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T-DUALITY AND THE EXOTIC CHIRAL DE RHAM COMPLEX

ANDREW LINSHAW AND VARGHESE MATHAI

Abstract. Let Z be a principal circle bundle over a base manifold M equipped with an

integral closed 3-form H called the flux. Let Ẑ be the T-dual circle bundle over M with flux

Ĥ. Han and Mathai recently constructed the Z2-graded space of exotic differential forms

Ak̄(Ẑ). It has an additional Z-grading such that the degree zero component coincides with

the space of invariant twisted differential forms Ωk̄(Ẑ, Ĥ)T̂, and it admits a differential that

extends the twisted differential dĤ = d + Ĥ. The T-duality isomorphism Ωk̄(Z,H)T →
Ωk+1(Ẑ, Ĥ)T̂ of Bouwknegt, Evslin and Mathai extends to an isomorphism Ωk̄(Z,H) →
Ak+1(Ẑ). In this paper, we introduce the exotic chiral de Rham complex Ach,Ĥ,k̄(Ẑ) which

contains Ak̄(Ẑ) as the weight zero subcomplex. We give an isomorphism Ωch,H,k̄(Z) →
Ach,Ĥ,k+1(Ẑ) where Ωch,H,k̄(Z) denotes the twisted chiral de Rham complex of Z, which

chiralizes the above T-duality map.

1. Introduction

A space of exotic differential forms with an equivariantly flat superconnection [29] was

first defined on loop space in the paper [17], which we now briefly recall here.

Let (H,Bα, Fαβ, Lαβ) denote a gerbe with connection on Z (cf. [7]), where (H,Bα, Fαβ)

denotes the Deligne class of the closed integral 3-form H with respect to a Brylinski open

cover (cf. [17]), and Lαβ denotes the line bundles on double overlaps that determines the

gerbe G. The holonomy of the gerbe is then a line bundle L with connection d + τ(Bα)

having curvature τ(H) on loop space LZ, where τ denotes the transgression map. We

consider the space of invariant exotic differential forms on loopspace LM , Ωk̄(LZ,L)S
1
, with

exotic differential D = ∇L − iK + H̄, where ∇L is the connection on the holonomy line

bundle L given locally by d + τ(Bα), iK is contraction by the rotation vector field K, and

H̄ denotes the 3-form on LZ given by the canonical extension of H to loopspace. Then a

computation in [17] shows that D2 = LK , so that D2 = 0 on Ωk̄(LZ,L)S
1
.

Let T → Z
π→ M be a principal circle bundle over a base manifold M with background

T-invariant flux H, which is a closed 3-form on Z. Then there is a T-dual circle bundle

T̂ → Ẑ
π̂→ X with T-dual background T̂-invariant flux Ĥ which is a closed 3-form on Ẑ,

such that c1(Z) = π̂∗[Ĥ] and c1(Ẑ) = π∗[H], and the constraint that [H] = [Ĥ] on the

correspondence space Z ×M Ẑ ensures that [Ĥ] is uniquely defined. This is the setting of

[4, 5]. Let L = Z ×T C and L̂ = Ẑ ×T̂ C denote the associated line bundles over the base

space M .

The precise relation between [17] and [18] is that when Z is the total space of a principal

circle bundle, then there is a natural infinite sequence of embeddings ιn : Z → LZ defined

by ιn(x) : S1 3 t 7→ γx(t) = tn · x, for all n ∈ Z. We consider such sequence of embeddings
1



motivated by the fact that there are Z many connected components in the loop space LT.

We have ι∗n(L) ∼= π∗(L̂)⊗n since they have the same Chern class. The loop space LZ has the

natural circle action by rotating loops, and Z has a circle action as the total space of circle

bundle. To tell the difference of these two circle actions, we use S1 for the circle action by

rotating loops, and T for the free circle action on Z as a principal circle bundle. We have

that for n 6= 0,

ι∗n : Ωk̄(LZ,L)S
1 −→ Ωk̄(Z, π∗(L̂⊗n))T

intertwines the equivariantly flat superconnections D and π∗∇L̂⊗n − ιnv +H on both spaces.

Here v is the vector field on Z which infinitesimally generates the action of T. This point of

view does motivate us to develop the exotic theories on Z.

Recall that the local T-duality rules, called the Buscher rules, were written in [10, 1]. The

relation of T-duality with K-theory in the absence of an H-flux was studied in [19, 16], and

in the presence of an H-flux in [4, 5] where for the first time there was topology change

between spacetime and its T-dual. See also [9] and [30, 31, 32, 6] for alternate approaches

to T-duality. In [18], the T-duality isomorphism given in [4, 5] was extended to a mapping

from the full space of complex-valued differential forms defined on a principal circle bundle.

In doing so, the striking result obtained was that the T-dual data of this space is given

by the space of exotic differential forms defined on the T-dual principal circle bundle. The

definition of exotic differential forms was inspired by their previous work, [17].

In order to define this T-duality mapping, let L, L̂ denote the complex line bundles associ-

ated to the circle bundles Z, Ẑ with the standard representation of the circle on the complex

plane respectively. The exotic differential forms are then given by

Ak̄(Z) =
⊕
n∈Z

Ak̄n(Z)T :=
⊕
n∈Z

Ωk̄(Z, π∗(L̂⊗n))T,

Ak̄(Ẑ) =
⊕
n∈Z

Ak̄n(Ẑ)T̂ :=
⊕
n∈Z

Ωk̄(Ẑ, π̂∗(L⊗n))T̂

for k̄ = k mod 2, and where we have taken the direct sum above to be the Fréchet space

completion of the standard direct sum. This definition of the direct sum (as a completion)

will be the implicit definition from here on out when using direct sums in the context of

the exotic structures. Note that in [18], the notation Ak̄(Z)T and Ak̄(Ẑ)T̂ is used instead of

Ak̄(Z) and Ak̄(Ẑ); we have dropped the T and T̂ invariant notation on the direct sums for

simplicity.

Now define the subspace of weight −n differential forms on Z to be,

Ω∗−n(Z) := {ω ∈ Ω∗(Z)| Lievω = −nω},(1)

where Liev denote the Lie derivative along v. We observe that

Ωk̄
0(Z) = Ωk̄(Z)T, Ak+1

0 (Ẑ)T̂ = Ωk+1(Ẑ)T̂.
2



Then under the above choices of Riemannian metrics and flux forms, the results of [18] show

that there is a sequence of isometries,

τn : Ωk̄
−n(Z)→ Ak+1

n (Ẑ)T̂,(2)

defined by the exotic Hori formula from Z to Ẑ given in [18] for k̄ = k mod 2, where the

twisted de Rham differential d + H maps to the differential −(π̂∗∇L⊗n − ιnv̂ + Ĥ), and we

observe that τ0 = T . One similarly has a sequence of isometries,

(3) σn : Ak̄n(Z)T → Ωk+1
−n (Ẑ),

defined by the inverse exotic Hori formula form Z to Ẑ given in equation [18] for k̄ = k

mod 2, where the differential π∗∇L̂⊗n − ιnv + H maps to the twisted de Rham differential

−(d + Ĥ), and σ0 = T . Similarly, one can define the sequences of isometries τ̂n, σ̂n on

Ẑ. Although the extension of the Fourier-Mukai transform to all differential forms on Z is

slightly asymmetric, one has the following crucial identities, verified in [18]:

−Id = σ̂n ◦ τn : Ωk̄
−n(Z) −→ Ωk̄

−n(Z),(4)

−Id = τ̂n ◦ σn : Ak̄n(Z)T −→ Ak̄n(Z)T.(5)

This is interpreted as saying that T-duality, when applied twice, returns the object to minus

itself, which arises due to the convention of integration along the fiber. This was a result

previously verified in [4, 5] for the special case of when n = 0.

This shows that for each of either Z or Ẑ, there are two theories (at degree 0 the two

theories coincide), and there are also graded isomorphisms between the two theories of both

sides.

Moreover, when n 6= 0 the complex (Ak̄+1
n (Ẑ)T̂, π̂∗∇L⊗n − ιnv̂ + Ĥ) has vanishing cohomol-

ogy. Therefore, when n 6= 0 the complex (Ωk̄
−n(Z), d+H) also has vanishing cohomology. In

[18], an explicit homotopy is constructed to show this. We mention that, inspired by [18],

exotic Courant algebroids were defined in [11] where the T-duality isomorphism in [8] for

invariant Courant algebroids was extended to a T-duality isomorphism of exotic Courant

algebroids.

1.1. Chiralization. The chiral de Rham complex is a sheaf of vertex algebra Ωch
M on any

smooth manifold M that was introduced by Malikov, Schechtman, and Vaintrob in [33].

It has had a tremendous impact on string theory in the last 20 years; see for example

[3, 20, 35]. The global section algebra Ωch(M) has an N-grading by conformal weight, and it

chiralizes the de Rham complex (Ω(M), d) in the sense that it admits a differential D which

preserves the weight spaces, and the weight zero subcomplex (Ωch(M)[0], D) is isomorphic

to (Ω(M), d).

In this paper, we chiralize the space of exotic differential forms on Ẑ to the vertex algebra

of exotic chiral differential forms

Ach,Ĥ(Ẑ) =
⊕
n∈Z

Ach,Ĥ
n (Ẑ).
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This is the global section algebra of a sheaf of Z2-graded vertex algebras on Ẑ. We denote the

graded components by Ach,Ĥ,k̄
n (Ẑ) for k̄ ∈ Z2. Unlike the chiral de Rham complex, Ach,Ĥ(Ẑ)

is naturally equipped only with a filtration, not a grading, by weight:

(6) Ach,Ĥ(Ẑ)[0] ⊆ Ach,Ĥ(Ẑ)[1] ⊆ Ach,Ĥ(Ẑ)[2] ⊆ · · · , Ach,Ĥ(Ẑ) =
⋃
i≥0

Ach,Ĥ(Ẑ)[i].

We also equip Ach,Ĥ(Ẑ) with an exotic differential DẐ,Ĥ which shifts the Z2-grading and

preserves the weight filtration. This structure chiralizes the exotic differential forms in

the sense that for all n, the weight zero subcomplex (Ach,Ĥ,k̄
n (Ẑ)[0], DẐ,Ĥ) is isomorphic to

(Ak̄n(Ẑ), π∗∇L⊗n − ιnv̂ + Ĥ). In fact, DẐ,Ĥ is a square-zero operator on Ach,Ĥ(Ẑ); the proof

requires a very delicate calculation and depends crucially on the nonassociativity of the

normally ordered product.

