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Abstract

Since the famous discovery of the Higgs boson at the Large Hadron Collider (LHC)

in 2012, the field of elementary particle physics has been at an impasse. Ever more

precise measurements of the particle’s properties have served only to verify the

predictions of the current prevalent theory - the Standard Model (SM) of particle

physics - even though this theory is known to be incomplete. However, the SM is

only able to properly describe the observed boson with an incredibly unnatural fine-

tuning of its parameters, which has led many to propose alternative models that

can more naturally accommodate the particle in the hope of establishing a more

complete theory. We concern ourselves in this work with one class of such models,

in which the Higgs boson is not an elementary particle as is assumed by the SM,

but rather a bound state of some as-yet undiscovered strong dynamics. We give a

pedagogical introduction to the theory of such composite Higgs models (CHMs), and

provide a complete description of three different versions of the Two-Site Minimal

4D CHM - the simplest calculable extensions of the SM in which the Higgs boson is

composite, based on the SO(5) → SO(4) symmetry breaking pattern - that differ

in their fermion sector embeddings. Convergent global fits are performed on these

three models, under both frequentist and Bayesian frameworks, in order to find the

regions of their parameter spaces that best fit a wide range of constraints, including

recent Higgs measurements and exclusion bounds on heavy resonance production

from Run II of the LHC. We use a novel technique to analyse the fine-tuning of the

models, quantifying the tuning as the Kullback-Leibler divergence from the prior

to the posterior probability on the parameter space. Each model is found to be

able to satisfy all constraints at the 3σ level simultaneously, but the model that has

fermions embedded in the fundamental representation of SO(5), despite suffering

from a “double tuning”, is clearly favoured by a Bayesian model comparison. As

a by-product of the fits, we analyse the collider phenomenology of our models in

these viable regions. We find clear predictions of the minimally-tuned models that

the gg → H → γγ cross section is less than ∼90% that predicted by the SM,

which is already in slight tension with experiment and could potentially be ruled

out in the future high-luminosity run of the LHC. In addition, the lightest fermions

F arising from the new strong dynamics in these models are seen in general to lie

between ∼1.1 TeV and ∼3.0 TeV, with the F → tW+ and F → b̄W+ decays offering

particularly promising channels for probing these models in future collider searches.
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Chapter 1

Introduction

It is a remarkable fact that all known material things appear to consist of a small

variety of elementary particles. Perhaps more remarkable is that a single theory,

the Standard Model (SM) of particle physics, successfully describes all known

elementary particles and their electroweak (EW) and strong nuclear interactions,

encompassing almost all known particle behaviour, to high precision. Formulated in

the mid 1970s, the SM is a patchwork of the Weinberg-Salam theory of electroweak

interactions, which by then had gained wide acceptance due to the discovery of

weak neutral currents [1, 2], and quantum chromodynamics (QCD), the theory of

strong interactions based on the quark model put forward to explain the patterns

of observed hadrons [3,4]. In the years since, SM predictions have been consistently

verified, with early successes in the discoveries of the W± and Z bosons that mediate

the weak interaction. The SM posits that these particles have masses endowed

through the Higgs mechanism, a by-product of which is the existence of a neutral

scalar particle first explicitly noted by Higgs [5,6], but also following the independent

work of many others [7–9], dubbed the Higgs boson. The search for the Higgs

boson was a major experimental undertaking that drove the construction of the

Large Hadron Collider (LHC), culminating recently in the famous discovery of a

125 GeV Higgs-like particle [10, 11]. At present this particle is consistent with the

SM Higgs boson, though more precise measurements of its couplings may reveal

physics Beyond the SM (BSM).

The existence of the Higgs boson was by no means a foregone conclusion; its

incorporation into the SM was simply the most economical explanation of the weak

boson masses. Were it not to have been found, theoretical considerations practically

guaranteed the LHC would have discovered some sort of BSM physics in its place.

This is because the amplitude for the scattering of two longitudinally polarised W±

or Z bosons grows with energy, spoiling perturbative unitarity above ∼3 TeV unless

1) some extra degrees of freedom, including a Higgs boson, are present to restore

unitarity, and/or

2) perturbativity fails at these energies, and the theory becomes strongly coupled.

Nature seems to have chosen the first option. Early competitors to the SM such as

Higgsless Technicolor, a theory that solved the unitarity problem through strongly

coupled dynamics analogous to QCD, subsequently had to be abandoned. See

Ref. [12] for a nice comparison of the SM and Technicolor paradigms.
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2 Introduction

This victory of the SM may, however, prove Pyrrhic. In a similar fashion to

above, the existence of a 125 GeV Higgs boson can be used to argue for some type of

new physics that supersedes the SM at a scale below around 10 TeV. In this case, the

argument stems from naturalness: if the SM were accurate upwards of such energies

then the Higgs mass would be expected to be many orders of magnitude larger than

125 GeV, and only with an overwhelming fine-tuning of the model parameters could

such a light Higgs boson - and therefore any structure in the universe - exist. Many

therefore view the SM as a deeply unsatisfying description of reality, calling this the

Hierarchy Problem. Being metaphysical in nature, the Hierarchy Problem is one

of the few theoretical issues present in the SM.

Of course the SM has its experimental limitations too: the theory does not

include gravitational interactions, nor does it explain the matter-antimatter asym-

metry, dark matter, or the oscillations of neutrino flavours. Understanding BSM

physics is therefore a major focus of current research. But because the SM so accu-

rately predicts particle behaviour at accessible energies, aside from neutrino mixings

and some tensions with lepton flavour universality [13], there are no experimental

leads as to how the SM is to be extended. For this reason, many prominent theories

of BSM physics draw inspiration from the Hierarchy Problem and centre around

mechanisms that would explain how the light Higgs boson arises naturally.

One particular class of such theories consists of models in which the Higgs is

realised not as an elementary particle, but as a bound state of some currently undis-

covered BSM dynamics. In such Composite Higgs Models (CHMs), the Higgs

emerges as a pseudo-Nambu-Goldstone boson of some spontaneous symmetry break-

ing structure, making its expected mass significantly lighter than the BSM energy

scale. For dynamics below around 10 TeV, this provides an adequate solution to

the Hierarchy Problem. Many particular realisations of CHMs exist, and given the

relatively low energy scales of their new physics, there is the exciting prospect that

the LHC will soon be able to find evidence for, or rule out, certain models.

We concern ourselves in this thesis with the Minimal CHM (MCHM): the

minimal extension to the SM in which the Higgs boson is composite. Our goal is to

perform a convergent global fit of the MCHM, finding the regions of its parameter

space that best fit a wide range of experimental constraints. Actually, the MCHM

refers to a variety of models based on the SO(5) → SO(4) symmetry breaking

pattern that differ in their BSM field content. We will specifically be fitting the

Two-Site Minimal 4D CHM, which possesses the minimal structure necessary for

calculability, using three different choices of SO(5) representations for the BSM

fields.

Although the subject of much theoretical work, these models have only been nu-

merically explored to a small extent, and no such convergent global fits have yet been

performed. This is primarily on account of the large parameter spaces of the models,

making exhaustive parameter scans prohibitively computationally expensive, along

with the fact that the parameters all have highly non-linear effects on both the SM

and BSM sectors, so that even simplified analyses of the parameter spaces are dif-
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ficult. Indeed for our fits we only consider limiting models in which out of the SM

fermions only the third generation quarks couple to the BSM sector, so that we may

have more manageable parameter spaces. It is common in the literature to use this

same approximation, or even to have only the top quark couple to the BSM sector,

as lighter fermions are not expected to have significant BSM interactions. Despite

this simplification, our models still contain 15+ free parameters.

We will be fitting the models under both Bayesian and frequentist statistical

frameworks. The frequentist fits aim to find those points that best fit the experimen-

tal constraints across the entire parameter space. To explore the spaces efficiently in

these fits we employ a genetic optimisation algorithm known as differential evo-

lution, which has proven particularly effective in optimising over high-dimensional

spaces compared to a range of other algorithms [14], and which heuristically is quite

suited to the particular case of CHMs. The Bayesian fits, on the other hand, op-

timise the fitness weighted by the naturalness of the regions in parameter space - a

notion more in line with the philosophy of CHMs. For these fits we use a nested

sampling algorithm that cleverly facilitates calculation of the Bayesian evidence,

a quantity that measures the overall fitness-weighted-by-naturalness of each model,

during exploration of the parameter spaces. As a by-product of the fits, the ex-

perimental signatures of the models we consider can be analysed to determine the

prospects of probing the MCHM in future collider searches.

This thesis is structured in two parts. The first reviews the motivation and

theory behind CHMs, with a special focus on the MCHM, in Chapters 2 to 4.

Along with Appendices A to G, these chapters provide all the background necessary

to understand and appreciate the structure of the models that we will be fitting,

assuming a working knowledge of quantum field theory. The second part details the

methodology of our scans and the results of the fits, in Chapters 5 to 8.

We begin with an overview of the SM Higgs boson in Chapter 2, not just because

it is essential to understand the physics that CHMs intend to supersede, but also

because the SM serves as a good introduction to many concepts that arise also in

CHMs. Included here is a review of the particles of the SM and their interactions,

and a discussion of the role symmetries play in physical theories - much of which

should be familiar to the reader, but is covered anyway as such concepts are vi-

tal throughout the rest of this work. Afterwards we give a general explanation of

the Higgs mechanism and show its enactment in the SM as an example. To con-

clude, there is a more in-depth discussion of the Hierarchy Problem and the various

approaches taken to solve it, with a focus on CHMs.

We go on to present the main concepts utilised by general CHMs in Chapter 3,

pedagogically working up from the barest consistency requirements of such theo-

ries. After describing (pseudo-)Nambu-Goldstone bosons, we illustrate how such

particles may be included in a general theory using the CCWZ formalism. We

then show how the weak bosons acquire their masses in CHMs through vacuum

misalignment, and how fermions couple to the BSM sector in the partial compos-

iteness paradigm. We also explain how the Higgs potential in a CHM arises from
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the Coleman-Weinberg mechanism, and using this we analyse the naturalness of

different SO(5) representations in the MCHM. Finally, we discuss how the Higgs

potential can be rendered finite and calculable with multi-site models and collective

symmetry breaking. Throughout the chapter we illustrate most of these concepts

with toy models, using examples that will prove helpful in understanding the MCHM

where possible.

Chapter 4 is dedicated to providing a complete working description of the realistic

versions of the MCHM that we will be fitting, using the theoretical tools of Chapter 3.

We include some analysis of the particle content in each model, and discuss previous

explorations of these models in the literature. The different statistical viewpoints

- Bayesian and frequentist - are explained in Chapter 5 along with descriptions of

the scanning algorithms we use, and our procedures for scanning and constraining

the models’ parameter spaces are detailed in Chapter 6. Results are presented in

Chapter 7, with some discussion on the viability of each model in light of recent

LHC data, as well as the prospects of probing the models in future collider searches.

We conclude in Chapter 8, summarising the main points of the thesis and offering

ideas for how this work may be extended in the future.



Part I

Composite Higgs Models:

Motivation and Theory
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Chapter 2

Preliminaries: Higgs Boson in the

Standard Model

2.1 Content of the Standard Model

The Standard Model is a quantum field theory whose Lagrangian (density) has the

schematic form

LSM = −1

4
Tr [GµνG

µν ]− 1

4
Tr [WµνW

µν ]− 1

4
BµνB

µν

+ iψ̄f
(
/∂ − ig /W a

T aL − ig′ /BY − igs /G
a
T ac
)
ψf

− y
f1f2

ψ̄f1

L Φψf2

R − y∗f1f2 ψ̄
f1

R Φ†ψf2

L

+
∣∣(∂µ − igW a

µT
a
L − ig′BµY

)
Φ
∣∣2 + µ2Φ†Φ− λ

(
Φ†Φ

)2
. (2.1)

The various parts of this Lagrangian will be explained in the following sections of

this chapter. This section serves to catalogue the particles of the SM and outline

their overall roles in the theory.

First, central to the SM is the symmetry group

SU(3)c × SU(2)L × U(1)Y . (2.2)

Each factor here is a group of transformations that can be performed on the SM

fields such that LSM remains unchanged. Fields are categorised according to the

representations of these groups under which they transform. A brief overview of the

representation theory needed for this work is given in Appendix A.

Present in the SM are fermions, ψf , whose interactions are mediated by vector

gauge bosons associated to each factor of the symmetry group. Among the gauge

bosons are eight gluons Gµ of SU(3)c, three Wµ fields of SU(2)L, and one field,

Bµ, of U(1)Y . Each group gives rise to a type of “charge” for each particle - colour

charge, weak isospin, and hypercharge, in the order of Equation (2.2) - that dictates

their interactions with the associated gauge bosons. Particles in the trivial 1 rep-

resentation of a group are “uncharged” and do not couple to the associated gauge

bosons.

7



8 Preliminaries: Higgs Boson in the Standard Model

Gen 1 Gen 2 Gen 3

Up-type quarks u c t
Down-type quarks d s b
Charged leptons e µ τ
Neutrinos νe νµ ντ

Table 2.1: Members of each fermion generation in the SM.

All fermions in the SM are Dirac fermions, with left- and right-handed compo-

nents1. Weak isospin only affects the left-handed fermions, organising them into

doublets consisting of either a charged lepton and its associated neutrino, or of an

up-type (electric charge +2/3) and a down-type (electric charge −1/3) quark. These

doublets partition the quarks and leptons into three different “generations”, as listed

in Table 2.1. Similarly, each quark flavour is organised into a triplet of its different

colour charges.

The final member of the SM is the Higgs field, Φ. It possesses a non-zero vacuum

expectation value so that interactions with the Higgs field yield mass terms in the

Lagrangian. This so-called Higgs mechanism, explained in Section 2.3, mixes the

W 1,2,3
µ and Bµ gauge fields into the massive W± and Z bosons, which mediate the

weak interaction, and into the photon, the massless mediator of electromagnetism.

The SM particle content and transformation properties are summarised in Tables 2.2

and 2.3.

ψf SU(3)c SU(2)L U(1)Y
`iR 1 1 −1
liL = (νiL, `

i
L)ᵀ 1 2 −1/2

qiL = (uiL, d
i
L)ᵀ 3 2 +1/6

uiR = (uir, u
i
g, u

i
b)

ᵀ
R 3 1 +2/3

diR = (dir, d
i
g, d

i
b)

ᵀ
R 3 1 −1/3

Table 2.2: Representations of SM fermions. Up-type and down-type quarks are
labelled u and d, while ` refers to a charged lepton. Generations are indexed by i.

SU(3)c SU(2)L U(1)Y
Gµ 8 1 0
Wµ 1 3 0
Bµ 1 1 0
Φ 1 2 +1/2

Table 2.3: Representations of SM bosons.

1Except the neutrinos, which only come left-handed.
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2.2 Symmetries

In the development of the Standard Model, it became apparent that one of the most

fruitful ways in which to view physics is through the lens of symmetries: trans-

formations of physical systems that do not affect the outcome of any measurement.

Nature has many symmetries, both exact and approximate, which severely constrain

possible physical behaviours. Often, a physical symmetry refers to the stronger con-

dition of a transformation S of fields φ that leaves the Lagrangian invariant, rather

than just outcomes of measurements:

φ→ Sφ such that L (Sφ, . . .) = L (φ, . . .) . (2.3)

The SM Lagrangian is almost uniquely determined by specification of its symmetry

properties and field content, showing the utility of the symmetry viewpoint.

The symmetries of a given Lagrangian form a mathematical group GL. All GL
transformations g of a quantum field φ can be imparted by linear operators Sφg
chosen in such a way that the linear operators respect the group structure:

φ
g∈GL−−−→ Sφg φ such that Sφg S

φ
g′ = Sφgg′ . (2.4)

The collection {Sφg | g ∈ GL} forms a representation of the symmetry group.

Different fields may transform under different representations. A brief overview of

common representations is given in Appendix A. We shall only be interested in finite-

dimensional representations of compact groups2 GL, in which case the operators in

the representation can always be taken to be unitary [16]. The distinction between

group elements and operators is usually unimportant, so in what follows group

elements will be regarded as their corresponding operators.

Perhaps the most useful aspect of symmetries is Nöther’s theorem, guaranteeing

that for each differentiable symmetry of the Lagrangian there is a current Jµ that is

conserved whenever the equations of motion are satisfied, in the sense that ∂µJ
µ = 0.

From the divergence theorem, it then follows that the quantity, or “charge”,

Q(V, t) :=

∫

V

d3x J0(~x, t) (2.5)

is locally conserved. Examples of conserved quantities that arise in this way are

energy, momentum, and electric charge.

A differentiable symmetry as in Nöther’s theorem is formalised by the notion of

a Lie group: a group with a manifold structure such that the group multiplication

2If GL is not of the form M ×Rn for some compact Lie group M and some n ≥ 0, kinetic terms for
the gauge fields arising from GL could not be properly defined [15]. We do not consider the case
n 6= 0 because this would lead to long-range forces for which there is no experimental evidence
(assuming no symmetry breaking), leaving only compact groups.



10 Preliminaries: Higgs Boson in the Standard Model

and inversion maps

(g1, g2) 7→ g1g2, (2.6)

g 7→ g−1, (2.7)

are smooth. Specifically, a differentiable symmetry is to be understood as a symme-

try group of the Lagrangian containing all transformations in some neighbourhood

of the identity of some Lie group G. For simplicity, we consider G itself to be this

symmetry group, and remind that we take the case where G is compact. An in-

finitesimal transformation Sε ∈ G in a neighbourhood of the identity may be written

in the form3

Sε = 1 + iεaTa = eiε
aTa

for some infinitesimal real parameters εa and some linear operators Ta, equal in

number to the dimension of G. These operators, called “generators” of G, form a

basis for the tangent space g of G at the identity. Note that since Sε is taken to be

unitary, each generator must be Hermitian. The tangent space g, when equipped

with the commutator [·, ·], is known as the Lie algebra of G, and the structure

constants f c
ab defined by

[Ta, Tb] =: if c
ab Tc (2.8)

entirely specify the Lie algebra up to isomorphism. It is an important fact, demon-

strated in Appendix B, that the generator Ta is nothing more than the conserved

charge Qa associated to the symmetry it generates.

Repeated application of infinitesimal symmetries will eventually produce finite

symmetries of the Lagrangian that are connected to the identity, so for simplicity we

also restrict to the case where G is connected. It is a basic result in differential ge-

ometry that the exponential map then extends from an infinitesimal neighbourhood

of the identity to the whole group:

G = {eiθaTa | ~θ ∈ RdimG}. (2.9)

Our attention is therefore restricted to connected, compact Lie groups under whose

action the Lagrangian is invariant. The modus operandi of BSM physics research is

to consider a Lagrangian with a (well-motivated) connected, compact Lie symmetry

group, and then to determine if the theory corresponds to reality. Composite Higgs

models are no different. For our purposes, we must also make the distinction between

two different types of symmetries: global and local.

3We use the Einstein summation convention throughout this work.
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A global symmetry is a symmetry transformation that does not depend on the

spacetime point:

Sglobal(x) = eiθ
aTa . (2.10)

A local symmetry is a symmetry transformation that does depend on the spacetime

point:

Slocal(x) = eiθ
a(x)Ta . (2.11)

Nöther’s theorem applies for all differentiable global symmetries. In the case where

the Lagrangian is invariant under all local transformations from some Lie group G,

it is said to be gauge invariant and the Lie group is a gauge group.

At first glance, global symmetries may seem to be special cases of gauge sym-

metries, but in fact the two are entirely different. A global symmetry that does not

extend to a gauge symmetry is a true symmetry of Nature: transforming the fields

will produce a physically different configuration of fields that results in the same

physical behaviour. With gauge symmetries, however, since physical behaviour is

unchanged under arbitrary local transformations of the fields, any quantity affected

by a gauge transformation must be unphysical, serving only as a trivial degree of

freedom of the fields that has no effect whatsoever. It is often useful to set the

fields’ gauge configurations in some way when performing calculations in a theory

with gauge symmetry, in a process called fixing the gauge. With that said, a gauge

symmetry does indeed contain global symmetries as a subgroup, and so enjoys a

conserved current from Nöther’s theorem.

Gauging a Lagrangian

Often we are interested in Lagrangians that are gauge invariant under some group G.

The easiest way to construct such a Lagrangian is to start with a Lagrangian with

a global symmetry group G and altering it to accommodate local transformations,

known as “gauging” the Lagrangian. This requires changing only the derivative

terms, since other terms are insensitive to how the fields vary across spacetime.

Quite generally, gauging a Lagrangian only modifies the existing terms by replacing

partial derivatives with covariant derivatives:

∂µ → Dµ := ∂µ − igAaµTa. (2.12)

Here we have introduced a coupling constant g and a vector gauge field Aaµ for

each generator Ta of G. Each simple group factor of G requires its own coupling

constant [17], although here we have only shown one for simplicity. It is convenient

to define Aµ := AaµTa, which by definition transforms under G as

Aµ
S∈G−−→ SAµS

−1 − i

g
(∂µS)S−1, (2.13)
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so that under a gauge transformation φ→ Sφ, covariant derivatives transform as

Dµφ→ SDµφ, or formally Dµ
S∈G−−→ SDµS

−1. (2.14)

This is exactly the same transformation property as partial derivatives under a global

transformation, so promoting partial derivatives to covariant derivatives makes a

globally-invariant Lagrangian gauge invariant. Note if only a subgroup H of a global

symmetryG is gauged, then not all elements ofGmay remain symmetries. In general

the symmetry is explicitly broken to the normaliser subgroup of H in G, defined

by GH := {S ∈ G| ShS−1 ∈ H for all h ∈ H}, for this is the necessary and sufficient

property to preserve the covariant derivative transformation Equation (2.14) [18].

Kinetic terms for the gauge fields must also be introduced, and this is done

through the field strength tensor

Aµν :=
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (2.15)

The defining expression makes it clear that this transforms as Aµν
S∈G−−→ SAµνS

−1,

i.e. in the adjoint representation of G, and so Tr [AµνA
µν ] is gauge invariant. It is

often useful to choose generators such that Tr [TaTb] = Tδab for some number T , in

which case the conventionally-normalised gauge-invariant kinetic term is

− 1

4T
Tr [AµνA

µν ] . (2.16)

In this work we will always choose T = 1.

A similar gauge-invariant term in which gauge fields may appear is

1

2
εµνρσTr [AµνAρσ] = εµνρσ∂µTr

[
AνAρσ −

2

3
igAνAρAσ

]
. (2.17)

However, being a four-divergence, this term does not affect the classical equations

of motion. We will neglect such terms in this work, although they can produce

non-perturbative physical effects.

This exhausts the list of possible ways a gauge field may enter a renormalisable

Lagrangian. In total, then, gauging a Lagrangian is the process

Lglobal(φ, ∂φ)→ Lgauge(φ, ∂φ,Aµ, ∂Aµ) = Lglobal(φ,Dφ)− 1

4
Tr [AµνA

µν ] . (2.18)

This whole business of considering gauge-invariant Lagrangians comes about because

interacting massless vector particles such as the photon and gluons are necessarily

gauge bosons [19]. Indeed, Maxwell’s equations lead directly to the gauge invari-

ance of electromagnetism. Gauge theories are also the only renormalisable theories

of massive vector particles [20], and indeed the massive W± and Z bosons of the

weak interaction are understood to be gauge bosons with masses acquired through

a technicality known as the Higgs mechanism.
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2.3 Higgs Mechanism

Careful inspection of a gauged Lagrangian reveals that there are no gauge field mass

terms m2
abA

a∗
µ A

bµ , except in the case where the covariant derivative acts on a field

with a non-zero constant term, known as a Higgs field. To be clear, a Higgs field Φ

is one that can be expressed as

Φ(x) = Φ0 +H(x), (2.19)

where Φ0 is a constant non-zero operator, and H is a linear combination of normal-

ordered products of creation and annihilation operators. Assuming the Higgs field

is a multiplet of complex scalars (as it is in the SM), its kinetic term will contain

the gauge boson mass terms

(DµΦ)† (DµΦ) ⊃ g(a)g(b)(TaΦ0)†TbΦ0A
a∗

µ A
bµ , (2.20)

where the coupling g(x) is that of whatever simple group Tx is associated to. Rotating

to the gauge field mass basis, i.e. diagonalising the mass matrix

m2
ab ≡ g(a)g(b)(TaΦ0)†TbΦ0, (2.21)

reveals there are dim(K)-many massive gauge bosons (including antiparticles) and

dim(G) − dim(K) massless ones, where K := spanR{T1Φ0, . . . , Tdim(G)Φ0}. This

method of mass generation is known as the Higgs mechanism.

One might now wonder how a Higgs field may come about in a theory. To start

with, note that the constant Φ0 is the expectation value of the Higgs field in the

vacuum state |Ω〉:

〈Ω|Φ |Ω〉 = 〈Ω|Φ0 |Ω〉+���
���:0〈Ω|H |Ω〉 = Φ0. (2.22)

So a Higgs field is one that the Lagrangian dictates has a non-zero vacuum ex-

pectation value (vev). Incidentally, because the vacuum is Lorentz invariant, this

observation implies that any Higgs field must be a scalar field. Excitations of Higgs

fields are accordingly called Higgs bosons. Note there is no requirement that a Higgs

boson be elementary.

The vev of a field is a configuration that locally minimises the quantum effec-

tive potential Veff, a quantity discussed in detail in Appendix C. In short, writing

the (free field) Lagrangian as the difference between kinetic and potential terms,

L(Φ, ∂Φ) = T (Φ, ∂Φ)− V(Φ), (2.23)

the quantum effective potential is the classical potential V with effects of loop dia-

grams taken into account:

Veff(Φ) = V(Φ) + [terms next to leading order in ~] . (2.24)
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More details about the radiative corrections will be given in Section 3.7. Including

a Higgs field in a theory, then, simply requires setting up the classical potential and

interactions in such a way as to give the quantum effective potential a minimum for

a non-vanishing field configuration Φ0.

The effective potential acts in much the same way the classical potential acts

in classical field theory. For example, expanding the effective potential around the

vacuum Φ0 yields the Higgs boson mass matrix

Veff(Φ) = Veff(Φ0) +Ha

�
��

�
��*

0
∂Veff

∂Φa |Φ=Φ0

+
1

2
HaHb ∂2Veff

∂Φb∂Φa |Φ=Φ0

+O(H3), (2.25)

=⇒ m2
Hab

=
∂2Veff

∂Φb∂Φa |Φ=Φ0

. (2.26)

Diagonalising this gives the squared masses of any Higgs bosons, assuming the Higgs

fields H are conventionally normalised. Note that since Φ0 is a minimum of Veff, the

mass matrix is positive semidefinite, as should be physically expected.

2.4 Electroweak Symmetry Breaking in the SM

Here we detail a concrete realisation of the Higgs mechanism: the unified electroweak

model devised by Glashow, Salam, Ward, and Weinberg [21–23]. This process,

misleadingly referred to as electroweak symmetry breaking (EWSB), is how

the weak gauge bosons acquire mass in the SM, and has proved extraordinarily

successful as a description of reality.

In this model, the Lagrangian has an SU(2)L × U(1)Y gauge symmetry, giving

dimSU(2) + dimU(1) = 3 + 1 gauge bosons. Those associated to SU(2)L are

denoted W a
µ , while the gauge field of U(1)Y is denoted Bµ. A Higgs field Φ exists

that provides mass to three of the gauge bosons, identified with the W± and Z of

the SM, leaving a massless photon. In total, the Lagrangian has the form

LEW = −1

4
Tr [WµνW

µν ]− 1

4
BµνB

µν + (DµΦ)†(DµΦ)− V(Φ). (2.27)

For the correct phenomenology, the Higgs field is taken as a complex doublet4

Φ =

(
φ2 + iφ1

φ4 − iφ3

)
, (2.28)

4The strange numbering and sign conventions are chosen so that (φ1, φ2, φ3, φ4) transforms in
the fundamental representation of SO(4), using the local group isomorphisms presented in Ap-
pendix D.
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that transforms as a doublet under SU(2)L and has hypercharge Y = +1/2. The

covariant derivative is accordingly

DµΦ =

(
∂µ − igW a

µT
a
L − ig′Bµ

1

2

)
Φ, (2.29)

where the generators T aL = 1
2
σa of SU(2)L are (half) the Pauli sigma matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (2.30)

Note the different coupling constants for each group factor.

As outlined in the previous section, the Higgs potential5 V(Φ) must be gauge

invariant and have a minimum at Φ0 6= 0. This is realised by taking the most general

renormalisable, gauge-invariant potential possible:

V(Φ) := −µ2Φ†Φ + λ
(
Φ†Φ

)2
(2.31)

for some positive numbers µ2 and λ. A lower-dimensional version of this potential

is graphed in Figure 2.1. The potential has a sphere of minima given by

Φ†0Φ0 = φ2
1 + φ2

2 + φ2
3 + φ2

4 =
µ2

2λ
. (2.32)

Which minimum is the correct one? The answer is immaterial. Any point on

the sphere of minima is physically equivalent to any other, being connected by an

SU(2)L × U(1)Y gauge transformation.

φ4

φ3

V(Φ)

Figure 2.1: A plot of the Higgs potential in the φ3 − φ4 plane for φ1 = φ2 = 0 and
some values of the parameters µ2 and λ. Note the circle of minima, representing
possible equivalent vacuum states. The rotational symmetry in this plane is a lower-
dimensional manifestation of the SU(2)L × U(1)Y symmetry of the potential.

5For clarity in illustration, we leave aside the quantum contributions to the effective potential,
although these radiative corrections will play a key role in composite Higgs theories.
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At this stage it becomes convenient to spend the gauge symmetry to move to

the unitary gauge, removing all the unphysical gauge degrees of freedom by fixing

φ4 to be the only non-zero component of Φ. In this gauge the vev is

Φ0 =
1√
2

(
0√
µ2

λ

)
≡ 1√

2

(
0

v

)
, (2.33)

where v is taken positive. Experimentally, v ≈ 246 GeV.

With the given generators and vev, the gauge boson mass matrix Equation (2.21)

is calculated to be

m2
gauge =

1

8




W 1
µ W 2

µ W 3
µ Bµ

W 1µ g2v2 −ig2v2 0 0

W 2µ ig2v2 g2v2 0 0

W 3µ 0 0 g2v2 −g′gv2

Bµ 0 0 −g′gv2 g′2v2



. (2.34)

Diagonalising this yields

m2
gauge =

1

4




W+
µ Zµ Aµ

W−µ g2v2 0 0

Zµ 0 (g2 + g′2) v2 0

Aµ 0 0 0


 , (2.35)

in the basis

W±
µ =

W 1
µ ∓ iW 2

µ√
2

, Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

, Aµ =
g′W 3

µ + gBµ√
g2 + g′2

. (2.36)

As the notation suggests, these are the familiar W± and Z bosons, and the massless

photon. The weak bosons are seen to have masses

mW =
1

2
gv, mZ =

1

2

√
g2 + g′2v =⇒ m2

W

m2
Z

=
g2

g2 + g′2
. (2.37)

This prediction has been verified to better than 1% accuracy, and would need to be

reproduced in any viable model of EWSB. It is shown in Appendix E that Equa-

tion (2.37) is a consequence of a “custodial” SU(2) symmetry of the W a gauge

bosons [24], a concept that will prove vital later on in this work.

Incidentally, if the covariant derivative is expressed in this mass basis, one sees

the photon enters as

Dµ ⊃ −i
g′g√
g2 + g′2

Aµ(T 3
L + Y ). (2.38)
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The electromagnetic gauge coupling e and the electric charge operator Q are there-

fore identified as

e =
g′g√
g2 + g′2

, Q = T 3
L + Y, (2.39)

as should be familiar from particle physics. Notice that QΦ0 = 0. The unitary gauge

is designed for this to conspire, ensuring the photon is massless. A different choice

for the basis of SU(2)L generators would require a different form for the unitary

gauge.

In the unitary gauge, Φ has only a single degree of freedom: the physical Higgs

boson field, entering as

Φ(x) = Φ0 +H(x) =
1√
2

(
0

v + h(x)

)
. (2.40)

The other three degrees of freedom Φ started with manifest as the longitudinal

polarisations of the massive gauge bosons. The Higgs boson is seen to be uncharged,

with interactions

Lh =
1

2
(∂µh)(∂µh) +

(
m2
WW

µ+W−
µ +

1

2
m2
ZZ

µZµ

)(
1 +

h

v

)2

− µ2h2 − µ2

v
h3 − µ2

4v2
h4. (2.41)

Of the many interesting things to note here, we draw attention to the bare Higgs

mass

mh =
√

2µ. (2.42)

This mass is a free parameter and must be fixed by experiment.

Fermion Masses

In addition to giving the weak bosons mass, the SM Higgs field also provides masses

to the fermions. It does this through so-called Yukawa interactions such as

LSM ⊃ −yid
(
q̄iLΦdiR + d̄iRΦ†qiL

)
, (2.43)

which by an incredible coincidence are invariant under the SM gauge group given the

fermion representations listed in Table 2.2. Here i indexes the fermion generation,

and the dimensionless Yukawa couplings yid have been taken to be real and to only act

generation-by-generation, by a redefinition of the quark fields. Demonstrating the

gauge invariance explicitly, we perform an arbitrary SU(2)L transformation S and a

U(1)Y phase transformation parameterised by α on the first term of Equation (2.43)
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(the other term acts similarly):

q̄iLΦdiR = (qiL)†γ0ΦdiR →
(
e+α

6 SqiL
)†
γ0
(
e+α

2 SΦ
) (
e−

α
3 diR

)

=
(
e−

α
6 e+α

2 e−
α
3

)
q̄iL
(
S†S

)
ΦdiR

= q̄iLΦdiR, (2.44)

so Yukawa interactions are indeed unchanged under SU(2)L × U(1)Y . Expanding

these interactions in the unitary gauge produces

LSM ⊃ −yid
(
d̄iLd

i
R + d̄iRd

i
L

) (v + h)√
2

= −y
i
dv√
2

(
d̄idi +

1

v
hd̄idi

)
, (2.45)

from which we see mass terms for the down-type quarks

mdi =
yidv√

2
. (2.46)

Replacing qiL and diR with liL and `iR gives analogous mass terms for the charged lep-

tons, with their own Yukawa couplings. The up-type quarks receive masses the same

way, with a minor technical difference. Through a peculiarity of the 2 representation

of SU(2), the “conjugate” Higgs doublet defined by

Φc := iσ2Φ∗ =

(
φ4 + iφ3

−φ2 + iφ1

)
(2.47)

is also a doublet of SU(2)L, but has hypercharge Y = −1/2. This allows gauge-

invariant Yukawa terms for up-type quarks to be written:

LSM ⊃ −yiu
(
q̄iLΦcuiR + ūiRΦc†qiL

)
, (2.48)

yielding masses analogous to Equation (2.46).

Yukawa couplings are inputs to the theory, so none of the fermion masses are

predictable. However, a clear consequence of this method of mass generation is that

a fermion’s coupling to the Higgs boson is directly proportional to its mass. In

practice, only the top and bottom quarks and the tau lepton are massive enough to

have appreciable couplings to the Higgs.

2.5 Hierarchy Problem

“Have you ever heard about the Higgs boson blues?”

- Nick Cave & The Bad Seeds

While the SM Higgs boson is an economical solution for the generation of masses for

the gauge bosons and fermions, its couplings present theoretical difficulties. Con-

sider, for example, the fermion loop diagram in Figure 2.2. This contributes to the
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h h

ψ̄

ψ

−i yψ√
2

−i yψ√
2

p p

k

p+ k

Figure 2.2: Loop diagram contributing to the renormalised Higgs mass.

renormalised Higgs mass

m2
phys = m2

bare + ∆m2 (2.49)

an amount

∆m2
ψ = iNc

(
−i yψ√

2

)2 ∫
d4k

(2π)4

Tr
[
(/p+ /k +mψ)(/k +mψ)

]

((p+ k)2 −m2
ψ − iε)(k2 −m2

ψ − iε) |p2=m2
H

= −
3y2

ψ

8π2
Λ2 +O

(
m2
ψ log

Λ

mψ

)
, (2.50)

where Λ is the high-energy cutoff of the loop momentum - the energy scale at which

the SM is no longer valid. We see there is a quadratic dependence on Λ. Similar

loops with gauge and Higgs bosons also contribute, but the dominant contribution

comes from the top quark due to its large Yukawa coupling. If Λ is much larger

than, say, 10 TeV, the Higgs mass will then receive corrections that are enormous in

comparison to its actual value mphys ≈ 125 GeV. In fact it gets worse, for the Higgs

mass is UV sensitive: if there is any new physics that couples to the SM at a scale

ΛUV, then ∆m2 will scale as Λ2
UV [25–27]. Barring any remarkable cancellations, the

Higgs should therefore be expected to have a mass on the order of ΛUV. The fact

that it has instead a relatively small mass is known as the Hierarchy Problem.

From an effective field theory point of view, the problem stems from scalar mass

operators having a mass dimension of two, and so needing coupling constants scaling

quadratically with the high-energy cutoff scale, say cΛ2 for a dimensionless constant

c. Typically c would be expected to be of order unity, raising the question of why

the scalar Higgs particle has a mass so much smaller than Λ.

Another viewpoint is through the sensitivity of the Higgs mass to the parameters

of the theory. The correction ∆m2 to the Higgs mass will be of the form −cΛ2
UV

for some c of order unity and some extremely large energy scale ΛUV. Supposing,

for example, the UV energy is at the Planck scale (ΛUV ∼ 1019 GeV), the physical

Higgs mass is mphys ∼ 10−17ΛUV, making the bare mass

m2
bare ∼

(
c+ 10−34

)
Λ2

UV. (2.51)
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Since the bare mass is a free parameter of the theory, such a value is perfectly

allowed. However, many physicists are not satisfied by this, as the dimensionless

parameter m2
bare/Λ

2
UV must be so precisely specified (to the ∼34th decimal place!) to

result in the observed Higgs mass, while there is no apparent symmetry that would

make it so. It is clear that if the ratio varied even relatively slightly, the physical

Higgs mass would be stupendously large. Such fine-tuning of the parameters goes

against the concept of naturalness: the idea that the parameters of the theory

describing our universe should have values that are more or less typical for such a

theory.

If naturalness is to be upheld, it is clear there needs to be some new physics below

around 10 TeV that protects the Higgs mass from large quantum corrections. Re-

solving the Hierarchy Problem is the driving force behind a large portion of current

BSM physics research, with a diverse range of approaches having been put forward

as solutions [28].

• Supersymmetry (SUSY) is perhaps the most well-known approach. It posits

a spacetime symmetry between bosons and fermions, assuring a one-to-one

matching between bosonic and fermionic degrees of freedom. The bosonic and

fermionic contributions to the Higgs mass then mostly cancel each other out,

resulting in only small Higgs mass corrections. While an attractive solution, no

evidence for SUSY partner particles has yet been found. Bounds on the partner

masses from the LHC are restricting the parameter space of the minimal SUSY

model to quite unnatural regions, but this is not to say the minimal model

can be ruled out by fine-tuning considerations just yet. A recent analysis has

found some versions of the minimal SUSY models to be fine-tuned to O(1)%

precision in the model parameters [29], which is a slightly higher degree of

tuning than the models we shall be considering in this work [30].

• Other approaches utilise higher dimensions, framing the Hierarchy Problem

in terms of the apparent weakness of gravity (enormity of the Planck scale)

in comparison to the gauge interactions (at the scale of the Higgs mass). For

example, it may be that gravity is actually comparable in strength to the SM

forces, and only appears extremely weak because there are other millimetre-

length dimensions in which it can propagate [31]. A different solution is pre-

sented by Randall-Sundrum type models [32], which posit a finite interval

extra dimension. The metric of usual 4D spacetime is warped according to the

coordinate along the fifth dimension, leading to an exponential suppression of

energy scales along the new dimension. Large hierarchies can then arise rather

naturally depending on the locations in the fifth dimension where energy scales

are embedded. In essence, in these models the Higgs is fundamentally at the

Planck scale, but because of our position in the fifth dimension the Higgs mass

is seen to be very suppressed.

• The final approach we discuss is the focus of this work: the idea that the

Higgs is not an elementary scalar, but is instead a bound state arising from
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some new strong dynamics at a scale m∗ around a few TeV. In this case, the

loop integrals contributing to the Higgs mass cannot sensibly be applied for

momenta much above m∗; above this scale, the constituent particles of the

Higgs are able to be resolved and the Higgs as an entity becomes transparent

to virtual particles, as illustrated in Figure 2.3. The Higgs mass should then

be expected to be of order m∗, greatly reducing the hierarchy between the

expected mass and physical mass. Of course m∗ cannot be too large for fear

of reinstating the Hierarchy Problem, nor can it be too small on account of

the new strong dynamics having so far gone undiscovered.

Figure 2.3: Interaction between a composite Higgs boson and a virtual particle.
The composite Higgs will have a finite diameter ∼1/m∗, where m∗ is the
scale of the composite dynamics. For momenta greater than ∼m∗, the virtual
particle will have a wavelength short enough to resolve the constituent particles
of the Higgs boson.

.

Early variants of this idea, labelled under the umbrella of “Technicolor”, re-

alised the Higgs boson as a bound state of two fermions from some strong

dynamics that essentially mirrored QCD at a higher energy scale6 [25,33–36].

However, such models were typically mired by issues with reproducing the

fermion masses and flavour physics, and could not naturally account for the

lack of particles with masses similar to the Higgs mass [28,37].

Technicolor has since been supplanted by composite Higgs models (CHMs),

which employ a number of more sophisticated theoretical tools for improved

phenomenological viability. Having early roots in Refs. [38–40], CHMs did not

garner much interest until after the discovery of the AdS/CFT correspondence

[41], when it was realised that a composite Higgs boson appears in the dual 4D

descriptions of the warped 5D models discussed above (corresponding to the

fifth component of a 5D gauge field) [42–47]. This correspondence has spurred

much development of CHMs, with natural features of the 5D models being

used to guide the structure of 4D CHMs that will be detailed in Chapter 3.

6Very early variants of Technicolor did not even include a Higgs boson and instead relied on the
strong dynamics to produce a condensate that breaks electroweak symmetry. Given the discovery
of the Higgs particle, though, such Higgsless models are obviously ruled out.





Chapter 3

Key Ideas of Composite Higgs

Models

If the Higgs boson is to arise as a bound state of dynamics at an energy scale m∗,

then generically there should be other composite resonances of typical mass m∗,

constituting the so-called composite sector. As previously mentioned, the com-

positeness scale m∗ must not be too large in order to avoid the Hierarchy Problem,

while viable models must push the scale up to &1 TeV to explain the absence of

composite resonances in high-energy collider experiments. The picture envisioned

by composite Higgs models, then, is something as in Figure 3.1: there is a composite

sector consisting of heavy resonances of mass ∼m∗ & 1 TeV along with the Higgs at

a much lower mass scale, together with the elementary sector of the non-Higgs

SM fields1.

Figure 3.1: Structure of the particle content of a generic composite Higgs model.
There is a “composite” sector consisting of resonances of the strong dynamics from
which the Higgs arises, contrasted with an “elementary” sector resembling the SM
with no Higgs. The composite resonances, aside from the Higgs, are clustered around
a mass scale m∗ & 1 TeV. We shall see in Section 3.6 that SM fields are mixtures
of elementary and composite fields. The top quark, shown as elementary here, will
actually have a large composite component.

1The SM fields are actually not exactly the elementary fields due to partial compositeness.

23
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From this picture, obvious questions that must be answered in a CHM are:

1. What other resonances arise as bound states of the new strong dynamics?

2. Why is the Higgs so much lighter than the other composite resonances?

3. How do SM particles interact with the new composite sector?

4. How does the Higgs field, as part of the composite sector, break electroweak

symmetry and impart mass to the SM fields?

This chapter will survey the theoretical tools that give us a good idea of how to

answer these questions and show their application in simple (but relevant) examples.

Armed with these tools, a full viable CHM will be put together in Chapter 4.

So that no section of this chapter feels unmotivated, I shall reveal the grand

story of CHMs and spoil the surprise now.

3.0.1: Workings of a composite Higgs model

The Higgs boson is light compared to the other composite resonances because

it arises from a spontaneously broken symmetry structure that would nor-

mally dictate it be a massless Nambu-Goldstone boson, but the symmetry

is only approximate, so the Higgs is instead a naturally light pseudo-Nambu-

Goldstone boson. The Goldstone symmetry is not exact because, among

other things, it contains a gauged subgroup housing the electroweak gauge

group, allowing a quantum effective potential for the Higgs to be generated at

loop level through the Coleman-Weinberg mechanism. Elementary and

composite fermions mix through linear couplings, making physical particles

partially composite superpositions of elementary and composite fields and

further spoiling the Goldstone symmetry, giving the Higgs effective potential a

non-trivial minimum and triggering the Higgs mechanism on the electroweak

gauge subgroup through vacuum misalignment. Masses are communicated

to the SM particles via Higgs interactions with their composite components -

heavier SM particles are typically more connected to the composite sector.

From this description it should be clear that CHMs have rather interconnected

structures, perhaps making it difficult to appreciate the purpose of certain features

and keep track of where each fits into the chain of cause and effect. It is best to

keep the grand story in mind when going through this chapter to avoid losing the

forest for the trees.

To pre-emptively clear up a potential source of confusion: throughout this work

we will only be interested in low-energy descriptions of CHMs wherein the Higgs

can be treated as an elementary field. Its compositeness will only be apparent

through the existence of the composite sector. Microscopic realisations of CHMs

may however be analysed on the lattice - see Ref. [48] for a review.
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3.1 Spontaneously Broken Symmetry

Sometimes it is the case that a particular ground state, or vacuum state, of a theory

does not share the same symmetry group as the Lagrangian underlying its dynamics.

If the Lagrangian has a symmetry group G and the vacuum state |Ω〉 is only invariant

under a subgroup H ⊂ G, then it is said that G is spontaneously broken to H,

written G → H. The term is somewhat of a misnomer, as a spontaneously broken

symmetry is still a symmetry of the Lagrangian. A more accurate name would be a

non-linearly realised symmetry, as will be clear in later sections.

Equivalently, because the vacuum is specified by the vevs of all operators2, a

symmetry is spontaneously broken if it acts non-trivially on the vev of some operator

Φ. Note that for this to be the case, the vev Φ0 := 〈Ω|Φ |Ω〉 must be non-zero. That

is, only Higgs fields can spontaneously break symmetry. The condition for a general

spontaneously broken symmetry in terms of its generator T is

eiεT |Ω〉 6= |Ω〉 , (3.1)

from which it is seen that a symmetry is broken if and only if its generator does not

annihilate the vacuum state.

Note that a gauge symmetry cannot be spontaneously broken since all physical

states are invariant under a gauge transformation. The specific fact that the vacuum

is invariant under a gauge transformation - even when physical states connected

by gauge transformations are not identified - is known as Elitzur’s theorem [49].

However, the notion of a “spontaneously broken gauge symmetry” is prevalent in

the literature, and is used to describe when a field has a vev that is not annihilated

by generators of the gauge symmetry. From Section 2.3, it should be clear that

massive gauge bosons arise due to spontaneously broken gauge symmetries.

3.2 Goldstone’s Theorem

The importance of spontaneously broken symmetries, at least for our purposes, lies

in Goldstone’s theorem, which assures the existence of a massless scalar particle for

each differentiable symmetry of the Lagrangian that is spontaneously broken [50,51].

Stated formally:

3.2.1: Goldstone’s Theorem

Suppose a Lagrangian L has a global Lie symmetry group G that acts on an n-

tuple of real scalar fields Φ = (φ1, . . . , φn). If the vacuum state |Ω〉 is invariant

under only a (Lie) subgroup H ⊂ G, then there will be dim(G) − dim(H)

massless scalar particles in the theory, known as Nambu-Goldstone bosons

(NGBs). There is no requirement that an NGB be elementary.

2It can be proven that the physical vacuum is not a superposition of vacua in which fields have
different vevs [17].
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There is a rather intuitive justification for this theorem. First, it can be shown

that if G is a symmetry of the Lagrangian (and of the spacetime integration mea-

sure), then it will also be a symmetry of the quantum effective action [17], and

therefore of the quantum effective potential too, for the (effective) kinetic terms can

be made to vanish by setting the fields constant. The set of all possible vacuum

states - that is, the minima of the effective potential - must then be invariant under

the action of G. So there will be dim(G)-many independent directions around any

particular vacuum state in which the fields Φ may fluctuate while keeping the effec-

tive potential constant, although dim(H) of these do not leave that vacuum state.

Each independent excitation into a new state is a particle, which must be massless

since its existence does not require any effective potential energy. The proof below,

following the approach of Refs. [52,53], captures this intuitive picture.

