
 
 

Low-biomass human microbiomes: 
another piece to the puzzle for  
non-communicable diseases 

 
 
 

Caitlin Alyssa Selway  
 
 
 

Department of Molecular and Biomedical Science  
School of Biological Sciences  

Faculty of Sciences  
University of Adelaide  

 

 
 
 

This thesis is submitted in fulfilment of the requirements for the degree of  
Doctor of Philosophy  

 
February 2021 



 ii 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
 
 



 iii 

 
 
 
 
 
 
 

“We cannot fathom the marvelous complexity of an organic being; but 

on the hypothesis here advanced this complexity is much increased. 
Each living creature must be looked at as a microcosm—a little universe, 

formed of a host of self-propagating organisms, inconceivably minute 
and as numerous as the stars in heaven.” 

 

Charles Darwin 
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Thesis Abstract  
 

The prevalence of non-communicable diseases (NCDs), such as cancers, 
cardiovascular, respiratory, and autoimmune diseases, has been increasing since 
the 1950s. Genetic, environmental and lifestyle factors, including diet, smoking 
status, and urbanisation, have all been identified as significant contributors to 
NCDs. More recently, the microbial communities of the human body (microbiota) 
have also been linked to NCDs. These communities typically exist in a mutually 
beneficial relationship with their human host, performing critical functions that the 
human body cannot perform itself. However, an imbalance to these communities 
may be a causal or perpetuating factor in diseases. While new research has started 
to unravel the interactions and effects that microbiota have on the human host, the 
majority of these studies have been focused primarily on the gut, with other body 
sites remaining neglected.  

Understanding microbiota of body sites other than the gut may provide 
further insight into the cause and effect of NCDs. These ‘non-gut’ microbiota still 
play vital roles for the human host, such as defence against pathogens on the skin, 
or homeostasis of the mouth to prevent or reduce caries and periodontal diseases. 
However, most microbiota technologies were developed to study the gut, a body site 
rich in microbial biomass. Hence, application of these technologies to samples from 
low biomass body sites is difficult due to overwhelming background levels of DNA 
and contamination. Nevertheless, sufficient information can be obtained from low 
microbial biomass samples when treated appropriately, and they provide another 
layer to unravelling the causes of NCDs.  
 This thesis provides new perspectives on NCDs through the investigation of 
low microbial biomass body sites. I advocate for the human microbiome 
(microbiota, their genetic material and surrounding micro-environment) to be used 
as a new tool in pathology to understand both communicable and NCDs, while also 
highlighting techniques that can be used to mitigate contamination of low microbial 
biomass samples. Using a systems biology approach in combination with the 
microbiome provides a holistic approach to understanding NCDs, which I further 
explore through a perspectives piece. I then consider NCDs from a ‘non-gut’ 
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microbiota perspective across three different studies: I track changes to skin and 
nasal microbiota after exposure to urban green spaces to improve the understanding 
of human-environmental interactions and the importance this has for immune-
mediated diseases; I investigate the development of oral and lung microbiota in 
preterm infants and provide insights of a disruption to oral microbiota development 
in these infants, which can have long-lasting impacts on the immune system; and 
finally, I trace changes in oral microbiota of children with type 1 diabetes and 
hyperlipidaemic parents, which shows that changes to fat metabolism in the gut may 
have repercussions on oral microbiota. Through these three case studies, I provide 
a deeper understanding on how ‘non-gut’ microbiota change in response to the 
environment, which is especially critical in the microbiome development 
throughout immune training and the prevention of NCDs.   
 Overall, this thesis provides the groundwork for a holistic approach to 
understand NCDs. Moving forward, considering the relationships between host 
genetics, the environment, and microbiota of all body sites will be vital for the 
treatment, cure, and prevention of NCDs.   
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Non-communicable diseases of the modern world  

Non-communicable diseases (NCDs; non-infectious diseases) contribute to 
more than 70% of deaths worldwide.1 NCDs affect people of all ages and sex, 
anywhere around the globe.2 Over the past 70 years, there has been a subtle decrease 
in premature deaths from lethal NCDs, such as cardiovascular disease and cancer.3,4 
Despite this minor success, an increased prevalence of less lethal NCDs, including 
obesity, type 2 diabetes, allergies, asthma, and autoimmune diseases5–7 has been 
observed over this same period. The majority of research and interventions (e.g., 
“25 x 25” Target8 and Sustainable Development goal 3.49) have focused on reducing 
premature deaths caused by NCDs. However, there has been less focus on morbidity 
and disability as a result of NCDs,10 which can not only hamper quality of life, but 
also cause a significant economic burden.11 Research has shown that mortality and 
morbidity from NCDs can be reduced by adhering to a healthy lifestyle (e.g., 
balanced diet, regular exercise).12 In addition to modifiable lifestyle factors, the 
development and increased prevalence of NCDs is also influenced by environmental 
factors, genetic predisposition, and the human microbiome.  

Since the mid 20th century, there have been rapid changes to the environment 
and lifestyle in the industrialised and industrialising worlds. Post-World War II, a 
surge in socioeconomic and earth system trends, termed the Great Acceleration, was 
witnessed. Increases in pollution, population density, and local and global 
transportation have not only had profound effects on Earth’s climate, they have also 
contributed to mortality risk for NCDs, especially cardiovascular and respiratory 
diseases.13 Urbanisation—a key change through the Great Acceleration—has led to 
reduced biodiversity and environmental microbial diversity,14 which has been 
hypothesised to have consequential impacts on health, including increases in allergy 
and asthma predisposition.7,15 Similarly, a dramatic change to human lifestyle has 
also been recognised through the Great Acceleration.16,17 Unbalanced diets, high in 
carbohydrates, fats, and proteins, and an increased sedentary lifestyle have also 
likely contributed to higher rates of obesity, type 2 diabetes, and cardiovascular 
diseases.18,19 Although it is well known that rapid changes to the environment and 
lifestyle are the main contributing factors for NCD development, there is still limited 
understanding of other puzzle pieces that can contribute to these diseases.  

The number of studies correlating genetics and NCDs has soared following 
the sequencing of the first human genome in 2003.20 Genome-wide association 
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studies (GWAS) have shed a new light on the relationship between genetic variants, 
such as single nucleotide polymorphisms (SNPs), and traits of the human body (e.g., 
height and predisposition to diseases).21 These studies have increased our 
appreciation of the complexity of diseases, whereby multiple SNPs across multiple 
genes and chromosomes can contribute to the predisposition of most NCDs. While 
this research has demonstrated correlations between SNPs and NCDs, genetic 
predisposition does not account for all of the variation that contributes to diseases. 
For example, ~8% of the total heritability has been be explained by 212 loci linked 
to asthma,22 and coronary artery disease has ~40-60% total genetic heritability.23  
However, most diseases arise from the interaction between genetics and the 
environment (e.g., obesity can be attributed to both genetic predisposition24 and 
lifestyle25). Overall, GWAS and other genetic findings only provide one piece to the 
puzzle for contributors to NCDs.  
 While there is an increasing appreciation for the contribution of 
environmental and lifestyle factors and human genetics to NCDs, there remains a 
lack of understanding of the development, progression, and persistence of NCDs. 
However, it has been recently identified that the microbial communities of the 
human body can also play a key role in health and disease.26 To prevent, treat, and 
potentially cure NCDs, we need to turn to the trillions of microorganisms that call 
us home.27  
 
 

The microbial communities of the human body 

The role of the human microbiome in health 

The human body is a complex ecosystem that houses many tiny organisms—
bacteria, fungi, parasites, archaea, and viruses—that work together and form 
specialised communities (microbiota).28 Microbiota, their genetic component and 
the physio-chemical properties of specific micro-environment within the human 
body, make up the human microbiome.29 Altogether, the combined microbiomes of 
the human body have been collectively termed as our ‘second genome’.30 The human 
microbiome contributes approximately three million genes, which is 150-fold 
greater than the human genome;31 as such, the microbiota perform vital functions 
(e.g., vitamin K production) that the host cannot achieve itself. Essentially, the 
human microbiome is critical for human health. 
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Over the last decade, the human microbiome research field has grown 
significantly, in large part due to the Human Microbiome Project32 and the 
American Gut Project.33 Through these large-scale studies, technologies and 
methodologies to examine microbiota also greatly improved. Studying the microbes 
of the human body has moved beyond culture-based methods, which only identify 
microbes that can grow in specific laboratory environments, to culture-independent 
methods and high-throughput sequencing (HTS), which provide highly accurate 
DNA sequences for microbes found in a given sample.34 Two well-established 
sequencing approaches are routinely applied in microbiome research: targeted 
sequencing of specific phylogenetically informative genes (e.g., the 16S ribosomal 
RNA (rRNA) gene34 for bacteria or 18S rRNA gene35,36 for eukaryotic microbes), 
which tells us ‘who’s there’; and whole genome shotgun sequencing (WGS), which 
tells us ‘who’s there and what they are doing’.37 While WGS provides more detailed 
information (i.e. obtaining species- and strain-level information with functional 
data), it is also more costly and less targeted. For initial studies with a lower budget 
or samples with a large proportion of host DNA, 16S rRNA sequencing is generally 
a more suitable option to obtain a general baseline for bacterial data.38,39 Both 
sequencing approaches can help researchers understand many aspects of the 
microbiome, including microbiome acquisition and development throughout life, as 
well as microbial modifications associated to health and disease. 
 The initial acquisition of the human microbiome for an individual is currently 
debated. It has been proposed that a microbiome is established in the placenta.40,41 
However, this early result was linked to contamination and subsequent studies 
failed to provide strong supporting evidence.42–44 A more established hypothesis is 
that the first influx of microbes given to an individual occurs through the process of 
birth.45 This first microbial encounter is highly dependent on birth mode.45 For 
example, an individual born via a vaginal birth will acquire microbes that resemble 
the mother’s vaginal microbiota, whereas an infant born via Caesarean-section will 
acquire microbes similar to the doctor’s, nurses’ and mother’s skin.46 This difference 
in initial microbial communities may have long-term health consequences on the 
individual.47 After birth, the composition of the intestinal microbiome fluctuates 
and eventually stabilises around three years of age.48 Over time, the human 
microbiome continues to develop and change depending on many different factors, 
including host genetics, the environment, and lifestyle factors.49   
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 The human microbiota have co-speciated with humans50 and are adapted to 
specific surfaces of the human body.51 Ecological pressures arise from physiological 
factors of each body site, such as oxygen levels, pH, and nutrient availability;51 these 
tightly-regulated physiological factors create an environment for specific microbes 
at specific sites. A mutually beneficial relationship is formed between the host and 
the microbes; the host provides the microbes with somewhere to live, and the 
microbes perform important functions that the host needs to survive. However, it is 
important to note that the relationship between the host and microbes are not 
always in harmony, i.e. particular microbes can sometimes become pathogenic and 
cause harm to the host.  
 The best-understood roles of the microbiota occur in the gut. For instance, 
gut microbiota can contribute to the digestion of foods to extract and synthesise 
essential nutrients, such as vitamin K and short chain fatty acids, for the host.52 
Metabolism of medicinal drugs is also influenced by gut microbiota and can explain 
variation in individuals’ responses to specific drugs53. Understanding an individual’s 
response to medicines can provide more precise treatment regimens for that 
individual.54 Further, gut microbiota also influence the immune system; commensal 
microbes restrict pathogen establishment through competitive exclusion55, and they 
also produce specific microbe-associated molecular patterns (MAMPs), which allow 
the host’s immune cells to distinguish between beneficial or commensal and 
pathogenic microbes.56 These are only a few of many examples where the gut 
microbiota provides vital resources for the human host to survive and maintain good 
health.  

Microbes located in ‘non-gut’ body sites also play critical roles in human 
survival and disease prevention. Microbiota of the skin, nose, mouth, vagina, and 
lungs all carry out essential functions for the human host, although the extent of 
these functions is less understood. For example, the predominant roles of skin 
microbiota are to protect the skin against unwanted pathogens and to prime the 
immune system.57,58 Mouth microbes play similar protective roles to the skin 
microbes,58 but also have additional responsibilities, such as nitrate reduction to 
maintain low blood pressure and oral homeostasis.59 Mouth and skin microbiomes 
are both influenced by location-dependent physiological factors; there are three 
main skin types across the body (dry, sebaceous, and moist)60, while the mouth 
contains even more distinct sites, such as the tongue, gingiva, teeth, cheeks, and 
hard and soft palates.61 Each of these different characteristics and areas within the 
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skin and mouth have different physiology and specific microbiotas to suit that 
environment.60–63 However, research on these ‘non-gut’ body sites is currently 
limited. Therefore, specific functions from the niches within each of these 
specialised body sites need further investigation, which will help to develop a strong 
understanding of and appreciation for NCDs.   
 
 

The role of the human microbiome in disease 

Disease is often associated with an alteration or imbalance of 
microbiota.59,64,65 A microbial imbalance—often termed dysbiosis—can arise due to 
changes in microbial diversity, composition, or even from a loss or introduction of a 
single species. For example, lower gut microbial diversity has been observed in 
individuals with inflammatory bowel disease compared to healthy individuals,66 and 
shifts in community composition can contribute to periodontal disease.67 Microbial 
dysbiosis can occur due to several different factors, including diet, environmental 
changes, and even medical treatments (e.g., antibiotics).65 The period at which a 
disruption takes place in an individual’s life can potentially have life-long impacts 
on the microbiota and general health of the individual.  

Disruptions to the microbiome within the first several years of life can have 
long-lasting impacts on health. Over the first three years of life, the human body and 
microbiome undergo rapid development, and disruptions to the microbiome 
through this period may lead to diseases later in life.68 For example, the neonatal 
window of opportunity (i.e. first three month of life) is a critical period69,70 whereby 
the immune system is undergoing intense training. As the microbiome and immune 
system are tightly intertwined, disruptions to the microbiota or absence of exposure 
to particular microbes during this window are thought to be partly responsible for 
the development of certain NCDs, such as asthma71 and allergies.68 The 
development of such diseases due to reduced environmental microbial exposure 
during immune development has been proposed through multiple hypotheses, 
including the Hygiene,72 Old friends,15 and Biodiversity7 hypotheses. However, 
studies investigating the causal relationship between NCDs and biodiversity still 
remain limited.  
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A holistic approach: collecting all pieces of the puzzle 
to understand NCDs  

NCDs can arise from an imperfection at any level (i.e. molecular, cellular, 
tissue, organ, system or organismal level) or with any component (e.g., genetic, 
epigenetic, transcriptomic, proteomic, microbial, and outside forces, such as the 
environment and lifestyle factors) of the human body. The holistic approach in 
systems biology considers each component at every level in the system (i.e. the 
human body), which affords an understanding of complex interactions across 
multiple subsystems.73 This field of research has rapidly expanded following recent 
advancements in the ‘omics field, and has been incorporated into multiple biological 
fields such as oncology74 and immunology.75 ‘Omics approaches allow for multiple 
molecules, DNA, genes, transcripts, proteins, and even microbial species to be 
detected simultaneously.76 Incorporating multiple ‘omics fields into systems biology 
is the best chance to identify emergent properties of NCDs and is the approach 
required to fully understand these diseases. 

While combining multiple ‘omics approaches together, as well as 
environmental and lifestyle factors into systems biology, is the most ideal method, 
resources, time, and funding still need to be allocated to do so. To further 
understand the microbiome—an underrecognized component of systems biology—
for human health and disease, researchers must consider how microbiomes work 
together and interact with host genetics. Microbiome-wide association studies, 
which are analogous to GWAS, aim to link microbial taxa, genes, and/or functions 
to a particular human phenotype.77 For example, Turpin et al. (2016), found that 
one-third of faecal bacteria are inherited, and 58 human SNPs are associated with 
the relative abundance of 33 taxa across over 1,000 subjects.78 Other studies have 
taken an alternative approach whereby co-occurrence and networks of microbes 
have been determined.79–81 Whilst these approaches are heading in the right 
direction, it has been identified that a majority of correlation studies within 
microbial communities and between host genetics have been focused on the gut 
microbiome.82 Expanding the scope to encompass additional microbiomes of the 
human body (e.g., mouth, skin, and respiratory tract) and considering more than 
just local effects of microbiota may unlock links between body sites, which could 
provide a greater understanding of diseases.  



Introduction   
 

 8 

Unlike our individual genomes, which are fixed from birth, our microbiome 
is dynamic and can change over time. This dynamic aspect to microbiome research 
can be addressed through longitudinal studies,83,84 in addition to current 
understanding of human development. For example, disruptions to the microbiome 
through immune system development may have long-term health implications.85 By 
tracking microbiome development and health outcomes for children, the 
predisposition or initiation of particular diseases may be identified.86 For this 
reason, it is paramount that longitudinal microbiome studies are carried out to 
identify predisposition and the development of NCDs.  
 
 

Low microbial biomass samples 

 Most microbiome research has been focussed on the gut, which has resulted 
in development of technologies more suited to samples with a high microbial load.87 
In comparison to the gut, samples from most other body sites or samples collected 
with swabs have a much lower microbial load—termed ‘low microbial biomass 
samples’—and are technically more difficult to examine. The key difficulty 
associated with these samples arises from an abundance of background DNA that 
originates from the environment, equipment, reagents, and technicians, and can be 
introduced at any stage from manufacturing of equipment and reagents to sample 
collection and sequencing (Chapter I).87,88 Crucially, contaminant DNA is 
preferentially amplified and sequenced in a low microbial biomass context, which 
lowers the representation of the true microbiota signal from the sample.87 One of 
the best practices in microbiome research is to address contamination by collecting 
controls to identify contaminant sequences, which is discussed further in Chapter 
I and Appendix IV as well as the limitations that originate from technologies and 
processes used in the microbiome space.   
 In a number of published research articles, microbial contamination has been 
reported as true, biologically meaningful findings due to lack of diligence and 
awareness for technical concerns when working with low microbial biomass 
samples.89–91 A prime example of this is the reporting of a placental microbiome. In 
2014, Aagaard and colleagues set out to determine the relationship between 
periodontitis and preterm birth.40 Their hypothesis was that pathogenic microbes 
from the mouth, such as Fusobacterium nucleatum, were being transported to the 
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placenta via the blood, causing premature birth. Samples were collected under 
“sterile” conditions, but no control samples were collected to identify potential 
contamination from the environment, doctors, technicians, or collection equipment. 
The only form of controls were laboratory controls (extraction blank controls), of 
which only a small handful were sequenced. The researchers failed to identify and 
remove contaminant sequences in their data. This oversight resulted in a false 
positive result and has unfortunately led other researchers down a similar path.92–

94 Since this initial study, other researchers replied to the paper and tried to replicate 
the study,42,43,95,96 further validating that the bacterial sequences found in the 
placenta samples closely resemble those found in controls. As awareness for the 
challenges of low microbial biomass sample examination has increased, more 
researchers are now including controls from sampling through to data analysis. 
Nevertheless, this practice is still not standardised across the board, and researchers 
urgently need to learn from these past errors to improve microbiome research in the 
future.  

Despite the difficulties of contamination, low microbial biomass samples 
hold a wealth of knowledge and should not be dismissed. It is now well-recognised 
that most sites of the human body are not sterile and do house microbiota. For 
example, it was initially thought that lungs were sterile in health, and pathogens 
were present in disease. Research has now shown that while the lung microbiota can 
be stochastic,97 there are many niche-specific microbes present,98 and physiological 
changes to the respiratory tract can cause microbial dysbiosis in diseases, such as 
cystic fibrosis.99 Similar non-sterile low microbial biomass sites, such as skin,100 
nasal,101 vaginal,102 and eye sites,103 are now also being investigated in health and 
disease. If treated carefully, low microbial biomass samples have the power to 
provide insights into areas of the human body that are not well understood from a 
microbial perspective and may provide the missing puzzle piece needed to 
understand the predisposition, prevention, and development of NCDs.  
 
 

Thesis overview  

In this thesis, I expand our knowledge of the development, changes, and 
relationships between human microbiotas and NCDs. Morbidity and mortality of 
NCDs are at sky-high levels, and unachievable targets are currently set to reduce 
premature NCD-related deaths. To decrease premature death rates from NCDs, it is 
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vital to go beyond genetics—introduce measurable features of the environment,  
explore the interaction between the two, and incorporate the human microbiome 
into these assessments. As the human microbiome is modifiable to some extent, it 
is an important factor to consider for decreasing NCD prevalence and associated 
death. Incorporating our second genome into the NCD puzzle will provide a greater, 
more holistic understanding of the initiation, progression, and prevalence of NCDs. 
Across five manuscripts, this thesis aims to provide new perspectives on NCDs 
through the investigation of low microbial biomass sites. 
 
 

Chapter I: Microbiome applications for pathology: challenges of 
low microbial biomass samples during diagnostic testing  

Within this published review, I evaluate current techniques used in pathology 
and provide insights for the future integration of microbiome analysis for 
communicable and NCD diagnosis. As we start to move away from Koch’s postulates 
(i.e. one pathogen = one disease) to a community-wide approach, it is important to 
consider changes to technologies, diagnosis, and treatments in the pathology field. 
As a majority of samples (e.g., skin, blood, urine, etc.) used in pathology are low in 
microbial biomass, I also highlight pitfalls (contamination and biases) that 
pathologists may come across when microbiome analyses are incorporated into a 
pathology setting. To overcome these obstacles, I provide recommendations for 
minimising and mitigating contamination and biases that can affect the results of 
low microbial biomass samples. Incorporating microbiome analyses as a new tool 
for pathology may help to identify and treat NCDs more effectively in the future.  
 
