7                      | 5.6 | 461.2    | 6.4 | 465.4   | 7.2 |
| NIST610_9  | 443.9       | 7.4 | 512.6    | 7.8 | 426.6                      | 6.8 | 424.3                      | 6.5 | 421.1                      | 7.1 | 455.5    | 6.7 | 458.2   | 6.9 |
| NIST610_10 | 440         | 6.9 | 513.8    | 7.5 | 427.1                      | 5.5 | 427.2                      | 5.3 | 430.7                      | 5.8 | 457.9    | 6.1 | 463.1   | 6.3 |
| NIST610_11 | 450.4       | 7.3 | 514.2    | 8.5 | 427.7                      | 6.4 | 426.7                      | 6   | 428.3                      | 6.5 | 457.5    | 6   | 463.3   | 6.9 |
| NIST610_12 | 439.2       | 6   | 516.5    | 6.3 | 426.2                      | 5.5 | 427.4                      | 4.7 | 425.1                      | 6   | 458.2    | 6   | 462.5   | 5.7 |
| NIST610_13 | 448.5       | 6.7 | 515.4    | 6.1 | 421.6                      | 5.1 | 424.1                      | 5.3 | 420.5                      | 4.9 | 453.5    | 5.6 | 458.4   | 5.8 |
| NIST610_14 | 440.6       | 6.7 | 508.3    | 7.4 | 417.8                      | 6.1 | 417.7                      | 6   | 417.8                      | 6.4 | 447.9    | 6.8 | 455     | 7   |
| NIST610_15 | 451.9       | 5.8 | 521.9    | 8   | 431.1                      | 6.5 | 429.7                      | 6.2 | 431.4                      | 6   | 462.8    | 6.3 | 465.8   | 7.2 |
| NIST610_16 | 441.1       | 7.6 | 517.6    | 8.3 | 429.7                      | 7   | 430.5                      | 6.9 | 431                        | 7.7 | 461      | 7.4 | 466.2   | 7.5 |
| NIST610_17 | 446.2       | 7.3 | 511      | 7.7 | 419.6                      | 6.5 | 419.4                      | 6.4 | 419.4                      | 7.1 | 449.3    | 7.3 | 453.5   | 7.6 |
| NIST610_18 | 449         | 6.7 | 521.3    | 6.5 | 429.4                      | 5.8 | 426.8                      | 5.9 | 430.8                      | 6.8 | 460      | 6.4 | 465     | 7   |

| NIST610_19 | 449.1 | 7   | 520   | 6.9 | 431.3 | 5.6 | 431.2 | 4.9 | 430.7 | 6.7 | 463.1 | 6   | 467.1 | 6.4 |
|------------|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|
| NIST610_20 | 436.7 | 7.7 | 511.2 | 9   | 426.5 | 7.3 | 424.3 | 7.2 | 428.4 | 7.9 | 455.8 | 7.8 | 460   | 7.9 |
| NIST610_21 | 445.1 | 7.6 | 517.6 | 8.8 | 429.1 | 7.3 | 428.6 | 7.2 | 429.6 | 7.8 | 458.8 | 7.9 | 462.4 | 7.3 |
| NIST610_22 | 435.1 | 7   | 507.8 | 8.2 | 425.5 | 6.4 | 424.9 | 6.3 | 423.7 | 6.2 | 455.7 | 7.2 | 457.9 | 7.1 |
| NIST610_23 | 448.4 | 7.8 | 515.6 | 8.8 | 421.7 | 7   | 420.8 | 7.1 | 423.8 | 7.5 | 453.2 | 7.4 | 457.4 | 7.8 |
| NIST610_24 | 447.4 | 7.6 | 516.6 | 7.8 | 426.7 | 6   | 426.2 | 5.7 | 427.6 | 6.1 | 459.8 | 5.7 | 463.1 | 6.6 |
| NIST610_25 | 447.8 | 7.1 | 514.4 | 7.8 | 423.7 | 6.2 | 423   | 6.3 | 423.3 | 6.6 | 454   | 6.5 | 456.2 | 6.9 |
| NIST610_26 | 449.2 | 7.8 | 522.8 | 7.3 | 430.5 | 5.7 | 430.5 | 5.8 | 430   | 6.9 | 461   | 6.2 | 466.4 | 6.5 |
| NIST610_27 | 442.2 | 8   | 516.5 | 7.6 | 423.6 | 5.9 | 425.4 | 6.2 | 424.1 | 6.3 | 457.1 | 6.8 | 464.1 | 7.3 |
| NIST610_28 | 445.5 | 6.5 | 513.5 | 7.7 | 428.2 | 5.7 | 428.3 | 5.8 | 430.1 | 6.1 | 458.9 | 6.5 | 463.8 | 6.4 |
| NIST610_29 | 442.3 | 6.6 | 514.2 | 7.7 | 425.5 | 5.7 | 427.1 | 5.8 | 423.1 | 5.9 | 456.3 | 6.5 | 461.9 | 7   |
| NIST610_30 | 439.2 | 7.3 | 509.7 | 8.6 | 420.6 | 6.3 | 421.3 | 6   | 421.3 | 7.2 | 451.2 | 6.8 | 457.1 | 6.8 |
| NIST610_31 | 439.9 | 6.8 | 514.3 | 8.5 | 423.8 | 6.6 | 427.1 | 6.7 | 423.5 | 6.7 | 456.8 | 7.2 | 461   | 8   |
| NIST610_32 | 435.6 | 7.4 | 511.4 | 8.3 | 421.6 | 6.4 | 420   | 6.2 | 421.7 | 7.1 | 453.2 | 6.2 | 458.6 | 6.5 |
| NIST610_33 | 439.2 | 6.3 | 511.1 | 7   | 421.9 | 5.4 | 420.9 | 5.4 | 419.9 | 5.9 | 451.6 | 6   | 456.1 | 6   |
| NIST610_34 | 453.2 | 6.1 | 526   | 7.9 | 437.8 | 6   | 437.4 | 6.1 | 439.4 | 6.3 | 469.3 | 6.3 | 472.4 | 7   |
|            |       |     |       |     |       |     |       |     |       |     |       |     |       |     |

|           | Mn<br>(ppm) | 2σ   | Sr (ppm) | 2σ   | <sup>206</sup> Pb<br>(ppm) | 2σ   | <sup>207</sup> Pb<br>(ppm) | 2σ   | <sup>208</sup> Pb<br>(ppm) | 2σ   | Th (ppm) | 2σ | U (ppm) | 2σ   |
|-----------|-------------|------|----------|------|----------------------------|------|----------------------------|------|----------------------------|------|----------|----|---------|------|
| Unknowns: |             |      |          |      |                            |      |                            |      |                            |      |          |    |         |      |
| BKBDG2_1  | 100.76      | 0.83 | 51.77    | 0.53 | 2.57                       | 0.05 | 2.41                       | 0.05 | 2.43                       | 0.05 | 0        | 0  | 0.25    | 0.01 |
| BKBDG2_2  | 100.25      | 0.92 | 39.27    | 0.37 | 2.08                       | 0.05 | 1.91                       | 0.05 | 1.95                       | 0.06 | 0        | 0  | 0.3     | 0    |
| BKBDG2_3  | 100.5       | 1.1  | 48.64    | 0.69 | 2.1                        | 0.04 | 1.93                       | 0.04 | 1.95                       | 0.05 | 0        | 0  | 0.29    | 0.01 |
| BKBDG2_4  | 96.92       | 0.89 | 41.22    | 0.44 | 1.81                       | 0.02 | 1.65                       | 0.02 | 1.68                       | 0.03 | 0        | 0  | 0.31    | 0    |