Proof. From the global symmetry G there arise dim(G)-many conserved Nöther

currents Jµa (a = 1, . . . , dimG), and hence conserved charges

Qa =

∫
d3x J0

a(~x). (3.2)

The operators J0
a of the spontaneously broken symmetries are what excite the

Nambu-Goldstone bosons from the vacuum. Indeed, consider these states in the

momentum representation:

|Πa(~p)〉 :=

∫
d3x ei~p·~xJ0

a(~x) |Ω〉 . (3.3)

First, notice such a state carries the same quantum numbers as J0
a |Ω〉, and so

describes a spin-0 mode since J0
a is constructed from scalar fields. Now recall a

basic property of the momentum operator P:

[P i, J(~y)] = i∂iJ(~y). (3.4)

Using the fact that the vacuum has zero momentum,

P i |Πa(~p)〉 =

∫
d3x ei~p·~xP iJ0

a(~x) |Ω〉

=

∫
d3x ei~p·~x[P i, J0

a(~x)] |Ω〉

=

∫
d3x ei~p·~x(i∂iJ

0
a)(~x) |Ω〉 = pi |Πa(~p)〉 , (3.5)

having assumed the current falls off at infinity after integrating by parts. So |Πa(~p)〉
has a definite momentum ~p. Taking ~p→ ~0 shows

∣∣∣Πa(~0)
〉

=

∫
d3x J0

a(~x) |Ω〉 = Qa |Ω〉 (3.6)
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is a state with zero momentum. It also has the same energy as the vacuum, for

the charge, being conserved, commutes with the Hamiltonian. These are non-trivial

statements only for a generator of a broken symmetry, which does not annihilate

the vacuum. Putting everything together: for a generator Qa of a broken symmetry,

Qa |Ω〉 is a zero-momentum particle state with the same energy as the vacuum, and

so must be a massless particle.

Actually, there is a slight cheat in this proof. The Fabri-Picasso theorem states

that if Qa |Ω〉 6= 0, then Qa |Ω〉 does not exist in the Hilbert space of the theory: its

norm is extensive with the volume of space, and so is (supposedly) infinite [54]. A

more rigorous argument is that the energy of |Πa(~p)〉 becomes arbitrarily close to

the vacuum energy as ~p → ~0, which - if a mass gap exists - shows the particle is

massless. Note that this is not a tree-level statement: even after renormalisation,

NGBs are exactly massless. The Goldstone symmetry protects their masses from

radiative corrections.

As an aside, there is a pervasive misrepresentation in the literature that NGBs

are an integral part of the Higgs mechanism. Of course they cannot be, as Gold-

stone’s theorem does not apply to the gauge symmetries spontaneously broken by

the Higgs; the proof depends crucially on the non-degeneracy of vacuum states un-

der the symmetry. However, it is true that in a certain gauge the degrees of freedom

in the Higgs multiplet act like NGBs that are then “eaten” by the gauge bosons to

become massive. Despite being unphysical, this viewpoint is useful for calculations

on account of the NGB equivalence theorem: in the high-energy limit, the amplitude

for emission or absorption of a longitudinally polarised gauge boson is equal to that

of the would-be NGB eaten by that gauge boson [55,56]. This can be used to show

the perturbative unitarity of weak boson scattering at high energies.

3.2.1 Example: the Linear σ-Model

To showcase Goldstone’s theorem in an explicit theory, we present the3 linear σ-

model. While not the simplest possible example of Goldstone’s theorem, this will pay

dividends throughout the rest of this work being utilised in increasingly elaborate

fashions. The linear σ-model is a theory of n ≥ 2 real scalar fields Φ = (φ1, . . . , φn)

possessing a global SO(n) symmetry that is spontaneously broken to SO(n − 1).

SO(n), the group of rotations of n-dimensional space, has dimension n(n− 1)/2, so

it is expected that dimSO(n)− dimSO(n− 1) = n− 1 NGBs will arise.

The SO(n)-invariant Lagrangian is taken to be

Lσ =
1

2
(∂µΦ)ᵀ (∂µΦ)− g2

σ

8

(
ΦᵀΦ− f 2

)2
, (3.7)

3What we are calling the “linear σ-model” does not have a monopoly on the name. The term can
generally refer to any theory of NGBs, no matter the symmetry breaking group. Such models
were first introduced by Ref. [57].
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where gσ, f are some positive numbers and Φ is in the fundamental representation

of SO(n). If this looks familiar, it is because it is simply the real analogue of the

non-gauged SM Higgs Lagrangian (cf. Section 2.4) with a slight change in notation.

The potential

V(Φ) =
g2
σ

8

(
ΦᵀΦ− f 2

)2
(3.8)

is minimised on the sphere |Φ0| = f , giving the possible vacuum states4. The

symmetry will be used to rotate the fields so the vacuum is in the nth direction:

Φ0 = (0, 0, . . . , 0, f)ᵀ. (3.9)

Clearly, the vacuum is not invariant under SO(n) - a rotation will usually make

Φ0 point in a different direction. It is only the rotations that mix the first n − 1

field components that generally leave Φ0 invariant, showing the symmetry has been

broken to SO(n− 1), as desired.

Now how are the resulting NGBs found? Drawing inspiration from the intuitive

picture of Goldstone’s theorem, the NGBs should be fields parameterising rotations

of the vacuum vector Φ0 into the other vacuum states, as depicted in Figure 3.2.

Based on this, we reparameterise Φ as

Φ(x) = ei
√

2
f
θa(x)T̂a




0
...

0

f + σ(x)


 , (3.10)

where T̂a are the n−1 “broken” generators of SO(n) that do not leave Φ0 invariant.

Here we have introduced the titular σ field of the model, as well as candidate NGB

fields θa conventionally normalised by the factor
√

2/f . It is geometrically obvious

from Figure 3.2 that such a reparameterisation is possible: the σ field governs the

length of Φ, while the θa fields govern its direction so that Φ may take on any value.

The central disparity between CHMs and the SM is on display in Equation (3.10).

In the SM, the Higgs boson is the analogue of the σ field, and the θa fields are the

unphysical NGBs that can be removed by a transformation to the unitary gauge.

CHMs, having no such gauge symmetry, instead realise the Higgs boson as part of

the physical NGBs θa, while σ would be some other composite resonance. This exact

comparison is not to be taken too seriously, however, for CHMs are not based on

this kind of model, as the elementary scalar fields in Φ still lead to the Hierarchy

Problem.

4As before, quantum corrections to the effective potential will be neglected for illustrative purposes.
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Φ0

SO(2)

σ

T̂ 1

θ1

T̂ 2

θ2

Figure 3.2: Geometry of the linear σ-model for n = 3. The sphere of potential
minima is invariant under SO(3), but any particular minimum Φ0 is only invariant
under an SO(2) subgroup. Expanding around Φ0, there are two NGB fields θ1,2

rotating Φ along the two dimensions of the sphere, and one field, σ, corresponding to
radial perturbations. Since the potential is spherically symmetric, NGB excitations
cost no energy and so are massless.
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An explicit computation5 of Equation (3.10) results in

Φ =


1− ~θ~θᵀ

|~θ|2

(
1− cos |

~θ|
f

)
~θ

|~θ|
sin |

~θ|
f

− ~θᵀ

|~θ|
sin |

~θ|
f

cos |
~θ|
f







0
...

0

f + σ




= (f + σ)




~θ

|~θ|
sin |

~θ|
f

cos |
~θ|
f


 , (3.11)

where the phase fields have been collected into a vector ~θ = (θ1, . . . , θn−1)ᵀ. With

this, the Lagrangian Equation (3.7) becomes

Lσ =
1

2
(∂σ)2 − 1

2
g2
σf

2σ2 − 1

2
g2
σfσ

3 − 1

8
g2
σσ

4

+
1

2

(
1 +

σ

f

)2
f 2

|~θ|2

(
(∂µ~θ)

ᵀ(∂µ~θ) sin2 |~θ|
f

+
1

|~θ|2

(
|~θ|2
f 2
− sin2 |~θ|

f

)(
~θᵀ∂~θ

)2
)
.

(3.12)

A mass for the scalar σ resonance can be read off immediately:

mσ = gσf. (3.13)

Drawing the analogy to CHMs, mσ can be thought of as the compositeness scale

m∗. Interactions of the θ fields are found by expanding around ~θ = ~0, yielding

Lσ ⊃
1

2

(
1 +

σ

f

)2(
(∂µ~θ)

ᵀ(∂µ~θ) +O
(
θ4

f 2

))
. (3.14)

From this it is seen that the θ fields are indeed the massless NGBs, as was expected.

Expansion to higher orders in ~θ will reveal local interactions with an arbitrarily large

number of NGBs. Despite this, the theory is renormalisable.

There are some important points to note from this example.

• The Lagrangian as expressed in Equation (3.12) displays an SO(n − 1) sym-

metry under which ~θ transforms in the fundamental representation. That is,

the NGBs transform linearly in a representation of the unbroken SO(n − 1)

symmetry. As will be shown in Section 3.4, this holds in greater generality for

other symmetry breaking patterns.

• It is no coincidence that mass terms for the phase fields are absent. Consider

an arbitrary SO(n) symmetry acting on Φ expressed as in Equation (3.10).

This does not change the length of Φ, and so only amounts to changing the

phase fields by some constant amount θa(x) → θa(x) + δθa. The fact that

5The computation is performed in Appendix F using a convenient basis for the broken generators.
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NGBs display this shift symmetry forbids a wide range of interactions that

are not invariant under the shift symmetry, including mass terms.

3.2.2 Example: the Non-Linear σ-Model

There is a massive scalar σ in the particle spectrum of the linear σ-model. Is there

a theory of NGBs that does not include such extra resonances? The answer is yes:

the non-linear σ-model. This is simply the linear σ-model in the limit where the

coupling gσ is sent to infinity, decoupling the σ resonance by making it infinitely

heavy. In this limit, avoiding an infinite potential energy enforces the constraint

ΦᵀΦ− f 2 = (f + σ)2 − f 2 = 0, =⇒ σ = 0. (3.15)

That is, the physical state Φ is constrained to lie on the sphere |Φ| = f . The space

of states being a non-linear manifold is where the model gets its name.

The theoretical description of the non-linear σ-model follows easily from setting

σ = 0 in the linear σ-model equations in the previous section. Doing so is not

particularly enlightening, however, and it will do well to write the equations in a

notation more suggestive for generalisation. First, the Lagrangian Equation (3.7)

reduces to

Lσ =
1

2
(∂µΦ)ᵀ (∂µΦ) . (3.16)

The multiplet Φ can be written in terms of the vacuum vector Φ0 = (0, 0, . . . , 0, f)ᵀ

as

Φ(x) = ei
√

2
f
θa(x)T̂aΦ0 ≡ U [~θ(x)]Φ0, (3.17)

where the NGB matrix

U [~θ(x)] := ei
√

2
f
θa(x)T̂a (3.18)

has been introduced. Note the constant f is not interpreted as the minimum of

a potential in this model; instead it is usually referred to as the NGB decay

constant6. With this, the Lagrangian takes the form

Lσ =
f 2

2
[(∂µU)ᵀ (∂µU)]nn . (3.19)

In contrast to the linear σ-model, this theory is non-renormalisable with a high-

energy cutoff7 of not much more than Λf = 4πf . The theory is best regarded as

a low-energy description of the NGBs with some unknown high-energy completion,

6This comes from association with the successful description of pions as (pseudo-)NGBs of spon-
taneously broken chiral symmetry, where f is found to regulate pion decay. See Section 3.3.1.

7The argument, as given in Ref. [58], is that θθ → θθ scattering will be logarithmically divergent
at one-loop level given Equation (3.19). Higher-order operators, weighted by inverse powers of



32 Key Ideas of Composite Higgs Models

such as the linear σ-model or some strong dynamics from which the NGBs emerge

as bound states. It will follow from Section 3.4 that Equation (3.19) is actually the

general low-energy description of NGBs resulting from SO(n)→ SO(n−1) symme-

try breaking (at the two-derivative level), regardless of the high-energy dynamics.

The fact that low-energy NGB dynamics are completely specified by the symmetry

breaking pattern proves incredibly useful for constructing theories of NGBs.

3.3 Pseudo-Nambu-Goldstone Bosons

It is sometimes the case in nature that the Lagrangian of a system is not exactly

invariant under a transformation, but only approximately invariant. How might

Goldstone’s theorem extend to such “approximate” symmetries8? The answer is

somewhat intuitive: an exact symmetry results in an exactly massless scalar particle,

while an approximate symmetry results in an approximately massless scalar particle,

at least compared to the typical energy scale Λbreak of the dynamics that explicitly

break the symmetry [59].

In terms of the geometrical picture of Goldstone’s theorem, the small explicit

breaking alters the equipotential surfaces so that oscillations of what were previously

NGBs require a small amount of energy, imposing small masses onto the now pseudo-

NGBs (pNGBs). Formalising this notion, we regard an approximately symmetric

Lagrangian L as an exactly symmetric Lagrangian Lsym perturbed by terms Lbreak

that explicitly break the symmetry:

L = Lsym + εLbreak,

where ε ∈ R parametrises the degree of symmetry breaking, of a size such that

Lbreak has coupling constants of order unity. Retracing the steps in the proof of

Goldstone’s theorem with an obvious notation, there will be approximate Nöther

currents

Jµ = Jµsym + εJµbreak, (3.20)

giving states

|Π(~p)〉 :=

∫
d3x ei~p·~xJ0(~x) |Ω〉 (3.21)

that have a definite momentum ~p. But now as ~p→ ~0 the state approaches

∣∣∣Π(~0)
〉

= Qsym |Ω〉+ εQbreak |Ω〉 . (3.22)

the cutoff Λ, should be introduced to cancel the divergences, which only maintains perturbative
unitarity for Λ . 4πf .

8An approximate symmetry is a symmetry inasmuch as particles can be modelled as transforming
under representations of the approximate symmetry group, without having degenerate masses as
required by an exact symmetry.
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The first term on the right-hand side has the same energy as the vacuum, as before,

while Qbreak |Ω〉 will have an expected energy of around Λbreak. Given the symmetry

is approximate (ε � 1), the mass of our would-be NGB is seen to be non-zero but

suppressed compared to Λbreak.

3.3.1 Example: Pions in QCD

These are not esoteric considerations; unlike NGBs, pNGBs are actually known to

exist in Nature. Pions, for example, are understood to be the pNGBs of sponta-

neously broken approximate chiral symmetry. Here we give a brief overview of this

understanding, based on the treatment in Ref. [53].

The QCD Lagrangian, including only massless u and d quarks for simplicity, is

LQCD =− 1

4
Tr [GµνG

µν ] + iq̄L /DqL + iq̄R /DqR, (3.23)

where qX = (uX , dX)ᵀ. This Lagrangian is invariant under the transformations

qX → gXqX for gX ∈ SU(2)X . That is, the theory has a chiral SU(2)L × SU(2)R
symmetry.

Now it has been experimentally found that the strong dynamics of QCD provides

the quark bilinear q̄iqj a vev:

〈Ω| q̄iqj |Ω〉 = δijΛ3
break, Λ3

break ≈ −(250 MeV)3. (3.24)

Notice that the bilinear q̄q = q̄LqR + q̄RqL is only invariant under SU(2)L× SU(2)R
transformations where gL = gR. In other words, the chiral symmetry is sponta-

neously broken to the diagonal subgroup SU(2)L+R.

To describe the resulting NGBs, we follow the lead of the non-linear σ-model

and consider the NGB matrix

U [~θ] = ei
√

2
f
θaT̂a = ei

√
2
f
θa
σa

2 = exp

[
i√
2f

(
θ3 θ1 − iθ2

θ1 + iθ2 −θ3

)]
, (3.25)

once again using the (half) Pauli matrices as the generators of SU(2). That the

NGB matrix will indeed be of this form will follow from Section 3.8.1. There it will

also be seen that the NGBs will transform under the chiral symmetry as a bidoublet,

SU(2)L × SU(2)R : U
(gL,gR)−−−−→ gLUg

−1
R , (3.26)

being described by a Lagrangian analogous to Equation (3.19) that contains no mass

terms.

This changes, however, once quark masses are included. These explicitly break

the chiral symmetry for the same reason the quark bilinear spontaneously breaks it,
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for the mass terms are of the form

Lm = −q̄
(
mu 0

0 md

)
q ≡ −q̄Mq. (3.27)

The non-zero mass matrix M , being the breaker of chiral symmetry, must convey

masses to the (now pseudo-) NGBs. We can see how by using the trick of spurion

analysis. Here, we imagine M is actually a dynamical field that transforms in a

way that preserves chiral symmetry. Such a fictitious field is termed a spurion. This

allows us to construct all chirally-invariant NGB interactions, which must be what

impart mass to the NGBs once the spurion is fixed to its “background value” that

explicitly breaks the symmetry. In this case the spurion must transform as

SU(2)L × SU(2)R : M
(gL,gR)−−−−→ gRMg−1

L (3.28)

to leave the quark mass terms invariant9. The leading-order invariant NGB inter-

action is then

L ⊃ Λ3
break

2
Tr
[
MU +M †U †

]
. (3.29)

(The factor of Λ3
break is to match the vacuum energies of Equations (3.27) and (3.29)).

Setting M to its background value M = diag(mu,md) results in

L ⊃ Λ3
break(mu +md)−

Λ3
break

4f 2
(mu +md)(θ

2
1 + θ2

2 + θ2
3) +O(θ3), (3.30)

so the former NGBs now have masses

m2
θ =

Λ3
break

2f 2
(mu +md). (3.31)

This relation was found by Gell-Mann, Oakes, and Renner [60], who identified the

θ fields with the three pions. Notice that here the pNGB masses are regulated by

the quantity mu + md, which serves the role of ε in Section 3.3. Experimentally,

pions have masses of ∼140 MeV. The next heaviest QCD bound states are the kaons

(∼500 MeV), which are also understood to be pNGBs of another symmetry, and the

rho mesons (∼770 MeV). Considering rho mesons have the same quark content as

pions, the pions are indeed seen to be uncannily light.

Composite Higgs models contend that Nature has chosen to repeat this pattern

with another symmetry group at a higher energy scale. The composite Higgs boson

would be the analogue of the pions, and the other composite resonances analogues

of the hadrons. The situation will be more complicated, however, as explicit mass

terms for the composite Higgs will not appear in the Lagrangian as they do in

9Because M is Hermitian and gL,R are unitary, the transformation can equivalently be described
as M → gLMg−1

R , from which it follows the mass terms are invariant.
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Equation (3.30). Instead, the Higgs mass must be found by computing the radiative

corrections to the Higgs effective potential.

3.4 CCWZ Construction

Having seen some examples of theories with NGBs, we now take a detour to outline

a general approach for incorporating NGBs into a theory. The approach, known

as the Callan-Coleman-Wess-Zumino (CCWZ) construction [61, 62], provides a for-

malism for writing the general low-energy effective Lagrangian for any theory with

a given spontaneously broken symmetry G → H. CCWZ is an incredibly pow-

erful construction, even lending itself to the description of spontaneously broken

approximate symmetries, providing insight into the general properties of (p)NGBs.

The starting point of the construction is to note that since G is spontaneously

broken toH, there must be some vacuum vector, conventionally denoted ~F , invariant

under H transformations but not generally invariant under G. As usual, G and H

are assumed to be connected, compact Lie groups. Generators of G will be split

into those that do not annihilate ~F , denoted by T̂a (indexed by Roman letters), and

those that do (i.e. those that generate H), denoted Xα (indexed by Greek letters).

The construction rests on the fact that any group element g ∈ G can be written

uniquely as

g = U [~θ]h̃[~ω], (3.32)

where

U [~θ] := ei
√

2
f
θaT̂a , and h̃[~ω] := ei

√
2
f
ωαXα ∈ H, (3.33)

for some real numbers θa, ωα restricted to suitable ranges.

To identify the NGBs, consider a multiplet Φ connected by local symmetry trans-

formations to the vacuum vector ~F :

Φ(x) = g(x)~F . (3.34)

If the local transformation g(x) were instead global, then the state Φ would be equiv-

alent to the vacuum ~F , showing the degrees of freedom in the local transformation

are massless. The point of the decomposition Equation (3.32) is to dispense with

the unphysical degrees of freedom:

Φ(x) = g(x)~F = U [~θ(x)]h̃[~ω(x)]~F = U [~θ(x)]~F , (3.35)

by the invariance of ~F under H. The NGBs are therefore identified as the massless

fields θa parameterising Φ. Of course this is nothing new; U [~θ(x)] is simply the NGB

matrix seen in the non-linear σ-model.
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Our goal is to understand how these NGB fields transform under G, so that

G-invariant NGB interactions may be found and classified. Knowing10 Φ transforms

under g ∈ G as Φ→ gΦ, the transformed NGB fields ~θ(g) are defined such that

gΦ = U [~θ(g)]~F

=⇒ gU [~θ]~F = U [~θ(g)]~F . (3.36)

Since ~F is invariant under H, we may conclude

gU [~θ] = U [~θ(g)]h[g, ~θ], or U [~θ]
g∈G−−→ U [~θ(g)] = gU [~θ]h−1[g, ~θ], (3.37)

for some h ∈ H that depends in some way on the transformation g and the NGB

fields. Note that h[g, ~θ] is unique by the uniqueness proposition in Equation (3.32).

The H-invariance of the vacuum led directly to the non-linear transformation prop-

erty Equation (3.37) of the NGBs, leading to the common terminology that a spon-

taneously broken symmetry is “non-linearly realised”. But is this transformation

property of the NGB matrix consistent - as in, does it form a representation of G?

We explicitly verify this by performing two successive transformations g1, g2:

U

[(
~θ(g2)

)(g1)
]

= g1g2U [~θ]
(
h
[
g1, ~θ

(g2)
]
h
[
g2, ~θ

])−1

≡ (g1g2)U [~θ]h−1
[
g1g2, ~θ

]

= U
[
~θ(g1g2)

]
. (3.38)

This relation is precisely the rule Equation (2.4) that defines a representation, so the

transformation Equation (3.37) is consistent. The second line that defines h[g1g2, ~θ]

in Equation (3.38) is valid because of the uniqueness of the decomposition in Equa-

tion (3.32). Notice that this definition means h[·, ~θ] furnishes a representation of

the unbroken subgroup H. In the general case this is all that can be said about the

NGB transformation rule; without knowing more about the groups G and H, we

cannot determine what h[g, ~θ] actually is.

10It is not a given that Φ transforms in the fundamental representation of G, but we assume it
here.
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3.4.1 NGB Transformations Under Unbroken Symmetries

For H ⊂ G transformations, the NGB transformation can be specified exactly. In

this case let us call the symmetry transformation gH . The transformation rule is

U
[
~θ(gH)

]
h
[
gH , ~θ

]
≡ gHU [~θ]

= gH exp

[
i

√
2

f
θaT̂a

]
g−1
H gH

= exp

[
i

√
2

f
θagH T̂ag

−1
H

]
gH . (3.39)

To evaluate this expression, we must note the Lie algebra commutation relations11

[Xα, Xβ] = if γ
αβ Xγ + i

�
��>

0
f c
αβ T̂c =: (tAdH

α )γβ Xγ, (3.40)

[Xα, T̂b] = if c
αb T̂c + i

�
��>

0
f γ
αb Xγ =: (t

rG/H
α )cb T̂c. (3.41)

The right-hand sides of these equations define the generators tAdH
α of the adjoint

representation of H, as well as generators t
rG/H
α of a representation rG/H of G such

that the adjoint representation of G decomposes as

AdG = AdH ⊕ rG/H . (3.42)

By linearity, Equation (3.41) implies [iωαXα, T̂b] = (iωαt
rG/H
α )cb T̂c for some numbers

ωa, which is simply the infinitesimal version of

eiω
αXαT̂be

−iωαXα =
(
eiω

αt
rG/H
α

)c
b
T̂c. (3.43)

Recognising eiω
αXα as a general element of H, for example gH , Equation (3.39) is

calculated as

exp

[
i

√
2

f
θagH T̂ag

−1
H

]
= exp

[
i

√
2

f
θa
(
eiω

αt
rG/H
α

)c
a
T̂c

]
= U

[
eiω

αt
rG/H
α ~θ

]
, (3.44)

so in total,

U
[
~θ(gH)

]
h
[
gH , ~θ

]
= U

[
eiω

αt
rG/H
α ~θ

]
gH . (3.45)

From the uniqueness of the decomposition Equation (3.32), this gives h[gH , ~θ] = gH ,

and shows that the NGBs transform in the rG/H representation of G under a H

11The first relation comes from H being a Lie group, and the second follows from the first because
the structure constants of G are completely antisymmetric, since G is compact. A good reference
for many of the results used in this section is Ref. [16].
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transformation:

~θ(gH) = eiω
αt

rG/H
α ~θ. (3.46)

For G = SO(n) and H = SO(n − 1), rG/H is simply the fundamental representa-

tion of H, as was observed in the linear σ-model and will be verified explicitly in

Section 3.6.1.

3.4.2 NGB-Gauge Interactions

We have found that under a global transformation g ∈ G, the NGB matrix trans-

forms as

U [~θ(x)]→ gU [~θ(x)]h−1[g, ~θ(x)]. (3.47)

The only ways the NGB matrix can enter the Lagrangian are through terms that

are invariant under Equation (3.47). One such term is Tr
[
U †U

]
, except this is

an inconsequential constant since U is unitary. Because of this, we need to use

derivatives of the NGB matrix. But notice that even though the transformation

in Equation (3.47) is global, the NGB matrix effectively undergoes a local trans-

formation because of the spacetime dependence of the h−1 factor, necessitating an

analogue of the covariant derivative to be used. It is therefore not much more work

to consider the case where some subgroup L ⊂ G is gauged (L for local), which we

shall do for full generality.

To keep track of the various aspects of the model, it is helpful to represent the

symmetry structure pictorially in what is known as a moose12 diagram [63]. Many

conventions for drawing moose diagrams exist, but in this work we use that of

Refs. [64, 65]. For the present model the moose diagram is relatively simple:

Site:

Global:

Gauged:

G

U
H

L

. (3.48)

What this picture signifies is precisely that there is a global symmetry group G

acting on a collection of fields (represented by the circle), spontaneously broken to

H, giving an NGB matrix U transforming as in Equation (3.47). Of course the

bottom row just shows that G has a gauged subgroup L. More elements will be

added to the diagrams as the models grow in complexity, but this diagram serves as

a good starting point.

The generators of L will be denoted LA (indexed with capital letters), possibly

including any generator T̂a or Xα, having corresponding gauge fields Aµ = AAµLA

12So named because for more involved models the diagrams are allegedly reminiscent of moose
antlers. They are also known as quiver diagrams, especially when utilised in string theory.
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and gauge coupling gL. Note that some gauge bosons may become massive through

the Higgs mechanism, making the corresponding NGBs unphysical. Also note that

the gauging of L will explicitly break G symmetry, leading to pNGBs, unless G itself

is the normaliser group of L in G (see Section 2.2). It is good to bear in mind that

many common Lie groups (including SO(n) for odd n, which we will be interested

in later) are simple, meaning the exact symmetry group left over when a subgroup

L is gauged is L itself.

The trick to constructing the covariant derivative for the NGBs lies in the quan-

tity

aµ[U,A] := iU−1(∂µ − igLAµ)U, (3.49)

which is a covariant version of the so-called Maurer-Cartan form iU−1∂µU . This

turns out to be in the Lie algebra of G, so it may be written as the linear combination

aµ[U,A] = daµ[U,A]T̂a + eαµ[U,A]Xα ≡ dµ[U,A] + eµ[U,A] (3.50)

for some coefficients daµ, eαµ. Why do we consider the strange object aµ? Simply be-

cause it has nice transformation properties. Recalling the gauge field transformation

rule Equation (2.13), aµ transforms under a local G transformation as (suppressing

dependencies)

aµ[U,A]→ i
(
gUh−1

)−1
(
∂µ − igL

(
gAµg

−1 − i

gL
(∂µg)g−1

))(
gUh−1

)

= ihU−1g−1(∂µg)Uh−1 + ihU−1(∂µU)h−1 + ih(∂µh
−1)

+ ihU−1(−igLAµ)Uh−1 − ihU−1g−1(∂µg)Uh−1

= haµ[U,A]h−1 + ih(∂µh
−1). (3.51)

Notice the second term in Equation (3.51) is itself a Maurer-Cartan form of the H

transformation h, so it is a linear combination of only the H generators Xα. In

terms of the decomposition Equation (3.50), then, the transformation rules are

dµ[U,A]
g∈G−−→ h[g, ~θ] dµ[U,A] h−1[g, ~θ],

eµ[U,A]
g∈G−−→ h[g, ~θ] eµ[U,A] h−1[g, ~θ] + ih[g, ~θ](∂µh

−1[g, ~θ]). (3.52)

These transformation rules are very familiar, making it easy to construct invariant

interactions. In fact, all invariant quantities are constructed out of combinations

of these objects, apart from the Wess-Zumino-Witten term present when G has a

global anomaly [66–68].
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By the same reasoning as in Equation (3.44), the dµ object is seen to transform

in the rG/H representation of G:

daµ[U,A]→
(
eiω

αt
rG/H
α

)a
b
dbµ[U,A], (3.53)

even for a transformation g /∈ H, in contrast to the NGBs. The lowest-order invari-

ant it forms is

Tr
[
d†µd

µ
]
. (3.54)

The eµ object, on the other hand, transforms just as a gauge field and thus enters

the Lagrangian through the covariant derivative (with a coupling constant of unity).

This allows couplings between NGBs and matter fields. The covariant derivative of

the NGB matrix is

DµU = ∂µU − igLAµU + iUeµ, (3.55)

transforming as

(DµU)→ g(DµU)h−1. (3.56)

It follows that Tr
[
(DµU)†(DµU)

]
is also an invariant. But this turns out to be

nothing but Equation (3.54); unravelling the definitions in Equation (3.55), it is

found that iU †DµU = dµ. To work out what this invariant actually contains, we

expand Equation (3.49) up to first order in the NGB fields:

aµ[U,A] = −
√

2

f
(∂µθ

a)T̂a + gLA
A
µLA +O(θ2). (3.57)

By definition, then,

dµ[U,A] = −
√

2

f
(∂µθ

a)T̂a + gLA
Ã
µ T̂Ã +O(θ2), (3.58)

where the index Ã runs over the gauged generators that also happen to be broken, i.e.

the numbers such that LÃ = T̂Ã. With this, recalling the generators are normalised

such that Tr
[
T̂aT̂b

]
= δab, the invariant is calculated to be

Tr
[
d†µd

µ
]

=
2

f 2
(∂µ~θ)

ᵀ(∂µ~θ)−
2
√

2

f
gL(∂µθ

Ã)AµÃ + g2
LA

Ã
µA

µÃ +O(θ3) (3.59)

It is shown in Refs. [61, 62] that this is the general invariant term that is leading-

order in the number of derivatives. Much more discussion on possible invariants can

be found in Ref. [69], but the rest of this work uses no more than is shown here.
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In total, the conventionally-normalised low-energy Lagrangian for NGBs and

possible gauge fields Aµ is

L(2) =
f 2

4
Tr
[
(DµU)†(DµU)

]
− 1

4
Tr [AµνA

µν ] , (3.60)

where the subscript serves to remind that this is at the two-derivative level. Note

that these low-energy NGB-gauge interactions are entirely specified by the groups

G and H, with strengths dictated by the NGB decay constant f .

3.4.3 NGB-Fermion Interactions

To finish off the construction, we consider how other resonances are to be included in

the theory. The key point here is that since the G symmetry is spontaneously broken

to H, at low energies the Lagrangian must be linearly invariant under only H, and

not G. We therefore consider fields transforming under some linear representation

ρ of H:

ψ
h∈H−−→ ρ(h)ψ. (3.61)

The representation ρ may be reducible or irreducible, so it is without loss of gener-

ality that ψ can be considered as one large multiplet containing all resonances in the

theory. Of course, if we were not ignorant of the high-energy dynamics from which ~F

arises then the G symmetry would be restored when ~F is transformed appropriately.

So actually the fields ψ must transform under G while only appearing to transform

under H. A prime candidate for how the fields are to transform, then, is through

the g-dependent H transformations of the NGB matrix,

ψ
g∈G−−→ ρ(h[g, ~θ])ψ. (3.62)

That is, if the generators of representation ρ are denoted tρα, then

ψ
g∈G−−→ exp

[
iωα[g, ~θ]tρα

]
ψ for h[g, ~θ] = exp

[
iωα[g, ~θ]Xα

]
. (3.63)

The interdependence of the transformations of ψ and the NGB matrix U make

it possible to construct G-invariant terms. Consider, for example, the case where

ρ(h) = h. Then the object Ψ := Uψ will transform as

Ψ
g∈G−−→ (gUh−1[g, ~θ])(h[g, ~θ]ψ) = gΨ, (3.64)

making it easy to write down a G-invariant Lagrangian. This way of “dressing” the

H multiplet ψ with the NGB matrix can be extended to other representations as a

general method of turning H transformations into G transformations.

Similarly to the NGB matrix, ψ appears to undergo local transformations that

must be compensated for by a covariant derivative. Fortunately, we already know
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the gauge field analogue of the induced H transformations: eµ. Including the L
gauge fields as well, the covariant derivative is simply

Dµψ = (∂µ − igLAµ − ieαµtρα)ψ, (3.65)

transforming as

Dµψ
g∈G−−→ ρ(h[g, ~θ])Dµψ. (3.66)

This covariant derivative introduces interactions between the resonances and NGBs

that are once again dictated by the decay constant f , as well as the representation

ρ. The beauty of the CCWZ construction is that the most general Lagrangian with

a G→ H symmetry breaking pattern is built only from G-invariant pairings of the

objects dµ, ψ, and Dµψ that we have seen here [61,62].

3.5 Vacuum Misalignment

Based on what has been presented so far, the basic ingredients of a composite Higgs

model are:

1) a strongly interacting sector

2) acted upon by a global approximate symmetry group G

3) that is spontaneously broken to some subgroup H,

4) delivering pNGBs consisting of (at least) the Higgs doublet, in order to

5) spontaneously break electroweak symmetry.

It will do well to consider how this structure might be enacted. Conditions (4) and

(5) impose important constraints on the symmetry groups G and H, about which

nothing is known at this point.

First though, it is wise to perform a sanity check as to whether a pNGB can

actually act as a Higgs boson. After all, an NGB certainly cannot - by the shift

symmetry noted in Section 3.2.1, an NGB vev amounts to a symmetry transforma-

tion and so is inconsequential. But this problem does not extend to pNGBs, for

the associated symmetry is not exact in their case. The explicit symmetry breaking

generates an effective potential for the pNGBs, giving them a definite vev. So this

requirement is at least consistent.

Now let us see how electroweak symmetry may be broken. From the G → H

spontaneous breaking, there must be a vacuum vector ~F that is invariant under

HF
∼= H transformations but not generally invariant under G. It is not the con-

cern of composite Higgs models how this breaking happens; it is simply taken for



§3.5 Vacuum Misalignment 43

granted that such an ~F exists. Following the CCWZ construction, states will be

parameterised by pNGB fields θa as

Φ(x) = ei
√

2
f
θa(x)T̂a ~F , (3.67)

where T̂a are the generators of G that do not annihilate ~F . What happens if the

pNGBs acquire a vev?

〈Φ〉 = ei
√

2
f
〈θa〉T̂a ~F

=

{
~F if 〈~θ〉 = ~0,

not ~F if 〈~θ〉 6= ~0.
(3.68)

In other words, the true vacuum 〈Φ〉 will not be the HF -invariant vacuum ~F if the

pNGBs have a non-zero vev. This is an important point: if pNGBs acquire a non-

zero vev, HF symmetry will be spontaneously broken! The obvious course of action

for composite Higgs models, then, is to choose the arbitrary reference vacuum ~F

such that the electroweak gauge group GEW = SU(2)L × U(1)Y is embedded inside

HF . This type of mechanism for breaking electroweak symmetry, known as vacuum

misalignment, was introduced by Ref. [38] and further explored in the context of

composite Higgs models in Ref. [40].

The subtlety of vacuum misalignment is perhaps best recognised when contrasted

with a theory such as Minimal Technicolor, which does not utilise the idea. Techni-

color models are precursors to CHMs, also relying on a G→ H symmetry breaking

by strong dynamics, where the electroweak group GEW is embedded inside G. How-

ever, in Minimal Technicolor, the unbroken group H is exactly the electromagnetic

group U(1)Q. Electroweak symmetry is therefore broken directly when G is broken

to H, and so the EWSB scale is the same as the scale of G → H breaking. With

vacuum misalignment, on the other hand, the G→ H breaking does not break elec-

troweak symmetry. Dynamics outside of the composite sector are instead required to

misalign the vacuum to trigger EWSB, with the degree of misalignment controlling

the scale of the EWSB. This allows EWSB to occur at a lower scale than G → H

breaking, as is experimentally required.

Quite general results show that the explicit breaking introduced by the gauged

electroweak group, or any vector boson fields, tends to keep the vacuum aligned in

the EW-preserving direction in theories with pNGBs [70–72]. There must therefore

be a different source of explicit breaking to misalign the vacuum and spontaneously

break EW symmetry. In CHMs this is achieved through coupling elementary and

composite fermions together, to be discussed in Section 3.6.

Vacuum misalignment lends itself nicely to geometric visualisation. The case for

G = SO(3) and H = SO(2) is shown in Figure 3.3. Of course this is not a realistic

model for EWSB because H is not large enough to contain the electroweak gauge

group, but we are limited to only a three-dimensional visualisation. Fortunately,
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~F = (0, 0, f)ᵀ

〈~Φ〉

v
HF

|〈~θ〉|
f

Figure 3.3: Geometry of vacuum misalignment in the case G = SO(3), H = SO(2).
The sphere of potential minima is invariant under G, but any particular minimum
~F is only invariant under HF

∼= SO(2). If the Goldstone fields ~θ acquire a non-zero

vev, the true vacuum 〈~Φ〉 will not be the HF -symmetric vacuum ~F and will instead
spontaneously break HF symmetry.
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the coset SO(3)/SO(2) is indeed isomorphic to the 2-sphere13, so the geometric

intuition will be correct in this case.

Let us imagine that HF contains a gauged subgroup analogous to GEW. To draw

the connection to EWSB, the degree of the spontaneous breaking of HF should

be identified with the EWSB scale v ≈ 246 GeV. This degree of breaking can be

parameterised by the projection of the true vacuum 〈~Φ〉 onto HF , which from the

geometry in Figure 3.3 is seen to be

v = f sin
|〈~θ〉|
f

. (3.69)

We shall see in Section 3.5.1 that this relation holds in a simple version of the

minimal CHM, though it is not true for general symmetry breaking patterns.

It is instructive to consider Equation (3.69) in more detail. The meaning of

Equation (3.69) is that the gauge boson arising from the gauged generator of HF

has a mass

m ≡ 1

2
gv =

1

2
gf sin

|〈~θ〉|
f

, (3.70)

where g is the gauge coupling. This makes geometric sense. First, if the unbroken

generator X that rotates around the true vacuum 〈~Φ〉 were gauged, then the cor-

responding gauge boson would be massless. On the other hand, if a generator T̂

orthogonal to X (rotating the true vacuum along a great circle) were gauged, then

the resulting gauge boson would have a mass m = 1
2
gf , for f is the scale of the sym-

metry breaking14. But the generator that is actually gauged is T3 - the one rotating

about the vertical axis in Figure 3.3, leaving ~F invariant. From the geometry, this

is the linear combination

T3 = sin
|〈~θ〉|
f

T̂ + cos
|〈~θ〉|
f

X, (3.71)

where T̂ rotates about the axis perpendicular to 〈~Φ〉 in the plane spanned by 〈~Φ〉
and ~F . It follows from Equation (2.21) that the mass of the boson associated to T3

is sin |〈~θ〉|/f times that of the boson associated to T̂ , giving Equation (3.70).

It is common to express the symmetry breaking scale in a general composite

Higgs model through the vacuum misalignment parameter

ξ :=
v2

f 2
, (3.72)

13More generally, SO(n)/SO(n − 1) is isomorphic as a manifold to the (n − 1)-sphere by the
orbit-stabiliser theorem.

14If this reasoning is unconvincing, these claims will be substantiated in Section 3.8.2.
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which in the case of SO(3)→ SO(2) symmetry breaking is evidently

ξ = sin2 |〈~θ〉|
f

. (3.73)

Given we have not yet discovered the compositeness scale f , a necessary constraint

is 0 < ξ < 1. Technicolor is reproduced by the limit f → v, or ξ → 1. What

happens in the opposite limit, where ξ → 0 or equivalently f → ∞? Because the

NGBs enter the Lagrangian through the combination θ/f , this limit will remove

operators involving a sufficient number of NGBs. In fact, the only non-vanishing

term in the NGB Lagrangian Equation (3.60) is

(Dµ
~θ)ᵀ(Dµ~θ). (3.74)

For models that only deliver the Higgs doublet and no other NGBs, then, the ξ → 0

limit reproduces the SM Higgs kinetic Lagrangian, including gauge interactions,

exactly. We will see this explicitly for the minimal CHM in Section 3.5.1.

The experimental success of the SM indicates ξ must be rather small. In partic-

ular, precision electroweak tests typically require ξ . 0.1 [44]. But generically there

is no reason to expect ξ to be particularly small. In fact if it were too small then

we would have another Hierarchy Problem on our hands - the hierarchy between f

and v - exactly what we are trying to avoid! To keep track of this, the fine-tuning

of a model is commonly estimated as

∼ 1

ξ
, (3.75)

so that ξ ≈ 0.1 comes at a cost of ∼10% precision of the parameters. This value

is not too concerning and can be reasoned away by accidental cancellations in the

NGB potential, but values ξ . 0.01 start becoming unacceptable. It is reasonable

to conjecture some type of structure in the theory that naturally produces a small

misalignment angle instead of relying on accidental cancellations. This is done, for

example, in “little Higgs” variants of CHMs [73,74], but these models tend to predict

too large a Higgs mass.

3.5.1 EWSB in the Minimal Composite Higgs Model

We are now in a position to demonstrate electroweak symmetry breaking in the

composite Higgs paradigm. We do so with the minimal group structure G→ H that

leads to a phenomenologically viable model, deemed the Minimal CHM (MCHM)

[44]. Rather than simply stating the group structure of the MCHM, let us reason

what it must be.
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Group structure

First of all, from Section 3.5, we know that H must contain the electroweak group

SU(2)L × U(1)Y . But actually this is not all; since we would like the model to

reproduce the experimentally verified prediction

m2
W

m2
Z

=
g2

g2 + g′2
, (3.76)

we demand an enlarged SU(2)L × SU(2)R ∼= SO(4) symmetry of the electroweak

sector in order to guarantee Equation (3.76) through custodial SU(2)L+R symmetry

(see Appendix E). In the minimal model, then, H = SO(4). See Appendix D for

more details on the isomorphism SU(2)L × SU(2)R ∼= SO(4), which will be vital in

the rest of this work.

We know from Appendix D that the Higgs doublet can be expressed as a vector in

the fundamental representation of SO(4). Our experiences in Sections 3.2.1 and 3.4.1

then establish G = SO(5) as a viable symmetry group. In fact, since the breaking

SO(5) → SO(4) delivers four NGBs, it delivers exactly the Higgs doublet and so

must be precisely the minimal group structure! It is somewhat miraculous how well

this symmetry structure fits with SM phenomenology. We shall see later that these

groups must be extended to accommodate the composite matter sector, but the

underlying symmetry breaking pattern remains the same.

The MCHM is by no means the only CHM, nor the only interesting CHM. The

next-to-minimal model, for example, is based on SO(6) → SO(5) breaking and

features an extra pNGB uncharged under the electroweak group that can serve as a

dark matter candidate [18]. A wide range of other models is discussed in Ref. [75].

This work, however, focusses simply on the MCHM.

EWSB in the MCHM

As if by design, we have already figured out the low-energy NGB Lagrangian for the

MCHM in Section 3.2.2:

LNGB =
f 2

2
(∂µΦ)ᵀ (∂µΦ) , Φ =




~θ

|~θ|
sin |

~θ|
f

cos |
~θ|
f


 . (3.77)

Here ~θ = (θ1, . . . , θ4)ᵀ is a fourplet of SO(4). The usual Higgs doublet, following

the isomorphisms of Appendix D, will be

H =
1√
2

(
θ2 + iθ1

θ4 − iθ3

)
. (3.78)

So far this is just the non-linear σ-model. To make this a theory of EWSB, we need

to gauge the electroweak generators of the unbroken SO(4) subgroup as discussed

in Section 3.5. It is convenient to express the SO(4) generators in terms of the
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generators T 3
L,R of the subgroups locally isomorphic to SU(2)L,R, which are given

explicitly in Appendix G. The hypercharge operator is identified as T 3
R, for this

reproduces the correct hypercharge for the Higgs doublet, as shown in Appendix D.

Gauging SU(2)L × U(1)Y is the process of introducing the covariant derivative

∂µΦ→ DµΦ = (∂µ − igW a
µT

a
L − ig′BµT

3
R)Φ, (3.79)

along with the gauge kinetic terms. Calculating the covariant derivative in full is

rather formidable, so we take the easy way out and move to the unitary gauge where

θ1 = θ2 = θ3 = 0 and θ4 = h. Here,

DµΦ =
∂µh

f




0

0

0

cos h
f

− sin h
f




+
1

2




gW 1
µ

gW 2
µ

gW 3
µ − g′Bµ

0

0




sin
h

f
, (3.80)

giving the Lagrangian

L =− 1

4
Tr [WµνW

µν ]− 1

4
BµνB

µν +
1

2
(∂h)2

+
1

4

(
g2W 1

µW
1,µ + g2W 2

µW
2,µ + (g′Bµ − gW 3

µ)2
)
f 2 sin2 h

f
. (3.81)

By now we are familiar with the pattern of EW boson interactions and perform the

usual substitutions Equation (2.36) for the SM W± and Z bosons:

L =− 1

4
Tr [WµνW

µν ]− 1

4
BµνB

µν +
1

2
(∂h)2

+
1

4

(
g2W−

µ W
µ+ +

1

2
(g2 + g′2)ZµZ

µ

)
f 2 sin2 h

f
. (3.82)

Now the gauged subgroup will explicitly break the SO(5) symmetry, generating an

effective potential for the Higgs doublet. We will not concern ourselves with the

specifics at this point, and just declare the Higgs field will receive some vev 〈h〉 and

redefine h→ 〈h〉+ h. Expanding around h = 0 produces mass terms in the second

line of Equation (3.82):

mW =
1

2
gf sin

〈h〉
f
, mZ =

1

2

√
g2 + g′2f sin

〈h〉
f
, (3.83)

explicitly confirming the custodial relation Equation (3.76), as we knew must have

been the case. Matching to the SM mass term mW = 1
2
gv also confirms the vacuum
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misalignment

ξ ≡ v2

f 2
= sin2 〈h〉

f
(3.84)

predicted in Equation (3.69). Further expansion of the Lagrangian reveals the infi-

nite series of interaction terms

L =− 1

4
Tr [WµνW

µν ]− 1

4
BµνB

µν +
1

2
(∂h)2

+

(
m2
WW

µ+W−
µ +

1

2
m2
ZZ

µZµ

)(
1 + 2

√
1− ξh

v
+ (1− 2ξ)

h2

v2
+O

(
ξ
h3

v3

))
.

(3.85)

Notice that in the limit ξ → 0, this reduces to the SM gauge-Higgs Lagrangian

Equation (2.41), as was reasoned previously.

We have found a precise prediction of the MCHM: the gauge-Higgs interactions

are given by exactly Equation (3.85), needing only one free parameter ξ to be fully

specified. It is then in principle very easy to falsify the MCHM. If these couplings

are measured and found to not follow the pattern of predicted strengths, the model

can be discarded. As of yet, though, these couplings have not been measured pre-

cisely enough to provide much evidence for or against the model. Beware, however,

that this is only a simple incarnation of the MCHM, and the models we ultimately

consider in this work have an extended gauge sector with couplings that are not so

simple.

In all, EWSB in composite Higgs models is very similar to EWSB in the SM: the

Higgs field interacts with the EW gauge fields through the covariant derivative, and

once it acquires a vev the gauge fields receive masses. It is only in the details of how

the Higgs enters the Lagrangian and how it develops a vev that the two approaches

differ.

3.6 Partial Fermion Compositeness

We come now to the question of how the SM fermions are to fit in to all of this. They

must couple to the composite sector somehow, firstly in order to explicitly break the

global composite symmetry and trigger EWSB (cf. Section 3.5), and secondly to

obtain mass through interactions with the composite Higgs. Following the approach

of Refs. [12, 69], we first show an approach that is not viable in order to contrast

the modern viewpoint of CHMs.
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A Non-Viable Type of Fermion Coupling

Perhaps the first approach one might try would be to generalise the SM Yukawa

interactions into terms such as

L ⊃ ∆t(Λ)

Λ[O]−1
q̄LOtR + h.c. (3.86)

where [O] denotes the mass (scaling) dimension of some composite operator O that

has the same quantum numbers as the Higgs field. Here Λ is the UV cutoff of

the theory, and ∆t(Λ) is some dimensionless coupling of order unity at that scale.

Indeed, this is what was done historically in early Technicolor models [25, 33–35]

and even early CHMs [39,40]. This approach, however, invariably leads to tensions

with either the Hierarchy Problem, with the fermion masses, or with experimentally

disfavoured flavour-changing neutral currents (FCNCs).

In the SM, [O] ≈ 1. In this case, the operator O2 will have dimension [O2] ≈ 2

[76], which was the cause of the Hierarchy Problem from an effective field theory

viewpoint.

