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Abstract  

The fifth human complement receptor, complement receptor immunoglobulin (CRIg; 

VSIG4; Z39Ig), was first documented in the year 2000. Since this initial discovery, CRIg 

has been described as a highly efficient phagocytosis promoting complement receptor, a 

player in the regulation of homeostasis, a regulator of the alternative pathway of 

complement, and also as a regulator of T cell activation. However, despite this broad range 

of attributed functions, CRIg remains to be the lesser known receptor of the complement 

receptor family; this is likely owing to the current lack of clarification as to its cellular 

expression in humans, mystery surrounding the mechanisms by which expression is 

controlled, a lack of commercially available antibodies, along with an inability to directly 

relate findings in murine models with human disease. Thus, before we can begin to 

investigate the role of CRIg in immune disease and how CRIg may potentially be used 

therapeutically, we must first come to understand the role of CRIg in the human state of 

health. 

In this thesis, a comprehensive study into the immune cellular expression of CRIg in healthy 

human phagocytes will be presented as we attempt to unravel the uncertainties which cloud 

the field of CRIg biology. Currently, there are limited antibodies available which detect 

human and murine CRIg, and thus, the investigation presented herein will begin with the 

development and screening of multiple new, cross-reactive rat anti-murine CRIg monoclonal 

antibodies suitable for use in a range of methodologies, including Western blot, flow 

cytometry, and immunohistochemistry. These antibodies stand to be the first of their kind.  

Next, we performed an in-depth investigation into the influence of cytokines/inflammatory 

mediators on CRIg expression by human monocyte-derived macrophages and dendritic 

cells. We observed a differential effect of cytokines/mediators on macrophage CRIg 

expression which was dependent on the developmental state of the cells, and demonstrated 

that those agents which induced an upregulation of CRIg protein expression also enhanced 

the ability of the cells to phagocytose the fungal pathogen, Candida albicans, identifying a 

control point through which these mediators act. In dendritic cells, we observed a similar 

influence of cytokines/mediators over CRIg expression, and found that cells stimulated to 

express high protein levels of CRIg negatively regulated the T cell proliferative response to 

phytohaemagglutinin and allogeneic stimulation, and reduced the cytokine production of T 

cells in response to allogeneic stimulation. This negative regulation could be inhibited by 
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the addition of an anti-CRIg antibody to the cultures, and thus identifies CRIg as a key 

effector molecule in dendritic cell-control over the T cell response. 

The steroid hormone vitamin D has vitally important roles in many processes, including in 

the modulation of the immune response. With this in consideration, along with the growing 

global concern that is vitamin D deficiency, we next assessed the relationship between 

vitamin D and CRIg expression by human monocyte-derived macrophages. We observed 

that cells matured in the presence of the active form of vitamin D showed a marked increase 

in CRIg protein and mRNA expression, and that this increase correlated with the ability of 

the cells to phagocytose the pathogens Candida albicans and Staphylococcus aureus. 

Interestingly, treatment had no effect on the expression of the ‘classical’ complement 

receptors, CR3 or CR4, indicating that vitamin D promotes innate immune defence through 

promoting CRIg expression by macrophages. 

Finally, in our endeavour to recharacterise CRIg in the state of human health, we 

demonstrate that CRIg expression in humans is not restricted to tissue-resident macrophages 

as previously described. For the first time, we present evidence of the expression and 

regulation of CRIg on the cell surface of human circulating phagocytes; monocytes and 

neutrophils. We additionally assessed this expression in comparison with cells from a case 

of immunodeficiency caused by a novel mutation in ARPC1B. We found that healthy human 

neutrophils express functional CRIg protein within intracellular stores, and upon stimulation 

with endogenous and exogenous inflammatory mediators, export this protein to the cell 

surface. This was in comparison with neutrophils which have an inability to polymerise 

microfilaments due to a mutation in ARPC1B, which failed to upregulate CRIg expression. 

Similarly, inhibition of the upstream regulator of Arp2/3, Rac-2 inhibited the ability of 

healthy neutrophils to upregulate surface CRIg protein, indicating that CRIg upregulation on 

the cell surface of neutrophils is a result of exocytosis. 

Together, the findings to be presented herein represent a substantial increase in our 

knowledge of the biology of CRIg in healthy human systems, and with the information 

gained, it will form a backbone for future comprehensive studies into the role of CRIg in 

immunity and in inflammatory diseased states, such as in rheumatoid arthritis and type 1 

diabetes.  





Chapter 1. Introduction 
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CHAPTER 1  |  INTRODUCTION 

1.1. Introduction: The Cells of The Immune System 

The human immune system can be divided into two main branches: the innate and the 

adaptive. The innate immune system consists of non-specific defence mechanisms, 

forming a first line of defence against invading pathogens, tissue damage, and cancer. It 

is rapidly initiated and includes physical barriers such as the skin, chemicals present in 

the blood such as enzymes, and immune cells which attack foreign cells/particles in the 

body, including neutrophils, monocytes and macrophages. These ‘innate’ cells express a 

broad range of pattern recognition receptors (PRRs) which non-specifically recognise 

foreign pathogens and are fully encoded in the germline genome (Kubelkova & Macela, 

2019).  

The adaptive immune response, although slower to establish, is more flexible than the 

innate, and is required to fight infections which evade the innate immune system (Paul, 

2011). Comprised of antigen-specific defences which work to clear infections, the 

adaptive immune system is able to generate long term defences, many of which can be 

life-long for the host. This branch of immunity is composed of antibodies in circulation, 

cytokines in the blood and tissue, and the specialised cells of the adaptive immune 

system, T and B lymphocytes. These cells express highly specific, custom made 

receptors (T and B cell receptors; TCR and BCR respectively) which result from 

germline gene segment recombination, allowing the generation of millions of unique 

antigen receptors (Chaplin, 2010). As a result, the response of the adaptive immune 

system is highly specific to the inducing pathogen and can generate long lasting 

protection through the induction of immunological memory. This enables the immune 

system of the host to react faster, and more specifically to re-infection. 

Both the adaptive and the innate branches of immunity are essential for full-functioning 

immunity, and interaction between the two systems is crucial (Clark & Kupper, 2005; 

Jain & Pasare, 2017). Without crosstalk between the innate and the adaptive immune 

systems, the adaptive is unable to be initiated. This is exemplified as defects within 

crucial genes of either the innate or adaptive immune systems are able to lead to primary 

immunodeficiencies (Rosenzweig & Holland, 2011). 
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CHAPTER 1  |  INTRODUCTION 

1.2. Phagocytes 

1.2.1. Neutrophils 

Neutrophils are highly versatile cells considered to be of the innate arm of immunity 

and are the most abundant leukocyte in the circulation. These phagocytes are the first 

to arrive at sites of infection and injury, responsible for non-specifically clearing 

bacterial and fungal pathogens (Takashima & Yao, 2015). They are efficient 

phagocytes, able to internalise opsonised latex beads in less than 20 seconds (Segal 

et al., 1980). Neutrophils are vital for a fully functional immune system, exemplified 

by the predisposition of patients with neutrophil disorders such as leukocyte adhesion 

deficiency (LAD) or chronic granulomatous disease (CGD) to serious, life-

threatening infections (Almarza Novoa et al., 2018; Amulic et al., 2012). 

Neutrophils exert their anti-infective function through the key functional 

characteristics of: chemotaxis, the ability to rapidly migrate into sites of 

inflammation toward gradients of inflammatory molecules; phagocytosis, the ability 

to engulf and destroy invading pathogens; and degranulation, the ability to release 

stores of antimicrobial molecules to induce the killing of extracellular pathogens 

(Ferrante, 2005). They are also able to capture foreign particles through the formation 

of neutrophil extracellular traps (NETs) (Papayannopoulos, 2018). Neutrophils store 

a wide variety of anti-microbial products, enzymes and surface receptors within 

granules, ready to be exported out of the cell to the cellular membrane upon 

encountering certain stimuli (Ferrante, 2010; Lacy, 2006) (figure 1.1). These 

granules have been characterised by their constituents. Azurophilic granules (also 

known as primary granules) are characterised by the enzyme myeloperoxidase 

(MPO). Specific granules (or secondary granules) predominantly contain membrane 

bound proteins, while gelatinase granules (or tertiary granules) are identified by the 

enzyme gelatinase (Cowland & Borregaard, 2016). Mechanisms of the process of 

degranulation still remain somewhat mysterious, however, the importance of a range 

of molecules/pathways have been well established, such as calcium ions (Ca2+) 

(Lacy, 2006), the mitogen activated protein kinase (MAPK) pathway (Pillinger et al., 

1996), and the Rho family of small GTPases, including Rac1 and Rac2, which are 

regulators of actin polymerisation (McCormick et al., 2019). 

Circulating quiescent neutrophils show limited antimicrobial activity, requiring prior 

stimulation to reach their maximum phagocytic capability (Yao et al., 2015). This 

process is known as ‘priming’, and induces the transport and fusion of the granule 
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membrane to the plasma membrane, resulting in the upregulation of cell surface 

receptors and signalling molecules contained within these granules (Borregaard et 

al., 1983; Uriarte et al., 2011). This primed state can be induced by inflammatory 

cytokines and microbial substances such as TNF and LPS (Aida & Pabst, 1990; 

Ferrante, 1992). Following granule and plasma membrane fusion, primed neutrophils 

express higher amounts of surface receptors than their inactivated counterparts 

(Paoliello-Paschoalato et al., 2015), and thus, are able to respond to pathogens and 

foreign particles more efficiently than inactivated cells. Among the receptors that are 

transported to the cell surface through priming, complement receptor (CR)3 is highly 

upregulated by exposure to TNF (Ferrante et al., 1993; Montecucco et al., 2008) and 

it is widely accepted that this increased expression of CR3 is responsible for the 

increased phagocytic function of primed neutrophils. 

Activation of neutrophil Fc receptors and integrins on the cell surface induces the 

production of reactive oxygen species (ROS) at sites of infection (Belambri et al., 

2018). Such activation initiates intracellular signalling pathways which lead to the 

assembly of the nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase 

complex (Ferrante, 2005). This complex is a multicomponent enzyme system which 

is formed at the cell membrane and is responsible for the production of ROS (Nguyen 

et al., 2017). The NADPH oxidase-derived superoxide anion (O2
-) acts as a precursor 

to hydrogen peroxide and other ROS, including the highly microbicidal 

hypochlorous acid (HOCl) (Winterbourn et al., 2016) . These molecules represent a 

major component of innate defence against bacterial and fungal pathogens, and are 

essential for microbial killing (Belambri et al., 2018; Nguyen et al., 2017). 

While the view of neutrophils as cells of innate immunity is not incorrect, work in 

recent decades has revealed the importance of neutrophils in adaptive immunity 

(Rosales et al., 2017). Neutrophils can directly influence the function of DCs, 

delivering activation signals and antigens, thus enabling downstream DC-T cell 

crosstalk (Megiovanni et al., 2006). They can also directly influence lymphocyte 

function; chemokines produced by neutrophils (e.g. CCL2, CXCL9, CCL20) attract 

T helper 1 (TH1) and 17 (TH17) cells to sites of inflammation, and neutrophil-derived 

cytokines can activate T and B lymphocytes to promote proliferation (Li et al., 2019; 

Mantovani et al., 2011; Pelletier et al., 2010). Additionally, it has been published that 

neutrophils can act as antigen presenting cells following some form of activation (Lin 
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& Loré, 2017; Vono et al., 2017). While resting neutrophils express minimal levels 

of MHC class II molecules and are unable to induce T cell proliferation in vitro, 

neutrophils can acquire antigen presenting functions following activation. For 

instance, it was recently shown that following phagocytosis of IgG-opsonised red 

blood cells, neutrophil surface expression of the APC molecules MHC II, CD40, and 

CD80 is increased, and these cells can elicit antigen-specific T cell responses 

(Meinderts et al., 2019).  

Whether distinct neutrophil subsets exist is a topic surrounded by debate. While 

different functional phenotypes of neutrophils have been consistently reported in 

cancer (Fridlender et al., 2009; Houghton, 2010),  there remains a question of 

whether the proposed ‘anti-tumour’ N1 neutrophils are simply more active cells 

(Cowland & Borregaard, 2016; Piccard et al., 2012). Additionally, in the blood, high 

density- and low density- neutrophils have been reported, with functional studies 

suggesting that the former represents mature cells, while the latter represents 

immature neutrophil subsets (Scapini & Cassatella, 2014). Thus, while there is 

currently a push into research into lymphocytes—the traditional cell types we think 

of when we consider adaptive immunity—there remains a wealth of information to 

be uncovered revolving around these ‘unconventional’ cells of adaptive immunity. 
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Figure 1.1. Neutrophils store a wide range of enzymes, anti-microbial effectors, and membrane-bound proteins within three main types of 

granules; azurophilic, specific, and gelatinase (Cassatella et al., 2019).  
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1.2.2. Monocytes 

Comprising between 3-8% of all blood leukocytes, monocytes are important cells of 

myeloid lineage which have long been reported to have the main function of 

replenishing populations of macrophages and myeloid dendritic cells in the tissues 

(Yang et al., 2014). However, monocytes are also able contribute to other immune 

processes of both the innate and adaptive branches. They contribute to innate 

immunity where they can function as phagocytic cells (Kantari et al., 2008). They 

also interact with the adaptive immune system and function as antigen presenting 

cells (APCs), facilitating crosstalk between the two systems. Thus, monocytes are 

important for a healthy immune system, and patients in states of monocyte deficiency 

such as those suffering MonoMAC syndrome have high mortality rates (Calvo et al., 

2012; Leon & Ardavin, 2008).  

Studies in recent years have identified different subsets of monocytes with unique 

cytokine profiles, with different subsets responsible for different functions (Boyette 

et al., 2017). Traditionally, monocytes are divided into two groups determined by 

CD16 expression: classical monocytes (CD14++ CD16-), and non-classical (CD14+ 

CD16++) (Passlick et al., 1989). However, a third subset, ‘intermediate’ monocytes 

have more recently been included (CD14++ CD16+) (Ziegler-Heitbrock et al., 2010). 

These three subsets express distinct mRNA expression profiles, produce different 

cytokines, and show different levels of antigen processing and presentation 

capabilities (Wong et al., 2012).  

1.2.3. Macrophages  

Macrophages are highly heterogeneous cells primarily of haematopoietic origin. 

Arising from haematopoietic stem cells in the bone marrow, macrophage precursors 

are released into the bloodstream as monocytes (Murray & Wynn, 2011). All 

monocyte subsets have the potential to differentiate into macrophages, with 

differentiation beginning as monocytes migrate from the bloodstream into the tissue 

(Coillard & Segura, 2019). Within the tissue, macrophages play a major role with 

three major functions; phagocytosis, cytokine production, and antigen presentation. 

These properties enable macrophages, like DC, to act as a bridge and facilitate 

crosstalk between the innate and adaptive immune systems. 
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1.2.3.1. Macrophage Subsets 

As a highly heterogenous population of cells which serves different functions in 

different niches, macrophages can be divided into several subpopulations. The 

nomenclature of these populations has been based on their location within the body, 

along with their functional phenotype. Additionally, through the use of genetic fate-

mapping techniques and single-cell RNA sequencing, different macrophage 

populations have been identified in adulthood based on their origins (Culemann et 

al., 2019), further complicating the way we characterise macrophages. Many 

populations of fixed tissue resident macrophages such as Kupffer cells in the liver, 

Hofbauer cells in the placenta, and synovial lining macrophages of the joints have 

been identified as of embryonic origin, and exist independently from monocyte-

derived macrophages (Culemann et al., 2019; Epelman et al., 2014). These 

populations are self-renewing and play important roles in tissue homeostasis (Gentek 

et al., 2014). 

The liver is a crucial organ which plays many roles in vertebrates including the 

production of metabolites, the regulation of immune responses, and the clearance of 

toxins from the circulation (Protzer et al., 2012). Connected to the bloodstream by 

the portal vein transporting draining blood from the intestines and the hepatic artery, 

the liver also has the pivotal role of clearing microbes and/or pathogens that cross 

the intestinal barrier or enter the bloodstream from peripheral sites (van Lookeren 

Campagne & Verschoor, 2018). The resident Kupffer cells in the liver sinusoids are 

the most abundant of resident macrophage populations in mammals and are the cell 

subset responsible for this role of the liver. While these are highly phagocytic cells 

with antigen presenting function (Crispe, 2011), Kupffer cells are promotors of 

tolerance in the healthy state (Thomson & Knolle, 2010), expressing low levels of 

MHC class II and co-stimulatory molecules, allowing them to contribute to liver-

mediated immune tolerance (Horst et al., 2016; Ju et al., 2003; You et al., 2008). 

1.2.3.2. Macrophage Polarisation 

The concept of macrophage activation and the existence of differing activation states 

was first proposed in 1962, where ‘classical activation’ was observed in cells in 

response to challenge by Listeria monocytogenes (Mackaness, 1962). These cells 

showed enhanced immunity upon secondary exposure, with the phenomenon later 

shown to be linked to T helper 1 (Th1) responses and interferon gamma (IFN-γ) 

production (Nathan, 1983). It has since been demonstrated that these macrophages 

8



CHAPTER 1  |  INTRODUCTION 

play a critical role in initiating and maintaining inflammation in response to 

lipopolysaccharide (LPS) and IFN-γ (Sica & Mantovani, 2012). ‘Alternative 

activation’ of macrophages was reported three decades later, with the T helper 2 

(Th2) cytokines interleukin(IL)-4 and IL-13 shown to inhibit inflammatory cytokine 

production by macrophages (Doyle et al., 1994; Stein et al., 1992). Thus, the classical 

and alternative activation states of macrophages were termed ‘M1’, and ‘M2’, 

following the Th1 and Th2 nomenclature. 

Although the effects of the cytokines IFN-γ, IL-4, and IL-13 on macrophage 

polarisation follow the idea of M1 and M2 states following Th1 and Th2 responses, 

since then, the effects of other cytokines or agents such as IL-10 and glucocorticoids 

have been shown to be contradictory to this idea. As a result, alternatively activated 

macrophages have been further characterised into three additional subsets; M2a, 

M2b, and M2c (Mantovani et al., 2004; Wang et al., 2019) (figure 1.2). Each of these 

three subsets have been documented to have distinct functions, and characteristic 

cytokine secretion profiles.
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Figure 1.2.  Differential macrophage polarisation. Following monocyte recruitment from the blood 

into tissues, environmental stimuli induce differentiation into macrophage subsets with distinct 

functional characteristics. Diagram adapted from Mantovani et al. (2004). 
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1.2.4. Dendritic Cells 

Dendritic cells (DC) are large phagocytes and originate from several lineages. These 

include Langerhans cells, dermal DC, and DC in lymph node follicles and Peyer’s 

patches. Follicular dendritic cells (FDC) are of mesenchymal origin (Aguzzi et al., 

2014), while plasmacytoid dendritic cells (pDC) have long been thought to be of 

lymphoid origin, although this concept has been challenged (Ishikawa et al., 2007; 

Yang et al., 2005). DC can also be derived from classical and intermediate monocytes 

(termed monocyte derived DC; MDDC) under specific conditions. However, non-

classical are not able into differentiate to MDDC (Boyette et al., 2017). Deemed as 

‘professional’ APCs, DC were first discovered in 1973 (Steinman & Cohn, 1973, 

1974), where they were initially received as an artefact. DCs were soon shown to 

express high levels of major histocompatibility complex (MHC) class I and II 

molecules, and function through their unrivalled ability to stimulate T cells 

(Nussenzweig et al., 1980). Although macrophages and B cells are also able to act as 

APCs, DC are unique in that they are the only cell able to activate naïve T cells 

(Howard et al., 2007). They can do so in different ways depending on phenotype; 

DCs can induce a tolerogenic response to certain antigens such as self-antigens and 

an immunogenic response to others (Takenaka & Quintana, 2017). As such, DC are 

the main players in facilitating immune crosstalk between the innate and adaptive 

systems, and are vital for the immune system’s ability to distinguish between ‘self’ 

and ‘non-self’ (Geijtenbeek et al., 2004). 

1.3. The Initiation of Inflammation 

The inflammatory response is an event which can be triggered by tissue damage or 

infection and leads to the migration of leukocytes and inflammatory mediators to the 

location of damage. Initial infection or damage is recognised by local tissue-resident 

macrophages or mast cells through innate PRRs, which in turn produce further 

inflammatory mediators, including complement components, cytokines, and chemokines 

(Medzhitov, 2008). The first response to these mediators causes increased vascular 

permeability, allowing complement components and cells such as neutrophils, which 

continuously and randomly probe the vessel wall, to enter the area from the blood stream 

(Headland & Norling, 2015). On reaching the site of infection, infiltrating neutrophils 

become activated. This can occur through direct contact between invading pathogens and 

neutrophils, or through the response to inflammatory cytokines or mediators released by 

the resident cells of the tissue (Amulic et al., 2012). Neutrophils then act as previously 

11



CHAPTER 1  |  INTRODUCTION 

 

described, by releasing the toxic components of their granules (including ROS, enzymes 

such as proteinase 3), or through upregulating levels of functional surface receptors. This 

upregulation enhances their ability to phagocytose and kill invading pathogens (Ferrante, 

2010). 

1.4. The Complement System 

The complement system is an intricate branch of innate immunity, forming a line of 

defence against pathogens in the blood and tissue fluids of the host (Merle, Church, et 

al., 2015). Comprising of more than 40 soluble and membrane-bound proteins, 

complement also functions in maintaining tissue homeostasis and influencing the 

adaptive immune response (Hovland et al., 2015). Complement activation can occur 

through three pathways: the alternative, the classical, and the lectin pathways (figure 

1.3). These pathways differ by their activating stimuli and in the mechanisms of how 

their convertase enzymes are formed (Noris & Remuzzi, 2013). In normal physiological 

conditions, the alternative pathway (AP) is the dominant activation pathway (Merle, 

Church, et al., 2015). Constantly active at low levels, the AP is triggered by the 

spontaneous hydrolysis of C3 into its biologically active subunits C3a and C3b. 

Deposited C3b is then able to form the C3 and C5 convertases by forming complexes 

with complement factor Bb (the C3 convertase C3bBb, and the C5 convertase (C3b)2Bb). 

The formed C3 convertase can then cleave additional C3 molecules, resulting in an 

amplification loop of complement activation. Along with this convertase action, C3b and 

its inactive derivative iC3b are also able to function as a potent opsonins owing to the 

conformational changes of the molecule which render binding sites accessible to 

phagocytosis-promoting receptors (Jongerius et al., 2010). Opsonisation is a critical 

mechanism of complement-mediated defence, by which foreign particles or apoptotic 

self-cells are ‘tagged’ for rapid recognition and subsequent phagocytosis by the 

phagocytes of the host. The lectin and the classical pathways differ from the AP, as they 

use an alternative C3 convertase, C4bC2b, and an alternative C5 convertase, C4bC2aC3b 

(figure 1.3). Although the activation mechanisms of the lectin and classical pathways 

differ to that of the AP, they are both able to trigger the downstream activation of the AP 

by the production of C3b molecules (Harboe et al., 2004).  

Other effectors of the complement system include the anaphylatoxins, C3a and C5a. 

These function as proinflammatory molecules and are able to both attract and activate 

leukocytes through their corresponding receptors (C3aR, and C5aR) (Noris & Remuzzi, 

2013). The final product of complement activation is the formation of the membrane 
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attack complex (MAC, C5b-9) in the membrane of the targeted cell, which can directly 

lyse targeted pathogens or self-cells by forming pores in the lipid bilayer. The MAC is a 

common product of all three complement activation pathways, and is formed though the 

association of the complement proteins C5b, C6, C7, C8, and C9 (Serna et al., 2016), a 

process which is irreversible. 

As the complement system serves such a broad function in innate immunity and tissue 

homeostasis and is composed of such a large amount of inactive precursors requiring 

cleavage before activation can occur (Mathern & Heeger, 2015), fine-tuned regulation 

mechanisms are critical. Under-activation or uncontrolled activation of complement can 

contribute to or cause a wide range of complement associated disorders (Ricklin et al., 

2016), and has been associated with autoimmune diseases such as rheumatoid arthritis 

(Holers & Banda, 2018) and systemic lupus erythematosus (Leffler et al., 2014).
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Figure 1.3. Schematic representation of the activation of the complement cascade. The fragments released into solution are indicated in blue. The 

key fluid-phase regulators are indicated in green. Ab, antibody; CRP, C-reactive protein; SAP, serum amyloid P component; PTX3, pentraxin 3; C1 

inh, C1 inhibitor; α2-M, α2-macroglobulin; C4BP, C4b-binding protein; FHL-1, factor H-like protein-1; FHR-1, factor H-related molecule-1. Image 

adapted from Ram et al. (2010), reused with permission from the American Society for Microbiology (2020). 
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1.5. Phagocytosis 

Phagocytosis is a critical process by which the cells of a host engulf other cells, 

fragments, invading microbial pathogens, and other foreign particles, and is closely 

related to endocytosis. Phagocytosis occurs in three main steps. Firstly, the opsonised 

foreign particle becomes attached through surface specific receptors on the phagocyte. 

Secondly, pseudopod extensions are formed by actin remodelling-dependent 

mechanisms around the attached particle where it is still exposed to the environment. 

Lastly, the complete evagination of the particle takes place to generate a phagosome, an 

outside-in compartment within the cell (van Kessel et al., 2014). Once inside of the cell, 

the phagosome interacts with recycling endosomes prior to fusing selectively with 

primary lysosomes to form a phagolysosome (Russell, 2011). Following fusion, the 

phagolysosome undergoes fusion with secondary vescicles. This pathway leads to 

changes in pH which progressively acidifies the inside of the phagolysosome, resulting 

in the destruction of its contents, and is accompanied by membrane recycling (Gordon, 

2016). In phagocytic APCs, this process leads to the presentation of the resulting protein 

fragments on the cell surface major histocompatibility complex (MHC) class II 

molecules, or cross presentation on MHC class I molecules (Mantegazza et al., 2013). 

1.6.  Complement Receptors 

The receptors of the complement system are widely distributed within mammals. They 

contribute in all three-complement activation pathways, and most are able to act as 

phagocytosis-promoting receptors (Holers 2014). Five main receptors for the C3 

activation products are found in human cells originating from three different gene 

families: CR1 and CR2 from the short consensus repeat (SCR) modules, CR3 and CR4 

from the β2-integrin family, and CRIg from the immunoglobulin superfamily (Merle, 

Church, et al., 2015) .  

CR1, also known as CD35, is a glycoprotein expressed by/on the surface of erythrocytes, 

neutrophils, monocytes, B cells, and subsets of T cells. CR1 on erythrocytes plays a role 

in phagocytosis along with immune adhesion and clearing immune complexes by 

binding C3b (Nielsen et al., 1997). The receptor has also been shown to negatively 

regulate the complement cascade by inhibiting the C3 convertases. However, while it is 

able to take part in phagocytosis of immune-bound complexes in neutrophils and 

macrophages, CR1 binding to C3b-coated particles alone is not sufficient to induce 

phagocytosis. Instead, this binding assists the phagocyte in phagocytosing particles via 
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either CR3 or Fcγ receptor (FcγR)-mediated mechanisms (Fallman et al., 1993; Merle, 

Church, et al., 2015; Merle, Noe, et al., 2015).  

CR2 (or CD21) is expressed by B cells, follicular dendritic cells and some epithelial cells 

(Zabel & Weis, 2001), where it functions through binding the C3 cleavage products iC3b, 

C3d and C3dg. On B cells, CR2 forms a component of the B cell co-receptor complex 

with molecules CD19 and Tapa-1, where it lowers the threshold of cell activation when 

the receptor recognises an antigen, while on follicular dendritic cells, CR2 assists in the 

uptake of opsonised immune complexes (Das et al., 2017). Additionally, like CR1, CR2 

has the ability to act as the Epstein-Barr virus (EBV) receptor on B cells and 

nasopharyngeal epithelial cells (Du Clos & Mold, 2008; Ogembo et al., 2013).  

CR3 and CR4 are heterodimers comprised of an alpha-subunit (CD11b or CD11c, 

respectively), which non-covalently associate with a common beta-subunit, CD18 (van 

Lookeren Campagne et al., 2007). Both CR3 and CR4 recognise iC3b, and play 

important roles in cell adhesion, leukocyte trafficking and migration, and phagocytosis. 

They are widely expressed, present on macrophages, neutrophils, monocytes, and 

follicular dendritic cells (Holers, 2014). While both receptors play important roles in 

complement-mediated phagocytosis, CR3 is also able to initiate phagocytosis in a 

complement-independent manner. This has been shown to contribute to the phagocytosis 

of Candida albicans, and is facilitated by a region on CR3 which acts as a PRR against 

β-glucan on the fungal cell wall (A. Small et al., 2018; Zheng et al., 2015).  

1.7.  Complement Receptor Immunoglobulin 

Complement receptor immunoglobulin (CRIg), previously referred to as Z39Ig, is the 

most recently discovered of the complement receptor family, and currently remains the 

most mysterious. Initially documented in 2000, CRIg was first identified in a study 

assessing candidate genes involved in mental retardation (Langnaese et al., 2000). While 

this was found not to be the case, it was soon identified as a member of the 

immunoglobulin superfamily, and further shown to function through the recognition and 

binding of the complement component C3b, and its inactive derivative, iC3b (Helmy et 

al., 2006; Langnaese et al., 2000; Wiesmann et al., 2006). While CR3 and CR4 can also 

bind iC3b, CRIg is the only phagocytosis-promoting receptor expressed on macrophages 

that can bind active C3b. This ability enables CRIg to induce rapid phagocytosis as the 

first receptor able to recognise opsonised particles, and also contributes to the 

immunosuppressive characteristics of the protein. Although the first thorough study into 
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the biology of CRIg was published in 2006 (Helmy et al., 2006), many uncertainties 

revolving the expression and function of CRIg remain present in the current literature. 

These will be discussed further herein and constitute the rationale for the study detailed 

in this thesis.  

1.8.  CRIg in Health 

1.8.1. Structural Properties of CRIg 

The gene encoding CRIg is known as v-set and immunoglobulin containing protein 4 

(VSIG4) and can produce a pre-mRNA transcript which can give rise to multiple variants 

when alternatively spliced (Langnaese et al. 2000). This gives the receptor the unique 

property in humans in that it is expressed as multiple variants: huCRIg(L), containing 

both a variable (V-type) and a constant (C2-type) immunoglobulin domain, and a short 

variant, huCRIg(S), containing only the V-type domain (Helmy et al. 2006). The V-type 

domain is responsible for recognition of C3b and iC3b, while the role of the C2-type 

domain currently remains unknown (Wiesmann, et al. 2006). Along with two 

documented proteins in humans, further alternative splicing of the gene can potentially 

produce four additional variants (figure 1.4, table 1.1) (data accessible at the National 

Center for Biotechnology Information (NCBI) Nucleotide database; reference sequences 

NM_001184831.1, NM_001184830.1, NM_001257403.1, XM_017029251.2). It is 

important to note that the sixth variant was added to this list in 2017, after the work to 

be presented in this thesis began. Currently, these remain as unreported translated 

proteins, and whether there are any functional differences between these different forms 

remains to be studied. Curiously, while these forms are able to be transcribed in humans, 

there has only been one transcript variant and corresponding protein reported to be 

present in mice (Helmy, et al. 2006) and this is a homolog to the human short variant. 

This suggests that only the V-type domain is required for protein function, as murine 

CRIg does not contain a C2-type domain. On this note, it is also important to consider 

that the bulk of the experimental work currently published to date on the biological 

properties of CRIg has been gathered through the use of murine models. This suggests 

that most of the attributed characteristics of the receptor likely relate more closely to the 

human short variant.  

Both huCRIg(L) and huCRIg(S) contain several extracellular O-glycosylation sites, and 

two intracellular phosphorylation sites; a cAMP/cGMP-dependent protein kinase 

phosphorylation site, and a protein kinase C (PKC) phosphorylation site (S-311 and T-

333 respectively or S-217 and T-239) (Langnaese et al. 2000). CRIg variants 3, 4, 5, and 
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6 differ from the long and short forms as they incorporate either an extra intron, or an 

alternative splice site in exon 8 encoding the cytoplasmic domain (figure 1.4). These 

differences would give the translated proteins a truncated cytoplasmic region, leaving 

them with only one phosphorylation site, S-311, or S-217. Whether this variation results 

in translated proteins with functional differences remains to be studied.  
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Figure 1.4. Schematic diagram showing the CRIg protein domains aligned with the 

exons producing cDNA specific for the long form. Below, the transcript variants are 

shown with exon arrangements aligned. The transcript structures are derived from the 

NCBI Reference Sequence Database (RefSeq) using the following mRNA accession 

numbers: NM_007268.2, NM_001100431.1, NM_001184831.1, NM_001184830.1, and 

NM_001257403.1. Adapted from Small et al. (2016). 
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Table 1.1. Summary of the six predicted human alternatively spliced transcript products, 

their length in amino acids, and their predicted molecular weight in kilodaltons (kDa). 

Transcript variant No. of amino acids Predicted molecular weight (kDa) 

Variant 1 – huCRIg(L) 399 44 

Variant 2 – huCRIg(S) 305 33.9 

Variant 3 227 25.4 

Variant 4 321 35.6 

Variant 5 347 38.2 

Variant 6 253 28.08 
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1.8.2.  Phagocytic Properties of CRIg 

1.8.2.1.  CRIg vs. CR3/CR4 

CRIg shares the function to bind iC3b to induce phagocytosis with CR3, the latter 

being the dominant phagocytic receptor in inflammatory macrophages. In resident 

quiescent cells, however, CR3 is retained in an inactive state, requiring activating 

stimuli to initiate phagocytosis. To activate, it is proposed that an ‘inside-out’ signal 

via an extracellular ligand and further activation of phosphatidylinositol-3-OH 

kinase (PI3K) is required (Means & Luster, 2010). Conversely, CRIg has been found 

to be the dominant phagocytic receptor expressed by resting tissue macrophages 

(Gorgani et al., 2008), and unlike CR3, it does not require this signal to activate, nor 

does it require dimerisation. In addition, CRIg has the added capability of 

recognising molecules opsonised with C3b (Helmy et al., 2006), the first C3 cleavage 

product of complement formed on the pathogen cell surface (Croize et al., 1993). 

Thus, when these cells first encounter an opsonised particle, CRIg is the first receptor 

able to initiate phagocytosis through its interaction with C3b/iC3b. Furthermore, 

when phagocytosis is initiated through CRIg, it has been suggested that the receptor 

recycles from internalising endosomes back to the cell surface, avoiding degradation, 

leaving the receptor able to initiate subsequent rounds of phagocytosis (Gorgani et 

al., 2008; Helmy et al., 2006). These together suggest that CRIg is more efficient at 

promoting phagocytosis than its β-integrin counterpart. 

While the concept of a phagocytosis-promoting receptor with anti-inflammatory 

function is contradictory in essence, there are significant benefits to the existence of 

such a molecule, particularly for cells such as Kupffer cells. It takes the blood pool 

approximately twenty seconds to circulate throughout the entire vascular system (van 

Lookeren Campagne & Verschoor, 2018), and with the vitally important task of 

clearing circulating pathogens from the blood flow of the host, Kupffer cells need to 

act rapidly. Armed with both complement receptors and a wide array of PRRs, 

Kupffer cells have evolved to be one of the most effective phagocytic cellular subsets 

in the body (Tacke, 2017). Thus, high expression of CRIg, a phagocytic receptor 

which does not require activation or dimerisation to act, would be highly beneficial. 

Indeed, CRIg is expressed by murine Kupffer cells (Ikarashi et al., 2013) and has 

been shown to be crucial for the clearance of bacterial, parasitic and viral pathogens 

from the circulation, preventing dissemination throughout the body of the host (He 

et al., 2013; Helmy et al., 2006; Liu et al., 2019). Along with phagocytic clearance, 

21



CHAPTER 1  |  INTRODUCTION 

Kupffer cells have also been reported to ‘trap’ microbial pathogens extracellularly, 

thus removing them from the circulation while neutrophils assist in phagocytic 

removal (Gregory et al., 1996). While the lack of expression of the different isoforms 

of CRIg in mice makes in vivo experiments not possible, it is tempting to suggest that 

this may be a role for the truncated isoforms in humans which cannot signal. 

Furthermore, CRIg binds to the β-chain of C3b/iC3b (Wiesmann et al., 2006), while 

CR3 binds to the α-chain near the C345C domain of iC3b (Xu et al., 2017). This 

makes it entirely possible from a molecular perspective that both CRIg and CR3 can 

bind to the same molecule of iC3b at the same time, suggesting that the two may 

potentially work collaboratively in phagocytosis. 

1.8.2.2.  CRIg as a Pattern Recognition Receptor? 

Late in 2016, a novel function of CRIg as a pattern recognition receptor on liver 

Kupffer cells was reported, further likening CRIg to CR3 (Zeng et al., 2016). 

Utilising spinning-disk confocal intravital microscopy of liver sinusoids in murine 

C3 and CRIg KO models, the group described the ability of CRIg to selectively bind 

to wild-type (WT) Staphylococcus aureus in the absent of complement, and that this 

binding could be partially inhibited by the addition of either lipoteichoic acid (LTA) 

derived from S. aureus or by anti-LTA antibody in vitro. Further, the group report 

that mice infected with LTA-deficient S. aureus show significantly higher levels of 

bacterial dissemination from the liver, with increased bacterial burdens in the kidneys 

and blood. However, although an exciting report, these findings present a complete 

contradiction to the ‘classical’ findings of Helmy, et al (2006), which concluded that 

CRIg requires complement to induce phagocytosis. Furthermore, these experiments 

lack some consideration for alterations in pathogenesis that LTA-deficient S. aureus 

may have compared with WT. 

These findings of Zeng and colleagues (2016) were complemented by a second study 

published in the same journal issue which provides further insight into a dual-track 

pathogen clearance mechanism (Broadley et al., 2016). This mechanism details CRIg 

expressed on liver Kupffer cells as the mediator of ‘slow clearance’ of opsonised 

bacteria, while alternative PRRs on the same cells mediate the ‘rapid’ clearance of 

unopsonised bacteria. This study potentially explains the discrepancies between the 

two above articles; through the use of double-knock out animal models, Broadley, et 

al (2016) show that in dual C3-/- CRIg-/- mice, opsonised bacteria are unable to be 

cleared from the circulation, while unopsonised bacteria are still able to be cleared at 
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normal levels. This is opposed to the data from Zeng et al. (2016), who use single 

knockout models and conclude that CRIg is still able to mediate phagocytosis in C3-

/- mice. Thus, taking the findings of Broadley et al (2016) into consideration, the 

findings of Zeng et al. (2016) can be explained, as in C3 depleted conditions, all 

bacteria will be unopsonised, and thus, all bacteria will be able to be phagocytosed 

by alternative PRRs expressed on liver Kupffer cells aside from CRIg, as was shown 

to be the case by Broadley et al. (2016). 

1.8.2.3.  Phagocytic Properties of CRIg in Human Cells 

Prior to 2015, the bulk of studies investigating the role of CRIg in phagocytosis focus 

on murine models (Gorgani et al., 2008; He et al., 2013; Helmy et al., 2006), and 

whether the phagocytic function of CRIg is conserved in primary human 

macrophages remained essentially unstudied until recently. Irvine et al. (2016) 

investigated the phagocytic capability of CRIg expressing peritoneal macrophages in 

patient cases of liver cirrhosis and ascites. They reported a significant correlation 

between the numbers of CRIg+ macrophages and disease severity, with patients with 

higher levels of CRIg+ cells showing less severe symptoms. Interestingly, the group 

show that CRIg+ macrophages can phagocytose unopsonised and heat inactivated 

serum-opsonised latex beads. This finding may potentially support the hypothesis 

proposed by Zeng et al (2016) that CRIg can act as a PRR to bacterial LTA, although 

this was not fully investigated in this particular study. Additionally, the findings of 

Irvine et al. (2016) may not necessarily be due to a CRIg-dependent, complement-

independent mechanism, similarly to the conclusions drawn by Broadley et al. 

(2016). Alternatively, the observed results may be again explained by the action of 

scavenger receptors present on the cells. This would explain the contradictory 

findings when compared to Helmy et al. (2006) and suggests that this mechanism is 

conserved in both human and mice. However, an important limitation to note when 

attempting to interpret the results of Irvine and colleagues, is the absence of healthy 

human controls used in the study. 

THP-1 cells are a human monocytic cell line originally derived from a childhood M5 

subtype of acute monocytic leukaemia (Tsuchiya et al., 1980). These cells can be 

differentiated into macrophages, and as such, they have been widely used as an in 

vitro model for studying the biology of human macrophages. Using THP-1 derived 

macrophages, Kim et al. (2013) investigated the signalling cascade as a result of 

CRIg engagement and the ability of CRIg to phagocytose and kill the intracellular 
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bacteria Listeria monocytogenes. This study reported that upon CRIg engagement 

with either anti-CRIg antibody or with the complement component C3b, the 

bactericidal activity of the cells was enhanced, and this killing occurs within L. 

monocytogenes-containing phagosomes. Utilising yeast two-hybrid methodologies, 

the group also demonstrated that the cytoplasmic domain of CRIg interacts with 

chloride intracellular channel 3 (CLIC3), and further that this protein is essential for 

the CRIg-mediated killing to occur. Thus, CRIg is able to induce the phagocytosis 

and the killing of phagocytosed intracellular bacteria in human cells. 

1.8.3. The Regulation of CRIg in Macrophages 

The anti-inflammatory steroid dexamethasone has been shown to induce a significant 

increase in macrophage CRIg expression in human cells in vitro at both the mRNA 

and protein levels, including on the cell surface, while the inflammatory agent 

arachidonate causes the opposite effect (Gorgani et al., 2011). This depression of 

CRIg expression by arachidonate is dependent on activation of protein kinase C 

(PKC), while PI3K, the mitogen-activated protein (MAP) kinase p38, and the 

extracellular signal-regulated kinases 1 and 2 (ERK1/ERK2) are not involved 

(Gorgani et al., 2011; Ma et al., 2015). Furthermore, macrophages deficient in the 

PKC isozyme PKCα have been shown to express enhanced CRIg mRNA and total 

protein, exhibit enhanced phagocytosis of Candida albicans, and a decreased ability 

to produce the inflammatory cytokines IL-6 and TNF (Ma et al., 2015). Similarly to 

arachidonate, TNF has been shown to negatively regulate CRIg expression, and the 

addition of an anti-TNF monoclonal antibody (mAb) to macrophage cultures induced 

an increase in CRIg expression (Ma et al., 2015). This same study also demonstrated 

that macrophages induced to express high levels of CRIg protein produce 

significantly less TNFα and IL-6 in response to exposure to opsonised C. albicans. 

Upon macrophage activation with either of the M1-inducing agents 

lipopolysaccharide (LPS) or interferon-γ (IFN-γ), CRIg is negatively regulated 

(Gorgani et al., 2008; Guo et al., 2010). Additionally, CRIg has been shown to be 

similarly downregulated by tissue resident macrophages in inflamed tissues at the 

time of flare up in cases of autoimmune myocarditis (Vogt et al., 2006) and 

experimental autoimmune uveoretinitis (Chen et al., 2010). In the case of 

uveoretinitis, CRIg expression within the inflamed tissue became undetectable at the 

peak of inflammation and was only once again detectable at levels comparable to 

healthy tissue during the recovery phase from the disease flare up. These findings 
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strengthen the association of CRIg with non-inflammatory macrophages and 

supports the hypothesis that CRIg may be involved in the resolution of inflammation 

rather than contributing to inflammation. As M1-polarised macrophages and 

activated macrophages in sites of inflammation either express low levels of CRIg or 

none at all, while conversely, macrophages expressing higher levels of CRIg produce 

lower levels of TNF upon encounter with opsonised pathogens, this suggests that in 

macrophages, there may be an autocrine feedback loop controlling CRIg expression 

that is dependent upon TNF (Ma et al., 2015). 

While agents which regulate CRIg expression has been a key research focus, the role 

played by CRIg itself in influencing the function of the cells per se is a more obscure 

area of research. Recently, it has been demonstrated that CRIg can influence 

macrophage activation by inhibiting mitochondrial pyruvate metabolism (Li et al., 

2017), and retains the cell in a non-activated state upon challenge with LPS by 

antagonising activation signals in the cells involving the stimulation of PI3K/Akt-

STAT3 cascades, and preventing the generation of ROS by its mitochondria. 

Furthermore, it was shown that forced overexpression of CRIg resulted in 

suppression of M1 genes, further associating CRIg expression with the M2 

macrophage phenotype. Supporting this, activation of macrophages in Vsig4-/- mice 

is enhanced and these cells express higher amounts of the pro-inflammatory factors 

pro-IL-1β, IFN-γ and TNF (Li et al., 2017). Further, mice deficient in CRIg 

expression are more susceptible to high fat diet-induced obesity. These animals 

exhibit increased liver damage and mortality as a result of murine hepatitis virus 

(MHV-3) infection, and the authors deduce that this is likely a result of enhanced 

macrophage activation (Li et al., 2017). 

The NLRP3 inflammasome is a multimeric signalling complex of the innate immune 

system which has an important role in mediating caspase-1 activation and producing 

the active inflammatory cytokines IL-1β and IL-18 (Kelley et al., 2019). As the 

NLRP3 inflammasome can be activated by mitochondrial ROS, the same group of 

researchers as above assessed the relationship between CRIg and the NLRP3 

inflammasome (Huang et al., 2019). Using VSIG4-/- KO mice, Huang and colleagues 

(2019) concluded that CRIg regulates expression of the NLRP3 inflammasome in 

isolated murine peritoneal exudate macrophages. While a significant portion of this 

study is largely based on correlation, the finding that the murine form of CRIg 

interacts with membrane-spanning 4-domains subfamily A member 6D (MS4A6D) 
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to form a signalling complex at the cell membrane is entirely novel. A combination 

of immunofluorescence and Western blot revealed colocalization between CRIg and 

MS4A6D on the cell membrane and that MS4A6D can then activate a JAK2-STAT3-

A20 signalling cascade. This pathway negatively regulates NF-κB activation, thus 

preventing initiation of the immune response and the downstream transcription of 

inflammatory molecules such as Nlrp3 and Il-1β (figure 1.5). Additionally, the group 

assessed the role of CRIg in two commonly used murine disease models, 

experimental autoimmune encephalomyelitis (EAE) and dextran sulfate sodium 

(DSS)-induced colitis. The group show that VSIG4-/- mice experience higher EAE 

disease severity compared to their WT counterparts, and show that this is as a result 

of increased production of the inflammatory cytokine IL-1β, which has previously 

been shown to be a contributor to the pathogenesis of EAE (Lin & Edelson, 2017). 

Conversely, they show higher disease severity in WT mice in the case of DSS-

induced colitis. It is concluded that the increased activity of the NLRP3 

inflammasome in VSIG4-/- mice contributes to exacerbation of disease. 

NLRP3 inflammasome activation requires the activation of caspase-1, which cleaves 

proIL-1β and proIL-18, generating active IL-1β and IL-18. Interestingly, there is also 

a single caspase-1 cleavage site in the extracellular regions of both huCRIg(L) and 

huCRIg(S) at residue 266 and 172 respectively (Gasteiger et al., 2003; Gasteiger et 

al., 2005). Thus, it is tempting to speculate that upon activation of the inflammatory 

response, secreted caspase-1 in its active form may be able to cleave surface CRIg 

molecules, resulting in decreased surface expression on activated cells and a released 

soluble form of CRIg, which prevents CRIg from maintaining the inactive state of 

the cell. Indeed, the presence of soluble CRIg has been detected in human serum by 

ELISA and by proteomic techniques (Byun et al., 2017; Yuan et al., 2020). A soluble 

form of CRIg may be beneficial in the control of the alternative pathway of 

complement, however further research into the presence and the production of a bona 

fide soluble CRIg protein, by either caspase-1 cleavage or otherwise, remains to be 

undertaken.
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Figure 1.5. Schematic diagram of the proposed model of the CRIg/MS4a6D signalling complex and its interaction with the NLRP3 inflammasome. 

Liganding VSIG4 with complement C3b induces recruitment and formation of the VSIG4/MS4A6D surface inhibitory signalling complex. Both 

Ser232 and Ser235 phosphorylation at C-terminal of MS4A6D further triggers JAK2-STAT3-A20 cascades to inactivate NF-kB. Lastly, VSIG4 

prevents NLRP3 and Il-1β gene transcription, controlling NLRP3-mediated pathogenesis. Diagram adapted from Huang et al. (2019). 
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1.8.4. CRIg Expression by Dendritic Cells 

While murine DC have been shown to express CRIg mRNA, both naïve and active 

DC from the spleen and blood were found to stain negatively for protein when 

assessed by flow cytometry (Vogt et al., 2006). Since this first initial study, numerous 

other studies have also detected CRIg mRNA in both human and murine DC (Li et 

al., 2011; Toivonen et al., 2016), however the detection of CRIg protein in these cells 

has not been reported. Thus, the functional role of CRIg in the adaptive immune 

response remains unclear. 

1.8.5. CRIg and the Resolution of Inflammation 

CRIg, having long been thought to contribute to the anti-inflammatory properties of 

tissue-resident macrophages, has homeostatic properties. Owing its ability to clear 

complement opsonised particles, and capacity to promote signal transduction with a 

minimal inflammatory response, CRIg has been hypothesised to clear low level 

infectious agents rapidly, preventing onset of a ‘cytokine storm’ (Gorgani et al., 

2011). This most likely works in collaboration with the more inflammatory CR3, 

which is equipped to combat larger scale infections and initiate a full-blown 

inflammatory response.  

VSIG4 expression is upregulated in tissues during the resolution phase of 

inflammation. Through the use of a murine model of zymosan-induced peritonitis, 

Tani et al. (2014) show that VSIG4 is upregulated in macrophages during the 

resolution phase. A further study by Wang and Tatakis (2017) show that VSIG4 is 

significantly upregulated in human gingiva during the process of wound healing. 

Additionally, the numerous studies discussed above which utilised animal models of 

autoimmune inflammation support these findings and show that CRIg protein is 

downregulated during inflammation and replenished only in the recovery phase 

(Chen et al., 2010; Vogt et al., 2006). These, together with the finding that the 

resolution-promoting cytokine IL-10 (Siqueira Mietto et al., 2015; Sugimoto et al., 

2016) has been shown to induce high expression of CRIg mRNA and protein in 

human monocyte-derived macrophages (Gorgani et al., 2011), while TGF-β1 induces 

a decrease, suggests that there is perhaps a unique cytokine network operating within 

the tissue during the recovery phase which controls CRIg expression . 
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1.8.6. CRIg and the Alternative Pathway of Complement 

The crystal structure of CRIg in complex with C3b was published in 2006 

(Wiesmann et al., 2006). This work revealed that while CRIg is bound to the β-chain 

of C3b, it is unable to form the C3 and C5 convertase complexes with complement 

factor Bb. This, in turn, prevents further cleavage of C3 and C5 to their active 

subunits, and as a result, leads to the inhibition of progression of the alternative 

pathway of complement (He et al., 2008). Thus, CRIg has been found to inhibit 

inflammation by inhibiting the activation of the alternative complement pathway – 

an amplifier of the inflammatory response. It’s important to note, however, that while 

CRIg has been shown to inhibit the alternative pathway both in vitro and in vivo, 

CRIg does not inhibit either the classical or lectin pathways, as these use an 

alternative C3 convertase, C4bC2a (Katschke et al., 2007). CRIg is, however, able 

to inhibit the alternative pathway-driven amplification loop that is triggered by these 

pathways (Qiao et al., 2014).  

Following the discovery of the complement-inhibitory function of CRIg, numerous 

studies utilising soluble CRIg fusion proteins as complement inhibitors have been 

performed in a variety of complement-associated disorders. Notably, Qiao et al. 