Using the flux H on Z, there is an H-twisted version of the chiral de Rham complex

Ωch,H(Z) which was introduced in [28]. It turns out to be isomorphic to Ωch(Z) via an

untwisting trick; see Theorem 3 of [28], and for convenience, we use Ωch,H(Z) instead of

Ωch(Z) throughout this paper. As in the case of differential forms, the T-action on Z induces

a Fourier decomposition Ωch,H(Z) =
⊕

n∈Z Ωch,H
n (Z), which again denotes the Fréchet space

completion of the standard direct sum. There is also a Z2-grading, and we denote the

graded components by Ωch,H,k̄
n (Z) for k̄ ∈ Z2. Our main result is that T-duality gives a

degree shifting linear isomorphism

(7) τ ch
n : Ωch,H,k̄

−n (Z)→ Ach,Ĥ,k+1
n (Ẑ),

for all n ∈ Z. This map preserves the weight filtration and coincides with τn : Ωk̄
−n(Z) →

Ak+1
n (Ẑ)T̂ on the weight zero subspace. These isomorphisms combine to yield a linear iso-

morphism

(8) τ ch : Ωch,H,k̄(Z)→ Ach,Ĥ,k+1(Ẑ).

In fact, τ ch is more than a linear isomorphism. We will also define a vertex algebra isomor-

phism φch : Ωch,H(Z) → Ach,Ĥ(Ẑ) which preserves the Z2-grading. Regarding Ωch,H(Z) and

Ach,Ĥ(Ẑ) as modules over themselves, τ ch intertwines the module structures in the sense that

τ ch(νm(µ)) = (−1)|ν|(φch(ν))m(τ ch(µ)), for all m ∈ Z.

Here ν is one of the generators of Ωch,H(Z) regarded as a vertex algebra, and µ ∈ Ωch,H(Z)

regarded as a Ωch,H(Z)-module.

By Theorem 2 of [28], the cohomology of Ωch,H(Z) with respect to its twisted differen-

tial DH vanishes in positive weight, and coincides with the classical twisted cohomology in

weight zero. In weight zero, τ ch intertwines the differentials DH and DẐ,Ĥ up to a sign, but

unfortunately, this intertwining property no longer holds in positive weight. It is therefore

not obvious that the inclusion of complexes

(Ak̄n(Ẑ), π∗∇L⊗n − ιnv̂ + Ĥ) ↪→ (Ach,Ĥ,k̄
n (Ẑ), DẐ,Ĥ)

4



induces an isomorphism in cohomology, although we expect this to be the case. In the last

section, we will prove this in the special case where both circle bundles Z and Ẑ are trivial,

and the fluxes H and Ĥ are both zero.

Note that in the case n = 0, the isomorphism (7) does not recover the chiral T-duality

isomorphism of our previous paper [28], namely,

(9) (Ωch,H,k̄(Z))iR[t]/〈LA − ιAH〉 → (Ωch,Ĥ,k+1(Ẑ))iR[t]/〈LÂ − ιÂĤ〉.

In particular, the n = 0 term on the left side of (7) is isomorphic to the T-invariant space

Ωch,H,k̄(Z)T, which is larger than the left side of (9). Moreover, the right side of (7) for

n = 0 is a different structure and is not a subquotient of the chiral de Rham complex of

Ẑ. The T-duality isomorphism (8) in this paper is stronger and more natural than the one

in [28] because on the left side the entire chiral de Rham complex appears rather than a

subquotient. But the price we pay is that the object on the right side is a new kind of

vertex algebra sheaf which incorporates sections of a line bundle L on Ẑ. This construction

is very special since it makes use of the fact that Z and Ẑ are T -dual to each other. An open

question is whether it is possible to construct the exotic chiral de Rham complex on more

general manifolds with line bundles, generalizing the construction given in this paper.

2. Vertex algebras

In this section, we define vertex algebras, which have been discussed from various points

of view in the literature (see for example [2, 14, 21, 13]). We will follow the formalism

developed in [26] and partly in [22]. Let V = V0 ⊕ V1 be a super vector space over C, and

let z, w be formal variables. Let QO(V ) denote the space of linear maps

V → V ((z)) = {
∑
n∈Z

v(n)z−n−1|v(n) ∈ V, v(n) = 0 for n >> 0}.

Each a ∈ QO(V ) can be represented as a power series

a = a(z) =
∑
n∈Z

a(n)z−n−1 ∈ End(V )[[z, z−1]].

Each a ∈ QO(V ) is assumed to be of the form a = a0 + a1 where ai : Vj → Vi+j((z)) for

i, j ∈ Z/2Z, and we write |ai| = i.

For all n ∈ Z, QO(V ) has a bilinear operation defined on homogeneous elements a, b by

a(w)(n)b(w) = Resza(z)b(w) ι|z|>|w|(z − w)n − (−1)|a||b|Reszb(w)a(z) ι|w|>|z|(z − w)n.

Here ι|z|>|w|f(z, w) ∈ C[[z, z−1, w, w−1]] denotes the power series expansion of a rational

function f in the region |z| > |w|. For a, b ∈ QO(V ), we have the following identity of power

series, known as the operator product expansion (OPE) formula.

(10) a(z)b(w) =
∑
n≥0

a(w)(n)b(w) (z − w)−n−1+ : a(z)b(w) : .

5



Here : a(z)b(w) : = a(z)−b(w) + (−1)|a||b|b(w)a(z)+, where

a(z)− =
∑
n<0

a(n)z−n−1, a(z)+ =
∑
n≥0

a(n)z−n−1.

We write

a(z)b(w) ∼
∑
n≥0

a(w)(n)b(w) (z − w)−n−1,

where ∼ means equal modulo the term : a(z)b(w) :, which is regular at z = w.

Note that : a(w)b(w) : is a well-defined element of QO(V ). It is called the normally ordered

product of a and b, and it coincides with a(−1)b. The other negative products are given by

n! a(z)(−n−1)b(z) = : (∂na(z))b(z) :, ∂ =
d

dz
.

For a1(z), . . . , ak(z) ∈ QO(V ), the iterated normally ordered product is defined to be

(11) : a1(z)a2(z) · · · ak(z) : = : a1(z)b(z) :, b(z) = : a2(z) · · · ak(z) : .

We often omit the variables z, w when no confusion can arise.

We denote the constant power series IdV ∈ QO(V ) by 1. A subspace A ⊆ QO(V )

containing 1 that is closed under all the above products will be called a quantum operator

algebra (QOA). Elements a, b ∈ QO(V ) are called local if if (z−w)N [a(z), b(w)] = 0 for some

N ≥ 0. Here [·, ·] denotes the super bracket. A vertex algebra is a QOA whose elements

are pairwise local. This definition is well known to be equivalent to the notion of a vertex

algebra in [14].

A vertex algebra A is generated by a subset S = {ai| i ∈ I} if every a ∈ A can be written

as a linear combination of nonassociative words in the letters ai for i ∈ I and the above

products for n ∈ Z. We say that S strongly generates A if every a ∈ A can be written as a

linear combination of words in the letters ai, and the above products for n < 0. Equivalently,

A is spanned by

(12) {: ∂k1ai1 · · · ∂kmaim : | i1, . . . , im ∈ I, k1, . . . , km ≥ 0}.

A very useful description of a vertex algebra A is a strong generating set {ai| i ∈ I} for

A, together with a set of generators {bk| k ∈ K} for the ideal I of relations among the

generators and their derivatives, that is, all expressions of the form (12) that vanish. Given

such a description, to define a homomorphism φ from A to another vertex algebra B, it

suffices to define φ(ai) for i ∈ I and show the following.

(1) φ preserves pairwise OPEs among the generators; i.e., φ((ai)(n)aj) = φ(ai)(n)φ(aj) for

all i, j ∈ I and n ≥ 0.

(2) φ(bk) = 0 for all k ∈ K.

This will be our method of constructing vertex algebra homomorphisms in this paper.

A conformal structure on A is an element L(z) =
∑

n∈Z Lnz
−n−2 ∈ A satisfying

L(z)L(w) ∼ c

2
(z − w)−4 + 2L(w)(z − w)−1 + ∂L(w)(z − w)−1,

6



such that L−1 acts by ∂ on A and L0 acts diagonalizably. The constant c is called the central

charge, and the grading by L0-eigenvalue is called conformal weight. In all our examples,

the conformal weight grading is by the nonnegative integers. In the presence of a conformal

weight grading, we always write a homogeneous element a(z) =
∑

n∈Z a(n)z−n−1 in the form

(13)
∑
n∈Z

anz
−n−wt(a), an = a(n+ wt(a)− 1).

In this notation, for fields a, b ∈ A, we have anb = a(n+wt(a)−1)b.

A module M over a vertex algebra A is a vector space M together with a QOA ho-

momorphism A → QO(M). In particular, for each a ∈ A, we have a field aM(z) =∑
n∈Z aM(n)z−n−1 where aM(z) ∈ End(M). If A and M are graded by conformal weight,

we write aM(z) =
∑

n∈Z aM,nz
−n−wt(a), and we require that aM,n has weight −n.

3. The chiral de Rham complex

The chiral de Rham complex Ωch
Z is a sheaf of vertex algebras on any nonsingular algebraic

variety Z, which was introduced by Malikov, Schechtman, and Vaintrob [33, 34]. As observed

in [33], a similar construction also works in the setting of smooth manifolds. However,

the resulting object is no longer a sheaf, but instead is a weak sheaf in the terminology

of [24]. We briefly recall what this means. Suppose that we have a family of sheaves of

vector spaces {Fn| n = 0, 1, 2, . . . } on a smooth manifold Z. The direct sum F defined by

F(U) =
⊕

n≥0Fn(U) for an open set U ⊆ Z, is a presheaf but not a sheaf. For example,

in the case Z = R and each Fn a copy of the structure sheaf C∞, if we cover R by an

infinite collection of open intervals, one can use bump functions to construct a family of

sections which are compatible on overlaps but do not give rise to a global section of F , that

is, an element of the direct sum. However, F does satisfy a slightly weaker version of the

reconstruction axiom:

0→ F(U)→
∏
i

F(Ui) ⇒
∏
i,j

F(Ui ∩ Uj),

is exact for finite open covers {Ui} of an open set U . Following [24], a weak sheaf is a presheaf

which satisfies this weaker exactness condition.

If Z is a smooth manifold, and U ⊆ Z is any open set, Ωch(U) is an N-graded vertex

algebra by conformal weight, and we denote the conformal weight n subspace by Ωch(U)[n].