Technicolor avoids this pitfall by using a bilinear composite fermion operator

O = ψ̄ψ with dimension [O] ≈ 3 that acts as a Higgs field. The problem in this case

is that the Yukawa couplings in Equation (3.86) näıvely evolve to the energy scale

µ < Λ as

∆t(µ) ≈ ∆t(Λ)
(µ

Λ

)[O]−1

≈ ∆t(Λ)
(µ

Λ

)2

, (3.87)

becoming highly suppressed at low scales µ� Λ and tending to produce extremely

light fermions. The suppression could be alleviated if Λ were lower, but this turns out

to result in more abundant FCNCs resulting from the four-fermion interactions. The

fact that all couplings evolve by the same factor also does not satisfyingly resolve

the observed hierarchy of fermion masses. Models such as Walking Technicolor

[77], with more sophisticated proposals regarding the evolution of the couplings, or

Extended Technicolor [33, 34], utilising higher symmetry scales, offer solutions to

these problems, but we will not discuss them further.

Fermion Couplings in CHMs

The modern approach of CHMs was put forward by Kaplan [78], wherein all ele-

mentary fermions couple linearly to their own composite operators:

L ⊃ ∆tL(Λ)

Λ[OtL ]− 5
2

t̄LOtL +
∆tR(Λ)

Λ[OtR ]− 5
2

t̄ROtR + h.c. (3.88)

with analogous terms for the other fermions. Although it may seem unusual to

postulate such couplings, this coupling paradigm is a natural consequence in the

four-dimensional models that are dual to five-dimensional models of EWSB [79].

With this coupling structure the composite operators must be fermionic to respect
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Poincaré symmetry. By simple dimensional analysis, the couplings will evolve as

∆tL,R(µ) ≈ ∆tL,R(Λ)
(µ

Λ

)[OtL,R ]− 5
2
. (3.89)

Notice that all of the problems with the Yukawa-like interactions in Equation (3.86)

can be avoided with this scaling behaviour. FCNCs can be rendered negligible by

having a large cutoff Λ, and this would not significantly suppress the couplings as

long as the operators have dimensions [OtL,R ] ≈ 5/2. The Hierarchy Problem is then

not a concern, as the operators O2
tL,R

will be irrelevant. Additionally, couplings for

each fermion may evolve differently to others depending on the dimensions of their

associated composite operators, providing a reasonable explanation for the observed

hierarchy of fermion masses.

Clearly, the fields in Equation (3.88) are not expressed in the mass basis. The

mass eigenstates - the particles that are physically observed - must instead be super-

positions of elementary and composite fields. For this reason, the coupling paradigm

of Equation (3.88) is known as partial compositeness. SM fields are therefore mix-

tures of elementary and composite fields, and we assign to the elementary sector one

field for each (non-Higgs) field of the SM, carrying the same quantum numbers as

its associated SM field. Note that although here we are focussing on the fermion

sector, the gauge bosons are also subject to partial compositeness.

The partial compositeness hypothesis shines light on not just the elementary

sector, but the composite sector also. At this point, all that is known about the

composite sector is that it has a G → H symmetry breaking pattern, where H

contains the electroweak gauge group, and the groups G and H are such that the

NGB spectrum contains the Higgs doublet. With partial compositeness, though, for

mixing between elementary and composite states to occur, there must be at least one

spin-1/2 composite field sharing the same SU(3)c×SU(2)L×U(1)Y ≡ GSM quantum

numbers as each SM fermion. This implies the composite symmetry group G must

also contain a colour group SU(3) under which the composite operators coupling

to the elementary quarks transform as triplets. In general, composite fields must

transform in representations of G that decompose under GSM to give representations

of SM fermions. Suddenly there is not so much freedom in the composite sector!

Let us consider Equation (3.88) in more detail, focussing at first on only the

left-handed elementary top quark t0L. (We know the elementary fields cannot be the

SM fields so we distinguish them with a superscript 0). From above, there should be

a composite Dirac fermion T partnered to t0L. We shall assume for simplicity that

the composite operator OtL is exactly this field. Then the mass-mixing terms of the

elementary left-handed top quark will be

LtL = −mLT̄ T + ∆tL t̄
0
LT + ∆†tLT̄ t

0
L

= −
(
t̄0L T̄L T̄R

)



0 0 −∆tL

0 0 mL

−∆†tL mL 0





t0L
TL
TR


 . (3.90)
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The composite partner is given a Dirac mass mL consistent with the symmetries.

A field with such a mass term is known as a “vector-like” fermion. In this simple

example a field redefinition may be performed to make ∆tL real. The mass basis is

then found to be

tL =
mLt

0
L + ∆tLTL√
m2
L + ∆2

tL

, T ′L =
mLTL −∆tLt

0
L√

m2
L + ∆2

tL

, T ′R = TR, (3.91)

giving the Lagrangian

LtL = −
(
t̄L T̄ ′

)
(

0 0

0
√
m2
L + ∆2

tL

)(
tL
T ′

)
. (3.92)

The same analysis can be done for the right-handed elementary top quark, having

its own composite partner T̃ with Dirac mass mR and coupling ∆tR . We see there

is a massless field t = tL + tR, and two composite partners T ′ and T̃ ′ with respective

masses ML,R =
√
m2
L,R + ∆2

tL,R
. We identify t as the SM top quark, expecting its

mass to arise after EWSB.

It is seen from Equation (3.91) that the physical particle tL,R is a superposition

of the elementary and composite fields, being mostly elementary if ML,R is much

larger than the mixing ∆tL,R , and mostly composite if the mixing is much larger.

The dimensionless number ∆tL,R/ML,R is often used to measure the compositeness

of tL,R. Of course these considerations also apply to the rest of the SM fermions,

which have their own partners and mixings. But note that in realistic models, the

elementary fermions do not couple to just one single composite field each, making

the mixings significantly more complicated.

Masses for the SM particles arise from their composite components’ interactions

with the composite Higgs. To illustrate the general idea, imagine the composite

sector has a Yukawa-like coupling to the Higgs such as

L ⊃ −YtT̄LhT̃R. (3.93)

Again, things are not so simple in realistic models (not least because a pNGB Higgs

cannot interact in this way), but the details are not important. By inverting Equa-

tion (3.91) to express the composite fields in terms of the mass basis, we get the

top-Higgs coupling

L ⊃ −Yt
∆tL

ML

∆tR

MR

t̄LhtR, (3.94)

yielding the top quark Yukawa coupling

yt = Yt
∆tL

ML

∆tR

MR

, (3.95)
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Figure 3.4: Generation of Yukawa couplings for the top quark. The large circle in
the middle represents unknown composite dynamics. Once the Higgs develops a
vev, the top quark will gain a mass through this diagram. The compositeness of the
left- and right-handed components obviously dictate the amplitude of this process.

and similarly for the other fermions. We see that Yt acts as a sort of “proto-Yukawa”

coupling for the top quark. Also note that an SM fermion mass is dependent on the

compositeness of its left- and right-handed components. More composite particles

are more massive, and less composite particles are less massive. This qualitative

relation should be expected in general, as Figure 3.4 makes clear. Lighter fermions

are then expected to be mostly elementary (at least as long as their different chiral

components share a similar degree of compositeness), while the top quark must be

significantly composite because of its large Yukawa coupling. The top quark, and to

a lesser degree the bottom quark and tau lepton, offer the most promising portals

into the composite sector.

3.6.1 Composite Fermion Representations in the MCHM

To move into more concrete territory, let us discuss the possible composite fermionic

operators OL,R in the Minimal CHM. Recall that the MCHM is based on the sym-

metry breaking pattern SO(5) → SO(4). The elementary-composite couplings are

to exist at high energies where the SO(5) symmetry is unbroken, so the composite

operators must furnish representations of SO(5) to reflect this symmetry in the La-

grangian. Our goal, then, is to explore the representations of SO(5) and find how

each decomposes under SU(2)L × U(1)Y = GEW in order to match with the repre-

sentations of SM fermions. We will only focus on partnering the third generation

quarks to the composite sector, for the other fermions, being light, are expected to

mix only weakly.

For background on different types of representations, see Appendix A. We will be

interested in the irreducible representations of SO(5), for these are the ones that are

expected to have small mass dimensions and so give the least suppressed operators

at the energy scales we are capable of reaching. For the same reason, we will only

be concerned with the lowest-dimensional irreducible representations, among which
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are the trivial 1, the spinorial 4, the fundamental 5, the antisymmetric 10, and the

symmetric traceless 14.

The Fundamental 5

We start with the most familiar representation: the fundamental 5. To make the

notation more familiar and explicit, let us write a fermionic operator transforming

in this representation as Ψ5. This is most easily written as a fiveplet

Ψ5 = (Ψ1, . . . ,Ψ5)ᵀ (3.96)

that transforms under SO(5) by regular matrix multiplication:

Ψ5
g5∈SO(5)−−−−−→ g5Ψ5. (3.97)

How does this decompose under GEW? We break the answer down into multi-

ple steps, overexplaining in this simple case so that the procedure is clear for less

straightforward representations.

First, we decompose the 5 under SO(4), since GEW is embedded into this sub-

group. With the convention for SO(5) generators we use throughout this work (given

in Appendix G), SO(4) is embedded into the top left 4×4 block of SO(5) transfor-

mations. That is, a transformation g4 ∈ SO(4) is enacted via the transformation

g5 ∈ SO(5) given by

g5 =

(
g4

~0
~0ᵀ 1

)
. (3.98)

Under such an SO(4) transformation, the fiveplet transforms as

Ψ5
g4∈SO(4)−−−−−→

(
g4

~0
~0ᵀ 1

)
Ψ5 =

(
g4Ψ4

Ψ5

)
, (3.99)

where Ψ4 = (Ψ1, . . . ,Ψ4) are the first four components of Ψ5. Evidently, Ψ4 is in

the fundamental 4 of SO(4), while Ψ5 is a singlet (does not transform). This shows

that the 5 decomposes under SO(4) as

5→ 4⊕ 1. (3.100)

The second step is to decompose these SO(4) representations under GEW ⊂ SO(4).

As an intermediate step we write the SO(4) representations in the language of

SU(2)L × SU(2)R. The singlet representation is trivial: it remains a singlet. And

from Appendix D, we know that the 4 is nothing but the bidoublet (2,2) of SU(2)L×
SU(2)R. Tracing the isomorphisms of Appendix D backwards, Ψ4 can be written in
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terms of fields ΨnL,nR having SU(2)L,R quantum numbers nL,R as

Ψ4 =
1√
2




iΨ−,− − iΨ+,+

Ψ−,− + Ψ+,+

iΨ+,− −Ψ−,+

iΨ−,+ −Ψ+,−


 , (3.101)

where ± superscripts denote ±1/2. Essentially, Ψ4 is here being expressed as a

linear combination of eigenvectors of T 3
L,R with eigenvalues nL,R, and ΨnL,nR are

the coefficients15. These fields are a useful basis, for their GEW quantum numbers

can easily be read off from their superscripts. Recall from Section 3.5.1 that the

hypercharge is embedded such that Y = T 3
R, so a field ΨnL,nR has hypercharge nR.

Evidently the 4 decomposes into SU(2)L doublets with hypercharges ±1/2. In

total, then, the decomposition is

SO(5) SO(4) SU(2)L × SU(2)R GEW

5 → 4⊕ 1 ∼= (2,2)⊕ (1,1) → 2− 1
2
⊕ 2+ 1

2
⊕ 10.

(3.102)

The representation of U(1)Y is typically written as a subscript.

Here we hit a problem: none of these GEW representations match the representa-

tion of any SM quark (see Table 2.2). Elementary quarks therefore cannot couple to

operators in the 5 of SO(5), lest they explicitly break electroweak symmetry. It is

a similar story for other representations of SO(5). Fortunately, this can be salvaged

by extending the global SO(5) symmetry to SO(5)×U(1)X for some new quantum

number X, and redefining the hypercharge so that

Y = T 3
R +X. (3.103)

This merely has the effect of adding X to all the hypercharges in Equation (3.102).

All of the representations of the various quarks can then be fit into two fiveplets,

one with an X charge of +2/3 and the other with X = −1/3:

SO(5)× U(1)X GEW

5+ 2
3

→ 2+ 1
6︸︷︷︸

qL

⊕ 2+ 7
6
⊕ 1+ 2

3︸︷︷︸
uR

5− 1
3

→ 2− 5
6
⊕ 2+ 1

6︸︷︷︸
qL

⊕ 1− 1
3︸︷︷︸

dR

.

(3.104)

Notice that since the electric charge is determined by Equation (2.39)

Q = T 3
L + Y = nL + nR +X, (3.105)

15The bidoublet representation uses generators in the fundamental of SU(2), which have eigen-
values ±1/2. These eigenvalues are better recognised as the possible spin projection values of a
spin-1/2 particle.
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coupling the elementary quarks to a composite multiplet in the 5 representation

necessitates composite resonances with exotic charges Q = 4/3 and Q = 5/3, along

with a few extra resonances with the same charges as the quarks.

This shows how the particle content of the composite sector may be found

through analysis of the SO(5) representations. Before moving on to other repre-

sentations, let us demonstrate how partial compositeness works in practice using

operators in the 5 as an example. For the sake of simplicity, we focus on only

partnering the elementary top quark with the composite sector.

Based on Equation (3.104), we could partner the left-handed third generation

quark doublet q0
L = (t0L, b

0
L)ᵀ to a composite multiplet Ψq ∼ 5+2/3, and partner

the right-handed top quark t0R to another multiplet Ψ̃t ∼ 5+2/3. The composite

multiplets consist of all the fields of Equations (3.96) and (3.101). The elementary

fields will be embedded into respective spurions (cf. Section 3.3.1) ψqL and ψtR in

the same representations as their composite partners for ease in writing electroweak

symmetric interactions. The elementary-composite quark mixing terms will be

Lmix = ∆qψ̄
q
LΨq

R + ∆tψ̄
t
RΨ̃t

L + h.c., (3.106)

for these are invariant under SO(5). But once the spurions take on their background

values

ψqL =
1√
2




ib0
L

b0
L

it0L
−t0L

0



, ψtR =




0

0

0

0

t0R



, (3.107)

(matching the quarks’ quantum numbers to the fields in Equation (3.101)), the

SO(5) symmetry will be explicitly broken. This demonstration should not be taken

too literally; it will turn out that a workable theory will need two different SO(5)

symmetries acting separately on the elementary and composite sector, and NGBs

that transform under both of those symmetries are needed to “link” the elementary

and composite multiplets together into invariant terms. Equation (3.106) neverthe-

less shows the basic mechanics of enacting partial compositeness.

The Traceless Symmetric 14 and Antisymmetric 10

Next we consider the traceless symmetric 14 and antisymmetric 10 representations

of SO(5), but we will not go in to the same level of detail as for the 5. Multiplets in

the 14 or 10 can be embedded into traceless 5×5 matrices that are respectively sym-

metric (Ψ+) and antisymmetric (Ψ−). We consider these representations together

because they both transform adjointly:

Ψ±
g5∈SO(5)−−−−−→ g5Ψ±g

−1
5 . (3.108)
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Indeed, the 10 is the adjoint representation of SO(5).

Following the previous example, we first work out the decompositions under

SO(4). To do this, let us write Ψ± in block form for convenience:

Ψ± =




A ~b

±~bᵀ c


 , (3.109)

where A is a 4×4 matrix. Under an SO(4) transformation g4, this goes to




A ~b

±~bᵀ c


→




g4Ag
−1
4 g4

~b

±(g4
~b)ᵀ c


 . (3.110)

So A transforms adjointly under SO(4), ~b transforms in the fundamental 4, and c

is a singlet. Given A is symmetric or antisymmetric, it will furnish the symmetric

9 or antisymmetric16 6 of SO(4). We therefore have the decompositions

SO(5) SO(4)

10 → 6⊕ 4,

14 → 9⊕ 4⊕ 1,

(3.111)

where 10 does not contain a singlet because its singlet component vanishes. We see

that both representations contain the 4 of SO(4) that can house the left-handed

quark doublets as before. As for the unfamiliar representations, since SO(4) is

locally isomorphic to SU(2)L×SU(2)R, its adjoint is the direct sum of the adjoints

of each group factor: 6 ∼= (3,1) ⊕ (1,3). We shall see this explicitly in Chapter 4.

Similarly, the 9 of SO(4) is the symmetric two-index tensor and so translates as

9 ∼= (3,3). Eigenvalues of the SU(2) generators in the adjoint representation are

−1, 0, and +1 (the possible spin projections of a spin-1 particle), so these decompose

to

SU(2)L × SU(2)R SU(2)L × U(1)Y

(3,1) → 30

(1,3) → 1−1 ⊕ 10 ⊕ 1+1

(3,3) → 3−1 ⊕ 30 ⊕ 3+1.

(3.112)

Note that if Ψ± is given anX charge of +2/3 then all of the SM quark representations

are present, except for that of the right-handed down-types in the 14. With this X

charge, the 14 and 10 both deliver (electric) charge 8/3 particles in addition to the

exotic particles of the 5.

16These labels just come from the dimensions of (anti)symmetric 4×4 matrices.
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Expressing the matrices Ψ± in terms of fields ΨnL,nR with definite SU(2)L,R
quantum numbers is rather unwieldy, so these are relegated to Appendix G.2.

The Spinorial 4

The last low-dimensional representation of SO(5) we discuss is the spinorial 4. But

we will not give many details, for coupling quarks to this representation turns out

to be phenomenologically unviable. In short, the problem stems from the Zb̄LbL
coupling, which has been measured in agreement with the SM prediction to decent

precision, receiving inadmissably large corrections from operators in this represen-

tation. The Z coupling to a fermion ψ is in general given by

[√
g2 + g′2Q3

L − g′Q
]
Zµψ̄γ

µψ, (3.113)

whereQ is the electric charge andQ3
L is some other operator. In the SM this operator

is T 3
L, but it may be different in CHMs due to partial compositeness, though it so

happens that there are no corrections to Q3
L if the fermion couples to a representation

that satisfies T 3
L = T 3

R [80]. Since 4 decomposes as

SO(5) SU(2)L × SU(2)R

4 → (2,1)⊕ (1,2),
(3.114)

there is no way to embed qL in a 4 in a way that protects the Zb̄LbL coupling.

Because of this, we do not consider the spinorial representation any further. Note

the representations we previously discussed do protect this coupling, although they

do not guarantee protection for the Zt̄LtL coupling, which has not yet been precisely

measured.

3.6.2 SO(4) Invariants

Having gone through Section 3.6.1, one might be under the impression that the

purpose of the composite SO(5) multiplets is to construct an SO(5)-invariant La-

grangian. This is not so. Remember the moral of the CCWZ construction: at the

low energies we are interested in, our Lagrangian need only be linearly invariant

under SO(4), not SO(5). It is only by realising the linear SO(4) symmetry as a

special case of a non-linear representation according to the CCWZ prescription that

the SO(5) invariance of the Lagrangian becomes manifest. The SO(5) multiplets

simply provide us with the operators with which we may build SO(4)-invariant

terms for the Lagrangian.

To illustrate this, we need to reverse the arguments used in the CCWZ con-

struction. Consider, for example, an SO(5) multiplet Ψ5 ∼ 5. From what we have

seen in Section 3.4.3, this must be nothing but a multiplet ΨSO(4) that transforms

under some representation of SO(4), dressed by the NGB matrix U . The fields
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transforming under SO(4) that we desire, then, are17

ΨSO(4) = U−1Ψ5. (3.115)

In this case ΨSO(4) consists of a fourplet Ψ4 in the 4 and a singlet Ψ1 in the 1 of

SO(4):

ΨSO(4) = (Ψ4,Ψ1)ᵀ. (3.116)

It is these SO(4) multiplets Ψ1,4 that belong in the Lagrangian. Leading-order terms

will be contractions of two fields in the same representation such as

Ψ̄4Ψ4, Ψ̄1Ψ1, Ψ̄4Ψ̃4, Ψ̄1Ψ̃1, . . . , (3.117)

having introduced another set of fields distinguished by tildes. In principle each

of these operators may enter the Lagrangian with independent coupling constants,

unless there is an extra symmetry preventing it.

Of course it is not too enlightening to just write Equation (3.117); we would like

to know what these invariants contain. In particular we are most interested in the

invariants showing how the SM fields enter the Lagrangian. Let us consider the case

where Ψ5 and Ψ̃5 are the spurions of qL and tR defined by Equation (3.107). The

mixing terms between qL and tR are then the last two terms in Equation (3.117).

Because of the orthogonality of the spurions

0 = Ψ̄5Ψ̃5 = Ψ̄4Ψ̃4 + Ψ̄1Ψ̃1, (3.118)

there is actually only one invariant mixing term up to a factor. An explicit calcu-

lation of the invariant using the NGB matrix Equation (3.11) in the unitary gauge

yields

Ψ̄1Ψ̃1 = (Ψ̄5U)5(U−1Ψ̃5)5

=

(
− sin

(
h

f

)
t̄L√

2

)(
cos

(
h

f

)
tR

)
. (3.119)

We see Yukawa-like interactions with the top quark involving an arbitrarily large

number of Higgs insertions. This operator will typically be accompanied by a coef-

ficient with a factor of f , so the limit f → ∞ will reproduce the SM top Yukawa

coupling. Of course if the composite partners of other fermions are also included,

then there will be other sorts of mixings that can lead to interesting effects.

It should be clear from this analysis how to find the SO(4) invariants for other

representations. All it requires is writing the SO(5) multiplets as SO(4) multiplets

dressed by the NGB matrix, extracting the (sub)multiplets that transform under

irreducible representations of SO(4), and contracting them together. See Ref. [69]

17Recalling the NGB matrix transformation rule Equation (3.47), ΨSO(4) will transform as
ΨSO(4) → (gUh−1)−1(gΨ5) = hΨSO(4), where g ∈ SO(5) and h ∈ SO(4).
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for a comprehensive analysis of invariants resulting from the other SO(5) represen-

tations we have discussed.

Despite drawing attention to SO(4) invariants here, the point will turn out to be

moot for the models we will consider. In our models, we will have extra symmetries

that force the SO(4) invariants to come from SO(5) invariants, so we will only need

to construct Lagrangians with manifest SO(5) symmetry anyway. The reason we

bring attention to the issue is because the possible invariants arising from a given

representation determine the structure of the Higgs effective potential, and some

representations will turn out to be more theoretically favourable as a result.

3.7 Coleman-Weinberg Potential

In the SM, the Higgs boson breaks electroweak symmetry because it is given a

classical potential

V(Φ) = −µ2Φ†Φ + λ
(
Φ†Φ

)2
, (3.120)

that is minimised for Φ0 6= 0. CHMs cannot take the same approach of course, for

the Higgs boson, being a pNGB, has no classical potential. Instead, the quantum

corrections for the effective potential must be relied upon to give the Higgs doublet

a non-zero vev. Here we show how these quantum corrections may be calculated to

leading order, resulting in the so-called Coleman-Weinberg potential [81] that is an

essential tool in the analysis of CHMs.

Sufficient background (for our purposes) on the quantum effective potential is

provided in Appendix C. The upshot of it all is that the effective potential is a

function of classical scalar fields Φc = (φ1
c , φ

2
c , . . .), among which will be the Higgs

field, given by

Veff(Φc) = −
∞∑

N=1

1

N !
Γ(N)(0, . . . , 0)(Φc(x))N . (3.121)

Here, Γ(N)(0, . . . , 0) is the sum of all one-particle-irreducible Feynman diagrams

(those that cannot be disconnected by removing a propagator) with N external

lines of scalar fields that have vanishing momenta. It should be understood that

(Φc(x))N is shorthand for the product of any N scalar fields, with all such products

being included. The tree-level diagrams just reproduce the classical potential V(Φc).

Diagramatically, the calculation of Veff is represented in Figure 3.5.

The diagrams contributing to Veff in Figure 3.5 have been ordered suggestively,

showing two possible methods for approximating the effective potential. The first

is an expansion in the number of loops, and the second is an expansion in the

order of coupling constants. Coleman and Weinberg argue in their classic paper [81]

that expansion in terms of the number of loops is at least as good as expansion in

the coupling constants, with the added benefit of being unaffected by field shifts
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Figure 3.5: Expansion of the effective potential for scalar fields Φc in terms of one-
particle-irreducible Feynman diagrams. Here the dashed lines are the classical scalar
fields, and the internal solid lines can be any scalar, fermionic, or gauge particle that
couples to Φc. All possible such diagrams are to be included. The external lines have
zero momentum and may represent one or more scalars depending on the various
interaction terms.

Φ(x)→ h(x) = Φ(x)− Φ0. The loop expansion is therefore particularly well-suited

for studying Higgs phenomena.

Functional methods can be used to calculate Veff to any number of loops [82], but

this technique is too difficult to apply in realistic interacting theories. Instead, we

make do with calculating the effective potential to one-loop level - that is, using only

the first row of diagrams in Figure 3.5. It can be shown that the one-loop diagrams

provide contributions to Veff that are next-to-leading-order in ~ compared to V , with

higher-loop diagrams contributing at higher powers of ~ [83]. We therefore assume

the one-loop truncation is sufficiently accurate for our purposes.

Fortunately, the one-loop effective potential has been calculated explicitly by

Coleman and Weinberg [81] to have the simple form

V 1−loop
eff (Φc) = V(Φc) +

∑

particles i

ci
64π2

(
2m2

i (Φc)Λ
2 +m4

i (Φc) log

(
m2
i (Φc)

Λ2

))
.

(3.122)

Here, Λ is the high-energy cutoff of the loop momentum, mi(Φc) is the Φc-dependent

tree-level mass of particle i in the mass basis, and ci is a combinatorial factor count-
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Figure 3.6: Possible vertices entering the one-loop diagrams contributing to the
effective potential in Figure 3.5: (a) for internal scalar lines (b) for internal fermion
lines (c) for internal gauge boson lines. The vertex factors M̃ are different for the
different cases.

ing the degrees of freedom of particle i:

ci =





3 for neutral gauge bosons,

6 for charged gauge bosons,

−12 for coloured Dirac fermions.

(3.123)

The negative sign for fermions comes from the usual negative sign when evaluating

fermion loops. In the models we are considering, we shall see that all dependence

on Λ ∼ m∗ drops out of the potential.

Since Equation (3.122) is central to this work, we reproduce here the original

calculation in Ref. [81]. The starting point is to notice that all the one-loop diagrams

in Figure 3.5 contain scalar couplings to exactly two internal lines; any more could

not produce a one-loop diagram. There are then three types of interactions, shown

in Figure 3.6, to consider:

• Interactions with scalar fields φa, φb. Let us collect all the interactions between

these two fields and other scalar fields Φc into the term −M̃2
ab(Φc)φ

aφb. Each

vertex will then carry the numerical factor M̃2
ab(Φc). Note this is distinct from

the field-independent mass term −M2
abφ

aφb.
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Figure 3.7: Example of a one-loop diagram with N = 5 interaction points. Each
interaction is as in Figure 3.6.

• Interactions with fermions ψa, ψb. Their interactions with scalar fields will

be written in the form −M̃ab(Φc)ψ̄
aψb, so the vertex in Figure 3.6 has the

numerical factor M̃ab(Φc). (The mass-like matrices M̃ are of course different for

the different types of interactions, but we use the same letter for convenience).

• Interactions with gauge fields Aaµ, A
b
µ. These will have vertex factors M̃2

ab(Φ)

(just as for the scalars) if the gauge-scalar interactions are written in the form

+1
2
M̃2

ab(Φc)A
a
µA

bµ.

The contribution to the effective potential can be calculated in more or less the

same way for each type of interaction. We proceed with the calculation of the scalar

contribution, whose logic carries over to the gauge boson contribution also18.

Consider a one-scalar-loop diagram with N ≥ 1 interaction points, as in Fig-

ure 3.7. This will contribute to the effective potential an amount

i
1

2N

∫
d4k

(2π)4
Tr

[
(M̃2(Φc))

N

(k2 −M2 + iε)N

]
, (3.124)

having taken into account the 2N symmetries (rotations and reflections) of the dia-

gram19. The overall factor of i ultimately comes from the factor of i in the definition

of the Schwinger functional (see Appendix C). The 1/NE! factor of Equation (C.13),

where NE is the number of external lines, has been cancelled by the NE! ways the

external lines can be arranged.

18For gauge boson loops the vertices and propagators also have Lorentz indices that must be
contracted, but these make little difference since they project onto the transverse components,
giving integrals just like the those for the scalars.

19The diagram is a regular N -gon, whose symmetries form the dihedral group DN of order 2N .
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Recognising the Taylor series ln(1− x) = −
∞∑
N=1

xN

N
, summing all such diagrams

gives

V 1−loop
scalar (Φc) = − i

2

∫
d4k

(2π)4
Tr

[
ln

(
1− M̃2(Φc)

k2 −M2 + iε

)]

= − i
2

∫
d4k

(2π)4
Tr

[
ln

(
1− M2 + M̃2(Φc)

k2 + iε

)
− ln

(
1− M2

k2 + iε

)]
.

(3.125)

The second term in the trace is independent of Φc, so it has no effect and is safe to

ignore. The first term contains the quantity M2 +M̃2(Φc), which we recognise as the

tree-level mass (squared) matrix of the scalars. Its trace (the sum of its eigenvalues)

is the sum of the squared tree-level scalar masses, making the effective potential

V 1−loop
scalar (Φc) = − i

2

∑

scalars i

∫
d4k

(2π)4
ln

(
1− m2

i (Φc)

k2 + iε

)
. (3.126)

This can be calculated by Wick rotating the momentum to Euclidean space, taking

k2 → −k2
E and d4k → id4kE. The resulting integral is spherically symmetric, picking

up a 4D solid angle of 2π2:

V 1−loop
scalar (Φc) =

1

2

∑

scalars i

∫ Λ2

0

dk2
E

16π2
k2
E ln

(
1 +

m2
i (Φc)

k2
E

)

=
1

64π2

∑

scalars i

[
k4
E ln

(
1 +

m2
i

k2
E

)
+ k2

Em
2
i −m4

i ln
(
m2
i + k2

E

)]Λ2

k2
E=0

=
1

64π2

∑

scalars i

[
Λ4 ln

(
1 +

m2
i

Λ2

)
+ Λ2m2

i +m4
i ln

(
1 +

Λ2

m2
i

)]
. (3.127)

Since the integral is ultraviolet divergent, a high-energy cutoff Λ has been introduced.

The limit Λ� mi(Φc) reproduces the form of Equation (3.122), as desired.

Fermionic contributions are calculated largely the same way. The slight difference

comes from the propagators, giving integrands of the form

−Tr

[
· · · M̃ γµkµ

k2
M̃
γνkν
k2
· · ·
]

= −Tr

[
· · · 1

k2
M̃M̃ † · · ·

]
. (3.128)

Only diagrams with even numbers of fermions contribute because the trace of the

product of an odd number of gamma matrices vanishes, so all mass-like matrices

in the integrand can be paired in this way. There is no reflection symmetry in

the diagrams anymore because fermion lines are directed, but the factor of 1/2

is compensated for by only summing the graphs with even numbers of fermions.

The logic from the scalar calculation then follows through, identifying M̃2 in that
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case with M̃M̃ † in this case, because the eigenvalues of M̃M̃ † are indeed the field-

dependent contributions to the squared fermion masses. This demonstrates the

validity of Equation (3.122).

We should warn that in the literature of CHMs, the effective potential is usually

not expressed in the form of Equation (3.122) but rather is expressed in terms of

gauge boson and fermion form factors. We avoid the form factor viewpoint here

because it adds a layer of complication that is unnecessary at present, although we

do introduce it in Section 4.5, as we use this method in some of our numerical scans

later. But no matter the approach of calculating it, the effective potential in a given

model is a horrendously complicated function of the Lagrangian parameters that

has no hope of being expressed analytically. This fact makes it difficult to study the

parameter spaces of CHMs, and is a major reason why global fits of such models

have not been attempted in detail before this work.

3.7.1 Higgs Potential in the MCHM

Despite the uncooperative nature of the Higgs potential, symmetry considerations

can be used to reason about its form in a given model. To demonstrate, we focus once

again on the MCHM, where Φc is simply the Higgs field h and all Higgs dependence

is through the quantity

sh := sin
h

f
. (3.129)

The potential can therefore generically be expanded as20

Veff(h) = −γs2
h + βs4

h +O(s6
h) (3.130)

for some model-dependent coefficients γ and β. Being interested in only the low-

energy region sh � 1, we truncate the potential at order s4
h. Reproducing the EWSB

scale enforces the constraint

∂Veff(h)

∂h |h=〈h〉
= 0 =⇒ γ

2β
= s2

〈h〉 ≡
v2

f 2
=: ξ, (3.131)

and similarly for the Higgs mass,

m2
h =

∂2Veff(h)

∂h2
|h=〈h〉

=
8ξ(1− ξ)β

f 2
. (3.132)

With these relations, the potential takes the equivalent form

Veff(h) =
m2
hv

2

8ξ2(1− ξ)
(
s2
h − ξ

)2
. (3.133)

20The spinorial 4 representation introduces sin(h/2f) terms into the potential, but we do not
consider this case here.
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As with the Higgs interactions we have seen previously, the potential is completely

specified up to some unknown parameter ξ. But this simplification of the potential

is not the main benefit of Equations (3.131) and (3.132); these relations instead can

tell us how finely-tuned the potential must be to result in the observed EWSB scale

and Higgs mass. The whole point of considering CHMs, recall, is to obtain a theory

that is less finely-tuned than the SM. If CHMs turn out to have the same fine-tuning

problems, then they are not well motivated and would offer little theoretical benefit

over the SM.

Fine-Tuning in the MCHM

To quantify the fine-tuning of a given model we use the Barbieri-Giudice (BG)

measure [84], defined as the maximum relative sensitivity of a given observable O
across all input parameters xi

∆BG(O) := max
i

∣∣∣∣
xi
O
∂O
∂xi

∣∣∣∣
|O=Oexp

. (3.134)

Roughly, ∆BG(O)−1 measures the per cent precision in the parameters needed to

obtain the experimental value O = Oexp. In the SM, the sensitivity of the Higgs

mass to the input parameters leads to an incredibly large fine-tuning. The main

fine-tuning concern of CHMs, on the other hand, is in the separation between the

symmetry breaking scales v and f , so let us calculate the fine-tuning of v2. By

Equation (3.131),

∆BG(v2) = max
x=γ,β

∣∣∣∣
x

v2

∂

∂x

(
γf 2

2β

)∣∣∣∣
|v=246 GeV

=
γ

2β

(
f

246 GeV

)2

=
γ

2β

1

ξ
, (3.135)

yielding a fine-tuning similar to the estimate Equation (3.75). But notice the näıve

estimate ∆BG(v2) ∼ 1/ξ may be parametrically enhanced or suppressed by the

factor γ/2β. Here we shall estimate this factor in some explicit realisations of the

MCHM, ultimately finding that some fermion representations are more favourable

than others on the basis of fine-tuning.

As a warm up, let us first consider the gauge boson contributions to the Higgs

potential. Since the potential vanishes when the SO(5) symmetry is exact, the trick

to analysing the gauge boson contributions lies once again in spurion analysis. In

this case, the spurions are imagined to be SO(5) gauge fields

GαWα
µ = Gα,ATAWα

µ , G ′Bµ = G ′ATABµ, (3.136)

transforming in the adjoint of SO(5), where A indexes all generators of SO(5) and

α indexes a triplet under SU(2)L. These explicitly break SO(5) once they take on

their background values

Gα = gTαL , G ′ = g′T 3
R, (3.137)
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that transform only under GEW, thereby generating a Higgs potential. At leading

order in the elementary couplings g and g′, there are only two SO(5)-invariant

operators [85]:

f 4ΦᵀGαGαΦ =
3

4
f 4g2s2

h, and f 4ΦᵀG ′G ′Φ =
1

4
f 4g′2s2

h, (3.138)

where Φ = UΦ0, as in Section 3.5.1. These are the only operators that may enter

the Higgs potential, accompanied by dimensionless coefficients. We see the gauge

bosons only contribute to the s2
h term in Veff, giving contributions of order f 4g(′)2

to the γ coefficient. It follows that gauge bosons by themselves cannot provide a

satisfactory Higgs vev (as we have stated before), so we next look to the fermion

contributions.

Double Tuning

We begin with the contributions to the Higgs potential from fermions in the 5 of

SO(5). Again, we only consider the third generation quarks, since these are the

most composite. As for the gauge bosons, we find the contributions through spurion

analysis. In a slight deviation from the example in Section 3.6.2, the spurions

here will not be the multiplets of elementary fermions, but rather the elementary-

composite coupling constants themselves, following Ref. [86]. The mixings will be

written as

Lmix = q̄L∆̃qΨ
q
R + t̄R∆̃tΨ̃

t
L + h.c., (3.139)

where the spurions ∆̃q,t are in the antifundamental representation 5̄ and take on the

background values

∆̃q =
∆q√

2

(
0 0 −i −1 0

−i 1 0 0 0

)
, ∆̃t = ∆t

(
0 0 0 0 1

)
. (3.140)

This is equivalent to the formulation in Section 3.6.2. From here finding the contri-

butions to the potential is simply an exercise in writing all SO(5) invariants using

∆̃q,t and Φ. At quadratic order in the spurions, there are two invariant operators

(in the unitary gauge)

Φᵀ∆̃†q∆̃qΦ =
∆2
q

2
s2
h, and Φᵀ∆̃†t∆̃tΦ = ∆2

t (1− s2
h). (3.141)

We see that, once again, only the s2
h term in the potential receives any contributions.

It is only once we go to quartic order in the spurions that s4
h terms appear. By näıve

dimensional analysis, the coefficients in the potential must therefore be of the form

γ = a
Nc

16π2
∆2m2

∗, β = b
Nc

16π2
∆4, (3.142)
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where a and b are dimensionless parameters of order unity, Nc = 3 is the number of

colours, and ∆ is shorthand for ∆q or ∆t. Barring any significant cancellations in a

and b, the fine-tuning of the model Equation (3.135) is then expected to be21

∆BG ≈
1

2

(m∗
∆

)2 1

ξ
. (3.143)

So in the 5 model, the fine-tuning is enhanced by a factor (m∗/∆)2 from the

näıve estimate. This phenomenon was noticed in Ref. [85] and discussed more

comprehensively in Refs. [86, 87]. It is understood as a double tuning: first there

needs to be a tuning of order (m∗/∆)2 to make the s4
h term comparable in size to

the s2
h term, and on top of that the overall scale of the potential needs to be tuned

to result in a small misalignment ξ.

It should be clear that the double tuning will be present in any model in which γ

arises at quadratic order in the spurions while β only arises at quartic order. From

the possible invariants in the different representations of SO(5) listed in Ref. [87],

it is seen that the 10 representation also suffers from a double tuning, and only the

14 representation avoids it with an invariant in s4
h at quadratic order. As long as

the left-handed quark doublet is partnered to a 14, the coefficients in the potential

will be of order

γ = a
Nc

16π2
∆2m2

∗, β = b
Nc

16π2
∆2m2

∗, (3.144)

giving the minimal fine-tuning

∆BG ≈
1

2ξ
. (3.145)

By this criterion, models with qL ∼ 14 are preferable to others. It would appear at

first that minimally tuned models have the disadvantage of tending to predict too

large a Higgs mass because of a lack of parametric suppression of β, but a further

analysis reveals the Higgs mass is equally tuned across the different models [69].

As a final note, we mention that the BG fine-tuning measure is not particularly

suited for quantifying tuning in a doubly-tuned model. With double tuning, two

separate parameters need to be tuned to produce the correct value of an observable,

but the BG measure only takes the maximum tuning of all parameters. A more

sophisticated tuning measure that takes into account the dependencies of double-

and higher-order tunings has recently been developed for use in CHMs [30, 88],

though we will not go into the details here.

21The gauge contribution is neglected, since it only provides small corrections.
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3.8 Multi-Site Models and Collective Breaking

If we are to analyse composite Higgs models, the Coleman-Weinberg potential poses

a clear problem: it is quadratically and logarithmically divergent in the high-energy

cutoff Λ of the theory, generically sabotaging its calculability. How can we construct

predictable models in light of this? Well, when the Goldstone symmetry G is exact,

the effective potential vanishes and everything is perfectly predictable. It is once G is

explicitly broken that operators are introduced into the Lagrangian that allow loop

diagrams that give rise to a divergent effective potential. The key to constructing

a predictable model, then, lies in restricting the allowable operators so that none

produces a quadratic or logarithmic divergence in the effective potential. This is

done by extending the symmetry structure of the theory, leading to the idea of multi-

site models and collective symmetry breaking [42, 85]. To describe such models,

though, we must acquaint ourselves once again with the CCWZ formalism for special

cases of symmetry breaking structures.

3.8.1 Spontaneous Breaking to the Diagonal Subgroup

Ultimately, the effective potential will be rendered calculable by extending the sym-

metry group G to a product group GL × GR, which then spontaneously breaks to

GL+R. Here the groups are all isomorphic to G, with the L and R subscripts de-

noting whether the group acts on left- or right-handed fields. GL+R is the diagonal

subgroup of GL×GR, containing all elements of the product group that have equal

left- and right-handed transformations. Fortunately this is an exceptional type of

breaking that allows the NGB transformation rule Equation (3.47) to be given ex-

plicitly in terms of known group elements. To show this, we summarise the detailed

exposition in Ref. [65].

The exception comes from the fact that (GL ×GR)/GL+R is a symmetric space,

meaning that in addition to the Lie algebra commutation relations in Equations (3.40)

and (3.41), also the following is satisfied:

[T̂a, T̂b] = if γ
ab Xγ + i��

�*0
f c
ab T̂c, (3.146)

where the same convention for generators is being used as in Section 3.4, i.e. Xα are

the generators for the diagonal subgroup and T̂a are the remaining generators of the

product group. By inspection, swapping the sign of all T̂a generators preserves all of

the commutation relations and is therefore an automorphism of the Lie algebra. We

shall denote this operation τ . It follows that any valid equation will remain valid

under the action of τ . In particular, since the NGB matrix is given by

U [~θ] = ei
√

2
f
θaT̂a , (3.147)
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we have

τ(U [~θ]) = U−1[~θ], (3.148)

and from the definition of the Maurer-Cartan form Equation (3.49), this implies

aµ[U−1] = τ(aµ[U ]) = −daµ[U ]T̂a + eαµ[U ]Xα,

=⇒ dµ[U ] =
1

2
(aµ[U ]− aµ[U−1]), (3.149)

where we are not considering the gauge field Aµ for now. Direct substitution of

Equation (3.149) using Equation (3.49) into the NGB Lagrangian yields

L(2) =
f 2

4
Tr
[
d†µd

µ
]

=
f 2

16
Tr
[
(∂µΣ−1)(∂µΣ)

]
, (3.150)

where Σ(x) = U2(x). The automorphism can be used to find an equivalent trans-

formation rule for U :

U−1 = τ(U)
g∈G−−→ τ(gUh−1) = τ(g)τ(U)τ(h−1) = τ(g)U−1h−1

=⇒ U
g∈G−−→ hUτ(g)−1, (3.151)

resulting in a simple transformation rule for Σ:

Σ
g∈G−−→ (gUh−1)(hUτ(g)−1) = gΣτ(g)−1. (3.152)

So far this analysis applies to any symmetric space. Now to see how this applies

in the case of diagonal breaking. To make the notation more convenient, group

elements will be written as matrices: for g ∈ GL ×GR, we can write

g =

(
gL 0

0 gR

)
(3.153)

for some gL,R ∈ GL,R. Then the generators will in general be given by

Xa =
1√
2

(
Ta 0

0 Ta

)
, T̂a =

1√
2

(
Ta 0

0 −Ta

)
, (3.154)

where Ta are the generators of the original group G. Notice that the automor-

phism τ , which changes the sign of T̂a, simply interchanges the blocks in T̂a - the

only distinguishing feature between left- and right- group elements. That is, the

automorphism swaps left- and right- group transformations.

To arrive at the transformation rule for Σ, we first calculate

U [~θ] = ei
√

2
f
θaT̂a =

(
e
i
f
θaTa 0

0 e−
i
f
θaTa

)
, (3.155)
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so that

Σ(x) = U2(x) =

(
ei

2
f
θa(x)Ta 0

0 e−i
2
f
θa(x)Ta

)
=:

(
Ω(x) 0

0 Ω−1(x)

)
. (3.156)

And under a GL ×GR transformation, this will transform as

Σ→ gΣτ(g)−1 =

(
gL 0

0 gR

)(
Ω(x) 0

0 Ω−1(x)

)(
g−1
R 0

0 g−1
L

)
, (3.157)

or more simply,

Ω(x)→ gLΩ(x)g−1
R . (3.158)

Heavy use will be made of this transformation property throughout the rest of this

work. As a final note, it is conventional to rescale f →
√

2f for models of this form

so that the NGB fields in Ω have the same normalisation factor as in the usual NGB

matrix U . Doing this results in the NGB Lagrangian

L(2) =
f 2

4
Tr
[
(∂µΩ−1)(∂µΩ)

]
, for Ω(x) := ei

√
2
f
θa(x)Ta . (3.159)

If gauge fields are to be included, the partial derivatives should be converted to co-

variant derivatives in accordance with the NGB transformation rule Equation (3.158).

In terms of moose diagrams, this model is represented precisely by

Site:

Global:

Gauged:

GL

Ω

GR

∅∅

. (3.160)

Here a new “site” of fields has been introduced, whose placement shows it transforms

under GR and not GL. The fact that Ω lies above an arrow directed from GR to

GL means it transforms under the product group as in Equation (3.158). It is to

be understood by the arrangement of the groups that the global groups on each site

are spontaneously broken to their diagonal subgroup.

3.8.2 Hidden Local Symmetry

There is a remarkable connection between models of GL × GR → GL+R symmetry

breaking and the non-linear σ-model of spontaneously broken G → H symmetry,

known as Hidden Local Symmetry (HLS) [89–91]. Specifically, the two models are

gauge-equivalent (under certain conditions) if GR has a gauged subgroup HR
∼= H.
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Pictorially,

Site:

Global:

Gauged:

G

U
H

∅

∼=

GL

Ω

GR

HR∅

. (3.161)

Many models of composite Higgs, and indeed the models considered in this work,

utilise the HLS framework not just to extend the symmetry structure of the theory,

but also as a method of introducing heavy composite vector resonances into theories

based on the simple non-linear G→ H model.

The equivalence is seen by first considering the diagonal breaking GL×GR → GL+R.

As in the previous section, the NGBs will be described by a matrix

Ω(x) = ei
√

2
f
θaΩ(x)Ta , transforming as Ω(x)

(gL,gR)∈GL×GR−−−−−−−−−−→ gLΩ(x)g−1
R , (3.162)

where Ta are the generators of G ∼= GL
∼= GR. Note there will be dim(G)-many

NGBs, which Equation (3.162) shows transform in the adjoint representation of

GL+R. But actually not all of these are physical; the gauge bosons of HR will

eat those NGBs in the adjoint representation of HR and become massive, leaving

dim(G)−dim(H) many NGBs transforming under HR in the leftover representation

rG/H defined by Equation (3.42). Already parallels with the non-linear G → H

model are apparent. This gauge structure will be fleshed out in greater generality

shortly.

Now the gauged subgroup HR explicitly breaks the GL × GR symmetry to only

GL × HR, assuming HR is its own normaliser subgroup in GR. Under this exact

group, the NGB matrix transforms as

Ω(x)
(gL,hR)∈GL×HR−−−−−−−−−−→ gLΩ(x)h−1

R (x). (3.163)

As it stands, Ω still contains the unphysical degrees of freedom of the NGBs that

are eaten by the gauge bosons. These can be removed by a similar trick as before in

Equation (3.35), except now by using a gauge transformation instead of a vacuum

vector. Specifically, we express Ω as the product of two group elements

Ω(x) = UΩ[~θ(x)] · Ξ[~ω(x)], (3.164)

where

UΩ[~θ(x)] = ei
√

2
f
θa(x)T̂a , Ξ[~ω(x)] = e

i
√

2
fΞ
ωα(x)Xα . (3.165)

Again, Xα are the generators of H ∼= HR and T̂a are the generators of G that do

not generate H. Observe, the factor Ξ can be removed by a gauge transformation
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using hR = Ξ:

Ω(x)→ Ω(x)Ξ[~ω(x)]−1 = UΩ[~θ(x)]. (3.166)

This is the unitary gauge, having no unphysical NGBs in its description. As the

notation suggests, the equivalence between this model and the one of spontaneous

G→ H symmetry breaking comes from identifying UΩ with the usual NGB matrix

U of the non-linear model. However, it is a little premature to declare equivalence

just yet - the transformation properties of UΩ under GL need to be compared to the

transformation Equation (3.47) of U under G. Under GL, UΩ will generically not be

expressible as an exponential of broken generators and must instead be decomposed

similarly to Ω in Equation (3.164):

UΩ[~θ(x)]
gL∈GL−−−−→ gLUΩ[~θ(x)] ≡ UΩ[~θ(gL)(x)] · Ξ[~ω(gL)(x)]. (3.167)

But with another gauge transformation, the second factor can again be removed.

As long as the HR gauge symmetry is continually spent in this way to remain in the

unitary gauge, the UΩ transformation will then take the form

UΩ[~θ(x)]
gL∈GL−−−−→ gLUΩ[~θ(x)]h−1

R [gL, ~θ(x)], (3.168)

where h−1
R [gL, ~θ(x)] is the appropriate gauge transformation cancelling out Ξ[~ω(gL)(x)].

