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Summary 

Breast cancer is a major health concern in both developed and developing countries. 

Although there are many factors that can increase one’s risk of breast cancer; 

mammographic breast density is labelled as the greatest, modifiable risk factor of breast 

cancer. So much so, it has been used as a surrogate endpoint in breast cancer intervention 

trials.  

 

Mammographic breast density does have its flaws, especially when being used to monitor 

therapeutic interventions used to reduce breast cancer risk in clinical practice or clinical 

trials. To name a few, mammographic breast density responds to interventions slowly, taking 

up to one and a half years to show significant changes within the breast tissue. 

Mammographic breast density also requires women to have mammograms, which are not 

the most pleasant experience, and can lead to women not attending breast cancer 

screenings or high attrition rates in breast cancer trials. Also, the quantification of 

mammographic breast density itself can occur in a subjective manner, which can lead to 

substantial assessor influence on the results.  

 

There appears to be a gap in the literature for a biomarker for mammographic breast density, 

which responds (in a timelier manner) to treatments aimed at reducing mammographic 

breast density and subsequently breast cancer risk. This thesis aimed to investigate if breast 

elasticity, as measured by shear wave elastography, is a viable biomarker for mammographic 

breast density, which can be used in clinical practice or research.  

 

This thesis consisted of two main focuses. Firstly, determining if elasticity responds to 

treatment that also alter mammographic breast density. Secondly, determining a 

standardised protocol to objectively measure whole breast elasticity, using the SuperSonic™ 

Imagine Aixplorer® ShearWave™ elastography machine. The first focus consisted of three 

clinical trials. The first, an analysis of a patient database of women who used HAVAHT+Ai™ to 

reduce mammographic breast density. The second, a three-month, open-labelled, 

pharmacokinetic sub-study, determining if breast elasticity changes occurred with 

HAVAHT+Ai™, as it was shown to reduce mammographic breast density in the initial study. 
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Lastly, a 12-month, open labelled, clinical trial of a combination of a selective androgen 

receptor modulator and an aromatase inhibitor. Analysing the effect of this combination on 

mammographic breast density and breast elasticity, enabling the determination of 

consistency with the elasticity response with two interventions that were shown to reduce 

mammographic breast density. Correlations between breast elasticity and mammographic 

breast density variables are also discussed with the potential favourable uses of these in 

clinical and research settings.   

 

The second focus included two studies. The first, an analysis of what shear wave elastography 

protocols created the most precise data. Secondly, an eight-week study, determining the 

effects of the hormonal changes of the menstrual cycle, patient position, and repeat 

measurements of breast elasticity, using shear wave elastography. Using this data to create a 

description of a standardised protocol to use when using shear wave elastography to 

measure whole breast elasticity, which will aid and standardised future use and research of 

breast elasticity as a biomarker for mammographic breast density and breast cancer risk. 
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Shear Wave Elastography Preface  

 

Shear wave elastography is a new form of medical imaging which uses shear wave acoustic 

waves, induced by the radiation force of a focussed ultrasonic beam, to image and 

characterise tissue structures (Sarvazyan, Rudenko et al. 1998). Further details pertaining to 

the science behind shear wave elastography are provided in Section 1.5.2 within this thesis. 

 

This preface will provide a description of some of the key features of the equipment and a 

glossary of terms specific to this piece of equipment. The purpose of this preface and 

glossary is to be used as an introduction to the machine and be used as a reference as 

required by the reader. 

 

The machine used within this thesis was the SuperSonic™ Imagine Aixplorer®, which can 

provide real-time ShearWave™ Elastography (SWE), pictures in Figure 1. 

 

 
Figure 1: SuperSonic™ Imagine Aixplorer® ShearWave™ Elastography Machine 

 
As this is an ultrasound machine, a transducer head is required to be used; for this research 

the SuperLinear™ SL15-4 linear transducer was used, pictured in Figure 2. This transducer 

head had a bandwidth of 2-10 megahertz (MHz) and can be used for breast ultrasounds, as 

well as for abdominal, musculoskeletal, paediatric, thyroid, vascular and general applications.  
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Figure 2: SuperLinear™ SL15-4 Linear Transducer Head 

 

A generic, water-based ultrasound gel was also used on both the skin and on the transducer 

head. The ultrasound gel and the ultrasound gel on the transducer head are pictures in 

Figure 3 and 4, respectively.  

 

 
Figure 3: Generic ultrasound gel 
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Figure 4: Ultrasound gel on the Linear transducer head 
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Shear Wave Elastography Glossary 
 
B-Mode 

Ultrasound: 

B-mode ultrasound is a widely accepted method of ultrasound, where a 

linear array of transducer simultaneously scans a place through the body. 

This scan can be viewed as a two-dimensional image on the screen 

(Carovac, Smajlovic et al. 2011). On the Supersonic™ Aixplorer® SWE 

machine the B-mode ultrasound is displayed simultaneously with the SWE 

on the Aixplorer® screen, as pictured in Figure 5. 

 

ShearWave™ 

Elastography 

(SWE mode): 

The SWE mode uses shear waves and measures the speed at which they 

travel through the tissue and displays information about tissue elasticity. 

It is displayed as an easy to interpret colour-coded image on the 

Supersonic™ Aixplorer® SWE machine, as pictured in Figure 5. This 

elasticity can also be viewed as a quantitative value, with the local 

estimation of tissue elasticity, as either kilopascal or meters per second. 

 

Region of 

Interest (ROI): 

The region of interest is the area of the ultrasound output that is the 

focus of the image (the focal zone), as pictured in Figure 5. For the 

Supersonic™ Aixplorer® SWE system, the ROI is within a box on the image, 

that can be moved or resized on the image. 
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Figure 5: SuperSonic™ Imagine Aixplorer® SWE machine output with the ShearWave Elastography mode and B-mode 

ultrasound simultaneously visible on the machines output screen. The Region of Interest is the focal point of the 
ShearWave Ultrasound 

 

The 

Quantification 

Box (Q-Box™): 

The commonly used term for the quantification box is the Q-Box™. This is 

a customisable circle that you place on the image to accurately quantify 

the elasticity (also called the stiffness) of an area. The Q-Box™ can be 

resized and/or moved across the image and anchored to display to 

elasticity within that selected area. A singular 10-millimetre Q-Box™ is 

pictured in Figure 6. 

 

 
Figure 6: The Q-Box™ displayed on both the SWE mode and the B-mode ultrasound output 
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Q-Box™ Ratio: The Q-Box™ ratio is similar to the Q-Box™ but it allows you to compare 

the elasticity of two areas of the same image. Within this thesis, one 

circle, that again could be resized or moved, was placed on an area of the 

image that was fibroglandular tissue and one was placed on an area of 

fatty tissue. The elasticity for each subtype of tissue are presented on the 

screen.  

 

Q-Box™ 

Trace: 

This is when you manually trace a Q-Box™ on the SWE image, it provides 

the elasticity values within the traced area. The area can be traced using 

the trackball on the Aixplorer® SWE machine or with the stylus attached. 

The Q-Box™ trace is pictured in Figure 7. 

 

 
Figure 7: The SWE mode image with the Q-Box™ trace function used to trace and create a custom shaped Q-Box™ to 

include the area within the ROI for which will be included in the elasticity 

Export: The data that was generated from the shear wave elastography image can 

be exported from the machine as either a comma separated value (CSV) 

excel files, DICOM files or as generated reports with the relevant images 

selected, pictured in both Figure 8 and 9. 
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Figure 8: The screen on the SuperSonic™ Imagine Aixplorer® SWE machine that provided the options for exporting the 

data 

 

 
Figure 9: A sample of the reports generated by the machine that can be exported with both the image and the 

quantitative data 

Black Hole: Areas of the Shear Wave Image where the shear waves have not 

propagated through the tissue and as a consequence have no elasticity 

data. 
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Figure 10: A Shear Wave ultrasound image with a black hole present 

Artefacts: Areas on the colour elasticity image that might not be a 

representation of the mechanical properties of the breast tissue but 

rather an issue with the SWE. The areas in the image that have 

artefacts have extremely high elasticity values, which do not 

correspond to any structure on the B-Mode image. 
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Abbreviations  

 

%BD Per cent breast density 
%FV Per cent fibroglandular Volume 
%VBD Percentage volumetric breast density 
5α-DHT 5α-dihydrotestosterone 
6 x 3mm Q-Box™ Six, three-millimetre Q-Box™ 
6 x 6mm Q-Box™ Six, six-millimetre Q-Box™ 
ADH Atypical ductal hyperplasia 
AE Adverse event 
Ai Aromatase Inhibitors 
ALH Atypical lobular hyperplasia 
ALT Alanine aminotransferase 
AMPK Adenosine monophosphate-activated protein kinase 
ARFI Acoustic radiation force impulses 
BBD Benign breast disease 
BC Breast cancer 
BD Breast density 
Bi-RADs Breast imaging reporting and data systems 
BMI Body mass index 
Boyd’s SCC Boyd’s six class categories 
CCHT Continuous combined hormone therapy  
CCS Case control study 
CI Confidence Interval 
Cm Centimetre 
Cm3 Cubic centimetre 
CS Cohort study 
CV Coefficient of variation 
DHEAS Dehydroepiondrosterone sulphate 
DHT Dihydrotestosterone 
DNA Deoxyribonucleic acid 
E/A Ratio Oestrogen/androgen Ratio 
E1 Oestrone 
E2 Oestradiol 
ECM Extracellular matrix 
EOS End of study 
FAI Free androgen index 
FGV Absolute volume of fibroglandular tissue 
FSH Follicle-stimulating hormone 
GnRH Gonadotropin releasing hormone 
Gtx-024 Enobosarm 
HAVAHT+Ai™ HAVAH proprietary limited testosterone and anastrozole 
HER2 Human epidermal growth factor receptor 2 
HREC Human research ethics committee 
HRT Hormonal replacement therapy  
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IBIS-I International breast cancer intervention study I 
ICMD International consortium on mammographic density 
IMI Image mean index 
Kg Kilogram 
kPa Kilopascal 
LCIS Lobular carcinoma in situ 
LH Lutenizing hormone 
LVI Lymphovascular Invasion 
m/s-1 Meters per second 
MBD Mammographic breast density 
MDA Malondialdehyde 
MDEST Mammographic density estimation 
mg  Milligram 
mGY Milligray 
ml Millilitres 
MMP-3 Metalloproteinase-3 
MMPs Matrix metalloproteinases 
MRI Magnetic resonance Imaging 
MRIV Magnetic resonance Imaging Volume 
MRS Menopause rating scale 
N/m2 Newton per square meter 
NSAIDs Non-steroidal anti-inflammatory drugs 
OR Odds ratio 
Pa Pascal 
PMD Percentage mammographic density 
PT Preferred term 
RAS Restricted analysis set 
RCT Randomised controlled Trial 
ROI Region of interest 
SARM Selective androgen receptor modulator 
SCC Six class categories 
SEER National Cancer Institute age-specific surveillance, epidemiology and 

end results program 
SERM Selective oestrogen receptor modulators 
SHBG Sex hormone binding globulin 
SOC  System organ class 
SWE Shear wave elastography 
T Testosterone 
TBV Total breast volume 
TDLUs Terminal duct lobular units 
TFV Total fibroglandular volume 
TIMP Tissue inhibitor of metalloproteinases 
TIMP-3 Tissue inhibitor of metalloproteinases-3 
TM Trademark 
u/L Unites per litre 
VAS Visual analogue scale 
VPD Volumetric per cent density 
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X2 Chi-squared statistic 
α Alpha 
β Beta 
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Chapter 1 Introduction and Background 

1.1 Introduction 

Breast cancer is one of the most prevalent types of cancer among women and affects women 

of both developed and developing countries. While there has been great progress into 

diagnostic and treatment techniques, there remains a substantial morbidity and mortality 

burden of this disease with more than two million cases diagnosed and more than 600,000 

patients dying from this condition worldwide annually (Bray, Ferlay et al. 2018). There has 

been a great deal of research undertaken to establish the many risk factors that have been 

linked to an increased risk of developing breast cancer; and that there is heterogeneity in 

regard to the risk factors associated with breast cancers of different subtypes (oestrogen or 

progesterone receptor positive or Human Epidermal Growth Factor Receptor 2 (HER2) 

tumours) (Althuis, Fergenbaum et al. 2004, Ma, Bernstein et al. 2006, Yang, Chang-Claude et 

al. 2011). Broadly, McPherson, Steel et al. (2000) summarised these risk factors which 

include; 

• Increasing age (up to the onset of menopause) 

• Geographical location 

• Early menarche 

• Late menopause 

• Family history 

• Age at first birth (with nulliparity and late age of first birth increases the risk) 

• Previous benign breast disease (BBD) 

• Exposure to radiation 

Furthermore, lifestyle factors may also contribute to an increased risk of breast cancer, these 

factors include; 

• Diet (dietary fat intake is correlated with an increased incidence of breast cancer) 

• Obesity in postmenopausal women (among premenopausal women obesity is 

associated with a reduced incidence of breast cancer) 

• Alcohol consumption 

• The use of oral contraceptives  
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• Hormonal replacement therapy (HRT), with the risk of breast cancer appearing higher 

in combined oestrogen and progesterone combinations (McPherson, Steel et al. 

2000). 

 

In addition to the risk factors listed above, in recent years, it has been discovered that 

mammographic breast density (MBD) is a major independent and modifiable risk factor for 

breast cancer. With previous research predicting that a third of breast cancers could be linked 

to a woman having highly dense breasts (Boyd, Martin et al. 2010). 

 

1.2 Mammographic Breast Density 

Mammographic breast density refers to the percentage of dense tissue compared to fatty 

tissue within a woman’s breast. The fatty tissue is radiologically lucent and appears dark on a 

mammogram, while in contrast, epithelium and stroma are radiographically dense and appear 

light on the mammographic breast image. Mammographic breast density is highly variable 

and differs significantly amongst individuals of the same age and race (Ingleby and Gershon-

Cohen 1960). An association between the mammographic parenchymal pattern of the breast 

and breast cancer risk was initially proposed in 1976 by Dr John Wolfe (Wolfe 1976), and this 

has led to advancing research within this field. 

 

Boyd, Lockwood et al. (1998) measured the proportions of mammographic images occupied 

by radiographically dense tissue. They found, without exception, a compelling association 

between increasing densities and increasing risk of breast cancer. Furthermore, McCormack 

and dos Santos Silva (2006) conducted a meta-analysis of 42 studies which included 14,000 

cases and 226,000 non-cases; finding that there was a consistent relationship with higher 

percentage mammographic density (PMD), which is another method of quantifying breast 

area, and an association with breast cancer risk. In addition, there are further studies 

revealing that breast cancers arising from areas of high MBD are more frequently related to 

factors suggestive of a poorer prognosis, including large tumour size, higher histologic grade, 

lymphovascular invasion (LVI) and the cancer being discovered at a more advanced stage, 

compared to those arising within an area of low MBD tissue (Aiello, Buist et al. 2005). 

Although some of the previously mentioned risk factors for breast cancer are associated with 

or can influence MBD; after adjustment for the effects of these factors, MBD remains an 
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independent risk factor for the development of breast cancer (McCormack and dos Santos 

Silva 2006, Boyd, Martin et al. 2010, Kerlikowske, Shepherd et al. 2005).  

 

1.2.1 Histology of the Tissue Associated with Mammographic Breast Density 

Mammographic breast density is a trait that is linked to the variation in the fibro-epithelial 

architecture of the breast (Boyd, Lockwood et al. 1998). The histology of the tissue of 

differing MBD’s has been studied, utilising both surgical biopsies and mastectomy specimens. 

These studies demonstrated that epithelial and stromal proliferation was associated with 

increased MBD (Wellings and Wolfe 1978, Bland, Kuhns et al. 1982, Bright, Morrison et al. 

1988, Urbanski, Jensen et al. 1988, Bartow, Pathak et al. 1990, Boyd, Jensen et al. 1992). 

However, the samples examined within these studies were taken from women with known or 

suspected breast disease. It needs to be noted that this may not be an appropriate sample to 

represent the general population of women with high MBD. Furthermore, Li, Sun et al. (2005) 

examined breast tissue samples obtained from forensic autopsy and found that tissue with 

high PMD was associated with a greater proportion of collagen, a greater area of glandular 

structures and a greater nuclear area of both epithelial and non-epithelial cells when 

compared to tissue of a lesser PMD. This larger proportion of collagen accounted for 29% of 

the variance in the PMD with other tissue measurements (area of glandular structures and 

area of epithelial and non-epithelial cells) accounting for between 4% and 7% of the variance 

in PMD (Li, Sun et al. 2005). 

 

Additionally, Turashvili, McKinney et al. (2009), using the same tissue samples as the Li, Sun et 

al. (2005) case-series, found that premenopausal women who had high MBD at a younger age 

demonstrated pre-neoplastic cellular changes, with the presence of columnar cell lesions 

being associated with high MBD. Columnar Cell Lesions having been proposed to represent 

the earliest identifiable histological, but non-obligatory precursor, of low-grade breast 

carcinomas (Sewell 2004, Simpson, Gale et al. 2005). Additionally, tissues with high MBD 

share key histological features with stromal components of malignant breast lesions, 

specifically low adipocytes and high extracellular matrix (ECM) content (DeFilippis, Chang et 

al. 2012).  
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Furthermore, Lisanti, Reeves et al. (2014) reported that there are similarities in the gene 

expression in high MBD fibroblasts and those seen in cancer associated fibroblasts. In 

particular, high density up-genes showing associations with gene sets related to cancer, the 

stress response, inflammation, stemness, and signal transduction. In their study, Lisanti, 

Reeves et al. (2014) demonstrated that there was a strong resemblance between high MBD 

fibroblasts and human tumours, including breast cancers with these results potentially 

reflecting functional similarities between cancer associated fibroblasts and high MBD 

fibroblasts; which are a major component of the tumour stroma in most solid tumours.  

 

1.2.2 Measuring Mammographic Breast Density 

Since MBD has been identified as an important breast characteristic linked to breast cancer, 

more advanced methods and technologies have been developed to quantify this 

characteristic. To date, three different broad methodological categories exist to quantify 

MBD, these being manual, semi-automated and fully automated methods. 

 

1.2.2.1  Manual Methods 
Dr John Wolfe, as previously mentioned in Section 1.2, was the first individual credited as 

linking the breast parenchymal pattern to breast a woman’s breast cancer risk. To do this, 

originally Wolfe applied a method, using both qualitative as well as quantitative criteria, to 

classify and categorise the parenchymal patterns of the breast. Wolfe (1976) created the 

following descriptions of these categories; 

• N1 category – this refers to breast parenchyma, which is composed primarily of fat, 

with at most, a small amount of dysplasia; no ducts are visible for this category 

• P1 category – this refers to parenchyma composed chiefly of fat, with prominent ducts 

in the anterior portion to one fourth the volume of the breast; also, maybe a thin band 

of ducts extending into a quadrant 

• P2 category – this refers to severe involvement with dysplasia, with prominent ductal 

patterns occupying more than one-fourth the volume of the breast 

• DY category – this refers to severe involvement with dysplasia, often obscuring an 

underlying prominent ductal pattern 
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As this method of classification is subjective, it has resulted in inconsistencies in the 

application of these categories when analysing mammographic images. Oza and Boyd (1993) 

conducted a review to determine the reliability of the Wolfe classification categories; they 

found that the inter-observer agreement was 52% to 97% and that there was an intra-

observer agreement of 69% to 97%. In terms of monitoring changes in MBD, the variability 

that is associated with this method leads to unreliable results and for this reason, in the early 

1980s attempts began to develop a reproducible, quantitative method of assessing and 

classifying MBD (Boyd, O'sullivan et al. 1982). 