| BKBDG2_5  | 98.2        | 1.2  | 53.2     | 0.8  | 2.69                       | 0.05 | 2.47                       | 0.04 | 2.5                        | 0.05 | 0        | 0  | 0.21    | 0.01 |
| BKBDG2_6  | 100.15      | 0.93 | 52.46    | 0.46 | 2.62                       | 0.04 | 2.45                       | 0.04 | 2.49                       | 0.05 | 0        | 0  | 0.24    | 0    |
| BKBDG2_7  | 104.24      | 0.78 | 52.08    | 0.41 | 2.45                       | 0.02 | 2.27                       | 0.02 | 2.29                       | 0.03 | 0        | 0  | 0.29    | 0    |
| BKBDG2_8  | 101.86      | 0.94 | 50.98    | 0.49 | 2.52                       | 0.05 | 2.32                       | 0.05 | 2.36                       | 0.05 | 0        | 0  | 0.29    | 0.01 |
| BKBDG2_9  | 105.3       | 1    | 52.69    | 0.48 | 2.5                        | 0.04 | 2.35                       | 0.03 | 2.35                       | 0.04 | 0        | 0  | 0.25    | 0    |
| BKBDG2_10 | 103.6       | 1.2  | 52.47    | 0.39 | 2.57                       | 0.03 | 2.39                       | 0.03 | 2.41                       | 0.03 | 0        | 0  | 0.28    | 0    |
| BKBDG2_11 | 99.57       | 0.89 | 52.52    | 0.48 | 2.6                        | 0.04 | 2.42                       | 0.04 | 2.46                       | 0.05 | 0        | 0  | 0.26    | 0.01 |
| BKBDG2_12 | 101         | 1    | 52.13    | 0.41 | 2.38                       | 0.02 | 2.21                       | 0.02 | 2.22                       | 0.03 | 0        | 0  | 0.29    | 0.01 |
| BKBDG2_13 | 104.07      | 0.96 | 53.3     | 0.5  | 2.58                       | 0.05 | 2.4                        | 0.05 | 2.48                       | 0.05 | 0        | 0  | 0.24    | 0    |
| BKBDG2_14 | 102.8       | 1.2  | 54.82    | 0.5  | 2.57                       | 0.03 | 2.41                       | 0.03 | 2.47                       | 0.03 | 0        | 0  | 0.22    | 0    |
| BKBDG2_15 | 101.11      | 0.87 | 53.45    | 0.45 | 2.55                       | 0.02 | 2.38                       | 0.02 | 2.42                       | 0.03 | 0        | 0  | 0.27    | 0    |
| BKBDG2_16 | 108.6       | 1.5  | 55.56    | 0.8  | 3.17                       | 0.06 | 2.96                       | 0.05 | 2.98                       | 0.07 | 0        | 0  | 0.25    | 0.01 |

|           | 100.0  |      |       | o <b></b> | • • • • | 0.40 |      | 0.44 |      | 0.40 | 0    | 0    |      | 0    |
|-----------|--------|------|-------|-----------|---------|------|------|------|------|------|------|------|------|------|
| BKBDG2_17 | 100.2  | 1.2  | 53.32 | 0.57      | 2.99    | 0.12 | 2.78 | 0.11 | 2.86 | 0.12 | 0    | 0    | 0.23 | 0    |
| BKBDG2_18 | 102.2  | 1.2  | 51.78 | 0.68      | 2.31    | 0.03 | 2.15 | 0.03 | 2.18 | 0.04 | 0    | 0    | 0.23 | 0.01 |
| BKBDG2_19 | 101.4  | 1.2  | 54.75 | 0.51      | 2.64    | 0.04 | 2.47 | 0.03 | 2.52 | 0.04 | 0    | 0    | 0.23 | 0    |
| BKBDG2_20 | 49.24  | 0.37 | 7.46  | 0.07      | 0.72    | 0.01 | 0.59 | 0.01 | 0.6  | 0.01 | 0.12 | 0    | 0.38 | 0.01 |
| BKBDG2_21 | 65.99  | 0.65 | 8.02  | 0.1       | 0.93    | 0.01 | 0.77 | 0.01 | 0.78 | 0.02 | 0.07 | 0    | 0.36 | 0    |
| BKBDG2_22 | 97.6   | 0.96 | 31.12 | 0.3       | 1.8     | 0.02 | 1.64 | 0.02 | 1.65 | 0.03 | 0.01 | 0    | 0.34 | 0    |
| BKBDG2_23 | 95.7   | 1    | 43.64 | 0.53      | 2.41    | 0.02 | 2.24 | 0.02 | 2.29 | 0.03 | 0    | 0    | 0.25 | 0    |
| BKBDG2_24 | 53.61  | 0.64 | 9.83  | 0.11      | 0.84    | 0.02 | 0.73 | 0.02 | 0.75 | 0.02 | 0.07 | 0    | 0.3  | 0.01 |
| BKBDG2_25 | 57.28  | 0.89 | 12.08 | 0.17      | 1.18    | 0.02 | 1    | 0.02 | 1    | 0.02 | 0.1  | 0    | 0.48 | 0.01 |
| BKBDG2_26 | 52.15  | 0.5  | 8.88  | 0.09      | 0.92    | 0.02 | 0.73 | 0.01 | 0.76 | 0.02 | 0.31 | 0.03 | 0.55 | 0.03 |
| BKBDG2_27 | 47.44  | 0.44 | 7.4   | 0.08      | 0.67    | 0.01 | 0.57 | 0.01 | 0.58 | 0.01 | 0.1  | 0    | 0.31 | 0.01 |
| BKBDG2_28 | 47.61  | 0.65 | 9.79  | 0.13      | 0.91    | 0.03 | 0.77 | 0.03 | 0.78 | 0.04 | 0.1  | 0    | 0.39 | 0.01 |
| BKBDG2_29 | 113    | 25   | 10.84 | 0.21      | 1.17    | 0.02 | 1    | 0.01 | 1.02 | 0.02 | 0.05 | 0    | 0.36 | 0.01 |
| BKBDG2_30 | 104.8  | 1.2  | 73.41 | 0.66      | 2.74    | 0.05 | 2.46 | 0.05 | 2.5  | 0.05 | 0.02 | 0    | 0.61 | 0.01 |
| BKBDG2_31 | 102.5  | 3    | 69.33 | 0.62      | 2.5     | 0.04 | 2.26 | 0.04 | 2.3  | 0.04 | 0.02 | 0    | 0.55 | 0.01 |
| BKBDG2_32 | 54.43  | 0.58 | 11.23 | 0.11      | 0.95    | 0.02 | 0.8  | 0.01 | 0.81 | 0.02 | 0.11 | 0    | 0.4  | 0.01 |
| BKBDG2_33 | 53.27  | 0.58 | 10.16 | 0.12      | 0.95    | 0.02 | 0.79 | 0.01 | 0.81 | 0.01 | 0.2  | 0    | 0.45 | 0.01 |
| BKBDG2_34 | 52.04  | 0.61 | 10.29 | 0.1       | 0.9     | 0.02 | 0.77 | 0.02 | 0.79 | 0.02 | 0.26 | 0    | 0.4  | 0.01 |
| BKBDG2_35 | 54.31  | 0.55 | 9.76  | 0.09      | 0.79    | 0.02 | 0.65 | 0.01 | 0.66 | 0.01 | 0.09 | 0    | 0.37 | 0.01 |
| BKBDG2_36 | 101.86 | 0.96 | 59.26 | 0.47      | 2.79    | 0.03 | 2.6  | 0.03 | 2.65 | 0.04 | 0    | 0    | 0.32 | 0    |
| BKBDG2_37 | 94.9   | 1.1  | 74.19 | 0.62      | 2.43    | 0.05 | 2.18 | 0.04 | 2.22 | 0.05 | 0.01 | 0    | 0.55 | 0.01 |