But this is exactly the transformation rule Equation (3.47)! Save for the massive

gauge bosons, there is only a notational difference between the two theories. The

equivalence can be made exact by decoupling the gauge bosons, sending their gauge

coupling to infinity to make them infinitely heavy (see Equation (2.21)). All trace of

the gauge symmetry disappears in this equivalence: there are no gauge bosons, and

we are not free to perform a gauge transformation lest we leave the unitary gauge.

For this reason, this type of equivalence is known as a Hidden Local Symmetry.

For greater generality, HLS also applies when a subgroup LL ⊂ GL is gauged, if

the corresponding L ⊂ G is also gauged in the non-linear model. In this case, the

considerations above remain the same except for a slight change in the NGB and

gauge boson spectra. It will be convenient for this analysis to split the generators

La and Xα of LL and HR into those that generate the intersection L ∩ H (which

will be indexed by letters with tildes), and those that do not (indexed by letters

without tildes). This is because those generating the intersection can be linearly

combined into unbroken generators of GL+R, therefore coupling to massless gauge

bosons, while others will couple to massive gauge bosons.

Before we demonstrate this algebraically, however, there is a subtlety in this

situation that must be addressed. The subtlety is that the Lagrangian

L(2) =
f 2

4
Tr
[
d†µd

µ
]

(3.169)
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is no longer the most general possible at the two-derivative level. The difference

comes from there now being gauge fields AH,µ = AαH,µXα + Aα̃H,µXα̃ transforming

under HR as22

AH,µ → h(x)AH,µh
−1(x) +

i

gH
h(x)∂µh

−1(x), (3.170)

so that by Equation (3.52), the quantity (gHAH,µ − eµ) transforms as

(gHAH,µ − eµ)→ h(x)(gHAH,µ − eµ)h−1(x), (3.171)

leading to a new invariant term for the Lagrangian

Tr [(gHAH,µ − eµ)(gHA
µ
H − eµ)] . (3.172)

It can be seen from Equation (3.57) that to first order, eµ = gLA
ã
L,µLã. Then recall-

ing the generators are normalised such that Tr [XaXb] = δab, the general Lagrangian

is seen to have the form

LNGB =
f 2

4

∑

a

g2
LA

a
L,µA

a,µ
L +

f 2
Ξ

4

(∑

α

g2
HA

α
H,µA

α,µ
H +

∑

ã

(gHA
ã
H,µ − gLAãL,µ)2

)
,

(3.173)

having introduced a new NGB scale fΞ for the new invariant. This Lagrangian yields

the gauge field mass-mixing matrix

m2
gauge =

1

4




AaL,µ AαH,µ AãL,µ Aα̃H,µ
Aa,µL f 2g2

L 0 0 0

Aα,µH 0 f 2
Ξg

2
H 0 0

Aã,µL 0 0 f 2
Ξg

2
L −f 2

ΞgLgH

Aα̃,µH 0 0 −f 2
ΞgLgH f 2

Ξg
2
H



. (3.174)

Noting this is just the SM electroweak mass matrix Equation (2.34) with slightly

different notation, the mass basis is found to have the same form as the EW sector,

with fields

Aa,µL , Aα,µH , Aã,µL−H :=
gHA

ã,µ
H − gLAã,µL√
g2
L + g2

H

, Aã,µL+H :=
gLA

ã,µ
H + gHA

ã,µ
L√

g2
L + g2

H

, (3.175)

having respective masses

m2
L =

1

2
f 2g2

L, m2
H =

1

2
f 2

Ξg
2
H , m2

L−H =
1

2
f 2

Ξ(g2
L + g2

H), m2
L+H = 0. (3.176)

22This is simply using Equation (2.13) along with the fact that (∂µh)h−1 = −h(∂µh
−1).
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In total, then, there are dim(L ∩ H)-many massless gauge fields, as was reasoned

intuitively, and dim(L ∪H)-many massive ones. If L ∪H = G, and in particular if

L = G, then all NGBs will be rendered unphysical, each being eaten by a massive

gauge boson and being able to be gauged away. What happens in the limit gH →∞
that previously reproduced the non-linear model? In this case, all of the Aα,µH and

Aã,µL−H fields will be decoupled, becoming infinitely massive, leaving the massless

fields Aã,µL+H = Aã,µL and the finite-mass fields Aa,µL . But of course this is exactly

the spectrum of the non-linear model when L ⊂ G is gauged, demonstrating the

equivalence between the two models once again. The general picture for HLS is then

Site:

Global:

Gauged:

G

U
H

L

∼=
gH →∞

GL

Ω

GR

HRL

. (3.177)

This equivalence can be used in either direction, hiding a local symmetry to produce

a non-linear model, or extending a non-linear model to a theory with extra gauge

symmetry.

3.8.3 Multi-Site Formalism

HLS shows that the one-site model of G → H symmetry breaking has an almost

equivalent description as a two-site model with the extended symmetry structure

GL×GR → GL+R, where HR ⊂ GR is gauged. Combining the ideas of the previous

two sections can generalise this even further, resulting in multi-site models that have

sufficiently elaborate symmetry structures to admit a finite Higgs potential. It is

these sorts of models that we will be exploring in later sections.

Adding a Level of Heavy Vector Resonances

Let us consider the HLS extension of GL ×GR → GL+R symmetry breaking:

Site:

Global:

Gauged:

GL ×GR

U
GL+R

∅

→

GL ×GR

Ω̃

G′L ×G′R

GL+R∅

. (3.178)

Here the primes on the groups, not the L and R subscripts, distinguish the sites

they act on. This symmetry structure is not particularly relevant as it stands, but

it will let us uncover some surprising connections similar to HLS between different

types of models. Once again we proceed by summarising the excellent exposition in

Ref. [65].
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In Equation (3.178) the NGB matrix is denoted as Ω̃ in order to distinguish it

from the usual NGB matrix Ω that does not transform under such product groups.

From Equation (3.162), Ω̃ transforms as

Ω̃
(g̃,g̃′)∈G̃×G̃′−−−−−−−→ g̃Ω̃g̃′−1, (3.179)

where for convenience, the product groups are denoted by G̃(′) := G
(′)
L × G

(′)
R . Ex-

pressing the product group elements and NGBs in matrix notation (compare with

Equation (3.153)),

g̃(′) =

(
g

(′)
L 0

0 g
(′)
R

)
, Ω̃ =

(
Ω1 0

0 Ω−1
2

)
, (3.180)

for some fields Ω1,2, the transformation Equation (3.179) manifests as

Ω1
(g̃,g̃′)∈G̃×G̃′−−−−−−−→ gLΩ1g

′−1
L

Ω2
(g̃,g̃′)∈G̃×G̃′−−−−−−−→ g′RΩ2g

−1
R . (3.181)

We recognise that Ω1 and Ω2 respectively transform as NGB matrices of GL×G′L and

G′R×GR symmetries broken to their diagonal subgroups. But note that G′L×G′R is

explicitly broken to the gauged diagonal subgroup GL+R. Under the exact symmetry

group, where g′L = g′R ≡ g′, the matrices transform as

Ω1(x)
(g̃,g̃′)∈G̃×GL+R−−−−−−−−−→ gLΩ1(x)g′−1(x)

Ω2(x)
(g̃,g̃′)∈G̃×GL+R−−−−−−−−−→ g′(x)Ω2(x)g−1

R , (3.182)

showing the model Equation (3.178) has an equivalent description as

GL

Ω1

GL+R

Ω2

GR

∅GL+R∅

. (3.183)

We can go even further by noting that the product Ω ≡ Ω1Ω2 transforms only under

GL ×GR:

Ω(x)
(g̃,g̃′)∈G̃×GL+R−−−−−−−−−→ gLΩ(x)g−1

R , (3.184)
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the exact transformation found in Section 3.8.1! The model therefore has yet another

equivalent description as

Site:

Global:

Gauged:

GL

Ω

GR

∅∅

, (3.185)

where also a set of heavy GL+R gauge fields is present. It is not difficult to believe,

based on what was found previously, that these relations between models extend in

greater generality to

Site:

Global:

Gauged:

G

U
H

L

gauge

H

GL

Ω

GR

HL

gauge

GL+R

GL

Ω1

GL+R

Ω2

GR

HGL+RL

.

(3.186)

This method of introducing vector resonances is equivalent to a wide range of other

approaches [92]. Adding a level of heavy vector resonances, then, only requires

factoring the NGB matrix Ω of GL×GR → GL+R symmetry breaking into a product

of matrices Ω1Ω2 and introducing another G symmetry. Without a relation between

the groups associated to Ω1 and Ω2, these NGB matrices may have independent

NGB decay constants f1, f2, making the NGB Lagrangian Equation (3.159) into

L(2) =
2∑

i=1

f 2
i

4
Tr
[
(∂µΩ−1

i )(∂µΩi)
]
. (3.187)

Note there is still a GL+R gauge freedom that may be spent on Ω1 and Ω2, but this

will not affect the product matrix Ω. Since either Ω1 or Ω2 may be set to the identity

with a suitable gauge transformation, the physical NGBs of G→ H breaking cannot

be parametrised by either matrix individually, but only by the product matrix Ω.

The N-Site Model

Of course, there is no reason to stop at adding only one level of heavy vector res-

onances. We could just as well add another level of heavy GL+R resonances by

splitting Ω2 itself into a product of NGB matrices, and so on ad infinitum. Doing

so results a model of the form

Site:

Global:

Gauged:

G1

L

Ω1

G2

G2

Ω2

G3

G3

· · ·
GN

GN

ΩN

GN+1

H

, (3.188)
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having relabelled the subscripts on the groups for clarity. Introduced in Ref. [85],

Equation (3.188) is named the (N+1)-site Discrete CHM (DCHM) on account

of its moose structure. Actually the name runs deeper, for the sites of fields in

this construction are viewed as lattice points in a discretisation of a fifth dimen-

sion. This is the sense in which CHMs are connected to the 5D Randall-Sundrum

models mentioned in Section 2.5 - DCHMs are interpreted as deconstructed ver-

sions of the extra-dimensional models. See Ref. [93] for the origins of dimensional

deconstruction.

The full 5D theory is recovered in the limit N → ∞, with the gauge couplings

of the sites becoming a continuously varying warp factor of the metric along the

fifth dimension. A finite number of sites is simply regarded as a truncation of the

infinite Kaluza-Klein tower of resonances present in the 5D models, valid in the low-

energy limit [94]. Interestingly, this type of construction can be used to describe

QCD, and there it is found that the geometry of the fifth dimension is not of much

consequence for the 4D theory, and truncating at around three levels of resonances

to fit experiment is about just as good as using the full 5D model [95].

This extra-dimensional viewpoint motivates much of the structure of DCHMs,

to be detailed below.

Boson Sector

First of all, let us unpack what Equation (3.188) represents. The diagram tells

us that the (N+1)-site DCHM features N + 1 sites of fields (obviously), with Site

k acted upon by a global symmetry group Gk. Symmetries of neighbouring sites

spontaneously break to their diagonal subgroups:

Gk ×Gk+1 → Gk+(k+1), k = 1, . . . , N, (3.189)

and N matrices Ωk parameterise the resulting NGBs. The NGB matrices transform

as

Gk ×Gk+1 : Ωk → gkΩkg
−1
k+1, (3.190)

with covariant derivatives

DµΩk = ∂µΩk − igkAk,µΩk + igk+1ΩkA(k+1),µ, (3.191)

where in a slight abuse of notation gk stands for an element of Gk in Equation (3.190)

but is a gauge coupling in Equation (3.191), while Ak,µ is the gauge field of Gk (or

of L for k = 1, or H for k = N + 1). The generalisation of the NGB Lagrangian
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Equation (3.187), including gauge field kinetic terms, is23

LNGB =
N∑

k=1

f 2
k

4
Tr
[
(DµΩ−1

k )(DµΩk)
]
− 1

4

N+1∑

k=1

Tr [Ak,µνA
µν
k ] . (3.192)

Many of these NGBs are unphysical, being eaten by the N − 1 levels of heavy

vector resonances in the adjoint of G. This leaves dim(G)-many NGBs which will

be eaten by the gauge bosons of L and H according to the procedure specified by

Section 3.8.2. The specifics are different in this case because the gauge bosons of

the different sites will mix into massless diagonal combinations and massive axial

combinations, but the counting remains the same.

The product

Ω :=
N∏

k=1

Ωk (3.193)

transforms by Equation (3.190) as the NGB matrix of G1 × GN+1 → G1+(N+1)

symmetry breaking. Ultimately we will only be interested in models with NGBs of

G→ H breaking, so hereafter we focus on the HLS limit where the H gauge fields

are decoupled24:

Site:

Global:

Gauged:

G1

L

Ω1

G2

G2

Ω2

G3

G3

· · ·
GN

GN

ΩN
H. (3.194)

We will refer to Equation (3.194) as the N-site model, not to be confused with the

N-site DCHM. In this limit Ω will act as the NGB matrix for G1 → H symmetry

breaking, transforming as

G1 ×H : Ω(x)→ g1Ω(x)h−1(x). (3.195)

Generally, Ω can be written in the form

Ω(x) = ei
√

2
f
θaΩ(x)Ta , (3.196)

where Ta are the generators of G. The individual matrices Ωk can be put similarly,

with their own normalisations for the phase fields:

Ωk(x) = e
i
√

2
fk

f
fk
θaΩ(x)Ta . (3.197)

23This Lagrangian assumes that the decay constants for each of the factors of the decomposition
Ωk(x) = UΩk

(x)Ξk(x) are equal: fk = fΞk
.

24We did not consider this limit from the start because the boson content is only understood by
first considering the general DCHM.
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Notice that to match with Equation (3.193), or to canonically normalise the θa

kinetic terms in Equation (3.192), these decay constants must be related by

1

f 2
=

N∑

k=1

1

f 2
k

. (3.198)

Much gauge freedom exists with which to manipulate the forms of Ωk. One simple

possibility is the Site N holographic gauge, defined by

Ωk(x) = 1 for k = 1, . . . , N − 1,

ΩN(x) = U(x) = ei
√

2
f
θα(x)Xα , (3.199)

where Xα are the generators of H. This removes the unphysical NGBs from the

description and shifts all the physical NGB dependence onto ΩN . It is reached from

the original gauge Equation (3.197) by the gauge transformations

gk(x) =
k−1∏

n=1

Ωn(x) for k = 2, . . . , N,

h(x) = U(x)−1Ω(x) ∈ H. (3.200)

Another is the Site 1 holographic gauge, defined similarly but with Ω1 = U(x)

and ΩN = 1. It is reached from the Site N holographic gauge with the gauge trans-

formations gk = U(x)−1 for k = 2, . . . , N . We will be using this gauge throughout

the rest of this work as it produces relatively uncomplicated couplings between fields.

Fermion Sector

The sites of the N-site model must of course each be populated by fields transforming

under that site’s symmetry group. To respect all of the symmetries, fields of two

different sites can only couple together through NGB matrices Ωk. For the sake of

illustration, let us assume the fermions of each site transform in the fundamental

representation:

Ψk
gk∈Gk−−−−→ gkΨk. (3.201)

Then an appropriate invariant interaction term will be

Lint ⊃ Ψ̄kΩkΨk+1. (3.202)

We could also have, for example,

Lint ⊃ Ψ̄kΩkΩk+1Ψk+2, (3.203)



§3.8 Multi-Site Models and Collective Breaking 81

along with all of the other obvious generalisations. But this unwieldy set of fermion

interactions may be curtailed with guidance from the 5D models. Specifically, we will

not be considering couplings between non-neighbouring sites as in Equation (3.203)

because these translate, in the extra-dimensional models, to a violation of spacetime

locality [96]. This “locality in theory space” is not necessary in a general CHM, but

does provide the minimal structure necessary for calculability, passed down from

the calculability of the 5D models. Fermion interactions, including partial compos-

iteness, are therefore enacted entirely through terms of the form Equation (3.202)

in the models we consider.

The fermion content is refined by following the example of the 5D models further.

A fermion in the 5D bulk gives rise to a Dirac fermion25 at each site in the 4D theory,

and with the appropriate boundary conditions yields a massless chiral fermion on

the leftmost site [12, 44]. We therefore identify this as the elementary site, so each

chirality ψL or ψR of an elementary fermion will be coupled to an associated tower

of composite Dirac fermions Ψk or Ψ̃k throughout the remaining sites. These towers

cannot interact at any site k < N , for otherwise ψL could couple to ψR through

a chain of interactions that does not include the Higgs field and ψ would possess

a mass before EWSB (to see this, take the Site N holographic gauge). Fermion

couplings are then constrained to have the very particular structure

ψL
∆1
L

Ψ2
∆2
L

Ψ3 · · · ΨN

ψR
∆1
R

Ψ̃2
∆2
R

Ψ̃3 · · · Ψ̃N

mY , Y,

Elem. Site 2 Site 3 Site N

(3.204)

where ∆k
L,R are the coupling strengths between sites, mY is a mass-like coupling,

and Y is a Yukawa-like coupling. Each chiral component of each composite fermion

will only be coupled to either the preceding or the following site, and not both at

once, simply because this is the minimal working structure. The chiral components

at each site will be coupled together with a Dirac mass term. In total, the fermion

Lagrangian has the form

Lfermion = ψ̄i /Dψ
}

elementary kinetic

+
N∑

k=2

(
Ψ̄k(i /D −mk

L)Ψk + ¯̃Ψk(i /D −mk
R)Ψ̃k

) }
composite kinetic

+
N∑

k=1

(
∆k
LΨ̄k

LΩkΨ
k+1
R + ∆k

R
¯̃Ψk
LΩkΨ̃

k+1
R

)
+ h.c.

}
link

−mY Ψ̄N
L Ψ̃N

R − Y Ψ̄N
L ΦΦ†Ψ̃N

R + h.c.
}

Yukawa-like.

(3.205)

25All fermions in 5D are Dirac fermions [97].
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Here, the fields Ψ1 and Ψ̃1 on Site 1 are the respective elementary fields ψL and

ψR, and Φ := ΩNΦ0 is defined in terms of the vacuum vector Φ0 invariant under H,

so that Φ transforms only under GN . Again, these fields are assumed to be in the

fundamental representation. Other representations will be considered in Chapter 4.

3.8.4 Collective Breaking

Having now seen some models with extended symmetry sectors, let us investigate

whether these are sufficiently restrictive for the Higgs potential to be finite and

calculable. To start with, let us consider the simple extension of the symmetry

structure G→ H provided by HLS (see Section 3.8.2),

Site:

Global:

Gauged:

G

U
H

L

→

GL

Ω

GR

HRLL

. (3.206)

Now there are two independent symmetries GL and GR, under which the NGB

matrix transforms as

Ω(x)→ gLΩ(x)g−1
R . (3.207)

In the same way the original NGB symmetry G had to be broken to generate an

effective potential, now both GL and GR need to be broken for an effective potential

to be generated. Indeed, any NGB vev Ω0, could be removed by a symmetry trans-

formation gL = Ω−1
0 or a transformation gR = Ω0. Only with a “collective breaking”

of both symmetries can the NGB vevs become physical, signalling they are actually

pNGBs with a non-vanishing potential [42].

Does this extra symmetry actually protect the Higgs potential from divergences

though? Näıve dimensional analysis shows that the one-loop contributions to the

effective potential, using the leading order NGB Lagrangian, are of the form [85]

∼ Λ4

16π2

(
θ

f

)NE (gf
Λ

)2η (µ
Λ

)χ
∝ Λ4−2η−χ, (3.208)

where NE is the number of external NGB legs, 2η is the number of gauge field

insertions, χ is the number of fermion mass-like insertions, and θ, g, µ are the

corresponding NGB fields, gauge couplings, and mass terms, respectively. We see

the number of gauge and fermion insertions in a given loop dictate its degree of

divergence.

Spurion analysis can be used to determine the number of these insertions. The

gauge couplings and fermion mass-like couplings are imagined to be dynamical fields,

transforming under the symmetries as in Section 3.7.1, which explicitly break the

symmetries when they assume their actual constant values. This allows operators



§3.8 Multi-Site Models and Collective Breaking 83

that contain the explicit symmetry breaking terms that contribute to the pNGB

potential to be constructed. Focussing on the gauge couplings, for example, the

spurions GaL and GaH will transform as

GL : GaL → gLGaLg−1
L ,

GR : GaH → gRGaHg−1
R . (3.209)

When they are set to their physical values proportional to the group generators

(using the same notation as previous sections)

GaL → gLL
a,

GaH → gHX
a, (3.210)

they explicitly break GL × GR to only LL × HR because they no longer transform

under the full groups as in Equation (3.209). With the transformation properties

Equations (3.207) and (3.209), it is seen that the leading one-loop gauge contribution

to the effective potential comes from operators such as

Tr
[
(GLΩGH)(GHΩ†GL)

]
. (3.211)

This contains 2η = 4 gauge field insertions, corresponding in Equation (3.208) to a

logarithmic divergence in the effective potential. A similar analysis can be done for

the fermion contributions, yielding the same result (though we shall not introduce

the machinery here). Success! The degree of divergence has been reduced from

quadratic to logarithmic. In fact, it can be shown that any extension of the näıve

non-linear G → H model without a quadratically divergent potential must have a

two-site structure [69].

Of course, we still would like the logarithmic divergence to go away. Motivated

by the success of extending the symmetry by HLS, we take the bold step of extending

the symmetry once again and consider the three-site DCHM:

Site:

Global:

Gauged:

GL

Ω1

G′

Ω2

GR

LL G′ HR

. (3.212)

Now to explicitly break the NGB symmetry, an operator must include both NGB

matrices Ω1,2 because the G′ gauge symmetry can be used to shift the NGB depen-

dence of Ω1 and Ω2 at will. Leading-order operators (in the gauge sector) for the

effective potential are then of the form

Tr
[
(GLΩ1G ′)(G ′Ω†1GL)

]
· Tr

[
(G ′Ω2GH)(GHΩ†2G ′)

]
. (3.213)
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This contains 2η = 8 gauge field insertions, ensuring a finite contribution to the

Higgs potential! Again, the same is true for the fermionic contributions too [85]. But

we warn that while removing the quadratic divergence from the potential requires

a two-site structure, a removal of the logarithmic divergence does not necessitate

a three-site DCHM. In fact, the slightly more minimal two-site model, where the

H gauge bosons are decoupled through HLS, is sufficient to avoid the logarithmic

divergence in the MCHM.

Because the quadratic and logarithmic divergences in the scalar potential Equa-

tion (3.122) are avoided in models with at least three sites, it must be true that the

Weinberg Sum Rules

(1)
∑

i

m2
i (Φc) is independent of Φc, (3.214)

(2)
∑

i

m4
i (Φc) is independent of Φc, (3.215)

are automatically satisfied in such models for sums over particles of each species, so

that the potential is equivalent to26

Veff(Φc) =
∑

particles i

ci
64π2

m4
i (Φc) log

(
m2
i (Φc)

)
. (3.216)

This would not be expected to hold in general; different coupling constants could be

assigned to composite fields in different H multiplets, for example, which would not

satisfy the Weinberg Sum Rules. With the symmetry structure imposed, however,

coupling constants must apply to whole composite G multiplet, which ensures the

rules are satisfied in the MCHM [98].

26Any units of mass can be used in Equation (3.216) - changing units only adds a constant, by the
Weinberg Sum Rules.



Chapter 4

The Two-Site Minimal 4D

Composite Higgs Model

This chapter is dedicated to providing a full description of the minimal viable 4D

composite Higgs model (M4DCHM), using the ideas of Chapter 3. First put forward

in Ref. [99], variations of this model have been studied extensively in the literature

- see in particular Refs. [30, 87, 98–101]. Here we give the complete Lagrangians

for three different realisations of the M4DCHM that vary in their fermion represen-

tations in Sections 4.1 to 4.3, and analyse their particle content in Section 4.6. In

preparation for our global fits of these models in Part II of this thesis, we also review

previous studies of the models in Section 4.7.

4.1 Symmetry Structure

First and foremost, the M4DCHM assumes the minimal symmetry content that

yields the Higgs doublet in the NGB spectrum and provides a finite and calcula-

ble Higgs potential, while facilitating composite fermion partners. We have already

reasoned that the minimal model is based on an overall SO(5) → SO(4) symme-

try breaking pattern so that the Higgs doublet is produced. We also know from

partial compositeness that SU(3)c group factors must be present to respect the SM

colour symmetry, and a final group factor of U(1)X was shown to be necessary in

Section 3.6.1 for quark partners to be assigned the correct hypercharge under the

definition

Y = T 3
R +X, (4.1)

where the isospin operator T 3
R is the third generator1 of SU(2)R ⊂ SO(5). So in

total, the breaking pattern is

SU(3)c × SO(5)× U(1)X︸ ︷︷ ︸
G

→ SU(3)c × SO(4)× U(1)X︸ ︷︷ ︸
H

. (4.2)

1See Appendix G for our convention with SO(5) generators.

85
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The breaking is enacted through HLS, using the two-site structure that is sufficient

for a finite Higgs potential:

Site:

Global:

Gauged:

ψ

G0

Ω1
Ψ, Ψ̃

G1

Ω2
H.

L0 G1

(4.3)

Site 0 is the elementary sector2, consisting of massless fields ψ with the same quan-

tum numbers as the non-Higgs SM fields. It mixes with the composite fields Ψ, Ψ̃ of

Site 1, so that physical fields are superpositions of elementary and composite states.

A global symmetry group Gk, isomorphic to the G of Equation (4.2), acts on Site k.

By Section 3.8.2, the unbroken gauge group of the theory (before EWSB) will be the

vector subgroup of L0 ×G1, which is isomorphic to L0. Since we wish to reproduce

the gauge symmetry of the SM, the elementary gauge group is taken to be

L0 := SU(3)0
c × SU(2)0

L × U(1)0
Y . (4.4)

The SM gauge bosons will be mixtures of those of L0 and G1.

4.2 Boson Sector

The spectrum of bosons can be reasoned from the discussion in Section 3.8.3. To

spell it out, there will be a set of heavy vector resonances in the adjoint of G,

including ten gauge bosons of SO(5), an abelian resonance of U(1)X , and eight

massive SU(3)c resonances (befittingly called “heavy gluons”). In addition, there

will be the massless gauge fields Gµ, Wµ, and Bµ of the SM. This leaves four uneaten

NGBs that constitute the Higgs doublet, parameterised by the matrix

Ω = Ω1Ω2. (4.5)

The physical W± and Z bosons are obtained after EWSB.

These mass eigenstates are not what we explicitly put into the Lagrangian. The

gauge sector will instead consist of G0
µ, W 0

µ , and B0
µ - the elementary counterparts

of the SM gauge fields - and ρGµ , ρµ, and ρXµ - the SU(3), SO(5), and U(1)X
gauge fields on the composite site. The sixteen SU(3) gauge bosons G0

µ and ρGµ will

mix into vector and axial combinations, giving respectively the SM gluons and the

heavy gluons. Similarly, the remaining fields mix into the heavy SO(5) and U(1)X
resonances, and the electroweak gauge bosons, as above.

2In contrast to the previous chapter, here we start counting at Site 0 to fit with the convention of
labelling elementary quantities with superscript zeros.
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It is straightforward to write the bosonic part of the Lagrangian for the M4DCHM;

indeed, it is simply that of Equation (3.192). To be explicit, we separate the La-

grangian into gauge and NGB contributions:

Lboson = Lgauge + LNGB. (4.6)

The gauge kinetic terms are simply

Lgauge =− 1

4
Tr
[
G0
µνG

0µν
]
− 1

4
Tr
[
W 0
µνW

0µν
]
− 1

4
B0
µνB

0µν

}
elementary

− 1

4
Tr
[
ρGµνρ

µν
G

]
− 1

4
Tr [ρµνρ

µν ]− 1

4
ρXµνρ

µν
X ,

}
composite (4.7)

where the field strength tensors (G0
µν , . . .) have the form

Xµν = ∂µXν − ∂νXµ + ig(X)[Xµ, Xν ] (4.8)

from Equation (2.15).

As for the NGBs, recall the matrices Ωk parameterise the NGBs of the breaking

of Gk−1×Gk to its vector subgroup. To write the NGB Lagrangian, it will therefore

be useful to first recast Ωk into independent matrices for each simple group factor

in G. In this set will be Ω1,X,G respectively associated to the SO(5), U(1)X , and

SU(3)c vector subgroup breakings between the elementary and composite sites, and

also Ω2 for the breaking SO(5)1 → SO(4). Each will carry its own NGB decay

constant f1,2,X,G that determines the scale of the associated symmetry breaking. By

Section 3.8.1, the NGB matrices will transform under the symmetries at each site

as

SO(5)0 × SO(5)1 : Ω1 → g0Ω1g
−1
1 , U(1)0

X × U(1)1
X : ΩX → g0ΩXg

−1
1 ,

SO(5)1 × SO(4) : Ω2 → g1Ω2h
−1, SU(3)0

c × SU(3)1
c : ΩG → g0ΩGg

−1
1 ,

(4.9)

where transformations gk come from Site k, and h ∈ SO(4). Accordingly, their

covariant derivatives are given by

DµΩ1 = ∂µΩ1 − i(g0W
0a
µ T

a
L + g′0B

0
µT

3
R)Ω1 + igρΩ1ρµ,

DµΩ2 = ∂µΩ2 − igρρµΩ2,

DµΩX = ∂µΩX − ig′0B0
µΩX + igXΩXρXµ ,

DµΩG = ∂µΩG − ig0
sG

0
µΩG + igGΩGρGµ .

(4.10)

We have introduced elementary gauge couplings g0, g′0, and g0
s mirroring the SM

couplings of Equation (2.1), as well as new composite couplings gρ, gX , and gG of

SO(5)1, U(1)1
X , and SU(3)1

c . Notice there are no H gauge fields, since these have

been decoupled through HLS. The generators TA = {T aL, T aR, T̂ a} of SO(5) have been
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grouped into SU(2)L, SU(2)R, and coset components (see Appendix G), allowing

the SO(5) resonances to be expressed as

ρµ = ρAµT
A = ρaLµT

a
L + ρaRµT

a
R + aaµT̂

a. (4.11)

While the SO(5) generators have been written explicitly in Equation (4.10), the

generators of SU(3)c are implicitly taken to be the usual (half) Gell-Mann matrices

λa/2.

Since SO(5) is spontaneously broken to SO(4), there is a vacuum vector Φ0

left invariant under SO(4), so the product Ω2Φ0 transforms as a fundamental of

SO(5)1. We will use a basis where Φ0 = (0, 0, 0, 0, 1)ᵀ, as before. With these, the

leading-order NGB Lagrangian is

LNGB =
∑

i=1,X,G

f 2
i

4
Tr
[
(DµΩi)

†(DµΩi)
]

+
f 2

2

2
(DµΩ2Φ0)ᵀ(DµΩ2Φ0), (4.12)

using the normalisation found in Section 3.2.2 for the non-linear σ-model matrix Ω2.

A clever choice of gauge allows this Lagrangian to be expressed more transparently.

We will spend the gauge symmetry to move to the Site 0 holographic gauge, removing

the unphysical NGBs by setting

Ω1 = e
i
√

2
f1
haT̂a

, Ω2 = ΩX = ΩG = 1, (4.13)

where ha are the Higgs doublet components. From here, the electroweak gauge

symmetry can be used to go to the SM unitary gauge in which ha = (0, 0, 0, h)ᵀ.

Hereafter, all equations should be understood to be in this gauge unless otherwise

stated. Now gauge boson mixing terms in Equation (4.12) become readily apparent:

LNGB =
f 2

1

4
Tr
[
(DµΩ1)†(DµΩ1)

]
− f 2

2 g
2
ρ

2
(ρµΦ0)ᵀ(ρµΦ0)

+
f 2
X

4
(g′0B

0
µ − gXρXµ)2 +

f 2
G

4
(g0
sG

0
µ − gGρGµ)2. (4.14)

We see from Appendix F that in the unitary gauge the NGB matrix comes out to

Ω ≡ Ω1Ω2 = Ω1 =




1

1

1

cos h
f1

sin h
f1

− sin h
f1

cos h
f1



, (4.15)

so the first line of Equation (4.14) hides a mixing between a4
µ and the Higgs:

LNGB ⊃
1

2
(∂µh)(∂µh) +

f1√
2
gρa

4
µ∂

µh+
g2
ρ

4
(f 2

1 + f 2
2 )a4

µa
4µ, (4.16)
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which also follows from Equation (3.59). This mixing is removed, keeping the Higgs

kinetic term conventionally normalised, by redefining the fields

a4
µ → a4

µ −
√

2

gρ

f

f 2
2

∂µh, h→ f1

f
h, where

1

f 2
≡ 1

f 2
1

+
1

f 2
2

. (4.17)

Note that the Higgs interactions now depend only on the quantity

sh := sin

(
h

f

)
. (4.18)

The rest of the bosonic interactions may be gleaned from the presented information,

though we will not explicitly expand the Lagrangian any further here.

4.3 Fermion Sector

t0R

q0
L

b0
R

∆t

∆q

∆b

Ψ̃t
L

Ψq
R

Ψ̃b
L

mt

mq

mb

Ψ̃t
R

Ψq
L

Ψ̃b
R

mYt , Yt

mYb , Yb

Figure 4.1: Structure of couplings between elementary and composite fermions.

At this point, the remaining freedom in specifying a particular model lies in

establishing the fermionic content of the composite site and the representations of

SO(5) × U(1)X under which it transforms. As mentioned in previous chapters, we

restrict to the case where the composite sector mixes only with the third generation

elementary quarks in the interests of reducing the parameter space of the theory.

This is a reasonable limiting case, for the lighter fermions must mix with the com-

posite sector only weakly if their left- and right-handed chiralities mix with roughly

equal strengths.

We will be considering three different models in this work: the M4DCHM5−5−5,

the M4DCHM14−14−10, and the M4DCHM14−1−10, all of which have been outlined in

Ref. [100]. The labels M4DCHMq−t−b specify the representations (q, t,b) of SO(5)

in which the composite partners (Ψq, Ψ̃t, Ψ̃b) of the elementary (q0
L = (t0L, b

0
L)ᵀ, t0R, b

0
R)

transform. To help keep track, the structure of the elementary-composite interac-

tions is depicted graphically in Figure 4.1.

Our reasoning for choosing these models stems largely from the considerations

in Sections 3.6.1 and 3.7.1. Namely, because they all provide custodial protection

for the ZbLb̄L coupling from tree-level corrections, and because it will be inter-

esting to compare models with qualitatively different fine-tuning behaviours. The

M4DCHM5−5−5, recall, suffers from a double tuning in the Higgs potential, while
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the other models need not have such extra tuning. The M4DCHM14−14−10 and

M4DCHM14−1−10 each also offer interesting prospects, with the former having sym-

metries that allow for two independent proto-Yukawa couplings for the top quark,

and the latter being able to feature an entirely composite right-handed top quark,

since the interactions of the singlet t0R would not violate the composite symmetry

(though we do not take the right-handed top quark as composite in this work).

These are not the only possible models that fit our criteria, but it has been found

in Ref. [100] that the various other representation combinations either tend to give

experimentally unfavourable predictions, or are qualitatively similar to the three we

consider here.

In specifying the Lagrangian for the fermion sector of each model, we split up

the contributions as

Lq−t−bfermion = Lq−t−bcomp. quark + Lelem. quark + Llepton. (4.19)

The high-energy Lagrangian for the (partially) composite quarks, consisting of the

third generation elementary quarks and their composite partners Ψ and Ψ̃, will be

given below for each model. Elementary fields will be embedded into incomplete

multiplets ψ in the same representation as their partners for convenience in writing

gauge-invariant interactions. In all cases the covariant derivatives of the fields are

given by

DµψR =

(
∂µ − ig′0B0

µY − ig0
sG

0a
µ

λa

2

)
ψR,

DµψL =

(
∂µ − ig0W

0a
µ T

a
L − ig′0B0

µY − ig0
sG

0a
µ

λa

2

)
ψL, (4.20)

DµΨ =

(
∂µ − igρρAµTA − igXρXX − igGρaGµ

λa

2

)
Ψ,

where the hypercharges Y are those from Table 2.2, and λa are the Gell-Mann

matrices. It should be kept in mind that a multiplet Ψ in the symmetric 14 or

antisymmetric 10 of SO(5), when expressed as a matrix, is acted upon by the

generators as

TAΨ = [TA,Ψ]. (4.21)

Refer to Appendix G for the explicit embeddings of fields into representations of

SO(5).

4.3.1 M4DCHM5−5−5

Unlike the other models we will be exploring, the M4DCHM5−5−5 requires two com-

posite multiplets Ψt,b to couple to q0
L, simply because a single partner multiplet does

not provide sufficient couplings for both the top and the bottom quark to have mass.

So instead of Figure 4.1, the structure of interactions is as in Figure 4.2. The partner



§4.3 Fermion Sector 91

t0R

q0
L

b0
R

∆tR

∆tL

∆bL

∆bR

Ψ̃t
L

Ψt
R

Ψb
R

Ψ̃b
L

mt̃

mt

mb

mb̃

Ψ̃t
R

Ψt
L

Ψb
L

Ψ̃b
R

mYt , Yt

mYb , Yb

Figure 4.2: Elementary and composite quark couplings in the M4DCHM5−5−5.

content of this model consists of Ψt, Ψ̃t in the 5+ 2
3

representation of SO(5)×U(1)X ,

and Ψb, Ψ̃b ∼ 5− 1
3
. Their interactions are specified by the quark Lagrangian

L5−5−5
comp. quark = q̄0

Li /Dq
0
L + t̄0Ri /Dt

0
R + b̄0

Ri /Db
0
R

}
elementary

+ Ψ̄t
(
i /D −mt

)
Ψt + ¯̃Ψt

(
i /D −mt̃

)
Ψ̃t

}
composite

+ ∆tLψ̄
t
LΩ1Ψt

R + ∆tRψ̄
t
RΩ1Ψ̃t

L

}
link

−mYtΨ̄
t
LΨ̃t

R − YtΨ̄t
LΦΦ†Ψ̃t

R

}
Yukawa

+ (t→ b) + h.c. (4.22)

To save space, we have defined Φ := Ω2Φ0. Here the third generation elementary

quarks are embedded into the incomplete SO(5) fundamentals

ψtL =
1√
2




b0
L

−ib0
L

t0L
it0L
0



, ψtR =




~0

t0R



, ψbL =

1√
2




t0L
it0L
−b0

L

ib0
L

0



, ψbR =




~0

b0
R



. (4.23)

Note that this is not the most general Lagrangian obeying the symmetries of the

theory. Terms such as ψLΩ1Ψ̃R or ¯̃ΨLΨR, if included, would reduce the model to

the two-site DCHM. In that case the Higgs potential is logarithmically divergent, so

we avoid such couplings. Similar considerations exist for the other representations.

4.3.2 M4DCHM14−14−10

Here we have two composite multiplets, Ψq and Ψ̃t, in the traceless symmetric 14

of SO(5), and one multiplet Ψ̃b in the antisymmetric 10. Each composite multiplet

carries an X charge of +2
3
. All of them transform adjointly,

Ψ
g∈SO(5)−−−−−→ gΨg−1, (4.24)
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so invariant terms may be found by taking the traces of various field combinations.

Writing out the invariant interactions yields the quark Lagrangian

L14−14−10
comp. quark = q̄0

Li /Dq
0
L + t̄0Ri /Dt

0
R + b̄0

Ri /Db
0
R

}
elementary

+ Tr
[
Ψ̄q
(
i /D −mq

)
Ψq
]

+ Tr
[

¯̃Ψt
(
i /D −mt

)
Ψ̃t
] }

composite

+ ∆qTr
[
ψ̄qLΩ1Ψq

RΩ†1

]
+ ∆tTr

[
ψ̄tRΩ1Ψ̃t

LΩ†1

] }
link

−mYtTr
[
Ψ̄q
LΨ̃t

R

]
− YtΦ†Ψ̄q

LΨ̃t
RΦ− ỸtΦ†Ψ̄q

LΦΦ†Ψ̃t
RΦ

}
Yukawa

+ (t→ b) + h.c. (4.25)

The elementary quark fields are embedded into incomplete representations as

ψqL =
1

2




ib0
L

04×4 b0
L

it0L
−t0L

ib0
L b0

L it0L − t0L 0



, ψbR =

b0
R√
8




0 0 i −1 0

0 0 1 i 0

−i −1 0 0 0

1 −i 0 0 0

0 0 0 0 0



,

ψtR = − t0R√
20

diag(1, 1, 1, 1,−4). (4.26)

Notice that by the symmetries of this model there is an extra allowed Yukawa-

like term, having a coupling strength Ỹt. The analogous terms proportional to mYb

and Ỹb vanish due to the symmetry (antisymmetry) of Ψq (Ψ̃b).

4.3.3 M4DCHM14−1−10

The M4DCHM14−1−10 has a similar structure to the M4DCHM14−14−10, except with

Ψ̃t now being a single field in the 1+ 2
3

of SO(5)×U(1)X instead of a multiplet. The

quark Lagrangian is given by

L14−1−10
comp. quark = q̄0

Li /Dq
0
L + t̄0Ri /Dt

0
R + b̄0

Ri /Db
0
R

+ Tr
[
Ψ̄q
(
i /D −mq

)
Ψq
]

+ ¯̃Ψt
(
i /D −mt

)
Ψ̃t + Tr

[
¯̃Ψb
(
i /D −mb

)
Ψ̃b
]

+ ∆qTr
[
ψ̄qLΩ1Ψq

RΩ†1

]
+ ∆tψ̄

t
RΨ̃t

L + ∆bTr
[
ψ̄bRΩ1Ψ̃b

LΩ†1

]

− YtΦ†Ψ̄q
LΦΨ̃t

R − YbΦ†Ψ̄q
LΨ̃b

RΦ

+ h.c. (4.27)

The elementary ψqL and ψbR multiplets are the same here as in Equation (4.26), but

now ψtR = t0R. Notice that the symmetries do not allow any off-diagonal mass terms

mY in this model.
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4.3.4 Elementary Fermions

In a truly consistent CHM, all of the lighter fermions would be incorporated through

partial compositeness in a similar manner to the above. However in our work, we

treat them as entirely elementary for simplicity. We reproduce the SM lepton sector

with bilinear couplings to the low-energy Higgs pNGB:

Llepton =
∑

generations

(
il̄L /DlL + i¯̀R /D`R −

mSM

v
l̄L

(
0

h

)
`R + h.c.

)
. (4.28)

The covariant derivatives here couple the leptons to the elementary gauge fields,

with SM quantum numbers as in Equation (4.20). The elementary quarks, on the

other hand, are given simple Dirac mass terms

Lelem. quark =
∑

q=u,d,c,s

q̄(i /D −mq)q (4.29)

with no Higgs couplings, and again coupling to the elementary gauge fields. Ad-

mittedly there is no reason to treat the mass terms of the elementary quarks and

leptons differently. However, the difference is largely inconsequential due to the

small couplings to the Higgs involved, and because there is little distinction between

a mass term and a Higgs coupling below the EW scale.

4.4 Calculability

The information above completely specifies the models we are considering in this

work. All of the interactions and observables of the theory may be calculated,

with sufficient perseverance, by substituting the definitions of the multiplets and

generators into the Lagrangians given here. Though we use all of these couplings for

our work, we do not explicitly provide the coupling matrices because of the sheer

number present. We do, however, give the mass-mixing matrices for each model in

Appendix H, on account of their importance. With these matrices, the Weinberg

Sum Rules Equations (3.214) and (3.215) can be directly verified in each model by

calculating

∑

particles i

m2
i (h) = Tr

[
M †M

]
and

∑

particles i

m4
i (h) = Tr

[
(M †M)2

]
, (4.30)

and observing the quantities are independent of the Higgs field h for each indi-

vidual mass matrix. It follows that the Higgs potential is calculable and given by

Equation (3.216),

Veff(h) =
∑

particles i

ci
64π2

m4
i (h) log

(
m2
i (h)

)
, (4.31)
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which can be minimised to find the Higgs vev 〈h〉. Once the vev is known, the Higgs

mass is calculated as

m2
h = ∂2

hVeff(h)|h=〈h〉, (4.32)

and the masses of other particles can be calculated by diagonalising the mass matri-

ces at the point h = 〈h〉. However, not every set of masses is sufficiently balanced to

give the potential a non-trivial minimum, and indeed a large portion of parameter

space is not phenomenologically viable because of this.

4.5 Integrating out Heavy Resonances

Up until this point, this thesis has been structured around using mass matrices to

calculate observables. This method has its benefits - namely that it is accurate at

all energies and is conceptually clear - but is somewhat slow for numerical calcula-

tions. Indeed, we initially used this method in our frequentist explorations of these

models, but decided it would be more beneficial to switch to a quicker, approximate,

approach for the Bayesian scans. To this end, we give here a brief summary of this

alternative form factor based calculation method.

In the low-energy range that we are capable of probing, it is often useful to

work with effective theories that retain only the low-energy degrees of freedom (i.e.

the elementary fields), having the heavy composite fields “integrated out”. This is

an approximation wherein the composite fields are set as satisfying their classical

equations of motion, valid for energies well below the masses of the composite fields.

Once this procedure is carried out (more details can be found in Ref. [100]), the

effective fermionic Lagrangian, in momentum space, will be of the form

Leff
comp. quark =

∑

ψ=t,b

[
ψ̄0
L/p
(
1 + ΠψL(p2)

)
ψ0
L + ψ̄0

R/p
(
1 + ΠψR(p2)

)
ψ0
R

+ψ̄0
LMψ(p2)ψ0

R + h.c.
]

(4.33)

for some model-dependent functions Πψ and Mψ, which we call form factors, that

for our models are provided in Appendix I.

It is possible to calculate the effective potential in terms of these functions with

largely the same method as in Section 3.7, but with the form factors in place of

the mass matrices used there3. The result is that the fermionic contribution to the

potential, with only partially composite third generation quarks, is

V fermion
eff (h) = 2iNc

∑

ψ=t,b

∫
d4p

(2π)4
ln
[
p2
(
1 + ΠψL(p2)

) (
1 + ΠψR(p2)

)
+ |Mψ(p2)|2

]
,

(4.34)

3The steps are performed explicitly in Ref. [12].
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where Nc = 3 is the number of colours. This expression is in Minkowski space, but

the integral may be simplified with a Wick rotation to Euclidean space, p2 → −p2
E,

d4p→ id4pE. The resulting integrand is spherically symmetric, so the trivial angular

integrals give a factor of 2π2 and we are left with the one-dimensional integral

V fermion
eff (h) = −2Nc

∑

ψ=t,b

∫
dp2

E

16π2
ln
[
(−p2

E)
(
1 + ΠψL(−p2

E)
) (

1 + ΠψR(−p2
E)
)

+|Mψ(−p2
E)|2

]
. (4.35)

The benefit of this formalism is that from here it is quite simple to find the minimum

of the potential numerically, since the integrand can be expanded in powers of sh to

obtain the coefficients γ, β defined previously:

Veff(h) =: −γs2
h + βs4

h, (4.36)

that dictate the minimum occurs at

s〈h〉 =
γ

2β
. (4.37)

Generally, a single one-dimensional integral is required to calculate each of γ and β

(or at least the fermionic contributions to them), which is several orders of magnitude

faster than minimising the potential numerically with the mass matrix approach.

We neglect detailing the incorporation of the gauge boson contributions to the

potential in this framework, since they are of secondary importance. Suffice to say

that the gauge boson contribution to γ can be calculated analytically, with the result

that [30]

γgauge = − 9m4
ρ

(
m2
a −m2

ρ

)
tθ

64π2
(
m2
a − (1 + tθ)m2

ρ

) ln

[
m2
a

(1 + tθ)m2
ρ

]
(4.38)

to first order in

tθ :=
g0

gρ
. (4.39)

Here we have the approximate masses of the lightest composite gauge bosons (see

Section 4.6)

m2
ρ :=

1

2
g2
ρf

2
1 ,

m2
a :=

1

2
g2
ρ(f

2
1 + f 2

2 ). (4.40)

We use this formula in our scans, and ignore the negligible contributions to β from

the gauge bosons.
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4.6 Particle Content

One interesting signature of CHMs is the existence of new resonances in the few-TeV

mass range. In this section we give an overview of the particle content in each of

the models we are considering, including some analysis of the particles’ masses.

4.6.1 Boson Sector

As stated above, there will be eight heavy gluons, a heavy neutral abelian resonance,

and ten SO(5) gauge bosons in each realisation of the M4DCHM, along with the

SM gauge bosons. Since the first two species are familiar from our understanding of

the SM gauge sector, let us consider the SO(5) resonances in more detail, following

Ref. [102].