(2014) generated a soluble protein consisting of the functional domains of CRIg and 

the alternative pathway regulator factor H (FH), and demonstrated that this molecule 

(termed CRIg/FH) was highly effective at inhibiting complement activation and 

C3/C3b deposition. They went on to show that CRIg/FH was able to protect 

erythrocytes in patients with paroxysmal nocturnal haemoglobinuria from 

complement-mediated damage. Additionally, CRIg/FH was shown to be an 

efficacious therapeutic in vivo, with the group demonstrating that CRIg/FH is able to 

specifically target sites of ongoing complement activation to provide long-lasting 

inhibition of complement, thus providing a potent therapeutic effect in their rat model 

of mesangial proliferative glomerulonephritis. The therapeutic application of soluble 

CRIg fusion proteins have also been investigated in autoimmune conditions such as 

systemic lupus erythematosus (SLE) (Lieberman et al., 2015), experimental arthritis 

(Katschke et al., 2007), diabetes type 1 (Fu et al., 2012), and intestinal 

ischemia/reperfusion-induced injury (Chen et al., 2011) and these studies will be 

discussed in further detail below. 
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1.8.7. CRIg as a Regulator of T Cell Activation 

In an attempt to identify novel members of the B7 protein family of 

immunoregulatory ligands, Vogt et al (2006) reported a novel function of CRIg. They 

documented that the murine ortholog of CRIg shares ~20% identity with known B7 

protein family members, and thus, their study aimed to investigate whether CRIg can 

regulate T cell activation. They reported CRIg to be a potent inhibitor of T cell 

activation, inhibiting both IL-2 production and cell proliferation by arresting the cell 

cycle at the G0/G1 phase, and that this inhibition was as potent as that induced by 

protein cell death protein 1 (PD-1) ligand 1 (PD-L1). In addition, it was shown that 

the ability of CRIg to inhibit T cell proliferation was conserved across both mice and 

humans, suggesting that the short variant of CRIg plays the role in T cell regulation. 

The ligand/mechanism by which this regulation functions remains unknown, 

although as no receptor able to bind CRIg has been reported, it has been proposed 

that the inhibitory action of CRIg over T cell activation and proliferation may be a 

further manifestation of its ability to bind C3b and iC3b molecules (Zang & Allison, 

2006). CR1 and CR3 are known to be expressed by T cells, and the addition of 

antibodies against these molecules to T cells has been reported to inhibit their 

proliferation (Wagner et al., 2006). Thus, it is possible that CR1/CR3 may bind to 

the same C3b/iC3b molecules at the same time as CRIg, hence triggering T cell 

regulation (figure 1.6).
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Figure 1.6. CRIg acts as a negative regulator of T cell activation. Proposed 

mechanism by which CRIg expressed by macrophages may be triggering the 

inhibition of T cell activation through binding to the same C3b or iC3b molecule as 

CR1/CR3 on T cells, which may in turn trigger an inhibiting signal to the T cell. 

Image is adapted from Zang and Allison (2006) .
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In 2010, Xu et al. (2010) transfected mature, inflammatory human DC—which had 

been matured in the presence of TNF to induce an immunogenic phenotype—with 

human CRIg-recombinant adenoviral vectors, forcing expression of CRIg on these 

cells. These transfected DC were then used in mixed lymphocyte reactions with 

allogenic T cells and were shown to have the ability to suppress allogenic T cell 

proliferation, cytokine production, and activation marker expression compared with 

non-transfected and mock-transfected control cells. Thus, it can be concluded that 

the gain of CRIg protein was responsible for this observed shift in phenotype from 

immunogenic to ‘tolerogenic’. 

This work was expanded on by Jung et al. (2015), where they studied the contribution 

of CRIg in helper T cell activation and differentiation, and in turn, how CRIg 

contributes to isotype switching in B cells. Using CRIg KO mice, they show 

enhanced levels of isotype switching to IgG subclasses compared to WT. They 

further show that activated T cells co-cultured with macrophages from CRIg KO 

mice show significantly higher levels of cytokine production. This data supports the 

view that CRIg serves as a co-inhibitory molecule expressed by macrophages. 

Yuan et al. (2017) sought to investigate the mechanisms by which CRIg regulates T 

cell responses. Stimulating isolated conventional T cells with anti CD3/CD28 

antibodies to induce proliferation in vitro, the group showed that CRIg interferes with 

early T cell activation, while addition of CRIg-Ig late in the culture period (48 hours), 

was unable to suppress T cell proliferation or influence expression of the surface 

activation markers CD25 and CD69. Further, the ability of CRIg to regulate T cell 

activation was shown to be complement-independent, suggesting that this ‘bridging’ 

effect of CRIg binding C3b/iC3b at the same time as another receptor expressed on 

T cells (such as CR1 or CR3) is unlikely to be the mechanisms responsible for 

interacting with CRIg. The group also investigated whether CRIg directly binds to 

candidates of a panel of known co-inhibitory molecules expressed by T cells, CTLA-

4, PD-1, VISTA, CD226, and TIGIT, and found that blocking these molecules had 

no effect on blocking the regulatory action of CRIg. To date, the ligand/receptor to 

which CRIg binds on T cells remains unknown.  

1.9. CRIg in Disease 

1.9.1. Rheumatoid Arthritis 

Rheumatoid arthritis (RA) is a chronic autoimmune disorder which targets the 

synovial tissue and manifests as articular damage and swelling (Small & Wechalekar, 
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2019). Affecting approximately 0.5-1% of the population in Western countries 

(Hunter et al., 2017), the disease is a major cause of disability and chronic pain in 

the adult population. Both genetic and environmental factors influence RA, with 

association with autoantibodies to various known proteins such as rheumatoid factor, 

and citrullinated proteins (Smolen et al., 2018).  

As a regulatory molecule with established immunosuppressive function, CRIg and 

its relationship with RA have been investigated in several published studies 

(Katschke et al., 2007; Lee et al., 2006; Tanaka et al., 2008; Wen et al., 2017; Zheng 

et al., 2016; F. Zheng et al., 2014). However, in similar fashion to the articles 

discussed above, there are substantial conflicting results reported amongst these 

studies. The initial report by Lee et al. (2006) suggests that not only is CRIg 

expressed by macrophages in the synovial lining layer, but that CRIg actively 

contributes toward the pathogenesis of disease by induction of the secretion of IL-8 

and matrix metalloproteinase 9 (MMP-9) through the activation of NF-κB. In the 

subsequent year, following the discovery that CRIg can act as an inhibitor of the 

alternative pathway of complement (Wiesmann et al., 2006), a soluble CRIg fusion 

protein fused with complement FH (CRIg-FH) was investigated in two mouse 

models of experimental arthritis; collagen induced arthritis (CIA) and collagen 

antibody induced arthritis (CAIA) (Katschke et al., 2007). The group reported that in 

both models, CRIg-FH, as a selective inhibitor of the alternative pathway of 

complement, worked to prevent disease onset and also alleviated symptoms of 

inflammation in established arthritis, thus providing support for the use of CRIg-FH 

as a potential therapeutic in human chronic inflammatory diseases. 

The finding that this soluble form of CRIg can act therapeutically is of great interest; 

although significant advances in therapy have been made for RA patients in the last 

two decades with the development of TNF inhibitors and biologic disease-modifying 

anti-rheumatic drugs (bDMARDs) (Hopkins et al., 2016), up to 50% of patients 

continue to suffer from ongoing disease activity and joint damage. This indicates that 

there remains a strong need to develop further approaches to manage disease, and the 

work of Katschke et al. (2007) provides evidence for CRIg-FH to be further studied 

as a therapeutic. However, no clinical trials of the use of CRIg-FH have been 

registered to date, and this is likely owing to both the conflicting report by Lee et al. 

(2006) and due to the potential of a broad range of adverse side-effects of an 
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immunosuppressive agent such as CRIg causing broad inhibition of the alternative 

pathway of complement. 

More recently, fluorescently labelled nanobodies targeting CRIg have been proposed 

as a tool to monitor arthritis progression and response to therapy (Zheng et al., 2019; 

Zheng et al., 2016). These nanobodies (NbV4m119) have been shown to accumulate 

in the joints of mice with serum-transfer induced arthritis (STIA) (a model of murine 

arthritis in which the animals recover following inflammation) in a manner that 

correlates with disease severity, and decreases in the recovery phase of disease 

(Zheng et al., 2016). Additionally, the nanobody accumulation was decreased in the 

joints of mice treated with dexamethasone compared with untreated mice. Thus, as 

dexamethasone is well documented as a potent driver of CRIg expression in 

macrophages (Gorgani et al., 2011; Tanaka et al., 2008), this raises the question of 

whether CRIg expression, per se, is correlated with disease severity, or whether the 

observed accumulation in the joints of mice with arthritis is rather a reflection of 

increased macrophage numbers within the joints. Further, as the accumulation of 

these anti-CRIg nanobodies within the joints in mice with STIA peaked at day 8—

the time point at which these mice reach the most severe inflammation and begin to 

recover—it’s possible that CRIg expression serves as the mediator of the beginning 

of the recovery phase. 

The above articles provide strong support for the potential applications of CRIg 

protein, or CRIg-targeting agents in arthritis, however, there remains a need to fully 

elucidate the role of CRIg in disease, and there remain significant gaps in our 

knowledge of CRIg in human states. Human macrophages expressing the long form 

of CRIg on the cell surface are known to be present in the intimal lining layer of RA, 

normal, osteoarthritis (OA), and psoriatic arthritis (PsA) synovial tissue (Tanaka et 

al., 2008). These cells are CD16 and CD163 (a marker used for distinguishing M2 

polarised macrophages) positive, suggesting they may potentially exert a regulatory 

function. Tanaka et al. (2008) observed that while numbers of CRIg+ cells were found 

to remain consistent between early RA, established RA, OA, and PsA populations, 

the numbers of dual-positive CRIg+CD11c+ cells were significantly increased in both 

early and established RA, as was the ratio of CRIg+CD11c+ cells to CRIg+ cells. 

However, aside from the finding that these cells are expanded in RA, the functional 

role of these cells remains to be elucidated. 
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1.9.2. CRIg in Other Autoimmune Disorders 

RA, along with other autoimmune disorders such as systemic lupus erythematosus 

(SLE) have been associated with over activation of the alternative pathway of 

complement (Thurman & Holers, 2006). As such, soluble fusion proteins consisting 

of the extracellular domains of CRIg have been studied in several other autoimmune 

disease models. Lieberman et al. (2015) expanded on the potential therapeutic use 

initially proposed by Katschke et al. (2007), showing that their CRIg fusion protein 

diminished skin lesions, proteinuria and pyuria, and kidney damage in a mouse 

model of SLE. CRIg treated mice showed equal amounts of autoantibodies as their 

untreated counterparts. The group concluded that CRIg acts therapeutically through 

limiting the recruitment of effectors of tissue damage, rather than through preventing 

autoimmunity.  

Chen et al. (2010) administered CRIg-Fc to mice with experimental autoimmune 

uveoretinitis and showed repressed retinal inflammation. They documented the role 

of the AP in disease pathogenesis and showed that it was the inhibition of this 

pathway that supressed disease. Along with this finding, they report lower production 

of the inflammatory cytokines TNF-α, IFN-γ, IL-17 and IL-6 produced by T cells of 

the mice treated with CRIg-Fc. Another interesting finding of this study was the 

pattern of CRIg expression in the retina. In healthy mice, CRIg+F4/80+ macrophages 

were detected, while at the peak of disease, CRIg could not be detected in the 

macrophages of the tissue nor in the infiltrating macrophages of the inflamed retina. 

However, as the disease severity decreased at 35 days post immunisation., CRIg+ 

macrophages could one again be detected within the tissue. This finding provides 

further evidence that CRIg expression on macrophages may play a role in the 

resolution of inflammation, likely through its ability to regulate complement and the 

activation of T cells. 

Together, these studies show that the immunosuppressive properties of CRIg make 

it a promising therapeutic. However, although promising in their results, these works 

use soluble CRIg fusion proteins to inhibit disease symptoms. As previously 

discussed, there have currently been no registered clinical trials for the use of CRIg-

Fc as a therapeutic. 

1.9.3. CRIg and Preeclampsia 

Genome-wide transcriptional profiling has revealed that upregulated levels of CRIg 

mRNA in the peripheral blood is associated with the incidence of severe 
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preeclampsia (Textoris et al., 2013). Follow up specific quantitative PCR (qPCR) 

supported this finding. In agreement with this report, a second study reported that the 

transcriptional profiles of women suffering severe preeclampsia exhibit higher levels 

of CRIg mRNA than women with non-severe preeclampsia (Chaiworapongsa et al., 

2013). This indicates that this pathogenic environment leads to an upregulation of 

CRIg production, suggesting that a measure of CRIg mRNA in the blood of women 

at risk of preeclampsia may serve as a diagnostic test to distinguish between the 

severe and non-severe forms. 

1.9.4. CRIg and Cancer 

Tumour associated macrophages (TAMs) are myeloid, tumour-promoting immune 

cells and represent a largely heterogeneous population (Liu & Cao, 2015). TAMs can 

facilitate tumour metastasis, promote tumour angiogenesis and can suppress the anti-

tumour mechanisms of the host (Yang et al., 2018). With this range of  

immunosuppressive properties, TAMs exhibit a phenotype similar to the regulatory 

M2 polarised state and typically express CD68, CD163 (Jeong et al., 2019), and other 

negative co-stimulatory molecules of the B7 protein family. 

The previously discussed documentation of CRIg as a B7 family-related protein 

(Vogt et al., 2006) has led to recent investigations into its potential role in various 

forms of cancer. Using double immunofluorescence staining, Liao et al. (2014) 

documented the presence of CRIg+CD68+ macrophages in lung cancer tissue 

sections. These CRIg+ cells also expressed B7-H1 (PD-L1/CD274) and B7-H3 

(CD276), two other members of the co-stimulatory B7 protein family members with 

known roles in the negative regulation of T cells. Further, the group demonstrated 

that mice deficient in CRIg expression developed larger tumours than wild type (Liao 

et al., 2014). Numerous studies since this initial publication have been published 

demonstrating the association of CRIg with other forms of cancer (table 1.2), and 

there is a general consensus that higher CRIg expression is associated with a poorer 

prognosis, fitting the known homeostasis-promoting function of the receptor and 

further likening CRIg to the B7 family of proteins. However, contrary to the concept 

of CRIg as pro-tumourigenic, Zhu et al. (2018) report that low expression of CRIg is 

associated with poor prognosis in hepatocellular carcinoma (HCC) patients with 

hepatitis B infection (HBV). Through the use of quantitative reverse-transcription 

polymerase chain reaction (qRT-PCR), they demonstrate poorer survival rates in 

patients with low CRIg expression in their tumours, compared with those with high 
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expression. Interestingly, this association is only observed in HCC patients with 

HBV infection and not those without.  To complement this, analysis of VSIG4 

expression in the human hepatoma cell lines HepG2, Sk-hep-1, Huh7 and MHCC-

97H revealed lower VSIG4 expression than in healthy human liver cells. While the 

conclusions drawn by this study suggested that CRIg may play a role as a tumour 

suppressor gene specifically in HCC, further studies into the role of CRIg in this 

particular cancer are necessary to elucidate its role. 

Along with tumour expression of CRIg, several reports of the presence of a soluble 

form of CRIg present in the serum of cancer patients have been published. In 2017, 

Byun et al. (2017) detected and measured plasma-soluble CRIg by enzyme-linked 

immunosorbent assay (ELISA), and found increased levels in patients with ovarian 

cancer compared with those with benign tumours. Three years later, Yuan et al. 

(2020) aimed to discover novel biomarkers for the diagnosis of lymphoma-associated 

haemophagocytic lymhohistiocytosis (L-HLH). Utilising quantitative mass 

spectrometry and ELISA, the group compared the serum proteome of lymphoma 

patients with L-HLH, and those without haemorphagocytic lymphohistiocytosis 

(HLH). The group detected a soluble form of CRIg (termed sVSIG4) in patient serum 

and found that its concentration was significantly increased in patients with L-HLH 

compared with non-HLH lymphoma patients. Additionally, when assessing healthy 

control serum and serum from patients with breast cancer, gastric cancer, and lung 

cancer, the group found that all of the median values of sVSIG4 concentration were 

undetectable, while the mean values were significantly lower than patients with non-

HLH lymphoma and those with L-HLH. This suggests that increased sVSIG4 in the 

serum may be a specific marker for both non-HLH lymphoma and L-HLH. Further, 

the findings indicate that the presence of sVSIG4 in human serum is not associated 

with the healthy state. 

Overall, these findings together liken CRIg with other B7 ligand family members in 

that expression is enhanced in many types of cancer, and that serum soluble protein 

can be detected in patients, and this concentration is correlated with disease prognosis 

(Buderath et al., 2019; Gu et al., 2018; Z. Zheng et al., 2014). CRIg in cancer likely 

contributes to the tumour-promoting function of TAMs through the suppression of T 

cell responses, and thus attests to the potential usefulness of measuring CRIg 

expression in cancer as a prognostic marker. 
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Table 1.2. Summary of the cancers which have been associated with CRIg expression, the key findings of the individual studies, and their references. 

Cancer Finding Reference 

Lung cancer Infiltration of CRIg+ macrophages into tumour specimens by immunohistochemistry (IHC); mice 

deficient in CRIg develop smaller tumours than their wild-type counterparts. 

(Liao et al., 2014) 

Ovarian cancer VSIG4 expression enhanced in ovarian cancer tissue compared with benign tumours; soluble CRIg 

levels increased in cancer patients, specifically in advanced staged disease. 

(Byun et al., 2017) 

Glioma CRIg protein enhanced in glioblastoma; IHC demonstrating CRIg upregulation in high-grade 

glioma tissue compared with healthy controls, and the association of higher CRIg expression levels 

with poor prognosis. 

(Xu et al., 2015; Zhang 

et al., 2016) 

Colorectal cancer VSIG4 overexpressed in colorectal cancer specimens with known disruptive mutations and linked 

to lower survival outcomes. 

(Menyhart et al., 2019) 

Hepatocellular 

carcinoma (HCC) 

Downregulation of VSIG4 expression in HCC associated with poor prognosis (Zhu et al., 2018) 

Multiple myeloma Correlation of high VSIG4 mRNA with poor prognosis (Jimenez et al., 2017; 

Roh et al., 2017) 

Prostate cancer RNA-seq on tumour infiltrating cells revealed elder patients with prostate cancer express higher 

levels of VSIG4 which is associated with higher levels of biochemical relapse. 

(Bianchi-Frias et al., 

2019) 

Breast cancer Increased expression of VSIG4 in invasive breast adipose tissue and co-expression with CD163, 

MARCO, complement component 1, q subcomponent B-chain (C1QB), complement component 1, 

q subcomponent A-chain (C1QA). 

(Sturtz et al., 2014) 

Lymphoma Soluble CRIg concentration is enhanced in patients with L-HLH compared with non-HLH (Yuan et al., 2020) 
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1.10. Of Mice and Men: Expression of CRIg in Human Versus Murine Tissues 

CRIg has long been reported to be exclusively expressed by certain subsets of tissue 

resident macrophages (Helmy et al., 2006; van Lookeren Campagne & Orozco, 

2018). While there is an overwhelming amount of published evidence that this is true 

in mice, whether CRIg is expressed by any other cell types in humans remains in 

need of elucidation. This is because the initial studies into the expression profiles of 

CRIg on various immune cell types were conducted using murine cells (Helmy et al., 

2006; Vogt et al., 2006), and these results show striking differences to the expression 

profiles that are observed in human tissues. For instance, VSIG4 mRNA is highly 

expressed in murine liver tissue but only in low levels in humans, while the opposite 

is seen in lung tissues (Langnaese et al., 2000; Thul et al., 2017; Uhlen et al., 2015). 

The function of CRIg in murine liver Kupffer cells has been investigated in great 

depth (Broadley et al., 2016; Zeng et al., 2016), however, as the expression pattern 

in the human liver is so different, this leads us to question the relevance of these 

studies to human biology. Furthermore, as there is only one documented transcript 

variant of VSIG4 expressed in mice, while there are up to six in humans, the relevance 

of these and whether different tissues or cell types express differing isoforms of the 

protein require further clarification. 

Following the initial identification of CRIg as a complement receptor, Kim et al. 

(2005) generated the first commercial anti-CRIg monoclonal antibody, and screened 

for CRIg protein in human immune cells, finding that human monocytes express 

CRIg protein. However, less than a year later, Helmy et al. (2006) published their 

own screening study using their own in-house generated monoclonal antibody. Their 

group reported monocytes to stain negative for CRIg, and since this study, there have 

been no other reports of expression nor function of CRIg on monocytes. 

While this initial discrepancy was published more than a decade ago, conflicting 

reports of the expression patterns of CRIg in various cells and tissues have only 

continued to become more prominent throughout recent years. While investigating 

their protein of interest, Nagre et al. (2018) show that CRIg interacts with tripartite 

motif protein 72 (TRIM72) in both human and murine lungs. This study (Nagre et 

al., 2018) is a stark contradiction to the initial findings of Helmy, et al (2006), who 

report no expression of CRIg in the murine lung. Furthermore, Nagre et al. (2018) 

report murine CRIg to migrate at ~32 kDa by gel electrophoresis, while Helmy, et al 

(2006) reported it to migrate at ~45 kDa. It is of note that the groups use differing 
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antibodies against CRIg in their studies, and it is tempting to speculate that antibody 

choice may be a contributing factor to this disagreement. Together, these studies 

indicate that we cannot rely on murine models alone to reveal the functional role that 

CRIg may play in human health and disease, and that a substantial amount of 

fundamental research into the isoforms and expression CRIg is needed to be 

undertaken before we can begin to fully understand this receptor. 

1.11. Rationale of This Thesis 

In order to investigate the role of CRIg in immune disease and how CRIg may 

potentially be used therapeutically, we must first come to understand the role of CRIg 

in the human state of health. It is clear from the current state of the published 

literature revolving the biological function/s of CRIg that there is a need to re-

characterise its expression in human phagocytic cells with consideration of the 

multiple protein forms which may be expressed, to re-assess the function of these 

proteins, and to better understand the differences between the role of this protein in 

mice compared with humans. Thus, this is the subject of this thesis. 

1.12. Project Hypotheses, Aims, and Significance 

We propose that CRIg is an anti-inflammatory, phagocytosis-promoting receptor, 

and that its expression is not restricted to tissue-fixed macrophages as previously 

believed. Thus, in this thesis, we aim to perform a comprehensive investigation into 

the CRIg mRNA and protein variants expressed by human populations of immune 

cells including macrophages, DCs, monocytes and neutrophils. This re-

characterisation will include the generation of novel anti-CRIg monoclonal 

antibodies, and studies into the regulation over CRIg expression in human 

macrophages, and the relationship between cellular expression of CRIg and the 

‘classical’ complement receptors, CR3 and CR4.  

Thus, the following aims have been constructed: 

1. To re-characterise CRIg expression in human immune cells, including the 

circulating phagocytes of the immune system, monocytes and neutrophils. 

2. To develop monoclonal antibodies for human and mouse forms of CRIg. 

3. To examine CRIg expression and its regulation in human monocyte-

derived macrophages, and to examine its relationship to the expression of 

the ‘classical’ complement receptors, CR3 and CR4. 
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4. To investigate the expression and regulation of CRIg isoforms in human 

monocyte-derived DC by cytokines at the mRNA and protein levels. 

5. To investigate the inflammatory mediator network that regulate the 

expression of CRIg in human macrophages. 

By meeting these aims, the findings from this investigation will represent a 

substantial increase in our knowledge of the biology of CRIg in healthy human 

phagocytic cells, and with the information gained, it will form a backbone for future 

comprehensive studies into the role of CRIg in inflammatory disease states, such as 

in rheumatoid arthritis and type 1 diabetes. 
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1.13. Publication: ‘Complement Receptor Immunoglobulin: a control point in 

infection and immunity, inflammation and cancer’ 

1.13.1. Introduction and Contextual Statement 

This section of this introductory chapter presents a comprehensive review of the 

literature, which includes the structure of human vs. murine CRIg, the various 

immune functions attributed to the protein, and the expression profiles of CRIg on 

human immune cell types, current up until April 2016. The review summarises the 

established roles of CRIg in infection and immunity, inflammation, and cancer, and 

also highlights importance of future foundational studies in the area of CRIg biology 

before in-depth studies into specific disease models can take place. 

This chapter presents the first published manuscript included in this thesis. The 

following invited review article entitled ‘Complement receptor immunoglobulin: a 

control point in infection and immunity, inflammation and cancer’, by Annabelle 

Small, Marwah Al-Baghdadi, Alex Quach, Charles S. Hii & Antonio Ferrante was 

published in the peer reviewed journal, Swiss Medical Weekly, in April 2016 

(doi:10.4414/smw.2016.14301).  

Article Metrics (as of November 2020) 

Journal Impact Factor: 1.821 

Altmetrics score: 2 

Citations: 18
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Summary

The B7 family-related protein, V-set and Ig domain
(VSIG4) / Z39Ig / complement receptor immunoglobulin
(CRIg), is a new player in the regulation of immunity to
infection and inflammation. The unique features of this re-
ceptor as compared with classical complement receptors,
CR3 and CR4, have heralded the emergence of new con-
cepts in the regulation of innate and adaptive immunity. Its
selective expression in tissue macrophages and dendritic
cells has been considered of importance in host defence and
in maintaining tolerance against self-antigens. Although a
major receptor for phagocytosis of complement opsonised
bacteria, its array of emerging functions which incorpor-
ates the immune suppressive and anti-inflammatory action
of the receptor have now been realised. Accumulating evid-
ence from mouse experimental models indicates a poten-
tial role for CRIg in protection against bacterial infection
and inflammatory diseases, such as rheumatoid arthritis,
type 1 diabetes and systemic lupus erythematosus, and also
in promotion of tumour growth. CRIg expression can be
considered as a control point in these diseases, through
which inflammatory mediators, including cytokines, act.
The ability of CRIg to suppress cytotoxic T cell prolifer-
ation and function may underlie its promotion of cancer
growth. Thus, the unique properties of this receptor open
up new avenues for understanding of the pathways that
regulate inflammation during infection, autoimmunity and
cancer with the potential for new drug targets to be identi-

Abbreviations
APC antigen presenting cell
CR complement receptor
CRIg complement receptor immunoglobulin
HBV hepatitis B virus
IL interleukin
MAP mitogen activated protein
PI3 phosphatidylinositol 3
PKC protein kinase C
TNF tumour necrosis factor
VSIG4 B7 family-related protein V-set and Ig domain
Z39Ig Protein with immunoglobulin domains derived from
expressed sequence tag #Z39624

fied. While some complement receptors may be differently
expressed in mice and humans, as well as displaying dif-
ferent properties, mouse CRIg has a structure and function
similar to the human receptor, suggesting that extrapola-
tion to human diseases is appropriate. Furthermore, there
is emerging evidence in human conditions that CRIg may
be a valuable biomarker in infection and immunity, inflam-
matory conditions and cancer prognosis.

Key words: CRIg/VSIG4/Z39Ig; macrophages; dendritic
cells; infection and immunity; cytokines; alternative
complement pathway, complement receptors;
inflammatory diseases; CRIg-Fc fusion protein; cancer

Introduction

Complement plays an important role in the opsonisation
of circulating pathogens, facilitating the phagocytosis and
removal of these pathogens by phagocytes. Fragments of
complement are recognised by four complement C3 frag-
ment receptors, CR1 (CD35), CR2 (CD21), CR3 (CD11b/
CD18), and CR4 (CD11c/CD18), with an additional recept-
or, complement receptor immunoglobulin (CRIg), being
added to this list in 2006 (fig. 1; [1, 2]). The major devel-
opments surrounding CRIg are summarised in table 1. Al-
though CRIg (originally named Z39Ig) was first described
in 2000 [3], its biological properties were not evident until
van Lookeren Campagne and colleagues published their
extensive work on its prime role as a complement receptor
promoting phagocytosis of bacteria in vivo and in vitro
[4]. Working with mice, this group not only continued to
provide supportive evidence of its importance in defence
against infection and promoting phagocytosis but also dis-
covered its property of uniquely interacting with compon-
ents of the alternative complement pathway and inhibiting
its activation [2, 5]. This led to the development of a CRIg-
Fc fusion protein, which demonstrated anti-inflammatory
activity in several murine models of inflammatory diseases
[6–10]. In a parallel publication, Vogt et al. [6] demon-
strated the immunosuppressive activity of CRIg by using
a VSIG4(CRIg)-Fc fusion protein in vitro and also when
injected into mice. Interestingly, human dendritic cells ex-
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pressing CRIg were found to suppress T cell proliferation,
expression of activation markers (CD25 and CD69) and
production of helper T cell (Th1) cytokines [11]. This sug-
gests that CRIg+ dendritic cells may promote tolerance

Figure 1

Schematic representation of the CRIg protein domains aligned with
the five VSIG4 splice variant transcript structures. The transcripts
structures are derived from the NCBI Reference Sequence
Database (RefSeq) using the following mRNA accession numbers:
NM_007268.2, NM_001100431.1, NM_001184831.1,
NM_001184830.1, and NM_001257403.1, as noted in the figure.
The structure of the longest CRIg isoform (variant 1, huCRIg(L)) is
used as the reference, with the protein domains denoted as: SP,
signal peptide; Ig-V, immunoglobulin domain V-type; Ig-C2,
immunoglobulin domain V-type; TM, transmembrane region, and
CD, cytoplasmic domain. The relative VSIG4 exon structure reveals
that SP, Ig-V, Ig-C2, and TM are encoded specifically by exons 1, 2,
3, and 6, respectively, whereas CD is encoded by exons 7 and 8.
The short form (variant 2, huCRIg(S)) differs from the long form by
the exclusion of exon 3, the Ig-C2 domain, and a change at codon
138 from CUC (Leucine) to CAC (Histidine). In this isoform, the
overall size of the CRIg protein is reduced from 399 to 305 amino
acids (aa). Variant 3 features this identical alteration, in addition to
the inclusion of intron 7 which creates a stop codon (UAA) adjacent
the last codon of exon 7, causing the majority of the CD to be
missing (227 aa). Variant 4 features the same loss of the CD as
variant 3, but retains all other domains (321 aa). Variant 5 retains
the same domains as variants 1 and 4 (exon 1 to 7 inclusive), but is
unique from the other four variants in that a portion of exon 8 is
excluded, which creates a change at codon 321 (exon 7-8 junction)
from AGG (Arginine) to AGC (Serine), followed by a ‘frameshift’ that
results in a stop codon generated 26 aa downstream (347 aa).
Insert: shows a schematic representation of the long and short
forms of CRIg, expressed in macrophages. The extracellular
portion of CRIg contains an Ig-V and/or Ig-C2 domain(s). Putative
phosphorylation sites for cAMP/cGMP-dependent protein kinase
(S-311 or S-217) and protein kinase C (T-333 or T-239) have been
proposed to be present in the cytoplasmic domain of CRIg.

and immunosuppression. This may possibly explain recent
findings that CRIg+ human macrophages may have a role
in regulating malignancy [12–15].
Inflammatory mediators exert their effects on macrophages
by regulating CRIg expression. Accordingly, cytokines
have been shown to alter CRIg expression on human mac-
rophages [16, 17]. Work along this line should be expanded
to gain a better understanding of how inflammatory medi-
ator networks operate in infection and immunity, chronic
inflammatory diseases and cancer. Since CRIg and the clas-
sical complement receptors, CR3 and CR4, which also bind
complement opsonised bacteria, are expressed concomit-
antly on macrophages, the relative commonalities and dif-
ferences when engaged need to be appreciated. Finally, the
mechanisms of CRIg-mediated protection against infection
and inflammatory conditions as well as presumed suscept-
ibility to cancer are becoming research topics of intense in-
terest.

CRIg structure

CRIg, a member of the transmembrane protein of the type 1
immunoglobulin (Ig) superfamily, is encoded by the VSIG4
gene located in the pericentromeric region of the human
X chromosome. The gene, first documented as “Z39Ig” by
Langnaese et al. [3], contains eight exons and has a length
of 18.3 kb. In humans, the product, CRIg, referred to as
the long form (huCRIg(L) [4], contains both a constant
(C2-type) and a variable (V-type) immunoglobulin domain
(fig. 2). In addition, a short form, huCRIg(S), was also iden-
tified. The huCRIg(S) contains only the V-type immuno-
globulin domain, with no C2-type [4]. The two different
forms of CRIg arise from alternative splicing of the VSIG4
gene, which also has the potential to give rise to a total of
five different variants (fig. 2). Only one form of CRIg, con-
taining a single IgV-type domain, is expressed in murine
macrophages and the data show that the V-type domain of
the CRIg protein is essential for its ability to bind com-
plement components and to promote phagocytosis, whereas
the significance of the C2-type domain remains uncertain.
The intracellular portion of huCRIg(L) harbours two poten-
tial phosphorylation sites, a cAMP/cGMP-dependent pro-
tein kinase phosphorylation site at S-311, and a protein
kinase C phosphorylation site at T-333 [3]. Both S and T

Table 1: Key developments in the field of complement receptor immunoglobulin (CRIg).

Development References
Identification of Z39Ig – immunoglobulin superfamily member, gene localisation in the pericentriomere region of human X chromosome. [3]

Z39Ig/CRIg expressed predominantly in fixed tissue macrophages. [4]

CRIg promotes clearance of bacteria and viruses in experimental models; a key role for CRIg+ Kupffer cells. [4, 19]

CRIg is a complement receptor which promotes phagocytosis of bacteria by macrophages. Unique properties of the receptor described. [4, 20, 21]

CRIg uniquely interacts with components of the alternative complement activation pathway; is an inhibitor of the alternative pathway. [2, 5]

VSIG4 induces T cell immunosuppression; CRIg+ dendritic cells and tolerogenic responses; negatively regulates T cell-dependent
immunoglobulin isotype switching in the mouse and human immune system.

[6, 11, 24]

Development of CRIg-Fc fusion protein; protects against experimental arthritis, systemic lupus erythematosus, type 1 diabetes and other
diseases.

[6–10, 27]

Adoptive transfer of CRIg+ macrophages protects against immune-mediated liver injury in a mouse model. [29]

CRIg expression in tumour- associated macrophage; poor prognosis; promotes tumour growth (mouse and human immune system). [12–15]

Regulation of CRIg expression in human macrophages by inflammatory mediators (including cytokines) and anti-inflammatory agents. [16, 17, 33]

CRIg expression in macrophages in human tissues, large intestine, synovial tissue, liver. [12–15, 26, 28, 30, 33,
36]

CRIg as a biomarker in human conditions: preeclampsia, chronic hepatitis B virus infection, heart failure, cancer [12–15, 33–36]
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residues are present on the intracellular domain of
huCRIg(S) at residues 217 and 239 (fig. 1). The significance
of these sites is currently unknown but could provide a
means to regulate CRIg function. Surprisingly, the reported
sizes of the protein (50kDa and 45kDa for the long and short
forms, respectively) [4] do not agree with the estimated pro-
tein sizes. This suggests that some post-translational modi-
fications, such as glycosylation, have occurred [18].

CRIg promotes phagocytosis and anti-
microbial action of macrophages

Although there has been limited publication of data show-
ing that CRIg plays a role in protection against infection,
the results are quite convincing. Using CRIg-/- mice, Helmy
et al. [4] showed that CRIg was important in the clearance
of the intracellular bacterium Listeria monocytogenes by
liver resident/fixed macrophages (Kupffer cells), and pre-
venting dissemination of the bacteria to other organs. This
protection provided by CRIg was evident by a reduction
in numbers of bacteria and an increase in mouse survival.
Similar results were obtained when the extracellular patho-
gen Staphylococcus aureus was examined, leading to the
conclusion that CRIg is required for the rapid clearance of

Figure 2

Characteristics, function and expression of complement receptors
The structural domains of the five known types of complement
receptors are depicted, together with their specificity of C3
fragments, the genes encoding them, their distribution amongst the
different leucocyte types and their known functions. CR1, CR2 and
CRIg are single transmembrane proteins with extracellular portions,
transmembrane domains and cytoplasmic tails whereas CR3 and
CR4 are transmembrane heterodimers of a common β2 integrin
(CD18) chain and an α integrin chain, αM (CD11b) or αX (CD11c).
Murine CR1 and CR2 are derived from the same gene by
alternative splicing whereas the human counterparts are encoded
by 2 different genes. CR1 contains thirty short consensus repeats
(SCR) and CR2 has fifteen SCR. CD18 contains four repeats and a
Von Willebrand factor type A domain (lightly shaded oblong shape).
The α integrins contain, within their extracellular portions, seven
FG-GAP repeats (rectangles) and a Von Willebrand factor type A
domain. Two human CRIg isoforms, huCRIg(L) for the long form
and huCRIg(S) for short, have been described. Both isoforms
contain an N-terminal ligand binding domain that belongs to the
IgV-type of immunoglobulin domains (horizontal stripes). The long
form of CRIg also contains a membrane proximal domain that is an
IgC-type immunoglobulin domain. The function of this domain is
unclear. The murine form, similar to CRIg(S), contains only the IgV-
type of immunoglobulin domain but the cytoplasmic tail is shorter
than that of huCRIg(S). The IgV domains are believed to be
responsible for binding C3 fragments.

both intracellular and extracellular C3-opsonised bacteria.
More recently, the anti-infective actions of CRIg have been
demonstrated with adenoviruses in mice [19]. The work
showed that CRIg-mediated viral clearance by liver Kupf-
fer cells was significantly reduced in CRIg-/- mice com-
pared with wild type mice.
CRIg functions as a complement receptor on macrophages,
promoting phagocytosis by binding to C3b and iC3b-
coated particles [4]. CRIg with bound C3b is internalised
into Kupffer cells and becomes localised in a pool of con-
stitutively recycling membranes. At the initial stages of
phagosome formation, CRIg was actively recruited from
recycling endosomes to the sites of C3b-coated particle in-
gestion. Then, prior to the fusion of the phagosome and
lysosome to avoid degradation, CRIg is likely recycled
from the phagosome to the endosome for use in further
phagocytic events, ensuring a readily available source of
CRIg on the cell surface and thereby enabling a faster rate
of phagocytosis when bacteria are encountered [1].
CRIg differs from CR3 not only in its expression (select-
ively in macrophages and dendritic cells) but also in the
mechanisms of phagocytosis and induction of immune re-
sponses. Whereas CRIg binds to both C3b and iC3b, CR3
binds only iC3b ([1, 4], table 2). In murine peritoneal mac-
rophages, Gorgani et al. [20] reported that, whereas ef-
ficient binding of opsonised particles to CR3 required
divalent cations (Mg2+ and Ca2+), binding to CRIg did not
require these ions. CRIg-mediated binding also did not re-
quire integrin activation. Gorgani et al. [20] further in-
vestigated the relative contribution of CRIg and CR3 to
complement-mediated phagocytosis, finding that CRIg en-
hanced phagocytosis only in resident macrophages, while
CR3 acted as the dominant complement receptor in in-
filtrating activated macrophages at sites of inflammation.
It was demonstrated that CRIg expression is capable of
increasing the rate of phagocytosis in resident peritoneal
macrophages, and is absent from inflammatory macro-
phages, suggesting that CRIg has a function in immune
clearance and tissue homeostasis, and that initiating CRIg-
mediated phagocytosis avoids the inflammatory cytokine
cascade that is associated with phagocytosis via CR3 [4,
16]. Consistent with this idea, CRIg has been shown to play
a role in clearing pathogens during early infection such
as in the liver sinusoidal lumen through which invading
pathogens have to pass [4]. Furthermore, this receptor may
participate in the baseline removal of C3-opsonised apop-
totic cells and cell debris without involving CR3 [1, 2], the
engagement of which leads to a systemic inflammatory re-
sponse. CRIg may not work alone in this function. CR1
is known to recognise C3b without internalisation. In this
manner, CR1 would remove immune complexes from the
circulation, thus preventing pathological deposition. The
role for CRIg may be to mediate removal of potentially
pathological agents through internalisation. Thus, CR1 and
CRIg may have important roles in maintenance of homeo-
stasis, providing baseline clearance of pathogens [1, 2].
Apart from promoting phagocytosis of opsonised bacteria,
CRIg may also affect their killing. It has been reported in
the human macrophage cell line THP1 and the J774 mouse
macrophage cell line that CRIg binds chloride intracellular
channel 3 (CLIC3), an intracellular chloride channel protein
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that is required for the clearance of Listeria monocytogenes
[21]. Thus, CRIg was shown to co-localise with CLIC3 on
the membranes of Listeria monocytogenes-containing vacu-
oles in the mouse macrophage cell line. Using an anti-CRIg
antibody that enhanced macrophage-mediated killing of in-
tracellular Listeria monocytogenes, it was demonstrated that
this killing-enhancing effect of anti-CRIg antibody required
CLIC3 as the effect was abolished in macrophages from
CLIC3-/- mice. The mechanism probably involved a CRIg-
mediated increase in Cl- concentration and a decrease in pH
in the vacuoles. This contrasts with CR3 in the killing of
phagocytosed microorganisms such as Salmonella serovar
Typhimurium by human phagocytes in that this receptor is
solely needed for the phagocytic step whereas the killing
mechanism depends on a Toll-like receptor 4-mediated ac-
tivation of NADPH oxidase [22].
Since the majority of the above data have been generated
from mouse macrophages and experimental mouse models,
care needs to be exercised when translating the findings
to human diseases. There are major differences in comple-
ment receptors between mouse and humans; for example,
CR1 has a very limited expression profile in the mouse. In
terms of CRIg, mouse macrophages express one form that
also contains the IgV domain ([4]; fig 1 and 2, table 2).
Studies with human macrophages and phagocytosis have
been limited to monocyte-derived macrophages in culture
which express CRIg. The levels of this receptor in these
macrophages correlated with the degree of phagocytosis of
complement-opsonised Candida albicans [17]. The com-
parison between mouse and human CRIg expressing mac-
rophages are shown in table 2.

Immunosuppressive and anti-
inflammatory functions

CRIg is able to bind the alternative pathway complement
components C3b and iC3b, which functions to bind foreign
particles for phagocytosis. A study by Wiesmann et al. [5]
investigated whether the binding of CRIg to C3b inhib-
its the inflammatory convertase activation of the altern-
ative complement pathway. They successfully solved the
crystal structure of CRIg bound to C3b, which indicated
that unlike most C3b binding molecules, CRIg predomin-
antly binds to the β-chain (rather than the α-chain). It was
demonstrated that CRIg inhibited both the C3 and C5 con-
vertases of the alternative but not the classical pathway.
This inhibition is related to the ability of CRIg to bind
C3b, whose function in both convertases is to recruit C3

and C5, thereby enabling their cleavage by factor Bb, the
catalytic subunit of the convertases. Further studies with
C5 revealed that when CRIg was bound to C3b, it preven-
ted C5 from interacting with C3b. As a consequence, C5
could not be cleaved by the C5 convertase (C3bBb3b) to
C5a and C5b [2]. Selectivity for alternative pathway con-
vertases can be explained on the basis that CRIg does not
bind C4b and hence cannot compete effectively with the
classical pathway C5 convertase (C4b2a3b) for C5 binding
[2].
Katschke et al. [7] demonstrated, through the generation of
a soluble CRIg fusion protein (CRIg-Fc), that it was pos-
sible to reverse inflammation and bone loss in two different
experimental models of arthritis. By inhibiting the alternat-
ive complement pathway with the fusion protein, the study
demonstrated that the alternative pathway of complement
is essential for disease induction and progression. This fu-
sion protein was further investigated in a recent study in
which it was administered to lupus-prone MRL/lpr mice
[8]. The group reported decreased skin and kidney inflam-
mation, and decreased proteinuria and pyuria in mice ad-
ministered CRIg-Fc fusion protein. The protein also protec-
ted against other conditions known to involve complement.
Chen et al. [9] demonstrated protection against experiment-
al ischaemia/reperfusion injury in a mouse model. Admin-
istration of the CRIg-Fc protein prevented local intestinal
and remote lung damage, which was associated with de-
creased complement deposition. In experimental autoim-
mune uveoretinitis, Chen et al. [10] showed that retinal in-
flammation was suppressed by treatment with the CRIg-Fc
protein, which was also associated with reduced deposition
of C3b and factor B in the tissues.
Vogt et al. [6] further investigated the immune function of
CRIg. It is known that T cell activation by antigen present-
ing cells (APCs) is both positively and negatively regu-
lated by the B7 family of proteins that are found on the
surface of the APC [23]. Through screening, it was found
that a mouse copy DNA sequence that appeared to be de-
rived from messenger RNA encoding the CRIg protein,
when translated was 20% identical to the amino acid se-
quences of known B7 family members. It was therefore hy-
pothesised that CRIg, being related to the B7 protein fam-
ily, would show some degree of regulation over T cells.
They showed CRIg to be a strong negative regulator of
murine and human T cell proliferation and interleukin-2
(IL-2) production, though the mechanisms of this regu-
lation remain uncertain. It was further found that CRIg
was only expressed on the surface of resting tissue macro-

Table 2: Comparison between mouse and human complement receptor immunoglobulin (CRIg) on macrophage phagocytosis.

Function Experimental approach Human (L) Human (S) Murine References
Recognition of C3 fragments Formation of rosettes following incubation of

CRIg+ cells with complement-opsonised sheep
erythrocytes

Yes Not determined Yes [4]

Binding to C3b and iC3b Binding of huCRIg (L)-Fc, huCRIg(S)-Fc or
muCRIg-Fc to C3b and iC3b

Yes Yes Yes [4]

Phagocytosis Phagocytosis of complement-opsonised
particles

(Yes; but isoform not determined) Yes [16, 17, 20]

Clearance of Listeria monocytogenes and
Staphylococcus aureus

Assessment of bacterial load in the blood,
spleen and lung of mice

Not determined Not determined Yes [4]

Inhibition of the alternative complement pathway Cleavage of C3 and C5 by their respective
convertases

Yes
(but isoform not stated)

Yes [5, 7]
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phages, and not on the surface of macrophages activated by
lipopolysaccharide. This fact indicates that CRIg may have
an important role in maintaining T cell unresponsiveness
in healthy tissues. The regulatory role of CRIg on antibody
production has also been demonstrated [24]. The work con-
ducted in mice showed that CRIg on macrophages negat-
ively regulates T cell-dependent immunoglobulin isotype
switching through an action on T cell activation and differ-
entiation.
Expression of CRIg in human dendritic cells was first re-
ported by Ahn et al. [25]. While the immunosuppressive
effects of CRIg-Fc fusion protein have been demonstrated
by its direct interaction with T cells, Xu et al. [11] trans-
fected human dendritic cells with CRIg such that they con-
stitutively expressed CRIg and showed that these dendritic
cells inhibited proliferation of allogenic T-cells, and de-
creased expression of activation markers and pro-inflam-
matory cytokines production from these cells. These sug-
gest that CRIg expression on dendritic cells has anti-in-
flammatory outcomes; plays a role in tissue homeostasis
and host defence, and suggest a potential function in sup-
pressing effector T cells.
It has been reported with respect to inflammatory diseases
that CRIg expression and levels of CRIg+ macrophages re-
late to the intensity of the inflammatory reaction. For ex-
ample, Tanaka et al. [26] showed that CRIg+ macrophages
were present in the large intestine of mice and this expres-
sion decreased during inflammatory colitis. Fu et al. [27],
using the nonobese diabetic mouse model of type 1 dia-
betes, found that CRIg+ macrophages were associated with
diabetes resistance. Mice given injections of CRIg-Fc fu-
sion protein had lower incidence of diabetes. CRIg expres-
sion has been found in macrophages infiltrating tissue in
other inflammatory conditions, including in atherosclerosis
where receptor expression was associated with foamy mac-
rophages in human carotid atherosclerotic plaques [28].
The role of CRIg+ macrophages in protection against in-
flammation is best seen from the results of Jung et al. [29],
who demonstrated the protective role of these macrophages
in a model of immune-mediated liver injury. Mice lacking
CRIg showed increased liver pathology and poor survival
rates, associated with increased antigen-induced responses
by liver T and natural killer T cells. Interestingly the effect
of lack of CRIg in these mice could be overcome by adopt-
ive transfer of CRIg+ Kupffer cells.
Since at least one of the human CRIg receptors, the S form,
is structurally similar to the murine CRIg in that they con-
tain only the IgV-type domain (fig. 1 and fig. 2), we can
tentatively conclude that these results from experimental
models of human diseases are relevant to the human im-
mune system and inflammatory diseases, but this obviously
requires examination. The presence of CRIg+ macrophages
in synovial tissue has been reported in rheumatoid arthrit-
is [28, 30] and in experimental arthritis in mice [31]. In
one study the CRIg+ macrophages in the synovial tissue
were defined as CRIg+CR4+ and CRIg+CR4-. Interestingly,
the former predominated in rheumatoid arthritis compared
with osteoarthritis. Although data were not presented, CR3
was expressed in a similar manner to CR4 [30]. It is tempt-
ing to speculate that the CRIg+CR4- subpopulation may be
playing a protective role in this disease and that manipulat-

ing the number of this subpopulation may be potential new
avenues to treat rheumatoid arthritis [29].

CRIg+ macrophages and cancer

Recently, it has been shown that macrophages infiltrating
lung tissue in patients with non-small-cell lung cancer ex-
press high level of CRIg [12]. The authors of this article
highlighted that CRIg downregulated CD4+ and CD8+ T-
cell proliferation and cytokine production. This work was
further extended into a mouse model of Lewis lung car-
cinoma in which the effect of CRIg deficiency on tumour
growth was examined. The result showed that CRIg-/- mice
had significantly smaller tumours than wild type mice [12].
The role of CRIg in cancer pathogenesis is likely to be of
relevance across different cancers. Sturtz et al. [13] con-
ducted a gene microarray study in breast cancer patients
and showed that tumour-adjacent tissue had >5 fold in-
crease in CRIg expression compared with distant tissue. In-
vestigation extended to CRIg expression in glioma using
tissue microarray. The result of this study showed that
CRIg expression in glioma patients is higher than control.
Indeed, CRIg upregulation correlated with poor prognosis
in this type of cancer [14]. Similarly, by using gene mi-
croarray from lymphoma patients, CRIg was found to be
one of the most upregulated genes in T cell / histiocyte-
rich large B-cell lymphoma [15]. Cancer has been shown
to be associated with decreased production of interferon-γ
by T cells in the tumour environment [32]. Previous stud-
ies have shown that this cytokine causes a decrease in CRIg
expression in human macrophages, in vitro and in vivo [17,
33], and is conducive to the increased CRIg expression in
tumour-associated macrophages.
The outcome of immune responses following the engage-
ment of the T cell antigen receptor to the peptide of the
antigen expressed on the major histocompatibility complex
of the APC is dependent on the costimulatory and coinhib-
itory signals between the CD28 receptor family on the T
cells and B7 family on the APC. These costimulatory and
coinhibitory signals may be exploited by tumours for im-
mune evasion. CRIg, a member of the B7 family which is
a coinhibitory molecule, being increased in tumour associ-
ated macrophages is likely to prevent T-cell mediated tu-
mour destruction [34].

Regulation of CRIg expression in
macrophages

Since experimental disease models have shown that CRIg
promotes anti-infective and anti-inflammatory events,
there is a need to understand whether inflammatory medi-
ators regulate CRIg expression on macrophages. The major
evidence for inflammatory networks regulating CRIg ex-
pression and associated phagocytosis comes from the work
of Gorgani et al. [17]. They demonstrated that the inflam-
matory mediator and cell activator, arachidonate, caused
a marked decrease in CRIg expression in human macro-
phages, both at the mRNA and cell surface protein expres-
sion level [17]. The action of cytokines on this expres-
sion in human monocyte-derived macrophages is interest-
ing. The results showed that tumour necrosis factor (TNF),
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interferon-γ, IL-4 and transforming growth factor-β1 de-
creased CRIg expression but the immunosuppressive cy-
tokine IL-10 caused a marked increase in expression. These
changes in CRIg expression correlated with the amount of
phagocytosis of Candida albicans [17]. Further studies in
human monocyte-derived macrophages also demonstrated
that IL-1β and IL-6 caused a decrease in expression, but
were not as potent as TNF [16]. Interestingly, Guo et al.
[33] found that interferon-γ not only decreased expression
of CRIg on human macrophages in vitro but also played a
role in decreasing expression in liver macrophages of pa-
tients with chronic hepatitis B virus (HBV) infection. A re-
duced CRIg expression was associated with an increase in
plasma HBV load and increased serum alanine aminotrans-
ferase levels. This finding supports the infection protective
actions of CRIg as well as the anti-inflammatory character-
istics.
The findings reported by Gorgani et al. [17] and Ma et al.
[16] collectively suggest that mediators of inflammation,
including cytokines, may control CRIg expression at two
levels: firstly by regulating the development of monocytes
into CRIg positive macrophages and secondly on mature
macrophages per se. The results suggest that exogenously
and endogenously generated mediators not only regulate
tissue/resident macrophage function by modulating CRIg
expression but also act on infiltrating monocytes to control
their development into CRIg+ macrophages. This is sup-
ported by the findings of Vogt et al. [6] and Gorgani et al.
[20] in mice.
While arachidonate is a powerful down-regulator of CRIg
expression in human macrophages, the steroidal anti-in-
flammatory agent, dexamethasone, caused a marked up-
regulation of CRIg expression [16, 17]. Evidence sugges-
ted that these agents regulate CRIg expression via protein
kinase Cα (PKCα) [16, 17]. The arachidonate action on
CRIg expression was found to be independent of the cyc-
looxygenase and lipoxygenase pathways, and did not in-
volve the mitogen-activated protein kinases p38 and
ERK1/ERK2, as well as independent of PI3 kinase but de-
pendent on PKC activation [17]. The increase induced by
dexamethasone can also be accounted for by an action on
PKCα, namely an inhibitory effect [16, 17]. It is interest-
ing that an anti-inflammatory agent has the ability to up-
regulate a macrophage receptor which has both phagocytic
and anti-inflammatory functions. This suggests that some
of the anti-inflammatory properties of dexamethasone may
be, in part, mediated by causing changes in CRIg expres-
sion. Ma et al. [16] made the further observation that TNF
production by human macrophages may autoregulate the
full expression of CRIg. Thus the addition of anti-TNF
neutralising antibodies increased CRIg expression in cul-
tured human macrophages. Since CRIg+ macrophages are
found in synovial tissue of rheumatoid arthritis patients, it
is tempting to speculate that the anti-TNF therapy may be
protective via this mechanism.