 

Chapter II: Moving beyond the gut microbiome: combining 
systems biology and multi-site analyses to combat non-
communicable diseases  

In this opinion piece, I highlight that human microbiome research is 
primarily focussed on the gut, and almost all other body sites are forgotten, when 
considering NCDs. This shortcoming for current microbiome research also misses 
out on the advantages of considering the human body as system. Appreciation for 
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the interrelationship between human microbiotas in the body may provide more 
insights into NCDs.  
 
 

Chapter III: Transfer of environmental microbes to the skin and 
respiratory tract after green space exposure  

 Lifestyle and environmental factors have changed dramatically over the past 
70 years, which has correlated with a rise in NCDs. Three key hypotheses (Hygiene, 
Old friends, and Biodiversity hypotheses) have attempted to explain this 
phenomenon by linking reduced environmental microbial exposure to the increase 
in NCDs. To counteract the increase in NCDs, the Microbiome Rewilding hypothesis 
has proposed that increased exposure to microbially diverse environments can 
restore health. In this chapter, I track changes to the skin and nasal microbiota 
before and after urban green space exposure. This study provides a foundation to 
explore the relationship between human microbiota and the natural environment, 
and provides new insights into both the past development of NCDs during lifestyle 
disruptions in the Great Acceleration and the potential prevention of NCDs in the 
future.  
 
 

Chapter IV: Initially disrupted preterm infant oral microbiota is 
restored within three months  

 Disruptions to the microbiota development over the first 1,000 days of life 
can have long-lasting health consequences. These disturbances may explain the 
higher morbidity and mortality rates in preterm infants compared to their full-term 
counterparts, as well as lifelong health issues. While we know there are alterations 
to the gut microbiota of preterm infants, there is very little research carried out on 
other body sites of these fragile preterm neonates. In this chapter, I investigate oral 
and respiratory microbiota development over three months in preterm neonates 
who develop respiratory or systemic diseases, compared to healthy preterm and full-
term infants and adults. This research detects a disruption to the oral and 
respiratory microbiota in preterm infants at a critical developmental stage for the 
immune system. Understanding these changes is vital for reducing morbidity and 
mortality rates in preterm infants and provides foundational data to understand 
how these earlier life microbiota alterations go on to influence NCDs later in life.  
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Chapter V: Altered oral microbiota in type I diabetic children 
with hyperlipidemic parents  

Hyperlipidaemia (elevated blood lipids) is a multifactorial disease that has 
been proposed as a link between periodontal disease and type 1 diabetes. In this 
chapter, I explore the oral microbial relationship between periodontal disease of 
children with type 1 diabetes and the hyperlipidaemia status of their parents. As fats 
have a direct link to the gut microbiota and periodontal disease is linked to oral 
microbiota changes in the mouth, most research has investigated local relationships 
between disease and microbiota. Moving away from this dogma, this research 
identified a relationship between hyperlipidaemia status of parents and oral 
microbiota of children, which could suggest that processes in the gut may have an 
influence on other areas of the body, such as the mouth. In the future, it is vital to 
collect microbiota samples from across the body (as advocate for in Chapter II), to 
provide a holistic understanding of NCDs.  
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Main Text  

For the past 70 years, the prevalence of non-communicable diseases (NCDs) 
has steadily risen, reaching the point where they are now a leading contributor of 
death for 70% of the world’s population.1 This key public health crisis costs countries 
trillions of dollars in treatment, disability, and death,2 and has prompted the United 
Nations to adopt a target of a 1/3 reduction in premature NCD-related deaths by 
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2030 (Sustainable Development Goal 3.4).3 Despite this, there is still a critical lack 
of understanding about the initiation and persistence of NCDs, although research 
has identified a complex web of contributing factors, including genetics, the 
environment, lifestyle and the human microbiome—the microbial communities of 
the human body, their genetic content, and their surrounding micro-environment.  

Shifts in the human microbiome have now been linked to almost every NCD, 
including cardiovascular diseases, cancers, and respiratory diseases.4–6 However, 
the causal relationships between the human microbiome and disease remain largely 
unknown. Microbiome research on NCDs has been dominated by studies examining 
changes in the gut microbiome, as the gut contains the largest reservoir of microbes 
and has many direct and indirect relationships with other systems of the body, such 
as the immune, digestive, circulatory, integumentary, neuroendocrine, and central 
nervous systems.7 Despite the advances in understanding microbiome relationships 
with the human body from gut studies, other body sites are also critical to 
understanding NCDs, and the sheer explosion in gut microbiome research (1168 
publications in 2020 alonea compared to 680 publications for all other body sidesb) 
has dwarfed microbiome studies in interconnected body sites (e.g., mouth, lungs, 
skin, vagina, and even the brain). Considering the complex factors throughout the 
body that underpin NCDs, further research on the interrelationships between 
microbiomes throughout the body is needed to shed new light on the initiation, 
progression, and potential cures for NCDs.  

Microbiome research in non-gut body sites has already provided valuable 
insights into NCDs. For example, oral disease—one of the most common NCDs to 
affect an individual throughout their lifetime—is linked both to the oral microbiome 
and to other systemic NCDs. Overgrowth of particular opportunistic oral pathogens 
found during periodontal disease, such as Porphyromonas gingivalis or 
Fusobacterium nucleatum, can disseminate and colonise elsewhere in the body, 
initiating other NCDs, including Alzheimer’s disease or colorectal cancer, 

 
Scopus search on the 14 Feb 2021 
a TITLE-ABS-KEY (human) AND TITLE-ABS ("microbiome" OR "microbiota") AND TITLE-ABS-KEY ("gut" OR "fecal" OR 
"faecal" OR "stool" OR "intestinal" OR "gastric" OR "stomach" OR "enterotype") AND NOT TITLE-ABS-KEY (mice OR larvae OR 
fish OR "bee" OR insect OR "panda" OR animal OR "ticks" OR "soil" OR "sedimentary" OR "ice" OR "leaf" OR "wastewater" OR 
"drains" OR water OR "bathroom" OR "fermentation") AND NOT TITLE-ABS ("review" OR "perspectives" OR "model*" OR "in 
silico" OR "in vitro" OR "github" OR "publication*") AND (LIMIT-TO (SRCTYPE , "j")) AND (LIMIT-TO (DOCTYPE , "ar")) AND 
(LIMIT-TO (PUBYEAR , 2020)) AND (LIMIT-TO (LANGUAGE , "English")) AND (LIMIT-TO (EXACTKEYWORD , "Human")) 
 
b TITLE-ABS-KEY (human) AND TITLE-ABS ("microbiome" OR "microbiota") AND NOT TITLE-ABS-KEY ("gut" OR "fecal" OR 
"faecal" OR "stool" OR "intestinal" OR "gastric" OR "stomach" OR "enterotype") AND NOT TITLE-ABS-KEY (mice OR larvae OR 
fish OR "bee" OR insect OR "panda" OR animal OR "ticks" OR "soil" OR "sedimentary" OR "ice" OR "leaf" OR "wastewater" OR 
"drains" OR water OR "bathroom" OR "fermentation") AND NOT TITLE-ABS ("review" OR "perspectives" OR "model*" OR "in 
silico" OR "in vitro" OR "github" OR "publication*") AND (LIMIT-TO (SRCTYPE , "j")) AND (LIMIT-TO (DOCTYPE , "ar")) AND 
(LIMIT-TO (PUBYEAR , 2020)) AND (LIMIT-TO (LANGUAGE , "English")) AND (LIMIT-TO (EXACTKEYWORD , "Human")) 
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respectively.4,8 Further, Streptococci species in the mouth—bacteria shared across 
nearly all global populations—can also escape the mouth and bind heart tissue, 
leading to heart disease.9 Similarly, the skin microbiota also contributes to NCDs in 
unique ways. As the skin microbiota and the immune system are tightly coupled, 
low skin microbial diversity and the enrichment of Staphylococcus spp. and 
opportunistic fungi can exacerbate atopic dermatitis symptoms by initiating a more 
severe immune response.10 These are several examples of what are likely to be many, 
yet unknown, associations between the microbial communities of ‘non-gut’ sites, a 
systemic response, and a subsequent NCD.  

In addition to exploring additional body sites, the microbial connectedness 
between these sites needs to be further examined. As the human body is a complex 
system, Systems Theory (defined by the International Council on Systems 
Engineering, as “…an arrangement of parts or elements that together exhibit 
behaviour or meaning that the individual constituents do not…”) could be 
applied to understand how these microbiomes, physically isolated and sometimes 
seemingly unrelated, can be interconnected. For example, the gastrointestinal tract 
and brain are distinct and physically distant sites of the human body but are 
interconnected through the hypothalamic-pituitary-adrenal axis and nervous 
system (altogether, termed the ‘gut-brain axis’). Gut metabolites (e.g., short-chain 
fatty acids), which are a product of gut microbiota, can influence the brain and 
potentially contribute to mental and neurodegenerative diseases either via the 
immune system or direct signalling of the nervous system.11,12 This example 
highlights the need for more studies investigating microbial connectedness across 
all body sites.  

This systems biology concept has been applied to complex areas of the human 
body, including immunology and cancer biology, which can help to further 
understand signalling pathways13 and identify more targeted treatments and 
therapies.14 Systems biology concepts can be applied to the microbiome to: 1) 
understand the interactions between all components locally (microbiome, genome, 
transcriptome, metabolome, etc.) for a single body site of interest; and 2) globally 
assess the interactions of all elements throughout the system that is the human 
body. To provide the best understanding of disease, the latter approach is the most 
needed. Practical applications to target a microbiome systems approach could 
include mining of existing datasets to model whole system interactions; collecting a 
diverse range of samples from across the body of a single individual and performing 
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network analyses; collecting both microbiome and genomic information to perform 
microbiome-wide association studies; or carrying out multi-omics approaches (e.g., 
transcriptomics, proteomics, metabolomics, etc.) on one or more sites of the human 
body. Each of these examples need to be supplemented with extensive metadata to 
associate the findings with the environment, lifestyle factors, or NCD outcomes, and 
we acknowledge that there may be additional requirements for the ethical, legal, and 
social implications of this work.  

This systems biology approach will reveal emergent properties—properties 
that are realised not by constituent elements, but only by the system once analysed 
holistically—that can be identified and targeted to combat disease. Systems biology 
provides a holistic conceptual approach that connects different aspects of the human 
body to understand the intricacies of health and disease. Therefore, application of 
systems biology to all sites of the human body should be initiated now so that its 
benefits can be applied to start combating NCDs. Better informed research can be 
used to tackle increasingly complex problems, such as understanding microbe-
microbe competition, microbe-host interactions, or improving gene ontology for 
microbes in non-gut sites. Using these approaches, we can start to unravel the 
underlying factors that contribute to NCDs, and in the future, strive towards 
reducing morbidity and premature mortality.  
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4.1. Key points 

Question: How does the preterm oral microbiota develop through the 
neonatal window of opportunity, and is this different to full-term infants? 

Findings: Using longitudinal data from 50 preterm infants, 14 full-term 
infants, and 16 adults, the oral microbiota of preterm infants within a week of birth 
is significantly distinct from all other preterm and full-term infant and adult oral 
microbiota samples. Potential opportunistic pathogens were observed in the mouth 
of preterm infants within a week of birth.  

Meaning: Disruptions to oral microbiota during the neonatal window of 
opportunity may have profound implications for short- and long-term health in 
preterm infants. 

 

 

4.2. Abstract 

Importance: Preterm infants suffer higher morbidity and mortality rates 
compared to full-term infants, with infections serving as a leading cause of death. 
However, little is known about the origin and development of these infections over 
time, especially within oral and respiratory tract microbiota. 

Objective: To investigate oral and respiratory microbiota development over 
the first two-to-three months in preterm infants who develop respiratory or 
systemic diseases, compared to healthy preterm and full-term infants and adults. 

Design: A subset of preterm neonates from the N3RO cohort were included 
in an observational, longitudinal study, conducted between March 2014 to October 
2015 in Australia, to study oral and respiratory microbiota development across the 
neonatal window of opportunity. 

Setting: Preterm infants were administered to the Women’s and Children’s 
Hospital in Adelaide, Australia.  

Participants: This study included 50 preterm (P) infants born <29 
gestational weeks. Twenty-nine individuals were diagnosed with 
bronchopulmonary dysplasia (BPD) or sepsis (BPD, n=17; sepsis, n=9; BPD and 
sepsis, n=3). Fourteen preterm infants required intubation. Comparative data 
originated from 14 healthy full-term (F) infants and 16 adults. 
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Main outcomes and Measures: Oral and lung microbiota diversity, 
composition, and species abundances were calculated using amplicon sequence 
variations obtained from sequencing the 16S ribosomal RNA gene for two time 
points (T1: within a week post-birth; T2: approximately one-to-two months post-
birth). 

Results: PT1 sample diversity was more variable than all other groups, and 
PT1 composition was significantly different from PT2, full-term infant, and adult 
samples. However, PT2 samples were not significantly different to FT1 samples. 
BPD and sepsis influenced the preterm oral microbiota diversity and composition 
in infants at different ages. Opportunistic pathogens associated with BPD and sepsis 
were identified more frequently at T1 than T2 for both healthy preterm neonates 
and those with BPD and/or sepsis.  

Conclusion and Relevance: After an initial delay, preterm oral 
microbiota appears to shift over time to resemble full-term infants. The presence of 
opportunistic pathogens in the oral cavity of infected neonates suggests that oral 
biomarkers should be developed for early warning signs of infection. The short- and 
long-term consequences of oral microbiota development need further examination 
in preterm infant infections and later development. 
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4.3. Introduction  

Compared to full-term neonates, infants born prior to 37 weeks gestion 
(preterm) have a higher predisposition to chronic and infectious diseases, as many 
essential organs are underdeveloped at birth.1 For example, underdeveloped lungs 
often require mechanical ventilation, which can damage the lungs and cause 
bronchopulmonary dysplasia (BPD).1 Pathogens, such as Ureaplasma,2 
Streptococcus anginosus,3 and Streptococcus agalactiae (Group B Streptococcus)4, 
have been identified in the mouth and lungs of individuals with BPD,5 and they can 
cause infections that lead to sepsis or pneumonia1, although causes that underpin 
these diseases remain an active area of research. 

Current research suggests that preterm health complications may be 
associated with the infant’s postnatal environment.6 Preterm infants live in a 
comparatively ‘unnatural’ environment within the neonatal intensive care unit 
(NICU), which is in stark contrast to most full-term infants. This altered 
environment, as well as delivery mode,7,8 feeding method,9,10 skin-to-skin contact 
(kangaroo care),11 and antibiotic use,12 can disturb or delay the commensal bacteria 
that colonize infants (microbiota) and are critical for health.13 Preterm infant 
microbiota research focused on non-gut sites is limited, although several studies are 
now investigating oral11,14–16 and skin15,17 microbiota in these children. Even fewer 
studies have examined preterm infant microbiota development over time, especially 
outside of the gut18. In particular, oral microbiota development needs further 
attention, as oral microbiota can underpin both local and systemic diseases,19,20 and 
may provide key insights into short- and long-term health impacts for preterm 
infants.  

Early alterations to preterm infant microbiota could have downstream effects 
on development and health outcomes. Many alterations to preterm microbiota have 
been identified during the neonatal immunity window of opportunity—a non-
redundant priming phase of the immune system.21,22 As preterm infants are highly 
susceptible to infections, it is possible that critical immune system processes, such 
as innate immune tolerization and reprogramming, are also altered in these 
infants.23 Indeed, Olin et al. (2018) demonstrated that preterm and full-term infant 
immune systems initially respond differently after birth, but profiles eventually 
converge after three months.24 Existing studies have identified a mirrored delay in 
gut microbiota development in preterm infants, suggesting that a linked delay in 
microbiota and immune system development during this critical window may 



  Chapter IV 

 73 

contribute to both short- and long-term health consequences.24,25 Despite this, we 
know very little about how similar microbiota alterations outside of the gut in 
preterm infants may also play roles in immediate and life-long health.  

In this study, microbiota assessment was performed on a sub-set of infants 
born <29 weeks’ gestation who were participating in the n-3 Fatty Acids for 
Improvement in Respiratory Outcomes (N3RO) randomised controlled trial.26 
Specifically, we characterised the development of oral and respiratory tract 
microbiota in healthy infants compared to those that develop disease (i.e. BPD and 
sepsis). We used oral swabs collected within one week of birth and at 36 weeks’ 
postmenstrual age to compare oral microbiota diversity and compositional 
development over time with a published full-term infant and adult dataset27. 
Overall, this study aims to investigate oral microbiota development in preterm 
infants during the neonatal immune window of opportunity and identify unique 
signatures in the oral microbiota that may be linked to disease development. 
 
 

4.4. Materials and Methods  

4.4.1. Study population and sample collection  

All microbiota samples were collected under the Human Research Ethics 
Committee approval obtained for both preterm infants (Women and Children’s 
Hospital; HREC 2434/12/16; 27/11/2013) and adults (University of Adelaide; 
H2012-108). A subset of preterm infants primarily enrolled in a large clinical trial 
(N3RO)26, which investigated the effects of docosahexaenoic acid (DHA), were 
selected for this study. For preterm (P) infants, patient metadata and population 
information was collected by medical record examination (Table 1). Preterm infant 
buccal swabs were collected at two time points—2-12 days post-birth (PT1) and 36 
weeks’ postmenstrual age (PT2)—from 50 preterm infants delivered at the Women’s 
and Children’s Hospital in Adelaide, Australia (Figure 1). Twenty-nine of these 
preterm infants developed BPD and/or sepsis (BPD, n=17; sepsis, n=9; BPD and 
sepsis, n=3). Tracheal aspirate samples were collected from fourteen preterm 
neonates who required intubation. All samples were frozen (-20°C) immediately in 
empty tubes after collection to preserve the bacterial composition. For a healthy, 
mature oral microbiota comparison, three adult samples were collected and 
processed following the same protocols as the preterm infant samples. To further 
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explore infant oral maturation, published oral microbiota data were obtained for 14 
full-term (F) infants collected at two similar time points—0-7 days post-birth (FT1) 
and 4th-5th week post-birth (FT2)—and for 13 mothers (Study ID 2010, QIITA data 
repository; Figure 1). 
 

 
Figure 1: Sample were collected from preterm infants, full-term 
neonates, and adults over time. Oral samples were collected at analogous time 
points from preterm and full-term infants (approximately during the first week 
post-birth and one month later). Adult oral samples were to understand microbiota 
maturation of the infants. For preterm infants that were intubated, tracheal 
aspirates were also collected to identify shared taxa between the mouth and lungs of 
these infants.  
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Table 1: Study cohort characteristics   

 Overall 
(n=50) 

With BPD* 
(n=20) 

Without BPD* 
(n=28) 

Sex (male, %) 27 (54.0) 11 (55.0) 15 (53.6) 

Gestational age at birth (weeks, 
mean, S.D.) 26.43 (±1.70) 25.86 (±1.78) 27.79 (±1.40) 

Age at collection (days; mean, S.D.) 
T1 
T2 

 
4.24 (±1.55) 

65.74 (±14.59) 

 
4.26 (±1.33) 

72.32 (±13.48) 

 
4.28 (±1.72) 

60.50 (±13.63) 

Birth type (n, %) 
Vaginal 

C.S. in labour 
C.S. no labour 

 
18 (36.0) 
11 (22.0) 
21 (42.0) 

 
8 (40.0) 
4 (20.0) 
8 (40.0) 

 
8 (28.6) 
7 (25.0) 
13 (46.4) 

Enteral feeds on discharge (n, %) 
Breastmilk 

Formula  
Breastmilk & formula 

 
26 (52.0) 
18 (36.0) 
6 (12.0) 

 
10 (50.0) 
7 (35.0) 
3 (15.0) 

 
15 (53.6) 
11 (39.3) 

2 (7.1) 

Maternal steroids (n, %) 
Steroids not given 

First dose <24hr before birth 
Given >7 days before birth  

Complete 

 
4 (8.0) 

11 (22.0) 
1 (2.0) 

34 (68.0) 

 
0 (0.0) 
3 (15.0) 
0 (0.0) 1 
17 (85.0) 

 
4 (14.3) 
7 (25.0) 
1 (3.6)  

16 (57.1) 

Postnatal steroids (n, %) 17 (34.0) 12 (60.0) 3 (10.7) 

Sepsis (n, %) 13 (26.0) 7 (35.0) 6 (21.4) 

Surgery (n, %) 15 (30.0) 9 (45.0) 6 (21.4) 

Collected samples for both time 
points (n, %) 41 (82.0) 18 (90.0) 23 (82.1) 

Individuals with tracheal aspirate 
collected (n, %) 14 (28.0) 9 (45.0) 5 (17.6) 

 Overall 
(n=40)† 

With BPD 
(n=17) 

Without BPD 
(n=23) 

Probiotics (n, %) 39 (97.5) 17 (100.0) 22 (95.7) 

Antibiotics (n, %) 39 (97.5) 17 (100.0) 22 (95.7) 

Antifungals (n, %) 39 (97.5) 17 (100.0) 22 (95.7) 

BPD = bronchopulmonary dysplasia; C.S. = Caesarean-Section; S.D. = standard deviation. 
*Two subjects did not have information recorded for BPD. †Antibiotic information was 
only available for 40 subjects. 