SO(5) Gauge Bosons

Recall from Equation (4.11) that we have grouped the SO(5) gauge fields as

ρµ = ρAµT
A = ρaLµT

a
L + ρaRµT

a
R + aaµT̂

a. (4.41)

Notice that by the normalisation of the generators, we have

ρaL,Rµ = Tr
[
ρµT

a
L,R

]
, aaµ = Tr

[
ρµT̂

a
]
. (4.42)

It is straightforward to see how these transform. Under h ∈ SO(4), for example,

ρaL,Rµ → Tr

[(
hρµh

−1 − i

gρ
(∂µh)h−1

)
hT aL,Rh

−1

]

= hρaL,Rµh
−1 − i

gρ
Tr
[
h−1(∂µh)T aL,R

]
, (4.43)

recalling that a transformation is a simple change of basis for the generators. In the

second term, h−1(∂µh) is in the Lie algebra of SO(4), and so is a linear combination

of the form

h−1(∂µh) = [h−1(∂µh)]L,aT
a
L + [h−1(∂µh)]R,aT

a
R. (4.44)

This reduces the transformation to

ρaL,Rµ → hρaL,Rµh
−1 − i

gρ
[(∂µh)h−1]aL,R. (4.45)

We see ρL,Rµ transforms as a gauge field in the adjoint of SU(2)L,R. That is,

ρLµ ∼ (3,1) and ρRµ ∼ (1,3) under SU(2)L × SU(2)R. With our knowledge of

the electroweak sector, we recognise that for each group factor there will be a linear
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combination

ρ±L,Rµ :=
ρ1
L,Rµ
∓ iρ2

L,Rµ√
2

(4.46)

of unit electric charge, along with an uncharged boson ρ3
L,Rµ

. The axial fields, on

the other hand, can be seen to transform as

aµ → haµh
−1, (4.47)

without the inhomogeneous term in Equation (4.45) because their generators do not

overlap with T aL,R. This is the bidoublet (2,2) - the same representation as the Higgs

doublet. We therefore recognise another unit-charged boson

a±µ :=
a1
µ ∓ ia2

µ√
2

, (4.48)

and two more neutral bosons a3
µ, a

4
µ. Incidentally, this analysis confirms the decom-

position 10→ (3,1)⊕ (1,3)⊕ (2,2) of Section 3.6.1.

Boson Masses

In total, we see that in addition to the SM gauge bosons there are the heavy gluons,

five neutral bosons, and three bosons of unit electric charge. Their mass-mixing ma-

trices are given as functions of the Lagrangian parameters in Appendix H. Singular

values of these matrices at the point h = 〈h〉 are the squared tree-level masses of

the resonances.

Unfortunately, the mass matrices are not simple enough to result in useful an-

alytic expressions for all of the gauge boson masses. The only bosons with easily

calculable masses are the heavy gluons and the neutral a4 resonance, which have

squared masses of

m2
G =

1

2
f 2
G((g0

s)
2 + g2

G), m2
a4 =

1

2

f 2
1

f 2
1 − f 2

f 2
1 g

2
ρ, (4.49)

and the charged bosons, whose mass spectrum is given by

m2
charged =

{
1

2
f 2

1 g
2
ρ, m

2
1, m

2
2, m

2
3

}
, (4.50)

where the last three entries are the solutions to

m2

(
m2 − 1

2
(g2

0 + g2
ρ)f

2
1

)(
m2 − g2

ρf
2
1

2

f 2
1

f 2
1 − f 2

)
=

1

16
g2

0g
4
ρ

f 6
1 f

2

f 2
1 − f 2

s2
〈h〉. (4.51)

These solutions do not have particularly understandable analytical forms, but use-

ful formulae may be obtained by expanding the masses as power series in s〈h〉 :=
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sin(〈h〉/f). The W mass, for example, distinguished as being O(s〈h〉), is given by

mW =
1

2
g̃fs〈h〉 +

1

4f 2
1

(
1

g2
0 + g2

ρ

+
f 2

1 − f 2

g2
ρf

2
1

)
g̃3f 3s3

〈h〉 +O(s5
〈h〉), (4.52)

where

1

g̃2
:=

1

g2
0

+
1

g2
ρ

. (4.53)

Since EW precision constraints typically require s〈h〉 . 0.3, only the leading-order

term in Equation (4.52) is of any relevance [44]. Neglecting the higher-order terms

reproduces the W mass in the simplified model Equation (3.83),

mW =
1

2
gfs〈h〉, (4.54)

provided we match to the SM coupling4

g ≡ g̃ =
g0gρ√
g2

0 + g2
ρ

. (4.56)

This leads once again to the relation s〈h〉 = v/f , but we stress that this is only

accurate when the W mass is close to its experimental value 1
2
gv. The same sort of

analysis can be done for the other charged resonances, but the contributions to their

masses from the Higgs field are only relatively minor. We simply give their masses

in the s〈h〉 → 0 limit, which will be approximately satisfied by realistic points and

can be used as a zeroth order estimate:

lim
s〈h〉→0

m2
charged =

{
0,

1

2
f 2

1 g
2
ρ,

1

2
f 2

1

(
g2

0 + g2
ρ

)
,

1

2

f 2
1

f 2
1 − f 2

f 2
1 g

2
ρ

}
. (4.57)

This same limit can be used to understand the neutral boson masses (including

the photon and Z boson, and a4):

lim
s〈h〉→0

m2
neutral =

{
0, 0,

1

2
f 2

1

(
g2

0 + g2
ρ

)
,

1

2

f 2
1

f 2
1 − f 2

f 2
1 g

2
ρ,

1

2

f 2
1

f 2
1 − f 2

f 2
1 g

2
ρ,

1

2
M2
± (f1gρ, fXgX , fXgρ, f1g

′
0)

}
. (4.58)

4Similar matchings can also be done to yield relations for the remaining SM gauge couplings in
terms of the elementary and composite couplings:

1

g′2
=

1

g′20
+

1

g2
ρ

+
1

g2
X

, and
1

g2
s

=
1

(g0
s)2

+
1

g2
G

, (4.55)

which we use throughout this work.
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Here we have defined the functions5

M2
±(x1, x2, x3, x4) :=

|~x|2
2
±
√
|~x|4
4
− (x2

1x
2
2 + x2

2x
2
4 + x2

3x
2
4), (4.59)

which will also be useful in expressing the fermion masses.

Note there is some degeneracy among the masses of the charged and neutral

bosons in the s〈h〉 → 0 limit. In fact, numerical calculation of the masses for realistic

parameter points with small non-zero s〈h〉 suggests that two charged bosons will

always separately be very close in mass to two neutral bosons, and the last charged

boson will be very close in mass to two other neutral bosons (“very close” here

meaning within ∼ 0.1%).

4.6.2 Fermion sector

The fermion sector of each model can be analysed using the explicit embeddings of

fields in the different representations of SO(5) given in Appendix G. We group the

particles according to their electric charge, which is determined through the relation

Q = T 3
L + Y = T 3

L + T 3
R +X. (4.60)

It was seen in Section 4.3 that these models deliver some up-type (U) and down-

type (D) resonances, along with particles of exotic charge Q4/3, Q5/3, and Q8/3. The

number of new particles in each model is listed in Table 4.1.

Model U D Q4/3 Q5/3 Q8/3

M4DCHM5−5−5 8 8 2 2 0

M4DCHM14−14−10 16 9 2 9 2

M4DCHM14−1−10 11 6 1 6 1

Table 4.1: Number of BSM up-type (U) and down-type (D) particles, and particles
Qx that have exotic electric charge x in each model.

The (tree-level) masses of the fermions are found as the singular values of the

fermion mass matrices in Appendix H. For convenience, the non-SM fermion masses

in each model are provided in Figure 4.3. Similarly to the bosons, many fermion

masses are not easily expressible analytically, and we resort to giving some masses

in the s〈h〉 → 0 limit. Note the many degeneracies and approximate degeneracies

among the particle masses in each model.

5For some intuition about the masses M±(m1,m2,mY ,∆): if ∆ = 0 then one mass will be less
than (min(m2

1,m
2
2) + m2

Y /2)1/2 and the other greater than (max(m2
1,m

2
2) + m2

Y /2)1/2. If mY is
also small, then the two masses come out nearly equal to m1 and m2. In general both masses
increase as ∆ increases in magnitude.
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Figure 4.3: Tree-level masses of the non-SM fermions (a) in the M4DCHM5−5−5, (b)
in the M4DCHM14−14−10, and (c) in the M4DCHM14−1−10. Each icon corresponds
to one particle, or to a pair of particles for masses given in terms of the functions
M± defined by Equation (4.59). Some masses cannot be expressed in a reasonably
understandable form, in which case they are left unspecified.

Of particular interest are the top and bottom quark masses, which we present to

first order in s〈h〉 for each model in Equations (H.23) to (H.25). With the approxi-

mation s〈h〉 = v/f , these expressions can be used to estimate the SM quark masses

without needing to minimise the Higgs potential, providing a computationally inex-

pensive way to constrain the various parameter spaces.

4.7 Status of Model Explorations

Being the simplest experimentally viable composite Higgs models, M4DCHMs have

been the subject of considerable theoretical research, and we provide here a brief

summary of this previous work to put our fits of these models into greater context.

When this class of models was first proposed in Ref. [99], the Higgs boson had

not been officially discovered. Working with only a partially composite top quark

for simplicity, the main focus of Ref. [99] was on the behaviour of the Higgs potential

and the relation of the Higgs mass to the mass mF of the lightest fermionic com-

posite partners in the M4DCHM5−5. It was estimated that in this model, the Higgs

mass is roughly proportional to mF/f , so that for lower tunings (smaller f), lighter

composite partners are preferable. This was numerically verified with a simple scan

over the fermionic parameters for fixed values of f and other gauge parameters. It

was also noted that for EWSB to take place in this model, the two chiralities of the

top quark must share a similar compositeness, ∆tL/mt ≈ ∆tR/mt̃, which constrains

the parameter space somewhat.
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After the discovery of the Higgs boson, Ref. [87] went further and considered

our three models above, though again with only a partially composite top quark.

Here the tunings of the models were examined theoretically and verified with some

numerical scans that found points with realistic Higgs masses, again with simpli-

fying assumptions on some of the parameters. It was shown that all three models

generically predict too large a Higgs mass unless the typical mass scale m∗ of the

composite fermions is relatively low, m∗ ∼ f . It was also pointed out that under this

condition, and as can be seen from Equation (3.143), if all the fermionic parameters

are also of order f , then the double tuning in the M4DCHM5−5 disappears! But the

condition m∗ ∼ f is not necessary in all cases: a realistic Higgs mass is also possible

in the M4DCHM5−5 when the composite mass spectrum is non-generic and there is

an anomalously light resonance, but this requires some fine-tuning. Similarly, the

Higgs mass can be accommodated in the M4DCHM14−1 without any light partners

if there is some extra tuning in the Higgs potential of around the same size as in

double tuning. It was concluded that for a moderate tuning, there must be com-

posite partners of roughly 1 TeV to reproduce the observed Higgs mass in all three

models.

From there, more substantial explorations of the various M4DCHMs began.

Ref. [100] performed parameter scans for many different models, including the exact

ones we focus on (though without the composite SU(3) sector), with a focus on

the Higgs phenomenology and tuning in each model. As with the previous work,

these scans used simplifying assumptions on the parameters, setting all mass pa-

rameters equal and imposing relations between the gauge parameters. There were

several interesting findings. First, it was found that the production cross section

for the Higgs boson from gluon-gluon fusion was always suppressed compared to

the SM prediction for realistic points, even though this is not a requirement of the

theory. Second, the Higgs branching ratios may be suppressed or enhanced com-

pared to the SM predictions. The combined effect is that the total cross section for

the gluon-gluon fusion production of a Higgs boson and its subsequent decay into

some final state (quantities that we take as constraints in our fits, but that had

not been measured when Ref. [100] was published) is typically lower in M4DCHMs

than in the SM, unless the branching ratio of the Higgs boson into that final state

is greatly enhanced. And lastly, the M4DCHM5−5−5 was found to have considerably

lower tuning than the M4DCHM14−14−10 and M4DCHM14−1−10, primarily because

the latter two tend to predict too heavy a Higgs. This is in agreement with Ref. [87],

showing that perhaps the double tuning is not an important factor.

In all of these studies, the parameter spaces were explored with random scans

that did not attempt to optimise for points that better fit with experiment. Such

a fitting procedure was first undertaken in Ref. [101], which employed an incredibly

large variety of observables as constraints to find those points that are consistent

with EW precision tests, Higgs physics, flavour physics, and (Run I) LHC resonance

searches. But the models explored in Ref. [101] were rather unwieldy, for they took

into account the partial compositeness of all quarks. Ref. [30] is similar, fitting
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points to the observed particle masses in models with all third generation fermions

(including leptons) partially composite. Neither of these works purported to have

performed rigorous, convergent statistical fits of these models, which would have

simply been impractical given their large (40+ dimensional) parameter spaces.

The purpose of this thesis is to extend this research with the first full convergent

fits of the M4DCHMs presented in this chapter. This is made possible through the

use of some sophisticated sampling algorithms, detailed in Chapter 5, and because

our models have been chosen to be sufficiently simplified so as to have somewhat

manageable parameter spaces, while still containing enough physics to be interesting.



Part II

Global Fits of the Minimal

Composite Higgs Models
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Chapter 5

Bayesian and Frequentist Global

Fits

It is important to be clear about what we hope to achieve by fitting the minimal

composite Higgs models specified in Chapter 4. Ostensibly, we aim to see whether

such models can successfully describe our world - that is, whether there are any

values of the model parameters that lead to accurate predictions of a wide range

of experimental observations - and to map the regions of parameter space that

best fit those observations. Such a task is well-suited to a frequentist global fit,

which assigns to each parameter point a likelihood based on how well it reproduces

experiment, and finds those parameter points that maximise the likelihood. But this

is not all we are interested in. After all, the Standard Model gives incredibly accurate

predictions, but is still quite unfavourable because it is unnatural: its accuracy is

present over only a small region of its parameter space. Just as we judge the SM by

its naturalness, so too must we do the same for the composite Higgs models. If one

of the models could reproduce observations to an acceptable level of accuracy over a

broad region of its parameter space, it would be more favourable than the SM under

the metric of naturalness, even if its predictions are not quite as accurate as those

of the SM. This notion of weighing the accuracy of a model’s predictions against

the volume of parameter space in which those predictions are accurate is formalised

in the framework of Bayesian statistics by a quantity called the evidence of a

model. It is this Bayesian, rather than frequentist, viewpoint, that interests us most.

We give a brief overview of Bayesian statistics in Section 5.1, and the algorithm

we use to perform Bayesian global fits of the M4DCHMs in Section 5.1.1. We also fit

the models under a frequentist framework, whose theory is described in Section 5.2,

using a differential evolution algorithm detailed in Section 5.2.1.

5.1 Bayesian Statistics

Bayesian statistics, at its core, is a framework to quantify how one’s degree of belief

in some statement should be updated when one is presented with new information.

It is based on the simple observation that if P (A) is the probability (degree of belief)

of a proposition A being true, and P (A|B) is the probability that A is true given
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that B is true, then

P (A and B) ≡ P (A|B)P (B). (5.1)

The symmetry between A and B on the left-hand side implies Bayes’ theorem:

P (A|B) =
P (B|A)

P (B)
P (A). (5.2)

In other words, if we initially assign A a probability P (A) of being true prior to

knowing that B is true, and then we learn that B is true, then our belief in A must

update to P (A|B) by this formula. P (A) is suitably called the prior, and P (A|B)

the posterior probability.

In the context of our global fits, this framework allows us to quantify our degree

of belief that the universe is described by a particular parameter point p in one of

our models M by combining our (suggestively labelled)

(A) initial degree of belief that the universe would be described by p, simply based

on the probability of picking p out of the parameter space of the model M,

and

(B) experimental data about the universe (conditioned on M).

To make the notation more convenient, let us denote the prior P (A) - the probability

density of picking p out of the parameter space of M - as π(p|M), and let us

denote our experimental data (conditioned on M) by (D|M). The probability of

observing the data given the specific parameter point in the model, P (D|p,M), is

simply the likelihood L(p) that would be assigned to p in a frequentist global fit -

see Section 5.2. With this notation, the posterior probability that p describes our

universe given the data is then

P (p|D,M) =
L(p)π(p|M)

P (D|M)
. (5.3)

Ultimately, the definitions of the functions on the right-hand side are subjective

choices. If little is known about the parameter space, one might choose to assign a

flat prior such that every point is given an equal probability of being picked out.

Or if the even the scale of a parameter is unknown, it might be advantageous to use

a logarithmic prior to assign equal weight across each order of magnitude of the pa-

rameter (thereby also rewarding smaller absolute values), and so on. It is hoped that

by going through the process of using Bayes’ theorem, the prior and the likelihood

function work together so that the posterior distribution will be largely independent

of the prior. How we define the likelihood function is detailed in Section 6.3.

There is one more factor in Equation (5.3) that we have so far not discussed:

the total probability P (D|M) of observing the experimental data if the universe

is described by the model M. The problem of assigning this value to a model is

usually pushed aside because it would require knowledge of the entire parameter
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space, and because it is simply a normalisation factor for the posterior. But it can

be calculated in principle if the posterior is conventionally normalised so that its

integral over the (n-dimensional) parameter space is unity, in effect fixing

P (D|M) =

∫
dnp L(p)π(p|M). (5.4)

Notice that P (D|M) is calculated by weighing the fitness of each point against its

prior likelihood in parameter space, exactly matching how the naturalness of a model

is quantified! This is the Bayesian evidence mentioned above, typically denoted

as Z.

Beware: it is commonly thought that a model with a greater evidence is more

likely (in a Bayesian sense) to describe our universe, but this not necessarily correct.

The evidence is the probability of observing the data given the model, but to compare

models one needs instead the probability of the model being true given the data.

The two are related by Bayes’ theorem:

P (M|D) =
P (D|M)

P (D)
P (M). (5.5)

Typically, out of ignorance, one would assign the same prior likelihood P (M) to each

model being considered, so a larger evidence would imply a more likely model, but

this does not need to be the case. It should also be kept in mind that the evidence

is not a uniquely defined number for a given model because it is dependent on the

prior, so comparing models based on their evidences is an inexact science. The

traditional interpretation, known as the Jeffreys scale, is that a model comparison

is inconclusive if the evidence of one model is within a factor of three of the evidence

of another, while outside a factor of 100 the comparison is decisive, with varying

degrees of confidence in between [103].

Let us consider the evidence Equation (5.4) further, assuming a one-dimensional

parameter space for simplicity. If it is the case, as is quite common, that the posterior

is peaked around a parameter value pmax, with width ∆p, then the evidence will be

approximately

Z ≈ L(pmax)π(pmax|M)∆p. (5.6)

The so-called Occam factor π(pmax|M)∆p is less than unity because of the nor-

malisation of the prior, so the evidence is less than L(pmax). This generalises if the

posterior peaks across multiple dimensions. We can see from this that the Bayesian

framework penalises models whose posteriors are sharply peaked in parameter space,

and also penalises the addition of parameters to a model if the additional parameters

do not sufficiently improve the fit to the data [104].
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Finally, a helpful quantity that may be defined is the Kullback-Leibler (KL)

divergence between the posterior and the prior,

DKL :=

∫
dnp P (p|D,M) ln

(
P (p|D,M)

π(p|M)

)
, (5.7)

which measures, in a sense, the extra information gained when going from the prior

to the posterior [105]. Using Bayes’ theorem and the normalisation of the posterior,

this may be rewritten as

DKL =

∫
dnp P (p|D,M) ln(L(p))− ln(Z), (5.8)

or rearranging for the average log-likelihood weighted by the posterior [106,107],

〈ln(L)〉P = DKL + ln(Z). (5.9)

Once the evidence and KL divergence are known, this is a useful way to calculate

the posterior-averaged log-likelihood as a quick check of how well the model fits the

data.

In performing a Bayesian global fit, the main quantities of interest are the poste-

rior likelihood of the parameter space, and the Bayesian evidence. Since our models

are high-dimensional, we will actually describe results in terms of the marginalised

posterior of each parameter: one-dimensional functions obtained by integrating the

posterior over all other parameters, giving the relative probability distribution (in

a Bayesian sense) of the leftover parameter. And the evidence, as we have seen,

quantifies how well (in a Bayesian sense) the model describes our universe.

5.1.1 Nested Sampling

While the theory of Bayesian global fits is straightforward, the fact that the evidence

is given by an integral of the likelihood over the parameter space means that in

many cases it is too computationally expensive to calculate. There is an algorithm

for scanning the space, however, that simplifies the calculation immensely, known

as nested sampling [108]. It makes use of the clever observation that if we define

a variable X as a function of the likelihood by

X(L) :=

∫

L(p)>L

dnp π(p|M), (5.10)

then the evidence Equation (5.4) can be written as the one-dimensional integral

Z =

∫ 1

0

dX L(X), (5.11)
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given the prior is normalised such that

X(0) =

∫
dnp π(p|M) = 1. (5.12)

Geometrically, X(L) is the prior-weighted volume of the region of parameter space

in which the likelihood is greater than L. As long as the prior-weighted volumes

Xi are known for a number of increasing likelihood cutoff values Li, the evidence

Equation (5.11) can be approximated as the simple Riemann sum

Z ≈
∑

i

(Xi−1 −Xi)Li. (5.13)

The problem of actually finding these values Xi is ordinarily highly non-trivial, but

is elegantly solved by the nested sampling algorithm.

In nested sampling, a certain number nlive of “live” points are generated, sampled

according to the prior distribution π(p|M). An iterative process is then used to find

regions of higher likelihood. Once the likelihoods of all the live points have been

calculated at iteration i, the lowest-likelihood point is removed (and classified as

“dead”) and replaced with another live point drawn according to the prior, under

the condition that the new point has a higher likelihood. The likelihood of the newly

dead point is taken as Li, so Xi will approximately be the prior-weighted volume of

the remaining live points, assuming sufficient coverage of the parameter space.

Now here is the key point: since all points are sampled from the prior, the prior-

weighted volume decreases on average by a factor of nlive/(nlive + 1) each time a new

live point is generated1. So at iteration i, the average2 volume is simply

〈Xi〉 =

(
nlive

nlive + 1

)i
. (5.14)

Nested sampling algorithms use these average values in place of the exact Xi. The

error this introduces to the calculated evidence is derived in, e.g., Ref. [109].

As the process continues, higher likelihoods will be found, with the live points

squeezing into ever-decreasing volumes. Eventually the volumes Xi will become

small enough for the remaining contributions to the evidence to become negligible,

at which point the sampling will stop and the algorithm is said to have converged.

For our scans, we set the algorithm to terminate when the evidence carried by the

remaining live points

Zlive ≈ Xi〈L〉live (5.15)

falls below 0.001 times that contributed by the dead points.

1To see this, one only needs to consider, what amounts to the same thing, nlive evenly distributed
points on a unit line segment.

2Average taken over repeated runs with different initial live points.
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There are many particular realisations of nested sampling algorithms, differing

in the methods they use to generate new live points that satisfy the likelihood

criterion L > Li. For this work we use the recently developed nested sampling

package PolyChord, which uses a highly sophisticated version of slice sampling to

generate points efficiently. Explaining the particularities of PolyChord would take

us too far afield from the focus of this work; we simply use the default settings

recommended in the original papers [109,110].

5.2 Frequentist Fits

In contrast to Bayesian fits, frequentist fits seek only to maximise the likelihood

function L over the parameter space, with no regard to any prior prejudices about

the space. This approach is useful for finding those points that best fit experimental

constraints, even if those points exist in a finely-tuned region.

The object of interest here is solely the likelihood function, dictating how well

each point agrees with experimental data. Details about the likelihood function we

use for our fits are given later in Section 6.3, but for our current purposes it suffices

to know that we take the likelihood as being Gaussian in the data:

L(p) = e−
1
2
χ2(p), χ2(p) = (Otheo(p)−Oexp)ᵀC−1(Otheo(p)−Oexp), (5.16)

where Otheo(p) and Oexp are the predicted and experimental values of the considered

observables, and C is the covariance matrix.

In showing the results of our frequentist fits, we will not marginalise over the

likelihood as we do for the posterior in the Bayesian fits, but instead give the profile

likelihood ratio of each parameter. The profile likelihood ratio Λ of a parameter

pi at a value p̃i is simply the maximum value taken by the likelihood when pi = p̃i,

normalised by the global maximum likelihood:

Λ(p̃i) :=

max
p|pi=p̃i

L(p)

max
p
L(p)

. (5.17)

A virtue of the profile likelihood ratio is that it provides a straightforward method

of estimating confidence intervals for each parameter. Specifically, it follows from

Wilk’s theorem that if the true global maximum of the likelihood has been found

in the sampling space, the 1 − α confidence intervals for the parameter pi can be

approximated as those values p̃i for which the test statistic

(
min

p|pi=p̃i
χ2(p)

)
−
(

min
p
χ2(p)

)
(5.18)

fails to be statistically significant under the null hypothesis that pi = p̃i, where α is

the significance level [111]. From the definition of Λ, this simply translates to those

values p̃i for which Λ(p̃i) lies above some α-dependent value.
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We warn that technically this procedure is only correct for finding confidence

intervals for the data, since the likelihood function is Gaussian in the data, while it

prescribes confidence intervals to the input parameters that are only approximate,

due to the non-linear transformations relating the data to the input parameters. We

do not perform coverage tests to determine the accuracy of the confidence intervals

we find for the input parameters in this way on account of the computing expense

required, but it has been shown to be a fairly good approximation even in quite

pathological cases [112,113].

Of course when assessing the validity of a model it is not much help to know the

relative likelihoods of parameter points; we would also like to know whether any of

the points are likely at all. To this end we place particular focus on experimentally

viable “valid” points, which we define as those that satisfy all individual experimen-

tal constraints at the 3σ level. That is, a point is considered valid if χ2
i < 9 for each

individual constraint3.

5.2.1 Differential Evolution

For our frequentist fits we opt to use a genetic optimisation algorithm known as

Differential Evolution (DE), which has proven particularly successful at quickly

exploring large parameter spaces and optimising difficult likelihood functions [14].

This type of algorithm takes a specified number of parameter points and from them

“breeds” successive “generations” of points that better satisfy the experimental con-

straints in a manner analogous to natural selection. Aggressively optimising variants

of DE with self-adaptive parameters have been put forward [115], and we use one

such version known as λjDE that is provided by the Diver package [116].

Like all optimisation algorithms, the objective of λjDE is to maximise a given

function - in our case, our likelihood function L - over a specified parameter space. To

do this, the algorithm begins with an initial “population” of N points in parameter

space, generated randomly with a given probability distribution, that constitutes

generation G = 1. Given a population of points pGi (i = 1, . . . , N) in generation G,

the next generation is calculated using the following three-step process, represented

schematically in Figure 5.1.

The first step, mutation, generates a population of mutant vectors mG
i . In λjDE,

the mutant vectors are constructed as

mG
i = λGi pGbest + (1− λGi )pGai + FG

i

(
pGbi − pGci

)
. (5.19)

Here, ai, bi, and ci are random integers distinct from each other and from i, and pGbest

is the vector with the highest likelihood of those in generation G. The constants

λGi ∈ [0, 1] and FG
i ∈ [0.1, 0.9] have randomly assigned values for G = 1, which self-

adapt through subsequent generations. In each successive generation each constant

3Some constraints will have non-zero minimum possible χ2 values, which are subtracted from the
χ2s when calculating their 3σ bounds. Also, the oblique S and T constraints, being correlated,
have instead a 3σ bound of χ2 = 11.83 [114]. See Section 6.3.
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Figure 5.1: Basic form of the differential evolution algorithm.

has a 10% chance of taking on a new random value, and otherwise adopts the

value of the corresponding constant from an earlier generation that was used in the

construction of pGi .

Mutant vectors do not form the next generation directly. Instead, a trial vector

tGi for the next generation is formed from each pair (pGi ,m
G
i ) in the crossover stage.

The trial vectors are formed as follows.

1. A random component of tGi is set equal to the corresponding component of

mG
i .

2. Each other component of tGi is set to the corresponding component of either

mG
i or pGi , having a fixed probability PG

i ∈ [0, 1] of using mG
i .

The probability PG
i is calculated using the same procedure as for λGi . If a trial vector

lies outside of the parameter space, we reflect the offending components back into

the space.

The final step, selection, simply sets the ith vector in the next generation, pG+1
i ,

equal to whichever point out of
(
pGi , t

G
i

)
has the highest likelihood. Iterating these

three steps, a sequence of generations is produced with populations that successively

migrate towards regions that maximise the likelihood function. The benefit provided

by calculating generation G is measured by the fractional improvement

1−
∑

i ln
(
L(pG−1

i )
)

∑
i ln(L(pGi ))

. (5.20)

The process stops and is said to have converged when the average fractional im-

provement provided by the last few generations falls below some given amount,

called the convergence threshold. We choose to use the last ten generations in

taking this average, recommended by Ref. [116] as a reasonable number to avoid

premature convergence. As for the remaining settings, for each of our scans we use

a large population size of N = 50,000 points, along with a rather strong convergence

threshold of 10−5.
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Note that by no means does convergence mean a global optimum has been found,

only that the explored regions are sufficiently likely that the algorithm struggles

to find significantly more likely regions. With that said, DE is often successful

at finding global optima, even for badly behaved likelihood functions. We choose

to use DE for this reason, and also because it may be particularly well suited for

exploring CHMs: since the algorithm uses the differences of population vectors when

constructing mutant vectors (see Equation (5.19)), it tends to generate points along

various hyperplanes on which the populations lie, which may provide the necessary

cancellations for EWSB take place. This is only heuristic reasoning, however, and

we have not tested whether DE is more efficient at generating points that trigger

EWSB than other algorithms.





Chapter 6

Global Fit Procedures

In this chapter we detail exactly how we perform our global fits of the three models

specified in Chapter 4. We discuss the model parameters and the bounds we impose

on them for the scans in Section 6.1. The procedure for calculating observables from

the parameters is outlined in Section 6.2, and the experimental constraints used to

determine the validity of a given parameter point are discussed in Section 6.3.

6.1 Scan Parameters

For convenience, the Lagrangian parameters for each model, defined in Sections 4.2

and 4.3, have been collected in Table 6.1.

M4DCHM 5− 5− 5 14− 14− 10 14− 1− 10

Decay constants f , f1, fX , fG f , f1, fX , fG f , f1, fX , fG

Gauge couplings gρ, gX , gG gρ, gX , gG gρ, gX , gG

Link couplings ∆tL , ∆tR , ∆bL , ∆bR ∆q, ∆t, ∆b ∆q, ∆t, ∆b

On-diagonal masses mt, mt̃, mb, mb̃ mq, mt, mb mq, mt, mb

Off-diagonal masses mYt , mYb mYt

Proto-Yukawa couplings Yt, Yb Yt, Yb, Ỹt Yt, Yb

Dimensionality 19 17 15

Table 6.1: Parameters present in each model.

At the onset of this project, we were performing our fits by simply scanning over

the parameters as they appear in Table 6.1 in units of GeV, subject to some condi-

tions specified below. While a valid approach, we were finding that our scans (using

only Diver during this time) were having trouble getting sufficient coverage around

the best-fit regions to provide consistent convergent results. The main complication

was that small changes in the Higgs decay constant, f , need to be compensated by

very particular changes in the other parameters so as not to drastically affect the

Higgs potential. For points that reproduce the correct EWSB scale v, varying the f

parameter by even 5 GeV while keeping the other parameters fixed leads to wildly

115
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unrealistic EWSB scales. This fact makes satisfactory exploration of the parameter

spaces particularly difficult, as has been noted in previous works [101,117].

Fortunately, there is a far more clever parameterisation of the models avoiding

this problem that has been utilised in previous explorations of CHMs [30, 88, 100].

It rests on the fact that the Higgs potential Equation (3.216) is a function of the

particle masses, in any units of mass. So if all of the mass-dimension parameters

are expressed in units of f , the Higgs potential will not depend on the actual value

of f at all! The potential could be minimised to find the misalignment s〈h〉 as usual,

with the mass scale only being set later by defining

f ≡ v

s〈h〉
=

246

s〈h〉
GeV, (6.1)

in accordance with Equation (3.84). Notice that not only does this remove f as

a scan parameter, this automatically reproduces the correct EWSB scale, and by

extension the experimental W and Z masses. Regrettably, we did not consider this

approach until after having performed the frequentist scans, so this scanning method

was only used with the Bayesian fits. The Bayesian results are therefore considered

to be the main results of this thesis, and the frequentist results only secondary.

Our treatment of the parameters in each scanning approach is summarised in

Tables 6.2 and 6.3, and explained in greater detail below.

NGB Decay Constants

The Higgs decay constant f is one of the more consequential parameters in the

theory, defining the approximate mass scale m∗ ∼ gρf as well as the näıve energy

cutoff Λf = 4πf . For our frequentist fits, where we take f as an input, we choose

to scan over the wide range

f ∈ [0.5 TeV, 5.0 TeV]. (6.2)

The Bayesian fits instead take f as a derived quantity, and so do not scan over f

directly.

The ranges of other parameters are limited by the value of f . For example,

f1 must be greater than f by virtue of Equation (4.17), and less than
√

3f to

maintain partial unitarisation of NGB scattering [98]. The other decay constants

are constrained by

f1

2
≤ fX,G ≤ 2f1 (6.3)

to avoid decoupling any resonances. We use these constraints to define the bounds

for these parameters, with the added condition that all are greater than 0.5 TeV.

Points that are generated within the bounds but that do not satisfy these consis-

tency conditions are immediately discarded - a process that simply amounts to a

modification of the prior such that only consistent points are admitted.
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Parameters Scan Range Prior

All Models

f [0.5 TeV, 5.0 TeV]

Uniformf1 [0.5 TeV,
√

3fmax]

fX , fG [0.5 TeV, 2
√

3fmax]

gρ, gX , gG [1.0, 4π]

M4DCHM5−5−5

∆bL, ∆bR [e2.0 GeV,Λfmax ]

Logarithmic
∆tL, ∆tR [e5.0 GeV,Λfmax ]

mt, mt̃, mb, mb̃ [0.5 TeV, Λfmax ]

mYt , mYb [1.0 GeV, Λfmax ]

mYt + Yt, mYb + Yb [1.0 GeV, 2Λfmax ]

M4DCHM14−14−10

∆q [e6.0 GeV,Λfmax ]

Logarithmic

∆t [e5.5 GeV,Λfmax ]

∆b [e3.5 GeV,Λfmax ]

mq, mt, mb [0.5 TeV, Λfmax ]

mYt [1.0 GeV, e9 GeV]

mYt + 1
2
Yt [1.0 GeV, 1.5Λfmax ]

mYt + 4
5
(Yt + Ỹt) [e6.0 GeV, 2.6Λfmax ]

Yb [e3.5 GeV,Λfmax ]

M4DCHM14−1−10

∆q, ∆t [e7.0 GeV,Λfmax ]

Logarithmic

∆b [e5.0 GeV,Λfmax ]

mq, mb [0.5 TeV, Λfmax ]

mt [1.0 GeV, Λfmax ]

Yt [e6.0 GeV,Λfmax ]

Yb [e3.0 GeV,Λfmax ]

Table 6.2: Ranges and priors used for the parameters in our frequentist fits. Here,
fmax = 5.0 TeV and Λfmax = 4πfmax. Some parameters are subject to further
constraints specified in the main text. Note that the priors in these frequentist
scans dictate only the sampling density of the parameters, and should have no effect
on the profile likelihood distributions the scans find as long as the sampling density
provides sufficient coverage of the space.
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Parameters Scan Range Prior

All Models

mρ/f, ma/f [1/
√

2, 4π]

UniformfX/f, fG/f [0.5, 2
√

3]

gρ, gX , gG [1.0, 4π]

M4DCHM5−5−5

∆tL/f, mYb/f [e−0.25, 4π]

Logarithmic

∆tR/f [e−0.75, 4π]

∆bL/f, mYt/f [e−8.50, 4π]

∆bR/f [e−1.25, 4π]

mt/f, mb/f, mb̃/f [e−0.50, 4π]

mt̃/f [e−1.00, 4π]

(mYt + Yt)/f [e−0.75, 8π]

(mYb + Yb)/f [e−8.50, 8π]

M4DCHM14−14−10

∆q/f, ∆t/f, mq/f, mb/f [e−2.5, 4π]

Logarithmic∆b/f, mt/f, mYt/f, Yb/f [e−8.5, 4π]

(mYt + 1
2
Yt)/f [e−5.2, 1.5× 4π]

(mYt + 4
5
(Yt + Ỹt))/f [e−8.5, 2.6× 4π]

M4DCHM14−1−10

∆q/f, ∆t/f, Yt/f [e−5.0, 4π]

Logarithmic∆b/f [e−7.0, 4π]

mq/f, mb/f [e−3.0, 4π]

mt/f [e−9.0, 4π]

Yb/f [e−6.0, 4π]

Table 6.3: Ranges and priors used for the parameters in our Bayesian fits. The
masses mρ and ma, defined in Equation (4.40), reparameterise the decay constants
into a form more suitable for calculating the gauge boson contribution to the Higgs
potential. The normalisation factor f is determined after the potential is minimised.
Some parameters are subject to further constraints specified in the main text.
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Gauge Couplings

Given that the composite sector is strongly coupled and we can only perform calcula-

tions in the semi-perturbative regime, we must take the gauge couplings in Table 6.1

to be between 1 and 4π. In addition to these couplings, we also vary the SM gauge

couplings within their experimental limits (at the scale of the top mass). The ele-

mentary gauge couplings are then determined by the relations in Equation (4.55).

For g0
s to be real we require that gG > gs. We also impose the restrictions

1√
2
f1gρ < Λf ,

1√
2
fXgX < Λf ,

1√
2
fGgG < Λf , (6.4)

to avoid vector resonance masses above the cutoff Λf .

Link, Mass, and Proto-Yukawa Couplings

The remaining parameters in Table 6.1 have dimensions of mass and so are given

upper bounds of Λf . Instead of directly scanning over the off-diagonal masses and

proto-Yukawa couplings in Table 6.1, however, it turns out to be more convenient

to scan over particular linear combinations that appear in the mass matrices and

form factors. Specifically, we scan over

M4DCHM5−5−5 : mYu , mYd , mYu + Yu, mYd + Yd,

M4DCHM14−14−10 : mYu , Yd, mYu + 1
2
Yu, mYu + 4

5
(Yu + Ỹu),

M4DCHM14−1−10 : Yu, Yd.

(6.5)

All of these parameters that we scan over are taken to be positive through field

redefinitions, and in our initial test scans they were given arbitrarily chosen lower

bounds of 1 GeV. These ranges were further restricted into those listed in Tables 6.2

and 6.3 based on the results of these tests. It was also apparent that the experimental

constraints were drawing many of these parameters towards lower values, so scanning

them with logarithmic priors was found to be advantageous.

We further constrain these parameters by discarding all points for which any

fermion mass listed in Figure 4.3 is below 500 GeV, since the existence of such

light resonances has essentially been ruled out. This is done without problem in

PolyChord, but for Diver we needed to modify the source code so that the algorithm

will keep generating trial vectors until all pass this check. This modification has

made its way into the official release of Diver, in version 1.0.5.

6.2 Calculation of Observables

In setting up our models, we chose to use a convenient basis of fields in which it

was straightforward to write Lagrangians obeying the symmetries of the theory.

But since physical fields are mixtures of the fields in this gauge basis (gb), the

Lagrangians as written are not conducive to the calculation of physical observables.
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For this, the fields must be rotated to the physical mass basis (mb), in which the

mass matrices are diagonal (after EWSB), so that the Feynman rules of the theory

may become known. To illustrate, a generic coupling between two fermions Ψa,Ψb

and a vector field Acµ can be written in terms of the gauge basis coupling matrix

g(gb) as

L ⊃ g
(gb)
abc Ψ̄aγµΨbAcµ. (6.6)

In general, rotating to the mass basis requires unitary transformations

Ψ
(mb)
L,R = UΨ

L,RΨ
(gb)
L,R,

A(mb)
µ = UAA(gb)

µ , (6.7)

so that when expressed in the mass basis, the coupling matrix (for each handedness)

is given by

g
(mb)
abc = (UΨ)†aig

(gb)
ijk U

Ψ
jbU

A
kc. (6.8)

Similar considerations also exist for the other types of couplings, of course. It is

these mass basis couplings from which the Feynman rules may be read.

The steps for calculating observables are therefore as follows. First, the Higgs

potential must be minimised to find the Higgs vev for a given parameter point.

In practice this can only be done numerically, through either the mass matrix or

the form factor method, since there is no tractable exact formula for the Higgs po-

tential as a function of the model parameters. The Higgs vev is then substituted

into the mass matrices, which are then diagonalised (again, numerically) to obtain

the particle masses after EWSB. In the process, the unitary matrices UΨ and UA

that diagonalise the mass matrices become known, and these are used to calculate

the couplings in the mass basis given all of the gauge basis couplings. The result-

ing Feynman rules may then be applied to calculate any number of observables of

interest.

For this whole procedure we use the Python package pypngb developed for

Refs. [101, 117], and discussed in greater detail in Refs. [65, 118]. Given the cou-

pling matrices of the models as inputs to the code, pypngb will minimise the Higgs

potential, diagonalise the mass matrices, and calculate a large number of observables

for a given parameter point. If the potential is already known (by using the form

factor method, for example), the Higgs mass and vev may be passed as inputs to

pypngb to skip the minimisation step.

Most of the (non-mass) observables of interest in this work make use of the

partial width Γ(R → ij) of a resonance R decaying to a final state of two particles

i, j. For particles of mass mR,mi,mj, the partial width is calculated as [114,119]

Γ(R→ ij) =

√
m4
R +m4

i +m4
j − 2(m2

Rm
2
i +m2

Rm
2
j +m2

im
2
j)

16πm3
R

|M|2, (6.9)
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where |M|2 is the squared amplitude for the decay, averaged over the initial states

while summed over the final states. For explicit expressions for the amplitudes |M|2

in particular processes, refer to Ref. [65]. From the partial widths, we may calculate

the total width ΓR of the resonance (assuming only two-body decays are relevant)

ΓR =
∑

i,j

Γ(R→ ij), (6.10)

as well as its branching ratio into i and j,

BR(R→ ij) =
Γ(R→ ij)

ΓR
. (6.11)

We note that in calculating the partial widths, pypngb takes into account only

tree-level processes. Theoretical uncertainties are assigned to some observables to

account for this simplification.

6.3 Constraints

We constrain our models to reproduce a wide range of observables in accordance

with experiment. Namely, we employ SM masses, the EWSB energy scale, EW

precision observables, Z boson decays, Higgs signal strengths, and also bounds on

the production of new heavy resonances from direct collider searches as constraints.

Our treatment of the constraints builds on that of Ref. [101] (and the subsequent

modifications of Ref. [117]), so we only give a brief overview of each constraint below

and refer the reader to Section 3.1 of Ref. [101] for further details and discussion.

The experimental values have been updated for this work and are given in Table 6.4.

Finding the parameter values that best fit these observations is equivalent to

finding those points p that maximise some likelihood function L that compares the

predicted values of the observables Otheo(p) to the experimental values Oexp. We

model the likelihood as a multivariate Gaussian function in the observables:

L(p) = e−
1
2
χ2(p), χ2(p) = (Otheo(p)−Oexp)ᵀC−1(Otheo(p)−Oexp), (6.12)

where C is the covariance matrix taking into account uncertainties, both theoretical

and experimental, and also correlations between observables. Most observables Oi
are not correlated with any other, having the simple (additive) contribution

χ2
i (p) =

(Otheo
i (p)−Oexp

i )2

σ2
i

, (6.13)

while for two observables that share a correlation ρ, the relevant submatrix is

C−1 =
1

σ2
i σ

2
j (1− ρ2)

(
σ2
j − ρσiσj

−ρσiσj σ2
i

)
. (6.14)
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Observable Value(s) Ref.

mb 4.18(4) GeV [114]

mt (173.0(4)± 1.0theory) GeV [114,120]

mW 80.379(12) GeV [114]

mZ 91.1876(21) GeV [114]

mH 125.18(16) GeV [114]

Gµ 1.1663787(6)×10−5 GeV−2 [114]

S 0.02(10) [114]

T 0.07(12) [114]

Re 20.804(50) [121]

Rµ 20.785(33) [121]

Rτ 20.764(45) [121]

Rb 0.21629(66) [121]

µggττ 1.0(6), 1.05(50), 0.97(56) [122–124]

µggWW 0.84(17), 1.35(20), 1.20(20) [122–124]

µggZZ 1.13(33), 1.22(22), 1.03(16) [122–124]

µggγγ 1.10(23), 1.15(15), 0.97(15) [122,124,125]

Table 6.4: Experimental values used for constraints in our scans. The observables
are grouped (in order) into SM masses, the EWSB scale (Fermi constant), oblique
parameters, Z decay ratios, and Higgs signal strengths. The latter employ multiple
independent measurements.

Here, σi is the total uncertainty of Oi, obtained by summing its experimental and

theoretical uncertainties in quadrature. Note that because of the multiple indepen-

dent measurements of the Higgs signal strengths, the minimum possible χ2 is 5.405.

This simply acts as an inconsequential normalisation factor for the likelihood.

SM Masses and the EWSB Scale

All of the masses of SM particles that are predictions of the theory are used as

constraints. This includes the top and bottom masses, the W and Z masses, and

the Higgs mass. Once the Higgs mass is found by the method outlined at the

end of Section 4.3, the other masses are found at tree level by diagonalising the

mass matrices in Appendix H at the point h = 〈h〉. The top and bottom quarks

are identified as the third lightest up- and down-type particles in the theory, and

similarly the W is identified as the lightest charged boson and the Z as the lightest

massive neutral boson.

We use the formulae Equations (H.23) to (H.25) to target the regions of param-

eter space that give realistic top and bottom masses, using the estimate s〈h〉 = v/f .
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Because this estimate is only accurate for points that give the correct W mass, it is

unfortunately not effective to use these formulae to eliminate two free parameters in

favour of the known quark masses - doing so makes the scans converge to regions in

which none of the SM masses are reasonable. Instead, we constrain the parameter

space by only considering those points for which we estimate

30 GeV ≤mt ≤ 350 GeV, (6.15)

0.1 GeV ≤mb ≤ 8 GeV. (6.16)

These bounds were chosen so as to cover a vast majority of those points that provide

reasonable quark masses while excluding a large portion that do not, based on some

tests of randomly sampled points across every model.

We interpret the calculated masses as MS running masses at the scale mt. The

bottom mass is then run to the scale mb using RunDec [126] in order to compare

it to experiment. We assign theoretical uncertainties of 5% to the top, W , Z, and

Higgs masses, and of 1% to the bottom mass to conservatively account for these

assumptions.

In addition to the correct SM masses, we also constrain points to reproduce the

correct EWSB scale v. This is accomplished by using the Fermi constant for muon

decays as a constraint, which at tree level is given by the relation

Gtree
µ ≡ 1√

2v2
=

1√
2f 2s2

〈h〉
, (6.17)

having used Equation (3.84). A theoretical uncertainty of 1% is included in calcu-

lating this observable to account for only using the tree-level value. Note that in

the more sophisticated scanning method we use for our Bayesian fits, the W and Z

mass constraints, and the EWSB scale constraint, are automatically satisfied.

Oblique Parameters

Important constraints for CHMs come from EW precision observables, which re-

strict the non-linear dynamics of the pNGB Higgs and place lower bounds on com-

posite resonance masses. Such observables are conveniently parameterised by the

Peskin-Takeuchi S and T parameters [127,128], which we take as constraints. These

“oblique” parameters measure the vacuum polarisation of the electroweak bosons,

and as such quantify the effects of any new physics that affects all fermion genera-

tions equally.

The T parameter is defined in terms of the transverse parts of the W and Z

vacuum polarisations as

T =
1

αem

(
ΠT
WW (p2 = 0)

m2
W

− ΠT
ZZ(p2 = 0)

m2
Z

)
, (6.18)
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where αem is the electromagnetic fine-structure constant. This parameter receives

no tree-level contributions in our models as a result of the custodial symmetry from

the SO(5)/SO(4) coset [69]. We use the tree-level masses and calculate the form

factors ΠT
V V at one-loop level, only including the dominant fermion contributions.

An absolute theoretical uncertainty of 0.10 is assigned to this calculation of T to

accommodate the typical size of the neglected gauge and NGB loop contributions.

The S parameter, on the other hand, is calculated at tree-level by the formula

αemS =
1

4

(
1− m2

W

m2
Z

− 1

2

gRZee
gRZee − gLZee

)
, (6.19)

where gL,RZee are the couplings of the Z boson to left- and right-handed electrons. This

relation for S is only valid in models where T receives no tree-level contributions.

We give a theoretical uncertainty of 0.05 to S to account for neglected loop effects.

Note the values for S and T in Table 6.4 have a correlation coefficient of +0.92

that is taken into account in the χ2 calculation. The theoretical uncertainties are

assumed to be uncorrelated.

Z Decays

While the oblique parameters are sufficient to constrain corrections to observables

relating to the elementary fermions, they are not sensitive to observables relating to

the significantly composite third generation quarks, for these receive non-universal

corrections. The compositeness of the third generation quarks is instead tightly

constrained by the ZbLb̄L coupling, which has been measured precisely at the LEP

[121]. To this end we employ the observables

Rb :=
Γ(Z → bb̄)

Γhad

, R` :=
Γhad

Γ(Z → `¯̀)
, (6.20)

(for ` = e, µ, τ), where

Γhad =
∑

q=u,d,c,s,b

Γ(Z → qq̄) (6.21)

is the total Z hadronic width. Since all fermions here are taken to be entirely

elementary except for the bottom quark, all of these observables are effectively

constraints on the ZbLb̄L coupling.