CRIg as a potential disease biomarker

Once we understand better the relationship between CRIg
expression and disease progression in inflammatory disor-
ders, it is possible that CRIg expression may be a helpful

biomarker to ascertain diagnosis or disease progression and
outcomes. The work of Tanaka et al. [30] suggests that
there may be benefits for gauging inflammation in rheum-
atoid arthritis and this is supported by the findings in exper-
imental mouse arthritis [31]. The most convincing example
to date comes from the work on preeclampsia, a leading
cause of neonatal and maternal morbidity and death [35].
Although there are biomarkers which distinguish between
normal pregnancy and preeclampsia, these markers do not
distinguish between the non-severe versus the severe form.
Using a microarray approach, the upregulated VSIG4 gene
was found to be a marker for the severe form [35]. Others
have found that CRIg was differentially expressed between
right ventricular and left ventricular dysfunction in human
heart failure and suggested this as a biomarker [36]. Fur-
thermore it is evident that CRIg expression in tumour-as-
sociated macrophages can be a potential biomarker of pro-
gnostic value in cancer patients [12–15]. In chronic HBV
infection the levels may be useful to gauge viral load and
liver damage [33].

Concluding remarks

The exciting properties of CRIg, first revealed in animal
models just over a decade ago, appear not to have escalated
into a search for its role in health and disease, which is of-
ten associated with findings of this type. The information
available, however, places the role of the receptor, from po-
tentially being a major player in protection against infec-
tion and chronic inflammatory disease to the other end of
the spectrum of increasing susceptibility to cancer. Clearly
there is justification to pursue more actively work that will
culminate in a greater understanding of (i) the regulatory
inflammatory mediator network which controls the expres-
sion of the receptor on both macrophages and dendritic
cells, (ii) the consequences of complement opsonised bac-
teria engaging CRIg versus CR3/CR4 on macrophages, (iii)
the translation of the experimental models findings to the
clinical diseases. The therapeutic potential in chronic in-
flammatory diseases has already been realised through the
generation of CRIg-Fc fusion protein but the many effects
of this protein may warrant other approaches of altering the
actual expression of CRIg on macrophages at inflammatory
sites. Finally, it remains now for “experiments of nature” to
teach us what role CRIg and CRIg+ macrophages / dend-
ritic cells play in human diseases, by identifying genetic
mutations in the VSIG4 gene and clinical presentation as-
sociated with CRIg deficiency.
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Figures (large format)

Figure 1

Schematic representation of the CRIg protein domains aligned with the five VSIG4 splice variant transcript structures. The transcripts structures
are derived from the NCBI Reference Sequence Database (RefSeq) using the following mRNA accession numbers: NM_007268.2,
NM_001100431.1, NM_001184831.1, NM_001184830.1, and NM_001257403.1, as noted in the figure. The structure of the longest CRIg
isoform (variant 1, huCRIg(L)) is used as the reference, with the protein domains denoted as: SP, signal peptide; Ig-V, immunoglobulin domain
V-type; Ig-C2, immunoglobulin domain V-type; TM, transmembrane region, and CD, cytoplasmic domain. The relative VSIG4 exon structure
reveals that SP, Ig-V, Ig-C2, and TM are encoded specifically by exons 1, 2, 3, and 6, respectively, whereas CD is encoded by exons 7 and 8.
The short form (variant 2, huCRIg(S)) differs from the long form by the exclusion of exon 3, the Ig-C2 domain, and a change at codon 138 from
CUC (Leucine) to CAC (Histidine). In this isoform, the overall size of the CRIg protein is reduced from 399 to 305 amino acids (aa). Variant 3
features this identical alteration, in addition to the inclusion of intron 7 which creates a stop codon (UAA) adjacent the last codon of exon 7,
causing the majority of the CD to be missing (227 aa). Variant 4 features the same loss of the CD as variant 3, but retains all other domains (321
aa). Variant 5 retains the same domains as variants 1 and 4 (exon 1 to 7 inclusive), but is unique from the other four variants in that a portion of
exon 8 is excluded, which creates a change at codon 321 (exon 7-8 junction) from AGG (Arginine) to AGC (Serine), followed by a ‘frameshift’
that results in a stop codon generated 26 aa downstream (347 aa). Insert: shows a schematic representation of the long and short forms of
CRIg, expressed in macrophages. The extracellular portion of CRIg contains an Ig-V and/or Ig-C2 domain(s). Putative phosphorylation sites for
cAMP/cGMP-dependent protein kinase (S-311 or S-217) and protein kinase C (T-333 or T-239) have been proposed to be present in the
cytoplasmic domain of CRIg.
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Figure 2

Characteristics, function and expression of complement receptors The structural domains of the five known types of complement receptors are
depicted, together with their specificity of C3 fragments, the genes encoding them, their distribution amongst the different leucocyte types and
their known functions. CR1, CR2 and CRIg are single transmembrane proteins with extracellular portions, transmembrane domains and
cytoplasmic tails whereas CR3 and CR4 are transmembrane heterodimers of a common β2 integrin (CD18) chain and an α integrin chain, αM
(CD11b) or αX (CD11c). Murine CR1 and CR2 are derived from the same gene by alternative splicing whereas the human counterparts are
encoded by 2 different genes. CR1 contains thirty short consensus repeats (SCR) and CR2 has fifteen SCR. CD18 contains four repeats and a
Von Willebrand factor type A domain (lightly shaded oblong shape). The α integrins contain, within their extracellular portions, seven FG-GAP
repeats (rectangles) and a Von Willebrand factor type A domain. Two human CRIg isoforms, huCRIg(L) for the long form and huCRIg(S) for
short, have been described. Both isoforms contain an N-terminal ligand binding domain that belongs to the IgV-type of immunoglobulin domains
(horizontal stripes). The long form of CRIg also contains a membrane proximal domain that is an IgC-type immunoglobulin domain. The function
of this domain is unclear. The murine form, similar to CRIg(S), contains only the IgV-type of immunoglobulin domain but the cytoplasmic tail is
shorter than that of huCRIg(S). The IgV domains are believed to be responsible for binding C3 fragments.

Review article: Current opinion Swiss Med Wkly. 2016;146:w14301
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2.1. Ethical Considerations 

All research included in this thesis was performed in strict accordance with the ethical 

standards outlined in The National Statement on Ethical Conduct in Human research (2007), 

and the Australian Code of Practice for Care and Use of Animals for Scientific Purposes (8th 

edition, 2013) and South Australian Animal Welfare Act 1985. 

Ethics approval was sought and obtained from the Women’s and Children’s Health Network 

(WCHN) Human Research Ethics Committee, the WCHN Animal Ethics Committee, and 

Research Governance Committee; 

• HREC/15/WCHN/21

• REC/2165/04/2021

• AE1023/10/2021

2.2. Materials 

2.2.1. Tissue Culture Media 

Roswell Park Memorial Institute (RPMI) 1640 tissue culture medium, Dulbecco’s 

Modified Eagle Media (DMEM), foetal calf serum (FCS) and L-glutamine were 

purchased from SAFC Biosciences (Lenexa, Kansas, USA). Penicillin, streptomycin 

and Hank’s balanced salt solution (HBSS) were obtained from Sigma-Aldrich (St. 

Louis, MO). Dulbecco’s Modified Eagle Medium (DMEM) was purchased from 

ThermoFisher Scientific (Waltham, MA). 

2.2.2. Gradients/Cell Separation Media 

Ficoll-Paque Plus was purchased from GE Healthcare (Uppsala, Sweden; Little 

Chalfont, UK), and Percoll PLUS was purchased from Sigma-Aldrich (St. Louis, 

MO). 

2.2.3. Cytokines 

Recombinant cytokines, (LT)-α (TNF-β), GM-CSF, M-CSF, IL-1β, IL-6, IL-4, TNF-

α, IL-13, IFN-γ and IL-10 were purchased from ProSpec-Tany Technogene 

(Rehovot, Israel), and TGF-β1 was purchased from R&D Systems (Minneapolis, 

Minnesota, USA). 

2.2.4. Antibodies 

A mouse monoclonal antibody that recognizes the IgV domain of human CRIg (clone 

3C9) was kindly provided by Dr. van Lookeren Campagne (Genentech, San 

Francisco, California, USA). Mouse monoclonal antibodies against CRIg/Z39Ig 
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(clone 6H8), and CD11b (clone M1/70) were purchased from Santa Cruz 

Biotechnology (Dallas, Texas, USA). Rabbit polyclonal anti-VSIG4 was purchased 

from Proteintech (Manchester, UK). The anti- CD11c monoclonal antibody and 

mouse IgG were purchased from Abcam (Cambridge, UK). Mouse IgG1 isotype 

phycoerythrin-conjugated antibodies were purchased from eBioscience (San Diego, 

Ca). Horse-radish peroxidase (HRP)-conjugated rabbit anti-mouse IgG was 

purchased from Dako, Agilent Technologies (Denmark). A further list of all 

antibodies used in flow cytometric assays is shown in table 2.2. 

2.2.5. General Reagents and Biochemicals 

Sodium hydroxide, chloroform, and isopropanol were purchased from Ajax 

Chemicals (Auburn, New South Wales, Australia). Dimethyl sulphoxide (DMSO), 

absolute ethanol and paraformaldehyde were obtained from Merck (Kilsyth, 

Victoria, Australia). Bovine Serum Albumin (BSA) was purchased from Bovogen 

Biologicals (Essendon, Victoria, Australia). Trizma base, trypan blue, β-

mercaptoethanol, and ethylenediaminetetraacetic acid (EDTA) were from Sigma-

Aldrich. HEPES, Ponceau S, TEMED, DTT, Glycine, Folin and Ciocalteau’s phenol 

reagent were purchased from Sigma-Aldrich. Polyacrylamide was purchased from 

Bio-Rad (Hercules. CA). 

2.2.6. Protease and Phosphotase Inhibitors 

Benzamidine, leupeptin, pepstatin A, phenylmethylsulfonyl fluoride (PMSF), and 

Sigma 104 (Phosphotase substrate) were purchased from Sigma-Aldrich and 

aprotinin from Calbiochem (Merck, Darmstadt, Germany). 

2.2.7. Cell stimulating agents 

Recombinant tumour necrosis factor (TNF) was purchased from ProSpec-Tany 

Technogene (Rehovot, Israel). Dexamethasone, phorbol myristate acetate (PMA), N-

Formyl-Met-Leu-Phe (fMLP), and lipopolysaccharide (LPS) from Escherichia coli 

O127:B8 were purchased from Sigma Aldrich (St. Louis, MO).  LTB4 was purchased 

from Cayman Chemical.  

1α,25-dihydroxyvitamin D3 (1,25D) and 25-dihydroxyvitamin D3 (25D) were 

purchased from Sigma-Aldrich. Stock solutions of 1,25D and 25D were prepared to 

10-3 M in 95% ethanol and stored at -80 °C. The synthetic bacterial lipopeptide

Pam3CSK4 was purchased from Invivogen, with stock preparation at 1 mg/mL in 

endotoxin-free water and storage at -20 °C. 
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2.2.8. Other inhibitors and chelators 

The p38 inhibitors SB202190 and SB203580 were purchased from SelleckChem 

(Houston, TX). The phosphoinositide 3-kinase (PI3K) inhibitor Wortmannin, 

cytochalasin B, the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-

tetraacetic acid (BAPTA-AM), and the Rab27a inhibitor Nexinhib20 were purchased 

from Sigma-Aldrich (St. Louis, MO). The PKC inhibitor GF109203X was purchased 

from Biomol Research Laboratories (Plymouth Meeting, PA). Rac-1 inhibitor NSC 

23766 and the rac family inhibitor EHT 1864 were purchased from TOCRIS (Bristol, 

UK). 

2.3. Purification of Human Monocytes from Whole Blood 

Human peripheral blood mononuclear cells (PBMC) were purified from whole blood from 

healthy volunteers by centrifuging over a medium of Ficoll-Paque PLUS (GE Healthcare) at 

600 × g for 35 min. After centrifugation, the band containing peripheral blood mononuclear 

cells (PBMCs) was harvested, and plasma was harvested from above the band. The PBMCs 

were washed three times with complete media by repeated centrifugation (3 × 5 minutes, 

600 × g). The cells were then layered over a 46% Percoll gradient (GE Healthcare) and 

centrifuged for 35 minutes at 600 × g with no brake. The single resulting band containing 

monocytes was harvested and washed a further 3 times (3 × 5 minutes, 600 × g). Cells were 

then counted using a haemocytometer and the viability of the leukocytes as judged by their 

ability to exclude trypan blue was routinely >99%. Cells were then resuspended in complete 

media, and 2 × 107 cells were transferred into a single 22.1 cm2 culture dish. Dishes were 

then incubated for 1 hour in a 37 °C, 5% CO2, high humidity incubator. Following 

incubation, the non-adherent cells were carefully removed, leaving purified, adherent 

monocytes in the dish. 

2.4. Purification of Human Monocytes from Buffy Coats 

Monocytes were isolated from blood buffy coats of healthy donors (Australian Red Cross 

Blood Service, Adelaide, South Australia). Briefly, 50 mL buffy coats were diluted 1:3 with 

sterile 1 × PBS by centrifugation on Ficoll-Paque PLUS (GE Healthcare) medium for 35 

minutes at 600 × g, with no brake. After centrifugation, the leukocytes resolved into two 

discrete bands with red blood cells at the bottom of the tube. PBMCs consisting of 

monocytes and lymphocytes were obtained from the top band, and plasma was harvested 

from above the top band. The upper band was gently aspirated and washed three times with 

complete media by repeated centrifugation (3 × 5 minutes, 600 × g) and re-suspension of the 

cells. Cells were counted with a haemocytometer and viability of the leukocytes as judged 
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by their ability to exclude trypan blue was >98%. Cells were then resuspended in 28 mL 

fresh complete media, and 7 mL of cell suspension were transferred into each 150 mm culture 

dish. Dishes were then left to incubate for 1 hour in a 37°C, 5% CO2, high humidity 

incubator. Following incubation, the non-adherent cells were carefully removed, leaving 

purified, adherent monocytes in the dish. 

2.5. Isolation of Human Neutrophils from Whole Blood 

Healthy human donor neutrophils were isolated from peripheral blood by the rapid single-

step technique (Ferrante & Thong, 1982). Briefly, blood was layered onto Hypaque-Ficoll, 

d = 1.114 and centrifuged at 600 × g for 35 minutes with no brake. After centrifugation, the 

leukocytes resolved into two discrete bands; an upper PBMC-containing band and the 

neutrophil-containing band below. Neutrophils were carefully aspirated and washed with 

complete media (600 × g, 5 minutes). Cells were then counted using a haemocytometer and 

viability judged by their ability to exclude typan blue. Cell preparations were routinely >99% 

viable and >98% pure. 

2.6. Preparation of Human Monocyte-Derived Macrophages (MDM) 

PBMCs at 2 × 107 cells in 4 mL of complete media were added to 6 cm tissue culture petri 

dishes and incubated at 37 ° C in a high humidity, 5% CO2 atmosphere for one hour. After 

incubation, the non-adherent cells were removed by gentle pipetting, and 4 mL of fresh 

complete media was added to each plate. The dishes were incubated for 3 days before being 

used for RNA extraction, or 5 days for protein analysis. Media was changed every second 

day. 

2.7. Preparation of Human Monocyte-Derived Dendritic Cells (MDDC) 

PBMCs at 2 × 107 cells in 4 mL of complete media were added to 6 cm tissue culture petri 

dishes and incubated at 37 ° C in a high humidity, 5% CO2 atmosphere for one hour. The 

non-adherent cells were removed by gentle pipetting, and 4 mL of fresh complete media was 

added to each dish. The cells in the dishes were then supplemented with GM-CSF at a final 

concentration of 50 ng/ml and IL-4 at a concentration of 20 ng/ml, and the cells were 

incubated at 37 ºC under an atmosphere of 5% CO2/air and high humidity over a period of 5 

days (for harvesting RNA) or for 7 days (for harvesting protein).  

2.8. Cryopreservation of Cells 

For cryopreservation studies, freshly counted cells of interest were cryopreserved at 1 × 107 

cells/mL in freezing media containing 90% heat-inactivated FCS and 10% DMSO. Cells 

were incubated in a ‘Mr. Frosty’ Freezing Container (Thermo-Fisher Scientific, Scoresby, 
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Australia) overnight in a -80 °C freezer, before being transferred into liquid nitrogen (LN2) 

for storage. Prior to use, vials were removed from LN2 and thawed rapidly at 37 °C before 

washing in RPMI-1640. Cells were then re-counted, and viability assessed by the trypan 

blue-exclusion method prior to application. 

2.9. DC-T Cell Co-cultures 

Autologous DC and T cell co-cultures were set up using MDDCs as prepared above, with 

autologous T cells purified from the remaining lymphocyte fraction following the 

centrifugation of PBMC over 46% iso-osmotic Percoll gradient. T cells were enriched from 

the lymphocyte fractions by subjecting the cell preparation through two cycles of nylon wool 

(Polysciences Inc.,Warrington, PA) columns. T cell preparations were routinely >95% pure 

and >99% viable as determined by FACS analysis (judged by CD45 and CD3 expression) 

and trypan blue dye exclusion assay respectively, and T cells were cryopreserved in LN2 as 

above until use. MDDCs were added to 96-well round-bottom plates at 1 × 104 cells/well 

and stimulated with 50 ng/mL dexamethasone for 24 hours and washed. The cryopreserved 

T cells were thawed and added to the autologous MDDC (2 × 105 T cells/well). 

Phytohemagglutinin (PHA) was used as a stimulus in the appropriate wells (0.5 μg/well) 

(Remel Inc., San Diego, CA), with or without either anti-CRIg (clone 6H8) antibody or 

isotype control. The mixed lymphocyte reactions were then cultured at 37 °C in an 

atmosphere of 95% air and 5% CO2 for 72 hours. Following incubation, cells were pulsed 

with 1 μCi methyl-3H Thymidine (3H-TdR) (PerkinElmer, Waltham, MA) 6 hours prior to 

harvest. Incorporation of 3H-TdR was then measured as disintegrations per minute (DPM) 

using a Wallac 1409 liquid scintillation beta counter (Wallac, Turklo, Finland). 

In the case of experiments where allogenic T cells were used, allogeneic T cells were isolated 

from fresh or cryopreserved PBMCs using the EasySep™ Human T Cell Isolation Kit (Stem 

Cell Technologies, Vancouver, Canada), and added to allogeneic DCs as the stimulus in a 

DC:T cell ratio of 1:10 as 2 × 105 total cells/well, with or without anti-CRIg antibody or 

isotype control. DCs were untreated or dexamethasone treated DC at 2 × 104 cells/well in 

96-well round-bottom plates. Cells were cultured at 37 °C in an atmosphere of 95% air and 

5% CO2 for 120 hours and pulsed with 3H-TdR 6 hours prior to harvest. At harvest, culture 

supernatants were harvested and stored at -80 °C for later quantification of cytokines, 

followed by measurement of the remaining cells for 3H-TdR incorporation. 

2.10.Measurement of Cytokines 

Cytokines in the culture supernatants were quantitated using BD™ Cytometric Bead Array 

kits for IFN-γ, TNF-α, IL-13, TGF-β1, IL-4, and IL-10 (BD Biosciences). The 
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manufacturer’s protocols were adapted for assay in 96-well v-bottom plates, and data was 

acquired using a BD FACS Canto I with an attached BD™ High Throughput Sampler, and 

analysis with FCAP Array v3 software (BD Biosciences). 

2.11.Analysis of CRIg Expression at the mRNA Level 

2.11.1. Isolation of Total RNA 

RNA was extracted from cells by using the TRIzol reagent (Life Technologies) 

according to the manufacturer’s instructions. Briefly, adherent cells were detached 

from culture plate by gentle scraping using a ‘rubber policeman’ and pelleted by 

centrifuging for 5 minutes at 600 × g. Non-adherent cells were collected and pelleted 

as above. The supernatant was discarded, and cell pellet resuspended in 500 µL 

TRIzol reagent. To the samples, 100 µL of chloroform was added, and tubes was 

shaken vigorously by hand for 15 seconds. The samples were incubated at room 

temperature for 2-3 minutes, and then the tubes were centrifuged at 12,000 × g for 

15 minutes at 4 °C. The resulting clear, aqueous phase was harvested and transferred 

into a new 1.5 mL tube. To these collected fractions, 250 µL of 100% isopropanol 

was added and all samples were incubated for 10 minutes at room temperature, 

before centrifuging again at 12,000 × g for 10 minutes. The supernatant was 

removed, and the pellet was washed with 500 µL 75% ethanol (7500 × g for 5 

minutes). The supernatant was discarded, and the pellet air-dried before being 

resuspended in 30 µL RNAse-free water. The RNA sample was heated to 50 °C for 

15 minutes before quality and purity analysis using a NanoDrop. RNA was harvested 

from macrophages at day three of culture, from DCs at day five of culture, or 

immediately after separation from monocytes and neutrophils. 

2.11.2. Generation of cDNA 

Following RNA quantification on the NanoDrop, a BioRad iScript™ cDNA 

synthesis kit was used to generate cDNA, following the manufacturer’s instructions 

(Bio-Rad Laboratories). Briefly, approximately 300 ng of total RNA, 4 μL of 5 × 

Reaction Mix, 1 μL of iScript, and water up to 20 μL total volumes. The mixture was 

heated at 25 °C for 5 minutes, 42 °C for 30 minutes, and 85 °C for 5 minutes and 

then stored at -20 °C for further use in PCR. 

2.11.3. Primer Design 

Primers used for detection and amplification of the VSIG4 transcript variants, CR1, 

total VSIG4, GAPDH, ITGAM (CD11b), and ITGAX (CD11c) are as previously 
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published (Munawara et al., 2017). A full list of the primer sequences and 

combinations are detailed in table 2.2. 

2.11.4. Standard PCR 

Forward and reverse primers (0.1 µM) were added to a reaction mixture containing 

1 × AmpliTaq Gold® 360 Master Mix. Approximately 300 ng of cDNA was then 

added to each reaction. The PCR was then run using a BioRad MyCycler (Bio-Rad 

Laboratories) at the following conditions: 95 °C for 5 minutes, followed by 40 cycles 

of 95 °C for 30 seconds, 60 °C for 30 seconds, 72 °C for 30 seconds, finishing with 

72 °C for 5 minutes. The PCR products were then kept at room temperature for either 

analysis by gel electrophoresis or purification. 

2.11.5. Agarose Gel Electrophoresis of PCR Products 

To 5 μL of each PCR product, 1.5 µL of loading buffer was added before being 

loaded onto a 2% agarose gel containing 1.5 µL GelRed to stain the DNA, and 

electrophoresed at 70 V in 1 × SB buffer. To determine product size, 1kb Plus DNA 

Ladder (Invitrogen) was loaded onto each gel. DNA in the gel was visualised using 

a BioRad UV transilluminator in a Chemidoc XRS+ imaging system, and the results 

were analysed using Image Lab Software version 3.0 (BioRad).  

2.11.6. Quantitative Real Time PCR (SYBR Green) 

Expression levels of VSIG4 (CRIg), CR1, ITGAM (CD11b), and ITGAX (CD11c) 

were quantitively assessed using the primer pairs outlined in table 2.1. GAPDH 

mRNA was quantitated and utilised for data normalisation. Each reaction was 

performed in triplicate and had a final volume of 20 μL containing 100 nM of each 

primer, 1 μL of cDNA, and iQ SYBR Green Supermix (Bio-Rad Laboratories). 

Reactions were assayed in an iQ5 Real Time Detection System with iQ5 Optical 

System v2.1 software (Bio-Rad Laboratories), with thermal cycling performed with 

an initial denaturation at 95 °C for 5 minutes, followed by 40 cycles of 95 °C for 30 

seconds, 60 °C for 30 seconds, and 72 °C for 30 seconds. 
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Table 2.1. Full list of primer sequences used in this study. Direction is indicated (F-forward; R-reverse), and in the case of CRIg transcript-

specific primers, pairings are indicated along with the transcript each pair is specific for. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene/Primer Sequence (5’ to 3’) Pairing Transcript No. 

VSIG4 (transcripts) 

F1 TTTGTGGTCAAAGACTCCTCAAAGC F1 and R1 1 

F2 TGTCCAGAAACACTCCTCAAAGCT F2 and R1 2 

R1 TGGCATGTGCCCTGGCT F2 and R2 3 

R2 GAGAGACTTTCTTACCTGGCTGCTT F1 and R2 4 

R3 GACACTTTGGGCTGGCTGCT F1 and R3 5 

  F2 and R3 6 

CR1 

F CCCTTTGGAAAAGCAGTAAA   

R TCAACTTGGCAAACAGAAAA   

VSIG4 (total) 

F ACACTTATGGCCGTCCCAT   

R TGTACCAGCCACTTCACCAA   

GAPDH 

F GAGTCAACGGATTTGGTCGT   

R GACAAGCTTCCCGTTCTCAGCCT   

ITGAM (CD11b) 

F CCTGGTGTTCTTGGTGCCC   

R TCCTTGGTGTGGCACGTACTC   

ITGAX (CD11c) 

F CCGATTGTTCCATGCCTCAT   

R AACCCCAATTGCATAGCGG   
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2.12. Analysis of CRIg Expression by Flow Cytometry 

All protein analysis by flow cytometry was performed in 5 mL round bottom polystyrene 

FACS tubes (BD, Franklin Lakes, NJ). Cells (between 1-2.5 × 105 depending on the assay) 

were aliquoted into FACS tubes and blocked for non-specific antibody binding for 10 

minutes on ice with 100 μg human IgG (Kiovig, Baxter, Old Toongabbie, NSW, Australia). 

Cells were then stained for 20 minutes with the appropriate antibody cocktail in the dark on 

ice. Complete lists of antibodies and the cocktails used are outlined in table 2.2. Cells were 

washed in 2 mL of PBS supplemented with 5% FCS at 500 × g for 5 minutes prior to analysis. 

In cases where cells were not immediately acquired, cells were fixed in 4% formaldehyde 

and stored at 4 °C. 

In cases where secondary antibodies were required, cells were washed as above prior to 

incubation with the appropriate secondary antibody for 20 minutes in the dark on ice. Then, 

cells were washed again prior to analysis.  

For experiments requiring intracellular staining, surface antigens were stained as above 

before fixation and permeabilization with the BD Fixation/Permeabilization kit (BD 

Biosciences) as per the manufacturer’s instructions. Intracellular antigens were 

immunostained in the presence of BD Perm/Wash™ Buffer to maintain permeabilization for 

20 minutes in the dark on ice. Following staining, cells were washed twice in 2 mL of BD 

Perm/Wash™ Buffer prior to analysis. 

Data acquisition was carried out using a BD FACS Canto I and data analysed using FlowJo 

10.1 software (FlowJo, LLC, Ashland, Oregon). All gates were set using fluorescence-

minus-one controls (FMO), and fluorescence intensities determined by subtracting isotype 

control and unstained control fluorescence values
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Table 2.2.  Full list of antibodies used in this study for flow cytometric purposes, their 

conjugates, concentrations, sources, and clone numbers. In the case of polyclonal 

antibodies, the commercial product number is listed. 

.

Antibody Conjugate Concentration Source Clone/product 

number 

Anti-human primary antibodies 

CD45 APC-H7 100 μg/ mL BD Biosciences 2D1 

CD14 FITC 20 μL per test BD Biosciences M5E2 

CD3 PE-Cy5 20 μL per test BD Biosciences UCHT1 

CD20 APC 40 μg/mL BD Biosciences L27 

Z39Ig (CRIg) PE 50 μg/mL Santa Cruz 6H8 

CD11b PE 500 μg/mL BD Biosciences M1/70 

CD11c FITC 5 μL per test BD Biosciences B-ly6 

CRIg Unconjugated 1 mg/mL Genentech 3C9 

CRIg Unconjugated 1 mg/mL Generated in 

house 

14B11 

Anti-mouse primary antibodies 

B220 APC 200 μg/mL BD Biosciences RA3-6B2 

CD11b PE 500 μg/mL BD Biosciences M1/70 

CRIg PE 1 mg/mL Genentech 14G6 

CRIg Unconjugated 1 mg/mL Generated in 

house 

14B11 

Isotype controls 

Mouse IgG1 κ PE 50 μg/mL BD Biosciences MOPC-21 

Mouse IgG1 κ FITC 50 μg/mL BD Biosciences MOPC-21 

Mouse IgG1 κ Unconjugated 500 μg/mL BD Biosciences MOPC-21 

Rat IgG2a κ Unconjugated 500 μg/mL BD Biosciences R35-95 

Secondary antibodies 

Goat anti-

mouse 

PE 400 μg/mL Santa Cruz sc-3738 

Goat anti-rat FITC 500 μg/mL BD Biosciences 554016 
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2.13. Analysis of CRIg Expression by Western Blot 

2.13.1. Sample Preparation 

Cells in suspension were counted with a haemocytometer, and centrifuged at 600 × 

g for 5 min at 4 °C. After aspirating the supernatant, the cell pellet was resuspended 

and washed in 1 × PBS, before being resuspended in Lysis buffer at 30 μL per 1 × 

106 cells. For adherent cells, the culture supernatant was removed, and Lysis buffer 

was added directly to the cells with detachment assisted with a cell scraper. Lysis 

preparations were transferred to 1.5 mL screw top tubes, sealed and incubated under 

ice with rocking for 30 min. These tubes were centrifuged at 3,500 × g for 5 min at 

4 °C and the supernatants (cell lysates) were harvested and stored at -20 °C until 

analysis. 

2.13.2. Protein Quantitation 

2.13.2.1. Qubit Protein Assay 

Concentration of the protein lysates were determined using the Qubit® Protein Assay 

kit according to the manufacturer’s instructions (Invitrogen). Briefly, 1 μL of each 

cell lysate was mixed with 199 μL of Qubit® Protein Reagent diluted 1:200 with 

Qubit® Protein Assay Buffer in 0.5 mL tubes. Samples were then incubated for 15 

minutes at room temperature, before fluorometric analysis on the Qubit® 3.0 

(Invitrogen). Measurements were compared with standards supplied with the kit. 

2.13.2.2. Lowry’s Protein Assay 

The protein content of the cell lysates was quantitated by the method described by 

Lowry (Lowry et al., 1951). BSA protein standards (0, 3.125, 6.25, 12.5, 25 and 50 

μg) were prepared for each assay by serially diluting 1% BSA (1 mg/ml in PBS) with 

H2O, while samples of cell lysates were diluted 1:10 for quantitation. To each 50 μL 

preparation of standards and diluted protein lysate sample, 150 μL of Lowry’s 

solution was added. All samples were incubated for 20 minutes at room temperature. 

Following incubation, 15 μL of 50% Folin and Ciocalteau’s Phenol Reagent (diluted 

in water) was added. Following 20 minutes of incubation at room temperature, 180 

μL of each standard and sample was transferred into a 96 well flat-bottomed plate 

(Nunc, Roskilde, Denmark) and the optical density at 540 nm was measured using a 

Dynatech MR 5000 plate reader (Dynatech Laboratories, Alexandria, VA). A 

standard curve was generated from the protein standards, enabling the concentration 

of protein in each sample to be determined. 
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2.13.3. Western Blot 

Following protein quantification, lysates were diluted at 2:1 in 3 x Laemmli buffer 

supplemented with 10% β-mercaptoethanol. Samples were boiled at 100 °C for 5 

minutes, and 50-100 µg of total protein was subjected to 10% SDS-PAGE at 175 V 

for approximately 1 hour. The separated proteins were electrophoretically transferred 

to nitrocellulose using the TransBlot®-Turbo™ Transfer System (Bio-Rad), as per 

the manufacturer’s instructions. To monitor the extent of protein transfer, the 

membrane was stained with 0.1 % Ponceau stain (in 5 % acetic acid). The membrane 

was blocked using either 5 % skim milk in 1 × TBST, or 3 % BSA in 1 × TBST for 

phospho-proteins. After blocking, the membrane was incubated with primary 

antibody diluted in the blocking agent for either an hour at room temperature or 

overnight at 4 °C. The membrane was washed in blocking solution (3 × 5 minutes), 

and then incubated in HRP-conjugated secondary antibody for either an hour room 

temperature or overnight at 4°C. Immunoreactive material present on the membrane 

was detected by enhanced chemiluminescence according to the manufacturer’s 

instructions (Western Lightning chemiluminescence, Perkin Elmer, Waltham, MA). 

The protein bands on the membrane were then visualised by a ChemiDoc XRS+ 

Imaging System, and quantitated using ImageLab™ Software, Version 3.0 (Bio-Rad 

Laboratories, Hercules, CA).  

2.14. Chemiluminescence Assay 

Luminol-dependent chemiluminescence assay was performed as previously described 

(Kumaratilake & Ferrante, 1992). Briefly, 1x106 neutrophils were added to 125 µg lucigenin 

(bis-N-methylacridinium nitrate, Sigma Aldrich) in 500 µL HBSS prior to the addition of 

the respiratory burst-inducing agent. Oxidative burst was measured as chemiluminescence 

using an LB 953 Autolumat Plus luminometer (Berthold Technologies), and peak 

fluorescence recorded. Data is expressed as mean relative luminescence units (RLU). 

2.15. Phagocytosis Assays 

2.15.1. Flow Cytometric Phagocytosis Assay 

Neutrophil and macrophage phagocytosis was measured using Staphylococcus 

aureus pHrodo™ Red Bioparticles™ (Invitrogen) as previously described 

(Annabelle Small et al., 2018). Briefly, 1 × 106 cultured macrophages or isolated 

neutrophils in HBSS were combined with 8% human AB serum, and 80 µg pHrodo™ 

Red S. aureus Bioparticles™ (Invitrogen), in a final volume of 400 µL in 5 mL 

polystyrene round bottom tubes with caps BD, Franklin Lakes, NJ). These were 
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gassed with 5% CO2/air and capped before incubation at 37 °C for 1 hour for 

macrophages, or 15 minutes for neutrophils. To stop the reactions, 2 mL of ice-cold 

HBSS was added to each tube and cells were washed (500 × g, 5 minutes). Then, 

samples were analysed using a BD FACSCanto I flow cytometer, and resulting data 

analysed using FlowJo 10.1 software (FlowJo LLC) to determine bioparticle uptake 

by changes in median fluorescence intensity in the PE channel.  

2.15.2. Phagocytosis Assay by Microscopy Analysis 

This phagocytosis assay was performed as described previously (Gorgani et al., 

2011; Munawara et al., 2017). Briefly, 1 × 105 C. albicans yeast particles were 

combined with 5 × 104 macrophages in a final volume of 0.5 mL HBSS. 

Complement-containing human AB serum was added to a final concentration of 

10%. The cells were incubated for 1 hour at 37 °C on a rocking platform. Following 

incubation, unphagocytosed yeast particles were removed by differential 

centrifugation at 175 × g for 5 minutes, and the remaining macrophages in the pellet 

were cytocentrifuged onto a microscope slide and stained with Giemsa. The particles 

in phagocytic vacuoles were enumerated. Phagocytosis was scored as both the 

number of macrophages that had engulfed >4 fungi as well as the number of fungi 

engulfed per cell. 

2.16. Generation of anti-murine CRIg Hybridomas and Culture Supernatant 

2.16.1. Peptide selection 

A 168 amino acid peptide, corresponding to N-terminal amino acids 20-187 of 

murine Vsig4 was selected as immunogen; 

HPTLKTPESVTGTWKGDVKIQCIYDPLRGYRQVLVKWLVRHGSDSVTIFLR

DSTGDHIQQAKYRGRLKVSHKVPGDVSLQINTLQMDDRNHYTCEVTWQT

PDGNQVIRDKIIELRVRKYNPPRINTEAPTTLHSSLEATTIMSSTSDLTTNGT

GKLEETIAGSGRNLP 

Amino acids 20-137 have 79.67% homology to the region of human CRIg encoded 

by VSIG4 exon 2 (Basic local alignment search tool (Altschul et al., 1990).  

2.16.2. Rat immunisation and hybridoma generation 

Rats were immunised with the recombinant protein of the sequence above generated 

through the E. coli expression system and hybridomas were generated through a 

contract with GenScript (GenScript; Piscataway, NJ). Customised antibody 

specificity was assessed using ELISA followed by Western blot.  
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2.16.3. Hybridoma Cell Culture 

Rat hybridoma cell lines received from GenScript (Piscataway, NJ) were maintained 

at a concentration < 1 × 106 cells/mL in DMEM supplemented with 1% FCS, 100 

U/mL penicillin, and 0.1 mg/mL streptomycin in a 37 °C, 5% CO2, high humidity 

incubator. The cell lines were routinely tested for mycoplasma by PCR. 

2.16.4. Hybridoma Supernatant Harvesting and Concentration 

Twice a week, all cells were removed from the culture flask and centrifuged at 500 

× g for 5 minutes. Supernatant was removed and retained while the pellet was 

resuspended in 5 mL of residual supernatant. Resuspended cells were returned to the 

culture flask and topped up to 50 mL with fresh DMEM supplemented with 1% FCS, 

100 U/mL penicillin, and 0.1 mg/mL streptomycin, and returned to culture in a 37 

°C, 5% CO2, high humidity incubator. The harvested hybridoma supernatant was 

filter sterilised using a 0.2 μm filter and supplemented with 0.05% sodium azide. 

Supernatant was stored at 4 °C for short term storage and at -20 °C for long term 

storage. 

2.16.5. Antibody Purification 

Generated monoclonal antibodies were purified from culture supernatant using anti-

rat IgG conjugated agarose beads (Abcam, Cambridge, UK). Briefly, to 100 μL of 

culture supernatant, 50 μL of anti-rat conjugated agarose slurry was added. Tubes 

were incubated at 4 ° C on a rocking platform for 1 hour before they were centrifuged 

at 200 × g for 1 minute. The supernatant was discarded, and agarose conjugates were 

washed twice in Tris buffered saline (TBS; 50 mM Tris pH 7.5, 150 mM NaCl) 

before a final wash in 0.5 M Tris, pH 6.8. Isolated antibody was then eluted from 

agarose complexes by incubation for 10 minutes with glycine (pH 2.6) at 1:1 with 

frequent agitation prior to centrifugation at 200 × g for 1 minute. The eluate was 

harvested and neutralised by adding an equal volume of Tris (pH 8.0). The elution 

steps were repeated, and eluates pooled. Antibody concentration was determined 

using the Qubit® protein assay as per 2.10.2. and purification protocol validated 

using Western blot as per 2.10.4.  

2.17. Immunohistochemistry 

Paraffin embedded murine paw or human synovial tissue sections were prepared for 

histologic analysis using standard protocols (Wang et al., 2016). Briefly, paraffin embedded 

tissue serial sections were deparaffinised by incubating in xylene for 10 minutes, followed 
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by a further 10 minutes in xylene, 5 minutes in 100% ethanol, and 5 minutes in 95% ethanol. 

Slides were then washed twice in MilliQ water (2 × 5 minutes) followed by a five-minute 

wash in PBS. Antigen retrieval was performed by covering the entirety of the section in 

Proteinase K (PK) at a dilution of 1/50 and incubating at 37 °C for 30 minutes in a high 

humidity atmosphere. Alternately, antigen retrieval was performed using antigen retrieval 

solution (1mM EDTA/10mM Tris pH9) heated to 95-100 °C. Following antigen retrieval, 

slides were washed three times in PBS (3 × 5 minutes) before endogenous peroxidase (EP) 

blocking in 0.3% hydrogen peroxide in sodium azide. Following three washes in PBS (3 × 

5 minutes), non-specific antibody binding was blocked using 20% donkey serum diluted in 

PBS (Jackson) for 30 minutes at room temperature. Sections were subsequently stained with 

rat anti-murine CRIg (clone 14B11, neat), followed by rabbit anti-rat secondary antibody 

(Dako, P0450, 1:100) and horseradish peroxidase-conjugated swine anti-rabbit tertiary 

antibody (Dako, P0399, 1:100). Staining was visualised using aminoethyl carbazole (AEC) 

(10-minute incubation at room temperature in the dark). Slides were then counterstained 

with haematoxylin before mounting in Aquamount (ThermoFisher, Waltham, MA). Slides 

were analysed and images taken using an Olympus BX51 and Olympus AnalySIS Life 

Science Starter software (Shinjuku, Tokyo, Japan).  

2.18. Isolation of Murine Peritoneal Exudate Cells 

Peritoneal macrophages were harvested from male swiss white laboratory mice using 

peritoneal washouts after the mice were euthanised by CO2 asphyxiation. Briefly, the 

peritoneal cavity was injected with 3 mL of RPMI-1640 medium and gently massaged, 

before the cell-containing fluid was withdrawn. Harvested cells were washed in complete 

cell culture media consisting of RPMI-1640, 10% heat-inactivated FCS, 

penicillin/streptomycin, and L-glutamine, prior to processing for flow cytometric analysis. 

2.19. Isolation of Murine Synovial Cells 

 Synovial cells were isolated using the published method as described by Misharin et al. 

(2014). Briefly, from routinely culled healthy BALB/c male mice, legs were removed, 

skinned and ankles cut 3 mm above the heel. Bone marrow was flushed with HBSS and toes 

disarticulated by pulling with forceps. Tibiotalar joints were opened by posterior access, 

exposing the synovial lining. Feet were then incubated in digestion buffer comprising of 2 

mg/mL dispase II, 2 mg/mL collagenase D and 1 mg/mL DNase I in HBSS for 1 hour at 37 

°C on a rocking platform. Released mononuclear cells were purified by density gradient 

centrifugation (Ficoll-Paque PLUS, GE Healthcare), and macrophages were isolated by 

adherence to 6 cm plastic culture dishes for 1 hour at 37 °C and non-adherent cells removed 
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by gentle washing in complete culture media. Enriched macrophages were removed from 

the plates by a combination of gentle pipetting and scraping with a ‘rubber policeman’ cell 

scraper and subjected to flow cytometric analysis as described above.  

2.20. Statistical Analysis 

Statistical significance was calculated using GraphPad Prism 8.0.0 (GraphPad Software, 

Inc., La Jolla, CA, USA). To compare the control response to multiple groups, a two-way 

ANOVA or one-way ANOVA followed by Dunnett’s Multiple Comparison test was 

performed. A paired or unpaired two-tailed Student’s t-test was used to compare the means 

of two groups with matched or unmatched responses, respectively. A value of p < 0.05 was 

considered significant.
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2.21.  Publication: ‘Facilitating THP-1 macrophage studies by differentiating and 

investigating cell functions in polystyrene test tubes’ 

2.21.1. Introduction and Contextual Statement 

This section of the chapter presents the second published manuscript to be included 

within this thesis, which outlines the basic method for differentiating the THP-1 

human monocytic cell line in polystyrene test tubes suitable for downstream usage 

in flow cytometry, thus avoiding the necessity of detachment processes which may 

lead to poor cell yield. The article also includes the methods utilised for the flow 

cytometric phagocytosis assay and surface immunostaining protocols which were 

utilised in other chapters of this thesis. 

The following methods article entitled ‘Facilitating THP-1 macrophage studies by 

differentiating and investigating cell functions in polystyrene test tubes’, by 

Annabelle Small, Nikki Lansdown, Marwah Al-Baghdadi, Alex Quach, and 

Antonio Ferrante was published in the peer reviewed journal, The Journal of 

Immunological Methods, in October 2018 (doi: 10.1016/j.jim.2018.06.019). 

Article Metrics (as of November 2020) 

Journal Impact Factor: 1.901 

Citations: 3
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A B S T R A C T

Macrophage cell lines are a useful model to explore the properties of primary macrophages. However, a major
limitation in the use of these cells is that when they are differentiated, they become adherent and hence present
with the same limitation as natural macrophages. The cells need to be detached and are often subjected to
detachment techniques such as detachment buffers containing proteolytic enzymes or scraping with a rubber
‘policeman’. These steps are time-consuming, reduce cell yields as well as cell viability and function. We have
therefore investigated the possibility of differentiating the human macrophage THP-1 cell line in polystyrene
FACS tubes to enable cells to be directly used for investigations by flow cytometry. Here we demonstrate that
when the human macrophage cell line THP-1 are cultured in FACS tubes with phorbol myristate acetate added,
they undergo differentiation into macrophages, assessed morphologically and by autofluorescence expression, in
a similar manner to those cultured in tissue culture dishes. The cells can be readily washed and adjusted in
concentration by centrifugation in the same tubes and can be directly tested for expression of cell surface
markers and function by flow cytometry. This avoids the use of either detachment reagents or physical cell
scraping. Consequently, we showed that the tube culture method results in increased cell yield and viability
compared to those subjected to detachment procedures. The tube method generated functional macrophages
which expressed the complement receptors, CR3 and CR4, and effectively phagocytosed complement opsonised
Staphylococcus aureus via these receptors.

1. Introduction

THP-1 cells are a human monocytic cell line derived from a child-
hood M5 subtype of acute monocytic leukaemia (Tsuchiya et al., 1980).
Since their establishment, these cells have been extensively used as a
model to study monocyte and macrophage function (Bosshart and
Heinzelmann, 2016). However, like primary macrophages, THP-1 dif-
ferentiated cells are highly adherent (Lund et al., 2016), a characteristic
which hinders the ability to use the cells in investigations. In order to
overcome this issue, multiple techniques to detach these cells have been
established, including the use of buffers containing trypsin, commercial
buffers such as Accutase, EDTA containing buffers, and physically
scraping cells using rubber cell scrapers (Chen et al., 2015). However,
these buffers can be expensive, and the use of trypsin has been known
to cleave cell surface proteins (Zhang et al., 2012), resulting in changes
to cell function. In addition, cell scraping and the use of EDTA buffers
often result in low cell yields with low viability due to damage to the

cell structure (Van Veldhoven and Bell, 1988). Thus, there remains a
need for new approaches to handling adherent cell types such as THP-1
derived macrophages.

Here, we describe a method for differentiating functional THP-1
macrophages using 5mL polystyrene FACS tubes; a method which is
cheaper, provides higher cell yields, and higher cell viability compared
to the classical culture dishes.

2. Materials and methods

2.1. Reagents and antibodies

RPMI 1640 tissue culture medium, foetal calf serum (FCS) and L-
glutamine were purchased from SAFC Biosciences (Lenexa, KS).
Phorbol myristate acetate (PMA) was purchased from Sigma Aldrich
(St. Louis, MO). PE-conjugated CD11b (clone 2LPM19c) and FITC-
conjugated CD11c (clone KB90) antibodies were purchased from Dako
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Fig. 1. Differentiating THP-1s in polystyrene FACS tubes yields higher cell numbers and higher viability than those differentiated in tissue culture plates (A). (B)
Gating strategy for differentiated cells is based on side vs. forward scatter (left panel) and viable cells are gated based on their ability to exclude 7-AAD (right panel).
Data are presented as percentage viable cells of the gated differentiated population ± SD, and is representative of five experiments. **p < .01, unpaired student's t-
test.

Fig. 2. Differentiated THP-1 macrophages produced in either FACS tubes or tissue culture dishes show similar morphological changes and equal amounts of
autofluorescence. (A) Giemsa stained smears comparing undifferentiated THP-1s (left panel), with pDMs (centre panel) and tDMs (right panel). (B) Autofluorescence
of undifferentiated THP-1s, pDMs, and tDMs detected by blue (488 nm) excited green fluorescence (530 nm, 30 nm bandwidth), with representative autofluorescence
histogram shown (bottom right). Undifferentiated cells show close to no fluorescence (shaded), compared with increased levels observed in pDMs (red), and tDMs
(blue). Data are presented as median fluorescent intensity of gated macrophages± SD, and is representative of five experiments, ns= not significant, **p < .01,
Dunnett's multiple comparison test. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Victoria, Australia). 7-AAD viability dye was purchased from BD
Biosciences (San Jose, CA; material number 559925).

2.2. Cell lines

THP-1 cell line was purchased from the ECACC (Salisbury, UK;
catalog number: 88081201). Cells were maintained in culture in RPMI
+10% FCS, supplemented with 100 U/mL penicillin, and 0.1mg/mL
streptomycin below 1×106 cells/mL in a 37 °C, 5% CO2, high hu-
midity incubator. The cell line was routinely tested for mycoplasma by
PCR (Uphoff and Drexler, 2011).

2.3. Giemsa stain

A total of 1× 105 cells in 100 μL of HBSS with 10% FCS were cy-
tospun onto Superfrost® microscope slides (Thermo Scientific,
Waltham, MA) using the Cytospin 3 centrifuge (Shandon Scientific,
Cheshire, UK). The slides were retrieved and allowed to airdry for
10min. The slides were then Giemsa stained using the UniCel DxH 800
Cellular Analysis System (Beckman Coulter, Brea, CA) and mounted
with a coverslip. The cells were visualised under an Olympus BX51
microscope at 1000× magnification and images taken using analySIS
LS Starter 3.1 (Olympus, Tokyo, Japan).

2.4. Flow cytometry

Following differentiation, cell culture media was removed, and cells
were blocked directly in culture FACS tubes with 100 μg (10 μL) human
IgG (Kiovig, Baxter, Old Toongabbie, NSW, Australia) for 10min on ice,
followed by a 20min incubation in the dark and on ice, with the

appropriate fluorochrome-conjugated anti-human antibodies (either
0.5 μg anti-CD11b FITC or 0.5 μg anti-CD11b PE). For plate differ-
entiated THP-1 cells, 1× 106 cells were added per tube. FACS Wash
solution (2mL) was added to each tube before centrifugation at 500×g
for 5min and the supernatant decanted. Following repeat of the wash
step, the cells were analysed on a BD FACSCanto I flow cytometer. A
minimum of 50,000 events were acquired. The data was analysed using
FlowJo 10.1 (FlowJo, LLC, Ashland, Oregon).

2.5. Phagocytosis assay

The pHrodo™ Red S. aureus Bioparticles™ were purchased from
ThermoFisher (Waltham, MA; catalog number A10010). Phagocytosis
assay was performed according to the manufacturer's instructions.
Briefly, 1× 106 differentiated THP-1 macrophages were combined with
HBSS, 10% S. aureus bioparticles, and 8% human AB serum to a final
volume of 400 μL. Tubes were briefly gassed with 5% CO2/air before
incubation at 37 °C for 1 h. Following washing, results were then ana-
lysed using a BD FACSCanto flow cytometer, and processed using
FlowJo 10.1 software (FlowJo, LLC, Ashland, Oregon).

2.6. Statistics

Unpaired comparisons were analysed using the two-tailed Student's
t-test and multiple comparison were performed using Dunnett's test,
with p < .05 considered significant. All statistical analyses were per-
formed using GraphPad Prism 7 software (Graphpad Software Inc., San
Diego, CA).

Fig. 3. Expression of CD11c and CD11b by THP-1 derived macrophages differentiated in FACS tubes. tDMs show similar amounts of expression of CD11c (A) and
CD11b (B) as pDMs. Gating strategy of THP- 1 cells is shown (C), with representative histograms of CD11c (red) and CD11b (blue) expression, overlayed over
unstained control cells (shaded). Data are presented as median fluorescent intensity of CD11c (FITC) or CD11b (PE) staining ± SD, and are representative of five
experiments, ns= not significant, **p < .01, ***p < .001, Dunnett's multiple comparison test. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

A. Small et al. Journal of Immunological Methods 461 (2018) 73–77

76



3. Results

Cells were differentiated in sterile 5mL polystyrene FACS tubes
with caps (BD, Franklin Lakes, NJ) by adding 1mL of cell suspension at
1× 106 cells/mL per tube. PMA was added to the tubes at 50 ng/mL,
and cells were incubated at 37 °C for three days. On the fourth day, cells
were washed and allowed to rest in PMA-free media for a minimum of
24 h before analysis. Cells were detached from the inner surface of the
tube by pipetting with culture fluid. For plate-differentiated THP-1
cells, 2× 106 cells were seeded into each culture dish (6mm in dia-
meter), and PMA added at 50 ng/mL. Cells were incubated for three
days at 37 °C. On the fourth day, cells were washed, non-adherent cells
were removed, and cells allowed to rest in PMA-free media for a
minimum of 24 h before analysis. Cells were detached prior to analysis
by pipetting followed by gentle cell scraping.