 

A further method of manually classifying MBD is using a visual estimation of the percentage of 

the breast occupied by dense tissue, with several different models being utilised each with 

differing variables and categories (Boyd, O'sullivan et al. 1982, Boyd, Byng et al. 1995, Vachon, 

King et al. 1999). In the United States of America, the Breast Imaging Reporting and Data 

Systems (BI-RADs) was developed to standardise the reporting terminology of the 

mammography assessment categories (American College of Radiology 1998). The BI-RADs 

method is based on qualitative visual assessments and can be highly influenced by the 

reviewer as the density classification is assigned by the radiologist based on the visual 

inspection of the image (Jeffers, Sieh et al. 2016). This method distinguishes four categories; 

A. Almost entirely fatty 

B. Scattered areas of fibroglandular densities 

C. Heterogeneously dense 

D. Extremely dense 

 

The BI-RADs method has a moderate inter-observer agreement, with a kappa coefficient 

value of 0.43 to 0.59 (Kerlikowske, Grady et al. 1998, Berg, Campassi et al. 2000). The BI-RAD 

system, however, was not intended to provide a quantification of MBD, it was included in the 

mammography report to inform the referring physician of the impact of the sensitivity and 

the interpretation of the image based on the level of breast density (Harvey and Bovbjerg 

2004). This impact on the mammogram interpretation is due to a decreased level of 

sensitivity to detect lesions on mammograms with high BI-RAD categorisation (Harvey and 

Bovbjerg 2004), which is a phenomenon called masking; which occurs when the breast lesions 

are hidden by the dense tissue on the mammogram as they both appear white on the 
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imaging. The BI-RAD scale was also not intended to quantitate changes in the breast tissue 

density over time. 

 

1.2.2.2 Semi-automated Methods 
To reduce some of the limitations faced by the previously discussed manual visual estimation 

methods, more consistent semi-automated, computer-assisted methods of MBD 

quantification have been developed. The most common of these methods is a piece of 

software called Cumulus (University of Toronto, Toronto, Canada)(Byng, Boyd et al. 1994, Eng, 

Gallant et al. 2014), which uses semi-automated, user-interactive thresholding of the image 

to estimate the percentage of breast area that is dense tissue. The Cumulus method uses 

two-dimensional images of the breast; which has limitations because breast density is three-

dimensional and potentially variable in appearance on two-dimensional mammograms due to 

differences in compression and the projection angle (Yaffe 2008). Also, different 

manufacturers of mammography machines have different imaging properties, which can alter 

the mean brightness of the image, in particular within areas that are difficult to penetrate 

such as fibroglandular tissue (Shaw, Albagli et al. 2004, Rivetti, Lanconelli et al. 2006), this 

difference can influence the measured MBD (Mahesh 2004, Shaw, Albagli et al. 2004, Rivetti, 

Lanconelli et al. 2006, McCullagh, Baldelli et al. 2011).  Cumulus is also limited by intra- and 

inter-reader variability in establishing the threshold for segmenting dense tissue from the 

surrounding fatty tissue. The processes of measuring MBD with this method is labour 

intensive and time-consuming; this may be acceptable within research environments; 

however, the applicability of such methods in the real-world may be challenging (Jeffreys, 

Harvey et al. 2010). 

 

1.2.2.3 Fully Automated Methods 
The benefit of fully automated methods is that they decrease the subjectivity and operator 

dependency of the outcome measure. Four main fully automated methods have been 

validated: CumulusV™ (Sunnybrook Health Sciences Centre, Toronto, ON, Canada), Quantra™ 

(Hologic Inc, Bedford, MA, USA), VolparaDensity™ (Volpara Health Technologies, Wellington, 

New Zealand) and Densitas™ (Densitas Inc, Halifax, NS, Canada). These systems use images 

generated by digital mammography; algorithms calibrate pixels values in, depending on the 

system, the raw “for processing” or processed, full-field digital mammography images using a 
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model of X-ray physics and imaging parameters. These systems provide the outputs of 

volumetric per cent density (VPD) or as an absolute measure of dense and non-dense tissue 

(Highnam, Brady et al. 1996, Alonzo-Proulx, Mawdsley et al. 2015, Astley, Harkness et al. 

2018). In the local setting of this research, VolparaDensity™ is the predominant software used 

and will be described in greater detail.  

 

VolparaDensity™ is a volumetric breast density assessment software; it uses an algorithm to 

map the brightness across the mammogram. This brightness represents either the thickness 

of fibroglandular tissue or fatty tissue that is present between the pixel and the x-ray source. 

As the VolparaDensity™ algorithm runs across the image, it calculates the total fibroglandular 

volume (TFV); by using the compressed breast thickness and projected area, the total breast 

volume (TBV) is also able to be calculated. When the TFV is divided by the TBV, the 

percentage volumetric breast density (%VBD) is calculated. The breast density is provided per 

breast, which is obtained from averaging the values of the craniocaudal and mediolateral 

oblique images (Lee, Sohn et al. 2015).  

 

Automated breast density analysis techniques rely on the brightness of the glandular and 

fatty tissue. For this reason, to date, there have been resulting difficulties with the 

consistency and reproducibility, as differences in the imaging parameters that change the 

brightness and contrasts of the image may affect the breast density calculations (Jeffreys, 

Harvey et al. 2010). 

 

1.2.3 Factors that can Influence Mammographic Breast Density 

1.2.3.1 Heritability and Mammographic Breast Density 
Two studies have demonstrated that genetics may influence a woman’s MBD (Boyd, Dite et 

al. 2002, Ursin, Lillie et al. 2009). Boyd, Dite et al. (2002) conducted a study on two samples of 

female monozygotic (identical) and dizygotic (non-identical) twins from Australia, Canada and 

The United States. After adjustments for age and other covariates, the combined correlation 

coefficient was 0.63 for monozygotic pairs and 0.27 for dizygotic pairs. Similarly, Ursin, Lillie et 

al. (2009), also studying monozygotic and dizygotic twins found that after adjustments for 

exposure and non-heritable risk factors that are known to influence MBD, genetics accounted 

for 53% in the variance for PMD and 59% for the variance in absolute breast density. Both of 
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these studies observing a greater correlation with MBD between members of monozygotic 

twins rather than dizygotic twins, alluding to potential genetic influence. 

 

1.2.3.2 Parity Status and Number of Births 
Numerous studies have linked MBD to parity and number of births. It has been demonstrated 

that parity is strongly correlated with MBD, with nulliparous (given birth to no children) 

women having a greater MBD compared to primiparous (given birth to one child) and 

multiparous women given (birth to multiple children) (de Waard, Rombach et al. 1984, Oza 

and Boyd 1993, Gram, Funkhouser et al. 1995, Hendriks, Otten et al. 2000, Li, Sun et al. 2005). 

It has also been shown that the number of births has a negative association with MBD (Li, Sun 

et al. 2005) with one study finding 47% of the nulliparous women had >25% density, 

compared to 37% of the women with one to three children and 19% of the women with more 

than three children (Hendriks, Otten et al. 2000). It is hypothesised that the strong 

relationship between parity and MBD is the reason parity has a protective effect regarding 

breast cancer risk (de Waard, Rombach et al. 1984). 

 

1.2.3.3 Race and Ethnicity 
There is conflicting evidence that race and ethnicity have an influence on MBD with the 

International Consortium on Mammographic Density (ICMD) (McCormack, Burton et al. 2016) 

being established to generate more evidence on this topic. One study by Heller, Hudson et al 

(2015) found that Chinese women were found to have significantly greater PMD and the 

lowest overall breast volume. Furthermore, the PMD of black females did not differ 

substantially from the cohort, having both a higher fibroglandular volume and also overall 

breast volume (Heller, Hudson et al. 2015). 

 

McCormack, Perry et al. (2008) conducted a study comparing the MBD of Afro-Caribbean, 

South Asian and Caucasian women living in the United Kingdom. After adjusting for age, body 

mass index (BMI), menopausal status, use of hormone therapy, number of live births, age at 

first birth, family history of breast cancer and use of oral contraceptives. Afro-Caribbean and 

South Asian women had a lower mean MBD of -1.3% (95% confidence interval (CI) -3.7% to 

1.3%) and -3.8% (95% CI -6.3% to 1.1%) compared to Caucasians, respectively. In regard to 

the Afro-Caribbean women, 60% of the differences in MBD were attributed to a higher mean 
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BMI, earlier menopause, lower prevalence of hormone therapy and a greater number of live 

births. As for the South Asian women one third of the reduced density was explained by BMI 

and reproductive characteristics, but the fully adjusted differences remained statistically 

significant.  

 

Mariapun, Li et al. (2015) examined MBD in Chinese, Malay and Indian women and found that 

Chinese women had significantly higher PMD compared to Malay and Indian women after 

adjustment for age, BMI, menopausal status, parity and age at first full term pregnancy. The 

difference in MBD between the ethnicities predominately coming from the lower non-dense 

area in Chinese women. 

 

Del Carmen, Halpern et al. (2007) reported that MBD amongst Asian women was significantly 

greater compared to Caucasian, African American, Indian and Caribbean or non-disclosed 

races. However, within this study in all the other groups, breast density did not correlate with 

race beyond what can be attributed to differences in BMI, bra size and cup size. Maskarinec, 

Nagata et al. (2002) compared the MBD of three groups of women, these being white 

women, Japanese women living in Hawaii, and Japanese women living in Japan; the findings 

showing that PMD was higher in Japanese women in Hawaii compared to those living in 

Japan. The conclusion was that the size of the TBV differs primarily by race and the proportion 

of dense area by place of residence (Maskarinec, Nagata et al. 2002). 

 

The evidence currently shows that race and ethnicity may be an influencing factor for MBD; 

however other environmental factors and exposures, such as where the woman is living, may 

have been more influential for MBD differences. Other unexamined factors that may explain 

ethnic differences include dietary intake, in particular with calcium, vitamin D, fat, and 

phytoestrogens, which in some studies have been related to MBD (Knight, Martin et al. 1999, 

Vachon, Kushi et al. 2000, Bérubé, Diorio et al. 2004, Maskarinec, Takata et al. 2004). In 

addition, known lifestyle determinants of MBD do not fully account for the ethnic variations in 

MBD, in particular within Asian cohorts.   

 

1.2.3.4 Age and Mammographic Breast Density 
It is known that hormonal changes that occur during menopause lead to alterations of the 

glandular features of the breast tissue. Two studies have examined the relationship between 
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age and MBD (Li, Sun et al. 2005, Checka, Chun et al. 2012) and both found an inverse 

relationship between these two variables. Checka, Chun et al. (2012) found that 74% of 

patients between 40 and 49 years of age had dense breasts, this decreasing to 57% of women 

in their 50’s, 44% of women in their 60s and 36% of women in their 70’s. Within these results, 

there were exceptions across all age groups, and there was similar variability within each age 

group. These studies demonstrate that age may not be a perfect surrogate for breast density 

but remains an influencing factor.   

 

A further study by Burton, Maskarinec et al. (2017) examined differences in MBD, concerning 

the age and menopausal status, from data collected from women from 22 countries. It was 

found that regardless of ethnicity or the country the women were from, MBD was much 

lower in postmenopausal compared to premenopausal women of the same age. In addition to 

this, proportionally to the breast area, the breast density was lower in older women both 

among premenopausal and postmenopausal women. In premenopausal women, MBD 

changed with age without an increase in the breast area; however, the latter (breast area) 

also increased amongst postmenopausal women. These findings demonstrate that within a 

population of women from multiple countries, there is a consistent effect of age and 

menopausal state on MBD, suggesting that these associations may reflect a common 

biological process. At the tissue level, changes which involve the area of high density arise 

from changes in the stromal tissue or in the epithelial tissue or both stromal tissue and 

epithelial tissue. At the same time, the changes in the PMD are also affected by changes in 

the adipose tissue within the breast. Areas of decreasing density likely reflect involution of 

terminal duct lobular units (TDLUs). X-rays of histological tissues showed that TDLUs have 

raised concentrations of radiologically dense areas and that these areas also declined with 

age (Gierach, Patel et al. 2016). The age-related decline in MBD may, however, be modified 

by external factors such as hormonal or reproductive factors or lifestyle or environmental 

factors.  

 

1.2.3.5 Use of Hormonal Therapies and Mammographic Breast Density 
Hormonal therapies and natural hormonal fluctuations that occur throughout a woman’s life 

are known to influence and have the ability to modify MBD. Even the fluctuations during a 

woman’s menstrual cycle can significantly alter MBD (Ursin, Parisky et al. 2001). As 

mentioned in Section 1.2.3.4, MBD decreases throughout menopause in response to changes 
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that occur in a woman’s hormones. Combination HRT has consistently been shown to 

increase MBD (Persson, Thurfjell et al. 1997, Greendale, Reboussin et al. 1999, Lundström, 

Wilczek et al. 1999, McTiernan, Martin et al. 2005, (Chlebowski, Hendrix et al. 2003), 

specifically oestrogen with progestin therapy, which has been found to increase MBD five to 

seven times more than oestrogen alone, which had a small or negligible effect (Greendale, 

Reboussin et al. 1999). In addition to this, tamoxifen, which is a partial antiestrogenic therapy, 

has consistently shown to decrease MBD (Atkinson, Warren et al. 1999, Brisson, Brisson et al. 

2000, Chow, Venzon et al. 2000, Konez, Goyal et al. 2001, Cuzick, Warwick et al. 2004).  

 

1.2.4 Current Interventions for Reducing Mammographic Breast Density 

1.2.4.1 Hormonal Interventions 
As mentioned in Section 1.2.3.5, MBD can be influenced in response to changes in hormonal 

exposures. Androgens and oestrogens have competing actions within normal breast tissue, 

and the regulation of oestrone (E1), oestrone-sulphate and oestradiol (E2) levels rather than 

the concentration of oestrogen in the breast tissue may be associated with changes in MBD 

(Vachon, Suman et al. 2013). As the breast is embryologically a modified sweat gland, it 

responds like a sweat gland to any alteration to its oestrogen and androgen (E/A) ratio 

(McNally and Stein 2017). When there is a shift in the E/A ratio towards an androgenic tissue 

environment in the breast, there is a substantial change in MBD (as is seen following 

menopause (Boyd, Martin et al. 2002)). Therefore, to reduce MBD, there needs to be a 

profound impact on oestrogenic action, which is difficult in premenopausal women without 

imposing undue systematic effects; therefore, outweighing the benefit of therapy. To date, 

two classes of pharmaceutical interventions have shown to be efficacious at reducing MBD; 

these are selective oestrogen receptor modulators (SERMs) and aromatase inhibitors (Ais). In 

addition, non-steroidal anti-inflammatory drugs (NSAIDs) and the antidiabetic agent 

metformin have also been evaluated for effect on MBD reduction. 

 

1.2.4.2 Selective Oestrogen Receptor Modulators (SERMS) 
Two SERMs have been examined for the use of reducing MBD in both premenopausal and 

postmenopausal women; these are tamoxifen and raloxifene. Selective oestrogen receptor 

modulators exert agonist or antagonist effects on various oestrogen target tissues (Riggs and 

Hartmann 2003). Shang and Brown (2002) found that tamoxifen and raloxifene act as anti-
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oestrogens within the breast, and as partial agonists of oestrogen, they can cause significant 

alterations in both breasts and systemic oestrogenic stimulation. This change in systemic 

oestrogenic stimulation causes a shift in the E/A ratio, creating a more androgenic 

environment and reducing cellular proliferation in the breast, thus having the ability to reduce 

MBD.  

 

There have been ten studies which have assessed the use of tamoxifen for MBD, seven of 

these including both pre-and postmenopausal women. Within these ten studies, all of them 

reported tamoxifen mediated MBD decreases. Nine studies assessed the efficacy of raloxifene 

on MBD, with eight of these studies including only postmenopausal women. Of these nine 

studies, only three reported a statistically significant reduction in MBD. A summary of the 

results for these studies on tamoxifen and raloxifene are reported in Table 1-1.
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Table 1-1: Summary table of studies utilising SERMs to influence MBD 

Author, Year Study Design Study Population 

(age and n) 

Type of 

Intervention 

Outcome Measures Results 

Brisson, Brisson et al. 

(2000)  

RCT ≥ 35 years 

Cases (n) = 36 

Controls (n) = 33 

Tamoxifen 

20mg/day for 5 

years 

PMD and Wolfes 

Parenchymal Pattern 

Mean PMD reductions: 1.0 – 3.4 years = -6.9% ± 11.1%; 3.5 – 5 years = -

10.9% ± 12.4%. Overall PMD Reductions: Tamoxifen = -9.4%, Placebo -

3.6% P= <0.01. 

Cuzick, Warwick et al. 

(2011)  

Nested CCS 30 – 70 years 

Cases (n) = 123 

Controls (n) = 942 

Tamoxifen 

20mg/day for 5 

years 

PMD (Boyd’s SCC, 

Cumulus) 

Compared to all women in the placebo group, women in the tamoxifen 

group who experienced 10% or greater reduction in breast density had 

63% reduction in BC risk: OR = 0.37, (95% CI 0.20 to 0.69, P=0.002). 

Cuzick, Warwick et al. 

(2004)  

Nested CCS 35-75 Years 

Cases (n) = 388 

Controls (n) = 430 

Tamoxifen 

20mg/day for 5 

years 

PMD (Boyd’s method, 

visual assessment) 

BD reductions: 18 month follow up -7.9% (95% CI 6.9% to 8.9%; 

p=0.001). 54 month follow up -13.7% (95% CI 12.3% to 15.1%; 

p<0.001). 

There were reductions in the placebo group, but the reductions were 

greater in the tamoxifen group than the placebo group (p=0.001). 

Chen, Chang et al. 

(2011)  

CS 33-51 Years 

Cases (n) = 16 

Tamoxifen 

20mg/day for 

8-26 months 

%FV, PMD (MRI: 

computer-assisted 

algorithm) 

BD reductions after 17 months = -5.8% ± 3.8% (p<0.001). 

7 subjects showed absolute reduction of %BD less than -5%; 7 were 

between -5-10%; 2 larger than -10%. 

Decensi, Robertson et 

al. (2009)  

RCT (post-hoc 

analysis) 

Premenopausal 

BC women (n) = 235 

Tamoxifen 

5mg/day for 2 

years 

PMD (Boyd’s and 

Cumulus) 

MBD; Month 12 (Boyd and Cumulus) = -9.9% (95% CI -16.2 to -3.6). 

Month 24 (Boyd and Cumulus) = -16.2 (95% CI -22.6 to -9.8) 

Month 12 (analogue only) -13.8 (95% CI -20.0 to -7.6); Month 24 = -

19.6 (95% CI -26.3 to -12.9). 
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Table 1-1 continued 

Author, Year Study Design Study Population (age 

and n) 

Type of 

Intervention 

Outcome Measures Results 

Atkinson, Warren et 

al. (1999)  

RCT (post-hoc 

analysis) 

50-64 years 

Cases (n) = 94 

Controls (n) = 188 

Tamoxifen 

20mg/day for 2 

years 

PMD (Wolfe’s 

Method) 

Significant change toward a less dense pattern in the case group (p = 

0.0001) after treatment with tamoxifen. 

The change was significant in the case group compared to the control 

group (p=0.0001). 

The OR associated with the denser P2 and DY patterns vs the less dense 

N1 and P1 patterns was 3.6 (95% CI 2.11 to 6.18) at the initial 

mammogram. This was significantly reduced to 1.5 (95% CI 1.32 to 

1.70) by the follow-up mammogram (p=0.019, X2 = 5.52 for the 

difference between the two ORs). 

Chow, Venzon et al. 

(2000)  

RCT (post-hoc 

analysis) 

36-74 years 

High risk BC women 

(n) = 32 

Tamoxifen 

20mg/day for 

23 months 

PMD (Wolfe’s, BI-

RADs, Boyd’s SCC) 

Using the first and last digitised scores, 56% of participants showed a 

relative decrease of ≥10% mean, -10%; SD 16%). The digitised breast 

density changes were -4.3%, SD 6.60%, range -21.5 to 10.1%, P=0.0007. 