 

 

 



Chapter IV   

 76 

4.4.2. Sample DNA extraction, 16S Ribosomal RNA Library 

Preparation, and DNA Sequencing 

All samples were prepared in a still-air room designed for low-biomass 
microbiota analysis using strict measures to reduce cross-contamination and the 
introduction of background DNA.28 DNA was extracted from buccal swabs and 
tracheal aspirates using a previously published, in-house silica DNA extraction 
method designed to enhance DNA recovery;29 the method was modified to include 
mechanical lysis (see Appendix II Supplementary Methods). DNA present within 
the laboratory and reagents was monitored using extraction blank controls (EBCs).  

Bacterial DNA from each sample, including EBCs, was amplified in triplicate 
using primers that target the V4 region of the 16S ribosomal RNA (rRNA) gene30, 
using previously described amplification conditions.31 No-template controls (NTCs) 
were also included in each amplification batch. 16S rRNA libraries were prepared 
for sequencing (see Appendix II Supplementary Methods). All libraries were 
sequenced on an Illumina MiSeq (2x150 bp) at the Australian Genomics Research 
Facility.  
 
 

4.4.3. Pre-processing, ASV selection, and contaminant removal 

Preterm infant sequences (PT1, PT2, and tracheal aspirates) and adult (n=3) 
sequences obtained over two sequencing runs were uploaded to QIITA data 
repository (Study ID 11832; https://qiita.ucsd.edu/study/description/11832). 
Demultiplexed sequences were trimmed to 150 bp and amplicon sequence variants 
(ASVs) were generated via Deblur.32 ASVs were merged with a full-term infant and 
maternal dataset (Study ID 2010; FT1, FT2 and adult) to create a SEPP insertion 
tree33 and the study dataset. Contaminant sequences from EBCs and NTCs were 
identified via Decontam,34 and were subsequently removed from all biological 
samples (Appendix II Table S1) in QIIME 2 (v2019.7)35. Following this, ASVs with 
less than 10 reads assigned were removed. In total, 156 samples were retained and 
represented 8,738,663 sequences and 1,553 ASVs.  
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4.4.4. Diversity analyses, taxonomic classification, and statistical 

comparisons   

In QIIME2 (v2019.7)35, ASVs were summarized into their taxonomic 
classification using the SILVA database (v132; 16S 515-806).36 Using a rarefied 
depth of 2,000 sequences, (alpha) diversity was measured using observed species 
(OS) and Faith’s phylogenetic diversity (PD)37 metrics, and beta diversity 
(composition) was calculated using the unweighted UniFrac metric.38 Significant 
associations between diversity and sample metadata were detected using pairwise 
Kruskal-Wallis tests39 and the pairwise Fligner-Killeen test,40,41 while significant 
links between composition and metadata were examined using adonis42,43 and 
PERMANOVA.42 Lastly, ANCOM44 was used to identify significant changes in an 
ASV abundance across samples.  
 
 

4.5. Results  

4.5.1 Preterm oral microbiota at two months are similar to that in full-

term infants 

We first compared all preterm and full-term infant oral microbiota by 
investigating diversity at two analogous time points (PT1 and PT2 vs. FT1 and FT2). 
There was high variability and diversity in PT1 samples (Figure 2A&B), suggesting 
that each preterm infant responds uniquely to their environment. However, 
diversity significantly appeared to stabilize at 36 weeks’ postmenstrual age, as a 
significant reduction in diversity variability was observed between PT1 and PT2 (PT1 
vs. PT2; Fligner-Killeen; OS: chi-squared=33.149, p=8.537e-09; PD: chi-
squared=29.913, p=4.519e-08; Figure 2A&B). Interestingly, PT2 and FT1 samples 
both contained similar, yet low, microbial diversity and were not significantly 
different from one another (Kruskal-Wallis; OS: H=0.041, q=0.840; PD: H=0.257, 
q=0.612). Adult oral microbiota diversity were significantly different from both 
preterm and full-term infant samples (Figure 2A&B; Appendix II Table S2; 
q>0.05), suggesting that further maturation of infant microbiota may continue over 
time, as previously reported.45 Overall, this suggests that oral microbiota diversity 
in preterm infants decreases and stabilizes within two months to resemble full-term 
neonates.  
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Next, we analysed the composition of preterm and full-term infant oral 
samples using the unweighted UniFrac metric. PC1 separated preterm infants 
according to timepoint (PT1 vs. PT2; PERMANOVA; pseudo-F=8.982, q=0.001). 
We also observed a progression of microbial maturation across the first two 
principal coordinates (PC1 and PC2; Figure 2C&D), as PT1 samples moved towards 
the PT2 and FT1 samples (PT1 vs. FT1; pseudo-F=4.672, q=0.001; Figure 2C&D). 
Similarly, the PT2 and FT1 samples moved towards the FT2 samples (PT2 vs. FT2; 
pseudo-F=6.093, q=0.001; FT1 vs. FT2; pseudo-F=2.372, q=0.010; Figure 2C&D), 
suggesting that preterm oral microbiota may become more similar to full-term 
infants over time in some individuals. Nevertheless, preterm and full-term infant 
microbiota were significantly different from one another (Figure 2C&D; Appendix 
II Table S2; q<0.05). Lastly, the FT2 samples clustered near adult samples, 
although they remained discrete (pseudo-F=8.506, q=0.001). Overall, these results 
indicate that the neonatal oral microbiota may mature over time. 

To better understand the compositional diversity differences, we investigated 
the microbial taxa abundance at the genus taxonomic level. While PT1 samples were 
highly variable between individuals (Appendix II Figure S1), a clear distinction 
was observed between PT1 and all other samples. Specifically, Staphylococcus 
(average relative abundance; 61.8%) dominated PT1 samples (Figure 3) and was 
significantly more abundant compared to all other groups (Appendix II Table S3). 
Conversely, PT2 samples were dominated (relative abundance >1%) by 
Streptococcus (71.6%), Gemella (6.1%), Rothia (5.7%), Veillonella (4.1%), 
Staphylococcus (3.6%), Prevotella (2.5%), and Haemophilus (1.2%), which were 
shared with FT1 samples (Figure 3), with the exception of Prevotella. The only taxa 
that significantly differed in abundance between PT2 and FT1 samples were Rothia, 
Paenibacillus, and Erythrobacteraceae bacterium K-2-3 ASVs, all of which were 
more abundant in PT2 samples (Appendix II Table S3) and also observed in PT1 
samples. Lastly, we identified several genera present in all infant and adult mouths, 
including Streptococcus, Gemella, Rothia, Veillonella, Staphylococcus, Prevotella, 
and Haemophilus ASVs, suggesting that these microbes are introduced from a 
young age and maintained into adulthood.  
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Figure 2: Within three months, preterm infant oral microbiota diversity 
and composition resembles full-term infants. Using 2,000 sequences per 
sample, alpha diversity variation decreases over time in preterm infants using both 
(A) observed species and (B) Faith’s phylogenetic diversity metrics. Composition of 
preterm infants was initially distinct from PT2 and full-term infant samples, 
although this normalized over time using both unweighed UniFrac metric (C) over 
Axis 1 and 2. Adults were significantly different from infant samples over Axis 2 and 
3 (D). Samples were coloured according to the time of collection and if they were a 
preterm or full-term infant, or adult.  
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Figure 3: Staphylococcus dominates the PT1 samples, but taxonomic 
composition is restored over time for preterm infants. The relative 
abundance of oral bacterial genera are shown for preterm and full-term infants at 
two time points, as well as adult samples. Genera with <1% relative abundance were 
collapsed. 

 

 
4.5.2. Disease influences the preterm oral microbiota 

 As BPD and sepsis commonly affect preterm infants, we wanted to determine 
if lethal BPD and sepsis are associated with the oral microbiota during the first few 
months post-birth. The presence of lethal BPD in preterm infants approached 
significance for oral microbiota diversity (OS: H=2.935, q=0.087; PD: H=3.593, 
q=0.058) but not composition (adonis; R2=0.032, p=0.112) in infants at ~4 days 
old. At this age, infants that presented lethal BPD during this study had a lower 
microbial diversity at T1 (median: 13 ASVs) compared to infants who did not present 
BPD (median: 35 ASVs). Interestingly, Corynebacterium was found at 11.3% 
relative abundance in infants that developed BPD, but only at 0.9% relative 
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abundance in infants that did not develop BPD. Using ANCOM, no specific species 
were driving differences in composition. At ~65 days of age, however, infants that 
were diagnosed with sepsis had a lower microbiota diversity (median of 7 ASVs for 
children with sepsis vs median of 10 ASVs for children without sepsis; OS: H=3.949, 
q=0.04; PD: H=2.569, q=0.109) and composition was significantly influenced 
(adonis: R2=0.046, p=0.031), but these differences were not detected at an earlier 
age. In all individuals at this age, Streptococcus dominated the mouth, which 
reduced the diversity observed in both infants with and without sepsis diagnosis. 
While no species or genera were significantly more abundant in infants that 
presented sepsis, we observed Staphylococcus at a higher relative abundance 
(13.6%) in infants with sepsis diagnosis, compared to infants that were not 
diagnosed with sepsis (0.6%). Sex of the infant at this age was also an important 
contributor to the oral microbiota (OS: H=5.189, q=0.02; PD: H=7.782, q=0.005; 
adonis: R2=608, p=0.009). Interestingly, nine of thirteen infants diagnosed with 
sepsis were males. As these results are difficult to disentangle, more samples are 
needed to determine if sepsis is contributing to differences in the oral microbiota.   
 
 

4.5.3. Oral microbiota are shared with lung microbiota 

 In preterm infants that were intubated, we identified ASVs shared between 
PT1 oral samples and tracheal aspirate samples in the same individual (n=12). 
Overall, 32 ASVs were shared between a PT1 oral sample and tracheal aspirate in at 
least one individual. Although lung samples were low-biomass and stochastic, the 
most dominant shared ASVs (>1,000 reads across individuals) included 
Paenibacillus, Staphylococcus, Erythrobacteraceae bacterium K-2-3, 
Streptococcus anginosus, Ureaplasma, Burkholderiaceae, and Streptococcus 
agalactiae sequences (Appendix II Table S4). Ureaplasma increases the risk for 
developing BPD,3 and was also found as a dominant taxa in PT1 samples of children 
who did not receive intubation (FigureS1; >1,000 sequences; healthy=8, BPD=2). 
Additionally Streptococcus anginosus and Streptococcus agalactiae have 
previously been associated with BPD and sepsis, respectively. In this study, 
Streptococcus anginosus was found as a dominant species in one individual with 
BPD, while Streptococcus agalactiae was found as dominant species in one 
individual with sepsis. Ureaplasma, Streptococcus anginosus, and Streptococcus 
agalactiae all reduced in abundance by the T2 collection point. Together, this 
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suggests that early oral colonizers in preterm infants can also spread to the lungs 
and be linked to disease complications. However, these results also suggest that 
stabilization and maturation of the oral microbiota is linked to a reduction of 
opportunistic pathogens in these preterm children.  
 
 

4.6. Discussion  

By comparing oral and lung microbiota of preterm and full-term infants over 
the first few months of life, we observed marked levels of interindividual variation 
and compositional differences in newborn preterm infants. However, these 
observations were ameliorated in two-month-old preterm infants, as their microbes 
were more similar to full-term infants. While BPD is associated with early oral 
microbial diversity in preterm newborns, sepsis was significantly associated with 
diversity and compositional differences in preterm infants two months post-birth. 
Lastly, potential pathogens identified in both the mouth and lungs of preterm 
infants with BPD or sepsis also provide a unique window into microbial colonisation 
of the lungs linked to poor health outcomes. Overall, monitoring the oral microbiota 
through the neonatal immune window of opportunity may provide new insights into 
understanding higher morbidity and mortality rates in preterm infants compared to 
their full-term counterparts.  

Higher morbidity and mortality rates in preterm infants typically arise from 
respiratory and infectious diseases, including BPD and sepsis. A single previous 
study surveyed the cross-over between the oral and lung microbiota of preterm 
infants in relation to BPD and found dominant genera that were also observed in 
our study.5 Using exact sequences (ASVs), we identified these taxa at the species 
level and they were assigned as key pathogens associated with BPD and sepsis (i.e. 
Ureaplasma,2 Streptococcus anginosus,3 and Streptococcus agalactiae (Group B 
Streptococcus)4). In this study, these pathogens were highly abundant in oral 
samples at the first time point but they reduced in abundance by the second time 
point. Interestingly, we observed Corynebacterium in high abundance in the mouth 
of infants with BPD, which has also been observed in at high abundance in the lungs 
of infants with severe BPD.46 We also detected Staphylococcus at a higher 
abundance in preterm infants with sepsis diagnosis. Indeed, Staphylococcus aureus 
has been shown to cause early onset sepsis, as detected by cultures of blood or 
cerebrospinal fluid.47 Biomarkers for these opportunistic pathogens could be used 
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early in life or to explore children at risk of lethal diseases, due to the high 
proportion of these taxa found in the mouth. Further, microbiota diversity and 
composition were distinct in preterm infants with sepsis, compared to those 
without, but only one other study has examined the link between sepsis and the oral 
microbiota, although no significant differences in the mouths of infants diagnosed 
with sepsis were detected, likely due to a small sample size (total n=7).18 
Interestingly, more male infants in this study were affected by sepsis and overall we 
observed lower microbial diversity in male infants at ~65 days of age. In general, 
male infants more frequently suffer from diseases, such as early onset sepsis and 
BPD.48,49 Overall, these results suggest that monitoring oral microbiota diversity in 
preterm infants may provide insights into respiratory health outcomes, although 
further work needs to account for high levels of microbial diversity variation in 
newly born preterm infants.  

If preterm infants avoid or survive infectious or respiratory disease early in 
life, they still maintain a high predisposition to immune-mediated disease later in 
life, such as asthma.50 Several studies postulate a disruption in the neonatal 
immunity window of immune training, which occurs during the first three years of 
life in layered phases (peri/postnatal, weaning, and post-weaning)23, could be 
responsible for diseases later in life. The neonatal window notably includes a critical 
period for interactions between the immune system and gut microbiota during the 
first 100 days,25 so examining how microbiota develop over this period throughout 
the entire body is vital to understanding long-term immune system development. 
Critically examining how the oral and respiratory tract microbiota develops over this 
time period is needed to understand the development of chronic respiratory disease 
development later in life. Here, we observed that the postnatal day was significantly 
associated with oral microbial composition in preterm infants; this could be 
impacted by the continual changes to the immune system observed during the first 
week of birth.24 Further, we see a convergence of microbial diversity and 
composition over time that resembles full-term infants; this effect has also been 
reported in the immune system.24 Despite this similar trend, we lack an 
understanding of the early-life, non-redundant immune processes altered during 
the peri/postnatal phase of immune development that cannot be modified later in 
the life. For example, Hornef et al. (2020) suggests that immune tolerization and 
reprogramming may be reduced due to prematurity.23 In addition, we have even less 
of an understanding how oral and respiratory microbes may contribute to these 
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immune development processes, as most existing research is conducted on gut 
microbiota. Future studies should examine these intertwined processes at a much 
finer time scale, i.e. days/weeks during the peri/postnatal phase of immune system 
development, as well as how the outcomes of these processes are also related to non-
immunological factors, such as the environment.  
 Our conclusions are limited by our population size, which included a sub-
group of preterm infants from a single hospital in Australia, and a small number of 
full-term infants from a previously published study. The PT1 samples showed a 
significant amount of variation within the first week of birth. If samples were 
collected on the same day post-birth, e.g., day 3, then this may reduce some of the 
variation associated this collection point. We also recognise that these results are 
limited to the mouth; collecting samples across the whole body would be required 
to understand how microbiomes of an individual work together. Additionally, 
pairing the whole-body approach with immune function, better environmental 
information (i.e. where the microbes originate from), social surveys, and more 
metadata would provide a holistic approach to the preterm infant microbiota 
development, could provide more information on the impacts on the neonatal 
window of opportunity and long-term health consequences.   
 
 

4.7. Conclusions  

Over the first few years of life, preterm infants are exposed to unnatural 
environments, which influences microbiota colonisation and immune system 
development. Our study demonstrated that the oral microbiota of preterm infants 
is disrupted up to the two months after birth and may start to resemble the oral 
microbiota of full-term infants over time. This delayed effect of the oral microbiota 
may have downstream implications on the health of preterm infants.  
 
 

4.8 Declarations  

Sources of funding and support 

Supported by Australian Government Research Training Program 
Scholarship (CAS); Women’s and Children’s Hospital Foundation MS McLeod 
Research Fund Postdoctoral Fellowship (CTC); National Health and Medical 



  Chapter IV 

 85 

Research Council (NHMRC) Fellowships 1132596 (CTC), 1061704 and 1154912 
(MM) and 1046207 (RAG). The N3RO trial was supported by a grant (1022112) from 
the NHMRC. 

 
Authors Contributions  

C.T.C., I.P., N.F., L.S.W, M.M, R.A.G Conceptualization; N.F. Sample 
collection; C.A.S. laboratory and bioinformatic analyses; C.A.S. drafted the initial 
manuscript; all authors interpreted the data and critically reviewed and revised 
manuscript 

 
Acknowledgements 

We would firstly like to thank all participants and their families for providing 
samples. In addition, we would like to thank Jennifer Young for lab troubleshooting, 
Pool Gooding at the Australian Genome Research Facility for providing sequencing, 
and Salva Herrando-Perez for statistical support. 
 

Conflicts of interest  

  The authors declare that they have no conflicts of interest  
 
 

4.9. References  

 1.  Behrman RE, Butler AS, Outcomes I of M (US) C on UPB and AH. Mortality and 
Acute Complications in Preterm Infants. National Academies Press (US); 2007. 
Accessed April 22, 2020. https://www.ncbi.nlm.nih.gov/books/NBK11385/ 

2.  Pammi M, Lal CV, Wagner BD, et al. Airway Microbiome and Development of 
Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. J 
Pediatr. 2019;204:126-133.e2. doi:10.1016/j.jpeds.2018.08.042 

3.  Glaser K, Gradzka-Luczewska A, Szymankiewicz-Breborowicz M, et al. Perinatal 
Ureaplasma Exposure Is Associated With Increased Risk of Late Onset Sepsis 
and Imbalanced Inflammation in Preterm Infants and May Add to Lung Injury. 
Front Cell Infect Microbiol. 2019;9. doi:10.3389/fcimb.2019.00068 



Chapter IV   

 86 

4.  Doran KS, Nizet V. Molecular pathogenesis of neonatal group B streptococcal 
infection: no longer in its infancy. Molecular Microbiology. 2004;54(1):23-31. 
doi:10.1111/j.1365-2958.2004.04266.x 

5.  Brewer MR, Maffei D, Cerise J, et al. Determinants of the lung microbiome in 
intubated premature infants at risk for bronchopulmonary dysplasia. The 
Journal of Maternal-Fetal & Neonatal Medicine. 2019;0(0):1-7. 
doi:10.1080/14767058.2019.1681961 

6.  Santos J, Pearce SE, Stroustrup A. Impact of Hospital-Based Environmental 
Exposures on Neurodevelopmental Outcomes of Preterm Infants. Curr Opin 
Pediatr. 2015;27(2):254-260. doi:10.1097/MOP.0000000000000190 

7.  Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the 
acquisition and structure of the initial microbiota across multiple body habitats 
in newborns. PNAS. 2010;107(26):11971-11975. doi:10.1073/pnas.1002601107 

8.  Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation 
of the infant microbiome community structure and function across multiple 
body sites and in relation to mode of delivery. Nature Medicine. 2017;23(3):314-
326. doi:10.1038/nm.4272 

9.  Lif Holgerson P, Vestman NR, Claesson R, et al. Oral microbial profile 
discriminates breast-fed from formula-fed infants. J Pediatr Gastroenterol 
Nutr. 2013;56(2):127-136. doi:10.1097/MPG.0b013e31826f2bc6 

10.  Ho NT, Li F, Lee-Sarwar KA, et al. Meta-analysis of effects of exclusive 
breastfeeding on infant gut microbiota across populations. Nat Commun. 
2018;9. doi:10.1038/s41467-018-06473-x 

11.  Hendricks-Muñoz KD, Xu J, Parikh HI, et al. Skin-to-Skin Care and the 
Development of the Preterm Infant Oral Microbiome. Am J Perinatol. 
2015;32(13):1205-1216. doi:10.1055/s-0035-1552941 

12.  Gasparrini AJ, Wang B, Sun X, et al. Persistent metagenomic signatures of early-
life hospitalization and antibiotic treatment in the infant gut microbiota and 
resistome. Nature Microbiology. 2019;4(12):2285-2297. doi:10.1038/s41564-
019-0550-2 

13.  Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its 
impact on health in later life. Allergology International. 2017;66(4):515-522. 
doi:10.1016/j.alit.2017.07.010 



  Chapter IV 

 87 

14.  Sohn K, Kalanetra KM, Mills DA, Underwood MA. Buccal administration of 
human colostrum: impact on the oral microbiota of premature infants. Journal 
of Perinatology. 2016;36(2):106-111. doi:10.1038/jp.2015.157 

15.  Younge NE, Araújo-Pérez F, Brandon D, Seed PC. Early-life skin microbiota in 
hospitalized preterm and full-term infants. Microbiome. 2018;6(1):98. 
doi:10.1186/s40168-018-0486-4 