| BKBDG2_38 | 98.3   | 1    | 65.63 | 0.53      | 1.66    | 0.03 | 1.51 | 0.02 | 1.51 | 0.02 | 0.01 | 0    | 0.34 | 0    |
| BKBDG2_39 | 107.74 | 0.94 | 81.34 | 0.61      | 3.05    | 0.04 | 2.81 | 0.03 | 2.91 | 0.04 | 0.01 | 0    | 0.31 | 0    |
| BKBDG2_40 | 100.06 | 0.88 | 76.52 | 0.63      | 2.95    | 0.03 | 2.67 | 0.03 | 2.72 | 0.03 | 0.01 | 0    | 0.62 | 0.01 |
| BKBDG2_41 | 107.9  | 1.1  | 75.39 | 0.63      | 2.9     | 0.05 | 2.62 | 0.04 | 2.64 | 0.05 | 0    | 0    | 0.59 | 0.01 |
| BKBDG2_42 | 110.4  | 1.2  | 73.76 | 0.74      | 2.83    | 0.03 | 2.55 | 0.03 | 2.62 | 0.03 | 0.01 | 0    | 0.63 | 0.01 |
| BKBDG2_43 | 91.56  | 0.95 | 70.6  | 0.6       | 2.58    | 0.04 | 2.32 | 0.04 | 2.35 | 0.04 | 0.02 | 0    | 0.56 | 0.01 |
| BKBDG2 44 | 71.98  | 0.78 | 22.09 | 0.19      | 1.19    | 0.03 | 1.04 | 0.02 | 1.06 | 0.03 | 0.07 | 0    | 0.4  | 0.01 |
| BKBDG2_45 | 99.8   | 1    | 71.05 | 0.66      | 1.7     | 0.02 | 1.55 | 0.02 | 1.59 | 0.03 | 0    | 0    | 0.31 | 0    |
| BKBDG2 46 | 94.43  | 0.87 | 44.03 | 0.52      | 2.19    | 0.03 | 2.05 | 0.02 | 2.04 | 0.03 | 0    | 0    | 0.23 | 0    |
| BKBDG2 47 | 95.36  | 0.7  | 68.4  | 0.53      | 1.43    | 0.02 | 1.29 | 0.02 | 1.32 | 0.02 | 0    | 0    | 0.33 | 0    |
| BKBDG2 48 | 106    | 1.1  | 82.7  | 1.2       | 3.14    | 0.08 | 2.94 | 0.08 | 2.95 | 0.08 | 0.01 | 0    | 0.29 | 0.01 |
| BKBDG2 49 | 99.2   | 1.3  | 75.97 | 0.85      | 2.78    | 0.06 | 2.52 | 0.05 | 2.55 | 0.05 | 0.01 | 0    | 0.59 | 0.01 |
| BKBDG2 50 | 97.3   | 1.1  | 75.16 | 0.59      | 2.68    | 0.05 | 2.4  | 0.04 | 2.45 | 0.05 | 0.01 | 0    | 0.62 | 0.01 |
| BKBDG2 51 | 90.24  | 0.83 | 51.04 | 0.5       | 1.33    | 0.01 | 1.22 | 0.01 | 1.23 | 0.02 | 0    | 0    | 0.27 | 0    |
| BKBDG2_52 | 95.4   | 2    | 50.6  | 1.4       | 1.9     | 0.06 | 1.74 | 0.05 | 1.76 | 0.06 | 0.01 | 0    | 0.22 | 0.01 |

| BK11_1  | 66.94 | 0.98 | 52.54 | 0.58 | 2.14 | 0.05 | 2    | 0.04 | 2.05 | 0.05 | 0.05 | 0.02 | 0.14 | 0    |
|---------|-------|------|-------|------|------|------|------|------|------|------|------|------|------|------|
| BK11_2  | 73.48 | 0.71 | 55.64 | 0.46 | 2.19 | 0.05 | 1.92 | 0.04 | 1.97 | 0.04 | 0.56 | 0.02 | 0.68 | 0.03 |
| BK11_3  | 28.2  | 1.9  | 22.7  | 1.4  | 0.84 | 0.06 | 0.79 | 0.07 | 0.8  | 0.07 | 0.01 | 0    | 0.06 | 0    |
| BK11_4  | 49.1  | 3.8  | 39.5  | 3    | 1.4  | 0.1  | 1.31 | 0.09 | 1.34 | 0.09 | 0.01 | 0    | 0.1  | 0.01 |
| BK11_5  | 7.12  | 0.31 | 6.75  | 0.08 | 0.06 | 0.02 | 0.01 | 0    | 0    | 0    | 0.04 | 0.01 | 0.15 | 0.06 |
| BK11_6  | 31.9  | 1.8  | 27.1  | 1.1  | 0.94 | 0.05 | 0.88 | 0.05 | 0.9  | 0.05 | 0    | 0    | 0.07 | 0.01 |
| BK11_7  | 35.2  | 5.8  | 29.2  | 4.3  | 0.95 | 0.16 | 0.89 | 0.15 | 0.91 | 0.16 | 0    | 0    | 0.06 | 0.01 |
| BK11_8  | 31.8  | 3.6  | 27.2  | 2.7  | 1.13 | 0.14 | 0.92 | 0.11 | 0.94 | 0.12 | 0.55 | 0.14 | 0.6  | 0.11 |
| BK11_9  | 65.7  | 2.9  | 51.1  | 1.8  | 2.04 | 0.09 | 1.95 | 0.08 | 1.99 | 0.09 | 0    | 0    | 0.1  | 0    |
| BK11_10 | 35.7  | 3.7  | 29.8  | 2.7  | 1.05 | 0.12 | 0.99 | 0.11 | 1.01 | 0.11 | 0.01 | 0    | 0.06 | 0.01 |
| BK11_11 | 43.5  | 1.3  | 35.21 | 0.87 | 1.31 | 0.04 | 1.23 | 0.04 | 1.24 | 0.05 | 0.02 | 0    | 0.08 | 0    |
| BK11_12 | 59.4  | 1.6  | 47.9  | 1    | 1.8  | 0.06 | 1.69 | 0.05 | 1.71 | 0.06 | 0.04 | 0    | 0.11 | 0    |
| BK11_13 | 55.7  | 1.5  | 45.82 | 0.84 | 1.64 | 0.04 | 1.54 | 0.04 | 1.57 | 0.04 | 0.01 | 0    | 0.1  | 0    |
| BK11_14 | 38.8  | 2    | 32.7  | 1.4  | 1.17 | 0.07 | 1.11 | 0.06 | 1.12 | 0.07 | 0.05 | 0    | 0.1  | 0    |
| BK11_15 | 54.2  | 4.6  | 42.7  | 3.7  | 1.76 | 0.09 | 1.62 | 0.09 | 1.64 | 0.1  | 0.07 | 0.01 | 0.18 | 0.01 |
| BK11_16 | 54.8  | 3.7  | 44.1  | 2.3  | 1.7  | 0.12 | 1.6  | 0.11 | 1.63 | 0.12 | 0    | 0    | 0.09 | 0.01 |
| BK11_17 | 38.7  | 1.9  | 31.5  | 1.3  | 1.11 | 0.06 | 1.05 | 0.06 | 1.08 | 0.06 | 0    | 0    | 0.07 | 0    |
| BK11_18 | 74    | 0.9  | 57    | 0.53 | 2.07 | 0.04 | 1.95 | 0.04 | 1.98 | 0.04 | 0.01 | 0    | 0.14 | 0    |
| BK11_19 | 53.31 | 0.89 | 41.95 | 0.94 | 1.68 | 0.02 | 1.56 | 0.02 | 1.56 | 0.03 | 0.02 | 0.01 | 0.11 | 0.01 |
| BK11_20 | 59.9  | 1.8  | 48.2  | 1.5  | 2.17 | 0.1  | 1.91 | 0.08 | 1.99 | 0.09 | 0.03 | 0    | 0.14 | 0.01 |
| BK11_21 | 41.8  | 2.3  | 34.4  | 1.7  | 1.18 | 0.07 | 1.13 | 0.07 | 1.14 | 0.07 | 0    | 0    | 0.07 | 0.01 |
| BK11_22 | 35.3  | 2.6  | 28.4  | 2.1  | 0.96 | 0.07 | 0.91 | 0.07 | 0.91 | 0.08 | 0.01 | 0    | 0.06 | 0.01 |
| BK11_23 | 23.7  | 1.8  | 6.96  | 0.12 | 0.43 | 0.05 | 0.36 | 0.05 | 0.39 | 0.06 | 0.13 | 0.02 | 0.16 | 0.02 |
| BK11_24 | 23.1  | 4.6  | 21.5  | 3.5  | 0.98 | 0.13 | 0.89 | 0.12 | 0.95 | 0.12 | 0.1  | 0.03 | 0.07 | 0.01 |
| BK11_25 | 20.6  | 1.8  | 18.5  | 1.4  | 0.76 | 0.03 | 0.67 | 0.03 | 0.68 | 0.03 | 0.08 | 0.01 | 0.18 | 0.02 |
| BK11_26 | 20.4  | 4    | 37    | 13   | 2.77 | 0.79 | 2.46 | 0.67 | 2.4  | 0.67 | 0.18 | 0.03 | 0.21 | 0.06 |
| BK11_27 | 48.8  | 3    | 38.6  | 2.3  | 1.61 | 0.12 | 1.52 | 0.11 | 1.55 | 0.11 | 0.05 | 0.01 | 0.09 | 0.01 |
| BK11_28 | 35.2  | 4.9  | 31.5  | 4    | 0.98 | 0.15 | 0.91 | 0.14 | 0.92 | 0.15 | 0.01 | 0    | 0.07 | 0.01 |
| BK11_29 | 60.3  | 1.4  | 48.34 | 0.76 | 2.04 | 0.07 | 1.92 | 0.07 | 1.96 | 0.08 | 0    | 0    | 0.1  | 0    |