All three other criteria showed some decreases (Wolfe average -0.03, 

SD 0.4, range -1.0 to 1.5, p=0.05; BI-RADs average -0.1, SD 0.4, range -

1.5 to 0.05; p=0.12; semi-quantitative average -0.2, SD 05, range -1.2 to 

0.8, p=0.039). Only semi-quantitative scores achieved statistical 

significance.  
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Table 1-1 continued 

Author, Year Study Design Study Population (age 

and n) 

Type of 

Intervention 

Outcome Measures Results 

Konez, Goyal et al. 

(2001)  

RCT (post-hoc 

analysis) 

32-81 years 

unaffected breasts of 

women following 

surgery for unilateral 

BC (n) = 27 

Tamoxifen 

20mg/day for 5 

years 

PMD (Visual 

assessment) 

19 cases (79%) showed no categorical change during or after the course 

of treatment (17 of the 19 showed fatty or minimally dense breast 

parenchyma). 3 (13%) showed a reduction in density within the first half 

of the treatment. All density changes were only by one level (e.g. 

minimally dense to fatty). Densitometer readings demonstrated a minimal 

reduction in glandular density during tamoxifen treatment in 14 cases 

(52%) within the first half and in 16 cases (60%) at the end of the course 

of treatment. Within the first half, only 4 cases showed more than 10% 

reduction in glandular density, which was noted in 7 additional cases at 

the end of the course of treatment. 

Meggiorini, Labi et al. 

(2008)  

RCT (post-hoc 

analysis) 

Mean age 58.5 ± 9.3 

years 

Cases (n) = 68 

Controls (n) = 80 

Tamoxifen 

20mg/day for 1 

year 

PMD (BI-RADs, 

Cumulus) 

Significant decrease in density (p<0.005). 

Son and Oh (1999)  RCT (post-hoc 

analysis) 

28-67 years 

152 patients with BD, 

Healthy women (n) = 

20 

Tamoxifen (n) = 102 

Control (n) = 70 

Tamoxifen 

20mg/day for 2 

years 

Visual Assessment On follow up mammograms, 61 (59.8%) of 102 patients in the tamoxifen 

group showed a decrease in breast parenchymal area, 59 (57.8%) had 

more clearly visualised Cooper's ligament, and 59 (57.8%) had clearly 

visualised ducts. A decrease in parenchyma was seen in 18 (36%) of 50 

patients in the non-tamoxifen group and two (10%) of the 20 healthy 

women. This was a significant decrease in density (p<0.005). 
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Table 1-1 continued 

Author, Year Study Design Study Population (age 

and n) 

Type of 

Intervention 

Outcome Measures Results 

Cirpan, Akercan et al. 

(2006)  

RCT (retro-

analysis) 

Postmenopausal 

n = 55 

Raloxifene 

60mg/day for 

16 months 

PMD (BI-RADs) Null. 

Eng-Wong, Orzano-

Birgani et al. (2008)  

Phase II open-

label 

Premenopausal – 35-

47 years 

Phase II trial of 

raloxifene (n) = 27 

Raloxifene 

60mg/day for 2 

years 

PMD; MRIV 

(thresholding 

technique) 

No significant change, mean change at 1 year was 1% (95% CI -3 to 5), 2 

years 1% (95% CI -2 to 5). 

MRIV decreased on raloxifene – median relative change after 1 year was 

-17% (95% CI -28 to -9; p=0.0017), after 2 years -16% (95% CI -31 to -4; 

p=0.0004). 

Freedman, Martin et 

al. (2001)  

RCT 45- 60 years 

n = 168  

Placebo (n) = 45 

60mg/day raloxifene 

(n) = 45 

150mg/day raloxifene 

(n) = 42 

oestrogen (n) = 36  

Raloxifene 

60mg/day or 

150mg/day for 

2 years 

oestrogen 

0.625mg/day 

PMD (computer-

assisted techniques) 

Results at 2 years: placebo and both raloxifene groups had PMD 

decreases. 

Placebo mean change = -1.3% (95% -2.2% to -0.4%;p=0.003) 

Raloxifene 60mg/day mean change = -1.5% (95% CI -2.7% to -0.3%; 

p=0.002). 

Raloxifene 150mg/day mean change = -1.7% (95% CI -2.8% to -0.6%; 

p<0.001). 

Oestrogen mean change = 1.2% (95% CI -0.6% to 3.0%; p=0.611) 
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Table 1-1 continued 

Author, Year Study Design Study Population (age 

and n) 

Type of 

Intervention 

Outcome Measures Results 

Harvey, Holm et al. 

(2009) 

retrospective 

subset of women 

enrolled in an RCT 

≤62 years 

Raloxifene (n) = 119 

Placebo (n) = 125 

Bazedoxifen 20mg 0r 

40mg (n) = 92, 106 

Raloxifene 

60mg/day for 2 

years 

PMD (cumulus) Results after 2 years, mean per cent change in PMD was Raloxifene -

0.5% (95% CI -1.1 to 0.1); Placebo -0.2% (95% CI -0.7 to 0.4). ANOVA 

showed no significant differences between the groups. 

Harvey, Pinkerton et 

al. (2013)  

Ancillary study of 

phase III RCT 

55.2 to 56.3 years 

n = 507 

postmenopausal non-

hysterectomised 

women 

Raloxifene 

60mg/day for 2 

years 

PMD (Cumulus) Mean PMD change in the raloxifene group was -0.23%; (95% CI -0.54% 

to 0.08%); placebo mean change was -0.42 (95% CI -0.72 to -0.11). 

There were no significant differences between the group. 

Jackson, San Martin et 

al. (2003)  

RCT ≥60 years – 

Raloxifene 66.9 ± 5.3; 

CCHT 66.4 ± 4.5 

Raloxifene (n) = 84 

CCHT 9n) = 109 

 

Raloxifene 

60mg/day for 1 

year 

Mean BD (BI-RADs) 

Non-BI-RAD visual 

radiology 

assessment 

(increased, 

unchanged, 

decreased, 

unevaluable) 

From baseline to 12 months, 0.9% of the women in the raloxifene group 

had an increase in breast density, and 99.1% showed no change. In the 

CCHT group, 70.2% had an increase, and 29.8% showed no changes. 

There was a statistically significant difference between the treatment 

groups p<0.001.  
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Table 1-1 continued 

Author, Year Study Design Study Population (age 

and n) 

Type of 

Intervention 

Outcome Measures Results 

Lasco, Gaudio et al. 

(2006)  

CCS Postmenopausal 

Women with mean 

BMI 24.7, 52.4 ± 4.1 

years 

n = 70 

Raloxifene 

60mg/day 

orally for 2 

years 

Image Pro-Plus as 

hoc software 

Image Mean Index 

(IMI) 

Null – after 24 months of therapy, in the raloxifene group, there was a 

significant variation in mammary density compared with baseline. No 

significant variations were observed. The IMI value decreased 

significantly only in the raloxifene-treated women (-1.9%) p<0.05. 

IMI decreased but not significantly in the control group. 

Nielsen, Raundahl et 

al. (2009)  

RCT (retro 

analysis) 

55-80 years 

n = 135 

Raloxifene 

60mg/day for 2 

years or 

transdermal 

(E2) 

PMD (BI-RADs, 

computer analysis) 

Null – BI-RAD score did not increase significantly in either treatment 

group, and the treatment effects were not significantly different 

between the two treatment groups. The area percentage increased in 

both groups and significantly in the E2 group, which was significantly 

more than in the raloxifene group.  

Silverio, Nahas-Neto 

et al. (2007)  

RCT 61.1 years mean 

n = 80 

Raloxifene 

60mg/day for 2 

years 

PMD (BI-RADs and 

computer-assisted) 

Null – after 6 months, no alteration was observed in the MBD in 38 

women of the raloxifene group and 38 of the control group by a 

qualitative method. By a quantitative method, no alteration was 

observed in 30 women of the raloxifene group and 27 controls (p>0.05) 

Christodoulakos, 

Lambrinoudaki et al. 

(2002)  

Cohort 

Prospective Study 

41-67 years 

n = 131 

Tibolone 

2.5mg/day and 

raloxifene 

60mg/day for 1 

year 

PMD (Wolfe’s 

Method) 

Null – 10.7% of women in the tibolone group showed an increase in 

breast density and 6.3% showed an increase in the raloxifene group. No 

women in the control group showed an increase in breast density. 

Between-group differences did not reach statistical significance.  
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Table 1-1 continued 

Study Design Study Population 

(age and n) 

Type of Intervention Outcome 

Measures 

Results  

Eilertsen, 

Karssemeijer et al. 

(2008)  

RCT 45-65 years 

n = 177 

Raloxifene 

60mg/day or 

tibolone 

2.5mg/day 12 

weeks 

VBD (automated 

physics-based 

method) 

Median reduction -4.1% (95%CI -6.9 to 2.1%) in raloxifene group 

Median reduction of 0.7% (95% CI -9.2 to 7.3%) in the tibolone group, 

both changes were statistically insignificant.  

%FV - per cent fibroglandular volume  
BC – breast cancer 
BD – breast density 
CCHT – continuous-combined hormone therapy 
CCS – case-control study 
CS – cohort study 
MRI – magnetic resonance imaging 
MRIV – magnetic resonance imaging volume 
PMD – per cent mammographic density 
RCT – randomised controlled trial 
SCC – six class categories 
SD – standard deviation 
VBD – volumetric breast density 
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Although tamoxifen has been shown to be efficacious at reducing MBD, as tamoxifen causes 

both a shift in breast and systemic oestrogen stimulation, it has been associated with 

significant adverse events (AEs), such as increased risk of ischemic stroke, 

uterine/endometrial cancers, vaginal discharge and hot flushes (Oncology 2009), which may 

outweigh the benefit on the therapy and reduce compliance with research stating that only 

4% of women at increased risk of breast cancer have accepted the use of tamoxifen as a 

chemopreventative therapy (Ropka, Keim et al. 2010). 

 

1.2.4.3 Aromatase Inhibitors 
Another class of pharmaceutical intervention that has been found to reduce MBD are 

aromatase inhibitors. Aromatase is an enzyme of the cytochrome P-450 superfamily and the 

product of the CYP19 gene and is expressed in several tissues including subcutaneous fat, 

liver, muscle, brain, and normal breast tissue (Nelson and Bulun 2001). The aromatase 

enzyme is responsible for the conversion of the adrenal androgen substrate androstenedione 

to oestrogen in peripheral tissues (Evans, Ledesma et al. 1986), with peripheral tissue being 

the predominant source of oestrogen in postmenopausal women (Altundag and Ibrahim 

2006). As the E/A ratio needs to be shifted to an androgen environment to benefit MBD; Ais 

reduce oestrogenic drive by blocking the conversion of androstenedione to E1 and 

testosterone to E2 decreasing both serum and breast tissue oestrogen levels (Dowsett, Jones 

et al. 1995, Miller and Dixon 2001, Geisler, Haynes et al. 2002, Ingle, Buzdar et al. 2010). 

Aromatase inhibitors are contraindicated in the treatment of breast cancer of premenopausal 

women; the rationale for this assertion is that in premenopausal women, oestrogen is 

predominately produced in the ovaries unlike postmenopausal women, where it is 

predominately produced in peripheral tissues by aromatisation of androgens. If Ais are used 

as a sole treatment in premenopausal patients, it leads to interference with the negative 

feedback mechanism between the ovaries and the pituitary gland, which can result in 

hypothalamic-pituitary inhibition, stimulating the release of Gonadotropin-releasing hormone 

(GnRH), leading to ovarian hyperstimulation (Mitwally and Casper 2001, Casper 2007). This 

ovarian hyper-stimulation being the reason that Ais are used for infertility treatment to 

induce ovarian hyper-stimulation for follicular genesis.  

 

A total of nine studies have studied the effect of Ais on MBD. Only one, an open label, 

reported a statistically significant reduction in MBD. The other two studies with reductions in 
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MBD had no significant changes from the placebo or control treatments or control 

participants. A summary of the Ai findings is reported in Table 1-2.
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Table 1-2: Summary table of studies utilising Ais to influence MBD 

Author, 

Year 

Study 

Design 

Study Population (age 

and n) 

Type of 

Intervention 

Outcome 

Measures 

Results 

Cigler, 

Richardson 

et al. 

(2011)  

RCT 

(placebo-

controlled) 

Healthy postmenopausal 

women with measurable 

MBD 

50 years or greater 

Exemestane (n) = 49 

Placebo (n) = 49 

 

Exemestane 

25mg/day for 

12 months 

PMD (computer 

assisted 

method) 

6 month follow up: Mean absolute change in PMD from baseline. 

Exemestane = -1.33 (95% CI -5.55 to 2.89; p=0.53); Placebo = 0.22 (95% CI -4.59 to 

5.02; p=0.93). 

12 Month follow up: Mean absolute change in PMD from baseline  

Exemestane = 0.56 (95% CI -3.98 to 5.11; p= 0.80); Placebo = 0.58 (95% CI -4.69 to 

5.86; p = 0.82). 

24 Month follow up: mean absolute change in PMD from baseline 

Exemestane = -0.17 (95% CI -4.34 to 4.00; p=0.93); Placebo = -2.93 (95% CI -8.70 to 

2.85; p = 0.30) the change at 12 months and 24 months did not differ significantly 

between the two groups. 

Cigler, Tu 

et al. 

(2010) 

RCT 

(placebo-

controlled) 

Postmenopausal women 

with or without a history 

of early-stage breast 

cancer 

Baseline mammogram 

demonstrating density 

occupying greater than 

25% of the breast  

Letrozole (n) = 44 

Placebo (n) = 23 

Letrozole 

2.5mg/day for 

12 months 

PMD 

(computer-

assisted 

method) 

The mean (absolute) change in PD from baseline at 12 months was -1.74% (95% CI -

3.85% to 0.37%; p= 0.10) for the letrozole group; placebo was -0.24% (95% CI -4.47% 

to 4.26%). There was no statistically significant change between the two groups. 

The mean (absolute) change in PMD from baseline and 24 months was -0.01% (95% CI 

-3.89% to 3.87%; p = 0.99) for women on letrozole and -1.32% (95% CI -8.86% to 

6.22%; p = 0.71) for women on placebo. 

There was no statistically significant difference between the two groups (p=0.69) and 

after adjustment for age and BMI (p=0.61). 
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Table 1-2 continued 

Author, 

Year 

Study Design Study Population (age and n) Type of 

Intervention 

Outcome 

Measures 

Results 

Henry, 

Chan et al. 

(2013) 

RCT Postmenopausal women 

with stage 0-III hormone 

receptor positive breast 

cancer 

Letrozole (n) = 139 

Exemestane (n) = 120 

Exemestane 

25mg/day for 

2 years or 

letrozole 

2.5mg/day for 

2 years 

PMD (BIRADs, 

MDEST) 

There was a statistically significant absolute mean decrease in PMD of -1.9% (SD 4.9%), 

which corresponded to an average percentage decrease of -5.6% (SD 34.7%). 

The baseline PMD of those subjects whose PMD decreased with Ai therapy was 19.4% 

(SD 10.9%), whereas the baseline PMD of those subjects whose MPD was stable or 

increased was 12.6% (SD 8.8%). For those subjects with baseline MPD ≥20%, the 

average absolute decrease in MPD with 2 years of Ai therapy was -4.7% (SD 5.5%), 

whereas for those subjects with baseline PMD <20%, the average absolute decrease in 

PMD was -0.6% (SD 4.0%). This difference was statistically significant (P=0.00001)  

The absolute change did not differ between the treatment groups. 

Prowell, 

Blackford 

et al. 

(2011) 

RCT Postmenopausal 

women >60 years with 

histologically confirmed 

hormone receptor-

positive DCIS or stage I-III 

invasive breast cancer  

Anastrozole 

1mg/day for 1 

year 

PMD (cumulus) 

of contralateral 

breast  

At 12 months compared to baseline, there was a non-statistically significant reduction 

in PMD -16% (95% CI -30% to 2%, p=0.08). 

Smith, 

Dilawari et 

al. (2012) 

Pilot trial – 

Open-Label 

trial 

Postmenopausal women 

50 years or greater  

Participants also needed 

to meet one or more 

criteria for increased risk 

of BC Letrozole (n) = 16 

Letrozole 

2.5mg/day for 

12 months 

PMD (Madena 

Software) – 

total dense area 

as well as 

percentage 

density 

At 6 months, 8 women had already shown a decrease in PMD, whereas, at 12 months, 

eleven had a decrease in PMD relative to that at baseline. 3 women exhibited an 

overall absolute increase in PMD during the conduct of the study, including two who 

had decreased at 6 months. The overall difference between baseline and 12-month 

densities was statistically significant (two-tailed p=0.0358) on a two-sided t-test 

comparison.  
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Table 1-2 continued 

Author, 

Year 

Study Design Study Population (age and n) Type of 

Intervention 

Outcome 

Measures 

Results 

Fabian, 

Kimler et 

al. (2007) 

Open-Label 

Study 

Postmenopausal women 

with increased risk of 

breast cancer 

42 subjects 

median age 50 (range 39-

68) 

Letrozole 

2.5mg/day for 

6 months 

PMD (Cumulus) 

– per cent dense 

area compared 

to the entire 

breast area 

There were no significant changes in PMD. 

Mousa, 

Crystal et 

al. (2008) 

Retrospective 

cohort study 

Postmenopausal women 

(n) = 28 

Low-dose HT 

plus letrozole 

2.5mg 3/per 

week  

Controls just 

using HT alone 

PMD (BI-RADs 

and 

ImageQuant) 

ImageQuant showed a statistically significant reduction in PMD in women taking Ai 

plus HT. 

There were no significant changes in the control group. 

The BI-RAD system was less sensitive to change. 

Vachon, 

Ingle et al. 

(2007) 

Pilot RCT 

study 

NCIC CTG MA-17 Study 

population 

n= 104 

Letrozole (n) = 56 (54%) 

Placebo (n) = 48 (46%) 

Letrozole 

2.5mg/day for 

1 year 

PMD (cumulus) The change in PMD at 1-year post-randomisation was not found to differ between the 

letrozole group (unadjusted mean -0.8%) and placebo group (unadjusted mean -0.6%) 

(p=0.76). No difference between the treatment groups was found in terms of change 

in PMD after adjusting for age, BMI, nodal status, number of tumours, and time on 

tamoxifen. Longitudinal changes in PMD across time were similar in the letrozole 

groups, unadjusted mean -0.69 (95% CI -1.33 to -0.06) and adjusted group -0.68 (-1.34 

to -0.02), p=0.24 and the placebo groups, unadjusted mean -0.18 (-0.84 to 0.49) and 

adjusted group -0.12 (-0.84 to 0.59), p=0.23. 
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Table 1-2 continued 

Author, 

Year 

Study Design Study Population (age and n) Type of 

Intervention 

Outcome 

Measures 

Results 

Vachon, 

Suman et 

al. (2013) 

CCS  Postmenopausal women 

with early-stage breast 

cancer 

n = 387 (369 had matched 

controls) 

Anastrozole 

1mg/day or 

Exemestane 

25mg/day for 

1 year 

PMD (Cumulus) The median difference for all 369 pairs was 0.1% (with 10th percentile of 5.9% and 90th 

percentile of 5.2%). Thus, there was no evidence to conclude that the change in PMD 

over 1 year differs between a case and her matched control whether considering all 

matched pairs (n=369; p = 0.51). 

Of the 387 postmenopausal breast cancer women receiving an average of 10 months 

of adjuvant Ai therapy, 15% experienced at least a 5% decrease in their MBD. This 

increase to 20% for the 280 cases who had a baseline PMD of at least 10%. 

Multivariate analyses showed the likelihood of experiencing a reduction of at least 5% 

in PMD with Ai therapy was increased for cases with a baseline density of 15% or more 

(OR 10.4; 95% CI 4.0 to 26.9; p<0.0001) who had 12 months or more of Ai treatment 

(OR 3.18; 95% CI 1.68 to 6.03; p = 0.0004). The median difference of all 369 pairs was -

0.1% (with 10th percentile of -5.9% and 90th percentile of 5.2%). No evidence that the 

change in PMD over 1 year differs between a case and her matched controls (n=369; 

p=0.51). 