Cell yields resulting from THP-1 differentiation in plates (pDMs) and
differentiation in tubes (tDMs) were compared by flow cytometry. Cells
were determined as differentiated by morphology and gated by forward
vs side scatter (Fig. 1B). Cell yields were calculated as a percentage of
differentiated cells out of 50,000 total events (Fig. 1A). Higher cell
yields were consistently obtained from tDM preparations as compared
with pDMs. A 7-AAD fluorometric assay was used to assess the viability
of pDMs vs tDMs, with viable cells judged by their ability to exclude the
dye (Fig. 1A, right panels of B). Significantly higher viability was found
for cells cultured in FACS tubes. Thus, by adopting the method of

differentiating THP-1 cells in FACS tubes, macrophages of higher yield
and viability can be prepared.

In order to assess whether THP-1 cells were in fact differentiating in
the FACS tubes, both cell morphology and differentiation marker ex-
pression were assessed and compared with those produced by pDMs.
The morphology of undifferentiated THP-1 s was compared with pDMs
and tDMs by Giemsa stain (Fig. 2A). A similar increase in cell/cyto-
plasm size consistent with macrophage differentiation (Aldo et al.,
2013) was observed in pDMs and tDMs.

Autofluorescence is a key marker for macrophage differentiation
(Daigneault et al., 2010), and was assessed by flow cytometry by blue
(488 nm)-excited green fluorescence (530 nm, 30 nm bandwidth)
(Fig. 2B). Both pDMs and tDMs show significantly increased amounts of
autofluorescence after 4-day maturation periods compared with un-
differentiated controls, with no significant levels of difference between
the two groups, suggesting that macrophage differentiation has oc-
curred.

CD11b and CD11c are molecules of the integrin family and re-
present the α-chain of complement receptor 3 (CR3) and complement
receptor 4 (CR4) respectively when dimerised with the β-subunit CD18.
CD11b and CD11c are reported as lowly expressed or absent from un-
differentiated THP-1 s and are highly upregulated upon differentiation
(Chanput et al., 2014; Daigneault et al., 2010; Mittar et al., 2011).
Expression of these molecules was assessed on the surface of un-
differentiated THP-1s (Fig. 3) and compared with expression by pDMs

Fig. 4. Phagocytic activity of THP-1 macrophages differentiated in either FACS tubes or tissue culture dishes. tDMs efficiently phagocytose S. aureus bioparticles. (A)
Undifferentiated THP-1s. Left panel shows THP-1 cells alone, with THP-1s and S. aureus in centre panel. Representative histogram comparing phagocytic THP-1s
(red) vs. THP-1s alone (shaded) is shown to the right. (B) Differentiated tDMs. Left panel shows tDMs alone, with tDMS and S. aureus in centre panel. Representative
histogram comparing phagocytic tDMs (red) vs. tDMs alone (shaded) is shown to the right. (C) Differentiated pDMs. Left panel shows pDMs alone, with pDMS and S.
aureus in centre panel. Representative histogram comparing phagocytic pDMs (red) vs. pDMs alone (shaded) is shown to the right. (D) Both tDMs and pDMs show
similar levels of phagocytic capabilities. Data are expressed as MFI ± SD, and are representative of triplicate experiments, ns= not significant, **p < .01,
***p < .001, Dunnett's multiple comparison test. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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and tDMs. CD11c and CD11b were substantially increased in both cell
populations, and no significant difference between the two groups was
observed. These findings, together with cell morphology and auto-
fluorescence, shows that tDMs differentiate as efficiently as pDMs.

To assess whether tDMS are functional, the cells were assessed for
phagocytic activity using commercially available labelled S. aureus
bioparticles. These bacteria are non-fluorescent outside of the cell but
highly fluorescent once taken into phagosomes. We were able to per-
form the entire assay within the same tubes used for differentiation. The
results showed that undifferentiated THP-1 s were poorly phagocytic
(Fig. 4A). However, both tDMs were highly phagocytic, similar to plate
differentiated cells (Fig. 4B-D).

4. Discussion

The data demonstrates that the key limitations and challenges as-
sociated with culturing and experimenting with THP-1 macrophages
due to their adherence properties can be overcome by differentiating
and conducting experiments in polystyrene FACS tubes. This approach
not only facilitates the handling of the cells in procedures such as
washing, but also leads to greater cell recovery with increased numbers
of viable cells compared to those cultured on tissue culture dishes.
Centrifugation in these tubes enables the cells to be pelleted for further
treatment and functional studies without requiring harvesting of the
adhered cells as is the normal practice.

Examination of the resulting THP-1 macrophages demonstrates that
those differentiated in FACS tubes differentiate to cells morphologically
similar to those derived in tissue culture dishes. This is supported by the
high degree of autofluorescence which they display as differentiated
macrophages. Levels of autofluorescence as judged by flow cytometry
were similar between the cells from the different culturing techniques,
indicating that differentiation was effective in the FACS tubes.

The functionality of the THP-1 macrophages cultured in FACS tubes
was assessed using two key biomarkers and this data showed that cells
derived from FACs tubes are optimal for use in functional studies. Thus,
while the undifferentiated THP-1 cells showed low expression of the
complement receptors CR3 and CR4, the expression was markedly in-
creased in the differentiated cells. This is supported by the phagocytosis
assays which tested their ability to phagocytose complement opsonised
S. aureus. Thus, this was low in undifferentiated cells, and high in the
THP-1 macrophages.

In some experiments the tube-prepared cells showed greater ex-
perimental variability, although the difference between the plate and
tube procedures was not significant. Because this difference was not
always observed, it is likely that this is due to experimental variation
that may be resolved by generating more data points.

Differentiating cells directly in the polystyrene FACs tubes has clear
advantages. Firstly, and most importantly, this method avoids the

problem of having to detach adhered cells, hence preventing loss of cell
viability. Using both detachment buffers containing proteolytic en-
zymes and or the anaesthetic lidocaine with EDTA in tissue culture
dishes attached macrophages may also have sublethal effects, com-
promising the experimentation with these cells. Using a cell scraper to
dislodge the macrophages does not overcome these issues because of
cell damage.
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3.1. Introduction and Contextual Statement 

Currently available on the market, is a limited selection of monoclonal anti-CRIg 

monoclonal antibodies. The two key publications which document anti-CRIg antibody 

generation were published by Kim et al. (2005) and (Helmy et al., 2006). Between these 

articles, multiple striking differences in their findings and conclusions exist, making it 

difficult to form a foundation of knowledge of CRIg biology on which to build upon. In this 

chapter, we present experimental comparisons between the two most commonly used anti-

CRIg antibodies currently commercially available, followed by the documentation of the 

generation and characterisation of novel, cross-reactive anti-CRIg antibodies.  

This chapter is presented in the format of a submitted publication, and incorporates the 

supplementary findings of ‘Functional expression of CRIg/VSIG4 on neutrophils and 

monocytes under activating conditions involving PKC, p38, Ca2+ and cytoskeleton’, by 

Annabelle Small, Trishni Putty, Khalida Perveen, Nikita Patel, Asmitabahen Patel, 

Muhammad Y. Gulam, Patrick Quinn, Helen Weedon, Anak A.S.S.K. Dharmapatni, Mihir 

D. Wechalekar, Charles S. Hii, Alex Quach, & Antonio Ferrante, which at the time of

submission of this thesis, is currently under consideration for publication (November 2020). 
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3.2. Statement of Authorship
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Supplementary Materials for 

Functional expression of CRIg/VSIg4 on neutrophils and monocytes under 

activating conditions involving PKC, p38, Ca2+ and cytoskeleton 

Annabelle G Small, Trishni Putty, Khalida Perveen, Nikita Patel, Asmitabahen Patel, 

Muhammad Y Gulam, Patrick Quinn, Helen Weedon, Anak A. S. S. K. Dharmapatni, Mihir 

D. Wechalekar, Charles S. Hii, Alex Quach and Antonio Ferrante*

*Corresponding author. Email: antonio.ferrante@adelaide.edu.au

This file includes: 

Part 1. Development and characterization of cross-reactive monoclonal antibodies to 

mouse and human CRIg 

Table S1. Summary of anti- human and anti-mouse CRIg antibodies currently 

commercially available, their uses, and cell types they detect CRIg  

Fig. S1. Differing reactivity of two widely used clones of anti-human CRIg 

monoclonal antibody was observed in Western blotting 

Table S2. Reactivity of hybridoma culture supernatant from clones 1A3, 2D6, 4H8, 

8E12, and 14B11, to murine CRIg by ELISA 

Fig. S2. Diagram showing the, theoretical, six human CRIg isoforms and their 

relationship to the selected immunogen for monoclonal antibody production 

Fig. S3. Specificity of the anti-CRIg monoclonal antibody clone 14B11 was 

demonstrated by competitive binding against recombinant CRIg peptide in Western 

blotting of human macrophages 

Fig. S4. The generated monoclonal antibodies stain CRIg on the surface of human 

MDMs and murine PECs 

Fig. S5. Hybridoma clone 14B11 detects CRIg on both human and murine synovial 

tissue macrophages 

Part 2. Other Supplementary Material 

Fig. S6. CRIg expression by human monocyte-derived macrophages 

Table S3. Summary of the inflammatory mediators used in this study and the known 

neutrophil compartments from which they induce degranulation, as well as signalling 

pathways involved in cytoskeleton rearrangements and the granule release 
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Part 1. Development and characterization of cross-reactive monoclonal 

antibodies to mouse and human CRIg 

Introduction 

The fifth human complement receptor, complement receptor immunoglobulin (CRIg), was 

discovered two decades ago (1-3). Since this initial documentation, CRIg has been largely 

regarded as an efficient promotor of phagocytosis expressed selectively by tissue resident 

macrophages (2) with a critical role in mediating blood clearance by liver Kupffer cells (2, 4, 

5). However, over the last two decades, other studies have attributed a broad range of additional 

functions to the receptor. CRIg has been reported to function as a promoter of inflammation 

(6), a potent inhibitor of the alternative pathway of complement (7, 8), a pattern recognition 

receptor (PRR) (9), and an inhibitor of macrophage activation (10, 11). While investigations 

into the root causes of the differences and contradictions present between these studies have 

not been undertaken, it is likely they stem down to two main causes. Firstly, there are 

fundamental differences between CRIg biology in murine compared with human systems; in 

mice, one ‘short’ splice variant is expressed, while in humans, up to six different isoforms can 

be produced (2, 12). Secondly, there remains a lack of currently available monoclonal 

antibodies raised against human and particularly the murine form of CRIg in today’s 

commercial market. 

Currently available is a modest selection of antibodies available from either commercial 

or other sources (Table S1). However, previously published studies using these antibodies have 

made strikingly different conclusions with regard to the pattern of CRIg expression by human 

cells (Table S1). Of note, in 2005, human monocytes were reported to express high levels of 

CRIg on the cell surface (3), while later in 2006, monocytes were reported negative (2). This 

blatant disagreement in findings has remained undiscussed in today’s literature, even though 

the implications of this are not benign. CRIg expression on the surface of monocytes—the 

macrophage-replenishing phagocytic cells of the circulation—may have many implications in 

a broad range of biological processes, particularly with respect to the application of CRIg 

blocking antibodies as potential therapeutics to disorders such as cancer where expression is 

elevated (13-16). This is not the only discrepancy in the reports of CRIg expression on differing 

cellular populations. In humans, CRIg is highly expressed by alveolar macrophages, while in 

mice, expression in the lung is debated (2, 17-19). Similarly, in the liver, CRIg is highly 
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expressed at the protein level in murine tissues, but in humans, protein is conspicuously absent 

(20).  

These substantial discrepancies in the reports of CRIg cellular expression in human systems 

compared with mice indicate that there remains a need in today’s market for an antibody 

capable of detecting all human protein forms of CRIg. Thus, in order to address this need, we 

sought to generate new anti-CRIg monoclonal antibodies, suitable for use in a range of 

techniques. Using a portion of murine CRIg as an immunogen, we describe the successful 

generation of two new, cross-reactive rat anti-murine CRIg monoclonal antibodies which 

detect CRIg on the surface of healthy human monocytes, supporting the findings of Kim, et al 

(2005) (3). Additionally, we demonstrate that these antibodies are suitable for use in a range of 

applications, including flow cytometry, Western blot, and immunohistochemistry on both 

human and murine tissues. 
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Table S1. Summary of anti- human and anti-mouse CRIg antibodies currently commercially available, their uses, and cell types they 

detect CRIg. 

Species Antibody Reported applications 
Reported Positive 

Expression 

Reported Negative 

Expression 
References 

Human 

Genentech mouse anti-human clone 

3C9 
Western blot, flow cytometry 

Monocyte-derived 

macrophages 

Granulocytes, NK cells, 

B cells, T cells, 

monocytes, THP-1 cells 

2, 21 

Santa Cruz mouse anti human clone 

6H8 

Western blot, flow cytometry, 

ELISA, paraffin immuno-

histochemistry 

Macrophages, 

Monocytes, DC, THP-

1 cells 

Granulocytes, NK cells 3, 12, 21 

Invitrogen mouse anti-human clone 

JAV4 
Flow cytometry 

Kupffer cells, 

monocyte-derived 

macrophages 

N/A 22 

Proteintech rabbit anti-human 

polyclonal 
Western blot, ELISA N/A N/A - 

Aviva Systems Biology polyclonal 

rabbit anti-human 

Western blot, 

immunofluorescence 
Alveolar macrophages N/A 17 

Abcam polyclonal rabbit anti-human 

(ab56037) 

Western blot, ELISA, tissue 

microarray- 

immunohistochemistry 

Primary human 

melanoma tissues 
N/A 23 

Invitrogen mouse anti-human clone 3 ELISA N/A N/A - 

Mouse 

Genentech rat anti-mouse clone 14G6 Flow cytometry, Western blot 

Kupffer cells, 

peritoneal 

macrophages 

Monocytes, B cells, T 

cells, granulocytes, NK 

cells 

2 

Aviva Systems Biology polyclonal 

rabbit anti-human 

Western blot, 

immunofluorescence 
Alveolar macrophages N/A 17 

Invitrogen rat anti-mouse clone 

NLA14 

Flow cytometry, not suitable for 

blocking CRIg-ligand 

interaction 

Peritoneal 

macrophages 
N/A - 
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Methods 

Ethics statement 

Procurement of human blood and the conduction of experimental procedures were approved 

by the Women’s and Children’s Health Network (WCHN) Human Ethics Committee and the 

Southern Adelaide Clinical Human Research Ethics Committee, in accordance to the National 

Statement on Ethical Conduct in Human Research (2007, updated 2018) (National Health and 

Medical Research Council Act 1992). Peripheral blood was donated by healthy donors who 

had given informed consent. Scavenged murine tissue and peritoneal exudate cells were 

procured from the University of Adelaide animal house. All murine experimental procedures 

were approved by the WCHN Animal Ethics Committee and work conducted in accordance to 

the Australian code for the care and use of animals for scientific purposes. In all cases 

scavenger tissue and peritoneal cells were used. 

Immunogen and hybridoma generation 

A 168 amino acid peptide, corresponding to N-terminal amino acids 20-187 of murine Vsig4, 

was selected as immunogen; 

HPTLKTPESVTGTWKGDVKIQCIYDPLRGYRQVLVKWLVRHGSDSVTIFLRDSTGDH

IQQAKYRGRLKVSHKVPGDVSLQINTLQMDDRNHYTCEVTWQTPDGNQVIRDKIIEL

RVRKYNPPRINTEAPTTLHSSLEATTIMSSTSDLTTNGTGKLEETIAGSGRNLP 

Amino acids 20-137 have 80% homology to the region of human CRIg encoded by VSIG4 

exon 2. 

The peptide was synthesized and used to immunise rats for the generation hybridomas by 

GenScript. The list of generated cell lines/clones are shown in Table S2, where antibody clone 

reactivity to murine CRIg was determined by ELISA. Western blotting was used to assess 

custom antibody specificity in-house.  

Hybridoma cell culture and supernatant harvesting 

Cell culture maintenance. Rat hybridoma cell lines were maintained at a concentration below 

1 × 106 cells/mL in DMEM supplemented with 1% FCS, 100 U/mL penicillin, and 0.1 mg/mL 

streptomycin in a 37 °C, 5% CO2, high humidity incubator. The cell lines were routinely tested 

for mycoplasma by PCR. 

88



CHAPTER 3  |  GENERATION OF ANTI-CRIg MONOCLONAL ANTIBODIES 

Supernatant harvesting and concentration. Biweekly, all hybridoma cells were transferred 

from their flask into tubes and centrifuged at 500 × g for 5 minutes. Supernatant was retained 

while the pellet was resuspended in 5 mL of residual supernatant. Resuspended cells were 

returned to the flask and topped up to 50 mL with fresh DMEM supplemented with 1% FCS, 

100 U/mL penicillin, and 0.1 mg/mL streptomycin, and returned to culture. The harvested 

hybridoma supernatant was filter sterilised through 0.2 μm and supplemented with 0.02% 

sodium azide. Supernatant was stored at 4 °C or -20 °C for short- or long-term storage, 

respectively. 

Antibody Purification 

Monoclonal antibodies were crudely purified from the hybridoma culture supernatant using 

anti-rat IgG conjugated agarose beads (Abcam). Briefly, 50 μL of anti-rat conjugated agarose 

slurry was added to 100 μL of culture supernatant. Tubes were incubated at 4 °C on a rocking 

platform for 1 h before they were centrifuged at 200 × g for 1 min. The pelleted agarose 

conjugates were washed twice in Tris-buffered saline (TBS; 50 mM Tris at pH 7.5, 150 mM 

NaCl) before a final wash in 0.5 M Tris at pH 6.8. Antibodies were eluted from agarose 

complexes by incubation for 10 min with glycine at pH 2.6 at 1:1 with frequent agitation prior 

to centrifugation at 200 × g for 1 min. Eluate was harvested and neutralised by adding an equal 

volume of Tris at pH 8.0. The elution was repeated once more, and the product pooled with the 

initial eluate. Antibody concentration was determined using the Qubit® protein assay 

previously described12, and purification protocol validated by Western blot. 

Flow cytometry 

Flow cytometric measurement of CRIg expression was determined on monocyte-derived 

macrophages or murine synovial tissue macrophages, essentially as described in the manuscript 

methods, but with unconjugated anti-human CRIg primary antibodies: either 100 μL neat 

hybridoma supernatant containing rat anti-CRIg; 0.2 µg of purified rat anti-CRIg clone 14B11; 

0.2 μg of clone 6H8; or matched isotype control. Following incubation and washing, goat anti-

rat IgG FITC (sc-2011, Santa Cruz Biotechnology) was added for a further 20 min. The cells 

were washed twice in PBS-FCS, then acquired and analysed. 

Western blot 

Western blotting were performed on macrophages detached from culture dishes through gentle 

scraping with a rubber cell scraper, essentially as described in the manuscript methods, with 
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staining using other primary anti-human antibodies: mouse anti-human CRIg clone 3C9 at 

1:3000 and/or clone 6H8 at 1:1000, (provided by Dr Menno van Lookeren Campagne, 

Genentech Inc. CA) and purified rat anti-human CRIg clone 14B11 at 1:1000 in blocking 

solution overnight at 4 °C. Secondary antibody staining and immunoreactive material detection 

on nitrocellulose membrane followed as per the manuscript methods. Blots were stripped using 

Re-Blot Plus Mild Solution (Millipore) and re-probed with mouse anti-human GAPDH 

(G8795, Sigma-Aldrich) at 1:20,000 and analysed as above. 

Immunohistochemistry 

Paraffin embedded murine paw or synovial tissue sections were prepared for histologic analysis 

using standard protocols. Briefly, sections were dewaxed with xylene followed by ethanol prior 

to antigen retrieval with proteinase K (1:50), or antigen retrieval solution (1 mM EDTA/10 

mM Tris at pH 9), heated to 95-100 °C. Slides were washed before endogenous peroxidase 

(EP) blocking (0.1% sodium azide in Tris PBS/1% H2O2), with further blocking in 20% donkey 

serum (Jackson ImmunoResearch). Sections were subsequently stained with rat anti-murine 

CRIg (clone 14B11 hybridoma supernatant, neat), followed by rabbit anti-rat secondary 

antibody (Dako, P0450) and horseradish peroxidase-conjugated swine anti-rabbit tertiary 

antibody (Dako, P0399). Slides were then counterstained with haematoxylin. 

Isolation of murine peritoneal exudate cells 

Peritoneal macrophages were harvested from male swiss white laboratory mice using 

peritoneal washouts after the mice were euthanised by CO2 asphyxiation. Briefly, the peritoneal 

cavity was injected with 3 mL of RPMI-1640 medium and gently massaged, before the cell-

containing fluid was withdrawn. Harvested cells were washed in complete cell culture media 

consisting of RPMI-1640, 10% heat-inactivated FCS, penicillin/streptomycin, and L-

glutamine, prior to processing for flow cytometric analysis. 

Isolation of murine synovial tissue macrophages 

Synovial cells were isolated as described by Misharin, et al (2014) (24). Briefly, legs were 

removed, skinned and ankles cut 3 mm above the heel. Bone marrow was flushed with HBSS 

and toes disarticulated by pulling with forceps. Tibiotalar joints were opened by posterior 

access, exposing the synovial lining. Feet were then incubated in digestion buffer comprising 

of 2 mg/mL dispase II, 2 mg/mL collagenase D and 1 mg/mL DNase I in HBSS for 1 h at 37 

°C on a rocking platform. Released mononuclear cells were purified by density gradient 
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centrifugation on Ficoll-Paque PLUS (GE Healthcare), and macrophages were isolated by 

adherence to 6 cm plastic culture dishes for 1 h at 37 °C. Macrophages were removed from the 

plates and subjected to flow cytometric analysis. 

Results 

Assessment of commercially available antibodies 

The two most commonly referenced antibody clones for the detection of CRIg in human studies 

are mouse anti-human clone 6H8 (Santa Cruz Biotechnology) (3, 25, 26) and mouse anti-

human clone 3C9 (Genentech) (2, 21). Thus, we began our study by comparing the staining 

patterns of these antibodies by Western blot analysis. Using the same monocyte-derived 

macrophage total protein lysate, we probed the same blot with either clone 6H8, clone 3C9, or 

a combination of both (with primary antibody stripping steps between each stain) (Fig. S1). 

Strikingly, we observed distinctly different staining patterns of each antibody, suggesting that 

while both antibodies were raised against human CRIg, by Western blot analysis, the antibodies 

detect differing proteins. Following this finding, we assessed the staining pattern of a 

combination of both antibodies on the same blot, and found that when used together, the 

antibody combination detects up to six proteins in MDM whole lysates. 

Anti-CRIg antibody generation 

In humans, up to six isoforms of CRIg as a result of alternative splicing exist (data accessible 

at NCBI Nucleotide database, reference sequences NM_007268.3, NM_001100431.2, 

NM_001184831.1, NM_001184830.1, NM_001257403.1, XM_017029251.2). These have 

been shown to be expressed by human MDM at the mRNA level (21). Therefore, the finding 

that the commercially available monoclonal anti-CRIg antibodies detect different proteins to 

one another suggests that these are potentially recognising different splice variants. As a result, 

there remains a need for improved anti-human CRIg antibodies on the market which are able 

to detect all forms of CRIg expressed by human cells, and thus, we sought to generate our own 

monoclonal antibodies for this purpose. 

In order to minimise both time and cost, we elected to raise our antibody against a 

peptide sequence of high homology between human and mice, with the expectation that the 

produced antibody may be cross-reactive. Taking the variability of the six potential human 

forms of CRIg into consideration, we aimed to select a peptide sequence which is present in 

the extracellular domain of all six proteins, allowing for the generation of an antibody suitable 
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for the staining of all human CRIg variant isoforms on the cell surface. As a result, we selected 

a 168 amino acid region of murine CRIg which is ~80% conserved with human CRIg (Fig. S2) 

to use as immunogen. Monoclonal antibodies against the peptide were raised in rat (GenScript) 

and of the twenty generated hybridoma clones, five were selected progress to the next stage of 

antibody screening. Culture supernatants from duplicate preparations of each of the five clones 

(giving a total of ten supernatants) were screened for their ability to bind the peptide 

immunogen by ELISA (Table S2). Of these clones, 14B11 and 4H8 were selected as the better 

performing clones for Western blot (not shown) and flow cytometric (Fig. S4) applications 

respectively.  

Monoclonal antibody screening 

We first assessed the ability of our generated antibody to detect CRIg protein in human MDM 

total lysates. Anti-CRIg clone 14B11 detected a strong band migrating at ~50 kDa (consistent 

with the previously reported size of CRIg protein (2)), but unfortunately did not detect 

additional protein bands (Fig. S3, left panel). Performing the antibody probing step in the 

presence of recombinant CRIg peptide (2:1) completely prevented detection of this protein 

(Fig. S3, right panel), suggesting that 14B11 specifically recognises human CRIg protein by 

Western blot. 

Next, we assessed the ability of our antibodies to perform in flow cytometry. 

Unstimulated human monocytes were differentiated into macrophages for 5 days as previously 

described (21) before being subject to flow cytometric analysis. All three tested hybridoma 

supernatants (clones 4H8, 1A3, and 2D6) positively detected CRIg protein on the cell surface 

and stained comparably well with the commercial clone 6H8 (Fig. S4B). Additionally, we 

sought to reproduce the observed upregulation in CRIg surface expression induced by 

dexamethasone treatment as described by Gorgani, et al. (2011) (27). Using our antibody clone 

4H8, we observed a 2-4-fold increase in surface protein as a result of treatment with 50 ng/mL 

dexamethasone (Fig. S4C). Further, we assessed the ability of clone 4H8 to detect CRIg on the 

surface of murine peritoneal exudate cells (PEC). Consistent with previous reports, our 

antibody successfully detected two populations of F4/80+ peritoneal macrophages based on 

expression of CRIg (25, 28). 

CRIg protein is expressed by tissue resident macrophages in both human and murine 

synovial tissues (6, 29, 30). To assess the suitability of our antibody for the application of 

immunohistochemistry, we stained serial sections of human healthy control and early RA 

synovial tissue (ST) with hybridoma clone 14B11. Using standardised protocols as previously 
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described (31), we observed positive staining in the synovial lining of healthy control tissue 

(Fig. S5A, left panel), with increased staining in early RA tissue (Fig. S5A, right panel), 

consistent with previous reports (6). 

We next investigated the ability of 14B11 to stain murine synovial cells by both flow 

cytometry and immunohistochemistry. Of the dissociated synovial cells from healthy BALB/c 

mice of macrophage morphology, ~8% stained positive for CD11b alone, while ~30% stained 

dual positive for both CD11b and CRIg, consistent with the observed population proportions 

reported in the peritoneal cavity by Gorgani, et al28. Next, we stained intact ST from the paws 

of mice with collagen antibody-induced arthritis (CAIA). We observed cells of macrophage-

like morphology staining highly positive for CRIg in both the synovial lining and the sublining 

layers. Together, these data demonstrate that our generated anti-CRIg antibody clone 14B11 

specifically detects CRIg protein in both human and murine ST resident macrophages by 

immunohistochemistry and detects CRIg on the surface of dissociated murine synovial cells. 

Discussion 

Although documented almost two decades ago, CRIg currently remains the most elusive 

member of the complement receptor family, and this likely stems to the lack of available 

commercial monoclonal antibodies. Now, adding to the growing uncertainties in the field of 

CRIg biology, is the finding that the commonly used monoclonal antibodies are actually 

detecting distinctly different proteins in human macrophages. 

The finding that each of the monoclonal antibody clones 3C9 and 6H8 appear to 

recognise three proteins by Western blot of different sizes is perhaps not surprising, and can 

potentially be explained by the existence of the six alternatively spliced protein products (12). 

Anti-CRIg clone 6H8 was generated in 2005 by Kim, et al (3), one year before the 

documentation of alternative splice variants of CRIg. Thus, during the steps of antibody 

generation, this antibody may have been unknowingly selected to recognise certain protein 

isoforms of CRIg, while the antibody clone 3C9, generated in 2006, was specifically raised to 

the full-length isoform of CRIg. As shown in Fig. S2, three of the CRIg proteins contain 

identical ‘long’ form extracellular portions (exon 3), while the other three contain the ‘short’ 

extracellular portions. Thus, in the initial generation of the antibodies, if one clone (potentially 

3C9) recognises the ‘long’ CRIg proteins (isoforms 1, 4, and 5) while the other recognises the 
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‘short’ CRIg proteins (isoforms 2, 3, and 6), then, the different protein detection patterns can 

be explained.  

The data presented here highlights the importance of inclusive consideration of the 

numerous CRIg protein isoforms resulting from alternative splicing. The finding that the 

currently available antibodies raised against CRIg indeed recognise proteins of different 

molecular weights present in human MDM total protein lysates by Western blot suggests that 

what we currently know about CRIg expression in humans may not be fully reflective of the 

‘true’ story, and that further, in depth studies into the full expression profile of the CRIg 

isoforms are required. While the functional differences which may exist between the CRIg 

protein isoforms currently remain unknown, the short form of CRIg has a higher affinity for 

complement C3 fragments than the long form (7), and the isoform pairs 3 and 4, and 5 and 6 

have differing intracellular portions compared to the ‘traditional’ long and short forms, 

suggesting that these isoforms may signal differently. Specifically, forms 3 and 4 do not contain 

any intracellular phosphorylation sites, and the cytoplasmic domains are lacking. Thus, it 

stands to reason that these forms of CRIg may serve to capture opsonised pathogens or particles 

from the extracellular environment, while avoiding initiating an inflammatory response within 

the cell. The phenomenon of extracellular capture of pathogens has been known to occur for 

decades in liver Kupffer cells (which express high levels of CRIg protein in mice), where the 

phagocytes of the circulation, the neutrophil, assist in clearing extracellularly trapped 

pathogens (32). Alternatively, the existence of soluble CRIg has recently been described (13, 

33). It would be interesting to isolate serum CRIg protein and confirm whether this soluble 

form of CRIg may correspond to the shorter CRIg protein isoforms which lack cytoplasmic 

protein portions.  

Here, we present two novel, cross-reactive rat anti-murine CRIg monoclonal antibody 

clones, 14B11 and 4H8, which together are suitable for the applications of Western blot, flow 

cytometry, and immunohistochemistry on human and murine tissues.
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Fig. S1. Differing reactivity of two widely used clones of anti-human CRIg monoclonal 

antibody was observed in Western blotting. The mouse anti-human Z39Ig clone 6H8 (Santa 

Cruz Biotechnology) and mouse anti-human CRIg clone 3C9 (Genentech), were applied to 

human macrophage lysates that had undergone SDS-PAGE and transfer to nitrocellulose 

membranes. 
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Table S2. Reactivity of hybridoma culture supernatant from clones 1A3, 2D6, 4H8, 8E12, 

and 14B11, to murine CRIg by ELISA. 

Cell Line 
Supernatant Dilution Neg 

Control 
Titer 

1:10 1:30 1:90 1:270 1:810 1:2430 

1A3-1 2.896 2.733 2.433 1.869 1.060 0.475 0.082 1:2430 

1A3-2 2.811 2.687 2.389 1.775 1.017 0.477 0.082 1:2430 

2D6-1 1.047 0.791 0.462 0.236 0.121 0.084 0.082 1:270 

2D6-2 1.033 0.735 0.447 0.202 0.119 0.099 0.082 1:270 

4H8-1 2.775 2.428 1.871 1.233 0.627 0.271 0.082 1:2430 

4H8-2 2.544 2.099 1.434 0.843 0.402 0.182 0.082 1:2430 

8E12-1 3.399 3.376 3.372 3.192 2.695 1.785 0.082 >1:2430

8E12-2 3.426 3.306 3.277 3.017 2.285 1.358 0.082 >1:2430

14B11-1 3.100 3.047 2.895 2.239 1.329 0.593 0.082 >1:2430

14B11-2 3.051 2.994 2.783 2.167 1.321 0.616 0.082 >1:2430

Indirect ELISA was performed by GenScript to test various dilutions of parental hybridoma 

culture supernatant reactivity (from duplicate preparations per cell line) to full length murine 

CRIg protein coated at 1 μg/mL in PBS (at pH 7.4), at 100 μL per well of a 96-well plate. 

Peroxidase AffiniPure goat anti-rat IgG, Fcγ fragment specific (Jackson ImmunoResearch) was 

used as secondary antibody, with absorbance measured spectrophotometry at 450 nm. The 

optical densities (OD450) are presented. The titer was determined as the highest dilution with 

signal/negative ≥ 2.1, whilst the OD450 in the negative control is the average of two technical 

replicates.  
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Fig. S2. Diagram showing the, theoretical, six human CRIg isoforms and their 

relationship to the selected immunogen for monoclonal antibody production. The isoforms 

resulting from alternative splicing were deduced from Genbank mRNA sequence identifiers 

and NM_007268.3, NM_001100431.2, NM_001184831.1, NM_001184830.1, 

NM_001257403.1, XM_017029251.2 (adapted from Small, et al (2016) (34)). The 

immunogen, amino acids 20-187 of murine CRIg (Genbank RefSeq NP_808457.1), has an 

initial 118 amino acid sequence that has significant homology (80%) to amino acids 20-137 of 

human CRIg (NP_009199.1), the extracellular immunoglobulin-variable region encoded by 

VSIG4 exon 2. All of the six predicted CRIg isoforms harbour this sequence. The remainder of 

the immunogen sequence has some homology to the regions encoded by VSIG4 exons 4-5. The 

abbreviated domain name definitions are as follows: SP, signal peptide; Ig-V, immunoglobulin 

variable region; Ig-C, immunoglobulin constant region; TM, transmembrane domain; CD, 

cytoplasmic domain, P, phosphorylation sites.  
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Fig. S3. Specificity of the anti-CRIg monoclonal antibody clone 14B11 was demonstrated 

by competitive binding against recombinant CRIg peptide in Western blotting of human 

macrophages. Anti-CRIg clone 14B11 was incubated with separate nitrocellulose membranes 

with identical human MDM lysate, in the absence or presence of recombinant CRIg peptide. 

One-part peptide nullified detection of CRIg by 2-parts monoclonal antibody. 

98



CHAPTER 3  |  GENERATION OF ANTI-CRIg MONOCLONAL ANTIBODIES 

Fig. S4. The generated monoclonal antibodies stain CRIg on the surface of human MDMs 

and murine PECs. (A) MDM gating strategy based on size and complexity. (B) 

Representative histogram overlays demonstrating MDM staining with anti-CRIg clone 6H8 

(top left) compared with hybridoma supernatant clones 4H8 (top right), 1A3 (bottom left) and 

2D6 (bottom right). Dashed line: unstained; solid black: isotype control, shaded: anti-CRIg 

staining. (C) CRIg expression of untreated MDM compared with MDMs differentiated in the 

presence of 50 ng/mL dexamethasone, stained with purified anti-CRIg hybridoma clone 4H8. 

Δ median fluorescence intensity (MFI) for CRIg staining minus isotype control is shown from 

three individual experiments. Data was analyzed by the paired two-tailed Student’s t-test. (D) 

Gating strategy of murine peritoneal exudate myeloid cells is shown, along with representative 

histogram demonstrating surface staining using purified rat anti-CRIg monoclonal antibody 

clone 4H8. 
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Fig. S5. Hybridoma clone 14B11 detects CRIg on both human and murine synovial tissue 

macrophages. (A) Healthy (left panel) and early rheumatoid arthritis (right panel) synovial 

tissue sections were stained with neat dilution of 14B11 anti-CRIg, followed by rabbit anti-rat 

secondary antibody, followed by swine anti-rabbit-HRP. Positively stained cells appear red. 

(B) Flow cytometric analysis of murine mononuclear cells. Non-lymphocyte mononuclear cells

as judged by size and complexity were gated. Following singlet gating by FSC-A vs. FSC-H 

(left panel), cells were gated based on CRIg and CD11b expression. (C) Healthy murine 

synovial tissue stained with neat dilution of anti-CRIg clone 14B11, followed by rabbit anti-

rat secondary antibody, followed by swine anti-rabbit-HRP. Positively stained cells appear red. 
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Part 2. Other Supplementary Material 

Fig. S6. CRIg expression by human monocyte-derived macrophages. (A) Gel of CRIg and 

GAPDH cDNA amplicons from monocyte RNA. NTC, no template control. (B) Western blot 

of macrophage protein lysate, stained with anti-CRIg monoclonal antibody, clone 6H8 (left), 

or clone 14B11 (right panel). (C) CRIg expression on the surface of MDM gated by CD14+ 

staining. The histogram overlay shows unstained (shaded), isotype (dashed line), and CRIg 

clone 6H8 PE staining (red line). 
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Table S3. Summary of the inflammatory mediators used in this study and the known 

neutrophil compartments from which they induce degranulation, as well as signalling 

pathways involved in cytoskeleton rearrangements and the granule release.  

Azurophilic 

Granules 

Specific 

Granules 

Gelatinase 

Granules 

Secretory 

Vescicles 
References 

Stimulants 

TNF - - + + 1

fMLP - - + + 1-3

PMA - + + - 2,4-7

LPS - + + low 8,9

LTB4 - + + + 10-13

fMLP + Cyt B + + ND ND 14-17

Cytoskeleton 

related 

proteins 

Rac1 + + ND ND 18,19

Rac2 human + - ND ND 20

Rab27a + + + low 5

ARPC1B *+ ND ND ND 21

+, indicates that the stimulant induces degranulation, -, indicates that the stimulant does not 

induce degranulation, ND; indicates role is not defined.  

*, Deficiency in this molecule results in enhanced granule release in human neutrophils. 
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CHAPTER 4  |  CRIg EXPRESSION IN HUMAN MDMS 

4.1 Introduction and Contextual Statement 

This chapter presents the third published manuscript included in this thesis. The work 

presented within focused on investigating the inflammatory mediator network which 

regulates CRIg expression by healthy human MDMs at both the developmental stages and 

following maturation. Importantly, this work demonstrates that cytokines that are considered 

inflammatory such as TNF and IFN-γ down regulate CRIg expression at both the mRNA 

and protein levels, while anti-inflammatory agents such as dexamethasone and IL-10 induce 

the opposite. These modulations in CRIg expression were independent of expression levels 

of CR3 and CR4. Additionally, the regulation of CRIg was found to correlate with the ability 

of MDMs to phagocytose the fungal pathogen Candida albicans. 

The following paper entitled ‘Cytokines regulate complement receptor immunoglobulin 

expression and phagocytosis of Candida albicans in human macrophages: A control point 

in anti-microbial immunity’, by Usma Munawara, Annabelle G. Small, Alex Quach, Nick 

N. Gorgani, Catherine A. Abbott & Antonio Ferrante was published in the peer reviewed
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Cytokines regulate complement 
receptor immunoglobulin 
expression and phagocytosis 
of Candida albicans in human 
macrophages: A control point in 
anti-microbial immunity
Usma Munawara1,2, Annabelle G. Small2, Alex Quach2, Nick N. Gorgani2,3,5, Catherine A. 
Abbott  1 & Antonio Ferrante2,4

Complement Receptor Immunoglobulin (CRIg), selectively expressed by macrophages, plays an 
important role in innate immunity by promoting phagocytosis of bacteria. Thus modulation of 
CRIg on macrophages by cytokines can be an important mechanism by which cytokines regulate 
anti-microbial immunity. The effects of the cytokines, tumor necrosis factor, transforming growth 
factor-β1, interferon-γ, interleukin (IL)-4, IL-13, IL-10, IL-1β, IL-6, lymphotoxin-α, macrophage-colony 
stimulating factor (M-CSF) and GM-CSF on CRIg expression were examined in human macrophages. We 
demonstrated that cytokines regulated the CRIg expression on macrophages during their development 
from monocytes in culture at the transcriptional level using qPCR and protein by Western blotting. Both 
CRIg spliced forms (Long and Short), were similarly regulated by cytokines. Direct addition of cytokines 
to matured CRIg+ macrophages also changed CRIg mRNA expression, suggesting that cytokines 
control macrophage function via CRIg, at two checkpoints. Interestingly the classical complement 
receptors, CR3 and CR4 were differentially regulated by cytokines. The changes in CRIg but not CR3/
CR4 mRNA expression correlated with ability to phagocytose Candida albicans by macrophages. 
These findings suggest that CRIg is likely to be a control point in infection and immunity through which 
cytokines can mediate their effects, and is differentially regulated from CR3 and CR4 by cytokines.

Members of complement, Toll-like and scavenger receptors as well as C-type lectins are amongst the groups 
of receptors that initially recognize opsonised-pathogen or pathogen-associated molecular patterns. In the last 
decade, the B7 family-related protein V-set and Ig domain-containing 4 (VSIG4) (Z39Ig)1–3, was found to be an 
important complement (CRIg) receptor4. This receptor differs structurally and functionally from the classical 
complement receptors, CR3 and CR4. CRIg is expressed selectively by macrophages and is involved in the rapid 
phagocytosis of complement (C3b/iC3b)-opsonised pathogens5. The presence of CRIg on Kupffer cell surfaces 
results in the rapid uptake of circulating Listeria monocytogenes and Staphylococcus aureus, thereby limiting bac-
terial dissemination and pathogenesis4. CRIg−/− mice infected with these bacteria exhibited exaggerated levels of 
inflammatory cytokines, and died earlier than wild type mice. More recently the uniqueness of this receptor in the 
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clearance of bacteria by Kupffer cells was evident by showing that it promoted bacterial clearance by a dual track 
system in a complement dependent manner6 and clearance of gram-positive bacteria via non-complement lig-
ands6, 7. While the function of CRIg in immunity to infection appears well established, there is little known about 
the modulation of expression of CRIg by inflammatory mediators generated during infection and inflammation.

It has been previously reported that monocytes in culture begin to express CRIg as they differentiate into 
macrophages4, 8. The development of CRIg+ macrophages was found to be up- (IL-10) or down (IFN-γ, IL-4 and 
TGF-β1) regulated by cytokines based on CRIg mRNA levels. The purpose of our investigation was to extend 
the work to include other important cytokines generated during infection and inflammation: IL-13, IL-1β, IL-6, 
lymphotoxin-α, M-CSF and GM-CSF, examining whether this relates to changes in CRIg protein expression level 
to enable us to evaluate the effects on the two spliced forms of CRIg, as well as assessing effects on mature mac-
rophages. Since CRIg is likely to co-exist with CR3 and CR4 on these macrophages, comparisons were made with 
the expression of these receptors. Finally the cytokine-induced modulation of expression of these complement 
receptors was examined in the context of their anti-microbial action against complement opsonised Candida 
albicans.

Results
We have previously shown that cultured human monocytes displayed maximal increase in CRIg mRNA expres-
sion on day 3 of culture and protein on day 5–78. We confirmed these results in preliminary experiments (data 
not presented). Thus experiments were designed around these time points for examining the effects of cytokines 
on macrophage CRIg expression. Cytokines known to regulate macrophage function and which are produced in 
inflammatory sites were evaluated for their effects on CRIg expression.

Effect of cytokines on the development of CRIg+ macrophages. Monocytes were cultured in the 
presence of either the Th1 cytokines, LT-α and IFN-γ or the Th2 cytokines IL-4 and IL-13 and then examined for 
levels of CRIg mRNA after 3 days by qPCR and protein at day 7 by Western blot analysis using anti-CRIg anti-
body. In the presence of LT-α there was an increase in CRIg mRNA and marked increase in CRIg protein (Fig. 1a 
and b). In contrast, IFN-γ caused a substantial decrease in CRIg mRNA and protein expression (Fig. 1c and d). 
These effects were seen over a concentration range of 5–40 ng/ml for LT-α and 10–40 ng/ml for IFN-γ. The Th2 
cytokines, IL-4 and IL-13 both markedly inhibited the expression of CRIg at the mRNA and protein levels (Fig. 2). 
The effects occurred in a concentration range of 1–40 ng/ml for IL-4 and 5–40 ng/ml for IL-13. Western blot anal-
ysis enabled us to distinguish between the two different forms of CRIg, the long (L) and short (S) forms (Fig. S1). 
The data in Figs 1(b,d,e) and 2(b,d,e) showed that the two forms were similarly regulated by the cytokines. It is 
also evident that CRIg(L) is the more prominent form in these macrophages, even after treatment with cytokines.

TNF, IL-1β and IL-6 are cytokines referred to as pyrogenic and pro-inflammatory cytokines which pre-
dominate during infection and inflammation, associated with chronic inflammatory diseases. Because of the 
importance of CRIg in phagocytosis and regulation of inflammation, their effects on CRIg expression in cultured 
macrophages were examined. Treatment of monocytes with TNF caused a marked reduction of CRIg mRNA 
and protein in the maturing macrophages (Fig. 3a and b). This reduced expression occurred in a concentration 
dependent manner. In relation to CRIg protein expression, TNF caused approximately 80% reduction. IL-1β, 
and in particular IL-6 increased CRIg expression in macrophages (Fig. 3c–f). CRIg protein expression analysed 
by Western blotting demonstrated that expression of both forms, L and S, were altered in a similar manner in 
cells cultured in the presence of these cytokines (Fig. 3b,d,f,g). In order to gain more physiological meaning-
ful information in regards to cytokine profiles and CRIg expression on macrophages, mixtures of cytokines 
that are up-regulated in bacterial infections and chronic inflammatory conditions such as rheumatoid arthritis 
were examined, namely IL-1β, IL-6 and TNF. When monocytes were cultured in the presence of this mixture of 
cytokines, there was a resultant increase in expression of CRIg during their development i.e. the down regulation 
induced by TNF was overcome by having IL-1β and IL-6 present (Fig. 3h).

TGF-β1 and IL-10 share a number of properties and have been shown to regulate and depress inflammation. 
Their effects on macrophage function have been reported. We have now examined their effects on CRIg mRNA 
and protein expression. Culturing monocytes with TGF-β1 led to a concentration (2–15 ng/ml) related decrease 
in CRIg mRNA expression with almost complete suppression of CRIg protein expression (Fig. 4a and b). In con-
trast IL-10 caused a marked increase in CRIg expression in macrophages (Fig. 4c and d). When we compared this 
with the effects of dexamethasone it was evident that IL-10 was as effective as dexamethasone in increasing CRIg 
expression (Fig. 4e and f). This was seen at both the mRNA and protein level. Although the effects of dexametha-
sone on total CRIg cellular protein was not previously studied8 it is evident from the Western blot analysis that the 
steroid increased the cellular expression of both CRIg(L) and CRIg(S) forms (Fig. 4f). Both forms of CRIg were 
similarly regulated by TGF-β1 and IL-10 (Fig. 4b and d).

We extended our studies to another set of cytokines which are involved in controlling macrophage function, 
M-CSF and GM-CSF. When monocytes were cultured in the presence of these cytokines, both caused an increase
in CRIg mRNA and protein expression in the macrophage population (Fig. 5). Both of these cytokines caused a 
marked increase in expression, comparable to that induced by IL-10. The expression of both CRIg L and S forms 
was increased by M-CSF and GM-CSF (Fig. 5b and d).

The effect of cytokines on CRIg expression on mature macrophages (MDM). In the previous sec-
tion we have presented data which resulted from examining the effects of cytokines on the development of CRIg+ 
macrophages, monocyte-derived macrophages (MDM). While this forms one stage of understanding of how 
mediators control CRIg expression in macrophages in particular during inflammation and monocytes infiltration 
into tissues, it does not reveal whether mature macrophages present already expressing CRIg can be modulated by 
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cytokines. Thus a second stage for regulating inflammation is for cytokines to act on already mature macrophages, 
such as MDM.

MDM expressing CRIg were generated from monocytes in culture in the absence of cytokines. The MDM 
were then examined to see what effects cytokines had on expression of CRIg mRNA expression. The macrophages 
were treated with the cytokines for 24 h and then examined for levels of CRIg mRNA. Treatment with 5–40 ng/
ml of LT-α caused an increase in CRIg mRNA (Fig. 6a). In comparison, another Th1 cytokine IFN-γ caused a 

Figure 1. The development of CRIg+ macrophages is differentially modulated by LT-α and IFN-γ. Monocytes 
were cultured in the presence of 0, 5, 10, 20, and 40 ng/ml LT-α (a) or 0, 10, 20, and 40 ng/ml IFN-γ (c) for 3 days 
and then CRIg mRNA expression measured. Data are expressed as fold-change over GAPDH-normalised CRIg 
mRNA in the absence of cytokine set as 1. For CRIg protein expression monocytes were treated with 40 ng/ml 
LT-α (b,e) or IFN-γ (d,e) for 7 days and then the CRIg protein levels measured. Note both the Long and Short 
forms of CRIg are expressed. (e) A representative Western blot of total protein lysates is shown with Ponceau 
S staining showing consistency of protein load. Data are expressed as fold-difference in CRIg band intensity 
as determined by densitometry with CRIg expression in the absence of cytokine set as 1. Data are presented 
as means ± SD of three experiments each conducted with cells from three different individuals. ***p < 0.001, 
****p < 0.0001.
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marked decrease in CRIg mRNA expression over a concentration range of 5–40 ng/ml reaching a decrease of 
approximately 60% at 40 ng/ml (Fig. 6b). TNF is also considered a Th1 lymphocyte cytokine. Under these same 
conditions TNF caused a substantial decrease in CRIg mRNA expression, compared to IL-1β and IL-6, both 
of which, had little effect on CRIg expression9. IL-4 down regulated CRIg mRNA expression in MDM over a 
concentration range of 1–40 ng/ml, with a 60% reduction at 10 ng/ml (Fig. 6c). Decreased expression could be 
detected as low as 1–3 ng/ml concentrations of IL-4. IL-13 caused a reduction in expression of CRIg mRNA over 
a concentration range of 5–40 ng/ml (Fig. 6d).

The regulatory cytokine TGF-β1 caused a substantial decrease in CRIg mRNA over a concentration range 
of 2–15 ng/ml (Fig. 6e) and similarly for IL-10 over a concentration range of 5–40 ng/ml (Fig. 6f). In contrast 
treatment with dexamethasone increased CRIg expression (Fig. 6g). The colony stimulating factors differed in 

Figure 2. IL-4 and IL-13 down-regulate the development of CRIg+. Monocytes were cultured in the presence 
of 0, 1, 3, 5, 10, and 40 ng/ml IL-4 (a) or 0, 5, 10, 20, and 40 ng/ml IL-13 (c) and CRIg mRNA expression was 
measured by qPCR. For CRIg protein expression the monocytes were treated with 40 ng/ml (b) IL-4 or IL-13 
(d). (e) Representative Western blots of CRIg levels (IL-4 and IL-13 treatments were analysed on separate blots). 
Data are presented as means ± SD of three experiments, each conducted with cells from different individuals. 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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their effects on MDM CRIg expression. While GM-CSF down regulated expression, M-CSF caused an increase 
in expression (Fig. 6h and i).

Effect of cytokines on CR3 and CR4 expression in macrophages. To gain a greater understanding of 
the consequences of cytokine-induced modulation of CRIg expression it is important to assess these changes rel-
ative to those induced in other functional receptors. Particularly important in this context is the expression of the 
classical complement receptors, CR3 and CR4, which also promote the phagocytosis of iC3b-opsonized particle5, 

10. Thus the relative expression of these receptors may be a critical determinant of the severity of the inflammatory 
reaction. It was therefore considered important to understand whether CR3 and CR4 were also regulated by these 
cytokines and the type of changes the cytokines induced.

The effect of cytokines on the development of CR3+/CR4+ macrophages from monocytes, as well as their 
direct effect on MDM was examined. In differentiating macrophages, the cytokines influenced the final expres-
sion of these complement receptors. In the majority of cases the increase or decrease in CD11b and CD11c 
mRNA caused by the cytokines were similar for CR3 and CR4 expression (Fig. 7a). The results demonstrated a 
clear decrease in CR3 and CR4 expression caused by TNF, IL-6, M-CSF and GM-CSF (Fig. 7a). In contrast several 
cytokines, while having no effect on CR3, increased expression of CR4 (Fig. 7a).