For each n, the assignment U 7→ Ωch(U)[n] defines a sheaf of vector spaces on Z, and Ωch
Z is

the weak sheaf of vertex algebras defined by Ωch(U) =
⊕

n≥0 Ωch(U)[n]. Note that Ωch
Z is not

the sheafification of this presheaf, which is too big to be a sheaf of vertex algebras. Similarly,

the exotic chiral de Rham complex Ach,Ĥ

Ẑ
that we will construct has only a filtration (6) by

conformal weight. Each filtered component Ach,Ĥ(Ẑ)[i] is an ordinary sheaf, and the union of

these components is a weak sheaf. For simplicity, we will drop the word “weak” throughout

this paper.

For a coordinate open set U ⊆ Rn with coordinate functions γ1, . . . , γn, the algebra of

sections Ωch(U) has odd generators bi(z) =
∑

n∈Z b
i
nz
−n−1 and ci(z) =

∑
n∈Z c

i
nz
−n, even

7



generators βi(z) =
∑

n∈Z β
i
nz
−n−1, as well as an even generator f(z) =

∑
n∈Z fnz

−n for every

smooth function f = f(γ1, . . . , γn) ∈ C∞(U). The field βi corresponds to the vector field
∂
∂γi

, ci corresponds to the 1-form dγi, and bi corresponds to the contraction operator ι∂/∂γi .

These fields satisfy the following nontrivial OPE relations

βi(z)f(w) ∼ ∂f

∂γi
(w)(z − w)−1,

bi(z)cj(w) ∼ δi,j(z − w)−1,

(14)

which generalizes the formula βi(z)γj(w) ∼ δi,j(z − w)−1. These OPE relations define a Lie

conformal algebra [21], and Ωch(U) is defined as the quotient of the corresponding universal

enveloping vertex algebra by the ideal generated by

(15) ∂f −
n∑
i=1

:
∂f

∂xi
∂γi :, : fg : −fg, 1− Id.

A typical element of Ωch(U) is a linear combination of fields of form

(16) : f∂a1bi1 · · · ∂arbir∂d1cj1 · · · ∂dscjs∂e1βk1 · · · ∂etβkt∂m1γl1 · · · ∂muγlu :,

where ai, di, ei ≥ 0 and mi ≥ 1. In particular, there are no nontrivial normally ordered

relations among the bi, ci, βi, ∂γi and their derivatives, so the set of all Poincaré-Birkhoff-

Witt monomials in these fields and their derivatives form a basis of Ωch(U) as a module over

C∞(U).

Now consider a smooth change of coordinates g : U → U ′,

γ̃i = gi(γ) = gi(γ1, . . . , γn), γi = f i(γ̃) = f i(γ̃1, . . . , γ̃n).

We get the following transformation rules:

c̃i = :
∂gi

∂γj
cj :, b̃i = :

∂f j

∂γ̃i
(g(γ))bj :,

β̃i = : βj
∂f j

∂γ̃i
(g(γ)) : + :

∂2fk

∂γ̃i∂γ̃l
(g(γ))

∂gl

∂γr
crbk : .

(17)

These new fields satisfy OPE relations

b̃i(z)c̃j(w) ∼ δi,j(z − w)−1, β̃i(z)f̃(w) ∼ ∂f̃

∂γ̃i
(z − w)−1.

Here f̃ = f̃(γ̃1, . . . , γ̃n) is any smooth function. Therefore g : U → U ′ induces a vertex

algebra isomorphism φg : Ωch(U) → Ωch(U ′). Moreover, given diffeomorphisms of open sets

U1
g−→ U2

h−→ U3, we get φh◦g = φg ◦φh. This allows one to define the sheaf Ωch
Z on any smooth

manifold Z. Consider the following locally defined fields

(18)

J =
n∑
i=1

: bici :, Q =
n∑
i=1

: βici :, G =
n∑
i=1

: bi∂γi :, L =
n∑
i=1

: βi∂γi : − : bi∂ci : .
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These satisfy the OPE relations of a topological vertex algebra of rank n [25].

L(z)L(w) ∼ 2L(w)(z − w)−2 + ∂L(w)(z − w)−1,

L(z)J(w) ∼ −n(z − w)−3 + J(w)(z − w)−2 + ∂J(w)(z − w)−1,

L(z)G(w) ∼ 2G(w)(z − w)−2 + ∂G(w)(z − w)−1,

L(z)Q(w) ∼ Q(w)(z − w)−2 + ∂Q(w)(z − w)−1,

J(z)J(w) ∼ −n(z − w)−2, G(z)G(w) ∼ 0, Q(z)Q(w) ∼ 0,

J(z)G(w) ∼ −G(w)(z − w)−1, J(z)Q(w) ∼ Q(w)(z − w)−1,

Q(z)G(w) ∼ n(z − w)−3 + J(w)(z − w)−2 + L(w)(z − w)−1.

(19)

Under g : U → U ′, these fields transform as

L̃ = L, G̃ = G,

J̃ = J + ∂

(
Tr log

(
∂gi

∂bj

))
, Q̃ = Q+ ∂

(
∂

∂b̃r

(
Tr log

(
∂f i

∂b̃j

))
c̃r
)
,

(20)

Therefore L andG are globally defined on any manifold Z. Although J andQ are not globally

defined in general, the operators J0 andQ0 are well-defined. Note that Ωch(Z) has a bigrading

by degree and weight, where the weight is the eigenvalue of L0 and degree is the eigenvalue

of J0. Also, Q0 is a square-zero operator and we define the differential D to be Q0. It is

vertex algebra derivation, that is, a derivation of all vertex algebra products, and it coincides

with the de Rham differential at weight zero. Note that G0 is a contracting homotopy for

D, i.e., [D,G0] = L0. This shows that the cohomology H∗(Ωch(Z), D) vanishes in positive

weight. Each f has weight 0 and degree 0, ci has weight 0 and degree 1, βi has weight 1 and

degree 0, and bi has weight 1 and degree −1. Therefore the weight zero component of Ωch(Z)

is just Ω(Z), and the embedding Ω(Z) ↪→ Ωch(Z) induces an isomorphism in cohomology.

4. Coordinate-free description

For any open set U ⊆ Z, we may regard f ∈ C∞(U) and ω ∈ Ω1(U) as sections of Ωch(U)

of weight zero and degrees 0 and 1, respectively. Given a vector field X ∈ Vect(U), there

are sections

ιX(z) =
∑
n∈Z

(ιX)nz
−n−1, LX(z) =

∑
n∈Z

(LX)nz
−n−1

in Ωch(U) of weight 1 and degrees −1 and 0, respectively, and the local description of ιX
and LX is given in [23]. Let γ1, . . . , γn be local coordinates and X =

∑n
i=1 fi

∂
∂γi

where each

fi = fi(γ
1, . . . , γn) is a smooth function. Then

(21) ιX =
n∑
i=1

: fib
i :, LX = D(ιX) =

n∑
i=1

: βifi : +
n∑
i=1

n∑
j=1

:
∂fj
∂γi

cibj : .
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The next theorem1 gives a useful coordinate-independent description of Ωch(U) when U is a

coordinate open set.

Theorem 4.1. For a coordinate open set U ⊆ Rn, Ωch(U) is strongly generated by the

following fields:

(22) f ∈ C∞(U), ω ∈ Ω1(U), LX , ιX , X ∈ Vect(U).

These satisfy the following OPE relations.

ιX(z)ιY (w) ∼ 0,

LX(z)ιY (w) ∼ ι[X,Y ](w)(z − w)−1, LX(z)LY (w) ∼ L[X,Y ](w)(z − w)−1,

LX(z)ω(w) ∼ LieX(ω)(w)(z − w)−1, ιX(z)ω(w) ∼ ιX(ω)(w)(z − w)−1,

LX(z)f(w) ∼ X(f)(w)(z − w)−1, ιX(z)f(w) ∼ 0.

(23)

The ideal of normally ordered relations among these fields is generated by the following

elements.

1− Id, : fg : −fg, : νω : −νω, f, g ∈ C∞(U), ν, ω ∈ Ω1(U),

ιgX− : gιX :, LgX− : (dg)ιX : − : gLX :, g ∈ C∞(U), X ∈ Vect(U),

∂g(φ1, . . . , φn)−
n∑
i=1

∂g

∂φi
∂φi, g ∈ C∞(Rn), φi ∈ C∞(U).

(24)

Proof. For a coordinate open set with coordinates γ1, . . . , γn, (22) is a strong generating set

for Ωch(U) since it contains the above generators f ∈ C∞(U), bi, ci, βi as a subset. Similarly,

the set of relations (24) are all consequences of the set (15), which is a subset of (24). �

We call an open set U ⊆ Z small if Ωch(U) has the strong generating set (22). We call an

open cover {Uα} of Z a small open cover if each Uα is small. Aside from coordinate open

sets, there is another type of small open set that will be useful. These are of the form U×Tm
where U is a coordinate open set, and Tm is a torus of rank m. The reason such a set is

small is that if y1, . . . , ym are coordinates on Tm defined up to shifts by 2πik for k ∈ Z,

the corresponding fields ∂yi, ci = dyi, βi, and bi, are globally defined. If π : Z → M is a

principal circle bundle, we often choose a trivializing open cover {Vα} for M such that each

Vα is a coordinate open set. Then {Uα = π−1(Vα)} is a small open cover for Z, and each

Uα ∼= Vα × T.

Even though Ωch(U) contains the ring of smooth functions C∞(U) as the weight zero

subspace, it is not a C∞(U)-module because of the nonassociativity of the normally ordered

product. In other words, for f, g ∈ C∞(U) and ν ∈ Ωch(U),

: (fg)ν : − : fgν : =
∑
n≥0

1

(n+ 1)!

(
: (∂n+1f)(g(n)ν) : +(∂n+1g)(f(n)ν) :

)
,

1The coordinate-free description of the relations is due to Bailin Song, and we thank him for sharing it

with us.
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and the right hand side need not vanish. However, Ωch(U) is a loop module over C∞(U) in

the sense of [3], and Ωch
Z is a sheaf of loop modules over the structure sheaf C∞. For practical

purposes it can be treated like an ordinary sheaf of C∞-modules since global sections can

be constructed by gluing local sections using a partition of unity. We thank B. Song for

explaining this to us.

Remark 4.2. Given a sheaf of vertex algebras on a manifold M which is a sheaf of C∞-loop

modules, a local but coordinate-independent description is useful for the following reason.

To specify a homomorphism between two such sheaves AM → BM , it is enough to give a

vertex algebra homomorphism φα : A(Uα)→ B(Uα) which intertwines the C∞-loop module

structures, such that φα, φβ agree on the overlap Uα∩Uβ. If we have coordinate-independent

generators and relations for AM and BM , it suffices to show that the OPEs among the

generators are preserved and the ideal of relations is annihilated; the agreement on overlaps

is then automatic. This applies to morphisms of sheaves of modules over such vertex algebra

sheaves as well.