The partial widths Γ(Z → xx̄) are calculated at leading order, and are nu-

merically modified with NNLO contributions from the SM [129] so that the SM

predictions [130]

RSM
b = 0.215835, RSM

e = 20.7389, RSM
µ = 20.7391, RSM

τ = 20.7860 (6.22)

are accurately reproduced when the composite sector is decoupled.
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Higgs Signal Strengths

We use Higgs signal strengths to further constrain the non-linear dynamics of the

pNGB Higgs. Specifically, we use the signal strengths from gluon fusion production,

which is the dominant Higgs production mechanism and is well measured at the

LHC. The signal strength µggX for the decay into a final state X is defined as the

ratio of the measured cross section to the predicted SM value:

µggX :=
[σ(gg → h)BR(h→ X)]exp

[σ(gg → h)BR(h→ X)]|SM

. (6.23)

We include as observables µggX for X = ττ , WW , ZZ, and γγ. The partial widths

for decays into massive particles are calculated at tree level, and those for decays

into massless particles are calculated at one-loop order including all fermionic and

bosonic contributions. The production cross section σ is calculated with the formula

Equation (6.25) given later.

For each of these observables we use three independent measurements - one using

combined ATLAS and CMS data from Run I of the LHC, and the others separately

from ATLAS and CMS using Run II data.

Collider Searches

Searches for heavy resonances in colliders place useful upper bounds on the produc-

tion cross section times branching ratio of composite resonances for various decay

modes. For each composite resonance R, this value is calculated for all relevant SM

final states (i, j) to compare with the upper bounds. Note that since these searches

do not constrain an observable to any particular value but rather only provide up-

per bounds, there is a slight departure from Equation (6.13) in calculating the χ2

contribution of each decay. In this case, the “experimental value” Oexp
i is taken to

be the Gaussian central value of the expected upper bound and the observed upper

bound on the cross section at the mass of the appropriate resonance. If the ob-

served bound is weaker than expected, i.e. there is a excess of detected events, the

χ2 contribution is indeed given by Equation (6.13) so as to favour those resonances

that could explain the surplus events. However, if the observed bound is stronger

than expected, i.e. there are less events detected than expected, the contribution is

instead

χ2
i =

(Otheo
i (p)−Oexp

i )2 − (Oexp
i )2

σ2
i

, (6.24)

so that a vanishing cross section gives the highest likelihood. Here, σi is the Gaussian

standard deviation of the bound1.

1Assuming the collider analyses give a 95% confidence level bound, this is simply 1/1.96 times the
expected bound.
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All of the experimental analyses that provide constraints we use are featured in

Tables J.1 to J.5 in Appendix J. This builds on the list of analyses used in Ref. [117]

with an additional 40 LHC searches at
√
s = 13 TeV. We have digitised the bounds

provided by these analyses using the Python package collim developed by Peter

Stangl. For reference, the upper bounds of various processes provided by the 13 TeV

analyses are shown in Figures 6.1 and 6.2.

The χ2 associated to each decay can be calculated with collim, but unfortu-

nately it is rather slow to perform these calculations for all of the decays in our

models. Including these direct search constraints in our scans increases the time

spent evaluating each point from roughly 0.02 seconds to 0.2 seconds. We included

these constraints in our frequentist fits, but due to time constraints opted not to do

so for the Bayesian fits, instead only analysing them for the dead points after the

scans converged.

For the quark partners we only employ constraints from analyses of pair-produced

fermionic resonances. This is because the pair-production cross sections can be

found quickly by interpolating the model-independent NNLO values provided by the

Hathor package [131]. When comparing a production cross section times branching

ratio to the upper bound from one of these analyses, the calculated branching ratio

is appropriately modified depending on whether the analysis required one, both, or

at least one of the resonances in the pair to decay.

Vector resonance production cross sections are calculated with the narrow width

approximation (NWA) [114,132]

σ(pp→ R) =
16π2SRcR

mR

∑

i,j

1 + δij
SiSjcicj

Γ(R→ ij)
Lij(s,mR)

s
, (6.25)

where Si and ci are respectively the number of polarisations and colours of particle

i, mR is the resonance mass,
√
s is the centre of mass energy of the collider, and

Lij(s,mR) is the parton luminosity of partons i, j with centre of mass energy mR in

a proton-proton collision with collider energy
√
s. Refer to Ref. [65] for more infor-

mation on this calculation. The contribution to the χ2 from the bosonic resonance

R is suppressed by the factor

4

π2
arctan2

(
mR

10ΓR

)
, (6.26)

so that the contribution is negligible when the NWA is not reasonably valid.
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Figure 6.1: Observed 95% CL upper bounds for cross sections of pair-produced
fermions F decaying to SM final states in proton-proton collisions at

√
s = 13 TeV

that we use as constraints.
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Figure 6.2: Observed 95% CL upper bounds for cross sections of a vector boson V
decaying to SM final states in proton-proton collisions at

√
s = 13 TeV that we use

as constraints.
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In calculating the χ2 for each decay, we only use the maximum χ2 contribu-

tion from all the analyses restricting the decay. While a tighter bound would be

given by combining the contributions from independent analyses, we find that the

improvement in the excluded cross section at the 3σ level when doing this is often

smaller than the error introduced by the NWA, and so implementing this would not

be worthwhile, especially given the difficulty in combining analyses due to the lack

of public information regarding the covariances between the analyses in question.

Indeed, from a näıve separation of the analyses into groups that use independent

data sets based on the channel each looks at (which gives a charitable interpretation

of “independent”), we find that the decays whose 3σ exclusion bounds would be

most improved by combining the independent contributions are

• V → tt̄, by ∼10−20% over the probed mass range,

• V → WH, by ∼20−30%, and

• V → WZ, by ∼30−50%, where V denotes a vector boson.

Now the relative error in the cross section introduced by the NWA is typically of

order ΓR/mR, although it can be significantly larger depending on the kinematics of

the decay [133]. Figure 6.3 displays this ratio for randomly distributed parameter

points in the M4DCHM14−1−10, showing that only a small proportion of points

produce predictions precise enough to distinguish the improvements in the exclusion

bounds. We are therefore justified in using only the maximum χ2 contributions.

Mass Cuts

As a final measure, we impose harsh penalties for any new fermionic resonances

below 500 GeV because such a resonance would likely have already been discovered.

Ruling out points using hard mass cuts below 500 GeV makes it prohibitively time

consuming to find an initial population of viable points, so instead we assign a

steep one-sided Gaussian likelihood to the fermionic masses. This makes initial

populations of points easier to find, and they will evolve towards points that give

more reasonable masses as the scans proceed.
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(a)

(b)

Figure 6.3: Plots of the estimated relative error Γ/m in the cross sections calculated
with the NWA approximation for (a) the lightest charged boson W2 and (b) the
lightest uncharged boson Z3 for randomly chosen points in the M4DCHM14−1−10.
The heavier bosons typically give larger relative errors.



Chapter 7

Results

The results of our global fits of the M4DCHM5−5−5, the M4DCHM14−14−10, and the

M4DCHM14−1−10 are presented below in Sections 7.1 to 7.3, and are collectively

discussed in Section 7.4. As a by-product of the fits, we analyse the experimental

signatures of the three models in Section 7.5 in the hope of guiding the search for

evidence of these models at the LHC.

But first, it should be stressed how difficult it was to obtain these final results

with consistency between repeated scans. Dozens of test scans were performed with

various tweaks to the models and scan settings in the process. Initially, we treated

all of the quarks as partially composite in our models, but it soon became apparent

that fitting these was infeasible. There was still difficulty after simplifying to only

partially composite third generation quarks, and much experimenting was done re-

garding the population sizes, convergence criteria, model features, and constraints

included in the scans. Removing the composite bottom sector led to high repro-

ducibility in the results, which we took as a promising sign for obtaining consistent

results with more complicated models. We then took steps increasing the model

complexity by adding the partially composite bottom quark back in, but removing

the composite SU(3) sector. This again gave consistent fit results, after which we

moved on to scanning the final versions of our models described in Chapter 4. In the

interest of brevity, we forego presenting the results of these tests, although they were

necessary to settle on the procedures for the final scans, and are broadly consistent

with the final results. This was an incredibly time consuming process; many of these

test scans would take a week or longer to converge running on a high-performance

computational cluster, which severely hindered progress. The final Diver scans,

using populations of 50,000 points and convergence thresholds of 10−5, each had a

runtime of at least one week on 256 cores, while the PolyChord scans each took

several days to a week to converge.

As a final note, recall from Chapter 5 that the Bayesian fit results will be given

in terms of marginalised posteriors, and the frequentist fit results in terms of profile

likelihood ratios. We use anesthetic to analyse and plot the Bayesian results [134],

and pippi to plot the profile likelihood ratios [135]. The Bayesian scan parameters

are rescaled in the plots to match those used in the frequentist scans in order to

facilitate easier comparisons between the fits.
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Figure 7.1: 1D and 2D marginalised posteriors for the gauge sector parameters in
the M4DCHM5−5−5 found in two different runs with 4000 live points.

7.1 M4DCHM5−5−5

7.1.1 Bayesian Fit

Our results for this model come from four different PolyChord scans, performed to

verify reproducibility. The first two scans, which each used 2000 live points, did

not display very good agreement with each other, but more agreement was seen

after increasing the sampling density to 4000 live points. The posteriors found by

these 4000 point scans are shown in Figures 7.1 to 7.3. In the type of figure shown

here, the diagonal plots show the 1D marginalised posteriors of the parameters,

with the 2D marginalised posteriors of the various parameter pairings filling the

off-diagonal plots. The upper-right plots show samples drawn directly from the

posterior, while the lower-left plots are kernel density estimates of this distribution,

with iso-likelihood contours containing 66% and 95% of the probability mass.
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Figure 7.2: 1D and 2D marginalised posteriors for the top partner parameters in
the M4DCHM5−5−5 found in two different runs with 4000 live points.
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Figure 7.3: 1D and 2D marginalised posteriors for the bottom partner parameters
in the M4DCHM5−5−5 found in two different runs with 4000 live points.
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While there is not exact agreement in the posteriors in Figures 7.1 to 7.3, there

are no major differences in the general regions that each scan found (apart from a

minor mode found in the second run that is apparent in the plots of the fermion

parameters), and specific features such as the correlation between mb and mYb are

present in both scans. Given how difficult sampling the space has proven to be,

we regard this as an acceptable level of agreement. It is also encouraging that the

Bayesian evidences found in the 4000 point scans were in agreement:

ln(Z)Run 1 = −27.85± 0.06,

ln(Z)Run 2 = −27.87± 0.06, (7.1)

which we take as further indication that the parameter space has been reliably

explored.

For our final analysis, we combine the samples from all four scans1 in order

to maximise the robustness of our conclusions. Our main results, the priors and

posteriors of the parameters from the combined runs, are shown in Figures 7.4,

7.6 and 7.7. Recall that the prior distribution is that of the points drawn ran-

domly within the imposed bounds subject only to consistency conditions such as

the production of EWSB, while the posterior is a balance between the prior and the

likelihood of each point. A posterior distribution similar to the prior distribution

indicates the likelihood does not considerably constrain the space, while a posterior

significantly different from the prior indicates the likelihood constrains the space to

quite unnatural regions.

We look first at the results for the gauge parameters, in Figure 7.4. There is a

clear pattern for the NGB decay constants: their priors all favour lower values of the

constants and drop off rapidly for higher values, while their posteriors occupy the

higher values. We remind the reader that in these Bayesian scans, these priors were

not imposed directly, but are the result of fixing f to be whatever is needed to give

the correct EWSB scale. Notice that these priors successfully encode the notion that

smaller decay constants are more natural (see Equation (3.75)), and that larger decay

constants require more fine-tuning. The fact that the posteriors differ significantly

from these priors shows that the experimental constraints strongly disfavour smaller

decay constants. We already know this to be the case from precision electroweak

tests [44], but it will do well to examine other factors present. The ideal way to

do this would be to run many scans, including only one experimental constraint at

a time to see the effect each has on the posterior, but doing so would take more

resources than are available to us. Instead, we simply examine the contribution to

the χ2 from each constraint for all of the dead points in the scans, and if any is

small (large) over a specific parameter range, then we know that that constraint

contributes to the enhancement (suppression) of the posterior in that range.

1Nested sampling is trivially parallelisable, meaning that any collection of nested sampling runs can
be combined by simply merging their samples and ordering them according to their likelihoods,
and the result is equivalent to a single run that uses a number of live points equal to the sum of
the live points from each individual run. This merging functionality is provided by anesthetic.
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Figure 7.4: 1D and 2D marginalised priors and posteriors for the gauge sector
parameters in the M4DCHM5−5−5.
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Figure 7.5: Contributions to the total χ2 from the oblique (S and T ) and Higgs-
to-diphoton signal strength constraints plotted against the Higgs decay constant f .
Dead points from all Bayesian scans of the M4DCHM5−5−5 are featured.

Let us go through the analysis process in explicit detail for the Higgs decay

constant f , to illustrate. From Figure 7.4, the posterior for f lies mostly between

1.2 TeV and 1.9 TeV, with a maximum at ∼1.4 TeV. The upper bound here can

be explained easily, as the prior greatly suppresses the posterior beyond this region,

but the same is not true for the lower bound. It turns out that the lower bound

is due to a variety of constraints; namely, the oblique constraints, the Higgs signal

strength constraints, and the Z decay constraints. All of these are understandable:

the oblique constraints, which parameterise the electroweak precision observables,

are sensitive to low-mass vector resonances and thus low f ; Higgs signal strengths

are highly dependent on the non-linearities of the pNGB Higgs and hence on f , since

the Higgs field enters the Lagrangian as h/f ; and the mixings of the vector bosons,

dependent on f , would affect the Z decays. The dependence of the χ2 contributions

from some of these constraints on f is shown in Figure 7.5. Notice from Figure 7.5

that it is not impossible for such constraints to be individually well-satisfied at low

f ; it is simply that many points in this range do not satisfy the constraints well, and

this large low-likelihood region would suppress the posterior over this range because

of the marginalisation process2. This same sort of analysis will be done for the other

parameters also, though we will not provide all of the χ2 plots here.

Moving on to the other decay constants in Figure 7.4, there does not seem to

be any structure in their posteriors beyond the consistency conditions outlined in

Section 6.1. That is, the SO(5) decay constant f1 has no particular preference for

any values between its theoretical bounds of f and
√

3f , having a posterior peaking

around 2 TeV, and likewise for the U(1)X and SU(3)c decay constants fX and fG,

which have similar posterior distributions between ∼1 TeV and ∼4 TeV. These

parameters are constrained by the same factors as f mentioned above.

2It is also possible that satisfying one constraint well necessitates a violation in another constraint,
which would lead to a large total χ2 and a direct suppression of the posterior from the likelihood,
rather than from a volume effect.
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As for the gauge couplings, the posterior for the SO(5)1 coupling gρ extends

across the entire range [1, 4π] with a preference for values between ∼2 and ∼8, while

that for the U(1)1
X coupling gX is almost uniform, and that for the SU(3)1

3 coupling

gG favours the lower end of the range. These posteriors are largely driven by the

prior, though there are some additional experimental factors at play. All constraints

can be satisfied well for all values of the coupling strengths, so it is difficult to discern

exactly which experiments are behind this behaviour. The Higgs signal strength,

SM mass, and oblique constraints all seem to slightly disfavour values for gρ at

the extreme ends of the range, while the Z decay constraint Rb disfavours values

below ∼2, in opposition to Re and Rµ, which favour those values. The Z decays act

similarly for gX , and here the Higgs signal strength and oblique constraints promote

stronger couplings. It is unsurprising that there is little structure in the posteriors of

fG and gG since we do not include any constraints on heavy gluon decays or flavour

physics in these Bayesian scans.

Moving on to the top sector parameters in Figure 7.6, we see the posteriors are

significantly localised in comparison to the priors, demonstrating the effects of the

constraints on the space. However, the posteriors all peak around the same regions as

the priors, so it seems that satisfying the constraints does not require excessive fine-

tuning. Indeed, the elementary-composite mixing and composite mass parameters

all tend to be constrained around ∆tL ∼ ∆tR ∼ mt ∼ mt̃ ∼ 1.8 TeV, which, from

the findings of Ref. [87] mentioned in Section 4.7, indicates double tuning is not

so much of an issue. All of these parameters are primarily constrained by the SM

masses, except for the lower bound of 0.5 TeV on mt̃ that comes from the resonance

mass cutoff3 mentioned in Section 6.3. Not particularly well constrained is the off-

diagonal mass mYt , which may take any value below ∼2 TeV. The last top sector

parameter, mYt +Yt, clearly prefers larger values from around 2 TeV to 20 TeV, and

this is due largely to the SM mass and oblique constraints.

Finally, we discuss the bottom sector parameters in Figure 7.7. There is not as

much uniformity among these as for the top parameters, presumably because these

play a subdominant role in the Higgs potential. Interestingly, ∆bL is very narrowly

constrained, between around 10 GeV and 30 GeV. Much of this is due to the prior,

which suppresses values above ∼150 GeV, but again there are other factors present.

The lower bound on its posterior is easily identified as coming from the bottom quark

mass constraint, but the upper bound is more subtle, and there are two contributing

factors at play:

• Similarly to the case with f , there is a large region of points with ∆bL & 50 GeV

that significantly violate the Z decay constraints, suppressing the marginalised

posterior over this range. This is on display in Figure 7.8. It agrees with

intuition that the mixing parameter ∆bL of the left-handed quark doublet is

sensitive to the tight constraints on the Zb̄LbL coupling.

3We could not impose this bound at the prior level because we were imposing the prior on the
dimensionless variable mt̃/f for an unspecified scale f .
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Figure 7.6: 1D and 2D marginalised priors and posteriors for the top partner pa-
rameters in the M4DCHM5−5−5.
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Figure 7.7: 1D and 2D marginalised priors and posteriors for the bottom partner
parameters in the M4DCHM5−5−5.
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Figure 7.8: Plots helping to explain the localisation of the posterior of ∆bL. Left :
contributions to the χ2 from the Z decay constraint Rb. Notice the large region of
points that significantly violate this constraint for ∆bL & 50 GeV. Right : correlations
displayed by the posterior of ∆bL with those of other parameters.

• Correlations exist among the posteriors of ∆bL and ∆tL, and of ∆bL and mt,

also shown in Figure 7.8. That is, one or more experiments must constrain

some non-trivial combination of these parameters. Other constraints on ∆tL

and mt thereby inadvertently act to constrain ∆bL also. In this case, the upper

bound on ∆tL and lower bound on mt both contribute, to some extent, to the

upper bound on ∆bL.

Easier to analyse are the parameters ∆bR and mYb , which share similar posterior

distributions ranging between roughly 1 TeV and 10 TeV, with lower bounds coming

from the bottom quark and Higgs mass constraints. The resonance mass cutoff sets

a lower bound of 0.5 TeV on the posterior of mb, which ranges up to ∼4.5 TeV. The

bottom mass constrains mb̃ to lie above ∼1 TeV, and the prior below ∼5 TeV. And

finally, mYb +Yb lies mostly below 2 TeV, with a preference towards the lower values

stemming from the SM mass and Z decay constraints.

One interesting feature to note here is that the correlation between the posteriors

of mb and mYb mentioned previously is not present in the prior and so must be

enforced by one or more of the experimental constraints, though it is difficult to

pinpoint the cause of this correlation. Other structures to note in Figures 7.6 and 7.7

are slight correlations in the priors and posteriors of the pairs (mt, mYt + Yt) and

(mt, mt̃), a mild correlation in the posteriors of (∆bR, mb̃), and posteriors that seem

to avoid small values for both parameters in the pairs (∆tL, mt), (∆tL, mYt + Yt),

(mb, mb̃), and (∆bR, mYb). More will be said about these results when comparing

models in Section 7.4.

7.1.2 Frequentist Fit

In contrast to our Bayesian fit of this model, and despite our best efforts, we have

unfortunately not been able to arrive at reproducible results for our frequentist fit

of the M4DCHM5−5−5. The best-fit points found in several Diver scans with pop-
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ulation sizes of 20,000+ points were always sparsely scattered and never in similar

regions, neither of which are to be expected if the space has been well-sampled.

This may be due in part to our scanning method for these fits, which recall makes it

difficult to explore along the f dimension, but we cannot repeat the scans using the

more sophisticated parameterisation on account of time constraints. Nevertheless,

out of interest, we include the combined results in Figures 7.9 to 7.13. For reference,

the best-fit point found in this model carries a likelihood of ln(L) = −15.3.
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Figure 7.9: Profile likelihoods for the NGB decay constants in the M4DCHM5−5−5.
The 1σ and 2σ confidence level bounds are overlaid. Stars mark the best-fit point.
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Figure 7.10: Profile likelihoods for the gauge couplings in the M4DCHM5−5−5.
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Figure 7.11: Profile likelihoods for the couplings linking the elementary and com-
posite sectors in the M4DCHM5−5−5.
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Figure 7.12: Profile likelihoods for the on-diagonal mass parameters in the
M4DCHM5−5−5.
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Figure 7.13: Profile likelihoods for the off-diagonal mass and proto-Yukawa param-
eters in the M4DCHM5−5−5.

It is immediately apparent in these plots that the profile likelihood ratio is not

smoothly varying across many of the parameters. This is not to be expected (after

all, the likelihood function is continuous!) and is an indication of the poor sampling

of the space. As such, these results are not trustworthy, and we shall not discuss

them in detail or in particularly definite terms, leaving the majority of the frequentist

analysis to the other models.

We first note that the likelihood distributions for the NGB decay constants in

Figure 7.9 differ significantly from the posteriors from the Bayesian fit. Here, larger

values are preferred, especially for f . If the confidence interval bounds in Figure 7.9

are to be believed, f lies above ∼2.1 TeV at the 2σ confidence level, and maximises

the likelihood at ∼4.5 TeV. The discrepancy between this interval and the posterior,

which lies below 2 TeV, highlights the distinction between the fitness of a region

and its naturalness. Evidently, this model must be quite finely-tuned to best fit

the data. This range on f corresponds to a vacuum misalignment s〈h〉 . 0.11, or a

fine-tuning of & 70 (see Equation (3.75)). As for the gauge couplings, the likelihood

for gρ in Figure 7.10 roughly matches its posterior, preferring values between 2 and

8, as is to be expected by the similarity of its prior and posterior. Contrastingly,

the gX and gG likelihood distributions do not match with their posteriors, tending

towards smaller and larger values respectively.

The likelihood distributions for the fermion sector parameters are more in line

with the Bayesian posterior results. A notable exception is ∆bL, whose posterior

was narrowly constrained around O(10) GeV, here having a 2σ confidence interval

of roughly 0.1 TeV to 3 TeV. Recall that the posterior for ∆bL was heavily suppressed
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both by the prior and by a large low-likelihood region over this range, so this is at

least not necessarily inconsistent. It is also important to keep in mind that these

scans included the LHC resonance bounds as constraints while the Bayesian scans

did not, which may contribute to some of the differences between the results. This

matter will be discussed further for the other models, where more satisfactory results

were obtained.

7.2 M4DCHM14−14−10

7.2.1 Bayesian Fit

Unfortunately, in this model we only had the resources to perform two Bayesian

scans, each with 2000 live points, and their results are not entirely in agreement, as

can be seen in Figures 7.14 and 7.15. The most obvious difference between these

scan results is the many minor modes of the posterior among f and the fermion

parameters that were found in the second scan, but not the first. Their evidences,

ln(Z)Run 1 = −40.1± 0.2,

ln(Z)Run 2 = −42.0± 0.3, (7.2)

are also not in good agreement. We aim to improve these results in later work by

scanning with higher sampling densities, but presently we are resigned to giving

only the results of these scans for this model. Still, we see there is loose agreement

in the dominant modes of the posteriors found in each scan, so we can draw some

preliminary conclusions about the space here.

The combined results of our two scans are given in Figures 7.16 and 7.17. The

priors and posteriors for the gauge sector parameters, in Figure 7.16, look much

the same as in the M4DCHM5−5−5, with the NGB decay constant posteriors con-

centrated well above the small values preferred by the prior. The posterior for f

enjoys a slightly higher range than before, from around 1.5 TeV to 2.2 TeV, again

due largely to the Higgs signal strength, Z decay, and oblique constraints. And in

contrast to the previous model, here we do see some interesting structure between

the remaining decay constants on top of that imposed by consistency conditions.

Specifically, f1 and fG tend towards the higher ends of their possible ranges, re-

spectively spanning from ∼1.5 TeV to ∼3.8 TeV and from ∼0.8 TeV to ∼6.5 TeV,

while fX has a modest preference for the lower end of its range, spanning between

∼0.5 TeV and ∼5.7 TeV. Unfortunately, these preferences are too slight for their

causes to be discerned. Moving on, the gauge coupling gρ has a similar distribu-

tion to before, preferring mid-range values but perhaps slightly skewed in favour

of weaker couplings, while gX is more constrained in this model, having a definite

tendency towards lower values. Both seem to be driven once again by the priors in

combination with the Higgs signal strength and Z decay constraints. Stronger gG
couplings are disfavoured, as they appear to entail undesirably small values of fG.
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Figure 7.14: 1D and 2D marginalised posteriors for the gauge sector parameters in
the M4DCHM14−14−10 found in two different runs with 2000 live points.
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Figure 7.15: 1D and 2D marginalised posteriors for the fermion sector parameters
in the M4DCHM14−14−10 found in two different runs with 2000 live points.
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The fermion parameters in the M4DCHM14−14−10 are seen from Figure 7.17 to

be significantly more constrained than those in the M4DCHM5−5−5, with posteriors

concentrated on considerably smaller regions in comparison to the priors. Being

emblematic of higher fine-tuning, this might explain some of the difficulty in fitting

this model. This is particularly evident for the on-diagonal mass parameter mt,

whose prior allows it to take effectively any value up to 20 TeV but whose posterior

is localised between ∼0.7 TeV and ∼4 TeV. Mass constraints are the main factor

here, with the Z decay and Higgs signal strength constraints also contributing to the

upper bound somewhat, and the same is true for all of the other on-diagonal mass

and mixing parameters as well. Those couplings for the left-handed quark partners,

∆q and mq, share similar posterior distributions, respectively ranging from ∼1.2 TeV

to ∼3.3 TeV and from ∼1.3 TeV to ∼3.0 TeV. Having a slightly wider range is ∆t,

being mostly constrained between ∼0.5 TeV and ∼3.5 TeV, while ∆b is able to take

yet lower values from ∼0.1 TeV to ∼3.0 TeV. Despite its prior, mb tends towards

very large values with a posterior between ∼4 TeV and ∼25 TeV. Evidently, the

right-handed bottom quark must possess a small compositeness ∆b/mb in this model,

as is to be reasonably expected from its relatively small mass.

The remaining proto-Yukawa parameters display some interesting features. Save

for the minor modes found in the second scan, the posterior for mYt is concentrated

between ∼1.8 TeV and ∼6.7 TeV, while

m
(4)
Yt

:= mYt +
1

2
Yt (7.3)

has a posterior constrained to lower values . 0.4 TeV. In other words, it must be

that Yt ≈ −2mYt . It is not clear exactly which experiments are to blame, but it

seems that the posterior is suppressed at smaller values of mYt and at greater values

of m
(4)
Yt

by large low-likelihood regions stemming from the Higgs signal strength

constraints. Z decays also slightly favour the smaller values of m
(4)
Yt

. Meanwhile,

both the prior and posterior for

m
(1)
Yt

:= mYt + 4Yt/5 + 4Ỹt/5 (7.4)

favour large values, from around 2.5 TeV to 17 TeV, with smaller values again

perhaps being suppressed in the posterior due to a volume effect from the Higgs

signal strengths. From the previous observations, this implies Ỹt must also be quite

large, greater than around 4.5 TeV. Finally, SM mass constraints force Yb to be

larger than 150 GeV, even though smaller values are favoured by the prior.

None of these fermion parameters display any particularly strong correlations in

their posteriors, although there does seem to be a mild negative correlation between

∆b and Yb, and a mild positive correlation between mb and m
(4)
Yt

. Interestingly, the

prior disfavours regions where both mt and m
(1)
Yt

, and to a lesser extent both m
(4)
Yt

and m
(1)
Yt

, are small.
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7.2.2 Frequentist Fit

While our Bayesian fit of the M4DCHM14−14−10 is lacking in reproducibility some-

what, our frequentist fit has found more success. Having seen general consistency

between separate scans with 20,000 and 50,000 points, we give the profile likelihood

ratios for all of the parameters from the combined runs in Figures 7.18 to 7.22. The

best-fit point found here has a likelihood of ln(L) = −15.1.
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Figure 7.18: Profile likelihoods for the decay constants in the M4DCHM14−14−10.

★

68.3%CL

95.4%CL

pippi v2.1

0.2

0.4

0.6

0.8

1.0

P
ro

fi
le

li
ke

li
h
o
o
d

ra
ti

o
Λ

=
L/

L m
a
x

2 3 4 5 6
gρ

★

68.3%CL

95.4%CL

pippi v2.1

0.2

0.4

0.6

0.8

1.0

P
ro

fi
le

li
ke

li
h
o
o
d

ra
ti

o
Λ

=
L/

L m
a
x

2 4 6 8 10 12
gX

★

68.3%CL

95.4%CL

pippi v2.1

0.2

0.4

0.6

0.8

1.0

P
ro

fi
le

li
ke

li
h
o
o
d

ra
ti

o
Λ

=
L/

L m
a
x

4 6 8 10 12
gG

Figure 7.19: Profile likelihoods for the gauge couplings in the M4DCHM14−14−10.
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Figure 7.20: Profile likelihoods for the couplings linking the elementary and com-
posite sectors in the M4DCHM14−14−10.
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Figure 7.21: Profile likelihoods for the on-diagonal mass parameters in the
M4DCHM14−14−10.
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Figure 7.22: Profile likelihoods for the off-diagonal mass and proto-Yukawa param-
eters in the M4DCHM14−14−10.

Notice that the distributions in these plots are significantly more smooth than

those for the M4DCHM5−5−5, lending more credibility to these results. We first

observe here that the profile likelihood grows as f increases up to our cutoff of

5 TeV. From the confidence interval bounds shown on the plot in Figure 7.18, it is

seen that f & 4.2 TeV at the 1σ confidence level4, and f & 3.7 TeV at the 2σ level.

This range on f translates to a misalignment s〈h〉 . 0.065 at the 2σ level, giving

a rather significant fine-tuning estimate of & 230. These frequentist scans were

able produce a decent fit despite this tuning, and in contrast to the Bayesian scans,

because here the decay constants were sampled uniformly over their ranges, with

no disinclination for the larger values that optimise the likelihood. As for the other

decay constants, f1 tends to lie in the middle of its theoretical range, having a best

fit value of ∼6 TeV, while fX tends towards larger values. Again, the heavy gluon

decay constant fG is not particularly constrained since we do not include flavour

constraints in our scans.

Regarding the composite gauge couplings, gρ has a clear preference for smaller

values. Our result of gρ . 2.5 fits quantitatively with Ref. [87], which found that

under some mild assumptions the Higgs mass is expected to scale with gρ in this

model, and a coupling of such a size is to be expected to reproduce the correct Higgs

mass. However, it should be noted that we found many points across all values of gρ

4These bounds assume that our scans have found the true maximum likelihood point in the
M4DCHM14−14−10. It seems likely that had we extended our bound on f to greater than 5 TeV,
we would have found points that even better fit the data. However, as long as the best-fit point
in our scan has a comparable likelihood to the true global optimum, these confidence intervals
will be approximately accurate.
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that give a reasonable Higgs mass, and it is strictly a combination of the constraints

that results in our likelihood distribution for gρ. The other gauge couplings are

under no such constraint, and are seen to heavily prefer larger values. Note that

none of these distributions match with the posteriors given previously. Part of this

difference can be attributed to the priors for the couplings, but it seems the more

pressing factor is the LHC search constraints used in these scans that disfavour light

gauge bosons and therefore small gauge couplings.

The remaining fermion parameters mostly follow the patterns seen in the Bayesian

results, but typically at greater values than suggested by the posteriors. The

marginalised posteriors and profile likelihoods do not need to be similar, of course,

because of the prior-dependence of the posteriors and the difference between the

marginalisation and profiling procedures, but other factors that could contribute to

the differences here are the LHC constraints that encourage heavier fermions and

therefore larger values of certain couplings, and also the poor quality of the Bayesian

fit of this model. That the priors so disfavour the ranges highlighted here implies a

considerable amount of fine-tuning for this best-fit region.

Figure 7.20 shows that the mixing parameters ∆q and ∆t lie above ∼4.4 TeV

at the 2σ level, with ∆q tending to be the smaller of the two, being constrained

below ∼9.0 TeV, while ∆t can reach upwards of 17 TeV and skews towards higher

values. The right-handed bottom mixing ∆b has a profile likelihood distribution

that more closely matches the posterior found earlier, with a 2σ confidence inter-

val from ∼0.5 TeV to ∼4.0 TeV. The mass parameter mt is once more narrowly

constrained, to within about 15% of 2 TeV. Larger values are taken by mq, lying

between ∼2.8 TeV and ∼5.0 TeV, and mb, reaching up to ∼8.1 TeV at the 2σ level.

Again we see the top quark is considerably composite while the bottom quark is

mostly elementary.

Where the frequentist and Bayesian results most differ is in the parameter mYt ,

with the likelihood here favouring values less than ∼0.7 TeV. Since the posterior

was driven by a large low-likelihood region at small mYt , these two sets of results are

not contradictory. And note from Figure 4.3 that a large mYt leads to a multitude

of light fermions, while a small mYt implies heavier fermions close to mq and mt

in mass, so the LHC constraints in these scans are best satisfied by taking mYt

small. Better matching the Bayesian results are m
(4)
Yt

, being essentially negligible;

m
(1)
Yt

, being constrained to values above ∼4.0 TeV; and Yb, again taking values

greater than 150 GeV but now also constrained to less than around 1.3 TeV. See

Equations (7.3) and (7.4) for the definitions of m
(4)
Yt

and m
(1)
Yt

.

Interestingly, m
(1)
Yt

is one of the few parameters whose profile likelihood is corre-

lated with that of any other parameter in this model. All of the correlations present

are shown in Figure 7.23. From this, we see that higher symmetry scales f can ac-

commodate stronger ∆t, mq, and m
(1)
Yt

couplings. Consequently, the allowed ranges

of these parameters can be roughly estimated as the experimental lower bound on f

further improves. In addition to these correlations, we also see from Figure 7.23 that

gX and fX are negatively correlated, as are Yb and ∆b. The former correlation can
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Figure 7.23: Profile likelihoods for parameters displaying slight correlations in the
M4DCHM14−14−10. Contours define the 1σ and 2σ confidence levels.

heuristically be explained by gXfX being linked to the mass of a composite gauge

boson, so large values are more desirable in light of the LHC search constraints.

The latter correlation has already been seen in the posterior (see Figure 7.17), sug-

gesting a constraint common to both fits, such as the bottom mass constraint, is

the cause. Note that these correlations help to explain the differences in parameter

scales between the Bayesian and frequentist results, since the Bayesian scans favour

smaller f , and hence smaller ∆t, mq, and m
(1)
Yt

.

7.3 M4DCHM14−1−10

7.3.1 Bayesian Fit

For this model we performed four Bayesian scans: the first three with 2000 live

points, and the last with 4000 live points. Perhaps because of its smaller parameter

space, this was by far the easiest of the three models to fit, with all four of these

scans having good agreement in their results. Indeed, the posteriors of the 4000

point run and the first 2000 point run, for example, are displayed in Figures 7.24

and 7.25 and are seen to match each other closely. The evidences also match quite

well across scans:

ln(Z)Run 1 = −37.54± 0.12,

ln(Z)Run 2 = −37.38± 0.12,

ln(Z)Run 3 = −37.51± 0.09,

ln(Z)Run 4 = −37.70± 0.06. (7.5)
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Figure 7.24: 1D and 2D marginalised posteriors for the gauge sector parameters
in the M4DCHM14−1−10 found in two different runs with 2000 and 4000 live points
respectively.
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Figure 7.25: 1D and 2D marginalised posteriors for the fermion sector parameters
in the M4DCHM14−1−10 found in two different runs with 2000 and 4000 live points
respectively.
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As such, these results are quite reliable. The results from the combined runs are

given in Figures 7.26 and 7.27.

At first glance of Figure 7.26, there is little qualitative difference between the

priors and posteriors for the gauge sector couplings in this model and those in the

previous models, but there are a few subtle differences upon closer inspection. Here

the posterior for f is mostly contained between ∼1.3 TeV and ∼1.8 TeV, though

having a tail reaching upwards of about 2.2 TeV. This approximately mirrors the

result in the M4DCHM5−5−5, giving a relatively reasonable fine-tuning of ∼30−80.

And like in the M4DCHM14−14−10, f1 tends to favour the upper end of its range,

spanning between roughly 1.3 TeV and 3.4 TeV, and fX tends towards the lower

values, going from 0.5 TeV to around 5.8 TeV. But fG is where the behaviour

departs from that in the M4DCHM14−14−10, here having an affinity for lower values

and ranging from 0.5 TeV to ∼5.3 TeV, though again this difference is too slight to

attribute a cause. The gauge coupling gρ behaves in the same way as in the other

models, both in its preference for values from ∼2 to ∼8, and in its relationships to

the various constraints. However, the same is not true for the other gauge couplings.

Surprisingly, in this model the posteriors for gX and gG almost exactly align with

the priors, and indeed none of the χ2 contributions from any of the constraints seem

to depend on these parameters at all!

In contrast to the gauge parameters, there is a clear difference in the posteriors

of the fermion parameters between the two minimally-tuned models: those in the

M4DCHM14−1−10, shown in Figure 7.27, cover a markedly larger fraction of volume

of the total parameter space. So these parameters require less fine-tuning to satisfy

the constraints than those in the M4DCHM14−14−10. This is taken to the extreme by

the mass parameter mt being almost entirely unconstrained in this model: it is able

to take values up to ∼10 TeV but with great preference towards values . 0.5 TeV

purely stemming from the prior. Other parameters that require little fine-tuning,

having posteriors well within the regions favoured by their priors, are ∆q, ∆b, and

mq. The posteriors of the first two of these respectively span from ∼0.9 TeV to

∼5.0 TeV, and from ∼70 GeV to ∼1.8 TeV, again reflecting the right-handed bottom

quark being mostly elementary. The last of these, mq, along with mb, has a hard

lower bound of 0.5 TeV from the resonance mass cutoffs, with the former ranging

upwards of 8 TeV and the latter being drawn up to ∼21 TeV by the constraints. If

the LHC constraints were included in this fit, we might expect these lower bounds to

be increased and larger parameter values to be favoured. Unlike the other models,

here the right-handed top quark can mix very strongly with the composite sector,

with the posterior for ∆t going between ∼0.5 TeV and ∼17 TeV, being maximised

at ∼7.5 TeV despite the prior giving preferable weight to lower values. Similarly,

the proto-Yukawa couplings Yt and Yb are drawn to unnaturally large values by the

constraints, with posteriors ranging from ∼1.6 TeV to ∼22 TeV, and from ∼50 GeV

to ∼63 TeV respectively. The posteriors for all of these parameters are shaped

primarily by the SM mass constraints, along with some contributions from the Z

decay constraints that slightly disfavour very large values of the couplings.
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Figure 7.26: 1D and 2D marginalised priors and posteriors for the gauge sector
parameters in the M4DCHM14−1−10.
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Figure 7.27: 1D and 2D marginalised priors and posteriors for the fermion sector
parameters in the M4DCHM14−1−10.
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Several interesting features are present in the fermion parameter priors and pos-

teriors in Figure 7.27. There is a slight positive correlation between the posteriors

of mb and Yb, and a negative correlation in both the priors and posteriors of ∆b and

Yb. There is also a notable effect wherein large values of Yt are favoured in both

the prior and posterior when Yb is also large. The prior tends to disfavour both ∆q

and Yt having small values, and to a lesser extent the same thing for both ∆q and

mq, and the posteriors for these pairs seem to be constrained to regions for which

∆qYt and ∆qmq lie above some respective fixed values. Unfortunately, analysing the

causes of these features would be too involved a process to be viable for us.

As a final note, our result that ∆t is usually much greater than mt indicates

that the right-handed top quark must be almost completely composite in this model

given the constraints. It might therefore do well to consider a model with the same

14−1−10 symmetry structure that incorporates tR as an entirely composite state

as a limiting case of the M4DCHM14−1−10.

7.3.2 Frequentist Fit

As with the M4DCHM14−14−10, we have obtained generally consistent results for

the M4DCHM14−1−10 between two frequentist scans with populations of 20,000 and

50,000 points. Profile likelihood ratios for all of the parameters from the combined

runs are presented in Figures 7.28 to 7.32. The best-fit point that was found here

has a likelihood of ln(L) = −15.4.
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Figure 7.28: Profile likelihoods for the decay constants in the M4DCHM14−1−10.
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Figure 7.29: Profile likelihoods for the gauge couplings in the M4DCHM14−1−10.
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Figure 7.30: Profile likelihoods for the couplings linking the elementary and com-
posite sectors in the M4DCHM14−1−10.

★

68.3%CL

95.4%CL

pippi v2.1

0.2

0.4

0.6

0.8

1.0

P
ro

fi
le

li
ke

li
h
o
o
d

ra
ti

o
Λ

=
L/

L m
a
x

7.6 7.8 8.0 8.2 8.4 8.6
ln (mq/GeV)

★

68.3%CL

95.4%CL

pippi v2.1

0.2

0.4

0.6

0.8

1.0

P
ro

fi
le

li
ke

li
h
o
o
d

ra
ti

o
Λ

=
L/

L m
a
x

2 4 6 8
ln (mt/GeV)

★

68.3%CL

95.4%CL

pippi v2.1

0.2

0.4

0.6

0.8

1.0

P
ro

fi
le

li
ke

li
h
o
o
d

ra
ti

o
Λ

=
L/

L m
a
x

7.5 8.0 8.5 9.0 9.5 10.0 10.5
ln (mb/GeV)

Figure 7.31: Profile likelihoods for the on-diagonal mass parameters in the
M4DCHM14−1−10.

Immediately in Figure 7.28 we see a distinction between this model and the

previous two: the Higgs decay constant f has at the best-fit point a value not

near the largest value allowed by the scans, but instead maximises the likelihood at

∼2.8 TeV. At the 2σ confidence level, it ranges between approximately 2.0 TeV and

3.1 TeV, confining the misalignment to 0.08 . s〈h〉 . 0.12 and giving an estimated

tuning of ∼65−160. A fairly wide spread is present in the other decay constants,

with f1, fX , and fG generally lying between roughly ∼2 TeV and ∼5 TeV at the 2σ

level. The gauge coupling gρ is constrained between ∼2.4 and ∼3.3, echoing the low

range that was found in the M4DCHM14−14−10. No major preference for gX is seen
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Figure 7.32: Profile likelihoods for the proto-Yukawa parameters in the
M4DCHM14−1−10.

across its possible range, just as in the Bayesian fit, while gG tends towards larger

values & 5, conflicting with the Bayesian results, presumably to best satisfy LHC

search constraints on heavy gluon decays.

As happened in the M4DCHM14−14−10, the profile likelihood ratios for the fermion

sector parameters in Figures 7.30 to 7.32 typically match the structure of the poste-

riors from the Bayesian fit, but at a higher scale. For example, ∆q here takes values

from ∼2.0 TeV to ∼5.4 TeV, while ∆t is significantly larger, lying above ∼24 TeV

(discounting an outlier likely point at 6 TeV), and ∆b goes between roughly 0.7 TeV

and 10 TeV. The mass parameter mq fits comfortably within the posterior range at

the 2σ level, from ∼1.8 TeV to ∼2.7 TeV, as does mt, which is constrained to be

below around 3.0 TeV. Returning to larger values is mb, which ranges from ∼2.4 TeV

to ∼27 TeV.

It is interesting that in this fit the proto-Yukawa couplings Yt and Yb do not

extend to the same large values that their posteriors reach. Respectively, they are

constrained between approximately 2.3 TeV and 7.7 TeV, and between 0.1 TeV and

0.6 TeV, even though their posteriors both prefer values around 8.0 TeV in spite of

their priors favouring lower values. Apparently, either the most likely region found

in the frequentist fit is finely-tuned enough to be irrelevant in the Bayesian scans, or

the LHC constraints in these frequentist scans pulled Yt and Yb back towards lower

values. Recall from the discussion in Section 7.2.2 that very large proto-Yukawa

couplings lead to extremely light composite resonances, so it makes sense that they

would be disfavoured here.

Three correlations between parameters were found in this fit: two positive cor-

relations between f and ∆q and also ∆b and mb, and a negative correlation between

∆b and Yb, all shown in Figure 7.33. The latter was also present in the Bayesian fit,

and is the same (negative) correlation seen in the M4DCHM14−14−10.
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Figure 7.33: Profile likelihoods for parameters displaying slight correlations in the
M4DCHM14−1−10. Contours define the 1σ and 2σ confidence levels.

7.4 Discussion and Model Comparisons

Having seen the fit results for all of our models, we are now in a position to discuss

the similarities and differences between the models, and compare them based on

their fits.

We begin with the frequentist results, for which the only point of comparison

is the likelihood of the best-fit region in each model. The likelihoods of the best-

fit points mentioned previously are remarkably similar across models - all within

a factor of 1.3 of each other - so on this front the models all seem about equally

viable. More can be said by looking at the contributions to the total likelihood

from each constraint for these points, which are listed in Table 7.1. Here, it is seen

that not only are the total likelihoods of the points comparable, but most of the

individual constraints are satisfied to a similar degree in all models. The SM mass

constraints are generally satisfied very well, with the M4DCHM14−14−10 slightly out-

performing the other models in the bottom mass constraint. More difficulty was had

in reproducing the correct EWSB scale as measured by the Gµ constraint, which is

unsurprising in light of the unideal scanning method that was used (see Section 6.1).

In any case, the best-fit point in the M4DCHM5−5−5 gives the most realistic EWSB

scale despite the (questionably relevant) double tuning of the Higgs potential in this

model. The oblique S and T constraints that parameterise electroweak precision ob-

servables are satisfied fairly well in all models, while the Z decay constraints Re,µ,τ,b

are by far the least well satisfied. For both of these sets of constraints, the best-fit

point of the M4DCHM5−5−5 has the poorest performance. Only very few points

were found to satisfy the Z decay constraints to a considerably better degree than

these best-fit points, possibly indicating intrinsic obstacles in our models inhibiting

more realistic Z decays. The Higgs signal strengths were also found to be difficult to

satisfy, particularly in the M4DCHM14−14−10. Finally, the LHC search constraints

prove mostly inconsequential for these points, whose high-mass resonances mostly

evade the ranges probed by collider experiments. In all, the single highest-likelihood

point found in the scans is from the M4DCHM14−14−10, but it is no more likely than

points in the other models by any significant margin.
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χ2 Contribution

Constraint M4DCHM5−5−5 M4DCHM14−14−10 M4DCHM14−1−10

mbottom 1.23 0.52 1.07
mtop 0.38 0.37 0.69
mZ 0.01 0.01 0.02
mW 0.04 0.04 0.05
mH 0.04 0.00 0.00

Gµ 1.46 2.31 2.81

S, T 0.44 0.09 0.16

Re 4.95 4.53 4.63
Rµ 7.67 6.88 7.06
Rτ 0.34 0.22 0.24
Rb 1.30 1.23 1.21

µggWW 2.06 2.37 1.89
µggZZ 1.78 1.93 1.49
µggγγ 3.43 4.08 3.78
µggττ 0.15 0.21 0.18

LHC (total) 0.00 0.00 0.01

Total 25.28 24.79 25.27

Table 7.1: χ2 values contributed by each constraint to the total likelihood for the
best-fit points in each model. The minimum possible χ2 values have been subtracted
from the Higgs signal strength contributions.
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ln(Z) DKL 〈ln(L)〉P max ln(L) BMD

M4DCHM5−5−5 −28.62± 0.04 15.71 −12.92 −8.62 7.23

M4DCHM14−14−10 −41.08± 0.08 25.33 −15.75 −9.26 20.49

M4DCHM14−1−10 −37.58± 0.04 15.83 −21.75 −16.66 7.52

Table 7.2: Statistics from the combined Bayesian scans of each model.

What interests us most, however, are the Bayesian results, for they take into

account the naturalness of the models. The Bayesian evidences Z calculated from

the combined samples from the scans of each model are given in Table 7.2, along

with other quantities of interest such as the Kullback-Leibler (KL) divergence DKL

(see Section 5.1) and the posterior-averaged log-likelihood

〈ln(L)〉P = ln(Z) +DKL, (7.6)

as well as the maximum likelihoods found in the scans. Note that although the

maximum likelihoods here are far better than those from the frequentist scans, these

ones have the advantage of not taking the LHC search constraints into account. If

the search constraints are included, they end up being the dominant contributions

to the likelihoods of these points.