To examine the direct effects of cytokines on mature macrophages, the MDM were treated with cytokines and 
after 24 h the cells were examined for expression of CD11b and CD11c mRNA. The data showed that several of 
the cytokines had very little effect or decreased expression of these receptors (Fig. 7b). However IL-13, TNF and 
IL-10 caused an increase in CR3 and CR4 expression. Both M-CSF and GM-CSF reduced expression of these 
receptors (Fig. 7b). In contrast to the effects on developing macrophages (Fig. 7a), dexamethasone increased CR3 
and CR4 expression in MDM (Fig. 7b).

Effects of cytokines on macrophages phagocytosis of C. albicans. To examine whether the effects 
of cytokines on CRIg expression in MDM corresponded to functional changes, we examined phagocytosis. In 
these experiments the MDM were treated with the cytokines for 24 h and were then challenged with C. albicans 
which had been opsonised with complement-containing human AB group serum. It has been established that 
C. albicans activates complement via the alternative pathway and that we see no phagocytosis when serum is
heat inactivated11, 12. The data presented in Fig. 8 show that cytokine treatment of MDM altered their capacity

Figure 3. The pyrogenic cytokines, TNF, IL-1β and IL-6 differentially regulate CRIg+ macrophage 
development. Monocytes were cultured in the presence of 0, 5, 10, 20, 40 ng/ml TNF (a), IL-1β (c) or IL-6 (e) 
and CRIg mRNA expression measured by qPCR. For CRIg protein expression monocytes were treated with 
40 ng/ml TNF (b), IL-1β (d) or IL-6 (f). (e) A representative Western blot of CRIg levels and total protein 
in lysates is shown. (h) shows the effect of combined addition of 40 ng/ml of TNF, IL-1β and IL-6 to the 
development of CRIg+ MDM. Data are presented as means ± SD of three experiments, each conducted with 
cells from different individuals. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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to phagocytose C. albicans. While LT-α and M-CSF caused an increase in phagocytosis, all the other cytokines 
caused a decrease in fungal phagocytosis by the macrophages. This paralleled the effects of the cytokines on CRIg 
expression but not in the expression of CR3 and CR4. Similarly, dexamethasone which upregulated CRIg expres-
sion, increased the rate of phagocytosis of fungi by MDM (Fig. 8).

To gain further confidence in this correlation we examined CRIg protein expression by western blot analysis in 
the MDM which had been treated with cytokines for 24 h. The data presented in Supplementary Fig. S2 demon-
strated that total CRIg protein expression, unlike the expression of CRIg mRNA, did not correlate with phagocytic 
activity of the cell, although the effects of some cytokines were consistent with mRNA levels. There was also no 
correlation with CD11b and CD11c protein expression. Because it has been previously reported that there are 
five different transcripts of CRIg, it is tempting to speculate that this may explain the discrepancy of the effects 
of cytokines seen at the mRNA and protein level. When we examined whether these transcripts were present in 
MDM, five were detected when the cells were stimulated with dexamethasone (Fig. S3). The antisera used only 
detected the L and S forms. As further antibodies to the different forms become available, this question will need 
to be revisited.

Discussion
The data demonstrate that cytokines regulate the development of CRIg+ macrophages from monocytes, support-
ing and extending previous observations8 and the view that CRIg expression may be a control point in infection 
and immunity, through which cytokines control macrophage function. These cytokines could be divided into 
the group which promoted the development of CRIg+ macrophages, LT-α, IL-1β, IL-6, IL-10, GM-CSF, M-CSF 
and those which depressed this development, IFN-γ, TNF, TGF-β1, IL-4 and IL-13 (Table 1). This data not only 
identifies for the first time the cytokine patterns which regulate CRIg expression in macrophages but also reveal 
new and unexpected properties for some of these cytokines, which may have implications in the understanding 
of mechanisms of immunity to infection and in inflammation.

Since a major and primary role of CRIg is to promote phagocytosis of bacteria4–7 our findings that cytokines 
can significantly alter the expression of CRIg suggest that the effects of these intercellular signalling molecules in 
infection and inflammation may occur via changes in CRIg expression. The data show that modulation of CRIg 

Figure 4. The effect of regulatory cytokines TGF-β1 and IL-10 on CRIg+ macrophage development. Monocytes 
were cultured in the presence of 0, 2, 5, 15 ng/ml TGF-β1 (a) or 0, 5, 10, 40, 80 ng/ml IL-10 (c) and CRIg 
mRNA expression was measured by qPCR. For CRIg protein expression monocytes were treated with 15 ng/
ml TGF-β1 (b) or 40 ng/ml IL-10 (d). (e) Monocytes were cultured in the presence of dexamethasone and the 
CRIg mRNA determined. (f) For protein expression monocytes were treated with 30 ng/ml dexamethasone. 
(g) Representative blots are shown (dexamethasone treatment was analysed on a separate blot from TGF-β1
and IL-10). Data are presented as means ± SD of three experiments, each conducted with cells from different 
individuals. **p < 0.01, ***p < 0.001, ****p < 0.0001.
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expression by cytokines is at a pre-transcriptional level and eventually emanates into corresponding changes in 
CRIg protein expression. Thus the effects of cytokines on CRIg protein expression by Western blot correlate with 
the changes seen at the mRNA level. The findings significantly extend the previous observation which only exam-
ined a restricted number of cytokines and which mainly assessed effects at CRIg mRNA level8.

While the effects of cytokines were found at concentrations that might be measured in septic patients they are 
untypically high for many inflammatory conditions such as rheumatoid arthritis (RA), general viral or bacterial 
infections). Potential technical reasons why higher than normal (in vivo) cytokine concentrations were required 
in these assays include protein absorption to the tubes. Although it is evident that in biological fluids even during 

Figure 5. M-CSF and GM-CSF promote the development of CRIg+ macrophages. Monocytes were cultured in 
the presence of 0, 5, 10, 20, 40 ng/ml M-CSF (a) or GM-CSF (c). Then CRIg mRNA expression measured. For 
CRIg protein expression monocytes were treated with 40 ng/ml M-CSF (b) or GM-CSF (d). (e) A representative 
Western blot. Data are presented as means ± SD of three experiments, each conducted with cells from different 
individuals, *p < 0.05, **p < 0.01, ***p < 0.001.
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inflammation that pg/ml and not ng/ml levels are found, in some fluids even levels up to 500ng/ml have been 
reported13. Other factors include, from our experience e.g. with TNF that detection in inflammatory fluids may 
not be indicative of the absolute cytokine levels as these are bound by tissue receptors especially as these seem to 
increase during an infection14. There may also be other serum/fluid factors which may cause measurement errors 

Figure 6. Effects of cytokines on CRIg expression in matured macrophages (MDM). In these studies MDM 
were prepared by culturing human monocytes for 3 days. MDM from 3 day cultures were treated with LT-α 
(a) (0, 5, 10, 20 and 40 ng/ml) or IFN-γ (b) (0, 5, 20 and 40 ng/ml) or IL-4 (c) (0, 1, 3, 5, 10 and 40 ng/ml) or 
IL-13 (d) (0, 5, 10, 20 and 40 ng/ml), TGF-β1 (e) (0, 2, 5 and 15 ng/ml) or (f) IL-10 (0, 5, 10, 20 and 40 ng/ml) 
or M-CSF/GM-CSF (g,h) (0, 5, 10, 20 and 40 ng/ml) or dexamethasone (i) (0, 10, 30 and 50 ng/ml) for 24 h and 
then CRIg mRNA levels relative to GAPDH mRNA were assessed by qPCR. Data are expressed as fold-change 
over GAPDH-normalised CRIg mRNA in the absence of cytokine set as 1. Data are presented as means ± SD of
three experiments, each conducted with cells from different individuals, *p < 0.05, **p < 0.01, ***p < 0.001.
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as well as cytokine decay, which we have experienced for biological fluids. It must also be appreciated that we are 
using recombinant cytokines, lacking glycosylation, and these may give different activities to the natural forms. 
Our use of concentrations between 2.5–40 ng/ml has followed other reports examining the effects of cytokines 
on macrophages. Perhaps one approach to resolving this issue is to look at levels produced by cells in culture fol-
lowing stimulation. Published data show that blood leukocytes stimulated with mitogens, bacteria and parasites 
produce ng/ml quantities of cytokines15–17. In conditions of severe pneumonia in patients serum levels of TNF 
and IL-6 reach ng quantities18.

The immuno-suppressive cytokine IL-10 caused a substantial increase in CRIg protein expression. In com-
parison another regulatory cytokine, TGF-β1, which shares properties with IL-10, profoundly decreased CRIg 
protein expression in developing macrophages. Our findings not only confirmed these results but also demon-
strated a corresponding effect on CRIg protein expression. The two cytokines may thus form a regulation for CRIg 
expression in M2 macrophages in the killing of parasites19–21. While the pyrogenic cytokines, TNF, IL-1β and IL-6 
share many biological activities, the effects on the development of CRIg+ macrophages differed. TNF caused a 
decrease and IL-1β and IL-6 increased CRIg expression. These changes were seen at both the mRNA and CRIg 
protein expression. Thus TNF versus IL-1β/IL-6 are likely to regulate CRIg expression in macrophages developing 
into M1 type19–21. Exposure to dexamethasone is likely to promote M2c macrophage development20, 21 with high 
CRIg expression (Table 1).

IFN-γ, IL-4, IL-10 and TGF-β1 altered CRIg expression, with both forms being affected. By measuring CRIg 
protein by Western blotting, the fate of both spliced forms of the receptor could be followed. The present studies 

Figure 7. The effect of cytokines on the development of CR3+ and CR4+ macrophages and in MDM. (a) 
Monocytes were treated with 40 ng/ml LT-α, IFN-γ, IL-4, IL-13, IL-1β, IL-6, IL-10, M-CSF, GM-CSF or 
dexamethasone, 20 ng/ml TNF, 15 ng/ml TGF-β1. (b) Monocytes were cultured for 3 days for maturation into 
macrophages. The MDM were then incubated for 24 h with 40 ng/ml of the cytokines, LT-α, IFN-γ, IL-4, IL-1β, 
IL-6, IL-10, IL-13, M-CSF, GM-CSF, 20 ng/ml TNF, 15 ng/ml TGF-β1 or Dexamethasone (50 ng/ml). The level 
of CD11b and CD11c mRNA was measured using qPCR. Data are expressed as fold-change over GAPDH-
normalized CD11b and CD11c mRNA in the absence of cytokine set as 1. Data are presented as means ± SD 
of three experiments, each conducted with cells from different individuals, *p < 0.05, *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001.
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revealed that the CRIg(L) and CRIg(S) were similarly, down- or up-, regulated by these cytokines. While both 
forms are found in human macrophages, murine macrophages possess only the latter4. Thus the finding that 
cytokines regulate the CRIg (S) form is also relevant to the murine models of infection and immunity and inflam-
mation, since this is the form found in mouse macrophages.

Cytokine networks play an important role in regulating inflammation and those tested in our present study 
act on the macrophage, a cell which is central to infection and immunity, including immunity to C. albicans22. 
Cytokines are known for their differences in either promoting disease or protecting against these diseases. It 
is tempting to speculate that CRIg may be one of the control points in infection and immunity through which 
cytokines and other intercellular acting inflammatory mediators act. Indirect support for this view can be 

Figure 8. Effects of cytokines on the phagocytosis of C. albicans by MDM. MDM were prepared by culturing 
human monocytes for 5 days. The MDM were treated with 40 ng/ml of LT-α (a), IFN-γ (b), IL-4 (c), IL-13 (d), 
or 20 ng/ml TNF (e), or 40 ng/ml IL-1β (f), IL-6 (g), or 15 ng/ml TGF-β1 (h) or 40 ng/ml IL-10 (i), M-CSF/GM-
CSF (j,k) or 50 ng/ml dexamethasone (l) for 24 h and examined for their ability to phagocytose complement 
opsonised C. albicans. Phagocytosis was scored as both the number of macrophages that had engulfed more 
than >4 fungi (line graph) and the number of fungi engulfed per cell (bar graph). Data are presented as 
means ± SD of three experiments, each conducted with cells from different individuals, *p < 0.05, **p < 0.01, 
***p < 0.001.
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derived from the findings that CRIg+ macrophages disappear from inflammatory sites and with the intensity of 
inflammation23.

It was interesting to find that both of the Th2 cytokines, IL-4 and IL-13 caused a decrease in expression of 
CRIg at the mRNA and protein level in maturing macrophages. This may be a mechanism by which macrophages 
promote pathogenesis induced by helminths such as schistosomes and other Th2 mediated inflammation such as 
that seen in allergy21. The observation could be given consideration in future research.

Often cytokines have been examined singly for their effects as this enables the contribution that the respective 
cytokine may have on cellular function. But to gain more physiological meaningful perspective we need to also 
understand the impact of cells interacting with the different cytokines simultaneously which may more closely 
mimic the in vivo inflammatory environment. To illustrate this we subjected monocytes during their development 
of CRIg+ macrophages to a combination of IL-1β, IL-6 and TNF. The depressive effects on CRIg+ macrophage 
development induced by TNF could be overcome by concomitant addition of IL-1β and IL-6. While the results 
suggest that during infection and inflammation the fluids generated are likely to increase the express ion of CRIg 
on macrophages, it is important to appreciate that the levels of these relative to each other will vary significant at 
different times of the inflammatory reaction, and may hence dictate the final outcome.

Here we have highlighted that cytokines not only affected the development of CRIg+ macrophages but also 
regulated the expression of this receptor on mature macrophages, indicative of events in tissues. However most of 
the cytokines caused a down-regulation of CRIg mRNA. Only LT-α and M-CSF induced an up regulation, similar 
to the anti-inflammatory agent dexamethasone. The findings indicate that mature macrophages are amenable 
to cytokine-induced modulation of CRIg (Table 1). This then becomes a second control point in inflammation 
through which cytokines may have their influence once the macrophages are matured and localized in tissues. 
The ability of LT-α and M-CSF to increase CRIg expression both during development and directly on mature 
macrophages is interesting. We have previously demonstrated that TNF caused these effects via activation of 
PKCα and those macrophages treated with anti-TNF antibody showed increased expression of CRIg9. It is there-
fore tempting to speculate that one important action of anti-TNF therapy is to prevent the loss of CRIg expression 
induced by TNF in RA and thereby improve phagocytic uptake of microbial pathogen, a possible reason as to why 
patients on anti-TNF therapy do not experience the expected wider increase in susceptibility to infection.

Cytokines which altered CRIg expression in macrophages, also caused changes to the expression of CR3 
and CR4. It is evident from these results that some cytokines had opposite effects on these three receptor types 
(Table 1). The receptors, apart from performing similar functions, display other differing key functional prop-
erties. Thus their differential expression caused by cytokines will have an impact in the final response precip-
itated during microbial interaction. While IL-4 and TGF-β1 promoted the development of CR3 expressing 
macrophages, the development of CR4 expressing macrophages was promoted by the rest. Thus although CR3 
may be decreased on macrophages subjected to LT-α, IFN-γ, IL-13 and IL-1β their phagocytic function is likely 
to be retained through the up regulation of CR4 by these cytokines. In comparison to this scenario, IL-4 and 
TGF-β1 promote the development of macrophages with increased expression of both CR3 and CR4; increasing 
the potential phagocytic capability of the macrophage. Although these are in vitro models, consideration should 
be given to these mimicking the monocyte invasion of tissue and their development into macrophages to interact 
with complement opsonised microbial pathogens, such as Candida24. Macrophage development towards cells 
with lower phagocytic activity may occur when the same cytokines cause a decrease in expression of both CR3 
and CR4. Cytokines which gave rise to this decrease were TNF, IL-10 and IL-6.

Although CR1 (CD35), is a complement control protein (CCP) module containing molecule, is present on 
the surface of macrophages, its role may not be to directly enhance phagocytosis of complement opsonized path-
ogens as opposed to the roles for CR3, CR4 and CRIg. In contrast, CR1 enhances clearance of soluble immune 
complexes via Fc receptors. CR1 on erythrocytes plays a major role in the clearance of soluble immune com-
plexes, by transporting them to the liver and spleen, where they are cleared by macrophages. The binding of 
C3b-coated targets to phagocyte CR1 is not sufficient to trigger phagocytosis, but C3b–CR1 interaction enhances 

Cytokine

During Macrophage Development Expression in MDM

CR3/CD11b CR4/CD11c CRIg CR3/CD11b CR4/CD11c CRIg

LT-α ↓ ↑ ↑ ↓ ↓ ↑

IFN-γ ↓ ↑ ↓ ↓ ↓ ↓

IL-4 ↑ ↑ ↓ ↓ ↓ ↓

IL-13 ↓ ↑ ↓ ↑ ↑ ↓

IL-10 ↓ ↓ ↑ ↑ ↑ ↓

TGF-β1 ↑ ↑ ↓ ↓ ↓ ↓

TNF ↓ ↓ ↓ ↑ ↑ ↓

IL-1β ↓ ↑ ↑ ↓ ↓ ↓

IL-6 ↓ ↓ ↑ ↓ ↓ ↓

M-CSF ↓ ↓ ↑ ↓ ↓ ↑

GM-CSF ↓ ↓ ↑ ↓ ↓ ↓

Dexamethasone ↓ ↓ ↑ ↓ ↓ ↑

Table 1. Effect of cytokines on CR3/CD11b, CR4/CD11c and CRIg mRNA expression in macrophages. The ↑ 
and ↓ arrows represents an increase and a decrease in receptor expression.
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the FcγR-mediated phagocytosis of targets bearing both IgG and C3b25–27. When we examined the expression of 
CR1, it was evident that the cytokines did not alter the expression of this receptor (Fig. S2).

Examination of effects of cytokines on mature macrophages, MDM, demonstrated a different pattern of alter-
ation in CR3 and CR4 mRNA (Table 1). The ability of cytokines to regulate these receptors provides a second 
check point for regulating macrophage function in infection and immunity, depending on the infection type and 
cytokines generated. The cytokines IFN-γ, TNF, IL-6, M-CSF and GM-CSF decreased the development of CR3+ 
macrophages. But this did not necessarily correspond to a similar effect on mature macrophages (Table 1). The 
findings show that CR3 and CR4 expression may be differentially regulated by some cytokines. Since Kupffer cells 
not only express CRIg but also CR3 and CR428, the findings are also relevant to this tissue fixed macrophage. But 
further studies are required to ascertain whether this differential expression of CRIg versus CR3/CR4 induced by 
cytokines is also relevant to Kupffer cells.

Because most cytokines examined caused a decrease in CRIg expression on mature macrophages, it is inevita-
ble that those monocytes which respond to infection in tissues and develop into macrophages will be susceptible 
to the action of these cytokines and this may be a reason why CRIg expressing macrophages are low at inflamma-
tory sites and infection foci23. Previously we found that IFN-γ decreases the development of CRIg+ macrophages 
and caused reduced phagocytosis of complement opsonised C. albicans8. The present study demonstrated that 
IL-4 caused a decrease in the expression of CRIg mRNA and reduction in the phagocytosis of C. albicans. We 
have previously reported that IL-4 caused a decrease in the phagocytosis and killing of complement-opsonised 
Plasmodium falciparum infected red blood cells by macrophages29. The changes in CRIg mRNA levels in MDM 
correlated with their altered rates of phagocytosis of complement opsonised C. albicans. Complement deposition 
on this fungi results from activation of complement via the alternative pathway11, 12. Complement opsonisation 
is required to see the effects of changes in CRIg expression9. Thus innate immunity may function through com-
ponents of microbial pathogens stimulating human lymphocytes to produce LT-α30. As previously demonstrated 
by Helmy et al.4, once phagocytosis has been initiated by liver macrophages (Kupffer cells), CRIg expression is 
dramatically reduced. Our results indicate that this is most likely due to the release of cytokines, in particular TNF 
which decreases CRIg expression9.

Although we are emphasising a potentially important function for CRIg in the phagocytosis of fungi, the study 
has not been designed to conclusively prove this. Approaches such as blocking the receptor and or the other com-
plement receptors would need to be under taken to establish their role in this function. Furthermore our results 
revealed that the MDM expression of CRIg protein neither correlated with expression of CRIg mRNA nor phago-
cytic activity. The most appropriate explanation for this discrepancy is that this anti-CRIg antibody only reveals 
the changes in the L and S forms. We identified five transcripts of CRIg in MDM and it is possible that changes in 
the expression of other forms may account for changes in rates of phagocytosis.

While our studies have focussed on phagocytosis of fungi, the importance of CRIg in phagocytosis of bacteria 
has been highlighted. Apart from implications in infections, our results suggest that cytokines may work through 
alterations in CRIg expression to modulate the inflammatory response in chronic inflammatory diseases such as 
RA. The pro-inflammatory, Th1 cytokine IFN-γ, in contrast to LT-α, causes a marked decrease in CRIg expres-
sion, in line with their reported effects in the pathogenesis of RA. IFN-γ is present in RA patients’ synovium and 
synovial fluid31. CD4 T cells in RA patients contribute to the pathogenesis by producing IFN-γ32, 33. Another Th1 
cytokine, TNF, caused a decrease in CRIg expression. TNF is a major mediator of joint inflammation and bone 
destruction in inflammatory arthritis and several studies have measured large amounts of TNF in synovial fluid 
of patients with RA, psoriatic arthritis and in children with juvenile idiopathic arthritis34–37 TNF targeting biolog-
ical drugs proved effective in the treatment of RA patients38. The role of LT-α, a close homolog of TNF39, found 
in synovial tissue of diseased joints, is not well defined40. In psoriatic arthritis patients, anti TNF-α monoclonal 
antibodies have been developed for neutralization of TNF and etanercept for LT-α41. Psoriatic arthritis patients 
undergoing etanercept treatment showed significantly increased serum levels of LT-α after 3 and 6 months which 
returned to baseline levels after 12 months41. These findings are conducive with our data showing that LT-α up 
regulated the expression of CRIg in macrophages. The difference between LT-α and TNF which act on the same 
receptor is not surprising as previously we have found that the two cytokines have some distinct biological effects 
on phagocytes42. For example in terms of mediating articular cartilage damage, LT-α plays a protective role com-
pared to the destructive role of TNF42.

The immuno-suppressive cytokine IL-10 caused a substantial increase in CRIg mRNA and corresponding 
CRIg protein. This is consistent with its protective and anti-inflammatory effects observed in several murine 
arthritis models and its praised therapeutic potential in this disease43, 44. Another regulatory cytokine, TGF-β1 
which shares properties with IL-10, however, plays a major role in the progression of RA and several studies 
reported that TGF- β1 has been detected in the synovial tissue of patients with RA45, 46. Our findings show that 
TGF-β1 which has regulatory effects on macrophages profoundly decreases CRIg mRNA8 and protein expres-
sion in macrophages and suggest that this may be a mechanism in the pathogenesis of RA. Although IL-1β is 
expressed in RA47, its role in inflammation has been controversial. Injection of recombinant IL-6 into the joint 
cavity reduced cartilage destruction in experimental arthritis48. Some studies reported that increases in serum 
IL-6 levels are associated with clinical improvements49. IL-6 reduces TNF production50, 51 which may explain its 
protective role in joint pathology. Our findings are in line with its protective effects by increasing CRIg expression.

It was interesting to find that the Th2 cytokines, IL-4 and IL-13 both caused a decrease in expression of CRIg 
at both the mRNA and protein level. It has been reported that there is an association of IL-4 gene 70 bp VNTR and 
MTHFRC677T polymorphism in the development of RA52. Furthermore, it has been suggested that IL-4 and its 
receptor could play a role in the pathogenesis of RA53. Similarly, IL-13 is also identified as a risk locus for psoriatic 
arthritis investigated in a number of studies54.

Because of the critical functions played by CRIg in infection and immunity and inflammation, our results 
suggest that cytokines have the potential to modify inflammation and resistance to microbial pathogens by 
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modulating this receptor, hence identifying a mechanism by which cytokines regulate defence against infection 
and inflammation55. The research extended to show that cytokines could regulate the expression of CRIg on 
mature macrophages to provide a second control point by which cytokines could modify macrophage micro-
bial killing, inflammation and immune responsiveness. Other classes of inflammatory mediators are likely to 
also regulate CRIg expression, as we previously found with arachidonate8. The importance of CRIg in Kupffer 
cell-mediated phagocytosis of bacteria has been demonstrated4, 6, 7 and it is likely that CRIg expression in these 
cells is also regulated by cytokines during infection and inflammation56. While the complexity of the CRIg system 
and its varied roles in infection and immunity is becoming appreciated25, we have now provided further evidence 
of its importance in host defence and understanding the mechanisms regulating macrophages in immunity to 
infection.

Methods
Cytokines and cell culture reagents. Recombinant granulocyte-macrophage colony stimulating factor 
(GM-CSF), macrophage (M)-CSF, interleukin (IL)-1β, IL-6, IL-4, IL-10, IL-13, interferon (IFN)-γ, lymphotoxin 
(LT)-α, tumor necrosis factor (TNF), M-CSF and GM-CSF were purchased from ProSpec-Tany Technogene 
(Rehovot, Israel), transforming growth factor (TGF)-β1 from R&D Systems (Minneapolis, MN), and dexametha-
sone was purchased from Sigma-Aldrich (St. Louis, MO). A mouse monoclonal antibody (clone 3C9) that recog-
nizes the IgV domain of human CRIg was kindly provided by Dr. Menno van Lookeren Campagne (Genentech, 
San Francisco, CA). RPMI 1640 tissue culture medium, foetal calf serum (FCS) and L-glutamine were purchased 
from SAFC Biosciences (Lenexa, KS).

Ethics statement. Venous blood was collected from healthy adult volunteers under guidelines and approval 
of the Women’s and Children’s Health Network Human Research Ethics Committee. Written informed consent 
was obtained from all participants.

Purification and culture of monocytes. Peripheral blood mononuclear cells (PBMC) were prepared by 
centrifugation of blood on Ficoll-Paque Plus (GE Healthcare, Uppsala, Sweden). The interface layer containing 
PBMC was harvested and cells were washed in RPMI-1640 medium supplemented with 2 mmol/L L-glutamine, 
100 U/ml penicillin, 100 µg/ml streptomycin and 10% foetal calf serum, pH 7.4 (RPMI-FCS). Cell viability was 
determined by the trypan blue-exclusion method. Monocytes were purified from the PBMC by density gra-
dient centrifugation, as described previously9. Briefly, PBMC were layered onto a 46% iso-osmotic Percoll 
gradient (GE Healthcare, Uppsala, Sweden) and centrifuged at 600 × g for 30 min at room temperature. The 
monocytes-containing layer was harvested. Monocytes were >90% pure as judged by staining with anti-human 
CD14-FITC (BD Pharmingen, San Jose, CA) and analysing on a BD FACSCanto (BD Biosciences, San Diego, 
CA). Monocytes were cultured in RPMI-FCS in humidified air containing 5% CO2 at 37 °C at 106 cells/ml under 
the influence of cytokines or dexamethasone. Cells were harvested after either 3 days (for CRIg mRNA analysis) 
or 7 days (for CRIg protein analysis) culture by gentle scrapping with a ‘rubber policeman’.

Quantitative PCR. RNA was converted to cDNA using an iScript cDNA synthesis kit (Bio-Rad). 
QPCR was conducted using primers for human CD11b (Forward: CCTGGTGTTCTTGGTGCCC; 
R e ve rs e :  TC C T TG G TG TG G C AC G TAC TC ) ,  C D 1 1 c  ( F :  C C G AT TG T TC C ATG C C TC AT; 
R :  A A C C C C A AT T G C ATA G C G G ) ,  a n d  C R I g  ( F :  A C A C T TAT G G C C G T C C C AT ;  R : 
T G TAC C AG C C AC T T C AC C A A )  w i t h  G A P D H  ( F :  G AG T C A AC G G AT T T G G T C G T;  R : 
GACAAGCTTCCCGTTCTCAGCCT) as the reference gene8, 9. Assayed in triplicate, each reaction contained 
100 nM of each primer, 1 μl of cDNA, and iQ SYBR Green Supermix (Bio-Rad Laboratories) in a 20 μl final vol-
ume. Thermal cycling was performed with an initial denaturation at 95 °C for 5 min, followed by 40 cycles of 95 °C 
for 30 sec, 60 °C for 30 sec and 72 °C for 30 sec, using an iQ5 Real Time Detection System with iQ5 Optical System 
v2.1 software (Bio-Rad Laboratories). Expression data was normalised to GAPDH transcript levels.

Western blotting. Macrophages were harvested after 7 days, washed, and resuspended in 100 μl of 
lysis buffer containing 20 mmol/L HEPES, pH 7.4, 0.5% Nonidet P-40 (v/v), 100 mmol/L NaCl, 1 mmol/L 
EDTA, 2 mmol/L Na3VO4, 2 mmol/L dithiothreitol, 1 mmol/L PMSF, and 10 μg/ml of each protease inhibitor 
(Benzamidine, leupeptin, pepstatin A and phenylmethylsulfonyl fluoride (PMSF) purchased from Sigma-Aldrich 
and aprotinin from Calbiochem (Merck, Darmstadt, Germany)57. Protein was quantitated by the Lowry 
method, prior to the addition of Laemmli buffer. Samples were boiled at 100 °C for 5 min and 60 μg of each 
were subjected to 12% SDS-PAGE at 175 V for approximately 1 h using the Mini-PROTEAN 3 system (Bio-Rad 
Laboratories, Hercules, CA). The samples were electrophoretically transferred to nitrocellulose membrane (Pierce 
Biotechnology, Thermo Fisher Scientific, Rockford, IL) at 100 V for 1 h. To monitor the extent of protein transfer, 
the membrane was stained with 0.1% Ponceau S (in 5% acetic acid). After blocking, the membrane was incubated 
with mouse anti-human CRIg (3C9) at 1:20000 in blocking solution overnight at 4 °C. Following washing in 
blocking solution (3 × 10 min), the membrane was incubated with secondary HRP-conjugated rabbit anti-mouse 
IgG (Dako, Glostrup, Denmark) at 1:2000 in blocking solution for 1 h at room temperature. Immunoreactive 
material was detected by enhanced chemiluminescence according to the manufacturer’s instructions (Western 
Lightning Chemiluminescence, Perkin Elmer, Waltham, MA). The protein bands on the membranes were visual-
ised by a ChemiDoc XRS+ Imaging System and quantitated using Image LabTM Software, Version 3.0 (Bio-Rad 
Laboratories, Hercules, CA).

Phagocytosis assay. The phagocytosis assay was performed essentially as described previously8. Twenty 
four hours post treatment of MDM with cytokine treatment, the cells were washed and detached with detach-
ment buffer. Then 1 × 105 C. albicans yeast particles were added to 5 × 104 MDM in a final volume of 0.5 ml HBSS. 
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Complement-containing human AB serum was added to a final concentration of 10%. The cells were incubated 
for 15 min at 37 °C on a rocking platform. Unphagocytosed yeast particles were removed by differential cen-
trifugation at 175 × g for 5 min and then the MDM in the pellet were resuspended and cytocentrifuged onto a 
microscope slide and stained with Giemsa. The number of particles in phagocytic vacuoles was then determined8. 
Phagocytosis was scored as both the number of macrophages that had engulfed >4 fungi (line graph) as well as 
the number of fungi engulfed per cell (bar graph).

Statistical analysis. Unpaired comparison were analysed using the two-tailed Student’s t-test and multiple 
comparison were performed using Dunnett’s test, with p < 0.05 considered significant.
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Supplementary Methods 

Primers for CRIg transcript variants and CR1 

Reverse-transcriptase PCR to detect five CRIg (VSIG4) transcript variants and SYBR Green 

qPCR for CR1 were performed using the primers and pairings listed in Table S1. The 

different CRIg variants are distinguished by their NCBI RefSeq Accession numbers. Each 

VSIG4 primer was designed to anneal across either exons 3-4 or 7-8.  

Supplementary Table S1. PCR primer sequences specific for CRIg transcript variants and 

CR1.  

Gene/ 
Primer 

Sequence (5’ to 3’) Pairing NCBI RefSeq 
Transcript 

No. 
VSIG4 

F1 TTTGTGGTCAAAGACTCCTCAAAGC F1 and R1 NM_007268.2 1 
F2 TGTCCAGAAACACTCCTCAAAGCT F2 and R1 NM_001100431.1 2 
R1 TGGCATGTGCCCTGGCT F2 and R2 NM_001184831.1 3 
R2 GAGAGACTTTCTTACCTGGCTGCTT F1 and R2 NM_001184830.1 4 
R3 GACACTTTGGGCTGGCTGCT F1 and R3 NM_001257403.1 5 

CR1 
F CCCTTTGGAAAAGCAGTAAA 
R TCAACTTGGCAAACAGAAAA 

VSIG4 primer F1 paired with R1 are specific for transcript variant 1, F2 with R1 for transcript 

variant 2, F2 with R2 for transcript variant 3, F1 with R2 for transcript variant 4, and F1 with 

R3 for transcript variant 5. All VSIG4 primer pairings generate an amplicon of 292 bp in 

length. The primers for CR1 are from Anand et al (2014)1 and expected to generate a 193 bp 

amplicon.
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Supplementary Figures 

Supplementary Figure S1. Representative Western blot demonstrating molecular sizing 

of CRIg isoforms in cytokine-induced development of macrophages.  The blot presents 

lysates from monocytes cultured in the presence of 40 ng/ml LT-α, IFN-γ, IL-1β, IL-10, M-

CSF, GM-CSF, or 15 ng/ml TGF-β1 in separate individuals (experiment A and B) that were 

examined by staining with CRIg 3C9 monoclonal antibodies. The corresponding Ponceau S 

staining shows the consistency of protein load.  Low Range Prestained SDS-PAGE Standards 

(Bio-Rad Laboratories) were used for determining the long (L) and short (S) forms of CRIg 

with ladder band sizes indicated in kilodaltons (kD).
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Supplementary Figure S2. Effects of cytokines on CRIg/CD11b/CD11c expression in 

matured macrophages (MDM). In these studies, MDM were prepared by culturing human 

monocytes for 7 days. MDM from 7 day cultures were treated with 40 ng/ml LT-α, IFN-γ, 

IL-4, IL-13, IL-1β, IL-6, IL-10, M-CSF, GM-CSF or dexamethasone, 20 ng/ml TNF, or 15 

ng/ml TGF-β1 for 24 h and then (a) CD11b, (b) CD11c, (c) CRIg protein levels relative to 

Ponceau S loading control were assessed by Western blot. Data are normalised against 

untreated control cells and expressed as means ± SD of three experiments, each conducted 

with cells from different individuals.
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Supplementary Figure S3. CRIg transcript variants in macrophages. Agarose gel 

electrophoresis was used to visualise CRIg transcript variant amplicons generated from the 

cDNA of untreated macrophages (top row) and macrophages cultured for 3 days with 50 

ng/mL dexamethasone (bottom row). The primers used are as shown in Table S1. Lanes 

labelled V1, V2, V3, V4 and V5 represent CRIg transcript variants 1, 2, 3, 4, and 5 

respectively, with (+) indicating PCR with macrophage cDNA and (-) indicating PCR with no 

template. Amplification of GAPDH was used as an internal control. A 1kb Plus DNA Ladder 

(Invitrogen) was used to verify the size of the amplicons, with ladder band sizes indicated in 

base pairs (bp). Results are representative of three experiments. 
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Supplementary Figure S4. Effects of cytokines on the development of CR1+ 

macrophages. Monocytes were treated with 40 ng/ml LT-α, IFN-γ, IL-4, IL-13, IL-1β, IL-6, 

IL-10, M-CSF, GM-CSF or dexamethasone, 20 ng/ml TNF, 15 ng/ml TGF-β1, then CR1 

mRNA expression measured. Data are normalised against untreated control cells and 

expressed as means ± SD of three experiments, each conducted with cells from different 

individuals.
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CHAPTER 4  |  CRIg EXPRESSION IN HUMAN MDMS 

5.1. Introduction and Contextual Statement 

As discussed in earlier chapters, CRIg is a potent negative regulator of T cell activation, 

proliferation, and cytokine production (Vogt et al., 2006). This function is retained by both 

recombinant, soluble forms of the protein (Yuan et al., 2017) and membrane-bound protein 

when induced on the cell surface (Xu et al., 2010). However, whether unaltered, naturally 

expressed CRIg exerts this function, and whether human DC are able to express protein 

naturally without transfection remains to be studied. 

In this chapter, we expand upon the groundwork presented in earlier chapters and deepen 

our investigations into the expression of CRIg on human immune cell types in states of 

health. We demonstrate the expression and regulatory function of CRIg expressed by human 

MDDC, and show that MDDC stimulated to express high levels of CRIg on their surface 

through treatment with dexamethasone significantly inhibit both phytohemagglutinin 

(PHA)-induced and alloantigen-induced T cell proliferation responses.  

The following paper entitled ‘Human Dendritic Cells Express the Complement Receptor 

Immunoglobulin Which Regulates T Cell Responses’, by Usma Munawara, Khalida Perveen, 

Annabelle G. Small, Trishni Putty, Alex Quach, Nick N. Gorgani, Charles S. Hii, Catherine 

A. Abbott & Antonio Ferrante was published in the peer reviewed journal, Frontiers in

Immunology, in December 2019 (7: 4050, DOI: 10.3389/fimmu.2019.02892). 

Supplementary information follows the paper. 

Disclaimer: Significant portions of the results presented in this manuscript were generated 

by Dr. Usma Munawara throughout the completion of her Ph.D. studies and submitted for 

the award of her degree. 

Article Metrics (as of November 2020) 

Journal Impact Factor: 4.716 

Altmetric Score: 3 

Citations: 1
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Human Dendritic Cells Express the
Complement Receptor
Immunoglobulin Which Regulates
T Cell Responses
Usma Munawara 1,2,3†, Khalida Perveen 1,3, Annabelle G. Small 1,3, Trishni Putty 1,3,

Alex Quach 1,3, Nick N. Gorgani 1,3†, Charles S. Hii 1,3, Catherine A. Abbott 2 and

Antonio Ferrante 1,3*

1Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA, Australia,
2College of Science and Engineering, Flinders University, Bedford Park, SA, Australia, 3 School of Medicine, School of

Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia

The B7 family-related protein V-set and Ig containing 4 (VSIG4), also known as

Z39Ig and Complement Immunoglobulin Receptor (CRIg), is the most recent of the

complement receptors to be identified, with substantially distinct properties from the

classical complement receptors. The receptor displays both phagocytosis–promoting

and anti-inflammatory properties. The receptor has been reported to be exclusively

expressed in macrophages. We now present evidence, that CRIg is also expressed

in human monocyte-derived dendritic cells (MDDC), including on the cell surface,

implicating its role in adaptive immunity. Three CRIg transcripts were detected and

by Western blotting analysis both the known Long (L) and Short (S) forms were

prominent but we also identified another form running between these two. Cytokines

regulated the expression of CRIg on dendritic cells, leading to its up- or down regulation.

Furthermore, the steroid dexamethasone markedly upregulated CRIg expression, and

in co-culture experiments, the dexamethasone conditioned dendritic cells caused

significant inhibition of the phytohemagglutinin-induced and alloantigen-induced T cell

proliferation responses. In the alloantigen-induced response the production of IFNγ,

TNF-α, IL-13, IL-4, and TGF-β1, were also significantly reduced in cultures with

dexamethasone-treated DCs. Under these conditions dexamethasone conditioned

DCs did not increase the percentage of regulatory T cells (Treg). Interestingly, this

suppression could be overcome by the addition of an anti-CRIg monoclonal antibody

to the cultures. Thus, CRIg expression may be a control point in dendritic cell function

through which drugs and inflammatory mediators may exert their tolerogenic- or

immunogenic-promoting effects on dendritic cells.

Keywords: dendritic cells, complement receptor immunoglobulin (CRIg), dexamethasone, cytokines, T cells,

immunosuppression
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INTRODUCTION

The Complement Receptor Immunoglobulin (CRIg), unlike
other complement receptors, is expressed selectively in
macrophages (1). The receptor plays a key role in the
phagocytosis and clearance of bacteria in a complement
dependent (1–3) and complement independent manner (4). But
in addition, it has been reported to inhibit T cell responses. Vogt
et al. (5) demonstrated that CRIg-Ig fusion protein inhibited
the anti-CD3 or anti-CD3/28 antibody(s) induced mouse and
human T cell proliferation and IL-2 production in vitro. When
this fusion protein was injected into mice, there was a reduction
in the numbers of antigen-induced CD8+ T cells and a reduction
in the IFN-γ producing population. In these mice the Th-
dependent IgG antibody response was reduced. CRIg expression
inmacrophages has been suggested to regulate the T cell response
(6, 7). We demonstrate that human DC express CRIg mRNA and
protein, including cell surface expression and that expression
could be modulated by cytokines. Furthermore, dexamethasone
was found to cause upregulation of CRIg expression on DC
which inhibited the mitogen- and alloantigen-induced T cell
response. This highlights an additional mechanism involved in
the regulation of the adaptive immune response.

METHODS

Cytokines and Cell Culture Reagents
Recombinant human cytokines used for DC treatments
were as follows: LT-α (TNF-β), GM-CSF, M-CSF, IL-1β,
IL-6, IL-4, TNF-α, IL-13, IFN-γ, IL-10 (ProSpec-Tany
Technogene, Rehovot, Israel) and TGF-β1 (R&D Systems,
Minneapolis, Minnesota, USA) were used in culture within
a final concentration range of 5–80 ng/ml. Dexamethasone
was used at a final concentration in culture at 30 ng/ml
(Sigma-Aldrich, St. Louis, MO). All cell culture experiments
utilized RPMI 1640 tissue culture medium, heat-inactivated
(56◦C/20min) fetal calf serum (FCS), penicillin/streptomycin
and L-glutamine (SAFC Biosciences, Lenexa, KS).

Antibodies
Anti-human protein antibodies used in this study were as follows:
mouse monoclonal anti-CRIg clone 3C9 (kindly provided
by Dr. van Lookeren Campagne, Genentech, San Francisco,
CA), phycoerythrin (PE)-conjugated and unconjugated anti-
CRIg clone 6H8 (Santa Cruz Biotechnology, Dallas, TX,
USA), fluorescein isothiocyanate (FITC)-conjugated anti-DC-
SIGN/CD209 clone 120507 (R&D Systems). Isotype controls
used were as follows: PE-conjugated and unconjugated mouse
IgG1 (eBioscience, San Diego, CA), and FITC-conjugated mouse
IgG2b (R&D Systems). The secondary antibody used for Western
blotting was horse-radish peroxidase (HRP)-conjugated rabbit
anti-mouse IgG (Dako, Glostrup, Denmark).

Preparation of Dendritic Cells
The study was approved by the CYWHS Human Ethics
Committee (approval number REC 2165/4/2011). Dendritic
cells were prepared from peripheral blood of healthy donors,

who had given informed consent, utilizing previously described
methods (8, 9). Blood was layered onto Ficoll R© Paque PLUS
(GE Healthcare, Uppsala, Sweden), d = 1.077, and centrifuged
at 400 × g for 30min. Firstly blood monocytes were prepared
as described previously (9). The peripheral blood mononuclear
cell (PBMC) layer was harvested and washed in RPMI-1640
medium with 2mM L-glutamine, 100 U/ml penicillin, 100µg/ml
streptomycin and 10% heat-inactivated FCS. Then, the PBMCs
were layered onto 46% iso-osmotic Percoll R© gradient (GE
Healthcare, Uppsala, Sweden) and centrifuged at 600 × g for
30min. After centrifugation the lymphocytes were pelleted, and
the upper monocyte-containing interphase layer was harvested
and washed, with preparations routinely being of >98% viability
and >90% purity by Giemsa. For all studies unless otherwise
stated, monocytes were seeded at 1 × 106 cells per 60 × 15mm
culture dish pre-treated with autologous plasma and left to
adhere at 37◦C for 1 h. Any contaminating non-adherent cells
were removed, and the adherent monocytes cultured with RPMI-
1640 medium with L-glutamine, penicillin, streptomycin, FCS,
50 ng/ml GM-CSF, and 20 ng/ml IL-4 at 37◦C in an atmosphere
of 95% air and 5% CO2 over 5 days for differentiation into DCs.
The DCs were harvested by gentle pipetting and washed prior to
use in experiments.

DC-T Cell Co-cultures
Autologous DC and T cell co-cultures were setup using DCs
as prepared above, with autologous T cells purified from the
remaining lymphocyte fraction following the centrifugation of
PBMC over 46% iso-osmotic Percoll R© gradient. The T-cells were
purified by subjecting the lymphocyte fraction through two cycles
of nylon wool (Polysciences Inc., Warrington, PA) columns using
an established protocol (10). The T-cell preparation was of >95%
purity and >99% viability as determined by FACS analysis and
trypan blue dye exclusion assay, respectively. The T cells were
cryopreserved in liquid nitrogen until use (11). The DCs were
added to 96-well round-bottom plate (Nunc) at 1× 104 cells/well
and treated with dexamethasone for 24 h and washed. The
cryopreserved T cells were thawed and added to the autologous
DC (2 × 105 T-cells/well). PHA was used as a stimulus in the
appropriate wells (0.5 µg/well) (Remel Inc., San Diego, CA),
with or without either anti-CRIg (clone 6H8) antibody or isotype
control. The cells were cultured at 37◦C in an atmosphere of 95%
air and 5% CO2 for 72 h. Cells were pulsed with 1 µCi methyl-3H
Thymidine (3H-TdR) (PerkinElmer, Waltham, MA) 6 h prior to
harvest. 3H-TdR incorporation was measured as disintegrations
per minute (DPM) in a Wallac 1409 liquid scintillation beta
counter (Wallac, Turklo, Finland).

For allogeneic DC-T cell cultures, instead of autologous T
cells, allogeneic T cells were isolated from fresh or cryopreserved
PBMCs using the EasySepTM Human T Cell Isolation Kit (Stem
Cell Technologies, Vancouver, Canada), and added to allogeneic
DCs as the stimulus in a DC:T cell ratio of 1:10 as 2 × 105

total cells/well, with or without anti-CRIg antibody or isotype
control. DCs were untreated or dexamethasone treated DC at
2 × 104 cells/well in 96-well round-bottom plates. Cells were
cultured at 37◦C in an atmosphere of 95% air and 5% CO2 for
120 h and pulsed with 3H-TdR 6 h prior to harvest. At harvest,
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culture supernatants were harvested and stored at −80◦C for
later quantification of cytokines, followed by measurement of
the remaining cells for 3H-TdR incorporation. Cytokines in the
culture supernatants were quantitated with BDTM Cytometric
Bead Array kits for IFN-γ, TNF-α, IL-13, TGF-β1, IL-4, and IL-
10 (BD Biosciences) following adaptation of the manufacturer’s
protocols for assay in 96-well v-bottom plates, with acquisition
on a BD FACSCanto with an attached BDTM High Throughput
Sampler (HTS), and analysis with FCAP Array v3 software
(BD Biosciences).

In similar culture setups, we examined the T cells for the
presence of Treg cells in the alloreactive stimulation as above.
After 7 days of culture the cells were harvested and the levels of
CD4+CD25+ CD127loFoxp3+ cells measured by flow cytometry.
Anti-human CD4-FITC, CD25-PE-Cy7, CD127-Alexa Fluor
647, Foxp3-PE, and corresponding isotype controls were from
BD Biosciences. Cell surfaces were stained with appropriate
antibodies for 20min at room temperature (RT), washed once
with PBS supplemented with 0.1% FCS, and incubation for
60min at RT in Fixation/Permeabilization buffer (eBioscience).
Following washing with Permeabilization buffer (eBioscience)
and blocking with mouse IgG for 10min at RT, intracellular
staining of Foxp3 was performed in Permeabilization buffer with
30min incubation at RT with the appropriate antibody or isotype
control. Acquisitionwas performed on a BDFACSCanto and data
analyzed using FlowJo v10.1 (FlowJo, LLC, Ashland, Oregon).
The gating strategy to identify Foxp3+ Tregs is described in
Supplementary Figure 3.

Measurement of CRIg by RT-PCR and
qPCR
For determination of total CRIg mRNA levels and isoform
transcript detection, RNA was isolated using a RNeasy R©

Plus kit (Qiagen, Venlo, Limburg, Netherlands) according
to the manufacturer’s instructions, and treated with DNase
I (DNA-free Kit, Ambion, Life Technologies, Mulgrave, Vic,
Australia) to remove any genomic DNA contamination. The
quantity of RNA was assessed on a NanoDropTM (Thermo
Fisher Scientific, MA, USA), and converted to cDNA using
the iScriptTM cDNA synthesis kit (Bio-Rad Laboratories,
Hercules, CA).

Reverse transcriptase (RT)-PCR for CRIg isoform transcripts
was conducted as previously described (12), using primers for
isoform 1 (F1: TTTGTGGTCAAAGACTCCTCAAAGC; and
R1: TGGCATGTGCCCTGGCT), isoform 2 (F2: TGTCCAGA
AACACTCCTCAAAGCT; and R1), isoform 3 (F2; and R2:
GAGAGACTTTCTTACCTGGCTGCTT), isoform 4 (F1 and
R2), and isoform 5 (F1; and R3: GACACTTTGGGCTGGC
TGCT). GAPDH primer sequences were used as previously
described (12) (F: GAGTCAACGGATTTGGTCGT; R: GACA
AGCTTCCCGTTCTCAGCCT). Separate reactions were set up
for each isoform, containing 100 nM of each primer (pairing
as described above), 1 µl of cDNA, and AmpliTaq Gold R© 360
Master Mix (Applied Biosystems) in a 25 µl final volume. PCR
reactions were performed with an initial denaturation at 95◦C
for 7min, followed by 35 cycles of 95◦C for 30 s, 60◦C for 30 s,
and 72◦C for 60 s, and a final extension at 72◦C for 7min, using

a SimpliAmpTM Thermal Cycler (Applied Biosystems). The RT-
PCR products were visualized following electrophoresis on a 2%
GelRed-stained agarose gel (Biotium) along with a 1 kb Plus DNA
Ladder (Invitrogen).

qPCR for total CRIg mRNA expression was conducted as
previously described (12) using the primer pair detecting all
five known isoforms of CRIg (F: ACACTTATGGCCGTCCCAT;
R: TGTACCAGCCACTTCACCAA) with the GAPDH primer
pair described above for expression data normalization. Each
reaction had a final volume of 20 µl containing 100 nM of each
primer, 1 µl of cDNA, and iQ SYBR Green Supermix (Bio-Rad
Laboratories). Triplicate reactions were assayed in an iQ5 Real
Time Detection System with iQ5 Optical System v2.1 software
(Bio-Rad Laboratories), with thermal cycling performed with an
initial denaturation at 95◦C for 5min, followed by 40 cycles of
95◦C for 30 s, 60◦C for 30 s, and 72◦C for 30 s.

Measurement of CRIg Cell-Surface
Expression
The expression of CRIg on the cell surface of DCs was measured
by flow cytometry. At the conclusion of treatment, 1.5 × 105

harvested DCs had Fc receptors on their surface blocked with ice-
cold PBS supplemented with 0.5% (w/v) BSA, 10mg/ml Intragam
P, and 5% (v/v) human AB serum for 30min. PE-conjugated
anti-CRIg (clone 6H8) or isotype control antibodies, along with
FITC-conjugated anti-CD209 antibodies were incubated with the
DCs in a final staining volume of 50 µl for 30min. The cells were
washed in PBSwith 0.5% (w/v) BSA, and following centrifugation
(600 × g for 5min), the cells were then fixed in PBS containing
1% (v/v) formaldehyde. A minimum of 20,000 events were
acquired from the stained DC samples on a BD FACSCanto
(BD Biosciences, CA, USA), with data analysis performed with
FlowJo 10.1 (FlowJo, LLC, Ashland, Oregon). Doublets were
excluded by gating with SSC-A vs. SSC-H. Trypan blue was
used to determine cell viability (>95%) following harvest and
prior to flow cytometric staining. Using 7-aminoactinomycin D
(7-AAD), we were able to demonstrate specific DC viability in a
set of replication experiments (Supplementary Figure 1) where
similar results of enhanced CRIg expression by dexamethasone
treatment was found.

Western Blotting for CRIg Isoforms
Western blot for CRIg expression in DCs was performed using
methods previously described (13). DCs harvested from each
culture were lysed in 100 µl of 20mMHEPES, pH 7.4, with 0.5%
(v/v) Nonidet P-40, 100mM NaCl, 1mM EDTA, 2mM Na3VO4,
2mM dithiothreitol, 1mM phenylmethylsulfonyl fluoride and
10µg/ml leupeptin, aprotonin, pepstatin A, and benzamidine, for
2 h at 4◦C with constant mixing. These samples were centrifuged
at 12,000 × g for 5min to obtain lysates (supernatants), and the
protein content quantitated by Lowry assay, prior to the addition
of Laemmli buffer supplemented with 3% β-mercaptoethanol.
The lysates were boiled at 100◦C for 5min and 60 µg of protein
loaded and electrophoresed on 12% SDS polyacrylamide gels,
followed by transfer of protein onto nitrocellulose membrane
(Pierce Biotechnology, Thermo Fisher Scientific, Rockford, IL).
The membrane was stained with 0.1% Ponceau S (in 5% acetic
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acid) to ascertain protein loading equality. The amounts of
the CRIg L, S and I isoforms were detected using monoclonal
mouse anti-human CRIg clone 3C9 and HRP-conjugated rabbit
anti-mouse IgG. The immune complexes on the membranes
were visualized by enhanced chemiluminescence on a ChemiDoc
XRS+ Imaging System and quantitated using Image LabTM

software version 3.0 (Bio-Rad Laboratories, Hercules, CA).