4.1. H-twisted chiral de Rham complex. Suppose that H is a closed 3-form on Z. Recall

from [28] that for a coordinate open set U , Ωch,H(U) has strong generators L̃X , ι̃X(z), f̃ , ω̃

satisfying

ι̃X(z)ι̃Y (w) ∼ 0,

L̃X(z)ι̃Y (w) ∼
(
ι̃[X,Y ](w) + (ι̃XιYH)(w)

)
(z − w)−1,

L̃X(z)L̃Y (w) ∼
(
L̃[X,Y ](w) + (D̃ιXιYH)(w)

)
(z − w)−1,

L̃X(z)ω̃(w) ∼ ˜LieX(ω)(w)(z − w)−1, ι̃X(z)ω̃(w) ∼ ι̃X(ω)(w)(z − w)−1,

L̃X(z)f̃(w) ∼ X̃(f)(w)(z − w)−1, ι̃X(z)f̃(w) ∼ 0.

(25)

Note that ιXιYH is a one-form ν ∈ Ω1(U), and the notation ι̃XιYH means ν̃, and similarly

for the other uses of the wide tilde notation above. The ideal of relations among these fields

has the same generating set (24) as the untwisted case, where each field is replaced by the

tilde version. The corresponding vertex algebra sheaves are all isomorphic to the untwisted

chiral de Rham sheaf.

Theorem 4.3 ([28], Theorem 3). Let {Uα} be a small open cover of Z. Define a map

Ωch(Uα)→ Ωch,HUα) by

(26) ιX 7→ ι̃X , LX 7→ L̃X − ι̃XH, f 7→ f̃ , ω 7→ ω̃.

This is an isomorphism of vertex algebras for each Uα, and it defines a sheaf isomorphism

Ωch
Z
∼= Ωch,H

Z .

For the rest of this paper, we will work with the twisted version Ωch,H(U), and for simplicity

of notation we shall drop the tilde symbols. Note that the chiral de Rham differential D acts

on the generators of Ωch,H(U) as follows:

D(f) = df, D(ω) = dω, D(ιX) = LX − ιXH, D(LX) = LXH.
11



Remark 4.4. Note that in Ωch,H(U), the generators f, ω are homogeneous of weight zero,

and ιX is homogeneneous of weight one. However, LX is not homogeneous with respect to

the conformal weight grading, but must be replaced with the element LX − ιXH, which is

homogeneous of weight 1.

5. Fourier decomposition

Suppose now that Z is a principal circle bundle over M , with circle denoted by T, which

we denote by π : Z → M . Let H be an integral closed 3-form on Z. By averaging over T,

we may assume without loss of generality that H is T-invariant since this does not change

the cohomology class [H]. Let ν denote the vector field infintesimally generated by T, and

fix a connection form A ∈ Ω1(Z), normalized so ινA = 1. By abuse of notation, we often

denote ιν by ιA in order to emphasize the duality between the vector field and connection

form. We will denote the even and odd fields in Ωch,H(Z) corresponding to ν by LA and ιA,

respectively.

Since H is T-invariant, we may write H = H3 + A ∧ H2 where H3, H2 are basic forms,

that is, elements of π∗(Ω(M)). For each open set U ⊆ Z, define

Ωch,H
n (U) = {α ∈ Ωch,H(U)| (LA)0(α) = nα}.

Then

Ωch,H(U) ∼=
⊕
n∈Z

Ωch,H
n (U),

where the direct sum denotes the Fréchet space completion of the ordinary direct sum.

Choose a trivializing open cover {Vα} for M such that each Vα is a coordinate open set.

Then {Uα = π−1(Vα)} is a small open cover for Z, and each Uα ∼= Vα × T.

Note that Ωch,H
0 (Uα) ∼= Ωch,H(Uα)T and each weight space Ωch,H

n (Uα) for the action of T is

a module over Ωch,H
0 (Uα). Moreover, Ωch,H

0 (Uα) has strong generating set

{ιX , LX , f, ω, A,ΓA| X ∈ Vecthor(Uα), f ∈ π∗(C∞(Vα)), ω ∈ π∗(Ω1(Vα))},

described in [28]. In this notation, Vecthor(Uα) = {X ∈ Vect(Uα)| ιX(A) = 0} is the set of

horizontal vector fields, and ΓA = G(0)A = G(1)∂A, which has degree zero and weight 1. Note

that G has weight 2, so in our earlier notation (13) this is written as ΓA = G−1A = G0∂A.

Recall that DΓA = ∂A − ξA, where ξA has degree 1, weight 1, and satisfies DξA = ∂DA =

D∂A. Also, recall that ξA lies in the subalgebra of Ωch,H(Uα) generated by π∗(Ω(Vα)), and

in particular commutes with both ιA and LA. For convenience we recall the OPEs among
12



the generators of Ωch,H
0 (U).

LX(z)ιY (w) ∼
(
ι[X,Y ] + ιXιYH

3+ : A(ιXιYH
2) : + : (ιXιY Ĥ

2)ιA :
)
(z − w)−1,

LX(z)LY (w) ∼
(
L[X,Y ] + LXιYH

3 − ιXLYH3+ : Ĥ2(ιXιYH
2) : − : A(LXιYH

2) :

+ : A(ιXLYH
2) : + : (LXιY Ĥ

2)ιA : − : (ιXLY Ĥ
2)ιA : + : LA(ιXιY Ĥ

2) :
)
(w)(z − w)−1,

LX(z)ω(w) ∼ LieX(ω)(w)(z − w)−1, LX(z)f(w) ∼ X(f)(w)(z − w)−1,

ιX(z)ω(w) ∼ (ιXω)(w)(z − w)−1, ιX(z)f(w) ∼ 0,

LX(z)A(w) ∼ (ιXĤ
2)(w)(z − w)−1, LX(z)ιA(w) ∼ (ιXH

2)(w)(z − w)−1,

LX(z)ΓA(w) ∼ −(ιXξ
A)(w)(z − w)−1, ιX(z)ΓA(w) ∼ 0,

LA(z)ΓA(w) ∼ (z − w)−2, ιA(z)A(w) ∼ (z − w)−1,

LA(z)ιX(w) ∼ −(ιXH
2)(w)(z − w)−1, LA(x)LX(w) ∼ −(ιXH

2)(w)(z − w)−1.

(27)

Elements of Ωch,H
n (U) may be described locally as follows. If θα is a coordinate on T which

is defined up to shifts by 2πik for k ∈ Z, then the function enθα in local coordinates lies

in Ωch,H
n (Uα); moreover, elements of Ωch,H

n (U) are all of the form : enθαα : for some α ∈
Ωch,H

0 (Uα). We have the following additional OPE relations.

LX(z)enθα(w) ∼ 0, ιX(z)enθα(w) ∼ 0,

LA(z)enθα(w) ∼ nenθα(w)(z − w)−1, ιA(z)enθα(w) ∼ 0.

enθα(z)emθα(w) ∼ 0, for all n,m.

(28)

These follow from the OPE relations (27) in Ωch,H(Uα).

6. Exotic twisted chiral de Rham complex

As above, let π : Z →M be a principal T-bundle with flux form H, which we may assume

to be T-invariant, and let A ∈ Ω1(Z) be a connection form normalized so that ιAA = 1.

Recall that ιA means the contraction ιν along the vector field ν infinitesimally generated by

T. Let π̂ : Ẑ → M be the T-dual principal T̂-bundle with T̂-invariant flux form Ĥ, and fix

a connection form Â ∈ Ω1(Ẑ) normalized so that ιÂÂ = 1. Again, by abuse of notation ιÂ
means the contraction ιν̂ along the vector field ν̂ infinitesimally generated by T̂.

Next, fix an open cover {Vα} for M which trivializes both circle bundles, such that each

Vα is a coordinate open set on M . Then {Uα = π−1(Vα)} and Ûα = π̂−1(Vα) are small

open covers for Z and Ẑ, respectively. Since H is T-invariant, it can be written in the form

H = H3 + A ∧ H2 where H3 ∈ π∗(Ω3(M)) and H2 ∈ π∗(Ω2(M)). Similarly, since Ĥ is T̂-

invariant it can written as Ĥ = Ĥ3 + Â∧ Ĥ2 where Ĥ3 ∈ π̂∗(Ω3(M)) and H̃2 ∈ π̂∗(Ω2(M)).

By Equations (1.10) and (1.11) of [4], we can assume that

H3 = Ĥ3, H2 = dÂ = FÂ, Ĥ2 = dA = FA,

where FA and FÂ denote the curvature forms associated to A and Â.
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Next, let L be the line bundle on M associated to the circle bundle Z. We may write the

connection form A ∈ Ω1(Z) locally in the form

Aα = Aα,bas + dθα,

where Aα,bas is a basic 1-form, and hence can be identified with an element of Ω1(Vα). By

abuse of notation, we denote this element by Aα,bas as well.

For a local section g of L over Vα, we can regard g as a function g : Vα → R, and we have

the covariant derivative

∇L(g) = dg + Aα,bas ∧ g.
Here d is the de Rham differential on M . Finally, we fix a local nonvanishing section sα
which is constant along Vα. For each n ∈ Z, the nth tensor power L⊗n has connection form

locally given by nAα = nAα,bas + ndθα, and given a local section g of L⊗n over M , we have

(29) ∇L⊗n
(g) = dg + nAα,bas ∧ g.

Also, snα is a locally constant nowhere vanishing section of L⊗n. We use the same notation

snα to denote the section π̂∗(snα) of π̂∗(L⊗n) over Ẑ, when no confusion can arise.

We now define the exotic Ĥ-twisted chiral de Rham sheaf Ach,Ĥ

Ẑ
on Ẑ. We first define

it locally by writing strong generators, OPE relations among the generators, and specifying

the ideal of normally ordered relations among the generators. For each Vα, we then write

down an explicit isomorphism

Ωch,H
n (Uα)→ Ach,Ĥ

−n (Ûα).

This is enough to get the isomorphism of vertex algebra sheaves on M ,

π∗(Ω
ch,H
Z )→ π̂∗(Ach,Ĥ

Ẑ
).