| BK11_30 | 34.1  | 4.5  | 28.4  | 3.1  | 1.25 | 0.14 | 1.19 | 0.14 | 1.22 | 0.14 | 0.06 | 0    | 0.09 | 0.01 |
| BK11_31 | 89    | 25   | 15.4  | 2.5  | 2.85 | 0.76 | 2.34 | 0.63 | 2.29 | 0.62 | 0.07 | 0.02 | 0.21 | 0.04 |
| BK11_32 | 38.4  | 4.6  | 32    | 3.5  | 1.2  | 0.16 | 1.12 | 0.15 | 1.12 | 0.15 | 0    | 0    | 0.07 | 0.01 |
| BK11_33 | 7.77  | 0.1  | 7.39  | 0.08 | 0.01 | 0    | 0    | 0    | 0.01 | 0    | 0    | 0    | 0.01 | 0    |
| BK11_34 | 22.8  | 1.3  | 20.4  | 1.1  | 0.78 | 0.04 | 0.72 | 0.04 | 0.73 | 0.05 | 0.06 | 0    | 0.11 | 0.01 |
| BK11_35 | 68.32 | 0.95 | 53.92 | 0.81 | 1.82 | 0.02 | 1.71 | 0.02 | 1.7  | 0.03 | 0    | 0    | 0.14 | 0    |

| BK11_36 | 21.8     | 3.8  | 20.5     | 3.1  | 0.65     | 0.12 | 0.58     | 0.11 | 0.57     | 0.11 | 0.04     | 0    | 0.07     | 0.01 |
|---------|----------|------|----------|------|----------|------|----------|------|----------|------|----------|------|----------|------|
| BK11_37 | 9.59     | 0.24 | 6.6      | 0.06 | 0.13     | 0.01 | 0.11     | 0.01 | 0.11     | 0.01 | 0.09     | 0.01 | 0.03     | 0    |
| BK11_38 | 8.73     | 0.13 | 7.31     | 0.15 | 0.01     | 0    | 0        | 0    | 0        | 0    | 0        | 0    | 0.02     | 0    |
| BK11_39 | 9.49     | 0.18 | 6.67     | 0.08 | 0.02     | 0    | 0.01     | 0    | 0.01     | 0    | 0.01     | 0    | 0.02     | 0    |
| BK11_40 | 72       | 28   | 7.73     | 0.37 | 0.08     | 0.02 | 0.07     | 0.02 | 0.05     | 0.02 | 0.05     | 0.01 | 0.12     | 0.01 |
| BK11_41 | 5.82     | 0.18 | 7.33     | 0.1  | 0.01     | 0    | 0        | 0    | 0        | 0    | 0        | 0    | 0.01     | 0    |
| BK11_42 | 7.66     | 0.7  | 14       | 3.7  | 0.35     | 0.1  | 0.28     | 0.08 | 0.32     | 0.1  | 0.26     | 0.07 | 0.14     | 0.03 |
| BK11_43 | 23.8     | 4.4  | 22.1     | 3.5  | 0.72     | 0.15 | 0.68     | 0.14 | 0.69     | 0.15 | 0.01     | 0    | 0.04     | 0.01 |
| BK11_44 | 49.2     | 1    | 46.64    | 0.8  | 1.73     | 0.07 | 1.58     | 0.06 | 1.6      | 0.07 | 0.23     | 0.03 | 0.12     | 0.01 |
| BK11_45 | 60       | 2.5  | 48.8     | 1.7  | 2.19     | 0.08 | 1.94     | 0.07 | 2.01     | 0.08 | 0.18     | 0.01 | 0.43     | 0.03 |
| BK11_46 | 41.7     | 2.5  | 40.2     | 1.9  | 8.3      | 1.4  | 2.86     | 0.31 | 11.2     | 2.2  | 211      | 54   | 24.7     | 6.2  |
| BK11_47 | 9.14     | 0.6  | 12.1     | 1.2  | 0.32     | 0.04 | 0.23     | 0.02 | 0.27     | 0.03 | 1.19     | 0.22 | 0.8      | 0.15 |
| BK11_48 | 8.67     | 0.72 | 9.66     | 0.58 | 0.17     | 0.03 | 0.16     | 0.03 | 0.16     | 0.03 | 0.01     | 0    | 0.02     | 0    |
| BK11_49 | 5.69     | 0.06 | 7.19     | 0.07 | 0.02     | 0    | 0.02     | 0    | 0.02     | 0    | 0.01     | 0    | 0.01     | 0    |
| BK11_50 | 3.99     | 0.06 | 6.79     | 0.07 | 0.01     | 0    | 0        | 0    | 0.01     | 0.01 | 0.11     | 0.13 | 0.01     | 0    |
| BK11_51 | 18.27    | 0.62 | 16.63    | 0.34 | 0.31     | 0.01 | 0.28     | 0.01 | 0.29     | 0.02 | 0.01     | 0    | 0.07     | 0    |
| BK11_52 | 7.43     | 0.35 | 7.11     | 0.09 | 0.01     | 0    | 0.01     | 0    | 0.01     | 0    | 0.01     | 0    | 0.02     | 0    |
| BK11_53 | 8.19     | 0.32 | 6.95     | 0.1  | 0.01     | 0    | 0.01     | 0    | 0.01     | 0    | 0.01     | 0    | 0.02     | 0    |
| BK11_54 | 25.2     | 1.8  | 21.1     | 1.4  | 0.66     | 0.06 | 0.63     | 0.06 | 0.63     | 0.07 | 0        | 0    | 0.05     | 0    |
| BK11_55 | 32.1     | 3.4  | 27.4     | 2.9  | 0.92     | 0.12 | 0.87     | 0.11 | 0.86     | 0.11 | 0        | 0    | 0.06     | 0.01 |
| BK11_56 | 70.05    | 0.88 | 54.53    | 0.76 | 2.2      | 0.04 | 2.08     | 0.04 | 2.11     | 0.04 | 0        | 0    | 0.12     | 0    |
| BK11_57 | no value | NAN  |
| BK11_58 | 71.09    | 0.64 | 56.59    | 0.54 | 2.37     | 0.07 | 2.22     | 0.07 | 2.28     | 0.07 | 0.09     | 0.01 | 0.19     | 0    |
| BK11_59 | 73.65    | 0.62 | 56.31    | 0.57 | 2.28     | 0.03 | 2.15     | 0.03 | 2.19     | 0.04 | 0        | 0    | 0.14     | 0    |
| BK11_60 | 74.74    | 0.92 | 57.87    | 0.71 | 2.06     | 0.03 | 1.96     | 0.03 | 2.01     | 0.05 | 0.02     | 0    | 0.16     | 0    |
| BK11_61 | 72.99    | 0.83 | 57.41    | 0.59 | 1.91     | 0.03 | 1.8      | 0.03 | 1.83     | 0.04 | 0        | 0    | 0.15     | 0    |
| BK11_62 | 66.8     | 1.2  | 54.5     | 1    | 2.28     | 0.06 | 2.12     | 0.05 | 2.16     | 0.06 | 0.07     | 0.01 | 0.15     | 0    |
| BK11_63 | 58.7     | 5.5  | 38.5     | 5.9  | 2.06     | 0.16 | 1.98     | 0.17 | 1.94     | 0.15 | 0.11     | 0.04 | 0.11     | 0.02 |
| BK11_64 | 67.1     | 1.3  | 51.8     | 1.2  | 2        | 0.03 | 1.91     | 0.03 | 1.91     | 0.04 | 0.03     | 0    | 0.13     | 0    |
|         |          |      |          |      |          |      |          |      |          |      |          |      |          |      |
| BK14_1  | 37.64    | 0.95 | 15.21    | 0.22 | 2.03     | 0.1  | 1.9      | 0.09 | 1.9      | 0.09 | 0.04     | 0.01 | 0.17     | 0    |
| BK14_2  | 37.53    | 0.68 | 16.57    | 0.25 | 1.9      | 0.05 | 1.78     | 0.05 | 1.84     | 0.05 | 0        | 0    | 0.16     | 0.01 |
| BK14_3  | no value | NAN  |
