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ABSTRACT 

Perhaps the most critically important cognitive mechanism for survival and social 

cohesion is the ability to withhold an action that has been rendered maladaptive or 

inappropriate by altered environmental demands. There is a large body of empirical research 

investigating this process, which is commonly referred to as response inhibition, but which in 

most instances more precisely could be termed reactive inhibition because it constitutes only 

one element of the overall inhibition of an action. Alongside reactive inhibition, though, and 

certainly of at least equally import, is the capacity to recognise erroneous stimulus-response 

patterns in one’s own behaviour and to remediate them where they arise. This has been 

termed proactive inhibition and has received substantially less experimental interest until very 

recently, despite almost certainly contributing to overall response inhibition. Although these 

two cognitive mechanisms, reactive and proactive inhibition, are necessarily interdependent, 

they are representationally distinct and are therefore likely implemented by separate 

biological and cognitive processes. 

The basal ganglia are largely responsible for the coordination of motor control, and its 

neural connections to the motor and frontal cortices plan, select, and direct any intended 

movement, and indeed certain unintended movements also. Owing to an incomplete 

physiological characterisation of this circuitry until only the last decade, a critical re- 

evaluation of those motor functions that rely on computational cognition is germane. It is 

likely that reactive inhibition recruits internal basal ganglia pathways, perhaps in accordance 

with the classical dual-organisation model of direct and indirect pathways, because it is 

principally a motor function; proactive inhibition, on the other hand, requires cognitive 

computation, either consciously or not, and, therefore, may recruit a recently-described 

hyperdirect pathway that connects the basal ganglia to a prefrontal neural population that has 

previously been associated with overall response inhibition, but whose role has been 

theoretically inconsistent with motor models of inhibition because prefrontal regions are 

associated with higher cognitive functions and not motor function. 

With these limitations in mind, in this thesis, I present the experimental findings of 

four empirical investigations into the neurocognitive architecture of proactive inhibition using 

updated models in order to revise the understanding of response inhibition and, in particular, 

the role and underlying properties of proactive inhibition, which we operationalise as post- 

error slowing (PES) of reaction time. 
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In the first study (N = 264), we investigated the role of two dopaminergic single- 

nucleotide polymorphisms (DRD1 rs686 and DRD2 rs1800497) which are differentially 

expressed along basal ganglia pathways in behavioural performance on a Go/No-Go task (the 

Sustained Attention to Reaction Time task, SART). We found that in those with a higher ratio 

of D1:D2 receptors (i.e., more rs686 A and rs1800497 T alleles) PES was engaged to a higher 

degree and that older age magnified this genetic effect (p < .001). In addition, we observed an 

interaction between age and a general factor of intelligence, g, on PES, whereby older age 

and lower estimates of g predicted higher recruitment of PES (p < .001). This supports the 

hypothesis that proactive inhibition appears to be a naturally-occurring compensatory 

mechanism which manifests in individuals whose reactive inhibition may be suboptimal, and 

indicates that the extent to which PES is engaged depends on increased dopamine D1 and 

decreased D2 neurotransmission. 

The neural generators of overall response inhibition are well described, but very little 

effort has been given to proactive processes. If reactive inhibition is largely motoric, then its 

sources can be localised using various techniques that image neural regions using 

haemodynamic response, but since proactive inhibition is largely cognitive, it is necessary to 

use other methods. To investigate the cognitive architecture of proactive inhibition we used 

electroencephalography (EEG). To do this, we use stimulus- and response- locked neural 

activity to compare the four major accounts of PES. These accounts each have wide support, 

explain behavioural data, and can be simulated using computational methods. We 

administered the SART once again to N = 100 healthy young adults and recorded their brain 

activity using EEG. Our results provide support for an attentional account of PES that 

supposes errors disturb, or disorient, attentional processing on subsequent trials indexed by 

the anterior N1. The N1 was significantly blunted by errors (p = .020) and the post-error N1 

was correlated with magnitude of PES (p = .016). In addition, we provide additional support 

for our previous findings indicating an effect of age and g on PES. Here, we find that the 

post-error N1 diminishes with natural ageing, however, higher estimated g seemed to rescue 

these age-related deficits (p < .0001). These results bring into question our previous 

hypothesis that PES is a compensatory mechanism. Rather, it may be a consequence of 

disruptions to processing that incidentally improve response inhibition as a function of that 

disruption which offsets the initiation of response execution. 

Our third study was conducted to investigate the potential efficacy of neurostimulation 

techniques in the modulation of response inhibition and other cognitive and behavioural 
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functions using transcranial direct current stimulation (tDCS). This study had two 

experiments. The first investigated whether such functions could be modulated, and the 

second investigated the nature of that modulation, namely, whether it could be attributed to 

neuroplastic induction measured by changes to motor evoked potentials using transcranial 

magnetic stimulation. In the first experiment, our participants (N = 56) attended three 

sessions, a baseline session followed the following day by single-blind, randomly allocated 

stimulation testing sessions separated by two days, one with a sham control, and the other 

with active anodal tDCS to the motor cortex. We administered a Simple and Choice Reaction 

Time (RT) task, the Inspection Time task, and the SART. This battery allows us to 

disambiguate perceptual, motor, and cognitive elements of a physical action. We observed no 

effect on either RT or Inspection Time and observed an effect on the proactive process on the 

SART (p = .002), such that PES was engaged to a smaller degree after active stimulation 

compared to both baseline and the sham condition. Likewise, we observed somewhat quicker 

RT in the SART under active stimulation (p = .073), likely because of the absence of PES, as 

well as more errors (p = .026), potentially indicating that PES may protect against failures of 

response inhibition. We attribute these results to the location of the cathode, over the right 

supraorbital region, roughly above the right inferior frontal gyrus. The anode in tDCS is 

thought to synchronise neural activity and induce long-term potentiation-like neuroplasticity, 

whereas the necessary cathode is thought to disrupt such synchronicity. As such, we may 

have disrupted prefrontal cortical functioning briefly, which in turn eroded proactive 

functioning. This provides reasonably strong support for frontal regions being implicated in 

proactive, but not necessarily reactive, inhibition, although we cannot conclude this since 

overall response inhibition was somewhat disrupted. 

The final study addresses the theoretical and conceptual limitations in existing 

response inhibition tasks by implementing a recent Bayesian Ψ adaptive staircase (Livesey & 

Livesey, 2016) in novel instantiations of two Stop-Signal Tasks (SSTs) that we developed for 

the purpose of directly observing behavioural proactive inhibition in two forms that are 

explicitly separable to the reactive process. The Ψ staircase provides an algorithm which 

allows for rapid estimation of SSRT in very few trials, the importance of which lies in the 

populations whose response inhibition and behavioural and motoric regulation are impaired 

due to psychopathology or neurodegeneration. Task duration is a considerable limitation on 

reliable estimates of performance on such tasks, and particularly in such populations. We 

administered four tasks (two SSTs and two Go/No-Go tasks) to N = 123 healthy young adults. 
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We included a manipulation that cued the probability of a Stop/No-Go trial in the two SSTs 

and one of the Go/No-Go tasks, which was a modified form of the SART. These two 

probability conditions allow us to compare RT in each condition on Go trials, under the 

assumption that longer RT in higher p(Stop/No-Go) conditions indicates a predictive form of 

proactive inhibition. This is distinct from the remedial form, post-error slowing, that can still 

be observed in the tasks. We report two important findings. The first is that the Ψ staircase is 

highly successful in rapidly converging on reliable estimates of SSRT in as few as 20 stop 

trials, which could prove useful in designing considerably shorter tasks in the future without 

sacrificing reliability. Secondly, we show that predictive and remedial forms of proactive 

inhibition are consistently engaged in all tasks, potentially providing another avenue for 

thinking about proactive inhibition in the future. Thirdly, we show that estimates of SSRT, 

which aims to assess reactive inhibition, are robust against proactive inhibition. 

Taken together, the conclusions reached in this thesis represent a critical update of the 

neurobiology that underlies newly-discretised cognitive processes that contribute to response 

inhibition, as well as their psychophysiological characteristics. We have demonstrated that 

proactive inhibition at least partly reflects a compensatory mechanism that appears to be 

naturally-occurring in individuals whose reactive processes may be insufficient for 

psychological and biological reasons as well as individual differences in intellectual capacity. 

Furthermore, we present and validate a novel, theoretically cogent task paradigm to measure 

what we posit are discrete processes within the proactive process: remedial and predictive 

proactive inhibition. Given what appears to be a naturally-occurring compensatory 

mechanism alongside post-error slowing that corresponds to the timing of a pre-error negative 

inflection in electrophysiological recordings, this work raises fascinating questions about the 

distinction between conscious, preconscious, and subconscious brain states and their effect on 

behaviour. 
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INTRODUCTORY REMARKS 

Response inhibition is a critical executive function that is implemented by conscious 

agents, and which allows the suppression of an action that is no longer required or has been 

rendered inappropriate by situational alterations to their environment. For the most part, 

response inhibition facilitates flexible, adaptive, goal-directed behaviour in humans, and 

indeed all animals. Disturbances to the response inhibition network are hallmarks of the 

symptomatic profiles of a diverse range of pathological conditions ranging from transient 

psychological disorders such as anxiety, to currently incurable and sometimes terminal 

neurodegenerative diseases such as Parkinson’s and Huntington’s diseases. Furthermore, the 

efficacy of response inhibition seems to be disrupted even in healthy ageing, and there is 

some evidence that its rate of development and decline differs among individuals, indicating 

that it is influenced by some combination of neurodevelopmental, genetic, or environmental 

factors. With the exceptions of probable causes such as known neurotoxins and health status, 

the mechanisms by which these factors operate remain unknown to us. However, given the 

known but not well-understood decline in normal ageing, and recently-investigated 

differential development in early childhood, it stands to reason that response inhibition is 

subtended by a biological substrate. 

Despite substantial clinical, personal, and societal importance, the empirical 

endeavour has been unable to produce a cogent theoretical model that is able to account for 

individual differences and differential decline in response inhibition among healthy 

individuals and pathological populations. The most likely sources of this failure arise from 

inconsistent discretisation and nomenclature of the properties of response inhibition, the 

variable task paradigms administered to measure it that may not actually be measuring the 

same processes, and idiosyncratic interpretations of the data; additionally, and more 

importantly, the overwhelming majority of experimental investigation has failed to measure a 

critical element of response inhibition or account for its influence on the overall inhibitory 

process. 

It is presently important, therefore, to discretise the response inhibition mechanism 

into its constituent processes; that is, its motor processes and its various cognitive processes. 

Overall response inhibition is driven by the psychomotoric ability to stop a planned or 

initiated action outright—commonly referred to as reactive inhibition—and which is thought 

to occur under the principles of the common horse-race model, where the neural signal 
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transmitting a ‘stop’ directive reaches and is encoded by the thalamus before the alternative 

neural signal transmitting a ‘go’ directive. However, it has occasionally been reported that if 

this process fails, most healthy humans implement a corrective process that increases the 

likelihood of future inhibition success, often by way of slowing their response pattern to 

compensate for their error, in what has recently been termed proactive inhibition. Proactive 

inhibition has been largely ignored due to the difficulties associated with its measurement— 

reactive inhibition in itself is the absence of a measurable variable, and so an additional 

process that may or may not contribute to this absence is by definition elusive. Until recently, 

proactive inhibition has been poorly operationalised, and may even take several forms 

(remedial and predictive). Moreover, as a result of these theoretical and practical limitations, 

its underlying cognitive representation and its neural architecture have proven remarkably 

difficult to articulate. 

This thesis is organised in the following way. I introduce the reader to the broader 

ecology of the content, the purpose of which is to situate this thesis explicitly in a necessarily 

multi-disciplinary domain. Following this, I provide a brief historical account of the 

experimental psychological endeavour in measuring human motor response speed, and review 

the empirical response inhibition literature, emphasising the deficits in two key domains that 

reveal the critical importance of this work; that is, of rethinking what we already ‘know’ 

using revised theories, methods, and models—namely, the recent attention given to proactive 

inhibition, and the recent characterisation of a previously unknown neural pathway that is 

likely involved in motor coordination. 

I will introduce the reader to concepts, models, and methods that are required for this 

research. These will include the basal ganglia and dopaminergic system; the effects of ageing 

and neurodegenerative disorders on motor and cognitive processes; genomics and behavioural 

genetics; IQ and intelligence; psychophysiological techniques; mathematical models of 

reaction time distributions; and, two commonly-used task paradigms to assess response 

inhibition. This structure provides a conceptual foundation upon which to build the material 

that follows. Each subsequent chapter will introduce and justify a line of reasoning and a 

method through which it will be investigated. These chapters will, therefore, constitute 

original contributions to the knowledge of response inhibition alongside its corresponding 

manuscript. Manuscripts will be introduced with a brief theoretical orientation and will be 

supplemented with general implications, future directions for the field, a contemporaneous 
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update of the current response inhibition theory, and some introspection on the research 

process. 

The major findings associated with the studies presented in this thesis have been 

summarised in the abstract, above. In short, the first study highlights the importance of 

effective dopaminergic neurotransmission in proactive inhibition using a genetic association 

of two single-nucleotide polymorphisms (rs686/A at DRD1, associated with increased 

expression of the dopamine D1 receptor gene, and rs1800497/T at DRD2, associated with 

reduced dopamine D2 receptor availability) that we observed to be additively associated with 

the engagement of proactive inhibition. Moreover, this study shows that proactive inhibition 

appears to be naturally engaged by those individuals who could most benefit from it (older 

people and those with lower fluid intelligence scores), effectively representing a natural 

compensatory mechanism to maximise behavioural control. 

Using electroencephalography, the second study identifies some of the cognitive 

properties associated with proactive inhibition; contrary to the dominant theory that post-error 

slowing reflects the recruitment of additional attentional resources in order to, presumably, 

allow people to more keenly process critical stimuli following an error, we found the reverse, 

and that attentional components were somewhat negatively associated with magnitude of 

proactive inhibition and not associated at all with number of errors. We found very little 

evidence of event-related potential (ERP) indices of performance on any measure of the 

Go/No-Go task directly, but, interestingly, we found that a general factor of intelligence, g, 

was related to both proactive inhibition and to ERPs commonly considered to reflect attention 

to a stimulus, discrimination between stimuli, and processing of stimuli. So, it appears that g 

is critical in the engagement of proactive inhibition. However, given the absence of any true 

increments in inhibition accuracy, it is unclear whether stimuli are truly processed more 

thoroughly, or only have the potential to be. 

The third study demonstrates that proactive inhibition shares some of the same neural 

architecture as reactive inhibition, but that it likely recruits an additional neuronal pathway 

that connects frontal cortices to the basal ganglia. We demonstrate that modulating synaptic 

activation threshold via transcranial direct current stimulation negatively affects post-error 

slowing (an index of proactive inhibition), but not response time and error rate in the 

Sustained Attention to Response Task (SART), a Go/No-Go paradigm. 
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The final paper is a methodological paper that validates a novel Bayesian adaptive 

staircase algorithm to measure response inhibition in two tasks using the Stop-Signal 

paradigm, and presents a modified version of the SART which includes No-Go probability 

cueing. The purpose of this staircase algorithm is to rapidly converge on an accurate value 

that reflects the minimum time needed for a person to withhold a response after being 

presented with a Stop stimulus. Data yielded by these tasks provide a simple data structure 

that distinguishes reactive from proactive inhibition, as well as distinguishing two novel sub- 

types of proactive inhibition that we here term remedial proactive inhibition and predictive 

proactive inhibition. Furthermore, the data suggest that the measure of reactive inhibition 

(estimated via the Bayesian staircase algorithm) seems robust against influences of proactive 

inhibition, suggesting that this procedure may provide a useful tool for accurately and 

efficiently estimating both reactive and proactive inhibition in future research. 

Throughout this thesis, I highlight limitations in extant methods, bring into question 

the conclusions on which they are based, and provide some thoughts for moving forward. I 

also comment throughout on the roles of age and a general factor intelligence that are 

substantially involved in supporting overall response inhibition by upholding proactive 

processes throughout the lifespan. The mechanisms by which this might occur are discussed 

as an important avenue for future research since our methods do not allow us to make any 

strong conclusions about them. Regardless, in the four experiments described, I demonstrate 

that response inhibition has two distinct elements, reactive and proactive inhibition. In so 

doing, I argue that proactive process relies on distinct neurobiology to the reactive process, 

and that it seems likely that the proactive process compensates for deficiencies that occur 

throughout the lifespan in the reactive process. In addition, I present and validate a novel task 

that distinguishes two forms of proactive inhibition that alongside the traditional SART 

allows for the direct observation of these two forms, as well as of reactive inhibition and 

overall response inhibition. Such a battery of tasks provides the remarkably rich data in a 

short experimental session that will prove useful moving forward in clinical research 

investigating those several psychological disorders and neurodegenerative diseases that are 

characterised by disturbances to response inhibition and behavioural regulation. 
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CHAPTER 1 

Introduction 

 

 

 

1.1 Literature Review 
 

Luce described reaction time as “psychology’s ubiquitous dependent variable” (1960, 

p. 1). This is, indeed, axiomatic given that Helmholtz himself—the progenitor of the 

psychological sciences and academic supervisor to Wundt—developed the first paradigm to 

measure reaction time in 1850, which represented the first experiment in the psychological 

sciences, and which produced what to this day is the only psychological variable that yields a 

true ratio scale of measurement according to Stevens’ (1946) typology. Until this time, little 

thought was given to the mental operations required to carry out relatively simple stimulus- 

response patterns, but when such operations were considered, they were theorised to be 

immediate and to be constrained only by the physical laws of those biological systems 

invoked by such behaviours. Moreover, it was thought that even nerve propagation was either 

also instantaneous or at least immeasurably fast. By this logic, an individual may differ in 

speed of response as a function of his or her acuity for perceiving some stimulus and the rate 

at which that processing passed through its relevant transduction pathway. We now know this 

to not be the case. The speed of a response is mediated by a complex decision-making 

circuitry that is engaged between the perception of the sensory cue and the execution of the 

response. The factors that contribute to individual differences in this circuitry are the critical 

focus of this investigation. 

1.1.1 Early studies on reaction time 
 

In a series of experiments, first in frogs (1848 – 1850), and later in humans (1854 – 

1864), Helmholtz deduced the conduction velocity of nerves and the speed of perceptual 

transduction using various electrical stimulation procedures and measuring the time between 

the application of the stimulus to the sciatic nerve of a frog and subsequent muscle 

contraction, and between various cutaneous locations in the human and a response. By 

holding constant the stimulation intensity and varying the distance between stimulus location 

and muscle contraction (i.e., by moving the stimulation location on the nerve farther from the 

muscle), he inferred that differences in response latency could be attributed to nerve length, 
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and not variability in nerve fibre conductance between individuals. By demonstrating a 

relative constancy in conduction velocity of nerve fibres (a rate of approximately 65 metres 

per second under normal myelination), it is fair to assume that the length of the nerve fibre 

(that is, the distance between the muscle that needs to be contracted in some context and the 

cerebellum) is a contributing factor to reaction time but cannot account for individual 

differences in it. Subsequent human experiments allowed Helmholtz to reason that the time 

needed for a human to decide to engage a response and to physically enact it was 100 

milliseconds (whereas his data showed that a reaction time range of 120 – 200 milliseconds 

with a probable error of 3 milliseconds, indicating a highly reliable variable), allowing, 

therefore, 20-80 milliseconds for perceptual transduction. This decision and elicitation 

element of the response accounts for a large proportion of the variance between individuals in 

reaction time. By way of metaphor involving telegraph wires, Helmholtz described the three 

elements of such a response, between stimulation1 and reaction, as the “sending of the signal” 

through perceptual transduction pathways, the rate of message propagation from the 

cerebellum to the relevant muscle, and the time required “in the brain for the processes of 

perceiving and willing” (1850, p. 878). 

To provide a more empirical account of those “processes of perceiving and willing” 

(1850) inferred by Helmholtz twenty years prior, Donders (1868-1869) undertook what were 

amongst the first investigations in the experimental psychology tradition, and which 

concerned the speed of mental processes inferred from the time that elapsed between 

presentation of an auditory stimulus and a behavioural response. In these experiments, two 

participants were seated in front of a phonautograph (an early device for recording sounds), 

and Participant A uttered a phoneme and Participant B replicated it as quickly as he could, 

whilst the oscillations caused by the two sounds were marked on a rotating paper cylinder. 

The time interval between the two points was deduced using a simultaneously-recorded 

tuning fork oscillating at 261 Hz, where response latency could be directly mapped onto the 

number of oscillations between the utterance and the response. Although his methods differed 

somewhat from Helmholtz’s human reaction time (RT) experiments, Donders reported results 

that were remarkably similar (an average visual RT of around 165-170 milliseconds, and an 

auditory RT of around 75 milliseconds. The quicker RT in his auditory paradigm reflects the 

much greater speed of auditory transduction compared to visual transduction. It is possible 

 

1 The distinction between stimulation and stimulus here is not impertinent. Helmholtz referred here to his 
experiments in which electrical stimulation was the critical stimulus to which his subjects responded 

(either with her hands or teeth). 
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that Donders’ experiments yielded quicker RTs than Helmholtz’s because Donders used the 

average of his participants’ minima, whereas Helmholtz used the average of his participants’ 

arithmetic means. It was not until the full RT distribution across many trials and many 

individuals was represented, and the positive skew characteristic of such distributions became 

clear, roughly in the 1920s, that we recognised that each of these descriptive methods would 

be inappropriate). 

In the years following the introduction of the auditory paradigm described above, 

Donders devised three experimental methods that are still used today to measure the 

componential structure of the response. It is not likely that he used these same names for his 

tasks, but in their current forms—and described in this dissertation—they are commonly 

referred to as Simple Reaction Time, Choice Reaction Time, and Go/No-Go tasks. This 

battery of three tasks, administered to a single individual, yield remarkably elegant data that, 

given certain assumptions, permit the delineation of the duration of the processes associated 

with initiating, selecting, and either carrying out, or withholding, a response. By presenting a 

series of stimuli in a constant fashion to a participant whose role is to respond, for example 

by pressing a button, as quickly as possible following each stimulus, measuring the latency of 

each response, and calculating some summary statistic (usually the median), one can establish 

an individual’s Simple Reaction Time. With the addition of a Choice element (e.g., 

responding to two or more stimuli with two or more corresponding response actions), one can 

infer the additional duration required for selecting an appropriate response from an array of 

choices. Not unlike the Choice task, sequentially presenting participants with a randomised 

series of two or more stimuli and tasking them with responding only to one or a subset of 

them, Donders assumed that he could measure the speed required for stimulus discrimination. 

The simple logic of “interposing into the process some new components of mental action 

[revealing] the time required for the interposed item” (Donders, 1868-1869, p. 418) using this 

method of subtraction was mathematically sensible, fit the data, and seemed to have face 

value. Valid application of the subtraction method relies on the assumption of pure insertion: 

mental processes can be added or omitted without altering the speed of the other processes. 

Examination of this assumption does not provide support for it; introspective accounts 

suggest that increased task complexity influences quantitative and qualitative cognitive 

processing at each stage (Ulrich, Mattes, & Miller, 1999); inserting an additional task demand 

will compel the participant to alter his or her strategy, and thus, their pattern of information 

processing. Despite these limitations, Donders’ subtraction method continues to influence 
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modern cognitive psychology. Sternberg’s seminal Additive Factors Method (Sternberg, 

1969) is based on the work that formed the subtraction method. Likewise, modern brain 

imaging techniques such as PET and fMRI rely on subtraction logic to infer the parts of the 

brain that are activated during basic mental processes. 

So, while Donders’ Go/No-Go task probably did not measure precisely what he 

thought it did, it still provided useful insights into mental processes, as well as a task 

paradigm with vast utility to this day. Donders assumed that with the Go/No-Go task he could 

measure stimulus discrimination time (i.e., is the stimulus on any given trial a stimulus that 

requires a response or one that does not?). It is not known what methods Donders used to 

analyse his data in this task, but it has been speculated that he used the same simple 

subtraction method as in his previous experiments which might suggest that he subtracted 

error RTs from correct Go RTs to infer the speed of discrimination. Although it was later 

empirically supported that errors tend to be quicker than correct responses, it is not always 

the case (e.g., Rabbitt & Rodgers, 1977). Furthermore, in my own experience performing this 

task and others like it, I am well aware that I am about to commit an error on No-Go trials 

before I have pressed the button. So, what Donders may have been measuring what was in 

fact the latency of the stopping process of the motor system. 

Galton also noticed the utility in measuring reaction time, perhaps independently but 

at least forty years after Helmholtz, and many textbooks will incorrectly attribute its 

empirical conceptualisation to him. Few methodological details are known about Galton’s RT 

experiments other than that he took measurements from only one trial on a visual measure 

and another on an auditory measure, and that the mean average of the visual RT 

measurements in his sample (N > 7,000) was around 185 msec, substantially quicker (10- 

20%) than visual RTs now (Silverman, 2010). He qualitatively remarked that quicker RT 

seemed to be associated with sociodemographic factors that he interpreted to pertain to some 

kind of higher intellect, although the nature of his argument in favour of this connection 

appears to have been greatly overstated (Johnson et al., 1985). What his data did show, 

however, is that RT was, at least at the time, negatively correlated with age and physical 

attributes that probably relate to height, but which at the time may have related more so to 

adequate nutrition and generally good physical health (Galton 1889; Johnson et al., 1985). 

Investigations into reaction time have demonstrated remarkable utility in 

discriminating individuals on various metrics of ability, and continue to do so (e.g., Deary & 

Der, 2005; Dougherty & Haith, 1997; Lonstreth, Walsh, Alcorn, Szezulski, & Manis, 1986). 
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Test-retest reliability of RT measures is usually remarkably high, and trial-by-trial reliability 

(i.e., a participant’s standard deviation) is usually very small (Baker, Maurissen, & Chrzan, 

1986; Henry, 1956; McKinney et al., 1985; Resch et al., 2013; Schatz, 2010; Schatz & Ferris, 

2013; Soreni, Crosbie, Ickowicz, & Schachar, 2009; Weafer, Baggott, & de Wit, 2013; 

Williams, et al., 2005). Furthermore, twin studies provide evidence that RT is substantially 

heritable, although the extent to which this is accounted for by familial genetic uniformity or 

by shared environmental variables is not established (Boomsma & Somsen, 1991; Finkel & 

McGue, 2006; Luciano et al., 2001; Vernon, 1989). Despite the identification of hundreds of 

genes that have been found to account for a good proportion of individual differences in RT 

(Birket et al., 2007; Kuntsi, Rogers, Swinard, & Börger, 2006; Luciano et al., 2004; Vogler et 

al., 2014; Wood, Ashrson, van der Meere, & Kuntsi, 2010; for GWAS studies, see Davies et 

al., 2018; Hagenaars et al., 2016; Trampush et al., 2017), the mechanisms by which they 

contribute to it are difficult to identify. This is unsurprising given that the generation and 

regulation of a motor action relies on known anatomical structures and physiology (e.g., size 

of corpus callosum and white matter integrity), the structure, integrity, and function of which 

are to some degree mediated by heritability (Anstey et al., 2007; Bertisch, Li, Hoptman, & 

DeLisi, 2010; Camchong, Lim, Sponheim, & MacDonald III, 2009; Deary et al., 2006; 

Jackson, Balota, Duchek, & Head, 2012; Mink & Thach, 1991; Rafal, Walker, Posner, & 

Friedrich, 1984). RT consistently demonstrates a positive correlation with age (Bellis, 1933; 

Der & Deary, 2006; Fozard, Vercruyssen, Reynolds, Hancok, & Quilter, 1994; Gottsdanker, 

1982; Pierson & Montoye, 1958), and negative correlations with a general factor of 

intelligence, g (and many, if not all, of its individual underlying constructs; Carlson, Jensen, 

& Widaman, 1983; Jensen, 1982; Jensen & Munro, 1979; Smith & Stanley, 1983), and 

general physical health (Anstey, Dear, Christensen, & Jorm, 2007; Koeneman, Werheijden, 

Chinapaw, & Hopman-Rock, 2011). Furthermore, emerging data seem to be converging on 

the idea that rate of RT slowing in healthy ageing may predict other age-related cognitive and 

psychomotor decline, and perhaps even cognitive reserve (e.g., Bielak, Hultsch, Strauss, 

MacDonald, & Hunter, 2010; Zahodne et al., 2011). The relationships between RT, a general 

factor of intelligence (g), and age may not be consistent over time, perhaps because the effect 

of genetic variation on RT seems to be magnified over the lifespan (Lindenberger et al., 

2008; Papenberg, Lindenberger, & Bäckman, 2015). The interaction between these systems is 

complex in itself, but particularly given what is now known about intergenerational 

phenomena such as what appears to be a general slowing of RT over the last century even 

when accounting for differences in methodology (Silverman, 2010). What is particularly 
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interesting about this debate, given the intra-individual positive correlation between RT and 

g, is that g appears to be increasing within the population over the last few decades, despite 

the decline in RT, but whilst retaining the association between the two variables (e.g., 

Nettelbeck, 2014; Washburn & Rumbaugh, 1997; Woodley, te Nijenjuis, & Murphy, 2013). 

What is illustrated by these points is the biological basis of RT (and g), which will be 

discussed below in detail in so far as it pertains to response inhibition. So, RT is moderated 

by biological factors (e.g., white matter integrity, myelination, muscle tensor capacity), but 

even in models that account for such factors, other factors such as age remain as significant 

predictors. It is therefore clear that RT relies on biological functions as well as cognitive ones 

(which may be influenced by factors such as age), but the nature of these cognitive functions 

are not yet fully described. 

RT has much utility. Experiments using RT as the main variable of interest are not 

restricted to simply measuring the speed with which humans or animals can respond to a 

stimulus in itself, but RT can also be used as a proxy variable to investigate perceptual and 

sensory discriminability, or how well some stimulus or behaviour has been conditioned in 

reinforcement learning paradigms, and so on. Thurstone (1954) postulated that using RT, one 

could measure mental phenomena as elusive as attitudes with the law of comparative 

judgement (Thurstone, 1954; see also Luce, 1994). 

1.1.2 What mental processes can we infer from reaction time? 
 

Much like most variables in psychology (Bono, Blanca, Arnau, & Gómez-Benito, 

2017), RT distributions do not follow a Gaussian distribution. They are asymmetrical and 

invariably positively skewed, precluding the arithmetic mean of multiple measures from 

being a sensible measure of central tendency (McKormack & Wright, 1964; Miller, 1988; 

Whelan, 2008). In a Simple Reaction Time task, in which participants are given one possible 

response to one possible stimulus, skewness values generally range around 1.0-1.5; the 

simplest explanation for such values is that the outcome measures for such tasks (that is, RT 

in msec) has an explicit lower bound (0 msec) and a theoretical lower bound as a function of 

motor limitations (~150 msec), but no upper bound (with the exception of outlier exclusion 

heuristics), which results in a floor effect. With the addition of more cognitive processes, 

such as a choice element in the stimulus-response mapping or a discrimination element which 

dictates the appropriateness of responding at all, the skew statistic tends to increase (i.e., a 

more extreme rightward skew), which is likely both a function of more mental processes that 

could generate extreme RT values, but also that RTs themselves in such tasks are longer, and 
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as such, the tail is extended. This represents a difficulty for data analysis and interpretation of 

summary statistics. The arithmetic mean of an asymmetrical distribution is not representative 

of the full distribution. This is problematic both for the distributions of one participant, and 

for the distribution of averages for the sample, both of which tend to be skewed. 

Given the problematic characteristics of the RT distribution, it has been thought that 

using information from the whole distribution of RTs may provide better estimates than do 

simple measures of central tendency. One such method is to fit an explicit density function, 

the ex-Gaussian (Hohle, 1965). It is the convolution of two stochastic independent process 

distributions: a Gaussian function whose mean (μ) and standard deviation (σ) approximately 

represent the rise of the distribution’s left tail; and an exponential function whose mean (τ) 

approximately represents the skewed tail (Sternberg, 2014). Any given RT trial can be 

partitioned into a decision component, and a transduction component; that is, the perception 

of a stimulus and decision to respond, and the true physical-motor response, respectively 

(Dawson, 1988; Luce, 1986). The use of the ex-Gaussian assumes that the transduction 

component is Gaussian (represented by the μ and σ parameters), whereas the decision 

component is exponential (represented by the τ parameter; Hohle, 1965). 

Later, Ratcliff defined a type of sequential sampling model that accounts for 

nonsensory components of performance on such tasks that the ex-Gaussian could not, the 

Drift-Diffusion Model (DDM; Ratcliff, 1978; Ratcliff & Rouder, 2000). Such models 

consider variability in RT (i.e., the shape of the distribution) of two separate response 

outcomes (e.g., left vs right, bright vs dark, word vs non-word; i.e., stimulus discrimination or 

choice tasks) as the empirical signature of a noisy evidence accumulation process (Smith & 

Ratcliff, 2015). DDMs assume that decision processes follow a random walk process in a 

continuous timescale from a starting point, when the stimulus is presented, to a decision 

threshold that is associated with one of two possible choices, when a response is made, which 

reflects stochastic sensory evidence accumulation (Ratcliff & McKoon, 2008; Voss et al., 

2013). This model structure provides a unified account of the processes underlying RT and 

the probability with which one response or the other is chosen. There are four critical 

parameters yielded by DDMs: drift rate, boundary separation, starting point or response  

bias, and an additive lag parameter for nondecision time (see Figure 1, below; Forstmann, 

Ratcliff, & Wagenmakers, 2016). Drift rate is the amount of sensory and/or semantic 

evidence accumulated about the stimulus per unit of time, and varies as a function of stimulus 

discriminability, task difficulty, participant ability, and so on. A high drift rate leads to 
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quicker responses and usually indicates task or condition ease (e.g., highly discriminable 

stimuli in a discrimination task), and a low drift rate, owing to stochastic drift, usually 

indicates task or condition difficulty and, thus, the model would predict more errors with 

slower reaction times which is supported by empirical data in choice tasks (Wagenmakers, 

Ratcliff, Gomez, & McKoon, 2008). Boundary separation essentially reflects response 

caution by implementing the speed-accuracy trade-off; it indicates the distance between the 

criterion level required for evidence to be accumulated before a decision to respond is made, 

where wider boundaries require more evidence, and thus more time, before a decision to 

respond is made. Starting point is the participant’s a priori bias or preference toward one 

response or the other, likewise implementing speed-accuracy trade-off under some 

experimental conditions. The accumulation process does not necessarily commence 

equidistant from each decision boundary, so when starting point is nearer to the evidence 

criterion boundary for responding, for example, “word”, then responses for “word” will be 

quicker than for “non-word”, and responses for “non-word” would, therefore, require a 

greater amount of evidence to be selected as a response. Nondecision time is the residual time 

after accounting for these three processes and the actual Reaction Time; that is, it is the time 

required for peripheral processes required for a response, such as stimulus encoding, 

representation transformation, and the motor processes associated with executing the 

response. 

 

Figure 1. The Drift-Diffusion Model implemented in data from a two-choice decision task. 

Reprinted from “Stochastic Process Underlying Emergent Recognition of Visual Objects 

Hidden in Degraded Images” by Tsutomu Murata, Takashi Hamada, Tetsuya Shimokawa, 
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Manabu Tanifuji, Toshio Yanagida, 2014, PLoS ONE, 9(12). Copyright 2014 by Murata et 

al.. 

These models account exceptionally well for behavioural patterns in choice response 

tasks where participants must respond in one of two ways corresponding to one of two 

choices. Not only do they explain individual differences in RT, but they also account for the 

relationship between RT and response probability, the shape of the RT distribution, and how 

each of these covary with stimulus difficulty, and change as a function of experimental 

condition (Forstmann, Ratcliff, & Wagenmakers, 2016). With somewhat limited success, 

these models can also be applied to simple, one-choice RT tasks, where the upper decision 

threshold reflects response and the lower decision threshold reflects no response but this 

application remains questionable (see further discussion to this point below). 

Both of these models and others (e.g., Linear Ballistic Accumulator models) provide 

additional data that are not available simply using the mean or the median of the RT 

distribution. DDMs explain RTs as a function of the psychological processes that underlie 

variability in them, and provide a measure of nondecision time. The ex-Gaussian includes a 

theoretical parameter for perceptual transduction, which is known to differ between 

individuals, and which is somewhat compatible with the nondecision time measure. 

Interestingly, this parameter maps reasonably well onto Helmholtz’s original model of RT: 

that individuals may vary in both perceptual transduction latency and on response latency 

independently of transduction latency. This process was left unaccounted for by Donders and 

many others, and may reflect the assumption that perceptual transduction speed operated 

outside of conscious representation, and is, therefore, not subject to individual differences. 

The premise is likely true, but its conclusion does not logically follow. Individual differences 

in the speed of perceptual transduction in the visual domain have been investigated using the 

Inspection Time paradigm, developed at the University of Adelaide’s Department of 

Psychology (Vickers, Nettelbeck, & Willson, 1972). 

The Inspection Time paradigm was developed to further tease apart the componential 

temporal structure of response time by measuring the speed of processing of a stimulus and 

removing it from the confounds of individual differences in motoric response rate. 

Interestingly, Inspection Time (i.e., the exposure duration required to reliably identify or 

discriminate a reasonably simple stimulus) is, like RT, moderately heritable (Luciano et al., 

2005) and correlated with g (Nettelbeck & Lally, 1976). Indeed, the Inspection Time task 

provides another piece of the puzzle in the componential structure of Reaction Time. 
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It is because of the experiments described in the previous sections that the 

measurement of reaction times became established as an important psychophysical method, 

“able to account with remarkable precision for various mediating processes between stimuli 

and responses” (p. vii), and indeed that psychology developed as a truly quantitative science 

(Welford, 1980). 

Precisely 100 years after Donders’ experiments, Rabbitt (1966a, 1966b) described 

differences in the reaction time distributions of responses in Choice Response tasks as a 

function of the type of response. He showed that responses following an error were usually 

slower than those preceding an error, and that error responses themselves were, on average, 

quicker than other response types (Rabbitt 1966a, 1966b; see also Laming 1979a, 1979c). 

Despite these empirical observations demonstrating remarkable reliability across task 

paradigms and participants, and testing sessions within participants, the information 

processing that underlies these response patterns remained unclear. Indeed, theorising on the 

processes that trigger this post-error slowing was taking place, but inferring internal cognitive 

representations from alterations to the tails of distributions yielded only dubious accounts. 

One decade later, roughly forty years ago, Rabbitt and Rodgers (1977) asked, “what does a 

man do after he makes an error?” A fascinating question, indeed, and one that remains largely 

unanswered. Given the critical role of errors and how we respond to them in refining and 

guiding our behavioural profiles in life, this is an important question. Hence, it is a question 

that I try to provide some answers to here. 

1.1.3 Reacting versus responding: A critical distinction 
 

Until now, I have used RT to refer to reaction time, and have not distinguished 

reaction time from response time. It now becomes important to make this distinction. 

Reaction time should refer to the latency of a speeded simple reactive response (i.e., reacting 

to stimulus onset or just noticeable difference), such as in a Simple Reaction Time task; of a 

speeded choice reactive response, such as in a Choice Reaction Time task; or of a speeded 

decision response, such as in a task that requires participants to discriminate between a group 

of shapes moving left or moving right amongst individual shapes moving in random 

directions, or whether a string of letters is a word or not a word. Response Time, on the other 

hand, should refer to the latency of a response when a response is conditionally required (i.e., 

is required under some circumstances but not others). This distinction will be maintained 

from here on. 
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1.1.4 Measuring the difference between stopping and not starting 
 

So, while rapid reaction or response to an imperative stimulus in the environment, as 

represented by RT tasks, is certainly helpful for survival and for day-to-day goal-directed 

behaviour, stopping an inappropriate response is considerably more important. Response 

inhibition is a complex cognitive function that requires the confluence of various mental 

operations that otherwise operate more or less individually. Whereas in performing a planned 

action in response to a known stimulus that requires that action entails a see process followed 

by a do process, stopping a prepared action in response to an ambiguous stimulus that under 

some conditions requires that response, but under others requires a different response or no 

response, requires a see process, a process and evaluate process, and, based on the outcome 

of that, either a do process, a do something else process, a stop doing process, or a do not 

start process. This operation, and the environmental conditions under which it is required, are 

much more commonly encountered in the real-world than simply seeing and unequivocally 

acting. Real-world behaviour is very rarely met with a definitive stimulus-response 

interaction, and so we approach goal-directed actions with natural uncertainty and flexibility. 

The stop doing and the do not start processes are ostensibly similar, but not identical (this 

critical distinction is described in later sections). The way in which these processes are 

engaged, overridden, or offset in order to successfully adapt behaviour is the subject of 

considerable investigation across the psychological and neuroscientific disciplines. The 

reason for this empirical interest is the critical importance of the operation for everyday 

functioning; furthermore, response inhibition is known to be disturbed in a large, diverse 

array of pathological profiles in the psychological and in the medical domains. This is likely a 

result of the multiple potential points of ingress for disturbance to the efficacy of the overall 

process by disease. Before introducing the neurobiological elements, the behavioural and 

cognitive bases, and the clinical implications of response inhibition, I will describe and 

explain the tasks commonly used to measure it. I do this so that the reader can use the tasks as 

a point of reference for the material that follows. 

Response inhibition is most commonly measured using either some instantiation of 

the Go/No-Go paradigm first developed by Donders, or the Stop-Signal Task first 

implemented by Logan and Cowan (1994). These tasks represent the gold-standard tools to 
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evaluate response inhibition—they are broadly-accepted, thoroughly-researched, and well- 

validated. 

In the Go/No-Go paradigm, a participant is presented with a series of stimuli, usually 

visual but sometimes auditory, and are instructed to respond as quickly as possible, for 

example by clicking a mouse or the button of a button-box. In some trials, the stimulus 

presented to participants will differ on some salient dimension, and require participants to try 

to withhold their response. For example, participants may be shown an arrow that faces either 

right or left and are instructed to click a mouse when it faces right but not when it faces left. 

This critical stimulus is the No-Go stimulus; in the previous example, the No-Go stimulus is 

the arrow facing left, and the Go stimulus is the arrow facing right. Here, the overall measure 

is usually the overall number or the proportion of failed stopped responses to No-Go stimuli; 

these are the errors of commission, and response inhibition is conventionally thought of as 

the complement proportion of errors of commission. Response time for Go trials is very 

commonly reported in experiments using the Go/No-Go paradigm, but for the most part it is 

unclear why because they are rarely thoughtfully synthesised with, or interpreted relative to, 

the measure of inhibition, and are subject to large individual differences in speed-accuracy 

trade-off and, therefore, in boundary separation and response bias, thereby confounding the 

measure. 

The Stop-Signal Task (SST), on the other hand, instead of displaying a No-Go 

stimulus as in the Go/No-Go paradigm described above (i.e., requiring not starting a 

response, or interrupting its planned deployment), displays a Go signal sometimes followed 

by a Stop signal, the delay of which is varied (the Stop-signal delay, SSD), which indicates 

that the cessation of the initiated response is required. In the typology I described above, this 

distinction maps onto the do not start process (most likely engaged in Go/No-Go tasks) and 

the stop doing process (most likely engaged in SSTs), respectively. Performance in this task 

can be formalised as a race between a Go process triggered by the Go signal, and a Stop 

process triggered by the Stop signal. If the Stop process wins the race, the response is 

inhibited, and vice versa (Logan 1981; Logan & Cowan, 1984). There have been a number of 

different formalisations of the so-called horse-race model (see Matzke, Verbruggen, & 

Logan, 2018; Verbruggen & Logan, 2009), but the racing processes principle is sufficient for 

our purposes. The shorter the delay between the Go stimulus and the Stop signal (i.e., the 

SSD), the easier it is to withhold a response because the time between response initiation and 

response execution or response inhibition is longer, allowing the stop process to be engaged. 
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The critical measure of performance in this task is Stop-Signal Reaction Time (SSRT), which 

represents the covert latency of the stop process (Figure 2). There are a few ways of 

calculating a participant’s SSRT which is contingent on two things. The first is the 

assumption regarding the dependence or independence of the stop and go processes according 

to the race model, which according to differing accounts is either completely independent, 

stochastically dependent, or contextually dependent. The second is the procedure for 

determining the SSD on Stop trials, which could be fixed (i.e., predetermined in stepwise 

increments and selecting the increment that most closely reflects participants’ success in 

stopping a response), or adjusted dynamically using a tracking procedure or an adaptive 

staircase. The SSRTs yielded by these measures are more distinct in theoretical terms than in 

empirical terms, and they tend to be concordant (Camalier et al., 2007; Ma & Yu, 2016; 

Matzke et al., 2013; Montagnini & Chelazzi, 2009; Wiecki & Frank, 2018; Wiecki, Sofer, & 

Frank, 2013). The most common method for deriving SSRT is computing the SST at which 

the probability of successful stopping is 0.5 and subtracting it from mean Go RT. The 

resultant SSRT is thought to be a measure of response inhibition. 

 

Figure 2. A model of RT distributions in the Stop-Signal Task and how they are used to 

derive Stop-Signal Reaction Time. Reprinted from “Release the BEESTS: Bayesian 

Estimation of Ex-Gaussian STop-Signal reaction time distributions” by Dora Matzke, 

Jonathon Love, Thomas V. Wiecki, Scott D. Brown, Gordon D. Logan, and Eric-Jan 

Wagenmakers, 2013, Frontiers in Psychology. Copyright 2013 by Matzke et al.. 

1.1.5 External and ecological validity 
 

It is assumed that performance on these two types of tasks in some way corresponds 

to the real-world ability to regulate one’s behaviour in conceptually similar ways, and indeed 

that largely appears to be the case in some domains of behaviour and personality. Whitely 
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(1983) outlined a structuralist approach that compels research pertaining to both the 

nomothetic span and the construct representation of a candidate function in order to establish 

its construct validity. Response inhibition as it is operationalised in the experimental context 

can be mapped onto impulsivity and broad behavioural dysregulation in the real-world 

context. Whiteside and Lynam (2001) and Cyders and Smith (2007) suggested that the 

structure of self-report scales that measure impulsivity can be factored into a five-disposition 

model in which each factor predicts important outcomes, and, using this factor structure, 

Cyders and Coskunpinar (2011, 2012) commented on Whitely’s structuralist approach by 

investigating the overlap between self-reported indices of impulsivity and behavioural 

dysregulation and experimental measures of impulsivity and response inhibition. The authors 

found small but significant relationships between self-reported and lab-measured impulsivity 

and, indeed, that the myriad measures of both self-report and experimental task nature 

seemed to tap into an underlying ‘impulsivity’ construct, but that self-report and behavioural 

measures of impulsivity were nevertheless discrete components of that underlying factor 

(Cyders & Coskunpinar, 2011, 2012; Whiteside & Lynam, 2001). This meta-analysis (Cyders 

& Coskunpinar, 2011) quite reliably showed that slower SSRT on SSTs and more errors of 

commission on Go/No-Go paradigms are both predicted by higher self-rated impulsivity on 

two well-established scales: the Barratt Impulsiveness Scale (BIS; Barratt, 1965) and the 

Urgency-Premeditation-Perseverance-Sensation Seeking-Positive Urgency (UPPS-P) 

Impulsive Behavior Scale (Whiteside & Lynam, 2001). Consistent with the discrete motor 

and cognitive elements of response inhibition, SSRT and error rate were each associated with 

the motor and the cognitive subscales of the BIS, and with items that load onto negative 

emotional valence behaviour (e.g., acting impulsively when in a negative mood) and lack of 

premeditation on the UPPS-P, highlighting the importance of individual differences in 

domains other than the motor domain in response inhibition measurement. 

The conclusion based on the synthesis of these data is that lab-based response 

inhibition tasks are, ostensibly, externally valid. Based on this conclusion, it has been 

assumed that important psychosocial outcomes are directly associated with task performance, 

but the accounts derived from these tend to overlook the link between task performance and 

biology, which may provide alternative accounts. Lab-based and self-report measures have 

each had their ecological validity occasionally brought into question. Lab-based tasks may 

map onto underlying constructs to some degree, but the goal of the research that uses them 

often intends for their results to be applicable outside of the lab; that is, does successfully 
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suppressing a mouse click in the lab apply to successfully suppressing an inappropriate 

behaviour? Self-report measures, on the other hand, are subject to scrutiny for other reasons; 

humans tend not to exhibit highly-calibrated metacognitive awareness of their abilities, nor 

are they particularly accurate in self-reporting actual past or expected future behaviour (e.g., 

Bowman & DeLucia, 1992; Cole & Gonyea, 2010; Gorber, Schofield-Hurwitz, Levasseur, & 

Tremblay, 2009; Krosnick & Sedikides, 1990; Loewenstein & Schkade, 1999; van de Mortal 

2008). Ideally, to confidently accept the construct and ecological validity, we should like to 

observe not only a relationship between lab-based and self-report measures of the construct, 

but also a capacity to predict real-world outcomes. 

Perhaps, then, broader outcome measures that are less introspective and subjective in 

nature may provide an insight into the true ecological validity of response inhibition 

measures. Evidence to this end is reviewed in a later section (section 1.1.7). Some evidence 

that substantiates the ecological validity of response inhibition comes from the previous 

meta-analysis, in which those subscales most strongly correlated with task-based response 

inhibition are those which have demonstrated the capacity to predict clinical outcomes, 

largely in the domain of psychological disorders (e.g., gambling and other addictive 

behaviours, compulsive disorders; Cyders & Coskunpinar, 2011). We can therefore expect, 

but not assume, some triangulation where lab-based response inhibition measures likewise 

predict clinical outcomes or are predicted by developmental stages. 

1.1.6 The development and decline of response inhibition 
 

Inhibition of a motor response cannot be measured in very early life because motoric 

behaviour may not be goal-directed or regulated in infancy. Response inhibition can 

theoretically be investigated, though, by observing oculomotor control in very young humans. 

Over the first few weeks of life, saccades appear to be automatic, and triggered by external 

factors with no evidence of regulation (Johnson, 1990). In an anti-saccade task, Johnson 

(1995) observed the ability to inhibit a reflexive saccade in four-month old infants, in line 

with a good amount of behavioural and neuroscientific evidence suggesting that such 

oculomotor control shifts from largely subcortical, originating in superior colliculus, to 

cortical control in the frontal eye fields of prefrontal cortex at approximately this age 

(Atkinson, 1984; Bronson, 1974). So, the developmental trajectory of response inhibition 

seems to be associated with maturation of brain function and the emergence of prefrontal 

development, which commences in earnest from around four to five months, at which time 

neurogenesis, synaptogenesis, neuronal differentiation and myelination all slow, and there is 
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an increase in the rate of synaptic pruning, dendritic tree complexity, and white matter 

volume (e.g., Diamond, 2002; Kolb et al., 2012; Mrzljak, Uylings, Van Eden, & Judáš, 

1991). Case in point, Diamond (1990) showed that controlled inhibition of motor reflexes can 

occur from five months, and, under conditions in which a controlled action which would 

normally suit the achievement of a simple goal is not suitable (e.g., a piece of glass is put in 

between a desired object and an infant, requiring reaching above or around the glass), 

dynamic behavioural adaptation can occur from around seven to eight months. 

Converging evidence from behavioural experiments, imaging studies, and twin 

studies (Bell & Livesey, 1985; Cohen et al., 2010; Livesey & Morgan, 1991, 2007; Rubia, 

Smith, Taylor, & Brammer, 2007; Stevens, Kiehl, Pearlson, & Calhourn, 2007 Wiebe, 

Sheffield, & Espy, 2012) appear to suggest that from around three until seven years of age, 

response execution (i.e., RT) and response inhibition (i.e., withholding a response measured 

either by SSRT or by errors of commission) both improve in a generally linear fashion 

independent of learning processes (see Livesey, 1988; Livesey & Dawson, 1981) when 

mental representations of task rules are accounted for (Bell & Livesey, 1985; McAuley, 

Christ, & White, 2011), probably as the result of maturation of brain function and improved 

connectedness between frontal and motoric brain regions (Luna & Sweeney, 2006; Tamm, 

Menon, & Reiss, 2002), and also of improvements in processing speed (McAuley & White, 

2011). Interestingly, in a longitudinal study of preschool-aged children, growth curve 

modelling showed that working memory and g were each related to better response inhibition 

overall, but that the relationship between general cognitive ability and response speed 

changed with age such that better cognitive abilities were related to slower responding in 

younger children (3 years) and quicker responding in older children (5 years) when holding 

inhibition accuracy constant (Wiebe, Sheffield, & Espy, 2012). This supports other findings 

(e.g., Lee, Lo, Li, Sung, & Juan, 2015) demonstrating a relationship between age-related 

improvements in IQ and in response inhibition, but appears to implicate not simply global 

developmental progress, but rather judicious management and regulation of behaviour under 

uncertainty as a skill conferred by intellectual resources. It seems plausible that this 

development results in strategic alterations in approaching the task such that RT is adjusted 

on Go trials to enhance the chance of success in cases of No-Go or Stop trials, rather than 

global improvements to the ability to stop or prevent an inappropriate response. From a 

cognitive development standpoint, it has been proposed that a developmental shift from an 

immediacy preference to a delayed preference (i.e., delayed gratification as per the 
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‘marshmallow test’) in 3-to-6 year olds, using response inhibition as an analogue, that seems 

to occur from around 5 years of age (Nisan, 1974) From eight or so years until late 

adolescence, improvements in response execution continue, but appear less associated with 

processing speed and more with improved sustained attention (Bartgis, Thomas, Lefler & 

Hartung, 2008; Johnstone et al., 2007; Booth et al., 2003), which according to some accounts 

is not entirely separable from response inhibition itself; whereas improvements in response 

inhibition are increasingly explained by working memory and higher order cognition and 

problem solving as well as multiplicative outcomes of these rather than of simple motor 

control mechanisms (e.g., Asato, Sweeney, & Luna, 2006; McAuley & White, 2011; Cragg & 

Nation, 2008). 

These developmental studies in young children clearly demonstrate that successful 

response inhibition is acquired in the early years, which is unsurprising given its importance. 

Such acquisition could reflect brain development or the cognitive and psychosocial 

development associated with contingency rule learning, performance motivation, and the 

capacity to attend to task demands and sustain attention, or some combination of these things 

insofar as they are separable. Evidence from later life provides support for the developmental 

account, but does not preclude the cognitive account. 

Consistent with a well-established and well-understood slowing of RT in simple 

reaction time tasks, response speeds in response inhibition tasks slow considerably from the 

mid-twenties onward. The age at which such slowing occurs is approximately equal to the 

age at which fluid abilities tend to commence their decline (Horn & Noll, 1994) and, 

interestingly, some evidence suggests that higher levels of education mediate the rate at 

which these declines occur (e.g., Tun & Lachman, 2008). Using a serial visual feature- 

conjunction Choice Reaction Time task, Woods and colleagues (Woods, Wyma, Yund, 

Herron, & Reed, 2015) show that around 80% of the response latency decline associated with 

ageing is accounted for by processing and transduction, the remaining 20% with decrements 

to the motor system, and that there are no clear deficits to stimulus discrimination abilities. 

The conclusions of this and other work (e.g., Porciatti, Fiorentini, Morrone, & Burr, 1999) 

are that the negative effect that ageing exerts on RT has sensory and motor origins, but not 

cognitive origins (see also Adrover-Roig, Sesé, Barceló, & Palmer, 2012 and Salthouse, 

1996, for latent variable analyses and a theoretical model revealing the importance of 

processing speed in protecting against cognitive decline in ageing). Such effects are the result 

of physical changes to nerve fibres, slowing the speed of conduction and perceptual 
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transduction, and to muscle fibres, requiring stronger signals for activation, as well as the loss 

of motor neurons in the brain (Booth, Weeden, & Tseng, 1994; Hunter, Pereira, & Keenan, 

2016; Lexell, 1997; Manini, Hong, & Clark, 2013; Maxwell et al., 2018; Tomlinson & Irving, 

1977). That is to say, it is the body and not the mind that slows our responses as we age. 

In line with this, response latency on response inhibition tasks likewise slows with 

age. It is probable that a substantial proportion of this slowing can be accounted for by the 

sensory and motor changes just described, but it is plausible that internal cognitive rules that 

govern the threshold for a response, such as bias and boundary separation are equally 

responsible, which may be explained by older adults adopting a more cautious approach to 

action under uncertainty. Response speed on Go trials in such tasks seems to slow earlier than 

simple or choice RT (which does not necessarily reflect age-related decline) whereas SSRT, 

the measure of inhibition in Stop-Signal Tasks, decays from around the mid-forties, 

implicating a contribution of cognitive factors to age-related decline (Bedard et al., 2002; 

Williams, Ponesse, Schacher, Logan, & Tannock, 1999; see Figure 3 for illustration). The 

measure of inhibition in Go/No-Go tasks, on the other hand, errors of commission, does not 

seem to be negatively affected by age in the same way, being somewhat maintained in 

middle-age and decaying only in older age (Kubo, Kawai & Kawai, 2010; Leversen, 

Hopkins, & Sigmundsson, 2013). Together, this indicates the presence of a compensatory 

mechanism that is invoked to a different degree in Go/No-Go tasks compared to Stop-Signal 

tasks, or that the outcome inhibition measures of these tasks are not analogous, or both of 

them. Indeed, fMRI evidence has shown that older adults invoke more bilateral activation in 

inhibition tasks than young adults (Langenecker & Nielson, 2003), implying the existence of 

a compensatory mechanism that may sustain the ability to inhibit an inappropriate response in 

face of the motor and perceptual decay in ageing (Sebastian et al., 2013). 
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Figure 3. Go RT in response inhibition tasks, number of errors, and SSRT across the lifespan 

(interpolated from Bedard et al., 2010 (Stop-Signal Task), Kubo-Kawai & Kawai, 2009 

(Go/No-Go Task) Sebastian et al., 2013 (Go/No-Go Task), Williams et al., 1999 (Stop-Signal 

Task)). Measure of Errors is uniformly modified for scale. 