ADH – atypical ductal hyperplasia 
Ai – aromatase inhibitor  
ALH – atypical lobular hyperplasia 
BC – breast cancer 
CCS – case control study 
CI – confidence interval 
DCIS – ductal carcinoma in situ 
HT – hormone therapy 
LCIS – lobular carcinoma in situ 
MDEST – mammographic density estimator 
MPD – mammographic per cent density 
PD – per cent density 
RCT – randomised controlled trial  
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1.2.4.4 Non-steroidal Anti-inflammatory Drugs 
Another class of pharmaceutical intervention that has been examined for its influence on 

MBD are non-steroidal anti-inflammatory drugs (NSAIDs), with five studies having been 

completed analysing their influence on MBD. This class of drug works by inhibiting 

cyclooxygenase, which is an enzyme responsible for catalysing the synthesis of 

prostaglandins. Prostaglandins have been shown to increase aromatase gene expression and 

thereby also increase oestrogen production (Zhao, Agarwal et al. 1996) as well as stimulate 

progesterone synthesis (Elvin, Yan et al. 2000); with both oestrogen and progesterone driving 

cell proliferation. This increase in cell proliferation can lead to an increase in MBD. As NSAIDs 

inhibit cyclooxygenase, this results in a negative feedback loop, which is hypothesised to 

decrease oestrogen and progesterone synthesis; with this having the potential to result in 

favourable changes to a woman’s MBD. The summary of each of the five studies is reported in 

Table 1-3.
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Table 1-3: Summary of studies utilising NSAIDs to influence MBD 

Author, Year Study Design Study Population (age and 

n) 

Type of 

Intervention 

Outcome 

Measures 

Results 

Wood, 

Sprague et al. 

(2017) 

Retrospective 

cohort study 

26,000 women included in 

the study 

mean age 57.3 (range 40-

89) 

19.6% were under the age 

of 50 

13.9% were over the age of 

70 

 

Current Aspirin Use 

No Aspirin Use 

Use <300 mg/day 

Use >300mg/day  

Between 2012 -

2013 

BI-RADs A greater proportion of aspirin users had BI-RADs 1 and 2 densities than non-

users (72.8 vs 54.3%; p<0.001). 

After adjusting for age, BMI, and ethnicity, there was an independent, inverse 

association between aspirin use and MBD (P trend <0.001). 

Compared with women with scattered fibroglandular tissue, women with either 

heterogeneously (OR 0.84; 95% CI 0.78 – 0.92) or extremely dense (OR 0.73; 

95% CI 0.57 – 0.93) breast were less likely to be aspirin users, while women 

with entirely fat breasts were more likely to use aspirin (OR 1.15; 95% CI 1.04 – 

1.27). 

Women with dense breasts were less likely to be aspirin users than those with 

non-dense breasts (OR 0.82; 95% CI 0.76 – 0.89), this effect was also seen when 

density was analysed as a dichotomised variable (dense = BI-RAD 3 to 4 and 

non-dense BI-RAD 1 to 2). 

A lower likelihood of having dense breasts (BI-RADs 3+4) with increasing aspirin 

dose (OR 0.62; 95% CI 0.50 – 0.76) for >300mg compared to non-users; P trend 

0.007. 
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Table 1-3 continued 

Author, Year Study Design Study Population (age and n) Type of Intervention Outcome 

Measures 

Results 

Stone, 

Willenberg et 

al. (2012) 

Retrospective 

cohort study 

Participants were part of 

two national studies in 

Australia 

Female twin pairs aged 40-

70 years 

Sister pairs aged 40-70 years 

affected by endometriosis 

3286 Participants 

Average age 54.5 (SD 8.4) 

69.2% postmenopausal 

Observed NSAID 

use for a time 

period of 0-5 years 

PMD 

(cumulus) 

After adjusting for covariates, there was no evidence of associations between 

square root PMD and any NSAIDs use, frequency, and duration (all P 

trend >0.2). 

After adjusting for all the necessary covariate, there was no evidence of an 

association between square root PMD and all the respective NSAIDs (all P 

trend >0.06). 

There was no difference in the interpretation of the separate estimates for pre- 

or postmenopausal. 

McTiernan, 

Wang et al. 

(2009) 

RCT (placebo-

controlled) 

Postmenopausal aged 50 to 

75 years 

Not using menopausal 

hormone therapy, oral 

contraceptives or SERMs for 

the previous 6 months 

Aspirin group (n) = 75 

Placebo Group (n) = 68 

Aspirin 325mg/day 

Placebo identical 

appearing placebo 

capsule for 6 

months 

PMD 

(cumulus) 

PMD decreased in women randomized to aspirin by an absolute -0.8% versus 

an absolute decrease of -1.2% in controls (P=0.84). 

There was no statistically significant difference between the two trial arms. 

No observed effect of aspirin on PMD. 

Aspirin also did not affect density differently than placebo when we looked at 

subgroups of women characterized by age, BMI, or baseline PMD. 
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Table 1-3 continued 

Author, Year Study Design Study Population (age and n) Type of Intervention Outcome 

Measures 

Results 

Maskarinec, 

Urano et al. 

(2008) 

Cross-sectional 

data analysis 

with data from 

two cohort 

trials 

Multi-ethnic cohort 

Postmenopausal and 

premenopausal women 

218 from the BEAN study 

and 1247 from the NCC 

study 

Mean age from BEAN study 

was 43.0 ± 2.8 years and 

58.7 ± 8.6 years for the NCC 

subject 

Mean per cent density was 

46.9% in the BEAN study, 

whereas it was 32.5% in the 

NCC study 

NSAID use PMD 

(computer-

assisted) 

In the combined study population, no statistically significant association was 

observed between any medication use and mean PMD 

Current analysis did not show a statistically significant association between 

NSAID use and PMD in this multi-ethnic study population 

Women with long-term NSAID use had non-significantly higher PMD than non-

users although short-term users had slightly lower PMD than non-users 

Results differed by menopausal status; the trend of higher PMD with a longer 

duration of NSAIDs use was significant among postmenopausal women, PMD 

was slightly lower among premenopausal women with long term NSAID use. 
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Table 1-3 continued 

Author, Year Study Design Study Population (age and n) Type of Intervention Outcome 

Measures 

Results 

Terry, Buist et 

al. (2008) 

Retrospective 

cohort  

Women who had two 

routine screening 

mammograms within 9 to 

28 months of each other 

between 1996 and 2006 

Women were excluded if 

they reported ever using 

raloxifene or tamoxifen, 

women with a history of 

breast cancer or women 

who had breast 

augmentation or reduction 

n = 29,284 

NSAIDs 

Continuers – 

women who had 

pharmacy 

dispensing for the 

entire period 

between the two 

mammograms 

Discontinuers were 

women who were 

dispensed a given 

class of NSAID at 

the first 

mammogram but 

had no dispensing 

within 6 months 

before the second 

mammogram 

Non-users did not 

have any pharmacy  

Bi-RADS Non-users of NSAIDs were more likely to be younger, have lower BMI, be never 

users of HRT and have dense breast tissue (BI-RADs category 3 or 4) 

Initiators and continuers of any NSAIDs were more likely to stay not dense than 

stay dense (multivariable OR 1.12; 95% CI 1.04 to 1.20; multivariable OR 1.25; 

95% CI 1.05 to1.49, respectively) 

Point estimates were the same for initiators of non-prescription and 

prescription NSAIDs for staying not dense compared with staying dense 

(multivariable OR 1.11; 95% CI 1.03 – 1.20; multivariable OR 1.11; 95% CI 0.97 

to 1.26, respectively) 

Discontinuers of non-prescription NSAIDs were more likely to decrease density 

compared with non-users (OR 1.40; 95% CI 1.10 to 1.79) compared with staying 

dense. 

There was no association with density change from discontinuation of 

prescription NSAIDs nor was there an association between continuation of 

NSAIDs (either prescription or non-prescription) and density change (increase 

or decrease) 

Continuers of non-prescription NSAIDs were more likely to stay not dense 

compared with those who stayed dense (OR 1.40; 95% CI 1.13 to 1.72) 
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Table 1-3 continued 

   fills for a given class 

of NSAID within the 

6 months before 

the second 

mammogram 

 Mixed users of non-prescription NSAIDs were more likely to increase density, 

whereas mixed users of prescription NSAIDs were less likely to increase density 

(OR 1.64; 95% CI 1.08 to 2.48; OR 0.58; 95% CI 0.35 to 0.96, respectively) 

Findings show that initiators and continuers of any NSAID were more likely to 

stay not dense compared with staying dense was limited to women aged <65 

years (OR 1.24; 95% CI 1.12-1.36, OR 1.48; 95% CI 1.14 -1.93 for women ages 

<65 years compared with OR 1.02; 95% CI 0.92 -1.14; OR 1.18; 95% CI 0.93-1.48 

for women aged 65 or greater. 

Overall, there was no reduction in MBD from initiation of NSAIDs by class or 

type of NSAID. There was also no observation that on the increase in MBD from 

discontinuation of use 

CI – confidence interval 
HRT – hormone replacement therapy 
MBD – mammographic breast density 
NSAIDs – non-steroidal anti-inflammatory drugs 
OR – odds ratio 
PMD – per cent mammographic density 
RCT – randomised controlled trial 
SERM – selective oestrogen receptor modulator 
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The results from the five studies have inconsistent findings. Three of the studies (Maskarinec, 

Urano et al. 2008, McTiernan, Wang et al. 2009, Stone, Willenberg et al. 2012) show no 

association between NSAIDs and MBD, and two studies demonstrate an inverse association 

with NSAIDs and MBD, which may reflect that age and demographics of users of NSAIDs, for 

example non users are younger and have a lower BMI. To date, none of the studies show 

significant evidence that NSAIDs can be used as an intervention for reducing MBD. 

 

1.2.4.5 Metformin and Mammographic Breast Density 

Metformin is commonly prescribed as an oral antidiabetic to patients with type two diabetes, 

and its action is to target the enzyme 5’ adenosine monophosphate-activated protein kinase 

(AMPK). This enzyme induces muscles to take up glucose from the blood and increased the 

body’s insulin sensitivity and improves glycaemic control (Evans, Donnelly et al. 2005, Col, 

Ochs et al. 2012).  

 

Metformin has been found to reduce breast cancer risk (Col, Ochs et al. 2012) and It has been 

hypothesised that a possible pathway for this diabetic treatment and breast cancer risk 

reduction could be via an intermediary effect on MBD. Six studies have examined the 

association between diabetes and MBD (Roubidoux, Kaur et al. 2003, Sellers, Jensen et al. 

2007, Tehranifar, Reynolds et al. 2014, Sanderson, O’Hara et al. 2015, Buschard, Thomassen 

et al. 2017).  

 

In four of the studies, the diabetic women were found to have lower PMD compared with the 

non-diabetic women (Sellers, Jensen et al. 2007, Tehranifar, Reynolds et al. 2014, Sanderson, 

O’Hara et al. 2015, Buschard, Thomassen et al. 2017). One of the studies found a statistically 

significant inverse association between diabetes and MBD in the premenopausal participants 

but not in the postmenopausal women (Roubidoux, Kaur et al. 2003), however this study also 

found that increasing weight also lowered the odds of high MBD. Buschard, Thomassen et al. 

(2017) discovered an inverse association between MBD and diabetes for women who 

controlled their condition with diet or antidiabetic agents, while women taking insulin showed 

a positive association with having mixed/dense breasts; however, this finding was not 

statistically significant. Oskar, Engmann et al. (2018) also found that in women with type 2 

diabetes who used metformin, there was an associated average 5.7% (95% CI -10.27 to -1.19) 
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lower PMD as compared with the group without type 2 diabetes, this association was 

significantly attenuated after adjusting for BMI. 

 

From these six studies, it can be seen that there is a trend for women with diabetes to have a 

lower MBD when compared to women without diabetes. However, this result may have been 

confounded by the BMI of individuals with diabetes, as seen in the Oskar, Engmann et al. 

(2018) and Roubidoux, Kaur et al. (2003) studies.  In addition, one of the studies observed this 

trend for lower MBD in both the women on metformin and the women controlling their 

diabetes through diet. This finding shows that no definitive statements can be made. Still, 

there is potential for another cause or pathway for the decreased MBD seen in diabetic 

women, therefore more research is required to have a greater understanding of the pathways 

or processes contributing to this finding and whether it is just the effect of a larger BMI on 

lower MBD. 

 

1.3 Investigational Product 

1.3.1 Introduction 

As the tissue environment associated with MBD increases breast cancer risk, it can be 

deemed carcinogenic. For this reason, there needs to be interventions that can be provided 

to premenopausal women to reduce the lifelong exposure of the breast tissue to this 

carcinogenic environment (Boyd, Berman et al. 2018). The only widely accepted approach in 

premenopausal women is the previously described intervention of tamoxifen. As tamoxifen is 

a partial agonist of oestrogen, it causes significant alterations in both breast and systemic 

oestrogenic stimulation, the latter resulting in significant treatment-related AEs. These 

treatment-related AEs result in many women not complying with the tamoxifen treatment 

protocol; with compliance as low as 4% in women who are at increased risk of breast cancer 

accepting the use of tamoxifen for chemoprevention (Ropka, Keim et al. 2010).  

 

As reported in Section 1.2.4.3 tamoxifen is the only approach for premenopausal women due 

to the undue effects on Ai on premenopausal women concerning ovarian stimulation. 

However, raising the plasma testosterone will inhibit the rise in GnRH induced from a 

reduction in oestrogen, thus preventing this compensation. As studies suggest that 

testosterone can exert a negative feedback and an inhibitory effect on GnRH secretion 
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(Matsumoto and Bremner 1984, Pitteloud, Dwyer et al. 2008). In the literature it has been 

suggested that there are two separate, more effective approaches than tamoxifen, to achieve 

the breast tissue E/A ratio alteration required to reduce high MBD and thus reduce breast 

cancer risk. Firstly, a combination of testosterone with anastrozole, a third-generation Ai, 

patented as HAVAHT+Ai™ and secondly, anastrozole with enobosarm, a selective androgen 

receptor modulator (SARM). 

 

1.3.2 HAVAHT+Ai™  

HAVAHT+Ai™ is the brand name for the combination of testosterone and anastrozole by 

HAVAH therapeutics Pty Ltd, a South Australian based pharmaceutical company. Within the 

breast, many enzymes convert reproductive pro-hormones, including aromatase and 5α 

reductase (Suzuki, Miki et al. 2006, Vachon, Sasano et al. 2011). These enzymes convert 

testosterone to either 17 β-oestradiol or 5α-dihydrotestosterone (DHT), the latter being ten 

times more potent than testosterone as an androgenic agent. High MBD tissue has been 

shown to contain very high levels of aromatase (Vachon, Sasano et al. 2011) resulting in 

enhanced intracrine production of oestrogen, even in the premenopausal breast (Dabrosin 

2005). 

 

HAVAHT+Ai™ utilizes the overexpression of the enzymatic systems which are especially 

present in high MBD tissue. By using a pharmacological dose of testosterone combined with a 

low dose Ai, the Ai blocks the conversion of testosterone to oestrogen, thereby increasing 

available testosterone in the breast tissue. This increased testosterone is hypothesised to 

shift the E/A ratio towards an androgenic tissue environment, which, as mentioned in section 

1.2.4.1, may be favourable for reducing MBD. In addition, higher serum testosterone results 

in more of this androgen being delivered to the breast; ultimately, the consequence of these 

two actions is a high level of intramammary testosterone being made available for conversion 

to DHT and a reduction in intra-mammary E2. 

 

1.3.2.1 Clinical Rationale 

Glaser and Dimitrakakis (2013) reported using a combination of subcutaneous testosterone 

and anastrozole implant as hormonal replacement therapy in 1,268 women. They 

subsequently undertook a prospective evaluation of breast cancer incidence in this cohort. 
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After 5,642 person-years of follow-up, the incidence of breast cancer in the cohort was 142 

cases per 100,000 person-years; substantially less than the National Cancer Institute age-

specific surveillance, epidemiology, and end results program (SEER) incidence rates 

(293/100,000), the placebo arm of Women’s Health Initiative Study (300/100,000) and the 

never-users of hormone therapy from the Million Women Study (325/100,000)   (Chlebowski, 

Kuller et al. 2009, Jemal, Siegel et al. 2009, Beral, Reeves et al. 2011, Glaser and Dimitrakakis 

2013). This level of reduction in breast cancer risk is comparable to that seen in women who 

achieved a greater than 10% reduction in the MBD in the tamoxifen IBIS-I prevention trial, 

which is one of the seminal tamoxifen trials in the literature (Cuzick, Warwick et al. 2011). 

 

It has also been noted that a very small amount of anastrozole could prevent gynaecomastia 

in men abusing large amounts of anabolic steroids for bodybuilding (Coopman and 

Cordonnier 2012). Therefore, it was hypothesised that using a relatively small amount of 

testosterone, would not result in an elevation in serum E2, due to the presence of a third-

generation Ai.  

 

1.3.2.2 Summary of Rationale for HAVAHT+Ai™ 

The rationale for therapeutic intervention with combination testosterone and Ai 

(HAVAHT+Ai™) in premenopausal women with high MBD as a marker for high risk of breast 

cancer is based on both non-clinical and clinical observations. With the observed ability to 

shift the fulcrum of the E/A ratio to affect a tissue response in the premenopausal breast that 

is similar to that seen in the postmenopausal breast (i.e. a low E/A ratio), which should result 

in a protective effect against breast carcinogenesis.  

 

1.3.3 Anastrozole and Enobosarm 

The second approach that has been hypothesised to reduce oestrogenic drive is using a 

selective androgen receptor modulator (SARM) as an androgen, and again an Ai to block the 

conversion of androstenedione to E1 and testosterone to E2, decreasing both serum and 

breast tissue oestrogen levels (Dowsett, Jones et al. 1995, Miller and Dixon 2001, Geisler, 

Haynes et al. 2002, Ingle, Buzdar et al. 2010).  
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The SARM enobosarm is currently undergoing clinical trials for breast cancer treatment and 

urinary incontinence. Enobosarm appears to be tissue-selective, as it maintains the anabolic 

actions of androgens without causing the androgenic virilising side effects, such as excess hair 

growth, and male type baldness, which are both commonly seen with testosterone usage 

(Gao and Dalton 2007). In addition, it is hypothesised that high levels of SARMs can regulate 

the function of the hypothalamic-pituitary axis, which includes the GnRH from the 

hypothalamus (Gao and Dalton 2007). This regulation will inhibit the hypothalamic-pituitary 

overstimulation; therefore, allowing the Ai to function fully within the breast tissue, without 

having a meaningful impact on other peripheral tissues which are dependent on oestrogens 

action.  

 

1.4 Mammographic Breast Density as a Baseline Risk Marker and Surrogate 
Endpoint for Breast Cancer 

As there is a strong association between MBD and the risk of breast cancer, it allows MBD to 

be used as a biomarker to evaluate the efficacy of interventions that are aimed at reducing 

breast cancer risk. In the design process of clinical trials, one of the most important 

considerations needs to be the choice of outcome measure or measures. These outcome 

measures can be clinically meaningful endpoints that are direct measures of how a patient 

feels, functions and survival rates. Alternatively, indirect measures can be used, an example of 

these are biomarkers, which can include physical signs of disease, laboratory measures and 

radiological tests, which may be considered as replacement (or surrogate) endpoints for 

clinically meaningful endpoints (Fleming and Powers 2012). The changes induced by a therapy 

on a biomarker or surrogate endpoint are expected to correlate and reflect the changes in 

clinically meaningful endpoints (Temple 1995). These endpoints or biomarkers should have 

the properties of being well defined, reliable, easily measurable and interpretable, and be 

sensitive to the effects of an intervention. The sensitivity is usually a leading factor in the 

selection of an outcome measure; thus, enabling a reduction in the size and duration of 

clinical trials, to aid the achievement of significant results (if significant results are to be seen) 

(Fleming and Powers 2012). 