The most important point to note from Table 7.2 is that the M4DCHM5−5−5 has

by far the greatest evidence of the three models, being ∼7800 times greater than the

evidence for the M4DCHM14−1−10, which is itself ∼12 times greater than that for

the M4DCHM14−14−10. According to the traditional Jeffreys scale for interpreting

evidences, the M4DCHM5−5−5 is then the “decisively” preferred model, while the

M4DCHM14−1−10 is “strongly” preferred over the M4DCHM14−14−10, granted we

assign an equal prior likelihood to each of our models. Keep in mind, though, that

these evidences are prior-dependent. We have not attempted fits using alternative

priors, and so cannot comment on how strongly these evidences are coupled to the

priors we have imposed on the spaces of these models.

The reasons for this hierarchy of preferences can be ascertained from Table 7.2.

First, the M4DCHM14−14−10 is by far the least preferred model primarily because of

its large KL divergence. Recall the KL divergence measures the information gained

from going to the prior to the posterior probability, and hence is an indirect measure

of fine-tuning. We have already recognised this fine-tuning in the M4DCHM14−14−10

by the narrowly constrained posteriors in Figures 7.16 and 7.17. On the other

hand, the M4DCHM14−1−10 is disfavoured mostly because it has a much smaller

posterior-averaged log-likelihood, i.e. because it has a more difficult time satisfying

the experimental constraints. Not only is this evident in the average log-likelihood,

but also in the likelihood of the best-fit point found in this model, being drastically

lower than those from the other models. The M4DCHM5−5−5 is the only model with

both a low KL divergence (tuning) and relatively large average likelihood, which
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Figure 7.34: Posteriors of the contributions to the χ2 from the Higgs signal strengths
in each model. The minimum possible χ2 contributions have been subtracted from
each constraint.

combine to give the greatest evidence. Note that fine-tuning has previously only

been quantified in the literature of CHMs through the sensitivity of the observables

with respect to the input parameters, either to first order with the Barbieri-Giudice

measure [87, 100, 101, 117], or with a higher-order measure [30, 88, 136], and our

approach of using the KL divergence as a fine-tuning measure has not been taken

before.

It is of interest to determine the exact constraints that the M4DCHM14−1−10

has trouble satisfying. This is most easily done by plotting the posteriors of the χ2

contributions from the different constraints for each model. Most of the posteriors

are essentially identical across models, with the only exceptions being those for the

Higgs signal strength constraints, shown in Figure 7.34. Clearly, the M4DCHM5−5−5

can satisfy these constraints without problem, while the other models have more

difficulty - particularly the M4DCHM14−1−10. Indeed, the χ2 contributions from the

three signal strengths in Figure 7.34 are each larger in the M4DCHM14−1−10 than

those in the M4DCHM5−5−5 by ∼6, which roughly leads to an average log-likelihood

difference of (6 + 6 + 6)/2 = 9 and thereby almost entirely accounts for the different

average likelihoods listed in Table 7.2. Looking into the cause further, it is found

that the M4DCHM14−1−10 has such difficulty with the Higgs signal strengths due to

tensions with the SM mass constraints. The most significant factor is the bottom

quark mass, whose relation to the Higgs signal strengths is displayed in Figure 7.35:

a realistic bottom mass typically entails undesirably small signal strengths. This

effect is not present in the other models, or at least not to as great an extent as in

the M4DCHM14−1−10.

It also proves useful to analyse the priors for observables taken as constraints

in each model, to see whether any model gives realistic predictions more naturally
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Figure 7.36: Priors for the bottom, top, and Higgs masses in all models.

than others. We give the priors for the masses of the SM particles in Figure 7.36. As

expected, the Higgs, being a pNGB, is generated most often with a low mass. But it

also lies above 1 TeV relatively often, especially in the M4DCHM14−14−10, and to a

lesser extent in the M4DCHM14−1−10, both of which have been noted in other works

to have a predisposition for producing too heavy a Higgs [87, 100]. The top and

bottom quark masses, on the other hand, all tend to be generated relatively close to

their experimental values5. The M4DCHM14−14−10 gives quite an unfavourable prior

for the top mass, with very light values . 80 GeV being preferentially generated.

Remarkably, the prior for the top mass in the M4DCHM5−5−5 has a maximum

almost exactly at the experimental value. This would make it easier to reproduce

the top mass in this model, leading to a lower fine-tuning and contributing to the

model’s superiority. We are not aware of any literature where this has previously

been noted.

We conclude this section with some general comments on the parameter spaces

of our models. During our Bayesian scans, we noticed that the slice sampling steps

take O(100) likelihood evaluations in each slice instead of the more typical O(5)

evaluations, indicating that the likelihood is quite “sheety” in these models: it is

only non-negligible across thin hypersurfaces in the parameter spaces. This notion

can be quantified with the Bayesian model dimensionality (BMD) of each model,

defined similarly to the KL divergence Equation (5.7),

BMD := 2

∫
dnp P (p|D,M)

(
ln

(
P (p|D,M)

π(p|M)

)
−DKL

)2

, (7.7)

5Those in the M4DCHM14−1−10 span significantly shorter ranges than in the other models because
we applied the hard mass cuts Equation (6.16) in this model, but not in the others (at least not
in the Bayesian scans), on account of the computational expense required.
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which measures the effective dimensionality of the region of parameter space that

the posterior occupies [137]. This definition is used because it matches the actual

dimensionality when the posterior is Gaussian. Broader posterior distributions will

have lower BMDs, and narrower distributions higher BMDs. It can be difficult to

intuit the BMD of a model based on the marginalised posteriors such as those given

in Sections 7.1 to 7.3, since it is most often the case that the constraints restrict

only certain non-trivial combinations of the input parameters, and these correlations

would be obscured in a 2D plot by the marginalisation. In any case, these effective

dimensionalities can be calculated with anesthetic and are listed for our models

in Table 7.2.

Clearly, the M4DCHM5−5−5 and M4DCHM14−1−10 are indeed very sheety, with

effective dimensionalities of ∼7 in contrast to their respective true dimensionalities

of 22 and 18 (including the SM gauge couplings). Positive constraints that restrict

the space to reproduce particular values for the observables, such as the SM mass

constraints6, are apparently not sufficient to localise the parameters completely, and

leave these ∼7 degrees of freedom within the spaces. These effective dimensionalities

should be expected to be quite small on account of the fine-tuning required for EWSB

and the effect of the constraints on the space, but it is difficult to say whether ∼7 is

a reasonable number of dimensions on purely theoretical grounds. In contrast, there

seems to be little difference between the true and effective dimensionalities of the

M4DCHM14−14−10. This might be an artefact of the poor sampling of this model,

indicating that our scans failed to locate the optimal ∼7 dimensional surface for the

posterior, assuming such a surface exists in this model. We aim to resolve this issue

in our future scans of the M4DCHM14−14−10.

It is further possible to calculate the principal directions in parameter space

that point along these hypersurfaces with anesthetic. If these models were to be

explored in future scans, it would be beneficial to use these directions to cleverly

parameterise the spaces and scan along these optimal surfaces directly, in order to

achieve greatly improved scanning efficiencies.

7.5 Experimental Signatures

In our fits, we have found a number of points in each model that satisfy all constraints

at the 3σ level individually, which we regard as valid points. We have collected, in

total, ∼14,000 valid points in the M4DCHM5−5−5, ∼77,000 in the M4DCHM14−14−10,

and∼280,000 in the M4DCHM14−14−10. Here we analyse the phenomenology of these

experimentally viable points so that we may anticipate possible signatures of each

model in future collider experiments.

6For example, it follows from Equations (H.23) to (H.25) that one degree of freedom is removed in
order to reproduce each of the top and bottom masses.
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Composite Resonances

We begin with the BSM particle spectra. Recall that these models contain several

up-type (U) and down-type (D) composite fermions, exotic fermions Qx with electric

charges x ∈ {4/3, 5/3, 8/3}, as well as composite gauge bosons with unit charge (W)

and neutral charge7 (Z). Our convention for distinguishing the different members of

each species is to label them with numerical subscripts in order from lightest to

heaviest, including SM states. For example, the lightest neutral composite gauge

boson will be called Z3, being the lightest neutral boson after the photon (Z1) and

the electroweak Z boson (Z2). The profile likelihood ratios8 of the masses of the

lightest composite resonances of several of these species for each model are given in

Figure 7.37. We see that broadly, the most likely points in all models give composite

U and D resonances between 1.7 TeV and 4.5 TeV, and composite gauge bosons

above 3 TeV. Let us discuss the mass spectra for each model in detail below.

Inasmuch as the frequentist results for the M4DCHM5−5−5 can be trusted, we

see from Figure 7.37 that the lightest U and D resonances lie above 1.7 TeV at the

2σ level, with U4 typically being the lighter of the two, being constrained below

3.7 TeV and D4 below 4.5 TeV. The next three lightest of each of these species, and

the lightest Q4/3 and Q5/3 resonances, range from around 2 TeV to 8 TeV, with best-

fit values from 3 TeV to 6 TeV. The remaining fermions can be as light as 3 TeV,

but generally range upwards of 30 TeV with best-fit values above 10 TeV. There are

no apparent correlations between the masses across fermion species, aside from the

ones that follow from Figure 4.3. As for the gauge bosons, Figure 7.37 shows that

the Z3 resonance is lighter than W2, lying above 3 TeV while W2 lies above 6 TeV.

The second lightest neutral composite boson, Z4, is degenerate with W2, with the

remaining bosons being very heavy, having best-fit masses above 10 TeV.

Now for the M4DCHM14−14−10, recall from Section 7.2.2 that the parameter mYt

tends to be small in comparison to the on-diagonal masses. It then follows from

Figure 4.3 that two pairs each of U, D, and Q5/3 particles, and one pair each of

Q4/3 and Q8/3 particles, will come with masses of approximately mu and mq. These

are found to be the lightest composite resonances, so there is much approximate

degeneracy among the lightest states. The three lightest U, D, and Q5/3 resonances,

and the lightest Q4/3 and Q8/3 particles have masses ranging from 1.8 TeV to 2.5 TeV

at the 2σ confidence level, being 1.85 TeV at the best-fit point. These features

can be seen in Figure 7.37. The remaining fermions (save for the three heaviest

U resonances) all have best-fit masses at or below 4 TeV, but can range up to

8 TeV at the 2σ confidence level. Also degenerate are the lightest charged and

neutral composite gauge bosons, as seen in Figure 7.37. The second lightest of these

species act similarly, with each pair ranging from about 4 TeV to 10 TeV at the 2σ

7Not including the gluon sector.
8We do not analyse the masses in a Bayesian framework because our Bayesian scans did not include
LHC search constraints, so many of the points found in them give resonances that are excluded
by experiment.
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Figure 7.37: Profile likelihoods for the masses of the lightest up-type and down-type
composite resonances U4 and D4, as well as the lightest neutral and charged gauge
bosons Z3 and W2 in (top) the M4DCHM5−5−5, (middle) the M4DCHM14−14−10,
(bottom) the M4DCHM14−1−10. Valid and non-valid points alike are taken into
account in these plots.
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confidence level and having masses between 6 TeV and 7 TeV at the best-fit point.

The remaining gauge bosons all have best-fit masses above 10 TeV.

The analysis for the M4DCHM14−1−10 is the most straightforward since the

masses of all fermions are given by the simple formulae in Figure 4.3. It is found

that the lightest fermions in this model are those with mass mq, which recall from

Section 7.3.2 spans 1.8 TeV to 2.7 TeV at the 2σ level. Among these are the three

lightest U types, the two lightest D and Q5/3 types, and the Q4/3 and Q8/3 reso-

nances. The rest of the fermions have best-fit masses below 8 TeV but can range

up to 25 TeV, except for U14, which lies above 22 TeV. As in the M4DCHM5−5−5,

the lightest composite boson in this model is Z3, ranging from 3 TeV to 10 TeV,

while W2 and W3 are approximately degenerate with Z4 and lie between 4 TeV and

11 TeV. The remaining bosons, including the heavy gluons, once again tend to be

heavier than 10 TeV.

Predicted Cross Sections

Such resonances would be discovered in collider experiments, similarly to the Higgs

boson, through the observation of excesses in the invariant mass distributions of the

resonance decay products. For the valid points we have found, we give the cross

sections of such processes involving the lightest composite resonances that would be

measured at the 13 TeV LHC, calculated through procedures outlined in Sections 6.2

and 6.3, in Figures 7.38 to 7.41. Note that many points in Figures 7.38 to 7.41 lie

at resonance masses below the 2σ lower bounds mentioned above, especially in the

M4DCHM5−5−5, whose double tuning favours lighter composite partners. This is

because the 2σ bounds are shaped by the regions of highest total likelihood, but the

valid points only need to satisfy every constraint to a reasonable degree separately,

and are not guaranteed to possess high total likelihoods.

The most promising channels for probing a particular model are those for which

the model predicts cross sections within a narrow range that lies close to the current

experimental upper bounds. For the U4 decays in Figure 7.38, we see this is the

case for the U4 → bW+ decay channel in the M4DCHM5−5−5, and the U4 → tZ and

U4 → tH channels in the M4DCHM14−1−10. Unfortunately, the M4DCHM14−14−10

predicts heavier U4 resonances, mostly above 1.75 TeV, that are more difficult to

detect. Most of the points in Figure 7.38 predict cross sections for D4 decays that

are well out of reach of experiments for the near future, with the exception of the

D4 → bZ channel for the lower-mass resonances in the M4DCHM5−5−5. On the

other hand, exotic fermion decays in Figure 7.39 display the ideal behaviour for

probing the M4DCHMs: all three models make remarkably precise predictions for

the Q4/31 → b̄W+ and Q5/31 → tW+ decays, with cross sections comparable to the

upper bounds towards the lighter end of the mass spectrum. Probing these channels

further can easily confirm or rule out exotic resonances of certain masses and thereby

constrain the models rather straightforwardly, although the cross sections fall off

rapidly at higher masses, so much of the space remains out of reach of the LHC.
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Figure 7.38: Cross sections for decays of the lightest up-type and down-type res-
onances U4 and D4 into SM final states at

√
s = 13 TeV for valid points in each

model. Black lines mark the 95% CL upper bounds taken as constraints.
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Figure 7.39: Cross sections for decays of the lightest resonances Qx with exotic
electric charge x into SM final states at

√
s = 13 TeV for valid points in each model.

Most of the points in each model lie on the prominent lines in these plots. Black
lines mark the 95% CL upper bounds taken as constraints.

Figure 7.40: Cross sections for decays of the lightest charged composite vector boson
W2 into SM final states at

√
s = 13 TeV for valid points in each model. Black lines

mark the 95% CL upper bounds taken as constraints.

Based on Figure 7.40, we would not expect to detect any charged composite gauge

boson decays in the analysed channels under any of the models, as their predicted

cross sections are well below what can be probed with current collider sensitivity. In

addition to the channels in Figure 7.40, we also considered W2 → tb̄ decays, but the

predicted cross sections for this process were all negligible and not worth presenting.

There is better hope for the neutral gauge boson decays in Figure 7.41, with all

models predicting similar cross sections. Promising channels here are Z3 → tt̄, and

to a lesser extent Z3 → W+W−. However, many points predict resonance masses

too large to be probed in the near future, so failure to detect any resonances at the

LHC, for example, would not be sufficient to rule out any of these models.
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Figure 7.41: Cross sections for decays of the lightest neutral composite vector boson
Z3 into SM final states at

√
s = 13 TeV for valid points in each model. Black lines

mark the 95% CL upper bounds taken as constraints.

Higgs Signal Strengths

Other important theoretical predictions of the M4DCHMs that we analyse are the

(gluon-fusion produced) Higgs signal strengths. Recall from Section 6.3 that the

signal strength µggXX is the ratio of the gg → H → XX cross section to the value

predicted by the SM.

Modifications to the Higgs couplings in a composite Higgs framework have been

subject to considerable analysis. To summarise the points that concern us here,

in CHMs there are three sources of new physics that can modify the gluon-fusion

production of a Higgs boson compared to the SM: non-linearities of the pNGB

Higgs (dependent only on v/f), modified Yukawa couplings of SM particles, and

loop contributions from composite resonances [138]. In our models, contributions

from the latter two factors mostly cancel [139], so the contributions from the Higgs

non-linearities are expected to dominate. In the limit where these are the only

contributions, the signal strengths will be of the form

µggXX = 1− C
X

v2

f 2
+O

(
v4

f 4

)
, (7.8)
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for some channel-dependent (and model-dependent) constants C
X

[138]. It is possi-

ble for Equation (7.8) to be significantly violated if the light quarks are considerably

composite [140], but our models do not allow for this case. Further discussion on

this analytic approximation and the subleading contributions to the signal strengths

can be found in Ref. [100].

We give the signal strengths9 of the valid points in each of our models, along

with their profile likelihood ratios from the frequentist scans (which include valid

and non-valid points), in Figures 7.42 to 7.44. The signal strengths µggZZ and µggWW

are approximately equal due to the custodial symmetry of the M4DCHMs. It is

immediately apparent in Figures 7.42 to 7.44 that the approximation Equation (7.8)

does not hold well, especially in the M4DCHM5−5−5, but there do seem to be some

structures of points that loosely follow the −C
X
v2/f 2 deviation from unity, which

is most clearly seen for µggγγ in the minimally-tuned models. This is in contrast to

Ref. [101], where clear curves of points were found. It is possible that our points

do not follow this distribution cleanly because we consider larger values of f , so the

curves are less pronounced, and because we have heavier composite resonances that

contribute to greater deviations from Equation (7.8).

It should also be noted that the frequentist and Bayesian scans found separate

regions of points that form quite distinct structures in Figures 7.42 to 7.44, such as

the regions of points in the M4DCHM5−5−5 that lie around the experimental values

and those that lie mostly below unity, or the narrow bands of points that extend

to large f and the wide bands of points constrained to 1 TeV . f . 2 TeV in

the M4DCHM14−1−10. Since the frequentist scans explored the most likely regions,

and the Bayesian scans the most natural regions of parameter space, it is not too

surprising that the two approaches found different behaviours for the observables.

The regions can be distinguished by the profile likelihood plots, since these are

sensitive to only the most likely points from the frequentist scans.

Among the valid points in the M4DCHM5−5−5, the predicted signal strengths in

Figure 7.42 span wide ranges of values between 0.8 and 1.3. It is therefore unlikely

that further probing the signal strengths could rule out or provide evidence for the

M4DCHM5−5−5. Interestingly, the profile likelihood plots in Figure 7.42 show that

the best-fit points in this model give signal strengths that are significantly lower than

the individually optimal experimental values, so there must be some tension between

satisfying the signal strength constraints and one or more other constraints. This

is also the case for the minimally-tuned models, which give similar predictions to

each other as seen in Figures 7.43 and 7.44. All the valid points in these two models

give signal strengths that are less than the SM prediction of unity, excepting a small

portion of points for µggWW and µggZZ . Furthermore, we see a remarkable prediction

of these models: that the signal strength µggγγ lies in a narrow range from ∼0.8

to ∼0.9. These clear predictions may serve as tests of the M4DCHM14−14−10 and

M4DCHM14−1−10 upon more precise measurements of Higgs decays. It is projected

9The signal strengths for the h → ττ decay channel are not presented (even though this process
is taken as a constraint) because this channel is subject to large uncertainties. In any case, the
predicted values tend to be similar to those for the h→ γγ channel.
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that µggγγ will be measured to an uncertainty of around 5% by each ATLAS and CMS

once they achieve integrated luminosities of 3000 fb−1 in the future high-luminosity

run of the LHC [141,142], so it is highly likely, based on current measurements, that

this channel will disfavour either both of these models or the SM in the coming years.

At the same time, µggZZ will see a similar improvement in its measurement, while µggWW

will have only modest improvements. But µggZZ is not so narrowly predicted, so the

diphoton decay channel will indeed serve as the best test of the M4DCHMs.

Curiously, although the two minimally-tuned models give the same predictions

for µggγγ, they arrive at these predictions for different reasons. In the case of the

M4DCHM14−14−10, it is the direct collider search constraints that seemingly require

µggγγ to be significantly less than unity; if these constraints were to be discounted,

there would be a sizeable number of valid points with signal strengths µggγγ ∈ [0.8, 1.2].

The main search constraints that are violated for larger values of µggγγ are from the

fermion decays F → tW, bW, qW, tH, bH, tZ, and jZ, where q refers to a light

quark jet and j refers to a light quark or b jet. Each of these constraints is violated

at the 3σ level for about 30% of points for which the µggγγ constraint is satisfied to

within 2σ. The combined effect is that all valid points have a µggγγ below around 0.9.

For the M4DCHM14−1−10, on the other hand, it is the SM mass constraints that

favour the lower values of µggγγ. We have seen as much for the bottom mass in

Figure 7.35. The same is true to a lesser degree for the top quark and Higgs masses,

and satisfying all three mass constraints at once is what results in all valid points

having µggγγ . 0.9. Note also from Figure 7.35 that the Higgs signal strengths are all

highly correlated - a property shared by the other models as well. The fact that the

SM mass constraints were included in the Bayesian scans, while the direct search

constraints were not, might explain why the M4DCHM14−1−10 had more difficulty

satisfying the signal strength constraints than the M4DCHM14−14−10. But note that

if this unfair advantage were to be fixed, the disparity between the evidences of the

M4DCHM14−14−10 and the M4DCHM14−1−10 would only be exacerbated, and the

M4DCHM5−5−5 would remain the superior model from a Bayesian standpoint.
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Figure 7.42: Left: profile likelihood ratios for the Higgs signal strengths in
the M4DCHM5−5−5. Right: Higgs signal strengths for valid points in the
M4DCHM5−5−5. Red lines show the SM predictions µggXX = 1, while black lines
mark the best-fit values, and the shaded regions the 1σ uncertainties, of the com-
bined measurements of these processes.
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Figure 7.43: Left: profile likelihood ratios for the Higgs signal strengths in
the M4DCHM14−14−10. Right: Higgs signal strengths for valid points in the
M4DCHM14−14−10. Red lines show the SM predictions µggXX = 1, while black lines
mark the best-fit values, and the shaded regions the 1σ uncertainties, of the com-
bined measurements of these processes.
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Figure 7.44: Left: profile likelihood ratios for the Higgs signal strengths in
the M4DCHM14−1−10. Right: Higgs signal strengths for valid points in the
M4DCHM14−1−10. Red lines show the SM predictions µggXX = 1, while black lines
mark the best-fit values, and the shaded regions the 1σ uncertainties, of the com-
bined measurements of these processes.





Chapter 8

Conclusion

We are in a position today where the prevailing theory of particle physics - the

Standard Model - is known to be incomplete, but is so successful at describing most

accessible phenomena that the correct extension of the theory remains a mystery.

One of the few objectionable aspects of the SM that can serve as motivation for

proposed extensions is that it offers no protection to the Higgs mass from large

quantum corrections, and so can only accommodate the relatively low mass of the

Higgs boson through an incredible fine-tuning of its model parameters. In much

the same way that theoretical considerations provided hints of interesting physics

around the electroweak scale that ultimately led to the discovery the Higgs boson,

this so-called Hierarchy Problem suggests there is some new physics at the TeV

scale shielding the Higgs mass from large corrections that could be discovered at the

LHC. One attractive possibility is that the Higgs boson is in fact a composite state

of some new TeV-scale strong dynamics, for then it could not exist at arbitrarily

high energies and so would be impervious to high-energy quantum corrections. But

so far experiments at the LHC have found no evidence for any such composite Higgs

model, or indeed for any proposed solution to the Hierarchy Problem, and as the

excluded energy range on their new physics grows ever larger, such theories are

seeming ever less natural. We have offered in this thesis comprehensive numerical

explorations of several prospective CHMs to assess the viability of such models in

light of these recent collider searches and other experimental constraints.

Our models have been chosen from the vast landscape of CHMs as those that

minimally extend the SM, with structures motivated by strict phenomenological and

practical demands expounded upon in Chapter 3. For example, to account for the

fact that no other composite resonances have yet been found in collider experiments,

these models suppose the Higgs to be a pseudo-Nambu-Goldstone boson so that it

is naturally lighter than the rest of the composite sector. This implies an approxi-

mate symmetry of the composite sector that is spontaneously broken, and it can be

reasoned that the SO(5)→ SO(4) symmetry breaking pattern is the minimal group

structure that gives rise to the Higgs doublet in the NGB spectrum while ensuring

custodial symmetry. The SO(5) symmetry is explicitly broken by linear couplings

between the SM-like elementary sector and the composite sector, which therefore

provide a quantum effective potential for the Higgs through the Coleman-Weinberg

mechanism. Such linear couplings are favourable because they can accommodate

known flavour physics and explain the hierarchy of fermion masses, and they are

183
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natural features in the 4D models dual to warped 5D theories that also attempt

to solve the Hierarchy Problem. The effective potential appoints a non-zero vev

to the Higgs field that misaligns the vacuum from the SO(4)-symmetric direction,

spontaneously breaking the embedded electroweak subgroup and giving mass to the

SM particles. But ordinarily, since the theory is non-renormalisable, the effective

potential is not calculable. In order to make predictions in such models, we de-

mand a sufficiently large symmetry structure to render the potential calculable and

finite, making use of the notion of multi-site models - deconstructions of the dual

5D theories - to arrive at the theory with the minimal viable calculable structure:

the Two-Site Minimal 4D CHM.

Within the Two-Site M4DCHM, some freedom exists in the choice of SO(5)

representations for the composite fermion fields. We consider three versions of the

M4DCHM that differ in their fermion sector embeddings, taking the limiting case

where only the third generation quarks couple to the composite sector. Our models

embed the composite partners of the left-handed quark doublet, right-handed top

quark, and right-handed bottom quark into the respective representations (5,5,5),

(14,14,10), and (14,1,10). The first of these models, with all partners in the

fundamental representation, is näıvely expected to suffer from a double tuning in

the Higgs potential, while the others are minimally tuned. The second model offers

an extra Yukawa structure not present in the others, and the third can entertain

the possibility of an entirely composite right-handed top quark. Other viable em-

beddings display qualitatively similar behaviour to the three considered here [100].

We have performed extensive numerical explorations of these three models that

constitute the first convergent global fits of realistic CHMs. Our fits constrain the

parameter spaces into those regions that best reproduce, collectively, the SM masses,

the electroweak scale, electroweak precision observables, various Z boson decay ra-

tios and Higgs signal strengths, and that best satisfy heavy resonance production

bounds from collider experiments. Software developed for Ref. [101] was employed

to calculate these observables, which we modified with updated experimental values,

including 40 new heavy resonance searches from Run II of the LHC. The fits are

carried out under both frequentist and Bayesian statistical frameworks, aided by

advanced scanning algorithms. A differential evolution algorithm provided by the

Diver package, λjDE, was used to find the best-fit regions of parameter space for

the frequentist fits, while the Bayesian fits were instead performed with the nested

sampling program PolyChord, which uses slice sampling to explore the spaces in

search of the most natural viable regions. Adequately fitting these models proved

to be quite difficult on account of their large parameter spaces and the highly non-

trivial effects of the elementary-composite couplings, and indeed because of this we

consider our results from the frequentist fit of the M4DCHM5−5−5 and Bayesian fit

of the M4DCHM14−14−10 to be only preliminary.

All three models were found to have comparable likelihoods at their best-fit

points in the frequentist fits, with each further satisfying the individual constraints

to a similar degree. Profile likelihood ratios were used to approximate confidence
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intervals for the input parameters, and it was found that the Higgs boson decay

constant f - a rough measure of the scale of new physics - prefers quite large values in

the M4DCHM5−5−5 and M4DCHM14−14−10, where it respectively lies above 2.1 TeV

and 3.7 TeV at the 2σ confidence level, but is constrained between 2.0 TeV and

3.1 TeV in the M4DCHM14−1−10. These ranges correspond to estimated fine-tunings

of at least ∼70, ∼230, and ∼65 in the respective models. Regions with lower tuning

are preferentially weighted in the Bayesian fits, which accordingly gave marginalised

posteriors for f over lower ranges between 1.2 TeV and 2.2 TeV.

The most notable result from the Bayesian fits is that the M4DCHM5−5−5 was

found to have a Bayesian evidence many orders of magnitude greater than those

of the other models with the imposed priors, and so is decisively superior from a

Bayesian standpoint. Tension between the Higgs signal strength and SM mass con-

straints was the main obstruction to a higher evidence for the M4DCHM14−1−10,

while a considerable fine-tuning resulted in the M4DCHM14−14−10 having the lowest

evidence by an order of magnitude. We took a novel approach in measuring the

fine-tuning within a composite Higgs framework, quantifying it with the Kullback-

Leibler divergence between the posterior and the prior. This viewpoint led us to

discover that the top quark mass is incorporated significantly more naturally in

the M4DCHM5−5−5 than in the other models. Interestingly, it was found that

the posterior occupies surfaces of only ∼7 effective dimensions in the (18+ dimen-

sional) parameter spaces of the M4DCHM5−5−5 and M4DCHM14−1−10, illustrating

why these models are so difficult to fit. A similar result was not found for the

M4DCHM14−14−10, but this might simply be a reflection of its poor fit.

Each model was found to be capable of satisfying all constraints individually to

within 3σ, and their collider phenomenology was analysed in these viable regions.

Our results suggest that the lowest-lying fermionic resonances in these models are

excluded below ∼1 TeV, generally lying in the ∼1.1 TeV to ∼3.0 TeV mass range.

We expect the models to have different signals for the various decay modes of the

up-type and down-type resonances at the
√
s = 13 TeV LHC, but remarkably all

models give the same precise predictions for the exotic fermion decays Q5/3 → tW+

and Q4/3 → b̄W+. These exotic decays constitute the most promising channels

for probing these models in future collider searches. The lightest composite vector

bosons range in mass from ∼1 TeV to around 12 TeV, and neutral bosons on the

lighter end of the spectrum can be probed effectively in the Z3 → tt̄ decay channel.

Finally, the Higgs signal strengths predicted by the M4DCHMs were analysed, and

the two minimally-tuned models were found to have a clear signature: they predict

the gg → H → γγ cross section to be between ∼80% and ∼90% of the value

predicted by the SM. This is already in tension with experiment at around the 2σ

level, and has the potential of being strongly ruled out in the future high-luminosity

run of the LHC.

There are many avenues of research that can be taken to extend this work. For

example, one might try to extend our models by introducing composite couplings

to the third generation leptons, which has been shown to produce interesting fine-
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tuning effects [30], or even across all fermions - a case that leads to rich flavour

physics. Fitting these models would undoubtedly be challenging, but our results

could aid future explorations in targeting the most viable regions of parameter space

in the top-bottom sector. It would also be interesting to fit the next-to-minimal

4DCHM, based on the SO(6) → SO(5) symmetry breaking pattern, as it offers an

extra neutral pNGB that may act as a dark matter candidate.

If the discovery of the Higgs boson is anything to go by, then theoretical hints

that new physics exists around a particular energy scale should be taken seriously.

And although the current theory has proven to be more robust at the energies probed

by the LHC than was perhaps optimistically expected from the hints provided by

the Hierarchy Problem, there is still plenty of room to discover evidence of composite

Higgs models in the coming years and finally go beyond the Standard Model.



Appendix A

Representation Theory

Here we provide the prerequisite details on representation theory that will be used

throughout this work. In a sentence, the point of representation theory is to under-

stand the elements of a group G by representing them as linear transformations on

some vector space V . The results we state in this section can be found in any good

introductory textbook on representation theory, e.g. Ref. [16].

A.1 Groups and Lie Groups

Groups are designed to capture the notion of symmetry, with group elements to be

regarded as abstract transformations of some object. For example, the group SO(2)

of orientation-preserving isometries of the circle contains the element

[rotate clockwise by 80◦].

For a collection G of transformations to be classified as a group, the following three

properties must be satisfied:

1. G must contain the [do nothing] transformation e, called the identity element.

2. If two transformations g1, g2 are in G, then G must also contain the compo-

sition g2g1, defined as the result of performing g1 followed by g2. Note this

implies the group composition rule is associative.

3. The transformation that undoes g ∈ G, denoted g−1 and defined so that

gg−1 = g−1g = e , must also be in G.

Some groups may be endowed with extra structure. Lie groups, for example,

are those whose elements can be understood as points on a smooth manifold such

that, roughly speaking, points that are close together are similar as transformations.

Specifically, they are groups with smooth group multiplication and inversion maps

(g1, g2) 7→ g1g2, (A.1)

g 7→ g−1. (A.2)
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Take SO(2), for example. It can be understood as a circle: if the circle is embedded

in the complex plane as

S1 = {eiθ| θ ∈ R}, (A.3)

each point eiθ ∈ S1 can be identified with the transformation

gθ = [rotate counter-clockwise by θ radians] ∈ SO(2). (A.4)

Clearly the maps

(gθ1 , gθ2) 7→ gθ1gθ2 = g(θ1+θ2), (A.5)

gθ 7→ g−1
θ = g(−θ), (A.6)

are smooth when SO(2) is imbued with the induced topology from the circle, demon-

strating that SO(2) is a Lie group.

More generally, all closed subgroups of GL(n,R) or GL(n,C) (the invertible n×n
real or complex matrices) are Lie groups. Not all Lie groups are of this form, but

all of the ones we will be interested in are. This includes the unitary groups

U(n) = {U ∈ GL(n,C)| U †U = 1}, (A.7)

and the orthogonal groups

O(n) = {O ∈ GL(n,R)| OᵀO = 1}, (A.8)

as well as their “special” subgroups SU(n) and SO(n), containing only those ele-

ments with unit determinant. These groups usually arise in physics because their

defining properties are such that their elements preserve some sort of norm or length.

A.2 Representations

We are not so much interested in the group elements themselves; what interests us

is how objects (specifically quantum fields) are affected when these transformations

are performed on them. To this end, we assign an operator Sg to each element g

of a group G that enacts the transformation g. How can we tell that Sg actually

does what we want it to do? Well, g is entirely defined by its compositions with the

other group elements. As long as the operators are assigned so that compositions

are preserved,

Sg2Sg1 = Sg2g1 ∀g1, g2 ∈ G, (A.9)
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then Sg can honestly be said to enact the transformation g. A map between group

elements and a set of operators that satisfies Equation (A.9),

ρ : G→ {Sg| g ∈ G}
g 7→ ρ(g) = Sg, (A.10)

is called a representation of G. Perhaps surprisingly, there is no unique represen-

tation of any non-trivial group. Almost always the label “representation” actually

refers to only a linear representation - that is, to a representation that maps to

linear operators on some vector space V ,

ρ(g) : V → V, (A.11)

simply because linear operators are easier to handle. We will adopt this terminology.

The dimension of a representation is the dimension of V , and can often be used to

distinguish the different representations of a given group.

Note that the distinction between g and ρ(g) is usually unimportant if it is

understood the representation ρ is being used, and indeed we have already confused

the two by defining the unitary and orthogonal groups as sets of matrices rather than

as sets of abstract transformations. Those matrices of Equations (A.7) and (A.8)

form the so-called defining representations of the unitary and orthogonal groups.

Representations must assign ρ(e) = 1 for the group structure to be preserved.

For a Lie group G such as those we are interested in, since the manifold structure can

be parameterised by analytic functions, the group elements infinitesimally close to

the identity may be found by first-order Taylor expansion about the identity e ≡ 1:

ρ (g(~ε)) = 1 + iεaT ρa (A.12)

in terms of infinitesimal coordinates εa, equal in number to the dimension of the

group, and some linear operators T ρa , known as generators of G for the represen-

tation ρ. This is simply the infinitesimal version of the relation

ρ
(
g(~θ)

)
= exp [iθaT ρa ] =

∞∑

n=0

(iθaT ρa )n

n!
(A.13)

for group elements a finite distance from the identity, where ~θ is a collection of finite

coordinates. Not all group elements can be written as the exponential of a matrix,

however. In general, only a connected subgroup of G can be expressed in this way.

But if G is compact and connected, such as SU(n) or SO(n), then every group

element is the exponential of some linear combination of the generators.

Example: Representations of U(1)

We have already come close to representing the elements of a Lie group through

exponentials, in Equation (A.4). That identification between elements of SO(2)
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and points on the complex unit circle is actually an isomorphism between SO(2)

and the group U(1) of rotations of the complex plane about the origin, since such

rotations are enacted by multiplication by phases eiθ. An appropriate representation

of U(1) therefore uses the 1×1 complex matrices

ρ(counter-clockwise rotation of θ radians) =
[
eiθ
]

= exp (iθ[1]) , (A.14)

the sole generator here being the matrix [1]. A different representation could be

constructed by taking the generator to be, say, [−3], or any other 1×1 matrix with

integer entry1. These representations would respectively be labelled +1 or −3.

In QFT, the different representations of fields under a U(1) symmetry are ac-

counted for by writing all of the representations as

ρ(counter-clockwise rotation of θ radians) = exp [iθX] , (A.15)

where X is an operator that yields the appropriate generator when acting on each

field. In this case the group would be labelled U(1)X to signify that fields furnish

representations according to their X charges.

These basic representations of U(1) are used extensively throughout this work.

Below we will detail other types of representations that will also be used.

Reducible and Irreducible Representations

First we discuss how certain representations may be understood in terms of others.

Suppose we have a representation ρ of a group G, acting on a vector space V .

Sometimes it is the case that there is a basis of V in which ρ can be expressed in

block diagonal form:

ρ(g) :=

(
ρ1(g) 0

0 ρ2(g)

)
, ∀g ∈ G. (A.16)

From this form it follows that the functions ρ1 and ρ2 are also representations of G,

acting on complementary subspaces of V . A representation ρ for which such a basis

exists is called reducible, and is denoted by the direct sum

ρ = ρ1 ⊕ ρ2. (A.17)

The representations ρ1 and/or ρ2 may themselves be reducible, in which case ρ

decomposes as the direct sum of more representations, having further block diagonal

structure. Representations that cannot be written as a direct sum are irreducible.

For compact groups, every reducible representation is the direct sum of some number

1The generator must be an integer because the circle identifies θ ∼ θ + 2π, and this must be
reflected in the operators assigned by the representation. For projective representations that are
used in QFT, where operators need only preserve the group structure up to a phase, any real
number can be used as a generator of U(1).
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of irreducible representations. Typically in the context of QFT the subspaces on

which the irreducible constituent representations of a reducible representation act

are interpreted as independent multiplets of quantum fields, so to describe a single

quantum field multiplet one would only need to use an irreducible representation.

This reasoning can be applied in the other direction, of course, forming a new

representation through the direct sum of two known representations through the

definition Equation (A.16), although we shall not do so explicitly in this work.

Trivial Representation

All groups have at least one representation, defined by

ρ(g) = 1 ∀g ∈ G. (A.18)

It is trivial, of course, because nothing changes under its action. The generator of this

representation is simply the zero operator, for exp[iθ · 0] = 1. This representation

is denoted by 1 to evoke imagery of the identity operator.

Adjoint Representations

In addition to the trivial representation, every Lie group G also has an adjoint

representation AdG. Its generators are defined using the structure constants of the

Lie algebra of G (see Equation (2.8)) as

(TAd
a ) c

b := if c
ab . (A.19)

Note the dimension of the adjoint representation of a group is equal to the dimension

of the group itself. For SU(n), the adjoint is n2−1, while for SO(n) it is n(n−1)/2.

The definition Equation (A.19) actually allows the adjoint transformation to be

given in terms of the generators of any other representation. Indeed, consider a

vector Aa transforming in the adjoint representation. It must have dim(G)-many

components, and so we may form the object

Aρ := AaT ρa (A.20)
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for generators T ρa of any representation ρ. (The superscript ρ is a label, not an

index). Under an infinitesimal adjoint transformation, then,

Aρ →
(
eiε

aTAd
a A

)c
T ρc

=Aρ + (iεa(TAd
a ) c

b A
b)T ρc

=Aρ + iεaif c
ab A

bT ρc

=Aρ + iεaAb[T ρa , T
ρ
b ]

=Aρ + iεa[T ρa , A
ρ]

= exp [iεaT ρa ]Aρ exp [−iεaT ρa ] , (A.21)

where we have made extensive use of Equation (2.8). This extends to finite trans-

formations as

Aρ
g∈G−−→ ρ(g)Aρρ(g)−1. (A.22)

Anything transforming with the same pattern as Equation (A.22) is said to trans-

form adjointly. This property proves useful because if a vector ~ϕ transforms under

representation ρ, then so too does Aρ~ϕ:

Aρ~ϕ→
[
ρ(g)Aρρ(g)−1

]
[ρ(g)~ϕ] = ρ(g)Aρ~ϕ, (A.23)

making it straightforward to construct invariant interactions.

Fundamental Representations

As we have seen with the unitary and orthogonal groups, some groups are explic-

itly defined in terms of particular matrices. Such defining representations are often

called fundamental representations in the physics literature, although it should

be noted that “fundamental representation” has a technical meaning that coinci-

dentally overlaps with the defining representation in certain cases. For unitary and

orthogonal groups, the defining representations are indeed fundamental representa-

tions.

The defining representations of U(n) and O(n) act on n-dimensional vectors ~ϕ:

ϕi
g∈G−−→ ϕ′i = g j

i ϕj, (A.24)

and are accordingly labelled as n. Here we do not distinguish between the group

element g and the operator ρ(g), because of course the group elements are defined

by this representation.

What is special about these defining representations is that they are the lowest-

dimensional representations that assign group elements to operators injectively. For

semisimple Lie groups such as SU(n) and SO(n), it turns out that this allows
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all other finite-dimensional irreducible representations to be constructed from the

defining representation.

Symmetric and Antisymmetric Representations

In this section we focus specifically on representations of SO(n), which is all we will

be using in this work. To show how other representations can be constructed from

a vector ~ϕ in the fundamental representation n, we follow Ref. [52] and consider the

object defined by

Tij := ϕiϕj. (A.25)

What is important about this object is not its definition; we are only interested in

its transformation properties. Based on Equation (A.24), T will transform as

Tij
g∈G−−→ ϕ′iϕ

′
j = g k

i ϕkg
m
j ϕm = g k

i g
m
j Tkm, (A.26)

or in matrix notation,

T
g∈G−−→ T ′ = gTgᵀ. (A.27)

This type of transformation forms a representation of SO(n), for it preserves the

group structure2. There are n2 components of T , so this representation is labelled

n2.

But notice this is a reducible representation: it does not mix the symmetric and

antisymmetric subspaces together. That is, the antisymmetric and symmetric parts

of T ,

A :=
1

2
(T − T ᵀ), S :=

1

2
(T + T ᵀ), (A.28)

remain respectively antisymmetric and symmetric under Equation (A.27)

A
g∈G−−→ A′ = gAgᵀ, S

g∈G−−→ S ′ = gSgᵀ. (A.29)

In addition, the transformation does not mix the trace of T with anything:

Tr [T ]
g∈G−−→ Tr [T ′] = Tr [gTgᵀ] = Tr [T ] , (A.30)

using the defining property of g ∈ SO(n) in Equation (A.8). We might as well then

redefine S to be traceless (A is automatically traceless) and include a pure trace

component in the decomposition of T ,

T = S + A+
1

n
Tr [T ] 1. (A.31)

2Performing transformation g1 followed by g2 yields g2g1Tg
ᵀ
1g

ᵀ
2 = (g2g1)T (g2g1)ᵀ X.
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Schematically, we have decomposed the n2 representation into three irreducible rep-

resentations: the traceless symmetric, the antisymmetric, and the pure trace singlet

T︸︷︷︸
n2

= S︸︷︷︸
n(n+1)

2
−1

⊕ A︸︷︷︸
n(n−1)

2

⊕Tr [T ]︸ ︷︷ ︸
1

. (A.32)

The dimensions of the irreducible representations can be understood by simply

counting the respective independent components in Equation (A.28) and accounting

for the one degree of freedom in S that was removed by making it traceless.

Note that even though these irreducible representations were found by consid-

ering the tensor product of two fundamental representations, multiplets in these

representations do not have to be constructed this way; any antisymmetric or trace-

less symmetric matrix transforming as in Equation (A.29) will do.



Appendix B

Charges and Generators of a

Symmetry

It will prove useful to investigate the connection between the symmetry group G

and the conserved charges Qa that it generates. Ultimately we shall show the charge

associated to a generator Ta is the generator itself. We proceed with an argument

largely based on Ref. [19].

Suppose a multiplet of canonical fields ~φ = (φ1, φ2, . . .) transforms in a represen-

tation of G that has generators Ta. Then an infinitesimal symmetry S ∈ G is of the

form

S = 1 + iεaTa, (B.1)

and the fields transform as

φi 7→ φi + iεa (Ta)
i
j φ

j. (B.2)

(B.3)

This holds for arbitrary small εa, so it must be that

δφi

δεa
= i (Ta)

i
j φ

j. (B.4)

(B.5)

Now to look at the conserved charges. From Nöther’s Theorem, the conserved

currents are given by

Jµa = − ∂L
∂(∂µφi)

δφi

δεa
, (B.6)

giving conserved charges

Qa =

∫
d3x J0

a(~x) = −i
∫

d3x πi(~x) (Ta)
i
j φ

j, (B.7)
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where πi = ∂L
∂φ̇i

is the momentum density conjugate to φi. But now using the

canonical commutation relations

[φi(~x), φk(~y)] = 0, (B.8)

[πi(~x), φk(~y)] = −iδki δ3(~x− ~y), (B.9)

we calculate

[Qa, φ
k(~y)] = −i

∫
d3x [πi(~x), φk(~y)] (Ta)

i
j φ

j(~x) = − (Ta)
k
j φ

j(~y), (B.10)

[Qa, πk(~y)] = −i
∫

d3x πi(~x) (Ta)
i
j [φj(~x), πk(~y)] = (Ta)

i
k πi(~y). (B.11)

(B.12)

With these, we get

[Qa, Qb] = −i
∫

d3x πi(~x)[Ta, Tb]
i
jφ

j(~x) = if c
ab Qc. (B.13)

Thus, the chargesQa form the same Lie algebra as the generators Ta of the symmetry,

and so we may choose Ta = Qa. In other words, the charge generated by a continuous

symmetry is itself the generator of that symmetry.



Appendix C

Quantum Effective Action

In classical field theory, field dynamics are completely specified by the action

S[φ, ∂φ, . . .] =

∫
d4x L[φ(x), ∂φ(x), . . .], (C.1)

with the equations of motion given by the principle of stationary action δS = 0.

This is not true in quantum field theory because of the non-commutative operator

nature of the fields. Instead, the Schrödinger-like time evolution equation needs to

be solved through the use of a Dyson series, whose various terms can be interpreted

pictorially as Feynman diagrams of interacting off-shell particles. Internal loops in

these Feynman diagrams lead to the difference between the classical and quantum

regimes.

What is remarkable, though, is that the effects of loop diagrams can automat-

ically be taken into account if one uses instead the quantum effective action, Γ, in

place of the regular action. The principle of stationary effective action then gives

the equations of motion for the vacuum expectation values of the quantum fields.

Here we summarise the treatment of the effective potential that can be found in any

introductory textbook on quantum field theory, e.g. Ref. [52, 53,143].

The quantum effective action is perhaps most easily arrived at through the path

integral formulation of quantum field theory. In classical field theory, the vacuum

expectation value of any operator O is given by

〈O〉 =

∫
DΦ Oe i~S[Φ]

∫
DΦ e

i
~S[Φ]

, (C.2)

where Φ stands for all fields in the theory and S[Φ] is the action. The situation is

subtly different in quantum field theory due to loop diagrams. To account for this,

an operator’s vev is given by its expectation value in the presence of classical source

fields (complex-valued functions), in the limit that the source fields vanish. To make

the notation clear, quantum fields will be hatted and classical fields unhatted. What

happens is that for every quantum field φ̂i in the theory (not necessarily elementary),

a classical source field Ji is introduced, effecting a change in the action

S[Φ̂]→ SJ [Φ̂] := S[Φ̂] +

∫
d4xJ(x) · Φ̂(x). (C.3)
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Here we have introduced the notation Φ̂ = (φ̂1, φ̂2, . . .), J = (J1, J2, . . .), and the

dot denotes the näıve dot product. The source fields have the effect of exciting their

associated field from the vacuum. The expectation value ΦJ of Φ̂ in the presence of

currents J is then

ΦJ(x) := 〈J | Φ̂(x) |J〉 =

∫
DΦ̂ Φ̂(x)e

i
~SJ [Φ̂]

∫
DΦ̂ e

i
~SJ [Φ̂]

, (C.4)

while the vevs Φ0 are found by

Φ0(x) := lim
J→0

ΦJ(x). (C.5)

Now notice that if we define the so-called Schwinger functional

W [J ] :=
~
i

ln

(∫
DΦ̂ e

i
~SJ [Φ̂]

)
, (C.6)

we have the formal relation

φiJ(x) =
δW [J ]

δJi(x)
, or more compactly, ΦJ(x) =

δW [J ]

δJ(x)
. (C.7)

In many physical cases this relation is invertible, allowing the current J to be found

in terms of ΦJ . To make this functional dependence more transparent, let JΦ denote

this set of currents for a given classical field configuration Φ. That is, JΦ is the

current that satisfies

Φ(x) =
δW [JΦ]

δJΦ(x)
. (C.8)

These notions now allow the quantum effective action Γ to be defined as the Legendre

transformation of W :

Γ [Φ] := W [JΦ]−
∫

d4xJΦ(x) · Φ(x). (C.9)

By virtue of Equation (C.8), this satisfies

δΓ [Φ]

δφi(x)
=

∫
d4y

δW [JΦ]

δJΦ
j (y)

δJΦ
j (y)

δφi(x)
− JΦ

i (x)−
∫

d4y
δJΦ

j (y)

δφi(x)
φj(x) (C.10)

= −JΦ
i (x). (C.11)

Taking the limit as J → 0, the classical fields Φ take on their quantum vacuum

expectation values Φ0 and we are left with

δΓ [Φ]

δφi(x) |Φ=Φ0

= 0. (C.12)
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In other words, the effective action is stationary when the fields all achieve their vev.