Recall the set of horizontal vector fields Vecthor(Ûα) = {X ∈ Vect(Ûα)| ιX(Â) = 0}. First,

for n = 0 we declare that Ach,Ĥ
0 (Ûα) has strong generators

{LX , ιX , Â, ιÂ, LA,Γ
A, f, ω| X ∈ Vecthor(Ûα), f ∈ π̂∗(C∞(M)), ω ∈ π̂∗(Ω1(M))},

which satisfy OPE relations

LX(z)ιY (w) ∼
(
ι[X,Y ] + ιXιYH

3+ : Â(ιXιY Ĥ
2) :

)
(z − w)−1,

LX(z)LY (w) ∼
(
L[X,Y ] + LXιYH

3 − ιXLYH3+ : Ĥ2(ιXιYH
2) : + : H2(ιXιY Ĥ

2) :

+ : (LXιY Ĥ
2)Â : − : (ιXLY Ĥ

2)Â : + : LA(ιXιY Ĥ
2) :

)
(w)(z − w)−1,

LX(z)ω(w) ∼ LieX(ω)(w)(z − w)−1, LX(z)f(w) ∼ X(f)(w)(z − w)−1,

ιX(z)ω(w) ∼ (ιXω)(w)(z − w)−1, ιX(z)f(w) ∼ 0,

LX(z)Â(w) ∼ 0, LX(z)ιÂ(w) ∼ (ιXĤ
2)(w)(z − w)−1,

LA(z)ΓA(w) ∼ (z − w)−2, ιÂ(z)Â(w) ∼ (z − w)−1,

LX(z)ΓA(w) ∼ −(ιXξ
A)(w)(z − w)−1, ιX(z)ΓA(w) ∼ 0,

LA(z)ιX(w) ∼ 0, LA(x)LX(w) ∼ 0.

(30)
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The ideal of relations among these fields has the same generating set (24).

It is not immediately apparent that this structure defined by writing down generating fields

and specifying OPE relations and normally ordered relations, leads to a vertex algebra. There

is a general method for constructing vertex algebras starting from fields and OPE relations

that is given by De Sole and Kac in [12] in the language of λ-brackets, and it is translated into

the language of OPEs in [27]. Briefly, the universal enveloping vertex algebra associated to

an OPE algebra can always be defined, although it may be trivial. In our case, the universal

enveloping vertex algebra associated to the OPE algebra given by (30) is freely generated

by these fields since in the notation of [27], all Jacobi identities (2.10) hold as consequences

of equations (2.6)-(2.9) of [27]. Therefore Ach,Ĥ
0 (Ûα) is well-defined as a quotient of this

structure by the relations generated by (24), and in particular is a vertex algebra.

Lemma 6.1. For each index α, define a map φch
0 : Ωch,H

0 (Uα)→ Ach,Ĥ
0 (Ûα) by

f 7→ f, ω 7→ ω, LX 7→ LX− : ιÂ(ιXH
2) :, ιX 7→ ιX ,

A 7→ ιÂ, ιA 7→ Â, LA 7→ LA +H2, ΓA 7→ ΓA.
(31)

This map preserves OPE relations as well as the ideal of relations, so it determines a vertex

algebra isomorphism. Moreover, φch
0 induces an isomorphism of sheaves of vertex algebras

on M ,

(32) φch
0 : π∗

(
(Ωch,H

0 )Z
)
→ π̂∗

(
(Ach,Ĥ

0 )Ẑ
)
,

Taking global sections, we get a vertex algebra isomorphism

(33) φch
0 : Ωch,H

0 (Z)→ Ach,Ĥ
0 (Ẑ).

Proof. The fact that the map φch
0 given by (31) preserves OPE relations is straightforward

to verify using the OPE relations (27) and (30). It is surjective since it takes generators to

generators. To see that φch
0 is injective, recall that Vα, Uα, and Ûα are small open sets. There-

fore we may choose local coordinates such that Ωch,H
0 (Uα) and Ach,Ĥ

0 (Ûα) both admit bases

consisting of Poincaré-Birkhoff-Witt monomials in the coordinate one-forms, contraction op-

erators, vector fields, and the derivatives of coordinate functions as in (16), as modules over

C∞(Vα). Clearly φch
0 maps a basis to a basis, so it must be injective. Finally, the fact that φch

0

induces an morphism of vertex algebra sheaves on M (which then must be an isomorphism),

follows from Remark 4.2. �

Remark 6.2. Recall the vertex algebra

(34)

(
Ωch,Ĥ(Ûα)iR[t]/〈LÂ − Ĥ

2〉
)
⊗H(2),

defined in [28], where H(2) is the rank 2 Heisenberg vertex algebra with generators LA,Γ
A

satisfying

LA(z)ΓA(w) ∼ (z − w)−2.

The generators of Ach,Ĥ
0 (Ûα) are the same as the generators of (34) but the OPE algebras

are different. So these structures coincide as vector spaces but not as vertex algebras.
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Remark 6.3. Ach,Ĥ
0 (Ûα) has an action of iR[t] given by the modes {(LA)k| k ≥ 0}, and the

space Ach,Ĥ
0 (Ûα)iR[t] is the subalgebra generated by the above generators except for ΓA.

Next, for each n 6= 0, we define Ach,Ĥ
n (Ûα) to be a module over Ach,Ĥ

0 (Ûα) with generator

snα, which commutes with all generators of Ach,Ĥ
0 (Ûα) except for LA, and satisfies

(35) LA(z)snα(w) ∼ −nsnα(w)(z − w)−1.

Additionally, we declare that for all n,m 6= 0,

snα(z)smα (w) ∼ 0,

: snαs
m
α : = sn+m

α ,

∂snα = −n : snα(∂A− ∂Aα,bas) : .

(36)

It follows that any element of Ach,Ĥ
n (Ûα) can be expressed in the form : snαη : for some

η ∈ Ach,Ĥ
0 (Ûα). We now define

(37) φch
n : Ωch,H

−n (Uα)→ Ach,Ĥ
n (Ûα)

inductively as follows

φch
n (e−nθα) = snα,

φch
n (ν(k)(e

−nθα)) = (φch
0 (ν))(k)(s

n
α), for all n, k ∈ Z, and ν ∈ Ωch,H

0 (Uα).
(38)

In particular, the Ωch,H
0 (Uα)-module structure on Ωch,H

−n (Uα) and the Ach,Ĥ
0 (Ûα)-module struc-

ture on Ach,Ĥ
n (Ûα), are intertwined by φch

n , i.e.,

(39) φch
n (ν(k)ω) = (φch

0 (ν))(k)(φ
ch
n (ω)), for all n, k ∈ Z, ν ∈ Ωch,H

0 (Uα) and ω ∈ Ωch,H
−n (Uα).

Note that since we have not assigned Ach,Ĥ
0 (Ûα) a weight grading, we must use the notation

η(k) rather than ηk for η ∈ Ach,Ĥ
0 (Ûα).

We now define the exotic chiral de Rham complex

(40) Ach,Ĥ(Ûα) =
⊕
n∈Z

Ach,Ĥ
n (Ûα),

where as usual this means the Fréchet space completion of the usual direct sum. We give

Ach,Ĥ(Ûα) a filtration

(41) Ach,Ĥ(Ûα)[0] ⊆ Ach,Ĥ(Ûα)[1] ⊆ Ach,Ĥ(Ûα)[2] · · · , Ach,Ĥ(Ûα) =
⋃
i≥0

Ach,Ĥ(Ûα)[i],

which we call the weight filtration, defined on generators follows:

wt(f) = wt(ω) = wt(Â) = wt(snα) = 0,

wt(ιX) = wt(LX) = wt(LA) = wt(ιÂ) = wt(ΓA) ≤ 1.
(42)

In other words, f, ω, Â, snα lie in Ach,Ĥ(Ûα)[0] and ιX , LX , LX , ιÂ lie in Ach,Ĥ(Ûα)[1]. El-

ements of Ach,Ĥ(Ûα)[i] are said to have weight at most i. If a ∈ Ach,Ĥ(Ûα)[i], we set

∂a ∈ Ach,Ĥ(Ûα)[i+1]. It is apparent from the OPE algebra (30) that if a ∈ Ach,Ĥ(Ûα)[i] and
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b ∈ Ach,Ĥ(Ûα)[j], then a(k)b ∈ Ach,Ĥ(Ûα)[i+j−k−1] for all i, j ≥ 0. Note that the weight zero

component Ach,Ĥ
n (Ûα)[0] consists of linear combinations of elements of the form : (ω+Âν)snα :,

which we can identity with the space of exotic differential forms. In particular, under coor-

dinate transformations the element snα ∈ Ach,Ĥ(Ûα)[0] transforms as a section of π̂∗(L⊗n).

We assemble the maps φch
n for all n ∈ Z to construct the map

(43) φch : Ωch,H(Uα)→ Ach,Ĥ(Ûα),

such that φch restricts to φch
n on the summand Ωch,H

−n (Uα). It is straightforward to check using

Lemma 6.1 combined with (28), (36), and (39), that φch preserves all OPEs. It is bijective

by the same argument as the proof of Lemma 6.1. By Remark 4.2, we obtain

Theorem 6.4. The map φch is an isomorphism of vertex algebras for each index α. More-

over, it induces an isomorphism of sheaves of vertex algebras over M ,

(44) φch : π∗
(
Ωch,H
Z

)
→ π̂∗

(
Ach,Ĥ

Ẑ

)
.

Taking global sections, we get a vertex algebra isomorphism

(45) φch : Ωch,H(Z)→ Ach,Ĥ(Ẑ).

Remark 6.5. The structure of Ωch,H
Z does not depend on our choice of connection form A or

flux form H, since it is isomorphic to the untwisted chiral de Rham complex Ωch
Z . Therefore

the structure of Ach,Ĥ

Ẑ
also does not depend on these choices or on the choice of Â or Ĥ,

although the isomorphism (44) does depend on these choices.

7. Chiral Han-Mathai map

Recall that Ωch,H(Uα) has weight grading Ωch,H(Uα) =
⊕

n≥0 Ωch,H(Uα)[n], and hence has

the associated weight filtration

Ωch,H(Uα)[0] ⊆ Ωch,H(Uα)[1] ⊆ Ωch,H(Uα)[2] ⊆ · · · , Ωch,H(Uα) =
⋃
n≥0

Ωch,H(Uα)[n],

where Ωch,H(Uα)[n] =
⊕n

i=0 Ωch,H(Uα)[i].

We interpret the map φch as the analogue of the Cavalcanti-Gualtieri isomorphism of

Courant algebroids [8]. However, it is clear from (31) that φch does not preserve the weight

filtration, and does not have a degree shift, so it is not the chiralization of the Han-Mathai

map τ : Ωk̄(Z) → Ak+1(Ẑ)T̂. To define the analogue of τ , we need to regard Ωch,H
Z not

as a vertex algebra sheaf, but as a sheaf of modules over itself. For each Uα, Ωch,H(Uα) is

generated by the vacuum vector 1 as a module over itself. Similarly, we regard Ach,Ĥ

Ẑ
not

as a sheaf of vertex algebras, but as a sheaf of modules over itself. Both Ωch,H(Uα) and

Ach,Ĥ(Ûα) are Z2-graded, where the grading is the Z2-reduction of the degree grading. We

shall call this Z2-grading the degree, and for k̄ ∈ Z2, we use the notation

Ωch,H,k̄(Uα) =
⊕
n∈Z

Ωch,H,k̄
n (Uα), Ach,Ĥ,k̄(Ûα) =

⊕
n∈Z

Ach,Ĥ,k̄
n (Ûα)

17



to denote the Z2-graded components, and similarly for the corresponding sheaves. Note that

the map φch defined in (43) preserves this grading.