| BK14_4  | 40.94    | 0.61 | 36.08    | 0.41 | 2.43     | 0.05 | 2.28     | 0.04 | 2.33     | 0.05 | 0        | 0    | 0.2      | 0    |
| BK14_5  | 47.3     | 2.4  | 25.28    | 0.67 | 6.26     | 0.77 | 2.73     | 0.12 | 3.09     | 0.25 | 12.8     | 3.8  | 9        | 1.6  |
| BK14_6  | 32.59    | 0.38 | 30.15    | 0.29 | 1.85     | 0.03 | 1.74     | 0.03 | 1.75     | 0.03 | 0        | 0    | 0.17     | 0    |

| BK14_7  | 36.29 | 0.42 | 35.63 | 0.32 | 2.21 | 0.03 | 2.09 | 0.03 | 2.12 | 0.04 | 0    | 0    | 0.19 | 0    |
|---------|-------|------|-------|------|------|------|------|------|------|------|------|------|------|------|
| BK14_8  | 64.8  | 3.9  | 35.84 | 0.58 | 2.07 | 0.03 | 1.95 | 0.03 | 2    | 0.03 | 0.09 | 0    | 0.19 | 0    |
| BK14_9  | 35.36 | 0.32 | 35.33 | 0.4  | 2.17 | 0.02 | 2.02 | 0.02 | 2.06 | 0.03 | 0    | 0    | 0.23 | 0    |
| BK14_10 | 30.68 | 0.41 | 23.33 | 0.25 | 1.75 | 0.03 | 1.62 | 0.03 | 1.66 | 0.03 | 0.03 | 0    | 0.2  | 0    |
| BK14_11 | 30.77 | 0.38 | 26.42 | 0.27 | 1.8  | 0.03 | 1.68 | 0.02 | 1.7  | 0.03 | 0    | 0    | 0.22 | 0    |
| BK14_12 | 41.32 | 0.49 | 42.89 | 0.42 | 2.96 | 0.05 | 2.79 | 0.05 | 2.84 | 0.06 | 0    | 0    | 0.2  | 0    |
| BK14_13 | 30.63 | 0.4  | 28.83 | 0.34 | 1.78 | 0.03 | 1.66 | 0.03 | 1.68 | 0.04 | 0    | 0    | 0.18 | 0    |
| BK14_14 | 28.53 | 0.32 | 25.43 | 0.25 | 1.51 | 0.02 | 1.39 | 0.02 | 1.39 | 0.03 | 0    | 0    | 0.25 | 0    |
| BK14_15 | 40.92 | 0.42 | 16.16 | 0.4  | 2.14 | 0.02 | 2    | 0.02 | 2.02 | 0.03 | 0    | 0    | 0.24 | 0    |
| BK14_16 | 34.5  | 0.48 | 31.69 | 0.33 | 2.06 | 0.03 | 1.94 | 0.03 | 1.96 | 0.03 | 0    | 0    | 0.18 | 0    |
| BK14_17 | 40.7  | 0.42 | 33.56 | 0.62 | 2.89 | 0.05 | 2.23 | 0.03 | 2.37 | 0.05 | 3.88 | 0.43 | 2.21 | 0.16 |
| BK14_18 | 41.69 | 0.41 | 42.83 | 0.4  | 2.94 | 0.03 | 2.74 | 0.03 | 2.79 | 0.03 | 0    | 0    | 0.23 | 0    |
| BK14_19 | 33.05 | 0.35 | 24.09 | 0.26 | 1.93 | 0.03 | 1.78 | 0.03 | 1.83 | 0.03 | 0    | 0    | 0.25 | 0    |
| BK14_20 | 38.79 | 0.39 | 38.97 | 0.33 | 2.48 | 0.04 | 2.34 | 0.03 | 2.38 | 0.04 | 0.06 | 0    | 0.19 | 0    |
| BK14_21 | 40.97 | 0.58 | 39.41 | 0.48 | 2.5  | 0.04 | 2.34 | 0.04 | 2.38 | 0.05 | 0    | 0    | 0.22 | 0    |
| BK14_22 | 39.61 | 0.52 | 43.71 | 0.46 | 3.17 | 0.07 | 2.83 | 0.05 | 2.88 | 0.05 | 0.27 | 0.01 | 0.86 | 0.04 |
| BK14_23 | 33.01 | 0.49 | 30.09 | 0.32 | 1.89 | 0.04 | 1.77 | 0.03 | 1.8  | 0.04 | 0    | 0    | 0.18 | 0    |
| BK14_24 | 38.88 | 0.44 | 43.98 | 0.42 | 2.87 | 0.02 | 2.7  | 0.02 | 2.72 | 0.03 | 0.03 | 0    | 0.32 | 0.01 |
| BK14_25 | 32.59 | 0.36 | 29.08 | 0.27 | 1.87 | 0.03 | 1.74 | 0.02 | 1.8  | 0.03 | 0    | 0    | 0.24 | 0.01 |
| BK14_26 | 31.63 | 0.35 | 25.09 | 0.25 | 1.82 | 0.03 | 1.69 | 0.03 | 1.73 | 0.03 | 0    | 0    | 0.17 | 0    |
| BK14_27 | 33.51 | 0.46 | 24.36 | 0.24 | 1.8  | 0.03 | 1.7  | 0.03 | 1.73 | 0.03 | 0    | 0    | 0.16 | 0    |
| BK14_28 | 35.49 | 0.81 | 22.61 | 0.3  | 1.76 | 0.05 | 1.66 | 0.04 | 1.71 | 0.05 | 0.04 | 0.01 | 0.16 | 0    |
| BK14_29 | 33.76 | 0.57 | 24.94 | 0.26 | 1.79 | 0.03 | 1.69 | 0.02 | 1.73 | 0.03 | 0    | 0    | 0.18 | 0    |
| BK14_30 | 34.57 | 0.79 | 24.37 | 0.34 | 1.83 | 0.04 | 1.72 | 0.04 | 1.74 | 0.05 | 0.01 | 0    | 0.18 | 0    |
| BK14_31 | 39.6  | 0.47 | 38.74 | 0.35 | 2.39 | 0.03 | 2.26 | 0.02 | 2.29 | 0.03 | 0.01 | 0    | 0.19 | 0    |
| BK14_32 | 759   | 84   | 29.8  | 1.9  | 39   | 6.3  | 5.42 | 0.44 | 33.1 | 5.7  | 700  | 150  | 119  | 23   |
| BK14_33 | 734   | 81   | 18.72 | 0.43 | 8.2  | 1.3  | 2.85 | 0.11 | 2.58 | 0.09 | 5.03 | 0.87 | 16   | 3.7  |
| BK14_34 | 41.1  | 0.38 | 40.82 | 0.35 | 2.83 | 0.04 | 2.68 | 0.04 | 2.75 | 0.05 | 0    | 0    | 0.23 | 0    |
| BK14_35 | 38.81 | 0.35 | 39.89 | 0.37 | 2.63 | 0.03 | 2.48 | 0.03 | 2.53 | 0.04 | 0    | 0    | 0.2  | 0    |
| BK14_36 | 38.55 | 0.63 | 31.9  | 1    | 2.24 | 0.05 | 2.11 | 0.05 | 2.12 | 0.05 | 0    | 0    | 0.18 | 0    |
| BK14_37 | 38.52 | 0.44 | 40.06 | 0.42 | 2.47 | 0.05 | 2.3  | 0.04 | 2.34 | 0.04 | 0    | 0    | 0.19 | 0    |
| BK14_38 | 42.23 | 0.54 | 36.37 | 0.68 | 2.37 | 0.02 | 2.21 | 0.02 | 2.26 | 0.03 | 0.01 | 0    | 0.27 | 0.01 |
| BK14_39 | 35.93 | 0.44 | 29.96 | 0.43 | 1.99 | 0.02 | 1.88 | 0.02 | 1.92 | 0.03 | 0    | 0    | 0.18 | 0    |
| BK14_40 | 40.88 | 0.48 | 22.51 | 0.24 | 2.06 | 0.03 | 1.96 | 0.03 | 1.99 | 0.03 | 0.02 | 0    | 0.16 | 0    |
| BK14_41 | 41    | 0.41 | 17.73 | 0.16 | 2.04 | 0.02 | 1.91 | 0.02 | 1.96 | 0.03 | 0    | 0    | 0.18 | 0    |
| BK14_42 | 39.14 | 0.36 | 18.94 | 0.22 | 1.93 | 0.02 | 1.82 | 0.02 | 1.85 | 0.03 | 0    | 0    | 0.17 | 0    |

| BK14_43 | 31.01 | 0.37 | 31.07 | 0.3  | 1.76 | 0.03 | 1.66 | 0.03 | 1.7  | 0.03 | 0    | 0    | 0.18 | 0    |
|---------|-------|------|-------|------|------|------|------|------|------|------|------|------|------|------|
| BK14_44 | 47.3  | 2.4  | 23.02 | 0.2  | 1.68 | 0.03 | 1.58 | 0.03 | 1.6  | 0.03 | 0.01 | 0    | 0.2  | 0.01 |
| BK14_45 | 31.82 | 0.33 | 30.8  | 0.29 | 1.76 | 0.02 | 1.65 | 0.02 | 1.69 | 0.03 | 0    | 0    | 0.18 | 0    |
| BK14_46 | 42.98 | 0.44 | 42.76 | 0.42 | 2.85 | 0.03 | 2.69 | 0.03 | 2.78 | 0.04 | 0    | 0    | 0.23 | 0    |
| BK14_47 | 31.04 | 0.26 | 30.75 | 0.31 | 1.79 | 0.02 | 1.67 | 0.02 | 1.7  | 0.03 | 0    | 0    | 0.19 | 0    |