16.  Li H, Zhang Y, Xiao B, Xiao S, Wu J, Huang W. Impacts of delivery mode on very 
low birth weight infants’ oral microbiome. Pediatrics & Neonatology. 
2020;61(2):201-209. doi:10.1016/j.pedneo.2019.10.004 

17.  Pammi M, O’Brien JL, Ajami NJ, Wong MC, Versalovic J, Petrosino JF. 
Development of the cutaneous microbiome in the preterm infant: A prospective 
longitudinal study. PLoS ONE. 2017;12(4):e0176669. 
doi:10.1371/journal.pone.0176669 

18.  Young GR, van der Gast CJ, Smith DL, Berrington JE, Embleton ND, Lanyon C. 
Acquisition and Development of the Extremely Preterm Infant Microbiota 
Across Multiple Anatomical Sites. Journal of Pediatric Gastroenterology and 
Nutrition. 2020;70(1):12–19. doi:10.1097/MPG.0000000000002549 

19.  Lu M, Xuan S, Wang Z. Oral microbiota: A new view of body health. Food Science 
and Human Wellness. 2019;8(1):8-15. doi:10.1016/j.fshw.2018.12.001 

20.  Graves DT, Corrêa JD, Silva TA. The Oral Microbiota Is Modified by Systemic 
Diseases. J Dent Res. 2019;98(2):148-156. doi:10.1177/0022034518805739 

21.  Torow N, Hornef MW. The Neonatal Window of Opportunity: Setting the Stage 
for Life-Long Host-Microbial Interaction and Immune Homeostasis. The 
Journal of Immunology. 2017;198(2):557-563. doi:10.4049/jimmunol.1601253 

22.  Renz H, Adkins BD, Bartfeld S, et al. The neonatal window of opportunity—
early priming for life. J Allergy Clin Immunol. 2018;141(4):1212-1214. 
doi:10.1016/j.jaci.2017.11.019 

23.  Hornef MW, Torow N. ‘Layered immunity’ and the ‘neonatal window of 
opportunity’ – timed succession of non-redundant phases to establish mucosal 
host–microbial homeostasis after birth. Immunology. 2020;159(1):15-25. 
doi:10.1111/imm.13149 



Chapter IV   

 88 

24.  Olin A, Henckel E, Chen Y, et al. Stereotypic Immune System Development 
in Newborn Children. Cell. 2018;174(5):1277-1292.e14. 
doi:10.1016/j.cell.2018.06.045 

25.  Arrieta M-C, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and 
metabolic alterations affect risk of childhood asthma. Science Translational 
Medicine. 2015;7(307):307ra152-307ra152. doi:10.1126/scitranslmed.aab2271 

26.  Collins CT, Makrides M, McPhee AJ, et al. Docosahexaenoic Acid and 
Bronchopulmonary Dysplasia in Preterm Infants. New England Journal of 
Medicine. 2017;376(13):1245-1255. doi:10.1056/NEJMoa1611942 

27.  Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, et al. Partial restoration of 
the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med. 
2016;22(3):250-253. http://dx.doi.org/10.1038/nm.4039 

28.  Weyrich LS, Farrer AG, Eisenhofer R, et al. Laboratory contamination over 
time during low-biomass sample analysis. Molecular Ecology Resources. 
2019;19(4):982-996. doi:10.1111/1755-0998.13011 

29.  Rohland N, Hofreiter M. Comparison and optimization of ancient DNA 
extraction. BioTechniques. 2007;42(3):343-352. doi:10.2144/000112383 

30.  Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial 
community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 
2012;6(8):1621-1624. doi:10.1038/ismej.2012.8 

31.  Selway CA, Mills JG, Weinstein P, et al. Transfer of environmental microbes to 
the skin and respiratory tract of humans after urban green space exposure. 
Environment International. 2020;145:106084. 
doi:10.1016/j.envint.2020.106084 

32.  Amir A, McDonald D, Navas-Molina JA, et al. Deblur Rapidly Resolves 
Single-Nucleotide Community Sequence Patterns. mSystems. 
2017;2(2):e00191-16. doi:10.1128/mSystems.00191-16 

33.  Janssen S, McDonald D, Gonzalez A, et al. Phylogenetic Placement of Exact 
Amplicon Sequences Improves Associations with Clinical Information. 
mSystems. 2018;3(3). doi:10.1128/mSystems.00021-18 

34.  Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple 
statistical identification and removal of contaminant sequences in marker-gene 



  Chapter IV 

 89 

and metagenomics data. Microbiome. 2018;6(1):226. doi:10.1186/s40168-018-
0605-2 

35.  Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and 
extensible microbiome data science using QIIME 2. Nat Biotechnol. 
2019;37(8):852-857. doi:10.1038/s41587-019-0209-9 

36.  Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database 
project: improved data processing and web-based tools. Nucleic Acids Res. 
2013;41(D1):D590-D596. doi:10.1093/nar/gks1219 

37.  Faith DP. Conservation evaluation and phylogenetic diversity. Biological 
Conservation. 1992;61(1):1-10. doi:10.1016/0006-3207(92)91201-3 

38.  Lozupone C, Knight R. UniFrac: a New Phylogenetic Method for Comparing 
Microbial Communities. Appl Environ Microbiol. 2005;71(12):8228-8235. 
doi:10.1128/AEM.71.12.8228-8235.2005 

39.  Kruskal WH, Wallis WA. Use of Ranks in One-Criterion Variance Analysis. 
Journal of the American Statistical Association. 1952;47(260):583-621. 
doi:10.2307/2280779 

40.  Fligner MA, Killeen TJ. Distribution-Free Two-Sample Tests for Scale. 
Journal of the American Statistical Association. 1976;71(353):210-213. 
doi:10.1080/01621459.1976.10481517 

41.  Conover WJ, Johnson ME, Johnson MM. A Comparative Study of Tests for 
Homogeneity of Variances, with Applications to the Outer Continental Shelf 
Bidding Data. Technometrics. 1981;23(4):351-361. doi:10.2307/1268225 

42.  Anderson MJ. A new method for non-parametric multivariate analysis of 
variance. Austral Ecology. 2001;26(1):32-46. doi:10.1111/j.1442-
9993.2001.01070.pp.x 

43.  Oksanen J, Blanchet FG, Friendly M, et al. Vegan: Community Ecology 
Package.; 2018. https://CRAN.R-project.org/package=vegan 

44.  Mandal S, Treuren WV, White RA, Eggesbø M, Knight R, Peddada SD. 
Analysis of composition of microbiomes: a novel method for studying microbial 
composition. Microbial Ecology in Health and Disease. 2015;26(1):27663. 
doi:10.3402/mehd.v26.27663 



Chapter IV   

 90 

45.  Lif Holgerson P, Esberg A, Sjödin A, West CE, Johansson I. A longitudinal 
study of the development of the saliva microbiome in infants 2 days to 5 years 
compared to the microbiome in adolescents. Scientific Reports. 
2020;10(1):9629. doi:10.1038/s41598-020-66658-7 

46.  Imamura T, Sato M, Go H, et al. The Microbiome of the Lower Respiratory 
Tract in Premature Infants with and without Severe Bronchopulmonary 
Dysplasia. Am J Perinatol. 2017;34(1):80-87. doi:10.1055/s-0036-1584301 

47.  Isaacs D, Fraser S, Hogg G, Li HY. Staphylococcus aureus infections in 
Australasian neonatal nurseries. Archives of Disease in Childhood - Fetal and 
Neonatal Edition. 2004;89(4):F331-F335. doi:10.1136/adc.2002.009480 

48.  Neubauer V, Griesmaier E, Ralser E, Kiechl-Kohlendorfer U. The effect of sex 
on outcome of preterm infants - a population-based survey. Acta Paediatr. 
2012;101(9):906-911. doi:10.1111/j.1651-2227.2012.02709.x 

49.  Trembath A, Laughon M. Predictors of Bronchopulmonary Dysplasia. Clin 
Perinatol. 2012;39(3):585-601. doi:10.1016/j.clp.2012.06.014 

50.  Goedicke-Fritz S, Härtel C, Krasteva-Christ G, Kopp MV, Meyer S, Zemlin M. 
Preterm Birth Affects the Risk of Developing Immune-Mediated Diseases. Front 
Immunol. 2017;8. doi:10.3389/fimmu.2017.01266 

 
 

 

 

 

 

 

 

 

 

 

 



  Chapter IV 

 91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter IV   

 92 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 93 

 
 
 
 
 
Chapter V 
 
Altered oral microbiota in type 1 diabetic 
children with hyperlipidemic parents 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter V   

 94 

 

 
 



  Chapter V 

 95 

 

 
 



Chapter V   

 96 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  Chapter V 

 97 

Altered oral microbiota in type 1 diabetic 
children with hyperlipidemic parents 
 
Caitlin A. Selway1*, Emilija D. Jensen2,3, Gabrielle Allen2,3, Laura S. Weyrich1,4,5* 

 
Affiliations: 
1 School of Biological Sciences, University of Adelaide, South Australia, Australia  

2 Discipline of Paediatric Dentistry, Adelaide Dental School, University of Adelaide, 
South Australia, Australia 

3 Department of Paediatric Dentistry, Women’s and Children’s Hospital, South 
Australia, Australia 

4 Department of Anthropology, The Pennsylvania State University, University 
Park, PA USA 

5 Huck Institutes of Life Sciences, The Pennsylvania State University, University 
Park, PA USA 
 
Corresponding authors:  
* Caitlin A Selway, School of Biological Sciences, University of Adelaide, Adelaide 
SA 5005, Australia. caitlin.selway@adelaide.edu.au  
* Laura S Weyrich, Department of Anthropology, Pennsylvania State University, 
University Park, PA 16802 USA. lsw132@psu.edu 
 
 
5.1. Abstract  

Hyperlipidemia may play a significant role in the interrelationship between 
type 1 diabetes and periodontal disease. However, the effect that hyperlipidemia has 
on the oral microbiota of children with type 1 diabetes has not yet been explored. 
We examined the bacterial composition of gingival swab samples from 72 South 
Australian children with type 1 diabetes in relation to periodontal risk factors and 
hyperlipidemia status of first-degree relatives. In periodontally healthy (no 
periodontal pockets with depth >3 mm) children with type 1 diabetes, bacterial 
diversity (richness and phylogenetic diversity) was significantly reduced in children 
with a family history of hyperlipidemia compared to those without. Further, 
bacterial compositional diversity was significantly altered in these children with a 
family history of hyperlipidemia. In contrast, no significant differences in diversity 
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or compositional diversity between those with or without a family history of 
hyperlipidemia were observed in children with high-risk periodontal markers (at 
least one periodontal pocket with depth >3mm) and type 1 diabetes. These results 
were supported by co-occurrence networks, which showed fewer networks in 
periodontally healthy children with a family history of hyperlipidemia, and similar 
networks across all children with high-risk periodontal markers. When investigating 
additional factors that may contribute to these observations, we found that 
hyperlipidemia and periodontal pocket depth dependently impacted the oral 
microbiota, while glycated hemoglobin (HbA1c) independently affected the oral 
microbiota of these children. Our findings support an interrelationship between the 
familial history of hyperlipidemia, periodontal risk factors, and type 1 diabetes, and 
show that a family history of hyperlipidemia is linked to a significant effect on the 
oral microbiota of periodontally healthy children with type 1 diabetes. Further 
investigations are required to understand if these differences in oral microbiota 
composition are reflective of lipid profiles from the children themselves. 
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5.2. Introduction  

Dyslipidemia is a condition where there is an abnormal concentration of 
blood lipids, such as fats, triglycerides, and cholesterol. In industrialized countries, 
most dyslipidemia cases are classified as hyperlipidemia (elevated blood lipids) and 
are a consequence of many factors, including poor diet, smoking, sedentary lifestyle, 
diabetes, and familial hyperlipidemia (Expert Panel on Integrated Guidelines for 
Cardiovascular Health and Risk Reduction in Children and Adolescents 2011). Many 
hyperlipidemia cases go undetected during the early stages of the condition, putting 
individuals at higher risk for developing cardiovascular diseases, such as 
atherosclerosis (Elkins et al. 2019). However, individuals who have a genetic 
predisposition to particular hyperlipidemias, especially hypercholesterolemia (high 
abundance of cholesterol), can be given statin-based treatments to control blood 
lipids and slow hyperlipidemia progression (Luirink et al. 2019).  
 Hyperlipidemia is a multifactorial condition that has been linked to both 
genetic and environmental factors (Costanza et al. 2005). From genome wide 
association studies, over 150 human genomic loci were associated with abnormal 
lipid levels in the bloodstream (Matey-Hernandez et al. 2017). However, more than 
half of the variation associated with circulating lipid levels in the blood has been 
linked to non-genetic factors, including the microbial communities that colonize the 
body (microbiota) (Matey-Hernandez et al. 2017). In mouse models, gut microbiota 
have been associated with regulation of blood lipids using particular lipoprotein 
lipase inhibitors, such as fast-inducing adipose factor (FIAF; Bäckhed et al. 2004). 
Further, gut microbiota co-produce secondary acids, such as short-chain fatty acids, 
bile acids, and conjugated linoleic acids, which are used in metabolic pathways, such 
as regulating lipids (Allayee and Hazen 2015) and cholesterols (Le Roy et al. 2019). 
Although the relationship between hyperlipidemia and gut microbiota is emerging, 
the specific, systemic mechanisms that underpin these interactions needs further 
investigation. 

Interactions between hyperlipidemia and microbiota elsewhere in the body 
also needs further exploration, as relationships between hyperlipidemia and other 
microbiota-associated diseases, such as type 1 diabetes (T1D) and periodontitis, 
have been proposed (Zhou et al. 2015). In fact, 29-66% of children with T1D have 
also been shown to have hyperlipidemia (Zabeen et al. 2018), and hyperlipidemia is 
a risk factor for periodontal disease (Lee et al. 2018). Although T1D has a strong 
genetic inheritance (Steck and Rewers 2011), recent mouse and human studies 
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identified additional correlations between gut microbiota and T1D (Zhou et al. 
2020). For instance, decreased abundances of Bifidobacterium and butyrate-
producing bacteria in the gut, as well as lower overall gut microbial diversity, have 
been observed in human T1D compared to healthy individuals (Zhou et al. 2020). 
We hypothesize that microbiota may play a role in the connection between both 
diseases, as well as their interactions with other health outcomes. For example, 
uncontrolled T1D and hyperlipidemia can negatively impact wound healing 
(Abraham et al. 2019) and increases the risk for developing periodontal disease 
(Zhou et al. 2015; Abraham et al. 2019). Indeed, our previous study showed that 
glycemic control and periodontal markers in children with T1D can influence the 
oral microbiota (Appendix III Jensen et al. 2020), although the additional 
interactions with hyperlipidemia have not yet been explored.  

In this post-hoc study, we explored the effect of hyperlipidemia (parent 
status) on the oral microbiota of children with T1D (n=72), who were enrolled in a 
study to investigate the effects of glycemic control (HbA1c) and periodontal risk 
markers, including bleeding on probing, plaque index, gingival index, brushing 
frequency, and periodontal pocket depth (PD), on the oral microbiota (Appendix 
III Jensen et al. 2020). We previously confirmed links between periodontal disease 
characteristics and changes in oral microbiota (Appendix III Jensen et al. 2020), 
but wanted to further explore the links between lipid levels and the oral microbiota 
of these children, while accounting for periodontal risk markers. Our goal was to 
explore the oral microbiota relationship between T1D, periodontal PD, and the 
family history (FHx) of hyperlipidemia in these children. 
 
 
5.3. Materials and methods 

5.3.1. Study cohort and sample collection 

 Seventy-six children with T1D were recruited at the Pediatric Diabetes Clinic 
at the Women’s and Children’s Hospital, Adelaide, Australia between February 2018 
to February 2019, under ethics approval (Women’s and Children’s Health Network 
Human Research Ethics Committee; HREC/17/WCHN/165). Children were 
between 8-18 years and had T1D that was diagnosed by detectable islet cell 
autoantibodies. It was advised that children who had a fever or infection, diabetic 
ketosis, or were currently taking a course of antibiotics, reschedule their 
appointment. Informed written consent was acquired from all parents or guardians 
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of children under 16 of age, or from the child themselves if they were 16 years or 
older. As part of the study, participants, or their parents/guardians were verbally 
interviewed and diabetes data were obtained from participant’s medical records, 
and periodontal risk markers were collected by a practitioner at the time of dental 
examination (see Table 1 for further details). 
 A gingival swab was collected from the buccal-gingival margin of the lower 
left first permanent molar of each child by a dentist undertaking pediatric specialist 
training. Swabs were stored in sterile tubes and immediately placed in a -80°C 
freezer. Frozen samples were later transported in a cool box with freezer packs to a 
dedicated low-biomass microbiome laboratory at the University of Adelaide. 
Samples were kept frozen until DNA extraction.   
 
Table 1. Summary of study participant characteristics. 

Characteristic Participants  
(n = 76) 

Participants after 
filtering samples 

(n=72) 

Age (years) 13.3 ± 2.6 12.9 ± 2.5 

Female gender (n, %) 39 (51.3) 38 (52.7) 

Duration of T1D (years) 5.50 ± 3.82 5.56 ± 3.90 

HbA1c (%, median, range) 8.1 (5.8–13.3) 7.95 (5.8–13.3) 

BMI z-score 0.80 ± 0.76 0.79 ± 0.77 

Plaque index 0.93 ± 0.52 0.92 ± 0.52 

Gingival index 0.67 ± 0.43 0.66 ± 0.43 

Bleeding on probing (n, %) 21.52 ± 19.48 21.18 ± 19.26 

Pocket depth >3 mm (count, %) 36 (47.4) 34 (47.2) 
Family history of disease (n, %) 

Hyperlipidemia 
Cardiovascular disease  

Obesity 
T1D 
T2D 

 
30 (39.5) 
20 (27.6) 
35 (46.1) 
26 (34.2) 
47 (61.8) 

 
30 (41.7) 
20 (27.8) 
34 (47.2) 
24 (33.3) 
45 (62.5) 

Mean ± SD unless specified; T1D = type 1 diabetes; BMI = body mass index. 
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5.3.2. Bioinformatic, microbial diversity, and statistical analyses  

As the data for this study was publicly available, demultiplexed DNA 
sequences were downloaded from the QIITA repository (Study ID 13235) and were 
joined using vsearch (Rognes et al. 2016) in QIIME2 (Bolyen et al. 2019; v2019.7). 
Next, sequences were quality assessed and denoised at 250 bp using Deblur (Amir 
et al. 2017). A SEPP insertion tree (Mirarab et al. 2012) was created, and sequences 
were assigned using the SILVA database (v132; 16S rRNA gene 515-806) using 
default parameters. Using decontam (Davis et al. 2018), contaminant amplicon 
sequence variants (ASVs) were identified from EBCs and NTCs (prevalence 
threshold set to 0.6) and were removed from gingival samples. Samples with low 
sequencing depth (<5,000 sequences) or incomplete data and ASVs with <11 
sequences per ASV were also removed.  