Recall that Ach,Ĥ(Ûα) is only filtered by weight rather than graded, so for η ∈ Ach,Ĥ(Ûα),

the vertex algebra operation η(k) is well-defined, but ηk is not. However, it will be convenient

to give meaning to ηk in the case when η = φch(ν) and ν ∈ Ωch,H(Uα) is one of the weight-

homogeneous generators

f, ω, snα, ιX , LX − ιXH3+ : A(ιXH
2) :, A, ιA, LA −H2, ΓA.

We define

(φch(f))k = fk = f(k−1), (φch(ω))k = ωk = ω(k−1),

(φch(e−nθα))k = (snα)k = (snα)(k−1), (φch(ιX))k = (ιX)k = (ιX)(k),

(φch(LX − ιXH3+ : A(ιXH
2) :))k = (LX − ιXH3)k = (LX − ιXH3)(k),

(φch(A))k = (ιÂ)k = (ιÂ)(k), (φch(ιA))k = (Â)k = (Â)(k−1),

(φch(LA −H2))k = (LA)k = (LA)(k), (φch(ΓA))k = (ΓA)k = (ΓA)(k).

(46)

For each Uα, we now define a linear map

(47) τ ch : Ωch,H,k̄(Uα)→ Ach,Ĥ,k+1(Ûα),

inductively as follows:

(48) τ ch(1) = Â, τ ch(νk(µ)) = (−1)|ν|(φch(ν))k(τ
ch(µ)).

Here ν is one of the weight-homogeneous generators of Ωch,H(Uα) regarded as a vertex algebra,

and µ lies in Ωch,H(Uα) regarded as a Ωch,H(Uα)-module. The fact that τ ch is well-defined is a

consequence of the standard quasi-commutativity and quasi-associativity formulas in vertex

algebra theory. We regard τ ch not as a vertex algebra homomorphism, but as a homomor-

phism of vertex algebra modules in the sense that it intertwines that action of Ωch,H(Uα) on

itself, and Ach,Ĥ(Ûα) on itself, via the homomorphism φch. We obtain a homomorphism of

sheaves of modules on M

(49) τ ch : π∗
(
Ωch,H,k̄

)
Z
→ π̂∗

(
Ach,Ĥ,k+1

)
Ẑ
,

which we also denote by τ ch. In particular, we get a homomorphism of modules of global

sections

(50) τ ch : Ωch,H,k̄(Z)→ Ach,Ĥ,k+1(Ẑ).

Theorem 7.1. The map τ ch shifts the Z2-grading and preserves the weight filtration, i.e.,

τ ch(Ωch,H,k̄(Z)[i]) ⊆ Ach,Ĥ,k+1(Ẑ)[i].

Moreover, τ ch coincides at weight zero with the classical T-duality map of Han and Mathai.

Proof. By definition, τ ch preserves weight and shifts degree when applied to the vacuum 1,

since 1 has weight 0 and degree 0̄, and τ ch(1) = Â has weight zero and degree 1̄. Inductively,

suppose that µ has weight d and degree j̄, and that τ ch(µ) has weight at most d and degree

j + 1. Then for any homogeneous generator ν ∈ Ωch,H,k̄(Z) and r ∈ Z, νrµ has weight at most
18



d − r and degree j + k. Since φch preserves degree, and τ ch(νrµ) = (−1)|ν|(φch(ν))r(τ
ch(µ))

has weight at most d − r and degree j + k + 1, it follows that τ ch preserves the weight

filtration and shifts degree.

Note that

τ ch(A) = τ ch(A0(1)) = −(φch(A))0(τ ch(1)) = −(ιÂ)0(Â) = −1.

Since φch(ω) = ω for all ω ∈ π∗(Ω1(M)), we conclude that at weight zero, τ ch coincides with

Han-Mathai map τ . �

It follows from the definition of the maps (43) and (47) that τ ch(e−nθα) = : snαÂ :, for all

n 6= 0. Therefore τ ch maps Ωch,H,k̄
−n (Z) to Ach,Ĥ,k+1

n (Ẑ). We interpret this as exchange of

momentum and winding number as in the setting of [18].

Next, we shall define the chiral analogue of the map σ̂ : Ak̄(Ẑ)→ Ωk+1(Ẑ). First, let

ψ̂ch : Ach,Ĥ(Ẑ)→ Ωch,H(Z)

be the inverse of the vertex algebra isomorphism φch given by (43). We define

σ̂ch : Ach,Ĥ,k̄(Ẑ)→ Ωch,k+1(Ẑ)

inductively as follows:

σ̂ch(1) = A, σ̂ch(νk(µ)) = (−1)|ν|(ψ̂ch(ν))k(σ̂
ch(µ)).

Here ν is one of the generators of Ach,Ĥ(Ẑ) regarded as a vertex algebra, which is the image

under φch of a weight-homogeneous generator of Ωch,H(Z); namely, ν is either f , ω, snα (in

local coordinates), ιX , LX − ιXH3, LA, or ΓA. Similarly, µ lies in Ach,Ĥ(Ẑ) regarded as a

module over Ach,Ĥ(Ẑ). Reversing the roles of Z and Ẑ, we have the analogous maps

τ̂ ch : Ωch,Ĥ,k̄(Ẑ)→ Ach,H,k+1(Z), σch : Ach,H,k̄(Z)→ Ωch,Ĥ,k+1(Ẑ).

Theorem 7.2. We have the following identities.

− Id = σ̂ch ◦ τ ch : Ωch,H,k̄(Z)→ Ωch,H,k̄(Z),

− Id = τ̂ ch ◦ σch : Ach,H,k̄(Z)→ Ach,H,k̄(Z).
(51)

In particular, τ ch is a linear isomorphism.

Proof. We only prove the first identity, since the proof of the second one is the same. First,

it is clear that it holds on the vacuum vector 1 since

σ̂ch ◦ τ ch(1) = σ̂ch(Â) = σ̂ch(Â01) = −(ψ̂ch(Â)0(σ̂(1)) = −(ιA)0(A) = −1.

Next, it suffices to show that if σ̂ch◦τ ch(µ) = −µ, then for each weight-homogeneous generator

ν of Ωch,H,k̄(Z), we have

σ̂ch ◦ τ ch(νk(µ)) = −(νk(µ)).
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To check this, we compute

σ̂ch ◦ τ ch(νk(µ)) = (−1)|ν|σ̂ch

(
(φch(ν))kτ

ch(µ)

)
= (−1)|ν|(−1)|φ

ch(ν)| (ψ̂ch(φch(ν))
)
k

(
σ̂ch(τ ch(µ))

)
= νk(−µ) = −νk(µ),

(52)

since ψ̂ch(φch(ν)) = ν and σ̂ch(τ ch(µ)) = −µ. �

8. Differential structure on Ach,Ĥ,k̄(Ẑ)

The final step is to equip Ach,Ĥ(Ẑ) with a square-zero twisted differential DẐ,Ĥ with the

following properties.

(1) DẐ,Ĥ shifts the Z2-graded degree and preserves the weight filtration, that is,

DẐ,Ĥ(Ach,Ĥ,k̄(Ẑ)[m]) ⊆ Ach,Ĥ,k+1(Ẑ)[m].

(2) On Ach,Ĥ(Ẑ)[0], DẐ,Ĥ restricts to the exotic differential ∇L⊗n−nιÂ+Ĥ. In particular,

the weight zero subcomplex (Ach,Ĥ(Ẑ)[0], DẐ,Ĥ) coincides with the exotic complex of

Han and Mathai.

(3) At weight zero, τ ch intertwines the twisted differentials up to a sign, that is,

(53) τ ch ◦DH = −DẐ,Ĥ ◦ τ
ch.

In this notation, DH is the twisted differential on Ωch,H,k̄(Z) given by DH(ν) =

D(ν)+ : Hν :, where D is the chiral de Rham differential.

By Theorem 2 of [28], the cohomology of (Ωch,H(Z), DH) vanishes in positive weight,

and coincides with the classical twisted cohomology in weight zero. Unfortunately, the

intertwining property (53) no longer holds in positive weight, so it is not obvious whether

the cohomology of (Ach,Ĥ(Ẑ), DẐ,Ĥ) vanishes in positive weight. We expect that for all m,

the inclusions of complexes

(54) (Ach,Ĥ(Ẑ)[0], DẐ,Ĥ) ↪→ (Ach,Ĥ(Ẑ)[m], DẐ,Ĥ) ↪→ (Ach,Ĥ(Ẑ), DẐ,Ĥ)

are all quasi-isomorphisms, that is, they induce isomorphisms in cohomology. In the last

section, we will specialize to the case where both circle bundles Z and Ẑ are trivial, and the

fluxes H and Ĥ are both zero, and we will prove that this statement holds in this case.

We shall define DẐ,Ĥ in two steps. Recall first that the chiral de Rham differential D on

Ωch,H(Z) =
⊕

n∈Z Ωch,H
n (Z) is a vertex algebra derivation given on generators by

D(f) = df, D(ω) = dω, D(ιX) = LX − ιXH = LX − ιXH3+ : A(ιXH
2) :,

D(LX) = LXH
3+ : H2(ιXĤ

2) : + : A(LXH
2) :,

D(ιA) = LA − ιAH = LA −H2, D(A) = dA = Ĥ2,

D(ΓA) = ∂A− ξA :,

D(enθα) = n : enθαdθα : = n : (Aα − Aα,bas)e
nθα : .

(55)
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As in [28], ξA has degree 1 and weight 1 and satisfies DξA = ∂dA. We can transport this

structure to Ach,Ĥ(Ẑ) =
⊕

n∈ZAch,Ĥ
n (Ẑ) by defining the differential DẐ on generators as

follows

DẐ(f) = df, DẐ(ω) = dω, DẐ(ιX) = LX − ιXH3,

DẐ(LX) = LXH
3+ : H2(ιXĤ

2) : + : Ĥ2(ιXH
2) :, DẐ(ιÂ) = Ĥ2,

DẐ(Â) = LA, DẐ(LA) = 0, DẐ(ΓA) = ∂ιÂ − ξ
A,

DẐ(snα) = −n : ιÂs
n
α : +n : Aα,bass

n
α : .

(56)

By construction, we have

φch ◦D = DẐ ◦ φ
ch.