1.1.7 Response inhibition, ecological validity, and psychopathology 
 

Throughout the lifespan, performance in response inhibition tasks is reasonably 

effective at predicting important life outcomes such as academic performance, health-related 

lifestyle choices, and even longevity (Chapman, Roberts, & Duberstein, 2011; Friedel, 

DeHart, Madden, & Odum, 2014; Friedman et al., 1995; Lawyer, Boomhower, & Rasmussen, 

2015; Maag, 2005; Zorza, Merino, & Acosta Mesas, 2017). Since response inhibition is 

probably psychometrically related to inhibitory control, delayed gratification, and the ability 

to sustain attention on a primary tasks and ignore distractors (Carter, Russell, & Helton, 

2013; Jiang, Liu, Ji, & Zhu, 2018; Kirmizi-Alsan et al., 2006), this relationship is not 

surprising. But it does point to a role of top-down control in response inhibition. Deficits in 

response inhibition predict psychopathological behavioural dysregulation in problem 

gambling (Lawrence, Luty, Bogdan, Sahakian, & Clark, 2009; van Holst, van Holstein, van 

den Brink, Veltman, & Goudriaan, 2012), alcohol and other drug use (Monterosso, Aron, 

Cordova, Xu, & London, 2005; Nigg, Wong, Martel, & Jester, 2006), as well as proclivity for 

criminal (Chamberlain & Sahakian, 2007) and other risky behaviours and aggression (Brown 
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et al., 2015; Feilhauer, Cima, Korebrits, & Kunert, 2011; Nydegger, Ames, Stacy, & Grenard, 

2014; Van den bergh et al., 2006). Furthermore, measures of response inhibition demonstrate 

robust predictive power for such outcomes. Wong and colleagues (Wong, Brower, & Nigg, 

2010) reported that poorer response inhibition compared to age-matched peers in childhood 

predicted problematic alcohol and drug use in adolescence and young adulthood. 

Likewise, performance on response inhibition tasks is able to discriminate between 

healthy and pathological populations. So, in addition to the congruence between behavioural 

performance on response inhibition tasks and self-report data on impulsivity scales, humans 

who satisfy diagnostic criteria for disordered behavioural and emotional regulation perform 

differently than do healthy humans. To illustrate this point, I will use two of the most 

commonly diagnosed neuropsychiatric diseases, obsessive compulsive disorder (OCD) and 

attention deficit hyperactivity disorder (ADHD; Brem, Grünblatt, Dreschler, Riederer, & 

Walitza, 2014). There is a high comorbidity between OCD and ADHD, especially in 

paediatric populations, and although their psychopathological profiles are distinct, both 

groups perform worse than healthy controls on response inhibition tasks (Balogh & Czobor, 

2014; Brem et al., 2014; Geller et al., 2000, 2007a, 2007b; Masi et al., 2006, 2010; Sheppard 

et al., 2010). There are substantial similarities between these populations, but also very 

critical behavioural differences. Despite these differences, there is considerable overlap in 

genetic predictors of ADHD and OCD (Hirschtritt et al., 2018; Ritter et al., 2017). There has 

been a recent effort in the clinical literature to characterise deficits in response inhibition as a 

candidate endophenotype for ADHD. Endophenotypes are used to distinguish behavioural 

symptoms into stable phenotypes that have a clear genetic origin (Bernard & Lewis, 1966). If 

the disturbances to response inhibition have genetic aetiology and are phenotypes of genetic 

disorders, it is important for treatment to unravel how these genes affect a complex cognitive 

mechanism (this idea is reflected in a recent and interesting commentary by Marshall, 2020). 

There is no difference between OCD patients and healthy controls in terms of their 

response latency on Go trials, but OCD patients are less effective at inhibiting a response 

(reflected in SSRT and errors of commission) and even fail to respond to Go stimuli more 

frequently than do control groups (e.g., Bannon, Gonsalvez, Croft, & Boyce, 2002; 

Herrmann, Jacob, Unterecker, & Fallgatter, 2003; Kang et al., 2013; Roth et al., 2007). This 

indicates not only a poorer ability to withhold an inappropriate response, but also to engage 

an appropriate response, suggesting dysfunction in the cognitive but not necessarily the motor 

processes required for action. In OCD, fMRI evidence points to lower activation in the 
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cingulate cortex, basal ganglia regions, and frontostriatal circuitry compared to healthy 

controls during Go/No-Go tasks (Kang et al., 2013), and topographic evoked potential 

mapping shows greater bilateral patterns of activation, as well as posteriorisation of frontal 

activity, both at rest and during continuous performance Go/No-Go and Stroop tasks 

(Herrmann et al., 2003; Roth et al., 2007). The magnitude of the effects reported in these 

studies and others like it (e.g., Bannon et al., 2002) were correlated with severity of 

symptomatology. This led Rosenberg and colleagues (Rosenberg, Dick, O’Hearn, & 

Sweeney, 1996; see also Penadés et al., 2007) to suggest that impairment of frontostriatal 

circuitry, which mediates behavioural inhibition and control, underlies the disturbances to 

response inhibition and regulation which, in turn, underlie the repetitive symptomatic 

behaviours that characterise OCD. 

OCD is typically characterised by recurrent, intrusive thoughts that elicit a negative 

emotional state which is attenuated somewhat by the performance of repetitive stereotypic 

behaviour (American Psychiatric Society [APS], 2013; Thomsen, 2013; Walitza, 2014). In 

OCD, inexorable physical movements reflect cognitive dysfunction, but not motor 

dysfunction. ADHD, on the other hand, is characterised by a persistent pattern of inattention, 

hyperactivity, and impulsivity (APS, 1994); that is, a general inability to regulate emotional, 

motivational, and behavioural responses that often presents as contextually inappropriate 

behavioural activation. So, whereas behaviours expressed in ADHD are generally fully 

articulated but performed in inappropriate social circumstances, behaviours in OCD are more 

reflexive, haptic self-soothing actions – the critical distinction is repetition in OCD and no 

repetition in ADHD. This is interesting in terms of response inhibition as a construct. Two 

disorders of dysregulation that are distinct in their emotional architecture and their cognitive 

origins, but which appear somewhat similar in their pathophysiology, elicit similar disordered 

performance on response inhibitions tasks (similar RT, poorer inhibition, and more errors of 

omission; Barkley, 1999; Casey et al., 1997; Crosbie et al., 2013; Epstein, Johnson, Varia, & 

Conners, 2010; Wodka et al., 2006). This gives us some reason to expect that response 

inhibition is not a unitary construct. So, given the pathophysiological similarities between 

these disorders, and the convergent evidence from positron emission tomography 

(Buchsbaum et al., 1990; Kawashima et al., 1996), near-infrared spectroscopy (Fallgatter & 

Strik, 1997), functional magnetic resonance imaging (Casey, Trainor, Orendi, & Schubert, 

2008; Horn, Dolan, Elliott, Deakin, & Woodruff, 2003; Konishi, Nakajima, Uchida, Sekihara, 

& Miyashita, 2001), and electroencephalographic (Bokura, Yamaguchi, & Kobayashi 2001) 
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studies that reliably implicate their affected neural regions in the provision of the inhibition of 

a motor response (i.e., anterior frontparietal and prefrontal regions, especially in the right 

hemisphere), we can therefore conclude that defective brain function contributes to 

disordered response inhibition, and that disordered response inhibition predicates 

psychopathology. 

Conversely, in other diseases, disordered response inhibition is a symptom, not a 

diagnostic criterion; that is, it could be used to categorise a set of behavioural and cognitive 

symptoms to diagnose, or it could be the manifestation of a diagnosis with known biological 

mechanisms—but in each instance, it is likely that the pathophysiological aetiology is to 

some degree overlapping. Whereas OCD and ADHD are cognitive dysfunctions that manifest 

as motor dysregulation, Parkinson’s disease (PD) and Huntington’s disease (HD) are 

principally motor dysfunctions with physical and behavioural manifestations (Agostino, 

Berardell, Formica, Accornero, & Manfredo, 1992; Mayeux, 1984). This is reflected in their 

respective pathophysiological profiles: OCD and ADHD primarily affect frontal regions, 

whereas PD and HD primarily affect motor and subcortical regions (Forno, 1992), yet, it is 

widely reported in the literature that response inhibition is similarly impaired in PD and HD 

populations (Beste, Saft, Andrich, Gold, & Falkenstein, 2008; Beste, Willemssen, Saft, & 

Falkenstein, 2010; Ray et al., 2009). What is common to these four diseases is a 

neurochemical imbalance in the dopaminergic system in frontostriatal regions and the basal 

ganglia (Bernheimer, Birkmayer, Hornykiewicz, Jellinger, & Sietelberger, 1973; Biederman 

& Spencer, 1999; Bradshaw, 2001; Bradshaw & Sheppard, 2000; Chudasama & Robbins, 

2006; Denys, Zohar, & Westenberg, 2004; Engert & Pruessner, 2008; Hollander et al., 1988; 

Lichter & Cummings, 2001; Lotharius & Brundin, 2002; Melloni et al., 2012; Ring & Serra- 

Mestres, 2002; Seeman et al., 1987; Swanson et al., 2000). Because the principal role of the 

basal ganglia is implementation and coordination of motor action, a brief comment on their 

neural circuitry, and on the pathogenesis of PD and HD is apposite. 

1.1.8 Response inhibition and neuropathology 
 

According to the classical model of basal ganglia function, motor commands 

generated by the frontal cortex are relayed to the thalamus via basal ganglia structures. The 

basal ganglia are functionally interposed between cortex and thalamus, and their role is to 

process and organise incoming signals from cortex, and to generate and project the 

appropriate output signal to cortex via the thalamus (Blandini et al., 2000). This process 

modulates movement. The thalamus is under the influence of basal ganglia, whose function is 
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to facilitate or constrain motor commands. Because the resting state of the thalamus is one of 

tonic inhibition from the internal segment of globus pallidus (GPi), disinhibition is required 

to produce movement. Within this circuit (see Figure 4), a disinhibitory ‘direct’ pathway 

favours the selection of a motor command generated by the frontal cortex, and an inhibitory 

‘indirect’ pathway suppresses the execution of motor commands generated by the frontal 

cortex (Berretta, Parthasarathy, & Graybiel, 1997; Calabresi, Picconi, Tozzi, Ghiglieri, & Di 

Filippo, 2014; DeLong & Wichmann, 2007; Jahanshahi, Obeso, Rothwell, & Obeso, 2015b; 

Tekin & Cummings, 2002). The functional outcome of such organisation is that activation of 

the direct pathway leads to opposite changes in net output of the basal ganglia to activation of 

the indirect pathway. The notion that the direct and indirect pathways exert opposing 

influences on action selection is supported by recent animal studies (Albin, Young, & 

Penney, 1989; Bateup et al., 2010; DeLong, 1990; Freeze, Kravitz, Hammack, Berke, & 

Kretzer, 2013; Kravitz et al., 2010). Recent research has identified a third pathway directly 

linking the prefrontal cortex to the subthalamic nucleus that inhibits the thalamus and 

suppresses motor commands (Meyer & Bucci, 2016; Nambu, 2004; 2005). This pathway is 

an excitatory pathway which can stimulate neurons in subthalamic nucleus (STN) to give a 

dominant initiative to the output neurons of the internal segment of globus pallidus (GPi) and, 

as such, rapidly inhibit the thalamus (Nambu et al., 2000; Nambu, Tokuno, & Takada, 2002). 

Because it bypasses the striatum, this pathway was named the ‘hyperdirect’ pathway. 
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Figure 4. The structural anatomy of the basal ganglia pathways and the neurotransmitters that 

modulate their activity. Adapted from Mikael Häggström in Wikipedia, “Basal Ganglia” (CC 

BY-SA). 
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The activity of the three pathways is differentially modulated by dopamine acting 

upon dopamine D1 and D2 receptors on glutamatergic neurons (see Figure 5). Although a 

small subpopulation of striatal medium spiny neurons contains both D1-type and D2-type 

mRNA, it is known that the direct pathway preferentially expresses dopamine D1 receptors 

and the indirect pathway expresses dopamine D2 receptors (Perreault et al., 2011). 

Furthermore, synaptic plasticity in the direct and indirect pathways has been shown to depend 

on the activity of dopamine D1 and D2 receptors, respectively, and on tonic dopamine levels 

(Shen et al., 2008). High tonic dopamine levels and dopamine D1 receptors seem critical for 

synaptic plasticity in the direct pathway, which facilitates the selection of motor plans. In 

contrast, low tonic dopamine levels and dopamine D2 receptors seem critical for synaptic 

plasticity in the indirect pathway, which prevents response execution (Apicella et al., 1992; 

Frank, 2005; Kravitz et al., 2010; Kravitz et al., 2012). Few studies have investigated the 

cognitive neurophysiology of the hyperdirect pathway, but histological evidence shows that 

this pathway expresses both D1 and D2 receptors (Flores et al., 1999). According to this 

model, the functional consequence of such organisation is that activation of the direct 

pathway and the indirect/hyperdirect pathways lead to inverse changes in the net output of the 

basal ganglia circuitry (for comprehensive reviews, see Blandini et al., 2000; Namu 

Tachnibana, Kaneda, Tokuno, & Takada, 2009; Ness & Kreitzer, 2014; Schroll & Hamker, 

2016), Importantly, evidence suggests that increases in dopamine facilitate long-term 

potentiation along the direct pathway, long-term depression along the indirect pathway, and 

long-term potentiation along the hyperdirect pathway (Schroll & Hamker, 2013; Schroll, 

Vitay, & Hamker, 2014). Thus, dopamine D1 receptors are thought to enhance 

neurotransmission along the hyperdirect pathway (Schroll, Vitay, & Hamker, 2014), with 

dopamine D2 receptors having the opposite effect. 

Parkinson’s disease (PD) is caused by degeneration of the nigrostriatal dopaminergic 

pathway and the denervation of dopamine secreting neurons in substantia nigra pars 

compacta to the putamen, a nucleus of the striatum. The aetiology of this degeneration is not 

well understood, but since dopamine acts to facilitate the disinhibition required to perform an 

action, PD therefore manifests as slowness or absence of movement (bradykinesia and 

akinesia, respectively), or as movements that are smaller than intended (hypokinesia), or both 

of them. According to this model, dopaminergic denervation to striatum leads to a 

concatenation of events that results in increased activity of basal ganglia output nuclei which, 

in turn, results in increased inhibitory control over the thalamus and subsequent reduction of 
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thalamic glutamatergic output to motor cortex (Blandini et al., 2000). The mechanism of this 

effect is diminished activation of the direct pathway and diminished inhibition of the indirect 

pathway resulting in abnormal activation of GPi, which keep thalamic neurons inhibited. That 

is, PD pathophysiology results in a balance between direct and indirect pathways that favours 

the indirect pathway, and, therefore, elicits the bradykinesia, akinesia, and hypokinesia just 

described. This hypothesis has been supported by optogenetic activation of these pathways in 

animal models (Kravitz et al., 2010). The characteristic tremor associated with PD is the 

result of thalamic oscillatory patterns that are not directly relevant here and reviewed 

extensively elsewhere (e.g., Buzsáki et al., 1990; Haeri, Sarbax, & Gharibzadeh, 2005; Hua, 

et al., 2008; Lamarre, 1984; Lenz, Vitek, & DeLong, 1993; Zirh, Lenz, Reich, & Dougherty, 

1998). 

 

Figure 5. Basal ganglia pathway circuit topology. Reproduced from Beu et al. (2019). 
 

These empirical findings have been supported by computational simulations. Frank 

(2005; see also Frank, 2006), for example, investigated the effect of dopamine loss on the 

functions of direct and indirect pathways in a learning task. Based on the results of these 
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experiments, Frank demonstrated that phasic dopamine depletion strengthened the Stop 

process via the indirect pathways and weakened the Go process via the direct pathway (see 

also Frank, Seeberger, & O’Reilly, 2004). Using a reward prediction error paradigm, Schroll 

and colleagues (Schroll, Vitay, & Hamker, 2014) found that the direct pathway learned to 

facilitate rewarded responses, the hyperdirect pathway inhibited alternative responses, and the 

indirect pathway inhibited responses that were previously but no longer rewarded. On the 

basis of these findings, they concluded that dopamine loss resulted in the impairment of the 

direct pathway to learn the facilitation of rewarded responses (i.e., translating to quickening 

of response patterns after subsequent correct Go responses in Go/No-Go tasks). In another 

study, these authors used neurocomputational models that simulate the effect of dopamine 

loss in PD and they successfully simulated a range of empirical findings based on the 

assumption that dopamine loss results in reduced functioning of the direct and hyperdirect 

pathways potentially as a result of its effect on synaptic plasticity (Schroll, Vitay, & Hamker, 

2013). So, consistent with the assumptions based on Frank’s simulations, this response 

execution impairment is due to the indirect pathway actively inhibiting their execution. In 

sum, computational simulations suggest that the degeneration of midbrain dopamine neurons 

associated with PD cause both tonic and phasic dopamine loss that, in turn, impairs the 

execution of motor actions. Reduced levels of dopamine in basal ganglia cause changes in 

their functioning as a function of changes in neuronal excitability and synaptic plasticity. The 

proficiency of the excitatory direct pathway (striatum → GPi) decreases, whereas the 

effectiveness of the inhibitory indirect pathways (striatum → GPe → STN) increases (Gerfen 

et al., 2008; Shen, Flajolet, Greengard, & Surmeier, 2008). 

In many respects, the manifestation of HD is the opposite to that of PD (see Figure 6). 

HD is characterised by choreiform movements, that is, continuous and involuntary sporadic 

movement of the limbs and face (hyperkinesia). The cause of these are selective loss of 

GABAergic striatal efferents innervating GPe in the indirect pathway, which tips the balance 

between direct and indirect pathways in favour of the direct pathway (Berardelli et al., 1999; 

Milnerwood & Raymond, 2010). So, without the normal inhibitory influence of thalamus 

over basal ganglia output nuclei that is normally provided by the indirect pathway, neurons 

fire sporadically, resulting in the motor cortex executing uncontrolled motor programs 

(Waldvogel, Kim, Lynette, Tippett, Vonstattel, & Faull, 2014). 
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Figure 6. Basal ganglia circuit topology under pathology of Parkinson’s disease (left panel) 

and Huntington’s disease (right panel). The red oval indicates the origin of pathology in each 

disease. 

Since both PD and HD affect dopaminergic function in the basal ganglia, depleting 

and increasing levels respectively, there are non-motor sequelae of the diseases which present 

in a broad range of cognitive and psychosocial disturbance (see de Boo et al., 1997; Duff, 

Beglinger, O’Rourke, Nopoulos, Paulson, & Paulsen, 2011; Lyle & Gottesman, 1977; Park & 

Stacy, 2009; Narayanan, Rodnitzky, & Uc, 2013; Tremblay, Achin, Macoir, & Monetta, 

2013). For current purposes, I will summarise only the RT and response inhibition literature. 

Experimental data in PD and HD populations consistently reveal deficits in response 

latency and response initiation in Simple RT tasks, but evidence is mixed for Choice RT. In 

HD, Choice RT appears to be slower than age-matched controls, but it is less clear whether 

this is the case in PD, with data pointing to marginally slower responses, potentially 

suggesting that the motor component, but not necessarily the choice component, is disturbed 

by the neuropathology of the disease (Cooper, Sagar, Tidswell, & Jordan, 1994; Fielding et 

al., 2012; Gauntlett-Gilbert & Brown, 1998; Jahanshahi, Brown, & Marsden, 1993; Martínez 

Pueyo et al., 2016; Pullman, Watts, Juncos, Chase, & Sanes, 1988). Deficits to motor control 

are hallmarks of both HD and PD, albeit at different stages of the disease, and in different 
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expressions. The similar deficit in RT despite opposite pathophysiology comes from the 

effect of that pathophysiology; in PD, there is bradykinesia (reflecting a difficulty in selecting 

and generating the correct motor command), whereas in HD there is interference in initiation 

of intended movement due to hyperkinesia (i.e., interference produced by the lack of 

suppression of incorrect motor commands), reflected in degeneration to the direct and 

indirect pathways, respectively. 

Even in the absence of impulsive disorders, Parkinson’s patients tend to exhibit poor 

response inhibition in both Go/No-Go and Stop-Signal tasks compared to age-matched 

healthy controls, even when controlling for group differences in response time (Gauggel, 

Rieger, & Feghoff, 2003; Ye et al., 2014). This deficit is diminished when these patients are 

administered atomoxetine, a norepinephrine and dopamine agonist (Ye at al., 2015), but not 

citalopram, a serotonin uptake inhibitor, except in cases of severe disease (Ye et al., 2014). 

Interestingly, evidence from both EEG (Bokura, Yamaguchi, & Kobayashi, 2005) and fMRI 

(Vriend et al., 2014) studies localise this deficit in frontal regions in Parkinson’s patients. 

Beste and colleagues (Beste, Willemssen, Saft, & Falkenstein, 2009), however, reported EEG 

data suggesting that PD-related deficits in response inhibition were also related to pre-motor 

inhibition failure, whereas those in HD were related to failures in error-monitoring systems 

(see also Beste, Saft, Andrich, Gold, & Falkenstein, 2007; Rao et al., 2014). Since both 

Parkinson’s and Huntington’s patients exhibit similar deficits in response inhibition on both 

Go/No-Go and Stop-Signal tasks despite opposite pathophysiological and dopaminergic 

changes, one may wonder why that is the case (see Aron et al., 2003). The motor and 

cognitive distinction in response inhibition may be considered, given the conclusions of Beste 

and colleagues (i.e., pre-motor inhibition failures compared to error-monitoring system 

failures), but the degree to which these map onto behaviour is not known. They may indeed 

reflect underlying cognitive processes, but whether and how they impact behavioural 

performance is not yet known. The paucity of empirical investigation into mechanisms that 

may support response inhibition, such as proactive inhibition or post-error slowing, in these 

populations is problematic for this reason, and requires consideration. 

1.1.9 Convergent validity or a dual-mechanism of control? Limitations in the 

empirical literature 

The evidence summarised here strongly indicates a dual mechanism of control: A 

motor mechanism and a cognitive mechanism. This is sensical if we consider the 

circumstances under which we might be required to inhibit an action. For example, suppose 
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you are driving a car and as you near an intersection you notice the traffic light turn from 

green to amber, so you slow down and stop. When the light turns green, you engage your 

normal pattern of behaviour and remove your foot from the brake pedal and engage the 

accelerator. As you do so, another car drives through the intersection on the intersecting road. 

Clearly, your task is to rapidly stop your acceleration action to avoid collision. The measure 

of response inhibition yielded by Go/No-Go and Stop-Signal tasks is, in fact, a measure of 

two distinct constructs. In the Go/No-Go task, the measure of response inhibition is the 

proportion of correctly withheld responses to No-Go stimuli (i.e., the complement proportion 

of errors of commission), and reflects the see, process and evaluate, and do not start course 

of action, which is an overall measure of response inhibition that is confounded by proactive 

inhibition, but does not contain a pure measure of reactive inhibition. In the Stop-Signal 

Task, the critical measure of inhibition is the time required for a participant to successfully 

stop a motor program (i.e., the SSRT), and reflects the see, process and evaluate, and stop 

doing course of action, which is in fact a measure of reactive inhibition, but not proactive 

inhibition or overall response inhibition. The operational definition of response inhibition in 

these tasks is, therefore, unsatisfactory and, as such, the convergent validity of these two 

tasks is questionable, and their outcome measures are not equivalent. 

Whether these two tasks assess the same underlying construct and engage the same 

neural systems is a critical concern, since the assumption that they do has theoretical and 

practical implications. Very little work has administered both tasks to one sample with the 

intention to assess the relationship between performance across tasks; however, many studies 

that administer one of the two main response inhibition tasks also administer a Simple RT 

task. Almost all such studies report positive correlations between measures of Simple RT and 

response time on response inhibition tasks. So, it seems that response initiation is to some 

large degree a similar process. To my knowledge, only two studies have investigated the 

neural correlates of performance on these two tasks, each of which report very little 

commonality between regions of activation with the exception of the insula cortex and the 

right inferior frontal gyrus (Swick, Ashley, & Turken, 2011; Zheng, Oka, Bokura, & 

Yamaguchi, 2008), indicating some common locus required for stopping and for not going 

that may indicate a common process underlying each. In a large cross-species review of the 

neuropsychopharmacology of inhibition including data from both tasks, Eagle, Bari, and 

Robbins (2008) reported little overlap in the drugs that modulate performance, concluding 

that serotonin is implicated in Go/No-Go tasks, whereas SSRT in the Stop-Signal Task is 
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more sensitive to noradrenaline, providing further evidence that these tasks represent 

different forms of action inhibition. Both Littman and Takács (2017) and Verbruggen and 

Logan (2008) did not find any substantial correspondence between performance on Go/No- 

Go and Stop-Signal tasks in their respective measures of response inhibition, which further 

supports the hypothesis that proactive inhibition influences response inhibition and that 

response inhibition and reactive inhibition are not linearly related. In the only study of its 

kind investigating the latent structure of impulsivity using a battery of self-report and 

behavioural impulsivity and inhibition measures in a reasonably large (N = 1,252), cross- 

sectional sample, MacKillop and colleagues (MacKillop et al., 2016) found a small but 

significant correlation between performance on Go/No-Go and Stop-Signal tasks (r = .22), 

but their measure of performance in the SST was not SSRT, as is common. They instead used 

the percentage of errors, which in most implementations of the SST is held constant at 50% 

by an adaptive staircase so as to derive the SSRT. In any case, in their three-factor model 

which best fit the data, performance on these two tasks loaded onto the same factor. 

However, the conclusions that we can draw from this model are limited owing to their 

outcome measure. 

Further to the above, despite broad use of these tasks, analysis of their data has been 

limited by the incomplete conceptualisation of response inhibition. Until around 2007 (e.g., 

Aron et al., 2007), proactive inhibition was not considered, despite the data structures yielded 

by response inhibition tasks allowing for the computation of post-error slowing (PES), a 

measure of proactive inhibition2. By way of illustration, take again the example of driving. 

Pure response inhibition is represented by the overall success rate of braking in time to avoid 

collision. This rate of success is independently influenced by reactive inhibition (a motor 

program) and proactive inhibition (a cognitive program). Reactive inhibition is represented 

by the speed with which your foot depresses the brake pedal, and could be measured by the 

minimum distance at which you see the intersecting car and are still able to brake in time. 

This is analogous to the SSRT measure of SSTs (if we assume that a linear relationship 

between distance and time, that is, that all intersecting cars travel at the same speed). 

Proactive inhibition, on the other hand, is represented by the additional time that you add to 

the duration between the light turning green and accelerating. Hypothetically, this process is 

influenced by two discrete processes: a remedial process and a predictive process, where the 

former would be engaged after having been in, or nearly avoided, a collision under similar 

 

2 The purity of a measure of PES in SSTs depends on the method for determining the Stop-Signal Delay. 
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circumstances, and the latter engaged based on the probability with which you expect an 

intersecting car to appear. Both processes may increase the delay between the light turning 

green and accelerating on subsequent occasions, which may increase the likelihood of a 

successful stop should an intersecting car appear again. Thus, such proactive inhibition 

mechanisms might contribute to successful response inhibition by engaging cognitive 

strategies that increase the likelihood of successfully stopping or preventing a response. The 

discreteness of proactive inhibition as two processes has not yet been described in the 

literature, but is introduced in the final chapter of this thesis. For the most part, we will deal 

only with the former of these process, what I refer to later as remedial proactive inhibition, 

but which is measured by PES in the Go/No-Go task. 

1.1.10 What a man does after he makes an error 
 

This dual mechanism of control, reactive and proactive inhibition, seems to be what 

Rabbitt (1966) was referring to when he asked what a man does after he makes an error. 

Despite his anthypophora that men (and presumably also women) slow down after an error, 

little serious empirical investigation has been devoted to the cognitive processing, the neural 

circuitry, or the psychometric properties that lead to and constitute PES; that is, the 

neurocognitive architecture of proactive inhibition. 

Fewer than one in one thousand papers investigating response inhibition have 

considered the critical influence that proactive inhibition plays in its success (Beu, 2018). In 

those few studies, response patterns tend to follow the course illustrated in Figure 7. Despite 

the empirical regularity of PES, only a few theoretical accounts have been put forward to 

explain the phenomenon (see Dutilh et al., 2012a, 2012b). These accounts rely on different 

assumptions and make different predictions about post-error accuracy, some assuming the 

probability of error decreases after an error with PES (Laming, 1968, 1979b), and others 

assuming no change, or even an increased probability of error (Rabbitt & Rodgers, 1977), the 

latter prediction is most commonly confirmed (e.g., Hajcak & Simons, 2008; Hajcak et al., 

2003). Since the conception of these accounts, evidence remains mixed as to whether post- 

error behavioural adjustments exert any effect whatsoever on post-error accuracy, potentially 

because these two accounts in particular were constructed using data from Choice RT tasks, 

not response inhibition tasks, in which errors reflected an error in choice or in discrimination 

rather than a failure to inhibit a response, whereas more recent studies have focused on 

inhibition since such tasks yield richer data. 
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Figure 7. A typical pattern of response behaviour surrounding an error. Shading highlights 

trials used to compute PES 

Decreases in activity in distractor-encoding brain areas, and increases in activity in 

task-relevant brain areas have been observed following an error, but the magnitude of such 

modulations do not appear to be correlated either with PES or with increased accuracy in 

subsequent No-Go or Stop trials. Likewise, downregulation of activity in the motor system 

and synchronisation of mid-frontal theta power are also observed, which are thought to 

harmonise intention programs with action programs (Danielmeier & Ullsperger, 2011). 

There are five competing hypothetical accounts of PES, each with a small amount of 

evidence in its support (Dutilh et al., 2012b); see also Danielmeier & Ullsperger, 2011). The 

first was proposed by Laming (1968, 1979b), as well as Rabbitt and Rodgers (1977), which 

claims that people become negatively biased against the response option that was just 

executed in error. This account applies less in response inhibition tasks because it implies that 

an error facilitates response alternations and hinders response repetitions, which is more 

applicable to Choice RT tasks. Laming (1968, 1979a) offered an alternative account 

suggesting that, following an error, the onset of evidence accumulation is more precisely 

regulated. Here, Laming suggested that people may start to sample stimulus-unrelated 

information from the display before the stimulus is presented, which prompts variability in 

the starting point of the accumulation process, and, therefore, an artificial bias toward one 

response boundary or the other. This is somewhat similar to an account proposed by Rabbit 

and Rodgers (1977), according to which, errors delay the start of evidence accumulation due 

** 
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to the emotional consequences of an error. The former of these two accounts suggests that 

early evidence accumulation is more tightly regulated to control the start point of the 

diffusion process once the stimulus is presented, whereas the latter suggests that evidence 

accumulation does not begin until sometime after stimulus presentation to overcome 

disappointment or frustration. In the fourth account, Notebaert and colleagues (Notebaert et 

al., 2009) drew on the oddball effect to inform an orienting account which supposed that the 

commission of an error is usually infrequent, and as such, the associated surprise distracts 

participants from commencing processing of the subsequent stimulus (they also observed 

post-correct slowing when correct responses were more rare than errors). On the basis of this 

assumption, they compared RTs under two conditions which should elicit oddball effects: 

infrequent errors and frequent correct responses, where PES was expected and observed; and, 

frequent errors and infrequent correct responses, where slowing was observed after correct 

responses. These results indicate that PES may not be post-error reflection, but rather an 

orienting response to an infrequent, unexpected (oddball) event. To reach this conclusion, 

though, the authors used an unsatisfactory method for deriving PES that has since been 

discarded. Instead of taking the difference between the average of four correct Go trials 

before an error and four correct Go trials after an error to reflect PES, as suggested and 

validated by Dutilh and colleagues (Dutilh et al., 2012a), Notebaert et al., (2009) used the 

difference between the average of post-correct Go trials and post-error Go trials, which does 

not take into account fluctuations in responding across the task, or the effect of pre-error 

trials, which are generally quicker than average Go trials. In any case, to my knowledge there 

is no other data supporting the claim that PES only occurs when errors are rare. The fifth 

account has considerably more empirical support than the previous four accounts, and it 

claims that participants adjust the separation of their response boundaries such that more 

evidence is required to reach decision threshold (i.e., increasing the caution associated with a 

response; Botvinick, Braver, Barch, Carter, & Cohen, 2001; Brewer & Smith, 1989; Cohen, 

Botvinick, & Carter, 2000; Fitts, 1966; Smith & Brewer, 1995; Vickers & Lee, 1998). An 

alternative explanation of this account, but consistent with its underlying logic, is that PES is 

explained in terms of decreased motor activity in the response priming unit, which results in 

increased motor threshold. This account is supported by fMRI evidence showing reduced 

activity in motor areas in post-error trials (King et al., 2010), which is negatively correlated 

with PES (Danielmeier et al., 2011). The intuitiveness of this account is so attractive that it is 

often accepted at face value. 
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Dutilh and colleagues (2012b) used drift-diffusion models (DDMs) to compare how 

well these accounts fit empirical data in a lexical decision making task. Their results point 

toward adaptive response boundary separation as the cause of quickening with successive 

correct responses because participants assume, since their response was correct, that their 

boundary separation was too conservative and they therefore shift them closer together. Their 

models also support the inverse: that errors indicate to participants that their boundary 

separations are too liberal and should be shifted farther apart. According to drift-diffusion 

logic, this leads to fewer errors but also causes slower responding, which is consistent with 

PES. Since these models are theoretical, it is important to gather empirical evidence that 

supports, or at least converges on, these conclusions, or evidence that PES has a neural 

substrate. 

Making an error is, naturally, an emotionally uncomfortable experience. Hajcak, 

McDonald, and Simons (2003) reported that errors in a two-choice discrimination task were 

associated with increased galvanic skin response (i.e., a momentary increase in skin 

conductance that indicates sweating), but also that PES was independently associated with 

the sweat response and that it increased in a linear relationship with the magnitude with 

which PES was engaged, but not with any changes to heart rate fluctuations. These authors 

reported that a late event-related potential (ERP) component, the error positivity Pe, in EEG 

correlated significantly with both presence and magnitude of PES, but that the error-related 

negative ERN did not (Hajcak, MacDonald, & Simons, 2003). What this means, though, is 

not known; source localisation allows us to assume that the neural generator for PES is the 

same as the neural generator for the Pe, the anterior cingulate cortex (ACC), but does not 

allow us to make any inferences about its underlying cognitive processes. 

In some cases, imaging techniques have been used to investigate PES (e.g., Li, 

Huang, Constable, & Sinha, 2006), but due to the temporal lag of the haemodynamic 

response, meaningful conclusions about basal ganglia activity can only be drawn about 

overall response processes. On the other hand, proactive adjustments in PES can be localised 

to frontal regions using fMRI in rats (Narayanan & Laubach, 2008) and humans (e.g., 

Danielmeier, Eichele, Forstmann, Tittgemeyer, & Ullsperger, 2011; Li, Huang, Yan, & 

Paliwal, 2008) localising it to ventrolateral prefrontal, posterior medial, and dorsomedial 

prefrontal regions. Other accounts suggest that parietal cortex is involved in PES (Purcell & 

Kiani, 2015), but the authors used a motion discrimination task which is known to recruit 

parietal and temporal regions in its processing (Cornette et al., 1998), so these conclusions 
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should be interpreted with caution since activation associated with stimulus processing and 

task demands could be confounded with the reactive process itself. 

It has been well-documented that both Parkinson’s and Huntington’s patients have 

manifest deficits to response inhibition, despite inverse dopaminergic dysfunction. It is 

known that dopamine is responsible both for movement and for the inhibition of movement 

as a function of pathway activation. So, one might wonder why this is the case. Using PD and 

HD as a model for the two constituent elements of response inhibition, since overall response 

inhibition is consistent, we should focus on either reactive or proactive inhibition. Much of 

the data reported above suggests a general compatibility between reactive processes, and a 

general compatibility between overall inhibitory processes, leaving us with proactive 

processes, PES. Given its novelty in the empirical endeavour, there is little investigation into 

PES even in healthy populations, let alone pathological populations. Nevertheless, two 

elegant studies have investigated PES in each of these disease populations. 

In a population of Parkinson’s patients, Siegert and colleagues (Siegert et al., 2014) 

administered an Eriksen-Flanker task (a task somewhat analogous to classical response 

inhibition tasks) both on and off levodopa treatment (L-Dopa, a medication that temporarily 

increases dopamine in the brain) and on and off deep brain stimulation (DBS to the 

subthalamic nucleus, STN, which stimulates the STN3 in a manner consistent with healthy 

functioning). They found that the Pe component (an ERP component that was operationalised 

as an error signal, or error recognition) was not conveyed to the STN off medication and so 

no PES was engaged; whereas, on the other hand, on medication, Pe was detected by the STN 

and thus PES was engaged (i.e., activity in STN increased following Pe on medication but not 

off medication, and this post-Pe STN activation predicted PES). This is a compelling case 

against previous imaging studies implicating only frontal regions in recruiting PES, further 

strengthened by Chevrier and Chachar’s (2010) findings that PES increased activity in the 

STN, which in turn deactivates the requisite behavioural adjustments in structures that exert 

control over dopamine output. In another experiment with Huntington’s patients, RT data 

showed that premanifest and at-risk of HD patients did not engage PES, whereas early 

manifest symptomatic HD patients did (see also Hart et al., 2011). 

 

 

 

 
 

3 This account of DBS to the STN is contentious. Frank et al. (Frank, Samanta, Moustafa, & Sherman, 

2007) found that choices became more impulsive under DBS because it may impair STN functioning. 
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1.2 Novel contributions 

Since the downstream effect of STN in the direct and indirect pathways are 

differentially affected by PD and HD, and appears to be involved in PES, then there is a clear 

path toward greater understanding of these disorders. It is known that very subtle changes to 

cognitive functions can long precede motor and gross cognitive symptoms such as memory 

deficits (for example, see Grady, 2012; Harada, Natelson Love, & Triebel, 2014; Hedden & 

Gabrieli, 2004; Kluger et al., 1997), so, establishing such changes may provide critically 

important clinical outcomes. It is important here to use empirical and theoretical methods to 

converge on practicable outcomes. 

Since the neurochemistry of response inhibition has largely only been investigated 

using pharmacological manipulations and indirectly in studies of pathological populations, 

there is little evidence of the genetic architecture of response inhibition overall, and less so of 

the genetic architecture of reactive and proactive processes. Determining whether these 

processes can be disambiguated using genotype associated studies is an accessible starting 

point which would allow inferences to be made not only about the biology of these processes, 

but also to be made about isolating the source of deficits to overall response inhibition under 

pathological conditions to the process of inhibition that is disturbed. This approach addresses 

an important limitation in extant literature that fails to separate these two contributory 

processes to overall inhibition. Using imaging techniques, namely, EEG, we might be able to 

build on genetic association analyses by parsing the cognitive architecture of reactive and 

proactive processes and, in so doing, allow us to think about the role of those cognitive 

processes in supporting successful inhibition. Some of the evidence reviewed above (and 

further reviewed in Chapter 3) described neural correlates and anatomical structures that 

support overall inhibition, but they fail to categorise them as a function of the reactive and 

proactive process. If, for instance, proactive processes are poorer in young people and 

reactive processes are poorer in older people, we might observe similar task performance 

(provided that proactive and reactive processes equally contribute to inhibition) and similar 

neural activation. But if we are interested in precisely describing the mechanisms underlying 

these processes, or if we are interested in intervening to improve them where they need 

improvement, we need to establish the separate neural and genetic correlates of each 

individually. These two approaches – a genetic approach and an EEG approach – might allow 

us to parse the neurocognitive architecture of proactive inhibition and its role in response 

inhibition. But alone they cannot tell us whether it is a suitable candidate for intervention. 
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Neurostimulation techniques allow us to investigate this and might also provide answers to a 

critical question left open in the literature: which basal ganglia pathway does proactive 

inhibition rely on? Since clinical neurologists are quite interested in neurostimulation 

techniques, those motor and cognitive functions that are suitable for treatment should be 

highlighted. 

Whether or not response inhibition is a suitable candidate for such treatments is not yet 

known principally because of the empirical limitations in describing its processes. If we are 

able to modulate one or both of its processes, then we allow clinical work to refocus its 

attention on appropriate clinical targets. These three investigations rely on valid and reliable 

measurement of proactive processes, which can be inferred from performance on the 

Sustained Attention to Response Task. However, this task has limitations when administered 

to pathological populations most affected by disturbances to response inhibition. It is 

therefore important to evaluate various tasks that could be used with people in such 

populations to ensure valid and reliable measurements of reactive and proactive response 

inhibition. 

This thesis consists of four papers addressing the four lines of investigation just 

described. The first three papers are experimental investigations into the substrate of PES 

using various approaches. Taken together, it is expected that the results yielded by these 

experiments will contribute important findings to the clinical literature on the behavioural and 

cognitive dysregulation that is apparent in dopaminergic pathology, specifically in diseases 

and disorders of that system. Furthermore, the papers will provide evidence in favour of 

differential roles of basal ganglia pathways supporting PES, and the cognitive architecture of 

that support. By including measures of intelligence, alongside age and genetic approaches, 

we are uniquely able to consider the adaptive role of PES across the lifespan, and can make 

inferences about the extent to which it operates under top-down control. That is, if there are 

predictable changes in PES based on age and intelligence that are mediated in some way by 

dopaminergic function, we may therefore be better able to understand the changes to PES, or 

indeed the absence of changes to PES, in pathological populations. The fourth paper presents 

a novel task to the field of response inhibition. It provides an argument for its robustness 

grounded in theory, presents data that validates its rigour in a large sample, and puts forth an 

argument for multiple types of proactive inhibition based on its results. Essentially, the novel 

experiments conducted here help us to parse the architecture of response inhibition, each of 

which provide important clinical outcomes, advances for the theoretical cognitive sciences, 
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and considerations for cognitive decline, genetic therapies, early development, and 

potentially even for early markers for neurodegeneration. 



40  

CHAPTER 2 

Paper 1 

 

 

 

2.1 Preamble 
 

The aim of this thesis is to investigate the properties of post-error slowing: To identify 

it, to verify whether it is separable from reactive inhibition, to test whether it is underpinned 

by some biological substrate that may be divergent from reactive inhibition and moderated by 

non-modifiable factors, to situate it in the current neuroanatomical model of psychomotor 

regulation, and to clarify its cognitive architecture. Since it is very well-established that 

dopamine is central to movement and motor regulation, it is logical to use the dopaminergic 

system as a point from which to start the investigation: can we use differences in 

dopaminergic neurotransmission between individuals to account for performance or to 

disambiguate reactive and proactive processes? Since the basal ganglia represent the primary 

locus of motor control and dopaminergic activity in the brain, this provides us with an 

opportunity not only to attempt to associate genetic variation with the components of 

response inhibition, but also to begin to postulate on an emerging debate about whether PES 

originates in motor, prefrontal, or subcortical regions, and whether it is supported by different 

basal ganglia pathways than reactive inhibition. 

Given the evidence reviewed below, we start with the assumption that proactive 

inhibition relies to some degree on some basal ganglia circuitry, much like reactive 

inhibition. There is conflicting evidence as to whether reactive and proactive inhibition rely 

on different pathways, and in particular, on which. Most previous approaches have 

investigated this question indirectly and using data which is unable to discretise the inhibitory 

processes. In the following study, then, we attempt to home in on the uniqueness of proactive 

inhibition to the response inhibition network using a genetic association approach. In taking a 

genetic approach, we can indirectly probe subcortical regions of the brain, which are 

probably more reliably involved in the processes that we are attempting to observe. 

Imaging techniques are limited in their ability to distinguish activity in these pathways 

due to their spatial complexity and density, so a genetic association approach might 

complement these techniques. A possible way to determine which pathway is involved in 
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proactive inhibition is to investigate the involvement of specific dopamine receptors. The 

activity of the three pathways is differentially modulated by dopamine acting upon dopamine 

D1 and D2 receptors. The direct pathway preferentially expresses dopamine D1 receptors and 

the indirect pathway expresses dopamine D2 receptors (Perreault, Hasbi, O’Dowd, & George, 

2011). Furthermore, synaptic plasticity in the direct and indirect pathways has been shown to 

depend on the activity of dopamine D1 and D2 receptors, respectively, and on tonic 

dopamine levels (Shen, Flajolet, Greengard, & Surmeier, 2008). High tonic dopamine levels 

and dopamine D1 receptors seem critical for synaptic plasticity in the direct pathway, which 

facilitates the selection of motor plans. In contrast, low tonic dopamine levels and dopamine 

D2 receptors seem critical for synaptic plasticity in the indirect pathway, which prevents 

response execution (Apicella, Scarnati, Ljunberg, & Schultz, 1992; Frank, 2005; Kravitz et 

al., 2010; Kravitz, Tye, & Kreitzer, 2012). Finally, neurotransmission along the hyperdirect 

pathway relies on dopamine D1, rather than D2, receptors. 

In such an approach, it is apropos to identify single-nucleotide polymorphisms (SNPs) 

that could allow us to discretise the functional cognitive architecture by associating individual 

differences in performance on the response inhibition subprocesses with genetic differences 

that can differentiate basal ganglia pathway preferential activity. For this reason, we focused 

on two dopaminergic genes (the dopamine D1 receptor gene, DRD1, and the dopamine D2 

receptor gene, DRD2) because dopamine allows the unique ability to distinguish between 

activity in the hyperdirect and direct pathways versus the indirect pathway. 

The rationale of this design is that if we observe differences in a measure of proactive 

inhibition, PES, in individuals who carry more A alleles in the DRD1 SNP rs686 (associated 

with increases DRD1 expression) and more T alleles in the DRD2 SNP rs1800497 

(associated with increased dopamine D2 receptor density), then we could conclude that PES 

is supported by greater dopamine D1-receptor neurotransmission and reduced dopamine D2- 

receptor neurotransmission, which would indicate a reliance on the direct and/or hyperdirect 

pathway. 

So, the primary aim of this paper is largely exploratory. It is to attempt to use 

individual differences in genetic expression and behavioural performance on the SART to 

map proactive inhibition to the basal ganglia pathway that subserves it. PES probably confers 

a dynamic, adaptive advantage to response inhibition in the SART, but it is not clear why. 

Since there has been so little empirical investigation into PES and proactive processes of 

inhibition, and that response inhibition seems to be greatly affected by such a diverse range of 
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pathologies, we thought it pertinent to explore the possibility that PES is differentially 

expressed between people who vary on other important factors, such as age and intelligence, 

which may otherwise negatively impact the reactive inhibition process. That is to suggest that 

PES may be a compensatory tactic in individuals with a diminished capability to invoke 

reactive inhibition (e.g., the elderly and those with lower scores on fluid intelligence tests), 

and that genetic predispositions that increase the likelihood of successfully engaging 

proactive inhibition might therefore have a stronger effect in these individuals. Other 

populations with a known diminished capability to invoke response inhibition are those with 

diseases and dysfunctions associated with the dopaminergic system. As such, a potential 

positive development that may stem from mapping the processes of response inhibition to 

basal ganglia pathways is in the clinical domain. I previously described the pathological 

dopaminergic unbalance in Parkinson’s and Huntington’s Diseases, in each of which 

response inhibition is negatively affected, and, since the physiological structure of the basal 

ganglia pathways can to some degree be separated by the role that dopamine has in each, then 

elucidating the pathway on which reactive and proactive inhibition rely, then we provide a 

theoretical and conceptual framework from which to better investigate their pathological 

dysfunction and trajectory. It is currently unclear what element of response inhibition, or 

where in the stopping and inhibiting unwanted physical movement, such dysfunction arises. 

Therefore, evidence that, for instance, proactive inhibition relies on the direct or hyperdirect 

pathway, and reactive inhibition relies on the indirect pathway, is useful in order to predict 

symptomatic trajectory or present early psychometric markers of neurocognitive decline since 

having an understanding of the physiological, neurochemical, and psychometric disturbances 

provides a more detailed conceptual model of disease-related disturbances. 

If we are able to identify the structural anatomy that underpins proactive inhibition, 

the next step is to articulate its cognitive structure. Additionally, if our data support the 

hypothesis that reactive and proactive inhibition rely on separate neural substrates, then it is 

logical to apply this to the clinical applications of the field. Taking again the example of 

Parkinson’s Disease, a common treatment of which is neurostimulation, our data may point 

toward the capacity for neurostimulaltion to modulate not only motor control, but also the 

extent to which those deficits in motor control are the result of cognitive deficits in some 

way, which might provide benefits to patients with other dopaminergic disorders of the basal 

ganglia, such as Huntington’s Disease. 
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2.3 Abstract 

The ability to inhibit a prepared emotional or motor action is difficult but critical to 

everyday functioning. It is well-established that response inhibition relies on the 

dopaminergic system in the basal ganglia. However, response inhibition is often measured 

imprecisely due to a process which slows our responses and increases subsequent inhibition 

success known as proactive inhibition. As the role of the dopamine system in proactive 

inhibition is unclear, we investigated the contribution of dopaminergic genes to proactive 

inhibition. We operationalised proactive inhibition as slower responses after failures to inhibit 

a response in a Go/No-Go paradigm and investigated its relationship to rs686/A at DRD1 
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(associated with increased gene expression) and rs1800497/T at DRD2 (associated with 

reduced D2 receptor availability). Even though our sample (N = 264) was relatively young 

(18-40 years), we found that proactive inhibition improves the ability to withhold erroneous 

responses in older participants (p = .002) and those with lower fluid intelligence scores (p 

< .001), indicating that proactive inhibition is likely a naturally-occurring compensatory 

mechanism. Critically, we found that a polygenic risk score consisting of the number of rs686 

A and rs1800497 T alleles predicts higher engagement of proactive inhibition (p = .040), 

even after controlling for age (p = .011). Furthermore, age seemed to magnify these genetic 

effects (p < .001). This suggests that the extent to which proactive inhibition is engaged 

depends on increased dopamine D1 and decreased D2 neurotransmission. These results 

provide important considerations for future work investigating disorders of the dopaminergic 

system. 
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2.4 Introduction 
 

We often find ourselves in a circumstance in which we should attempt to 

countermand a planned motoric action in response to altered environmental demands. We 

might be stopped at a red light, and, when the light turns green and we disengage our brake to 

continue, a speeding car enters the intersection without warning – it is imperative that we 

rapidly interrupt our habitual ‘go’ response to avoid collision. This is response inhibition. Our 

relative success rate of this process contributes to perhaps every domain of our lives. 

Response inhibition mediates interpersonal (Hoaken, Shaugnessy, & Pihl, 2003; Romer et al., 

2009), educational (Spinella & Miley, 2003), financial (Moffitt et al., 2011), and health 

(Friedman, 2000) outcomes, among many others, including intelligence (Bari & Robbins, 

2013; Chamberlain & Sahakian, 2007; Horn, Dolan, Elliott, Deakin, & Woodruff, 2003; 

Logan, Schachar, & Tannock, 1997). 

Deficits in one or more of the three concatenated cognitive and/or psychomotor 

processes underlying response inhibition (action selection, generation, and inhibition) 

characterise many psychiatric disorders (e.g., abnormal executive functioning and emotional 

dysregulation (Casey et al., 1997), addiction (Nigg et al., 2006), schizophrenia (Kiehl, Smith, 

Hare, & Liddle, 2000), and motor disorders, such as Parkinsonism (Taylor, Saint-Cyr, & 

Lang, 1986) and Huntingtonism (Lawrence et al., 1996)). This relationship is so well- 

characterised in some disorders that such disturbances constitute an endophenotype (Aron & 

Poldrack, 2005). Although regularly enacted (or at least attempted), and the subject of 

extensive investigation, this complex process remains puzzling. Given the varying views on 

what response inhibition is, and its disputed ecological validity (Smilek, Carriere, & Cheyne, 

2010), it is unsurprising that we have not reached a consensus on its underlying cognitive 

architecture. This is likely due to inconsistent discretisation and nomenclature of its 

properties, the many task paradigms administered to measure it, and idiosyncratic 

interpretation of the resultant data (Criaud & Boulinguez, 2013; Evenden, 1999; Lowe, 1979; 

Mostofsky et al., 2003; Mostofsky & Simmonds, 2008; Parker & Bagby, 1997; Perry & 

Hodges, 1999; Stein, Hollander, & Liebowitz, 1993). By nature, the measurement of response 

inhibition is not straightforward; inhibition is, by definition, the absence of a measurable 

variable. 

These inconsistent findings can be explained further as a consequence of successful 

response inhibition being driven not by one global stopping process, but by at least two 

discrete ones: reactive inhibition and proactive inhibition (Aron et al., 2007). Reactive 
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inhibition can be thought of as the capacity to withhold a prepotent motor response when it is 

no longer appropriate, and is thought to occur when the neural signal encoding ‘stop’ 

information reaches the thalamus before the motor response is initiated (Aron, 2011). 

Conversely, proactive inhibition is an adaptive cognitive strategy observed in most healthy 

people that is partially accounted for by the evaluative processes that take place following an 

error, or by uncertainty in the likelihood of encountering a need to rapidly disengage a motor 

program in the near future (Aron, 2011). One such strategy is post-error slowing (PES), 

whereby individuals slow down their response time (RT) following experience with failed 

inhibition. 

In the Go/No-Go paradigm (Robertson, Manly, Andrade, Baddeley, & Yiend, 1997), 

participants respond to frequent ‘Go’ stimuli and attempt to inhibit their response to 

infrequent ‘No-Go’ stimuli. In this task, the measure of response inhibition is the complement 

proportion of errors of commission (i.e., failures to inhibit a response to No-Go stimuli); 

however, successful reactive inhibition (the ability to stop a response) is plausibly enhanced 

by proactive inhibition, or PES (Dutilh et al., 2012a). That is, post-error slowing in 

responding allows a greater amount of time to accumulate relevant information about the next 

stimulus, and thus reduces the likelihood of future commission errors on No-Go trials. Dutilh 

et al. (2012b) used a drift-diffusion model to investigate the nature of PES by mapping the 

possible outcome parameters of the model neatly onto explanations proposed to account for 

PES (e.g., reduced drift rate logically maps onto distracted attention; for full description see 

(Dutilh et al., 2012b)), thus providing support for the position that PES is the result of 

increased response caution. These authors derived their measure of PES by comparing 

reaction times (RTs) from trials following correct inhibition to RTs from trials following an 

error, which does not account for established fluctuations in response patterns across such 

tasks if the distribution of errors is not constant across the task (Dutilh et al., 2012a), and their 

word/non-word lexical discrimination task included an equal number of correct and error 

trials, thereby yielding a relatively low proportion of errors (10.8%). Despite these potential 

limitations, this evidence accumulation interpretation is thought to shift the decision threshold 

for executing a response, such that more information, and thus more time, is required to 

decide to respond to subsequent stimuli (Schiffler, Bengtsson, & Lundqvist, 2017; Ullsperger 

& Danielmeier, 2016). Such an interpretation is consistent with theory, but deserves further 

investigation. 
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Furthermore, it is possible that proactive inhibition might be a compensatory 

mechanism engaged when reactive inhibition is inefficient. There is some evidence that 

response inhibition is associated with intelligence (Lee, Lo, Li, Sung, & Juan, 2015), and that 

this relationship is mediated by age (Duan & Shi, 2011; Lee et al., 2015), but it is not 

conclusive due to limitations already described here. That is, it is plausible that proactive 

inhibition masks the true nature of the effect that age may have in response inhibition. If 

proactive inhibition is a compensatory mechanism, it may be differentially employed by 

different groups. For example, given the strong relationship between age and both dopamine 

and intelligence, older individuals may preferentially express proactive processes compared 

to younger individuals as a result of their limited capacity to overtly withhold a response (i.e., 

a limited capacity to engage reactive inhibition). 

Neuropharmacological studies in both animals and humans support the role of 

dopamine in inhibitory control; however, attempts to synthesise these studies are similarly 

encumbered by what seems to be a reductive aim to formulate a unified aetiology for the 

pathogenesis of impulsive disorders. Vaidya and colleagues (Vaidya et al., 1998) 

demonstrated that administration of methylphenidate, a dopamine reuptake inhibitor, to 

humans reduces error rate in a Go/No-Go task; however, it is unclear whether this reduction 

may be attributable to enhancements in proactive processes. In the Stop-Signal Task, another 

paradigm used to measure response inhibition, both methylphenidate and 

dextroamphetamine, another dopamine reuptake inhibitor, have improved performance under 

some conditions in animals and humans (Chamberlain et al., 2006; Eagle & Robbins, 2003; 

Nandam et al., 2011), but animal models seem to suggest that this positive effect is only 

observed in those with poorer baseline performance (Eagle, Tufft, Goodchild, & Robbins, 

2007; Feola, de Wit, & Richards, 2000). Such findings have been replicated in delay 

discounting procedures in both animals and humans (Floresco, Tse, & Ghods-Sharifi, 2008; 

Isles, Himbu, & Wilkinson, 2003; van Gaalen. Van Koten, Schoffelmeer, & Vanderschuren, 

2006; Wade, de Wit, & Richards, 2000), but they too are not consistent (Helms, Reeves, & 

Mitchell, 2006; Slezak & Anderson, 2009; Wooters & Bardo, 2011; for a review, see Dalley 

& Roiser, 2012). Inferences about the D1- or D2-like families of dopamine receptors cannot 

be made based on these findings, because both pharmacological interventions introduced here 

operate on the dopamine transporter and not the receptor (Seeman & Madras, 2002; Volkow 

et al., 2001). Few studies have administered drugs that operate on the receptor. Of these 

exceptions, conclusions remain limited because many of the drug interventions administered, 
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such as cabergoline, have a high affinity for the full range of dopamine receptor sub-types, as 

well as for several serotonergic receptor types, which have a known, but not well-described, 

role in response inhibition (Dalley & Roiser, 2012). Thus, disentangling these findings 

remains a priority. 