Microbial diversity and statistical analyses were performed in QIIME2. At a 
rarefied depth of 5,000 sequences, diversity (alpha diversity) was calculated using 
observed ASVs (richness) and Faith’s phylogenetic diversity (Faith 1992) metrics. 
Significant associations between diversity and categorical metadata were tested 
using a Kruskal-Wallis (Kruskal and Wallis 1952) pairwise statistical test, whereby 
FDR adjusted p-values (q-values) were reported. Similarly, differences in bacterial 
composition diversity were calculated using unweighted UniFrac (Lozupone and 
Knight 2005) and Bray-Curtis metrics at a rarefied depth of 5,000 sequences. Both 
PERMANOVA (Anderson 2017) and adonis (Anderson 2001) tests were used to 
determine statistical differences between groups and the variation that a metadata 
category contributes to the composition, respectively. We also explored 
confounding factors between HbA1c, periodontal PD ,and FHx hyperlipidemia using 
linear mixed models in R (version 3.6.1).  
 Genera co-correlations were examined by exporting biom tables from 
QIIME2 and importing them into MEGAN6 (Huson et al. 2016). Taxonomy for each 
ASV was checked and adjusted manually due to differences between the SILVA and 
BLAST taxonomy strings. Equal numbers of samples were compared in each 
instance (n=11 per group). In MEGAN6, ASV data was collapsed to the genus 
taxonomic level and visualized as co-occurrence plots using the Pearson correlation 
test with the following parameters: observed in 80% to 100% of samples and had an 
edge threshold of 80%.  
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5.4. Results  

5.4.1. A robust oral microbiota signal was achieved from gingival 
swabs 

 To ensure a robust oral microbiota signal was achieved, contaminant ASVs 
and poorly sequenced samples were investigated. Using decontam, 54 ASVs were 
identified as contaminants from EBCs and NTCs (Appendix III Table S1) and 
removed from the biological samples. From 76 samples, three individuals had 
incomplete metadata, while one sample had a low sequencing depth; these four 
samples were discarded from all downstream analyses. In the remaining 72 samples 
(Table1), 905 total ASVs were identified from 2,567,677 sequences (median 
sequences per sample: 33,920). 
 We next characterized the gingival microbiota of all children with T1D. A total 
of 12 phyla were detected from 72 gingival samples. The most abundant phyla (>2% 
mean relative abundance) were Proteobacteria (43.3%), Firmicutes (30.7%), 
Bacteroidetes (9.7%), Actinobacteria (8.3%), and Fusobacteria (6.3%) (Appendix 
III Figure S1). From 131 total identified genera, 12 genera were highly abundant 
(>2% relative abundance): Haemophilus (19.2%), Streptococcus (16.3%), Neisseria 
(10.3%), Veillonella (9.9%), Aggregatibacter (5.3%), Fusobacterium (3.8%), 
Actinobacillus (3.2%), Actinomyces (2.8%), Leptotrichia (2.5%), Corynebacterium 
(2.4%), Prevotella (2.0%), and Rothia (2.0%).  
 Previous studies identified that glycated hemoglobin (HbA1c) and blood lipid 
counts are correlated (Giuffrida et al. 2012) and can increase the risk and severity of 
periodontal disease (Zhou et al. 2015). Therefore, we wanted to explore whether or 
not HbA1c, periodontal PD, and FHx hyperlipidemia were confounded. Using linear 
mixed models, we determined all three factors were not interacting with one another 
(Appendix III Table S2). Once we removed this three-way insignificant interaction 
and any two-way insignificant interactions, we determined that glycated 
hemoglobin influenced the oral microbiota independently of periodontal PD and 
FHx hyperlipidemia (Appendix III Table S3), and that periodontal PD was 
confounded by a FHx hyperlipidemia. Therefore, we accounted for periodontal PD 
when investigating FHx hyperlipidemia by grouping samples as low periodontal risk 
(periodontally healthy; no periodontal pockets with depth >3 mm; individuals=38) 
or high periodontal risk (at least one periodontal pocket with depth >3 mm; 
individuals=34) for the following analyses.  
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5.4.2. Periodontally healthy children with a family history of 

hyperlipidemia have decreased oral microbiota diversity 

 
 As hyperlipidemia is related to both gut microbiota changes and periodontal 
disease (Matey-Hernandez et al. 2017; Lee et al. 2018), we wanted to examine links 
between oral microbiota health and FHx hyperlipidemia. To determine if a FHx 
hyperlipidemia altered oral diversity of children with T1D, we measured diversity 
using two metrics: microbial richness and Faith’s phylogenetic diversity. In 
periodontally healthy children, children with a FHx hyperlipidemia had 
significantly lower oral microbial diversity compared to those without a FHx 
hyperlipidemia (Kruskal-Wallis; phylogenetic: H=11.174, q=0.001; richness: 
H=8.616, q=0.003; Figure 1A-B). However, this was not in the case in children with 
high periodontal risk, as there were no significant differences between children with 
and without a FHx hyperlipidemia (Faith’s PD: H=0.009, q=0.927; richness: 
H=0.049, q=0.825; Figure 1C-D). These results suggest that gingival microbial 
diversity is lower in periodontally healthy children with a FHx hyperlipidemia.  
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Figure 1: Periodontally healthy children with a family history of 
hyperlipidemia have lower oral microbial diversity. Samples were rarefied 
to 5,000 sequences and alpha diversity was measured using faith’s phylogenetic 
diversity (A and B) and microbial richness (observed ASVs; C and D) for children 
with low (blue) and high (red) periodontal risk markers. Within each analysis, 
diversity was compared between children without (light) and with (dark) a FHx 
hyperlipidemia. * p<0.05 
 
 

5.4.3. Periodontally healthy children with a family history of 

hyperlipidemia have altered oral microbiota composition 

We wanted to see if the gingival microbiota composition was different 
between children with and without a FHx hyperlipidemia, given the altered gingival 
microbial diversity in these children. We measured compositional variation using 
unweighted UniFrac and found a significant difference in phylogenetic composition 
between periodontally healthy children with and without a FHx of hyperlipidemia 
(unweighted UniFrac; PERMANOVA: pseudo-F=4.281, q=0.001; adonis: R2=0.117, 
q=0.02; Figure 2A). However, there were no significant differences for weighted 
non-phylogenetic composition between these groups (Bray-Curtis: pseudo-F=1.164, 
q=0.265; Figure 2B). In children with high-risk periodontal markers, we saw no 
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compositional differences between children with and without a FHx hyperlipidemia 
(PERMANOVA; unweighted UniFrac: pseudo-F=0.743, q=0.725; Bray-Curtis: 
pseudo-F=0.948, q=0.511; Figure 2C&D). Overall, we see a phylogenetic 
compositional shift in periodontally healthy children with FHx of hyperlipidemia. 
 
 

 
Figure 2: Periodontally healthy children with a family history of 
hyperlipidemia have a distinctly different phylogenetic microbial 
composition to those that do not have a family history of 
hyperlipidemia. PCoA plots were generated to compare compositional 
differences using unweighted UniFrac and Bray-Curtis metrics. Children were 
separated based on having low-risk (blue; A-B) or high-risk (red; C-D) periodontal 
markers before comparing children with and without with a family history of 
hyperlipidemia. 
 
 

5.4.4. Periodontally healthy children with a family history of 
hyperlipidemia have less unique taxa 

To investigate the species that underpin diversity and composition 
differences in periodontally healthy children with FHx hyperlipidemia, we explored 
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specific taxa that could contribute to these differences. Using ANCOM, a Prevotella 
ASV was found to be significantly more abundant in periodontally healthy children 
with a FHx hyperlipidemia compared to children without (W=202). As only one ASV 
was significantly more abundant, we looked for the presence of any unique ASVs in 
periodontally healthy FHx children compared to those with no family history of 
hyperlipidemia. There were more unique ASVs observed in children without a FHx 
hyperlipidemia (412 unique ASVs; n=19 samples) in comparison to children with a 
FHx hyperlipidemia (84 unique ASVs; n=18 samples). Overall, periodontally 
healthy children with a FHx hyperlipidemia have increased levels of a specific 
Prevotella ASV and fewer unique species. 
 
 

5.4.5 Periodontally healthy children with a family history of 
hyperlipidemia have unique microbial networks compared to children 

with high-risk periodontal markers  

As we observed differences in periodontally healthy children with and 
without FHx dyslipidemia, we wanted to explore how these shifts may alter biofilm 
related co-occurrence networks in the mouth. Using the Pearson metric, we 
identified distinct networks of co-occurring genera between periodontally healthy 
children with a FHx hyperlipidemia and children without FHx. Specifically, four 
networks were observed in these children with no FHx hyperlipidemia (Appendix 
III Figure S2A), which included networks of 1.) Campylobacter and 
Fusobacterium; 2.) Rothia and Corynebacterium; 3.) Alloprevotella, 
Porphyromonas, and Capnocytophaga; and 4.) Streptococcus, Gemella, and 
Bergeyella. In periodontally healthy children with a FHx hyperlipidemia, there were 
only two co-occurrence networks: 1.) Corynebacterium and Capnocytophaga; and 
2.) Fusobacterium and Leptotrichia (Appendix III Figure S2B). This indicates that 
FHx hyperlipidemia may reduce the microbial networks in periodontally healthy 
children and shift the microbial community to a more mature plaque structure. 

We next examined co-occurrence networks in children with periodontal 
disease who did or did not have a FHx hyperlipidemia, as these networks can be 
altered in individual’s with periodontal disease (Chen et al. 2018; Lamont et al. 
2018). In children with high-risk periodontal markers and no FHx hyperlipidemia, 
a single network of six species commonly associated with periodontal disease 
(Prevotella, Porphyromonas, Fusobacterium, Campylobacter, Capnocytophaga, 
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and Leptotrichia) was detected (Appendix III Figure S2C). However, children 
with high periodontal risk markers and a FHx hyperlipidemia maintained four 
distinct networks (Appendix III Figure S2D) and notably did not include a 
network with Porphyromonas. One network did link Prevotella, Fusobacterium, 
Leptotrichia, and Corynebacterium species together, again to the exclusion of 
Porphyromonas. As the prevalence in Porphyromonas is typically considered 
critical in the development of periodontal disease, this observation may suggest that 
the networks of microbes that underpin periodontal disease development in 
children with a FHx hyperlipidemia may be unique compared to children without 
this familial history.  
 
 

5.5. Discussion 

Hyperlipidemia is a multifactorial disease that may provide a link between 
T1D and periodontal disease. In this study, we explored the relationship between 
hyperlipidemia and periodontal pocket depth (PD) in children with T1D using the 
parent’s hyperlipidemia status (FHx hyperlipidemia) as a proxy for abnormal lipid 
counts in their child, given genetic and environmental factors similarities between 
parents and children (Ang et al. 2013; Robledo and Siccardi 2016; Filgueiras et al. 
2019). Lower microbial diversity and changes to microbial composition were 
correlated with a FHx hyperlipidemia in periodontally healthy children (no 
periodontal pockets with depth >3 mm), but this was not observed for children with 
high-risk periodontal markers (at least one periodontal pocket with depth >3 mm). 
Further, increased abundance of a Prevotella ASV and fewer unique ASVs were also 
observed in this group. In periodontally healthy children with FHx hyperlipidemia, 
we also observed networks likely associated with more mature plaque structures. 
Altogether, these microbial differences may indicate that either genetic and/or 
environmental factors related to FHx hyperlipidemia may be altering the oral 
microbiota in children with T1D.  
 Although we did not have direct lipid information of children in this study, 
we used the status of hyperlipidemia from first-degree relatives (i.e. parent/s) as an 
indication of potentially abnormal lipid levels in children. This assumption is 
derived from the likelihood that children are exposed to similar lifestyle habits, e.g., 
diet and exercise patterns, and they share the same genetic make-up as their parents 
(Ang et al. 2013; Robledo and Siccardi 2016; Filgueiras et al. 2019). Previous work 
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also suggests that between 29-66% of children with T1D also had hyperlipidemia 
(Mona et al. 2015; Zabeen et al. 2018), aligning well with our assumptions about 
FHx hyperlipidemia in this cohort. Further, Guy et al. (2009) showed that children 
with T1D had elevated apolipoprotein B and LDL levels (i.e. early stages of 
hyperlipidemia), but this did not affect HbA1c levels, again similar to what we 
observed in this cohort. Nevertheless, it is possible that children within this cohort 
would not go on to develop hyperlipidemia, and future studies should directly 
examine blood lipid levels and lifestyle factors in children to correlate changes in 
microbiota more accurately. 

A bi-directional relationship between hyperlipidemia and periodontal 
disease has been described, but how this affects the oral microbiota has not been 
previously explored. Both mouse and human studies have shown that high fat diets 
and high blood lipids are associated with periodontitis (Zhou et al. 2015). Increases 
in blood lipids can elevate proinflammatory cytokines, which can then reside in the 
gingival crevicular fluid and promote inflammation of the gingiva. This process of 
gingival inflammation and the infiltration of proinflammatory cytokines is 
indicative of periodontal disease (Zhou 2017). Most periodontal studies have also 
suggested that gingival inflammation is also likely linked to the outgrowth of 
Porphyromonas gingivalis species during the development of periodontal disease. 
In periodontal disease, inflammation is also typically preceded by the development 
of large dental plaque structures. Our co-occurrence analysis of children with high 
periodontal risk markers revealed that Porphyromonas was not involved in the 
main networks of microbes in children with FHx hyperlipidemia, although species 
were present for mature plaque formation. However, Prevotella ASVs, which was 
also the only ASV with a significant association with FHx hyperlipidemia children, 
were identified in the networks of children with high-risk periodontal markers and 
FHx hyperlipidemia. It is possible that non-Porphyromonas species, such as 
Prevotella species, can significantly contribute to the development of periodontal 
disease in these children, or that the microbial ecosystem in these children is 
disrupted in unique ways with putative pathogens that can increase in abundance 
during periodontal disease and stimulate an immune response (Curtis et al. 2020). 
Monitoring the microbiota in these children over time and investigating the 
presence of a tipping point or control of oral microbiota in relationship to 
periodontal disease is needed in the future. This analysis should involve examining 
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both taxonomic and functional differences of oral microbiota in children with and 
without a FHx hyperlipidemia.    

Currently, hyperlipidemia goes undetected in the early stage of disease 
progression (Elkins et al. 2019) and is only recommended to be monitored every five 
years in children with diabetes (American Diabetes Association 2003). Further, the 
salivary lipid profiles reflect serum lipid levels (Al-Rawi 2011), which suggests that 
oral microbiota may be responding to changes in salivary lipid prevalence. 
Downstream studies should investigate if the oral microbiota could be used as an 
early prediction of hyperlipidemia in children with diabetes. For example, gingival 
microbiota swab samples could be collected during a dental visit to determine if 
changes to the oral microbiota, i.e. a decrease in microbial diversity has occurred 
and warrants more invasive testing. Collection of gingival samples is less invasive 
than blood samples and can be collected easily at routine dental visits, by individuals 
with less medical training, and from patients with less co-operative ability. 
Similarly, oral microbiota samples could also be taken to monitor changes in 
periodontal health in these children. Increasing our understanding of periodontal 
and metabolic diseases from a holistic approach can be more beneficial to not only 
detect multifactorial diseases, but also to prevent and treat them.  

As the relationship between diabetes, hyperlipidemia, and periodontal 
disease ranges from the gut to the mouth and includes the circulatory system, it is 
important to think of the body as a whole system, rather than focusing on one body 
site (Faust et al. 2012). For example, diabetes studies conventionally focus on gut 
microbiota, while periodontal studies predominantly focus on the oral microbiota. 
While a few emerging studies have now begun to examine links between oral and 
gut microbiota in periodontal disease (Gatej et al. 2020), future studies should focus 
on the mechanistic interactions between increased circulating glycated hemoglobin, 
lipids, and proinflammatory molecules. As we start to know more about T1D and 
potential treatments, it is important to consider the entire ecosystem of both the 
mouth and gut, which includes microbiota and the effects of circulating metabolites 
and cytokines. 
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Thesis summary and significance  
Non-communicable diseases (NCDs) are the world’s biggest killer.1 Since the 

1950’s, the prevalence, morbidity, and mortality of NCDs have increased steadily to 
the point where NCDs are now a public health crisis. The sudden increase in NCDs 
is not reflected by a rapid genetic change in humans, suggesting that environmental 
and behavioural factors and the human microbiome are important contributors. 
Unnatural changes to the environment (e.g., climate change, pollution, 
urbanisation, etc.) and certain lifestyle factors (e.g., diet, smoking status, activity 
levels, etc.) have been identified as detrimental to human health and are the targeted 
factors in the Sustainable Development Goals to reduced NCD-related premature 
death.2 However, microbiome research is in its infancy, and less is known about how 
the microbiota impacts the initiation, progression, and prevalence of NCDs. As such, 
this thesis aimed to provide more insights into development of and disruption to the 
human microbiome associated with NCDs.  

The overarching theme of this thesis is unravelling how the environment and 
disease impact the microbiome in areas of the human body with low microbial 
biomass and expands our knowledge of interactions and relationships between body 
sites and systems of the human body. With low microbial biomass samples comes 
unique challenges (see Chapter I) that must be overcome to appreciate how the 
environment impacts the skin, nasal, oral and lung microbiota (see Chapters III 
and IV) and how disease alters these microbiota (see Chapters IV and V). It is 
important to highlight that while low microbial biomass sites provide information 
for local sites, there are hints of systemic interactions on other microbiotas and 
systems of the human ecosystem (see Chapters II and V). Using a holistic 
approach may provide key insights into the development and progression of NCDs. 
Using low microbial biomass samples, this thesis provides more information on the 
microbiome contribution to NCDs in non-gut sites.   

In this discussion chapter, I summarise, interpret, and highlight the 
significance of my research and suggest future applications of ‘non-gut’ microbiotas 
for local and systemic research in relation to NCDs. This discussion explores my 
results through three main themes:   

1. Increase awareness of the challenges, benefits, and technical approaches 
used to examine low microbial biomass samples.  

2. Understanding disease from a holistic perspective—the systems and 
microbiotas of our body are interconnected. 
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3. Provide insights into the predisposition, initiation, progression, and 
potential treatments of NCDs. 

 
 

The challenges and benefits of low biomass samples  

Challenges of low biomass samples and considerations for future 
research 

DNA within low microbial biomass samples can be scarce, which presents 
technical difficulties for obtaining, processing, and bioinformatically analysing 
these samples. In this thesis, I observed and assessed three dominant issues: 1) 
contamination of background DNA; 2) the effects of differing biomass within a 
study; and 3) the stochasticity of samples. Below, I discuss each of these issues in 
greater detail and provide strategies to mitigate these potential issues in future 
studies. 
 

Contamination  

Background levels of DNA—commonly referred to as contamination—can be 
unintentionally incorporated into a sample at any stage, from sample collection to 
sequencing. It is now recognised that contamination is unavoidable, and every 
microbial sample will be affected by contamination to some extent.3 For high 
microbial biomass samples, such as those from the gut, the effect of contamination 
can be negligible.4,5 With this unconscious bias in mind, contamination in earlier 
microbiome studies focused on the gut failed to consider this, and therefore, was not 
addressed correctly when researchers started analysing low microbial biomass 
samples.6–8 Microbial DNA contamination is proportional to the biological DNA in 
most cases. For example, Karstens et al. (2019) showed that a mock community 
diluted to a level equivalent to a low microbial biomass samples (108 dilution) 
contained ~80% of contaminant sequences, while the undiluted mock community 
contained <0.05% of contaminant sequences.5 For this reason, it is essential that 
contamination is considered, mitigated, and monitored for low microbial biomass 
samples.   

An appreciation for identifying and analysing contaminating DNA through 
both positive and negative controls has become more widespread in the microbiome 
field. As the popularity and recognised importance of microbiome research 
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increases, researchers from a wide range of fields are incorporating microbiome 
analyses into their studies, but many are not adhering to key practices, such as 
contamination mitigation and monitoring. Other fields, such as forensics and 
ancient DNA, faced with similar issues with contamination in their field’s infancy, 
which has now seen strict protocols put into place. For example, Cooper and Poinar 
(2002) presented a letter in Science that emphasised key practices, such as using a 
dedicated ancient lab and including negative controls, that should be applied for any 
study working with ancient DNA.9 Similar publications have been presented in the 
microbiome field, which target researchers,3,10–13 clinicians,14,15 and doctors in their 
respected area of expertise.16–20 In addition, Chapter I provides a summary of 
common pitfalls and paired mitigation strategies for contamination and biases that 
pathologists may come across.21 It is imperative that pathologists and technicians 
abide by these mitigation strategies, as negligence may result in incorrect diagnosis 
and treatment that could have disastrous outcomes for patients.  

As technology has improved with an increased interest in microbiome 
research, new strategies have been implemented to mitigate and identify 
contamination. Below, I present strategies that were identified in Chapter I and 
newer strategies that have since been presented that can help to minimise 
contamination in low microbial biomass samples. These strategies should be 
considered and applied in all future microbiome studies. 

 

1) Working in a sterile environment and incorporating methods that minimise 
human, environmental and reagent contamination 

 Due to the strict conditions utilised in ancient DNA studies, similar methods 
could be adopted for microbiome research. Technicians should minimise the 
amount of their own human and microbial DNA that can be potentially incorporated 
into a sample. Clean and protective clothing, including freshly washed clothes, 
disposable body suits or clean laboratory coats, face masks, shoe coverings, and 
multiple layers of gloves, could be worn to minimise transfer of the technician’s DNA 
into samples.13 The working environment, which should be a still-air dedicated clean 
room,9,13 must also be extensively cleaned before samples are exposed to the 
laboratory environment. For example, laboratory surfaces, inside and outside of the 
hood, and all contents within the hood should be cleaned with bleach13 or degrading 
detergents (e.g., Decon®90) and ethanol before and after completing any 
laboratory processes. In addition, ultraviolet light exposure (30 mins or more) can 
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also be used to cross-link DNA and create thymine dimers, which prevents 
polymerase from reading those DNA templates.22 It is also highly recommended 
that reagents should be aliquoted prior to sample exposure. This technique reduces 
the risk of contaminating samples from different DNA extraction batches, and 
samples within an extraction batch. These contamination mitigation strategies were 
used extensively in Chapters III, IV and V to minimise contamination in these 
studies. In addition to the aforementioned strategies, reagents can also be 
decontaminated via exposure to UV radiation23 or through the inclusion of dsDNase 
to PCR master mixes,24 but some research have found these methods to be 
compromise PCR efforts.25,26  

 

2) Collecting both positive and negative controls for all stages of laboratory 
processing  

For low microbial biomass samples, collecting and monitoring positive and 
negative controls are critical to distinguish between background DNA from the 
sampling and laboratory environment and biological samples. Negative controls, 
such as extraction blank controls (EBC; an extraction without biological sample 
added) and no-template amplification controls (NTC; an amplification reaction 
without an DNA extract added), are the most commonly employed controls 
currently used in microbiome research.27 As noted by Hornung et al. (2019), 
negative controls should be collected from reagents and equipment and at every 
stage of processing between sample collection and sequencing27 (i.e. all reagents and 
equipment used in sample collection, environment of the sample collection location, 
EBCs and NTCs for each extraction/amplification batch, and at least one sequencing 
negative control). In Chapters III and V, negative controls were collected during 
sampling and within each extraction amplification batch. However, only EBCs and 
NTCs were collected in Chapter IV. It is worth noting that negative sequencing 
controls were not included in these chapters but should be considered in future 
studies. 