In other words, φch is an isomorphism of differential vertex algebras. In particular, there

exists a locally defined field DẐ(z) whose zero-mode is globally well-defined and coincides

with DẐ . Therefore DẐ is a square-zero derivation on the algebra. It is clearly homogeneous

of degree 1̄, that is

DẐ((Ach,Ĥ,k̄(Ẑ)) ⊆ (Ach,Ĥ,k+1(Ẑ)).

We caution the reader that neither φch nor DẐ preserve the weight filtration. Next, we

modify DẐ as follows. We define

DẐ,Ĥ = DẐ +D0 +D1 +D2 +D3 +D4 +D5 +D6,

D0 = −(: ÂĤ2 :)(0), D1 = (: H2ιÂ :)(0), D2 = −(: ιÂLA :)(0), D3 = H3
(0),

D4 = (: ιÂLA :)(1), D5 = (: H2ιÂ :)(1), D6 = Ĥ(−1) = H3
(−1) + (: ÂĤ2 :)(−1).

(57)

We observe first that DẐ,Ĥ is well-defined globally and homogeneous of degree 1̄. Note that

DẐ +D0 +D1 +D2 +D3 is a vertex algebra derivation, since DẐ , as well as the zero-mode

of any field, has this property. The terms D4 and D5, being first modes of fields, are not

derivations. We will need the following computations repeatedly for the remainder of this

section.

D0(f) = 0, D0(ω) = 0, D0(snα) = 0,

D0(ιX) = : Â(ιXĤ
2) :, D0(LX) = : Â(LXĤ

2) :,

D0(Â) = 0, D0(ιÂ) = −Ĥ2, D0(LA) = 0, D0(ΓA) = 0.

(58)

D1(f) = 0, D1(ω) = 0, D1(snα) = 0,

D1(ιX) = − : ιÂ(ιXH
2) :, D1(LX) = − : ιÂ(LXH

2) : − : H2(ιXĤ
2) :,

D1(Â) = H2 D1(ιÂ) = 0, D1(LA) = 0, D1(ΓA) = 0,

(59)
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D2(f) = 0, D2(ω) = 0, D2(snα) = n : ιÂs
n
α :,

D2(ιX) = 0, D2(LX) = : LA(ιXĤ
2) :,

D2(Â) = −LA, D2(ιÂ) = 0, D2(LA) = 0, D2(ΓA) = −∂ιÂ,

(60)

D3(f) = 0, D3(ω) = 0, D3(snα) = 0,

D3(ιX) = ιXH
3, D3(LX) = −LXH3,

D3(Â) = 0, D3(ιÂ) = 0, D3(LA) = 0, D3(ΓA) = 0,

(61)

D4(f) = 0, D4(ω) = 0, D4(snα) = 0,

D4(ιX) = 0, D4(LX) = 0,

D4(Â) = 0, D4(ιÂ) = 0, D4(LA) = 0, D4(ΓA) = ιÂ

(62)

D5(f) = 0, D5(ω) = 0, D5(snα) = 0,

D5(ιX) = 0, D5(LX) = 0,

D5(Â) = 0, D5(ιÂ) = 0, D5(LA) = 0, D5(ΓA) = 0,

(63)

D6(f) = : H3f : + : ÂĤ2f :, D6(ω) = : H3ω : + : ÂĤ2ω :, D6(snα) = : H3snα : + : ÂĤ2snα :,

D6(ιX) = : H3ιX : + : (ÂĤ2)ιX : = : H3ιX : + : ÂĤ2ιX : − : ∂Â(ιXĤ2) :,

D6(LX) = : H3LX : + : (ÂĤ2)LX : = : H3LX : + : ÂĤ2LX : − : ∂Â(LXĤ2) :

D6(Â) = : H3Â :, D6(ιÂ) = : H3ιÂ : + : (ÂĤ2)ιÂ : = : H3ιÂ : + : ÂĤ2ιÂ : +∂Ĥ2,

D6(LA) = : H3LA : + : ÂĤ2LA :, D6(ΓA) = : H3ΓA : + : ÂĤ2ΓA : .

(64)

Lemma 8.1. The operator DẐ,Ĥ on Ach,Ĥ(Ẑ) preserves the weight filtration (41). In par-

ticular, DẐ,Ĥ acts on the weight zero subspace Ach,Ĥ(Ẑ)[0].

Proof. Note that DẐ,Ĥ = D′+D′′ where D′ = DẐ+D2 and D′′ = D0+D1+D3+D4+D5+D6.

SinceD′ is a vertex algebra derivation, to show that it preserves the weight filtration it suffices

to check this on generators, and this is apparent from (56) and (60). Even though D′′ is

not a derivation, it is apparent from (42) that D′′ consists of terms which either preserve or

lower the weight. This completes the proof. �

Lemma 8.2. The weight zero subcomplex
(
Ach,Ĥ(Ẑ)[0], DẐ,Ĥ

)
can be identified with the Han-

Mathai complex. In particular, on Ach,Ĥ(Ẑ)[0] we have τ ch ◦DH = −DẐ,Ĥ ◦ τ ch.

Proof. In local coordinates, the general element of g ∈ Ach,Ĥ
n (Ẑ)[0] has the form

g = : ω0s
n
α : + : Âω1s

n
α :
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where ω0, ω1 are basic differential forms. We compute

DẐ,Ĥ

(
: ω0s

n
α : + : Âω1s

n
α :

)
= : (dω0)snα : +(−1)|ω0|n : ω0Aα,bass

n
α : + : H2ω1s

n
α : − : Â(dω1)snα : − : Âω1nAα,bass

n
α :

− nω1s
n
α+ : H3ω0s

n
α : + : H3Âω1s

n
α : + : ÂĤ2ω0s

n
α : .

(65)

On the other hand, identifying g with the element ω0∧snα+ Â∧ω1∧snα of the Han-Mathai

complex, it is apparent from (29) that DẐ,Ĥ corresponds to (∇L⊗n − ιnb̂ + Ĥ)(g). In this

notation, the operator ιnν̂ is identified with ιnÂ = nιÂ. The statement that τ ch intertwines

the differentials DH and DẐ,Ĥ up to sign is a straightforward computation. �

Our main result in this section is the following

Theorem 8.3. DẐ,Ĥ is a square-zero operator on Ach,Ĥ(Ẑ).

The proof is quite involved, and it depends crucially on the nonassociativity of the normally

ordered product, and the fact that DẐ,Ĥ fails to be a derivation in the category of vertex

algebra modules due to the terms D4 and D5. In order to prove Theorem 8.3, we observe

that Ach,Ĥ(Ẑ) has the following sequence of vertex subalgebras which are all closed under

the action of DẐ,Ĥ :

(66) 〈Ω(M)〉 ⊆ Ach,Ĥ
0 (Ẑ)iR[t] ⊆ Ach,Ĥ

0 (Ẑ) ⊆ Ach,Ĥ(Ẑ).

In this notation,

(1) 〈Ω(M)〉 denotes the abelian vertex algebra generated by all differential forms on M ,

(2) Ach,Ĥ
0 (Ẑ)iR[t] denotes the iR[t]-invariant subalgebra of Ach,Ĥ

0 (Ẑ), which is generated

by Ω(M) together with ιX , LX , Â, ιÂ, LA,

(3) Ach,Ĥ
0 (Ẑ) is generated by the above fields together with ΓA,

(4) Ach,Ĥ(Ẑ) is generated by the above fields together with snα in local coordinates, for

all n ∈ Z.

We will proceed by proving Theorem 8.3 successively on each of these subalgebras, and

we organize this as a sequence of lemmas.

Lemma 8.4. DẐ,Ĥ is a square-zero operator on the subalgebra 〈Ω(M)〉.

Proof. First, D0, D1, D2, D3, D4, and D5 vanish on 〈Ω(M)〉, so DẐ,Ĥ = DẐ +D6. Moreover,

DẐ is a vertex algebra derivation on 〈Ω(M)〉 and DẐ,Ĥ is a derivation on 〈Ω(M)〉 in the

category of modules over 〈Ω(M)〉. In other words, for all a, b ∈ 〈Ω(M)〉 and k ∈ Z, we have

DẐ(a(k)b) = (DẐ(a))(k)b+ (−1)|a|a(k)DẐ(b),

DẐ,Ĥ(a(k)b) = DẐ(a)(k)b+ (−1)|a|a(k)DẐ,Ĥ(b).
(67)

Since DẐ and D6 are commuting differentials which are both square-zero, the claim follows.
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Lemma 8.5. DẐ,Ĥ is a square-zero operator on the subalgebra Ach,Ĥ
0 (Ẑ)iR[t].

Proof. This argument is more difficult than the proof of the previous lemma because the

terms D4 and D5 fail to be vertex algebra derivations. We define

DDer = DẐ +D0 +D1 +D2 +D3,

DNDer = D4 +D5,

DĤ = D6.

(68)

In this notation, DDer is a vertex algebra derivation, DNDer is not a derivation, and DẐ,Ĥ =

DDer +DNDer +DĤ . Then for all ν ∈ Ach,Ĥ
0 (Ẑ)iR[t],

(DẐ,Ĥ)2(ν) = (DDer)
2(ν) + (DNDer)

2(ν) + (DĤ)2(ν)

+ (DDerDNDer +DNDerDDer)(ν)

+ (DDerDĤ +DĤDDer)(ν)

+ (DNDerDĤ +DĤDNDer)(ν)

= (DDer)
2(ν) + (DNDerDĤ +DĤDNDer)(ν).

(69)

Here were are using the fact that DDer is a vertex algebra derivation which annihilates the

fields H3+ : ÂĤ2 :, : ιÂH
2 : and : ιÂLA :, so that (DDerDNDer + DNDerDDer)(ν) = 0 and

(DDerDĤ +DĤDDer)(ν) = 0. Also, it is apparent that (DNDer)
2(ν) = 0 and (DĤ)2(ν).

Next, we check that (DẐ,Ĥ)2 annihilates the additional generators Â, ιÂ, ιX , LX that appear

in Ach,Ĥ
0 (Ẑ)iR[t] but not in 〈Ω(M)〉. This follows from the following computations.

(DDer)
2(Â) = 0, (DNDerDĤ +DĤDNDer)(Â) = 0,

(DDer)
2(ιÂ) = 0, (DNDerDĤ +DĤDNDer)(ιÂ) = 0,

(DDer)
2(ιX) = : LA(ιXĤ

2) : + : H2(ιXĤ
2) : +Ĥ2(ιXH

2) :

(DNDerDĤ +DĤDNDer)(ιX) = − : LA(ιXĤ
2) : − : H2(ιXĤ

2) : − : Ĥ2(ιXH
2) :,

(DDer)
2(LX) = : LA(LXĤ

2) : + : H2(LXĤ
2) : + : Ĥ2(LXH

2) :

(DNDerDĤ +DĤDNDer)(LX) = − : LA(LXĤ
2) : − : H2(LXĤ

2) : − : Ĥ2(LXH
2) : .