 

Mammographic breast density is one of the most commonly accepted biomarkers for breast 

cancer risk in the literature (Heine and Malhotra 2002, McCormack and dos Santos Silva 2006, 
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Boyd, Guo et al. 2007, Vachon, Van Gils et al. 2007). McCormack and dos Santos Silva (2006) 

found that in symptomatic women, there was little evidence of interactions between other 

risk factors for cancer and MBD. The data they combined suggests that MBD in both women 

of premenopausal and postmenopausal ages is a marker of subsequent breast cancer risk, the 

evidence of whether the strength of this association differs between the ages is not clear. In 

addition, the potential for MBD to guide breast cancer interventions, as opposed to tissue and 

circulating biomarkers (Sivasubramanian and Crew 2013), is particularly appealing since MBD 

significantly correlates with both breast cancer risk and outcomes. Specifically, MBD changes 

in response to some endocrine manipulations, it is non-invasive, and may easily be 

incorporated in the routine care already employed in screening and follow up tools for breast 

cancer; which minimises cost and effort for the patient (Shawky, Martin et al. 2016). 

 

The promise of the research utility of MBD and the lack of timely alternatives have 

encouraged researchers to consider MBD as a surrogate endpoint for risk of breast cancer 

events (Guerrieri-Gonzaga, Robertson et al. 2006). This potential of MBD as a surrogate 

endpoint has lead to MBD being used in clinical trials as a secondary endpoint (Decensi, 

Gandini et al. 2007) and as a primary endpoint (Birmingham 2000); this also including studies 

that are researching Ais in the preventative setting.  

 

1.4.1 Issues with Using Mammographic Breast Density and its Changes as a 

Breast Cancer Biomarker 

Even though there is a strong association between MBD and breast cancer, there are several 

limitations that may affect the clinical and research utility of this outcome measure. Below 

are some of the reasons why this is the case. 

 

1.4.1.1 Imaging Technique and Interpretation 

If MBD has been calculated using a subjective non-automated method (e.g. Wolfe’s system, 

BI-RAD score or breast density estimation using a quantitative area-based analysis), the 

results can have a high intra-and inter-reader variability (Ooms, Zonderland et al. 2007, 

Succurro, Arturi et al. 2010). These methods may also lack the precision to see a significant 

change in MBD, which can lead to type 2 errors (otherwise known as a false negative) and 

insignificant results in clinical trials. Furthermore, type 2 errors can lead to beneficial and 
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viable treatments being unavailable to patients, a loss of development costs and the potential 

loss of profits. The more recent, fully automated volumetric estimation methods (such as 

VolparaDensity™), which show the thickness of dense tissue at each pixel on the 

mammogram (Ng and Lau 2015), are able to show a more objective measurement and may 

reveal more sensitive and significant changes. However, these automated methods also have 

some limitations. A correlation has been established between the increasing image quality of 

mammograms, whether this being due to advancing imaging technologies or with different 

radiographers taking the image, having an effect on the generated results (Kerlikowske 2007, 

Vachon, Pankratz et al. 2007, Lokate, Stellato et al. 2013, Work, Reimers et al. 2014). This 

effect on the results can be problematic in longitudinal studies or when clinically monitoring 

MBD over a period of time, as changes seen in the image and reported on may not reflect the 

changes occurring in the breast tissue. 

 

1.4.1.2 Breast Pain with Mammography 

Breast pain is a prevalent condition amongst women (Masood, Ader et al. 1998) and several 

studies have reported that a women’s fear of pain during mammography is a significant 

barrier to attending mammography for the first time (Kee, Telford et al. 1992, Straughan and 

Seow 1995). In particular, the fear of the pain that will arise from the compression of the 

breast (Straughan and Seow 1995). In addition, two small studies found that pain during first-

round mammography is also a major barrier for re-attendance (Marshall 1994, Elwood, 

McNoe et al. 1998). In these two studies, pain was the highest reason for not re-attending 

breast screening. It could be assumed that this phenomenon may be replicated in research, 

and increase attrition rates in clinical trials, which results in incomplete data acquisition. 

 

1.4.1.3 Ionising Radiation 

A mammogram requires a woman to be exposed to ionising radiation in order to generate the 

image. Ionising radiation itself is a risk factor for breast cancer; a doubling of the risk of breast 

cancer has been observed among teenage girls who were exposed to radiation during the 

Second World War compared to women who weren’t exposed (McPherson, Steel et al. 2000). 

Ionising radiation also increases breast cancer risk later in life, and this is particularly 

problematic when exposure has occurred during rapid breast formation (McPherson, Steel et 

al. 2000). Due to powerful new imaging techniques, the per capita dose of ionising radiation 
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used for medical imaging procedures has increased six-fold between the 1980s and the 

present (Mettler Jr, Bhargavan et al. 2009). In a cohort of 100,000 women, mammographic 

screening that was conducted annually from ages 40 to 55 years and biennially until age 74 

years at a dose of 3.7 milligrays per examination would ultimately induce 86 breast cancers 

(Yaffe and Mainprize 2011). If MBD is to be utilized in premenopausal women as a biomarker 

of risk and therapeutic efficacy, frequent mammograms would be required. This increased 

frequency would also increase the ionising radiation exposure; this should ideally be avoided 

to reduce the risk of radiation-induced breast cancers. 

 

1.4.1.4 Outcome Measure Sensitivity 

The sensitivity to detect the efficacy of an intervention may be inadequate with all MBD 

measures. Cuzick, Warwick et al. (2004) reported that women taking tamoxifen, as a 

chemopreventative agent due to being classified as high breast cancer risk, had an absolute 

mean decrease in MBD of 7.9% (relative decrease of 18.9%) at 18 months and 13.7% (relative 

decrease of 32.7%) at 52 months. Chow, Venzon et al. (2000) also reported that women on 

tamoxifen therapy have an average yearly relative reduction in MBD of 4.3%. Both of these 

studies demonstrate that MBD is either slow to respond to treatment, and elicit measurable 

changes or the intervals typically used for mammography are longer in duration and may not 

show changes in a timely manner. For this reason, to adequately study MBD modifications, 

long, expensive trials are needed to determine the efficacy of chemopreventative agents or to 

determine if women are responders or non-responders to a therapeutic intervention. 

 

1.4.1.5 Conclusion 

These limitations with mammography and the measures of MBD demonstrate that it would 

be beneficial to validate a biomarker for MBD to determine the response within the breast 

tissue to therapeutic interventions. As there is a substantial number of women developing 

either benign or malignant breast disease, there needs to be a focus on research technologies 

and biomarkers that assist in determining the effectiveness in preventative and targeted 

interventions so they can be thoroughly evaluated and brought to market. This biomarker 

needs to be sensitive to detect change, which ideally would be in a timely manner, therefore, 

can benefit research and clinical uses. This timely outcome measure would allow the 

healthcare provider to modify the treatment based on whether the patients are responders 
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or non-responders; which can greatly influence the patient’s management and their health-

related outcomes. Reliable and valid biomarkers are also beneficial regarding health 

economics; the ability to detect the efficacy of a drug allows resources to be applied more 

efficiently and costs to be saved if an intervention is deemed ineffective (Manton, Chaturvedi 

et al. 2006). Traditionally, especially in oncology, but across other medical fields, a patient’s 

response to their treatments have been assessed via a variety of techniques including clinical 

palpation, x-ray mammography, ultrasound and magnetic resonance imaging (Pickles, Gibbs 

et al. 2006). Unfortunately, the assessment of treatment response via these approaches can 

be considered to be a late event, since functional changes occur within the tumour before 

changes in the size of the tumours or global tissue changes (Chenevert, Meyer et al. 2002, 

Hayes, Padhani et al. 2002, Padhani 2002). 

 

1.5 Breast Tissue Elasticity 

Within this research program, it was hypothesised that breast tissue elasticity may be an 

innovative biomarker for MBD and an appropriate method to measure the changes in the 

breast tissue in response to preventative or targeted therapeutic interventions. The following 

sections will introduce the biomechanical properties of breast tissue elasticity to justify the 

reasoning behind the overarching focus of this doctorate thesis.  

 

1.5.1 Tissue Elasticity Basics 

Elasticity is the measure of the stiffness of a material. When a material is deformed, if it 

returns to its original shape, it is deemed to be elastic. The opposite of this is plastic, which is 

when the material is deformed; it maintains the deformed shape. Soft tissues and their 

biomechanical properties are dependent on the inherent molecular building blocks (fat, 

collagen, and fluid-filled sacks) and the microscopic structural organisation of these building 

blocks (Fung 1981). The notion of tissue elasticity has been present in health care for an 

extended period of time and is used in a variety of different settings and professions; the 

common practice of tissue palpation being based on the subjective assessment of tissue 

elasticity (Ophir, Alam et al. 2002). During palpation, the fingers push the tissue downwards 

(displace the tissue) and the pressure receptors on one’s finger can detect the differences in 

the local stiffness (elasticity) of the tissues (Hall 2003). The sensation felt when palpating a 
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hard lesion is due to higher elasticity values locally, which is then lower for areas overlying 

softer surrounding tissues (Hall 2003). Although this is useful in some elements of clinical 

practice, this technique is limited as it is subjective, and the examiner is unable to quantify the 

elasticity values and may not be able to accurately detect elasticity changes. 

 

The Young’s Modulus is an equation used that can describe the change in length of material 

concerning stretching or compressive forces (Garra 2007); this is the classic parameter to 

describe the elasticity of tissues. This parameter is mathematically defined as: 
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Within this equation, E is the Young’s Modulus, F is the force, A is the area over which the 

force is applied, ∆& is the change in the length in response to the force and &0 is the original 

length of the object or material (Garra 2007). This means that when an external uniform 

compression (the stress) is applied to a solid tissue, a deformation (or strain) is produced 

inside the tissue. The Young’s Modulus is stress divided by strain and can quantify the tissue 

stiffness; hard tissues have a higher Young’s Modulus and softer tissues a lesser. The unit 

used to quantify the stress and Young’s Modulus is the pascal (Pa, where one Pa= 1 Newton 

per square meter (N/m2) or more commonly the kilopascal (kPa).  

 

1.5.2 Elasticity Imaging 

The predominant method of breast elasticity quantification is a medical imaging technology 

called elastography. Elastography is an encouraging form of medical imaging in health care, as 

inevitably the biomechanical properties of soft tissues are linked to the tissues overall health 

(Sarvazyan, Rudenko et al. 1998) with pathological changes including inflammation, wound 

healing, and cancer being correlated with changes in the tissue elasticity (Ophir, Alam et al. 

2002). As mentioned, the pathological changes can be detected with clinical palpation and 

the sensation of stiffer tissue underlying the clinician’s fingers with malignant masses 

compared to ‘normal’ tissue. Elastography is currently being used for several clinical and 

health research applications for breast tissue and breast conditions. The predominate use of 

elastography for breast tissue currently being presented in the literature is the differentiation 

of benign and malignant breast lesions (Athanasiou, Tardivon et al. 2010, Chang, Moon et al. 
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2011, Berg, Cosgrove et al. 2012, Au, Ghai et al. 2014) with the aim of reducing the number of 

required diagnostic biopsies. It could be argued that this lacks clinical utility as patients may 

predominately want histological findings to confirm or negate a malignant diagnosis. In 

addition, research has also shown that 6.4% to 36.6% of benign or malignant breast masses 

have elasticity values which do not conform to their histopathologic diagnosis. Therefore, 

these elasticity values may lead to false-negative results which can reduce the sensitivity of 

elastography as a diagnostic tool (Chang, Moon et al. 2011, Gweon, Youk et al. 2013, Yoon, 

Jung et al. 2013). There is currently limited research into other clinical application of breast 

elastography (these are listed in Section 1.5.2.3). Still, there is the potential that tissue 

elasticity may be able to be used as a biomarker for the efficacy, and as a prognostic guide for 

therapeutic interventions within the field of breast health. Specifically, the focus of this thesis 

is to discover if breast elasticity has the potential to be used as a biomarker for MBD.  

 

1.5.2.1 Elasticity Imaging: Shear Wave Elastography 

As introduced in Section 1.5, elastography is the term used to refer to the imaging techniques 

that aim to assess tissue elasticity. Elastography depicts the stiffness of the tissues, which 

allows for an objective, quantitative estimation of the tissue elasticity, independent of its 

morphological features. A variety of techniques and approaches have been utilised for 

advancing elastography imaging, regarding both applying the force and for measuring and 

displaying the tissue response (Nightingale, McAleavey et al. 2003, Bamber, Cosgrove et al. 

2013). One measure of elastography is shear wave elastography (SWE), which can be utilised 

to produce two or three-dimensional quantitative ultrasound images (Bamber, Cosgrove et al. 

2013) and can provide a colour coded real-time, objective measure of breast tissue elasticity 

in the unit of the kPa.  

 

Shear wave elastography is conducted by having ultrasound beams generate acoustic 

radiation force impulses, which provide the mechanical excitation through pushing beams 

that deform the underlying tissue of interest. Several of these pushing beams are transmitted 

at different depths, which results in the propagation of transient shear waves. The speed of 

these shear waves is then measured using a scanner with a very fast frame rate, allowing the 

shear waves to be followed in real-time. This is repeated for different lines; allowing a map of 

a region of interest (ROI) to be created from analysing the differences in arrival times and 

calculating the shear wave speeds. A colour-coded image is then displayed on the SWE 
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monitor, and the quantitative data is presented as a measure of shear wave speed in meters 

per second (m/s-1) or converted to the Young’s Modulus and displayed as kPa. Throughout the 

measurement, the shear wave imaging is adjunct to the B-mode image and guidance is 

possible as the same transducer that generates the shear waves also captures their 

propagation (Bercoff, Tanter et al. 2004, Sebag, Vaillant-Lombard et al. 2010, Shiina, 

Nightingale et al. 2015). 

 

1.5.2.2 Elasticity and Shear Wave Elastography in Current Clinical Practice 

It has generally been agreed upon in health care, that no other physical parameters of tissue 

change to as great an extent, with physiological and pathological influence, as does elasticity 

(Manduca, Oliphant et al. 2001). This statement suggesting that SWE has favourable 

properties as an outcome measure in clinical practice. Typical values of breast elasticity have 

been reported (Skovoroda, Klishko et al. 1995, Sarvazyan 2001, Duck 2013) and are 

summarised in Table 1-4. It could be hypothesised that breast pathologies fall within a 

spectrum of tissue elasticity values, with lower elasticity representing normal tissue and 

tissues in a pathological state become stiffer, trending with higher elasticity values.  

  
Table 1-4: Summary of typical breast elasticity values 

Area Type of Soft Tissue Elasticity in kPa 

Breast Normal Fat 18-24 

 Normal Glandular 26-66 

 Fibrous Tissue 96-244 

 Carcinoma 22-560 

 

Currently, as mentioned, the primary clinical and research focus of elastography in breast 

tissue has been differentiating lesions as being either benign or malignant. The current 

research showing that there is a statistically significant difference in elasticity values between 

these two lesions types, in which malignant lesions have a higher elasticity value (Athanasiou, 

Tardivon et al. 2010, Chang, Moon et al. 2011, Berg, Cosgrove et al. 2012, Au, Ghai et al. 

2014). However, Chang, Moon et al. 2011 determined, using a sample of 162 consecutive 

women with 186 needle biopsied or surgically excised lesions, that SWE had a sensitivity of 

88.8% and specificity of 84.9% in differentiating benign or malignant breast lesions. This 

diagnostic accuracy is too inaccurate for SWE to be used independently as a diagnostic tool. 

Additionally, some varieties of malignant tumours have differing biomechanical properties, 
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and as a consequence, elasticity values are more representative of a benign growth (Falou, 

Sadeghi-Naini et al. 2013). Furthermore, patients are becoming more adept at taking control 

of their healthcare and in cases where clinical management decisions and prognosis hinge on 

the pathology of the tissue in question, it is vital to have confidence in the diagnosis. Patient 

and families may not be satisfied with a mass being diagnosed as benign without any 

histological studies on the tissue in question. These factors have the potential to hinder its 

use as a routine clinical application within this area. There are, however, several other 

applications that SWE can be used in for the diagnosis and management of breast health.  

 

1.5.2.3 Alternative Applications of Shear Wave Elastography 

1.5.2.3.1 Shear Wave Elastography and Neoadjuvant Chemotherapy 

One encouraging area for the use of SWE is the prediction and monitoring of the tissue 

response in women undergoing neoadjuvant chemotherapy (NAC) for malignant breast 

lesions. Overall, the response to NAC is variable between patients, with approximately 77% of 

patients having a positive response (termed being a responder) to the therapy (Lee, Seo et al. 

2013). Due to this variability, early evaluation of the response is crucial to improving patient's 

health-related outcomes and decreasing the financial cost of the patient management. During 

treatment, the disease may progress which can result in a delay regarding the optimal time 

for surgical intervention (Jing, Cheng et al. 2016) and early identification of unresponsive 

tumours can lead to prompt changes in the patient management. This, in turn, can lessen the 

unwarranted side effects of unnecessary or non-beneficial drugs and improve the prognosis 

of the patient (Jing, Cheng et al. 2016). Furthermore, the formulation of a management plan 

with a validated biomarker to predict/determine an individual’s response to NAC is becoming 

a priority in breast cancer research (Cho, Im et al. 2016). Recent studies have highlighted the 

importance of early detection of patients not responding to NAC, as it has been demonstrated 

that delivering radiation and surgical intervention for chemotherapy-resistant tumours can 

result in a survival rate of 46% at five years (Huang, McNeese et al. 2002). 

 

Currently, clinical examinations in combination with traditional imaging techniques such as 

computer tomography (CT), MRI and mammography may be used to predict and evaluate the 

response of the tumour to NAC (Hylton, Blume et al. 2012, Falou, Sadeghi-Naini et al. 2013, Li, 

Arlinghaus et al. 2014, Jing, Cheng et al. 2016). These methods are often unable to provide an 
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objective evaluation of the response during the early phase of treatment, as previously 

reported in Section 1.4, functional changes relating to microscopically evident tumour death 

may occur before macroscopic or global tissue changes (Falou, Sadeghi-Naini et al. 2013). In 

addition, methods of cell death induction, such as chemotherapy, can substantially alter the 

biomechanical properties of the malignant tissues during a course of treatments (Wang, Guo 

et al. 2018). This is mainly because tumour formation and the degeneration in response to 

treatment exhibits significant interactions, e.g. fibrosis and inflammation with stromal cells 

(Mueller and Fusenig 2004, Schedin, O’Brien et al. 2007); having the ability to change the 

biomechanical properties of these cells. Furthermore, results from animal laboratory studies 

have indicated that the stiffness of a tumour is related to the tumour progression and 

chemotherapeutic resistance (Butcher, Alliston et al. 2009). Therefore, with SWE’s ability to 

objectively provide a measure of the tumour stiffness, it allows the potential for predicting 

and evaluating the response to NAC in individuals with breast cancer (Jing, Cheng et al. 2016). 

Shear wave elastography is also less expensive than other imaging techniques, and it does not 

require the use of contrast agents, which is well suited for the multiple scans that are 

necessary to monitor this form of treatment. On this basis, SWE has physiological merit to 

assess the effectiveness of NAC between responding and non-responding malignant tissues, 

with an early time frame of a few weeks, following the start of the therapy. 

 

To date, a few studies have investigated this utility for alternative elastography imaging 

techniques and in more recent times SWE. Falou, Sadeghi-Naini et al. (2013) using strain 

elastography (an alternative form of elastography), evaluated the responses to NAC in 15 

women with locally advanced breast cancer. Within this study, the authors found that the 

strain ratio of the tissue stiffness was the best predictor of the response to NAC treatment. 

The findings also revealed, that after the baseline assessment and after the second cycle of 

NAC, the tumours of those who responded to treatment were significantly softer than those 

of non-responders. However, this study also demonstrated that with a rare form of cancer 

(mucinous cancers), the SWE measurements lack sensitivity, this being due to the 

biomechanical properties of the growth; in particular the abundant extracellular mucin (Falou, 

Sadeghi-Naini et al. 2013). 