The pharmacological studies reviewed above nevertheless suggest that successful 

response inhibition relies on the dopamine system, and it is now well known that it 

specifically relies on the integrity of information transmission between basal ganglia 

structures and stimulus-specific cortical regions (Graybiel, 2000; 2005). According to the 

classical model of basal ganglia function, motor commands generated by the frontal cortex 

are relayed to the thalamus via basal ganglia structures. The thalamus is under the influence 

of basal ganglia, whose function is to facilitate or constrain motor commands. Because the 

resting state of the thalamus is one of tonic inhibition from the internal segment of globus 

pallidus, disinhibition is required to produce movement. Within this circuit (see Figure 8), a 

disinhibitory ‘direct’ pathway favours the selection of a motor command generated by the 

frontal cortex, and an inhibitory ‘indirect’ pathway suppresses the execution of motor 

commands generated by the frontal cortex (Berretta, Parthasarathy, & Graybiel, 1997; 

Calabresi, Picconi, Tozzi, Ghiglieri, & Di Filippo, 2014; DeLong & Wichmann, 2007; 

Jahanshahi, Obeso, Rothwell, & Obeso, 2015b; Tekin & Cummings, 2002). The notion that 

the direct and indirect pathways exert opposing influences on action selection is supported by 

recent animal studies (Albin, Young, & Penney, 1989; Bateup et al., 2010; DeLong, 1990; 

Freeze, Kravitz, Hammack, Berke, & Kretzer, 2013; Kravitz et al., 2010). Recent research 

has identified a third pathway directly linking the prefrontal cortex to the subthalamic nucleus 

that inhibits the thalamus and suppresses motor commands (Meyer & Bucci, 2016; Nambu, 

2004; 2005; Nambu et al., 2000; Nambu, Tokuno, & Takada, 2002). Because it bypasses the 

striatum, this pathway was named the ‘hyperdirect’ pathway (Figure 8). 
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Figure 8. Basal Ganglia network topology, indicating dopamine- receptor expression and 

neurotransmitter affinity. The connections linking substantia nigra (pars reticulata and pars 

compacta) to striatum denoted with a solid black line are thought to subtend a regulatory 

function regardless of which pathway is activated, so are not categorised. Dopaminergic 

innervation from pars compacta modulates striatal output by acting on D1 receptors 

(stimulation of direct pathway) or D2 receptors (inhibition of indirect pathway). 

Converging evidence from imaging studies generally supports the hypothesis that 

reactive inhibition is implemented by the hyperdirect pathway (Erika-Florence, Leech, & 

Hampshire, 2014; but see Dunovan, Lynch, Molesworth, & Verstynen, 2015; Jahanshahi et 

al., 2015b), but there is no consensus on the role of the basal ganglia in proactive inhibition, 

with some theorising that it relies on the direct and/or indirect pathways (Forstmann et al., 

2008; Majid et al., 2013; Smittenaar, Guitart-Masip, Lutti, & Dolan, 2013; Zandbelt & Vink, 

2010), others on the hyperdirect pathway (Jahanshahi, Obeso, Baunez, Alegre, & Krack, 

2015a; Schmidt, Leventhal, Mallet, Chen, & Berke, 2013), and even some suggesting it relies 

on both the indirect and hyperdirect pathways (Hikosaka & Isoda, 2010; Isoda & Hikosaka, 

2007); however, imaging techniques are limited in spatial resolution. Given that the processes 
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required for response inhibition occur in spatially complex, and interconnected subcortical 

loops, data using different techniques is required (Criaud & Boulinguez, 2013). Based on data 

derived from psychiatric studies in which Parkinson’s patients were administered deep-brain 

stimulation to the subthalamic nucleus, which increases its inhibitory hold over the thalamus, 

it was hypothesised that both reactive and proactive inhibition are mediated by the 

hyperdirect pathway (Frank, Samanta, Moustafa, & Sherman, 2007). Further support for this 

hypothesis was provided by findings that subthalamic nucleus activity in the β band is 

correlated with proactive inhibition (Benis et al., 2014). A comprehensive review (Aron, 

2011) indicated that the hyperdirect pathway is involved in reactive inhibition, whereas 

proactive inhibition likely requires either the direct or indirect pathway. However, others 

(Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010; Cavanagh et al., 2011; Chen et 

al., 2010; Jahfari et al., 2011; Sharp et al., 2010; Stuphorn, Brown, & Schall, 2010) have not 

unequivocally come to these same conclusions. 

A possible way to determine which pathway is involved in proactive inhibition is to 

investigate the involvement of specific dopamine receptors. The activity of the three 

pathways is differentially modulated by dopamine acting upon dopamine D1 and D2 

receptors (see Figure 8). Although a small subpopulation of striatal medium spiny neurons 

contains both D1-type and D2-type mRNA, it is known that the direct pathway preferentially 

expresses dopamine D1 receptors and the indirect pathway expresses dopamine D2 receptors 

(Perreault et al., 2011). Furthermore, synaptic plasticity in the direct and indirect pathways 

has been shown to depend on the activity of dopamine D1 and D2 receptors, respectively, and 

on tonic dopamine levels (Shen et al., 2008). High tonic dopamine levels and dopamine D1 

receptors seem critical for synaptic plasticity in the direct pathway, which facilitates the 

selection of motor plans. In contrast, low tonic dopamine levels and dopamine D2 receptors 

seem critical for synaptic plasticity in the indirect pathway, which prevents response 

execution (Apicella et al., 1992; Frank, 2005; Kravitz et al., 2010; Kravitz et al., 2012). 

Few studies have investigated the cognitive neurophysiology of the hyperdirect 

pathway, but histological evidence shows that this pathway expresses both D1 and D2 

receptors (Flores et al., 1999). Importantly, evidence suggests that increases in dopamine 

facilitate long-term potentiation along the direct pathway, long-term depression along the 

indirect pathway, and long-term potentiation along the hyperdirect pathway (Schroll & 

Hamker, 2013; Schroll, Vitay, & Hamker, 2014). Thus, dopamine D1 receptors are thought to 

enhance neurotransmission along the hyperdirect pathway (Schroll, Vitay, & Hamker, 2014), 
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with dopamine D2 receptors having the opposite effect. Given that the indirect pathway relies 

on D2-mediated neurotransmission whereas the hyperdirect pathway relies on D1-mediated 

transmission, one would expect that genetically-determined individual differences in 

expression of the two genes that code for these receptors, DRD1 and DRD2, might help us 

understand which type of receptor is most likely involved in proactive inhibition, and 

therefore shed light on which basal ganglia pathway is engaged in proactive inhibition. 

Here we use this genetic approach to investigate whether proactive inhibition is more 

likely to involve dopamine D1 or D2 receptors. We do so by investigating the relationship 

between individual differences in behavioural proactive inhibition and single-nucleotide 

polymorphisms (SNPs) associated with DRD1 and DRD2 expression (see Table 1). To our 

knowledge, no previous studies have investigated the magnitude of the polygenic relationship 

between D1 and D2 receptors on human proactive inhibition. 

 

Table 1 

Description of molecular function and significance of DRD1 and DRD2 

Gene Candidate Protein function Polymorphism Functional significance 

DRD1 DA receptor Encodes D1 A to G D1 receptors stimulate adenyl 
  subtype of DA mutation cyclase and activate cAMP- 
  receptor; receptor (rs686) dependent protein kinases; 
  density; DA  regulate neuronal growth and 
  reuptake  development; A (major) allele 
    associated with increased mRNA 

    levels in vitro 

DRD2 DA receptor Encodes D2 C to T D2 receptors inhibit adenyl 
  subtype of DA mutation cyclase; C (major) allele 
  receptor; receptor (rs1800497) associated with increased 
  density; DA  dopamine D2 receptor availability 

  reuptake  in vivo 

In the rs686 mutation of DRD1, the A allele results in increased expression of the 

gene and dopamine receptor sites and is thought to be involved in neuroplasticity via cell- 

mediated immunity (Cosentino, Ferrari, Kurstrimovic, Rasini, & Marino, 2015; Huang, Ha, 

& Petitto, 2013). Furthermore, it has been shown that the G allele decreases DRD1 

expression relative to the A allele by inhibiting the binding of microRNA miR-504 to the 3′- 

UTR of the DRD1 gene (Huang & Li, 2009), providing a potential causal mechanism through 

which this SNP modulates gene expression. rs686/A is associated with increased risk of 
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schizophrenia (Zhu et al., 2011), various addictions and dependencies (e.g., nicotine: (Huang 

et al., 2008); alcohol: (Batel et al., 2008); opioid: (Zhu et al., 2013)), autism spectrum 

disorders (Hettinger, Liu, Schwartz, Michaelis, & Holden, 2008), and cognitive but not 

behavioural impulsivity, particularly in children with ADHD (Oades et al., 2008). 

rs1800497 is located between the DRD2 and ANKK1 genes. A series of positron 

emission tomography studies has shown that the T allele (i.e., Taq1A/A1) is associated with 

reduced dopamine D2 receptor availability (Jonsson et al., 1999; Pohjalainen et al., 1998; 

Ritchie & Noble, 2003; Thompson et al., 1997). Zhang et al. (2007) reported that this SNP is 

in strong linkage disequilibrium with two other polymorphisms that appear to affect the 

relative splicing of dopamine D2 short (presynaptic) and long (postsynaptic) receptor 

variants, thus providing a potential explanation for the observed association between 

rs1800497 and various behavioural and clinical outcomes. Indeed, several studies report 

associations between rs1800497 and substance abuse (e.g., nicotine (Comings et al., 1996a; 

Noble et al., 1994b); opioid (Lawford et al., 2000); cocaine (Noble et al., 1993)), obesity 

(Noble et al., 1994a), risk of schizophrenia (Golimbet et al., 1998), attention- 

deficit/hyperactivity disorder (Comings et al., 1991), Tourette’s syndrome (Comings et al., 

1996b), susceptibility to post-traumatic stress disorder (Comings, Muhleman, & Gysin, 

1996), and Huntington’s disease (Ramos et al., 2013; Thompson et al., 1997). Eisenberg and 

colleagues (Eisenberg et al., 2007) reported that rs1800497/T was not associated with self- 

reported impulsivity but did predict behavioural impulsivity on a Delay Discounting Task; 

however, impulsivity on this task represents delayed gratification, and not response inhibition 

as it is conceptualised in the cognitive literature. A similar discordance has been observed in 

cognitive but not behavioural impulsivity in polymorphisms of other dopaminergic genes 

(Oades et al., 2008). 

With some exceptions (e.g., rs1800497/T is not associated with alcohol dependency 

(Gelernter & Kranzler, 1999); but, similar to rs686/A, is, however, associated with antisocial 

behavioural characteristics in alcohol-dependent individuals (Ponce et al., 2003)), these 

mutations in DRD1 and DRD2 exhibit notably parallel phenotypes in humans. Moreover, 

DRD1 and DRD2 expression have also demonstrated an additive effect under some 

conditions on response inhibition tasks in rat (Eagle et al., 2011) and non-human primate 

models (see Eagle, Bari, & Robbins, 2008), such that inhibition is more successful where 

there is a higher ratio of DRD1 to DRD2 expression (note, however, that animal tasks of 

response inhibition are presently unable to account for proactive inhibition). 
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Despite the apparent lack of coherence in genetic and pharmacologic investigations of 

behaviour on tasks of response inhibition and given the clinical efficacy of dopamine agonists 

in disorders that manifest dysfunctional behavioural or cognitive control, it is axiomatic that 

dopamine plays a role beyond its recruitment by more simple motor systems for the 

deployment of goal-directed stimulus-response action. Genetic data may allow us to 

instantiate response inhibition and the processes that underpin its mechanisms within a neural 

architecture that may improve our understanding of the pathological profiles of 

neurodegenerative conditions and their treatment, and reconcile the empirical inconsistencies 

described above (Aron, Robbins, & Poldrack, 2004; Aron & Poldrack, 2005; 2006; Aron, 

Robbins, & Poldrack, 2014; Bokura, Yamaguchi, & Kobayashi, 2001; Chambers, Garavan, & 

Bellgrove, 2009; Gauggel, Rieger, & Feghoff, 2004; Isoda & Hikosaka, 2008; Jahanshahi, 

Obeso, Baunez, Alegre, & Krack, 2015; Kuhn et al., 2004; McCarter, Walton, Rowan, Gill, 

& Palomo, 2000; Mink, 1996). Disentangling proactive processes from reactive processes is 

important as they may rely on different neural substrates and may therefore be differentially 

affected by neurological disorders and by the dopamine loss that occurs in healthy ageing. It 

is therefore pertinent to investigate the role of intelligence in these processes. By doing this, it 

may be possible to more precisely characterise how these processes are associated with 

intelligence, or whether they are artefacts of age. If proactive inhibition relies on the direct or 

the hyperdirect pathway, then individuals with a genetic predisposition toward enhanced 

dopamine D1-receptor neurotransmission (rs686 A allele carriers) and reduced dopamine D2- 

receptor neurotransmission (rs1800497 T allele carriers) should exhibit more PES. This 

would be consistent with some of the animal models mentioned above (Eagle et al., 2008; 

Eagle et al., 2011), according to which, response inhibition is associated with the ratio of 

DRD1 to DRD2 expression. In contrast, if PES relies on the indirect pathway, then this type 

of proactive inhibition should be more pronounced in individuals carrying the rs1800497 C 

allele, which is associated with increased dopamine D2 receptor availability. In addition to 

investigating the relationship between rs686 and rs1800497 and proactive inhibition, we 

further tested the hypothesis that proactive inhibition might play a compensatory role when 

reactive inhibition is inefficient. According to this hypothesis, individuals who are most 

likely to engage proactive inhibition processes are those with a reduced ability to withhold 

incorrect responses, including older individuals and those with lower fluid intelligence. 

Genetic predispositions that increase the likelihood of successfully engaging proactive 

inhibition might therefore have a stronger effect in these individuals. 
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2.5 Materials and methods 
 

The experimental protocol was approved by the University of Adelaide Human 

Research Ethics Committee and administered in compliance with the Declaration of Helsinki 

(2013 revision). Participants were recruited from a classifieds advertisement website. All 

participants provided written, informed consent, and were remunerated for their time at the 

rate of AU$20 per hour. Two hundred and ninety-six adults (50% female; age: M = 24.8, SD 

= 5.47, range = 18-40 yrs) participated in one of three independent experiments, each with 

identical inclusion criteria. Experiment 1 was completed by 67 participants, Experiment 2 by 

129, and Experiment 3 by 100. Saliva samples were collected from all participants for 

genotyping using Oragene saliva collection kits (Genotek Inc., Ontario, Canada). Thirty-four 

participants were omitted from analyses due to inadequate task engagement (absence of 

response on >40 Go trials; n = 26), or due to failed genotyping (n = 8). The final sample (N = 

264; 53% female; age: M = 24.8, SD = 5.41 yrs; Experiment 1: N = 60; 52% female; age: M = 

25.2, SD = 5.33 yrs, range = 18–39; Experiment 2: N = 110; 49% female; age: M = 24.9, SD 

= 6 yrs, range = 18–40; Experiment 3: N = 94; 59% female; age: M = 24.3, SD = 4.74 yrs, 

range = 18–40) is thus comprised of healthy, Caucasian adults aged 18-40 yrs who self- 

reported to researchers prior to consenting as having normal or corrected-to-normal vision, 

not taking medications with sedative or stimulant mechanisms or medications indicated for 

neuropsychiatric dysfunction (e.g., antidepressants, antipsychotics) for at least six months; 

not suffering from major medical or psychiatric conditions; having no history of drug or 

alcohol dependency; and, not smoking more than five cigarettes per day. 

2.5.1 Genotyping 
 

The Australian Genome Research Facility, Ltd (AGRF) performed DNA extraction 

and genotyping. DNA for each participant was recovered from stabilised saliva samples using 

the manual prepIT system according to the manufacturer’s instructions (Oragene DNA (OG- 

500); DNA Genotek Inc, Ontario, Canada). DNA precipitates were resuspended for a 

minimum of 48 hrs before quantification by fluorimetry (QuantiFluor™ dsDNA System; 

Promega Corporation, Madison, Wisconsin, USA) in conjunction with a Gemini™ 

Spectramax XPS fluorescence microplate reader (Molecular Devices, LLC; Sunnyvale, CA, 

USA). DNA stocks were adjusted to a working concentration of between 10 and 50 ng/μl for 

subsequent genotyping. 
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The DRD1 (rs686) and DRD2 (rs1800497) polymorphisms were genotyped using the 

Sequenom iPLEX MassARRAY® platform according to the methods described by Gabriel, 

Ziaugra, and Tabbaa (Gabriel, Ziaugra, & Tabbaa, 2009). PCR and extension primers were 

designed using Sequenom Assay Designer v3.1. The following sequences of primers were 

used: rs686 (PCR-1: ACGTTGGATGGCTCATCCCAAAAGCTAGAG, PCR-2: 

ACGTTGGATGAGAGTCTCACCGTACCTTAG, extension primer: 

GAGATTGCTCTGGGG), rs1800497 (PCR-1: 

ACGTTGGATGTGTGCAGCTCACTCCATCCT, PCR-2: 

ACGTTGGATGTCAAGGGCAACACAGCCATC, extension primer: 

GCTGGGCGCCTGCCT). 

2.5.2 Testing procedure 
 

Participants were seated 60 cm from a 21.5-inch iMac Apple computer with a 60 Hz 

screen refresh rate. Responses were made with a standard 1,000 dpi computer mouse. 

Stimulus presentation was controlled by Xojo software (Xojo Inc., Texas, USA). 

Demographic and personal data were collected by a purpose-coded computerised 

questionnaire administered prior to behavioural testing. 

2.5.3 Sustained Attention to Response Task (SART) 
 

In the SART (Robertson et al., 1997), a Go/No-Go paradigm, participants are 

presented with random single digits (1 – 9) displayed in the centre of the screen in fonts of 

differing sizes (48, 72, 94, 100 and 120 point, ranging from 12 mm to 29 mm on the screen; 

i.e., subtending 1° × 0.75° to 2.4° × 1.8° at the retina). Each digit is displayed for 245 ms, 

immediately followed by a mask for 900 ms, resulting in a response period of 1,145 ms from 

digit onset to mask offset (see Figure 9). The mask interrupts residual visual processing 

(Herzog, 2008) and attenuates fixational drift (Snodderly, 2016). Participants are instructed to 

rapidly respond by pressing the left mouse button, using their dominant hand, as soon as 

possible after any digit, except the digit ‘3’, is displayed (‘Go trials’; 0.89 probability), and to 

inhibit this response when the digit ‘3’ is displayed (‘No-Go trials’; 0.11 probability). This 

task consists of 225 trials, each digit presented with equiprobability in random order, with 25 

No-Go trials. Participants are instructed to respond as quickly as possible without sacrificing 

accuracy. This task allows us to isolate proactive inhibition as PES. We use median RTs for 

our overall RT variable because it is robust to the influence of skew and truncation (Ulrich & 

Miller, 1994). We exclude RTs shorter than 150 msec (these trials are assumed to reflect 
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anticipatory responses); however, we do not apply an upper bound for RT outlier exclusion 

because this task uses a fixed inter-stimulus interval, imposing a limit on responding (1,145 

msec), which approximates the acceptable upper bound of most RT distributions (Luce, 1991; 

Miller & Low, 2001; Jensen, 2006). This heuristic resulted in the exclusion of very few trials 

(1.9%). 

 

 

Figure 9. Two complete SART trials. The first trial is a Go trial in which participants 

respond to the stimulus, followed by a No- Go trial in which participants should inhibit their 

response. 

2.5.4 Behavioural analysis 
 

2.5.4.1 Overall response inhibition and proactive inhibition. Our measure of 

overall response inhibition is the proportion of successfully withheld responses on No-Go 

trials; that is, the complement proportion of errors of commission, where an error of 

commission is the failure to inhibit a response to the No-Go stimulus. It is worth noting, 

however, that this traditional measure of response inhibition is potentially confounded by 

proactive inhibition, and therefore might not purely reflect reactive inhibition (the ability 

to stop a prepared response). Our measure of proactive inhibition is post-error slowing 

(PES). In the SART, PES is calculated by subtracting the average RT of four trials after an 

error of commission from the four trials before the error of commission. PES is, therefore, 

the temporal response pattern adjustment that participants make after failing to correctly 

inhibit a response. It has been established that four trials are sufficient to yield an accurate 

and computationally efficient estimate of PES. Because stimulus presentation was 

randomised, the number of trials that could be classified as both pre- and post- error trials 

differed between participants. Two participants, and, on average, 7.10 (SD = 7.05) trials 

were excluded from the PES analysis for this reason; this includes trials that could be 
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21 

classified as both pre- and post-error trials, and No-Go trials that fall within these windows. 

Naturally, the number of trials that will be excluded from such an analysis will increase as a 

function of the number of errors made by each participant. The average number of pre-error and 

post-error trials was 27.16 (SD = 12.25) and 26.71 (SD = 11.77), respectively. 

2.5.4.2 Psychometric analysis. We administered a battery of tests of fluid abilities on 

the same computing and peripheral hardware described above and used structural equation 

modelling (SEM) to calculate a latent general intelligence (g) factor. Our SEM includes 

additional samples to those described in the current paper. These additional samples comprise 

a larger series of experiments with a common theme and similar battery of cognitive tasks, 

and with identical participation inclusion criteria. This method for g derivation allows a more 

robust population estimate due to the larger sample size (N = 569). The model is robust (χ2 

(N = 569) = 34.5, P = 0.03, CFI = .98, TLI = .97), and includes tasks measuring the following 

domains: higher-order inductive reasoning (Raven’s Advanced Progressive Matrices short- 

form, RPM (Raven, 2000), and the Comprehensive Abilities Battery-Induction, CAB-I 

(Hakstian & Cattell, 1975)), visuospatial ability (Mental Rotation (Vandenberg & Kuse, 

1978)), visuospatial working memory (Dot Matrix (Law, Morrin, & Pellegrino, 1995)), 

verbal working memory (Sentence Span (Lewandowsky, Oberauer, Yang, & Ecker, 2010)), 

visual processing speed (Inspection Time (Vickers, Nettelbeck, & Wilson, 1972)), and 

response and decision speed (Simple and Choice Reaction Time (Deary, Liewald, & Nissan, 

2011)). These domains were chosen for their known associations with g (Jensen, 1998). All 

samples completed the Simple and Choice Reaction Time, RPM, and Dot Matrix tasks. 

Participants in Experiments 1 and 2 additionally completed the Inspection Time task; those in 

Experiment 1 also completed the Mental Rotation task, and those in Experiment 2 also 

completed the CAB-I and Sentence Span tasks. Although participants completed different 

tasks, all participants included in the model completed RPM and Dot Matrix, each of which 

accounted for a large proportion of estimated individual variance in g (RPM: R2 = .42, p 

< .0001; Dot Matrix: R2 = .48, p < .0001). This method of estimating SEM with samples that 

share a subset of common measures is described in (Keith & Reynolds, 2012). 

2.6 Results 
 

2.6.1 Genotyping 
 

Genotype frequencies did not deviate from Hardy-Weinberg equilibrium (both p > .2), 

and varied independently within participants (r262 = .05, p = .41). No significant differences 
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were found among genotype frequencies with respect to age (largest effect: F1,258 = 0.50 p 

= .482), sex (largest effect: Χ2 = 1.90, p = .386), or g (largest effect: F1,256 = 2.86, p = .092). 

2.6.2 Behavioural performance on the SART 
 

Response time (RT), error rate (failure of reactive inhibition), and paired-samples t- 

tests for PES (proactive inhibition; i.e., comparing RT before versus after errors) for each 

experiment and in the total sample are shown in Table 2. Probability density functions 

(shown in Figure 10) show a quantitative difference in RT distributions for Go and No-Go 

responses, and for pre- and post- error responses. Overall, the mean error rate was 44.1% (M 

= 11.0, SD = 6.10 errors), and all but four participants made at least one error of commission. 

These four participants were not included in analyses of proactive inhibition since PES 

cannot be calculated when no errors are made. 

 

Table 2 

Sample statistics for median response time (RT) and mean response inhibition (errors), and 

paired-samples t-tests for proactive inhibition (PES) 

 
Overall 

RT 

(SD) 

 RT (msec)  Paired t-test  

Errors 

(SD) 
Before 

error 

(SD) 

After 

error 

(SD) 

t 

(df) 

 
p 

 
PES† 

 
95% CI 

Cohen’s 

d 

Experiment 

1 
347.07 

(101.03) 

48.07% 

(24.38%) 

334.8 

(90.53) 

365.3 

(115.94) 

4.27 

(58) 
< .0001 

30.50 

(7.14) 

16.22 - 

44.79 
0.29 

Experiment 

2 
336.12 

(88.82) 

45.82% 

(25.72%) 

312.35 

(57.03) 

351.87 

(86.74) 

7.06 

(108) 
< .0001 

39.53 

(5.6) 

28.44 – 

50.62 
0.54 

Experiment 

3 
349.58 

(92.93) 

40.09% 

(22.02%) 

332.8 

(79.50) 

364.03 

(89.84) 

5.21 

(91) 
< .0001 

31.23 

(5.6) 

19.32 – 

43.15 
0.37 

Total 

sample 
343.40 

(93.47) 

44.11% 

(24.38%) 

324.68 

(74.32) 

359.22 

(94.99) 

9.73 

(259) 
< .0001 

34.54 

(3.55) 

27.55 – 

41.54 
0.41 

Note. We performed one-way ANOVAs on errors of commission and RT to test for systematic 

differences between our three experimental samples to further justify our combination of these 

samples. These ANOVAs show no difference in errors (F2,261 = 2.07, p = .128) or RT (F2,261 = 

0.58, p = .558) between groups. †i.e., proactive inhibition as measured by PES (in msec), 

reflecting the difference in RT before and after an error. Parenthesised following PES is the 

standard error of the difference. 
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Figure 10. Probability density distributions of response times (RTs) for each trial- type (Go, 

No- Go, and the four trials Before, and After, an error). The main plot maps the full RT 

distribution, including responses quicker than 150 ms (n = 67,779). The inset shows RTs for 

responses within a common response period (150–600 ms; n = 62,667), with bars 

representing the mean for Go (M = 338.06 msec, SEM = 0.47), No- Go (M = 267.43 msec, 

SEM = 1.24), Before error (M = 297.43 msec, SEM = 0.98) and After error (M = 315.47 

msec, SEM = 1.15) responses. 

Consistent with common findings, most participants engaged proactive inhibition, 

however, 68 (26%) did not. A t-test indicated that those participants who slowed down 

following an error (M = 11.5, SD = 6.21 errors) did not significantly differ from those who 

did not (M = 10.3, SD = 5.24 errors) in terms of number of errors, p = .15. However, 

magnitude of proactive inhibition was somewhat associated with greater reactive inhibition 

overall (r258 = -.12, p = .051), although this relationship was not consistent between samples 

(see Table 3). This suggests that proactive inhibition (reflected in PES) modestly confounded 

response inhibition (reflected in the number of errors). Response inhibition was also 

associated with RT reliably across all three samples, such that faster RT was associated with 

more errors (Table 3). 
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Table 3 

Correlation coefficients for relationships between response inhibition 

(errors) and proactive inhibition (PES) and response time (RT), (N = 260) 

r258 (p-value) 

 PES RT 

Experiment 1 .23 (.075) -.78 (< .001) 

Experiment 2 .19 (.051) -.72 (< .001) 

Experiment 3 -.03 (.747) -.72 (< .001) 

Total sample .12 (.051) -.73 (< .001) 

 

There was no effect of biological sex on any measure of SART performance (all 

p > .3). Increased age, however, was associated with successful response inhibition (i.e., 

fewer errors; r = -.20, p = .001), slower RT (r258 = .18, p = .003), and more proactive 

inhibition (r258 = .13, p = .027). Age was also negatively correlated with general intelligence, 

g (r258 = -.19, p = .003); however, whereas age was associated with fewer errors, slower 

responses and greater PES, g, on the other hand, was not associated with response inhibition 

(p = .81), but was associated with quicker RT (r258 = -.18, p = .003) and less proactive 

inhibition (r258 = -.28, p < .001). 

A regression model testing the effects of g and age on PES revealed a significant main 

effect of g (β = 20.0, t254 = 2.06, p = .040), but not age (p = .74). A significant interaction was 

found between these variables on PES (β = 1.13, t254 = 1.13, p = .002) indicating that the 

strength of the association between intelligence and proactive inhibition increased with age 

(R2 = 0.12, F3,254 = 11.66, p < .001). In other words, the negative relationship between g and 

PES is accentuated by age. This can be seen by separating the sample into age tertiles, where 

the strength of relationship varies between tertiles (18-25 yrs: r258 = .16, p = .021; 26-33 yrs: 

r258 = .29, p = .033; 34-40 yrs: r258 = .52, p = .013; see Figure 11). Likewise, regressing 

response inhibition onto age and proactive inhibition reveals significant main effects of both 

(proactive inhibition: β = 167.7, t253 = 2.51, p = .013; age: β = 4.40, t253 = 3.49, p < .001), and 

a significant interaction (β = -7.66, t253 = 7.66, p = .004), such that in younger participants, 

proactive inhibition does not appear to contribute to successful response inhibition, whereas it 

does in older participants (R2 = .06, F3,256 = 5.39, p = .001). These interactions can be seen in 

Figure 11. They suggest that if proactive inhibition is a compensatory mechanism that may 

improve overall performance (i.e., decrease errors), it is most engaged in older individuals 

and in individuals with lower g. 
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Figure 11. The effect of age (tertiles) interacting with response inhibition (i.e. error rate; top 

frame) and g (bottom frame) on proactive inhibition (i.e. post-error slowing in msec). 

2.6.3 Genetic association analyses 
 

First, we regress PES onto each SNP individually in simple models to test for a 

general effect of allele frequency on proactive inhibition. We then include age in an additive 

model to investigate whether each SNP is able to account for meaningful variance above and 

beyond the variance accounted for by age, then we include an interaction term in these 

models so that a potential relationship between age and allele frequency of each SNP can be 

observed. This regression modelling showed that the A allele of rs686 may exert a modest 

positive effect on proactive inhibition, although it is not statistically significant here (β = 

10.70, t249 = 1.88, p = .062), and the T allele of rs1800497 demonstrated no such effect (p 
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= .271). Models that control for the possible effect of age did not reach statistical significance 

for either rs686 (β = 9.86, t254 = 1.76, p = .08), or rs1800497 (p = .227). Models which 

included the interaction between age and each SNP were able to account for more variance 

than simple additive models including these variables for both rs686 (R2 = .043, F3,253 = 3.81, 

p = .011; R2 increase = .012, interaction β = 1.83, t253 = 1.83, P = 0.069) and rs1800497 (R2
 

= .053, F3,253 = 4.76, p = .003; R2 increase = .029, interaction β = 3.30, t253 = 2.79, p = .006). 

We further analysed the combined effect of the two polymorphisms by computing a 

simple, unweighted count method (the unweighted genetic risk score, uGRS) to derive a 

relative polygenic risk score for each participant. This method allows interval interpretation 

of resultant scores, where a higher uGRS is associated with higher PES. In the uGRS method, 

we assumed a simple additive model, where the numbers of alleles associated with increased 

PES for each polymorphism were added. This method results in uGRS factors ranging from 0 

to 4, where a higher score is associated with increased dopamine uptake via increased D1 

receptor sites and decreased D2 receptor sites. This method has been shown to be capable of 

reliable and effective predictive accuracy in large samples, and utility in association testing 

for complex traits (Dudbridge, 2013). This uGRS derivation method resulted in five factors 

(see Table 4). 

 

Table 4 

Number of participants in each unweighted genetic risk score factor 

Factor Included genotypes N 

0 GG/CC 19 

1 GG/CT; GA/CC 97 

2 GG/TT; AA/CC; GA/CT 104 

3 AA/CT; GA/TT 35 

4 AA/TT 5 

 

Importantly, a uGRS consisting of the number of A and T alleles, which minimises 

the limitations of simple interactions between two SNPs, significantly predicted proactive 

inhibition in a regression model, β = 8.43, t254 = 2.07, p = .040. In a model controlling for 

age, the main effect of uGRS remained significant, β = 8.35, t254 = 2.06, p = .040 (R2 = .035; 

R2 increase = .015; F2,254 = 4.60, p = .011). Figure 12 highlights that the increase in RT 

following an error tends to increase in an additive fashion with increasing frequency of 

rs686/A and rs1800497/T. In addition, a significant interaction was found between uGRS and 
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age on proactive inhibition (β = 2.36, t253 = 3.20, p = .002), and accounted for an additional 

3.7% of variance in proactive inhibition than the simple additive model alone (R2 = .072, 

F3,253 = 6.58, p < .001). Figure 13 shows this interaction, whereby the uGRS effect on PES is 

magnified by age. 

 

 

Figure 12. Proactive inhibition (ms) by rs686 (left series), rs1800497 (centre series), and 

uGRS (right series) by experiment (a–c) and in the total sample (d). Parenthesised are Ns for 

each genotype. 
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Figure 13. Interaction between unweighted genetic risk score (uGRS) and age on proactive 

inhibition. Higher uGRS indicates higher rs686/A expression and lower rs1800497/C 

expression. Shaded grey areas bounding the lines reflect 80% confidence intervals. 

Inverse variance fixed-effect meta-analyses, using the ‘meta’ package v4.9-0 

(Schwarzer, 2007) for R (Team, 2013), for each SNP on proactive inhibition indicate that 

effect sizes in each experimental sample are of similar magnitude (rs686: Q = 0.92, p = .630; 

rs1800497: Q = 4.65, p = .098; uGRS: Q = 0.62, p = .735; see Figure 14). We report Q 

statistics here as a substitute for I2 due to the small number of samples included in each 

analysis, as suggested by Huedo-Medina et al. (Huedo-Medina et al., 2006). Furthermore, 

these models support a general overall main effect for rs686 (Χ2 = 1.84, p = .065) and uGRS 

(Χ2 = 2.05, p = .040), but not rs1800497 (p = .25); this, however, is likely due to the small 

number of T carriers of this SNP in each of our samples. These analyses are shown in Figure 

12, and illustrate a clear and consistent additive trend of uGRS on increased PES. 

Genetic association analyses for both RT and response inhibition using linear 

regression show, notably, that neither SNPs, nor uGRS, yielded any substantive relationships, 

signifying an isolated genetic effect on proactive inhibition (Table 5). 
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Figure 14. Forest plots showing the regression coefficients and their associated 95% 

confidence intervals for the effect of rs686 (top), rs1800497 (middle), and uGRS (bottom) on 

proactive inhibition across experimental samples. Square sizes surrounding the mean average 

regression coefficient reflect relative weightings of each sample in the fixed effect model. 

Diamonds are summaries of each model, whose length represents 95% confidence. 

 

Table 5 

Regression of coded allele frequencies in rs686, rs1800497, and uGRS 

on reaction time and response inhibition 

 Reaction time Response inhibition 

rs686 t258 = 1.50, p = .495 t258 = 0.47, p = .642 

rs1800497 t258 = 1.50, p = .134 t258 = 0.20, p = .844 

uGRS t258 = 0.47, p = .638 t258 = 0.47, p = .641 
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2.7 Discussion 
 

This is the first study to investigate the influence of polymorphisms in dopaminergic 

genes on proactive inhibition. We used a theoretically-driven approach to test which 

dopamine receptor type most likely contributes to proactive inhibition, as measured by post- 

error slowing in a Go/No-Go task. As different cortico-basal ganglia pathways preferentially 

express different receptor types, this analysis also allows some speculation regarding which 

pathway underlies proactive inhibition. 

We provide novel evidence for the role of dopaminergic genes in the engagement and 

magnitude of proactive inhibition. Allelic variation in two polymorphisms (rs686 at DRD1 

and rs1800497 at DRD2/ANKK1) exerted an additive effect on proactive inhibition that was 

independent of associations with other behavioural measures such as number of commission 

errors and RT, and that was similar across three separate samples, which was supported by 

meta-analysis. We further found that a uGRS consisting of the number of rs686 A alleles and 

rs1800497 T alleles predicted higher engagement of proactive inhibition, particularly in older 

participants. There is substantial a priori evidence to suggest that a higher ratio of D1 

receptor expression relative to D2 receptor expression increases overall response inhibition 

and control mechanisms (Eagle et al., 2008; Eagle et al., 2011), which is consistent with our 

findings. 

Our findings are broadly consistent with recent results reported by Cummins and 

colleagues (Cummins et al., 2012), who tested the effect of the full array of autosomal 

catecholamine gene variations in neural and behavioural measures of response inhibition in 

the Stop-Signal Task. Although these authors did not isolate proactive inhibition, they 

reported a general role for dopamine in response inhibition, and nominal significance for 

rs686 on measures of inhibition. Likewise, Beste et al. (Beste, Willemssen, Saft, & 

Falkenstein, 2010), using a Go/No-Go paradigm similar to the present study, reported that 

two dopaminergic SNPs (rs4532, the G allele of which is presumably associated with higher 

D1 receptor efficiency, and rs6277, also known as C957T, for which higher striatal D2 

receptor density is associated with the T allele; see Beste et al., 2010) predicted inhibitory 

subprocesses: both rs4532/A and rs6277/C were associated with more errors of commission 

(i.e., what we have conceptualised in this study as poorer overall response inhibition). 

Furthermore, they separated the effective influence of each SNP using electrophysiology, 

showing that the polymorphism affecting D1 receptor efficacy that was associated with more 

errors was also associated with an attenuated N2 event-related potential on No-Go trials; and, 
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that the polymorphism affecting D2 receptor density was also associated with an attenuated 

P3 event-related potential on No-Go trials, each relative to A/G and C/T heterozygotes, and 

G/G and C/C homozygotes, respectively. That is, rs4532/A was associated with more errors 

and a blunted No-Go N2, potentially indicating less attentional resources, and rs6277/C was 

associated with more errors and a blunted No-Go P3, potentially indicating less post-error 

cognitive evaluation (Beste et al., 2010). Indeed, although this could be interpreted as only 

marginally consistent with our findings (we found no such effect on rate of errors, but rather 

on PES, our measure of proactive inhibition), Beste and colleagues failed to measure 

proactive inhibition, which we have demonstrated contributes to successful inhibition. 

Moreover, the electrophysiological correlates reported by Beste et al. (Beste et al., 2010) 

appear to be confounded by motor activity (Go trials include a response in the time window 

of the N2 and P3 whereas the No-Go trials do not), or could alternatively be explained by 

effects arising from the difference in frequency of presentation of the Go and No-Go stimuli, 

such as an oddball effect (i.e., the less frequent stimulus, the No-Go stimulus in this case, 

typically elicits a larger P3) (Smith, Johnstone, & Barry, 2008; Verleger, Grauhan, 

Smigasiewicz, 2016). 

Similar to our study, Colzato and colleagues (Colzato, van den Wildenberg, Van der 

Does, & Hommel, 2013) also reported an interaction between a DRD2 polymorphism and 

age, as they demonstrated that the genetic impact of the C allele of rs6277 at DRD2 on 

response inhibition is magnified by ageing. It is widely acknowledged that the ageing brain is 

characterised by altered dopamine signalling (Volkow et al., 1998), which might accentuate 

genetic individual differences related to dopamine neurotransmission. Although we 

investigated a different SNP, rs1800497, the effects of the two SNPs on striatal D2 binding 

potential are comparable (Hirvonen et al., 2004), and rs6277 is in strong linkage 

disequilibrium with rs1800497 (Hirvonen et al., 2009). In their study, Colzato et al. (Colzato, 

van den Wildenber, & Hommel, 2013) report that allelic variation in the gene associated with 

higher density of extrastriatal D2 receptors was associated with more effective reactive 

inhibition (consistent with an earlier study by the same group (Colzato et al., 2010)), and this 

effect was larger in old adults (M age = 69 yrs) than in younger adults (M age = 21 yrs). In 

contrast, we found that allelic variation associated with lower density of D2 receptors 

predicted proactive inhibition, but not an overall measure of response inhibition (the number 

of errors), in a considerably narrower age range. In other words, Colzato et al.’s results 

suggest that higher D2 receptor density leads to more efficient reactive inhibition, especially 
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in (very) old individuals, while we found that reduced D2 transmission together with 

increased D1 transmission increases proactive inhibition, especially in middle age. 

These apparently conflicting results can be reconciled when considering that reactive 

and proactive inhibition are most likely not independent processes. In our study, the overall 

measure of response inhibition (the number of errors) was confounded with post-error 

slowing (our measure of proactive inhibition), particularly in those individuals with lower g 

scores and older participants. It is important to note here that our sample was comprised of 

young adults. Our oldest tertile represents the ages 34-40 years; so, while our sample is 

indeed young, and this study does not constitute an ageing study, that we see the observed 

results in such a limited age range, consistent with ageing theory, is striking. This suggests 

that those individuals who were less likely to exhibit efficient reactive inhibition relied more 

on proactive inhibition processes to improve their performance (see also van de Laar et al., 

2011; and Bloemendaal, et al., 2016 who reported similar age-related effects). Furthermore, 

the extent to which participants could engage proactive inhibition increased with the number 

of alleles predictive of higher DRD1 expression and lower DRD2 expression. The results of 

Colzato et al. (Colzato et al., 2010; Colzato et al., 2013) further suggest that lower DRD2 

expression is associated with poorer reactive inhibition, which might explain why those 

individuals might be more likely to engage proactive inhibition as a compensatory 

mechanism. So while Colzato et al. (Colzato et al., 2010) argue that their genetic effects 

suggest that reactive inhibition relies on the indirect basal ganglia pathway, our results do not 

support such a conclusion, suggesting a more complex role of basal ganglia connections. 

Note, however, that Colzato and colleagues (Colzato et al., 2010; Colzato et al., 2013) did not 

assess proactive inhibition nor whether it could have contaminated their measure of reactive 

inhibition, whereas we did not have a measure of reactive inhibition uncontaminated by 

proactive inhibition. 

Taken together, our results and those of Colzato and colleagues (Colzato et al., 2010; 

Colzato et al., 2013) point to the importance of differentiating between proactive and reactive 

inhibition in future studies, and attempting to measure each process independently (e.g., 

Bloemendaal et al., 2016). We found modest evidence that PES overall confounds response 

inhibition (errors), and strong evidence that this occurs mostly in middle-adulthood compared 

to young adulthood and in individuals with lower estimated g. It is therefore plausible that 

PES is a compensatory mechanism that is engaged when an individual has lower cognitive 

resources. This might explain why our genetic effects were most pronounced in older 
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participants: rs686/A and rs1800497/T appeared to allow older participants to engage PES as 

a compensatory mechanism. Here, we have effectively used uGRS to show a clear additive 

effect of rs686/A and rs1800497/T on proactive processes of response inhibition, suggesting 

that this compensatory mechanism relies on increased dopamine D1 neurotransmission and 

possibly decreased D2 transmission, and the direction and magnitude of which is strongly 

mediated by age. 

Our data seem to reflect the engagement of some age-related compensatory strategy 

for effective response inhibition. While direct evidence regarding healthy age-related decline 

in D1 receptor availability is inconsistent in human and rat models (Antonini et al., 1993; 

Antonini & Leenders Klaus, 2006; Giorgi et al., 1987; Hytell, 2009; Keeler et al., 2016; 

Morelli, Mennini, Cagnotto, Toffano, & Di Chiara, 1990; Rinne, Lönnberg, & Marjamäki, 

1990; Rothmond, Weickert, & Webster, 2012; Suhara et al., 1991; Volkow et al., 1996; 

Wang et al., 1998; Wong et al., 1984), a recent meta-analysis concluded that while dopamine 

synthesis does not appear to change across the lifespan, its effective neurotransmission 

declines via alterations in binding potential, reduced transporter protein, and changes to D1- 

D4 receptor availability (Karrer, Josef, Mata, Morris, & Samanez-Larkin, 2017). So, it is 

possible that older adults exhibit higher proactive inhibition and are thus able to maintain 

their ability to inhibit a response outright, despite reduced dopaminergic neurotransmission. 

A similar compensatory mechanism has been observed in right inferior frontal gyrus 

(rIFG) following left-hemispheric stroke-related aphasia (Watkins & Devlin, 2008) which is 

pertinent because activation in this region has been associated with response inhibition (Aron 

et al., 2004; Menon, Adleman, White, Glover, & Reiss, 2001; Rubia, Smith, Brammer, & 

Taylor, 2003). Hampshire et al. (Hampshire, Chamberlain, Monti, Duncan, & Owen, 2010) 

reported that the role of rIFG is primarily in the provision of attention to relevant cues, and is 

recruited to the same extent regardless of whether cue detection is followed by either 

successful or unsuccessful inhibition. Although our findings pertaining to age-related 

compensation could be interpreted as reflecting normal age-related changes in rIFG, it is 

unlikely to be the case given that demyelination does not occur until later in life, and thus 

would not yet have affected our sample (Branzoli et al., 2016; Peters, 2002; 2009). This could 

provide an interesting line of investigation for future studies to consider whether rIFG 

delivers the same compensatory mechanism in proactive inhibition after normal dopamine 

loss in healthy ageing, thus contributing further evidence to the topography of the effect we 

have reported here. It is possible that rIFG relies on differential adrenergic characteristics to 
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effectively regulate response inhibition (Chamberlain et al., 2009), perhaps even being 

modulated by dopamine (Rothman et al., 2001). 

The majority of existing data has been unable to reconcile seemingly incompatible 

findings with regard to dopaminergic dysfunction in pathology and differential decrements in 

response inhibition. This is likely due to failure to distinguish between reactive and proactive 

psychomotor processes, and overlooking the mediating effect of age and cognitive reserve. 

This is particularly noteworthy because most previous work, especially with pathological 

populations, uses the Stop-Signal Task. In a series of recent experiments, Verbruggen and 

Logan (Verbruggen & Logan, 2008; 2009) and colleagues (Verbruggen, Logan, Liefooghe, & 

Vandierendonck, 2008) raise reasonable concerns with the interpretation and consistency of 

proactive inhibition in such tasks. For instance, while many studies demonstrate a change in 

response strategy following an error, some show that Go RT slows after a failure of reactive 

inhibition, indicative of proactive inhibition, whereas many others show the opposite (see 

Verbruggen & Logan, 2008; 2009). Moreover, the authors highlight an issue not present in 

the SART, whereby repetition of the target stimulus increases PES via some associative 

learning process; whereas, in the SART, however, all Go and No-Go stimuli are equally 

frequent, thus mitigating this confound. Our findings, therefore, highlight the importance of 

integrating a method for measuring proactive inhibition, or for testing and controlling for the 

effect of proactive inhibition on reactive inhibition (e.g., the Stop-Signal Reaction Time), in 

such tasks. Moreover, we suggest that future research instantiate such a measure in both the 

Stop-Signal Task and Go/No-Go paradigm with minimal semantic information or repetition 

in order to offset potential learning and familiarity effects, or exogenous reinforcement. It has 

been consistently demonstrated that pathological populations, older adults, and indeed young 

children, perform differently in tasks of response inhibition to healthy young-to-middle-aged 

adults, and that this may be a function of these effects and the capacity to maintain attention 

rather than the cognitive processes of interest. 

Given the neuromodulatory function of dopamine in this system, it may be that 

following cortical activation of the hyperdirect pathway, dopaminergic neurons in substantia 

nigra pars reticulata prime poststriatal excitation of the internal segment of globus pallidus 

and/or substantia nigra pars compacta by modulating membrane potential in preparation for 

rapid hyperdirect depolarisation and downstream lateralised relative refractory membrane 

threshold, which may result in a strengthened inhibitory hold over the thalamus, and therefore 

indirectly priming reactive inhibition. Although this contention should be interpreted 
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cautiously because our methodology does not allow us to isolate the effect to only one of the 

direct or hyperdirect pathways. 

Our uGRS method effectively represents a ratio of D1:D2 receptors, and as shown in 

Figure 8, D1 receptors are preferentially expressed in the direct and hyperdirect pathways, 

and D2 receptors in the indirect pathway. It is possible that proactive processes recruit the 

hyperdirect pathway due to the rapid transduction speed of this pathway relative to the direct 

and indirect pathways, which, unlike the hyperdirect pathway, do not bypass the striatum. 

This hyperdirect pathway represents an optimal physiological route between frontal and pre- 

motor regions of the cortex and output basal ganglia structures (the external portion of globus 

pallidus and the substantia nigra pars reticulata) for motor inhibition insofar as it relies 

primarily on only dopaminergic and glutamatergic innervation, and requires fewer synaptic 

volleys than its indirect counterpart that is considerably more complex, requiring not only 

excitatory glutamatergic and dopaminergic neurotransmission, but also striatal inhibitory 

GABAergic neurotransmission. It should be reiterated here that our approach cannot 

distinguish between influences from the direct and hyperdirect pathway, given that each 

express dopamine D1 receptors. Because neither of our single-SNP analyses reached 

significance (rs686: p = .062; rs1800497: p = .271), and our uGRS method yielded highly 

significant results, it seems likely that both SNPs contribute to proactive inhibition, despite 

the strength of evidence favouring a role of rs686 in our sample, but which is likely explained 

by the rarity of the T allele in rs1800497 (2.6% homozygosity here; see Figure 12). 

This conclusion could potentially strengthen the provision of treatment of disorders of 

the dopaminergic system and may be useful as an early cognitive marker of 

neurodegeneration. Given the genetic underpinnings of proactive inhibition reported here, we 

strengthen the body of evidence supporting the use of disturbed proactive inhibition as an 

endophenotype for heritable diseases such as attention-deficit/hyperactivity disorder, rather 

than simply response inhibition in general as has been proposed (Slaats-Willemse, Swaab- 

Barnevald, de Sonneville, van der Meulen, & Buitelaar, 2003). 
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2.8 General Discussion of the Foregoing Manuscript 

The method of generating a genetic risk score that we used here (the uGRS) is novel 

and proved quite fruitful in determining the necessary role of dopamine in proactive 

inhibition and allowing us to establish that, as a function of relative levels of dopaminergic 

neurotransmission, proactive inhibition appears to emerge as a natural compensatory 

mechanism whose role is to self-regulate behavioural control. The questions that arise from 

these conclusions, in my view, should be related to the principles of learning and 

reinforcement, since dopamine is central to these functions, and since it is likely that they are 

conjointly involved in serving response inhibition. 

As far as I am aware, there has been little explicit investigation into the role of the 

reward system in reinforcing proactive inhibition explicitly via dopamine or, indeed, whether 

reactive inhibition is subject to the same mechanisms, although there is some early indirect 

evidence that one of the mechanisms by which reinforcement may affect response inhibition 

is mediated via affecting the strategy with which participants approach the task. Some data 

seems to suggest that manipulating participants’ speed-accuracy trade-off in a SST by 

conditionally reinforcing either speed or accuracy affects overall SSRT (Leotti & Wager, 

2010). Furthermore, a recent experiment, which included a “selective stopping” element to a 

SST in which participants were instructed to ignore Stop signals that were overlaid with an 

ignore cue, reported that polymorphisms in a COMT and a DRD2 gene are involved 

somehow in the strategy with which they approach the task (Rincón-Pérez et al., 2020). The 

authors used an additive GRS method, similar to but not the same as the method that we used 

to derive our uGRS, with two SNPs that globally regulate dopaminergic production and 

clearance such that a higher GRS is associated with higher levels of dopamine. They found 

that the highest and the lowest GRS categories tended to favour the adoption of a “Stop then 

Discriminate” strategy, whereby participants would Stop their response under any Stop signal 

condition, regardless of whether an ignore cue was presented, and then determine whether it 

should be ignored, whereas GRS categories that spanned the middle of the spectrum tended 

to favour an “Independent Stop then Discriminate” strategy, in which the discrimination 

between Stop and ignore-Stop was made prior to the motor stopping process (Rincón-Pérez et 

al., 2020). These strategies are not directly comparable to reactive and proactive inhibition, 

but they resemble them to some degree. 

There has been some very interesting work using associative learning principles to 

account for variance on response inhibition tasks (e.g., much of Verbruggen’s work; see, 
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Bowditch, Verbruggen, & McLaren, 2016; Verbruggen, Chambers, Lawrence, & McLaren, 

2017; Verbruggen & McLaren, 2018), but considering the influence of learning on response 

inhibition in sufficient detail is beyond the scope of this thesis. It is nevertheless a critical 

consideration for future work, given the computational advances in the neurogenetics of 

learning and using such models to predict decline of these functions associated with age and 

pathology. I think that a manifest limitation to this thesis is that no meaningful, in-depth 

consideration is given to the principles of reinforcement learning from reward (i.e., a correct 

response to Go trials or a correct inhibition to No-Go trials) or from punishment (i.e., 

responding to No-Go trials), and to the role of prediction error in different types of proactive 

inhibition. In my view, this absence does not diminish the body of work presented here, it 

would simply have provided an alternative interpretation of the data that would require a 

dedicated thesis in itself. It is unfortunate, though, since such principles lend themselves well 

to being investigated through the lens of the dopaminergic hypothesis presented here, their 

link to the basal ganglia, and especially to EEG data. Response inhibition tasks were not 

designed to measure learning abilities, and many of the conclusions here could not have been 

possible using such an interpretative lens; on the other hand, using a reinforcement learning 

framework to complement the data here could provide invaluable insight into the processes 

under investigation. 

In the editorial review process when submitting this manuscript for publication in the 

European Journal of Neuroscience, a valuable discussion was engaged in with one reviewer 

that I think is worth repeating here. At the data analysis stage, we attempted to use various 

mathematical models and computational methods to extract further data from the individual 

RT distributions on the SART. This stage of the process coincided with my visiting the lab of 

Michael J Frank at Brown University in Providence, where I was presenting some of these 

data and discussing a new task that we were in the early stages of validating (see Chapter 5). 

While there, an early PhD student of this lab, Daniel Scott, was working on a Bayesian 

Hierarchical Drift Diffusion Model (HDDM) and applying it to some reaction time data from 

a learning task. We talked about applying such principles to my RT data and its potential 

theoretical incompatibilities. Previously, it had occurred to me to take a computational 

approach to these data. As I discussed in the literature review, fitting models to data allows us 

to substantiate the very foundational algorithms underlying behaviour. For the purely 

behavioural data in the other three chapters of this thesis, such model fitting could be useful 

in providing insights into the specific psychological processes that account for individual 
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differences in performance or, indeed, could differentiate the same outcome measure by two 

participants in, say, error rate, by parameterising the differences in their response time 

distribution characteristics to different trial types and suggest that Participant A made eight 

errors because her evidence accumulation drift rate was slower than Participant B, but 

Participant B made eight errors because his decision boundaries to either respond or to 

withhold were farther apart. But the data reflected here contains an additional biological 

measure which could, if integrated into a well-grounded mathematical model, yield insights 

unimaginable even a decade ago. 

In the previous experiments, and indeed in most behavioural experiments, a trial can 

yield only two pieces of data: the response that was made, and the speed with which it was 

made. Using every trial in a given task, sequential sampling models (i.e., the models 

previously mentioned) make available a richer dataset. But undoubtedly, the apotheosis of the 

endeavour is to integrate extant mathematical models and computational simulations with the 

natural constraints of neural data and their mechanical physics. In the literature review, I 

discussed in brief the difficulty in adjudicating between alternative models because, while 

they differ fundamentally in their algorithmic elements, they sometimes provide cognate 

predictions for behaviour. By bridging these models with the mechanistic constraints of 

neurobiology, the dynamics of cognition not only can illuminate what has long-since been 

referred to as a black box, but can formalise the complete structural architecture of behaviour; 

as Logan himself and his colleagues asseverate, “the idea that mind and brain are the 

computers that produce behaviour, and the computation is one and the same” (Logan, Schall, 

& Palmeri, 2015, p. 305). 

Mathematical and computational models assume a system of equations to characterise 

a cognitive or behavioural process that we assume takes place in the brain, and mathematical 

psychologists formally test their hypotheses by fitting those models to data and assessing 

their fit (Roberts & Pashler, 2000; Turner, Forstmann, Love, Palmeri, & van Maanen, 2017). 

Such approaches have indeed delivered explicit and precise descriptions of the cognitive 

processes that lead to behaviour, allowing us to infer the mechanisms that underlie these 

cognitive processes by observing that very behaviour; and, furthermore, these approaches 

withstand empirical testing and are able to account for conditional manipulations so 

successfully that such modelling is now commonplace (Logan, Schall, & Palmeri, 2015, 

Purcell & Palmeri, 2017). Given the success of mathematical and computational models in 

accounting for behaviour, it is imperative to establish whether, and how, model processes are 
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instantiated in the brain. On the other hand, from the neural perspective of cognition, 

cognitive neuroscientists rely on statistical methods to show us how the neural processes that 

give rise to behaviour develop in increasingly impressive temporal and spatial resolution. 

These statistical methods are often carried out as a purely descriptive venture, with little 

effort given to considering the neural dynamics in connexion to hypothesised cognitive 

computations underlying the behaviours that they account for. The most obvious examples of 

this, to me, are fMRI experiments that lack a computational analysis, the fundamental 

approach of which are to establish the brain region in which activity predicts some 

behavioural outcome, but be unable to conclude either how or why that brain region produced 

that behavioural outcome. We know now the time course of information processing within 

single neurons by analysing spike trains and local field potentials from neuronal groups, 

likewise, we know the networks and pathways of neurons that process this information thanks 

to anatomical demarcation, lesion studies, and imaging techniques. But while such 

neurophysiological techniques reveal the multileveled neural architecture for implementing 

said behavioural outcome, or even the most elementary sensorimotor processes, they do not 

reveal the computations that occur at each level (Logan, Yamaguchi, Schall, & Palmeri et al., 

2015; O’Connell, Shadlen, Wong-Lin, & Kelly, 2018; Turner et al., 2017). Separately, 

mathematical and computational approaches and cognitive neuroscientific approaches are 

descriptive, and while each can produce developments in their respective endeavour, each 

suffers from critical limitations; so, while they do indeed draw on theory to satisfy 

hypotheses, only in their integration can they be truly explanatory (Love, 2015; Marr, 1982). 