This condition becomes clearer when the effective potential is expanded in powers

of momentum (or derivatives in position space):

Γ [Φ] =

∫
d4x

(
−Veff(Φ) +

1

2
(∂µΦ(x))(∂µΦ(x))Z(Φ) + · · ·

)
(C.13)

for some functions Veff and Z. The first term, Veff, is named the quantum effective

potential by analogy with the classical potential being the negative density of the

non-derivative terms in the classical action. When the fields all achieve their vevs,

Φ0 will be constant throughout spacetime on account of the Poincaré invariance of

the vacuum, so the effective action becomes simply

Γ [Φ0] = −V T Veff(Φ0), (C.14)

where V T is the volume of spacetime1. Restricted to constant field configurations,

the vev condition Equation (C.12) then reduces to a simple derivative relation

∂Veff

∂φi(x) |Φ=Φ0

= 0. (C.15)

For the vevs to be stable under small perturbations, Equation (C.15) must represent

a minimum of the effective potential rather than any stationary point. This fact -

that the possible vevs are given by the minima of the effective potential - is used

extensively throughout this work.

C.1 Interpretation of the Effective Potential

Of course, it is no good to know this fact without having any way to calculate the

effective potential. The key to its calculation lies in a physical interpretation of the

Schwinger functional of Equation (C.6). Notice that the Schwinger functional, when

exponentiated, gives the amplitude of transitioning from the vacuum in the far past

to the vacuum in the far future in the presence of sources J :

exp

(
i

~
W [J ]

)
=

∫
DΦ̂ e

i
~SJ [Φ̂] = 〈Ω(t =∞)|Ω(t = −∞)〉J . (C.16)

But this amplitude is simply the sum of all (connected and disconnected) vacuum

→ vacuum Feynman diagrams, and it is an elementary result in quantum field

theory that this sum is the exponential of the sum of only the connected vacuum→
vacuum diagrams. So iW [J ]/~ is the sum of all connected vacuum diagrams, any

of which has the form of a tree diagram (one with no loops), with vertices that are

one-particle-irreducible (1PI) diagrams (ones that cannot be disconnected with the

removal of a line).

1This infinite factor will cancel out in calculations.
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The trick now is to consider what happens when the action S is replaced by a

new function S̃ whose vertices contain all 1PI diagrams. By the same reasoning

above, the new Schwinger functional W̃ will be the sum of all connected diagrams

whose vertices are 1PI diagrams. So the original Schwinger functional, having only

tree-level diagrams, can equivalently be defined as the classical limit of W̃ :

W [J ] = lim
~→0

W̃ [J ] = lim
~→0

~
i

ln

(∫
DΦ̂ e

i
~ S̃J [Φ̂]

)
. (C.17)

The ~→ 0 limit picks out the configuration that extremises S̃J , giving the condition

δS̃[ΦJ ]

δΦJ

= −J (C.18)

and reducing Equation (C.17) to

W [J ] = S̃[ΦJ ] +

∫
d4xJ(x) · ΦJ(x). (C.19)

But this is exactly the inverse Legendre transformation of Equation (C.9), with S̃

being the quantum effective potential! We now see that Γ generates the sum of all

1PI diagrams, and so may be written as

Γ [Φ] =
∞∑

N=1

1

N !

∫
d4x1 · · · d4xNΓ(N)(x1, . . . , xN)Φ(x1) · · ·Φ(xN), (C.20)

where Γ(N) is the sum of all 1PI diagrams with N external lines. Here we are

treating Φ as a single field for notational convenience, but it should be understood

that for multiple fields all of the different possible combinations of N fields should

be included. To make the connection with the effective potential, we now go to

momentum space (following Ref. [83])

Γ(N)(x1, . . . , xN) =

∫
d4p1

(2π)4
· · · d4pN

(2π)4
e
i
∑
i
pi·xi

Γ(N)(p1, . . . , pN)(2π)4δ4(
∑

i

pi),

(C.21)

resulting in

Γ [Φ] =
∞∑

N=1

1

N !

∫
d4x Γ(N)(p1, . . . , pN)(Φ(x))N . (C.22)
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Expanding Γ(N)(p1, . . . , pN) around zero momentum and comparing with Equa-

tion (C.13), we see that

Veff(Φ) = −
∞∑

N=1

1

N !
Γ(N)(0, . . . , 0)(Φ(x))N . (C.23)

In other words, the effective potential is the (negative) sum of all 1PI diagrams where

the external legs have vanishing momenta. This fact makes Veff extraordinarily

useful: for one, if loop diagrams are ignored then the effective potential is the

negative sum of the non-derivative terms in the Lagrangian - that is to say, it

is the classical potential. Hence, Veff is just the classical potential with quantum

corrections. Furthermore, if the squared mass of a field is defined as the inverse of

its propagator at zero momentum, as it is for scalar fields, then the (renormalised!)

mass matrix of the fields is simply

(M2)ab =
∂2Veff

∂φb∂φa |Φ=Φ0

. (C.24)

Similar considerations hold for other coupling constants, but this is the only one

needed for this work.





Appendix D

Isomorphism Between SO(4) and

SU(2) × SU(2)

A fact that is exploited throughout this work is that SO(4) is locally isomorphic to

SU(2)L×SU(2)R, meaning the two groups share the same Lie algebra. This follows

because there is a certain way to embed the four components of a 2×2 matrix Σ

(of a certain class) into a vector ~ϕ such that an infinitesimal SU(2)L × SU(2)R
transformation of Σ manifests as an infinitesimal SO(4) transformation of ~ϕ.

Specifically, Σ is to be taken as a pseudo-real matrix, i.e. as a matrix satisfying

Σ∗ = σ2Σσ2, (D.1)

where σ2 is the second Pauli sigma matrix. The set of all pseudo-real matrices

furnishes a representation of SU(2)L × SU(2)R, transforming under the group as

Σ→ gLΣg†R, (D.2)

on account of the properties of the Pauli matrices. This is the bidoublet represen-

tation, denoted (2,2).

The condition Equation (D.1) allows Σ to be written in terms of four real numbers

ϕi as

Σ =
1√
2

(
ϕ4 + iϕ3 ϕ2 + iϕ1

−ϕ2 + iϕ1 ϕ4 − iϕ3

)
. (D.3)

Now notice that the chiral transformation Equation (D.2) leaves invariant

Tr
[
Σ†Σ

]
= |~ϕ|2, (D.4)

and so acts as an SO(4) transformation on ~ϕ = (ϕ1, ϕ2, ϕ3, ϕ4). Hence the algebra

of SU(2)L × SU(2)R is contained in the algebra of SO(4), and since the algebras

have equal dimensions they must be the same. Note this local isomorphism does

not mean SU(2)L × SU(2)R and SO(4) are the same groups; in fact there is a 2 : 1

correspondence between elements of SU(2)L × SU(2)R and elements of SO(4).
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Equation (D.3) allows Σ to be expressed in terms of the SU(2)L doublet

Φ :=
1√
2

(
ϕ2 + iϕ1

ϕ4 − iϕ3

)
(D.5)

as

Σ = (Φc,Φ), (D.6)

using the conjugate doublet Φc ≡ iσ2Φ∗. The notation here is no coincidence. Φ acts

entirely like the SM complex Higgs doublet. If Φ is assigned a hypercharge of +1/2,

then a U(1)Y transformation Φ → ei
α
2 Φ manifests as an SU(2)R transformation

Σ → Σe−iαT
3
R , where T 3

R = σ3 is the third generator of SU(2)R. For this reason T 3
R

is identified as the hypercharge operator. From Equation (D.5) it can be seen how

the components of the Higgs doublet map to a vector under SO(4).



Appendix E

Custodial Symmetry

In Section 2.4, it was shown that EWSB in the SM predicts the W± and Z boson

masses are related at tree level by

m2
W

m2
Z

=
g2

g2 + g′2
, (E.1)

where g and g′ are the coupling strengths of the SU(2)L and U(1)Y gauge bosons.

This relation has been experimentally verified to better than 1% accuracy, so any

other proposed model of EWSB would need to reproduce this prediction to be phe-

nomenologically viable.

A nice argument is presented in Ref. [24] showing that this relation is always

obtained in theories where

1. The photon is massless and the electric charge operator is given by Q = T 3
L+Y ,

and

2. When g′ = 0, there is a global SU(2) symmetry under which the SU(2)L
gauge bosons transform as a triplet. The global SU(2) symmetry is known

as a “custodial” symmetry on account of its role in protecting the relation

Equation (E.1).

The proof is fairly straightforward.

The custodial symmetry imposes equal mass terms on all the SU(2)L bosons,

meaning the electroweak mass matrix must take the form

m2
gauge =




W 1
µ W 2

µ W 3
µ Bµ

W 1µ g2u2 0 0 ·
W 2µ 0 g2u2 0 ·
W 3µ 0 0 g2u2 ·
Bµ · · · ·



, (E.2)

for some parameter u. Note this ostensibly does not agree with the mass matrix in

Section 2.4, but the off-diagonal terms in that matrix give interactions that cancel

each other out and so can equivalently be set to zero, resulting in a matrix adhering

to this form.
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That the photon is massless is another way of stating

QΦ0 = 0, or T 3
LΦ0 = −Y Φ0, (E.3)

which leads to the conditions on the mass matrix (see Equation (2.21))

g′m2
a3 = −gm2

a4, (E.4)

forcing

m2
gauge =




W 1
µ W 2

µ W 3
µ Bµ

W 1µ g2u2 0 0 0

W 2µ 0 g2u2 0 0

W 3µ 0 0 g2u2 −g′gu2

Bµ 0 0 −g′gu2 g′2u2



. (E.5)

This is proportional to the SM electroweak mass matrix, and so reproduces the ratio

Equation (E.1).

E.1 Custodial Symmetry in the SM

The reason Equation (E.1) holds in the SM is because the vector subgroup SU(2)L+R

of SU(2)L×SU(2)R acts as a custodial symmetry. SU(2)L+R is a good approximate

symmetry of the SM, being exact in the limit of equal u and d quark masses in

each generation. Technically on account of the approximate nature of SU(2)L+R,

Equation (E.1) does receive small corrections in the SM but these are negligible for

our purposes1.

Chiral symmetry is exact in the Higgs potential terms, for the potential is not

just invariant under SU(2)L × U(1)Y but has a larger accidental SO(4) symmetry:

V(Φ) = V(Φ†Φ) = V(φ2
1 + φ2

2 + φ2
3 + φ2

4). (E.6)

Recalling Appendix D, the potential therefore has a chiral SU(2)L × SU(2)R sym-

metry that is readily apparent when expressed in terms of the bidoublet Σ = (Φc,Φ)

as

V(Σ) = −µ2Tr
[
Σ†Σ

]
+ λTr

[
Σ†Σ

]2
. (E.7)

In this form, the Higgs kinetic term is

v2

4
Tr
[
(DµΣ)†(DµΣ)

]
. (E.8)

1Since the t quark is much heavier than the others, Equation (E.1) receives a relative correction

of approximately
3GFm

2
t

8
√

2π2
≈ 1% [144].
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This does not exhibit chiral symmetry since the hypercharge generator is gauged,

explicitly breaking the SU(2)R symmetry (recall from Appendix D the hypercharge

is the third generator of SU(2)R). But the limit g′ → 0 decouples the hypercharge

generator, restoring chiral symmetry and therefore also SU(2)L+R symmetry.

The quark-Higgs sector also displays this symmetry in the limit of quarks in

each generation having equal masses. In this limit, the Yukawa interactions of the

ith generation are given by

LYukawa = −yiq̄iLΣqiR + h.c. (E.9)

where the right-handed doublets qiR = (uiR, d
i
R)ᵀ transforming as a fundamental of

SU(2)R have been introduced. Such terms are obviously chirally invariant due to

the Higgs transformation property Equation (D.2). But of course the quarks, having

unequal masses, must have different Yukawa couplings, making this symmetry only

approximate.

A global SU(2)L+R transformation enacts a global SU(2)L transformation, under

which the SU(2)L gauge bosons transform as a triplet on account of Equation (2.13),

fulfilling the condition for a custodial symmetry.





Appendix F

Computation of the

Nambu-Goldstone Boson Matrix

Here we include the computation of the NGB matrix

U [~θ] = ei
√

2
f
θaT̂a (F.1)

for broken generators T̂ a of SO(n)→ SO(n− 1). We use the convenient basis given

in Appendix G (generalised to n dimensions), consistent with the choice of vacuum

vector Φ0 = (0, 0, . . . , 0, f)ᵀ, in which

(T̂a)ij = − i√
2

(
δai δ

n
j − δaj δni

)
, a = 1, . . . , n− 1. (F.2)

That is, we are calculating the exponential of

M := i

√
2

f
θaT̂a =




0 ~v

−~vᵀ 0


 , (F.3)

where ~v := (θ1, . . . , θn−1)ᵀ/f . To begin, note

M2 = (−1)



~v~vᵀ 0

0 ~vᵀ~v


 , (F.4)

=⇒ M2k = (−1)k




(~v~vᵀ)k 0

0 (~vᵀ~v)k


 , (F.5)

=⇒ M2k+1 = (−1)k




0 (~v~vᵀ)k ~v

− (~vᵀ~v)k ~vᵀ 0


 . (F.6)
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Using the fact that (~v~vᵀ)k = ~v (~vᵀ~v)k−1 ~vᵀ for k ≥ 1, and ~vᵀ~v = |~v|2, these simplify

to

M2k = (−1)k|~v|2k




~v~vᵀ

|~v| 0

0 1


 =: (−1)k|~v|2kM0 (for k ≥ 1), (F.7)

M2k+1 = (−1)k|~v|2k+1




0 ~v
|~v|

−~vᵀ

|~v| 0


 =: (−1)k|~v|2k+1M1. (F.8)

Hence, the exponential is

eM =
∞∑

k=0

1

(2k)!
M2k +

∞∑

k=0

1

(2k + 1)!
M2k+1

= M0 +
∞∑

k=1

(−1)k

(2k)!
|~v|2kM0 +

∞∑

k=0

(−1)k

(2k + 1)!
|~v|2k+1M1

= 1 + (cos |~v| − 1)M0 + sin |~v|M1

=

(
1− ~v~vᵀ

|~v|2 (1− cos |~v|) ~v
|~v| sin |~v|

−~vᵀ

|~v| sin |~v| cos |~v|

)
. (F.9)

Substituting ~v = ~θ/f yields

U [~θ] =


1− ~θ~θᵀ

|~θ|2

(
1− cos |

~θ|
f

)
~θ

|~θ|
sin |

~θ|
f

− ~θᵀ

|~θ|
sin |

~θ|
f

cos |
~θ|
f


 . (F.10)



Appendix G

SO(5) Generators and Multiplets

Here we give the conventions for SO(5) generators and embeddings we use in this

work. This section makes extensive use of Appendix D, since the local isomorphism

SO(4) ∼= SU(2)L×SU(2)R allows representations of SO(5) ∼= SO(4)×SO(5)/SO(4)

to be decomposed into those of SU(2)L × SU(2)R, making the embedded fields’

quantum numbers easily identifiable.

G.1 Generators

To exploit the local isomorphism, the generators are conveniently split into (T aL,R)3
a=1,

which generate the subgroup locally isomorphic to SU(2)L,R, and the broken gen-

erators (T̂ b)4
b=1 associated with the SO(5)/SO(4) coset. In the fundamental repre-

sentation they are given by

(T aL)ij = − i
2

(
εabcδbi δ

c
j +

(
δai δ

4
j − δ4

i δ
a
j

))
, (G.1)

(T aR)ij = − i
2

(
εabcδbi δ

c
j −

(
δai δ

4
j − δ4

i δ
a
j

))
, (G.2)

(T̂ b)ij = − i√
2

(
δbi δ

5
j − δbjδ5

i

)
. (G.3)

Note this is consistent with our choice of the SO(4)-invariant vector Φ0 = (0, 0, 0, 0, 1)ᵀ

that implicitly embeds SO(4) into the top left 4×4 block of SO(5) matrices.

G.2 Field Embeddings

The representations of SO(5) that we are interested in decompose under SO(4) and

subsequently under SU(2)L × SU(2)R as

5 → 4⊕ 1 ∼= (2,2)⊕ (1,1),

10 → 6⊕ 4 ∼= (3,1)⊕ (1,3)⊕ (2,2),

14 → 9⊕ 4⊕ 1 ∼= (3,3)⊕ (2,2)⊕ (1,1).

(G.4)
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Multiplets in the representation r will be denoted Ψr. Representations of SO(4)

are embedded inside those of SO(5) as

Ψ5 =




Ψ4

Ψ1


 , Ψ10 =




Ψ6
1√
2
Ψ4

− 1√
2
Ψᵀ

4 0


 , Ψ14 =




Ψ9 − 1
2
√

5
1Ψ1

1√
2
Ψ4

1√
2
Ψᵀ

4
2√
5
Ψ1


 .

(G.5)

Here we are treating Ψ10,14 as matrices, which are acted upon by the generators

through the commutator,

TAΨ10,14 ≡ [TA,Ψ10,14], (G.6)

in accordance with their adjoint transformation rules. The SO(4) multiplets are

populated with fields ΨnL,nR having SU(2)L × SU(2)R quantum numbers1 (nL, nR)

according to [145]

Ψ1 = Ψ0,0,

Ψ4 =
1√
2




iΨ−,− − iΨ+,+

Ψ−,− + Ψ+,+

iΨ+,− −Ψ−,+

iΨ−,+ −Ψ+,−


 ,

Ψ6 =
1

2




0 Ψ0,0
+ −i(Ψ±,0− + Ψ0,±

− ) Ψ±,0+ −Ψ0,±
+

0 Ψ±,0+ + Ψ0,±
+ i(Ψ±,0− −Ψ0,±

− )

0 −iΨ0,0
−

0


 , (G.7)

Ψ9 =
1

2




Ψ±,±+ −Ψ0,0 iΨ±,±+ Ψ±,0+ + iΨ0,±
+ iΨ±,0− −Ψ0,±

+

−(Ψ±,±+ + Ψ0,0) iΨ±,0− −Ψ0,±
− iΨ0,±

+ −Ψ±,0+

Ψ0,0 −Ψ∓,±− iΨ∓,±+

Ψ0,0 + Ψ∓,±−



,

where Ψ6 is antisymmetric and Ψ9 symmetric. In a questionably successful effort to

reduce clutter, the superscript ± denotes ±1/2 in Ψ4 and ±1 in the other multiplets,

and we have defined2

Ψ0,0
± = Ψ0,0

1 ±Ψ0,0
2 , Ψ±,0± = (Ψ+,0±Ψ−,0)/

√
2,

Ψ∓,±± = Ψ−,+±Ψ+,−, Ψ0,±
± = (Ψ0,+±Ψ0,−)/

√
2,

Ψ±,±± = Ψ+,+±Ψ−,−.

(G.8)

1Essentially the SO(5) multiplets are being expressed as linear combinations of eigenvectors of
T 3
L,R with eigenvalues nL,R, and ΨnL,nR are the coefficients.

2Two different fields have (nL, nR) = (0, 0) in Ψ6.



Appendix H

Mass Matrices in the M4DCHM

Here we give the explicit mass matrices for each model of the M4DCHM. They are

given in the Site 0 holographic gauge, in bases consisting of the fields with definite

SU(2)L×SU(2)R quantum numbers presented in Appendix G. Only particles of the

same electric charge can mix, so the mass matrices are separated according to the

particles’ charges.

H.1 Boson Sector

The mixing terms between the gauge bosons are independent of the fermion repre-

sentations, so they are the same across all models considered in this work. Their mix-

ings are represented by symmetric matrices, whose singular values are the squared

masses of the resonances.

Expansion of the Lagrangian in Equation (4.6) reveals the SU(3) resonances only

mix among themselves, through the matrix

M2
gluon =




G0
µ ρGµ

G0
µ

1
2
(g0
s)

2f 2
G −1

2
g0
sgGf

2
G

ρGµ
1
2
g2
Gf

2
G


 . (H.1)

Note one singular value of this matrix is 0, as expected for the massless SM gluons.

Of the remaining bosons, four are charged and seven are uncharged. The charged

bosons {W 0±
µ , ρ±Lµ , ρ

±
Rµ
, a±µ } are linear combinations of the gauge fields that come

paired with the generators (using our choice of generators) given by the form

X±µ :=
X1
µ ∓ iX2

µ√
2

. (H.2)

Their mass matrix is given by Equation (H.3), and the uncharged bosons have the

mass matrix Equation (H.4).

213



214 Mass Matrices in the M4DCHM

M
2 ch

a
rg

ed
=         

W
0

+

µ
ρ

+ L
µ

ρ
+ R
µ

a
+ µ

W
0
−
µ

1 2
g

2 0
f

2 1
−

1 2
g 0
g ρ
f

2 1
co

s2
(
h 2
f

)
−

1 2
g 0
g ρ
f

2 1
si

n
2
(
h 2
f

)
−

1
2
√

2
g 0
g ρ
f

2 1
si

n
( h f

)

ρ
−
µ

L
1 2
g

2 ρ
f

2 1
0

0

ρ
−
µ

R
1 2
g

2 ρ
f

2 1
0

a
−
µ

1 2
g

2 ρ
f

4 1

f
2 1
−
f

2

        
,

(H
.3

)

M
2 n
eu

tr
a
l
=                 

W
0

3

µ
B

0 µ
ρ

3 L
µ

ρ
3 R
µ

a
3 µ

ρ
X
µ

a
4 µ

W
0

3
µ

1 2
g

2 0
f

2 1
0

−
1 2
g 0
g ρ
f

2 1
co

s2
(
h 2
f

)
−

1 2
g 0
g ρ
f

2 1
si

n
2
(
h 2
f

)
−

1
2
√

2
g 0
g ρ
f

2 1
si

n
( h f

)
0

0

B
0
µ

1 2
g
′2 0

(f
2 1

+
f

2 x
)
−

1 2
g
′ 0
g ρ
f

2 1
si

n
2
(
h 2
f

)
−

1 2
g
′ 0
g ρ
f

2 1
co

s2
(
h 2
f

)
1

2
√

2
g
′ 0
g ρ
f

2 1
si

n
( h f

)
−

1 2
g
′ 0
g X
f

2 X
0

ρ
3
µ

L
1 2
g

2 ρ
f

2 1
0

0
0

0

ρ
3
µ

R
1 2
g

2 ρ
f

2 1
0

0
0

a
3
µ

1 2
g

2 ρ
f

4 1

f
2 1
−
f

2
0

0

ρ
µ X

1 2
g

2 X
f

2 X
0

a
4
µ

1 2
g

2 ρ
f

4 1

f
2 1
−
f

2

                

.

(H
.4

)
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H.2 Fermion Sector

The Lagrangians Equations (4.22), (4.25) and (4.27) lead to the quark partner mass

matrices for each model below. Subscripts denote the matrices for the up-type

(U) and down-type (D) fields, as well as the fields of exotic charges 4/3, 5/3, and

8/3. The subscripts/tildes of the fields match those of the multiplets in which

they are contained. Where necessary to avoid ambiguity, subscripts denote the

representations of SO(5) or SO(4) in which the fields reside. Fields may share a

label with those in other matrices due to the different definitions of ± in superscripts

for different SO(4) representations (see discussion after Equation (G.8)), but the

electric charges distinguish them and remove ambiguity about the representation

each comes from.

To save space in writing the matrices, we define the quantities

sxh = sin

(
x
h

f

)
, cxh = cos

(
x
h

f

)
for x ∈ R, (H.5)

and

c± =
ch ± c2h

2
, c̃ =

3 + 5c2h

8
, and s̃ =

√
5

4
s2h. (H.6)

H.2.1 M4DCHM5−5−5

A caveat: in this model a different convention was used for the field embeddings than

was presented in Appendix G. The fields in Ψ4 in Appendix G have been redefined

here as Ψ−,− → −iΨ−,−, Ψ+,+ → iΨ+,+, and Ψ+,− → −iΨ+,−.

M5−5−5
4
3

=




Ψ−,−bR Ψ̃−,−bR

Ψ̄−,−bL mb mYb
¯̃Ψ−,−bL 0 mb̃


 , (H.7)

M5−5−5
5
3

=




Ψ+,+
tR Ψ̃+,+

tR

Ψ̄+,+
tL mt mYt

¯̃Ψ+,+
tL 0 mt̃


 , (H.8)
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M
5
−

5
−

5
U

=

                  

t0 R
Ψ

+
,−

tR
Ψ̃

+
,−

tR
Ψ
−
,+

tR
Ψ̃
−
,+

tR
Ψ

+
,+

bR
Ψ̃

+
,+

bR
Ψ

0
,0
tR

Ψ̃
0
,0
tR

t̄0 L
0

−
c2 h
/
2
∆
tL

0
s2 h
/
2
∆
tL

0
−

∆
bL

0
i √
2
s h

∆
tL

0

Ψ̄
+
,−

tL
0

m
t

m
Y
t

0
0

0
0

0
0

¯̃ Ψ
+
,−

tL
−

i √
2
s h

∆
† tR

0
m
t̃

0
0

0
0

0
0

Ψ̄
−
,+

tL
0

0
0

m
t

m
Y
t

0
0

0
0

¯̃ Ψ
−
,+

tL
−

i √
2
s h

∆
† tR

0
0

0
m
t̃

0
0

0
0

Ψ̄
+
,+

bL
0

0
0

0
0

m
b

m
Y
b

0
0

¯̃ Ψ
+
,+

bL
0

0
0

0
0

0
m
b̃

0
0

Ψ̄
0
,0
tL

0
0

0
0

0
0

0
m
t

m
Y
t
+
Y
t

¯̃ Ψ
0
,0
tL

−
c h

∆
† tR

0
0

0
0

0
0

0
m
t̃

                  

,
(H

.9
)

M
5
−

5
−

5
D

=

                  

b0 R
Ψ

+
,−

bR
Ψ̃

+
,−

bR
Ψ
−
,+

bR
Ψ̃
−
,+

bR
Ψ
−
,−

tR
Ψ̃
−
,−

tR
Ψ

0
,0
bR

Ψ̃
0
,0
bR

b̄0 L
0

s2 h
/
2
∆
bL

0
−
c2 h
/
2
∆
bL

0
−

∆
tL

0
i √
2
s h

∆
bL

0

Ψ̄
+
,−

bL
0

m
b

m
Y
b

0
0

0
0

0
0

¯̃ Ψ
+
,−

bL
−

i √
2
s h

∆
† bR

0
m
b̃

0
0

0
0

0
0

Ψ̄
−
,+

bL
0

0
0

m
b

m
Y
b

0
0

0
0

¯̃ Ψ
−
,+

d
L
−

i √
2
s h

∆
† bR

0
0

0
m
b̃

0
0

0
0

Ψ̄
−
,−

tL
0

0
0

0
0

m
t

m
Y
t

0
0

¯̃ Ψ
−
,−

tL
0

0
0

0
0

0
m
t̃

0
0

Ψ̄
0
,0
bL

0
0

0
0

0
0

0
m
b

m
Y
b

+
Y
b

¯̃ Ψ
0
,0
bL

−
c h

∆
† bR

0
0

0
0

0
0

0
m
b̃

                  

.
(H

.1
0)
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H.2.2 M4DCHM14−14−10

M14−14−10
4
3

=



Ψ−,−L Ψ̃−,−14L

Ψ̄−,−R mq mYt

¯̃Ψ−,−14R
0 mt


 , M14−14−10

8
3

=




Ψ+,+
L Ψ̃+,+

14L

Ψ̄+,+
R mq mYt

¯̃Ψ+,+
14R

0 mt


 , (H.11)

M14−14−10
5
3

=



Ψ̃+,+
10L

Ψ+,+
L Ψ̃+,+

14L
Ψ+,0
L Ψ̃+,0

14L
Ψ0,+
L Ψ̃0,+

14L
Ψ̃+,0

10L
Ψ̃0,+

10L

¯̃Ψ+,+
10R

mb 0 0 0 0 0 0 0 0

Ψ̄+,+
R

1
2
Yb mq mYt + 1

2
Yt 0 0 0 0 0 0

¯̃Ψ+,+
14R

0 0 mt 0 0 0 0 0 0

Ψ̄+,0
R 0 0 0 mq mYt 0 0 0 0

¯̃Ψ+,0
14R

0 0 0 0 mt 0 0 0 0

Ψ̄0,+
R 0 0 0 0 0 mq mYt 0 0

¯̃Ψ0,+
14R

0 0 0 0 0 0 mt 0 0
¯̃Ψ+,0
10R

0 0 0 0 0 0 0 mb 0
¯̃Ψ0,+
10R

0 0 0 0 0 0 0 0 mb




, (H.12)

M14−14−10
D =



b0
L Ψ̃−,−10L

Ψ−,−L Ψ̃−,−14L
Ψ−,0L Ψ̃−,014L

Ψ0,−
L Ψ̃0,−

14L
Ψ̃−,010L

Ψ̃0,−
10L

b̄0
R 0 0 −ch∆q 0 − 1√

2
sh∆q 0 i√

2
sh∆q 0 0 0

¯̃Ψ−,−10R
− i√

2
sh∆

†
b mb 0 0 0 0 0 0 0 0

Ψ̄−,−R 0 1
2
Yb mq mYt + 1

2
Yt 0 0 0 0 0 0

¯̃Ψ−,−14R
0 0 0 mt 0 0 0 0 0 0

Ψ̄−,0R 0 0 0 0 mq mYt 0 0 0 0
¯̃Ψ−,014R

0 0 0 0 0 mt 0 0 0 0

Ψ̄0,−
R 0 0 0 0 0 0 mq mYt 0 0

¯̃Ψ0,−
14R

0 0 0 0 0 0 0 mt 0 0
¯̃Ψ−,010R

−s2
h/2∆†b 0 0 0 0 0 0 0 mb 0

¯̃Ψ0,−
10R
−c2

h/2∆†b 0 0 0 0 0 0 0 0 mb




,

(H.13)
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M
1
4
−

1
4
−

1
0

U
=

                                           
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H.2.3 M4DCHM14−1−10
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=
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, (H.15)
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H.2.4 Calculation of the Top and Bottom Masses

Fermion masses are the singular values of the Higgs-dependent mass matrices M(sh)

given above. Unfortunately, many of the singular values, including those corre-

sponding to the top and bottom quark masses, cannot be expressed in a reasonably

understandable form. But a type of perturbation theory may be employed to find

the SM quark masses as power series in sh ≡ sin(h/f).

The calculation takes advantage of the fact that the squared quark (and quark

partner) masses are the eigenvalues of

M2(sh) := M †(sh)M(sh). (H.19)

Let ~v denote the eigenvector corresponding to the appropriate SM quark for the

matrix M2(sh), so that

M2(sh)~v ≡ m2~v, (H.20)

where m is the quark mass. We expand these quantities in powers of sh:

M2(sh) =
∞∑

k=0

1

k!

∂kM2

∂skh |sh=0

skh,

~v =
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k=0

~vks
k
h,

m2 =
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k=2

m2
ks
k
h, (H.21)

where crucially m2 = O(s2
h) because the SM quarks are massless before EWSB.

Equating the coefficients of snh in Equation (H.20) gives the general relation

n∑

k=0

1

k!

∂kM2

∂skh |sh=0

~vn−k =
n∑

k=2

m2
k~vn−k, (H.22)

where the right-hand side vanishes for n < 2. It is possible to solve Equation (H.22)

(for n = 0, 1, 2, 3, . . .) simultaneously for the coefficients m2
k. Doing so for the models

considered here yields the first-order formulae for the top and bottom masses given

below in Equations (H.23) to (H.25).
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Appendix I

Fermion Form Factors

Here we provide expressions for the form factors Πt,bL,R and Mt,b for each model of

the M4DCHM, originally given in Ref. [100]. See Equation (4.33) for the definitions

of these functions. In all models, the form factors are given in terms of the functions

AR(m1,m2,m3,m4,∆) := ∆2(m2
1m

2
2 +m2

2m
2
3 − p2(m2

1 +m2
2 +m2

3 +m2
4) + p4),

AL(m1,m2,m3,m4,∆) := ∆2m2
1m

2
4 + AR(m1,m2,m3,m4,∆),

AM(m1,m2,m3,m4,∆1,∆2) := ∆1∆2m1m2m4(m2
3 − p2),

B(m1,m2,m3,m4,m5) := m2
1m

2
2m

2
3 − p2(m2

1m
2
2 +m2

1m
2
3 +m2

2m
2
3 +m2

2m
2
5 +m2

3m
2
4)

+ p4(m2
1 +m2

2 +m2
3 +m2

4 +m2
5)− p6, (I.1)

in Minkowski space.

I.1 M4DCHM5−5−5

In this model,

ΠtL = Π(4)
qt + Π(4)

qb
+

1

2

(
Π(1)
qt − Π(4)

qt

)
s2
h, Mt =

(
M

(1)
t −M (4)

t

)√1− s2
h

2
sh,

ΠtR = Π
(1)
t −

(
Π

(1)
t − Π

(4)
t

)
s2
h, (I.2)

where

Π(1)
qt =

AL(mt̃, 0,mYt + Yt, 0,∆tL)

B(mt,mt̃, 0,mYt + Yt, 0)
, Π(4)

qt =
AL(mt̃, 0,mYt , 0,∆tL)

B(mt,mt̃, 0,mYt , 0)
,

Π
(1)
t =

AL(mt, 0,mYt + Yt, 0,∆tR)
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,

M
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t =
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, M
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B(mt,mt̃, 0,mYt , 0)
.

(I.3)

The form factors for the bottom sector are obtained by interchanging all t and t̃

subscripts with b and b̃.
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I.2 M4DCHM14−14−10

In this model,
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where

Π(1)
q =

AL(mt, 0,m
(1)
Yt
, 0,∆q)

B(mq,mt, 0,m
(1)
Yt
, 0)

, Π
(1)
t =

AR(mq, 0,m
(1)
Yt
, 0,∆t)

B(mq,mt, 0,m
(1)
Yt
, 0)

,

Π(4)
q =

AL(mt,mb,m
(4)
Yt
, Yb/2,∆q)

B(mq,mt,mb,m
(4)
Yt
, Yb/2)

, Π
(4)
t =

AR(mq,mb,m
(4)
Yt
, Yb/2,∆t)

B(mq,mt,mb,m
(4)
Yt
, Yb/2)

,

Π(9)
q =

AL(mt, 0,mYt , 0,∆q)

B(mq,mt, 0,mYt , 0)
, Π

(9)
t =

AR(mq, 0,mYt , 0,∆t)

B(mq,mt, 0,mYt , 0)
,

Π
(4)
b =

AR(mq,mt, Yb/2,m
(4)
Yt
,∆b)

B(mq,mt,mb,m
(4)
Yt
, Yb/2)

, M
(1)
t =

AM(mq,mt, 0,m
(1)
Yt
,∆q,∆t)

B(mq,mt, 0,m
(1)
Yt
, 0)

,

Π
(6)
b =

AR(mq, 0, 0, 0,∆b)

B(mq,mb, 0, 0, 0)
, M

(4)
t =

AM(mq,mt,mb,m
(4)
Yt
,∆q,∆t)

B(mq,mt,mb,m
(4)
Yt
, Yb/2)

,

M
(4)
b = −iAM(mq,mb,mt, Yb/2,∆q,∆b)

B(mq,mt,mb,m
(4)
Yt
, Yb/2)

, M
(9)
t =

AM(mq,mt, 0,mYt ,∆q,∆t)

B(mq,mt, 0,mYt , 0)
,

(I.6)

having defined

m
(1)
Yt

:= mYt + 4Yt/5 + 4Ỹt/5,

m
(4)
Yt

:= mYt +
1

2
Yt, (I.7)

for convenience.
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I.3 M4DCHM14−1−10

In this model,

ΠtL = Π(4)
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(I.10)





Appendix J

Collider Search Constraints

The complete list of collider searches we use to constrain our models in our global

fits is given in the following tables.
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Decay Experiment
√
s (TeV) Analysis Ref.

V → `ν ATLAS 7 EXOT-2012-02 [146]

V → eν

ATLAS 7 EXOT-2012-02 [146]

CMS 13 PAS-EXO-15-006 [147]

ATLAS 13 CONF-2016-061 [148]

ATLAS 13 CONF-2018-017 [149]

V → µν

ATLAS 7 EXOT-2012-02 [146]

CMS 13 PAS-EXO-15-006 [147]

ATLAS 13 CONF-2016-061 [148]

ATLAS 13 CONF-2018-017 [149]

V → τν

CMS 8 EXO-12-011 [150]

CMS 13 PAS-EXO-16-006 [151]

CMS 13 PAS-EXO-16-006 [151]

V → ee

ATLAS 8 EXOT-2012-23 [152]

CMS 8 EXO-12-061 [153]

CMS 13 EXO-18-006 [154]

CMS 13 PAS-EXO-16-031 [155]

ATLAS 13 CONF-2016-045 [156]

ATLAS 13 EXOT-2016-05 [157]

ATLAS 13 EXOT-2018-08 [158]

ATLAS 13 EXOT-2018-08 [158]

V → µµ

ATLAS 8 EXOT-2012-23 [152]

CMS 8 EXO-12-061 [153]

CMS 13 EXO-16-047 [159]

CMS 13 PAS-EXO-16-031 [155]

ATLAS 13 EXOT-2016-05 [157]

ATLAS 13 CONF-2016-045 [156]

V → ττ

ATLAS 8 EXOT-2014-05 [160]

CMS 8 EXO-12-046 [161]

CMS 13 PAS-EXO-16-008 [162]

Table J.1: Experimental analyses of leptonic decay channels of vector resonances
included as constraints in our scans.
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Decay Experiment
√
s (TeV) Analysis Ref.

V → qq
CMS 13 PAS-EXO-16-032 [163]

CMS 13 PAS-EXO-16-032 [163]

V → jj

CMS 13 EXO-15-001 [164]

CMS 13 EXO-16-056 [165]

ATLAS 13 EXOT-2015-02 [166]

ATLAS 13 EXOT-2018-05 [167]

V → tb

CMS 8 B2G-12-010 [168]

CMS 8 B2G-12-009 [169]

CMS 13 PAS-B2G-16-009 [170]

CMS 13 PAS-B2G-16-017 [171]

ATLAS 13 EXOT-2017-02 [172]

V → tt

ATLAS 8 CONF-2015-009 [173]

CMS 8 B2G-13-008 [174]

CMS 13 PAS-B2G-15-003 [175]

CMS 13 PAS-B2G-15-002 [176]

CMS 13 B2G-17-017 [177]

ATLAS 13 EXOT-2015-04 [178]

ATLAS 13 EXOT-2016-24 [179]

Table J.2: Experimental analyses of hadronic decay channels of vector resonances
included as constraints in our scans. Here, j refers to a light quark or b jet, and q
refers to a light quark jet.
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Decay Experiment
√
s (TeV) Analysis Ref.

V → ZH

ATLAS 8 EXOT-2013-23 [180]

CMS 8 EXO-13-007 [181]

CMS 13 PAS-B2G-16-003 [182]

CMS 13 B2G-17-006 [183]

CMS 13 B2G-17-002 [184]

CMS 13 B2G-17-004 [185]

ATLAS 13 EXOT-2015-18 [186]

ATLAS 13 CONF-2015-074 [187]

ATLAS 13 CONF-2016-083 [188]

V → WZ

ATLAS 8 EXOT-2013-08 [189]

ATLAS 8 EXOT-2013-01 [190]

ATLAS 8 EXOT-2013-07 [191]

CMS 8 EXO-12-024 [192]

CMS 13 PAS-EXO-15-002 [193]

CMS 13 PAS-B2G-16-020 [194]

CMS 13 B2G-16-029 [195]

CMS 13 B2G-17-001 [196]

CMS 13 B2G-17-005 [197]

CMS 13 B2G-17-013 [198]

CMS 13 B2G-18-002 [199]

ATLAS 13 CONF-2016-055 [200]

ATLAS 13 CONF-2016-062 [201]

ATLAS 13 CONF-2016-082 [202]

V → WH

ATLAS 8 EXOT-2013-23 [180]

CMS 8 EXO-14-010 [203]

CMS 13 PAS-B2G-16-003 [182]

CMS 13 B2G-17-006 [183]

CMS 13 B2G-17-002 [184]

CMS 13 B2G-17-004 [185]

ATLAS 13 EXOT-2015-18 [186]

ATLAS 13 CONF-2016-083 [188]

V → WW

ATLAS 8 EXOT-2013-01 [190]

CMS 8 EXO-13-009 [204]

CMS 13 B2G-17-001 [196]

CMS 13 B2G-18-002 [199]

ATLAS 13 CONF-2016-062 [201]

V → WW + ZH CMS 13 PAS-B2G-16-007 [205]

Table J.3: Experimental analyses of bosonic decay channels of vector resonances
included as constraints in our scans.
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Decay Experiment
√
s (TeV) Analysis Ref.

F → jW
CDF 1.96 10110 [206]

ATLAS 7 EXOT-2011-28 [207]

F → qW
ATLAS 8 EXOT-2014-10 [208]

CMS 8 B2G-12-017 [209]

F → bW

ATLAS 7 EXOT-12-07 [210]

CMS 7 EXO-11-050 [211]

CMS 7 EXO-11-099 [212]

ATLAS 8 CONF-2015-012 [213]

CMS 8 B2G-12-017 [209]

CMS 8 B2G-13-005 [214]

ATLAS 13 CONF-2016-102 [215]

CMS 13 B2G-17-003 [216]

CMS 13 B2G-16-024 [217]

F → tW

CDF 1.96 2009 [218]

CMS 7 B2G-12-004 [219]

CMS 8 B2G-12-012 [220]

CMS 8 B2G-13-003 [221]

CMS 8 B2G-13-006 [222]

ATLAS 8 EXOT-2013-16 [223]

ATLAS 8 EXOT-2014-17 [224]

ATLAS 13 EXOT-2016-16 [225]

ATLAS 13 EXOT-2017-34 [226]

CMS 13 PAS-B2G-15-006 [227]

CMS 13 B2G-16-019 [228]

CMS 13 B2G-17-014 [229]

Table J.4: Experimental analyses of heavy quark decays included as constraints in
our scans. Here, j refers to a light quark or b jet, and q refers to a light quark jet.
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Decay Experiment
√
s (TeV) Analysis Ref.

F → jZ CDF 1.96 2006 [230]

F → bZ

CMS 7 EXO-11-066 [231]

CMS 8 B2G-13-003 [221]

CMS 8 B2G-13-006 [222]

ATLAS 13 EXOT-2016-35 [232]

F → tZ

CMS 7 B2G-12-004 [219]

CMS 7 EXO-11-005 [233]

CMS 8 B2G-13-005 [214]

ATLAS 13 CONF-2016-101 [234]

ATLAS 13 EXOT-2016-15 [235]

ATLAS 13 EXOT-2016-13 [236]

ATLAS 13 EXOT-2016-35 [232]

F → bH

ATLAS 8 CONF-2015-012 [213]

CMS 8 B2G-12-019 [237]

CMS 8 B2G-13-006 [222]

CMS 8 B2G-14-001 [238]

F → tH

CMS 8 B2G-13-005 [214]

CMS 13 PAS-B2G-16-011 [239]

CMS 13 B2G-16-024 [217]

ATLAS 13 CONF-2016-013 [240]

ATLAS 13 EXOT-2016-13 [236]

Table J.5: (cont.) Experimental analyses of heavy quark decays included as con-
straints in our scans. Here, j refers to a light quark or b jet, and q refers to a light
quark jet.



Bibliography

[1] Gargamelle Neutrino collaboration, Search for elastic muon-neutrino

electron scattering, Physics Letters B 46 (1973) 121 – 124.

[2] Gargamelle Neutrino collaboration, Observation of Neutrino Like

Interactions Without Muon Or Electron in the Gargamelle Neutrino

Experiment, Physics Letters B 46 (1973) 138–140.

[3] M. Gell-Mann, A schematic model of baryons and mesons, Physics Letters 8

(1964) 214 – 215.

[4] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking.

Version 2, in Developments in the Quark Theory of Hadrons, Volume 1

(D. Lichtenberg and S. P. Rosen, eds.), pp. 22–101. 1964.

[5] P. Higgs, Broken symmetries, massless particles and gauge fields, Physics

Letters 12 (1964) 132 – 133.

[6] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Physical

Review Letters 13 (1964) 508–509.

[7] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector

Mesons, Physical Review Letters 13 (1964) 321–323.

[8] P. W. Anderson, Plasmons, Gauge Invariance, and Mass, Physical Review

130 (1963) 439–442.

[9] G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Global Conservation Laws

and Massless Particles, Physical Review Letters 13 (1964) 585–587.

[10] ATLAS collaboration, Observation of a new particle in the search for the

Standard Model Higgs boson with the ATLAS detector at the LHC, Physics

Letters B716 (2012) 1–29, [1207.7214].

[11] CMS collaboration, Observation of a new boson at a mass of 125 GeV with

the CMS experiment at the LHC, Physics Letters B716 (2012) 30–61,

[1207.7235].

[12] R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, in Physics

of the Large and the Small: TASI 2009, pp. 235–306, 2011, 1005.4269, DOI.

233

https://doi.org/https://doi.org/10.1016/0370-2693(73)90494-2
https://doi.org/10.1016/0370-2693(73)90499-1
https://doi.org/https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRev.130.439
https://doi.org/10.1103/PhysRev.130.439
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://arxiv.org/abs/1005.4269
https://doi.org/10.1142/9789814327183_0005


234 Bibliography

[13] S. Bifani, S. Descotes-Genon, A. Romero Vidal and M.-H. Schune, Review of

Lepton Universality tests in B decays, Journal of Physics G G46 (2019)

023001, [1809.06229].

[14] R. Storn and K. Price, Differential Evolution – A Simple and Efficient

Heuristic for Global Optimization over Continuous Spaces, Journal of Global

Optimization 11 (1997) 341–359.

[15] G. Folland, Quantum Field Theory: A Tourist Guide for Mathematicians.

Mathematical Surveys and Monographs. American Mathematical Society,

2008.

[16] B. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary

Introduction. Graduate Texts in Mathematics. Springer, 2003.

[17] S. Weinberg, The Quantum Theory of Fields. Vol. 2: Modern applications.

Cambridge University Press, 2013.

[18] B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal

Composite Higgs Model, Journal of High Energy Physics 04 (2009) 070,

[0902.1483].

[19] S. Weinberg, The Quantum Theory of Fields, Vol. 1: Foundations.

Cambridge University Press, 2005.

[20] J. M. Cornwall, D. N. Levin and G. Tiktopoulos, Derivation of gauge

invariance from high-energy unitarity bounds on the S matrix, Physical

Review D 10 (1974) 1145–1167.

[21] S. L. Glashow, Partial-symmetries of weak interactions, Nuclear Physics 22

(1961) 579 – 588.

[22] A. Salam and J. Ward, Electromagnetic and weak interactions, Physics

Letters 13 (1964) 168 – 171.

[23] S. Weinberg, A Model of Leptons, Physical Review Letters 19 (1967)

1264–1266.

[24] P. Sikivie, L. Susskind, M. B. Voloshin and V. I. Zakharov, Isospin Breaking

in Technicolor Models, Nuclear Physics B173 (1980) 189–207.

[25] L. Susskind, Dynamics of spontaneous symmetry breaking in the

Weinberg-Salam theory, Physical Review D 20 (1979) 2619–2625.

[26] M. J. G. Veltman, The Infrared - Ultraviolet Connection, Acta Physica

Polonica B B12 (1981) 437.

[27] G. ’t Hooft, Naturalness, Chiral Symmetry, and Spontaneous Chiral

Symmetry Breaking, NATO Science Series B 59 (1980) 135–157.

https://doi.org/10.1088/1361-6471/aaf5de
https://doi.org/10.1088/1361-6471/aaf5de
https://arxiv.org/abs/1809.06229
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1088/1126-6708/2009/04/070
https://arxiv.org/abs/0902.1483
https://doi.org/10.1103/PhysRevD.10.1145
https://doi.org/10.1103/PhysRevD.10.1145
https://doi.org/https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/https://doi.org/10.1016/0029-5582(61)90469-2
https://doi.org/https://doi.org/10.1016/0031-9163(64)90711-5
https://doi.org/https://doi.org/10.1016/0031-9163(64)90711-5
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1103/PhysRevLett.19.1264
https://doi.org/10.1016/0550-3213(80)90214-X
https://doi.org/10.1103/PhysRevD.20.2619
https://doi.org/10.1142/9789814329057_0034
https://doi.org/10.1142/9789814329057_0034
https://doi.org/10.1007/978-1-4684-7571-5_9


Bibliography 235
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