Statistical Analysis
Statistical significance was calculated using GraphPad Prism 7.0
(GraphPad Software, Inc., La Jolla, CA, USA), with testing as
follows: two-way ANOVA with post-hoc Bonferroni’s Multiple
Comparison testing for relative CRIg protein isoforms; Student t-
testing for relative CRIg surface expression and dexamethasone-
modulated CRIg mRNA expression; One-way ANOVA with
post-hoc Dunnett’s Multiple Comparison testing for cytokine
dose-dependent CRIg mRNA expression; and One-way ANOVA
with post-hoc Bonferroni’s Multiple Comparison testing for 3H-
TdR incorporation between DC-T cell co-culture treatments.
Statistical significance was defined as P < 0.05.

RESULTS

Expression of CRIg on Human DC
Human monocyte derived dendritic cells (MDDC) were
generated in culture by treating monocytes with IL-4 and
GM-CSF. The MDDC expressed CRIg mRNA by RT-PCR
(Figure 1A) and CRIg protein on their surface by flow cytometry
analysis (Figure 1B). Examination of transcripts showed that
at least three isoforms of CRIg were present (Figure 1A).
Furthermore, by Western blot analysis we identified the
expression of the prominent long (L) and short (S) isoforms,
as previously described in human macrophages (1) and an
additional intermediate form migrating between the L and S
isoforms (Figure 1C).

Dexamethasone Increases CRIg
Expression in DC Leading to
Immunosuppression
Previously, we have demonstrated that the anti-inflammatory
steroid dexamethasone is a strong enhancer of CRIg expression
in human macrophages (12, 14, 15). In addition, it has
been reported that DC generated under the influence of
dexamethasone have a tolerogenic functional phenotype (16). It
was therefore of interest to determine whether dexamethasone
alters the expression of CRIg on DC. The MDDC were
treated with varying concentrations of dexamethasone for 24 h,
washed and CRIg expression measured. Dexamethasone caused
an increase (3-fold) in CRIg mRNA levels (Figure 1D). This
was reflected in an increase in CRIg protein measured by
Western blotting (Figure 1C). Examination of the Western
blots also revealed that dexamethasone caused an increase
in the levels of all 3 isoforms of CRIg on DC (Figure 1C).
The changes induced by dexamethasone were also evident in
expression of CRIg on the surface of DC (Figure 1E), which has
implications for the function of DC as antigen presenting cells
and adaptive immunity.

To assess the functional consequences of increasing CRIg
expression, we examined whether DC which had been treated
with dexamethasone, expressing increased amounts of cell
surface CRIg, were immunosuppressive in cell co-culture studies.
Mononuclear leukocytes (MNL) from single individuals were
separated into T cells and monocytes. The T cells were
cryopreserved and the monocytes were treated with GM-CSF
and IL-4 to allow development into DC. Then, the T cells
were thawed and reconstituted with DC which had been pre-
treated with either diluent or dexamethasone. The cells were
stimulated with phytohemagglutinin (PHA) and proliferation
was measured by a radiometric assay. The data showed that T
cells cultured in the presence of dexamethasone conditioned DC
were significantly depressed in proliferation (Figure 2A). Further
studies examined the importance of surface expressed CRIg
in the immunosuppression by adding anti-CRIg monoclonal
antibody to the cultures (clone 6H8, Santa Cruz Biotechnology,
Dallas, TX). The results showed that the suppression by
dexamethasone conditioned DC could be completely prevented
by the antibody (Figure 2A). The normalized data has been
presented in Supplementary Figure 3.

In the second set of experiments, the effects of dexamethasone
were assessed in an allogeneic T cell stimulation culture model.
Monocyte derived DC were treated with dexamethasone, washed
and added to allogeneic T cells. After 5 days of culture the culture
fluids removed and the cells were replenished with fresh medium
containing 3HTdR and harvested after 6 h of further incubation.
The amount of radioactivity incorporated was determined
and proliferation quantitated. The dexamethasone treated DCs
caused a significant decrease in the allogeneic proliferative
response (Figure 2B). When anti-CRIg monoclonal antibody
was added to the cultures the effect was essentially abolished,
suggesting that CRIg played a role in the immunosuppression.
When we examined the cytokines IFNγ, TNF-α and IL-4, IL-13,
IL-10, and TGF-β1 in the supernatants from these cultures, we
observed that production of all these cytokines was significantly
reduced in the presence of dexamethasone treated DCs except
for IL-10 (Figures 2C–H), and that the addition of anti-CRIg
monoclonal antibody prevented this suppression in cytokine
production (Figures 2C–G). Examination of the lymphocyte
population for Treg cells demonstrated that based on the
expression of CD127, CD25, and FoxP3 expression there was no
increase but if anything a decrease in this subset (Figure 2I). The
normalized data has been presented in Supplementary Figure 3.

Th1 and Th2 Cytokines Alter the
Expression of CRIg
In all of the following studies, we used CRIg+ DC that had
been derived from monocytes cultured in the presence of GM-
CSF and IL-4. No dexamethasone treatment was conducted. Our
study examined the effects of four cytokines, IFN-γ and LT-
α representing Th1 cell and IL-4 and IL-13 representing Th2
cell products on DC CRIg expression. When CRIg+ DC were
treated with LT-α for 24 h, the cells showed a concentration
dependent decrease in CRIgmRNA over a concentration range of
5–40 ng/ml (Figure 3A). This effect was supported by the finding
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FIGURE 1 | CRIg expression in MDDC and effects of dexamethasone. (A) CRIg isoform transcripts detected in DC. Agarose gel electrophoresis (2%) was used to

visualize transcript variant amplicons generated from the cDNA of HMDC. Lanes are labeled 1, 2, 3, 4, and 5 representing each CRIg isoform with (–) to the right of

each isoform lane indicating the respective no template controls. GAPDH was a positive control. Gels are representative of three experiments. (B) Gating strategy for

CRIg expression on DC by flow cytometry. CD209+ cells were gated before assessing anti-CRIg antibody (6H8-PE) staining; representative histogram shown. (C)

CRIg isoform expression by Western blot using anti-CRIg monoclonal antibody (clone 3C9). A representative blot of total protein stained with Ponceau S shows

consistency of protein loading. Band intensity for each isoform (L, I, and S) over protein load was determined by densitometry. Data are expressed as fold-change over

control DC (n = 3). (D) Relative CRIg mRNA expression as detected by qPCR, normalized to GAPDH, expressed as fold-change over control DCs (n = 3). (E) Relative

CRIg cell-surface expression by flow cytometry. Data are expressed as fold-change in CRIg-PE (6H8) mean fluorescence intensity minus isotype control (IgG1) of

treated over control DCs (n = 7); representative histogram shown. Data are presented as means ± SEM of experiments conducted with cells from different individuals.

Significance levels are indicated by asterisks: *P < 0.05, ****P < 0.0001.

that LT-α caused a significant decrease in total CRIg protein
measured by Western blotting (Figure 3B), with a concomitant
decrease of the L and S as well as the intermediate isoforms.
A corresponding effect on cell surface expression was observed
(Figure 3C). Treatment with 5–40 ng/ml of IFN-γ showed a
similar decrease in CRIg mRNA, total protein and cell surface
expression as seen with LT-α (Figures 3D–F).

The Th2 cytokines, IL-4, and IL-13 caused an even more
profound decrease in CRIg expression in the DC (Figure 4).
The cytokines caused a decrease in CRIg mRNA expression over
a concentration range of 5–40 ng/ml. A similar decrease was
observed when total CRIg protein was measured by Western
blot (Figures 4B,E). Expression of all three CRIg isoforms was
decreased by treatment with either IL-4 or IL-13. However, this
decrease was not reflected in a reduced expression of cell surface
CRIg (Figures 4C,F).

The Regulatory and Immunosuppressive
Cytokines Increase CRIg Expression
The cytokine TGF-β1 regulates inflammation and IL-10 has
immunosuppressive activity (17–19). Their action could in
part be through the regulation of CRIg on DC. We found
that MDDC treated with IL-10 for 24 h showed a significant
increase in CRIgmRNA expression in a concentration dependent
manner (Figure 5A). Examination by Western blot showed a
corresponding increase in CRIg protein expression (Figure 5B).
However, this increase was not as evident in cell surface CRIg
expression (Figure 5C). TGF-β1 also increased CRIg expression
of mRNA, total CRIg protein and cell-surface expression on DC
(Figures 5D–F). Examination of cell lysates subjected toWestern
blots showed that both TGF-β1 and IL-10 caused an increase in
the levels of the L and S isoforms as well as the intermediate form
on DC (Figures 5B,E).
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FIGURE 2 | Effects of dexamethasone conditioned DCs and anti-CRIg monoclonal antibody on PHA- and allogeneic-induced T cell proliferation, cytokine production

and generation of iTreg. (A) 3H-TdR incorporation (DPM) in autologous DC-T cell co-culture in the presence/absence of dexamethasone, anti-CRIg 6H8 or isotype

control antibodies, and PHA. Data are presented as means ± SEM of 6 experiments conducted with cells from different individuals. (B) 3H-TdR incorporation (DPM) in

allogeneic DC-T cell co-culture in the presence/absence of dexamethasone treated DCs, anti-CRIg 6H8 antibody or isotype control antibodies. Data are presented as

mean ± SEM of 5 experiments. (C–H) Effects on cytokine production in allogeneic DC-T cell cultures. Data are presented as mean ± SEM of 4–5 experiments. (I)

Effects on generation of iTreg in allogeneic DC-T cell cultures. Data are presented as mean ± SEM of 4 experiments. Note that normalized data for the above cytokine

production and Treg generation is presented in Supplementary Figure 3. Significance levels are indicated by asterisks: *P < 0.05, **P < 0.01, ***P < 0.001,

****P < 0.0001.

Effects of Pyrogenic Cytokines on the
Expression of CRIg in DC
The cytokines TNF-α, IL-1β, and IL-6 are pyrogenic cytokines
(20, 21) which have direct effects on monocytic cells, including
the modulation of macrophage and DC differentiation (22–25)
or macrophage function and cell death (26, 27). Since these
are produced during the innate phase of the inflammatory
response, they may influence the adaptive immune response
through their effects on DC. It was therefore of interest
to examine this group of cytokines on CRIg expression in

DC. Cells treated for 24 h with either TNF-α, IL-1β, or IL-6

showed a significant decrease in CRIg mRNA expression, in
a concentration dependent manner (Figure 6). This effect was
reflected in the total CRIg protein expression decreased by the
cytokines. However, there was no corresponding decrease in

cell surface expression, apart from TNF-α (Figure 6). It was
also evident that both TNF-α and IL-1β caused a decrease in
all three isoforms of CRIg, shown by Western blot analyses
but the S form was not significantly decreased by the IL-6
treatment (Figures 6B,E,H).
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FIGURE 3 | LT-α and IFN-γ decrease CRIg expression in DC. (A,D) DC were treated with varying concentrations of cytokines and the levels of CRIg mRNA

determined after 24 h of culture. (B,E) In other experiments, CRIg isoform proteins were assessed by Western blot after cells were treated with 40 ng/ml of each of the

cytokines. (C,F) The effects on cell surface expression of CRIg was examined after a similar treatment. Data are presented as means ± SEM of three experiments,

each conducted with cells from different individuals. The blot image (E) was spliced to exclude intervening lanes that represent other treatments and the complete

un-spliced blot can be found in Supplementary Figure 2. Significance levels are indicated by asterisks: *P < 0.05, **P < 0.01, ***P < 0.001.

Effect of Colony Stimulating Factors,
M-CSF, and GM-CSF
Both M-CSF and GM-CSF have been reported to alter DC
differentiation and/or function (22, 28). Examination of the
effects of M-CSF and GM-CSF on the expression of CRIg in
DC showed that cells treated with M-CSF display a marked
increase in CRIg mRNA expression (Figure 7A). The increase
paralleled the increase seen in total CRIg protein assayed by
Western blot. The cytokine caused several-fold increase in the
levels of CRIg protein expression (Figure 7B). Similar increases
in CRIg expression of mRNA and total protein (Figures 7D,E)
occurred in the presence of GM-CSF. However, we found that
neither of these cytokines caused any changes in expression of
cell surface CRIg (Figures 7C,F). As with other cytokines, all
three isoforms of CRIg were concomitantly increased by the
CSFs (Figures 7B,E).

DISCUSSION

The data provide evidence that CRIg is expressed by human
monocyte derived dendritic cells (MDDC). Expression is

observed at the mRNA, protein and cell surface level. The level
of expression may dictate whether the cell promotes T cell
responsiveness or unresponsiveness. Thus, increasing the surface
expression of CRIg by treating with dexamethasone rendered
the DC not capable of supporting the T cell response to PHA
or alloantigen stimulation. Evidence that the dexamethasone-
conditioned DC work through CRIg is provided by the finding
that addition of an anti-CRIg monoclonal antibody to the
cultures prevents the immunosuppression in both culture
models. It has already been suggested that CRIg participates
in adaptive immunity (5, 6, 29, 30). While Xu et al. (29)
did not find CRIg expression in human MDDC, when these
cells were transfected with the CRIg gene (representing the
L form), the protein was expressed. The induced expression
of CRIg in the transfected DC led to an immunosuppressed
response or tolerance (29). This supports our data that CRIg
expression regulates immune responsiveness. The inability to
show expression in the non-transfected cells may be due to the
fact that Xu et al. (29) treated the cells with TNF-α toward
the end of their maturation phase. Our results show that
TNF-α causes the down regulation of CRIg expression. While
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FIGURE 4 | IL-4 and IL-13 down regulate CRIg expression in DC. (A,D) DC were treated with a dose range of the cytokines for 24 h and then examined for CRIg

mRNA expression. (B,E) The levels of total CRIg isoform proteins measured by Western blot in DC treated with 20 ng/ml of cytokines. (C,F) Similarly treated DC were

examined for surface expression of CRIg by flow cytometry. Data are presented as means ± SEM of at 3–4 experiments, each conducted with cells from a different

individual. Significance levels are indicated by asterisks: **P < 0.01, ***P < 0.001, ****P < 0.0001, whilst n.s. indicates non-significance.

further studies need to be undertaken with DCs from different
tissues, transcriptomic data indicate that CRIg is likely to be
expressed in tissue DCs (Supplementary Figure 4). It is evident
that expression ranges from medium to high in different DC
types but expression can be as high as in macrophages. Of
interest, although in limited studies, Tanaka et al. (31) described
surface expression CRIg+ dendritic-like cells in the synovial
tissue from rheumatoid arthritis, osteoarthritis and psoriatic
arthritis patients.

Examination of the culture fluids in our DC-T allogeneic
cell cultures for cytokine production supported the
immunosuppressive effects of dexamethasone treated DCs,
acting via CRIg expression. The dexamethasone-conditioned
DCs-T cell cultures produced significantly less Th1 cytokines,
IFN-γ, and TNF-α, as well as reduced Th2 cytokines, IL-4,
and IL-13. In addition, the production of regulatory cytokine
TGF-β1 was also reduced. With respect to all of these cytokines,
the addition of anti-CRIg monoclonal antibody prevents
the decrease in cytokine production. This indicates that the
major effect precipitating the immunosuppression is the

increased CRIg expression on the DCs. In mouse T cell
cultures, Yuan et al. (7) showed that CRIg-Ig fusion protein
suppressed the phosphorylation of signaling molecules, such
as ZAP-70, ERK1/2, and Akt, thus acting early in the T
cell activation response. Such inhibition was likely to cause
the reported CRIg-Ig-mediated suppression of mTORC1
activation, thereby promoting inducible (i)Treg generation
(32). Furthermore, the immunosuppressive effects of CRIg are
unlikely to result from changes in proportions of Treg cells,
since these were not increased but in fact decreased in these
cultures, consistent with decreased production of the regulatory
cytokine TGF-β1. In contrast, in mice CRIg-Ig fusion protein
promoted the differentiation of Treg cells and the stabilization
of Foxp3, although this was less evident when CRIg expressing
macrophages were used (7). Whether these differences are due to
macrophages vs. DCs or mouse vs. human leukocytes, as well as
other factors, remain to be identified.

Expression on the cell surface indicates that CRIg will
have the ability to mediate the tolerogenic properties of DC.
Inevitably the level of CRIg expression on these cells may be a
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FIGURE 5 | IL-10 and TGF-β1 increase CRIg expression in DC. (A,D) DC were treated with varying concentrations of the cytokines for 24 h and then examined for

CRIg mRNA expression. DC were treated with either 40 ng/ml of IL-10 or 25 ng/ml of TGF-β1 and CRIg isoform protein expression in DC lysates (B,E) or CRIg

expression on the cell surface (C,F) were measured. Data are presented as means ± SEM of three experiments, each conducted with cells from different individuals.

The blot image in (E) was spliced to exclude intervening lanes that represent other treatments and the complete un-spliced blot can be found in

Supplementary Figure 2. Significance levels are indicated by asterisks: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, whilst n.s. indicates non-significance.

determining factor as to the potency of a resultant immunogenic
or tolerogenic response the T cells may express, as the DC
transform from providing an immunostimulatory signal to a
tolerogenic signal following expression of CRIg (29). Thus,
the composition of cytokine milieu at tissue sites is likely to
be important in determining the role played by DC in the
adaptive immune response, to which CRIg contributes. Our data
demonstrate that cytokines significantly modulate the expression
of CRIg in MDDC. CRIg expression on DC was increased by
TGF-β1, IL-10, M-CSF, and GM-CSF. In comparison, LT-α, IFN-
γ, IL-4, IL-13, TNF-α, IL-1β, and IL-6 decreased expression.
In this manner, the cytokines could participate in tolerogenic
vs. immunogenic responses, respectively through their ability
to alter expression of CRIg on DC. However, it is not clear
as to why DC treated with some cytokines did not show
a corresponding alteration in expression at the cell surface.
This may be an assay time related effect. But the ability of a
cytokine to increase the intracellular CRIg levels may operate
collaboratively with another cytokine to increase release to the

cell surface, an area for future investigation. It is therefore
tempting to speculate that inflammatory mediators may regulate
expression at the transcriptional, translation and release to
the cell surface. The regulatory effects of cytokines on CRIg
expression has also been demonstrated for macrophages (12, 33).
Supplementary Table 1 depicts the effects of cytokines on CRIg
expression in MDM and MDDC. While most of the cytokines
had similar effects on both cell types, LT-α, GM-CSF and the
regulatory cytokines, IL-10 and TGF-β1, had the opposite effects
on the two cell types.

The finding that IL-10 and TGF-β1 cause an increase in CRIg
expression on DC is of interest and importance in adaptive
immunity and immune responsiveness. Tolerogenic DC can
be generated by immunosuppressive cytokines including IL-
10, TGF-β1 (34–37), and immunomodulatory drugs, such as
dexamethasone (38). Since tolerogenic DC are being considered
as a therapeutic strategy in transplantation (39) and autoimmune
inflammatory diseases (40, 41), these findings are likely to be
helpful in developing tolerogenic DC for this purpose. IL-10
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FIGURE 6 | Effect of TNF-α, IL-1β, and IL-10 on CRIg expression in DC. (A,D,G) DC were treated with varying concentrations of the cytokines for 24 h and then

examined for CRIg mRNA expression. For examination of CRIg isoform protein expression (B,E,H) and cell surface expression (C,F,I), the cells were treated with

40 ng/ml of cytokine. Data are presented as means ± SEM of three experiments, each conducted with cells from different individuals. Significance levels are indicated

by asterisks: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, whilst n.s. indicates non-significance.

caused a substantial increase in CRIg mRNA and corresponding
CRIg protein in human DCs. Dexamethasone treated DCs
generates tolerogenic DCs that have reduced alloantigenic
capacity, higher IL-10 secretion and inhibit Th2 differentiation
of naïve CD4+ T cells in latex-allergic patients (42).

Our findings of CRIg being expressed by DC have important
implications in autoimmunity, chronic inflammation and cancer
(43). CRIg expression has been associated with decreased T
cell and B cell responses (5, 44). The importance of CRIg
in protecting against autoimmune inflammation has been
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FIGURE 7 | M-CSF and GM-CSF increase CRIg in DC. (A,D) DC were treated with varying concentrations of the CSF and the CRIg mRNA expression determined.

Changes in CRIg isoform proteins (B,E) and cell surface (C,F) CRIg expression on DC treated with 40 ng/ml of each CSF are shown. Data are presented as means ±

SEM of three experiments, each conducted with cells from different individuals. Significance levels are indicated by asterisks: *P < 0.05, **P < 0.01, ****P < 0.0001,

whilst n.s. indicates non-significance.

demonstrated in experimental models of inflammatory arthritis
(45), renal tubulointestitial injury (46), lupus nephritis (47),
immune-mediated liver injury (48), type 1 diabetes (7, 30),
and inflammatory bowel disease (49). In addition, the levels
of CRIg expression in macrophages has been associated with
disease severity in rheumatoid arthritis (31, 50) and patients
with cirrhosis and ascites (51). In cancer, the level of CRIg
expression by tumor associated macrophages has been shown
to be a prognostic marker for tumors metastasizing, with high
expression being prognostic for poor outcome (52–54). This
also raises the potential for CRIg being a check point in the
development of metastatic cancer and hence a drug target.

Our results demonstrate that three transcripts of CRIg are
expressed in human MDDC. By Western blot analysis, we were
able to identify the L and S isoforms along with an additional
form not previously described and designated as the intermediate
or I form. This most likely corresponds to the third transcript
detected by PCR. However, because of lack of appropriate
monoclonal antibodies specific for the different CRIg isoforms,
we were not able to relate these to the changes seen in the

Western blots. Nevertheless, it is evident that the I isoform is less
prominent than the L and S isoforms. While the function of the
I form remains unknown, it is tempting to speculate that since
some of the extracellular domain is the same as the short form,
its interaction with ligands should be the same. But because the I
form has absence of intracellular phosphorylation sites as a result
of alternative splicing, it is questionable that this form would be
able to signal.

The ability of cytokines and dexamethasone to regulate
the expression of CRIg was evident at the mRNA level
and this correlated with protein expression, suggesting that
inflammatory mediators and the immunosuppressive drug act
at the pre-transcriptional level. It has been postulated by
us that dexamethasone acts via the glucocorticoid receptor
to downregulate CRIg expression as well as acting via the
inhibition of PKCα activation and increasing CRIg expression
in this manner (15). While the mechanisms of CRIg+ antigen
presenting cell-induced immunosuppression remain to be
elucidated, it has recently been demonstrated that engaging this
receptor in macrophages reprograms the mitochondrial pyruvate
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metabolism and inhibits their activation (55). Here we have not
only shown the expression of CRIg on DC, but that increased
expression can lead to suppression of T lymphocyte proliferation.
This provides important support for its role in protection
against autoimmune inflammatory diseases and poor prognosis
in metastasizing cancer (43). Furthermore, the findings expand
our knowledge on CRIg and the regulation of the adaptive
immune response, from that of its elegant role in clearance of
pathogens and regulation of the alternative complement pathway
activation (56, 57).
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Supplementary Table 1. The arrows indicate the effects of treating MDM and MDDC for 24 hours 

with the indicated cytokine/agent. MDM data from Munawara et al (2017).  

Cytokine MDM DC 

LTα  

IFN-γ  

IL-4  

IL-13  

IL-10  

TGF-β1  

TNF-α  

IL-13  

IL-6  

M-CSF  

GM-CSF  

Dexamethasone  
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Supplementary Figure 1. Gating strategies for determining CRIg expression on the DC surface and 

Foxp3+ regulatory T cells in allogeneic DC-T cell co-cultures. (A) Representative plots show DC 

gating by capture of the high FSC/SSC population, followed by doublet exclusion by SSC-A vs SSC-

H, and then exclusion of 7-aminoactinomycin D (7-AAD)+ cells (non-viable). Representative 

histogram overlays are also shown of isotype control and CRIg-PE staining in control and 24 h 

dexamethasone-treated viable DCs. The relative fold-increase in viable DC surface CRIg expression 

with dexamethasone treatment was shown to be significant from experiments of DCs from four 

individual donors. *, P < 0.05 by two-tailed t-testing. (B) Representative plots show Treg gating by 

capture of FSC and SSC singlets, followed by CD4+ T cell gating, and resolution of the 

CD25+CD127lo Treg cell population. An isotype control (IgG1-PE) was used to adjudicate Foxp3+ 

Treg cells.  

156



Supplementary Figure 2. Complete Western blots of CRIg isoforms in cytokine-treated dendritic 

cells from which spliced blots presented in Figure 3 and 5 were obtained. The left blot was the source 

of the spliced IFN-γ and corresponding control blot in Figure 3, whilst the right blot was the source 

of the spliced TGF-β1 and corresponding control blot in Figure 5. Each blot presents lysates from DC 

cultured in the presence of the indicated cytokines in an individual, that were examined by staining 

with CRIg 3C9 monoclonal antibodies. The corresponding Ponceau S staining shows the consistency 

of protein load. Low Range Prestained SDS-PAGE Standards (Bio-Rad Laboratories) were used for 

determining the long (L), intermediate (I) and short (S) forms of CRIg with ladder band sizes 

indicated in kilodaltons (kDa). 
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Supplementary Figure 3. Cytokine production and Treg cell populations in allogeneic DC-T cell-

anti-CRIg reactions relative to the absence of dexamethasone treatment. (A) Relative IFN-γ, TNF-α, 

IL-13, IL-10, IL-4, and TGF-β1 production. (B) Relative CD25+CD127lo and Foxp3+CD25+CD127lo 

Treg percentages of CD4+ T cells, and Foxp3+ percentages and MFI of CD25+CD127lo Treg cells. 

Significance levels are indicated by asterisks: *, P < 0.05, **, P < 0.01, ***, P < 0.001, ****, P < 

0.0001. 
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Supplementary Figure 4. VISG4 expression levels in various human macrophages and dendritic 

cells. Data were extracted and compiled from public gene expression data repositories via 

Genevestigator V7.3.1 (Hruz et al. 2008). The expression levels are normalized by Genevestigator 

and presented as boxplots with the mean and interquartile range (IQR), and whiskers denoting 1.5 

IQR from the lower and upper quartile, with asterisks indicating outliers. The sample sizes are 

indicated on each row of data. 

159



Supplementary References 

Munawara, U., Small, A. G., Quach, A., Gorgani, N. N., Abbott, C. A., Ferrante, A. (2007) 

Cytokines regulate complement receptor immunoglobulin expression and phagocytosis of Candida 

albicans in human macrophages: A control point in anti-microbial immunity. Sci Rep 22;7(1):4050. 

doi: 10.1038/s41598-017-04325-0. 

Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., et al. (2008). Genevestigator 

v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 

2008, 420747. doi: 10.1155/2008/420747. 

160



Chapter 6. Complement receptor 

immunoglobulin in human macrophage 

innate immunity

161



CHAPTER 6  |  CRIg AND VITAMIN D 

6.1. Introduction and Contextual Statement 

In the currently published literature and as presented in chapter 4, CRIg is an important 

phagocytosis-promoting receptor which contributes to the innate immune function of 

macrophages, and its expression is heavily inducible by the synthetic steroid dexamethasone. 

This increase of expression manifests functionally as an increase in cellular phagocytic 

capability. In light of this, we next sought to investigate whether naturally occurring steroid 

hormones exert a similar form of control over CRIg and macrophage immune function. 

The naturally occurring steroid hormone vitamin D is an important molecule which has 

extensive roles in a multitude of biological processes such as calcium metabolism and in 

innate immunity. In this chapter, we document the existence of a vitamin D-primed innate 

host defence mechanism in macrophages which promotes enhanced removal of bacterial and 

fungal pathogens and is dependent on CRIg. Results from investigation into the effects of 

the active form of vitamin D (1,25-dihydroxyvitamin D3) on developing and pre-matured 

MDM expression of CRIg and phagocytic function are presented, and these findings are 

supplemented by the assessment of the effects of treatment with the inactive precursor 25-

hydroxyvitamin D3 in combination with the toll like receptor 2 agonist, triacylated 

lipopeptide, Pam3CSK4, which promotes the conversion of 25-hydroxyvitamin D3 to 

1,25D.  

This chapter is presented in the form of a submitted manuscript by Annabelle Small, Sarah 

Harvey, Jaspreet Kaur, Trishni Putty, Alex Quach, Usma Munawara, Andrew McPhee, 

Charles S. Hii, & Antonio Ferrante, entitled ‘The ‘sunshine’ vitamin D upregulates the 

macrophage complement receptor immunoglobulin in innate immunity 

to microbial pathogens’. At the time of the revision of this thesis, this publication was 

accepted for publication in Nature Communications Biology (12th February 2021) as 

manuscript COMMSBIO-20-0217A. 
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Vitamin D deficiency remains a global concern1. Known as the ‘sunshine’ vitamin, the 

secosteroid is converted through a multistep process to the hormonally active 1,25-

dihydroxyvitamin D3 (1,25D), the final step of which can occur in macrophages.2 Here 

we demonstrate a role for vitamin D in innate immunity to infection, that expression of 

the complement receptor immunoglobulin (CRIg), which plays an important role in 

innate anti-microbial host defence3,4,5, is upregulated by 1,25D in human macrophages. 

Monocytes cultured in the presence of 1,25D differentiated into macrophages that 

display increased CRIg mRNA, protein and cell surface expression but not in 

expression of the classical complement receptors, CR3 and CR4. Under these 

conditions, the macrophages show increased phagocytosis of complement opsonised 

Staphylococcus aureus and Candida albicans. Treating macrophages per se with 1,25D 

for 24h causes an increase in CRIg expression. Interestingly, while treating 

macrophages with 25-hydroxyvitamin D3 does not increase CRIg expression, when 

added together with the toll like receptor 2 agonist, triacylated lipopeptide, Pam3CSK4, 

which promotes the conversion of 25-hydroxyvitamin D3 to 1,25D6, leads to an increase 

in CRIg expression. These findings suggest that macrophages harbour a vitamin D-

primed innate host defence mechanism against bacterial and fungal pathogens, 

involving the upregulation of CRIg. 

Vitamin D is generated in humans by a two-step process. Firstly, the ultraviolet light 

band B (UVB) converts the cholesterol precursor 7-dehydrocholesterol to pre-vitamin D in 

the epidermis7. The second step involves the isomerisation to vitamin D3 (or cholecalciferol) 

in a thermo-sensitive, non-catalytic reaction7. Vitamin D3 is an inactive precursor which is 

bioactivated by the liver to form 25-hydroxy vitamin D3 (25D). This is the main form of 

vitamin D present in the circulation and the form measured to determine ‘vitamin D status’ in 

an individual8. To form the biologically active metabolite, 1,25-dihydroxyvitamin D3 
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(1,25D), 25D requires hydroxylation by the enzyme CYP27B1, or 25-hydroxyvitamin D3 1-

α-hydroxylase. This is an intracellular process which occurs predominantly within the 

proximal and distal tubules of the kidneys but also extrarenally in activated macrophages9. 

Here we show that human macrophages differentiated from monocytes in the presence of 

1,25D for 3 days, display increased CRIg mRNA expression (Fig 1a, b). This effect is seen in 

a concentration dependent manner over 0.5 – 200 nM (Fig 1a, b). The increase induced by 

1,25D on CRIg mRNA expression is seen in cultures initiated with either peripheral blood 

mononuclear cells (PBMC) (Fig 1a) or purified monocytes (Fig 1b). Because CRIg plays an 

important role in innate immunity, it was of interest to examine its expression in cord blood 

macrophages. CRIg is expressed to a similar degree in macrophages from adult and cord 

blood and is similarly upregulated by the presence of 1,25D (Fig 1c). 

Further studies with purified monocytes show that the increase in CRIg expression is 

evident at the protein level and is reflected in an increase in the predominant isoform, the 

long (L) as well as the less prominent short (S) forms, revealed by Western blot analysis 

using a mouse anti-human CRIg monoclonal antibody (clone 3C9, Genentech, CA)3 (Fig 

1d). Flow cytometry analyses of cell surface CRIg expression using the same 

monoclonal antibody show that macrophages derived from monocytes treated with 100 

nM of 1,25D display significant increases in surface expression of CRIg, compared with 

vehicle-treated control cells, suggesting that the increase in CRIg expression is likely to 

have an impact on cell function (Fig 1e). While the finding that CRIg expression is 

modulated at the mRNA level by 1,25D suggests that regulation may occur at the 

transcriptional level, possibly through a direct genomic effect of 1,25D, this is more likely 

to be an indirect action or non-genomic action, since the presence of a vitamin D receptor 

(VDR) binding site has not been predicted in the promoter regions of the VSIG4 gene. 
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As CRIg is not the only phagocytosis-promoting complement receptor expressed by 

macrophages10, we next assessed the levels of the β-integrin complement receptors 3 and 4 

(CR3 and CR4, respectively) in macrophages differentiated from monocytes in the presence 

of 1,25D, by measuring the levels of the α-subunits CD11b (CR3) and CD11c (CR4) 

expression. There is no increase in CD11b mRNA. While there is a decrease in CD11c 

mRNA expression in these macrophages (Fig 2a), this is not reflected in changes in either of 

these receptors at the protein level, revealed by Western blot analysis (Fig 2b), and in their 

cell surface expression, compared with untreated controls (Fig 2c). With the finding that 

1,25D upregulates CRIg, but not CR3 and CR4 in macrophages, we investigated whether the 

phagocytic capabilities of the cells were altered by the 1,25D treatment. Using commercially 

available Staphylococcus aureus bioparticles which fluoresce once within the phagosomes of 

the macrophage11, we found that phagocytosis is significantly increased in 1,25D-treated 

cells, compared to untreated control cells (Fig 2d). Using a second assay involving addition 

of heat-killed Candida albicans and analysis of cells under a microscope, phagocytosis is 

significantly higher in macrophages generated in the presence of 1,25D (Fig 2e), with more 

particles engulfed per individual macrophage and more cells engulfing > 4 particles. As the 

process of phagocytosis in both of these assays is promoted by complement and the other 

phagocytosis-promoting complement receptors CR3 and CR4 were essentially not influenced 

by 1,25D treatment, it can be concluded that the upregulation of phagocytic activity is most 

likely a direct result of the increase in CRIg expression on these cells. Interestingly, vitamin 

D or 1,25D has been associated with the promotion of M2 macrophage polarisation, a cell 

which is less inflammatory but has higher phagocytic activity than M1 macrophages12-14. 

Additionally, CRIg is an important phagocytosis-promoting receptor able to mediate capture 

of bacterial, fungal, and parasitic pathogens15, with increased phagocytic rates compared with 

CR33,16,17.  
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Monocyte-derived macrophages have a lifespan ranging from weeks to years in the 

tissues18. As a result, these cells can potentially be exposed to a range of homeostatic or 

inflammatory conditions. As their local microenvironment fluctuates, macrophages are able 

to display a high level of phenotypic plasticity reflecting this environment. Because of this, 

we sought to investigate whether adding 1,25D directly to the macrophages also causes a 

change in CRIg expression. Macrophages were prepared by incubating monocytes in culture 

for 5 days. These were then treated with 100 nM of 1,25D for 24 hours. The macrophages 

show an increase in expression of CRIg mRNA (Fig. 3a) and protein (Fig 3b).  

We surmise that macrophages with an active cytochrome P450 25-hydroxyvitamin 

D3-1alpha-hydroxylase (CYP27B1) and ability to convert the inactive 25D to 1,25D would 

show increased expression of CRIg, possibly through an autocrine or paracrine mechanism 

(Fig 4a). The TLR1/2 agonist Pam3CSK4, is known to increase the expression of CYP27B1 

in macrophages6
. Using a combination of 25D and Pam3CSK4, we investigated whether 

treatment with these agents for 24h causes an increase in CRIg expression. While treating 

macrophages with either 50 ng/mL Pam3CSK4 or 100 nM 25D independently has no 

significant effect, combined addition of these to cells causes an increase in CRIg mRNA and 

protein expression, particularly the long form (Fig. 4b, c, d). These results indicate that 1,25D 

produced by macrophages following engagement of TLR1/26 is able to act in an autocrine or 

intracrine manner to enhance CRIg expression. 

Emerging interest on the non-classical biological effects of vitamin D has recently 

been highlighted19
,
 which includes an ability to regulate innate immune responses. Thus, 

1,25D has been reported to increase the production of anti-microbial peptides e.g. cathelicidin 

and β-defensin 2, and stimulate phagocytosis in macrophages20. Recently, the secosteroid has 

been shown to be required for IL-22 production by type 3 innate lymphoid cells and in 

defence against Citrobacter rodentium infection21. In macrophages, vitamin D is known to be 
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required for defence against the intracellular pathogen Mycobacterium tuberculosis2,22. 

Macrophages express both the vitamin D receptor (VDR) and CYP27B19, the latter enabling 

the generation of 1,25D23. VDR and CYP27B1 expression is upregulated by engaging 

TLR1/2 by triacylated lipoproteins on the microbial surface2,24. Another important piece of 

this immunobiology of the vitamin D ‘jigsaw’ puzzle shown by the present results is the 

upregulation of CRIg expression through the stimulation of TLR1/2 in the presence of 25D, 

providing evidence for a global role in anti-infective innate immunity. The results also make 

prominent the point that while CRIg is readily modulated, CR3 and CR4 are essentially not 

affected by 1,25D. It has been reported that cytokines and inflammatory mediators as well as 

the steroid drug dexamethasone display this differential effect on these receptors25-27. Our 

findings reveal an important mechanism in innate anti-microbial activity of macrophages, 

influenced by vitamin D. This study furthermore supports the importance of vitamin D 

sufficiency for a functional innate immune response. 
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Methods 

Materials. Human blood specimens. The procurement of human blood and all experimental 

procedures were approved by the Human Research Ethics Committee of the Women’s and 

Children’s Health Network (WCHN), Adelaide, South Australia, in accordance to The 

National Statement on Ethical Conduct in Human Research (2007, updated 2018) (National 

Health and Medical Research Council Act 1992). Venous blood was collected from healthy 

adult volunteers by venipuncture with their informed consent, under approval number 

HREC/15/WCHN/21. 

Antibodies. The mouse monoclonal antibody (clone 3C9, for flow cytometry, 0.2 µg; for 

Western blotting, 1:3000) that recognizes the IgV domain of human CRIg was kindly 

provided by Dr. Menno van Lookeren Campagne (Genentech, San Francisco, CA). The rabbit 

recombinant monoclonal anti-CD11b antibody (ab133357, clone EPR1344, 1:1,000), and 

mouse IgG1 isotype control antibody (ab37355) were purchased from Abcam. The mouse 

monoclonal anti-CD11c antibody (clone N-19, 1:1,000) and goat PE-conjugated anti-mouse 

IgG antibody were purchased from Santa Cruz Biotechnology. The mouse monoclonal anti-

GAPDH (clone 71.1, 1:20,000) was obtained from Sigma-Aldrich. The polyclonal HRP-

conjugated rabbit anti-mouse (P0260), anti-goat (P0449), and goat anti-rabbit (P0448) 

immunoglobulin antibodies (1:2000) were obtained from Dako.  

Reagents. Roswell Park Memorial Institute (RPMI) 1640 tissue culture medium, Hank’s 

Buffered Saline Solution (HBSS), foetal calf serum (FCS), L-glutamine, penicillin and 

streptomycin were purchased from SAFC Biosciences. Dithiothreitol (DTT), benzamidine, 

leupeptin, pepstatin A, phenylmethylsulfonyl fluoride (PMSF), 1α,25-dihydroxyvitamin D3 

(1,25D) and 25-dihydroxyvitamin D3 (25D) were purchased from Sigma-Aldrich. Stock 

solutions of 1,25D and 25D were prepared to 10-3 M in 95% ethanol and stored at -80 °C. 

Pam3CSK4 was purchased from Invivogen, with stock preparation at 1 mg ml-1 in endotoxin-

free water and storage at -20 °C. Aprotinin was purchased from Merck. 

Cell preparation and culture. Peripheral blood mononuclear cells (PBMC) or cord blood 

mononuclear cells were prepared by density gradient centrifugation of blood on Ficoll-Paque 

PLUS (GE Healthcare). The interface layer containing PBMC was harvested and cells were 

washed in RPMI 1640 medium. Monocytes were purified from the MC following seeding of 

the latter at 2 × 107 per autologous plasma-coated 6 cm culture dish (TPP) and incubation at 
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37 °C, 5% CO2/air, in a high humidity incubator for 2 hours. Non-adherent cells were 

removed by three gentle washes resulting in > 90% monocytes purity, and each dish 

replenished with 4 mL of  RPMI 1640 supplemented with 2 mmol L-1 L-glutamine, 100 U ml-

1 penicillin, 100 μg ml-1 streptomycin and 10% FCS, pH 7.4. Experiments either utilized total 

PBMC or purified monocytes. Cells were stimulated with either, 1,25D, 25D, Pam3CSK4, or 

diluent and cultured for the duration specified in the Results section. Cells were harvested 

after either 3 days (for CRIg mRNA analysis) or 5 days (for CRIg protein analysis or 

phagocytosis assays) culture by gentle scraping with a ‘rubber policeman’. 

Quantitative PCR assays. The quantitative PCR (qPCR) assays were performed as 

previously described26. In brief, total RNA was extracted from harvested cells using TRIzol 

reagent (Invitrogen). cDNA was prepared using iScript cDNA synthesis kit (Bio-Rad). qPCR 

analysis was performed using iTaq™ Universal SYBR® Green Supermix (Bio-Rad) with the 

following conditions: initial denaturation for 5 min at 95 °C followed by 40 cycles at 95 °C 

for 30 s, 60 °C for 30 s and 72 °C for 30 s using an iQ5 Real Time Detection System with 

iQ5 Optical System v2.1 software (Bio-Rad). Data were normalized to expression of a 

control gene GAPDH for each experiment. The primer pairs used were for human CRIg 

(Forward: 5’-ACACTTATGGCCGTCCCAT-3’; Reverse: 5’-

TGTACCAGCCACTTCACCAA-3’), CD11b (F: 5′-CCTGGTGTTCTTGGTGCCC-3′ and 

R: 5′-TCCTTGGTGTGGCACGTACTC-3′) CD11c (F: 5′-CCGATTGTTCCATGCCTCAT-

3′; R: 5′-AACCCCAATTGCATAGCGG-3′), and GAPDH (F: 5′-

GAGTCAACGGATTTGGTCGT-3′; R: 5′-GACAAGCTTCCCGTTCTCAGCCT-3′). 

Phagocytosis assays. Staphylococcus aureus bioparticle uptake quantitation by flow 

cytometry11. Briefly, 1 × 106 macrophages in HBSS with 8% human AB serum, were 

incubated with 80 µg pHrodo™ Red S. aureus Bioparticles™ (Invitrogen), in a final volume 

of 400 µL in 12 x 75 mm round bottom tubes. These were gassed with 5% CO2/air and 

capped, with incubation at 37 °C for 1 hour. Following washing in HBSS, samples were 

acquired using a BD FACSCanto I flow cytometer, with analysis using FlowJo 10.1 software 

(FlowJo LLC) to determine bioparticle uptake by changes in median fluorescence intensity in 

the PE channel. 

Candida albicans particle uptake quantitation by microscopy. This phagocytosis assay was 

performed essentially as described previously25,26. Briefly, 1 × 105 C. albicans yeast particles 

were added to 5 × 104 macrophages in a final volume of 0.5 ml HBSS. Complement-
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containing human AB serum was added to a final concentration of 10%. The cells were 

incubated for 15 min at 37 °C on a rocking platform. Following removal of unphagocytosed 

yeast particles by differential centrifugation at 175 × g for 5 min, the remaining macrophages 

in the pellet were cytocentrifuged onto a microscope slide and stained with Giemsa. The 

particles in phagocytic vacuoles were enumerated, with phagocytosis was scored as both the 

number of macrophages that had engulfed >4 fungi as well as the number of fungi engulfed 

per cell. 

Cell surface CRIg expression determination. Macrophage surface CRIg expression was 

determined by flow cytometry25. Briefly, harvested cells were incubated in 12 × 75 mm 

round bottom tubes on ice with 100 μg purified human IgG (Kiovig, Baxter) for 15 min. This 

was followed by addition of 0.2 µg of either anti-human CRIg or mouse IgG1 isotype control 

antibodies, with further incubation for 20 min. Cells were washed with 2 mL PBS with 

centrifugation at 500 × g for 5 min. Goat anti-mouse IgG PE secondary antibody was then 

added, with continued incubation in the dark on ice for 20 min. Following washing twice 

more, the cells were acquired (50,000 event minimum) on a BD FACSCanto I with data 

analysed using FlowJo 10.1. 

Western blotting assays. Protein analysis in harvested macrophages was performed using 

Western blot essentially as previously described26. Lysates were generated from macrophages 

in each culture dish with 100 µL of buffer containing 20 mmol L-1 HEPES, pH 7.4, 0.5% 

Nonidet P-40 (v/v), 100 mmol L-1 NaCl, 1 mmol L-1 EDTA, 2 mmol L-1 Na3VO4, 2 mmol L-1 

DTT, 1 mmol L-1 PMSF and 1 µg mL-1 of each protease inhibitor, benzamidine, leupeptin, 

and pepstatin A. Total protein in the soluble fractions were quantitated using the Qubit™ 

Protein Assay Kit on a Qubit 3.0 (Invitrogen), prior to the addition of Laemmli buffer. 

Samples were boiled at 100 °C for 5 min and 60 µg of protein were subjected to 10% SDS-

PAGE at 170 V for approximately 1 hour, using the Mini-PROTEAN 3 system (Bio-Rad). 

The samples were transferred onto nitrocellulose membrane using the Trans-Blot® Turbo™ 

Transfer System (Bio-Rad). The extent of protein transfer was ascertained using 0.1% 

Ponceau S membrane staining. After blocking in TBST with 5% skim milk (blocking 

solution), the membrane was incubated with either mouse anti-human CRIg, rabbit anti-

human CD11b, or mouse anti-human CD11c antibodies in blocking solution overnight at 4 

°C. The membrane was washed in blocking solution (3 × 5 min) and then incubated with the 

appropriate secondary HRP-conjugated antibody (anti-mouse, anti-rabbit, or anti-goat IgG) in  
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blocking solution for 1 hour at room temperature. Immunoreactive material was detected 

using the Western Lightning Plus-ECL Enhanced Chemiluminescence Substrate 

(PerkinElmer), with protein bands visualized on a ChemiDoc™ XRS+ Imager and 

quantitated using Image Lab™ Software, Version 3.0 (Bio-Rad). For GAPDH determination, 

stained membranes were subjected to antibody stripping using ReBlot Plus Mild Solution 

(Millipore) and incubated with mouse anti-human GAPDH antibody, followed by the staining 

and visualization steps as described above. 

Statistical analysis. Graphpad Prism 8.0 (Graphpad Software) was used for statistical 

analysis. Mean differences were compared using t-tests (for comparisons of two groups) or 

one-way ANOVA followed by multiple-comparison tests (for comparisons of three of more 

groups). P values <0.05 were considered to be statistically significant. 
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Fig. 1. CRIg is upregulated in human macrophages by 1,25D. PBMC or purified 

monocytes from the blood of healthy human adult donors were cultured in the presence or 

absence of 1,25D. The cells were harvested to determine levels of CRIg mRNA on day 3 

of culture, and CRIg protein on day 5 of culture. Relative expression (RE) of mRNA or 

protein was measured against GAPDH. a, CRIg mRNA expression in PBMC cultured 

with varying concentration of 1,25D. b, CRIg mRNA expression in macrophages derived 

from monocytes cultured with varying concentrations of 1,25D. c, CRIg mRNA 

expression in macrophages derived from cord blood monocytes compared with 

macrophages from adult cells (left panel), and comparison of macrophages cultured 

for 3 days in the presence or absence of 100 nM 1,25D (right panel). d, CRIg 

protein in macrophages derived from monocytes cultured in the presence or absence of 100 

nM 1,25D. 
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Western blot data are presented as fold-difference in CRIg band intensity normalized against 

GAPDH (loading control) with 6 experimental runs each with cells from a different 

individual. Representative Western blot of CRIg expression (top panel) and GAPDH re-probe 

(bottom panel) are shown. e, Macrophages derived from monocytes cultured in the presence 

or absence of 100 nM 1,25D were analyzed for cell surface CRIg expression by flow 

cytometry. Left panel, Gating strategy based on size and granularity; Centre panel, 

representative histogram overlay of CRIg expression: secondary antibody control is shown in 

dotted black, unstimulated macrophage CRIg fluorescence is shown in blue, and 1,25D 

stimulated macrophage CRIg fluorescence is shown in red; Right panel, Δ median 

fluorescence intensity (MFI), for CRIg staining minus isotype control, is shown for control 

and 1,25D treated cells from 5 individual experiments. a-b, Data are presented as mean ± s.d. 

of 3 experiments each with cells from a different individual. P values were calculated using 

one-way ANOVA followed by Dunnett’s multiple comparison test. c-e, Data are analyzed by 

the paired, two-tailed Student’s t-test. Statistical significance of 1,25D treated versus controls 

are represented as *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001. 
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Fig. 2. Effect of 1,25D on macrophage CR3 and CR4 expression and phagocytosis. 

Monocytes were cultured for either 3 days (for mRNA expression) or 5 days (for protein 

expression) with 1,25D and examined for complement receptor expression. Relative 

expression (RE) of mRNA or protein was measured against GAPDH. a, Macrophages were 

examined for CD11b and CD11c mRNA expression. Data are expressed as fold-change 

compared with untreated control from 3 experiments each conducted with cells from a 

different individual. b, Macrophages were examined for CD11c and CD11b protein 

expression by Western blotting, normalized against GAPDH from 4 experiments each with 

cells from a different individual. Representative Western blots are shown. c, Macrophages 

were analyzed for CD11b and CD11c surface expression by flow cytometry. The PE MFI 

values are shown of 4 (CD11b) and 3 (CD11c) experiments, each conducted with cells from a 

different individual. d, Phagocytosis of S. aureus bioparticles by macrophages as measured 

by the pH-sensitive pHrodo™ Red dye. Data are expressed as MFI, each conducted with cells 

from a different individual. e, Phagocytosis of opsonized C. albicans by macrophages derived 

from monocytes cultured in either the presence or absence of 100 nM 1,25D for 5 days, is 

expressed as the number of engulfed particles per cell (left graph) and the percentage of cells 

with 4 or more phagocytosed particles (right graph). Data are presented as mean ± s.d. of 3 

experiments each with cells from a different individual. a-b, Data are presented as mean ± 
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s.d. P values were calculated using one-way ANOVA followed by Dunnett’s multiple

comparison test. c-e, P values were calculated using paired two-tailed (c) or one-tailed (d-e)

Student’s t-test. Significance of differences between 1,25D versus control, *P <0.05, ****P

<0.0001, ns = not significant.
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Fig. 3. Effects of treating the macrophages directly with 1,25D on CRIg expression. a, 

Macrophages matured after three days of monocyte culture, were treated for a further 24 h 

with 100 nM of 1,25D or diluent and then the CRIg mRNA levels measured by qPCR. Data 

are expressed as CRIg relative to GAPDH from 4 experiments, each conducted with cells 

from a different individual. b, Macrophages differentiated from culturing monocyte for 5 

days culture, were treated as described above. The CRIg expression was measured by 

Western blot in three experiments, each conducted with cells from different individuals. A 

representative Western blot is shown of CRIg and GAPDH staining of the same blot. a-b, 

Relative expression (RE) of mRNA or protein was measured against GAPDH. P values were 

calculated by paired, one-tailed student’s t-test. Significance of differences between 1,25D 

versus control, *P <0.05; **P<0.01 

182



Fig. 4. Vitamin D3 promotes CRIg expression in macrophages treated with the TLR1/2 

agonist Pam3CSK4. a, Schematic diagram showing engagement of TLR1/2 inducing 

enhanced expression of CYP27B1 which then converts 25D to 1,25D b, Macrophages 

matured after three days of monocyte culture, were treated for a further 24 h with either 50 

ng/mL Pam3CSK4, 100 nM 25D or a combination of both or neither and the levels of CRIg 

mRNA determined. The levels were expressed relative to GAPDH mRNA (RE). Data are 

expressed as individual values and as means ± s.d. of three experiments. c, Macrophages 

matured after five days of monocyte culture, were treated as described above. CRIg 

expression was measured by Western blot relative to GAPDH expression. Data are expressed 

as means ± s.d. of 5 experiments. d, A representative Western blot. P values were calculated 

using one-way ANOVA followed by Dunnett’s multiple comparison test. Significance of 

differences between the different treatments are shown, *P <0.05, **P <0.01, ns = not 

significant. 
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Data Fig. 1. Full length Western blots from which cropped blots in the 

443 

444  

445 Extended 

manuscript originated. CRIg, CD11b, CD11c and the corresponding GAPDH blots with 

lanes in their entirety are presented. Precision Plus Protein™ Standards (Bio-Rad) were used 

for determining the molecular weights of proteins in kilodaltons (kDa). 
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7.1. Contextual Statement 

As discussed in earlier chapters, CRIg has long been known to be exclusively expressed by 

particular subsets of tissue resident macrophages such as Kupffer cells (Fu et al., 2012; Helmy 

et al., 2006; Yuan et al., 2017). While in 2005, monocytes were reported to express CRIg 

protein (Kim et al., 2005), since this initial documentation, monocytes have been consistently 

reported negative (Helmy et al., 2006; Tanaka et al., 2008; Vogt et al., 2006). Similarly, while 

neutrophils have been reported to express CRIg mRNA, no protein expression of CRIg by these 

cells has been reported to date (Vogt et al., 2006). In this chapter, we sought to address these 

inconsistencies in the published reports of CRIg expression and investigated the presence and 

dynamics of CRIg expression in human circulatory phagocytes—monocytes and neutrophils.  