Model-based cognitive neuroscience attempts to solve the inherent limitations in these 

approaches by integration of neural and behavioural measures. Potential linking propositions 

between the core computations specified by sequential sampling models (SSMs) and 

measures of brain activity have been identified in some recent EEG and fMRI experiments in 

rat (Hanks et al., 2015), monkey (de Lafuente, Jazayeri, & Shadlen, 2015; Gold & Shadlen, 

2007; Shadlen et al., 2016), and even human (Kelly & O’Connell, 2015) studies (see also, 

O’Connell et al., 2018; Purcell & Palmeri, 2017; Turner et al., 2017). Hanes and Schall 

(1996) trained rhesus monkeys to perform a SST and reported confluence between activity in 

sensorimotor neurons and rate of evidence accumulation, and that stochastic variability in the 

rate at which those neurons depolarised toward potential threshold resulted in RT 

distributions. What is particularly interesting is that the “the accumulating sensory evidence 

that will ultimately support one choice or the other has been shown to flow continuously to 
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motor structures in the human brain as much as it does in monkeys” (de Lafuente, Jazayeri, & 

Shadlen, 2015). And while these findings are remarkable in themselves, they apply to motor 

behaviour in this case, which is at face value more mechanistic in nature than is cognitive 

behaviour, so they may not generalise to the cognitive domain. To address this, Liu and 

Pleskac (2011) administered a stimulus intensity detection threshold paradigm to human 

participants in an MRI scanner. By manipulating the quality of perceptual evidence, which 

they reasoned translates to the drift rate parameter in SSMs, they found evidence for the 

neural mechanism for evidence accumulation that is not specific to effectors (i.e., not only in 

sensorimotor regions), but also in the anterior insula and inferior frontal sulcus, each of which 

play critical roles in making decisions under uncertainty and in attention and salience 

processing (Uddin, Nomi, Hébert-Seropian, Ghaziri, & Boucher, 2017). The observations of 

these experiments show that the gradual formation of a decision is reflected by graduated 

firing rates; that is, moment-to-moment evidence is transformed from a perceptual system to 

a decision to act (de Lafuente, Jazayeri, & Shadlen, 2015). 

The purpose of this digression is to point out that an integrative approach moving 

forward will yield the most practical data; that, as Purcell and Palmeri (2017) state, “decision- 

making mechanisms can be directly inferred from [neural] dynamics, allowing us to 

distinguish between models that make identical behavioural predictions. In other cases, 

however, different parameterized mechanisms produce surprisingly similar dynamics, 

limiting the inferences that can be made based on measuring dynamics alone simultaneous 

modelling of behaviour and neural dynamics provides the most powerful approach to 

understand… cognition and perception.” (p. 156). There is, of course, no simple way forward 

even with a clear sight of the apotheosis. In an interesting article published recently in the 

Journal of Mathematical Psychology, Turner and colleagues (Turner, Forstmann, Love, 

Palmeri, & van Maanen, 2017), illustrate the three primary approaches for achieving 

synthesis ([1] neural data constraining the behavioural model; [2] the behavioural model 

predicting the neural data; and, [3] jointly integrative simultaneous modelling) and they 

compare the utility of each approach under different experimental conditions, providing 

guidelines for appropriate approach selection. 

To the extent that I described SSMs and what is known of the dynamics of the basal 

ganglia in the literature review, it may seem fitting to use such methods to tap into the 

dynamics of evidence accumulation, or to simulate the effect of varying response bias based 

on trial distance or temporal proximity (and therefore presumed increased probability of) the 
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previous No-Go trial in order to predict overall inhibition or identify whether a parameter of 

the model could account for proactive inhibition. I spent a good amount of time attempting 

these with simple mathematical models (e.g., the ex-Gaussian, as well as its nascent Bayesian 

parametric approach, designed specifically for Stop-Signal data (Matzke et al., 2016), but 

which we made several attempts to modify for use with Go/No-Go data), basic computational 

models (e.g., Wagenmakers, van der Maas, & Grasman’s (2007) EZ-Diffusion Model), and 

more novel computational methods (e.g., DDMs, LBAs, and Linear Deterministic 

Accumulator Models (see Heathcote, 2012)). I was nevertheless unable to reconcile the 

underlying data structure with the assumptions of these models in a cognitively or 

theoretically logical way. 

The reviewer commented that the data would benefit from extracting a coefficient 

associated with drift and evidence accumulation. Indeed, DDMs seem to be most appropriate 

for two-choice tasks (e.g., word/non-word), rather than single-response tasks such as the 

SART, but a few recent papers postulate that they could potentially be applied because the 

authors suggest that deciding not to respond is a choice. However, this work is not yet 

entirely convincing, and the view that intentionally responding, not responding, and 

erroneously responding are only two choices that could be represented by two parallel 

decision thresholds seems atheoretical. This notwithstanding, the critical comparison we were 

making in this paper was responding before an error vs after an error, which, while 

psychometrically distinct, are not alternative choices. 

The reviewer commented that Ratcliff and van Dongen (2011) used a single-boundary 

DDM in a single-choice task. However, it is pertinent here to distinguish between single- 

choice paradigms and single-response paradigms. The SART is a single-response paradigm 

(clicking a mouse), but not a single-choice paradigm (respond, not respond); it is a 

continuous task with two separate and cognitively distinct trial types (Go, No-Go) which are 

two opposing choices, as opposed to a continuous task with one trial type, such as a Simple 

Reaction Time task. The number of types of responses in the SART (responding, not 

responding, pre-error responses, post-error responses) reduces the number of trials to such an 

extent that modelling is not tenable, or at least very unreliable. For our purposes, the critical 

analysis was comparing RT before an error to RT after an error. So few errors are committed 

in the SART that each participant would have only, on average, 26-27 trials before and after 

an error, which could not be modelled using either DDMs, shifted Wald distributions, or the 

ex-Gaussian interpretation. Whether we use two separate single-boundary DDMs to compare 
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pre-error RT to post-error RT, or even correct Go RT to erroneous No-Go RT, participants do 

not have sufficient trials to yield stable or precise parameter estimates. Lerche, Voss, and 

Nagler (2017) show that even with very clean data, 60 trials are needed to yield “low 

precision” parameter estimates, and 160 to yield “high precision” parameter estimates in 

single-boundary DDMs. Some previous research has pooled data from participants for 

modelling purposes because each had few data points. While such a model allows 

comparison of different conditions (e.g., pre- vs post-error trials), we could nevertheless not 

run any individual differences analyses, which was the main aim of our paper. We considered 

this possibility, but because it would not help us to understand the individual differences that 

we investigated (e.g., the relationships between PES, g, and SNPs), we felt as though it does 

not add anything meaningful to the paper or to the broader body of work. 

So, while I agree that it may have been useful to model these data even using only 

SSMs, and even potentially using what we know about basal ganglia dynamics and the 

inferences we can draw about dopaminergic function in this dataset to achieve what Turner 

and colleagues (Turner, Forstmann, Love, Palmeri, & van Maanen, 2017) would refer to as a 

behavioural model constrained by neural data, this approach is logically unjustifiable using 

the task that we used. But this could be explored in the future using more appropriate task 

designs, particularly because it is plausible that such models may better guide us toward a 

firm conclusion about the pathway involved in proactive inhibition. 

Although with the evidence yielded by our experimental protocol here, we are unable 

to conclusively determine that the hyperdirect pathway serves proactive inhibition, it 

nonetheless seems apt given the anatomy of the system. Since reactive inhibition seems most 

likely to rely on the indirect pathway, and that the dopaminergic activity associated with this 

seems to be the obverse of that associated with proactive inhibition, then proactive inhibition 

likely relies on either the direct or hyperdirect pathway. It seems plausible that this structural 

distinction of function is the reason that stopping an initiated, prepared, or expected action is 

difficult; the indirect pathway has relatively slow signal conduction compared to the direct 

pathway due to its GABAergic synapses (Lanciego, Luquin, & Obeso, 2012; Schroll, 2013). 

So, the direct pathway transmitting a Go command is much more rapid than the indirect 

pathway transmitting the Stop command to countermand it. With this in mind, it seems 

sensible to imagine that a quicker non-striatal route for cortical inputs to reach the basal 

ganglia (BG) would be useful in complementing a structurally inadequate form. Rapid 

activation of such a pathway could thus generate an early increase in inhibitory output from 

the internal segment of the globus pallidus (GPi) (DeLong & 
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Wichmann, 2010). Hypothetically though, this results in facilitation of an action via the direct 

pathway, but, importantly, according to the centre-surround model the hyperdirect pathway 

could momentarily disrupt all motor programs via focused disinhibition (DeLong & 

Wichmann, 2009; Nambu 2004; Schroll & Hamker, 2013). This disruption has been 

hypothesised to enable temporally precise response initiation, according to which, after an 

appropriate action is selected by the cortex, a corollary signal is transmitted to the hyperdirect 

pathway, which globally inhibits all motor programs, thereby allowing a second corollary 

signal to be transmitted to the direct pathway for the specific response to be initiated at an 

appropriate point in time. Evidence in favour of this account comes from Parkinson’s 

patients, whose pathology is characterised by decreased direct activation and increased 

indirect activation (Kravitz et al., 2010; Kita and Kita, 2011), and who have impairments to 

the initiation stage but not the completion stage of a movement (Bloxham et al., 1984; Carli 

et al., 1985; Hikosaka et al., 1993). 

We propose that our data here most likely point toward the hyperdirect pathway being 

involved in post-error slowing (PES), which we have used as an index of proactive 

inhibition. 

There are four alternative, but not incompatible, accounts of hyperdirect function. 
 

Based on the fast and global excitation of the GPi by hyperdirect collaterals, it has 

been hypothesised that the function of the hyperdirect pathway is to globally inhibit a 

premature response until the multiple potential responses have been organised and the 

appropriate response selected (Frank, 2006; Stocco et al., 2010). Following this logic, Frank 

(Frank 2006) proposed that when multiple simultaneous conflicting response options are 

active in premotor areas, the hyperdirect pathway is particularly important, a finding 

supported by an experiment using deep-brain stimulation (DBS) to the subthalamic nucleus 

(STN; Frank et al., 2007), and later by intracranial EEG (Cavanagh et al., 2011). Somewhat 

similar to this account, the hyperdirect pathway has also been hypothesised to globally inhibit 

a prepared response if a stop signal is displayed before the response is executed (Aron, 2011; 

Wiecki and Frank, 2013). These two accounts may appear incompatible, but since both 

functions require the rapid global motor program inhibition facilitated by the hyperdirect 

pathway’s conduction velocity and global effect on GPi, it is plausible that the pathway 

adapts to the required context and flexibly switches between these functions. Aron and 

Poldrack (2006) provided support for this account using fMRI, in which they demonstrated 

higher activity in STN on Stop trials compared to Go trials, and higher activity in STN in 

participants with better reactive inhibition (i.e., a shorter SSRT). This is interesting because 
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STN is a node in both the hyperdirect pathway and the indirect pathway, which we have 

presumed to be more implicated in reactive inhibition. On the other hand, this account is 

inconsistent with data from Parkinson’s patients who tend to have increased activity in STN, 

but who have slow reactive processes (Gauggel, et al., 2004); the extent to which this could 

be accounted for by proactive processes remains unknown. 

A third account was proposed by Chersi and colleagues (Chersi et al., 2013), who 

suggest that the activity of GPi and SNr is decreased by prefrontal connections to the 

hyperdirect pathway in order to suppress the influence of BG over the motor cortex, thereby 

allowing for top-down control of motor programs by the prefrontal cortex (PFC). By 

equalising the activity of GPi and SNr via inhibitory interneurons, response activation by the 

direct pathway is overridden, preventing BG output to the motor cortex, which, according to 

this account, allows PFC to control the motor cortex. Schroll and Hamker (2013) consider 

this account to be implausible since it is thought that the effect of the hyperdirect pathway on 

GPi and SNr is an excitatory one, but they note that it is nevertheless possible that increase in 

GPi activity may just as well suppress the output of BG to the motor cortex. 

The fourth account relies on the centre-surround inhibition model. According to the 

centre-surround hypothesis (Nambu, Tokuno, & Takada, 2002; see also Mink, 1996; Mink & 

Thach, 1993; Nambu, 2004), when the decision to execute an action is initiated by the cortex, 

a corollary signal is conveyed via the hyperdirect pathway that inhibits large areas of the 

thalamus and cortex that are associated with not only the intended action, but also competing 

motor programs. A second corollary signal disinhibits their target areas via the direct 

pathway, thereby releasing only the selected motor program. A third and final signal, perhaps 

deployed via the indirect pathway, extensively inhibits the selected motor program when its 

action is completed. That is, the hyperdirect pathway may inhibit all actions, including the 

intended action, but the intended action is strengthened by additional direct pathway 

activation, and is thus initiated (Gurney et al., 2001a; Humphries et al., 2006). An alternative 

account in which the hyperdirect pathway acts in concert with the direct pathway to inhibit 

actions that are competing for execution with the intended action and to facilitate the intended 

action, respectively, was put forth by Schroll, Vitay, and Hamker (2013). In both cases, it is 

thought that during a response period the hyperdirect pathway establishes surround-inhibition 

of inappropriate or unwanted motor programs (Figure 15). These two primary accounts, as 

well as some others, are evaluated by Schroll and Hamker (2013). 
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Figure 15. A comparison of Nambu, Tokuno and Takada’s (2004) and Schroll, Vitay, and 

Hamker’s (2013) hypotheses of centre-surround inhibition and the role of the hyperdirect 

pathway. 3-D Gaussians depicting neural activity (z-axis) for central and surrounding cortical 

representations (x- and y- axes). Pointed arrows represent excitatory effects and rounded 

arrows represent inhibitory effects. The direct pathway is represented by red, indirect by blue, 

and hyperdirect by green. The left panel represents Nambu et al., model centre-surround 

cooperation in which the direct pathway activates specific cortical representations while the 

hyperdirect pathway globally inhibits them. The direct pathway is assumed to be more 

powerful, and thus centre-surround activation occurs. The right panel represents Schroll et 

al.’s strict centre-surround cooperation hypothesis, in which, like the previous, the direct 

pathway activates specific cortical representations, while the hyperdirect pathway inhibits 

only competing representations, but not the activated representation. Adapted from 

“Computational models of basal-ganglia pathway functions: focus on functional 

neuroanatomy”, by Henning Schroll and Fred H. Hamker, 2013, Frontiers of Systems 

Neuroscience, 7, 122. © 2013 Schroll and Hamker. 

So, in addition to post-error slowing (PES), there is good experimental evidence 

implicating the hyperdirect pathway in preventing premature responses, stopping a prepared 

response before it is executed, suppressing BG to allow top-down control of motor cortex by 

PFC, and centre-surround activation-inhibition of competing motor programs. It is plausible 

that these four mechanisms reflect different proactive elements of response inhibition that 

work alongside PES. In fact, this discussion has given rise to a more flexible interpretation of 

proactive inhibition than the one that I started with (i.e., post-error slowing). 

I think that this paper evoked a line of speculation that was strengthened somewhat by 

the findings of the next chapter. Since the main conclusion here about proactive inhibition 

was that it seems like a naturally-occurring compensatory mechanism that, while it is to some 

small degree under the active control of an agent by explicitly elicited motivation and implicit 

bias to some strategy, may in fact be a necessary biological occurrence. This idea implies, to 
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me at least, that with the exception of what amount of strategy is indeed under agentive 

control, proactive inhibition is passive; that it is, a protective process that operates by some of 

the same automatic principles of, say, the immune system, and therefore is a noncognitive 

biological process and must confer a selective advantage. In providing some insight into the 

neurochemical substrate of proactive inhibition here, I think that it is important moving 

forward to evaluate its cognitive architecture using alternative methods, namely, 

electroencephalography (EEG). 

Using EEG to capture cortical activity following what we have learned from 

subcortical pathways may allow a richer analysis. Furthermore, since many event-related 

potentials are linked so closely with dopaminergic activity because they tend to best be 

understood using attentional accounts, this may further strengthen the inferences we are able 

to make. 
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CHAPTER 3 

Paper 2 

 

 

 

3.1 Preamble 

Now, we can make some strong conclusions about the neural substrate of PES, and 

we have tentative support for its mapping to a pathway that connects the basal ganglia to the 

prefrontal cortex. Indeed, to truly strengthen these tentative conclusions, further investigation 

is warranted. Electrode microarrays and high-resolution fMRI certainly have a pivotal role 

for the field in moving forward to establish this, but these are unavailable to me. It is 

nevertheless equally important to make inferences about the cognitive architecture of PES 

that is based on data observed from physiological means. Theoretical mathematical and 

cognitive models are indeed exciting, but it is important that they be biologically plausible. It 

is my opinion that in moving forward, the field has overlooked the necessity of biological 

plausibility of behaviour and cognition. As such, in this chapter I use electrophysiological 

methods to investigate PES. 

One of the first questions I asked in this thesis was the one posed by Rabbitt in his 

formative works in the psychometrics surrounding errors: “What does a man do after he 

makes an error?” One answer could be the same thing that a woman does. But what is that? 

In the previous section, I discussed the limitations in applying traditional Drift Diffusion 

Models to response time data in inhibition tasks that may otherwise allow us to parameterise 

fluxes in response time distributions and compute coefficients associated with implicit 

cognition such as response caution, evidence accumulation, bias toward one response or 

decision threshold over another, and so on. So without the aid of such models, if we are to 

question the rapid cognition that co-occurs with PES, one option is to use 

electroencephalographic (EEG) measures. EEG provides fine temporal resolution to assist in 

answering such questions with reasonably well-accepted theory. Despite my disinclination to 

accept such theory at face value – regardless of several decades of robust experiments 

supporting it – it is difficult to deny its validity with the results in mind. In EEG, data are 

captured by a voltage differential between one base electrode and some number of reference 

electrodes placed on the scalp. These data reflect the electrical activity associated with 



84  

postsynaptic potentials. Based on a long tradition of experimental psychology it is assumed 

that this activity relates to underlying active and passive cognitive processes. 

In conceptualising this study, we had to consider the task that was to be used. To 

maintain the central theme of this project, we needed to move forward with the SART in 

order to ensure we measure the same cognitive processes since the inferences we want to be 

able to make overall require a continuous logic throughout. The traditional SART 

incorporates an 89/11 ratio of Go to No-Go trials which, in the previous experiment, elicited 

an average of only 11 errors which would be insufficient for robust within-participant 

analysis of different ERPs and trial types. A traditional Stop-Signal Task tends to generate 

many errors, which might be useful for an EEG experiment of this nature, but the Stop signal 

is presented immediately after a Go signal, rather than on separate trials as in the SART, 

which would confound ERPs locked to the onset of the Stop signal. So, instead, we chose to 

continue using the SART in which Go and No-Go signals occur on separate trials as this is 

preferable when comparing ERPs generated by different signals. To achieve a higher number 

of trials of each type, we extended the SART from 225 trials to 800 trials, and incorporated a 

75/25 ratio of Go to No-Go trials which also required standardising the number of Go digits 

to 3, so that they would be presented proportionately to the No-Go digit, which, for no 

particular reason, remained the ‘3’. Thus every individual Go signal and the No-Go signals 

occurred with equal probability, avoiding confounds related to familiarity effects that are 

known to influence ERPs. Although this task design might reduce the proportionate number 

of errors since the likelihood of encountering a No-Go signal is increased, it would 

nevertheless produce a greater number of errors overall, since instead of 25 No-Go trials, 

there would be 200. 

To the extent that behavioural inferences from postsynaptic electrical activity in the 

cortex is valid, here, we ask ‘what is proactive inhibition?’ It remains unclear whether post- 

error slowing truly confers any overall advantage to response inhibition, but it is nevertheless 

reliably engaged presumably as a means to do so. What is the purpose or the source of the 

commonly observed 30-msec delay in response after an error? There are multiple accounts 

described below. The aim of this paper is to investigate whether patterns or single units of 

behaviour can be mapped onto patterns or single units of electrophysiological data. In the 

previous chapter we demonstrated that the basal ganglia seem to support the elicitation or 

recruitment of PES, but we did not demonstrate the degree to which it is an active process. It 

may be possible to do that using EEG methods. Furthermore, we will explore the interesting 
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relationships that we established in the previous chapter with g and age in PES, which 

provide additional insight into the neurocognitive networks that mediate the relationship 

between these variables and behaviour. 
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3.3 Abstract 

 

The slowing down of a response after committing an error in speeded response tasks has been 

reliably observed over the last 60 years, but no explanation has yet been articulated to 

account for it. Post-error slowing (PES) is thought to reflect a proactive mechanism to 

improve one’s chances of successfully inhibiting a response or selecting the correct response 

from an array of possibilities. Recently, Dutilh and colleagues (2012a) used computational 

modelling to compare how well several accounts of PES fit real and simulated data. They 

concluded that PES is the result of participants widening their response boundaries, which 

they assumed corresponds to increased caution. This explanation supports a proactive account 

of PES. We used EEG to test the same four accounts modelled by Dutilh and colleagues to 

provide direct neural evidence to supplement their simulated data. In a Go/NoGo task 

administered to N = 100 healthy young adults (24.3 ± 4.8 yrs), we mapped ERP parameters to 

the theoretical drift parameters established by Dutilh and colleagues. Their hypothesis would 

predict larger N2 after errors and that the amplitude of the N2 should correlate with 

magnitude of PES. Our results did not support these predictions (N2 amplitude was smaller 

after errors, p = .015, and there was no correlation between N2 amplitude and PES, p = .523). 

Our findings support another common account of PES, a disorienting account, that supposes 
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errors disrupt attentional processing. The post-error anterior N1 was significantly disrupted 

by errors (p = .020) and was correlated with the magnitude of PES (p = .016). We, therefore, 

suggest that PES is not completely proactive, but rather is partially the consequence of 

disruptions to attentional processing that only incidentally improve response inhibition by 

offsetting the initiation of response execution. Interestingly, the post-error N1 in older adults 

was diminished (p = .0008), but higher general intelligence rescued such disruptions to 

attention (p < .0001), indicating a partial compensatory mechanism in ageing that is 

supported by general intelligence. 
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3.4 Introduction 
 

In order to achieve one’s goals, the ability to respond flexibly when faced with 

unexpected changes to one’s environment is often required. Such flexibility, in turn, requires 

the capacity to control the process by which the intended behaviour is selected and generated. 

The automaticity of simple behaviours and actions generally allows productive engagement 

with simple situations. However, when environmental demands render these actions 

maladaptive, they need to be rapidly countermanded. There is a large body of experimental 

literature documenting substantial individual differences in successfully engaging this 

mechanism (e.g., Aron, 2011; Avila & Parcet, 2001; Chamberlain & Sahakian, 2007). It is 

not altogether surprising that response inhibition is difficult, and this is perhaps even 

advantageous since some circumstances will favour the engagement of automatic responding 

while others will favour the engagement of controlled behaviour, hence most environments 

will require a balance between the two types of behaviour. 

Response inhibition is a critically important executive mechanism, disturbances to 

which characterise a broad array of psychopathological profiles (Lipszyc & Schachar, 2010; 

Wright, Lipszyc, Dupuis, Thayapararajah, & Schachar, 2014). Despite its importance, 

response inhibition remains poorly understood and inconsistently conceptualised and 

measured. It is nevertheless now known that such adaptive control of behaviour requires 

more than the overt capacity to withhold an inappropriate action (commonly called reactive 

inhibition); it also requires covert regulation by way of performance monitoring, error 

recognition, and ex ante adaptation (Aron, 2011; Braver, 2012; Kenemans, 2015). These 

three processes likely contribute to proactive inhibition, a behavioural adaptation mechanism 

that increases the likelihood of future successful response inhibition but their contribution to 

proactive inhibition remains an open question. Both reactive and proactive inhibition seem to 

contribute to successful behavioural control, with proactive inhibition potentially 

compensating for poor reactive inhibition (e.g., strategic slowing down of one’s response 

speed after a failure to inhibit a prepotent response seems to be accentuated in individuals 

with a poorer ability to exert reactive inhibition; Beu, Burns, & Baetu, 2019; Bloemendaal et 

al., 2016; Laar et al., 2011). 

There is a large body of data that attempts to account for or predict individual 

differences in response inhibition using some instantiation of either the Stop-Signal Task 

(SST) or the Go/No-Go paradigm (GNG) using various imaging and computational 

techniques (Amos, 2000; Becker & Lim, 2003; Horn, Dolan, Elliott, Deakin, & Woodruff, 
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2003; Liddle, Kiehl, & Smith, 2001; Mostofsky et al., 2003; Simmonds, Pekar, & Mostofsky, 

2008; Wager et al., 2005). While nevertheless useful, such accounts often misrepresent the 

response inhibition network given what we now know about a dual control mechanism of 

inhibition and are thus limited in their utility, specifically for explaining pathological 

symptomatology. The principal measure yielded by the SST, Stop-Signal Reaction Time 

(SSRT; i.e., the time required to stop a response, or, interrupting the preparation of a 

repetitive action) is a measure of reactive inhibition, not overall response inhibition (Zandbelt 

& Vink, 2010). On the other hand, the principal measure yielded by the GNG paradigm, 

errors of commission (i.e., failures to withhold a response to a No-Go stimulus, or, inhibiting 

a prepared and initiated action) is a measure of overall response inhibition because under 

some conditions it is confounded by proactive inhibition, and is, therefore, unable to 

explicitly assess critical individual differences in the reactive process (Beu et al., 2019). 

Importantly, in each case, these measures are impure and incomplete representations of the 

critical processes under investigation, which may account for at least some of the 

incompatibility between empirical findings and clinical outcomes. 

Reactive inhibition supposes a race between stop and go processes to account for 

appropriate response inhibition or erroneous response execution (Band, van der Molen, & 

Logan, 2003; Verbruggen & Logan, 2008, 2009), and proactive inhibition is the strategic 

preparation for a presumed upcoming need to inhibit a response, which may be instantiated 

following stimulus cueing or behavioural adaptation following an error (Stuphorn, 2015). 

Proactive inhibition in response inhibition tasks can be operationalised as post-error slowing 

(PES), a commonly-observed phenomenon in which correct responses to Go stimuli after 

committing an error are roughly ten per cent slower than those preceding that error (Dutilh et 

al., 2012). It has been assumed that proactive inhibition contributes to successful response 

inhibition, but this assumption is often left untested and when it is tested, it not always 

supported by experimental data (e.g., Fiehler et al., 2005; Hajcak et al., 2003; Hajcak & 

Simons, 2008; King et al., 2010; Núñez Castellar et al., 2010; Notebaert & Verguts, 2011; 

Rabbitt, 1966; Rabbit & Rodgers, 1977; but see Van der Borght, Desmet, & Notebaert, 2015 

for alternative explanation). Whether or not proactive inhibition truly exerts an explicit 

positive effect on response inhibition in the trials immediately following the adaptation is not 

critically important, because it was recently proposed that it acts as an implicit compensatory 

strategy in adults whose overt reactive process may be compromised or deficient due to age 

or lower cognitive abilities (Beu, Burns, & Baetu, 2019). That is, it may be compensatory, 
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but not in the sense of improving performance, but rather protecting against poorer 

performance. PES may be a compensatory mechanism that takes the form of improving 

performance or protecting against further decrements in performance, but it may also reflect 

other processes, such as an emotional reaction to having committed an error (e.g., Rabbitt & 

Rodgers, 1977), and, as such, may not necessarily contribute to successful inhibition. 

It is pertinent to understand precisely how PES is engaged; that is, what is the 

cognitive process that offsets the implementation of post-error responses, and does it do so by 

auxiliary processing of the error, prolonging post-error stimulus processing, or some other 

mechanism? Whichever mechanism is responsible for the additional time associated with 

post-error responses is the mechanism deemed critical for the inhibitory network to 

implement in instances of deficient reactive inhibition. Articulating precisely the disturbed 

processes, and those processes which seem enhanced to compensate for them, is clearly 

important for understanding which processes are disturbed in different pathologies since an 

overall reduction in response inhibition ability may be caused by different disturbances in the 

processes contributing to overall performance. 

Using Drift Diffusion Models, Dutilh and colleagues (2012) concluded that post-error 

slowing is the result of shifting internal decision boundaries so that more stimulus-specific 

information is required before a subject is willing to make a decision to respond. Considering 

the conflicting evidence that performance directly improves following an error when PES is 

engaged (see Van der Borght, Desmet, & Notebaert, 2015), this explanation seems less likely 

unless greater evidence accumulation before a decision threshold is reached does not lead to 

improved performance. Error-associated responses are often characterised by shorter RTs 

than correct-associated ones, so post-error adjustments may partially reflect simple regression 

toward the mean. Generally, though, immediate post-error corrected trials that are themselves 

correct responses tend, in fact, to be slower than the mean RT of correct trials across the 

whole task, so true post-error adjustments probably reflect this additional latency (which may 

indeed reflect the upward shifted decision boundary proposed by Dutilh et al. (2012a)). 

Furthermore, data suggest that only those post-error responses that feature true PES are 

correct, whereas those post-error responses that are adjusted only to the mean RT level often 

are still incorrect in those segments of the task that include a no-go trial followed by another 

no-go trial. 

An alternative hypothesis is that performance is disrupted by the arousal, distraction, 

frustration, or loss of interest in task demands elicited by errors, and, as a function of this 
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disruption, response initiation is offset (Rabbitt & Rodgers, 1977). Given that it seems clear 

that PES partially relies on personal motivational investment in good task performance, this 

may indeed account for some variance in PES, but at face value it seems unlikely that this is 

the only plausible explanation for it. This explanation makes no assumption of improved 

performance resulting from PES. Evidence in favour of this account was provided by 

Compton and colleagues (Compton, Heaton, & Gaines, 2018), who failed to observe the 

requisite behavioural or electrophysiological conditions of the alternative account (i.e., no 

performance improvement following an error despite recognition of that error). 

A widely-accepted account of PES put forth by Notebaert and colleagues (Notebaert 

et al., 2009) proposes that delayed initiation of post-error responses is the consequence of 

attention being oriented away from the task at hand and assumes that this is because errors 

are infrequent events that are distracting as a result of their relative novelty. This account is 

generally consistent with behavioural observations, but the derivation method that the authors 

used to compute PES was unsatisfactory (see Dutilh et al., 2012b). 

While these explanations may fit data, they do not provide direct neural evidence of 

the processing that occurs in this timeframe. Whatever the case, it seems likely that proactive 

inhibition is a strategic mechanism engaged by individuals in whom it is most necessary (Beu 

et al., 2019; Bloemendaal et al., 2016). What remains to be understood is the cognitive 

processing with which it is associated, which may potentially be inferred from 

electrophysiological data. If PES is a compensatory mechanism in those for whom it is more 

necessary, then what is the underlying process that is engaged to drive that compensation? 

Using imaging techniques to inform empirical interpretations of behavioural data may 

shed light on the mechanisms that underlie performance. There have been very few attempts 

to fit drift parameters estimated by drift diffusion models to EEG data (see Frank et al., 2015 

Meuller, White, & Kuchinke, 2017; Turner, van Maanen, & Forstmann, 2015). The nature of 

such models relies on the assumption of sequential sampling, which is necessarily 

incompatible with response inhibition tasks where trial-by-trial response processing is 

differentiated on the basis of two things: the trial type (i.e., Go or No-Go), and its relative 

point to surrounding responses (i.e., relative to a prior error, a subsequent error, a prior 

correct response, or a subsequent correct response). It is unclear how, or whether, such 

models can reconcile these theoretical issues. 
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Several PET, near-infrared spectroscopy, and fMRI studies have indicated that 

activation of inferior frontal areas is associated with inhibition of behaviour, and more 

recently that the anterior cingulate is a critical locus in the network. Given the poor temporal 

resolution of the haemodynamic response, such techniques have limited utility in revealing 

the role of these putative neural generators in engaging distinct inhibitory processes. Yet, a 

good deal of empirical data have been generated pertaining to the source location and neural 

generators of event-related potential (ERP) components, but the cognitive processing that 

elicits this electrical activity have not yet been fully described. These are exhaustively 

outlined in many reviews and elsewhere which do not account for proactive inhibition (e.g., 

Band & van Boxtel, 1999; Huster, Enriquez-Geppert, Lavalle, Falkenstein, & Herrmann, 

2013; Huster, Westerhausen, Pantev, & Konrad, 2010; Jodo & Kayama, 1992; Kiefer, 

Marzinzik, Weisbrod, Scherg, & Spitzer, 1998; Luitjen et al., 2014; Menon, Adleman, White, 

Glover, & Reiss, 2001). What is more important, though, is the time course of this activity, 

and whether it is sensible to surmise the cognitive processes as a function of the ERP 

component based on its latency and the latency of processes that they are thought to reflect. 

The ERP profile of response inhibition has been extensively reviewed elsewhere, 

especially for aggregated stimulus-locked components (i.e., ignoring likely pre- and post- 

error differences; see Bokura, Yamaguchi, & Kobayashiu, 2001; Jodo & Kayama, 1992; 

Sehlmeyer et al., 2010). Briefly, neither the P1 nor the N1 tend to be distinguishable between 

Go and No-Go conditions in latency, amplitude, scalp topography, or source localisation. 

Because an N2 is generally elicited only by No-Go stimuli, it is commonly known as the No- 

Go N2, and appears to be generated in the right cingulate cortex, consistent with the fMRI 

literature implicating this region in stopping and inhibiting responses (e.g., Jodo & Kayama, 

1992). Likewise, P3 amplitude is reliably larger with a longer tail (i.e., a similar deflection 

onset, but longer duration) on No-Go trials, and tends to be more anteriorly localised than the 

Go-P3. It has been reported that the P3 component for Go trials can be divided into two 

subcomponents, the early (P3e) and the late (P3l), whereas the No-Go P3 shows only one 

peak (e.g., Bokura et al., 2001). This bimodal P3 structure probably reflects the onset of 

intentional action because in those experiments in which it is observed, the error rate is very 

low, so the No-Go P3 is therefore successfully inhibited, eliminating this possible confound. 

In a Go/No-Go paradigm with two conditions, one in which participants were 

instructed to favour speed over accuracy, and the other in which participants were given no 

such instruction, the No-Go N2 was significantly larger in amplitude when greater effort was 
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required to inhibit a response (i.e., when speed was favoured over accuracy; Jodo & Kayama, 

1992). Donkers and van Boxtel (2004) proposed an alternative hypothesis to the ‘No-Go’ 

classification of the N2 by eliciting it in a “Go/GO” paradigm in which the “GO” signal 

required participants to respond with maximal force and the “Go” signal required a response 

with force consistent with normal key-pressing. They therefore concluded that the N2 reflects 

conflict monitoring, not response inhibition. These accounts do not appear incompatible if 

one considers the N2 to simply reflect mismatch detection or stimulus discrimination (e.g., 

Go vs No-Go, or Go vs GO in these two examples), as was suggested by the researchers who 

first observed the component (Sutton, Braren, & Zubin, 1965), and later supported by Smith 

and colleagues (Smith, Johnstone, & Barry, 2007). 

Sehlmeyer and colleagues (Sehlmeyer et al., 2010) showed that the No-Go N2 and the 

No-Go P3 are not solely the result of identifying an upcoming need to inhibit a response. 

They showed that the No-Go N2 was significantly larger in high compared to low trait 

anxiety (i.e., nonspecific, or general, anxiety) and that there was no such effect in high 

compared to low anxiety sensitivity (i.e., anxiety elicited by a specific cue), and that the No- 

Go P3 was significantly larger in high compared to low anxiety sensitivity but not high 

compared to low trait anxiety. This indicates that the manner in which different people 

encode the same stimulus, and thus the directive which that stimulus involves, can be 

distinguished by these components. In particular, that the need to inhibit a response is not a 

unitary process in the mind, but one that is an intended outcome that is reached by different 

paths in different people. The implication of these findings is that there may be a common 

neural network underlying response inhibition and anxiety, and also that it may be possible to 

categorise those who favour reactive processes or proactive processes by such an index. 

Interestingly, Bengson, Mangun, and Mazaheri (2012) suggest even that anti-correlations 

between beta-band activity in the motor cortex and theta-band activity in prefrontal regions 

predict subsequent failed inhibitions in a Go/No-Go task and, based on these findings, claim 

that independent perceptual and motor mechanisms operate separately, but in parallel, to 

influence success or failure of response inhibition. In all, this evidence gives a clear 

indication of a dual motor and cognitive process of response inhibition. In support of this, 

Vallessi (2011) administered a Go/No-Go task to a sample with a broad age range and found 

that although older participants responded slower, they did not make more errors (see also 

Beu et al, 2019). Critically, though, both the Go and the No-Go P3 differed in latency and 

amplitude (were longer and larger) in older adults only at prefrontal sites and not at central 
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sites, but its amplitude was highly correlated with quicker response times at central sites at all 

ages. These results suggest that more intensive stimulus evaluation processes lead to quicker 

responses, and that older adults seem to engage in more frontal stimulus evaluation 

processing that appears to equalise their inhibitory success with younger people. 

There has not been much investigation into differences in stimulus-locked ERPs 

between inhibited and uninhibited responses on Stop or No-Go trials in response inhibition 

tasks. Some authors have reported a larger N2 and P3 on No-Go trials compared to Go trials, 

with correctly-inhibited No-Go N2 and P3 being even larger than their failed inhibition 

counterparts (Falkenstein, Hoormann, & Hohnsbein, 2002; Smith, Johnstone, & Barry, 2008). 

Smith and colleagues (2008) assume this to reflect appreciation of the need for inhibition. 

The plausibility of this hypothesis is questionable, since a common temporal window for the 

N2 is 200 – 500 msec, the majority of which is after a response is executed, therefore the 

temporal window does not coincide with processes presumably involved in response 

preparation. Using a Flanker task, Groom and Cragg (2015) likewise suggest that the P3 is 

associated somehow with inhibition, reporting a larger P3 on correctly inhibited No-Go trials. 

They found no such effect reflected in the N2, though, rather suggesting that the N2 is 

associated with response conflict, but not inhibition. Roche et al. (Roche, Garavan, Foxe, & 

O’Mara, 2005), on the other hand, observed no differences in amplitude in either the N2 or 

the P3 between correct and incorrect inhibitions, but that N2 (especially at left posterior 

temporal region), frontocentral P3e, and parietal P3l all arose earlier on correctly-inhibited 

No-Go trials compared to errors. The authors did not report comparisons to latencies on Go 

trials. 

On the other hand, a considerable number of studies have compared response-locked 

ERPs to correct and incorrect responses. The error-related negativity (ERN) is elicited when 

an error is committed and is observed in humans and monkeys at frontocentral sites within 

100 msec of the electromyographic activity associated with the error. There is some evidence 

that the ERN is elicited even outside of error awareness in a combination Go/No-Go/Stroop 

task (Hester, Foxe, Molholm, Shpaner, & Garavan, 2005). Interestingly, in this task, not only 

was PES not observed, but an opposite effect was—participants sped up after errors and 

slowed down after correct responses. So, the interpretability and generalisability of this 

conclusion is questionable. Nevertheless, in this experiment as well as in others using more 

standard response inhibition tasks, converging dipole source modelling and fMRI evidence 

localise the ERN to the anterior cingulate cortex (ACC; Hester et al., 2005), and dorsolateral 
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prefrontal cortex (DLPFC; Roche, Garavan, Foxe, & O’Mara, 2005), both critical loci in the 

response inhibition network commonly assumed to reflect error recognition and to support 

inhibition, respectively. In fact, Roche and colleagues (Roche et al., 2005) reported data that 

seem to indicate that the DLPFC may strengthen or support the ERN during periods of 

“absent-mindedness”. That is, in those who less frequently recognise errors in their response 

patterns, which is a behaviour associated with blunted ERN, the DLPFC is activated 

alongside the ACC following an error. The presence of the ERN even in the absence of error 

awareness may be contradicted by data from young people. Ladouceur and colleagues 

(Ladouceur et al., 2004) measured PES in a flanker task, and separated their sample into early 

and late adolescence groups. They found that both age groups slowed down after committing 

an error, but that the ERN arose only in older adolescents. So, in some experiments, there is 

behavioural evidence of post-error behavioural adaption in the absence of neural evidence, 

whereas in others, the opposite is observed. 

In patients with lesions to the medial PFC, including the ACC and the rostral 

cingulate zone (RCZ), Stemmer et al. (Stemmer, Segalowitz, Witzke, & Schonle, 2003) 

showed that even with conscious awareness of errors, no ERN was elicited. This is 

inconsistent either with findings that ERN is elicited by response monitoring or that the ERN 

originates in these neural regions. It is possible that damage to the ACC may interrupt the 

relay of synaptic volleys that produce the ERN, suggesting that error detection or response 

monitoring is potentially supported by circuits outside the ACC. 

Even correct responses give rise to a negative-going deflection under some conditions 

(e.g., Olvet & Hajcak, 2009), which has been termed the correct response negativity. Given 

that the ERN can be elicited without conscious awareness of an error, and the presence of 

somewhat similar component after correct responses, it seems plausible that the so-called 

error-related negativity reflects a comparison process between the executed response and the 

intended response. That is, it may reflect processing a response, but not processing an error, 

especially since it is not related to PES (Niewenhuis, Ridderinkhof, Blom, Band, & Kok., 

2001). In other tasks, in accordance with basic reinforcement learning principles, the ERN 

appears to be associated with improving task performance (Holroyd & Coles, 2002). Here, 

the ERN was localised to the RCZ, not the ACC. The RCZ is often implicated in monitoring 

response conflict (Botvinick, Braver, Barch, Carter, & Cohen, 2001), and is activated by the 

need for behavioural adjustments when the probability of obtaining a reward is reduced, 

which differs from errors, which signify the loss of anticipated reward (Ridderinkhof, 
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Ullsperger, Crone, & Nieuwenhuis, 2004). It seems plausible then that the neural origin of the 

ERN and the task conditions in which it is being elicited determine its meaning. 

When an error is committed, the ERN is usually followed by a waveform whose 

morphology and scalp topography is commensurate to the P3, the error positivity (Pe). Since 

the P3 is thought to reflect the processing associated with evaluation or categorisation of an 

event (Bokura et al., 2011), and it is mediated by the subject’s motivational or attributional 

investment in a task (Atshushi et al., 2005; Kleih, Nijboer, Halder, Kübler, 2010), it seems 

reasonable to suppose that the Pe is associated with the same. However, dipole source 

modelling of the Pe scalp topography implicate alternative neural generators to those which 

generate the P3. This was supported by Hester and his colleagues (Hester et al., 2005) who 

contrasted blood-oxygenation-level-dependent (BOLD) signals associated with conscious and 

nonconscious errors in a Go/No-Go fMRI experiment, and observed differential activation 

between regions associated with the Pe and the P3. It has nevertheless been postulated that 

the Pe might indeed constitute a P3-like response that reflects the motivational significance of 

errors (Overbeek et al., 2005), which is consistent with observations of larger Pe following 

more salient errors (Leuthold & Sommer, 1999), and smaller or absent Pe without conscious 

recognition of the error (Endrass et al., 2005; Nieuwenhuis et al., 2001; O’Connell et al., 

2007). Furthermore, Davies and colleagues (Davies, Segalowitz, Dywan, & Pailing, 2001) 

reported positive correlations in amplitude between the stimulus-locked P3 on correct 

responses and the response-locked Pe on incorrect responses in a flanker task. 

This evidence supports the idea that the ERN reflects response, but not error, 

monitoring, and that the Pe reflects conscious processing of the error. Interestingly, though, 

both the ERN and the Pe have been elicited in subjects who observe others committing errors, 

and the amplitude of their ERN correlated with their own PES when they themselves perform 

that task (Wang et al., 2015). Others have suggested that the ERN reflects a general error 

signal when the error is initiated, but that the Pe is more closely related to remedial action to 

correct the error (Kieffaber, Hershaw, Sredl, & West, 2016). This is consistent with the 

account of the ERN arising in both aware and unaware errors if only the post-ERN Pe gives 

rise to PES only following conscious errors. 

There is a wealth of data describing differences in amplitude and latency between 

errors to No-Go stimuli and correct responses to Go stimuli for response-locked components, 

but very little that describes the relationship between these differences and PES. Furthermore, 

the efficacy of behavioural adaptation following an error is less understood in 
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psychophysiological terms. The ERN is elicited regardless of conscious awareness of an 

error, whereas the Pe does not appear to be, but can these components tell us anything 

meaningful about post-error behavioural adjustments? If they can, meaning that the error is 

processed in some way and proactive inhibition is engaged, is this translated into post-error 

behavioural improvements? Finally, if it is, what is the mechanism for this according to the 

previously described accounts of PES? 

It stands to reason that error-related processing induces variable patterns in 

subsequent stimulus processing, and that such variations could induce post-error behavioural 

adaptation and/or post-error behavioural performance changes. So, in accordance with the 

four most common hypothetical accounts of PES, we may be able to infer the 

electrophysiological profiles associated with them. 

While it may not be possible to use variations in ERPs on different trial types as 

indices of the theoretical drift parameters proposed by Dutilh and colleagues (2012), it may 

be possible to use them as evidence to evaluate the three primary accounts of PES. According 

to Dutilh and colleagues’ (2012) modelling, PES can be explained by increased response 

caution, the psychometric architecture of which is reflected in outward shifted decision 

boundaries. Since the N2 has been implicated in stimulus discrimination, and the P3 in 

stimulus processing, we might expect these two components to correlate with PES. These 

authors suggest that an alternative explanation that may potentially also fit their data is 

increased attention following an error, which can be simply inferred from increased 

amplitude in the N1 following an error, since the N1 is an ERP typically assumed to represent 

stimulus processing or attention (e.g., Luck, 1995; 2000). On the other hand, Notebaert et al. 

(2009) argue that PES is the consequence of distracted attention, which could be simply 

observed as a smaller N1 following an error. However, this hypothesis is based on the 

assumption that the distraction is caused by the infrequency of errors (the oddball 

hypothesis), and therefore this hypothesis implies that we should also observe a larger P3 on 

error trials compared to correctly withheld inhibitions (i.e., an oddball P3). For our purposes, 

we will refer to the former account as an orienting account, and latter account as a 

disorienting account. Finally, Rabbitt and Rodgers’ (1977) account suggests that PES is 

caused by effective error detection and response processing. A possible neural correlate that 

could provide support for this hypothesis is increased amplitude of error-related components, 

the ERN and/or Pe. With these four hypotheses and their potential electrophysiological 

accounts in mind, we may be able to tease them apart using a measure of general intelligence, 
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which we recently found to influence the engagement of PES alongside age (Beu et al., 

2019). Since in our previous study lower general intelligence scores predicted greater PES, 

we anticipate that whichever ERP better reflects the engagement of PES should also correlate 

with lower general intelligence scores. 

3.5 Materials and methods 
 

3.5.1 Sample 
 

One hundred adults were recruited from a classifieds advertisement website, provided 

written informed consent, and were remunerated for their time at the rate of AU$20 per hour. 

This sample is the third sample used in Experiment 3 in the previous chapter. Four 

participants were excluded from analysis due to inadequate task engagement (two criteria 

were used to assess the adequacy of task engagement: (1) responses to no fewer than 80% 

(⩾480) of Go trials; and, (2) at least 80% (⩾675) of total RTs not being below the threshold 

for a true response, see below; n = 2). Two participants were excluded from response-locked 

but not stimulus-locked ERP analyses due to a coding error that caused a failure to record 

response events. 

The final sample (N = 94, 55 females; age: M = 24.3, SD = 4.8, range 18-40 yrs; 86% 

right-handed, 12% left-handed, and 2% ambidextrous by self-report) comprised healthy, 

adults who self-reported to researchers prior to consenting as having normal or corrected-to- 

normal vision, not taking medications with sedative or stimulant mechanisms, or medications 

indicated for neuropsychiatric dysfunction (e.g., antidepressants, antipsychotics; such 

medications usually operate on dopaminergic, cholinergic, or serotonergic receptors, each of 

which have unknown effects on EEG waveforms (Aiyer, Novakovic, & Barkin, 2016)) for at 

least six months; not suffering from major medical or psychiatric conditions; having no 

history of drug or alcohol dependency; and, not smoking more than five cigarettes per day. 

The experimental protocol was approved by the University of Adelaide Human Research 

Ethics Committee and administered in compliance with the Declaration of Helsinki (2013 

revision). 

3.5.2 Testing procedure 
 

Participants were seated 60 cm from a 24-inch, 120Hz computer screen in a sound- 

attenuated room for approximately 60 minutes. Responses were made with a standard 1,000 

dpi computer mouse. Participants completed a series of behavioural tasks, as well as a 

modified Go/No-Go task administered during the EEG recording. The behavioural tasks 
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included a battery of fluid ability tests that assess reasoning ability, working memory, and 

processing speed (see below) in order to investigate any effects of g, a general factor of 

intelligence, on ERP waveforms or response inhibition performance. Stimulus presentation 

for the behavioural tasks was controlled by Xojo software (Xojo Inc., Texas, USA), whereas 

the EEG task was coded in E-Prime 2.0 software (Psychology Software Tools, Pittsburgh, 

PA). Prior to administration of behavioural tasks, participants self-reported age and sex. 

3.5.3 Sustained Attention to Response Task (SART) 
 

We use a Go/No-Go task in favour of the Stop-Signal Task because, unlike SSTs 

where Going and Stopping processing are confounded since both stimuli are presented on 

No-Go trials, in Go/No-Go tasks the two types of stimulus are presented on separate trials, 

therefore providing the opportunity to assess differences in stimulus processing (the nature of 

this distinction is discussed in Switck, Ashley, & Turken, 2011). We use a modified version 

of the traditional nine-digit SART here, instead presenting participants with four digits. We 

do this to ensure a number of No-Go error trials high enough for ERP analyses. It remains the 

case that only one of these four digits is a No-Go signal, and all digits are presented in 

randomised order with equiprobability to avoid oddball effects (that typically occur in many 

tasks where No-Go stimuli are less frequent than Go stimuli and where all Go stimuli are 

identical) and, where possible, to attenuate the influence of individual differences in learning. 

The SART (Robertson et al., 1997) is a Go/No-Go task in which participants are sequentially 

presented with a single digit (1 – 4) displayed in the centre of the screen in fonts of differing 

sizes (48, 72, 94, 100 and 120 point, ranging from 12 mm to 29 mm on the screen; i.e., 

subtending 1° × 0.75° to 2.4° × 1.8° at the retina). Each digit is displayed for 245 msec, 

immediately followed by a mask for 900 msec, resulting in a response period of 1,145 msec 

from digit onset to mask offset. This masking procedure interrupts residual visual processing 

(Herzog, 2008) and minimises fixational drift (Snodderly, 2016). Participants are instructed 

to rapidly respond by pressing the left mouse button, using their preferred hand, as soon as 

possible after any digit, except the digit ‘3’, is displayed (‘Go trials’; 0.75 probability), and to 

inhibit this response when the digit ‘3’ is displayed (‘No-Go trials’; 0.25 probability). This 

task consists of 800 trials, each digit presented with equiprobability in random order, with 

200 No-Go trials. Participants are instructed to respond as quickly as possible without 

sacrificing accuracy. 



100  

3.5.4 Behavioural analysis 
 

3.5.4.1 Overall response inhibition and proactive inhibition. Despite median 

response time (RT) being commonly-used because it is robust to the influence of skew and 

truncation (Ulrich & Miller, 1994), we use the mean here for two reasons. First, because use 

of the median is more suited to simple tasks that present a single stimulus, and that require 

simple stimulus-response patterns, such as the Simple or Choice RT tasks; whereas the 

Go/No-Go task has two trial-types (Go and No-Go) that are differently processed, and which 

introduce confounding processing and response strategies to even the Go stimulus. Second, 

this task is unlikely to generate large RT outliers and we do not apply an upper bound for RT 

outlier exclusion because this task uses a fixed inter-stimulus interval, imposing a limit on 

responding (1,145 msec), which approximates the acceptable upper bound of most RT 

distributions (Luce, 1991; Miller & Low, 2001; Jensen, 2006). However, we exclude trials 

with RTs shorter than 150 msec (these trials are assumed to reflect anticipatory responses). 

This heuristic resulted in the exclusion of very few trials (1.6%). 

Our measure of overall response inhibition is the proportion of successfully withheld 

responses on No-Go trials; that is, the complement proportion of errors of commission, where 

an error of commission is the failure to inhibit a response to the No-Go stimulus. It is worth 

noting, however, that this traditional measure of response inhibition is potentially confounded 

by proactive inhibition, and therefore might not purely reflect reactive inhibition (the ability 

to stop a prepared response). Our measure of proactive inhibition is post-error slowing (PES). 

In the SART, PES is computed by subtracting the average RT of Go trials within a four-trial 

window before an error of commission from the average RT of Go trials within a four-trial 

window after the error of commission. PES is, therefore, the temporal response pattern 

adjustment that participants make after failing to correctly inhibit a response, which usually 

consists of slowing down responses to Go stimuli after an error. Trials that could be classified 

as both pre- and post-error trials, and No-Go trials that fall within these windows, were 

omitted from the analysis. It has been established that four trials either side of an error are 

sufficient to yield an accurate and computationally efficient estimate of PES; however, this 

conclusion was derived from data using the traditional SART (No-Go probability = 0.11, 

whereas here, No-Go probability = 0.25, resulting in more errors, but relatively fewer 

available data-points pre- and post- error from which to compute PES; see Dutilh et al., 

2012a). 
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3.5.4.2 Psychometric analysis. We recently demonstrated that general intelligence, g, 

seems to mediate the relationship between age and proactive inhibition, and that age also 

magnified a dopaminergic polygenic effect on proactive inhibition (Beu et al., 2019). It is 

possible that age, which negatively affects dopamine production and transmission, is a 

predictor of greater PES, as this allows individuals to compensate for natural declines in 

dopamine production. If both age and g appear to moderate a genetic effect on PES, PES may 

therefore be considered a compensatory strategy. So, we will investigate the 

psychophysiological correlates of g in stopping and in proactive stopping, and investigate 

whether g is associated with the ERPs that accompany PES. 

We administered a battery of tests of fluid abilities on the same computing and 

peripheral hardware described above and used structural equation modelling (SEM) to 

calculate a latent general intelligence (g) factor. Our SEM includes additional samples to 

those described in the current paper. These additional samples comprise a larger series of 

experiments with a common theme and similar battery of cognitive tasks, and with identical 

participation inclusion criteria. This method for g derivation allows a more robust population 

estimate due to the larger sample size (N = 569). The model is robust (χ2 (N = 569) = 34.5, P 

= 0.03, CFI = .98, TLI = .97), and includes tasks measuring the following domains: higher- 

order inductive reasoning (Raven’s Advanced Progressive Matrices short-form, RPM (Raven, 

2000), and the Comprehensive Abilities Battery-Induction, CAB-I (Hakstian et al., 1975)), 

visuospatial ability (Mental Rotation (Vandenberg & Kuse, 1978)), visuospatial working 

memory (Dot Matrix (Law et al., 1995)), verbal working memory (Sentence Span 

(Lewandowsky et al., 2010)), visual processing speed (Inspection Time (Vickers et al., 

1972)), and response and decision speed (Simple and Choice Reaction Time (Deary et al., 

2011)). These domains were chosen for their known associations with g (Jensen, 1998). In an 

additive model, the tasks that this sample was tested on, and the proportion of estimated 

individual variance in g that each accounts for were: Simple (standardised β = -.063, p 

= .005) and Choice (standardised β = -.117, p < .0001) Reaction Time, RPM (standardised β 

= .412, p < .0001) and Dot Matrix (standardised β = .609, p < .0001), in a highly significant 

model (R2 = .931, F4,275 = 926.8, p <.0001). This method of estimating SEM with samples 

that share a subset of common measures is described in (Keith & Reynolds, 2012). 

Finally, because we used an unvalidated adaptation of the traditional SART for EEG 

analyses, we also administered the traditional version (which presented digits 1-9 rather than 

1-4, and hence presented No-Go stimuli with a probability of 11%) to ensure that 
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performance was consistent in the EEG task and the traditional, shorter, version (for 

description see Section 2.5.3). 

3.5.5 EEG recording and analysis 
 

Continuous EEG was recorded from tin electrodes embedded in a cap (Electro-Cap 

International, Ohio) from the Fz, F3, F4, Cz, C3, C4, Pz, P3, and P4 scalp sites according to 

the International 10–20 system. An additional active electrode was placed on the right 

earlobe, and all electrodes were referenced to the left earlobe with a ground located at AFz. 

Impedances were generally kept below 5 kΩ, and never exceeded 10 kΩ. A vertical and a 

horizontal electrooculogram (EOG) were recorded from electrodes placed above and below 

the left eye, and at the left and right outer canthi. EEG and EOG were recorded at a sampling 

rate of 1000 Hz and amplified using a BioNomadix wireless system (Biopac Systems Inc., 

Goleta, CA, USA). EEG data were filtered online with a 0.1–100 Hz bandpass filter, and 

EOG data were filtered online with a 0.005–35 Hz bandpass filter. 

The data were further analysed offline using EEGLAB (Delorme and Makeig, 2004) 

and ERPLAB (Lopez-Calderon and Luck, 2014). EEG data were re-referenced to the 

average of the two earlobes and filtered using a 50-Hz notch filter and a 30-Hz low-pass 

filter (12 dB/octave). The continuous EEG was locked to stimulus-onset or to the motor 

response. 