(70)

Next, a general element of Ach,Ĥ
0 (Ẑ)iR[t] can be expressed as a finite sum of terms of the

form

ν = : (∂i1µ1) · · · (∂irµr)η :, i1, . . . , ir ≥ 0, η ∈ 〈Ω(M)〉,

where each µi is one of the generators ιX , LX , ιÂ, Â, LA. We say that such a monomial has

length r. By the previous lemma, (DẐ,Ĥ)2(ν) = 0 whenever ν has length 0. Inductively, we

assume that (DẐ,Ĥ)2(ν) = 0 whenever ν is such a monomial of length at most r − 1. In

particular, this means that

(71) (DDer)
2(ν) + (DNDerDĤ +DĤDNDer)(ν) = 0.
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Now let ν = : (∂i1µ1) · · · (∂irµ)η : be a monomial of length r as above, and write

ν = : (∂i1µ1)ν ′ :, ν ′ = : (∂i2µ2) · · · (∂irµr)η : .

Then

(DẐ,Ĥ)2(ν) =(DẐ,Ĥ)2(: (∂i1µ1)ν ′ :)

= : (DDer)
2(∂i1µ1)ν ′ : + : (∂i1µ1)(DDer)

2(ν ′) :

+ (DNDerDĤ +DĤDNDer)(: (∂i1µ1)ν ′ :))

= : (DDer)
2(∂i1µ1)ν ′ : + : (∂i1µ1)(DDer)

2(ν ′) :

+ (DNDerDĤ +DĤDNDer)(: (∂i1µ1)ν ′ :))

− : (∂i1µ1)(DNDerDĤ +DĤDNDer)(ν
′) :

+ : (∂i1µ1)(DNDerDĤ +DĤDNDer)(ν
′) :

= : (DDer)
2(∂i1µ1)ν ′ :

+ (DNDerDĤ +DĤDNDer)(: (∂i1µ1)ν ′ :))

− : (∂i1µ1)(DNDerDĤ +DĤDNDer)(ν
′) : .

(72)

The last equality follows from our inductive assumption (71) in the case ν = ν ′.

A separate calculation in each of the cases µ1 = ιX , LX , ιÂ, Â, LA shows that in all cases,

(DẐ,Ĥ)2(ν) = 0. To illustrate this, we include the calculation in the case where i1 = 0 and

µ = ιX . We have

: ((DDer)
2(ιX))ν ′ : = : (: H2(ιXĤ

2) :)ν ′ : + : (: Ĥ2(ιXH
2) :)ν ′ :,

+ : (: LA(ιXĤ
2) :)ν ′ :

(DNDerDĤ +DĤDNDer)(: ιXν
′ :) = (: H2Ĥ2 :)(0)(: ιXν

′ :) + (: LAĤ
2 :)(0)(: ιXν

′ :)

= − : (: H2(ιXĤ
2) :)ν ′ : − : (: Ĥ2(ιXH

2) :)ν ′ :

− : (: LA(ιXĤ
2) :)ν ′ :

+ : ιX((: H2Ĥ2 :)(0)ν
′) : + : ιX((: LAĤ

2 :)(0)ν
′) :,

− : ιX(DNDerDĤ +DĤDNDer)(ν
′) : = − : ιX((H2Ĥ2 :)(0)ν

′) : − : ιX((LAĤ
2 :)(0)ν

′) :

(73)

The fact that (DẐ,Ĥ)2(: ιXν
′ :) = 0 then follows immediately from (72) and (73). The proof

for the other cases is similar and is omitted. �

Lemma 8.6. DẐ,Ĥ is a square-zero operator on Ach,Ĥ
0 (Ẑ).

Proof. Recall that Ach,Ĥ
0 (Ẑ) has one additional generator ΓA in addition to the generators

of Ach,Ĥ
0 (Ẑ)iR[t]. First, we compute

(DDer)
2(ΓA) = − ∂Ĥ2,

(DNDerDĤ +DĤDNDer)(Γ
A) = ∂Ĥ2.

(74)
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It is immediate that (DẐ,Ĥ)2(ΓA) = 0. An essential feature of this calculation is the fact

that

: (: ÂĤ2 :)ιÂ : = : ÂĤ2ιÂ : +∂Ĥ2

which is due to the nonassociativity of the normally ordered product. Similarly, one checks

easily that for all i ≥ 0,

(DDer)
2(∂iΓA) = −∂i+1Ĥ2, (DNDerDĤ +DĤDNDer)(∂

iΓA) = ∂i+1Ĥ2.(75)

Next, a general element of Ach,Ĥ,k̄
0 (Ẑ) can be expressed as a finite sum of terms of the form

ν = : (∂i1ΓA) · · · (∂irΓA)η :, i1, . . . , ir ≥ 0, η ∈ Ach,Ĥ,k̄
0 (Ẑ)iR[t].

We say that such a monomial ν has length r. By the previous lemma, (DẐ,Ĥ)2(ν) = 0

whenever ν has length 0. Inductively, we assume that (DẐ,Ĥ)2(ν) = 0 whenever ν is such a

monomial of length at most r − 1.

Now let ν = : (∂i1ΓA) · · · (∂irΓA)η : be a monomial of length r as above, and write

ν = : (∂i1ΓA)ν ′, ν ′ = : (∂i2ΓA) · · · (∂irΓA)η : .

By the same calculation as (72), we have

(DẐ,Ĥ)2(ν) =(DẐ,Ĥ)2(: (∂i1ΓA)ν ′ :)

= : (DDer)
2(∂i1ΓA)ν ′ :

+ (DNDerDĤ +DĤDNDer)(: (∂i1ΓA)ν ′ :))

− : (∂i1ΓA)(DNDerDĤ +DĤDNDer)(ν
′) :

(76)

We compute

: ((DDer)
2(∂i1ΓA))ν ′ : = − : (∂i1+1Ĥ2)ν ′ :,

(DNDerDĤ +DĤDNDer)(: (∂i1ΓA)ν ′ :)) = : (∂i1+1Ĥ2)ν ′ : + : (∂i1ΓA)(DNDerDĤ +DĤDNDer)(ν
′) : .

(77)

The claim is immediate from (76) and (77). �

We are now ready to prove Theorem 8.3

Proof of Theorem 8.3. We have shown this for the sector Ach,Ĥ
0 (Ẑ), so it suffices now to

prove it for Ach,Ĥ
n (Ẑ) for all n 6= 0. First, we check this on the element snα expressed in local

coordinates. Since A = Aα,bas + dθα, we have

(78) dA = Ĥ2 = dAα,bas.

Using (35), we compute

(79) DNDer(: ÂĤ
2snα :) = −n : Ĥ2snα : .

Combining (78) and (79), we obtain

(DDer)
2(snα) = n : Ĥ2snα :,

(DNDerDĤ +DĤDNDer)(s
n
α) = −n : Ĥ2snα : .

(80)
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It is immediate that (DẐ,Ĥ)2(snα) = 0.

Next, a general element ν = Ach,Ĥ
n (Ẑ) has the form ν = : snαη : for some η ∈ Ach,Ĥ

0 (Ẑ).

Since DẐ,Ĥ(η) = 0, the same argument as previous lemma shows that DẐ,Ĥ(: snαη :) = 0.

This completes the proof of Theorem 8.3.

9. The case of trivial bundles

In this section, we assume that both circle bundles Z and Ẑ are trivial,

Z = M × T, Ẑ = M × T̂,

and that both fluxes H, Ĥ are zero. Then Z had Ẑ have global coordinates θ, θ̂ in the circle

direction which are defined up shifts by 2πik for k ∈ Z, and the connection forms A, Â can

be identified with dθ, dθ̂, respectively.

Let ω−n ∈ Ω0̄(Z)−n be a element of even degree, which has the form ω−n = (λ0 +λ1dθ)e
nθ,

where λ0, λ1 are forms on M . Then by definition,

τn(ω−n) = −λ0dθ̂ − λ1, σ̂n(−λ0dθ̂ − λ1) = −λ0 − λ1dθ.

Suppose dω−n = 0. We have

dλ0 = 0, dλ1 − nλ0 = 0.

Then

(d− ιnv̂)τn(ω−n) = −(d− ιnv̂)(λ0dθ̂ + λ1) = −(dλ1 − nλ0) = 0,

i.e. τn(ω−n) is exotic equivariant closed (in this case equivariant closed).

If n 6= 0, one shows that

d

(
1

n
λ1e

−nθ
)

= (λ0 + λ1dθ)e
−nθ = ω−n,

i.e. ω−n is (d+H)-exact (in this case d-exact). The odd case is similar and is omitted.

We now consider the chiral setting. Since Ĥ vanishes, the formula for the differential

DẐ,Ĥ = DẐ,0̂ simplifies as follows.

DẐ,0̂ = DẐ +D2 +D4, D2 = −(: ιÂLA :)(0), D4 = (: ιÂLA :)(1).

Unlike the general case, note that Ach,Ĥ(Ẑ) is in fact graded by conformal weight, not just

filtered, and DẐ,0̂ preserves the weight grading.

Recall that Ωch,H(Z) = Ωch,0(Z) admits a contracting homotopy for the differential D;

there is a field G whose mode G0 is globally defined, and [D,G0] = L0, where L0 denotes

the conformal weight grading operator. This shows that the cohomology vanishes in positive

weight. Since Z = M × T, we can write G0 as the sum of two commuting operators

G0 = GM
0 + : ιdθ∂θ : .

Note that even though the coordinate function θ is only defined up to integer shifts, both the

contraction operator ιdθ and the derivative ∂θ are globally defined. Also, ∂θ can be identified

with the element ΓA defined earlier.
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Under τ ch, we have τ ch(G0) = GM
0 +(: Â∂θ :)1; note that the second term lowers weight by

one. We can correct this by adding the operator −(: Â∂θ :)1 + (: Â∂θ :)0, which commutes

with τ ch(G0). Setting

Ĝ0 = τ ch(G0)− (: Â∂θ :)1 + (: Â∂θ :)0,

this is easily seen to be a contracting homotopy for DẐ,0̂ in the sense that

[DẐ,0̂, Ĝ0] = L0,

where L0 is the conformal weight grading operator. It follows that in case of trivial bundles

and fluxes, the positive weight cohomology of the exotic complex (Ach,0̂(Ẑ), DẐ,0̂) vanishes.

Therefore τ ch induces an isomorphism in cohomology in this case even though the intertwin-

ing property (53) still fails in positive weight.
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