This chapter is presented in the format of a submitted publication, and incorporates the main 

findings of ‘Functional expression of CRIg/VSIg4 on neutrophils and monocytes under 

activating conditions involving PKC, p38 and cytoskeleton’, by Annabelle Small, Trishni 

Putty, Khalida Perveen, Nikita Patel, Asmitabahen Patel, Muhammad Y. Gulam, Patrick 

Quinn, Helen Weedon, Anak A.S.S.K. Dharmapatni, Mihir D. Wechalekar, Charles S. Hii, 

Alex Quach, & Antonio Ferrante, which at the time of submission of this thesis, is currently 

under consideration for publication (November 2020). 

Note that all references to ‘supplementary materials figures and tables (termed ‘Fig S1-6, and 

table S1-3) refer to the figures and tables presented in chapter 3 of this thesis. 
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ABSTRACT 

The most recently identified phagocytosis-promoting complement receptor, Complement 

Receptor Immunoglobulin (CRIg), is exclusively expressed in macrophages, playing an 

important role in immunity to bacterial, viral, fungal and parasitic infections. Here we report 

that human neutrophils also express functional cell surface CRIg. Protein analysis by western 

blot reveals two isoforms. Cell surface expression is evident after activation with inflammatory 

mediators, such as tumour necrosis factor and bacterial lipopolysaccharide. Activation-induced 

surface expression on neutrophils requires p38 MAP kinase and protein kinase C, as well as 

intracellular calcium. Neutrophils which are defective in actin microfilament reorganisation 

due to a mutation in ARPC1B or inibition of its upstream regulator, Rac2 lose their ability to 

upregulate CRIg. Inhibition of another small GTPase, Rab27a, prevents the increase in CRIg 

expression, suggesting a requirement for the actin cytoskeleton and exocytosis. Engagement of 

CRIg on neutrophils with an anti-CRIg monoclonal antibody elicits the release of superoxide. 

In contrast, CRIg is highly expressed on monocytes and cellular activation causes a decrease 

in this expression. The data demonstrate the expression of functional CRIg on circulating 

phagocytes, regulated by inflammatory mediators. The findings imply that CRIg expression is 

more widely distributed in different leukocytes types and bring a new perspective on 

mechanisms of the body’s anti-microbial defence system involving this receptor.  

 

INTRODUCTION 

CRIg or V-set and immunoglobulin domain–containing 4 (VSIG4) has distinct structural and 

biological properties from the classical complement receptors, CR3 and CR4 (1, 2). Its role in 

innate immunity is exemplified by its ability to promote the rapid clearance of blood-borne 

bacteria in both a complement-dependent and independent pattern recognition receptor manner 

(3, 4). The restriction of CRIg expression to macrophages, and in particular to subpopulations 
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of fixed tissue mouse phagocytes such as Kupffer cells and resident peritoneal macrophages, 

has been the basis for formulating our concepts to date on the role of this receptor in infection 

and immunity and inflammation (5). Here, we have explored the possibility that CRIg may also 

be expressed by the phagocytes of the circulation, neutrophils and monocytes. We 

demonstrated the surface expression of CRIg on human neutrophils under cell-activating 

conditions, and naturally by monocytes under non-activating conditions. In addition, the 

upregulation of surface CRIg expression on neutrophils requires PKC, p38 MAP kinase, 

intracellular calcium, ARPC1B and the small GTP-binding proteins, Rac and Rab27a.  

RESULTS 

CRIg expression in neutrophils 

Here, we report that human neutrophils also express CRIg (Fig. 1). Neutrophils purified from 

peripheral blood of healthy blood donors demonstrate expression of CRIg mRNA by RT-PCR 

(Fig. 1a, left), and protein by Western blot (Fig. 1a, right panel) using a rat anti-CRIg 

monoclonal antibody which we generated for this study (clone 14B11, Table S2, Fig. S1-5). 

The antibody was validated and shown to react with both mouse and human CRIg in ELISA 

assay, Western blot, flow cytometry and immunohistochemistry. Neutrophil lysates show the 

presence of two isoforms of CRIg migrating at ~45 kDa and ~40 kDa (Fig. 1a, right), consistent 

with the previously reported sizes of the CRIg protein splice variants in macrophages and 

dendritic cells (1, 6, 7). However, it has been demonstrated recently that human macrophages 

can express at least five isoforms of CRIg (8). Examination of neutrophil surface expression 

shows that minimal levels of CRIg is expressed compared to intracellular expression, revealed 

by flow cytometry using anti-CRIg monoclonal antibody (Santa Cruz Biotechnology, clone 

6H8) (Fig. 1b).  
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Activated neutrophils express functional cell surface CRIg 

Importantly, in further investigations with neutrophils, we find that activating neutrophils with 

either exogenous or endogenous inflammatory mediators leads to a significant increase in 

expression of cell surface CRIg (Fig. 1). Stimulation of purified neutrophils with either the 

tripeptide, f-met-leu-phe (fMLF), bacterial lipopolysaccharide (LPS), phorbol myristate 

acetate (PMA), or leukotriene (LT)B4 causes a rapid increase in expression of CRIg in a 

concentration dependent manner (Fig.1c-g). 

Previous studies have shown that TNF primes neutrophils for increased anti-microbial 

function, and that the mechanisms involved include an increase in cell surface receptor 

expression (9). Thus, we examined whether TNF modulates the expression of CRIg. The results 

showed that TNF causes a rapid increase in CRIg surface expression in a concentration and 

time dependent manner (Fig. 2a). When we compare the effects of TNF on intracellular protein, 

it was apparent that TNF did not cause any change in intracellular CRIg levels by Western blot 

analysis (Fig. 2b). This suggests that TNF promotes an increase in CRIg surface expression 

through the translocation of protein to the cell surface without synthesis of new CRIg protein. 

Additionally, adding either TNF or PMA to whole blood induces the cell surface CRIg 

expression on neutrophils (Fig. 2d). In contrast, we observed no expression of CRIg on murine 

neutrophils, including following TNF stimulation of murine whole blood (Fig 2e). 

Next, to determine whether CRIg expressed on the surface of human neutrophils is 

functional, we treated the TNF-primed neutrophils with an anti-CRIg monoclonal antibody 

which has been previously shown to elicit a signalling response through CRIg in THP-1 

macrophages (clone 6H8, Santa Cruz Biotechnology) (6), and measured the respiratory burst 

response using the lucigenin-dependent chemiluminescence assay, a measure of superoxide 

production. Addition of the anti-CRIg antibody causes a significant increase in respiratory burst 

or superoxide production compared to the non-TNF treated cells (Fig. 2c). These results show 
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that CRIg not only promotes the phagocytosis of bacteria, but also elicits a corresponding 

NADPH oxidase respiratory burst following engagement, inducing bactericidal reactive 

oxygen intermediates by neutrophils. 

The ability of neutrophils to express CRIg under the influence of inflammatory 

mediators as shown in our studies is likely to have implications as to how we view the role of 

neutrophils in defence against bacteria and viruses. While the mouse reticuloendothelial system 

or Kupffer cells of the liver show high expression of CRIg (1), this is not the case in humans 

where proteomic studies have failed to show expression of CRIg (10). It is therefore tempting 

to speculate from our results that the infiltrating neutrophils and monocytes at infection sites 

are key players in controlling infection, particularly as the bacterial components and 

endogenously generated mediators upregulate CRIg expression in neutrophils. We have 

previously demonstrated that TNF primes neutrophils to kill bacteria and parasites in a 

complement-dependent manner (9, 11). The ability of this cytokine to increase surface 

expression of CRIg is likely also to play a role in the mechanisms involved in cytokine-induced 

priming of these cells. Unlike CR3 which binds iC3b, CRIg binds both C3b and iC3b fragments 

of complement (1, 12). Therefore, CRIg engages the complement-opsonised bacteria before 

CR3 as the latter receptor also needs to be activated through an ‘inside-out’ signal before these 

receptors can act (5), and thus, CRIg is most likely to be responsible for the rapid initial 

phagocytosis of microbial pathogens early in infection (12).  

  

Role of PKC and p38 MAP kinase 

Since agents such as PMA cause an increase in CRIg surface expression in neutrophils (Fig. 

1e, g), this indicates that PKC activation is involved in the upregulation of CRIg on the surface 

as PKC is a receptor for PMA (13). Thus, treating the neutrophils with the PKC 

pharmacological inhibitor, GF109203X, prevents the expression of CRIg on the surface of 
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neutrophils, induced by PMA (Fig. 3a). This induction of CRIg expression via activation of 

PKC contrasts with the established role of PKC activation in the downregulation of CRIg 

expression in human macrophages (14, 15). In comparison, the inhibitor has no effect on the 

TNF-induced expression of this complement receptor in neutrophils (Fig. 3b). However, this 

is not surprising as TNF does not activate PKC in neutrophils (16), consistent with a lack of 

phosphoinositide generation, indicating the lack of phospholipase C activation (17). These 

findings therefore suggest that CRIg expression in neutrophils and macrophages is regulated 

through differing mechanisms when signalling via the TNF receptors. 

The TNF-induced response in neutrophils is dependent on the activation of p38 MAP 

kinase, demonstrated by the ability of the p38 inhibitors SB203580 and SB202190 to abrogate 

this response (Fig. 3c, d). Other MAP kinases such as ERK1/2 and JNK are unlikely to be 

involved since TNF does not activate these in neutrophils (18). Further investigations show 

that the TNF effect is not dependent on phosphoinositide 3-kinase (PI3K) activation as it is not 

inhibited by wortmannin (Fig. 3e). 

Role of Ca2+, Rac, Rab27a and ARPC1B  

The above observations (Fig. 2, 3) imply that CRIg is stored intracellularly and mobilized to 

the cell surface during stimulation, presumably via exocytosis. Neutrophil degranulation via 

exocytosis is known to require an increase in intracellular Ca2+ (19) and involves actin 

remodelling and microtubule assembly (20). We therefore investigated whether the increase in 

cell-surface CRIg expression requires intracellular Ca2+ and the function of the actin 

cytoskeleton. When neutrophils are treated with the cell permeable Ca2+-selective chelator 

BAPTA, the increase in cell-surface expression of CD11b induced by fMLF is significantly 

reduced (Fig. 4a). While there similarly appears to be a reduction in cell-surface CRIg 

expression, this is not significant compared with cells treated with fMLF alone (P=0.1839). 
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However, this is likely a result of the increased baseline expression of CRIg on the surface of 

neutrophils treated with BAPTA alone. Thus, we only observe a significant increase in CRIg 

expression on neutrophils stimulated with fMLF in the absence of the inhibitor, indicating a 

requirement of intracellular Ca2+ in mediating the upregulation of CRIg cell surface expression. 

Since fMLF and TNF do not cause the degranulation of azurophilic and specific 

granules (Table S3), it is unlikely that CRIg is localised in these compartments. Similarly, the 

finding that PMA does not cause release from azurophilic granules supports our view that CRIg 

is not present in these granules (Table S3). Cytochalasin B inhibits actin network formation 

and it has been used widely in neutrophil degranulation studies. Addition of cytochalasin B to 

neutrophils promotes the fMLF-induced release from azurophilic (primary) and specific 

(secondary) granules (21) (Table S3). While cytochalasin B promotes the fMLF-induced 

expression of CD11b, there is no effect on CRIg expression (Fig 4b). This suggests that CRIg 

is not associated with the specific and azurophilic granules but is present in a store which is 

insensitive to cytochalasin B, potentially in gelatinase granules. This is supported by the finding 

that LPS treatment mobilizes gelatinase granules but only a minor fraction of specific granules 

(22) and was found to increase expression of CRIg in neutrophils. Further support comes from 

findings that both TNF and fMLF mobilise release from gelatinase granules and secretory 

vehicles (23) (Table S3). 

To further investigate the role of the actin cytoskeleton, we examined the effects of 

blocking the function of rac, a small GTPase that regulates actin polymerisation and neutrophil 

function, including migration, superoxide production (24, 25) and degranulation (24). Three 

highly homologous forms of rac proteins (rac1, rac2 and rac3), are expressed in mammalian 

cells. Of these, rac1 and rac2 are expressed in neutrophils, and there is no evidence for the 

presence of rac3 in myeloid cells (26). Human neutrophils express predominantly rac2 (~97%) 

and a small amount of rac1 (27). We found that treating neutrophils with the rac1 inhibitor, 
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NSC 23766, doesn’t alter either CRIg or CD11b expression in response to fMLF (Fig. 4c). 

Additionally, EHT 1864, a rac inhibitor with selectivity for rac1 and rac2 over rac3 (28), 

suppresses the stimulatory effect of fMLF and TNF on CRIg and CD11b expression (Fig. 4d). 

While the rac1/2 inhibitors have been reported to possess “identical” non-rac-related actions in 

platelets (29), the differing actions between the two pharmacological inhibitors suggest that 

upregulation of surface CRIg and CD11b expression in response to fMLF and TNF is unlikely 

to involve a non-rac-related mechanism of action. While our results imply that rac2 is involved, 

data from human neutrophils with the rac2 (D57N) mutation (24) show that the loss of rac2 

function is associated with a selective loss of azurophilic granule release but did not affect 

release from specific granules (24). Thus, we infer from our findings that rac2 may promote 

release from gelatinase granules.  

To support a role for rac2 and actin filament reorganisation in the induction of CRIg 

surface expression, we utilised neutrophils from a patient deficient in the expression of actin 

related protein 2/3 complex subunit 1B (ARPC1B), also known as Arc-p41, the only ARPC1 

isoform expressed in haematopoietic cells (30, 31). Arp2/3 is a downstream effector of rac2 

(32) and is required for actin filament branching, with total loss of function being embryonic 

lethal (33). We questioned whether neutrophils from an ARPC1B deficient individual with 

impaired actin polymerisation function (3) are able to upregulate CRIg surface expression after 

stimulation (Fig. 4e). Our data demonstrate that ARPC1B deficient neutrophils, while showing 

normal basal expression of CRIg, CD11b, and CD11c, did not display an increase in expression 

of these receptors in response to TNF and fMLF (Fig. 4e). This finding supports a role for 

ARPC1B and rac2 in regulating CRIg expression in neutrophils. Importantly, neutrophils 

deficient in ARPC1B fail to upregulate their CRIg expression, yet show an increase in release 

from azurophilic granules (31), further supporting that CRIg is not contained within these 

granules. 
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Membrane-membrane docking and fusion during exocytosis requires intracellular Ca2+, 

as well as other effectors, including the small GTPase, rab27a (34). We therefore investigated 

whether Rab27a is required for the surface expression of CRIg. Nexinhib20, a specific Rab27a 

inhibitor, causes inhibition of CRIg expression on the cell surface (Fig. 4f). Interestingly, 

Rab27a regulates exocytosis of gelatinase and specific granules but not of azurophilic granules 

(35). However, when using fMLF in combination with cytochalasin B, degranulation from 

azurophilic granules was regulated by Rab27a (34). Indeed, Rab27a is largely absent from 

CD25-enriched secretory vesicles (35). This, together with the finding that secretory vescicles 

can be released by fMLF when intracellular Ca2+ is chelated with BAPTA (21), leads us to 

conclude that CRIg is likely stored within the gelatinase granules. 

 

Monocytes express CRIg 

Further, we found that monocytes also express CRIg mRNA and protein (Fig. 5a). These cells 

express the 45 kDa isoform which is also expressed in monocyte-derived macrophages (Fig. 

S6). In comparison to neutrophils, resting monocytes express high levels of CRIg on the cell 

surface (Fig. 5b, c). Intracellular CRIg expression is also shown by flow cytometry and is 

compared with surface expression (Fig. 5b). This difference between cell surface expression 

on monocytes and neutrophils is also evident in whole blood assays (Fig 5c). In addition, the 

data reveal the absence of CRIg in T cells, B cells and NK cells (Fig. 5c). Previous studies have 

reported that monocytes do not express CRIg (1). It is most likely that this is due to loss of 

CRIg from the cell surface during cell isolation from the blood followed by further cell 

manipulation during culture. Accordingly, we demonstrate that CRIg expression on the 

monocyte cell surface decreases significantly following the isolation of the mononuclear cells 

(PBMC) from human blood (Fig. 5d). Note that cryopreservation of the monocytes (PBMC) 

and subsequent thawing leads to a significant loss of the receptor on cell surface. This contrasts 
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with expression of the classical complement receptors, CR3 and CR4 which may in fact be 

increased following cell separation and cryopreservation (Fig. 5d). Finally, In contrast to 

neutrophils, activation of whole blood monocytes with PMA leads to a significant decrease in 

CRIg expression on the cell surface (Fig. 5e). This is similar to the previously reported studies 

with macrophages treated with PMA (14). This difference between neutrophils and 

monocytes/macrophages suggests the existence of another regulatory role for CRIg in defence 

against bacterial infection in the blood stream and in tissues. 

 

Discussion 

The data demonstrate that human blood neutrophils and monocytes express CRIg mRNA and 

protein. While CRIg was abundantly expressed on the cell surface of monocytes, neutrophils 

required activation with inflammatory mediators to demonstrate functional cell surface 

expression. It is thus intriguing that this expression has not been reported previously. This can 

potentially be explained in part by our observations that the commonly used anti-human CRIg 

monoclonal antibody clones 6H8 and 3C9 detect different isoforms of CRIg to each other when 

used to examine the same macrophage protein sample (Fig. S1). Human MDM treated with 

dexamethasone express at least five transcript variants of CRIg (8). Thus, this difference in 

antibody reactivity can possibly be explained by the existence of multiple protein variants being 

expressed by MDM which are differentially detected by the two monoclonal antibodies. While 

studies to confirm which specific CRIg variants are being expressed by monocytes and 

neutrophils remain to be conducted, it is plausible that neutrophils and monocytes are 

expressing different protein variants compared to macrophages. This view is supported by our 

Western blot results, which detected a protein migrating at ~50 kDa in MDM total cell lysates 

using anti-CRIg clone 3C9 (Fig. S1), while the largest protein observed in neutrophils and 

monocytes using anti-CRIg clone 6H8 migrates around 45 kDa (Fig. 1a, 5a), suggesting that 
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the larger protein expressed by MDM is not expressed in circulating phagocytes. This view 

that there is an isoform of CRIg that is exclusively expressed by MDM which is detected by 

the commonly used antibody clone 3C9 and not 6H8, potentially explains why for the last two 

decades, CRIg has been known to be exclusively expressed by macrophages. Additionally, 

CRIg expression by neutrophils may have been missed as in our study, we found that surface 

expression of CRIg is not significantly detectable compared with isotype control fluorescence 

values unless the neutrophils have been stimulated with inflammatory mediators or agonists. 

The initial study which assessed CRIg expression by cells in the circulation and reported them 

negative was conducted using flow cytometry to assess unstimulated, healthy control blood 

samples (1). Similarly with monocytes, we demonstrated that CRIg is lost from the cell surface 

upon cell isolation and cryopreservation, and this loss could explain why monocyte expression 

has been previously missed. 

Further studies into the mechanisms of the agonist-induced CRIg expression on the 

neutrophil surface demonstrated a role for PKC, p38 MAP kinase, ARPC1B, Rac 2, and 

Rab27a and by deduction, mobilisation from gelatinase granules (depicted in Fig. 6). The 

increase in CRIg surface expression induced by PMA, a known direct activator of PKC, was 

inhibited by the pharmacological inhibitor, GF 109203X. In comparison, the effects of TNF, 

which does not activate PKC, were not inhibited, but the response to TNF was dependent on 

p38, shown by inhibition by two of the p38 MAP kinase inhibitors, SB203580 and SB202190. 

The correlation of CRIg upregulation with the upregulation of CD11b, known to be present in 

neutrophil specific and azurophilic granules, suggests that CRIg could be stored in the same 

compartments as CD11b. Furthermore, as ARPC1B-deficient neutrophils exhibit enhanced 

secretion of azurophilic granules (31) and our findings showed that these deficient cells were 

unable to upregulate either of CD11b or CRIg in response to TNF and fMLF, this indicates that 

CRIg is not stored in azurophilic granules. Inhibition of Rab27a successfully inhibited surface 
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upregulation of CRIg in response to fMLF stimulation. Rab27a is known to be responsible for 

regulating the docking and fusion with the plasma membrane during exocytosis of both 

gelatinase and specific granule but not azurophilic granules (35). This, considered in 

conjunction with the fact that LPS predominantly induces the release of gelatinase rather than 

specific granules, and that LPS enhances the surface expression of CRIg, suggests it is unlikely 

that CRIg is stored in specific granules. Furthermore, in the absence of Ca2+ ions, neutrophils 

are still able to release secretory vesicles in response to fMLF (21). Thus, our data 

demonstrating that neutrophils are unable to upregulate CRIg in response to fMLF in the 

presence of the Ca2+ chelator BAPTA-AM, would argue against CRIg being stored in the 

secretory vesicles. Evidence strongly suggests that CRIg is stored in the gelatinase granules of 

human neutrophils. 

A key observation emanating from the data is that CRIg expression is regulated 

differently in neutrophils compared to macrophages and monocytes. While TNF, PMA and 

LPS depress expression in monocytes and macrophages (8, 14), these increase expression in 

neutrophils. Indeed, PKC activation in macrophages depresses CRIg expression, but increases 

expression in neutrophils. Similarly, the activation of p38 is not required for macrophage CRIg 

expression (14). 

CRIg is a promoter of phagocytosis, and as it binds to the complement component C3b 

which is a precursor to iC3b, it is able to act faster than the other complement receptors, CR3 

and CR4 (1, 12). Thus, for neutrophils, the ability to upregulate a receptor with such efficient 

phagocytic capability would be highly beneficial. Particularly, in cases of low-grade infection 

where a fully-fledged immune response is not required, CRIg may be upregulated on the 

surface of these cells, where it then promotes pathogen clearance without inducing the 

‘cytokine storm’ which is characteristic of engagement through CR3 (36). Clearance of low 

levels of opsonised particles from the blood by Kupffer cells typically does not induce an 
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inflammatory response (37), and as neutrophils are known to assist Kupffer cells in the removal 

of extracellularly captured particles from the blood (32), this could be a possible function for 

CRIg expressed by neutrophils. Alternatively, CRIg may function as a cell-activating molecule. 

We observed that engaging neutrophils through CRIg induced an oxidative burst response, 

indicating that CRIg is able to induce inflammatory signalling in neutrophils. Other studies 

have shown that in macrophages, CRIg engagement leads to secretion of IL-8 and matrix 

metalloproteinase 9.  

Aside from novelty, the finding that circulating phagocytes express CRIg has broad 

ramifications in terms of the potential use of CRIg as a therapeutic agent or target. Similar to 

other B7 family ligands, CRIg expression levels have been shown to be elevated in multiple 

types of cancers (12, 14, 38). As a result, it has been suggested that CRIg may be a potential 

target for inhibiting antibodies (similar in action to blocking antibodies against the checkpoint 

molecules PD-1 and PD-L1). However, if CRIg is naturally expressed in the blood as well as 

the tissues and is an important player in neutrophil-mediated clearance of opsonised pathogens, 

then blocking CRIg may severely immunocompromise patients. Additionally, the role that 

CRIg plays in the function of monocytes remains to be studied. Therefore, the properties of 

CRIg as identified here will be vitally important properties to consider in future studies into 

the therapeutic efficacy of CRIg-targeting agents. 

In summary, the study presented here establishes that neutrophils express functional 

CRIg on the cell surface when activated by exogenous and endogenous inflammatory 

mediators. The work also elaborates on the mechanisms involved in this expression with 

particular emphasis on PKC, p38 MAP kinase, rac2, and Rab27a as well as ARPC1B, 

suggesting the importance of the cytoskeleton and exocytosis, most likely from gelatinase 

granules (Fig. 6). This together with the identification of expression on monocytes, places an 

important perspective on the mechanisms of the inflammatory reaction in infection and 
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immunity. Thus, it is evident that tissue infiltrating blood phagocytes are armed with CRIg to 

participate in phagocytosis in bacterial and viral infection. In the unstimulated state, CRIg is 

abundantly present on the monocyte surface, but little or no expression is present on neutrophils 

(Fig. 7). Therefore, the monocyte may be the first line of anti-microbial immunity that involves 

this receptor. Following infection, inflammatory mediators are generated leading to the loss of 

CRIg expression on monocytes but an increase in expression on the neutrophil surface, 

enabling this cell to efficiently participate in CRIg mediated phagocytosis of bacteria. Both 

monocytes and neutrophils will migrate to the infection foci in tissues but by this stage of the 

inflammatory reaction the neutrophil will arrive at the inflammatory site armed with CRIg. It 

is also known that the inflammatory environment down regulates the CRIg expressed by tissue 

fixed macrophages. Hence, CRIg expression on neutrophils under the influence of 

inflammatory mediators makes this phagocyte the dominant phagocytosis promoting cell at the 

infection site.  
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Methods 

Ethical statement 

The procurement of human blood and all experimental procedures were approved by the 

Human Research Ethics Committee of the Women’s and Children’s Health Network (WCHN), 

Adelaide, South Australia, and the Southern Adelaide Clinical Human Research Ethics 

Committee in accordance to The National Statement on Ethical Conduct in Human Research 

(2007, updated 2018; National Health and Medical Research Council Act 1992). Venous blood 

was collected from healthy adult volunteers by venipuncture with their informed consent. 

Results from studies on ARCIB deficient neutrophils were obtained as part of the clinical 

laboratory assessment of the patient and informed consent was obtain from the parents to 

publish the results.  

All murine experimental procedures were approved by the WCHN Animal Ethics 

Committee and work conducted in accordance to the Australian code for the care and use of 

animals for scientific purposes. 

Reagents 

RPMI 1640 tissue culture medium, foetal calf serum (FCS) and L-glutamine were purchased 

from SAFC Biosciences. Recombinant human tumour necrosis factor (TNF) was purchased 

from ProSpec-Tany Technogene. Phorbol myristate acetate (PMA), lipopolysaccharide (LPS) 

from Escherichia coli O127:B8, N-Formyl-Met-Leu-Phe (fMLF), wortmannin, cytochalasin 

B, BAPTA-AM (calcium chelator), and Nexinhib20 (Rab27 inhibitor) were purchased from 

Sigma-Aldrich. LTB4 was purchased from Cayman Chemical. SB202190 and SB203580 were 

purchased from SelleckChem. The PKC inhibitor GF109203X was purchased from Biomol 

Research Laboratories. Rac-1 inhibitor, NSC 23766, and the Rac-1/Rac-2 inhibitor, EHT 1864, 

were purchased from TOCRIS. 
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Antibodies 

FITC-conjugated goat anti-rat antibody and, unlabelled and PE-conjugated mouse anti-human 

CRIg monoclonal antibody (clone 6H8, 1:200 for Western blotting), were purchased from 

Santa Cruz Biotechnology. Fluorochrome-conjugated antibodies to CD45 (APC-H7; clone 

2D1), CD3 (PE-Cy5; clone UCHT1), CD20 (APC; clone L27), CD14 (FITC; clone M5E2), 

CD11b (PE; clone D12), CD11c (FITC, clone B-ly6), and mouse IgG1-κ isotype control (PE; 

clone MOPC-21), were purchased from BD Biosciences. The rabbit anti-ARPC1B antibody 

(HPA004832, 1:1000) and mouse monoclonal anti-GAPDH (clone 71.1, 1:20,000) were 

obtained from Sigma-Aldrich. The polyclonal HRP-conjugated rabbit anti-mouse (P0260), 

anti-goat (P0449), anti-rat (P0450), and goat anti-rabbit (P0448) immunoglobulin antibodies 

(1:2000) were obtained from Dako. Custom made rat monoclonal antibody raised to the 

variable domain of human CRIg (clone 14B11, 1:25 for Western blotting), was produced 

through a contract with GenScript (for further information regarding antibody generation, see 

supplementary manuscript). 

Purification of leukocytes 

Neutrophils and peripheral blood mononuclear cells (PBMC) were isolated from the peripheral 

blood of healthy human donors using Hypaque-Ficoll as previously described (39. 40). Briefly, 

blood was layered onto Hypaque-Ficoll, d = 1.114 and centrifuged at 600 × g for 35 minutes 

with no brake. After centrifugation, the leukocytes resolved into two discrete bands: an upper 

PBMC-containing band and the neutrophil-containing band below. Neutrophils were gently 

aspirated from the lower band, and PBMCs from the upper band, and both fractions were 

washed with complete media (600 × g, 5 minutes). Cells were then counted using a 

haemocytometer and viability judged by their ability to exclude trypan blue. Cell preparations 

were routinely >99% viable and >98% pure. For cryopreservation studies, freshly isolated 

PBMCs were cryopreserved in freezing media containing 90% heat-inactivated FCS and 10% 
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DMSO. Cells were incubated in a ‘Mr. Frosty’ Freezing Container (Thermo-Fisher Scientific) 

overnight in a -80 °C freezer, before being transferred into liquid nitrogen for storage. Prior to 

use, cryopreserved PBMCs were removed from storage and thawed rapidly at 37 °C before 

washing in RPMI-1640. Cells were counted and viability assessed by the trypan blue-exclusion 

method prior to application. 

Reverse transcription PCR assays 

In brief, total RNA was extracted from monocyte-derived macrophages at day three of culture 

or immediately after separation from monocytes and neutrophils using TRIzol reagent 

(Invitrogen). cDNA was prepared using 300 ng RNA using iScript™ cDNA synthesis kit (Bio-

Rad). RT-PCR analysis was performed using AmpliTaq Gold® 360 Master Mix (Applied 

Biosystems) with the following conditions: initial denaturation for 5 min at 95°C followed by 

40 cycles at 95°C for 30 s, 60°C for 30 s and 72°C for 30 s using a Bio-Rad MyCycler. The 

primer pairs used were for human CRIg (Forward: 5’-ACACTTATGGCCGTCCCAT-3’; 

Reverse: 5’-TGTACCAGCCACTTCACCAA-3’) and GAPDH (8). The PCR products were 

visualized by 2% agarose gel electrophoresis alongside 1 kb Plus DNA ladder (Invitrogen). 

Sanger sequencing 

Genomic DNA was isolated from heparinised blood using the Flexigene DNA kit (Qiagen). 

ARPC1B gene exon 2 and the flanking intronic regions were amplified using AmpliTaq Gold® 

360 Master Mix (Applied Biosystems) with 0.1 μM of each M13-tagged primer (Forward: 

GCTGCCCCTCTAAACTGAGG; Reverse: AACTTTAACCCAGGAGGCCC), and 25–50 ng 

DNA in a 25 μL final PCR volume. Thermal cycling conditions were an initial denaturation of 

95 °C for 10 min, followed by 35 cycles of 95 °C for 30 s, 60 °C for 30 s, and 72 °C for 60 s; 

with a final extension at 72 °C for 7 min. The PCR products were purified using Illustra 

ExoProStar1-Step (GE HealthCare) and sequenced using BigDye Terminator v3.1 on an ABI 

206



CHAPTER 7  |  CRIg IN MONOCYTES AND NEUTROPHILS 

 

3730 DNA Analyzer (Applied Biosystems). Mutation detection was performed by alignment 

with reference sequence LRG_1188 using Mutation Surveyor v4.0.11 (SoftGenetics). 

Western Blot 

Cell pellets were resuspended in 100 µL of lysis buffer containing 20 mM HEPES, pH 7.4, 

0.5% Nonidet P-40 (v/v), 100 mM NaCl, 1 mM EDTA, 2 mM Na3VO4, 2 mM dithiothreitol, 1 

mM PMSF and 1 µg/mL of each protease inhibitor (benzamidine, leupeptin, pepstatin A, and 

phenylmethylsulfonyl fluoride (PMSF), purchased from Sigma-Aldrich, and aprotinin 

purchased from Calbiochem. Total protein in the soluble fractions were quantitated using the 

Qubit™ Protein Assay Kit on a Qubit 3.0 (Invitrogen), prior to the addition of Laemmli buffer. 

Samples were boiled at 100°C for 5 min and 60 µg of each were subjected to 10% SDS-PAGE 

at 170 V for approximately 1 hour, using the Mini-PROTEAN 3 system (Bio-Rad), and then 

transferred to nitrocellulose membranes using the Trans-Blot® Turbo™ Transfer System (Bio-

Rad). Protein transfer was examined by 0.1% Ponceau S staining. After blocking in TBST with 

5% skim milk (blocking solution) for 1 h, the membrane was incubated primary antibodies in 

blocking solution for 1 h at room temperature or overnight at 4 °C. The membrane was washed 

3 x 5 min in blocking solution and then incubated with appropriate secondary HRP-conjugated 

antibodies in blocking solution for 1 h at room temperature. Immunoreactive material was 

detected using the Western Lightning Plus-ECL Enhanced Chemiluminescence Substrate 

(PerkinElmer), with protein bands visualized on a ChemiDoc™ XRS+ Imager and quantitated 

using Image Lab™ Software, Version 3.0 (Bio-Rad). 

Flow cytometry 

Cell surface expression of CRIg, CD45, CD11b, CD11c and CD14 were analysed by flow 

cytometry as previously described (7, 15). Briefly, 2.5 × 105 cells were incubated in 12 x 75 

mm round bottom tubes on ice with 100 μg purified human IgG (Kiovig, Baxter) for 15 min. 
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This was followed by addition of the appropriate fluorochrome-conjugated anti-human primary 

antibodies, with further incubation for 20 min. Cells were washed with 2 mL PBS with 5% 

heat-inactivated FCS with centrifugation at 500 × g for 5 min. The cells were acquired (50,000 

event minimum) on a BD FACSCanto I with data analysed using FlowJo 10.1 (FlowJo, LLC). 

Chemiluminescence assay 

Luminol-dependent chemiluminescence assay was performed as previously described (39). 

Briefly, 1 x 106 neutrophils were added to 125 µg lucigenin (bis-N-methylacridinium nitrate, 

Sigma-Aldrich) in 500 µL HBSS. Chemiluminescence was measured using a LB 953 

Autolumat Plus luminometer (Berthold Technologies), and peak fluorescence recorded. Data 

is expressed at mean relative luminescence units (RLU). 

Statistical Analysis 

GraphPad Prism 8.0 (GraphPad Software) was used for statistical analysis. Mean differences 

were compared using t-tests (for comparisons of two groups) or one-way ANOVA followed 

by multiple-comparison tests (for comparisons of three of more groups). P values < 0.05 were 

considered to be statistically significant. 
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Fig. 1. Expression of CRIg by human neutrophils. (A) Representative gel of CRIg (VSIG4) 

and GAPDH cDNA amplicons from neutrophil RNA (left) and Western blot of neutrophil 

lysate stained using anti-CRIg clone 14B11 monoclonal antibody (right). NTC, no template 

control. (B) Surface and intracellular CRIg expression in neutrophils, including gating strategy 

with histogram overlays of PE anti-CRIg clone 6H8 (red line) and isotype control (black line 

with grey shading) staining. Bottom graph shows MFI of CRIg PE minus isotype control 

(ΔMFI) for surface (n = 15) and intracellular (n = 5) staining.  Measurements were taken from 

distinct specimens and graphs show mean ± SD. Two-tailed, unpaired t-test with Welch’s 

correction compared with surface expression.  One-way analysis of variance (ANOVA) with 

Tukey’s post-test compared between all sample types. (C to F) Graphs of CRIg expression 

change on the surface of neutrophils over time-courses (upper panels) and concentration ranges 

(middle panels), are shown along with representative histograms (lower panels) of responses 

to fMLF, LPS, PMA, and LTB4.  Expression was assessed as described above with ΔMFI as a 
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percentage increase over control treatment. (G) Summary of the stimulation of neutrophil CRIg 

expression by fMLF, LPS, PMA and LTB4 at optimal times (20, 60, 20, and 5 min, 

respectively) and concentrations (10-6 M, 10 µg/ml, 90 nM and 5 ng/ml, respectively). 

Measurements were taken from distinct specimens and graphs show mean ± SD of at least three 

distinct experiments. C to F, One-way ANOVA with Dunnett’s post-test compared with 

expression at the start of the time-course or in the absence of added inflammatory mediator. G, 

Kruskal-Wallis test with uncorrected Dunn’s post-test compared with control treatment. 

  

218



CHAPTER 7  |  CRIg IN MONOCYTES AND NEUTROPHILS 

 

 

Fig. 2. TNF induces CRIg expression on neutrophils. (A) Shows CRIg expression changes 

on the surface of neutrophils over time-courses and TNF concentration ranges, are shown along 

with representative histograms (lower panels) of responses to TNF. Expression was assessed 

as described in Fig. 1 with ΔMFI as a percentage increase over control treatment.  Summary of 

the stimulation of neutrophil CRIg expression by TNF at optimal time of 20 min and 

concentration of 103 U/ml. (B) Total CRIg protein expression of unstimulated or TNF 

stimulated neutrophils as assessed by Western blot, using anti-CRIg clone 14B11, with CRIg 

protein normalised against GAPDH loading control. (C) Neutrophils were treated for 20 min 

with 103 U/mL TNF with or without challenge with 4 µg/mL anti-CRIg mAb (6H8), and the 

respiratory burst measured by lucigenin-induced chemiluminescence (RLU, relative 

luminescence units). (D) Neutrophil surface CRIg expression in whole blood treated with 104 

U/mL TNF or 90 nM PMA for 20 min. (E) The effects of TNF on mouse neutrophil CRIg 

expression in whole blood assay. Measurements were taken from distinct specimens and graphs 
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show mean ± SD of at least three distinct experiments. A, One-way ANOVA with Dunnett’s 

post-test compared with expression at the start of the time-course or in the absence of added 

inflammatory mediator. B, D, Two-tailed, unpaired t-test compared with control expression; 

C, One-way ANOVA with Tukey’s post-test compared between all treatments.
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Fig. 3. The role of PKC and p38 MAP kinase. (A, B) Surface CRIg expression induced by 

PMA or TNF measured on neutrophils pre-treated for 10 min with 500 nM of the PKC 

inhibitor, GF109203X. (C, D) Effects of p38 inhibitors. Surface CRIg induced by TNF on 

neutrophils pre-treated for 30 min with either 10 µM SB203580 or 20 µM SB202190. (E) 

Effects of PI3 kinase inhibitor, wortmannin. Surface CRIg induced by TNF on neutrophils pre-

treated for 10 min with 100 nM wortmannin. Expression was assessed as described in Fig. 1 

with either ΔMFI per se or as a percentage increase over control treatment. Measurements were 

taken from distinct specimens and graphs show mean ± SD of at least three distinct 

experiments, Sidak's post-test compared between TNF/PMA treatment and control or treatment 

in the presence of inhibitor. 

221



CHAPTER 7  |  CRIg IN MONOCYTES AND NEUTROPHILS 

 

 

Fig. 4. Expression of CRIg on the neutrophil surface is dependent on intracellular 

calcium, Rac, ARPC1b and Rab27a. (A to D), Surface CRIg and CD11b expression was 

measured on neutrophils challenged with 10-6 M fMLF, following pre-treatment with 25 μM 

of Ca2+ chelator, BAPTA-AM for 30 min, 10 μg/mL of the actin polymerization inhibitor, 

Cytochalasin B (CB) for 10 min, 50 μM of the Rac-1 inhibitor, NSC 23766 for 1 h, or 100 μM 

of the Rac-1/Rac-2 inhibitor, EHT 1864, for 30 min. The effect of EHT 1864 was also 

examined on TNF (103 U/mL)-induced CRIg and CD11b expression. (E) Sequence 

electropherograms of the end of ARPC1B exon 2 and flanking intron in a healthy donor and a 

patient with a splice-site substitution (LRG_1188t1:c.64+2T>A). The resulting deficiency in 

ARPC1B is shown in the Western blot showing absence of the protein in neutrophil lysate 
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compared to parental and other healthy donor neutrophils. Flow cytometric histograms present 

a lack of up-regulation of cell surface CRIg, CD11b and CD11c in response to TNF is shown 

in ARPC1B-deficient neutrophils. Graphs show mean ΔMFI of two experiments. (F) Surface 

CRIg and CD11b expression was measured on neutrophils challenged with 10-6 M fMLF, 

following pre-treatment with 20 μM of Rab27a inhibitor, Nexinhib20, for 1 h. Expression was 

assessed as described in Fig. 1 with either ΔMFI itself or as a percentage increase over control 

treatment. Measurements were taken from distinct specimens and graphs show mean ± SD of 

at least three distinct experiments. One-way ANOVA with Sidak's post-test compared between 

fMLF/TNF treatment and control or fMLF/TNF in the presence of inhibitor. 

223



CHAPTER 7  |  CRIg IN MONOCYTES AND NEUTROPHILS 

 

 

Fig. 5. Monocytes express CRIg mRNA and protein. (A) Representative gel of CRIg and 

GAPDH cDNA amplicons from monocyte RNA (left) and Western blot of monocyte lysate 

stained using anti-CRIg clone 14B11 monoclonal antibody (right). (B) Surface and intracellular 

expression of CRIg in the monocyte fraction of PBMC and; (C) CRIg expression on the surface 

of whole blood leukocyte subpopulations, with gating strategy and histogram overlays of PE 

anti-CRIg clone 6H8 (red line) and isotype control (black line with grey shading) staining. The 

values for samples from 14 different individuals. (D) Comparison of monocyte surface CRIg 

(n = 7), CD11b (n = 4), CD11c (n = 4) and CD18 (n = 4) expression in whole blood, against 

freshly isolated and cryopreserved PBMC from the same specimens, with representative 

histograms and graphs showing ΔMFI as a percentage of that observed in whole blood. (E) 
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Shows the effects of PMA treatment of whole blood on monocyte CRIg surface expression. 

Measurements were taken from distinct specimens and graphs show mean ± SD. B and E, 

Two-tailed, unpaired t-test with Welch’s correction compared with surface expression. D, One-

way analysis of variance (ANOVA) with Tukey’s post-test compared between all sample types. 

225



CHAPTER 7  |  CRIg IN MONOCYTES AND NEUTROPHILS 

 

 

Fig. 6. *Diagrammatic representation of data in Fig 3 and 4, and Table S3 showing the 

intracellular events leading to the expression of CRIg on the neutrophil surface following 

activation. Inflammatory mediators act via p38, PKC, Rac2/Arp2/3 (41) increases in 

intracellular calcium and Rab27a to promote exocytosis and release of CRIg to the surface. 

Whereas Rac/Arp2/3 and PKC are likely to act via actin reorganisation, calcium and rab27a 

are likely to regulate granule-plasma membrane docking and fusion. As argued, CRIg is most 

likely stored in the gelatinase granules. *Image created with BioRender.
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Fig. 7. *CRIg is expressed on monocytes and activated neutrophils, altering our understanding 

of the dynamics of the inflammatory reaction in response to infection. Under physiological 

conditions, the circulating monocytes show high CRIg expression and neutrophils show very 

low expression. Thus, infiltration of microbial pathogens to the blood stream are most likely 

phagocytosed by monocytes, but as exogenous and endogenous inflammatory mediators are 

generated, the neutrophil will show increased expression, while conversely, expression in 

monocytes is significantly reduced, leading to the neutrophil being the major phagocytic cell. 

Neutrophils are rapidly deployed to sites of infection in the tissues by which stage the CRIg on 

tissue macrophages has been downregulated. The neutrophils continue to express CRIg and 

deal with residual bacteria. The monocytes under the influence of the inflammatory 

environment lose their expression. *Image created with BioRender. 
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8.1. Introductory Remark 

The investigation that has been presented in this thesis initially sought out to fully 

recharacterise the expression of CRIg in human cells, with the overall goal of unravelling 

the uncertainties present in the field of CRIg biology at the time of commencement. Here, 

we have provided the preliminary assessment of the functionality of multiple new anti-

murine CRIg monoclonal antibodies, and have substantially built upon our existing 

knowledge of the expression of CRIg in human macrophages and the network of mediators 

which influence this expression. We have also demonstrated that human circulating 

monocytes express CRIg mRNA, which is reflected by protein expression on the cell surface. 

Finally, and possibly most importantly, the data presented in this thesis have shown for the 

first time, functional CRIg expressed by human MDDC and neutrophils, identifying novel 

roles for CRIg in the regulation of T cell responses, and in infection and immunity. 

8.2. Generation of Anti-CRIg Monoclonal Antibodies 

Our lab has successfully generated two monoclonal antibodies reactive to murine and human 

CRIg which are suitable for use in Western blot, immunohistochemistry, and flow 

cytometry. The generation of our new anti-murine CRIg monoclonal antibody clones has 

several benefits. Firstly, at the time of the compiling of this thesis, there is a fundamental 

lack of anti-murine CRIg monoclonal antibodies commercially available; specifically, there 

are no monoclonal anti-murine CRIg antibodies available that have been validated for use in 

immunohistochemistry and Western blot. Secondly, there are no commercial monoclonal 

antibodies that are capable of recognising both murine and human forms of CRIg. The work 

presented here remedies these issues, and the generated antibodies stand to be the first of 

their kind.  

When designing and screening our antibodies, we were particularly interested in whether 

our new clones would be suitable for use in functional assays. As such, the ability of our 

antibodies to block or elicit a signal through CRIg was an important consideration 

throughout the design process. As shown in chapter 3 figure 2 (Fig. S2), we selected a raising 

peptide from the extracellular region of CRIg which was central to the V-type domain of the 

protein. As the V-type domain is the portion of the protein responsible for binding C3b and 

iC3b (Wiesmann et al., 2006), we expect that while the experiments to confirm this were 

unable to be performed in the timeframe of the completion of this thesis and are yet to be 

conducted, that our clones will perform functionally. At the time of the writing of this thesis, 

there are no anti-murine CRIg monoclonal antibodies commercially available which have 

been validated for functional usage. Such antibodies would have the potential to be 
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investigated as therapeutics in complement-driven inflammatory disorders (such as RA), or 

also as checkpoint inhibitors in cancer, as CRIg has been shown to be upregulated on tumour 

cells (Liao et al., 2014).  

The use of a raising peptide with identical sequence to the V-type region of murine CRIg 

was also beneficial as this portion is 80% conserved with human, and accordingly, we have 

demonstrated that our antibody clones were indeed cross-reactive with human CRIg. The 

clones successfully recognised human CRIg protein by immunohistochemistry, flow 

cytometry, and Western blot. While the specific isoforms of human CRIg that our generated 

antibodies recognise and whether using combinations of our antibodies will allow us to 

detect all of the human protein variants remains to be assessed, our preliminary data 

presented here show that clone 14B11 detects at least one protein in human monocytes, 

MDMs, and two forms in human neutrophils. Thus, while our antibodies are suitable for the 

uses outlined in this thesis, it is evident that further monoclonal antibody development is 

required for us to be able to detect all CRIg protein variants simultaneously. 

8.3. CRIg Expression and Role in Phagocytosis in Human MDMs 

CRIg expressed by macrophages is a rapid promotor of phagocytosis of both bacterial and 

fungal pathogens (Helmy et al., 2006) (further discussed in 8.8). We have shown that CRIg 

expression on human MDMs can be positively modulated by the synthetic anti-inflammatory 

steroid dexamethasone, and also by the naturally occurring steroid hormone 1,25D. While 

dexamethasone and 1,25D can engage immune cells via differing mechanisms, these agents 

both induce an upregulation of CRIg protein on the cell surface which is directly reflected 

by an increase in cellular phagocytic capability. This increase in phagocytic capability is a 

hallmark feature of the M2 macrophage phenotype (Yao et al., 2019). Remarkably, we 

observed that treatment with dexamethasone, 1,25D, and other cytokines which induced a 

significant change in CRIg expression did not affect the expression of CR3 and CR4, while 

in the case of 1,25D, we found a decrease in expression of CD11c (CR4) mRNA levels. The 

‘traditional’ complement receptor CR3 has previously been considered to be the dominant 

receptor responsible for the phagocytosis of opsonised bacteria by monocytes, MDM, and 

neutrophils, while CR4 plays a role in internalisation of opsonised bacteria by MDM 

(Lukácsi et al., 2017). However, the presented data in this thesis indicate that inflammatory 

mediators induce an increase in the ability of MDM to internalise opsonised particles, and 

they do this through modulating expression of CRIg and not CR3 or CR4. Thus, it is tempting 

to speculate that CRIg is the crucial molecule on the cell surface of human MDM that is 
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responsible for bacterial and fungal phagocytosis, and not CR3 or CR4 as previously 

thought. 

8.4. CRIg Expression in Human MDDCs 

The work presented in chapter 5 demonstrated CRIg expression on human MDDC for the 

first time, and that cells expressing high levels of CRIg significantly suppress the T cell 

proliferative response to both PHA and alloantigen stimulation. This suppression was able 

to be inhibited by the addition of the anti-CRIg monoclonal antibody clone 6H8 (Santa Cruz) 

to the reactions. However, an interesting aspect of the study was that surface expression of 

CRIg did not necessarily correlate with total protein levels when assessed by Western blot. 

For instance, when DC samples were stimulated with IL-10, we observed a significant 

increase of CRIg total protein, while no modulation was observed when assessing via flow 

cytometry. Similarly, we observed significant decreases in total protein when the MDDC 

were stimulated with IL-4 and IL-13 which were not reflected by surface expression. 

However, when taken together with the data presented in chapter 3 which clearly 

demonstrate that the monoclonal anti-CRIg clones 3C9 and 6H8 detect differing proteins to 

each other, the discrepancy may be explained as 3C9 was used for all Western blot work, 

while 6H8 was used for flow cytometry. As our quantitative PCRs used primers that would 

detect total CRIg expression levels (i.e., all six transcript variants), it is plausible that while 

the CRIg variants detected by 3C9 are being significantly modulated, the variants detected 

by 6H8 are not. Thus, it would be interesting to assess levels of CRIg on the surface of DC 

with either our generated anti-CRIg monoclonal antibodies, or a combination cocktail of 

both 3C9 and 6H8 to see if these better correlate with our Western blot findings. 

Additionally, using our CRIg variant-specific primers, it may also be beneficial to 

quantitatively assess which specific isoforms are being modulated at the mRNA level by 

each cytokine. Experiments such as these would enable us to relate the immunosuppressive 

function of CRIg-expressing cells with the specific CRIg variants and may potentially reveal 

functional differences between the proteins.  

We found that IL-10, GM-CSF, and TGF-β1 induce upregulated levels of CRIg protein in 

MDDC. This is important, as these cytokines are known to induce a ‘tolerogenic’ phenotype 

in DC, and the fact that we can suppress this tolerogenic phenotype using a blocking anti-

CRIg antibody suggests that CRIg may be the molecule responsible for this alteration in 

phenotype. Interestingly, while TGF-β1 induced CRIg upregulation in MDDC, we observed 

a significant decrease in MDM expression of CRIg at the same concentration of cytokine. 

Conversely, lymphotoxin-α (LT-α) induced a significant increase in MDM CRIg expression, 
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while it decreased expression in MDDC. This indicates that while IL-10 and GM-CSF 

positively regulate CRIg in both MDM and MDDC, TGF-β1 and LT-α have differential 

effects, indicating that there may be differing signalling pathways being activated by the 

cytokines across the two cell types, further supporting the notion that CRIg plays differing 

functional roles between the cell types. 