Stimulus-locked events were segmented into epochs ranging from 100 msec prior to 

stimulus onset to 200 msec post stimulus onset, and baseline corrected using the 100-msec 

pre-stimulus interval for the N1 (note that we used a shorter time window for the N1 to 

increase the number of usable trials from which this small component was estimated), and 

100 msec prior to stimulus onset to 600 msec post stimulus onset, and baseline corrected 

using the same pre-stimulus interval for the N2 and P3. 

Response-locked events were segmented into epochs ranging 100 msec prior to 

response to 500 msec post response, and corrected using the same baseline, or pre-response, 

interval. Response-locked ERPs can be confounded by differences in RT between conditions. 

For example, the faster RTs on incorrect No-Go trials than on Go trials would result in a 

baseline period that would include the onset of the Go or No-Go stimulus at different 

processing stages. Such differences in the baseline periods could confound the response- 

locked ERPs. To control for this potential confound, we selected Go trials with RTs most 

similar to No-Go trials. That is, for each participant we iteratively removed Go trials with the 
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longest RTs until the difference between the average RT for Go trials and the average RT for 

No-Go trials was less than 5 msec. 

Blinks and eye movements were detected using a function in ERPLAB that detects 

step-like artefacts in the vertical and horizontal EOG channels, as recommended by Luck 

(2014). Trials with such artefacts were rejected from further analyses. In order to maintain an 

acceptable signal-to-noise ratio, we included only participants who had more than 25 artefact- 

free trials in both stimulus-locked trial-type for each relevant comparison (i.e., before error 

and after error; error responses and correct Go responses). The number of participants 

excluded based on this rule differed between comparison and ERP and can be deduced by 

degrees of freedom in their respective analyses below. We applied the same criterion for the 

response-locked conditions (before error, after error, error responses and correct Go 

responses). For response-locked pre- and post- error comparisons, 68 participants remained 

after pre-processing, and for the Go and error trial comparisons, 36 remained. Exclusions for 

these ERPs are higher because we required a minimum number of ERPs per participant to 

calculate response ERP amplitude values, and many participants fell under this threshold 

after processing. Additional exclusions here are due to the motor confounds associated with 

responding, and because errors tend to manifest physically in eyeblinks, readjustment, and 

facial expressions, but also because the response-locked analyses were subjected to an 

additional constraint (we included only trials with RTs shorter than 645 msec, see below). 

ERPs were measured as the mean amplitude in their respective time windows, 

averaged across bilateral sites (i.e., 3, 4, and z). We use mean amplitude as our measure 

because, compared to others, it seems less sensitive to differences in the number of trials 

between trial-types (Luck, 2014). The anterior N1 was measured from frontal sites at 80 – 

150 msec, the central N2 was measured from central sites at 180 – 280 msec, and the 

frontocentral P3 was measured from frontal and central sites at 300 – 600 msec, all relative to 

stimulus onset. Response-locked ERPs were also averaged across bilateral sites; the ERN was 

measured from frontal sites at 0 – 150 msec, and the Pe was measured from central sites at 

200 – 500 msec. These time windows were chosen because they are consistent with the 

literature, and they contained the maximal peak of each component except the Pe. The 500- 

msec time window for the Pe abbreviated the full waveform although it still contained the 

peak for most trials. We chose a relatively short 500-msec time window locked to the onset 

of the response because it needed to precede the onset of the subsequent trial. That is, we 

excluded trials with a reaction time that was longer than 645 msec, so that the response- 
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locked epoch of 500 msec did not extend into the subsequent trial. This constraint prevented 

us from using a longer epoch, which would have resulted in the exclusion of a large number 

of trials. Unlike many EEG studies with motor behavioural tasks, we recruited left-handed 

participants despite the unknowns associated with lateralisation of activity and function in 

such tasks between handedness (e.g., Doyle, Yarrow, & Brown, 2005). We allowed left-

handed individuals to participate because ERPs were averaged across bilateral and central 

sites, and did not investigate any lateralised effects. Average amplitude and variability in the 

sample with and without inclusion of left-handed participants were highly concordant in all 

ERPs and all trial and response types. 

3.6 Results and Discussion 
 

3.6.1 Behavioural data 
 

3.6.1.1 Response inhibition. Because we used an unvalidated adaptation of the 

traditional SART for EEG analyses, we also administered the traditional version to ensure 

that performance in the two tasks was consistent. The three measures of each task were all 

correlated: Go RT (r = .68, p < .0001), error rate (r = .67, p < .0001), and PES (r = .42, p 

< .0001). The descriptive data for the traditional SART is reported in the previous chapter. 
 

The average RT on Go trials in the modified SART was 366 (± 67.3) msec and the 

average RT for No-Go trials (i.e., errors) was 304 (± 68.4) msec; consistent with common 

findings, this difference represents a quicker error response than correct Go response (t93 = 

17.86, p < .0001, d = 0.91). Overall, the mean error rate was 28.77% (M = 57.54, SD = 29.94 

errors), and every participant made at least one error, of whom, all but 19 (20.12%) engaged 

PES. The average RT difference before (M = 337 ± 61.2 msec) and after (M = 362 ± 69.0 

msec) errors was 24.74 msec (95%CI: 18.87 – 30.60) and is statistically significant (t93 = 

8.37, p < .0001, d = 0.38), indicating a general recruitment of proactive inhibition. 

For the most part, it remains an open question as to whether PES is an effective 

strategy to enhance successful inhibition to subsequent No-Go stimuli. Here, a t-test indicated 

that those participants who slowed down following an error did not make fewer errors than 

those who did not slow down (M = 58.20, SD = 29.82 errors, and M = 54.47, SD = 34.22 

errors, respectively), p = .666. Furthermore, magnitude of proactive inhibition was not 

indicative of greater overall response inhibition (r = -.10, p = .35), seeming to indicate that, 

on the whole, PES may not contribute to overall inhibition of action as a general principle 

across all people (i.e., it may not operate in the same way between individuals). It is possible 

that single-trial analysis could yield more precision in answering this question (i.e., whether 
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PES after one error increased the probability of inhibition on closely-following No-Go trials, 

and the absence of PES after another error had no effect on, or decreased probability of, 

inhibition of closely-following No-Go trials), but our task contained too high a proportion of 

No-Go to Go trials to be able to run such analyses. 
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There was no effect of sex on any measure of SART performance (all p > .75). Older 

age, however, was associated with more successful response inhibition (i.e., fewer errors; r92 

= -.28, p = .006), but not RT (r92 = .15, p = .136) and only marginally with more proactive 

inhibition (r92 = .19, p = .071). Those correlations that are significant remain so after 

correcting α for multiple comparisons using the highly conservative Bonferroni’s method. 

Given our previous evidence that PES appears to be a compensatory mechanism (Beu 

et al., 2019), we wanted to pinpoint the source of the effect of PES and age on error rate by 

running a regression model with an interaction term alongside a simple additive model. In the 

additive model, age was a significant predictor of fewer errors (β = -1.72, p = .008) but PES 

was not (β = -0.05, p = .661), F2,91 = 4.09, p = .020, R2 = .08, consistent with the notion that 

PES may not, in itself, improve response inhibition. The inclusion of an interaction term 

captured much of the previous effect of age, which was no longer significant (p = .777), 

allowing PES to predict more errors (β = 1.04, p = .047), and, consistent with a compensatory 

account of PES, the interaction was significant (β = -0.05, p = .034), such that more PES 

when it accompanies older age predicts fewer errors. This model (F3,90 = 4.38, p = .006) 

accounted for an additional 4.5% of variance in errors (R2 = .13). This pattern of data 

replicates our previous findings (Beu et al., 2019). Since the relationship between age and 

outcome behavioural measures relies on its interaction with other variables, and because for 

the most part age was not associated with ERP measures, neither it, nor sex, were included as 

covariates in any subsequent models. 

3.6.1.2 Speed-Accuracy Trade-Off. Since overall response time confounds the overall 

commission of errors (r92 = -.72, p < .0001) – most likely due to proactive inhibition 

processes like post-error slowing – we computed a measure of speed-accuracy trade-off 

(SAT) which is a relatively clean measure of performance that controls for strategic slowing 

down of response time to achieve a higher successful inhibition rate. Here, our measure of 

SAT was calculated by dividing the number of correct inhibitions (200 – nErrors; i.e., 

accuracy) by the mean response time on correct Go trials (i.e., speed). It is possible that the 

significant effects of ERP measures predicting overall response inhibition reported above 

may be partially accounted for by an intermediary effect of SAT. Importantly, though, SAT 

differs from PES insofar as it reflects an overall implicit bias that is less prone to rapid 

dynamic fluctuation. To that end, we are interested in whether SAT is associated with PES, 

whether SAT accounts for any of the variance in models where ERPs predict overall 

inhibition, and, indeed, whether ERPs singularly predict SAT but not PES or overall 

inhibition. 
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SAT may be a distinct process to PES: they are uncorrelated (r92 = -.18, p 

3.6.1.3 = .091), and those participants in whom PES was observed did not differ in their 

SAT from those in whom it was not (t92 = 0.52, p = .604). Like PES, though, SAT is somewhat 

associated with older age, but not significantly so (r92 = .19, p = .071). In an additive model, both 

PES (standardised β = 2.26, p =.026) and SAT (standardised β = 2.38, p = .020) remain significant 

predictors of age, in the same direction, with highly similar standardised effects, and no interaction 

effect (p = .226).A general factor of intelligence. We recently demonstrated that a general 

factor of intelligence, g, seemed to influence the magnitude of post-error slowing, and the 

extent to which it resulted in greater response inhibition. Age was not associated with general 

intelligence, g (r92 = .10, p = .331), nor was g associated with RT (r92 = -.13, p = .219), or 

errors (r92 = -.09, p = .355), but g was negatively associated with magnitude of proactive 

inhibition (r92 = -.25, p =.015), such that PES is engaged more so by those with lower g. 

Consistent with our previous results (Beu et al., 2019), here, in a model including both error 

rate and PES, g is not predicted by error rate (p = .231), but PES does account for a small 

amount of variance in g (β = -0.01, p = .011), F2,91 = 3.84, p = .025, R2 = .078), meaning that 

participants with lower estimates of g utilise a proactive strategy and in so doing make 

roughly the same number of errors as those with higher estimated g. 

Additional evidence for SAT being distinct from PES comes from its correlations 

with g. While PES was negatively correlated with g, SAT was positively correlated with g 

(r92 = .29, p = .005). In a model including both as predictors, both SAT (standardised β = 

0.25, p = .013) and PES (standardised β = -0.21, p = .040) were significant (F2,91 = 6.52, p 

= .002) and accounted for 12.53% of its variance, indicating that a stronger SAT and less 

recruitment of PES predicts higher g. Standardised β coefficients are reported because SAT 

values are not inherently interpretable. There was no interaction (p = .102). 

3.6.2 ERP Analyses 
 

The average amplitudes for each ERP are plotted in Figures 16 and 17 for relevant 

trial and response types. Consistent with literature, the temporal ranges we chose for each 

component included their maximal amplitude, with the exception of the Pe (as discussed 

above). We sought to investigate the extent to which ERP amplitude was affected by the 

commission of errors, and by No-Go stimuli; so, for stimulus-locked components, we 

compare the amplitude to Go stimuli on pre-error trials to post-error trials, and to No-Go 
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stimuli on correctly-inhibited trials to failed inhibition (i.e., error) trials; and, for response- 

locked components, we report the same pre-/post- error comparison, but we compare Go 

responses to Error responses, seeing as correct inhibitions yield no response. 

While it is generally agreed that No-Go stimuli elicit a larger N2 and P3 compared to 

Go stimuli, there is disagreement concerning whether these components differ in amplitude to 

No-Go stimuli based on whether the response is executed (i.e., an error) or is correctly 

inhibited. Our data support the common observation of a No-Go N2 and No-Go P3 (see 

Figure 16). According to Groom and Cragg (2015), who reported that the N2 was larger on 

response conflict trials (i.e., where the executed response was incongruent with task rules or 

planned actions) but was not modulated by inhibition, we should observe equivalent N2 on 

Go and correctly inhibited No-Go trials which should be smaller in amplitude than error 

responses. Our data do not support this conclusion; we see a clear pattern favouring the 

accounts of others (see Falkenstein, Hoormann, & Hohnsbein, 2002; Smith, Johnstone, & 

Barry, 2008), observing a larger N2 and P3 on No-Go trials compared to Go trials, and on 

correctly-inhibited No-Go trials compared to error No-Go trials (see Figure 16). Consistent 

with these data, No-Go trials that resulted in an error elicited a smaller N2 than did those that 

were correctly inhibited, t61 = 2.46, p = .017, d = 0.20. Likewise, the No-Go P3 on correctly- 

inhibited No-Go trials was significantly larger than on failed inhibition No-Go trials (i.e., 

errors), t61 = 4.15, p = .0001, d = 0.48. That is, both the N2 and the P3 were each larger when 

participants successfully inhibited their response to No-Go stimuli. 

Figure 16. Average amplitude of stimulus-locked ERPs (error bars represent the standard 

error). 
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Figure 17. Average amplitude of response-locked ERPs for correct Go trials, incorrect No- 

Go trials (Errors), and Go trials pre and post errors (error bars represent the standard error). 

3.6.3 Testing the accounts of PES 
 

3.6.3.1 The discrimination and processing account. Dutilh and colleagues’ (2012) 

drift-diffusion models support the hypothesis that PES is the result of a participant 

broadening their response boundaries such that more information is required following an 

error for a response to be made. Since the N2 is elicited in stimulus discrimination (i.e., Is 

this a Go stimulus or a No-Go stimulus?) and the P3 is elicited in semantic and higher-order 

stimulus processing (i.e., This is the stimulus, what do I do with it?), we would expect to see 

a larger N2 and potentially larger P3 following an error. 

Contrary to what would be expected under this account of PES, supposing that the N2 

could operate as an index of discrimination that is analogous to a response boundary 

parameter, the amplitude of the N2 was not larger after an error. Indeed, the opposite effect 

was observed. The N2 to Go stimuli before errors were significantly more negative than after 

errors (t77 = 2.49, p = .015, d = 0.27). On the other hand, this account might suggest that the 

P3, as an index of a prolonged evidence accumulation process in a DDM, ought to be larger 

following an error. We observed this in our data (t77 = 2.54, p = .013, d = 0.29), such that the 

post-error P3 was larger than its pre-error counterpart. 

The critical error-related recovery of these components (i.e., the magnitude of the pre- 

error to post-error difference, that we denote Δ) is not correlated with PES (ΔN2 p = .704; 

ΔP3 p = .438), nor is the post-error N2 (p = .523) or P3 (p = .536). They may nevertheless 
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have some association with overall response inhibition. Indeed, the magnitude of the 

differences in amplitude of both the N2 and the P3 before and after an error were both 

negatively correlated with overall response inhibition (r72 = -.26, p = .024, and r72 = -.31, p 

= .007, respectively). That is, the more the N2 and P3 were enhanced after errors, the fewer 

overall errors were committed. This means that a more negative post-error N2 compared to 

the pre-error N2, and a larger P3 post- compared to pre- error, are associated with fewer 

overall errors committed. Given the role of these components and their relative size, it seems 

possible that the N2 effect reported here is confounded by the onset of a large P3 post-error in 

those who commit fewer errors. This is confirmed by a simple additive regression model with 

the magnitude of this difference in the N2 and the P3 as predictors of overall errors (F2,71 = 

4.49, R2 = .112, p = .015), in which the N2 is not significant (p = .291) but the P3 shows 

some trend (p = .067). 

Our data do not support this account outright. They show that the N2 and the P3 are 

largest when a No-Go response is successfully inhibited in accordance with previous 

findings, but that the N2 is blunted following errors, whereas the P3 is enhanced. 

Furthermore, while the degree to which these components are altered following errors 

(especially the P3) predicts successful overall inhibition, but not PES. 

3.6.3.2 Attentional accounts. Dutilh and colleagues (2012) offered an orienting 

account as an alternative to the above account, according to which, additional attention 

resources might be recruited to the processing of stimuli following an error, which may 

contribute to PES by offsetting the commencement of response-associated actions. This 

account is based on the same diffusion models as the previous account, and evidence in 

favour of it will come from a larger N1, a component known to reflect attentional processes, 

after errors. On the other hand, Notebaert and colleagues (2009) offer an opposing account 

that relies on other criteria, namely, an oddball effect to errors which would be observed in 

the P3. The authors hypothesise that disorientation of attention occurs as the result of the 

surprise caused by an error, so not only is an oddball effect required, but participants who 

commit fewer errors should exhibit a larger effect in this regard. 

Although the attentional accounts do not necessarily make predictions regarding the 

amplitude of the N1 on No-Go trials, we nevertheless compared the amplitude of the N1 on 

successfully inhibited No-Go trials to unsuccessful No-Go trials (errors). It is reasonable to 

expect that correctly inhibiting a prepotent response requires cognitive effort or attention, and 

therefore the N1 should be larger on correctly inhibited trials if it really reflects attention in 
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this task, however, this has not been reflected in the literature (see Bokura, Yamaguchi, & 

Kobayashiu, 2001; Jodo & Kayama, 1992; Sehlmeyer et al., 2010). Contrary to these reviews 

reporting no reliable difference in N1 between error responses and successful inhibitions on 

No-Go trials, we observed a more negative N1 on correctly inhibited No-Go trials than on 

failed inhibition No-Go trials, t92 = 3.35, p = .001, d = 0.32. 

We tested whether PES could be accounted for by the amplitude of the N1, which 

seems to reflect attention. An orienting account of PES should yield data that satisfy the 

following three criteria: (1) there must be a pre-error to post-error difference in N1 amplitude, 

in particular, a larger N1 to Go stimuli that follow an error compared to those that precede an 

error indicating an increase in attention after an error; (2) either the post-error N1 should be 

larger or the change in amplitude surrounding the error (i.e., the pre- to post- error change, 

henceforth ΔN1) should deflect more negatively in those who did exhibit PES compared to 

those who did not; and, (3) either the post-error N1 or ΔN1should be correlated with the 

magnitude of PES. Our data do not provide support for the first criterion: the N1 is, in fact, 

less negative after an error than before an error, t92 = 2.30, p = .024, d = 0.21. Likewise, there 

is no evidence allowing us to accept the second criterion. The post-error N1 was not larger in 

those participants who did engage PES (M = 0.33, SD = 1.53) than in those who did not (M = 

-0.18, SD = 1.89), t87 = 1.17, p = .243. Furthermore, the N1 refracted more negatively in 

those who did not exhibit PES, and more positively in those who did, but ΔN1 was not 

significantly different between these two groups, t87 =1.57, p = .121. Nor can we accept the 

third criterion: post-error N1 amplitude was positively correlated with the extent to which 

proactive inhibition was engaged (i.e., more PES was characterised by a smaller, or less 

negative, N1 at post-error stimulus onset), r87 = .24, p = .026. In light of a general effect of 

the post-error N1, it is noteworthy that the pre-error N1 was not associated with either PES (p 

= .345) or errors (p = .400), nor was the change in amplitude surrounding the error (i.e., the 

pre- to post- error change, henceforth ΔN1), ΔN1, associated with errors (p = .879). 

To investigate the claim suggesting that PES can be explained as the time it takes to 

reorient attention, we ran three regression models. The first included the N1 for Go trials 

after an error, the second included N1 amplitude before an error and after an error separately, 

and the third included the pre-/post- error amplitude difference in the N1 (ΔN1). If PES can 

be accounted for by increased time associated with the recruitment of additional attention to 

Go stimuli following an error, we would expect to see an effect primarily isolated to the post- 

error N1, and not necessarily in the dynamic alterations to it captured by the difference wave. 
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Indeed, these models yielded a significant effect, but in the opposite direction to the orienting 

account. The first model that included only the post-error N1 was significant (F1,87 = 5.122, p 

= .026, R2 = .056), with less negative N1 predicting PES (β = 4.20). In the second model, the 

post-error N1 remained significant when accounting for the pre-error N1 (p = .039, p = .623, 

respectively), and the difference measure (ΔN1) was not significant in the third model (p 

= .105). Taken together, these findings suggest that PES is not associated with an increase in 

attention following an error. Instead, errors seem to be associated with blunting of attention 

on subsequent trials, and this predicts the amount of PES. 

Our data seem therefore to satisfy the first criterion of a disorienting account, which 

relies on further criteria being met, in particular, the disorienting account requires disruption 

of attentional resources that occur because of the oddball effect on error trials. That is, we 

should observe a larger P3 on error trials compared to correctly withheld No-Go trials. 

However, the oddball account may be inconsistent with the well-established Inhibition P3, 

which we provided evidence in support of in the previous section (a larger ‘Inhibition’ P3 on 

correctly withheld No-Go trials). However, according to Notebaert and colleagues’ (2009) 

account, slowing occurs due to infrequent events. They describe not only post-error slowing 

when errors are infrequent but also post-correct slowing when correct trials are infrequent. 

This provides two sources of activity reflected in the P3: one from the relative frequency of 

errors, and the other from the relative frequency of the No-Go stimulus itself. So, we do 

indeed see a larger P3 on No-Go trials overall compared to Go trials, partially supporting an 

Oddball account, but we see an additionally large P3 on correctly inhibited No-Go trials. 

Since both No-Go stimuli and errors are infrequent compared to Go trials in this task4, it is 

plausible that the Inhibition P3 partially reflects the infrequency of the No-Go stimulus 

alongside the additional processing presumably required for successful inhibition. The 

confluence of processes that combine to form an ERP component cannot be disambiguated, 

so this is speculative. In any case, we cannot accept or reject this second Oddball criterion of 

Notebaert and colleagues’ disorienting account of PES, but our data do support its disruption 

of attention criterion. Whether or not the N1 is disrupted by infrequency (partially captured 

by the P3) is not entirely necessary to accept the general principle of this account in any case; 

that is, if an error disrupts attentional processing of a stimulus, then disorientation has 

occurred regardless of the source of that disorientation. Our data do not allow us to make any 

 

4 Note that the stimulus features of No-Go stimuli are not more infrequent than those of Go stimuli in our 

task since all digits are equiprobable, but the response demands associated with No-Go stimuli are more 

infrequent. 
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claims about its source, but they do allow us to argue in favour of a disorientating effect of 

errors. 

3.6.3.3 Error detection and processing account. This account supposes that increased 

error-associated processing, which can be indexed by the ERN/Pe complex, leads to PES. 

The ERN/Pe complex likely reflects some kind of response monitoring and response conflict 

process where the actual response is compared to optimal response and, if there is a conflict 

between these alternatives, activity is increased in frontal and parietal regions, which is 

reflected in the ERN and Pe amplitudes, respectively. The increased activity is thought to 

delay processing of the immediately subsequent stimulus. Behavioural data do not support 

this account, since it is known that errors affect the response time pattern for at least four 

post-error trials, and this account, prima facie at least, seems to suggest that only the first 

post-error trial would be affected. Nevertheless, electrophysiological data may yield some 

interesting insights into this account. 

Since the negativity of the ERN and the positivity of the Pe for error-associated 

responses are only meaningfully interpretable relative to their amplitude on non-error trials 

(i.e., correct Go responses), we first used paired-samples t-tests to compare mean amplitude 

on correct Go trials to error responses. These tests yielded confirmatory results for both the 

ERN (t35 = 7.02, p < .0001, d = 1.80) and the Pe (t35 = 4.011, p = .0003, d = 0.69), such that 

committing an error elicited a larger ERN (i.e., more negative-going) and Pe (i.e., more 

positive-going) than did a correct Go response. Unlike stimulus-locked components, these 

‘error’-associated components were not meaningfully affected by an error; that is, processing 

of correct pre-error responses did not significantly differ from processing of correct post-error 

responses, though there was a small trend for smaller amplitudes following an error (ERN: t65 

= 1.60, p = .116; Pe: t65 = 1.80, p = .077). In and of themselves, neither of these components 

on any trial type was associated with either the rate of errors (smallest p =.720), or the 

magnitude of PES (smallest p = .290). Further, neither ΔERN nor ΔPe were correlated with 

either of these measures (smallest p = .179), nor was the magnitude of difference in either 

component on correct Go compared to failed No-Go trials (smallest p = .519). 

We ran two regression models to test whether the magnitude of the ERN on error 

trials and the magnitude of the difference in ERN on error trials compared to correct go trials, 

predicted PES. Neither model supported this hypothesis (p = .795, and p = .891, 

respectively). Because of our criteria for excluding participant-wise data, these analyses 

contained only 36 participants; however, even with a considerably larger sample, it is not 
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likely that such patterns of data would reach statistical significance. We also performed 

similar analyses for the Pe. Despite the remaining sample being small, the mean amplitude 

difference in the Pe on error responses and correct Go responses may suggest some effect (F1, 

33 = 3.506, p = .070, R2 = .096, β = -2.19), whereby a larger Pe on Go responses compared to 

the Pe on error responses predicts more PES; that is, diminished error processing, predicts 

PES. To test whether response monitoring on error trials predicted overall rate of errors, we 

regressed the ERN and the Pe, separately and together, for both error trials and the amplitude 

difference between Go and error responses, onto error rate. None of these models yielded any 

evidence of simple effects or interactions (all p > .271). 

Our data do not provide support for this account: neither component of the ERN/Pe 

complex predicted engagement of PES. Interestingly, the somewhat diminished ERN/Pe 

complex after errors may provide additional support for the disorienting account. 

3.6.4 The role of intelligence in these accounts 
 

Recently, we reported a relationship between proactive inhibition and two variables 

that appear to negatively affect reactive inhibition, older age and g (Beu et al., 2019). We 

showed that PES is recruited more strongly in those individuals with lower estimated g and 

older age. So, here we tested whether the ERP component that seems to best reflect PES, the 

N1, would also be predicted by age and g. 

The data seem to point toward a relationship between higher g and a more negative 

N1 on most trial types (before, r91 = -.23, p = .029, and after, r91 = -.28, p = .006, an error; 

error trials, r91 = -.18, p = .087; correct inhibitions, r91 = -.16, p = .121), but not either of the 

error associated amplitude differences (p > .891). On all trial types, the N1 was significantly 

positively correlated with age, such that older participants tended to produce less negative 

deflections at stimulus onset (Before error: r91 = .34, p = .0008; After error: r91 = .31, p 

= .002; Error: r91 = .27, p = .010; Correct inhibition: r91 = .22, p = .031). So, g appears to 

support the elicitation of the N1 or is associated at least with attention, whereas age is 

associated with a reduced N1. To test whether age and g predict post-error-associated 

disturbances to attentional processing, reflected in the post-error N1, we ran a regression 

model with age and g as predictors. Older age (β = 0.09, p = .007) and lower g (β = -0.24, p 

= .018) predict a smaller post-error N1 (F2,90 = 8.03, p = .0006) and accounted for 15.14% of 

its variance. Since this pattern replicated the general trend of the effect of age and g on PES 

we reported previously, we wanted to test whether the same interaction effect was present in 
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our current data. A model that included an interaction term (β = 0.06, p = .0002) supported 

this relationship (F3,89 = 10.96, p < .0001; see Figure 18), and accounted for an additional 

11.84% of variance (R2 = .270), with both variables remaining significant predictors of post- 

error attentional processing (age: p = .001; g: p < .0001). That is, older age and lower g 

independently and interactively predict a smaller post-error N1, which appears to be the 

critical indicator of PES, such that young age was associated with a more negative post- error 

N1, especially in those with higher estimated g. 

 

Figure 18. The interaction effect of g and age on the amplitude of the post-error N1. Shading 

around each line represents 95% confidence intervals. 

3.7 General Conclusions 
 

We administered a Go/No-Go task to a large, healthy sample to investigate alternative 

accounts of post-error slowing (PES) using electrophysiological evidence. Our data lead us to 

reject the commonly held assumption that PES is associated with the recruitment of 



116  

additional attentional resources, indexed by the N1 component, or with additional stimulus 

discrimination or response caution, indexed by the N2 component. Likewise, we reject the 

account that PES is associated with error-associated response processing, since it is known 

that PES affects at least four post-error trials, and that the ERN/Pe is observed only on one 

trial, whereas disturbances to post-error stimulus processing are sustained. Likewise there is 

no evidence that the ERN/Pe is associated with PES or response inhibition, or with other 

variables known to influence these variables (e.g., age and g). Such disturbances are observed 

mainly in the N1; that is, attentional processing of post-error stimuli, indexed by the N1, is 

significantly diminished. Our data, therefore, support a disorienting account of PES 

hypothesised by Notebaert and colleagues (2009), where errors appear to disrupt the 

contiguity of thought that is evoked by continuous tasks. Indeed, such contiguity of thought 

may well underlie the commonly-observed phenomenon of serial responses generally getting 

quicker until an error is committed (see Rabbitt & Rodgers, 1977). 

In addition to the blunting of the N1, the N2 is likewise negatively affected by an 

error, whereas the P3 appears to be facilitated. One plausible explanation for this is that 

neural resources are ‘redirected’ from basal processes reflected in the early ERPs to higher- 

order cognitive processes reflected in the P3, to allow top-down processing to guide 

responding for a short time (the order of a few trials). Such an account may be consistent with 

a similar account of the hyperdirect pathway of the basal ganglia which has been implicated 

in supporting PES (e.g., Frank, 2006). According to this account (Chersi et al., 2013), activity 

in the basal ganglia is downregulated by the prefrontal efferents of the hyperdirect pathway. 

If Frank’s hypothesis is true, that is, that PES relies on the hyperdirect pathway, then Chersi 

and colleagues’ explanation of the hyperdirect pathway recruiting prefrontal top-down 

control, which may be reflected in the P3, in favour of stimulus processing processes, which 

may be reflected in the N1 and N2, appears conceptually consistent with our findings. An 

alternative explanation that accounts for our data and is more in line with the reasoning 

behind a disorienting account is that rather than PES operating as a compensatory mechanism 

in individuals whose reactive process might be negatively affected by older age or lower g (as 

we have reasoned elsewhere; see Beu et al., 2019), it may be the case that these individuals 

are more affected by PES as the result of a poorer ability to reorient or exert top-down control 

over post-error attentional resources, and that the additional time to respond allows for more 

successful response inhibition as an outcome rather than a strategy. That is, PES is not so 

much strategic or proactive as it is a consequence of erring that may incidentally improve 
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response inhibition by virtue of the effect that it has on immediately subsequent response 

patterns. 

Precisely what is reflected by the ERN/Pe complex is not known, but it is generally 

assumed that it is reorienting to task demands (e.g., Falkenstein, Hoormann, Christ, & 

Hohnsbein, 2000), or meaningful and introspective consideration of the error (e.g., Botvinick, 

Cohen, & Carter, 2004; Hajcak, Moser, Yeung, & Simons, 2005; but see also Boksem,Tops, 

Wester, Meijman, & Lorist, 2006; Gehring et al., 1993; Senderecka, Grabowska, Szeczykk, 

Gerc, & Chymlak, 2012; Stemmer, Segalowitz, Witzke, & Schönle, 2004). Whereas it is 

commonly assumed that these deflections reflect the presence, rather than the absence or 

disruption, of such processing, taken alongside our evidence of disruptions to attentional 

processing on post-error trials, we might assume that errors disrupt response monitoring 

processes rather than reflecting them. Indeed, the small but nonsignificant blunting of the 

ERN/Pe complex on post-error responses may further support a disorienting account to the 

extent that the ERN/Pe exerts a persistent effect on other processes, which has not been 

investigated here or elsewhere, and required a more complex task design. 

Our data do not allow us to make any conclusions about whether PES is proactive, 

either an intentional strategy or an implicit compensatory mechanism, or is a consequence of 

disruptions to processing, despite such disruptions being observed. They do, however, allow 

us to accept a disorienting account of PES. Not only is attentional processing of post-error 

stimuli significantly attenuated by an error, the magnitude to which it is correlated with the 

duration of PES. Taken alongside our previous findings (Beu et al., 2019) and others like it 

(e.g., Bloemendaal et al., 2016), our findings here that older age and lower g are associated 

with the post-error N1 that is disrupted by errors and predicts PES are not altogether 

unsurprising and might indicate that the protective mechanism we previously suggested PES 

confers against possible deficits in the response inhibition network may, in fact, be an 

incidental consequence of PES. 

Whatever the nature of PES, our data support a disorienting account in which errors 

disrupt processing, thereby offsetting the processing of post-error stimuli in such a way that 

the subsequent responses are slowed. If PES simply disrupts post-error processing in such a 

way that it is an incidental consequence of PES, rather than a proactive compensatory 

mechanism that endures for some time, we should expect to observe the effect only on those 

trials immediately following an error. Since the effect is maintained for some trials, we can 

confidently conclude that errors disrupt processing, and in so doing, slow down subsequent 
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Go responses, which may inadvertently increase the probability of successfully inhibiting a 

response to an unexpected No-Go trial. 
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3.8 General Discussion of the Foregoing Manuscript 

In the preamble to this chapter I highlighted that this line of enquiry required task 

modifications. The overall moderate-to-strong correlations between this adapted task and the 

original task notwithstanding, I had reservations about using the overall performance of this 

task for its 800-trial duration. There was no defensible a priori basis on which to justify 

segmenting these data into chunks which were acceptable for use, so we moved forward with 

the entire dataset. These potential limitations were only realised post hoc, but perhaps could 

have been envisaged in the design phase. The original task is 225 trials, so, roughly one 

quarter of the length of this task, and it is not well-received by participants. It is taxing, and, 

my own interpretation of observing many hundreds of participants completing this task over 

the years is that motivation, effort, and interest all wax and wane throughout. That fluctuation 

is borne out in these data to an extreme, which are clearly illustrated by segmenting the data 

into 200-trial quantiles and plotting various measures against those quantiles (see Figure 19, 

next page). Interestingly, PES appears to remain relatively stable, while most other variables 

fluctuate substantially, suggesting that PES may be robust to fluctuations in whatever 

underpins variability in other measures. What can be seen in these figures does not 

substantially affect the EEG data, since ERPs are locked to the trials; that is, the processing 

indexed by neural activity in later quantiles still reflects the performance in those quantiles, 

whether it be good or bad. But, behaviourally and perhaps motivationally, performance is 

clearly affected by task duration. 
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I was interested in attempting to identify some underlying inhibitory process across 

the ERP data. I thought it more plausible to search for some factor structure that could yield 

an overall inhibitory process or, more likely, a reactive process factor and a proactive process 

factor by performing factor analysis or principal component analysis (PCA) as has been done 

in a few EEG experiments of attentional or learning processes. This was largely exploratory, 

so I attempted the method with various combinations of ERP data, including one model with 

only the difference waves, but none yielded any meaningful results5. 

 

5 Miwakeichi and colleagues (2004; see also Mørup, Hansen, Herrmann, Parnas, & Arnfred, 2006) 

recently proposed an alternative method to the PCA and ICA which create only space/time 

decompositions. They suggest the use of Parallel Factor Analysis (PARAFAC) instead, which they argue 

overcomes the “lack of uniqueness” yielded by PCA and ICA by imposing constraints of orthogonality or 

independence of atoms. PARAFAC frames the data structure as a three-way array indexed by channel, 

frequency, and time, which allows for the identification of component modes by creating a 

space/frequency/time atomic decomposition of the time-varying spectrum of multi-channel EEG 

recordings, thereby including the spatial aspects of the EEG, and yielding a data structure in which “each 

atom is the tri-linear decomposition into a spatial, spectral, and temporal signature”. The additional spatial 

signature provided by this method may prove valuable in distinguishing rapid but spatially ambiguous 

discrete inhibition processes. Learning such a method would take considerable time, so it has not yet been 

feasible to explore this avenue but it will become possible in the future. It seems that such a method might 

be intractable because we only used 12 channels of EEG, but it will nevertheless be interesting to attempt. 
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Figure 19. Fluctuations in performance in various parameters plotted by 200-trial quantiles in 

the 800-trial SART used in the previous experiment. 

In this chapter, we establish three things. First, we provide empirical support for Notebaert 

and colleagues’ (2009) disorienting account of post-error slowing, where errors appear to 

disturb ongoing processing of stimuli and, therefore, disrupt task performance which 

manifests as slowed response initiation. Second, we see that the post-error N1 in those with 

higher g diminishes with age, but that in those with lower g there is no such effect. Since PES 

is most strongly predicted by the post-error N1, and since it is thought that the N1 naturally 

diminishes with age (see Anderer, Pascual-Marqui, Semlitsch, & Saleti, 1998; Anderer, 

Semlitsch, & Saletu, 1996; Beck, Swanson, & Dustman, 1980), this is therefore consistent 

with our reasoning in the previous chapter that combined with age, lower g appears to 

support or permit the response fluctuations that characterise the proactive mechanism, and in 

so doing, protect against deficits in the reactive inhibition associated with age.”. Third, we 
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observe some data that may indicate that PES is a consequence rather than an adaptive 

strategy or implicit mechanism whose goal is productive (i.e., to improve performance). This 

is not altogether inconsistent with the previous reasoning about age and g, and may in fact 

rationalise it more realistically. If older age and lower g do not somehow protect against 

failures in the reactive inhibitory process by some unknown mechanism, it seems equally if 

not more so sensible to suppose that older age and lower g are simply more vulnerable to 

disruptive effect of PES on processing. Whether or not this confers an advantage in the 

inhibitory process remains unknown and, in theoretical terms, unimportant in terms of these 

two alternative accounts. On one hand, PES could improve performance by mitigating further 

deficiencies that would otherwise be observed, and it might do so incidentally by offsetting 

response initiation or execution. On the other hand, PES might not improve performance. 

This is the problem of measuring an invisible variable; response inhibition is the absence of 

something to measure, so we can only make inferences guided by logic and data. 

The first paper in this thesis investigated subcortical circuitry using genetic analysis, 

and this second paper used EEG to capture cortical activity. Both of these approaches yielded 

important data that helps us fill out a picture of PES. So far, we can conclude with some 

confidence that PES is supported by dopamine in the basal ganglia, and that it recruits 

separate pathways to reactive inhibition. Further, we can be confident that it is in some way 

compensatory (even if incidentally), and is engaged to a greater degree in older people and 

those with lower estimates of g. Our EEG data seem to indicate that PES may not be under 

intentional control, and in fact appears to result from or be accompanied by disrupted 

cognitive processing. So, PES being compensatory, but perhaps not agentive, provides us 

with an opportunity to use novel neurostimulation techniques to modulate it. That is to say, 

using exogenous techniques to influence PES. 
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CHAPTER 4 

Paper 3 

 

 

 

4.1 Preamble 

The goal of this thesis has been to investigate the neurocognitive architecture of 

response inhibition and, in particular, proactive inhibition. In the first experiment, we 

established that the two processes can be distinguished at the neurophysiological level by 

using genetic analysis. In the second experiment, we used psychophysiology to demonstrate 

that errors disrupt processing and this is reflected in PES. This finding suggests that if PES 

improves overall successful inhibition, this improvement may be at least partially the 

incidental result of additional time between perceiving the stimulus and executing the 

response. Using these indirect methods, we provided insight into the neurocognitive 

architecture of response inhibition, and how it is deployed in the healthy human brain. In the 

introduction to this thesis, I highlighted the clinical importance of dysfunctional response 

inhibition, so practical intervention applications are essential. 

So, with this in mind, in this third study we investigate whether manipulation of 

neural activity using electrical stimulation to the motor cortex affects the selection, initiation, 

or inhibition of a motor program. To achieve this, we administer a neuromodulatory 

intervention between two behavioural testing sessions and investigate its effect on 

performance on a battery of simple cognitive tasks that assess reaction time and response 

inhibition. We select this specific battery of tasks in order to provide a complete profile of the 

discrete processes involved in motoric response initiation and inhibition which could, in turn, 

allow us to make inferences about the origin of any potential effect. 

In the previous sections, I have described the logic supporting the hypothesis that 

action selection, initiation, and inhibition probably rely on the motor cortex, and, certainly, on 

the connections between the motor cortex and basal ganglia. So, the target for our 

neuromodulatory intervention is the motor cortex. In particular, primary motor area M1. The 

intention to perform a movement is likely generated in frontal cortex, with varying 

recruitment from visual and parietal cortices depending on the demands and context of the 

intended movement. Within milliseconds, signals of intent have been communicated between 

frontal cortex and the appropriate association areas and M1, and between M1 and the basal 
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ganglia. The neural computations that occur in this incredibly short timeframe have 

hierarchically organised and planned the action, and then send the directive through 

cerebellum, a small but highly dense area containing around half of all of the neurons of the 

nervous system for fine-tuning and deployment through the spinal cord to the required 

muscles. 

If we modify activity in the critical node of this network, M1, and observe changes to 

behaviour in a way that is theoretically explanatory, then we should be able to make some 

inferences about the architecture of the function. Two exciting and reasonably novel methods 

for modulating and measuring neural activation were available to us: transcranial direct 

current stimulation (tDCS) and transcranial magnetic stimulation (TMS), which each have 

different uses in cognitive and clinical neuroscience, but which can be used in conjunction 

with one another in some experimental designs. These methods were beyond my 

undergraduate training, but presented a unique opportunity to broaden my knowledge, and, 

indeed, it was particularly motivating to be able to use such methods in this context. To have 

access to the cortex in this way offered excellent potential for the experiment; to potentially 

be able to directly modulate brain activation patterns in humans and observe differences in 

behaviour as the result of that modulation could help us answer some very interesting 

questions and provide a sound direction moving forward for targets for intervention or focus. 

The purpose of this chapter is to build on the foundation formed in the previous 

chapters to gather a more direct sense of the neurophysiology of response inhibition and its 

constituent processes. This may provide some insight into individual differences in this 

ability in healthy, ageing, and pathological brains, and into the extent to which they can be 

explained by individual differences in neurophysiology. We intend to contribute further 

empirical support to the hypothesis that different aspect of motor function rely on separate 

neural substrates, which can in turn allow us to meaningfully think about response inhibition 

in a more biologically grounded framework than what is currently provided by the literature 

and, in so doing, allow us to home in on those differences in future experiments using 

different approaches, and potentially in clinical contexts. 

This chapter is separated into two studies because they use similar methods to answer 

different questions. The first study investigates whether tDCS, a neuromodulatory 

intervention, is able to modulate cognitive functions in a predictable way. The second study is 

motivated by the question of whether the effects of tDCS can be attributed to long-term 

potentiation-like effects measured by differences in the amplitude of TMS-induced reflexes 

in muscles of the hand. That is, the intention is (i) to determine whether tDCS produces an 
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effect on motor performance including action generation, selection and inhibition, and (ii) to 

use TMS to establish the neural basis of a potential effect. 
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4.3 Abstract 
 

Goal-directed motor control is disrupted in certain disorders. Transcranial direct 

current stimulation (tDCS) is a promising neurostimulatory technique that may enhance 

executive functioning, which is critical for goal-directed motor control; however, the 

evidence for this is mixed. In a single-blind experiment, we investigated the effect of tDCS 

on three aspects of motor control and hypothesized that motor cortical anodal stimulation 

would facilitate performance. Motor response generation (Simple Reaction Time; SRT), 

action selection (Choice Reaction Time; CRT), and inhibition (Sustained Attention to 

Response Task; SART) were assessed in 54 healthy participants in three sessions: a baseline 

session, a sham tDCS session and an anodal tDCS session. Anodal tDCS had no effect on 

SRT (p = .163) or CRT (p = .642). In the SART, the ability to inhibit a response was 

diminished following anodal stimulation 
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compared to sham (p = .026). Participants responded somewhat faster following anodal 

stimulation (p = .070), and this could be due to the disruption of a critical error-correction 

mechanism, Post-error slowing (PES): instead of slowing their responses after failing to 

inhibit a response as they did during the baseline (p = .034) and sham (p = .002) sessions, 

participants made no such adjustment following anodal stimulation (p = .964). Contrary to 

our hypotheses, anodal tDCS had no effect on response selection and generation, and a 

negative impact on response inhibition, possibly by disrupting proactive inhibition which is 

generated in prefrontal regions. Our findings highlight the importance of systematic 

investigation of electrode montages before tDCS is regarded as a therapeutic technique. 
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4.4 Introduction 
 

Executive function not only underpins effective psychosocial, emotional, and 

behavioural control, but it also contributes to intelligence via cognitive flexibility and 

reasoning ability. Deficits in the cognitive abilities that are taken to reflect the executive 

functions, for example response inhibition and selective attention, are clinically significant 

diagnostic criteria for psychosocial dysfunctions such as attention deficit hyperactivity 

disorder (Barkley, 1997) and substance use disorder (Nigg et al., 2006), and mental illnesses 

such as schizophrenia (Kiehl, Smith, Hare, & Liddle, 2000). They are also characteristic of 

neurological conditions such as Parkinson’s (Taylor, Saint-cyr, & Lang, 1986) and 

Huntington’s (Lawrence et al., 1996) diseases. Recently, evidence has emerged that describes 

small but reliable effects of noninvasive neurostimulation techniques on the manipulation of 

various motor and cognitive domains, which may lead to novel therapeutic avenues for the 

management of the functional deficits resulting from many conditions (Brunoni et al., 2012; 

Felipe & Alvaro, 2007; Fregni et al., 2005; Freitas, Mondragón-Llorca, & Pascual-Leone, 

2011; Kuo, Paulus, & Nitsche, 2014; Marlow, Bonilha, & Short, 2013; Nitsche, Boggio, 

Fregni, & Pascual-Leone, 2009; Nitsche & Paulus, 2000, 2001; Nitsche et al., 2003). 

Transcranial direct current stimulation (tDCS) permits painless modulation of cortical 

excitability through the intact skull, making it an attractive neurostimulation technique that is 

well-tolerated, brief and inexpensive (Nitsche et al., 2008; Nitsche et al., 2005). Moreover, it 

is supported by a well-established body of neurophysiological data demonstrating efficacy in 

modulating cortical excitability, which is often used as a marker of neuroplastic change 

(Nitsche, Kuo, Paulus, & Antal, 2015). tDCS stimulates underlying neurons with the 

application of a weak electrical current (usually 0.5 – 2 mA) to the scalp between a 

positively-charged anode and negatively-charged cathode. The mode of action is thought to 

involve subthreshold effects on membrane excitability (Bikson et al., 2004; Paulus, 2011), 

which in turn lead to long-term potentiation-like changes in the cortex with anodal 

stimulation, and long-term depression-like changes with cathodal stimulation (Massey & 

Bashir, 2007; Stagg & Nitsche, 2011). It is thought that anodal-tDCS targeted to a cortical 

region that is recruited during a specific task facilitates performance on that task via transient 

increases in neuronal connectivity and excitability, whereas, on the other hand, cathodal 

tDCS is presumed to have the inverse effect and thus reduces excitability and diminishes task 

performance (Reis & Fritsch, 2011; Reis et al., 2008). In a recent meta-analysis, however, 

Jacobson and colleagues (Jacobson, Koslowsky, & Lavidor, 2012) suggest that this 
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dichotomous anodal-excitation and cathodal-inhibition account of dual-polarity is perhaps too 

simplistic. Their review shows that anodal-cathodal effects from motor cortical stimulation 

do not map cleanly, or uniformly, onto psychomotor and cognitive functional modulation; 

that such straightforward description of complex psychophysiological effects therefore 

trivializes the credible long-term depression-like effects under the cathode (Jacobson et al., 

2012). The authors claim that the commonly-held theory underlying tDCS is one of anodal- 

excitation/cathodal-inhibition (AeCi), and yet this model has scarcely been replicated in 

studies investigating cognitive domains rather than motor ones. Their consequent position is 

that the AeCi dichotomy does not manifest in cognitive tDCS experiments due to the relative 

complexity of neural processing required for the processes commonly investigated in such 

studies (e.g., language, reasoning, and working memory), which occur in multiple brain 

regions, and, often, is mediated by some domain-dependent central region (Jacobson et al., 

2012). So, as a consequence of the interconnectedness of brain regions invoked by common 

behavioral tasks, both the cognitive and cathodal effects of stimulation are nontrivial, 

whereas the neuroplastic induction exerted under the anode is more reliably demonstrated by 

effects on motor task performance. A careful investigation of the effects of a tDCS 

manipulation on several aspects of a cognitive function is therefore needed before concluding 

that it has beneficial effects. 

The gold-standard montage for modulating motor function (applying anodal tDCS to 

the motor cortex, with the cathode placed over the contralateral orbitofrontal cortex) has 

shown promise for enhancing some goal-directed motor control functions, and is being 

considered a potential treatment for disorders that involve executive function deficits 

(Brunoni et al., 2012; DaSilva, Volz, Bikson, & Fregni, 2011; Senco et al., 2015). Previous 

studies, however, have typically investigated only one aspect of goal-directed motor control: 

action selection, or generation, or both of them (Conley, Marquez, Fulham, Parsons, & 

Karayanidis, 2015; Hayduk-Costa, Drummond, & Carlsen, 2013; Hummel et al., 2006; 

Müller, Orosz, Treszl, Schmid, & Sperner, 2008). Our aim is to investigate the effects of this 

montage on several distinct aspects of motor control, including response inhibition, thereby 

providing a more thorough test of its suitability as a therapeutic intervention. 

We investigated the effects of stimulation on tasks of executive function offline; that 

is, we investigated the effects of tDCS in the post-stimulation period. Our aim was to 

investigate the effect of tDCS to the motor cortex on executive functions that involve 

producing, inhibiting, and regulating motor commands. Because of its importance to 
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everyday goal-directed behaviour and the broad clinical implications, executive function has 

been widely examined, commonly by measuring goal-directed motor control and its 

constituent parts (Li, Huang, Sinha, & Constable, 2006; Mostofsky & Simmonds, 2008; van 

Velzen, Vriend, de Wit, & van Den Heuvel, 2014; Verbruggen & Logan, 2008). However, it 

is not yet clear whether tDCS yields reliable, positive effects on these functions. Motor 

control requires both generating task-appropriate responses, as well as the suppression of 

prepotent, but no longer appropriate, responses. Together, these motor control processes 

allow appropriate behavioural adaptation following a change in context or environment. 

Goal-directed motor control is not a unitary construct, comprising the concatenation of both 

motor and cognitive components, the distinction between which has been verified by brain 

imaging studies (Li et al., 2006). Specifically, action selection, motor response generation, 

and inhibition are three contributing individual processes (Ridderinkhof, Ullsperger, Crone, 

& Nieuwenhuis, 2004). The motor response generation and action selection processes can be 

measured by tasks that measure reaction time under two conditions: Simple Reaction Time 

(SRT) involves responding to a single stimulus and measures motor response generation; 

whereas Choice Reaction Time (CRT) involves making the decision to respond to one target 

stimulus among multiple potential stimuli, and thus additionally measures action selection 

(Jahanshahi, Obeso, Rothwell, & Obeso, 2015; Miller & Low, 2001). Response inhibition is 

most commonly tested with the parametric go/no-go paradigm, for example the Sustained 

Attention to Response Task (SART), which involves responding to frequently presented 

stimuli and withholding a response to infrequently presented stimuli (Donders, 1969; 

Robertson, Manly, Andrade, Baddeley, & Yiend, 1997). Performance on Go/No-Go tasks 

such as the SART is likely driven by two theoretical inhibition processes—reactive and 

proactive inhibition. Reactive inhibition refers to the cessation of a planned motor response 

upon presentation of a ‘No-Go’ stimulus, while proactive inhibition refers to preparatory 

processes that lead to a response being withheld before it is initiated (Meyer & Bucci, 2016). 

A well-established strategy recruited by proactive inhibition is post-error slowing (PES). This 

PES process manifests as slower reaction time following an error, which enhances the 

likelihood of successful response inhibition in subsequent trials (Meyer & Bucci, 2016). 

Whereas healthy participants reliably demonstrate this kind of performance monitoring and 

adjustment, it is impaired in certain clinical populations, such as those with traumatic brain 

injury (Robertson et al., 1997). So, in addition to measuring overall response inhibition 

performance on the SART, which presumably measures a combination of reactive and 

proactive inhibition, we will also measure proactive inhibition more specifically via PES. 
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There is some evidence that reaction time and response inhibition can be modulated 

using tDCS under certain stimulation parameters (Cai et al., 2016; Castro-Meneses, Johnson, 

& Sowman, 2016; Ditye, Jacobson, Walsh, & Lavidor, 2012; Hogeveen et al., 2016; 

Jacobson, Javitt, & Lavidor, 2011; Ljubisavljevic, Maxood, Oommen, Szolics, & Filipovic, 

2015; Spieser, van den Wildenberg, Hasbroucq, Ridderinkhof, & Burle, 2015; Stramaccia et 

al., 2015). Current observations suggest that performance on tasks that invoke response 

inhibition processes relies on a frontal-motor neural network, and therefore can potentially be 

modulated by stimulation over either frontal or motor cortical sites. However, recent 

reinterpretation of existing data indicates that the effects of tDCS on cognitive functions in 

healthy individuals may not be as potent as previously reported due to, among other things, 

the large number of potential stimulation configuration parameters (see Woods et al., 2016), 

and small effect and sample sizes, or large interindividual variability in response to tDCS 

(Horvath, Carter, & Forte, 2014; Horvath, Forte, & Carter, 2015a, 2015b). On the other hand, 

these mixed results may be explained by differential effects on the three discrete component 

parts of motor control (Nieratschker, Kiefer, Giel, Krüger, & Plewnia, 2015). 

To our knowledge, no previous studies have investigated modulation of all three 

individual processes that comprise goal-directed motor control. The advantage of the present 

study is that by delineating and individually measuring these specific processes, we can 

isolate subtle modulation of distinct processes resulting from stimulation. In the present 

study, we apply excitatory anodal-tDCS to the primary motor area, M1, to investigate 

differential effects on the three components that comprise motor control. The motor cortex 

was chosen as a suitable candidate for stimulation because it has a role in all three 

components, and additionally this electrode montage—the M1/CO montage—is considered 

the gold-standard for improving motor function (Miller & Low, 2001; Nitsche & Paulus, 

2000, 2001). 

Consistent with previously described physiological data, we posit that targeting M1 with 

anodal stimulation will enhance performance on two tasks that measure action generation and 

selection—namely, SRT (measuring psychomotor processing speed), and CRT (measuring 

psychomotor and executive decision making speed). It is unclear, however, whether this 

montage will benefit performance on the SART (measuring response inhibition and sustained 

attention, which are cognitive domains said to underpin executive function, and the 

cumulative components of goal-directed motor control; Robertson et al., 1997). Bikson and 

Rahman (2013) claim that the relative mechanistic simplicity of tDCS and complexity of 
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brain function gives rise to problematic inference of the functional anatomical specificity of 

those cortical regions targeted by tDCS. And given the previously described paucity in our 

explanatory power of the AeCi account of stimulation, the position of the cathode at the 

orbitofrontal cortex may therefore generate differential modulation of the components of 

motor control that require higher processing (i.e., response inhibition) compared to those that 

rely more on basic motor processing (action selection and generation). That is, the effects on 

all three components might not be facilitatory effects; we may observe quicker reaction times 

in all three tasks, but diminished response inhibition. This is because response inhibition is 

more likely to recruit the prefrontal cortex than the other two components, and the location of 

the cathode over the orbitofrontal cortex might have a larger impact on this aspect of motor 

control. 

4.5 Methods 
 

4.5.1 Sample 
 

Fifty-four right-handed (27 females) participants aged between 18 and 38 years (M = 

24.9, SD = 5.2 years) participated in this study after providing written informed consent. The 

experimental procedure was approved by the Human Research Ethics Committee of the 

University of Adelaide in compliance with the Declaration of Helsinki. Participants met the 

safety criteria according to a modified TMS/tDCS Adult Safety Screen (Butts, Kolar, & 

Newman-Norlund, 2014; Rossi, Hallett, Rossini, & Pascual-Leone, 2009, 2011), had no 

history of neurological or psychiatric disorder, were non-smokers with no drug or alcohol 

dependencies, and were not using medications known to affect neurological or psychological 

functioning. The sample was recruited via online advertisement and participants were 

financially compensated for their time and incidental costs at the rate of AU$20 per hour. 

Experiment 1 
 

4.6 Materials and design 
 

4.6.1 Experimental design and procedure 
 

This study used two counterbalanced within-subjects experimental conditions (anodal 

and sham control). Because the within-subjects design required participants to complete the 

behavioural tasks more than once, we chose tasks that can be administered repeatedly with 

negligible practice effects (Burns & Nettelbeck, 2003). The experiment comprised three 

testing sessions, which took place at the same time on each day. In the first session, 

participants familiarized themselves with the behavioural tasks. The purpose of this session 
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was to minimize practice effects, if any, on the behavioural tasks, before testing the effect of 

tDCS on performance. In the second and third sessions, participants completed the tasks 

again, but tDCS (real/sham) was administered prior to testing. The first and second sessions 

were separated by 24 hours, whereas the second and third sessions were separated by a 72- 

hour washout period to minimize potential carryover effects (Vannorsdall et al., 2012). The 

order in which participants were administered each stimulation condition was randomly 

determined. 

In stimulation sessions, participants were seated in a comfortable chair. Transcranial 

magnetic stimulation (TMS) was used to determine the ‘hotspot’ (the location on the scalp 

that elicited a maximal response in a target muscle) using a previously reported procedure 

(see Bastani & Jaberzadeh, 2012; Rothwell et al., 1999). The motor cortical hotspot for the 

first dorsal interosseous was marked with a surgical marker and used as the anodal site for the 

subsequent tDCS (see further detail, below). This ensured that the placement of the anodal 

electrode was consistent in the two tDCS sessions. Following the TMS procedure, anodal or 

sham tDCS was applied for 20 minutes, during which time participants were instructed to 

remain still. Fifteen minutes after completion of the stimulation, participants completed the 

behavioural tasks, which took approximately 20 minutes to complete. After the third session, 

participants were apprised of the two stimulation conditions to determine whether they were 

aware of the order of the sham and anodal conditions. 