In addition to negative controls, positive controls should also be collected. 
Positive controls are just as important as negative controls in microbiome 
research.17 These controls—mainly in the form of mock communities or a single 
culture species—are included to ensure that the extractions, amplifications, and 
sequencing has performed as expected and to identify the limit of detection and 
cross-contamination.13,17 A positive control should be included in the extraction 
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process (and subsequently amplified before sequencing), and at least one positive 
control should be included in each sequencing run.27 However, one area of concern 
for positive controls is that they can be magnitudes higher in biomass compared to 
low biomass samples, which can lead to cross-contamination. The effects from 
positive controls can be minimised by semi-isolation of positive controls (e.g., 
physically locating the positive control further from the samples in a 96-well plate 
format). 

It has also been proposed that journals should only accept articles that have 
included both negative and positive controls.27 While negative controls should be 
incorporated in every low microbial biomass study, there is currently no best-
practice for including positive controls for low microbial biomass samples without 
the low microbial biomass samples being affected by the high biomass positive 
controls. Eisenhofer et al. (2019) instead provides a description for contamination 
assessment with the ‘RIDE’ checklist, which may be more suitable for low microbial 
biomass samples in the current climate.13 Importantly, this checklist should be 
adhered to and mediated by researchers, reviewers, and journal editors. Studies that 
do not include positive controls should not be dismissed from journals until new 
strategies for minimising cross-contamination (see ‘Differences in microbial 
biomass across samples’ section for more information) between low microbial 
biomass samples and positive controls are implemented. Assessments between 
study findings and common contaminant taxa lists4,13,28–31 may be a better 
alternative to a simple rejection for studies that do not include the correct controls.  

 

3) Assess, identify, and remove contamination   

Programs and bioinformatic analyses can be used to identify and remove 
contamination. The main techniques used to identify and subsequently remove 
contamination include the comparison of microbial communities through principal 
components plots18 and the use of decontam32 or SourceTracker.33 Principal 
components plots can be used to identify similarities (or dissimilarities) between 
samples and controls.18 However, this method for identifying differences between 
controls and biological samples is more practical for high microbial biomass 
samples and is not ideal for low biomass samples, as samples can be very similar to 
controls. Principal components plots can also be used to identify single biological 
samples that show high similarity to control samples. In Chapter V, for example, a 
principal components plot was used to identify one sample that had a similar 
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microbial composition to the controls, which was subsequently removed. In 
Chapters III, IV, and V, I used decontam, which is a prevalence-based method for 
identifying contaminants based on proportion of contaminant sequences in negative 
controls to biological samples.32 Decontam (set at 0.5 frequency threshold) has been 
shown to remove ~70-90% of contaminant sequences from a mock community, 
without identifying species from the mock community as contaminants.5 Another 
well-known and trusted program for identification of contaminants is 
SourceTracker.33 SourceTracker uses a Bayesian approach to identify contaminants 
by using controls as the ‘source’ and biological samples as the ‘sink’. SourceTracker 
was also tested by Karstens et al. (2019), and was also shown to be very effective at 
identifying contaminant sequences.5 Both decontam and Sourcetracker are the most 
reliable methods to identify and quantify contaminants based on statistical 
methods, especially for low microbial biomass samples. For each study though, 
parameters within the selected program should be tested (e.g., frequency threshold 
for decontam or the leave-one-out method for SourceTracker).  

While a majority of these above strategies were applied in the data chapters 
of this thesis (Chapters III, IV, and V), some strategies were not considered, not 
available, or were not appropriate for these datasets. For example, positive controls 
were not as widespread when samples from this thesis were processed; thus were 
not applied to Chapters III, IV, and V. Although there is concern for high biomass 
mock communities (commonly used as positive controls) being extracted with low 
microbial biomass samples, positive controls would have been especially useful for 
Chapter IV. In Chapter IV, an in-solution silica extraction method—commonly 
employed in ancient DNA studies—was used, but it may not be as efficient as kit 
extractions. Serial dilutions of a mock community or single species (e.g., similar to 
the Katharoseq pipeline11) may have aided in determining if the in-solution silica 
extraction method was suitable for oral and lung microbiota samples from Chapter 
IV. Unfortunately, negative controls were not collected during sampling of preterm 
infants (Chapter IV). Blank swabs, sterile tracheal aspirate tubes, and samples 
taken from the sampling room (i.e. air and surface swabs) would have provided 
more insights into potential contamination, as well as bacteria that may be 
transferred to preterm infants. Lastly, healthy full-term and adult samples that were 
available on QIITA data repository and incorporated into Chapter IV did not 
contain their own negative controls. To filter potential contaminants, I removed 
amplicon sequence variants (ASVs; 100% operational taxonomic units) that were 
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found in negative controls within the preterm extraction and amplification batches 
from the full-term and adult samples. This is not ideal and most likely resulted in 
removal of sequences that were not considered contaminants in the original study. 
For every study that is uploaded to an online data repository, I recommend 
uploading negative and positive controls with biological samples to account for 
contaminants found in separate laboratories. In future microbiome studies, it is 
crucial to include all controls possible and to monitor and remove controls, 
regardless of the sample’s microbial biomass.  

 

Differences in microbial biomass across samples  

 Variation in microbial biomass of samples within a study can be problematic 
for laboratory processing and bioinformatic analyses. It has been noted in the field 
that performance of extraction methods can vary depending on sample biomass, and 
that efficiency of extraction techniques should be considered for low microbial 
biomass samples. In 2019, Davis et al. showed that the QIAamp BiOstic Bacteremia 
kit with a modification—adaptable with a 96-well silica membrane for high-
throughout—performed better (i.e. high DNA recovery and equal fastest hands on 
time) than other commonly used kits (FastDNA-96 Soil Microbe DNA kit, DNEASY 
POWERSOIL HTP kit, QIAamp BiOstic Bacteremia DNA Kit without modifications, 
and MagAttract PowerSoil DNA KF kit).34 Another kit and workflow that can be used 
for low microbial biomass samples is KatharoSeq.11 This workflow allows for 
microbial profile recovery of only 50-cell input, uses positive and negative controls 
to improve the identification of contaminants, and determines the limit of detection 
(lowest detectable threshold).11 As part of this workflow, the Qiagen Ultraclean 
Pathogen kit was utilised.11 Another method that can be used to improve 
amplification efficiency of low microbial biomass samples is to spike in DNA or RNA 
to increase the overall DNA content of a sample. As the carrier DNA is known, 
sequences can be subsequently removed in the bioinformatics stage.13,35 Most 
importantly, it is vital to use the same extraction method throughout a study to 
reduce biases between methods, which was implemented in Chapters III, IV, and 
V. Overall, the extraction method should be well-considered for the study prior to 
commencement (e.g., if there are differing biomasses in the one study, all low 
microbial biomass, and high-throughput), as changes to laboratory protocols 
through in the middle of a study can have implications in downstream analyses and 
the final results. 
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Cross-contamination—the exchange of DNA from one sample to another 
within an extraction or amplification batch—can be observed when samples with a 
wide range of biomasses are extracted in the same batch.13,36 Traditionally, 
microbiome extractions were performed as single-tube protocols; however, with the 
expected large volume of samples that may be used in real-world applications for 
microbiome analysis, researchers are now turning to high-throughput methods, 
such as 96-well plate formats and automated robots.11,34,36 Although single tube 
extractions take longer to process the same amount of samples, they are generally 
considered ‘cleaner’ and present a lower risk for cross-contamination across 
samples (providing that individual tubes are only open while the sample/solution is 
added). As mentioned above, it is preferred to extract and amplify samples in higher 
batches (e.g., 96-well format) for the sake of efficiency, but this comes with a higher 
risk of cross-contamination.36 Indeed, Minich et al. (2019) showed that cross-
contamination was more prevalent in plate extractions compared to single-tube 
extractions, and that DNA could be exchanged up to 10 wells away.36 To reduce 
cross-contamination in Chapters III, IV, and V, all samples were extracted in 
single-tubes, and samples with a similar biomass were extracted on the same day. 
Recently, new methods and techniques have been developed to identify and examine 
cross-contamination (e.g., such as spike-in of synthetic DNA during extractions)37. 
While cross-contamination cannot be completely eradicated, it is important to 
consider these potential issues and use strategies to mitigate the effects.  

Differing input in biomass across samples in a given study can also have 
downstream effects on bioinformatic analyses. Even if samples are added to a 
sequencing pool at equimolar concentrations, duplications, complexity and quality 
of the sequences can impact the number of sequences obtained post-sequencing.38 
To minimise any biases that may arise due to differing sequence depth, 
bioinformaticians generally rarefy (select an equal number of sequences for each 
sample) samples to the same threshold before analysing alpha and beta diversity 
metrics. For instance, rarefaction curves can first be used to identify diversity 
saturation (i.e. when no more new sequences are identified at a particular depth).39 
This saturation depth can then be used to subsample sequences and directly 
compare them to one another. For beta diversity, Weiss et al. (2017) also showed 
that rarefying sequence data consistently outperforms other subsampling methods, 
for common microbiome diversity metrics, such as Bray-Curtis, Jaccard, 
unweighted UniFrac, and weighted UniFrac.39 While rarefaction is ideal for samples 
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with similar biomass, there are implications when rarefying samples in a study with 
varying biomasses. In Chapter III, biomass and correlated sequencing depth were 
observed (i.e. low microbial biomass and sequencing depth in pre-exposure nasal 
and skin samples compared to high microbial biomass and sequencing depth in 
environmental samples). As a result, a lower rarefied depth (i.e. 1,000 sequences) 
was chosen to retain as many samples as possible, but this compromised sequence 
diversity. To confirm that a similar pattern was still observed at a higher rarefied 
depth, diversity statistical tests were also measured with a higher rarefied depth of 
5,000 sequences. Further research is still required to investigate and mitigate the 
effects for a range of biomasses in a given study, especially for the assessment of 
multiple body sites.  
 

Stochasticity  

Stochasticity can arise in different scenarios, including introduction of 
microbes into sterile environments, contamination influencing samples, or through 
laboratory and bioinformatic processes. Ecologically, initial colonization of 
microbes is random until selection acts to remove unwanted microbes, and the 
microbes may appear stochastic. Depending on the environment, stochasticity may 
be observed for longer periods of time and can potentially have an impact on health. 
In the most natural setting, a full-term infant born will first be exposed to the 
mother’s vagina, the mother’s skin (kangaroo care), and breast milk. All of these 
maternal and environmental factors contain specific microbes that are passed on 
from the mother and aid in selection of microbes for short-term and long-term 
health of the infant.40 However, changes to this process can result in alternative 
microbes fighting for niches in the infant, and it may take longer for the mutually 
beneficial microbes to fully colonise the infant. This phenomenon was observed in 
the mouth of preterm infants (Chapter IV), whereby samples collected across the 
first week following birth had high variability between individuals. However, over 
time, ecological pressures (e.g., competition between species) acted on the mouth 
and selected mutually beneficial microbes. As such, microbial diversity was reduced, 
and the community became more stabilised. Stochasticity from environmental 
exposures was also observed in Chapter III. Pre-exposure samples (i.e. skin and 
nasal samples collected before exposure to urban green spaces) were low in 
diversity, but post-exposure samples comprised a higher microbial diversity after 
green space exposure. Additionally, after exposure to urban green spaces in 
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Adelaide, it was evident that species were randomly transferred to the skin and nose, 
as no ASVs were transferred to all post-exposure samples after visiting each 
location. Indeed, Bateman (2017) demonstrated that rare taxa can remain persistent 
on the skin, but the majority of transferred microbes disappear (as they are out-
competed by commensal taxa) after 48 hours.41 Overall, this could suggest that 
exposure to maternal and environmental microbes of less diverse human niches is 
a stochastic process, and that these processes can be captured in low microbial 
biomass samples.  

Apart from stochasticity occurring due to ecological selection, stochasticity 
can also arise as part of sample collection and processing and in bioinformatic 
analyses. During sampling, variation in sample collection may exist due to the 
volume of a sample or from technicians collecting samples in an inconsistent 
manner.42 For example, there were differences in the amount of aspirate collected 
from preterm infants that were intubated (Chapter IV), which led to samples being 
collected over multiple tubes. Due to limited information on the method used to 
collect tracheal aspirate samples, each tube was treated as a separate sample, even 
if there were multiple samples from a single individual. As a result, variation 
between samples from the same individual (e.g., microbial content may have been 
higher in one sample compared to another) may have resulted, although only 
presence/absence comparisons were used when performing analyses on these 
samples to reduce any bias. This potential bias may have been avoided if liquid was 
collected in a single tube, then centrifuged to create a pellet of microbial cells. The 
pellet could have then been resuspended in a small amount of solution, which would 
be equal across samples, and then added to the extraction. However, this technique 
would need to be verified. In addition to volumes, the sampling area and pressure 
applied to the sampling area for the collection of skin samples can potentially lead 
to variation in the microbiota profile.43 To reduce stochasticity for skin swabs 
collected in Chapter III, it was ensured that subjects sampled in the same location, 
for the same duration, and applied the same pressure. Importantly, subjects may 
have a slightly different technique, which could explain the difference in microbial 
diversity between individuals.  
 Random processes also occur through laboratory processes (extractions and 
amplification). Technicians/automated robots, batches, seasonality, and volumes 
can create stochasticity in low microbial biomass samples during extractions and 
amplification preparations. In some microbiome studies, technicians/automated 
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robots and extraction batch has been shown to have an effect on the microbial 
composition.44 To avoid batch effects and technician bias in this thesis, samples 
processed in Chapters IV and V were processed by a single technician (i.e. myself). 
Although these precautions were taken, extraction date was still significantly 
contributing to the oral microbial composition in preterm infants (Chapter IV), 
which may be explained by a higher proportion of T2 (samples collected at the 
second timepoint) in an extraction batch. While I tried to reduce technician biases, 
this could not be avoided in Chapter III, as soils could not enter Australia unless 
they were already extracted. Unfortunately, samples processed in India may have 
been processed under less strict conditions and were significantly contaminated by 
Streptophyta (plant) sequences, which may have been a result of processing under 
conditions less strict to samples processed by myself. Therefore, these samples could 
not be included in the study. Especially for low microbial biomass samples, batch 
effects and contamination from kits and seasonality can have a significant impact 
on samples. For example, longitudinal studies can be impacted by variations across 
kits and reagents batches, if kits are purchased as required.3 It is therefore 
recommend to purchase all kits at the same time to reduce variation and minimise 
batch effects across samples.3 Furthermore, it has been shown that seasonality can 
have an influence on samples (Appendix IV).31 To minimise these effects in this 
thesis, extraction kits were purchased within the same timeframe to minimise 
variance between kit or reagent batches, and in most cases, samples were also 
processed within the same timeframe and season to reduce random microbes being 
incorporated in the sample. 

Stochasticity may also arise from the volume of sample taken at each 
laboratory step. Volumes can affect the samples in two potential manners: 1) a 
fraction of sample volume is acquired for each step, and 2) standard DNA elution 
volumes (e.g., 100uL) can dilute low microbial biomass samples severely. In the first 
case, some of the solution collected at each stage in extraction kits is left behind, due 
to the max volume used in the following step. In addition, only a small fraction of 
DNA eluant (3uL of 100uL) is transferred into the amplification stage, and a small 
proportion of the amplified library is included in the sequencing pool (1-20uL of 
75uL). To ensure that these small volumes of DNA from the sample is representative 
of the sample, the solution is pipette-mixed before being added to the next stage. 
For the second case, DNA for each sample is normally eluted in 100uL of elution 
buffer, which can severely dilute DNA from low microbial biomass samples, 
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potentially resulting in a loss of rare taxa. To reduce this effect, low biomass samples 
could be eluted in lower amounts of elution buffer (TLE or water) to concentrate the 
sample and completely represent microbial taxa.  

In the bioinformatic process, sequences are subsampled to compare samples 
at the same sequence depth. Low microbial biomass samples normally have a low 
sequencing depth and a high number of duplicates38 (i.e. even if the sample was 
sequenced deeper, no to very little new unique sequences will be identified). In these 
type of samples, contaminant sequences comprise a large proportion of sequences 
in the samples (approximately 70-80% of sequences).5 Post-contaminant filtering, 
few sequences are generally retained in low microbial biomass samples, which can 
make it difficult to compare samples through diversity metrics. Most often, samples 
are usually rarefied for diversity comparisons in microbiome studies (see 
‘Differences in microbial biomass across samples’). Some rarefaction 
methods randomly subsample sequences for a given sample (usually through a 
resampling/permutation process), which may have an effect on low biomass 
samples. To avoid this potential issue, researchers should run a high number of 
permutations for statistical tests to avoid any biases (i.e. 999 permutations or more). 
Once challenges with low microbial biomass samples are appreciated, mitigated, 
and controlled for, high quality information can be extracted from low microbial 
samples. 
 
 

Low microbial biomass samples provide a wealth of knowledge for 
disease 

Although working with low microbial biomass samples presents difficulties 
and challenges, the potential resulting wealth of knowledge for health and disease 
makes the effort well worthwhile. In this thesis, hundreds of samples across 
numerous body sites were analysed in the context of health, including nasal and skin 
samples analysed to provide insights on green space exposure and immune-
mediated diseases (Chapter III); oral and lung microbiota used to track microbiota 
development, and indicators of bronchopulmonary dysplasia (BPD) and sepsis 
(Chapter IV); and, gingival swabs used to investigate the effects of periodontal 
diseases and a family history of hyperlipidaemia on children with type 1 diabetes 
(T1D; Chapter V). Other researchers have also investigated other low microbial 
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biomass sites of the human body, revealing additional information regarding NCDs 
that I discuss below.   

Skin is the biggest organ of the human body, is the first point of contact with 
the environment, and has a range of different physiological sites for different 
microbiota to reside. The skin’s main function is to create a barrier for the body, and 
skin microbiota aid in this process. Skin microbiota are also tightly linked to the 
immune system to respond appropriately to the external environment.45 In 
Chapter III, skin and nasal microbial diversity increased after environmental 
exposure, whereby higher human microbial diversity is thought to reduce immune-
mediated diseases. However, disruptions to the skin microbiota have been linked to 
NCDs. For example, lower diversity46 and an enrichment of Staphylococcus spp. and 
opportunistic fungi have been associated with atopic dermatitis severity and flare-
ups.47 It has also been proposed that psoriasis is associated with disruption to the 
skin microbiota.48 Although low in biomass, the skin microbiota still provides a 
wealth of knowledge for NCDs, and microbiota associations to other skin diseases 
such as gout, warts, or chicken pox (Varicella) could be investigated in the future.  

The oral microbiota is arguably the second most studied site of the human 
body following the gut and plays key roles in oral homeostasis. Disruptions to the 
oral microbiota can result in NCDs. In this thesis, I investigated the oral microbiota 
of two different cohorts: preterm infants (Chapter IV) and children with T1D 
(Chapter V). In preterm infants, microbiota diversity and composition was distinct 
from full-term infants and may be linked to immune-mediated diseases later in life 
(Chapter IV). Further, alterations to microbial diversity were linked to BPD 
development within a week of birth, while microbial composition was linked to the 
development of sepsis approximately two months after birth (Chapter IV). In 
Chapter V, differences in oral microbiota composition and diversity was observed 
in children that had a first-degree relative with hyperlipidaemia. However, these 
associations were not identified if the child had periodontal disease. In addition to 
these studies, the oral microbiome has been extensively studied for periodontal 
disease and dental caries (tooth decay). Periodontal disease can range from mild 
inflammation of the gums (gingivitis) to gum recession and tooth loss 
(periodontitis). In individuals with periodontal disease, Porphyromonas gingivalis 
and other Gram-negative bacteria increase in abundance and create large plaque 
structures that contribute to the lesions of the gums.49,50 However, more 
information on the relationship between periodontal disease and other systemic 
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diseases is still required (see ‘Interconnected systems and microbiotas of the 
human body reveal more information for NCDs’). Over-abundance of 
particular bacteria, such as Streptococcus mutans, have been associated with the 
development of caries.51 Most research conducted on dental caries have focussed on 
S. mutans, but the underlying cause for caries is clearly polymicrobial and 
multifactorial, i.e. diet, fluoride, etc. contribute to caries development.51 In addition, 
some research has begun on the relationship between oral microbiota and oral 
cancer; this area is still in its infancy and requires more investigation.52  

While initially thought to be sterile, it is now appreciated that the lungs are 
colonised with a low biomass of microbes that are important for health. In Chapter 
IV, I investigated the first colonisers of the lungs in preterm infants. Interestingly, 
some microbes that were observed in the lungs were also found in the mouth, 
alluding to a potential route for colonisation. Additionally, it was also noted that 
potential pathogens were observed in the lungs of infants that developed BPD 
and/or sepsis. Further investigation is required with a larger sample size to 
determine if these findings are consistent with the general infant population. The 
lung microbiota has also been examined for other NCDs, including chronic 
obstructive pulmonary disease (COPD) and cystic fibrosis. Increased abundance of 
Moraxella and Haemophilus are thought to play a role in prevalence of COPD, as 
well as COPD exacerbations. However, the contribution of each of these taxa for 
COPD are not well understood.53 The contribution of Pseudomonas aeruginosa has 
been comprehensively studied in cystic fibrosis (CF) patients through culture-based 
methods, but the disruption to the lung microbiota through non-culture methods 
has only been investigated in a limited number of studies. For example, Cuthbertson 
et al. (2020) showed that microbial diversity decreased with disease severity and 
common CF pathogens increased in dominance (i.e. P. aeruginosa, Staphylococcus 
aureus, Burkholderia cepacia, and Stenotrophomonas maltophilia) with severity.54 
Although less research has been performed on the lung microbiome compared to its 
gut and oral counterparts, it will be important to further understand the lung’s 
contribution to other local and systemic diseases, such as rheumatoid arthritis.55 
  Other low microbial biomass sites have also been investigated in microbiome 
analysis. However, microbiota studies on sites including the urinary tract, vagina, 
and eye have been focussed on infectious diseases, with little to no research being 
conducted on NCDs. For instance, the microbiota of the urogenital system have been 
examined in light of bacterial vaginosis, sexually transmitted diseases,56 and urinary 
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tract infections.57 However, it is just as important to look at other complications of 
the urogenital system that may be affected by the microbiome, including infertility, 
preterm birth,58 and polycystic ovary syndrome.59 Similarly, the eye microbiota has 
only been examined for infectious diseases, such as conjunctivitis.60 Nevertheless, it 
is possible that the eye microbiota may play a role in eye NCDs with an unknown 
cause, such as glaucoma and pseudo-exfoliation syndrome. Overall, it is important 
to consider alterations to the microbiome for both infectious and non-infectious 
diseases (NCDs), as well as the potential influence of an infectious disease leading 
to an NCD, or vice versa.  