| BK14_48 | 33.67 | 0.34 | 22.72 | 0.21 | 1.84 | 0.03 | 1.71 | 0.03 | 1.72 | 0.03 | 0    | 0    | 0.28 | 0    |
| BK14_49 | 31.42 | 0.32 | 25.37 | 0.21 | 1.77 | 0.02 | 1.64 | 0.02 | 1.67 | 0.03 | 0    | 0    | 0.23 | 0    |
| BK14_50 | 37.18 | 0.44 | 17.83 | 0.16 | 1.9  | 0.03 | 1.77 | 0.02 | 1.81 | 0.03 | 0    | 0    | 0.26 | 0    |
| BK14_51 | 34.14 | 0.36 | 18.13 | 0.14 | 1.77 | 0.02 | 1.65 | 0.02 | 1.68 | 0.03 | 0    | 0    | 0.18 | 0    |
| BK14_52 | 34.58 | 0.29 | 18.98 | 0.19 | 1.8  | 0.02 | 1.67 | 0.02 | 1.68 | 0.03 | 0    | 0    | 0.26 | 0    |
| BK14_53 | 33.56 | 0.39 | 19.38 | 0.18 | 1.76 | 0.02 | 1.63 | 0.02 | 1.67 | 0.03 | 0    | 0    | 0.19 | 0    |
| BK14_54 | 35.77 | 0.32 | 17.78 | 0.18 | 1.85 | 0.02 | 1.74 | 0.02 | 1.78 | 0.03 | 0.02 | 0    | 0.18 | 0    |
| BK14_55 | 37.35 | 0.45 | 19.82 | 0.18 | 1.89 | 0.03 | 1.77 | 0.03 | 1.79 | 0.03 | 0    | 0    | 0.26 | 0    |
| BK14_56 | 32.76 | 0.38 | 21.2  | 0.25 | 1.75 | 0.02 | 1.62 | 0.02 | 1.64 | 0.03 | 0    | 0    | 0.26 | 0    |
| BK14_57 | 33.59 | 0.44 | 20.66 | 0.17 | 1.75 | 0.03 | 1.62 | 0.02 | 1.65 | 0.03 | 0    | 0    | 0.21 | 0    |
| BK14_58 | 34.37 | 0.38 | 33.2  | 0.35 | 1.96 | 0.04 | 1.84 | 0.04 | 1.89 | 0.04 | 0    | 0    | 0.18 | 0    |
| BK14_59 | 34.74 | 0.35 | 28.06 | 0.25 | 1.8  | 0.02 | 1.67 | 0.02 | 1.71 | 0.03 | 0.06 | 0    | 0.22 | 0    |
| BK14_60 | 37.04 | 0.53 | 36.12 | 0.34 | 2.22 | 0.04 | 2.09 | 0.04 | 2.11 | 0.05 | 0    | 0    | 0.18 | 0    |
| BK14_61 | 42.53 | 0.4  | 41.1  | 0.34 | 2.74 | 0.04 | 2.61 | 0.04 | 2.65 | 0.04 | 0    | 0    | 0.18 | 0    |
| BK14_62 | 40.68 | 0.45 | 40.6  | 0.42 | 2.57 | 0.04 | 2.44 | 0.03 | 2.47 | 0.04 | 0    | 0    | 0.19 | 0    |
| BK14_63 | 37.55 | 0.36 | 36.47 | 0.35 | 2.31 | 0.03 | 2.17 | 0.03 | 2.19 | 0.03 | 0    | 0    | 0.23 | 0    |
| BK14_64 | 32.46 | 0.29 | 22.38 | 0.21 | 1.76 | 0.02 | 1.65 | 0.02 | 1.68 | 0.03 | 0    | 0    | 0.19 | 0    |
| BK14_65 | 38.57 | 0.36 | 17.57 | 0.16 | 1.9  | 0.02 | 1.8  | 0.02 | 1.83 | 0.03 | 0    | 0    | 0.16 | 0    |
|         |       |      |       |      |      |      |      |      |      |      |      |      |      |      |
| BK18_1  | 14.66 | 0.15 | 11.82 | 0.12 | 0.05 | 0    | 0.03 | 0    | 0.03 | 0    | 0.01 | 0    | 0.06 | 0    |
| BK18_2  | 8.82  | 0.11 | 6.57  | 0.1  | 0.11 | 0.01 | 0.05 | 0.01 | 0.32 | 0.05 | 7.1  | 1.3  | 0.31 | 0.06 |
| BK18_3  | 11.3  | 0.18 | 7.28  | 0.09 | 0.01 | 0    | 0.01 | 0    | 0.01 | 0    | 0    | 0    | 0.02 | 0    |
| BK18_4  | 27.74 | 0.36 | 52.47 | 0.7  | 7.02 | 0.12 | 6.74 | 0.11 | 6.84 | 0.1  | 0.04 | 0    | 0.27 | 0.01 |
| BK18_5  | 17.82 | 0.99 | 23.2  | 1.5  | 1.79 | 0.16 | 1.64 | 0.16 | 1.65 | 0.16 | 0.02 | 0    | 0.19 | 0.02 |
| BK18_6  | 27.8  | 1.3  | 42.7  | 3.5  | 6.05 | 0.56 | 5.88 | 0.53 | 5.93 | 0.55 | 0.03 | 0    | 0.13 | 0.02 |
| BK18_7  | 19.05 | 0.22 | 28.5  | 1.3  | 2.39 | 0.14 | 2.26 | 0.13 | 2.29 | 0.15 | 0.01 | 0    | 0.13 | 0.01 |
| BK18_8  | 15.43 | 0.17 | 13.51 | 0.13 | 0.05 | 0    | 0.03 | 0    | 0.04 | 0    | 0.02 | 0    | 0.07 | 0    |
| BK18_9  | 21.65 | 0.25 | 12.28 | 0.14 | 0.12 | 0    | 0.08 | 0    | 0.08 | 0    | 0.01 | 0    | 0.14 | 0    |
| BK18_10 | 19.01 | 0.31 | 12.13 | 0.15 | 0.08 | 0    | 0.05 | 0    | 0.05 | 0.01 | 0.02 | 0.01 | 0.09 | 0.01 |
| BK18_11 | 19.9  | 0.2  | 24.4  | 0.53 | 1.86 | 0.1  | 1.77 | 0.09 | 1.81 | 0.1  | 0.01 | 0    | 0.13 | 0    |
| BK18_12 | 25.16 | 0.93 | 34.2  | 3.4  | 3.82 | 0.46 | 3.63 | 0.45 | 3.72 | 0.47 | 0.01 | 0    | 0.17 | 0.01 |

| BK18_13  | 19.38 | 0.42 | 12.45 | 0.16 | 0.12 | 0.01 | 0.08 | 0.01 | 0.08 | 0.01 | 0.02 | 0    | 0.12 | 0    |
|----------|-------|------|-------|------|------|------|------|------|------|------|------|------|------|------|
| BK18_14  | 22.36 | 0.32 | 10.62 | 0.11 | 0.06 | 0    | 0.03 | 0    | 0.03 | 0    | 0    | 0    | 0.09 | 0    |
| BK18_15  | 25.21 | 0.32 | 38.1  | 2.5  | 3.5  | 0.35 | 3.27 | 0.34 | 3.3  | 0.36 | 0.16 | 0.04 | 0.36 | 0.02 |
| BK18_16  | 20.86 | 0.25 | 13.96 | 0.48 | 0.7  | 0.07 | 0.62 | 0.06 | 0.68 | 0.07 | 0.01 | 0    | 0.13 | 0    |
|          |       |      |       |      | 2.57 | 0.05 | 2.41 | 0.05 | 2.43 | 0.05 | 0    | 0    | 0.25 | 0.01 |
| BK25B_1  | 22    | 1.6  | 16.52 | 0.94 | 2.08 | 0.05 | 1.91 | 0.05 | 1.95 | 0.06 | 0    | 0    | 0.3  | 0    |
| BK25B_2  | 43.3  | 1.1  | 30.46 | 0.51 | 2.1  | 0.04 | 1.93 | 0.04 | 1.95 | 0.05 | 0    | 0    | 0.29 | 0.01 |
| BK25B_3  | 35.7  | 2.4  | 24.6  | 1.7  | 1.81 | 0.02 | 1.65 | 0.02 | 1.68 | 0.03 | 0    | 0    | 0.31 | 0    |
| BK25B_4  | 4.95  | 0.11 | 7.27  | 0.11 | 2.69 | 0.05 | 2.47 | 0.04 | 2.5  | 0.05 | 0    | 0    | 0.21 | 0.01 |
| BK25B_5  | 6.92  | 0.67 | 8.17  | 0.4  | 2.62 | 0.04 | 2.45 | 0.04 | 2.49 | 0.05 | 0    | 0    | 0.24 | 0    |
| BK25B_6  | 1.22  | 0.31 | 6.34  | 0.24 | 2.45 | 0.02 | 2.27 | 0.02 | 2.29 | 0.03 | 0    | 0    | 0.29 | 0    |
| BK25B_7  | 7.46  | 0.43 | 8.63  | 0.19 | 2.52 | 0.05 | 2.32 | 0.05 | 2.36 | 0.05 | 0    | 0    | 0.29 | 0.01 |
| BK25B_8  | 30.6  | 3.3  | 20.2  | 1.8  | 2.5  | 0.04 | 2.35 | 0.03 | 2.35 | 0.04 | 0    | 0    | 0.25 | 0    |
| BK25B_9  | 4.57  | 0.26 | 7.25  | 0.12 | 2.57 | 0.03 | 2.39 | 0.03 | 2.41 | 0.03 | 0    | 0    | 0.28 | 0    |
| BK25B_10 | 0.85  | 0.12 | 7.16  | 0.49 | 2.6  | 0.04 | 2.42 | 0.04 | 2.46 | 0.05 | 0    | 0    | 0.26 | 0.01 |