4.6.2 Transcranial direct current stimulation (tDCS) 
 

tDCS was administered using a battery-driven constant-current stimulator (Eldith DC; 

NeuroConn GmbH, Germany) via two conductive rubber surface electrodes (35 cm2) encased 

in saline-soaked sponges. The anode was affixed to the left-hemispheric M1 region 

associated with the FDI generator because responses were made with the right hand, and the 

cathode do the right supraorbital region. To locate the hotspot with TMS, we used a 

monophasic Magstim 2002 with a figure-of-eight Alpha Remote Control Coil (external 

diameter of 90 mm per wing; Magstim Co., Whitland, UK) in a conventional single-stimulus 

paradigm to elicit motor evoked potentials (MEPs) according to a relative method (Pitcher et 

al., 2015). MEPs were recorded via surface electromyography (EMG) using disposable 

circular Ag/AgCl electrodes with a 9.1 cm2 skin-contact area arranged in a belly-tendon 

montage on the right hand. Cambridge Electronic Design (CED, Cambridge, UK) Power1401 

mark-III and 1902 Quad-system hardware were used to convert (5 kHz), filter (20 Hz – 1 

kHz), and amplify (× 1000) the electromyogram, which was recorded using CED Signal 
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v4.09 software. The cathode was positioned over the contralateral (right) supraorbital ridge, 

providing sufficient inter- electrode distance to minimize current shunting (Bortoletto, 

Pellicciari, Rodella, & Miniussi, 2015). The electrodes were affixed with tubular retention net 

bandages and electrode impedance was maintained below 55 kΩs. Anodal stimulation 

comprised 20 minutes of constant 1 mA current, with 30-second ramp-up and ramp-down 

phases at onset and offset, resulting in a current density under the electrode of 0.029 cm2. 

The sham protocol included the same current slope and output parameters for the first 60 

seconds, but then was followed by a 30-second ramp-down and no current for 18.5 minutes. 

This sham protocol produces good blinding of the stimulation condition to participants, and 

does not have sustained effects on cortical excitability (Gandiga, Hummel, & Cohen, 2006; 

Nieratschker et al., 2015). For the duration of stimulation, participants remained seated 

silently, with their eyes opened, in the room in which behavioral tasks were undertaken. They 

were advised to notify the researcher if the discomfort of stimulation became intolerable, in 

which case stimulation would have been terminated. None of the participants did so. 

4.6.3 Behavioural tasks 
 

4.6.3.1 Reaction time tasks 
 

Simple Reaction Time (SRT) presents participants with the white outline of a square 

on a black background displayed on a computer screen, and participants are instructed to 

fixate it. The stimulus (the square becoming solid white) appears with randomized inter- 

stimulus interval (ISI) between two and eight seconds (Figure 20). Participants press the [g] 

key on a standard keyboard as quickly as possible following stimulus presentation, which 

remains on the screen until the response. If the stimulus is anticipated and [g] is pressed prior 

to stimulus presentation, the square remains solid until the response is made again. The task 

consists of 40 trials and the outcome measure is median RT excluding the first trial. 
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Figure 20. An example of an SRT trial. The orienting stimulus is followed by the target 

stimulus to which participants respond. 

Choice Reaction Time (CRT) is similar to SRT; however, four white square outlines 

are displayed on the screen, and the target stimulus is randomly presented in one of those four 

squares with equiprobability. Again, the target stimulus is the square filling from black to 

white in 40 trials. Participants press the [a], [s], [k], or [l] key ([a] and [s] are pressed with the 

left hand and [k] and [l] with the right) spatially corresponding to the box in which the 

stimulus appears (see Figure 21). 

 

 

Figure 21. An example of two complete CRT trials with varying ISI. Participants fixate the 

four square outlines and press the corresponding key when one of the squares becomes solid 

white. 

 



134  

4.6.3.2 Sustained Attention to Response Task (SART). Participants are presented 

with random single digits (1 – 9) displayed in the centre of the screen in fonts of differing 

sizes (48, 72, 94, 100 and 120 point, ranging from 12 mm to 29 mm on the computer screen). 

Each digit is displayed for 245 msec, immediately followed by a mask for 900 msec, 

resulting in a response period of 1,145 msec from digit onset to mask offset (see Figure 22). 

Participants press the left mouse button as soon as possible after any digit except the digit ‘3’ 

is displayed (referred to as “go trials”; 0.89 probability). For this task, participants must 

inhibit their response when the digit ‘3’ is displayed (referred to as “no-go trials”; 0.11 

probability). The task consists of 225 trials, including 25 no-go trials presented at random. An 

error of commission occurs when the participant does not inhibit a response when the digit ‘3’ 

is presented. Outcome variables were proportion of commission errors, median reaction time (RT) in 

go trials, and fluctuations in RT before and after no-go trials. 

 

 

Figure 22. An example of two complete SART trials. The first trial is a go trial in which 

participants respond to the stimulus (any digit other than 3, the digit 7 in this example), 

followed by a no-go trial (the digit 3) in which participants are instructed to inhibit their 

response. 

Tasks were programmed using Xojo software (Xojo Inc., Austin, Texas, USA) and 

installed on Mac OSX 10.8 computers (Apple Inc., Cupertino, USA) with HP keyboard and 

1000 dpi corded mouse (Hewlett-Packard Co., Palo Alto, USA). 

4.7 Results 
 

Participants were blinded to their stimulation condition order and were naïve to the 

objectives of the study. 35 participants (65%) correctly identified the anodal condition in a 

two-alternative forced-choice question, consistent with previous literature, signifying 
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sufficient blinding to condition (see Russo, Wallace, Fitzgerald, & Cooper, 2013). 

Of the 54 participants, one participant was excluded from CRT analyses due to 

missing data from one session. Four participants were excluded from SART analyses due to 

anomalistic or incomplete data; three did not respond to go trials (i.e., executed omission 

errors only), and one produced RTs twice as long in the third session than in the other two 

sessions. Consistent with a recommendation by Jensen (2006), we used a simple truncation 

rule for all three tasks to exclude trials with RTs shorter than 150 msec that likely reflect 

anticipatory responses, and longer than 1500 msec that likely reflect inattention or aberrant 

mechanical processes (note that truncation of long RTs was not necessary for the SART, 

given that participants were given only 1145 msec to respond to each digit). Alongside these 

criteria, we excluded CRT incorrect-selection responses (i.e., pressed a key corresponding to 

an incorrect target). These heuristics resulted in exclusion of only a few trials: 0.19%, 0.09% 

and 0.05% of SRT trials in the baseline, anodal, and sham sessions, respectively; 6.18%, 

7.45% and 7.55% of CRT trials; and 4.00%, 6.97%, and 5.86% of SART trials. We used the 

median as our overall measure of Simple, Choice, and SART RT because it is robust to the 

influence of skew and truncation (Ulrich & Miller, 1994)6. 

 

 

 

 

 

6 Given the problematic characteristics of the RT distribution, Schmiedek, Oberauer, Wilhelm, Seuss and 

Wittmann (2007) proposed that using information from the whole distribution of RTs may provide better 

estimates than do simple measures of central tendency. One such method is to fit an explicit density 

function, the ex-Gaussian (Hohle, 1965). So, because initial analyses using median RTs revealed no main 

effects, we extracted the three critical parameters of a theoretical ex-Gaussian RT distribution for further 

analysis. The ex-Gaussian demonstrates consistent robust psychometric properties in varying empirical RT 

samples (see Ratcliff, 1993). It is the convolution of two stochastically independent process distributions: a 

Gaussian function whose mean (μ) and standard deviation (σ) approximately represent the rise of the 

distribution’s left tail; and an exponential function whose mean (τ) approximately represents the skewed 

tail (Sternberg, 2014). Any given RT trial can be partitioned into a decision component, and a transduction 

component; that is, the perception of a stimulus and decision to respond, and the true physical-motor 

response, respectively (Dawson, 1988; Luce, 1986). The use of the ex-Gaussian assumes that the 

transduction component is Gaussian (represented by the μ and σ parameters), whereas the decision 

component is exponential (represented by the τ parameter; Hohle, 1965). We included this analysis not 

only to potentially identify a source of variation in response, but also because its parameters somewhat 

closely reflect the stages of processing identified a century earlier by Donders. This particular analysis of 

RT could have provided insight into potential differential effects of disparate cortical distribution of 

stimulation current on decision and transduction components; however, it provided no substantive or 

interpretable results. 
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Data from all conditions are summarized in Table 6. Including the order of the anodal 

and sham tDCS sessions in our analyses did not alter the overall results, and so we report 

analyses without this factor. Stimulation condition (anodal, sham) did not affect Simple 

Reaction Time (t53 = 1.42, p = .16) or Choice Reaction Time (t52 = 0.47, p = .64). Participants 

produced a significantly higher proportion of errors of commission on the SART following 

anodal-tDCS than following sham (t49 = 2.30, p = .026, d = 0.22). Moreover, participants 

responded faster following anodal-tDCS than sham, (M = 14.8 msec, SEM = 8.1 msec), 

although this difference was not statistically significant (t49 = 1.83, p = .073, d = 0.17; see 

Figure 23). 

 

 

 

Figure 23. SART performance in the three sessions. Participants made significantly more 

errors of commission (p = .026; upper panel) and responded faster (p = .073; lower panel) in 

the anodal stimulation condition compared to the sham condition. 

We further analysed the mean reaction times of the four trials immediately before and 

after errors of commission in the SART. This allowed us to examine the error-correction 

mechanism that manifests as longer response latencies in the four trials following failure to 

inhibit a response to target stimulus presentation (Fellows & Farah, 2005; Manly, Robertson, 



137  

Galloway, & Hawkins, 1999). We investigated whether anodal tDCS influenced proactive 

inhibition, measured by PES, so we could determine whether anodal stimulation decreased 

RT in general, or whether a failure in PES, generated slightly faster RT under anodal 

stimulation. Pre- and post-error RT data for two participants could not be analysed due to 

zero error rates. The interaction term between type of stimulation (anodal vs. sham) and time 

relative to errors (pre- vs. post-errors) approached significance (t47 = 1.83, p = .073). This is 

because RTs before errors were similar in the anodal and sham conditions (t47 = 1.40, p 

= .167), but RTs after errors were significantly slower in the sham condition than the anodal 

condition (t47 = 3.11, p = .003; see Figure 24). Put differently, and depicted in the lower panel 

of Figure 24, participants slowed down after an error under sham stimulation (t47 = 2.18, p 

= .034, d = 0.13) and in the baseline session (t47 = 3.11, p = .002, d = .30), but not under 

anodal stimulation (t47 = .05, p = .964). 

 

 
Figure 24. Mean Reaction Time before and after an error of commission on the SART (upper 

panel) and the change in average Reaction Time following an error of commission (lower 

panel). Participants in both the baseline (p = .002) and sham (p = .034) sessions exhibited an 

increase in RT following an error. This was not evident in the anodal stimulation condition (p 
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= .964), where participants did not alter their response pattern following an error. Error bars 

represent the standard error of the mean. 
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Table 6 

Descriptive statistics for performance on behavioural measures in the baseline session and anodal and sham tDCS conditions, and pairwise t- 

tests comparing differences between behavioural performance on anodal and sham tDCS conditions. 

  

Baseline Session M 

(SEM) 

 

Anodal Condition 

M (SEM) 

 

Sham Condition M 

(SEM) 

 

Anodal-Sham 

Difference (SEM) 

95%CI 
   

Measures (sample size)   t p d 

 Lower Upper    

SRT (n = 54) 308.14 (6.54) 318.66 (7.96) 312.44 (6.23) 6.22 (4.40) -2.59 15.04 1.42 .163 .12 

CRT (n = 53) 468.17 (15.00) 452.37 (10.95) 454.87 (10.30) -2.50 (5.34) -13.22 8.22 0.47 .642 .03 

SART RT (n = 50) 338.71 (14.02) 316.78 (11.91) 331.63 (13.23) -14.84 (8.10) -31.12 1.43 1.83 .073 .17 

SART Errors (n = 50) .48 (.04) .52 (.04) .46(.04) .05 (.02) .01 .10 2.30 .026 .22 

SART RTB (n = 48) 313.08 (10.62) 308.7 (9.66) 320.47 (12.41) -11.77 (8.56) -29.10 5.18 1.40 .167 .17 

SART RTA (n = 48) 334.04 (14.70) 307.81 (8.24) 332.34 (12.78) -24.54 (7.14) -37.18 -7.94 3.11 .003 .33 

SART RTA – RTB (n = 48) 22.59 (6.82) 0.02 (5.36) 10.84 (4.98) -10.60 (5.78) -22.23 1.03 1.83 .073 .26 

Abbreviations: SRT: Simple Reaction Time; CRT: Choice Reaction Time; SART: Sustained Attention to Response Task; SART RTB: mean RT 

of 4 go trials immediately before (B) commission error; SART RTA: mean RT of 4 go trials immediately after (A) commission error. RTs are 

measured in milliseconds, and thus lower scores reflect faster reaction times. The t value, significance p-value, effect size (Cohen’s d) and 95% 
confidence interval are reported for the anodal-sham comparison for each measure. 
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4.8 Discussion 
 

Effective modulation of higher cognitive functions, particularly those involved in 

executive functioning, requires an understanding of their neural bases. Indeed, this is one of 

the most exciting challenges faced by contemporary cognitive neuroscience, the outcomes of 

which may benefit both pathological and healthy populations. Where clinical application 

shows promise, it is common to investigate the effects of novel putative treatments on 

separable components of any given cognitive ability in healthy individuals. The capacity to 

select, generate, or withhold an action due to a change in environmental demands is critical 

for day-to-day functioning, and deficits in this ability characterize myriad neuropsychiatric 

illnesses and conditions of impaired cognition (Barkley, 1997; Kiehl et al., 2000; Lawrence et 

al., 1996; Nigg et al., 2006; Taylor et al., 1986). 

Although online stimulation has been posited as more appropriate in some 

experimental paradigms designed to enhance cognitive functions (Hogeveen, et al., 2016; 

Stagg, et al., 2011), we investigated offline effects of stimulation. This is because a tDCS 

intervention whose cognitive after-effects last for a period of time would provide a practical 

treatment from which benefits can be experienced with minimal imposition. Moreover, it is 

possible for a tDCS intervention to generate negative after-effects, which should also be well 

documented. So, although both online and offline stimulation seems to generate significant 

effects on various cognitive abilities, developing effective offline stimulation should be the 

goal of such research. 

4.8.1 tDCS effects on action selection and generation 
 

Contrary to our predictions, we found no evidence of an effect of tDCS on basic 

psychomotor response generation or action selection. Our findings do not support previous 

findings describing effects of tDCS on elementary psychomotor tasks such as SRT and CRT 

(Conley et al., 2015; Hayduk-Costa et al., 2013; Hummel et al., 2006; Ljubisavljevic et al., 

2015; Müller et al., 2008). This may reflect differences in procedures and stimulation 

parameters. While neither Jacobson et al. (2011), nor Hsu et al. (2011) found an effect of 

stimulation on reaction times in either correct go trials or incorrect no-go trials, SRT seems 

amenable to modulation under some stimulation conditions. For instance, cathodal 

stimulation of the left temporal cortex has improved RT in both stroke patients (Hummel et 

al., 2006), and healthy populations (Müller et al., 2008). Müller and colleagues (2008) noted, 

however, that stimulation of the opposite polarity did not elicit the opposite effect on RT, 
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rather, no modulation was observed. Effects of stimulation on CRT are even less clear. For 

example, whereas both Hayduk-Costa et al. (2013) and Conley et al. (2015) reported 

facilitation of CRT in limbs contralateral to anodal stimulation of M1, Lindenberg and 

colleagues (2013) found that anodal stimulation to the same cortical region did not. 

Interestingly, Karok and colleagues reported reduction in lower limb SRT in an experimental 

condition that applied online, unilateral anodal-tDCS to M1 (Karok, Fletcher, & Witney, 

2015). Karok et al., however, also reported that no such effect was found in either bilateral 

(current flow from right M1 to left M1), or offline stimulation conditions similar to those 

used here, which also failed to produce a positive result. Horvath and colleagues (2015a) 

highlighted that, taken together, this body of research seems to report both inconsistent and 

irreproducible data, suggesting that this may be due to small sample sizes. Of the 79 studies 

included in their meta-analysis, the average sample size was less than twelve. Our sample 

size of 54, therefore, confers substantially greater statistical power, giving rise to a greater 

likelihood of detecting the presence of reliable effects. 

4.8.2 tDCS effects on response inhibition 
 

We provide evidence for the modulation of a discrete cognitive component recruited 

by response inhibition processes, specifically, an error-correction mechanism. Performance in 

the baseline and sham conditions of the SART was consistent with research documenting 

errors of commission on sustained attention go/no-go tasks resulting in slowing subsequent 

responses to maximize ensuing response inhibition (Fellows & Farah, 2005; Manly et al., 

1999; Menon, Adleman, White, Glover, & Reiss, 2001; Roebuck, Guo, & Bourke, 2015). 

This effect is generally accepted to reflect the recognition of errors, followed by increased 

response latency so that prolonged processing times enable subsequent accurate responses. 

This cognitive strategy has been described as ‘proactive’ inhibition (in contrast to stimulus- 

driven ‘reactive’ inhibition), and seems to recruit the dorsolateral prefrontal cortex 

(Jahanshahi et al., 2015). We found that anodal stimulation negatively affected these 

monitoring and/or adjustment processes following an error: in contrast to the baseline and 

sham sessions, participants in our study did not slow down their response time in the anodal- 

tDCS condition, and this lack of behavioural adjustment was accompanied by an overall 

increase in the proportion of errors. It is therefore likely that the modest reduction in overall 

RT on the SART following anodal-tDCS reflects the absence of slowing down following an 

error of commission, and is not due to anodal-tDCS eliciting quicker responses overall in the 

task. This is especially likely given that anodal stimulation had no effect on SRT or CRT, or 
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on RTs in the SART before an error. We suggest that this result could be the consequence of 

(i) effects under the cathode due to its placement over the prefrontal cortex (PFC), which may 

have disturbed the efficacy of prefrontal networks recruited by response inhibition and 

executive function, and which has been proposed as a potential neurocognitive processing 

hub (Cole, Yarkoni, Repovs, Anticevic, & Braver, 2012; Neubauer & Fink, 2009); or, (ii) 

disturbance in the prefrontal-motor network due to the diffuse effects under the anode. 

Numerous brain regions are associated with error-correction neural systems, several of which 

are known to be involved in go/no-go tasks (Falkenstein, Hoormann, Christ, & Hohnsbein, 

2000; Hillyard & Anllo-Vento, 1998; Mesulam, 1990; Nobre et al., 1997). Some of these 

systems reside in the PFC, approximately at the location of our cathode (Meyer, Weinberg, 

Klein, & Hajcak, 2012; Turken & Swick, 2008). Operating under the assumption of a PFC 

network “hub” theory (see Cole et al., 2012), it is possible that excitability changes in the 

region of the anode or the cathode might have disturbed the communicative efficacy of this 

network. This may indicate that our anodal-tDCS protocol disrupted prefrontal functioning, 

which, in turn, disrupted the higher-order cognitive functioning required for effective 

response inhibition. This disruption could have happened in the two ways previously 

described, and is supported by the absence of an effect on performance in other tasks. 

Consistent with our interpretation, Nieratschker et al. (2015) reported similar 

disturbances following cathodal-tDCS to the right dorsolateral prefrontal cortex in a 

parametric go/no-go task similar to that used here. Chambers et al. (2006) have shown 

comparable reductions in inhibition accuracy alongside improvements in RT in a stop-signal 

reaction time (a paradigm like SART that also measures goal-directed motor control) using 

repetitive TMS (rTMS) to inhibit the right inferior frontal gyrus, which is seated near the 

PFC. Although rTMS and tDCS differ in their physiological effects within the cortex, the 

consequent changes are known to be markedly similar; namely, the modulation of cortical 

excitability via changes in synaptic transmission (Priori, Hallett, & Rothwell, 2009). Notably, 

the cortical regions stimulated by Nieratschker et al. (2015) and Chambers et al. (2006) were 

both in the right hemisphere. However, these authors did not analyze RTs before and after 

errors to test for stimulation effects on behavioural adaptation following errors, which might 

have explained the reduction in inhibition accuracy. Others, however, have found neither 

facilitation nor impairment of response inhibition in a similar task under identical stimulation 

parameters as those used here (Conley et al., 2015); though, those results were observed in a 

smaller sample. 
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Although Jacobson and colleagues did not report shorter RTs in their stop-signal task 

following anodal stimulation to the right inferior frontal gyrus, there was an increase in 

response inhibition accuracy (Jacobson et al., 2011). Likewise, similar results have been 

reported following anodal stimulation to the pre-supplementary motor area, while cathodal 

stimulation has been associated with impaired response inhibition on a go/no-go task 

(Ljubisavljevic et al., 2015). These results of motor region stimulation may support the 

second explanation of our results: that the effects of this “anodal” electrode montage are 

diffuse due to the interconnectedness of the motor network with frontal regions; however, 

given the diffuse nature of tDCS it is difficult to isolate the origin of observed effects. 

4.8.3 Potential mechanisms explaining the different effects of tDCS on action 

selection, generation, and inhibition 

It is important to highlight that the motor cortex has a critical role in generating SRT 

responses because this task requires little complex cognitive function (Huang, Edwards, 

Rounis, Bhatia, & Rothwell, 2005) while the CRT task engages motor areas and additionally 

frontal regions, which support the action selection component (Miller & Low, 2001; 

Romaiguère, Possamaı̈, & Hasbroucq, 1997). On the other hand, fMRI and EEG evidence 

suggests that much of the neural processing required to produce the various cognitive 

processes invoked by the go/no-go paradigm takes place in inferior and dorsolateral 

prefrontal areas, as well as motor areas (Menon et al., 2001; Simmonds, Pekar, & Mostofsky, 

2008). So, whereas inhibitory cathodal stimulation of the PFC appears responsible for the 

decrements in response inhibition that we observed, performance on measures of 

psychomotor function were not affected by excitatory anodal stimulation of the motor cortex 

in the present study. The inconsistent effects we report may be explained by a discrepancy 

between the magnitude and temporal disparities of the effects of anodal and cathodal 

stimulation. That is, we observed an effect that may potentially be due to inhibitory effects 

under the cathode, but no modulation of cognitive functions that are likely to be critically 

dependent on cortical networks under the anodal site. The after-effects of anodal stimulation 

and cathodal stimulation are not isochronal; cathodal inhibition outlasts anodal excitation, but 

may be weaker overall (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche, 2013; Isaacson & 

Scanziani, 2011; Kidgell et al., 2013; Lang, Nitsche, Paulus, Rothwell, & Lemon, 2004; 

Santarnecchi et al., 2014). As the behavioural tests were administered following tDCS, it is 

possible that the after-effects of cathodal inhibition of the prefrontal cortex (resulting in 

impaired response inhibition processes) were stronger than the after-effects of anodal 
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excitation of the motor cortex (resulting in negligible effects on SRT and CRT) at the time of 

testing. This might explain why we found impaired performance on the SART and no 

significant change in performance on the SRT or CRT. A more thorough investigation of the 

cognitive after-effects of tDCS at different time points is needed in order to shed light on the 

time course of modulation of cognitive functions by tDCS. 

4.8.4 Limitations 
 

Given our unexpected results, this study may have been strengthened by the inclusion 

of an active control condition. Some recent evidence brings sham-control designs into 

question, highlighting some compelling limitations of the procedure (see Parkin, Ekhtiari, & 

Walsh, 2015). The inclusion of an active control montage, for instance placing the cathode 

extracephalically (see Vandermeeren, Jamart, & Ossemann, 2010), may allow us to identify 

whether the cathode was indeed responsible for the effects on inhibition by having a 

condition with no direct stimulation of prefrontal areas. However, Noestcher and colleagues 

(Noetscher, Yanamadala, Makarov, & Pascual-Leone, 2014), demonstrated that extracephalic 

reference montages deepen anodal stimulation; that is, while the horizontal current diffusion 

does not change, vertical current penetrates deeper, potentially reaching, and modulating the 

activity of, deeper neural architecture. In our case, more vertical stimulation of the motor 

cortex may artificially enhance motor functions by way of pyramidal tract modulation. 

Indeed our results support the position of Parkin and colleagues (2015) insofar as the 

application of a simple push/pull of pure excitation/inhibition under, respectively, the anode 

and cathode—with no behavioural interaction between the two cortical regions—clearly does 

not fit our data. Indeed, cognitive functions such as response inhibition involve pathways that 

include frontal cortices, motor areas and subcortical regions (e.g., the indirect and hyperdirect 

pathways described by Jahanshahi et al., 2015), all of which likely contribute to performance 

on tasks such as the SART. A more thorough investigation of the influence of various anode 

and cathode locations would help shed light on the relative contributions of these brain 

regions to task performance. 

4.9 Conclusions 
 

To our knowledge, this study is the first to investigate the modulation of discrete 

component parts of goal-directed motor control using a hitherto overlooked task (i.e., the 

SART), alongside individually well-researched tasks (i.e., SRT and CRT). Given that deficits 

in such functions have broad clinical implications, identifying their sensitivity to modulation 
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and neurobiological substrates is necessary before innovative clinical applications are 

introduced. Experimental investigation into the efficacy of tDCS in treatment and 

management of such conditions is of critical importance given the potential for increased 

quality of life and amelioration of symptomatology, particularly for diseases such as 

Huntington’s, where precise motor control is negatively affected. 

Here, we investigated whether anodal-tDCS applied to M1 affects response 

generation, action selection, and response inhibition. Our findings demonstrate that discrete 

component parts of motor control can be individually modulated using tDCS: anodal-tDCS 

did not affect Simple or Choice RT, but negatively affected response inhibition, possibly by 

disrupting a prefrontal error-correction mechanism. Further, we suggest that the location of 

both the anode and the cathode should be given serious consideration in experimental design, 

with researchers operating under an assumption of intracortical connectivity between a 

number of brain regions recruited by even elementary cognitive tasks. Finally, we stress the 

importance of systematically testing the effects of various combinations of electrode montage 

configurations, as well as stimulation parameters such as current intensity and duration, for 

different cognitive functions in healthy populations before the implementation of these 

techniques for therapeutic purposes. 

Experiment 2 
 

4.10 Introduction 
 

In this second experiment, we asked whether the tDCS effects observed in the 

previous section can be attributed to LTP- like effects. That is, whether the physiological 

mechanism underlying the effect of tDCS can be attributed to long-term potentiation-like 

neuroplastic changes. We tested this here using a second neurostimulatory technique, 

transcranial magnetic stimulation (TMS) in the same sample as that described in the 

previous section. This experiment can, therefore, be considered supplementary to the 

previous as the data we describe here were collected in the same experimental sessions. 

Additionally, we included a latent measure of intelligence which we refer to as general 

intellectual ability (GIA), computed using a principal components analysis of scores on 

three abilities tests described below, because there is some evidence leading us to 

hypothesise that this may modulate either the potential for neuroplastic induction or the 

magnitude of the effect on cognitive abilities produced by neuroplastic induction (e.g., 

Garlick, 2002), although this evidence is mixed (e.g., Park & Bischof, 2013; Thatcher, 

Palmero-Soler, North, & Biver, 2016), may be mediated by cognitive reserve, (Vance, 
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Roberson, McGuinness, & Fazeli, 2010; Whalley, Deary, Appleton, & Starr, 2004), or may 

be explained by the domains of cognition recruited by different GIA-associated task 

demands (Neubauer, 2012). 

Many studies seem to indicate that a brain with better connectivity appears capable of 

better cognitive outcomes (Cole, Yarkoni, Repovš, Anticevic & Braver, 2012; Hampson, 

Driesen, Skudlarski, Gore & Constable, 200) and, since neuroplasticity can be thought of the 

brain’s capacity to respond to environmental experiences and insult by effecting structural 

changes to the connectivity of the brain (Fuchs & Flügge, 2014; Münte, Altenmüller, & 

Jäncke, 2002), then it stands to reason that neuroplastic induction may by a physiological 

candidate to explain the supposed effect of tDCS on cognitive abilities. According to this 

hypothesis, we expected to observe changes in performance on various cognitive tasks, and 

that those changes could be accounted for by the modulation of cortical excitability (i.e., 

TMS-induced neuroplastic induction). 

Interest in neurostimulation paradigms has departed from invasive techniques such as 

deep brain and vagal nerve stimulation toward noninvasive techniques largely because non- 

invasive techniques are well-tolerated and have fewer risks and side effects (Stagg & Nitsche, 

2011; Kuo, Paulus & Antal, 2015). The development of magnetic stimulation has allowed 

less reliance on electrical stimulation, although each occupies a unique position in cognitive 

neuroscience and complement one another (Tanaka & Watanabe, 2009). Not only is the 

experimental potential of using tDCS and TMS unique in that their effects can imitate 

ablation and lesion experiments and can be used to modulate activity at the synapse, with 

further development, they may indeed prove effective in clinical applications. In fact, theta 

burst stimulation, a TMS technique, has already demonstrated notable utility in various motor 

disorders; moreover, both TMS and tDCS have been used with varying efficacy for the 

management of major depressive disorder and chronic pain, treatment of symptoms related to 

neuropathy and stroke, and therapy for neuropsychiatric diseases and psychopathology such 

as dementia and schizophrenia (Boggio et al., 2008; Edwardson, Lucas, Carey & Fetz, 2013; 

Kuo, Paulus & Nitsche, 2014; O’Connell, Wand, Marston, Spencer & DeSouza, 2014; 

O’Neill, Sacco & Nurmikko, 2015). 

Neuroplasticity exerts effects over both the structural and functional connectedness of 

the brain. It is likely that the structural mechanisms that seem to protect against the cognitive 

sequelae of neuropathology can be attributed to the amelioration of diminished functional 

connectedness associated with the pathology. Cognitive aptitude depends on the physical 

integrity of the brain, that is, the efficacy with which neurons communicate. A brain with 
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better connectivity is able to efficiently and effectively transfer information within and 

between brain regions and, as such, greater connectivity is associated with better cognitive 

control and higher intelligence (Cole, Yarkoni, Repovš, Anticevic & Braver, 2012; 

Hampson, Driesen, Skudlarski, Gore & Constable, 2006). Because the integrity and efficacy 

of neural connectivity is at least partially responsible for cognitive outcomes, then artificially 

modulating that cortical connectivity should plausibly modulate cognition. The brain 

functionally recovers and remodels in response to injury and disease in amazing ways. In 

extreme cases such as brain region ablation, a functionally intact neighbouring neural pool 

often carries out the functions of the ablated region (Fancher & Rutherford, 2012). 

Furthermore, the human nervous system has the fascinating ability to undergo structural and 

functional reorganisation in response to the stimulation of learning and experience. Expertise 

in some area often manifests at a gross neurophysiological level. For example, studies have 

shown larger hippocampi (involved in forming and accessing complex memories and spatial 

navigation) in taxi drivers, more complex parietal lobes in bilinguals, and higher cortical 

volume in musicians (Gaser & Schlaug, 2003; Maguire, Woollett & Spiers, 2006; Mechelli et 

al., 2004). 

The mechanisms via which these neuroplastic changes occur are synaptic and 

nonsynaptic, and activity-dependent, including processes of neuronal growth, synaptogenesis, 

dendritic spine formation, and synaptic pruning (Singh & Garg, 2014). In two experiments in 

which rats were trained to reach for a biscuit using either their dominant, nondominant, or 

both forepaws, Greenough, Larson, and Withers (1985; see also Withers & Greenough, 1989) 

observed larger apical dendritic fields, in terms of total dendritic length, number of oblique 

branches from the apical shaft, and length of terminal branches in contralateral Layer V 

pyramidal neurons, and selective alterations in size and complexity to the forked apical 

pyramids in basilar dendrites within layers II and III in the contralateral motor-sensory cortex 

of the forelimb. Using a similar reach training task, Xu et al. (2009), extended these findings, 

demonstrating immediate and permanent cortical rewiring in mice following motor skill 

repetition. Taken together, these results show an interaction between structural and functional 

connectedness which, following activity, results first in strengthening of neural connectivity, 

and second, in turn, in greater cognitive performance as a function thereof. Neuroplasticity 

also encompasses changes in the communicative efficacy of existing pathways—that is, the 

increase and decrease in efficacy of synaptic connectivity via long-term potentiation (LTP) 

and long-term depression (LTD) respectively, thereby either strengthening or weakening 

signal transmission potential as a function of use (Massey & Bashir, 2007). LTP and LTD are 
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the cellular and molecular substrates of long-term memory. LTP is a long-lasting 

enhancement (upregulation) in signal transmission between two neurons after repeated 

stimulation via increased neurotransmitter release and AMPA receptor site formation on post- 

synaptic cell membranes (Henley & Wilkinson, 2013). As a result of post-synaptic calcium 

influx and NMDA receptor (GluN2B-NMDAR) lateral diffusion, LTP also involves dendritic 

spine formation through intracellular CaMKII redistribution (Dupuis et al., 2014). Moreover, 

an increase in transcription factors via gene expression, which results in increased synthesis 

of growth factor proteins that are involved in formation of new synapses, further underpins 

LTP. These mechanisms lead to greater depolarisation events in post-synaptic terminals. 

Conversely, LTD reflects AMPA receptor internalisation and phosphorylation making them 

inaccessible to calcium ions, and decreases in neurotransmitter release and NMDA receptor 

density, thus downregulating signal transmission efficacy in the post-synaptic neuron (Dudek 

& Bear, 1992; Ogasawara, Doi & Kawato, 2008). 

Recent evidence using imaging techniques such as voxel-based morphometry and 

diffusion tensor imaging have revealed significant individual differences in the capacity one 

has for neuroplastic cortical excitability change, which varies as a function of genetic, 

physiologic, and environmental factors, among many others not yet known (Kanai & Rees, 

2011; Park & Bischof, 2013; Westerhausen et al., 2006). An objective indicator of baseline 

cortical excitability can be derived using a measure of sensory threshold (D’Ostilio et al., in 

press), where threshold refers to a membrane’s absolute capacity to react to stimuli and 

consequently enact the synaptic cascade. With TMS we can obtain such a measure from the 

motor cortex, which is the brain region from which neural impulses involved in planning, 

execution and control of voluntary movements originate. So, with a known threshold value, 

we are able to measure relative change in response to stimulus administration held at a 

constant suprathreshold intensity. Resting motor threshold (rMT) is the minimum stimulus 

intensity required to evoke a liminal response in the target muscle in response to transcranial 

stimulation of motor cortex (Qi, Wu & Schweighofer, 2011). rMT is defined as the lowest 

machine stimulus intensity that can evoke a small (≥50 µV) motor evoked potential (MEP) in 

at least half of a consecutive series of ten trials. rMT simply reflects the excitability and 

synaptic efficacy of the entire corticospinal projection from motor cortex to some target 

muscle. Schneider et al. (2014; see also Pitcher, Schneider, Drysdale, Ridding & Owens, 

2011) reported that lower rMT (i.e., higher excitability) is associated with higher processing 

speed, working memory, and general intellectual ability in adolescents. Although these 

abilities may not require the motor cortex, it is suggested that the relationship between rMT 
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and cognitive performance exists because rMT might be an index of cortical excitability 

throughout the brain (Pitcher et al., 2011). 

tDCS is thought to induce LTD- and LTP-like neuroplastic changes via subthreshold 

manipulation of membrane potential and modulation of spontaneous firing rates via alteration 

of excitatory thresholds and displacement of the depolarisation event initiation from the 

neuron’s soma to its dendrites, thereby synchronising neural oscillations (Bikson et al., 2004; 

Paulus, 2011). Using tDCS, Liebetanz et al. (2006) modulated cortical spreading depression 

propagation in anaesthetised rats by altering ion homeostasis such that neurons underwent 

electrical hyperactivity followed by a wave of inhibition as a consequence of high voltage 

tDCS. These changes are polarity-dependent, meaning that electrode polarity determines the 

direction of effect (Paulus, 2011). Anodal tDCS consists of a positively charged, facilitatory 

electrode (anode) over a cortical region of interest, and results in depolarisation of neuronal 

resting membrane potential between the anode and the negatively charged, inhibitory 

reference electrode (cathode) at a remote site. Current diffusion and depolarisation magnitude 

depend on a number of factors such as electrode size and individual differences in cortical 

anatomy. Anodal tDCS (a-tDCS) is used to increase neural excitability in the cortical region 

of interest, the focality of which depends on the location of the cathode (Bikson, Datta & 

Elwassif, 2009). Alternatively, cathodal stimulation reverses this electrode montage, 

positioning the cathode over the cortical region of interest. It is important to note that an 

anode and cathode are used in both anodal and cathodal tDCS and, therefore, both excitatory 

and inhibitory responses are elicited. Thus, a-tDCS produces bimodal polarisation by 

increasing excitability at the target site, and decreasing excitability at the reference site 

(Bikson, Datta, Rahman & Scaturro, 2010). 

The physical mechanisms of tDCS and TMS differ insofar as TMS induces an 

electromagnetic field parallel to the brain surface whereas the electric field elicited by tDCS 

has components that are both parallel and perpendicular to the brain surface (Roth, 1994), and 

as a consequence of this, net effects on excitability are further subject to direction of current 

flow along the neuron in regard to its physical orientation in white matter, as well as axonal 

and somatic polarisation (Antal, Paulus & Nitsche, 2010). 

When investigating changes in the motor cortex, the effect of tDCS on neuronal 

excitability can be measured by determining whether a session of tDCS applied over the 

motor cortex alters the amplitude of TMS-induced motor evoked potentials (Di Lazzarro & 

Rothwell, 2014). Motor evoked potentials (MEPs) are neuroelectrical responses in muscles 

that can be elicited by single pulse TMS, which via electromagnetic induction produces a 
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small, targeted electrical current in cortex directly underneath the magnetic field generating 

coil. A change in MEP amplitude is a marker for neuroplastic change, and reflects 

modulation of peripheral motor pathway and corticospinal neuron membrane excitability, 

intracortical synaptic strength, and neuromuscular junction health (Kobayashi & Pascual- 

Leone, 2003). Thus, if a-tDCS induces LTP-like neuroplasticity (i.e., an increase in synaptic 

strength), then one would expect MEP amplitude to increase in response to a set stimulus 

intensity following a session of a-tDCS, and, indeed, this is what we expected to observe. 

An MEP is a waveform with well-defined deflections; shortly after the TMS pulse, 

there is a dip followed by a peak. MEP amplitude is taken to be the difference between the 

two largest voltage peaks of opposite polarity (Rossini et al., 1999). Nitsche and Paulus 

(2000; 2001) demonstrated an increase in MEP amplitude of 150% above baseline following 

a short session of 1 mA a-tDCS to the motor cortex. The effect lasted 90 minutes, and was the 

first demonstration of sustained tDCS-induced elevations of cortical excitability (Nitsche & 

Paulus, 2001). 

Threshold measures of cortical excitability in motor cortex are correlated with those 

in visual cortex—thus, using the motor cortex as a proxy of cortical excitability throughout 

the brain seems to be valid. The primary motor region M1 is a suitable candidate for 

manipulation not only because its plasticity can be quantified (unlike other brain regions) but 

also because, in addition to its principal role in muscular control, Hammond (1956; 1960) 

reported that the magnitude of some voluntary components of motor cortical muscular output 

(e.g., stretch reflexes) can be modulated by prior, related experimental instructions. Using 

fMRI and MEG, Pulvermüller (2005; see also Pulvermüller, Hauk, Nikulin & Ilmoniemi, 

2005) demonstrated increased activity in M1 200 msec after reading or hearing action terms 

associated with movement (e.g., “sit”). More specifically, verbs for arm-, head- and leg- 

related actions produced activity in their respective motor cortical areas. That is, the motor 

cortex is crucial in processing cognitive information related to sensorimotor function and its 

complex interconnections are in part associated with cognitive functions and skill learning 

(Barsalou, 2008; Sanes & Donoghue, 2000). Simply stated, plasticity can be measured in 

M1, and activity in M1 also appears to be associated with cognition. 

For long-lasting modification of cognitive abilities, an intervention must induce long- 

term physiological changes in cortex. To date, the only such reliable change in underlying 

neural mechanisms is the apparent strengthening of synaptic connectivity (Stagg & Nitsche, 

2011). Nevertheless, neuroplasticity has hitherto been overlooked as an independent measure 

against which tDCS-induced cognitive change can be modelled. Cognitive change following 
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tDCS may be the result of, for example, transient mood change (Nitsche, Boggio, Fregni & 

Pascual-Leone, 2009), or increased regional cortical blood flow (Zheng, Alsop & Schlaug, 

2011). So, in addition to the protocol reported in the previous experiment, we aimed to 

determine whether neuroplasticity, as measured by change in TMS-induced MEP amplitude 

before and after the administration of tDCS was related to change in cognitive performance. 

With this in mind, we were in the exciting position to ask whether we were able to, via 

induction of neuroplasticity, simulate natural learning and memory processes, and thereby 

enhance cognition. So, the question was: could we mimic neural processes and instantiate the 

potentiation of cognitive abilities via an external source? 

Consistent with Nitsche and Paulus (2001), we expect an increase in MEP amplitude 

following a-tDCS produced by LTP-like effects, which would provide a measure of 

neuroplasticity to use as an index against which changes in performance on cognitive tasks 

performed could be compared. That is, changes in MEPs could be used to provide a short- 

term measure of neuroplasticity, which may help us explain why the cognitive performance 

of some individuals improves after a-tDCS (presumably because this type of stimulation 

effectively induced neuroplasticity), whereas the performance of others does not (presumably 

because this type of stimulation was not effective in inducing neuroplasticity in these 

individuals). Given the position that cognitive performance is at least partially attributable to 

brain connectivity, we further hypothesise that the expected difference in cognitive 

performance between anodal and sham stimulation sessions within individuals will be 

positively correlated with their MEP difference between anodal and sham stimulation (i.e., 

changes in cognitive performance will correlate with the extent to which tDCS induced 

neuroplasticity). 

Finally, numerous researchers have suggested that the degree to which individuals’ 

cognitive abilities can be enhanced are significantly variable (Graham & Fisher, 2013; Moser, 

Schroder, Heeter, Moran & Lee, 2011) and that the efficacy of any intervention may be 

moderated by an individual’s initial abilities. It follows that the efficacy of tDCS to facilitate 

enhancement on cognitive tasks related to intelligence may be similarly moderated. As such, 

we used performance on three cognitive tasks to establish a baseline cognitive profile of 

general intellectual ability before any neurostimulation, against which changes in MEPs and 

cognitive performance in a second set of tasks were modelled, with the expectation that 

participants with a higher baseline general intellectual ability (GIA) would be more receptive 

to plasticity induction, illustrated by larger increases in MEPs and cognitive performance 

following a-tDCS. GIA was estimated from scores on three tests administered in Session 1: 
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Raven’s Advanced Progressive Matrices (RPM), the Dot Matrix test (DM), and the Mental 

Rotation test (MRT). 

4.11 Materials and design 

Since this experiment is a continuation of the previous, the sample comprised the same 

participants as those described in the previous Experiment (refer to 4.5.1). 

4.11.1 Transcranial Magnetic Stimulation (TMS) 
 

MEPs were induced using TMS from a monophasic Magstim 2002 with a figure-of- 

eight Alpha Remote Control Coil with an external diameter of 90mm per wing (Magstim Co., 

Whitland, UK). Single stimuli were applied every six seconds ±10% according to a 

randomised variable interval scale. MEPs were recorded via surface electromyography 

(EMG) using disposable, circular Ag/AgCl electrodes with a 9.1 cm2 skin-contact area 

arranged in a belly-tendon montage on the first dorsal interosseous (FDI) muscle of the right 

hand. Each TMS pulse elicits an involuntary response displayed on a computer screen and 

measured in millivolts (mV; see Figure 25). The sample was right-handed to minimise inter- 

individual MEP variability (Balvin, Song & Slimp, 2010). A CED Power1401 mark-III 

(Cambridge Electronic Design [CED]; Cambridge, UK) was used for analogue to digital 

conversion and band-pass filtering (20Hz-1kHz) in parallel with either a CED 1902 Quad- 

system or Digitimer D360 (CED; Digitimer, Welwyn Garden City) for isolated amplification 

(×1000). Digitised MEPs were analysed and recorded onto hard-drive for offline analysis 

using Signal v4.09 software (CED) installed on Windows XP (Microsoft Corporation, 

Redmond, USA). Signal software was also used to control stimulation parameters (e.g., 

trigger timing) and for online 50 hertz (Hz) rejection algorithm which acts as a computational 

band stop filter to attenuate signal contamination from ambient electrical noise produced by 

the AC electromagnetic fields of nearby appliances and wiring. 
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Figure 25. An example of a recorded motor evoked potential. TMS stimulus artefact is 

highlighted in blue at 200 msec, followed by a stimulus response latency of approximately 20 

msec, and then the MEP waveform that occurs between 220 and 240 msec, which is followed 

by a silent period. Each MEP frame displays 300 msec. 

4.11.2 Experimental procedure 

Three general cognitive ability (GIA) tasks were administered in the baseline session 

that did not include any neurostimulatory intervention. 

At the beginning of the second session, participants were seated in a chair with their 

right forearm pronated, resting on a pillow. The chair was oriented away from screens to 

prevent potential desirability or anticipatory effects via biofeedback. The right hand was 

prepared with 70% ethanol solution and abrasive gel to ensure good skin conductance. Two 

electrodes were affixed transdermal to the FDI (located by placing downward force on the 

index finger and having participants abduct the digit against it), from which MEPs were 

measured via EMG and a grounding strap was fastened around the arm superficial to the 

interosseous membrane of the forearm along the transverse. The Magstim unit was first set to a 

subthreshold intensity (30% maximum stimulator output [MSO]) to familiarise participants to 

the sensation of TMS. The coil was applied to C3 according to The International 10-20 System 

(Jasper, 1958), above left-hemispheric M1, and held at an angle 45° to the sagittal midline 

with posterior-facing handle. This orientation results in a posterior-to-anterior current flow that 

is roughly perpendicular to the central sulcus. The coil was moved anterior-to-posterior, and 
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lateral-to-medial, with intensity increasing in 5%MSO increments, until the strongest response 

was evoked in the relaxed contralateral FDI. The optimal site for stimulation (the hotspot) is 

the location of the coil on the scalp where the strongest response is evoked (Bastani & 

Jaberzadeh, 2012). 

The hotspot was marked with a surgical marker to ensure consistent pre-to-post TMS 

localisation. Stimulus intensity was incrementally decreased until resting motor threshold 

(rMT) was determined, according to the convention outlined by the International Federation of 

Clinical Neurophysiology (Rothwell et al., 1999). At present, this procedure is considered 

most effective in deriving hotspot and rMT, and least likely to induce physiological change 

due to multiple pulses. For TMS intensity, we used a “relative method”, whereby intensity is 

set to 120%MSO, relative to participants’ rMT, as is conventional in single-pulse paradigms 

(see Pitcher et al., in press). This method normalises intraindividual responses and minimises 

interindividual variability (Rossini et al., 1994) and attempts to prevent floor and ceiling 

effects in MEPs by setting the stimulation intensity to a medium value. TMS intensity was 

adjusted according to each participant’s rMT at the beginning of each TMS session. 

Two blocks of 20 MEPs were collected prior to tDCS and their amplitudes recorded. 

MEPs were visually assessed at the end of each stimulation session, and contaminated trials 

(i.e., muscle activity, for example, flexion articulations, and arm readjustments, or other 

artefacts) were excluded. Where this resulted in a block comprised of fewer than 12 MEPs, an 

additional block was taken to ensure adequate data for statistical analyses (in rare cases, two 

additional blocks were taken). Each block took 120 seconds, and blocks were separated by five 

minutes to minimise synaptic fatigue which may diminish MEP amplitude (Gandevia, 1996). 

Following these baseline MEP measurements, tDCS was administered according to the 

protocol described previously, and following this tDCS intervention, the same TMS procedure 

was repeated to collect a post-tDCS measure of excitability. 

4.11.3 Behavioural tasks 

4.11.3.1. We used a computerised, abbreviated version of Raven’s Advanced 

Progressive Matrices (Raven, 1958; Raven, Raven & Court, 2003) to measure higher-order 

general reasoning ability. It comprises a series of 12 items of progressively increasing 

difficulty that require participants to select which element best completes a 3×3 matrix pattern 

series. The matrix contains eight target images which form a pattern sequence along each row 

or column. The bottom-right grid piece is blank. Participants are instructed to deduce which 

one of eight numbered test images best fits the blank grid piece by inferring a pattern between 



154  

target images and typing the corresponding number and confirming their selection. 

Participants must complete two practice questions before beginning the task proper, which 

they have 15 minutes to complete. Remaining time is displayed in the bottom-right corner of 

the screen. Participants are instructed to guess if they are unable to deduce a pattern. The 

measure for this task is the number of correct selections. Bors and Stokes (1998) reported high 

test-retest reliability (.82), and a strong correlation with the full-length version (r = .86, p 

< .001), as well as a strong relationship with IQ. 

4.11.3.2. To measure working memory we used a computerised form of Law, Morrin 

and Pellegrino’s (1995) Dot Matrix task. This task measures simultaneous storage and 

processing in the spatial modality. Participants are required to verify a set of matrix equations 

while simultaneously remembering dot locations on a 5x5 grid. Equations are addition or 

subtraction equations displayed as two line matrices which correctly or incorrectly form a 

third. In each matrix either 2 or 3 dots are connected by either 1 or 2 lines, respectively. 

Participants must verify equations by using a mouse to click “True” or “False”. If allocated 

response time (4 seconds) expires before a response, a warning is displayed on the screen 

indicating that a response is required. If the incorrect response is selected, “No, look again 

closely” is displayed. Following a correct response, a 5x5 grid appears with a blue dot in one 

of its 25 squares for 1500 msec. After each level-dependent number of equation-grid pairs 

have been presented and verified, a blank 5x5 grid is presented and participants indicate the 

spaces which contained the dots by clicking them with the mouse. Participants may select 

fewer grid spaces than required, but not more, and have the opportunity to deselect grid spaces 

if they enter an unintended grid space. Participants confirm their selection before finalising 

their response. This task has four levels: the first level is comprised of trials with 2 equation- 

grid pairs and 2 dot locations to remember, the second level is comprised of 3 equation-grid 

pairs and 3 dot locations, and so on to level 4, with 5 matrices and dot locations. Levels 

contain four questions. The task is comprised of 16 questions in total. Prior to commencement, 

three practice level 1 questions must be successfully completed. The measure for the task is 

total number of dot positions correctly recalled, with no penalty for incorrect selections. 

4.11.3.3. A computerised version of Vandenberg and Kuse’s (1978) Mental Rotation 

Task (MRT) was used to measure visuospatial ability. In each trial participants are presented 

with a target drawing and four test drawings. Target drawings are two-dimensional images of 

three-dimensional objects. Participants must select which two test drawings depict the target in 

a rotated position. To make their selection, participants use a mouse to select a radio button 
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below the test image. After the selection is made, response is finalised by clicking an “OK” 

button displayed at the bottom of the screen. Participants have the option to select no items and 

continue to the next question by clicking “OK”. There are 20 questions in total, with 10 

minutes to complete as many as possible. Participants are instructed to work quickly while 

maintaining accuracy, and advised that correct and incorrect responses are reflected in their 

score, so it will be disadvantageous to guess. Participants must successfully complete three 

practice questions before beginning the task proper. Two points are awarded for correct 

selection of both answers, one point is awarded if one answer was selected and was correct, 

and any other possible answer (e.g., selecting one correct and one incorrect answer) was 

scored zero. The final measure for the task is total number of points. This task has a test-retest 

reliability of .83 (Vandenburg & Kuse, 1978). 

4.12 Results 

GIA was assessed via three measures (RPM, DM, and MRT). As expected, these 

measures show a positive manifold, demonstrating positive intercorrelations between all 

measures, and therefore indicating some underlying general factor of intelligence (see Table 7; 

Spearman, 1904; see also Deary, 2000). As recommended by Jensen (1998), the commonality 

of these variables, taken to be GIA, was represented by the unrotated first principal component 

of a principal components analysis (PCA). PCA is a method to fit planes using orthogonal 

least squares which analyses and partitions covariance to capture essential data patterns and 

reduce the dimensionality of several variables to a given number of principal components 

(Flury, 1988; Hotelling, 1933; Jolliffe, 1986; Pearson, 1901). So our measure of GIA is the 

first principal component produced by the PCA, which accounts for 66.4% of variance 

between measures, and the only component to produce an eigenvalue greater than unity. 

Participants were fitted to a distribution, centred on zero, based on their relative GIA. 

Loadings and component fit are shown in Table 8. 
 

Table 7 

Correlation coefficients between measures of GIA 

 
RPM MRT 

MRT .48 
 

DM .45 .55 

Notes. N = 56 except for correlations involving the Dot Matrix where data were missing for 

one participant. All p < .001. 
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Table 8 

Results of the principal components analysis for General Intellectual Ability 

  
Component 

 

 
1 2 3 

Loadings on Measures 
   

RPM .78 .62  

DM .82 -.38 .43 

MRT .84 -.21 -.51 

Eigenvalues and Variance Measures 

SS loadings 1.99 0.56 0.45 

VP explained .64 .19 .15 

Note. VP is proportion of variance accounted for by each component. 
 

We did not apply an exclusion rule to MEP amplitude due to the legitimate 

intraindividual variability within the dataset—that is, MEPs were highly variable, but outlier 

tests revealed that they were within reasonable bounds. This intra- and inter-individual 

variability is common and has yet unknown origins (Kiers, Cros, Chiappa & Fang, 1993). 

Some argue that this lends itself to logarithmic transformation of MEPs (e.g., Ellaway et al., 

1998). As such, natural log transformation was applied to the individual MEP amplitudes that 

were used to calculate ΔMEPA, ΔMEPS, and ΔMEPTotal, which we derived from each 

participant in the following way7: 

ΔMEPTotal = ΔMEPA − ΔMEPS 

 

Where: ΔMEPA = Anodal MEPPost – Anodal MEPPre 

Where: ΔMEPs = Sham MEPPost – Sham MEPPre 

Resultant distributions nonetheless did not follow log-normal distributions. As is shown in 

Tables 9 and 10, log transformed data were less skewed, but retained substantial variability. 

 
 

7  Here and after, the delta notation, Δ, refers to change; so, ΔMEP indicates change in MEP 

amplitude, in most cases throughout this thesis from pre- to post- stimulation. Moreover, subscript in 

these cases (ΔMEPA; ΔMEPS) refers to the MEP change in the stimulation condition of interest, where 

ΔMEPA is MEP change pre- to post- anodal tDCS, and ΔMEPS is MEP change pre- to post- sham. 
ΔMEPTotal refers to the difference between these two measures—that is, it refers to our neuroplasticity 

score. Similarly, cognitive tasks prefixed with Δ indicate the difference in performance therein from 

the sham condition to the anodal condition (e.g., ΔSRT refers to performance in SRTA – SRTS) unless 
otherwise denoted. 
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Table 9 

Shapiro-Wilk Tests of Skewness for Original and Log Transformed MEP Distributions 

tDCS 

Condition 

Original MEP distributions Log MEP distributions 

Skewness Kurtosis W p-value Skewness Kurtosis W p-value 

∆MEPS 3.73 19.59 .66 <.05 0.36 2.72 .94 <.05 

∆MEPA 2.12 7.51 .81 <.05 0.70 0.93 .94 <.05 

∆MEPTotal 2.07 5.70 .82 <.05 0.45 1.50 .97 .18 

 

 
Table 10 

Variability in Original and Log Transformed MEP Distributions 

tDCS 

Condition 

Original MEP distributions Log MEP distributions 

M SD SEM M SD SEM 

∆MEPS -0.15 0.48 0.06 -0.11 0.42 0.06 

∆MEPA 0.02 0.49 0.07 -0.12 0.44 0.06 

∆MEPTotal 0.17 0.68 0.09 0.01 0.59 0.08 

 

We, therefore, proceeded with non-transformed data for four reasons. First, sufficient 

skewness and variability remained such that parametric analyses were not additionally robust. 

Second, we wished to retain physiological validity and fidelity. Third, as Feng et al. (2014) 

notes, log transformed data shares little in common with original data and thus does not allow 

statistically appropriate inferences concerning original data using traditional parametric 

analyses. Finally, normalising the data by applying a log transformation did not change our 

results. In the main analysis, MEP data for one participant was excluded due to substantial 

EMG contamination, leaving a sample of 55. On average, 38.8 functional MEPs were 

collected pre-tDCS, and 41.5 post-tDCS, from each participant. Due to EMG contamination, 

39 (70%) of participants required a third, and 4 (14%) required a fourth block. For each 

participant, average MEP amplitude was calculated for remaining responses pre- and post-

administration of tDCS in each condition. MEPs across multiple blocks were aggregated 

because no significant differences were found across time (see Appendix I). 

Table 11 (see also Figure 26) shows that a-tDCS did not have an effect on average 

MEP amplitude (M = 0.02, p = .79, d = 0.02), whereas s-tDCS resulted in a significant 

decrease in MEP amplitude (M = -0.15, p = .02, d = 0.15). We first assumed that this 
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reduction was the result of relaxation. The inhibitory effects of physiological and imagined 

relaxation, and facilitatory effects of state-level physiological anxiety and muscular tension, 

on MEPs are reasonably well-described, and potentially influenced the effect of tDCS 

because participants had been seated in a chair for approximately 45-50 minutes by the time 

post-MEPs were measured (Kato, Watanabe, Muraoka & Kanosue, 2015; Wassermann, 

Greenberg, Nguyen & Murphy, 2001). Because this negative effect of sham was not visible 

in the anodal condition, it appears that a-tDCS counteracted it; so, a potential increase in 

MEPs may therefore have been masked by the apparent effect of relaxation. 