While it is very fascinating to investigate each of these sites, it is still crucial 
to apply strategies to reduce contamination and other biases, as mentioned in 
Chapter I and in the ‘Challenges of low biomass samples and 
considerations for future research’ section. Each of these examples above 
demonstrate that low microbial biomass samples hold a wealth of knowledge, and 
that a greater understanding of NCDs can be obtained using these samples.  
 
 

Interconnected systems and microbiotas of the 
human body can reveal more information on NCDs  

Many factors contribute to health and disease, including the environment, 
lifestyle factors, genetics, and the microbiome. However, these factors are often 
considered independently when studying health and disease. In addition to this, 
local effects of the microbiome are mostly considered. In recent years, some studies, 
including Chapters III, IV, and V, consider the interaction between distinct, 
seemingly independent body sites. These interactions can occur through many 
different systems of the human body including the immune, nervous, integumentary 
(skin), respiratory, and circulatory systems. In most microbiome studies, the focus 
on interactions across the human body have been centred on the gut, but in this 
thesis, I looked at the interaction across the skin, nasal, oral, and lung microbiota, 
and considered potential impacts of the gut.  

The connection between the gastrointestinal tract and brain (commonly 
referred to as the gut-brain axis) has been one of the most fascinating links in the 
human body. The gut-brain axis is a bidirectional communication network 
comprised of nervous systems (i.e. central, autonomic, and enteric nervous systems) 
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and the hypothalamic-pituitary-adrenal axis, which has been linked to mental 
health and degenerative diseases.61 While not fully elucidated, short chain fatty acids 
(SCFAs) such as acetate, butyrate, and propionate have been shown to play a role in 
these types of diseases.62 For example, anti-depressant like effects from a mixture 
of SCFAs can reduce chronic psychosocial stress in mice,63 and SCFAs have been 
associated to underlying neuropathological processes in Alzheimer’s disease64. In 
addition, gut microbes transported from patients with Schizophrenia or Parkinson’s 
Disease into mouse models resulted in mice which displayed differences in 
behavioural phenotypes65 and altered motor function66, respectively. Overall, this 
demonstrates that alterations to gut microbiota can have profound implications on 
the brain.  
 Alterations of gut microbiota have also been implicated in skin diseases, 
including atopic dermatitis and acne. Atopic dermatitis is thought to be impacted by 
the gut across three different pathways: neuroendocrine, immunologic, and 
metabolite pathways.67 Tryptophan, which is a neurotransmitter precursor and is 
produced in the gut, is thought to play a role in itchiness in the skin—a common 
symptom of atopic dermatitis. However, products formed by particular 
Lactobacillus and Bifidobacterium species are known to reduce itchiness of the 
skin.67 Additionally, low microbial diversity and disruption of the gut microbiota 
during immune development in infancy has also been observed to contribute to 
atopic dermatitis.68,69 Lastly, diet and metabolites may also impact on the skin 
through inflammation. As the typical Western-diet has a low fibre content, less 
SCFAs—metabolites with anti-inflammatory properties—are produced in the gut, 
leading to increased local and systemic inflammation.70 This change in diet may 
explain the increases in atopic dermatitis and allergies. Acne is also a common skin 
condition that is thought to related to the carbohydrate-rich Western diet.71 
Increases in carbohydrates through the diet can increase glycaemic concentrations. 
This can then activate the mTORC1 pathway and result in the increased production 
of fats in the sebaceous glands, leading to alterations of the skin microbiota, causing 
acne.71,72 Interestingly, symptoms of both atopic dermatitis73 and acne74 have been 
improved by the probiotic supplements. Again, this suggests that the gut is likely to 
play a role in skin diseases and has systemic effects on other body sites.  
 The nasal and skin microbiota may respond similarly to environmental 
exposures (Chapter III), but nasal microbiota may have a pathogenic effect on 
other locations of the body, such as the foot. Staphylococcus aureus is a commensal 
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of the nasal passage in ~32% of individuals.75 However, S. aureus from the nasal 
passage has also been implicated as a risk factor for nosocomial and surgery 
infections. For example, colonisation of S. aureus is significantly associated with 
diabetic foot infections, but only if the patient has nasal colonisation of S. aureus 
(<20% of patients).76 However, it is still not well-understood how other infections 
arise in patients with diabetic foot infections or ulcers. Future studies could 
investigate if small colony variants of S. aureus can be detected through microbiome 
analyses, as their morphology (i.e. smaller and thicker cell wall compared to 
wildtype)77 may go undetected with current microbiome techniques.   
 As part of the respiratory tract, the oral and lung microbiome are physically 
close but have unique physiologies and microbiomes. Nonetheless, microbes are 
shared between the mouth and the lungs,78 which is even evident in preterm infants 
(Chapter IV). Microbes of the mouth under certain conditions have been 
associated with lung infections and other chronic lung diseases. For example, lung 
pathogens have been detected in plaque of individuals that are in intensive care for 
pneumonia.79 However, it is unknown if the lung pathogens colonised the mouth or 
if these pathogens originated in the mouth and then contributed to the lung 
infection. While initial studies have been conducted on connections between oral 
microbiota and lungs diseases for COPD80,81 and cystic fibrosis,82 more studies are 
needed to determine if the oral microbiota has negative health outcomes on the lung 
microbiota, or if oral commensals are just shared with lung microbiota.  
 Poor diet and disruptions to the gut may influence the oral microbiota 
through the circulatory and immune systems. High fat diets and subsequent high 
blood lipids have connected to periodontal disease.83 In this thesis, Chapter V 
demonstrated that familial history of hyperlipidaemia—which is thought to also 
affect the descendants through genetics and the environment—reduced oral 
microbial diversity and had a distinct microbial composition in children with T1D. 
In addition, periodontal disease and familial history of hyperlipidaemia were 
dependently contributing to the oral microbiota. This systematic association 
between the periodontal disease, hyperlipidaemia, and T1D may be exacerbating 
disease outcomes, as both circulating lipids and a higher immune profile from 
hyperlipidaemia and T1D are attributable to periodontal disease. Indeed, links 
between the gut microbiota and periodontitis have been demonstrated in mouse 
models.84 Lastly, Fusobacterium nucleatum—a common oral species—is a likely 
contributor to carcinogenesis not only in the mouth but in other body sites. For 
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example, F. nucleatum have been associated with colorectal cancer, although the 
mechanism is unknown.85 Altogether, these associations demonstrate that human 
microbiomes are connected and that more research should incorporate and consider 
systemic influences on human microbiomes. 
 
 

Future approaches to understanding connections of the microbiomes  

While understanding the interaction between two or more microbial sites are 
important to improve our understanding of NCDs, a ‘whole-system’ and functional 
approach is essential to work towards a complete picture of NCD predisposition, 
development, and persistence. In Chapter II, I suggest many avenues to 
understand systemic relationships between microbiomes, which may provide more 
insights into NCDs. In this section, I will expand on two of those ideas: microbiome-
wide association studies and multi-omics approaches. 
 

Microbiome-wide association studies  

 Microbiome-wide association studies (MWAS) are analogues to genome-
wide association studies and investigate the relationship between microbial species 
and functions, host genomic single-nucleotide polymorphisms (SNPs), and host 
traits.86 So far, MWAS has been primarily utilised to correlate microbial species that 
are inherited.87–90 Recently though, a newly formed consortium, MiBioGen, have 
obtained 16S rRNA sequencing data with human genomic SNP information for over 
19,000 individuals across 18 cohorts.91 Their goals are to explore the associations 
between human diseases, human SNPs, and the human gut microbiome, as well as 
explore human gene-environment interaction in light of gut microbiome 
composition.91 While this project contributes a significant effort to understanding 
key questions surrounding the relationship between the host and microbiome, other 
studies are still required to understand these relationships in sites other than the 
gut.  
 

Multi-omics approaches  

 A more informative and powerful approach to understanding the initiation 
and progression of NCDs is to perform multiple ‘omics analyses. Numerous ‘omics-
based approaches, such as genomics, epigenomics, transcriptomics, proteomics, 
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metabolomics, and metagenomics have advanced our way of thinking about the 
human body and disease. Incorporating the microbiome with other multi-omics 
approaches is a relatively new field, and very little research has been conducted to 
understand the relationship between these components of the body and disease. 
Nevertheless, metagenomics and transcriptomics have been used together to 
identity the relationship between bacterial species and colorectal cancer.92 In 
addition, the combination of metagenomics and metabolomics have revealed 
associations of disturbances to both circulating metabolites and airway microbiota 
for children with asthma.93 As this area of research is new, there are currently many 
limitations including cost to generates multi-omics data, computing resources to 
analyse large datasets, and statistical methods that are able to compare multiple 
datatypes at once. Moving forward, multi-omics approaches will be a valuable tool 
to understand the interaction of multiple components of the human body and NCDs.  
 
 

The human microbiota provides more insights into 
NCDs  

The microbiome is not the only component that contributes to NCDs, but it 
is one of the most understudied components to NCDs. As such, it is still unknown to 
what extent disruptions to the immune system or microbiota, either early or later in 
life, lead to NCDs. As we understand more about the impacts of the microbiome on 
NCDs, we can scrutinise microbiota predisposition and development of NCDs and 
determine subsequent diagnosis and treatments, which will be discussed below. 

 

Development of the microbiota and immune systems early in life 

Disruptions to microbiota at birth, during the neonatal window of 
opportunity, and through immune system development can have implications for 
long-term health outcomes. Unnatural procedures and exposures, including 
Caesarean-section births,94 formula milk feeding,94 and antibiotics,95 have each 
been shown to impact the microbiota and may also contribute to NCDs, such as 
asthma and allergies, that are observed later in life. For example, infants born via C-
section have an increased abundance of Enterococcus and Klebsiella (potential 
pathogens) and decreased abundance of Bifidobacterium (beneficial bacteria),94 as 
well as altered immune profiles. C-section disruptions to the microbiota and 
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immune system are associated with respiratory infections.94 Exclusive formula 
feeding at approximately 3-months of age can alter gut microbiota and increase the 
risk for overweightness in infants at 12-months old.96 However, long-term studies 
are needed to determine if formula feeding can have long-term implications on 
obesity. Additionally, antibiotic administration at an early age has been shown to 
delay colonisation of Bacteroidetes.95 Although gut microbiota disruptions can 
recover from antibiotics, metabolic changes can persist and result in a higher risk 
for developing obesity.97 Indeed, most of this research has been biased toward gut 
microbiota, but, as mentioned in the previous section, it is best to consider the body 
as a whole entity. To fully understand the extent to which alterations to the 
microbiota have on health, more extensive studies investigating other body sites are 
required.  

In Chapter IV, I investigated oral microbiota in preterm and full-term 
infants at analogous time points after birth. Through this study, I identified high 
variation in preterm infant oral microbial diversity of samples collected within the 
first week of birth. This variability due to the disruption of the oral microbiota was 
restored approximately two months later. Interestingly, Olin et al. (2018) 
demonstrated that the immune system of preterm and full-term infants initially 
respond differently soon after birth but became similar after three months.98 In both 
of these cases, long-term health data was unavailable, and it is unknown if the 
alterations to oral microbiota and immune profiles will have an impact on the 
development of NCDs later in life. Indeed, one longitudinal study has shown that 
gut microbiota alterations early in life can contribute to islet autoimmunity and type 
1 diabetes.99 At present, these studies are correlative. To truly understand whether 
microbial alterations early in life have long-term health implications, it is important 
to consider the interaction between the human microbiome and immune system, as 
well as potential irreversible changes, to either of these components. Future studies 
should collect both microbiota and immune profile information and medical records 
to elucidate if the microbiome and immune system in early life contribute to long-
term health outcomes.  
 
 

Lifestyle contributes to NCDs and the microbiota  

Common lifestyle factors, including the environment, diet, smoking, 
medications, and stress, contribute to NCDs and also affect the human microbiome. 
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It is important to understand the mechanisms by which lifestyle factors contribute 
to NCDs. In this section, I will discuss the impact of lifestyle factors on the 
microbiome, and how they individually or collectively contribute to NCD 
prevalence.  
 

Environment  

Reduced or minimal exposure to biodiverse environments has been linked to 
allergies and asthma. Numerous hypotheses (Hygiene,100 Old Friends,101 and 
Biodiversity102 hypotheses) have suggested a link between increases in 
inflammatory-mediated diseases (allergies and asthma) and environmental 
microbial exposure; however, very few studies have experimentally investigated 
these links. Initial studies have shown that microbial endotoxin found in the 
environment, such as indoor house dust, can mediate gut microbiota and reduce 
incidence of asthma and allergic sensitisation.103,104 Further, the diversity of the soil 
has an impact on the faecal microbiota of mouse models, i.e. compositional 
difference are observed in faecal microbiota of mice exposed to low vs. high 
biodiverse soils.105 Additionally, high biodiverse soils were found to have butyrate-
producing bacteria, which may reduce anxiety in mice.105 Chapter III also 
demonstrated changes to the microbiota after exposure to the environment. 
Increased microbial diversity and altered microbial composition was observed on 
the skin and in the nasal cavity after urban green space exposure. While increases 
in microbial diversity were observed in this study, it was also noted that diversity 
was reduced by the following morning (i.e. post-shower). As such, more research is 
needed to determine how much time individuals need to spend outside and whether 
individuals need to spend time in biodiverse environments every day to see positive 
health outcomes. Importantly, it is essential to determine if exposure to microbially-
rich environments will have a greater reduction in developing immune-mediated 
diseases if exposure occurs during immune development (i.e. up to three years of 
age), or if positive health outcomes can also be seen in adults after this type of 
exposure.   
  

Diet  

A poor diet (e.g., excessive consumption of fats, salt, and sugar) is a well-
known contributor to NCDs, such as obesity, type 2 diabetes, cardiovascular disease, 
and hyperlipidaemia.106 The types of macronutrients consumed can also influence 
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the microbial communities, especially in the gut. For example, both fibre and sugar 
are carbohydrates, but the gut microbiota responds differently to these 
carbohydrates. Indeed a plant-rich and high-fibre diet has been associated with 
bacteria that are SCFA fermenters,44 which can have anti-inflammatory effects on 
the body.107 In contrast, excess sugars (e.g., glucose or fructose) can negatively alter 
the gut microbiota, leading to a higher abundance of Proteobacteria,108 which are 
generally associated with inflammation.109 Similarly, excess fats can also lead to a 
greater proportion of Proteobacteria and are also thought to contribute to a pro-
inflammatory state. Disruption to the gut microbiota through high sugar and fat 
consumption can cause metabolic dysregulation, potentially inducing diseases such 
as hyperlipidaemia, type 2 diabetes, and cardiovascular diseases. However, both 
high sugar and fat also have negative effects on other body sites, such as the mouth. 
Foods and drinks high in sugar can have devastating outcomes for oral health. For 
example, there is a strong relationship between total added sugar and number of 
tooth surface affected by dental caries in children.110  The microbial digestion of 
sugar in the mouth is known to lower the pH, creating a more acidic environment. 
This type of environment causes tooth demineralisation and leads to tooth decay.111 
As stated earlier, excessive fats may also contribute to oral disease, such as 
periodontal disease, through metabolic dysfunction and circulating inflammatory 
cytokines. Such a state was possibly observed in children with type I diabetes and a 
family history of hyperlipidaemia (Chapter V). However, further studies are 
required to determine if alterations in lipid profile of the children themselves could 
lead a pro-inflammatory state and eventually contribute to periodontal disease. 
Overall, diet can influence the human microbiota and contribute to NCDs, but 
further research is needed to indicate whether dependent associations between 
microbiota with the immune system are the link between diet and NCDs or if 
microbiota and the immune system are independently contributing to NCDs.  
 

Smoking  

Although it is well-known that tobacco smoking leads to numerous NCDs, 
including cancers, cardiovascular disease, respiratory diseases, etc., approximately 
20% of individuals across the globe smoke tobacco.112 Tobacco smoke can contain 
addictive and dangerous chemicals, such as nicotine, tar, carbon monoxide, metals, 
and many more. In addition, tobacco smoke can alter community composition of 
microbiotas across the human body, including the mouth, lungs and gut. For 
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instance, tobacco smoking can alter the oral microbiota, shifting the community to 
a pathogen-rich state and may contribute to the high proportion of smokers that 
develop periodontal disease.113 Traditional tobacco smoking is not the only type of 
smoking that can affect the mouth. Electronic-cigarettes—a nicotine-based liquid 
that is vaporised and inhaled—are a new form of smoking and the long-term health 
consequences have not been explored. One study, however, found that the oral 
microbiota of electronic-cigarettes smokers was distinct from tobacco cigarette 
smokers and non-smokers, likely due to the glycerol content in the electronic-
cigarette nicotine solution.114 Tobacco smoking can also cause physical injury and 
microbial disruption to the lungs. While physical lung injury has been more widely 
studied, the association of altered microbial communities have not been studied to 
the same extent. Initial studies have identified potential association between 
disruption to the microbial community and COPD115 and acute respiratory stress 
syndrome,116 but associations with other lung diseases, including pneumonia, 
emphysema, lung cancer, and bronchitis, are still yet to be explored. Lastly, Crohn’s 
disease, ulcerative colitis, and colorectal cancer have each been linked to changes in 
the gut microbiota, as a result of smoking.117 Even though smoking is one of the 
biggest risk factors for developing many different NCDs, the connections of the 
microbiota with smoking is severely understudied. With the introductions of many 
harmful chemicals introduced to the body from smoking, it would be unsurprising 
if alterations to the microbiota increase systemic inflammation and contribute to 
NCDs.  
 

Medical treatments  

 Medicines are substances that are taken to relieve symptoms or cure a 
disease. However, some medications can have side-effects that contribute to 
NCDs.118 For example, oral corticosteroids can contribute to high blood pressure 
and cataracts.119 Some medical treatments can also influence the gut microbiome. 
Disruptions to gut microbiota from administration of antibiotics have been 
extensively studies. For instance, antibiotics administered during infancy can 
disrupt the gut microbiota, which can increase the risk for developing NCDs, such 
as asthma, allergies, and eczema.120 In most cases, adult gut microbiota return to 
baseline ~1.5 months after antibiotic administration, but some taxa can remain 
missing even after this period of time.98 Consequences of medications on the human 
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microbiome have been understudied. More research is required to understand if the 
microbiome contributes to medication side-effects.  
 

Stress  

 Although stressors can be different in nature (physical, psychological, 
environmental, etc.), they elicit the same stress response.121 Stress has been linked 
to NCDs, including cardiovascular diseases, metabolic diseases, cancers, 
gastrointestinal diseases, and neuropsychiatric diseases.122 Recently, it has been 
appreciated that stress can also alter gut microbiota—through the gut-brain axis—
which then contributes to NCD development.121 For instance, psychological stress 
can disrupt gut microbiota and contribute to inflammatory bowel disease (IBD) 
flare-ups. Furthermore, it has also been suspected that psychological stress can 
contribute to the exacerbation of skin diseases, through gut disturbances.70 While 
the association between stress and disruptions to the human microbiome have not 
been extensively studied, there is evidence to suggest a relationship between the 
two.  

 
 

Using characteristics of the human microbiome to track NCD risk and 

progression 

Environmental and behavioural factors are important to identify and track 
NCD risk and progression, which could be traced through regular clinical sampling 
and interviews. However, before this can be achieved, longitudinal studies must be 
used to identify consistent changes to the microbiome that are associated with NCD 
risk or initiation.  

Within this thesis, two studies (Chapter III and IV) tracked changes of the 
microbiome over time. In Chapter III, skin and nasal microbiota were tracked over 
a three-week period. In this time frame, subjects were exposed to urban green spaces 
across three countries. While the major finding showed increased diversity after 
urban green space exposure, there were still differences in microbial diversity and 
composition in skin and nasal samples across the different countries. Longer 
tracking of individuals travelling abroad would provide more information if these 
microbial differences were due to exposure to different urban green spaces or if 
these changes are a consequence of travelling abroad. Interestingly, exposure to 
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urban green space did show an increase in nasal and skin microbiota in most 
countries, suggesting that this kind of exposure can increase microbial diversity, and 
have potential positive outcomes for NCDs.  