8.5. CRIg Expression in Human Neutrophils 

Unexpectedly, we found that human neutrophils and monocytes from both whole blood and 

isolated preparations express CRIg mRNA and protein. While CRIg can be readily detected 

on the cell surface of monocytes in whole blood and in isolated PBMC fractions, we 

unexpectedly found that CRIg is only able to be detected on the neutrophil cell surface 

following stimulation with inflammatory mediators. A major question which arises from 

these findings is; how has CRIg expression by these circulating phagocytes been missed until 

now? The answer that can be concluded by the presented results has two aspects. Firstly, as 

shown in chapter 3, figure 1 (Fig. S1), we observed that the commonly used anti-human 

CRIg monoclonal antibody clones 6H8 and 3C9 detect different proteins to each other when 

used to examine the same macrophage protein sample. As demonstrated in chapter 4, human 

MDM which have been stimulated with dexamethasone during culture express at least five 

transcript variants of CRIg. Thus, this difference in antibody reactivity can be explained by 

the existence of multiple protein variants being expressed by MDMs which are differentially 

detected by the two monoclonal antibodies. While studies to confirm which specific CRIg 

variants are being expressed by monocytes and neutrophils were not conducted in the work 

presented here, it is plausible that these cells are expressing different protein variants 

compared with macrophages. Indeed, by Western blot, we detect protein migrating at ~50 

kDa in MDM and DC total cell lysates, while the largest protein observed in neutrophils and 

monocytes migrates around 45 kDa, suggesting that the larger protein expressed by MDM 

and DC is not expressed in circulating phagocytes. This hypothesis—that there is an isoform 

of CRIg that is exclusively expressed by MDM and DC—potentially explains why for the 

last two decades, CRIg has been known to be exclusively expressed by macrophages. 

Secondly, CRIg expression by neutrophils may have been missed as in our study, we see 

that surface expression of CRIg is not significantly detectable compared with isotype control 

fluorescence values unless the neutrophils have been stimulated with inflammatory 

mediators prior to assessment. This is supported by the fact that the initial study which 

assessed CRIg expression by cells in the circulation and reported them negative was 

conducted using flow cytometry to assess unstimulated, healthy control blood samples 

(Helmy et al., 2006). Similarly with monocytes, we demonstrated that CRIg is lost from the 
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cell surface upon cell isolation and cryopreservation, and this loss could explain why 

expression on monocytes was not evident. 

The finding that human neutrophils from healthy individuals express CRIg protein and can 

be stimulated to express the protein on the cell surface is novel. However, prior to the 

undertaking of this study and in the work presented in chapter 4, it has been demonstrated 

that CRIg expression by human macrophages can be positively induced by anti-

inflammatory mediators such as dexamethasone and IL-10 (Gorgani et al., 2011). Thus, the 

finding that the expression of CRIg on the cell surface of neutrophils is only significantly 

detectable following stimulation of the cells by agonists and inflammatory agents such as 

PMA and TNF was surprising. This contrasts with macrophages, which have been shown, 

in this thesis and in other studies, to downregulate CRIg following exposure to inflammatory 

conditions or to inflammatory stimulants such as TNF (Chen et al., 2010; Ma et al., 2015; 

Vogt et al., 2006). This difference is likely to be a result of a difference in the mechanism of 

regulation between the two cell types. In the case of macrophages, we observed that CRIg 

expression was negatively regulated by TNF at the mRNA level and this decrease was 

reflected by lower protein expression (a culture period of three days was required to detect 

mRNA modulation, while a culture period of 5 days was required to observe a difference in 

protein levels). However, in neutrophils—terminally differentiated, short-lived effector cells 

which need to respond to environmental factors rapidly—we see that TNF stimulation has 

an immediate effect on surface CRIg expression, with expression levels peaking after 20 

minutes of stimulation. Further, we do not observe an alteration in total protein levels of 

CRIg in TNF-stimulated cells compared with unstimulated controls. This indicates that in 

neutrophils, the upregulation of CRIg on the cell surface following stimulation with TNF is 

a result of rapid translocation of existing protein to the plasma membrane and that CRIg 

expression by these cells is controlled by a different mechanism to that that has previously 

been observed in macrophages (figure 8.2). The correlation of CRIg upregulation with 

upregulation of CD11b—a surface receptor known to be present in neutrophil specific and 

azurophilic granules—suggests that CRIg is stored in one of the same compartments as 

CD11b. Additionally, as ARPC1B-deficient neutrophils exhibit enhanced secretion of 

azurophilic granules (Kuijpers et al., 2017) and our work presented in chapter 7 showed that 

these deficient cells were unable to upregulate both CD11b and CRIg in response to TNF 

and fMLP, this indicates that CRIg is not stored within azurophilic granules. Furthermore, 

inhibition of Rab27a successfully inhibited surface upregulation of CRIg in response to 

fMLP stimulation. Rab27a is known to be responsible for regulating the docking and fusion 
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with the plasma membrane during exocytosis of both gelatinase and specific granules, and 

not azurophilic (Herrero-Turrión et al., 2008). This, together with the fact that LPS 

predominantly induces the release of gelatinase granules rather than specific suggests it is 

unlikely CRIg is stored within specific granules. Lastly, in the absence of Ca2+ ions, 

neutrophils are still able to release secretory vescicles in response to fMLP (Niessen et al., 

1991). As demonstrated in chapter 7, neutrophils were unable to upregulate CRIg in response 

to fMLP in the presence of the Ca2+ chelator BAPTA-AM, indicating that CRIg is not stored 

in the secretory vescicles. Thus, our work strongly suggests that CRIg is stored within the 

gelatinase granules of human neutrophils. 

CRIg is a rapid promoter of phagocytosis, and as it binds to the complement component C3b 

which is produced sequentially prior to iC3b, it is able to act faster than the other complement 

receptors, CR3 and CR4 (Gorgani et al., 2008; Helmy et al., 2006). Thus, for neutrophils, 

the ability to upregulate a receptor with such efficient phagocytic capability would be highly 

beneficial. Particularly, in cases of low-grade infection where a fully-fledged immune 

response is not required, CRIg may be upregulated on the surface of these cells, where it 

then clears pathogens without promoting the ‘cytokine storm’ which is characteristic of 

engagement through CR3 (Wolf et al., 2018). Clearance of low levels of opsonised particles 

from the blood by Kupffer cells typically does not induce an inflammatory response 

(Crawford et al., 2018), and as neutrophils are known to assist Kupffer cells with the removal 

of extracellularly captured particles from the blood (Gregory et al., 2002; Gregory et al., 

1996), this could be a possible function for CRIg expressed by neutrophils. Alternatively, 

CRIg may function as a cell-activating molecule. We observed that engaging neutrophils 

through CRIg induced an oxidative burst response, indicating that CRIg is able to induce 

inflammatory signalling in neutrophils. Other studies have shown that in macrophages, CRIg 

engagement leads to secretion of IL-8 and matrix metalloproteinase 9. Thus, future research 

which this work may provide the basis for is whether CRIg operates cooperatively with CR3 

and CR4 by inducing their activation on the neutrophil cell surface through providing an 

activating signal.  

Aside from novelty, the finding that circulating phagocytes express CRIg has broad 

ramifications in terms of the potential use of CRIg as a therapeutic agent or target. Similarly 

to other B7 family ligands, CRIg expression levels have been shown to be elevated in many 

types of cancer (Byun et al., 2017; Liao et al., 2014; Xu et al., 2015). As a result, it has been 

suggested that CRIg may be a potential target for inhibiting antibodies (similar in action to 

blocking antibody against the checkpoint molecules PD-1 and PD-L1). However, if CRIg is 
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naturally expressed in the blood as well as the tissues and is an important player in 

neutrophil-mediated clearance of opsonised pathogens, then blocking CRIg may severely 

immunocompromise patients. Additionally, the role that CRIg plays in the function of 

monocytes remains to be studied. Therefore, the properties of CRIg as identified here will 

be vitally important properties to consider in future studies into the therapeutic efficacy of 

CRIg-targeting agents. 
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Figure 8.1. *Schematic diagram demonstrating the mechanisms of regulation of surface CRIg protein in macrophages. CRIg upregulation is controlled 

by two mechanisms; first, the recycling pool of receptors contained in recycling endosomes, and secondly, the generation of new protein as a result of 

increased transcription upon cellular stimulation with specific mediators such as IL-10, 1,25D, and dexamethasone. TF- transcription factor. *Image 

generated with BioRender. 
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Figure 8.2. *Schematic diagram demonstrating the mechanism of upregulation of surface CRIg protein in neutrophils. In resting cells, CRIg is stored 

in internal granules (possibly the gelatinase granules). Upon exposure to inflammatory mediators such as TNF (PKC independent) or fMLP (either 

PKC dependent or independent), a signalling cascade as a result of activation of p38 is initiated, and granule exocytosis takes place, translocating 

stored protein to the cell surface. This process is dependent on actin polymerisation and branching, and requires membrane docking which is dependent 

on rab27a (image duplicated from chapter 7 for ease of reading, *generated with BioRender).  
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8.6. The Transcript Variants of CRIg 

As presented in this thesis, we have successfully detected mRNA transcripts of three human 

CRIg isoforms in unstimulated MDM and MDDC, and all five in dexamethasone stimulated 

cells (the existence of the sixth transcript variant of CRIg was not known at the time of 

conducting this work). While the transcript variants present in neutrophils were not assessed 

in this thesis due to the poor quality and low RNA yields from neutrophils, it would be 

interesting to assess how these compare with what we see in macrophages, and whether 

neutrophils are expressing ‘unique’ isoforms. Additionally, as the existence of a soluble form 

of human CRIg has been reported since the commencement of this work (Yuan et al., 2020), 

it would be interesting to examine whether this soluble form represents one, or multiple, of 

the shorter CRIg variants, such as variants 3 and 4 (chapter 3, figure 2; Fig. S2), as these 

proteins have truncated intracellular domains. Alternatively, as there is a single caspase-1 

cleavage site in the extracellular regions of both huCRIg(L) and huCRIg(S) at residue 266 

and 172 respectively (Gasteiger et al., 2003; Gasteiger et al., 2005), it would be interesting 

to assess whether soluble CRIg is produced by protein being cleaved from the cell surface 

upon inflammation and cell activation. This could perhaps explain how CRIg is being lost 

from monocytes upon isolation and cryopreservation. 

8.7. Limitations, Future Directions and Final Conclusions 

A major limitation restricting our ability to investigate the numerous protein variants of 

human CRIg is the fact that due to the high homology of the extracellular domains of the 

proteins, antibodies specific to each of the protein variants are not able to be designed. The 

only way antibodies could be used to distinguish between each of the six variants would be 

to use a combination of antibodies: one that is able to distinguish variants with the short 

versus the long extracellular domains, and a second which is able to distinguish between the 

three possible intracellular domains, and thus would not be able to be used to examine live 

cells. While our lab has an interest in this line of experimentation, it was unable to be 

performed in timeframe of this thesis. Additionally, while our findings suggest that CRIg in 

resting neutrophils is stored within granules, the next natural step in continuing this work 

would be to confirm the specific CRIg-containing compartment through co-localisation 

experiments with markers for each of the individual granules and vesicles. This is of interest 

to our lab and will be a focus of future study.  

Overall, the presented findings have revealed further complexities in the field of CRIg 

biology and have further distanced what we know in mice from what we know in humans. 

We have identified CRIg as a major control point molecule in the innate immune response 
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of human macrophages, and have demonstrated the important role of CRIg on MDDC where 

it exerts control over the T cell response. Finally, we have identified multiple cell types 

present in the healthy human periphery which express CRIg, providing the basis for 

undertaking future works to address how this expression may or may not be associated or 

modulated with diseased states such as in rheumatoid arthritis (where we would expect to 

see an increase in active, inflammatory neutrophils (Grayson et al., 2016)), but also in certain 

types of cancer where CRIg has been found to be increased (Yuan et al., 2020). Thus, this 

may lead to the development of a blood test to gauge neutrophil activation in the case of 

inflammatory disorders. 
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8.8. Publication: ‘The Role of Phagocytes in Immunity to Candida albicans’ 

8.8.1. Introduction and Contextual Statement 

This section of the final discussion chapter presents a comprehensive review in the 

form of a published book chapter into the role of phagocytes in immunity against the 

fungal pathogen, Candida albicans. This article discusses the mechanisms of 

phagocytosis and killing of C. albicans by human phagocytes, particularly 

neutrophils and macrophages, with a focus on the complement-dependent and -

independent receptors involved in this process. Importantly, the known role of CRIg 

in immunity against C. albicans is summarised, and primary data demonstrating the 

kinetics of complement-dependent vs. complement-independent phagocytosis is 

shown. We also discuss cytokine priming in immunity against C. albicans, along 

with primary and secondary immunodeficiencies associated with susceptibility to 

fungal infection. 

This chapter presents the final published manuscript included in this thesis. The 

following book chapter entitled ‘The Role of Phagocytes in Immunity to Candida 

albicans’, by Annabelle Small, Jovanka R. King, Deborah A. Rathjen & Antonio 

Ferrante was published in the peer reviewed, IntechOpen open access book entitled 

Candida albicans, edited by Doblin Sandai in May 2018 (doi: 

10.5772/intechopen.80683).  

Article Metrics (as of November 2020) 

Altmetrics score: 1 

Citations: 1
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Abstract

Body clearance of fungi such as Candida albicans involves phagocytosis by fixed tissue 
macrophages as well as infiltrating monocytes and neutrophils. Through phagocyto-
sis, the fungi are confined and killed by the oxidative and non-oxidative anti-microbial 
systems. These include oxygen derived reactive species, generated from the activation 
of the NADPH oxidase complex and granule constituents. These same mechanisms 
are responsible for the damage to hyphal forms of C. albicans. Complement promotes 
phagocytosis, through their interaction with a series of complement receptors includ-
ing the recently described complement receptor immunoglobulin. However, it is also 
evident that under other conditions, the killing of yeast and hyphal forms can occur in 
a complement-independent manner. Phagocytosis and killing of Candida is enhanced 
by the cytokine network, such as tumour necrosis factor and interferon gamma. 
Patients with primary immunodeficiency diseases who have phagocytic deficiencies, 
such as those with defects in the NADPH oxidase complex are predisposed to fun-
gal infections, providing evidence for the critical role of phagocytes in anti-fungal 
immunity. Secondary immunodeficiencies can arise as a result of treatment with anti-
cancer or other immunosuppressive drugs. These agents may also predispose patients 
to fungal infections due to their ability to compromise the anti-microbial activity of 
phagocytes.

Keywords: Candida albicans, macrophages, neutrophils, complement,  
innate immunity, phagocytosis, fungal killing mechanisms, cytokines,  
trained immunity, immunodeficiency, immunopharmacology

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

243



1. Introduction

C. albicans is considered to be the most common fungus causing both skin and disseminated 
disease, particularly in immunodeficient and immunocompromised patients. Phagocytes, 
particularly neutrophils, play an important role in clearing candidal infections. The impor-

tance of neutrophils in immunity to C. albicans is clearly evident from the increased rate of 

infection seen in patients with severe neutropenia [1].

In neutrophils, the major response associated with phagocytosis of microbial pathogens is 

the oxygen-dependent respiratory burst and the generation of reactive oxygen species (ROS). 
Several decades ago it became evident that neutrophils displayed a unique respiratory burst 
in the absence of mitochondria, where the generation of ATP comes mainly from glycolysis 
(reviewed in [2]). It also became apparent that the majority of the oxygen consumed was 
converted to superoxide (O·

2
–) which is then converted to further oxygen intermediates, 

including singlet oxygen and H
2
O

2
. The enzyme which catalyses the conversion of O

2
 to O·

2
– 

is assembled in the phagocytic vacuole membrane, facilitating its release into the bacteria 

or fungus-containing vacuole. In neutrophils, the release of the azurophilic granule content 
simultaneously into the phagocytic vacuole leads to the generation of HOCl, a highly potent 
anti-microbial agent, as a result of the action of myeloperoxidase on H

2
O

2
 in the presence 

of chloride ions. In addition, ingestion of microbial pathogens and their confinement to the 
vacuolar environment may restrict the supply of essential nutrients necessary for growth.

The NADPH oxidase complex is responsible for the respiratory burst and consists of a num-

ber of different proteins which assemble in the neutrophil vacuole membrane following cell 
stimulation. This is typically initiated during phagocytosis of bacteria and fungi [3]. The com-

plex consists of the oxidase-specific phox proteins gp91phox, p22phox, p40phox, p47phox, p67phox and 

the small GTPases, Rac1 and Rac2. Cell activation leads to the assembly of these components 
in the membrane and the initiation of enzymatic activity.

The non-oxidative microbicidal system complements the respiratory burst. Components of 
the azurophilic granules in neutrophils have been shown to have anti-microbial activity. 
These include defensins, serprocidins and bactericidal/permeability increasing protein (BPI). 
Defensins are cationic peptides with broad spectrum antimicrobial activity [2]. The seropro-

dins, elastase, azurocidin and cathepsin G have antimicrobial activity independent of their 
enzymatic activity [2].

As with neutrophils, most bacteria and fungi are confined and killed within phagosomes 
by macrophages [4], involving a variety of agents such as toxic metabolites, peptides and 
enzymes. These may act either alone or synergistically. In addition, macrophages can produce 
ROS which have anti-microbial action but unlike monocytes, macrophages lack MPO. Most 
striking is the marked heterogeneity of macrophages enabling these leukocytes to perform 
functions relevant to specific tissues in which they are located.

The extrusion of neutrophil extracellular traps (NETs) is also considered to be a defence 
mechanism against microbial pathogens. NETs are structures composed of DNA as well as 
anti-microbial substances, elastase, calprotectin and MPO [5]. NETs not only trap the micro-

bial pathogens, but also kill them. Interestingly, it has been reported that the formation of 
NETs requires the presence of ROS [6].
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Effective recognition of microbial pathogens by neutrophils and macrophages requires recep-

tors which bind peptides deposited on bacterial and fungal surfaces which have been gener-

ated through the activation of complement, namely C3b and iC3b. Receptors recognising iC3b 
include CR3 (CD18/CD11b) and CR4 (CD18/CD11c), which are present on both neutrophils 
and macrophages. Recently, another complement receptor type, complement immunoglobu-

lin receptor (CRIg), expressed only by a subpopulation of macrophages has been described, 
which binds both iC3b and C3b (reviewed in [7]). It has been shown that this receptor plays 
an important role in clearance of bacteria from the circulation by liver Kupffer cells [8] and 

may also be a pattern recognition receptor, facilitating clearance of bacteria in the absence of 
complement [9].

Antibody bound to microbial pathogens also promotes phagocytosis through the Fcγ recep-

tors, FcγRI (CD64), FcγRIIA (CD32) and FcγRIIIB (CD16), all of which engage the Fc domain of 
Immunoglobulin G (IgG). The FcαRI which binds the Fc domain of Immunoglobulin A (IgA) 
also promotes microbial phagocytosis and killing [2].

Apart from the integrins and FcγRs, neutrophils and macrophages express a range of pattern 
recognition receptors (PPR) which recognise conserved microbial pathogen structures, such 
as lipoteichoic acid, β-glucans and lipopolysaccharide. Families of PPRs include those found 
in serum (pentraxins, collectins, complement), those which are membrane bound (classic 
C-type lectins, non-classic C-type lectin leucine-rich proteins, scavenger receptors) and those 
which are located intracellularly (NODs, interferon induced proteins).

2. Complement dependent and independent phagocytosis of C.

albicans

Despite the importance of complement-independent mechanisms for host anti-candidal 

immunity, it is evident that complement is required for optimal resistance to fungal infection 
[10–12]. It was also evident in these studies that complement could be activated by C. albicans 

by the alternative pathway. Activation of complement leads to the generation of chemotactic 
peptides and C5a, which attracts neutrophils to the site of candidal infection [13, 14]. Thong 
and Ferrante [11], in their studies on the generation of chemotaxis promoting factors by serum 
treated with C. albicans, showed that this activity was totally dependent on heat-labile fac-

tors and activation of complement via the alternative pathway. Chemotaxis of neutrophils 
towards fungus-treated serum was abolished when the serum was either heated at 56°C for 
20 min or was C2 deficient (where the alternative but not the classical pathway can be acti-
vated). The subsequent step, phagocytosis, was also highly dependent on heat labile opsonins 
[12]. However, while the chemotactic response was totally dependent on serum complement, 
the heat labile opsonins only acted to enhance other phagocytosis-promoting mechanisms. 
Thus, significant phagocytosis was still observed in the presence of heat-inactivated serum. 
In both of these studies on chemotaxis and phagocytosis-promoting activity of serum, it was 
shown that these principles applied to a wide-range of clinical isolates of C. albicans from 

patients and both including Serotypes A and B [11, 12].

Zymosan A is a yeast cell wall glucan and, like C. albicans derived β(1,3) (1,6)-glucan, is an ago-

nist to TLR2 and Dectin-1 [15]. Using commercially available labelled zymosan A bioparticles 
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which are non-fluorescent outside of the cell and fluoresce once taken into acidic phago-

somes, we showed that neutrophils require opsonising conditions to phagocytose particles 
efficiently (Figure 1). This supports the findings of [16], and demonstrates that like monocytes 
and macrophages, neutrophils require complement for the rapid phagocytosis of yeast par-

ticles. Interestingly, the complement dependency of phagocytosis diminished at incubation 
times of 45–60 min, where complement-independent mechanisms of phagocytosis become 

more prominent (Figure 1C).

The classical complement pathway is likely to be activated by mannan-specific antibod-

ies found in human serum [19] whereas the lectin pathway is activated by the binding of 

mannose-binding lectin to mannan on the cell wall of the fungus [20]. However, it has also 
been shown that C. albicans can bind the complement regulatory protein, C4b-binding protein 
(C4BP), thereby inactivating C4b and hence preventing complement activation on the yeast 
surface. As a result, the microbial pathogen will evade complement activation via the classical 
and lectin pathways, but the alternative pathway remains operative, generating chemotac-

tic factors and opsonins. Furthermore, C. albicans has the ability to regulate the alternative 

pathway and factors H and FHL-1 [21]. The binding of these regulators is seen with both the 
cellular and hyphal forms of C. albicans [22].

The unique complement receptor CRIg is a member of the transmembrane protein of the 
type 1 immunoglobulin superfamily, encoded by VSIG4. Although two spliced forms of CRIg 
have been described, a long (L) and short (S) form [8], we have recently identified five forms 

based on expression of transcripts and western blot analysis [23]. The receptor is expressed 
selectively by a subpopulation of macrophages, probably of the M2 type, and is abundant 
in fixed tissue macrophages such as liver Kupffer cells and resident peritoneal macrophages 
[24, 25]. Unlike CR3 and CR4 which require prior activation, CRIg is naturally active and its 
activity is controlled by its recycling pattern from the endoplasmic reticulum [8]. Our studies 
have demonstrated that cytokines alter CRIg expression in human macrophages and this was 
associated with a corresponding change in ability of neutrophils to phagocytose C. albicans in 

a complement-dependent manner [23, 26, 27].

While CR3 and FcRγ mediate phagocytosis of complement and antibody opsonised C. albi-

cans, in the absence of these opsonins, adherence and phagocytosis by neutrophils and mac-

rophages is promoted by C-Type Lectin Receptors (CLRs), in particular Dectin-1 [28–31]. The 
targets for Dectin-1 are β-1,3 glucan polymers, major components of the fungal cell wall. In 
C. albicans hyphae, this polymer is masked and appears to be different in the yeast form [32].

Cells of the phagocytic system are able to recognise C. albicans through multiple classes of 

receptors [33]. These include pattern recognition receptors (PRRs) such as Toll-like receptor 
(TLRs) 4 and 2 [34, 35], and CLRs such as Dectin-1 and the mannose receptor [36]. While 
these receptors are able to induce phagocytosis independently of complement, efficiency of 
uptake in both macrophages and neutrophils can be significantly increased when C. albicans 

is opsonised [16]. Under these conditions CR3 present on phagocytes is able to recognise 
iC3b deposited on the fungal cell surface and promote phagocytosis. In macrophages, this 
process is also able to occur through CRIg [27]. Agents such as dexamethasone that promote 
the upregulation of CRIg protein expression are also able to induce increased levels of phago-

cytosis of C albicans [23], suggesting that CRIg rather than CR3 plays an important role in the 
phagocytosis of C. albicans in macrophages.
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Neutrophils recognise C. albicans through the PRRs TLR2, TLR4 and Dectin-1, and also under 
opsonising conditions through FcγR and CR3 [37]. Similar to macrophage phagocytosis of 
C. albicans, uptake of isolated fungal zymosan A is more efficient in opsonising conditions, 
with phagocytosis after a 15-min incubation time being three times higher in reactions with 

complement compared to no serum and heat-inactivated serum controls (Figure 1).

Figure 1. Complement-dependent and -independent phagocytosis of zymosan A bioparticles by human neutrophils. (A) 
Phagocytosis of C. albicans under the different treatment conditions indicated in the x-axis. Results are the mean ± SD 
of three experiments. (B) Representative histogram/gating strategy for these experimental runs. In these experiments 
the reaction was terminated at 30 min. Neutrophils only are shown by the dashed line, no serum in black, heat-
inactivated serum shown in blue, and native AB serum shown in red. (C) Phagocytosis kinetics over a 60 min incubation 
period in the presence or absence of serum. Results are presented as mean ± SD of triplicate reactions. Neutrophils 
were prepared from human peripheral blood from healthy volunteers, using the high density gradient method [17]. 
Phagocytosis was assayed using pHrodo™Red Zymosan A bioparticles (ThermoFisher, Walter MA, Cat no. P35364) 
as described previously [18]. Human AB serum was prepared from peripheral blood of healthy volunteers. The serum 
was shown to have normal levels of complement activity using the CH50 assay. AB serum heated at 56°C for 20 min 
was confirmed to lack complement activity. The cell samples were analysed using a FACSCanto I flow cytometer (BD). 
The work was approved by the Human Research Ethics Committee of the Women’s and Children’s Hospital Network, 
Adelaide. Statistical analyses were carried out by ANOVA followed by Dunnet’s post hoc test. (D) Photomicrographs of 
the interaction of C. albicans with neutrophils in the presence or absence of serum at a 1:1 and 1:4 neutrophil:fungal ratio. 
Red arrows indicate phagocytic vacuoles following the digestion of the yeast or non-degraded yeast particles (following 
30 min of incubation).
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C. albicans is able to exist in multiple forms, as a single-celled budding yeast or in pseudohy-

phal or hyphal filamentous forms [38]. While in its unicellular form, the fungus can be toler-

ated as a commensal organism by the oral or vaginal epithelium. However, when it converts 
to its hyphal form, the fungus displays pathogenic properties. The host is able to discriminate 
against the potential danger [37] through MAPK-based recognition in the epithelial cells [39], 

which leads to mitogen-activated protein kinase phosphatase 1 (MKP1) and c-Fos activation. 
Neutrophils also play a role in this protection through TLR4-mediated recognition [40].

3. Trained macrophage immunity in anti-fungal immunity

Trained immunity (TI) refers to the ability of innate immune cells to exhibit ‘memory’ and 
prevent reinfection of previously encountered invading pathogens [41]. Termed by Netea 
and colleagues [42], TI induces a state of enhanced antimicrobial action in cells of the innate 
immune system, particularly monocytes and macrophages, which is distinct from both typi-

cal innate immunity and the memory of the adaptive immune system. Alternatively, TI refers 
to the enhanced response to reinfection against the initial invading microorganisms and 

cross-protection against different pathogens. Although the concept of TI is relatively new, the 
phenomenon of protection afforded by previous infection in a manner distinct from adaptive 
immunity has long been known, particularly in plant and insect systems [43, 44].

TI has been shown to have a role in infection and immunity against C albicans. Bistoni et al. 
[45] demonstrated that not only did injection with a non-pathogenic strain of C. albicans 

induce protection against reinfection, but also cross-protected against the other pathogens 

Candida tropicalis and Staphylococcus aureus. This protection was determined to be macro-

phage-dependent, as transfer of adherent splenic cells from mice administered with the non-

pathogenic strain conferred protection to the recipient mice. Two decades later, Quintin et al. 
[46] expanded on this concept, demonstrating that mice injected with low doses of C. albicans 

showed increased survival rates when administered lethal infection loads, and increased 

proinflammatory cytokine production upon secondary exposure. This protection was also 
shown in mice deficient in T and B cells and not in mice lacking CCR2, indicating that similar 

to the results of Bistoni et al. [45], the observed protection was monocyte-dependent. It was 
also shown that training of monocytes could be induced through purified β-glucan, a poly-

saccharide that makes up the cell wall of selected bacteria and fungi [47]. The group further 
investigated the mechanisms behind this protection by analysis of the genome-wide binding 

pattern of the methylation marks on histone 3 lysine 4 (H3K4me3) and on histone 3 lysine 27 
(H3K27me3), and concluded that protection was controlled at the epigenetic level through 
H3K4me3 in known genes involved in innate immunity. Furthermore, mRNA levels of TNF 
and IL-6 were higher in trained monocytes compared with non-trained control cells.

While other molecules such as fungal chitin have also been shown to induce TI [48], β-glucan 

remains the most well-studied molecule with respect to C. albicans, which has been shown to 

induce TI in both human and murine systems [46, 49, 50]. Along with its antimicrobial prim-

ing, β-glucan-induced TI has also been investigated in anti-tumour immunity [51].
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4. Killing of C. albicans by neutrophils and macrophages

Ferrante [52] demonstrated that killing of yeast forms of C. albicans and Candida glabrata was 

associated with release of the ROS, superoxide, and constituents of azurophilic granules and 
specific granules. During this interaction the generation of HOCl occurred, another potent 
anti-fungal agent. The importance of ROS was demonstrated by the finding that inhibitors 
of superoxide and H

2
O

2
 decreased intracellular killing of C. albicans [53]. Further proof of the 

role of ROS generation in the killing of C. albicans came from the demonstration that neutro-

phils and macrophages from patients with chronic granulomatous disease (CGD) (who have 
defective NADPH oxidase activity), were unable to effectively kill the fungi [54]. However, 
whether ROS per se are responsible for the killing of C. albicans remains to be established [55]. 
The reaction of H

2
O

2
 with MPO, in the presence of chloride ions, forms a very potent anti-

microbial system. We have previously demonstrated that opsonised C. albicans induces the 

release of both H
2
O

2
 and MPO, thereby establishing an anti-candidal environment [52]. The 

importance of MPO in the killing of C. albicans is supported by the finding that neutrophils 
and monocytes from MPO deficient patients failed to kill C. albicans [56, 57].

In vivo the absence of MPO in macrophages may be overcome by the cells incorporating MPO 
released by neutrophils at infection sites. Thus, resident peritoneal mouse macrophages in 
the presence of recombinant MPO caused an increase in intracellular killing of C. albicans [58]. 
However, it is noteworthy that using mouse models of X-linked CGD and MPO deficiency, 
susceptibility was most evident in the former, suggesting that ROS are the major mediators 
of candidicidal activity [59]. In comparison, the neutrophil-mediated damage to C. albicans

pseudohyphae was found to be mediated by the oxidative burst and MPO [60]. Interestingly, 
this neutrophil-mediated damage occurred in the absence of serum complement.

Two distinct mechanisms for human neutrophil-mediated killing have been documented, 
depending on the state of fungal opsonisation. Using in vitro fungicidal assays, Gazendam 
et al. [61] showed that killing of un-opsonised C. albicans was dependent on CR3 and phos-

phatidylinositol-3-kinase (PI3K) signalling, but was independent of NADPH oxidase activa-

tion. However, the killing of antibody opsonised C. albicans by neutrophils was dependent on 

Fcγ receptors and protein kinase C (PKC) in addition to NADPH.

5. Intracellular signalling required for killing of C. albicans

Approximately two decades ago it was demonstrated that human neutrophil-mediated killing 
of C. albicans, in a complement-dependent manner, required the activation of the extracellular 
signal-regulated protein kinase cascade [62]. More recently it has been reported that PKCδ 

activation downstream of the receptors Dectin-1 and Mac-1 is important in the neutrophil-
mediated resistance to C. albicans and fungi-induced ROS generation [63]. In contrast, while 
PKCδ deficiency in macrophages prevented the stimulation of production of ROS induced by 
C. albicans, this did not affect the killing of the fungus. It has been demonstrated that BTK and 
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Vav1 are Dectin-1 interacting proteins [64]. These were found to be recruited to phagocytic 
cups containing yeast or hyphae of C. albicans, at the less mature stage of phagosome develop-

ment. These contribute to the Dectin-1 dependent phagocytosis of C. albicans.

In comparison, Gazendam et al. [61] demonstrated that neutrophils display two different 
mechanisms in the killing of C. albicans by evaluating patients with Dectin-1 deficiency, 
CARD9 deficiency or NADPH deficiency. One of these mechanisms was CR3, PI3K and 
CARD9 dependent, but independent of ROS generation. The other was selectively dependent 
on Fcγ, PKC and ROS generation. Both of these candidicidal pathways required Syk tyrosine 
activation but were independent of Dectin-1.

6. Neutrophil extracellular traps in immunity to C. albicans

C. albicans has been shown to induce NET extrusion in phagocytes, particularly in neutro-

phils. While the formation of this structure is considered as part of cell death or NETosis [65], 

Byrd et al. [66] reported that the rapid extrusion of NETs in response to C. albicans occurs 

in the absence of cell death. However, others have demonstrated that the yeast forms of C. 

albicans stimulated NETs through autophagy and ROS generation in the early stage of the 
interaction (first 15 min) [67]. However, with the hyphal forms, NET formation occurred via 
autophagy and not ROS generation. In the longer term (4 h), only the hyphae stimulated 
NETs. Interestingly, they found less killing of yeast forms by NETs compared to the high 
level of damage to the hyphae forms. Other strategic functions of extracellular protrusions of 
neutrophils have been demonstrated for Plasmodium falciparum. Here, the neutrophils were 
observed to ‘throw out’ protrusions which penetrated the parasitophorous vacuole contain-

ing the intraerythrocytic stage of the parasite and withdrawing the parasite without damag-

ing the erythrocyte [68].

7. Cytokine priming in phagocyte-mediated killing of C. albicans

Over three decades ago it became evident that neutrophil responses to microbial pathogens 
could be significantly increased if the cells were pre-sensitised with products released by 
activated lymphocytes and macrophages [69], a process dependent on the presence of TNF 
[70, 71]. The importance of cytokine priming in killing of C. albicans by neutrophils was also 

observed [72]. Thus, neutrophil mediated killing of C. albicans and a related fungus, Candida 

glabrata was significantly increased if the phagocytes had been pre-treated with either TNF 
or GM-CSF [52, 73]. The TNF treatment also increased the candida-induced release of ROS 
and MPO, consistent with the increased anti-fungal activity induced by the cytokines [52]. 
The mechanism by which TNF primes neutrophils for increased killing of C. albicans has not 

been studied. However, these mechanisms can be inferred from studies with other micro-

bial pathogens. Kowanko et al. [74] demonstrated that the TNF-induced effects responsible 
for increased microbial killing could be mediated by both oxygen-dependent and oxygen- 
independent mechanisms, with respect to killing of opsonised S. aureus and Plasmodium falci-

parum infected erythrocytes, respectively. Furthermore, studies with the pathogenic soil amoeba, 

  Candida Albicans

250



N. fowleri have shown that the TNF-enhanced killing requires a functional H
2
O

2
-MPO-halide 

system [75]. The priming of neutrophils by TNF is reflected by an increase in expression of 
CR3 and CR4 on the surface of these cells. The enhanced killing of S. aureus was dependent 

on these receptors, given that this was not seen upon the addition of anti-CD11b and -CD11c 
monoclonal antibodies [76].

The use of TNF to enhance immunity against various microbial infections has not been con-

sidered appropriate because of the highly toxic and tissue damaging effects of TNF. In an 
effort to harness the anti-infective properties of TNF and exclude some of its tissue damaging 
properties, we synthesised short peptides representative of the TNF sequence [77]. One of 
these elevenmer peptides, TNF70–80, was found to activate neutrophils and macrophages to 

increase microbial killing both in vitro and in vivo [77–81].

Our studies with C. albicans demonstrated that TNF70–80 also protected against infections with 

this fungus (Tables 1 and 2). In the first set of experiments, the effect of administering either 
TNF or TNF70–80 to mice infected with C. albicans was examined. The recovery of fungi from 

Treatment No. mice/group Log CFU/g kidney (M ± SD)

PBS 23 7.3 ± 0.6

Amphotericin B 15 2.7 ± 2.4***

TNF (0.1 mg/kg) 29 5.6 ± 1.2***

TNF70–90 (4 mg/kg) 9 5.75 ± 1.7**

Eight week old Balb/c mice were challenged with 5 × 105 CFU C. albicans intravenously. Treatment of mice commenced 
24 h prior to infection, and continued with daily administration until 2 days post-infection. Mice were sacrificed on day 
2 and kidney preparations plated on Sabouraud agar. The degree of infection was determined by enumeration of the 
number of organisms in the kidney at the time of euthanisation (**p < 0.01, ***p < 0.001, 1-way ANOVA, SNK test). The 
research received approval from the Women’s and Children’s Hospital Animal Ethics Committee.

Table 1. The effect of TNF and TNF70–80 on C. albicans infection in mice.

Treatment Route Dose (mg/kg) Survivors 10 days post-infection

Vehicle control IP — 8

Cyclophosphamide PO 30 2*

TNF70–80 + cyclophosphamide IP 100 7ns

TNF70–80 + cyclophosphamide IP 10 4ns

TNF70–80 + cyclophosphamide IP 1 4ns

TNF70–90 + cyclophosphamide IP 0.1 2*

Azimexone + cyclophosphamide IP 100 6ns

Balb/c mice (10/group) were treated with 3 doses of oral (OP) cyclophosphamide (30 mg/kg) and infected with C. 

albicans as described in Table 1. Mice were also treated with three doses of TNF70–80 at the schedule described in Table 1. 
Azimexone (used as a positive control) was administered intraperitoneally (IP) (n = 10 mice, *p < 0.05, ns: not significant, 
one-sided Fisher’s exact test). The research received approval from by Women’s and Children’s Hospital Animal Ethics 
Committee.

Table 2. Effect of TNF70–80 on C. albicans infection in immunocompromised mice.
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the kidneys of these mice was significantly lower than in non-treated control mice (Table 1). 
In the second experimental set-up, mice treated with cyclophosphamide became highly sus-

ceptible to C. albicans with the survival of mice dropping from 80 to 20%, 10 days after infec-

tion. If the mice had been treated with TNF70–80, survival was increased with 70% survival 
observed at the highest dose (Table 2).

Cytokines also influence the ability of macrophages to phagocytose and kill fungi. Human 
monocyte-derived macrophages (MDMs) treated with interferon gamma showed increased 
ability to phagocytose and kill yeast forms of C. albicans [82]. The cytokine treated cells showed 
a corresponding increase in ROS production when challenged with the fungus. This effect of 
interferon gamma was evident with non-opsonised C. albicans and was independent of CR3. 
These effects of interferon gamma were reproduced with mouse peritoneal macrophages [83]. 
M-colony stimulating factor has also been shown to increase macrophage phagocytosis and 
killing of C. albicans yeast forms and cause damage to hyphae [84].

From the described studies, it is evident that when considering killing of microbial pathogens 
including C. albicans, this needs to be interpreted in terms of the cytokine milieu generated 
during the infection. It is evident from other published work that several cytokines regulate 
phagocyte-mediated microbial killing properties, including interferon gamma, lymphotoxin 
and interleukin-1 [71, 85].

8. Primary immunodeficiency diseases associated with susceptibility
to fungal infection

Primary immunodeficiency diseases (PID) are a heterogeneous group of inborn errors of 
immunity. Affected individuals develop severe, unusual or recurrent infections, and may 
also develop features of immune dysregulation with autoimmune manifestations. There 
are currently over 320 described molecular genetic causes of PID, which can be categorised 

according to presenting phenotypic features [86]. The International Union of Immunological 
Sciences (IUIS) classify PID into the following disease categories: immunodeficiencies affect-
ing cellular and humoral immunity, combined immunodeficiencies (CID) with associated 
or syndromic features, predominantly antibody deficiencies, diseases of immune dysregu-

lation, congenital defects of phagocyte number, function or both, defects in intrinsic and 

innate immunity, auto-inflammatory disorders, complement deficiencies and phenocopies 
of PID [86].

Intact immunological processes and pathways are required to mount an effective immune 
response against fungi, incorporating both innate and adaptive components [87]. Several 
immune cells and immunological mediators such as cytokines are of critical importance to 
maintenance of anti-fungal immunity. These include phagocytes, dendritic cells, T cells (par-

ticularly T helper 1 (TH1) and T helper 17 (TH17) cells) [87]. The importance of these effec-

tors is evidenced by patients with PID affecting cellular or phagocytic immunity developing 
severe, invasive or recurrent fungal infections [1].

Primary phagocytic disorders result from mutations in genes encoding key proteins that are 
essential for normal phagocytic development and function. These disorders may be classified 
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according to whether phagocyte number, function or both are affected, and by the presence 
or absence of associated syndromic features [86]. These disorders and their underlying, caus-

ative genetic abnormality are summarised in Table 3.

Congenital defects of phagocytic number, function or both

Associated with syndromic features Not associated with syndromic features

Disorder Gene(s) Disorder Gene(s)

Shwachman-Diamond 
syndrome

SBDS, DNAJC21 Elastase deficiency (SCN1) ELANE

G6PC3 deficiency (SCN4) G6PC3 Kostmann disease (HAX1 deficiency; SCN3) HAX1

Glycogen storage disease 

type 1b

G6PT1 GFI1 deficiency (SCN2) GFI1

Cohen syndrome COH1 X-linked neutropaenia/myelodysplasia WAS
GOF

WAS

Barth syndrome 

(3-methylglutaconic aciduria 
type II)

TAZ G-CSF receptor deficiency CSF3R

Clericuzio syndrome 
(poikiloderma with 
neutropaenia)

C16ORF57 (USB1) Neutropaenia with combined immune 

deficiency
MKL1

VPS45 deficiency (SCN5) VPS45

P14/LAMTOR2 deficiency LAMTOR2

JAGN1 deficiency JAGN1

3-methylglutaconic aciduria CLPB

SMARCD2 deficiency SMARCD2

WDR1 deficiency WDR1

HYOU1 deficiency HYOU1

Congenital defects of phagocytic function

Associated with syndromic features Not associated with syndromic features

Disorder Gene(s) Disorder Gene(s)

Cystic fibrosis CFTR Chronic granulomatous disease CYBB, NCF1, 

CYBA, NCF4, 

NCF2

Papillon-Lefevre syndrome CTSC Rac2 deficiency RAC2

Localised juvenile 
periodontitis

FPR1 G6PD deficiency Class 1 G6PD

Leukocyte adhesion 
deficiency (LAD) 1

ITGB2 GATA2 deficiency (MonoMac syndrome) GATA2

Leukocyte adhesion 
deficiency (LAD) 2

SLC35C1 Specific granule deficiency C/EBPE

Leukocyte adhesion 
deficiency (LAD) 3

FERMT3 Pulmonary alveolar proteinosis CSF2RA, CSF2RB

Adapted from [86].
SCN = severe congenital neutropaenia, WAS = Wiskott-Aldrich Syndrome, GOF = gain of function.

Table 3. Primary immunodeficiency diseases affecting phagocytic number and/or function.
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Of the described primary immunodeficiency diseases of phagocytic number or function, 
recurrent or invasive candidal disease has been reported in cases of chronic granuloma-

tous disease and myeloperoxidase deficiency [1] and GATA2 deficiency [88]. Candidosis is 
reported but tends to be less common in leukocyte adhesion deficiency and congenital neu-

tropaenic syndromes [1].

Chronic granulomatous disease (CGD) occurs as a result of defects in components of the 
NADPH oxidase system, resulting in defective neutrophil oxidative burst and susceptibility 
to a narrow range of organisms, particularly those which are catalase-producing. As well as 
the predisposition to infection, patients with CGD develop a hyperinflammatory response 
and granuloma formation [89]. X-linked CGD occurs due to mutations in the CYBB gene 

which encodes the NADPH oxidase complex component gp91phox [86]. Autosomal recessive 
forms of CGD are less common, and occur due to mutations in the NCF1, CYBA, NCF4 or 

NCF2 genes, which encode for other components of the complex, namely p47phox, p22phox, 

p40phox and p67phox, respectively [86, 89].

Candidosis is well described in CGD patients, with candidal species implicated in episodes of 
meningitis, fungaemia, suppurative adenitis, pneumonia, subcutaneous abscesses and liver 

abscess reported in a cohort of 368 patients with CGD [90]. Although the majority of these 
infections were expected to be due to underlying, impaired phagocytic function, additional 
factors such as steroid use likely increase the risk of invasive candidiasis. Candidal oesopha-

gitis, keratitis and disseminated infection (particularly affecting young infants) have also been 
described, however mucocutaneous candidiasis is uncommon in CGD patients [1].

Patients with gp40phox mutations have been noted to have a distinct clinical phenotype as com-

pared with those with other forms of CGD, with a milder clinical course and lower frequency 
of invasive fungal infection [91]. There is no impairment in the ability of the neutrophils of 
affected patients to kill candida, suggesting residual NADPH oxidase activity and a potential 
gp40phox-independent process for reactive oxygen species production. Furthermore, monocyte 
and monocyte-derived macrophage NADPH oxidase generation appears to occur indepen-

dently of gp40phox [91]. In patients with CGD, a correlation has been shown between residual 
production of reactive oxygen intermediates (ROI) and improved long-term survival [92]. The 
specific mutation in NADPH oxidase predicts the amount of residual production of ROI [92].

CGD may be conservatively managed with antibiotic and antifungal prophylaxis, along with 
adjunctive therapies including subcutaneous interferon therapy. CGD is curable by haemato-

poietic stem cell transplantation (HSCT), and trials are underway to evaluate the role of gene 
therapy as an alternative definitive management strategy [93].

MPO deficiency is autosomal recessive with variable penetrance, may be complete or partial, 
and has an estimated incidence of between 1:2000 and 1:4000 individuals [94]. Most individu-

als are clinically asymptomatic, although severe infections are reported in around 5% of those 
affected. MPO-deficient phagocytes have an impaired capacity to kill C. albicans, as evidenced 

by severe infection in MPO-deficient mice.

GATA2 encodes a zinc finger transcription factor which is critical for haematopoetic cell devel-
opment [95]. Mutations in this gene give rise to a syndrome also known as ‘MonoMac’, which 
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refers to the monocytopaenia and predisposition to mycobacterial infection which are char-

acteristic of this condition [95, 96]. In addition, affected patients have other haematological 
anomalies including thrombocytopaenia and neutropaenia, predisposition to haematologi-

cal malignancy and severe mycobacterial, fungal and human papilloma viral infections [88, 

96]. In a recent study of 79 French and Belgian patients with GATA2 mutations, 16 patients 

were reported to have had 18 episodes of fungal infection, 5 of which were candidoses [88]. 
Eight of the 18 infections were associated with chemotherapy or HSCT. The neutrophils from 
some GATA2 deficient patients were noted to have reduced granularity [97]. When stimu-

lated with PHA (phytohaemagglutinin), patient PBMCs (peripheral blood mononuclear cells) 
demonstrated reduced lymphocyte proliferative and cytokine production capacity, which 
normalised after addition of monocytes [96], highlighting the important role of these cells in 

eliciting an effective immune response.

In addition to the critical role of phagocytes in anti-fungal immunity, defects in other immune 

cells and immunologic pathways also give rise to susceptibility to infection with candida and 

other fungi. A range of single-gene inborn errors of immunity resulting in severe or recurrent 
superficial or invasive candidiasis have been described [86, 98]. Cell-mediated immunity is 
essential for anti-fungal immunity. This is evidenced by the predisposition to severe fungal 
infection in infants with severe combined immunodeficiency (SCID), a life-threatening condi-
tion manifested by low, absent or severely dysfunctional T cells [86]. Other forms of combined 
immunodeficiency, for example, those due to deficiencies in CD25, NEMO/IKBG, DOCK8, 
TCR-α, ORAI1, MST1/STK4, MHC Class II, along with IKBA gain of function mutations and 

idiopathic CD4+ T cell lymphopaenia are associated with chronic mucocutaneous candidiasis 
(CMC) [98]. In addition, CMC is a feature of several PID with syndromic features, includ-

ing STAT3 deficiency (autosomal dominant hyper-immunoglobulin E syndrome), APECED 
(autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia), also known as APS-1 
(autoimmune polyglandular syndrome type 1) which occurs due to mutations in the AIRE

gene), and deficiencies of IL12Rβ, IL-12p40 and CARD9 [98, 99]. The importance of the TH17 

pathway and IL-17 signalling in anti-candidal immunity has become apparent [100, 101], with 

severe CMC described in patients with deficiencies of IL-17RA, IL-17F, RORC and STAT1

gain of function mutations [98, 102]. In particular, AIRE has been demonstrated to have a key 
role in anti-candidal immunity, as evidenced by its role in fungal synapse formation which is 

required for initial macrophage recognition of fungal hyphae [103]. AIRE, along with Dectin-1, 
Dectin-2, Syk and CARD9 are required for formation of the fungal synapse upon stimulation 
of macrophage-like THP-1 cells after stimulation with C. albicans [103].

9. Secondary immunodeficiency diseases associated with disorders
of phagocyte number or function

Immunosuppression is a well-described risk factor for infection with candida and other fungal 
species [98]. Corticosteroids are commonly used in the management of a range of inflamma-

tory and malignant conditions, and use of these agents is a known risk factor for fungal infec-

tion [104]. The precise mechanisms by which corticosteroids lead to impaired anti-candidal 
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immunity remain unclear, and this is likely multifactorial [105]. In terms of phagocytic cell 
function, corticosteroids appear to alter leukocyte differentiation programs. They induce 
monocytes and macrophages to adopt an anti-inflammatory phenotype. This is modulated by 
the cytokine environment (including increased IL-10 expression on macrophages), increased 
apoptotic activity and induction of transcription of anti-inflammatory genes which impact 
upon chemotaxis, phagocytosis and resistance to oxidative stress [105]. However, despite 
these observations it has been recently shown that dexamethasone increases the expression 
of CRIg on human MDMs but not CR3 or CR4, and that this increase was associated with an 
increase in phagocytosis of complement opsonised C. albicans [23, 26, 27].

Cancer patients are at an increased risk of systemic candidiasis, and C. albicans is reported 

to be one of the most common causes of sepsis in this patient group [104]. This predisposi-
tion to fungal infection is multifactorial, and may be due to a secondary immunodeficiency 
caused by the underlying malignancy itself, or due to the effects of chemotherapeutic 
agents. Chemotherapeutic drugs may induce neutropaenia or affect neutrophil function, 
thereby impairing anti-candidal immunity. Neutrophil function may be impaired as a result 
of reduced trafficking, chemotaxis or phagocytic activity. For example, chemotherapeutics 
targeting microtubule structures likely impair cytoskeletal processes and actin polymerisa-

tion, thereby reducing neutrophil chemotaxis and phagocytosis. Chemotherapeutic agents 
can also interfere in NETosis, which is important for antimicrobial activity. Some drugs may 
also induce monocytopaenia and impaired monocytic function, further increasing the risk of 
candidal infection [104].

Patients with liver disease are at an increased risk of fungal infection. Those with cirrhosis 
have been found to have reduced complement levels and impaired monocyte activation and 

neutrophil mobilisation [106]. Patients with liver disease are at risk for infectious peritonitis, 
and C. albicans and C. neoformans were amongst the main species isolated in these cases. Renal 
disease is also a risk factor for invasive fungal disease [104]. Neonatal candidal sepsis has been 
reported in association with jaundice [107]. Interestingly, unconjugated bilirubin in hyperbili-
rubinemia has also been linked to reduced phagocytic cell function; phagocytosis and killing 
of fungi [108, 109]. Burns patients are at increased risk of fungal infection owing to a breached 
skin barrier and use of antimicrobial agents, with candidal infection in particular being asso-

ciated with increased morbidity and mortality in these patients [106]. In addition to these 
disease states, other physical factors, alone or in combination, such as the use of intravenous 

catheters and mechanical ventilation also increase the risk of invasive fungal disease [98, 104].

Finally, it is also evident that anti-fungal drugs per se can compromise immunity [109–111]. 
Several of the imidazoles were found to inhibit neutrophil functions, chemotaxis, phagocyto-

sis and microbial killing of bacteria and candida [110].
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