 

Table 11 

Effect of tDCS on average MEP amplitude (in mV) in anodal and sham tDCS conditions pre- 

and post-stimulation (N = 55) 

tDCS 

condition 

M (SEM) MEP amplitude (mV) 95%CI  
   t (df) 

 
p 

Cohen's 

d Pre-tDCS Post-tDCS Δ Pre – Post Lower Upper   

Anodal 1.12 (0.10) 1.14 (0.13) 0.02 (0.07) -0.15 0.11 0.26 (54) .79 0.02 

Sham 1.25 (0.16) 1.10 (0.13) -0.15 (0.06) 0.02 0.28 2.32 (54) .02 0.15 
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Figure 26. Mean MEP amplitude pre- and post-tDCS administration. Error bars represent the 

standard error of the mean. 

We used a 2 (stimulation condition) × 2 (time pre- vs post-) repeated measures 

analysis of variance (ANOVA) to assess the relative effect of each tDCS condition on MEPs 

which revealed nonsignificant main effects of time (F1,54 = 2.02, p = .16, η2 = .04), and 
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stimulation (F1,54 = 0.16, p = .69, η2 = .00). An interaction term, which reflects the change 

after anodal compared to the change after sham (the Neuroplasticity score), was not quite 

significant (F1, 54 = 3.19, p = .07, η2 = .06). This interaction term suggests that a-tDCS may 

have had a positive effect on MEP facilitation above and beyond the masked effect of 

relaxation that is evident in the sham condition. That is, it is possible that a-tDCS may have 

successfully induced LTP-like change in M1. This interaction reflects participants’ 

neuroplasticity scores (i.e., ΔMEPTotal), which we derived from each participant as explained 

above. 

4.12.1 Relationships between cognitive measures and neuroplasticity scores 
 

Table 12 describes the relationships between indices of neuroplastic induction 

(∆MEPTotal), rMT, and cognitive performance with uncorrected Pearson’s correlations. The 

stability of rMT over time is well-described (Karabanov, Raffin & Siebner, 2016; Pretalli et 

al., 2012), and confirmed here (r54 = .92, p < .001), with only a 0.1%MSO difference between 

Session 2 (M = 42.4%MSO, SD = 8.40) and Session 3 (M = 42.5%MSO, SD = 9.21), t54 = 

0.20, p .84, 95%CI [-1.10, 0.90]. As such, the measure of rMT is each participant’s average 

rMT across Sessions 2 and 3. There was a slight skewness to the distribution of 

neuroplasticity scores, so we used Spearman’s rank correlation coefficients to describe the 

relationship between these scores and rMT, but we do not report them here because they 

revealed very similar patterns to Pearson correlation coefficients. Our critical aim here was to 

observe a positive relationship between neuroplasticity scores and cognitive performance, but 

since we did not observe any broad trend of an effect of tDCS even on cognitive performance 

(with the exception of a negative effect on proactive inhibition on the SART, the magnitude 

of which was not correlated with strength of neuroplastic induction; see Table 12), further 

analysis was not pursued. 

We expected that general intellectual ability (GIA) would influence the capacity for 

neuroplastic induction such that it would be positively associated with neuroplasticity scores, 

and with change in cognitive performance between stimulation conditions, but no such 

relationships were found (maximum coefficient r = .20, p = .143). Interestingly though, rMT 

was inversely correlated with GIA (r = -.57, p = .04), and approached a significant inverse 

correlation with neuroplasticity score (r = -.24, p = .08). This shows that lower rMT, which 

reflects greater cortical excitability, is associated with a higher neuroplastic induction. 

Although neuroplasticity scores were not associated with GIA, rMT was. So, rMT may be a 
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more sensitive measure of cortical excitability than the neuroplasticity score, or at least a 

more reliable one given that its test-retest reliability was high. 

 

Table 12 

Correlation coefficients between magnitude of neuroplastic induction and change in 

cognitive performance 

 

Measure 
Neuroplasticity 

Score 

 

rMT 
∆SART 

Errors 

∆SART 

RT 

 

∆PES 
 

∆SRT 
 

∆CRT 
 

∆IT 

rMT -.24 
       

∆SART Errors -.01 .06       

∆SART RT -.12 .00 -.48***      

∆PES .05 -.07 -.11 -.07     

∆SRT -.18 -.13 .00 .19 .07    

∆CRT -.29* -.03 .04 -.04 .12 .24   

∆IT .11 .06 .16 -.48*** .20 -.16 -.08  

GIA .20 -.57*** .06 -.10 .01 -.02 .17 .00 

Note. * p < .05; *** p < .001.        

So while these results demonstrate a moderate effect of a-tDCS on MEPs, implying 

successful, but limited, neuroplastic induction, performance was not globally facilitated on 

any of our cognitive measures as a function of that induction and what minor changes may 

have occurred did not correlate with the magnitude of neuroplastic induction as we expected. 

Furthermore, GIA did not predict the magnitude of effect of a-tDCS on either neuroplastic 

induction or on change in cognitive performance. 

We were able to provide some evidence in support of common findings (e.g., Nitsche 

& Paulus, 2000; 2001), that a 20-minute application of 1 mA a-tDCS to the M1 modulates the 

excitability of cortical neurons, tentatively supporting our hypothesised positive effect of 

tDCS on MEP amplitude. After accounting for the proposed effect of relaxation, the change 

in MEP amplitude following stimulation can be expressed as 115% of baseline, a modest 

effect compared to the 150% reported by Nitsche and Paulus’ (2001). Alternatively, 

considered more simply, when controlling for the effect of relaxation, estimated by the 150- 

µV decrease in MEPs in the s-tDCS condition, average MEP amplitude increased by 170 µV 

in the anodal condition (see Table 11). Although we did not test for biomarkers of 

physiological or psychological relaxation to support our claim that MEP amplitude 

potentially decreased as a result thereof, it is consistent with literature showing that 
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instructing participants to visualise relaxing imagery has an inhibitory effect on the size of 

evoked MEPs (Kato et al., 2015). Our procedures included similar instructions in order to 

limit the number of movement-related artefacts in the MEP recordings. 

To our knowledge, no such studies have included an independent correlate of 

modulation (i.e., MEPs). Because of this, the possibility of metaplastic induction has not been 

considered. Here, it may be pondered in regard to the absence of effect. Metaplasticity is a 

recently reported phenomenon that refers to the homeostatic regulation of neuroplasticity (see 

Abraham, 2008). It is the alteration of neuroplastic induction as a consequence of prior 

change in the related neuronal pool (Müller-Dahlhaus & Ziemann, 2015). Metaplasticity is a 

higher-order form of neural plasticity that, unlike neuroplasticity which is expressed as 

alterations in synaptic efficacy, is instead the change in capacity for subsequent 

neuroplasticity (Abraham & Bear, 1996; Carvalho et al., 2015). By using a neurostimulatory 

technique, TMS, to elicit repeated suprathreshold potentials we may have inadvertently 

induced metaplasticity, and thus inhibited the potential for neuroplastic induction via tDCS 

(Hamada et al., 2009). This potentially explains the absence of effect in elementary RT tasks 

(SRT and CRT) because processing for these tasks takes place substantially in motor cortex, 

the site at which we applied TMS. This may also explain why effects were visible in 

sustained attention (SART), which relies on a complex network of interconnections between 

several brain regions, many of which are located in the prefrontal cortex rather than the motor 

cortex (Blasi et al., 2006; Menon, Adleman, White, Glover & Reiss, 2001). Thus, TMS 

potentially prevented further modulation of the motor cortex by tDCS (explaining the lack of 

effects on SRT and CRT). tDCS may have nevertheless affected other brain areas, such as the 

prefrontal cortex (PFC), explaining the effects on SART performance. 

An interesting finding of this line of investigation that warrants further research is that 

lower rMT was associated with higher GIA, and somewhat predicted neuroplastic induction 

(see Table 12). rMT is an indicator of corticospinal excitability and efficacy in the target 

motor pathway, and potentially throughout the rest of the brain (e.g., Li et al., 2004). As such, 

one would expect a lower rMT to be associated with higher neuroplasticity score, a 

relationship that we did observe but is very weak. Given the test-retest reliability of rMT 

across sessions, it might, then, be the case that rMT is a more sensitive measure of cortical 

excitability than is the MEP-based neuroplasticity score (whereas the two rMT estimations in 

sessions 2 and 3 were highly correlated, r = .92; the baseline MEP recordings were only 

moderately correlated, r = .56; suggesting a lower test-retest reliability for MEP 
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measurements). That is, rMT appears then to be a better indicator of trait intelligence than 

neuroplasticity. This line of reasoning has particular importance, given the popularity of 

research investigating neuroplasticity and intelligence. rMT appears to be a greater predictor, 

and a more parsimonious explanation, than does neuroplasticity. The growing body of 

research exploring neural substrate of intelligence, particularly theories implicating neural 

efficacy and connectivity, may benefit significantly from this finding. 

The TMS results are difficult to interpret given the intra- and inter-individual 

variability of MEPs, which makes statistical inference on and interpretation of our results 

difficult. There is no rule for truncation or exclusion of outlier MEP values that is 

theoretically adequate, so we were unable to mitigate this. We noted only a modest trend 

toward increased MEP amplitude as the result of tDCS. While a significant effect of tDCS 

may indeed have been masked by the variability in our sample, there are four more likely 

explanations. First, as previously discussed, relaxation is a probable candidate to have offset 

overall MEP facilitation. 

The second is that amplitude may be too facile a measure of subtle changes in evoked 

responses. Amplitude may not capture all critical parameters of an event-related waveform if 

it has been altered by synaptic excitatory or inhibitory modulation. Excitation and inhibition, 

although necessarily in concert, are not simply symmetrical inverse processes of the same 

neural mechanisms, and they differentially influence conditioned and evoked responses 

(Baker, 1974). Isaacson and Scanziani (2011) highlighted this by showing a distinct 

difference in the peakedness of postsynaptic potentials, with inhibited neurons not simply 

exhibiting, in some cases, less extreme peak-to-peak amplitude, but also narrower widths 

(i.e., shorter durations). Amplitude variability is widely reported; however, few studies report 

MEP width. Amplitude may, then, be an incomplete measure of slight modulation of cortical 

excitability thresholds. 

Third, the after-effects of anodal stimulation and cathodal stimulation are not 

isochronal; cathodal inhibition outlasts anodal excitation (Isaacson & Scanziani, 2011; 

Kidgell et al., 2013; Lang, Nitsche, Paulus, Rothwell & Lemon, 2004). This, coupled with the 

strong temporal component to the effect of tDCS on MEPs (that cathodal inhibition appears 

sooner than excitation) and, that MEP amplitude increases as a function of time following 

stimulation, indicates the considerable importance of the location of the cathode, and relative 

timing of post-stimulation MEP blocks (Batsikadze, Moliadze, Paulus, Kuo & Nitsche, 

2013). These relationships are simulated in Appendix L. Although we separated blocks by 
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five minutes and found no such effect, it has been shown that third, fourth and fifth blocks at 

least, and staggered likewise, yield larger MEPs at each subsequent measurement interval 

(Ellaway, et al., 1998; Santarnecchi et al., 2014). So, our modest effect may reflect the 

relative recency of tDCS on MEPs; however, to ensure maintenance of tDCS after-effects on 

cognitive performance, it was necessary to limit the number of post-stimulation 

measurements. Some experimental paradigms in the field use “online tDCS”, in which 

stimulation is applied simultaneous to cognitive testing (Martin, Liu, Alonzo, Green & Loo, 

2014). Although a novel variation with limited evidence, this protocol appears to instantiate 

better outcomes from tDCS in some cognitive domains, for example explicit motor learning 

(Stagg et al., 2011). However, our primary aim was to assess the relationship between 

cognitive performance and neuroplasticity capacity. This aim required a more controlled 

environment than that required for online tDCS, and would have required a greater 

stimulation duration which, at present, is very rarely reported. 

Finally, while the literature review conducted to inform our experimental protocol 

was extensive, due to the novelty of this field of research, there is no operational consensus 

on stimulation parameters for either TMS or tDCS (see Chipcase et al., 2012; Ziemann et al., 

2008). That is, the most effective protocols for neuroplastic induction via tDCS, and for 

measuring reliable and valid TMS-induced MEPs are still unclear. For example, we 

stimulated at 1 mA current intensity, consistent with a number of studies; however, the 

specific cognitive abilities measured here have not yet been investigated and, as such, 1 mA 

of anodal stimulation, with cathode over the contralateral supraorbital region, may not be 

optimal. Moreover, recent evidence suggests that stimulation at 1 mA may be insufficient to 

induce cortical changes (e.g., Horvath, Carter & Forte, 2014). This is probably due primarily 

to interindividual physiological and anatomical differences, such as cranial thickness and 

physical orientation in white matter (Antal, Paulus & Nitsche, 2010; Kim et al., 2014). Our 

results present an interesting avenue to explore the possibility that baseline excitability (i.e., 

rMT) may mediate the efficacy of tDCS at varying stimulation intensities. This is potentially 

so because tDCS synchronises neural oscillations as a function of its intensity; so, if rMT is 

an indicator of excitability, then it follows that if individual differences in rMT reflect 

differences in baseline excitability, then a stimulation intensity that is held constant will not 

elicit the same effect between people with different rMTs. For example, 1 mA may induce 

LTP-like effects in those with low rMT, but LTD-like effects in those with a higher rMT 

(Masssey & Bashir, 2007). However, Kidgell et al. (2013) report that different current 
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intensities do not differentially modulate neuroplastic induction. To substantiate this claim, 

however, particularly cautious stimulation parameters were used (0.8, 1.0, and 1.2 mA), all of 

which fall below the average. Thus, further work in this regard is required. 

Likewise, our TMS parameters were potentially suboptimal. We used a 120% of rMT 

method to evoke MEPs with TMS; however, another method is available. Stimulating at an 

intensity intended to approximate the elicitation of a predetermined MEP amplitude, usually 

1 or 2 mV, may produce less variable responses (Ridding & Rothwell, 1997). This protocol 

usually results in larger MEPs, which provides greater capacity to detect subtle changes. It 

requires undertaking complex computation of sigmoid input/output curves for each 

participant, generally requiring substantially more TMS stimulation, which may thus further 

confound tDCS effects via metaplastic induction. Importantly, Nitsche and Paulus (2000; 

2001) used this method to generate their increase over baseline of 150%, effectively 

stimulating at a substantially higher intensity. To that end, although our stimulation 

parameters were consistent with theory, with the exception of stimulation duration, they may 

have been conservative. 

Future research will benefit from a more complete measure of excitability modulation 

and should, as such, explore the possibility of a composite measure that includes not only 

amplitude but also MEP latency and duration. Our recommendation to consider rMT more 

thoroughly as a sensitive and reliable measure of excitability change ought to be investigated. 

Further, it is necessary to attain a more comprehensive understanding of the differential 

effects of time, duration, and intensity of stimulation on modulation of both excitability and 

performance on cognitive tasks. Our absence of results on RT tasks may be attributable to 

these parameters. Further, due to the disparity between the diffusion of tDCS within cortex, 

and the focality of TMS, our measurement technique was more precise than the effect it 

measures. This buttresses our support of rMT as a measure from which to derive cortex-wide 

measurements of the effect of tDCS. 

With regard to the important implications for rMT, future research may adopt a 

protocol that includes multiple tDCS sessions. Reis et al. (2009) demonstrated the efficacy of 

five tDCS sessions across five days in acquisition of a complex motor task that was 

maintained at a three month follow up. Likewise, 10 tDCS sessions over two weeks appears 

to confer enduring positive effects on major depressive disorder symptomatology (Boggio et 

al., 2008). These sustained increases appear cumulative under some conditions. Daily 
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repeated stimulation was associated with incremental excitability increases over a one-week 

period (Alonzo, Brassil, Taylor, Martin & Loo, 2012; Galvez, Alonzo, Martin & Loo, 2013). 

The additional TMS procedures adopted alongside the tDCS protocol that is described 

above constituted, in my view, a robust but ambitious project. While the full protocol did not 

provide support for the synthesis of TMS and tDCS as we hypothesised, the tDCS findings in 

themselves are nonetheless compelling. Since the time of this experiment, however, evidence 

in favour of the reliability of tDCS has become at best mixed, and indeed much of the field 

appears to have abandoned it in favour of more broadened use of TMS principles (e.g., Dyke, 

Kim, Jackson, & Jackson, 2016; Horvath, Carter, & Forte, 2014; Horvath, Forte, & Carter, 

2015; Priori, Hallett, & Rothwell, 2009; Sadnicka, Kassavetis, Saifee, Pareés, Rothwell & 

Edwards, 2016; van Wessel, Verhage, Holland, Frens, & van der Geest, 2016). Repetitive 

TMS (rTMS) seems to offer the benefits touted by early tDCS research. While it is likely that 

tDCS is not whatsoever ineffectual, its utility appears to be mediated by too many factors for 

it to be either clinically suitable or experimentally valid as a reliable measure of 

neuromodulation at this time. Perhaps technological advancements will provide a more 

precise protocol for spatial targeting, but individual differences in neuroanatomical structure 

would remain a barrier. 
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4.13 General Discussion of the Foregoing Manuscript 

This study was ambitious in design. Our results are reasonably strong, theoretically 

cogent, and remain statistically significant after correcting for multiple comparisons, so I 

believe that they can withstand criticism but are not altogether unquestionable. Had either the 

presence, absence, or magnitude of any effects correlated with our proxy for neuroplasticity, I 

would be more confident; however, the large within-participant variability in MEP amplitude 

that seems inherent in such measures weakened any statistical support in this regard in any 

case. With that said, this study was largely exploratory in nature, and certainly warrants 

further investigation into the cognitive neurobiology of response inhibition with rTMS or 

even deep-brain stimulation (DBS). 

DBS is a neurosurgical procedure that implants a neurostimulation device in the brain, 

which effectively operates as a pacemaker for the brain and the mechanism of action may be 

desynchronization of abnormal oscillatory activity, blockade of the depolarisation process, 

antidromic activation of neurons which results in the activation of blockade of efferent 

neurons or slow axonal conductance, or synaptic inhibition (its underlying principles remain 

unknown, despite its established efficacy in treating disorders such as Parkinson’s Disease; 

Garcia, Pearlmutter, Wellstead, & Middleton, 2013; Hammond, Ammari, Bioulac, & Garcia, 

2008; Herrington, Cheng, & Eskandar, 2016; McIintyre & Thakor, 2002; Mogilner, Benebid, 

& Rezai, 2004). Because the DBS device can be inserted into GPi, thalamus, STN, or the 

caudal lobe of substantia nigra (the pedunculopontine nucleus), each of which are different 

nodes in the divergent basal ganglia pathways, we may develop a deeper understanding of the 

pathological disturbances to reactive and proactive networks in the profile of Parkinson’s 

Disease through the use of this procedure via direct modulation of subcortical neurons. The 

stimulator is usually inserted into the STN to treat symptoms of Parkinson’s Disease, a node 

of both the hyperdirect and the indirect pathways, and qualitative and quantitative data 

strongly support its efficacy in controlling unwanted movements, but given the dual- 

exchange of the STN and the inability to detect whether such motoric improvements are the 

result of reactive or proactive processes, a more rigorous experimental procedure is required 

to draw meaningful inferences. 

The key conclusions of this paper are that the processing required for the SART, even 

the motor response element, possibly recruits prefrontal regions to a greater extent than do 

the SRT or even the CRT. Since response time in the SART is quicker under anodal 

stimulation compared to both the baseline and the sham control, this may indicate that the 
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putative processing that takes place in the prefrontal regions is reduced in such a way that 

response initiation can commence sooner. To me, this points to the hyperdirect pathway as a 

candidate for the engagement and/or deployment of proactive inhibition, since it diverges 

singularly from those pathways recruited by simple motor actions, and the inhibitory effect of 

the cathode likely either disrupted oscillation synchrony or synaptic efficacy via 

downregulating membrane excitability at a critical prefrontal locus which synapses with the 

hyperdirect pathway. This supports the tentative conclusions of the first chapter in which we 

showed that a higher D1 to D2 ratio supported the engagement of more PES. Since our 

sample in this paper was smaller and younger, we were unable to advance the compensatory 

mechanism hypothesis presented in the first two chapters. 

In this chapter, we provided some sound evidence that PES is amenable to 

manipulation using neurostimulatory techniques. In the broader context of this thesis, these 

data provide additional support for a biological distinction between reactive and proactive 

inhibition, and provide strong evidence that this distinction is mediated by brain activity in 

some way. Despite the evidence in this chapter being descriptive and not explanatory, we can 

hypothesise from this that PES is separable from the classical interpretation of the response 

inhibition network that largely resides within the basal ganglia. Moreover, we can infer that, 

at least partially, the proactive segmentation of this response inhibition network must recruit 

unique neural regions, likely underneath or near the location of either the anode or the 

cathode. Given the absence of effect in both Simple and Choice Reaction Time tasks, it 

stands to reason that, since the anode was situated over the motor cortex, which is the primary 

generator of activation in these two tasks, that the anode was not the source of the effect. 
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CHAPTER 5 

Paper 4 

 

 

 
5.1 Preamble 

The utility of neurostimulation techniques for clinical purposes hinges on a valid 

conceptualisation of the entire response inhibition network just as much as on the use of 

suitable tasks to measure that network. We have provided some evidence that may indicate 

PES relies on hyperdirect basal ganglia activity, which is important when considering the 

pathological profiles of dopaminergic disorders and their common behavioural substrate of 

disturbed response inhibition. Given the role of dopamine in the processes it might be 

important to reconsider the nature of the disturbances to response inhibition in Parkinson’s 

and Huntington’s Diseases (PD and HD), for instance, as well as in psychopathology such as 

ADHD, where the link between response inhibition, pathology, and genotype is reasonably 

well established, but where the precise behavioural deficit is not well-articulated. In such 

populations, though, measurement of response inhibition has proven difficult due to the 

nature of the disorder. The impulsivity, absent-mindedness, and behavioural dysregulation 

that characterise ADHD are not conducive to laborious tasks such as the SART. Indeed, the 

physical manifestations of PD and HD are likewise problematic for lengthy tasks. Since the 

very tasks that are most critical in quantifying decline are those that are demanding to 

undertake and challenging to administer, it is therefore pertinent to investigate the possibility 

of producing shorter tasks that do not sacrifice reliability of the outcome measures. Even in 

healthy populations, such tasks become difficult after only a few minutes. So, our aim is to 

test various methods for investigating response inhibition. 

It remains central to the goal here to investigate post-error slowing. In the previous 

chapters we have shown that proactive inhibition influences overall response inhibition 

measured by the SART. Whether proactive inhibition influences reactive inhibition measured 

by SSTs is not yet known. Since proactive inhibition is clearly involved in inhibiting a 

response and has become central to empirical studies on response inhibition, it is important to 

investigate whether conditions designed to manipulate proactive inhibition affect measures of 

reactive inhibition and overall response inhibition. 
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Our aims in this chapter are not only to evaluate the implementation of a staircase 

procedure that minimises the number of trials required for a stable estimate of the reactive 

process, but also to implement manipulations to those tasks that allow us to simply observe 

proactive inhibition. In this chapter, we introduce an additional measure of proactive 

inhibition. Previously we have used post-error slowing as a single index of proactive 

inhibition. Here, we consider the possibility that proactive inhibition has not only a remedial 

mechanism, but also a predictive mechanism. 
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5.3 Abstract 

 

Traditional response inhibition tasks, the Stop-Signal Task (SST) and the Sustained 

Attention to Response Task (SART, a Go/No-Go task) are commonly assumed to capture 

one’s ability to inhibit a response. The ability to inhibit a response, however, requires a 

reactive process and at least one proactive process, post-error slowing (PES). Recent 

evidence has shown that SSTs in fact measure the reactive process, and while the SART does 

indeed measure overall response inhibition, that measure is confounded by PES. The role of 

discrete inhibitory processes in disease, for instance, are important to understand and 

articulate. Since the diseases associated with deficits to response inhibition often manifest or 

are comorbid with symptoms that diminish the capacity for lengthy behavioural testing, and, 

since it is unknown to which process such decrements can be attributed and where in the 

brain these processes are generated, rapid, precise, and isolated measurement of reactive and 

proactive processes is important. To address these issues, we administered a battery of four 

response inhibition tasks to healthy young adults (N = 123), two SSTs and two Go/No-Go 

tasks. In three tasks, we implemented adaptations to allow direct observation of proactive 

inhibition as PES, reactive inhibition, and overall response inhibition. Additionally, we 

introduced a cueing procedure novel to response inhibition tasks to investigate the possibility 

of a predictive mechanism of proactive inhibition whereby the probability of a Stop or No-Go 

signal on the next trial was cued to participants. We argue that slower response times on trials 

with a higher Stop or No-Go probability indicate predictive proactive inhibition. Based on 

these findings, we propose a novel demarcation to proactive inhibition: remedial proactive 

inhibition (PES), and predictive proactive inhibition. Additionally, we provide empirical 
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support for a Bayesian adaptive staircase (described by Livesey & Livesey, 2016) that allows 

for rapid convergence on accurate estimates of reactive inhibition in SSTs in as few as 20 

trials. Alongside our modifications to the SART, this represents a very brief but complete 

battery of tasks which can be administered to pathological populations and yield robust, 

comprehensive measures of the response inhibition network. 
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5.4 Introduction 
 

The nature of impulsivity and cognitive control has been the subject of extensive 

empirical investigation in neuroscientific and psychological disciplines for the last fifty years 

(e.g., Bennett & Gottfried, 1970; Rabbitt, 1966). This research interest is not only expanding 

within these disciplines but also into adjacent disciplines such as computer science and 

mathematics (e.g., Heathcote et al., 2019; Montes, 2017). In a laboratory environment, this 

cognitive mechanism is often conceptualised as response inhibition, the operational definition 

of which centres on the effective stopping of a planned action in response to altered 

contextual demands that have rendered that action maladaptive. The empirical popularity of 

response inhibition has a basis in its functional significance to a range of disease states and 

psychopathologies, usually those involving dysfunction in the dopaminergic system (see 

Verbruggen & Logan, 2008). In fact, disturbances to inhibitory control are being investigated 

as potential endophenotypes for a number of conditions, such as ADHD (Slaats-Willemse et 

al., 2013). 

Despite extensive investigation, the true neurocognitive architecture of response 

inhibition has proven difficult to elucidate, due, by varying accounts, to inconsistent 

nomenclature, inconsistent task design, and inconsistent data analysis (see, for example, 

Dutilh et al., 2012; Mostofsky & Simmons, 2008; Swick, Ashley, & Turken, 2011). The 

ecological consequences of this line of discussion, however, are the same: that common 

approaches to the data structure do not yield a veridical account of human inhibitory 

processes, and it is, therefore, possible that as a result of these misinterpretations, some of the 

putative neurocognitive effects of pathology have been misinterpreted for many years. It is 

thus critical to articulate a formal structural model of this behaviour and to design 

behavioural assessments that map onto this structure to ensure that antecedent theory and 

treatments are apt. 

The inability to withhold motoric or behavioural actions is characteristic of many 

conditions, neurological and psychological, so its precise measurement and valid 

operationalisation are of considerable concern to those investigating these conditions. It is not 

the purpose of this paper to exhaustively list the diseases associated with deficits in inhibitory 

and control processes, to describe their discrete downstream effects, or to provide an in-depth 

analysis of the cortical pathways that subserve their function. These have been excellently 

reviewed elsewhere (see Oosterlaan, Logan, & Sergeant, 1998; Kooijmans, Scheres, & 

Oosterlaan, 2010; Wright, Lipszyc, Dupuis, Thayapararajah, & Schachar, 2014); however, 
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these accounts are incomplete and imprecise due to the very nature of the task design and 

data analysis undertaken in the studies used to formulate them. Given the use of psychometric 

tools in assessing diagnostic symptoms (e.g., Bondi et al., 2014; Gilhooly, 1990; Jones- 

Gotman et al., 2010; see also Larrabee, 2012), it is important that these tools are valid and 

reliable, criteria that are not always satisfied. 

The two most commonly used tasks to measure response inhibition in healthy and 

pathological populations are the Stop-Signal Task and the Go/No-Go task. In Stop-Signal 

Tasks, participants are presented with Go signals to which they must respond, but in some 

instances the Go signal is followed by a Stop signal, indicating that the initiated response 

should be withheld. The outcome measure of this task is the minimum delay required to stop 

an initiated response (the Stop-Signal Reaction Time, SSRT). On the other hand, in the 

Go/No-Go paradigm, a participant is presented with a series of stimuli and are instructed to 

respond as quickly as possible to Go stimuli, but not to No-Go stimuli, which differ on some 

salient dimension. Failures to inhibit this response, errors of commission, represent the 

critical outcome measure in these tasks. 

Most implementations of these tasks have failed to consider a reasonably novel dual- 

control model of response inhibition that includes an overt measure of motor reactivity and a 

covert measure of cognitive control, reactive and proactive inhibition, respectively (see Aron, 

2011). The theoretical formalisation of this distinction was born of data showing that healthy 

human participants very reliably slow down after they commit an error, in what is termed 

post-error slowing (PES), which constitutes proactive inhibition (see Dutilh et al., 2012a, 

2012b). Increased response latency after an error prolongs stimulus processing time, which 

may enhance the success of response inhibition. If it does, it represents a substantial confound 

in the overall measure of Go/No-Go tasks. Alternatively, in Stop-Signal Tasks, Go and Stop 

signal presentation are controlled by an adaptive algorithm that adjusts the interval between 

the Go and Stop signals following successful and unsuccessful response inhibition trials. 

Nevertheless, proactive inhibition strategies such as PES may still confound the SSRT 

estimate, and their effect on response inhibition may be inconsistent between stimulus- 

presentation methods and from trial-to-trial. So, under this account, the Go/No-Go task 

provides a measure of overall response inhibition that is likely confounded by proactive 

inhibition, and the Stop-Signal task provides a measure of reactive inhibition (that could also 

be, in principle, confounded by proactive inhibition processes), but not overall response 
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inhibition or proactive inhibition. A singular task that yields measures of all of these 

processes would markedly advance the study of response inhibition. 

As an illustrative example of the need for precise measurement of these two processes 

in experimental tasks for diagnostic or prognostic purposes in medicine, consider the 

behavioural profile of two neurodegenerative diseases with opposing pathophysiological 

profiles. Response inhibition is negatively affected in both Parkinson’s and Huntington’s 

Diseases (Beste et al., 2010; Henderson et al., 2011). Since dopamine is known to underpin 

the motor system and is strongly implicated in its inhibition and regulation (Albin, Young, & 

Penney, 1989; Albrecht, Kareken, Christian, Dzemidzic, & Yoder, 2014; Brooks, 2001; 

Cummins et al., 2012; Groenewegen, 2003; Haber & Gdowski, 2004; Henderson et al., 2011; 

Hershey et al., 2004), these disturbances have been attributed to the dopaminergic 

disturbances associated with these diseases, despite these dopaminergic disturbances having 

opposing pathologies. Though not explicitly identified in the literature, it is possible that 

reactive inhibition is disturbed in Parkinson’s while proactive inhibition remains relatively 

intact, and the reverse may be true in Huntington’s. Likewise, even in healthy individuals, 

deficits in response inhibition in the young and the old can perhaps be explained by these 

same mechanisms. It is known that dopaminergic neurotransmission and production are 

downregulated in the ageing brain (Erixon-Lindroth et al., 2005; Lars Bäckman et al., 2000; 

Lyn Harper Mozley, Ruben C. Gur, P. David Mozley, & Raquel E. Gur, 2001; Wang et al., 

1998), and that until late adolescence, dopamine innervation and expressing genes tend to 

migrate posterior to anterior (where much of the response inhibition network resides), 

allowing frontal regions to become populated and more effectively utilise the dopamine 

system (Collier et al., 2007; Goldman-Rakic & Brown, 1982; Irwin et al., 1994; Lambe, 

Krimer, & Goldman-Rakic, 2000), alongside more general upregulation of neurotransmission 

and production (Rothmond, Weickert, & Webster, 2012). That is, deficits associated with 

young and old age may be differentiated by the process from which those deficits arise; 

logically, older adults may be compensating for poorer reactive processes with enhanced 

proactive processes, and children and adolescents may exert less proactive inhibition because 

their reactive mechanism is still adequate. 

Modified versions of the SST have recently gained attention due to their ability to 

discriminate reactive and proactive processes. These modified SSTs do so by instantiating 

varying cues which provide participants information on the relative probability of an 

upcoming Stop signal (e.g., Bloemendaal et al., 2016). Proactive inhibition in such tasks can 
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manifest itself as a slowing in response speed to the Go signal in the presence of a cue that 

signals a high probability of a Stop signal. Indeed, while such modifications strengthen the 

interpretability of the data by differentiating reactive from proactive processes, they draw on 

additional cognitive resources, which may not be directly pertinent to those under 

investigation. For instance, in the task introduced by Bloemendaal and colleagues, 

participants had to memorise up to five different cues associated with different probabilities 

of a Stop signal. The additional processes required in this task (e.g., working memory, 

learning, attention, visual processing speed) are, indeed, likely related to, or perhaps even 

contribute to, response inhibition in some way but no formal model has been sufficiently 

articulated to explain such complex relationships. This makes interpreting the resultant data 

difficult. For example, the finding that older adults are less likely to strategically slow down 

their Go reaction time in conditions with many cues may be due to a failure to retrieve the 

corresponding Stop signal probability associated with each cue rather than a failure to engage 

proactive inhibition processes. Therefore, designing and validating simpler tasks that 

minimise these confounds is critical. Indeed, older adults in the Bloemendaal et al. study 

showed a trend towards increased (rather than decreased) proactive slowing in a simple 2-cue 

condition relative to young adults, a result that mirrors our own finding that older adults show 

increased PES (Beu, Burns, & Baetu, 2019). So, as it stands, proactive inhibition is likely 

task-dependent, and may indeed vary in validity across tasks, and perhaps even rely on 

separate neurochemical equilibrium (e.g., Beu et al., 2019; Rincón-Pérez et al., 2019). 

Although it is possible to extract measures of reactive and proactive inhibition, as well 

as overall response inhibition from adapted versions of these procedures, such adaptations 

usually effectuate additional cognitive processing, which introduces other confounds. 

Additionally, the number of trials required to yield stable estimates of performance is often 

quite high. Fluctuations in sustained attention and motivation throughout time-intensive, 

potentially laborious tasks and the effect that these have on performance produce 

considerable empirical problems that are well-documented (Falkenstein, Hoormann, & 

Hohnsbein, 2002; Karweit & Slavin, 1982; Lim et al., 2010; Olofsson & Polich, 2007; Sun et 

al., 2014; Treptow, Burns, McComas, 2019). Since deficits in response inhibition are most 

pronounced in populations who tend to present with additional attentional and motivational 

deficits, impulsivity problems (i.e., inability to maintain interest in task demands or try their 

best), and physical limitations to the ability to remain still for even moderate periods of time, 

or to exert explicit control over their motor movements for such periods, then efforts should 
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be made to develop a relatively short task that imposes few additional cognitive demands. 

Importantly, the task should yield measures of reactive inhibition and proactive inhibition, 

and in particular, a measure of reactive inhibition that is not confounded by proactive 

inhibition. To date, there is no adequate formal account of proactive inhibition. Given the role 

of proactive inhibition as a strategy to compensate for what may be physiological constraints 

in achieving optimal reactive inhibition (e.g., Beu et al., 2019), it seems likely that it could 

take two forms in an experimental environment. The first could be considered a predictive 

form, characterised as attenuating a response pattern under conditions where there is a real or 

perceived increase in the likelihood of a need to inhibit a response. That is, proactive 

inhibition can result in a slowing reaction time to Go signals in anticipation of a likely Stop 

or No-Go signal. The other is a remedial form, a well-established empirical phenomenon 

characterised by PES, that is, slowing reaction time to subsequent Go signals after failing to 

inhibit a response in the presence of a Stop or No-Go signal. Each of these accounts are 

supported by some experimental data which are reviewed elsewhere, although the predictive 

form has not been conceptualised as a form of proactive inhibition (e.g., Aron, 2011, Aron et 

al., 2007; Dutilh et al., 2012; Niewenhuis, Ridderinkhof, Blom, Band, & Kok., 2001; 

Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004). Critically, though, predictive 

proactive inhibition seems to adhere to common reinforcement learning principles (i.e., 

learning by trial and error the likelihood of different events and adapting behaviour 

accordingly), whereas, on the other hand, PES has been the subject of competing 

explanations for some time (Beu, Burns, & Baetu, in preparation, see Chapter 3; Dutilh et al., 

2012b). 

There are several variations of both the Stop-Signal and Go/No-Go paradigms in the 

literature that assume unity in the underlying inhibition process, and convergence in the 

outcome data. That is, it is assumed that ‘response inhibition’ is the same in Stop-Signal and 

Go/No-Go tasks, despite no empirical or theoretical support for this assumption. The 

underlying theoretical assumptions differ between these two tasks insofar as the SST relies on 

an independent horse-race model of competing going and stopping processes, whereas 

Go/No-Go tasks favour a not starting process over a stopping process. There is some 

evidence from imaging studies that shows that these processes engage overlapping but 

distinct neural circuitry, and are therefore not identical (Dunovan, Lynch, Molesworth, & 

Verstynen, 2015). In an fMRI experiment, Swick and colleagues (Swick, Ashley, & Turken, 

2011) concluded that stopping and not starting recruit many of the same brain regions, but 
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that there are distinctions that are not insignificant. Not only do these two tasks measure 

processes that diverge at some point, but it is also common that different instantiations of the 

Stop-Signal paradigm itself impose different cognitive demands on participants, which 

confound measures of the stopping process. Even a simple review of the SST literature will 

show that it is now common to introduce additional complexity in order to attempt to capture 

some additional process, or to modify the semantic meaning of the stimuli which may not be 

processed in the same way by different people, or to add contingency rules to Go and Stop 

signal presentation which favours certain learning abilities that are known to differ between 

people. While these adaptations to the paradigm can provide important insight into 

complementary and separate processes to outright stopping, there is no doubt that they do not 

exert the same effect between people, and that they inherently modify the task demands and 

the underlying going process. Although it is clearly important to understand how robust 

outcome measures are to such modifications and, indeed, whether estimates of response 

inhibition are correlated at all, there has been very little empirical investigation into this. 

To this end, our aim, therefore, is to improve extant response inhibition tasks by 

producing and evaluating an experimental task that eliminates their limitations. That is, a task 

capable of distinguishing motor processes from cognitive processes (i.e., reactive from 

proactive inhibition), computing estimates of two independent cognitive processes (i.e., what 

we have termed predictive proactive inhibition and remedial proactive inhibition), and, 

further, to account for individual differences in reaction time in so doing. We also aim to 

design tasks that are relatively short. To achieve this, we implement a Bayesian adaptive 

staircase that was recently developed by Livesey and Livesey (2016) and that has been shown 

to yield a reliable estimate of SSRT in a small number of trials in two adaptations of the Stop- 

Signal paradigm that have different response requirements. We also test a modified version of 

the Go/No-Go paradigm that assesses both predictive and remedial proactive inhibition. 

In this paper, we report data that provide support for Livesey and Livesey’s (2016) 

Bayesian adaptive staircase as an effective method to minimise the duration of Stop-Signal 

paradigms by rapidly converging on highly-reliable estimates of a participant’s critical Stop- 

Signal Delay, a measure used in the computation of their reactive process. We demonstrate 

that while our modified procedures assess both remedial and predictive proactive inhibition, 

the estimates of reactive inhibition are not confounded by predictive proactive inhibition. In 

addition, we address a common limitation to the meaningfulness of estimates of response 

inhibition between paradigms, and we compare performance in the two SSTs, which impose 
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different task demands, to test the degree to which the paradigm is robust to such 

modifications. We comment on the measures of response inhibition between the two SST 

paradigms and offer recommendations on task design for future experiments. 

5.5 Methods and materials 
 

5.5.1 Participants and testing procedure 
 

The sample (N = 123; 72 females; aged 18-34 yrs, M = 20.0 ± 3.14 yrs) was recruited 

from the 2017 and 2018 first-year Psychology cohorts from the University of Adelaide in 

accordance with its Human Research Ethics guidelines, and participants were awarded course 

credit for their time. After explaining the experiment and obtaining consent, participants were 

seated 70 cm from a 24-inch, 120 Hz Eizo (Eizo Corporation, Ishikawa, Japan) computer 

monitor with 1 msec response time for approximately 60 minutes. Prior to administration of 

behavioural tasks, participants self-reported age, sex, and handedness (88% right-handed, 

10% left-handed, 2% ambidextrous). Responses were made with a standard Logitech 

keyboard (Logitech International S.A., Lausanne, Switzerland). Stimulus presentation was 

controlled by Xojo software (Xojo Inc., Texas, USA). 

5.5.2 Experimental tasks and data analysis 
 

We administered four response inhibition tasks: two Stop-Signal Tasks (SSTs) and 

two Go/No-Go tasks. In each task, participants were instructed that going and stopping are 

equally important, and that neither speed nor accuracy should be favoured over the other. To 

mitigate potential fatigue effects, tasks were separated by breaks of between two and five 

minutes. 

5.5.2.1 Stop-Signal Tasks (SSTs). Each SST consisted of 320 trials that included two 

Stop signal probability (p(Stop)) conditions indicated by colour cues (see below): one colour 

cue indicated that a Stop signal had 0.5 probability of following a Go signal, whereas the 

other cue indicated that the Stop signal occurred with a probability of 0.2. The two trial types 

were intermixed, with 160 in each p(Stop) condition, resulting in a total of 112 Stop trials (80 

Stop trials in the 0.5 condition and 32 Stop trials in the 0.2 condition). The tasks both utilised 

an adaptive staircase method for estimating the critical stop-signal delay at which the 

probability of successful inhibition, p(i), equals 0.5, described briefly below (see Livesey and 

Livesey, 2016, for a detailed description). Independent staircases were run in parallel for each 

p(Stop) condition. That is, for instance, a failed inhibition in the p(Stop) = 0.2 condition does 

not influence the critical Stop-Signal Delay (the delay between the Go and Stop signal that 
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yields a successful inhibition probability of 0.5; SSD) in the p(Stop) = 0.5 condition. Before 

the tasks proper commence, participants were trained on each component of the tasks 

(accurate responding and stopping) until an adequate success criterion was reached (see 

below). In these tasks, the measure of reactive inhibition is the Stop-Signal Reaction Time 

(SSRT), that is, the covert latency of the stop process. 

5.5.2.2 The Ψ Staircase. We used a Ψ staircase to control the SSD on Stop trials in 

both SSTs that is described in more detail by Livesey and Livesey (2016), and that was 

adapted from Kontsevich and Tyler (1999). Kontsevich and Tyler (1999) formally described 

an adaptive technique that uses Bayes’ theorem to determine test variable rules based on the 

principle of minimising entropy, the amount of information required to have complete 

knowledge of a system. This method allows the algorithm to find reliable estimates of some 

variable in relatively few trials compared to other methods. It does so by calculating the prior 

probabilities of a correct response for each of an array of possible stimulus values that could 

be presented to participants, assuming that those probabilities operate within the constraints 

of an underlying psychometric function with a range of different possible parameters. The 

aim of this method is to identify the combination of parameters within a defined parameter 

space that best captures the participant’s behaviour. In other words, it ascertains the best 

fitting psychometric function under known or expected parametric families of probability 

distributions for each possible outcome of a response. Contrary to simple stepwise staircases 

commonly instantiated in psychophysical tasks that may, for example, increase the SSD by 

25 msec after a successful inhibition or decrease the SSD by 25 msec after a failed inhibition, 

this method minimises entropy on every trial by calculating the amount of information that 

could be gained from testing each possible stimulus value in the array, and selecting the 

stimulus value that stands to yield the most information. Posterior probabilities of each 

combination of parameters are updated on the basis of the response in order to calculate 

entropy for selecting the next stimulus value (Livesey & Livesey, 2016). This allows the Ψ 

staircase to rapidly converge on the most likely psychometric parameters. For our purposes, a 

correct response is successful inhibition on a Stop trial, and the parameters being estimated 

describe the slope and threshold of the function that relates probability of successful 

inhibition, p(i), to the SSD. Hence, the aim is to use the Ψ staircase method to quickly and 

accurately estimate the critical SSD at which the probability of inhibition success and failure 

are equal. 
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The efficacy of this method for calculating reliable psychophysical threshold 

estimates in as few as 30 trials was first demonstrated by Kontsevich and Tyler (1999). 

However, their implementation was designed for and validated using two-alternative forced- 

choice psychophysical discrimination. Recently, Livesey and Livesey (2016) demonstrated 

its efficacy in the reliable estimation of SSRT over as few as 20 Stop trials using real and 

simulated data. The Ψ staircase is based on an underlying horse-race model that assumes 

response inhibition can be conceptualised as a race between independent Go and Stop 

processes, where the success or failure of inhibition depends on the relative finishing time of 

these processes; that is, on any given Stop trial, if the Go process finishes, or reaches decision 

threshold, before the Stop process, then the response is executed (Logan & Cowan, 2009; 

Matzke, Verbruggen, & Logan, 2018). Under this model, RT is assumed to be distributed 

according to the convolution of Gaussian and exponential distributions, that is, the ex- 

Gaussian distribution that accurately accounts for the positive skew of most RT distributions 

(Heathcote, Popiel, & Mewhort, 1991). This underlying model assumes the distributions for 

both Go and Stop trials to be the same. That is, it assumes that the appearance of the Stop 

signal exerts no effect on the speed of executing that Go response. 

Since the aim is to estimate the SSD at which the probability of successfully 

inhibiting a response is 0.5, the first step requires calculating the probability of successfully 

inhibiting a response at all possible SSDs. The probability of successful inhibition, p(i), can 

be thought of as a survival function since the probability of successful inhibition decreases 

monotonically as the duration of SSD increases. On the other hand, p(i) could also be thought 

of as a cumulative function of the time remaining until the trial times out after the Stop signal 

is presented (~SSD). The nearer the SSD to the time when the trial times out (~SSD = 0), the 

lower the probability of successfully inhibiting the response, whereas when SSD equals zero 

(i.e., ~SSD is the full response period), the higher the probability of successfully inhibiting 

the response. Livesey and Livesey (2016) compared three methods for deriving p(i) as a 

function of the difference between SSD and ~SSD. We chose to use the Weibull cumulative 

density function (CDF) with a base of 2 over the normal CDF or the Weibull CDF with a 

base of e, as the authors recommend, because the Weibull CDF is not symmetrical around p(i 

~SSD) = 0.5, and may therefore more accurately describe the function for the skewed RT 

distribution that is common (see Equation 1: Weibull CDF with exponent of 2). In this 

function, α is the scale parameter and β is the shape parameter. E is the error rate set to reflect 

an assumed additive value of the proportion with which participants commit an error 
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regardless of the SSD and fail to respond to the Go signal (i.e., omission errors). There is 

substantial variability in these two processes across tasks and samples, and no reason to 

expect uniformity in their true values, but it is necessary to include this parameter to protect 

against disproportionate influence on the estimate of p(i) of a single error at an easy SSD or a 

single absence of response, whether intentional or an omission, at a difficult SSD. Consistent 

with the authors’ use, we set E = .04. 

 

 ~SSD β 

P(i) = (1 − 2E) × (1 − 2−( α ) 
) + E (1) 

 
The method iterates a sequence of steps on each Stop trial that revises the best 

parameter estimate and selects the most informative SSD value to test on the next Stop trial. 

To do this, it considers the likelihood of various values taken by α and β parameters, and the 

probability of events (successful or failed inhibition) given each combination of those values. 

To implement this, we defined a parameter space with monotonic increments in β and 

equidistant msec steps in α. The resulting two-dimensional parameter space establishes a 

basis of likelihood estimates for the data, and for estimates of p(i) given each combination of 

SSD and α and β. Livesey and Livesey (2016) ran simulations testing parameter spaces with 

steps in α between 1 and 20 msec and found similar results. We used 15 msec steps. 

The first step requires calculating the probability of each possible response outcome 

(i.e., of successful and of unsuccessful inhibition) for each SSD that could be selected on the 

next Stop trial. This requires calculating the probability of each of those two response 

outcomes for each combination of SSD and α and β parameters, and then weighting those 

probability values according to the prior probability of each α and β combination. 

This method uses Bayes’ theorem to estimate the posterior probability of the α and β 

parameters under each possible set of events that could occur on the next trial (i.e., for each 

combination of SSD in the array and response outcome) before selecting the SSD to use on 

the next Stop trial. Entropy can be estimated for each of the resultant probability density 

functions, yielding a measure of the uncertainty remaining should that SSD be presented and 

responded to with each possible response outcome. This is an important innovation of the Ψ 

algorithm: it estimates the entropy for each candidate SSD in the array and selects the SSD 

with the highest utility, that is, that which results in the greatest reduction in entropy. By 

summing the entropies for each possible response outcome at a given SSD, weighted 

according to the probability of each possible response outcome, the algorithm finds the test 

value with the greatest potential to reduce entropy. That is, it finds the SSD with the greatest 
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potential to minimise uncertainty to present on the next Stop trial, the outcome of which is 

the most informative. After the response outcome is known (the participant successfully 

inhibits their response or does not), the corresponding posterior probability distribution is 

chosen. Livesey and Livesey (2016) recommend taking the mean of this distribution to 

estimate the psychometric function rather than α, β coordinates with the maximum 

probability because they seem to yield a more reliable estimate of underlying parameters. The 

authors’ simulations show that a wide α parameter space minimises bias, so we set our range 

to 555 msec (ranging 30 to 585 msec in 15 msec increments), and initial SSD at 270 msec for 

the Scale SST and 315 for the Discrimination SST, which was the closest starting point to the 

real estimates at task completion, despite all starting points converging on similar estimates in 

very few additional Stop trials. 

5.5.2.3. The Scale Stop Signal Task is a simplified form of an anticipation Stop- 

Signal Task described by Bloemendaal and colleagues (Bloemendaal et al., 2015; see also 

Zandbelt & Vink, 2010). Trials consist of a white bar, 10 mm in width, increasing in height at 

a constant rate from a lower horizontal line to an upper horizontal line. The distance between 

the upper and lower bars is 65 mm (5.32° of the visual field). The task is to click a mouse 

button when the bar reaches a horizontal bar 4/5 of the distance from the lower line to the 

upper line (see Figure 27), which takes 800 msec. This action stops the movement of the bar 

and constitutes the Go response. On some trials, a Stop signal is introduced. The stop signal 

is the bar stopping its vertical movement and, in these trials, participants attempt to withhold 

their response. The Stop-Signal Delay (SSD) is the minimum distance (in time units) away 

from the middle bar at which a participant effectively withholds a response at chance level 

(i.e., the nearer the bar is to the middle line when it stops, the smaller the SSD). Contrary to 

common SSTs, this is not the time it takes to override a speeded response, but rather, to stop 

an anticipated response, which may provide a cleaner measure of the stopping process by 

removing the initial motor engagement phase of a speeded response. The middle horizontal 

bar represents the cues that indicate the probability of the Stop signal occurring by varying in 

colour, where a cyan bar represents p(Stop) = 0.2 and a magenta bar represents p(Stop) = 0.5. 

Unlike Bloemendaal and colleagues (2016), but in line with the original description by 

Zandbelt and Vink (2010), the onset of the cue and the bar rising was simultaneous. If the bar 

reached the upper line (1,000 msec), the trial timed out and no response was recorded. The 

inter-trial interval (ITI) was 500 msec. Participants were trained on each element of the task. 

First, participants were presented only with Go trials and were trained to respond within 150 
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msec of the middle line, where feedback was provided on each trial to respond sooner or later 

(6 trials). Second, Stop trials were introduced and participants were trained to withhold a 

response when the Stop signal was shown (16 trials), where an accuracy criterion of 80% was 

required before moving to the task proper. If this criterion was not reached, the 16-trial 

practice set was repeated. 

Figure 27. An example of two trials in the Scale SST. The left panel represents a Go trial, 

where the white bar extends upward toward the response cue (i.e., the magenta-coloured line 

representing one p(Stop) condition). The right panel represents a Stop trial, where the white 

bar stops its vertical movement toward the cyan-coloured line. Note that the grey arrows 

indicating the movement direction of the white bar and the red x indicating the point at which 

the white bar would stop were not visible to participants. 

Because Bloemendaal and colleagues (2015) used a fixed procedure for SSD onset in 

which the SSD implemented on any given Stop trial was selected at random from an array of 

predetermined SSDs, they used the integration method described by Verbruggen and Logan 

(2009) to calculate SSRT. Recently, Matzke, Verbruggen, and Logan (2018) explained that 

the integration method is suboptimal when the method for SSD onset is not fixed. So, 

because we used an adaptive protocol for SSD onset, we used the mean method for SSRT 

calculation in our primary analyses. We calculated SSRT using the integration method to 

report consistency measures between the two methods, but we do not use the SSRT derived 

from the integration method for any main analyses. In this task, the SSRT is calculated by 

subtracting the critical SSD at which inhibition success and failure are equally likely from the 

average Go RT in each condition. This yields a measure of SSRT for each condition that 

reflects the average time it takes a participant to successfully inhibit a response. 

5.5.2.4. In the Discrimination Stop Signal Task, participants are presented with a 

coloured circle on a black background which contains one of two white Go signals, < or >, 
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and based on its direction are instructed to respond by pressing any key on the corresponding 

half (left or right) of the keyboard. The order in which < and > are presented is 

pseudorandomised. The circle containing the Go signal is 30 mm in diameter, subtending 

2.7° at the retina, and the Go signal itself is 20 mm in breadth (see Figure 28). Since the cue 

(the circle colour which indicates the p(stop)) and the Go signal are presented simultaneously, 

there is no stimulus onset asynchrony (SOA) and the ITI is fixed at 500 msec on every trial. 

Trials time-out at 1,000 msec and if the participant does not respond in this period, a ‘no 

response’ is recorded separately to an ‘error response’, and there is no change to the Ψ 

parameters that control Stop signal onset. 

The Stop signal is the Go signal of the opposing direction being superimposed over 

the Go signal. Because we wanted an explicit measure of predictive proactive inhibition, 

participants were given a cue as to the probability of having to stop their response. With 

equiprobability, the Go signal was coloured either orange or purple, colours which were 

chosen because they are not semantically associated with Going or Stopping and are closely 

matched for luminance. The colour of the Go signal represents probability cueing; one of the 

colours indicates a 20% probability that a Stop signal will appear (n = 32 Stop trials), 

whereas the other indicates that the probability of a Stop signal is 50% (n = 80 Stop trials). 

To minimise the effect of individual differences in learning on the staircase algorithm in its 

early stages where stepwise adjustments in SSD are greatest, participants were advised that 

the colours cued Stop probability and their associated values. As above, participants were 

trained on each component of this task, the discrimination component and the stopping 

component. As above, SSRT is calculated by subtracting the critical SSD from the average 

Go RT for each condition. 

 

Figure 28. An example of two trials in the Discrimination SST. The left panel illustrates a 

trial in which the orange-coloured circle indicates p(Stop) and in which an initial Go signal 
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indicates that a key corresponding to the > symbol (i.e., on the right half of the keyboard) 

should be performed, shortly followed by a Stop signal overlaid over the Go signal, which 

indicates that the Go response should be inhibited. The right panel illustrates a Go trial in the 

alternative p(Stop) condition in which the < corresponding response should be made. 

5.5.2.5 Go/No-Go Tasks 
 

In the Traditional Sustained Attention to Response Task (SART; Robertson et al., 

1997), a Go/No-Go paradigm, participants are presented with random single digits (1 – 9) 

displayed in the centre of the screen in fonts of differing sizes (48, 72, 94, 100 and 120 point, 

ranging from 12 mm to 29 mm on the screen; i.e., subtending 1° × 0.75° to 2.4° × 1.8° at the 

retina). Each digit is displayed for 245 msec, immediately followed by a mask for 900 msec, 

resulting in a response period of 1,145 msec from digit onset to mask offset (see Figure 29). 

The mask interrupts residual visual processing (Herzog, 2008) and attenuates fixational drift 

(Snodderly, 2016). Participants are instructed to rapidly respond by pressing the left mouse 

button, using their preferred hand, as soon as possible after any digit, except the digit ‘3’, is 

displayed (‘Go trials’; 0.89 probability), and to inhibit this response when the digit ‘3’ is 

displayed (‘No-Go trials’; 0.11 probability). This task consists of 225 trials, each digit 

presented with equiprobability in random order, with 25 No-Go trials. The critical measure of 

overall response inhibition is the proportion of correctly withheld responses on No-Go trials. 

 

 

Figure 29. The traditional Sustained Attention to Response Task. Participants are instructed 

to press a mouse button for any digit except the digit 3. The diagram illustrates a Go trial 

followed by a No-Go trial. 

The traditional SART allows the investigation of remedial proactive inhibition 

(indexed as PES), but in order to additionally measure predictive proactive inhibition as we 
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could for the two SSTs, we developed and administered a modified Sustained Attention to 

Response Task. The modified version used the same principles as the traditional SART with 

the following exceptions. Instead of using digits 1-9, we used digits 1-6 for computational 

tractability and time considerations. The No-Go stimulus remained the digit 3. To assess 

predictive proactive inhibition, we included the cueing principle introduced in the two SSTs, 

where a fixation point operated also as a cue indicating the probability that the next stimulus 

would be a No-Go stimulus. The fixation point we used was a solid circle 22 mm in diameter 

with a cross removed from its centre that was visible for 600 msec prior to critical stimulus 

onset (see Figure 30). Snodderly (2016) determined this to be the most effective fixation 

point to attenuate fixational drift. Two colour cues (yellow and cyan, randomly assigned to 

the two conditions) indicate that the p(Stop) is 0.2 or 0.5. We used the same backward mask 

for the same duration as in the traditional SART. There are 300 trials in this task, with 150 in 

each probability condition, resulting in 30 No-Go trials in the 0.2 condition and 75 No-Go 

trials in the 0.5 condition. We calculate a measure of overall response inhibition (number of 

errors, or failed inhibition) for each condition. As for the two SSTs, trials in each condition 

were randomly intermixed. 