 

Fang and Yang (2019) also using strain elastography conducted a study to explore the value of 

real-time tissue elastography in predicting the efficacy of NAC. The study had two groups of 
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women; one group had a significant response to NAC (the responders) and one who did not 

have a significant response (the non-responders). The authors reported that grayscale 

ultrasound was not able to accurately evaluate the efficacy of NAC. It was also found that the 

elasticity of the tumour decreased in both groups up to 2 weeks. At 2 weeks the non-

responders tumour elasticity plateaued as did the size of the tumour, the responder's 

elasticity continued to decline. The results also showed that the elasticity changes closely 

related to the size and state of the lesion, which demonstrates that the elasticity values post 

the two-week mark may be able to assist in determining if a woman is going to be a 

responder or a non-responder to the treatment (Fang and Yang 2019). 

 

Similarly, Jing, Cheng et al. (2016) conducted a study which examined the use of SWE for the 

early prediction of the response to NAC in women with breast cancer. The authors found that 

in relation to the baseline values of the tumour stiffness following two cycles of NAC, the 

stiffness was decreased and the change was significantly different in the responders (mean 

elasticity after the second cycle: 50.18 kPa ± 25.01 kPa) but not in the non-responders (mean 

elasticity after the second cycle: 80.37 kPa ± 27.18 kPa). In addition, there was a significantly 

greater change in tumour stiffness after the second cycle of NAC in the responders (-42.19% ± 

19.99%) than in the non-responders (-23.59% ± 8.22%). Whether it was assessed at the 

baseline measurement or after the second cycle of NAC, there was a significantly lower mean 

tumour stiffness in the responders (baseline kPa 82.76 ± 47.43) compared to the non-

responders (baseline kPa 99.77 ± 45.45). The results showed that the area under the receiver-

operated curve for tumour stiffness was 0.80 (P<0.001) which indicated that within this study, 

tumour stiffness represented a useful tool for predicting and determining the neoadjuvant 

response of the breast cancer to the therapy. Ma, Zhang et al. (2017) had similar findings 

within their research with invasive breast cancers, reporting that tumours with lower stiffness 

values at baseline displayed better NAC responses and more frequently favourable 

pathological responses compared to stiffer tissues, and after the second cycle of NAC SWE 

could provide early prediction of the pathological resistance to NAC with the stiffness of the 

tumours.  

 

Supporting this finding, Evans, Armstrong et al. (2013) found that there was a statistically 

significant relationship between the baseline (pre-treatment) tissue elasticity with the 

response of the invasive breast cancer to NAC and subsequently the levels of residual cancers. 
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The findings were demonstrating that the stiffer tissues measured at baseline responded to 

NAC to a lesser extent than softer tissues. These results follow previous results by Hayashi, 

Yamamoto et al. (2012), who used strain elastography in 55 patients who received NAC for 

breast cancer and found that there was a close association between the tumour stiffness and 

the response to NAC in breast cancers. The findings demonstrating that relatively soft 

tumours were highly responsive to NAC and more frequently displayed complete resolution 

compared with stiffer tumours (complete resolution rate 50 vs 14%, respectively). 

 

Finally, Lee, Chang et al. (2015) evaluated the accuracy of SWE in the detection of residual 

breast cancer after NAC and discovered that women with residual cancers showed 

significantly higher maximum elasticity values (mean kPa 116.0 ± 74.1) than women who 

achieved complete resolution (mean kPa 26.4 ± 21.0). Additionally, Lee, Chang et al. (2015) 

found that the diagnostic performance was highest when using MRI compared to B-mode 

ultrasound and SWE; however, the difference between MRI and SWE was not statistically 

significant. In addition, SWE significantly improved the diagnostic performance of B-mode 

ultrasound regarding the detection of residual breast cancers.  

 

These studies demonstrate that responders to NAC may initially have softer tumours and 

show more significant changes in tissue elasticity values through the treatment process than 

the non-responders. Additionally, individuals with softer tumours are proving to have a higher 

likelihood of having complete resolution with treatment than those with stiffer tissues. The 

early stages of research are showing that SWE has the potential to be a viable and robust 

addition and a promising biomarker for the research and clinical practice of determining the 

prediction and response of breast tumours to NAC. 

 

1.5.2.3.2 Shear Wave Elastography in Breast Inflammation 

Mastalgia (or breast pain), is a common clinical occurrence in most women during their 

reproductive life and occasionally after menopause. In approximately 15-20% of women, 

breast pain is of a severity to impact lifestyle and requires intervention (Scurr, Hedger et al. 

2014). One of the causes of breast pain appears to be related to hormonally induced 

inflammation (Fentiman, Caleffi et al. 1988); to overcome this inflammation, the underlying 

hormonal imbalance needs to be managed. In similar clinical circumstances as NAC, SWE may 
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be a viable biomarker to monitor the inflammatory changes within the breast tissue. It is 

hypothesised that inflammation leads to a greater elasticity. Hence, as the inflammation 

decreases theoretically, the pressure within the tissue should decrease, resulting in lower 

elasticity values as recorded by SWE. 

 

To date, SWE has been used in two studies on patients with mastitis, which is an 

inflammatory condition of the breast that may either be infectious or non-infectious in origin 

(Sousaris and Barr 2016). Typically, women suffering from mastitis have oedema and breast 

pain caused by infectious or chemically induced inflammation. Sousaris and Barr (2016) 

reviewed six cases of biopsy-proven mastitis; the results indicated that the mastitis could 

either have a central soft area (the centre of an abscess) and a stiff outer region (caused by 

oedema and inflammation) or just the stiff outer region. The stiff outer region of the tissue 

has a stiffness range of 35-120 kPa with a mean value of 72.0 kPa, which is higher than the 

elasticity range of disease-free breast tissue, as stated in Section 1.5.2.2. Furthermore, Ko, 

Jung et al. (2014) within a study on non-malignant breast lesions included one case of chronic 

mastitis, again using SWE, found this tissue also had an elevated mean stiffness of 59.3 kPa.  

 

These results are based on a small sample size; therefore, correlations and the interpretation 

of the data needs to be done with caution. However, these preliminary findings demonstrate 

that elasticity values may trend higher in breast tissue where inflammation is present. With 

future research, looking at a greater sample size, it is possible that SWE could have promise to 

be used as a biomarker for mastitis or other inflammatory conditions, to determine the 

therapeutic efficacy of interventions to reduce general inflammation and hormonally driven 

breast inflammation in the clinical and research setting.  

 

1.5.2.3.3 Shear Wave Elastography in Breast Augmentation, Mastectomy and 

Reconstruction Surgery  

Shear wave elastography may also have clinical utility for the evaluation of contractures, pain 

and inflammation in relation to breast augmentation surgery. Following breast augmentation 

surgery, it is normal for a capsule to form due to the natural inflammatory response to a 

foreign object entering the body, such as a breast implant. If this happens beyond the typical 

state peri-implant fibrosis and capsular contraction may occur. This can lead to tissue 
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distortion, hardness, and pain (Basu, Leong et al. 2010). Currently, the Baker scale, which is a 

subjective scale based on a clinical evaluation of appearance, texture and tenderness, is used 

to classify the severity of the capsular contraction (Basu, Leong et al. 2010). As the 

biomechanical properties of the breast tissue changes with capsular contraction; tissue 

elasticity may be a viable method of objective evaluation for this condition. This evaluation 

could be beneficial as up to 30% of patients with the two highest grades of contractures 

potentially require surgery (Basu, Leong et al. 2010), early assessment and the ability to 

objectively detect excessive capsular formation would be of great benefit to improve clinical 

practice and patient outcomes. 

 

Three papers to date have been published in the field of SWE in the evaluation of breast 

capsular contractures. A two-person case study by Rzymski, Kubasik et al. (2011) reported 

that one of the cases, who had a Baker III contracture in their left breast and a Baker I 

contracture in their right breast, showed that post-implant replacement and capsulectomy, 

there was a decrease in tissue elasticity in the breast area (left breast 27.3 reduced to 20.5 

kPa and right breast 15.3 reduced to 14.9 kPa). The second case, who had a Baker I 

contracture in their left breast and Baker III/IV in their right showed an increase in elasticity 

values (left breast 12.5 increased to 23.5 kPa and right breast 17.6 increased to 22.4 kPa). This 

patient, however, in contrast to patient one, had an additional 85ml of fluid inserted into 

their left breast and 95ml of fluid inserted into the right; which may have influenced the 

elasticity values. These findings demonstrating that within these two subjects the Baker III 

contractures had higher elasticity values than the Baker I contractures however the findings 

indicate that post capsulectomy and implant replacement the values can be influenced by the 

fluid volume of the implant if not kept consistent. Rzymski, Kubasik et al. (2011) also reported 

that almost all tissues (fatty, glandular, fascia, and muscles) have elasticity values 2-4 times 

higher on day ten after primary breast augmentation and tend to decrease on day 20. Further 

research could be conducted to assess if the changes in elasticity with the healing process 

would allow potential tracking of this elasticity to detect complications during recovery from 

this type of surgery. 

  

Sowa, Yokota et al. (2017) also used SWE for the measurement of capsular contracture after 

breast implant reconstruction, with 20 patients (27 implants) the authors reported that 

elasticity values were strongly correlated to the Baker Score with a correlation coefficient of 
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0.81, and the reproducibility showed an intra-class correlation coefficient of 0.88, which is a 

high-reliability score. This correlation coefficient demonstrates that within this study, SWE 

was a highly reproducible method of detecting the degree of capsule contracture, deeming it 

a potentially useful clinical tool post breast reconstruction, if being done by the same 

clinician. 

 

Furthermore, Rzymski, Kubasik et al. (2011) observed that when using SWE there were 

statistically significant changes in all breast tissues with the highest values being recorded on 

day seven post-surgery; this elasticity was then found to decrease on day 14. The authors 

reported that between days four and ten there were significant correlations between the 

visual analogue scale (VAS) for pain and the capsular elasticity in the lower quadrants; this 

correlation was not found within the glandular tissues in the same quadrant. However, in the 

upper quadrants, where the glandular tissue concentration is higher, there was a significant 

correlation with the VAS for pain during days 6-10. Fatty tissue stiffness did not correlate with 

breast pain in any quadrant of the breast. Capsular contracture has been associated with a 

higher risk of reported pain; the authors have hypothesised that the cause of the pain was 

likely to be inflammatory. An objective tool, whether elasticity imaging or histological findings 

of inflammation, could demonstrate the bridging link between the two (Sperlingl, Høimyrl et 

al. 2011).  

 

In addition to capsular contraction, SWE has been used in a small study by Sowa, Numajiri et 

al. (2015) to investigate fatty stiffness post breast reconstruction following a mastectomy, as 

fatty induration is associated with necrosis and is a common complication in breast 

reconstruction with autologous flaps after mastectomy (Kroll 2000, Casey, Rebecca et al. 

2013). Currently, within the clinical setting, palpation is used, which is a subjective measure 

and, as previously mentioned, is unable to be quantified. The authors found that in one case 

study, in the superior medial area of the breast, fatty tissue showed increased stiffness (mean 

22.3 kPa) when compared to the lateral area (mean 6.6kPa). Furthermore, another case who 

complained of a breast mass with pain and stiffness had a significantly higher SWE reading 

(mean 107.4 kPa) in the superior medial area compared to the lateral area (13.9kPa) finding 

that the breast mass was associated with fat necrosis.  
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These preliminary results based on small sample size suggest that with further research SWE 

may be able to facilitate post-surgical care and management and may be accepted into 

clinical practice post breast augmentation or reconstruction. Although still in the early phase 

of research, there is potential that SWE will be able to be used to offer new possibilities of 

postoperative follow up; determining if elasticity values fall in the expected timeline or 

remain stagnant or continue to increase can provide clinicians with valuable information 

leading to the prediction that unwanted complications may be occurring and provide the 

opportunity for early intervention. 

 

1.5.2.3.4 Breast Elasticity as an Alternative Biomarker of Mammographic Breast 

Density 

Breast elasticity, as measured by SWE, may have the potential to be used as a biomarker to 

determine the effectiveness of therapeutic and preventative interventions which are aimed at 

reducing breast cancer risk. Breast elasticity also has the potential to be a correlated measure 

of baseline MBD, which may be beneficial to guide clinical reasoning and decision making for 

referring a patient to begin mammography screening. It is presently known that breasts that 

have a high MBD are associated with extensive collagen, a greater number of cells, increased 

extracellular matrix (ECM), including the increased expression of the proteoglycan lumican 

and decorin (Alowami, Troup et al. 2003, Li, Sun et al. 2005, DeFilippis, Chang et al. 2012). 

These proteoglycans can bind growth factors, which contribute to the mechanical integrity of 

tissues; influencing the elasticity and the behaviour of the breast tissue (Butcher, Alliston et 

al. 2009). It has also previously been reported that high MBD tissue shares similar 

characteristics to malignant breast tissue, specifically fibrodense areas having high ECM 

content and low adipocytes (DeFilippis, Chang et al. 2012). This abnormal ECM deposition can 

lead to tissue stiffening, causing greater tissue elasticity as seen in breast cancer (Bonnans, 

Chou et al. 2014).  

 

Additionally, the tissue associated with increased MBD has some similar properties to 

individuals with hepatic fibrosis; a resultant condition of the healing response to repeated 

liver injury (Friedman 2003). The process of hepatic fibrosis is associated with the liver’s 

inflammatory response and the deposition of ECM. If the hepatic injury persists, the liver's 

ability to regenerate begins to fail, and the usual generation of hepatocytes are substituted 
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with abundant ECM, including fibrillary collagen (Bataller and Brenner 2005). The 

accumulation of the abundant ECM in hepatic fibrosis can result from two pathways; an 

increased synthesis and from decreased degradation of ECM (Arthur 2000); with the 

decreased activity of ECM-removing matrix metalloproteinases (MMPs) mainly being due to 

an overexpression of their specific inhibitors (tissue inhibitors of metalloproteinase (TIMP) 

(Bataller and Brenner 2005). Both of these pathways have also been seen in 

mammographically dense tissue with Guo, Martin et al. (2001) demonstrating that within high 

MBD tissue, there is increased TIMP-3 expression and a positive association with 

metalloproteinase-3 (MMP-3).  

 

Additionally, isoprostanes and malondialdehyde (MDA), both of which are in vivo biomarkers 

for oxidative stress, have demonstrated to be mediators for the increased cell proliferation 

and collagen production in hepatic fibrosis (Comporti, Arezzini et al. 2005). Oxidative stress 

occurs when there is an imbalance between reactive oxygen species (a collective term for 

oxygen free radicals or non-radical oxidising agents that can be converted easily into radicals 

(Halliwell and Gutridge 1989)) production and the antioxidant defences, which can lead to 

damaged DNA, protein and lipid molecules. Mutagenesis can occur due to DNA damage, and 

this can increase the risk of cancer (Valko, Izakovic et al. 2004). Inflammation has also been 

linked to reactive oxygen species, and maybe another reason oxidative stress relates to 

cancer (Pathak, Sharma et al. 2005). In three independent studies (Boyd and McGuire 1990, 

Boyd, Connelly et al. 1995, Hong, Tang et al. 2004), a positive association was found between 

MBD and 24-hour urinary MDA excretion. Additionally, in both pre- and postmenopausal 

women, representing a range of MBDs (Boyd, Connelly et al. 1995, Hong, Tang et al. 2004), 

adjusting for differences in age, BMI and waist circumference, urinary MDA excretion was 

23% to 30% higher in the highest quartile of MBD when compared with the lowest MBD 

quartile.  

 

Liver fibrosis is a response to tissue injury and the inflammation associated with the injury 

(which as mentioned previously increases oxidative stress). The processes involved are the 

proliferation and activation of fibroblasts, with an accumulation of ECM the resultant effect 

(Hinz 2007). As there are strong similarities between hepatic fibrosis and MBD, it could be 

hypothesised that breast elasticity may be increased in women with high MBD. As the 

FibroScan® (transient elastography) began as a biomarker and then a diagnostic tool for liver 
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fibrosis, there is potential that breast elasticity may be able to do the same for MBD. If this 

research does find an association between the two, breast elasticity as measured by SWE may 

be able to be used as a biomarker and detect changes in the breast tissue, which may also be 

at an earlier time, than mammographic imagery. Thus, potentially providing useful 

information again concerning treatment responses and monitoring breast cancer risk. 

 

1.6 Introduction Summary 

Through this research program, the performance characteristics of using SWE to measure 

whole breast elasticity, in relation to the clinical utility and psychometric properties for the 

use of breast elasticity as a biomarker for MBD, will be examined. This research program will 

also establish and describe a user-friendly, reliable method for using the SWE ultrasound for 

this indication. The benefits of conducting and reporting this evidence are firstly; it will begin 

to develop the body of evidence regarding the validation of breast elasticity as a biomarker in 

health research, in particularly pharmacology research. In addition, by providing the 

methodology for using SWE for this indication, researchers who wish to conduct future 

research in this field will not need to establish a reliable method for collecting the SWE data, 

which can save time and resources. Furthermore, by using a consistent methodology for SWE, 

evidence can be easily compared and synthesised to further validate breast elasticity as a 

biomarker for therapeutic interventions for the breast.  
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Chapter 2 Research Aims, Objectives and Structure 

2.1 Aims 

The primary aim of this research program is to determine if whole breast elasticity, as 

measured by SWE, can be used as a biomarker for MBD.  

A secondary aim of this research is to determine a reliable and valid protocol when using SWE 

to measure whole breast elasticity in order to increase research and clinical implementation. 

 

2.2 Objectives 

1. Determine the efficacy of hormonal interventions to reduce mammographic breast 

density 

The initial objective of this research was to determine the efficacy of HAVAHT+Ai™ and the 

combination of enobosarm and anastrozole in their ability to reduce MBD. This was 

conducted to provide baseline data regarding the effect of these interventions on the breast 

tissue, to show that there are physiological changes occurring in the primary endpoint of 

interest.  

 

2. Determine the effect of these two, hormonal combination on breast elasticity and 

whether these correlate with changes to mammographic breast density 

The second objective of this research was to determine if the two hormonal combinations 

(HAVAHT+Ai™ and the combination of enobosarm and anastrozole) can influenced breast 

elasticity, as measured by SWE. 

 
3. Determine the normative values and behaviour of breast elasticity in healthy women 

not on any form of hormonal intervention 

The third objective was to analyse the average breast elasticity of healthy women who were 

not on hormonal interventions that may influence the elasticity values. This was done with 

repeat measures to analyse the behaviour and fluctuations of the breast elasticity and 

whether this is influenced by hormonal changes that occur with the menstrual cycle. 
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4. Determine a valid and reliable protocol for the shear wave elastography machine to 

measure whole breast elasticity 

The fourth objective was to determine if there is a reliable and precise method to determine 

the whole breast elasticity as measured by SWE as to date there is no consistent protocol to 

be used in clinical and research purposes. 

 

2.3 Research Plan with Associated Objectives 

The research plan and associated objectives are presented in Figure 2-1 below.  