Chapter IV tracked the oral microbiota of preterm and full-term infants 
over a two-month period. Over this period, the preterm infant oral microbiota went 
through dramatic changes. In comparison to a steady increase in microbial diversity 
over time for healthy full-term infants, an initial disruption was observed in preterm 
infants, but was later restored to resemble the oral microbiota of full-term infants. 
In addition, a potentially higher-pathogen load was identified in preterm infants 
within the first week of birth, with Ureaplasma, Streptococcus anginosus, and 
Streptococcus agalactiae ASVs found in both the mouth and lungs of children with 
BPD or sepsis. Although, tracheal aspirate samples were not collected at the second 
time point (~2 months later as intubation was not required at that time), a lower 
abundance of these potential pathogens were observed in the oral microbiota at this 
second time point. Identification of when the initial microbiota disruption stabilised 
and when the potential pathogen-load decreased was limited by the study design. 
More frequent (e.g., daily, weekly, or monthly) sampling would be required to 
identify when these changes occurred.  
 Although there has only been a small number of longitudinal microbiome 
studies, some researchers have studied humans over long periods of time to reach a 
more informative view of microbial development and how lifestyle changes may 
contribute to NCDs. For example, the oral microbiota was tracked from birth to five-
years of age and found that diversity increased with age, but no tracking of disease 
was pursued in this study.123 The Canadian Healthy Infant Longitudinal 
Development (CHILD) cohort has be extensively researched to identify key factors 
that can alter the gut microbiota and result in NCDs. Birth mode,124 feeding 
method,96 vitamin D supplementation,125 and timing of introduction to allergenic 
foods126 were shown to increase risk for particular NCDs, including obesity, asthma, 
and allergies. Indeed, there are fewer studies that investigate the microbiome in 
relation to lifestyle factors and NCDs. In most cases, “healthy” baselines are 
currently being identified through longitudinal studies for the gut,127 mouth,127 
vaginal,128 and skin.129 Nevertheless, some longitudinal studies have identified: 
differences in gut microbiota for IBD patients that are undergoing disease activity, 
as well as130,131 US immigrants having reduced gut microbial diversity and 
presenting a higher risk for obesity, which is compounded over generations.132 
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Overall, longitudinal studies have the power to detect dynamic changes in relation 
to health and disease, rather than a snapshot of the microbiota for an individual on 
a particular day.  

Longitudinal sampling can be used to detect microbiome changes and 
biological markers (biomarkers) in a clinical setting to predict disease risk and 
progression. Biomarkers are indicators that can aid in identification of distinct 
alterations to microbial communities—diversity and compositional changes or an 
outgrowth of a particular species—and may indicate NCD risk and progression. For 
example, low diversity in the gut can be an indicator for IBD. Distinct increases in 
certain bacteria (P. gingivalis, Tannerella forsythia, and Treponema denticola) can 
be an indication of periodontal disease.133 Additionally, in Chapter V children with 
hyperlipidaemia had increased abundance of a Prevotella ASV, which may also be 
an indication of periodontal disease progression. Lastly, as potential pathogens were 
identified in both the mouth and lungs of infants with BPD or sepsis, the oral 
microbiota could be used as a proxy for pathogen detection in young children 
(Chapter IV). As these studies show distinct changes to the microbiome 
composition, they could possibly be used as indicators for disease risk and 
progression in the future. However, it is important to note that these biomarkers 
must be detected in other studies and undergo clinical examinations before they can 
be used as a diagnostic test.  

 
 

Potential novel avenues for diagnosis and treatment of NCDs 

With the use of longitudinal collection of samples and biomarkers, I propose 
methods whereby the microbiome can be incorporated into pathology testing for 
more accurate diagnoses and the administration of targeted treatments (Chapter 
I). Microbiome techniques can provide more information for both infectious 
diseases with unknown aetiologies, as well as for NCDs. Detection of microbiota 
alterations and associated functional dysfunction is one of many benefits for 
creating diagnostic tests for NCDs within a pathology setting (Chapter I). For 
example, routine longitudinal sampling—say, as part of a doctor’s visit—could be 
used to identify sudden disruptions to diversity or compositional changes to the gut. 
These samples could then indicate that specific treatments, such as a faecal 
transplant or probiotics, could be used to remedy the gut microbiota and minimise 
the chance of developing a serious and potentially chronic disease. Additionally, 
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biomarkers could be used in a similar fashion. For instance, oral swabs could be 
collected to identify shifts in microbial communities (e.g., oral microbiota showing 
signs of periodontitis before inflammation is present) or an increased abundance of 
opportunistic pathogens. In this case, oral swabs could be collected as part of routine 
dental check-ups. Additionally, information from multiple ‘omics technologies (see 
Chapter II) could be collected simultaneously for patients with an unknown 
aetiology. Using this strategy, more detailed and specific information can be 
extracted and could improve diagnosis, and subsequently treat patients quicker.  
 Certain NCDs may also be remedied through microbiome-based treatments. 
Probiotics and faecal gut transplants can be employed to correct microbiome 
imbalance and treat disease. Probiotic treatments have been shown to be successful 
in infectious diseases, such as necrotizing enterocolitis, diarrhoea, and respiratory 
tract infections. However, recent studies have shown promising results for 
alleviating symptoms of certain NCDs with probiotics. Allergic diseases including 
asthma, allergic rhinitis, atopic dermatitis, and food allergies73,134 have each shown 
to benefit from probiotics. In individuals with peanut allergy, for example, 
Lactobacillus rhamnosus in conjunction with oral immunotherapy resulted in 82% 
of individuals becoming unresponsive to the peanut challenge (i.e. no longer reacted 
to oral injection of peanuts).135  

Faecal microbiome transplants (FMTs) are another microbiome-based 
treatment that be used to restore gut dysbiosis. FMT is the process of collecting stool 
from a healthy donor and transplanting it to the colon of another individual. This 
type of treatment has been relatively successful in patients with reoccurring 
Clostridium difficile infections.136 However, FMT success rate is much lower in IBD 
patients.137 In addition, the delivery of microbiome transplants (e.g., oral pill, 
colonoscopic or nasogastric delivery) should also be highly considered, as 
effectiveness varies across individual.138 Microbiome transplants for oral diseases 
(transfer of saliva from a healthy individual to another individual with an oral 
disease) are currently in the conceptual stage but may be another potential 
microbiome-based therapy.139 Importantly, an improved understanding of the 
complexity and mechanisms of NCDs is required to ensure microbiome transplants 
are safe and effective before being routinely applied in patients suffering from 
NCDs.  
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Future directions for a better understanding of NCDs 
with the addition of low microbial biomass samples  

 The importance and contribution of the human microbiome in NCDs is 
becoming more recognised. As microbiome research is in its infancy, there remains 
numerous considerations for obtaining robust, comparable, and informative 
datasets. By utilising larger studies to examine local and systematic microbial links 
between all body sites, a better understanding of the microbiome contribution to 
NCDs will be obtained. In this section, I will broaden the discussion and suggest four 
main considerations for future microbiome research in relation to NCDs: 1) assess 
multiple microbiotas of the human body; 2) obtain functional information of the 
human microbiome; 3) collect extensive and complete metadata; and 4) 
crowdsource low microbial biomass samples.  

 

1) Assess multiple microbiotas of the human body  

As this thesis suggests, it is important to consider the connection between 
multiple microbiotas of the human body, and their indirect effects on each other. By 
assessing multiple sites, key questions can be answered, such as, is there cross-talk 
between microbiota of other sites? Is there a system that is connecting two or more 
microbiotas that can have an influence on disease? Can commensals of one body site 
become a pathogen of another, and how does it get there? Should these questions 
be answered, they may shed light on NCD initiation and prevalence.  
 

2) Obtain functional information of the human microbiome  

In this thesis, community composition was characterised; however, it is more 
powerful to understand the functions of the microbiota. Functional information can 
provide insights into what function a microbe within a community is performing, as 
well as the overall function of the whole community itself.  

Both 16S rRNA gene sequencing and shotgun metagenomic sequencing can 
provide functional information, but the latter is more informative. In most cases for 
16S rRNA sequencing, only one hypervariable region of a gene is sequenced and 
matched to a database. Using a functionally informative database, such as KEGG 
orthologs, functions of a microbiota can be predicted based on the main function 
performed by taxa in that sample. However, these results mirror taxonomic 
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information; so, the identification of microbiota through 16S rRNA sequencing, is 
predominantly useful if there are abundance differences for particular taxa. 
Alternatively, shotgun metagenomic sequencing is more specific as functional 
information is directly obtained from the fragments of DNA within a sample. With 
more funding, obtaining functional information for Chapters III, IV, and V could 
provide a deeper understanding for functional consequences in changes of microbial 
communities.  
 

3) Collect extensive and complete metadata  

Metadata—information or characteristics collected to inform other data—is 
one of the most important aspects to microbiome research. Differences in 
microbiota based on body sites, diseases, treatments, ethnicity, socio-economic 
status etc. are only detected if the information is recorded. In this thesis, extensive 
metadata was provided for each of the studies, which especially led to the detection 
of hyperlipidaemia status of parents playing a role in the oral microbiota 
composition of children (Chapter V). While the metadata was extensive, issues of 
missing metadata remained. Missing metadata ultimately results in a reduction of 
sample size for statistical testing. For example, three samples were removed from 
Chapter V due to missing data. If samples with missing data are still included in 
statistical tests, such as Kruskal-Wallis pairwise tests for alpha diversity, it can lead 
to altered conclusions. For instance, the oral microbiota of preterm infants with BPD 
was compared to infants without—if the unknown status of BPD was included in the 
pairwise test—although not directly considered—there was no significance between 
infants with compared to without BPD; however, there was a significant difference 
between infants with and without BPD if the samples with unknown status were 
removed before running the test. If metadata is extensive and complete, it can detect 
new characteristics that contribute to the microbiota and can aid in detection of co-
variates. Like in Chapter V, testing all characteristics collected, post hoc, can shine 
a light on characteristics that were not thought to be driving changes in the 
microbiome. Additionally, using multivariate testing (e.g., adonis), the interaction 
between variates in the metadata can be identified. This type of analysis is very 
powerful, as new associations between characteristics of individuals can provide a 
deeper knowledge of the microbiome with respect to NCDs.  

 
4) Crowdsource low microbial biomass samples  
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Crowdsourcing is one of the most cost-effective ways to collect a large 
number of samples and has been particularly successful for ancestry and gut 
microbiome research. For example, over 10,000 samples have been collected,44 and 
almost two million dollars has been raised140 for the American Gut Project. 
However, with the issues of contamination and self-reported metadata, there are 
some further considerations for crowdsourcing low microbial biomass samples. 
Collection of low microbial biomass samples is currently difficult, even for the best 
trained personnel, so encouraging the public to take due care with low microbial 
biomass samples may be difficult. Further, extensive metadata is beneficial, but 
lengthy questionnaires and self-reporting of sensitive information may discourage 
contributors or lead to false reporting. Perhaps, dedicated mobile vehicles could be 
used as collection centres, especially as most low microbial biomass sites, such as 
skin, nasal cavity and mouth, are less invasive, compared to faecal samples. 
Dedicated personnel could take samples in the cleanest possible manner and fill out 
questionnaires. In doing so, the many benefits to crowdsourcing low microbial 
biomass samples may be realised, especially for understanding NCDs,including the 
majority of the costs associated with processing microbiome samples are covered by 
the consumer; large numbers of individuals can be recruited, which improves the 
statistical power of a study; correlations and networks of microbiota can be 
identified across multiple sites of the human body; and, individuals may have 
samples taken multiple times, which can provide longitudinal data. Once larger 
studies are carried out, the microbiota’s contribution to NCDs may be elucidated.  
 
 

Conclusion 

 Overall, this thesis provides new perspectives on the development and 
prevalence of non-communicable diseases using information from low microbial 
biomass sites of the human body. Each chapter highlights important contributions 
from low microbial biomass samples in light of non-communicable diseases, which 
include best practices for incorporating low microbial biomass samples as a 
diagnostic tool; highlighting the role and connections across low biomass 
microbiotas; exposure to the environment can alter low microbial biomass body 
sites and potentially reduce immune-mediated diseases; development of preterm 
infant oral microbiota is disrupted at an early age, which may have long-term health 
consequences; and, metabolic and oral diseases could be linked in children with type 
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1 diabetes. Through these studies, an appreciation for system-wide interactions 
between microbiotas and the complexity of non-communicable diseases has come 
to light. My thesis provides foundational knowledge to non-communicable diseases 
that can be drawn upon in future research and it provides another piece to the non-
communicable disease puzzle.  
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Supplementary tables can be found as electronic files 

 
 
 
The following files are provided separately to this document: 
 
 

AppendixI_TableS1.xlsx - Table S1. Metadata for sampling locations. 

 
AppendixI_TableS2.xlsx - Table S2. Contaminant ASVs identified from 
laboratory controls. 

 
AppendixI_TableS3.xlsx - Table S3. Number of sequences assigned to each 
sample. 

 
AppendixI_TableS4.xlsx - Table S4. Sequencing information for each sample 
type. 

 
AppendixI_TableS5.xlsx - Table S5. Core ASVs are shared between post-
exposure and pre-exposure and environmental samples. 
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Supplementary Methods  

Study population and sample collection  

All microbiota samples were collected under the Human Research Ethics 
Committee approval obtained for both preterm infants (Women and Children’s 
Hospital; HREC 2434/12/16; 27/11/2013) and adults (University of Adelaide; H2012-
108). A subset of preterm infants primarily enrolled in a large clinical trial (N3RO)1, 
which investigated the effects of docosahexaenoic acid (DHA), were selected for this 
study. For preterm infants (P), patient metadata and population information was 
collected by medical record examination (Table 1). Preterm infant buccal swabs were 
collected at two time points: preterm timepoint one (PT1, 2-12 days post-birth) and 
preterm timepoint two (PT2, 36 weeks’ postmenstrual age) from 50 preterm infants 
delivered at the Women’s and Children’s Hospital in Adelaide, Australia (Figure 1). 
Twenty-nine of these preterm infants developed BPD or sepsis (BPD, n=17; sepsis, 
n=9; BPD and sepsis, n=3). Fourteen preterm neonates required intubation, whereby 
tracheal aspirate samples were collected. All samples were frozen immediately in 
empty tubes after collection at -20°C to preserve the bacterial composition. For a 
healthy, mature oral microbiota comparison, three adult samples were collected and 
processed following the same protocols as the preterm infant samples. To further 
explore infant oral maturation, published oral microbiota data were obtained for 14 
full-term infants (F) collected at two similar time points (FT1, 0-7 days post-birth; 
FT2; 4th-5th week post-birth) and 13 mothers (Study ID 2010, QIITA data repository; 
Figure 1). 
 

Sample DNA extraction, 16S Ribosomal RNA Library Preparation, and 
DNA Sequencing 

All samples were prepared in a still-air room designed for low-biomass 
microbiota analysis using strict measures to reduce cross-contamination and the 
introduction of background DNA.2 DNA was extracted from buccal swabs and tracheal 
aspirates using a previously published, in-house silica DNA extraction method 
designed to enhance DNA recovery;3 the method was modified to include mechanical 
lysis. The DNA extraction was performed with the following modifications: initial 
bead-beating step with 500µL lysis buffer (470µL EDTA and 30µL SDS) and 0.1mm 
glass beads in a 2mL screw cap tube (BeadBugTM, Sigma); 1-hour incubation with 20µL 
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of 20mg/mL proteinase K; and 1.5mL modified guanidine DNA-binding buffer. DNA 
present within the laboratory and reagents was monitored using extraction blank 
controls (EBCs).  

Bacterial DNA from each sample, including EBCs, was amplified in triplicate 
using primers that target the V4 region of the 16S ribosomal RNA (rRNA) gene4, using 
previously described amplification conditions.5 No-template controls (NTCs) were 
also included in each amplification batch. 16S rRNA libraries were prepared for 
sequencing. Pooled 16S rRNA library triplicates were quantified and pooled in 
equimolar concentrations into groups of ~30 samples. Pooled libraries were then 
purified (SeraPure; Homemade AMPure6) and quantified using a TapeStation (Agilent 
2200) before a final pooling and quantification using a KAPA kit (LightCycler 96 
System, Roche Life Science). All libraries were sequenced on an Illumina MiSeq 
(2x150 bp) at the Australian Genomics Research Facility.  
 

Pre-processing, ASV selection, and contaminant removal 
Preterm infant sequences (PT1, PT2, and tracheal aspirates) and adult (n=3) 

sequences obtained over two sequencing runs were uploaded to QIITA data repository 
(Study ID 11832; https://qiita.ucsd.edu/study/description/11832). Demultiplexed 
sequences were trimmed to 150 bp and amplicon sequence variants (ASVs) were 
generated via Deblur.7 ASVs from the ‘reference hit’ biom file were merged with a full-
term infant and maternal dataset (Study ID 2010; FT1 and FT2) to create a SEPP 
insertion tree8 and the study dataset. Contaminant sequences from EBCs and NTCs 
within the preterm data were identified via Decontam,9 as there were no laboratory 
controls from the full-term dataset, and were subsequently removed from all biological 
samples (Table S1) in QIIME 2 (v2019.7)10. Following this, ASVs with less than 10 
reads assigned were removed. In total, 156 samples were retained and represented 
8,738,663 sequences and 1,553 ASVs.  
 

Diversity analyses, taxonomic classification, and statistical 

comparisons   
In QIIME2 (v2019.7)10, ASVs were summarized into their taxonomic 

classification using the SILVA database (v132.9; 16S 515-806).11 Using a rarefied depth 
of 2,000 sequences, (alpha) diversity was measured using observed species (OS) and 
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Faith’s phylogenetic diversity (PD)12 metrics, and beta diversity (composition) was 
calculated using the unweighted UniFrac metric.13 Significant associations between 
diversity and sample metadata were detected using pairwise Kruskal-Wallis tests14 and 
the pairwise Fligner-Killeen test,15,16 while significant links between composition and 
metadata were examined using adonis17,18 and PERMANOVA.17 In all tests, “Extraction 
Date” significantly contributed to the diversity in the dataset (e.g. ~18% of the total 
variation in the data; adonis); therefore, the impact of ‘Extraction Date’ was treated as 
a confounding variable in all downstream analyses. Lastly, ANCOM19 was used to 
identify significant changes in an ASV abundance across samples.  
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Supplementary tables can be found as electronic files 

 
 
 
The following files are provided separately to this document: 
 
 

AppendixIII_TablesS1.xlsx - Table S1. Contaminant ASVs identified from 
laboratory controls 

 
 
 
 
 
 
 
 
Table S2: No interaction between periodontal pocket depth, glycated 
haemoglobin and a family history of hyperlipidemia.    

 Sum of 
Squares F value Pr (>F) 

Periodontal PD 6.5486 1.2083 0.27578 

HbA1c 25.6292 4.7290 0.03336* 

FHx Hyperlipidemia 12.6063 2.3261 0.13215 

Periodontal PD:HbA1c 6.7710 1.2494 0.26785 

Periodontal PD:FHx 
Hyperlipidemia   3.3294 0.6143 0.43606 

HbA1c:FHx Hyperlipidemia   21.7358 4.0106 0.04946* 

Periodontal PD:HbA1c:FHx 
Hyperlipidemia  6.9440 1.2813 0.26189 

PD = pocket depth; FHx = family history of hyperlipidemia; HbA1c = glycated 
hemoglobin; * 0.05 > p > 0.01. 
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Table S3: Periodontal pocket depth and a family history of 
hyperlipidemia dependently affect the oral microbiota.   

 Sum of 
Squares F value Pr (>F) 

Periodontal PD 0.121 0.0220 0.882476 

HbA1c 25.386 4.6078 0.035452 * 

FHx Hyperlipidemia 56.926 10.3324 0.002012 ** 

Periodontal PD:FHx 
Hyperlipidemia   39.573 7.1828 0.009255 ** 

PD = pocket depth; FHx = family history of hyperlipidemia; HbA1c = glycated 
hemoglobin; * 0.05 > p > 0.01, ** p < 0.01. 
 
 
 
 

 
Figure S1: The relative abundance of gingival samples at the phyla 
taxonomic level. Five dominant phyla (>2% relative abundance) were observed 
across all gingival samples from children with type 1 diabetes.  
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Figure S2: Fewer co-occurrence networks were observed in periodontally 
healthy children with a family history of hyperlipidemia. Co-occurrence plots 
were generated using the Pearson co-efficient, to compare differences in 
hyperlipidemia and periodontal status. Networks between periodontally healthy 
children without (A) and with (B) a family history of hyperlipidemia were distinct, with 
fewer networks observed in periodontally healthy children with a family history of 
hyperlipidemia. In children with high-risk periodontal markers, frequently observed 
periodontal pathogens were shown to co-occur in both children without (C) and (D) 
with a family history of hyperlipidemia.  
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Laboratory contamination over time 
during low-biomass sample analysis 
(Weyrich et al. 2018) 
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Revegetation of urban green space 
rewilds soil microbiotas with 
implications for human health and urban 
design (Mills et al. 2020) 
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Early markers of periodontal disease and 
altered oral microbiota are associated 
with glycemic control in children with 
type 1 diabetes (Jensen et al. 2020) 
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