| BK25B_11 | 7.07  | 0.75 | 8.23  | 0.35 | 2.38 | 0.02 | 2.21 | 0.02 | 2.22 | 0.03 | 0    | 0    | 0.29 | 0.01 |
| BK25B_12 | 6.8   | 0.63 | 7.69  | 0.46 | 2.58 | 0.05 | 2.4  | 0.05 | 2.48 | 0.05 | 0    | 0    | 0.24 | 0    |
| BK25B_13 | 5.4   | 0.11 | 7.11  | 0.11 | 2.57 | 0.03 | 2.41 | 0.03 | 2.47 | 0.03 | 0    | 0    | 0.22 | 0    |
| BK25B_14 | 5.96  | 0.08 | 8.21  | 0.1  | 2.55 | 0.02 | 2.38 | 0.02 | 2.42 | 0.03 | 0    | 0    | 0.27 | 0    |
| BK25B_15 | 4.67  | 0.15 | 6.52  | 0.11 | 3.17 | 0.06 | 2.96 | 0.05 | 2.98 | 0.07 | 0    | 0    | 0.25 | 0.01 |
| BK25B_16 | 0.93  | 0.15 | 10.8  | 1.3  | 2.99 | 0.12 | 2.78 | 0.11 | 2.86 | 0.12 | 0    | 0    | 0.23 | 0    |
| BK25B_17 | 8.44  | 0.6  | 7.22  | 0.21 | 2.31 | 0.03 | 2.15 | 0.03 | 2.18 | 0.04 | 0    | 0    | 0.23 | 0.01 |
| BK25B_18 | 9.07  | 0.55 | 7.44  | 0.33 | 2.64 | 0.04 | 2.47 | 0.03 | 2.52 | 0.04 | 0    | 0    | 0.23 | 0    |
| BK25B_19 | 6.13  | 0.27 | 7.09  | 0.14 | 0.72 | 0.01 | 0.59 | 0.01 | 0.6  | 0.01 | 0.12 | 0    | 0.38 | 0.01 |
| BK25B_20 | 3.72  | 0.46 | 7.1   | 0.21 | 0.93 | 0.01 | 0.77 | 0.01 | 0.78 | 0.02 | 0.07 | 0    | 0.36 | 0    |
| BK25B_21 | 5.76  | 0.2  | 7.32  | 0.11 | 1.8  | 0.02 | 1.64 | 0.02 | 1.65 | 0.03 | 0.01 | 0    | 0.34 | 0    |
| BK25B_22 | 4.33  | 0.18 | 6.93  | 0.08 | 2.41 | 0.02 | 2.24 | 0.02 | 2.29 | 0.03 | 0    | 0    | 0.25 | 0    |
| BK25B_23 | 6.76  | 0.21 | 11.23 | 0.42 | 0.84 | 0.02 | 0.73 | 0.02 | 0.75 | 0.02 | 0.07 | 0    | 0.3  | 0.01 |
| BK25B_24 | 19.7  | 2    | 21.1  | 1.9  | 1.18 | 0.02 | 1    | 0.02 | 1    | 0.02 | 0.1  | 0    | 0.48 | 0.01 |
| BK25B_25 | 6.58  | 0.72 | 8.55  | 0.35 | 0.92 | 0.02 | 0.73 | 0.01 | 0.76 | 0.02 | 0.31 | 0.03 | 0.55 | 0.03 |
| BK25B_26 | 3.44  | 0.28 | 11.64 | 0.9  | 0.67 | 0.01 | 0.57 | 0.01 | 0.58 | 0.01 | 0.1  | 0    | 0.31 | 0.01 |
| BK25B_27 | 5.4   | 0.1  | 7.56  | 0.11 | 0.91 | 0.03 | 0.77 | 0.03 | 0.78 | 0.04 | 0.1  | 0    | 0.39 | 0.01 |
| BK25B_28 | 4.3   | 0.15 | 13.78 | 0.57 | 1.17 | 0.02 | 1    | 0.01 | 1.02 | 0.02 | 0.05 | 0    | 0.36 | 0.01 |
| BK25B_29 | 3.7   | 0.07 | 8.5   | 0.1  | 2.74 | 0.05 | 2.46 | 0.05 | 2.5  | 0.05 | 0.02 | 0    | 0.61 | 0.01 |
| BK25B_30 | 48    | 5.5  | 25.9  | 2.7  | 2.5  | 0.04 | 2.26 | 0.04 | 2.3  | 0.04 | 0.02 | 0    | 0.55 | 0.01 |
| BK25B_31 | 5.86  | 0.48 | 7.27  | 0.28 | 0.95 | 0.02 | 0.8  | 0.01 | 0.81 | 0.02 | 0.11 | 0    | 0.4  | 0.01 |

| BK25B_32   | 39.8  | 5.9  | 7.95  | 0.18 | 0.95 | 0.02 | 0.79 | 0.01 | 0.81 | 0.01 | 0.2  | 0    | 0.45 | 0.01 |
|------------|-------|------|-------|------|------|------|------|------|------|------|------|------|------|------|
| BK25B_33   | 7.22  | 0.12 | 7.8   | 0.17 | 0.9  | 0.02 | 0.77 | 0.02 | 0.79 | 0.02 | 0.26 | 0    | 0.4  | 0.01 |
| BK25B_34   | 5.55  | 0.08 | 6.75  | 0.06 | 0.79 | 0.02 | 0.65 | 0.01 | 0.66 | 0.01 | 0.09 | 0    | 0.37 | 0.01 |
| BK25B_35   | 0.73  | 0.09 | 6.62  | 0.18 | 2.79 | 0.03 | 2.6  | 0.03 | 2.65 | 0.04 | 0    | 0    | 0.32 | 0    |
| BK25B_36   | 0.69  | 0.09 | 6.9   | 0.38 | 2.43 | 0.05 | 2.18 | 0.04 | 2.22 | 0.05 | 0.01 | 0    | 0.55 | 0.01 |
| BK25B_37   | 0.69  | 0.11 | 8.8   | 1    | 1.66 | 0.03 | 1.51 | 0.02 | 1.51 | 0.02 | 0.01 | 0    | 0.34 | 0    |
| BK25B_38   | 5.93  | 0.11 | 9.09  | 0.19 | 3.05 | 0.04 | 2.81 | 0.03 | 2.91 | 0.04 | 0.01 | 0    | 0.31 | 0    |
| BK25B_39   | 0.67  | 0.09 | 6.3   | 0.18 | 2.95 | 0.03 | 2.67 | 0.03 | 2.72 | 0.03 | 0.01 | 0    | 0.62 | 0.01 |
| BK25B_40   | 0.71  | 0.09 | 6.23  | 0.2  | 2.9  | 0.05 | 2.62 | 0.04 | 2.64 | 0.05 | 0    | 0    | 0.59 | 0.01 |
|            |       |      |       |      |      |      |      |      |      |      |      |      |      |      |
| KTDD089_1  | 4.37  | 0.06 | 11.08 | 0.14 | 0.12 | 0.01 | 0.1  | 0.01 | 0.09 | 0.01 | 0.02 | 0    | 0.08 | 0.01 |
| KTDD089_2  | 3.43  | 0.13 | 9.06  | 0.74 | 0.12 | 0.03 | 0.11 | 0.03 | 0.11 | 0.03 | 0.02 | 0    | 0.03 | 0.01 |
| KTDD089_3  | 22.32 | 0.47 | 47.38 | 0.75 | 4.28 | 0.09 | 3.76 | 0.09 | 3.79 | 0.1  | 0.05 | 0    | 1.19 | 0.03 |
| KTDD089_4  | 19.6  | 1.5  | 46.4  | 2.7  | 3.66 | 0.23 | 3.3  | 0.2  | 3.31 | 0.23 | 0.03 | 0    | 0.73 | 0.06 |
| KTDD089_5  | 110.9 | 2.3  | 53.3  | 0.99 | 4.54 | 0.08 | 3.93 | 0.07 | 3.98 | 0.1  | 0.06 | 0    | 1.35 | 0.03 |
| KTDD089_6  | 39.82 | 0.35 | 56.86 | 0.49 | 4.27 | 0.03 | 3.74 | 0.03 | 3.78 | 0.04 | 0.02 | 0    | 1.38 | 0.01 |
| KTDD089_7  | 30.95 | 0.51 | 56.96 | 0.57 | 4.34 | 0.09 | 3.87 | 0.08 | 3.95 | 0.08 | 0.02 | 0    | 1.12 | 0.01 |
| KTDD089_8  | 31.49 | 0.98 | 57.62 | 0.85 | 4.59 | 0.1  | 4.06 | 0.08 | 4.16 | 0.09 | 0.02 | 0    | 1.2  | 0.03 |
| KTDD089_9  | 4.48  | 0.11 | 12.77 | 0.3  | 0.26 | 0.03 | 0.23 | 0.03 | 0.24 | 0.03 | 0.01 | 0    | 0.06 | 0.01 |
| KTDD089_10 | 174   | 29   | 28.2  | 2.8  | 4.03 | 0.77 | 3.56 | 0.63 | 3.53 | 0.6  | 0.3  | 0.05 | 0.37 | 0.05 |
| KTDD089_11 | 20.29 | 0.59 | 44.3  | 1.1  | 3.57 | 0.07 | 3.23 | 0.06 | 3.26 | 0.08 | 0.09 | 0.01 | 0.73 | 0.03 |
| KTDD089_12 | 21.15 | 0.26 | 46.01 | 0.54 | 3.73 | 0.05 | 3.34 | 0.04 | 3.38 | 0.05 | 0.01 | 0    | 0.82 | 0.02 |
| KTDD089_13 | 21.73 | 0.52 | 48.46 | 0.69 | 3.77 | 0.06 | 3.34 | 0.04 | 3.44 | 0.06 | 0.17 | 0.03 | 0.84 | 0.02 |
| KTDD089_14 | 26.29 | 0.57 | 51.77 | 0.66 | 4.08 | 0.07 | 3.71 | 0.06 | 3.77 | 0.07 | 0.03 | 0    | 0.92 | 0.02 |