 

Study 1 
The effect of a subcutaneous combination 

of Testosterone (T) and anastrozole (Ai) 
(HAVAHT+Ai™) on volumetric 

mammographic breast density (MBD); an 
open labelled cohort study 

 

Study Design: Cohort analysis of patient database of women  
Intervention: HAVAHT+Ai™ 
Outcomes: %VBD and TFV as determine by VolparaDensity™ 
Objectives: 1 

 

Study 2 
Pharmacodynamics (breast tissue 

elasticity) of combination subcutaneous 
Testosterone (T) and anastrozole (Ai) 

(HAVAHT+Ai™) in premenopausal women 
with high Mammographic Breast Density 

Study Design: Nestled study within a single dose, single 
centre, open label non-randomised pharmacokinetic trial of 
HAVAHT+Ai™ 
Intervention: HAVAHT+Ai™ 
Outcomes: %VBD and TFV as determine by VolparaDensity 
and breast elasticity (kPa) measured by SWE 

Study 3 
Anastrozole and GTx-024: The effect of an 

aromatase inhibitor and selective 
androgen receptor modulator on 

Mammographic Breast Density and Breast 
Elasticity in premenopausal women 

Study Design: 12 month, single centre, open label, pilot trial 
of women with high MBD 
Intervention: anastrozole and GTx-024 (enobosarm) daily 
Outcomes: %VBD and TFV as measured by VolparaDensity™ 
and breast elasticity (kPa) measured by SWE 
Objectives: 1,2  

Study 4 
Does region of interest (ROI) size affect 
the breast elasticity and coefficient of 

variation (CV) of a dataset analysing the 
average breast elasticity of women on a 
hormonal chemopreventative therapy 

Study Design: secondary analysis using data from Study 2 
Intervention: N/A 
Outcomes: breast elasticity (kPa) as measured by SWE, 
coefficient of variation 
Objectives: 4 

Study 5 
The behaviour of breast elasticity as 

measured by Shear Wave Elastography in 
healthy women in regard to menstrual 
cycle changes, repeatability and intra-

rater reliability 

Study Design: 1.5 month reliability study with 4 repeat 
measures, monitoring stage of menstrual cycle with healthy 
women not on hormonal interventions 
Intervention: N/A 
Outcomes: Breast Elasticity (kPa) as measured by SWE, intra-
rater reliability of SWE 
Objectives: 3,4  

Figure 2-1: Research plan and associated objectives 
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Chapter 3 The Effect of a Subcutaneous Combination of 

Testosterone (T) and Anastrozole (Ai) (HAVAHT+Ai™) on Volumetric 

Mammographic Breast Density (MBD); an Open Labelled Cohort 

Study. 

3.1 Background 

As reported in section 1.2, MBD is a major, independent risk factor for breast cancer and 

there are limited interventions that have shown to be efficacious at reducing MBD, 

particularly in a premenopausal cohort as Ai's are contraindicated in this population. The 

overall primary aim of this thesis is to determine if breast elasticity can be used as a 

biomarker for MBD, especially in clinical trials due to its hypothesised sensitivity and clinical 

utility. In order to determine if the breast elasticity changes are correlating with the changes 

in MBD, it needs to be established that the hormonal interventions we are using in the 

subsequent clinical trials in this thesis are effective are reducing MBD.  

 

This chapter is an analysis of clinical practice records of women who have been given the 

investigational product of HAVAHT+Ai™. Six hundred fifty-two women who attended Wellend 

Health Pty Ltd, Adelaide, South Australia, received HAVAHT+Ai™ as a subcutaneous implant 

every three to four months, were evaluated for MBD changes, as determined by 

VolparaDensity™ analysis software. One hundred forty-two of these women had two or more 

mammograms within the analysis, and a restricted analysis set (RAS) of 89 of these women 

were compared with a matched cohort 65 women undergoing mammographic screening for 

high risk of breast cancer but did not receive any hormonal therapy. 

 

3.2 Objectives 

The primary objective of this cohort analysis is to determine whether the administered 

HAVAHT+Ai™ therapy reduces MBD and whether this correlates with dosage and duration of 

therapy. 
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Abstract 

Background 

Mammographic breast density (MBD) is a modifiable risk factor for the development of breast 

cancer. An alteration in the oestrogen/androgen (E/A) ratio in favour of an androgenic 

environment may reduce MBD. It is hypothesised that HAVAHT+Ai™ may cause this 

favourable alteration. This large open-label cohort study evaluates the effect of HAVAHT+Ai™ 

on MBD. 

 

Method 

Women who received HAVAHT+Ai™ subcutaneous implant had their percentage volumetric 

breast density (%VBD) and absolute fibroglandular volume (FGV) measured by 

VolparaDensity™. Mixed model analyses were used to examine the drug dose relationship 

with %VBD and FGV. A restricted analysis set (RAS) of 89 women were compared with a 

matched control cohort of 65 women, their change from baseline in %VBD and FGV were 

analysed using a mixed model approach. Safety and tolerability data were collected and 

analysed.  
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Results 

142 women were included in the analysis. Larger decreases in MBD were observed with 

accumulated testosterone (T) dosing of over 500mg compared with patients with <500mg. 

Change from baseline in %VBD by cumulative T dose, the largest reductions were -2.26% 

(95% CI -4.23% to -0.29%; p=0.00251) to -2.80% (95% CI -4.66% to -0.95%; p=0.0035) for the 

500 – 700mg and 700mg+ strata, respectively. For change in baseline in FGV a cumulative T 

dose of 700mg+ demonstrated a reduction of -22cm3 (95% CI -39.48 to -4.51; p=0.0142) and -

36.21cm3 (95% CI -59,71 to -12.71; p=0.0029), at years 2 and 3 respectively. No significant 

reductions in %VBD or FGV were observed in the control group. The treatment was well 

tolerated. 

 

Conclusion 

A cumulative dose of greater than 700mg of T and 30mg of Ai over 2 to 3 years, achieved a 

similar reduction in MBD as has been demonstrated with tamoxifen with better tolerability. 

 

Introduction 

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death 

in women (Bray, Ferlay et al. 2018). Worldwide, there were approximately 2.1 million newly 

diagnosed female breast cancer cases in 2018, accounting for almost 1 in 4 cancer cases 

(Bray, Ferlay et al. 2018). In 2020, it has been estimated that there will be 279,100 new breast 

cancer cases in the United States alone (Siegel, Miller et al. 2020). The initiation and 

promotion of most, if not all, breast cancers are highly dependent on female reproductive 

hormones. Thus, manipulation of these hormonal pathways has been used to improve 

therapeutic outcome since the 1890s. Subsequently, anti-oestrogen therapies used for the 

treatment of breast cancer were shown to reduce the incidence of new breast cancers in the 

contralateral breast (Group 2005, Group 2011). Oral tamoxifen is the only widely accepted 

intervention registered for chemoprevention of breast cancer. However, tamoxifen has both 

agonistic and antagonistic impact on tissue-specific estrogenic effects, which results in 

significant adverse effects and contributes to a poor compliance rate.  Approximately just 4% 

of women at increased risk of developing breast cancer utilise tamoxifen intervention (Ropka, 

Keim et al. 2010). Other treatments which appear to reduce the incidence of breast cancer, 

but have not achieved registration for this indication, include raloxifene, anastrozole and 

retinoids. Thus, there is an urgent need for new hormonal strategies to make 
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chemoprevention a more attractive option for women at high risk of developing breast 

cancer.  

 

 

Mammographic breast density (MBD) is the ratio of glandular/stromal to fatty tissue within 

the breast and is a major modifiable risk factor for breast cancer. In a meta-analysis of 42 

studies, McCormack and dos Santos Silva (2006) found that MBD was strongly associated with 

an individual’s breast cancer risk, and MBD has been proposed as a potential surrogate 

endpoint of the efficacy of hormonal interventions (Shawky, Martin et al. 2016). It has been 

demonstrated that accumulative exposure of the breast to high MBD tissue is directly 

correlated with breast cancer risk (Cuzick 2003, Boyd, Berman et al. 2018), one prevention 

trial has demonstrated that reducing MBD can lead to a decrease in breast cancer risk. Cuzick, 

Warwick et al. (2011) reported that women treated with tamoxifen who had more than 10% 

absolute reduction in breast density (as visually assessed by reporting total breast area 

composed of dense tissue on an 0-100% scale) experienced a 63% decrease in breast cancer 

risk, as compared to no change in breast cancer risk in the placebo group and the women 

who did not respond to tamoxifen. Furthermore, many studies have evaluated the influence 

of tamoxifen associated MBD declines on breast cancer outcomes in the adjuvant setting (Li, 

Humphreys et al. 2013, Nyante, Sherman et al. 2015, Mullooly, Pfeiffer et al. 2016, Shawky, 

Martin et al. 2016). In particular, Li, Humphreys et al. (2013) reported, after a 15 year follow 

up, that women with breast cancer treated with tamoxifen as adjuvant therapy who 

experienced a reduction of more than a 20% relative reduction in absolute dense area in cm3 

had a 50% reduction in their breast cancer mortality, again compared to women who didn’t 

respond to tamoxifen. 

 

Therefore, reducing MBD in women at high risk of breast cancer may be of considerable 

benefit. There is usually a substantial reduction in MBD following menopause (Boyd, Martin et 

al. 2002) and this reduction correlates with the alteration in the oestrogen/androgen (E/A) 

ratio. The breast responds to this alteration in the E/A ratio (McNally and Stein 2017), such 

that when there is a shift towards a more androgenic environment, there is a substantial 

reduction in MBD. Therefore, it is hypothesised that pharmacologically enhancing this natural 

trend towards a more androgenic environment will result in a greater reduction in MBD, and 

this can be an effective way of lowering breast cancer risk. 
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A subcutaneous implant (HAVAHT+Ai™) containing testosterone (T) (80mg to 120mg), and the 

aromatase inhibitor (Ai) anastrozole in the dose range of 2 to 8mg, has been used in clinical 

practice as a custom pharmaceutical in Australia and the United States (Birrell, Butler et al. 

2007, Glaser 2010). Combining T and anastrozole was initially used as a non-estrogenic 

treatment for the management of anastrozole-induced arthralgia and menopausal symptoms 

in women with breast cancer (Birrell and Tilley 2009, Glaser, York et al. 2014). The 

observation was made that this combination significantly reduced breast pain, which is closely 

linked to MBD (Birrell and Tilley 2009). As high MBD tissue has been demonstrated to have 

very high levels of aromatase (Vachon, Sasano et al. 2011), which results in high levels of 

tissue estradiol (even in the premenopausal breast) (Dabrosin 2005), the authors 

hypothesised that combining a pharmacological dose of T with an ultra-low dose of 

anastrozole would be adequate to shift the E/A ratio towards an androgenic environment. 

Subsequently higher levels of T would be made available for the 5α-reductase shift to the 

potent androgen 5α- dihydrotestosterone (5α-DHT). This intra tissue dynamic, would 

substantially change the tissue environment from an estrogenic to an androgenic 

environment milieu and drive down MBD.   

 

This study aimed at utilising a subcutaneous combination of a pharmacological dose of T and 

a very low dose of anastrozole in a subcutaneous pellet to evaluate the impact of this therapy 

on MBD in addition to safety and acceptability of this treatment. 

 

Method 

This study was a single centre cohort study based at Wellend Health Pty Ltd, Toorak Gardens, 

South Australia. Patients were referred to the Wellend Health Pty Ltd for either high MBD, the 

management of menopausal symptoms, the treatment of breast pain or a combination of 

these factors. All patients gave written consent for their clinical data to be used for research. 

 

All patients in the study cohort received a combination of T and anastrozole implants 

(HAVAHT+Ai™). The formulation consisted of a compressed implant containing crystalline T, 

anastrozole and magnesium stearate. A T dose of approximately 1mg per kilogram along with 

2mg-8mg of anastrozole per subcutaneous implant was used in the first dosing. Dosing was 
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altered in subsequent implants depending on either symptomatic response or lack of breast 

tissue response.  

 

Patients were started on the therapy following baseline evaluation consisting of medical 

history, mammography and biochemical and haematological testing, including reproductive 

hormone levels. The patients underwent repeat blood evaluations at four weeks, and 12 

weeks after initiation of treatment, the included serum T and Sex Hormone Binding Globulin 

(SHBG) to allow the generation of Free Androgen Index (FAI). A clinical review occurred at six 

weeks, consisting of clinical examination and reporting of adverse events (AEs). The MedDRA 

coding dictionary (version 20.0) was used to standardise events named into preferred terms 

(PT) and place within system organ class (SOC). A new pellet was inserted at three to four 

months. This clinical process was repeated after each dosing, for the duration of each 

patient’s therapy. 

 

The primary efficacy measurement for patients treated for high MBD was a reduction in MBD. 

During the treatment period patients generally had a mammogram on an annual basis. 

Measurements of MBD were undertaken utilising automated MBD analysis software 

(VolparaDensity™) generating the following variables: percentage volumetric breast density 

(%VBD), the absolute volume of fibroglandular tissue in cm3 (FGV), the volume of both breasts 

and BI-RADs score. As mammograms were not scheduled for specific time-points, a visiting 

windowing system was applied to the data in order to provide a specific data value to a 

specific time point. The windows were as follows; six months (180 days after first 

HAVAHT+Ai™ implant +/- 60 days), one year (365 days after first HAVAHT+Ai™ implant +/- 180 

days), two years (730 days after first HAVAHT+Ai™ implant +/- 180 days), three years (1095 

days after first HAVAHT+Ai™ implant +/- 180 days) and four years (1460 days after first 

HAVAHT+Ai™ implant +/- 180 days). Mammography variables were compared with the date 

of the first HAVAHT+Ai™ implant. If more than one mammogram was taken within a window, 

the results closest to the mid-point of the window were used. No windows were applied to 

the baseline value, that is, the baseline value could occur at any point prior to first 

HAVAHT+Ai™ implant date (the average number of days prior to the first implant for the 

baseline mammogram was 60 days). 
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In addition to the treatment group, mammographic data (%VBD and FGV) from an aged-

matched control cohort of perimenopausal women at high risk of breast cancer who did not 

receive HAVAHT+Ai™ treatment were obtained from Wellend Health Pty Ltd clinic records. 

These women were not treated with HAVAHT+Ai™ due to personal preference as it is an 

experimental therapy and not covered by the Australian Governments Pharmaceutical 

Benefits Scheme. Each of the 65 women had data from two sequential breast cancer 

screening mammograms. A group of participants that had a mammogram both prior to and 

after HAVAHT+Ai™ implant were identified for comparison against the control cohort. This 

group was referred to as the restricted analysis set (RAS). 

 

Statistical Analysis 

Excel (Microsoft, USA) was used to collate and tabulate the data. SAS® for Windows Version 

9.3 (SAS Institute) was used for the statistical analysis. To examine the drug dose relationship 

with the %VBD response, the change from baseline MBD was used as the outcome measure 

in a mixed model analysis using SAS PROC Mixed. This procedure allows for the potential of 

individual patients to contribute more than one mammogram following commencement of 

HAVAHT+Ai™ treatment (repeated measures analysis), as well as examining different 

covariance patterns amongst the data. From the data set provided for analysis, the following 

independent (explanatory) variables were used to examine their impact on the change in 

MBD: days since first implant, baseline %VBD MBD measurement (the value closest to, but 

not later than, the first HAVAHT+Ai™ implant), cumulative testosterone dose (mg) across the 

entire study (stratified into <500mg, 500mg to <700mg, and 700mg+), cumulative anastrozole 

dose (mg) across the entire study (as a continuous covariate), age (in years) at first implant, 

machine type (GE Healthcare or Hologic Inc mammography machine), the radiation dose at 

the mammogram, compression pressure at the mammogram, history of breast cancer (yes or 

no), the interaction term between days since the first implant and cumulative dose of 

testosterone strata. The last interaction term listed above allows for the fitting of different 

slopes to each of the T dose strata to see if any potential differences exist across the strata. In 

addition to the analysis conducted using %VBD MBD measurements, a complementary 

analysis was undertaken using a similar model, with the change from baseline FGV as the 

dependent variable. The only other change to the list of dependent variables was to replace 

baseline %VBD with absolute baseline FGV. 
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With the control cohort and RAS group, the ‘change from baseline’ in %VBD and in FGV were 

analysed using a mixed model approach, modelled controlling for the following items: age (for 

control cohort, age at first recorded mammogram and for RAS age at first HAVAHT+Ai™ 

implant), baseline %VBD/FGV (for control cohort, %VBD/FGV at first mammogram and for 

RAS, %VBD/FGV at mammogram closest to, but not after, first HAVAHT+Ai™ implant) and 

reference day (for control cohort, number of days between first and second mammogram 

and for RAS, number of days between first HAVAHT+Ai™ implant and follow up 

mammogram(s)). 

 

Results 

In total, HAVAHT+Ai™ dosing information from 652 women was provided for analysis. 142 

patients had both pre-intervention baseline and subsequent mammograms. 65 patients were 

included in the control cohort with an average age of 49.6 (SD 7.24) years. 89 patients were 

included in the RAS group, with an average age of 51.3 (SD 6.89) years. Demographic and 

baseline summary information is provided in Table 3-1. All 652 patients were female, with an 

average age at the time of first HAVAHT+Ai™ implant of 52 years (range 23 to 79 years).  

 

Table 3-1: Participant Characteristics 

Characteristics All Patients Restricted Analysis Set Control Cohort 

Age at first implant – Years (SD) n = 652 52.3 (7.66) n = 142 51.7 (7.26) n = 65 49.6 (7.24) 

Pre-implant %VBD - % (SD)  13.89 (7.89)  16.14 (8.14)   

Pre-implant FGV – cm3 (SD)  156.26 (88.16)  170.77 (92.34)   

Indications   

Reduce BC risk (%) n = 89 13.7% n = 40 28.2%   

Hormonal Dysfunction n = 334 51.2% n = 43 30.3%   

Both n = 177 27.1% n = 58 40.8%   

Breast Cancer History   

Yes n = 560 85.9% n = 124 87.3%   

No n = 90 13.8% n = 18 12.7%   

Invasive Type BC   

Yes n = 6 0.9% n = 0 0.00%   

In-situ type BC   

Yes n = 14 2.1% n = 3 2.1%   

Reason for Stopping   

Ongoing Treatment n = 365 56.0% n = 107 75.4%   

Experienced adverse effects n = 14 2.1% n = 2 1.4%   

Cost of treatment n = 30 4.6% n = 3 2.1%   
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Table 3-1 continued 

Subject decided to cease 

HAVAHT+Ai™ treatment 

n = 46 7.1% n = 7 4.9%   

Subject felt HAVAHT+Ai™ treatment 

was not working 

n = 28 4.3% n = 5 3.5%   

Unexplained n = 123 18.9% n = 9 6.3%   

Doctor advised HAVAHT+Ai™ 

treatment is no longer required 

n = 16 2.5% n = 4 2.8%   

Doctor advised HAVAHT+Ai™ 

treatment is complete 

n = 25 3.8% n = 5 3.5%   

Subject was relocating n = 4 0.6% n = 0 0.0%   

Concomitant Medications   

Oestrogen-based Concomitant Medications Used   

No n = 430 66.0% n = 100 70.4%   

Yes n = 222 34.9% n = 42 29.6%   

Oral Concomitant Medications   

Yes n = 10 1.5% n = 2 1.4%   

Topical Concomitant Medications   

Yes n = 192 29.4% n = 34 23.9%   

Subcutaneous Concomitant Medications   

Yes n = 13 2.0% n = 4 2.8%   

Intravaginal concomitant medications n = 52 8.0% n = 12 8.5   

 
 
 

Measurement of Efficacy 

Table 3-2 provides descriptive statistics for the change from pre-implant (baseline) 

mammography results. Although these values are unadjusted for other potential factors, 

both %VBD and FGV show a reduction following intervention with HAVAHT+Ai™ therapy. No 

data with a baseline pair was available for the 4-year post-implant window.  

 

Table 3-2: Absolute change from baseline (pre HAVAHT+Ai™ implant) MBD measured by %VBD 

Time-point Summary 

Statistics 

Value 

6-month Window n 12 

 Mean (SD) -0.56% (3.02) 

1-year Window n 94 

 Mean (SD) -1.77% (3.57) 

2-year Window n 48 

 Mean (SD) -1.44% (2.41) 

3-year Window n 13 

 Mean (SD) -2.02% (3.91) 
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Drug Dose and Relationship to %VBD Response 

To examine more closely, the impact of HAVAHT+Ai™ intervention on MBD as measured 

by %VBD, the subsets of patients who had mammograms both before and after the 

commencement of treatment were considered. The mixed model estimates for change from 

baseline in %VBD are shown in Table 3-3. Statistically significant findings were noted for days 

since first HAVAHT+Ai™ implant and the interaction between days since first HAVAHT+Ai™ 

implant and cumulative testosterone strata. Specifically, larger decreases in %VBD were 

noted over time for patients with accumulated testosterone dosing of over 500mg compared 

with patients with <500mg. Baseline %VBD was also statistically significant, with higher 

baseline scores having larger observed changes (reduction in %VBD).  