 

 
Figure 30. Two trials in the modified Sustained Attention to Response Task. The left series 

of three frames shows the yellow p(Stop) cue on a No-Go trial, and the right series of three 

frames shows the blue p(Stop) cue on a Go trial. The trial structure is similar to the SART, 

except each digit is preceded by a coloured cue that indicates the p(Stop), i.e., the probability 

of the digit 3 appearing. 

5.5.3 Data analysis and processing 
 

Data were analysed using R (R Core Team, 2013). Participants were excluded if they 

executed any more than 30% invalid responses for any given task. Invalid responses 

constitute omissions to Go trials, invalid or incorrect responses, or premature responses 
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(<150 msec). The number of participants whose data was omitted for the Scale SST, Discrete 

SST, SART and modified SART were 0, 17, 19, and 19, respectively. The Discrete SST data 

from a further three participants could not be used due to a coding error. Furthermore, these 

criteria resulted in an average of 3 (1%) Go trial exclusions from the Scale SST, 14 in the 

discrimination SST (7% trials), 14 in the traditional SART (7% trials), and 21 in the modified 

SART (10% trials) in the participants whose data were included in the analyses. It is common 

in RT tasks to use the median because it is robust to the influence of skew and truncation due 

to the positive skew common to RT distributions (Ulrich & Miller, 19494), but such skew is 

less common in Go/No-Go tasks, especially in those with the additional complexity of 

probability cueing, so we report means here. 

5.5.3.1 Predictive proactive inhibition. To compute a measure of predictive proactive 

inhibition, in the discrimination SST and the modified SART we included two Stop/No-Go 

probability conditions. Our measure of predictive proactive inhibition is, therefore, the 

difference in average RT between the two conditions, where we would expect participants to 

respond more slowly when there is a higher known probability of a Stop or No-Go signal. 

These two tasks may impose very different demands on the inhibition network and, indeed, 

Stop-Signal and Go/No-Go paradigms are not analogous, measuring the stopping and the not 

going process, respectively. As such, we do not expect these measures to necessarily be 

correlated with one another between tasks as a requisite criterion for construct validity. Since 

the scale SST is an anticipation-type task that involved prolonged motor action preparation 

and imposes an artificial constraint on the response (i.e., every Go response should be 800 

msec), it is not sensical to compute a measure of predictive proactive inhibition in this task 

since any difference in Go RT between conditions would not represent proactive inhibition, 

but rather failure to perform the task well. Nevertheless, the inclusion of the two conditions in 

this task allows us to test whether the estimated SSRT from this task is robust against any 

stopping strategies that may be generated in response to a high-probability Stop signal cue. 

5.5.3.2 Remedial proactive inhibition. Our measure of remedial proactive inhibition, 

on the other hand, is post-error slowing (PES), which is derived by subtracting the average 

RT of the four Go trials before each error from the average of the four Go trials after each 

error, a method validated by Dutilh and colleagues (Dutilh et al., 2012b). No-Go trials that 

fell within these 4-trial windows as well as Go trials that could be classified as both pre- and 

post-error trials were omitted from this analysis. Because all tasks present stimuli in a 

randomised order and the rate of error commission varied between participants, the number 
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of trials that could be classified as pre- or post- error trials differed between participants. We 

chose not to exclude participants from PES analysis based on the number of trials or pre-to- 

post error comparisons used to calculate it alone because there is no reason to expect that one 

post-error adjustment would differ in any meaningful way to the next. We did, however, 

exclude those participants from the PES analysis who adjusted their performance an extreme 

amount, which we defined as greater than 250 msec in either direction. This resulted in the 

exclusion of two participants (1.6%), both of whom were removed only from SART analyses. 

5.6 Results and Discussion 

We have three main aims: (i) to investigate how many Stop/No-Go trials the staircase 

needs in order to converge on a stable estimate of SSRT – Livesey and Livesey (2016) 

reported real and simulated data showing that fewer than 30 are needed, but since we ran dual 

staircases in parallel, we might find that a few more are needed; (ii) to measure reactive 

inhibition, to show remedial proactive inhibition, and to establish predictive proactive 

inhibition as a construct; (iii) to test whether the values calculated for reactive inhibition are 

robust to the adaptations that we made to these tasks. If so, we would expect to see 

comparable estimates of reactive inhibition across cued probability conditions while 

observing differences in estimates of proactive inhibition. 

A final, largely exploratory, aim (iv) is to test whether task variables are correlated, 

since there has been very little investigation into the extent to which performance varies 

across response inhibition task. Furthermore, if SSRT in both SSTs and the number of errors 

of commission in both Go/No-Go tasks are correlated, then we can be confident that the tasks 

are effective response inhibition tasks. Likewise, if measures of proactive inhibition, either 

remedial or predictive, are correlated, then we can assume the existence of some underlying 

proactive mechanism. If, however, they are not, then we might assume that the proactive 

mechanism differs based on task demands and recruitment of different cognitive processes 

and neural regions. Either of these potential explanations are acceptable; remedial proactive 

inhibition is more likely to be a top-down higher-order process under control to some degree 

from frontal regions, whereas predictive proactive inhibition is more likely to be associated 

with reinforcement learning principles whose neural bases originate in basal ganglia and 

might be less susceptible to agentive control. The presence of proactive inhibition in either of 

its forms between these tasks suggests an adaptive and flexible compensatory strategy that is 

based on task requirements. 



189 
 

Scale p(Stop) = 0.2 

Discrimination p(Stop) = 0.2 

Aim (i) 
 

Our data support the findings of Livesey and Livesey (2016), who reported that 

estimates of SSRT based on ~SSD stabilise quite rapidly. In our experiment, stability 

occurred in as few as 20 Stop trials (see Figure 31) and was generally not influenced by the 

distance away from which the starting SSD was set to the final SSD. Even with the inclusion 

of two p(Stop) conditions, the Ψ staircase proved remarkably effective in converging on a 

participant’s most suitable ~SSD. 
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Figure 31. The average ~SSD (y axis) for each p(Stop) condition in each SST determined by 

the Ψ staircase plotted as a function of Stop trial. 

Aim (ii) 
 

Task performances are described in Tables 13, 14, and 15 and illustrated in Figure 32. 

It is important that the reactive processes between conditions within tasks are equivalent and 

correlated so that the unitary reactive process is comparable and that we can ensure that 

proactive processes do not influence it. Despite differences in Go RT between the two 

conditions (suggesting predictive proactive inhibition did take place, see Table 14), the 

Scale p(Stop) = 0.5 

Discrimination p(Stop) = 0.5 
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average difference in SSRT between conditions in the Scale SST was less than one 

millisecond (p = .699), and only 5 msec in the Discrimination SST (p = .344). This suggests 

that the estimate of reactive inhibition (SSRT) is robust against predictive proactive inhibition 

in these two tasks. Within each task, SSRT in the two conditions was correlated (Scale SST: 

r121 = .37, p < .0001; Discrete SST: r105 = .35, p = .0002). 

The proportion of errors in the modified SART (the Go/No-Go task with cued 

probability conditions) was significantly higher in the p(No-Go) = 0.2 condition compared to 

the p(No-Go) = 0.5 condition (t102 = 4.85, p < .0001). This suggests that predictive proactive 

inhibition (longer Go RT under higher No-Go probability conditions, see Table 14) 

confounds the measure of overall response inhibition (the number of errors); the latter 

therefore cannot simply reflect reactive inhibition. Despite the difference in number of errors 

between conditions, performance in the two conditions was nevertheless correlated (r102 

= .81, p < .0001). 
 

So, the first criterion for accepting the robustness of our task adaptations to measures 

of reactive inhibition is satisfied in the SSTs, but not the modified SART. To satisfy the 

second, we need to observe remedial and predictive proactive inhibition in these tasks. Our 

data support the presence of remedial proactive inhibition (i.e., post-error slowing, PES) in all 

tasks (while PES is meaningless in the Scale SST because it is not a speeded task and its 

design imposes an artificial window within which responses should be made, it was 

nevertheless observed). PES was nearly identical in the Discrimination SST (29.6 ± 35.1 

msec) and the traditional SART (30.1 ± 42.0 msec), and this slowing was positively 

correlated in the two tasks, but not quite significantly so (r86 = .19, p = .079). Likewise, 

predictive proactive inhibition, indexed by the slowing of responses in higher p(Stop/No-Go) 

conditions, was present in all three tasks. To isolate this difference to the effect of predictive 

proactive inhibition, we must ensure that any differences between conditions in SSRT or 

proportion of errors are not correlated with the magnitude of predictive proactive inhibition. 

This ensures a stable measure of reactive or overall response inhibition that is robust to 

proactive compensatory strategy. The difference in reactive and response inhibition between 

p(Stop/No-Go) conditions was not correlated with predictive proactive inhibition in any task 

(smallest p = .588). 
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Table 13   

Measures of reactive inhibition in two SSTs (SSRT in msec) and 

response inhibition in two Go/No-Go tasks. 

Task 
Condition 

p(Stop) = 0.2 p(Stop) = 0.5 

SSRT (SD) 

Scale SST 185 (18.2) 185 (22.0) 

Discrimination SST 279 (50.0) 274 (52.5) 

proportion of errors (SD) 

SART 0.54 (0.21) 

Modified SART 0.31 (0.21) 0.25 (0.17) 

 
 

Table 14      

Paired sample t-tests to assess remedial proactive inhibition as post-error slowing (PES). 

M RT (SD) 

Task Pre-error 

(msec) 

Post-error 

(msec) 

t (df) p d 

Scale SST 830 (31.2) 836 (34.6) 5.55 (120) < .0001 0.18 

Discrimination SST 603 (108.3) 633 (104.2) 8.69 (105) < .0001 0.28 

SART 314 (61.2) 344 (74.4) 7.02 (100) < .0001 0.43 

Modified SART 420 (105.8) 428 (97.8) 2.27 (102) 0.025 0.08 

 
 

Table 15      

Paired sample t-tests to assess predictive proactive inhibition as the difference in RT on Go 

trials between cued probability conditions. 

Task 
M RT (SD) 

t (df) p d 
p(Stop) = 0.2 p(Stop) = 0.5 

Scale SST 831 (32.9) 837 (33.4) 8.19 (120) < .0001 0.18 

Discrimination SST 612 (104.6) 635 (111.5) 8.50 (105) < .0001 0.22 

Modified SART 424 (104.6) 437 (98.4) 5.78 (102) < .0001 0.13 
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Figure 32. Proactive inhibition data for all four tasks. Remedial proactive inhibition reflects 

post-error slowing (PES), that is, faster pre- (black) compared to post- (grey) error Go RTs. 

Predictive proactive inhibition is reflected in faster average Go RT for p(Stop) = 0.2 (black) 

than in p(Stop) = 0.5 (grey) conditions. Error bars represent SEM. 

Aim (iii) 
 

Thus, in both SSTs measures of reactive inhibition are equivalent between conditions, 

though this is not the case for response inhibition in the modified SART, and both forms of 

proactive inhibition are observed. As such, we can assume that the two SST tasks are capable 

of measuring both forms of proactive inhibition while yielding reliable measures of reactive 

inhibition. In order to recommend a sound task to measure response inhibition and its 

constituent processes, it is important to assess the degree to which performance on these tasks 

covaries. That is, do measures of SSRT correlate between the two SSTs, of errors between 

the two Go/No-Go tasks, and of both forms of proactive inhibition between tasks or even 

between task paradigms? 

To the extent that our adaptations to these tasks introduce additional cognitive 

processing, congruence in outcome measures might be somewhat stifled. Although there has 

been little empirical investigation that compares performance on two or more response 

inhibition tasks, it seems sensible to expect that measures of reactive inhibition in the two 

SSTs and of response inhibition in the two Go/No-Go tasks might be correlated, but not 

necessarily that response and reactive inhibition be correlated (given that overall response 

inhibition seems to be confounded with proactive processes in the modified SART, but this is 

not the case for reactive inhibition in the SSTs). To our knowledge, only two studies have 

investigated the neural correlates of performance on these two tasks, each of which report 

very little commonality between regions of activation with the exception of the insula cortex 
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and the right inferior frontal gyrus (Swick, Ashley, & Turken, 2011; Zheng, Oka, Bokura, & 

Yamaguchi, 2008), indicating both common and non-overlapping underlying process 

required for stopping and for not going. In a large cross-species review of the 

neuropsychopharmacology of inhibition including data from both tasks, Eagle, Bari, and 

Robbins (2008) reported little overlap in the drugs that modulate performance, concluding 

that serotonin is implicated in Go/No-Go tasks, whereas SSRT in the Stop-Signal Task is 

more sensitive to noradrenaline, providing further evidence that these tasks represent 

different forms of action inhibition. Both Littman and Takács (2017) and Verbruggen and 

Logan (2008) did not find any substantial correspondence between performance on Go/No- 

Go and Stop-Signal tasks in their respective measures of response inhibition, which further 

supports the hypothesis that proactive inhibition influences response inhibition and that 

response inhibition and reactive inhibition are not linearly related. In the only study of its 

kind investigating the latent structure of impulsivity using a battery of self-report and 

behavioural impulsivity and inhibition measures in a reasonably large (N = 1,252), cross- 

sectional sample, MacKillop and colleagues (2016) found a small but significant correlation 

between performance on Go/No-Go and Stop-Signal tasks (r = .22), but their measure of 

performance in the SST was not SSRT. They instead used the percentage of errors, which in 

most implementations of the SST is held constant at ~50% by an adaptive staircase so as to 

derive the SSRT. In any case, in their three-factor model which best fit the data, performance 

on these two tasks loaded onto the same factor. We may also expect measures of predictive 

proactive inhibition to be correlated since it probably reflects some innate learning style that 

should hypothetically be consistent under various conditions. Remedial reactive inhibition, on 

the other hand, may not be correlated between tasks even within paradigms. Since we 

previously showed that PES appears to be the result of disturbances to early processing of the 

stimulus, but not later, more task-based stimulus processing (Beu et al., in preparation, 

Chapter 3), it may vary in different ways as do task demands. 

Aim (iv) 
 

An average of SSRT between the two p(Stop) conditions within each SST was 

positively correlated (r103 = .21, p = .033), indicating that our measure of reactive inhibition 

was moderately consistent between the two tasks. Our measures of overall response 

inhibition, the number of errors in the two Go/No-Go tasks, were highly correlated (r93 = .67, 

p < .0001). PES in the modified SART was unusually minimal and was not correlated with 

PES in the traditional SART (p = .52) or the Discrimination SST (p = .38). This is not 
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altogether unexpected. Despite different demands on the stopping process, there appears to be 

some consistency between PES in the traditional SART and the Discrimination SST, but it 

was not significant (r86 = .19, p = .079). Predictive proactive inhibition in the Scale and the 

Discrimination SSTs was positively correlated (r103 = .30, p = .002). It is unclear how 

predictive proactive inhibition might manifest in the modified SART since any advantage that 

might be afforded by offsetting the initiation of an action would be more effective in stopping 

than in not going. It was nevertheless observed in the task, and positively correlated with the 

same effect in the Discrimination SST (r89 = .24, p = .024), but not in the Scale SST (p 

= .987). Given the relationships between the outcome measures between tasks and the 

conceptual limitations to various measures of proactive inhibition in the Scale SST and the 

modified SART, there is a clear indication that, if one is interested in measuring the complete 

response inhibition process, then one should administer both the Discrimination SST and the 

SART. 

5.7 Conclusions 
 

Here, we provided empirical validation supporting the utility of Livesey and 

Livesey’s (2016) Bayesian adaptive staircase in two Stop-Signal Tasks. Consistent with 

Livesey and Livesey’s conclusions, we show that it requires as few as 20 Stop trials to yield a 

stable estimate of SSRT, which is quite remarkable. Indeed, given the known effect of task 

length on performance, effort, and motivation, fewer trials (in as much as that does not affect 

the critical variable of interest) tend to yield more reliable parameters than do longer tasks, all 

other things being equal (Falkenstein, Hoormann, & Hohnsbein, 2002; Karweit & Slavin, 

1982; Lim et al., 2010; Olofsson & Polich, 2007; Sun et al., 2014; Treptow, Burns, 

McComas, 2019). Since disturbances to response inhibition have been indicated as an 

endophenotype of disorders and diseases associated with behavioural and motor regulation 

and impulsivity (e.g., Slaats-Willemse et al., 2013), the utility of this algorithm in such 

populations may prove additionally beneficial. 

Our tasks allowed us to observe remedial and predictive proactive inhibition. Since 

proactive inhibition is effectively some mechanism that operates in such a way as to improve 

likelihood of response inhibition in the future, this is a sensical approach. Our results seem to 

indicate that this measure is somewhat consistent between the two task paradigms (the 

Discrimination SST and the traditional SART; note that the Scale SST is not well suited to 

measure individual differences in this type of proactive inhibition given the narrow 

distribution of RTs around 800 msec). 
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Although predictive proactive inhibition was correlated in the two SSTs, it is not a 

logical measure of the process in the Scale SST for the reasons already described. Likewise, 

remedial proactive inhibition is unlikely to be a logical measure in the Scale SST for the same 

reasons. The Scale SST potentially provides the purest measure of reactive inhibition because 

it is not confounded by speed-accuracy trade-off, and by the nature of its Go process it is 

potentially less confounded by proactive processes. However, the purpose of such tasks is to 

measure response inhibition, which requires assessment of its constituent processes. If a task 

were capable of measuring all three of these, it would have more broad utility. Since 

predictive proactive inhibition appears therefore to represent a more global process that may 

not be engaged in different ways between the two task paradigms, and because the aim here 

is to develop a task or battery of tasks that has a short administration time, including this 

modification in the modified SART is redundant since it yields no additional information to 

the same modification in the Discrimination SST. It is, however, plausible that predictive 

proactive inhibition affects the stopping and not going processes in different ways. 

Although the Discrimination SST yields measures of both remedial and predictive 

proactive inhibition as well as a measure of reactive inhibition that does not seem to be 

confounded by proactive inhibition, it alone cannot tell us the whole story about response 

inhibition. The SART remains a critical piece of this story. SSTs measure reactive inhibition 

and, with the additional components we described here, can also measure two forms of 

proactive inhibition. There is no method for combining reactive and proactive inhibition to 

give a measure of overall response inhibition; the SART is needed to provide such a measure. 

Our data suggest that the Discrimination SST and the traditional SART are needed to fully 

articulate the response inhibition process, and that including the Scale SST and the modified 

SART may be redundant. Our modified version of the SART yields a measure of predictive 

proactive inhibition, which may potentially differ in itself and its effect on the stopping and 

the not going process. Whether the additional data generated by this task provides sufficient 

value over and above the Discrimination SST and the SART is not known since the data we 

observed in the modified SART here are not particularly clean. Since a measure of response 

inhibition that is not influenced by p(No-Go) cueing is important, a tentative recommendation 

to measure response inhibition and its components is to administer the Discrimination SST 

and the traditional SART, however, further investigation is warranted. In particular, future 

research should determine whether predictive proactive inhibition does indeed exert a 

different effect on stopping and not going processes. Importantly, our data suggest that a 
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battery that includes the Discrimination SST with the Ψ staircase and the traditional SART 

would be relatively short and would yield considerably richer data on the response inhibition 

process and its constituent processes, while allowing the study of both stopping and not going 

processes. Such data may provide deeper insight and more precision into the source of 

disturbances to the inhibitory network under pathological conditions. 
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5.8 General Discussion of the Foregoing Manuscript 
 

The primary aim of this experiment was to validate a novel measure of response 

inhibition. We used a large sample to do so, and provided support for the data in the small 

sample and computational simulations from the initial paper8. Although there were only mild- 

to-moderate correlations between analogous measures across tasks, I used factor analysis to 

investigate the possibility of some underlying inhibition factor. This was unsuccessful. 

Personally, I think this can be attributed to the sustained motivation of participants; response 

inhibition tasks are both frustrating and relatively uninteresting—it is possible that the effort 

exerted by participants was not sustained across the testing session, or differentially exerted 

between the four tasks. Such an explanation could, in principle, be applied to any failed 

endeavour in behavioural analysis, but nevertheless, I think it is apt here. Alternatively, the 

absence of positive correlations in performance between the task paradigms is that the tasks 

simply may not tap into the same aspects of inhibitory control. The Stop-Signal paradigm and 

the Go/No-Go paradigm are quantitatively and qualitatively different tasks with different 

demands. In the Stop-Signal Task, the Go stimulus is first processed, and the appropriate 

motor response is prepared and engaged and, sometimes, initiated, when the Stop signal 

directs participants to inhibit. On the other hand, in the Go/No-Go task, No-Go trials are not 

Go trials that should be inhibited; they are No-Go trials in which the stimulus is not processed 

as a preparatory stimulus, so no appropriate motor response is prepared, only an inappropriate 

 

8 A secondary aim of this experiment was to investigate the construct validity and the test-retest reliability 

of the task. To do this we compared performance on the critical measures under investigation between the 

tasks, and we invited participants to attend a second session, separated by one week, in which they would 

complete the Discrimination SST and the traditional SART again. A very small number of participants 

were willing to return in 7 days (n = 10), at approximately the same time of day, to repeat two of these four 

tasks so that we could evaluate the test-retest reliability of two of these measures. High test-retest 

reliability signifies interval validity and ensures representativeness and stability. It is additionally 

important for a task to be reliable across testing sessions if it is to be used as a diagnostic tool or to 

quantify cognitive or behavioural decrements associated with pathology. Many studies have used changes 

in SART performance as an outcome measure of the effect of some intervention, but to my knowledge, 

test-retest reliability of the traditional SART has only been assumed, but not investigated. Likewise, we 

wanted to assess the reliability of the novel task that we previously validated. 

In the SART, Go RT was reliable (r9 = .95, p < .0001), as was the overall number of errors of commission 

(r9 = .91, p = .0003), but PES was not (r9 = -.13, p = .727). In the Discrimination SST, Go RT was reliable 

in both Stop-Signal probability conditions (20%: r9 = .91, p = .0003; 50%: r9 = 91, p = .0002), as was the 

difference (i.e., predictive proactive inhibition; r9 = .54, p = .108), despite not reaching statistical 

significance due to the sample size. PES was also reliable in the Discrimination SST (r9 = -.77, p = .009). 

SSRT was not reliable in the 50% Stop-signal probability condition, and was, in fact, highly negatively 
correlated (r9 = -.58, p = .078), and SSRT in the 20% Stop-signal condition was not correlated whatsoever 

(r9 = .01, p = .981). Unlike in the SART, PES was highly reliable in this task (r9 = .77, p = .010). 
Meaningful conclusions cannot be drawn from such a small sample, but in my view these data are worth 

reporting. 
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one—one that is, by qualitative reports at least, more difficult to suppress. Stopping and not 

going are cognitively, experientially, and motorically different actions (or inactions). It is, 

therefore, not surprising that performance is not correlated across paradigms. The measures 

of proactive inhibition across these two paradigms, on the other hand, are probably more 

convergent on the same underlying process, but that process is recruited to a different end 

(i.e., stopping vs not going). It seems likely that remedial proactive inhibition affects these 

processes differently, but unlikely that predictive proactive inhibition could, since it occurs 

before the cognitive initiation of the response. 

In this chapter, I described two distinct forms of proactive inhibition: remedial and 

predictive. Until this chapter, the operational definition of proactive inhibition has been PES, 

but this may have been incomplete, since it stands to reason that predicting an upcoming need 

to implement a stopping or not going process reflects proactive inhibition. The need for a 

comprehensive articulation of response inhibition has already been defined in the preamble to 

this chapter. What we demonstrate above is that this can be achieved by administering a 

battery of as few as two, but potentially three, tasks. The total time to complete these three 

tasks in our experiment was around 25 minutes, including breaks and task-related training. 

Since it is possible that the modified SART is redundant, and because Livesey and Livesey’s 

(2016) staircase is remarkably successful, thereby allowing the Discrimination SST to be 

shortened somewhat (Figure 31 shows that in the p(Stop) = 0.2 condition for the 

Discrimination SST, 20 Stop trials appears to be where ~SSD stabilises; so, if the task were 

reduced from 320 trials to 200 trials, parameter estimates would not be meaningfully 

affected), a precise estimation of the response inhibition network could be calculated in as 

little as 15 minutes. 
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CHAPTER 6 

Concluding Remarks 

 

 

 
6.1 Conclusions and Directions 

The main aim of this thesis was to investigate post-error slowing (PES), and to 

contribute to the literature on its neural and cognitive architecture. This thesis was not so 

much a single, monolithic research project; instead, it comprised a series of research 

questions that I believe are the kinds of diverse questions that we should be asking about 

response inhibition. So, inasmuch as this work has a central theme, that theme was the 

analysis of PES using different methods and having in mind different questions. We set out to 

articulate the response inhibition network by focusing on PES as an index of proactive 

inhibition, to situate it in the anatomy of the brain, and to describe its potential sources both 

mental and biological. On the basis of the theoretical, psychometric, and experimental 

limitations in the field, an ancillary aim was to highlight some necessary considerations for 

future investigations. In so doing, we focused largely on the reactive/proactive distinction 

because it is certainly the most pressing matter. Although reactive and proactive inhibition 

are probably equally important, they provide very distinct insights into cognition, into 

pathology, into ageing, and so on. 

The majority of the data presented here were proactive inhibition data; that is, for the 

most part, PES. The reason for this focus is that reactive inhibition, insofar as it is captured 

by SSRT in SSTs, has been thoroughly investigated and, at least in my view, the extent to 

which proactive processes truly contribute to overall inhibition remains an open and 

important question. It is interesting that when taking a measure of overall response inhibition 

and a measure of proactive inhibition indexed by PES, that overall response inhibition was 

rarely predicted by other variables, but proactive inhibition was. It is, therefore, fair to 

assume that proactive inhibition represents a central role in the network that warrants further 

investigation. 

Since PES relies on more D1 relative to D2 neurotransmission, is predicted by 

disturbed attentional processing indexed by a blunted anterior N1 after an error, and is 

reduced by what seems to be the suppression of frontal activity by neurostimulation to right 
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hemispheric regions known to be recruited by response inhibition, then we can hypothesise 

on how it is deployed by the basal ganglia. In addition to that, we can make predictions about 

how Parkinson’s disease (PD) and Huntington’s disease (HD) might manifest behaviourally 

on response inhibition tasks, such as those we present in the previous chapter, where reactive 

inhibition and proactive inhibition are discretised. On the basis of these predictions, we can 

guide future investigation into the cognitive neuropathology of these diseases and, 

potentially, suggest that remedial proactive inhibition may be used as an early marker of the 

onset of motor symptomatology in each. 

6.1.1 Some comments on the proactivity of post-error slowing 
 

From the outset, hypotheses were guided by the assumption that PES was a strategic 

slowing of responses to maximise the success of response inhibition attempts, as was the 

common assumption in the literature; that is, that PES is, in fact, proactive. Strategy implies 

active planning and intention to achieve some end goal—presumably to minimise errors, in 

this context. It was taken for granted probably because if we were to consider ourselves 

encountering a circumstance in which we have erred and are subsequently faced with a 

similar choice of action in the real world, we might like to see ourselves taking a little extra 

time to settle on a course of action out of all of the possible courses of action. The data we 

present in each of our studies, to some degree, do not provide direct support for this 

hypothesis. We have shown that PES relies on more D1 receptor sites and fewer D2 receptor 

sites, that it is effectuated to a greater degree in older adults and those with lower estimates of 

general intelligence, g, that it is impaired when activity in right frontal cortex is 

downregulated by neurostimulation, and that it seems to be the outcome of disrupted 

subsequent attentional processing. None of this evidence suggests a proactive strategic 

mechanism of PES, but it does not amount to negative evidence of such. This evidence 

clearly suggests that PES is at least partially compensatory in some way, and is a 

consequence of disturbances to processing, but not necessarily proactive (i.e., intentionally 

deployed). 

Our data suggest that PES is compensatory in that it appears to manifest to a greater 

degree in the response patterns of older adults and those with lower g; that is, in those whose 

reactive process is likely less effective. It is known that in younger adults, motor execution, 

coordination, and control are more effectively regulated than in older adults. The mechanisms 

responsible for this are well-understood, and correspond to degeneration of neurotransmitter 

systems, in particular the dopaminergic system, demyelination of neurons and post-cerebellar 
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nerves, and weakened musculature (e.g., Haubenstricker & Seefeldt, 1984; Peterka & Black, 

1990; Seidler et al., 2010; Smith, Sharit, & Czaja, 1999; Thomas & French, 1985). Likewise, 

in those with lower g and IQ, which are near enough to analogous for this argument, it has 

been observed that the reactive process, indexed by SSRT, is worse (e.g., Engelhardt et al., 

2016; Schachar, Mota, Logan, Tannock, & Klim, 2000), but this relationship is not always 

found (e.g., Kooijmans, Scheres, & Oosterlaan, 2000). Kooijmans and colleagues (2000) 

found no correlation between general intelligence and SSRT, however their sample was a 

population of young ADHD children, which likely confounds conclusions given what we 

now know about proactive inhibition. It is possible that the effect of ADHD on response 

inhibition overshadows the generally small-to-moderate effect of g or IQ on its elements. It is 

interesting that higher IQ has long been associated with quicker RT (Jensen, 1982). Since 

lower IQ predicts a slower RT, and some evidence suggests worse reactive and overall 

response inhibition (e.g., Votruba & Langenecker, 2013; but see also Bitsakou, Psychogiou, 

Thompson, & Sonuga-Barke, 2008, who found no such relationship, once again, in a sample 

of ADHD children and adolescents), could it be the case that people with a higher IQ 

effectuate a more productive speed-accuracy trade-off? If lower g is associated with more 

PES, and PES enhances overall inhibitory efficacy, then it stands to reason that a more 

cautious speed-accuracy trade-off is a source of effective inhibition in those with higher g. 

These pieces of evidence point toward a natural compensatory mechanism, perhaps to 

compensate for a poorer reactive process, but on the other hand, perhaps to compensate for a 

less productive speed-accuracy trade-off. This account does not rely on an assumption of 

active agency or intentional deployment of PES. The physical and biological processes by 

which such a compensatory mechanism may be enacted might be outside of active agency, 

and perhaps even consciousness, and this very interesting question requires further 

investigation. 

In addition to their support of a compensatory account of PES, our data also support 

an incidental account. The apparent disruption to normal processing that is evident in our 

EEG data (Chapter 4) supports this, suggesting that errors dysregulate a pattern of thought. 

This dysregulation could potentially be represented in the mind as an incongruity between 

intended action and executed action, or it could be overridden by an emotional response to an 

error, as frustration or disappointment, perhaps. The effect of dysregulation of attention to a 

stimulus plausibly offsets meaningful processing (e.g., discrimination indexed by N2). This 

can be inferred from convergent evidence that quicker RT is predicted by a larger N1 (Kolev, 
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Falkensetin, & Yordanova, 2006), that the N1 does not appear later but is prolonged and 

larger in Choice RT tasks compared to Simple RT tasks (Vogel & Luck, 2000), and that the 

tail-end of the N1 in Choice RT tasks is a stronger predictor of RT than is onset latency or 

amplitude (Antonova et al., 2016). However, in Antonova and colleagues’ study (Antonova et 

al., 2016), the additional complexity of a choice task likely discriminates differences in 

performance between individuals more in later components associated with higher cognition 

such as the N2 or P3. 

Our data partially support an incidental account of PES in our EEG experiment, and a 

compensatory account in our genetics experiment. Both proactive and incidental PES may 

result in improved response inhibition, since the outcome is the same: more time to 

meaningfully interpret the stimulus. We do not see the N1 predicting response inhibition (i.e., 

errors), because attentional processing probably does not serve any discriminatory or 

hermeneutic function in a single-response paradigm such as the SART. Those ERPs that do 

so, the central N2 and the frontocentral P3, however, appear to predict overall response 

inhibition to some degree. While the N1 is negatively impacted by errors, the N2 and the P3 

are not, which suggests that they serve an important role in the reactive process, which is not 

directly affected by errors. 

These two accounts do not discount a proactive account of PES. PES may be partially 

proactive, intentional slowing of subsequent responses. Given our dual-process model of 

proactive inhibition, remedial and predictive, the latter of which implies active slowing down 

associated with a perceived heightened likelihood of needing to recruit the stopping or not 

going process, then it is clear that attenuation of response speed even to the millisecond scale 

is possible, and is under top-down control. As such, it remains plausible that some proportion 

of PES may likewise be proactive attenuation, given similar principles of predictive proactive 

inhibition apply in remedial proactive inhibition. The degree to which PES can be empirically 

separated into compensatory and proactive, and proactive and incidental, remains unclear. 

But the fact that our evidence indicates that PES does not enhance the reactive process by 

active facilitation or recruitment of additional neural resources, but rather the response 

inhibition process because the reactive process is unaffected, is an important finding. So, for 

the remainder, we do not assume the PES is wholly strategic or wholly incidental. Just that it 

occurs reliably and, through a combination of factors, contributes to successful inhibition. 
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6.1.2 Situating post-error slowing in the contemporary trinal-organisation model of the 

basal ganglia 

In the introduction, we reviewed evidence that PES is contingent on the error 

positivity event-related potential (the Pe) being conveyed to the STN, a critical locus of the 

hyperdirect pathway (Figure 5) and that this relay relied on sufficient levels of dopamine (see 

also Siegert et al., 2014). This notion was not central to our thesis, so the methods used here 

do not allow us to support or reject these findings, but it is theoretically consistent with our 

uGRS method representing proportion of D1 to D2 receptors. Our uGRS data indicate that 

more D1 relative to D2 receptors, which is consistent with a balance favouring the direct over 

the indirect basal ganglia pathway (but also heightened neurotransmission via the hyperdirect 

pathway), predicts greater engagement of PES. If the Pe being conveyed to STN relies on 

sufficient dopaminergic neurotransmission, and the STN is a critical locus of the hyperdirect 

pathway that synapses directly with frontal regions, then we can hypothesise two things. 

First, that our D1:D2 uGRS predicts a larger Pe, of which there seems to be some indication 

in our data (r33 = .27, p = .121). And, second, that deactivation of neurons in the hyperdirect 

pathway might disrupt PES. Again, our tDCS data support this if we assume that cathodal 

stimulation to the right inferior frontal regions, known to be involved in response inhibition, 

reaches hyperdirect efferents, which seems likely according to the work of Bikson and others 

(see Bikson & Tahman, 2013; Bikson et al., 2004; DaSilva, Volz, Bikson, & Fregni, 2011; 

Hogeveen, Grafman, Aboseria, David, Bikson, & Hauner, 2016). 

Taken together, this evidence implicates the hyperdirect pathway in PES. The Pe 

activates the STN, which is necessary for PES, and the STN synapses with the frontal regions 

at which the N1 is disturbed soon after, which predicts PES. Furthermore, a genetic 

predisposition to stronger hyperdirect activation predicts PES, and potentially reducing 

hyperdirect activation using neurostimulation diminishes PES. If an error signal is received 

by the basal ganglia, it can be rapidly conveyed via the hyperdirect pathway, perhaps to 

disrupt attentional processing in frontal regions. If that is the case, it is possible that the many 

studies indicating that right inferior frontal gyrus (rIFG) is involved in response inhibition 

(e.g., Chikazoe, Konishi, Asari, Jimura, & Miyashita, 2007; Hampshire, Chamberlain, Monti, 

& Duncan, 2010) might in fact have misattributed its activation to response or reactive 

inhibition, when it seems likely to be involved in proactive inhibition (see also Swick, 

Ashely, & Turken, 2008, who use fMRI to show that the left inferior frontal gyrus is also 

critical for response inhibition; this finding is not inconsistent with our argument here, since 
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the effect of tDCS is quite diffuse, and likely also diminishes activity in the left frontal 

regions). 

6.1.3 Can these findings help us understand the behavioural manifestations of 

neuropathology and psychological disorders? 

Differentially dysregulated activity that results from disordered dopamine signaling in 

basal ganglia pathways underlies the differential pathological profiles of several disorders 

and diseases (DeLong, 1990; Gerfen, 1995; Smith, Bevan, Shink, & Bolam, 1998). 

Hyperactivity in the direct pathway appears to underlie a substantial proportion of the 

behavioural dysregulation in gambling and addictive disorders as well as disorders of 

perseveration (e.g., OCD) and dysfunctional impulse control (e.g., ADHD), and even autism 

(Baker, Stockwell, & Holroyd, 2013; Haber, Heilbronner, 2013; Mous et al., 2015; Rapoport, 

1990; Rothwell, 2016; Sonuga-Barke, 2005), whereas genetic or other predisposition for 

increased indirect relative to direct activation has been assumed to underlie behavioural and 

personality disorders including depression, anxiety, and social problems (e.g., Behrendt, 

2019; Cummings, 1993; Krishnan, 1992). Much of the research on which the work cited here 

was based was undertaken before the hyperdirect pathway was characterised. Since that time, 

the frontal-basal ganglia connections of the hyperdirect pathway have been implicated in 

many of these disorders (e.g., Frank, 2008; Li et al., 2015; Maia & Frank, 2011). It is self- 

evident, then, that precise description of the cognitive functions that the three known basal 

ganglia pathways support can provide the basis of more effective psychiatric care. 

The ability to discretise the elements of cognitive processes that seem unitary, and to 

map their constituent elements to discrete segments of neuroanatomy upholds accurate 

characterisation of individual differences in cognitive functions, of changes to those cognitive 

functions, and of the behavioural and cognitive profiles of diseases that are thought to affect 

those cognitive functions. It is also important to develop this theoretical capacity given the 

direction of the cognitive sciences. The cognitive sciences, biopsychology, computational 

neuroscience, and mathematical psychology are increasingly interested in modelling, 

parameterising, and simulating data. The translational capacity of this work to the clinical 

field is very clear and will have considerable impact. Discretisation of cognitive mechanisms 

into constituent processes, and parameterisation of those processes into subprocesses 

provides incredible insight into behaviour, into the mind, and into the biological states that 

produce them. With the empirical models of disease that have been established over the last 

hundred years, the theoretical models of behaviour that are currently being established to 
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complement them are central to allowing us to postulate on the real effects of disease. This is 

particularly important in the clinical populations who appear most affected by disturbances to 

the response inhibition network, since they are so varied. Their pathophysiological profiles 

are well-understood, but their cognitive profiles are not. 

An accurate conceptualisation of the cognitive and behavioural profiles of these 

diseases that is constrained by what is known about their pathophysiological profiles has 

clear utility. What limits the realisation of this in practical terms are the experimental 

limitations summarised throughout this thesis. While we may have the capacity to formalise a 

model of deterioration of these functions, and may even be able to observe very subtle 

deterioration in those functions and use them as an early cognitive marker of the very early 

stages of neurodegenerative onset that leads to the more commonly observed motor 

symptoms, this relies on the precision and accuracy of the instruments of measurement that 

we use to measure such deterioration. If we do not have such an instrument or battery of 

instruments, then this utility is moot. Thus, we need the capacity for direct observation and 

measurement of the constituent elements of response inhibition. Response inhibition requires 

sustained attention, which is limited in psychopathologies such as ADHD, a population that is 

commonly investigated using such tasks. Other psychological and behavioural dysregulation 

disorders including OCD, social anxieties and phobias, Tourette’s syndrome, addictions, and 

antisocial and violent tendencies are also commonly investigated using such tasks. In addition 

to psychosocial disorders, psychiatric and neurological disorders including PD, HD, and other 

dystonic and dyskinetic, and hyperkinetic and choreic, diseases are of interest in this regard. 

One might assume that experimental interest in such populations can be put down to their 

limited ability to inhibit unwanted or to regulate contextually inappropriate actions. Certainly, 

such interest is warranted for clinical purposes. I have already described the limitations in 

self-report data to investigate such functions, but for different reasons there are limitations in 

experimental data to investigate such functions that have been described in Chapter 1 and 

subsequent chapters. These limitations can be attributed in part to task length, and in part to a 

failure to discretise the independent elements of response inhibition. Above I have discussed 

the latter. 

Those limitations that we can attribute to task length are introduced and addressed in 

Chapter 5, but a brief comment is justified here in relation to those populations of interest in 

response inhibition research. The plausibility of distinguishing early onset of PD and HD by 

reactive mechanisms from remedial and predictive proactive mechanisms has been 
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considered above, but what is more pertinent here is task duration. All of the populations 

described above, for very different reasons, exhibit limitations to maintaining behavioural, 

cognitive, motivational, and motoric/physical focus on experimental tasks. These lapses of 

focus have far reaching implications on overall outcome measures of tasks. We have 

integrated various task modifications to existing methods that allow very rapid estimation of 

all relevant variables without sacrificing accuracy or precision. 

Our evidence converges to implicate the hyperdirect pathway in the facilitation of 

PES, but it additionally allows us to consider once again the case of PD and HD in response 

inhibition. Such consideration is germane given the shift in clinical research just described. 

Given what we know about their pathophysiological profiles, we might not expect 

concordance in their behavioural profiles; yet, there is substantial evidence supporting this 

finding (Aron et al., 2003; Beste et al., 2010; Gauggel, Rieger, & Feghoff, 2003; Henderson 

et al., 2011; Lawrence et al., 1996; Ye et al., 2014). I gave an overview of their pathological 

profiles in Chapter 1, and commented on the empirical findings in response inhibition 

experiments, in particular, that data show response inhibition deficits. Very early on in this 

thesis, I referred explicitly to a failure to distinguish between reactive and proactive 

inhibition, and that they exert different effects on overall response inhibition. I touched on the 

idea that this is a glaring and significant limitation that engenders substantial impact on the 

validity of response inhibition data, particularly in pathological populations. PD and HD 

populations represent a model exemplar of this impact. To observe poor response inhibition 

or reactive inhibition in these populations, as many have done is perhaps interesting, but has 

minimal practicable utility. The aetiology of such deficits should be considered; that is, what 

are their cognitive neurocomputational sources? I think that our data allow us to make some 

inferences on this question. 

In PD, degeneration of the structure responsible for production of dopamine, the SNc, 

leads to weakened neurotransmission to striatum, and, therefore, stronger inhibition of the 

thalamus over its projections to the cortex. This can be due to poorer D1-mediated inhibition 

of GPi and SNr relative to D2-mediated inhibition of GPe, which represents strengthened 

indirect pathway function and weakened direct and hyperdirect pathway function in PD 

conditions. These pathophysiological changes represent the aetiology of the hypokinetic 

symptoms that characterise PD (e.g., rigidity and akinetic tremor). Since we have established 

the importance of D1>D2 in our uGRS method for invoking PES (PD roughly corresponds to 

a lower uGRS, i.e., D2>D1), we might assume that the performance deficits in response 



207 
 

inhibition tasks in PD can be attributed to a failure to deploy PES as a strategy to mitigate 

poor response inhibition indexed by errors of commission. Pathophysiology in HD, on the 

other hand, is to some extent inverted. Poorer inhibition (i.e., dis-dis-disinhibition) of the 

thalamus due to a higher uGRS (D1>D2) which exerts control over GPe, which, in turn, 

strengthens its inhibition of STN, GPi, and SNr, contributes to the hyperkinetic chorea that 

characterises HD. In essence, this represents a favouring of the direct pathway over the 

indirect pathway, invoking STN activity, which facilitates the deployment of PES. However, 

the motor symptoms (e.g., spasm, chorea, and desynchronisation of signals between basal 

ganglia and cerebellum) results in asynchrony of the signals between segments of the brain 

required for timing and planning of initiation, execution, and stopping of a response. For this 

reason, it seems sensible to infer that the deficits in response inhibition associated with HD 

have their origin in the reactive process. So, with these things in mind, the claim that PD and 

HD suffer from poor response inhibition can potentially be differentially attributed to its 

discrete elements, and not simply to overall inability to stop. That each of these claims invoke 

the importance of the STN, a critical locus of the hyperdirect pathway, adds weight to our 

suggestion that it is central to PES. 

We are in the planning stages of testing PD patients on and off medication (DBS and 

l-DOPA) on various tasks, including the discrimination SST described in the previous 

chapter. If we are able to demonstrate that these interventions improve overall response 

inhibition and, thanks to the modifications we make to the task, isolate them to PES, then our 

plausible claims here can be supported. Precisely how such findings could be translated into 

long-term interventions are not known, but they represent an interesting avenue for 

investigation. The mechanism of l-DOPA is fast acting, and recent evidence (e.g., Rincón- 

Pérez et al., 2019) invoked the inverted-U hypothesis of the effect of dopamine on strategy 

selection, which is dissimilar but not entirely unrelated, to PES. These authors claim that 

sensible strategy is invoked more at higher and lower dopamine levels based on a weighted 

GRS (using a different combination of SNPs than those that we used here). Although this 

inverted-U dopamine hypothesis is ubiquitous, and generally simple to apply to many 

findings, it may pose problems for generalised targeted treatment for or management of 

disturbances to the discrete elements of response inhibition. 

Based on these accounts, if we were to administer the response inhibition battery of 

tasks to PD and HD populations, we might be able to directly observe and compare 

differences in performance that are more precise than overall response inhibition. We can 
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hypothesise that PD patients might engage PES to a lesser degree than do HD patients, and 

that HD patients might have a slower SSRT or commit more errors than do PD patients. 

These tasks have the capacity to isolate and highlight very subtle changes in performance 

over time. It is well-understood that cognitive decline precedes motor symptomatology in 

both PD and HD in some cases by decades. The age of onset of these two diseases tends to be 

in late-middle or later life, which may obscure mild cognitive impairment as it may be 

perceived as a common sign of normal ageing. In adults with a familial history of PD or a 

genetic mutation responsible for HD, spaced, repeated administration of a battery of tasks 

such as this may have the capacity to identify early markers of the cognitive decline that 

precedes motor decline. This line of reasoning is purely hypothetical, but it warrants 

investigation. Mapping the individual trajectory of at-risk individuals allows mitigation 

strategies and lifestyle alterations to offset, slow, or minimise the effects of these diseases. 

Measurement instruments used for such purposes must be suitable for the population 

of interest. The behavioural and motor profiles of these diseases – as well of others, such as 

ADHD, OCD, and those previously described whose behavioural, attentional, and 

motivational regulation are deficient – are not well-suited in their current forms to yield 

accurate measurements of performance and, if those measurements provide insight into the 

extent of the neuropathology, the course of disease and its prognosis and treatment or 

management strategies. If response inhibition tasks are to be used for these purposes, and 

potentially to identify early markers of cognitive decline that signify the very early stages of 

neurological degeneration, then task duration is a critical consideration, hence, the tasks 

described in Chapter 5. 

6.1.4 Considerations for future work in this field 
 

In my view, there are two important approaches to be considered in future work with 

a trinal-organisation model of the basal ganglia and a triarchic structure of response 

inhibition. By trinal-organisation model of basal ganglia, I refer to its three pathways that we 

have robustly implicated in response inhibition: the direct pathway, the indirect pathway, and 

the hyperdirect pathway. By triarchic structure of response inhibition, I refer to reactive 

inhibition, remedial proactive inhibition, and predictive proactive inhibition. Recent research 

has used a reinforcement learning approach to response inhibition in SSTs (see, for example, 

Frank, 2005; Frank, 2006; Frank, Seeberger, & O’Reilly, 2004; Wiecki & Frank, 2018; 

Wiecki, Sofer, & Frank, 2013). 
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I think that a limitation to this thesis is the lack of a meaningful, in-depth 

consideration of the principles of reinforcement learning from reward (i.e., a correct response 

to Go trials or a correct inhibition to No-Go trials) or from punishment (i.e., responding to 

No-Go trials), and to the role of prediction error in remedial and predictive proactive 

inhibition. In my view, this absence does not diminish the substance here, it would simply 

have provided an alternative interpretation of the data that would require a dedicated thesis in 

itself. It is unfortunate, though, since such principles lend themselves well to being 

investigated through the lens of the dopaminergic hypothesis presented here, its link to the 

basal ganglia, and especially to EEG data. Response inhibition tasks were not designed to 

measure learning abilities, and many of the conclusions here could not have been possible 

interpreting them through that lens; however, on the other hand, using a reinforcement 

learning framework to complement the data here could provide invaluable insight into the 

processes under investigation. For instance, implicit reinforcement derived from correctly 

executing a response on Go trials might explain some post-correct speeding of responses. 

Such an approach was outside of the scope of this thesis, and, in my view, answers a 

different question. A reinforcement learning approach considers the agent to be a product of 

an input/output system in whom very little active or agentive top-down control is deployed. 

With that said, we have provided some support for this notion, but also some support for the 

notion that active control is invoked in PES. Reinforcement learning is more amenable to 

modelling and simulating data, and may even allow for more precise conceptualisation of 

basal ganglia function since the pathways here have long been used in such disciplines to 

investigate learning and reinforcement. This approach may be particularly useful in thinking 

about the predictive proactive mechanism that we describe in the previous chapter, but, this 

predictive mechanism is only one element of a larger totality that should not be considered 

alone. Such experiments when applied to response inhibition tasks assume implicit 

reinforcement based on trial-by-trial accuracy, which is an assumption not yet established. 

The second approach builds on the first: mathematical modelling and computational 

simulation of data. Many have attempted this in response inhibition tasks, and an endeavour 

to apply these approaches to them are well under way. I described my hesitation in so doing 

in a previous chapter. Many research groups (e.g., Dutilh et al., 2012a, 2012b; Forstmann et 

al., 2008; Forstmann, Ratcliff, & Wagenmakers, 2016 ; Heathcote, 2012; Heathcote et al., 

2019; Heathcote, Popiel, & Mewhort, 1991; Logan, Schall, & Palmeri, 2015; Matzke, Love, 

Wiecki, Brown, Logan, & Wagenmakers, 2013; Montes, 2017) are making substantial 
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progress here that will undoubtedly synthesise the conceptual cognition with the 

mathematical laws that are needed to use such models logically. 

6.1.5 Concluding remarks 
 

Here, we have shown that PES is likely implemented via the hyperdirect basal ganglia 

pathway and mediated by dopaminergic neurotransmission. We have shown that it is 

measurable. It is reliable, common, subject to individual differences, and mediated by task 

demands, genetic variation, and age. Furthermore, we have shown what it is not. It is not the 

time associated with reorientation or upregulation of attention to the task at hand, and it is not 

a suspension of the commencement of the subsequent stimulus-response behaviour due to 

processing of the error. These things are, of course, critical contributions to the endeavour, 

but describing what something is not does not fill in the blanks, it merely tells us which 

colours not to use when we do fill them in. 

PES is an elusive construct to empirically characterise in a conceptual model simply 

because parameterising or operationalising qualitative, introspective state shifts is practically 

impossible. PES appears to be disorientation, and it appears to be compensatory in some way. 

It may partially reflect an active process, such as “oh, okay, I should slow down”. This may 

seem remiss, but post-error slowing is, partially at least, just post-error slowing. When people 

make an error in what, at first glance at least, is a relatively simple task, it is natural to be 

frustrated. There is no emergent ERP component of frustration to my knowledge. When 

people make an error in such a task, a task that they believe they could perform well if they 

were able to maintain the metacognitive facilities overseeing their performance, an error 

would presumably induce a moderation of a dynamic, implicit speed-accuracy trade-off – at 

least for a very short while. We have shown that PES compensates for suboptimal reactive 

processes in those in whom such compensation is needed. On the other hand, we suggest that 

a speed-accuracy trade-off may be the driving factor of successful inhibition in those in 

whom such compensation is not needed because they are already efficient at balancing speed 

on Go trials and inhibition accuracy. 

Certainly, alongside the predictive proactive mechanism we describe in Chapter 5, 

and empirical findings describing post-correct slowing, post-correct speeding, remedial 

proactive inhibition – as PES – represents one element of many in response patterns in 

continuous performance tasks. Perhaps the use of diffusion or accumulation models can be 

applied to these response pattern elements to characterise the changes that may underlie this 
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slowing and speeding up. We were unable to apply such models to our data for reasons 

already described. 

First, we demonstrated a neurogenetic basis of a proactive element of response 

inhibition in PES situating it in the dopaminergic system of the basal ganglia. Second, we 

showed that PES appears to be the result of disruptions to functioning indexed by the anterior 

N1, the neural generator of which is thought to be larger in the right hemisphere compared to 

the left, and in frontal or frontoparietal regions. It is difficult to localise the N1 from EEG 

data due to the inverse problem (Grech et al., 2008a, 2008b; Lopez Rincon & Shimoda, 

2016), but if it is generated in right hemispheric frontal or frontoparietal regions, it is 

consistent with PET and fMRI evidence reliably implicating such regions in response 

inhibition (Aron et al., 2004; Menon, Adleman, White, Glover, & Reiss, 2001; Rubia, Smith, 

Brammer, & Taylor, 2003). Since we have assumed based on substantial evidence that the 

motor, or reactive, elements of response inhibition to be strongly linked to basal ganglia 

regions (Beste, Saft, Andrich, Gold, & Falkenstein, 2008; Beste, Willemssen, Saft, & 

Falkenstein, 2010; Ray et al., 2009), our data support the hypothesis that the cognitive, or 

proactive and motivational, elements of response inhibition may be partially situated in these 

frontal regions. This would be consistent with our EEG data showing that PES is modulated 

by the anterior N1, and with a good amount of data showing that the rIFG and related regions 

are activated during inhibition tasks (Chikazoe, Konishi, Asari, Jimura, & Miyashita, 2007; 

Hampshire, Chamberlain, Monti, & Duncan, 2010). If we consider our genetic evidence 

alongside these claims, we might assume that the hyperdirect basal ganglia pathway, which 

synapses with the frontal cortex, is at least partially involved in supporting PES. We take our 

tDCS data as further support of this hypothesis, since the cathodal effects at rIFG appear to 

disrupt PES but not any motor elements of the inhibition task or any other speeded response 

task. 

The narrative connecting the manuscripts contained here is evidence of the biological 

substrate of a cognitive process, proactive inhibition. It is demonstrated that proactive 

inhibition is largely reliant on the dopaminergic system, but adapts to decrements in it 

associated at least with ageing; moreover, its magnitude is greater in individuals whose 

estimated general intelligence is lower, and this, to me, raises questions about the extent to 

which it is, in fact, ‘proactive’ in the agentive sense of the word—is it deployed actively and 

intentionally to a greater extent in people who perform more poorly, or is it administrated by 

some subconscious mechanism in people in whom it is more likely to be required for their 
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survival (or, more likely, more optimal performance in a lab)? Furthermore, is it the result of 

the same cognitive process in such individuals as in those with higher general intelligence, 

given that it is implemented (to different degrees) across the full spectrum of g? It is also 

pertinent to investigate whether it is an effective strategy, and, whether it is a transferable 

strategy that applies in conceptually distinct, but theoretically similar contexts. To me, this 

represents the unifying theme of the experiments in this dissertation. 

Some attention ought to be given to these considerations given the likely clinical 

relevance of response inhibition and changes to its processes across the lifespan. Likewise, 

despite the reliability of response time and response inhibition measures in the SART, the 

reliability of post-error slowing should be investigated in a larger sample, given its 

importance (however, the prevailing theory on the commission of errors in this task is the 

speed-accuracy trade-off which supposes an implicit balance that differs between people; so, 

if response time and the number of errors are reliable, but post-error slowing is not, we 

cannot conclude that post-error slowing confers any benefits or exerts an effect on overall 

inhibition or response time regulation). Furthermore, a particularly interesting finding here 

that certainly warrants continued investigation is the possibility of a dual-process proactive 

inhibition. A predictive/remedial distinction in proactive inhibition may explain some of the 

discrepancies between empirical data and real-world observations in pathological 

populations. 

We have articulated response inhibition, and provided some critical evidence 

describing its important elements. We have shown quite clearly that it has biological substrate 

and ought to be considered in those terms. We have answered several questions, but have left 

some unanswered. These are important considerations for the future and should be 

investigated. So, it is clear that PES is compensatory, but the nature of this compensation 

remains unclear. Is it supplementary or is it protective? That is, does is allow for improved 

performance, or does it protect against deteriorated performance? In addition, we are unable 

to conclude whether PES is strategic in nature (i.e., truly proactive) or whether it is the 

consequence of disturbances to attentional processing of stimuli. Either way, it improves or 

protects against poorer performance, but precisely how it does so remains unknown. Most 

importantly, we draw a distinction between two mechanisms of proactive inhibition: remedial 

and predictive. Given that the principles of reinforcement have been generally formalised into 

mathematical models, their application to predictive proactive inhibition could yield some 

very interesting results if this element of proactive inhibition deteriorates. In moving forward, 



213 
 

the data presented here strongly suggest an explicit distinction between these two forms of 

proactive inhibition in response inhibition, and likewise suggest that the assumption of 

proactivity or active agency in remedial proactive inhibition should be at least attenuated. 

So, with Rabbitt’s guiding question still in mind – what does a human do after they 

make an error? – we offer some thoughts. Rabbitt asked this under the assumption that what 

was done after an error was active, controlled regulatory behaviour; what does a human do. 

The data we have presented in this thesis require us to alter the underlying assumption of 

Rabbitt’s question. A better question to ask is what happens when a human makes an error? 

We are changing two elements of the original question: the time at which changes occur, 

since the onset of whatever changes take place may even commence before the error is 

executed, and, what those changes represent, since they do not appear to be fully under the 

control of the agent. To direct future investigation, we could ramify the question: (i) what 

happens in the brain when a human makes an error? (ii) how do such changes exert an effect 

on cognitive computations of future processing? and, (iii) how are these changes mediated by 

the functional state of the brain in which they occur? These are the questions that arise from 

the findings described here, and, to me, represent significant avenues for future research. 
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