| KTDD089_15 | 24.06 | 0.49 | 44.1  | 1    | 3.66 | 0.06 | 3.34 | 0.05 | 3.43 | 0.06 | 0.03 | 0    | 0.56 | 0.02 |
| KTDD089_16 | 24    | 1.4  | 50.7  | 2.6  | 3.91 | 0.21 | 3.52 | 0.19 | 3.61 | 0.18 | 0.03 | 0    | 0.82 | 0.06 |
| KTDD089_17 | 8.11  | 0.69 | 21.2  | 1.7  | 0.99 | 0.14 | 0.87 | 0.12 | 0.89 | 0.13 | 0.03 | 0    | 0.3  | 0.04 |
| KTDD089_18 | 51.3  | 1.1  | 74.8  | 1.3  | 7.99 | 0.19 | 7.16 | 0.17 | 7.26 | 0.17 | 0.14 | 0.01 | 1.72 | 0.06 |
| KTDD089_19 | 35.04 | 0.94 | 57.33 | 0.69 | 4.88 | 0.09 | 4.36 | 0.08 | 4.45 | 0.1  | 0.1  | 0    | 1.11 | 0.03 |
| KTDD089_20 | 18.94 | 0.78 | 37.6  | 1.5  | 2.86 | 0.12 | 2.53 | 0.11 | 2.55 | 0.11 | 0.11 | 0.01 | 0.78 | 0.06 |
| KTDD089_21 | 3.45  | 0.07 | 11.49 | 0.14 | 0.02 | 0    | 0.01 | 0    | 0.01 | 0    | 0.2  | 0.01 | 0.04 | 0    |
| KTDD089_22 | 38.31 | 0.57 | 61.88 | 0.59 | 5.84 | 0.08 | 5.3  | 0.07 | 5.43 | 0.07 | 0.02 | 0    | 1.15 | 0.01 |
| KTDD089_23 | 23.06 | 0.45 | 47.53 | 0.42 | 3.61 | 0.06 | 3.25 | 0.06 | 3.27 | 0.07 | 0.01 | 0    | 0.79 | 0.01 |
| KTDD089_24 | 25.32 | 0.44 | 57.08 | 0.67 | 4.42 | 0.07 | 3.92 | 0.07 | 3.99 | 0.08 | 0.01 | 0    | 1.06 | 0.01 |
| KTDD089_25 | 14.84 | 0.78 | 35    | 1.4  | 2.75 | 0.12 | 2.2  | 0.11 | 2.19 | 0.12 | 0.09 | 0    | 1.59 | 0.06 |
| KTDD089_26 | 14.62 | 0.87 | 28.8  | 2.5  | 2.07 | 0.21 | 1.84 | 0.19 | 1.9  | 0.19 | 0.09 | 0.01 | 0.41 | 0.05 |

| KTDD089_27 | 34.99 | 0.36 | 61.71 | 0.56 | 5.37 | 0.05 | 4.83 | 0.05 | 4.93 | 0.06 | 0.02 | 0    | 1.2  | 0.02 |
|------------|-------|------|-------|------|------|------|------|------|------|------|------|------|------|------|
| KTDD089_28 | 16.8  | 1.4  | 27.1  | 1.8  | 2.9  | 0.25 | 2.38 | 0.22 | 2.42 | 0.23 | 0.28 | 0.03 | 1.35 | 0.15 |
| KTDD089_29 | 15.49 | 0.66 | 31.43 | 0.97 | 2.19 | 0.1  | 1.95 | 0.09 | 1.99 | 0.1  | 0.18 | 0.02 | 0.68 | 0.04 |
| KTDD089_30 | 4.11  | 0.06 | 14.19 | 0.14 | 0.03 | 0    | 0.01 | 0    | 0.02 | 0    | 0.15 | 0.02 | 0.07 | 0    |
| KTDD089_31 | 14.41 | 0.24 | 13.92 | 0.22 | 0.12 | 0.01 | 0.08 | 0.01 | 0.08 | 0.01 | 0.16 | 0.01 | 0.13 | 0.01 |
| KTDD089_32 | 23.8  | 0.66 | 47.26 | 0.85 | 3.72 | 0.13 | 3.34 | 0.12 | 3.42 | 0.13 | 0.02 | 0    | 0.87 | 0.02 |
| KTDD089_33 | 3.27  | 0.06 | 11.7  | 0.12 | 0.01 | 0    | 0    | 0    | 0.01 | 0    | 0.03 | 0.01 | 0.03 | 0    |
| KTDD089_34 | 29.41 | 0.65 | 61.62 | 0.54 | 5.29 | 0.09 | 4.49 | 0.1  | 4.58 | 0.11 | 0.36 | 0.06 | 1.93 | 0.09 |
| KTDD089_35 | 27.41 | 0.72 | 55.3  | 1    | 4.59 | 0.09 | 4.16 | 0.08 | 4.22 | 0.08 | 0.02 | 0    | 1    | 0.03 |
| KTDD089_36 | 35.92 | 0.37 | 62.75 | 0.59 | 5.85 | 0.09 | 5.28 | 0.08 | 5.43 | 0.1  | 0.02 | 0    | 1.24 | 0.01 |
| KTDD089_37 | 6.8   | 1.1  | 17.3  | 2    | 0.61 | 0.2  | 0.52 | 0.17 | 0.56 | 0.19 | 0.09 | 0.01 | 0.17 | 0.05 |
| KTDD089_38 | 20    | 1.4  | 27    | 1.7  | 1.96 | 0.17 | 1.79 | 0.15 | 1.79 | 0.15 | 0.16 | 0.03 | 0.41 | 0.04 |
| KTDD089_39 | 13.44 | 0.56 | 23.01 | 0.97 | 1.06 | 0.05 | 0.91 | 0.05 | 0.93 | 0.05 | 0.11 | 0.03 | 0.36 | 0.03 |
| KTDD089_40 | 20.54 | 0.68 | 39.1  | 1.4  | 3.23 | 0.14 | 2.85 | 0.15 | 2.93 | 0.16 | 0.17 | 0.02 | 0.5  | 0.04 |
| KTDD089_41 | 13.2  | 1.5  | 28.2  | 3    | 1.81 | 0.26 | 1.61 | 0.23 | 1.63 | 0.24 | 0.04 | 0.01 | 0.39 | 0.08 |
| KTDD089_42 | 21.6  | 1.2  | 46.9  | 2.3  | 3.73 | 0.18 | 3.35 | 0.16 | 3.43 | 0.16 | 0.19 | 0.03 | 0.82 | 0.05 |
| KTDD089_43 | 33.38 | 0.52 | 53.52 | 0.69 | 4.19 | 0.07 | 3.7  | 0.06 | 3.76 | 0.07 | 0.06 | 0    | 1.26 | 0.01 |
| KTDD089_44 | 32.02 | 0.46 | 48.9  | 0.53 | 3.89 | 0.08 | 3.42 | 0.07 | 3.46 | 0.07 | 0.02 | 0    | 1.17 | 0.02 |
| KTDD089_45 | 23.76 | 0.48 | 44.5  | 1.2  | 3.41 | 0.1  | 2.91 | 0.09 | 2.93 | 0.1  | 0.07 | 0.01 | 1.41 | 0.07 |
| KTDD089_46 | 27.1  | 1.9  | 49.4  | 2.6  | 4.04 | 0.25 | 3.63 | 0.23 | 3.62 | 0.24 | 0.13 | 0.02 | 1    | 0.08 |
| KTDD089_47 | 11.7  | 1.9  | 24.2  | 3.5  | 0.94 | 0.24 | 0.83 | 0.22 | 0.79 | 0.22 | 0.31 | 0.09 | 0.26 | 0.08 |
| KTDD089_48 | 11.9  | 1.8  | 27.4  | 3.9  | 1.73 | 0.36 | 1.55 | 0.33 | 1.57 | 0.34 | 0.02 | 0    | 0.32 | 0.08 |
| KTDD089_49 | 31.74 | 0.54 | 60.4  | 1    | 5.76 | 0.12 | 4.79 | 0.08 | 4.82 | 0.08 | 0.14 | 0.02 | 3    | 0.2  |
| KTDD089_50 | 9.5   | 1.2  | 22.4  | 2.6  | 1.19 | 0.25 | 1.06 | 0.23 | 1.05 | 0.22 | 0.19 | 0.01 | 0.25 | 0.05 |
| KTDD089_51 | 21    | 1.5  | 40.5  | 3.2  | 3.15 | 0.31 | 2.76 | 0.29 | 2.85 | 0.31 | 0.34 | 0.04 | 0.55 | 0.08 |
| KTDD089_52 | 23.92 | 0.96 | 47.6  | 1.4  | 3.67 | 0.15 | 3.25 | 0.13 | 3.26 | 0.14 | 0.26 | 0.02 | 0.92 | 0.05 |
| KTDD089_53 | 14.1  | 1.1  | 33.3  | 2.2  | 2.4  | 0.24 | 2.16 | 0.21 | 2.22 | 0.22 | 0.05 | 0    | 0.5  | 0.05 |
| KTDD089_54 | 19.34 | 0.41 | 40.4  | 1.1  | 3.41 | 0.15 | 2.94 | 0.11 | 2.94 | 0.12 | 0.07 | 0.01 | 1.31 | 0.1  |
| KTDD089_55 | 7.04  | 0.77 | 18.7  | 1.4  | 0.86 | 0.15 | 0.79 | 0.13 | 0.83 | 0.15 | 0.03 | 0.01 | 0.2  | 0.03 |
| KTDD089_56 | 32.82 | 0.55 | 53.57 | 0.81 | 4.48 | 0.07 | 4.02 | 0.06 | 4.05 | 0.06 | 0.2  | 0.03 | 1.08 | 0.03 |
| KTDD089_57 | 7.92  | 0.47 | 18.7  | 1.1  | 1.1  | 0.11 | 0.98 | 0.1  | 0.97 | 0.11 | 0.03 | 0.01 | 0.22 | 0.03 |
| KTDD089_58 | 3.27  | 0.06 | 8.28  | 0.19 | 0.07 | 0.01 | 0.06 | 0.01 | 0.06 | 0.01 | 0.06 | 0.01 | 0.02 | 0    |