 

Efficacy of HAVAHT+Ai™ in the Reduction of MBD as Measured by %VBD and FGV 

Table 3-3 presents the least square mean estimate of the change from baseline in %VBD, by 

cumulative T strata and time since the first implant. The largest reductions from baseline in 

MBD observed were for the 500-700mg strata, -1.69% (95% CI -3.01% to -0.38%; p=0.0121) at 

2 years and -2.26% (95% CI -4.23% to -0.29%; p=0.0251) at 3 years and the 700+mg 

cumulative T strata with a reduction of -1.87% (95% CI -3.62 to -0.12; p=0.032) at 1 year, -

2.36% (95% CI -3.88% to -0.79%; p=0.0034) at 2 years and -2.80 (95% CI -4.66% to -0.95%; 

p=0.0035) at 3 years. Table 3-4 presents the least square mean estimates of the change from 

baseline in FGV, by cumulative T strata and time since the first implant. The only values of 

significance were those in the 700+mg cumulative T strata with reductions of -22.00cm3 (95% 

CI -39.48cm3 to -4.51cm3; p=0.0142) at 2 years and -36.21cm3 (95% CI -59.71cm3 to 

12.71cm3; p=0.0029) at 3 years.  
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Table 3-3: Least square change from baseline in MBD, by cumulative testosterone dose and time since first implant 

Cumulative 

Testosterone Dose 

Group 

Time Since 

First Implant 

Least Square 

Mean Estimate 

Lower 95% CI Upper 95% CI p-value 

<500mg 1 year -1.6085 -2.8628 -0.3542 0.0123 

<500mg 2 years -1.2130 -2.6838 0.2579 0.1053 

<500mg 3 years -0.8174 -2.8829 1.2480 0.4349 

500 to <700mg 1 year -1.1249 -2.4165 0.1668 0.0872 

500 to <700mg 2 years -1.6916 -3.0057 -0.3775 0.0121 

500 to <700mg 3 years -2.2584 -4.2275 -0.2893 0.0251 

700+mg 1 year -1.8688 -3.6155 -0.1222 0.0362 

700+mg 2 years -2.3358 -3.8817 -0.7899 0.0034 

700+mg 3 years -2.8028 -4.6566 -0.9490 0.0035 

 

 

Table 3-4: Least square estimated change from baseline in FGV, by cumulative testosterone dose and time since first implant 

Cumulative 

Testosterone Dose 

Group 

Time Since 

First Implant 

Least Square 

Mean Estimate 

Lower 95% CI Upper 95% CI p-value 

<500mg 1 year -12.6001 -25.7233 0.5230 0.0597 

<500mg 2 years -11.2073 -28.3175 5.9029 0.1975 

<500mg 3 years -9.8144 -35.6603 16.0314 0.4537 

500 to <700mg 1 year 0.2747 -12.2756 12.8251 0.9652 

500 to <700mg 2 years -4.1993 -19.8209 11.4223 0.5950 

500 to <700mg 3 years -8.6734 -34.0633 16.7166 0.4985 

700+mg 1 year -7.7803 -26.2516 10.6910 0.4052 

700+mg 2 years -21.9964 -39.4828 -4.5101 0.0142 

700+mg 3 years -36.2126 -59.7196 -12.7056 0.0029 

 

Laboratory Tests 

The prevalence of laboratory values out of the normal range is presented in Figure 3-1. Only 

patients with a pre-HAVAHT+Ai™ lab assessment are included in the figure to gauge the 

change from baseline values.  
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Figure 3-1: Prevalence of lab values out of normal range 

 
Out of range FAI values were noted for 29% of patient’s pre-HAVAHT+Ai™ (with denominator 

n= 279). The out of range FAI values increased to 78% of patients following the first implant 

with HAVAHT+Ai™ and then increased steadily over time, with over 90% of patients assessed 

(n= 54) at implant occasion 6 having values out of range. Out of range SHBG values were 

noted for 11% of patients pre-HAVAHT+Ai™ (with denominator n= 287) with the prevalence 

of out-of-range values remained relatively constant over the course of subsequent implants. 

Out of range testosterone values were noted for 9% of patient’s pre-HAVAHT+Ai™ (with 

denominator n= 303). The prevalence of out of range values remained relatively constant 

over the course of subsequent implants with HAVAHT+Ai™.  

 

Adverse Events 

The most prevalent AEs were those seen in the skin and subcutaneous conditions SOC. Within 

this SOC, 58 (9%) patients reported hirsutism and 37 (6%) reported acne; this did not result in 

early termination of therapy. Other events with a prevalence of 4% or more included fatigue 
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(n=37 patients 6%), malaise (n=27 patients, 4%), weight increase (n=27 patients, 4%) and hot 

flushes (n=76 patients, 12%). Treatment-related AEs reported by five or more patients are 

displayed in Table 3-5. No deaths or serious adverse events that were related to HAVAHT+Ai™ 

occurred during the study time frame.  

 

Table 3-5: Treatment related adverse events experienced by at least two patients, by average testosterone dose per implant 

MedDRA Preferred Term <80mg 

(n=182) S 

(%) E 

80 to 

<90mg 

(n=273) S 

(%) E 

90 to 

<100mg 

(n=106) S 

(%) E 

100mg+ 

(n=71) S 

(%) E 

All 

patients 

(n=652) S 

(%) E 

Subjects with at least one AE 8 (4.4%) 19 10 (3.7%) 31 7 (6.6%) 15 4 (5.6%) 7 29 (4.4%) 72 

Skin and subcutaneous tissue disorders 6 (3.3%) 8 9 (3.3%) 12 6 (5.7%) 7 3 (4.2%) 3 24 (3.7%) 30 

Hirsutism 3 (1.6%) 3 5 (1.8%) 5 2 (1.9%) 2 1 (1.4%) 1 11 (1.7%) 11 

Acne 4 (2.2%) 4 2 (0.7%) 2 3 (2.8%) 3 0 (0.0%) 0 9 (1.4) 9 

Alopecia 0 (0.0%) 0 4 (1.5%) 4 1 (0.9%) 1 2 (2.8%) 2 7 (1.1%) 7 

Psychiatric disorders 3 (1.6%) 3 3 (1.1%) 5 1 (0.9%) 3 1 (1.4%) 1 8 (1.2%) 12 

Anxiety 2 (1.1%) 2 0 (0.0%) 0 (0.0%) 0 0 (0.0%) 0 2 (0.3%) 2 

Depression 0 (0.0%) 0 2 (0.7%) 2 0 (0.0%) 0 0 (0.0%) 0 2 (0.3%) 2 

Mood Swings 1 (0.5%) 1 1 (0.4%) 1 0 (0.0%) 0 0 (0.0%) 0 2 (0.3%) 2 

Gastrointestinal disorders 2 (1.1%) 3 2 (0.7%) 2 0 (0.0%) 0 0 (0.0%) 0 4 (0.6%) 5 

Nausea 1 (0.5%) 1 1 (0.4%) 1 0 (0.0%) 0 0 (0.0%) 0 2 (0.3%) 2 

General disorders and administration site conditions 0 (0.0%) 0 2 (0.7%) 2 2 (1.9%) 2 0 (0.0%) 0 4 (0.6%) 4 

Feeling abnormal 0 (0.0%) 0 1 (0.4%) 1 1 (0.9%) 1 0 (0.0%) 0 2 (0.3%) 2 

Investigations 0 (0.0%) 0 3 (1.1%) 3 0 (0.0%) 0 1 (1.4%) 1 4 (0.6%) 4 

Blood pressure increased 0 (0.0%) 0 2 (0.7%) 2 0 (0.0%) 0 0 (0.0%) 0 2 (0.3%) 2 

Weight increased 0 (0.0%) 0 1 (0.4%) 1 0 (0.0%) 0 1 (1.4%) 1 2 (0.3%) 2 

Injury, poisoning and procedural complications [a] 0 (0.0%) 0 1 (0.4%) 1 2 (1.9%) 2 0 (0.0%) 0 3 (0.5%) 3 

Nervous system disorders 1 (0.5%) 1 2 (0.7%) 2 0 (0.0%) 0 0 (0.0%) 0 3 (0.5%) 3 

Vascular disorders 1 (0.5%) 1 1 (04%) 1 1 (0.9%) 1 0 (0.0%) 0 3 (0.5%) 3 

Hot flush 1 (0.5%) 1 1 (0.4%) 1 1 (0.9%) 1 0 (0.0%) 0 3 (0.5%) 3 

Reproductive system and breast disorders [a] 1 (0.5%) 1 1 (0.4%) 1 0 (0.0%) 0 0 (0.0%) 0 2 (0.3%) 2 

Respiratory, thoracic and mediastinal disorders [a] 1 (0.5%) 1 0 (0.0%) 0 0 (0.0%) 0 1 (1.4%) 1 2 (0.3%) 2 

[a] These are represented only at SOC level. There were no specific preferred terms within the SOC that occurred in two or more patients. 

S (%) E – the number of patients with at least one event (percentage of patients with N as defined in the column heading), followed by 

number of events. 

 

Control Cohort and Restricted Analysis Set 

The results for the estimated change in %VBD and FGV after 2 years are presented in Table 3-

6. For %VBD, after adjusting for age and baseline values, control cohort patients on average 

had an increase of 0.60% after two years, compared with a decrease of -1.76% in the RAS 

group. These findings represented a difference between the two groups of -2.36%, which was 
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a statistically significant difference from zero (95% CI -3.56% to -1.15%). For FGV, after 

adjusting for age and baseline values, control cohort patients on average had an increase of 

6.4cm3 after two years, compared with a decrease of -11.6cm3 in the RAS group. These FGV 

values represent a difference between the two groups of -18.0cm3, which was a statistically 

significant difference from zero (95% CI -31.1cm3 to -4.8 cm3). Based on the limited 

demographic information available from the control cohort, the modelling suggests that the 

intervention of HAVAHT+Ai™ therapy has a significant effect on MBD outcome measures 

of %VBD and FGV compared to the control cohort.  

 

Table 3-6: The estimated change in %VBD and FGV after 2 years in Control Cohort and RAS group 

 Estimated Change 

in %VBD (95% CI) After 2 

Years 

Estimated Change in FGV 

(cm3) (95%CI) After 2 

Years 

Control Cohort 0.60 (-0.27, 1.47) 6.4 (-2.8, 15.5) 

RAS -1.76 (-2.52, -1.00) -11.6 (-20.9, -2.3) 

Difference (RAS – Control) -2.36 (-3.56, -1.15) -18.0 (-31.1, -4.8) 

 
 

Discussion 

It has been demonstrated that the maximal reduction in MBD with tamoxifen is seen at 2 

years following initiation of therapy (Cuzick, Warwick et al. 2011). Unlike cancer therapy, 

where dose maximisation frequently is traded off against AEs, prevention therapy needs to be 

the lowest dose possible to affect a response and ensure that the side effect profile provides 

a clear benefit over the AE relationship. This patient cohort analysis using VolparaDensity™ 

obtained from 142 patients with mammograms taken both pre- and post-commencement of 

HAVAHT+Ai™ therapy showed there were statistically significant changes from baseline MBD 

measurements of both %VBD and FGV following intervention with HAVAHT+Ai™ therapy. 

 

When MBD was measured by %VBD, patients with cumulative T dosing of 700mg+, the one-

year post-commencement of therapy estimated change was -1.87%, the two-year post-

commencement of therapy estimated change was -2.34%, and the three-year post 

commencement point of therapy had an estimated change of -2.82%. These figures result in a 

relative %VBD change of -11.6%, -14.5% and -17.5% respectively. For patients with cumulative 

T dosing of 500-<700mg+, the one-year post-commencement estimated change was -1.12% 
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(p=0.09), the two-year post-commencement estimated change was -1.69%, and the three-

year post commencement of therapy estimated change was -2.26%. These results equated to 

a -6.9%, -10.5% and -14% relative %VBD decrease, respectively.  

 

When the MBD variable of interest was FGV, the only values of significance were those in the 

700mg+ cumulative T group, at 2 and 3 years post-first HAVAHT+Ai™ implant. The absolute 

change from FGV estimates were -22cm3 and -60cm3 at 2 and 3 years, respectively. These 

results equate to a -12.9% and -35.1% relative decrease. Both results demonstrate clinically 

significant findings as per the previous research reported in the literature. As discussed in the 

introduction for this paper, Cuzick, Warwick et al. (2011) reported that a 10% reduction on a 

0-100% scale is required for a 63% decrease in breast cancer risk, which was reached in the 

first year with 700mg+ T cumulative dosing and at the third year on 500-700mg+ T cumulative 

dosing. In addition, a 20% decrease in FGV has been reported in the literature to lead to a 

50% reduction in breast cancer mortality which was accomplished at the third year with 

700mg+ cumulative T dosing (Li, Humphreys et al. 2013). The model fitted also suggested that 

cumulative anastrozole dosing is a variable of interest when assessing change in MBD 

(p=0.06). Larger values of cumulative anastrozole doses were associated with larger changes 

from baseline (decrease from baseline) in MBD.  

 

The other clinically meaningful benefit of HAVAHT+Ai™ was that there was a favourable AE 

profile of the therapy. Factors that are known to be associated with oral T (elevated 

haematocrit, elevated liver enzymes, elevated adverse lipid profile) were not observed. There 

were some increases in androgenic effects such as hirsutism, but these were not enough to 

cause a cessation of therapy. Local AEs were infrequent and were not graded for severity, but 

most of those that were listed as site haemorrhage were bruising rather than overt bleeding.  

 

This cohort patient analysis has exhibited findings that combination therapy of T and 

anastrozole (HAVAHT+Ai™) results in a statistically and clinically significant reduction of %VBD 

and FGV. To achieve the clinically significant level of MBD reduction that was seen in the IBIS-

1 tamoxifen breast cancer prevention study (Cuzick, Warwick et al. 2011), a minimum 

cumulative dose inclusive of 700mg of T in combination with anastrozole needs to be given. 

Although dosing of less than 700mg of cumulative T exposure in combination with 

anastrozole was shown to affect significant changes in %VBD as a measure of MBD. FGV is a 



 71 

more robust measurement of breast tissue response as it is the least likely of the measures to 

fluctuate with changes in BMI (Krishnan, Baglietto et al. 2017). %VBD needs to be corrected 

over time for the change in BMI, and this was not captured in this cohort analysis; this may be 

the reason for greater heterogeneity in the dose-response seen when measuring %VBD 

compared with FGV. 

 

However, the most significant response in FGV and %VBD was when there was greater than 

700mg of T given in combination with anastrozole over a two to three-year period. Larger 

values of cumulative anastrozole dose were associated with greater changes from baseline 

(decrease from baseline) in %VBD (p=0.06 when the significance level was set at p=0.05). It 

was demonstrated that the average anastrozole dose in this cohort of 2mg per implant was 

not adequate. Based on these observations, suggested dosing for reduction of MBD should 

include a mid-range dose of T (80mg per implant) and an upper-end range of anastrozole 

(4mg per implant). Therefore, a treatment regimen of 10 implants administered over 2.5 

years, delivering a cumulative dose of 800mg of T in combination with 40mg of anastrozole 

should achieve the target clinical effort on MBD (in line with tamoxifen) while maintaining a 

low incidence of AEs and good patient tolerability.  

 

Due to the nature of this research, there needs to be some consideration with the 

interpretation of these findings. Firstly, as this was an analysis of patient records the results 

may be affected by selection bias, the participants that are returning for repeat implant 

dosages might be the patients who responded well to the treatment in regard to decreasing 

MBD variables and the interventions side effect profile. Therefore, the decreasing %VBD and 

FGV values with the increasing cumulative T dosing may not represent the true results that 

would be present in the intended population. Furthermore, limited demographic information 

was documented for the control cohort; therefore, we were unable to determine if the 

baseline characteristics were significantly different from the intervention group. This 

discrepancy may lead to a different outcome occurring if the research was to be replicated. 

With the information presented, it would be feasible and beneficial to conduct further 

research of a more rigorous design, using the knowledge that HAVAHT+Ai™ has signs of effect 

of being able to reduce %VBD and FGV in women at increased risk of breast cancer.  
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Overall, this patient cohort analysis demonstrated that the hormonal intervention of T and 

anastrozole (HAVAHT+Ai™) was efficacious at reducing MBD, with no suggestion of increasing 

AE prevalence with increasing T dose, in a perimenopausal patient population with high MBD. 

This analysis has produced the first report of the impact of combining a pharmacological dose 

of T with a low dose of anastrozole on MBD; these results suggest a larger study should be 

undertaken to confirm the efficacy and safety of this therapy as a chemopreventative 

intervention for breast cancer. 
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3.4 Publication Summary 

To date, clinical observations of subcutaneous testosterone and an anastrozole implant as a 

hormonal replacement have shown favourable results. Compared to previously conducted 

studies, the incidence of breast cancer in the treated women (142/100,000) is substantially 

lower than it is in SEER age-specific incidence rates (293/100,000), the placebo arm of the 

Women's Health Initiative (300/100,000), and the never users of hormonal therapy from the 

Million Women's Study (325/100,000) (Glaser and Dimitrakakis 2013). Glaser and Dimitrakakis 

(2013) originally stated that breast cancer is preventable by maintaining an androgenic 

environment concerning the testosterone/oestrogen ratio. It has previously been 

demonstrated that there is an association between hormone exposure, MBD, and future risk 

of breast cancer (Boyd, Melnichouk et al. 2011). This cohort analysis contributes to previous 

research by Glaser and Dimitrakakis (2013) demonstrating a potential association with 

HAVAHT+Ai™ therapy, the shift to an androgenic breast tissue environment, a reduction in 

MBD variables, and a possible reduction in breast cancer risk.  

 

Although there is evidence to show the previously stated associations, the study did have 

some significant limitations that require further discussion. Firstly, the main limitation of this 

analysis is the study design itself. As it was an open-label uncontrolled record of clinical 

practice rather than a double-blind, randomised controlled trial (RCT), we were unable to 

establish a direct causal link between HAVAHT+Ai™ and the reduction of MBD and TFV in this 

patient cohort. However, the observations reported met some criteria of the Bradford Hill 

criteria for causality (Hill 1965), specifically temporality, biological gradient and plausibility as 

the reductions in mammography variables occurred after the commencement of 

HAVAHT+Ai™ therapy, showed greater reductions with increasing dose and aligned with the 

hypothesised changes based on the current body of evidence, so a causal link between the 

therapy and a reduction in MBD and TGV is likely. More rigorous research designs, such as the 

RCT mentioned above are required to be undertaken to determine if HAVAHT+Ai™ is the 

causal reason for the reduction in the mammography variables and the subsequent potential 

breast cancer reduction.  

 

A further limitation of this study was that HAVAHT+Ai™ is currently being used for numerous 

indications such as menopausal symptom and breast pain management. Due to this reason, 
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within the cohort of 652 women, only 89 patients (14%) were given the therapeutic 

intervention for an indication of a reduction in MBD/breast cancer risk. As there was limited 

baseline MBD data, and we analysed the correlation between dosage and MBD, this could be 

a confounder as the patients in this cohort may have had a lower MBD at baseline. In saying 

this, the patients that had a baseline mammogram, although unadjusted for other potential 

factors, showed a reduction in %VBD and TFV MBD measurements, following the 

HAVAHT+Ai™ intervention irrespective of baseline MBD.  Another limitation within this 

analysis was the limited data regarding the tolerance of HAVAHT+Ai™; 123 women were lost 

to follow up, 46 decided to cease therapy, and 28 felt that HAVAHT+Ai™ was not working. It is 

important that for future studies the drug tolerance is analysed and any reasoning for the 

cessation of the therapeutic intervention is understood and documented.  

 

3.5 Conclusion 

Regarding the overall aims and objectives of this analysis of clinical practice records, there is 

evidence that HAVAHT+Ai™ has signs of effect concerning reducing MBD in a patient cohort 

with measures high MBD. Future research needs to be conducted with more rigorous, 

statistically powered, placebo-controlled, double-blind RCT. Within these studies, there will 

also need to be a more specific inclusion and exclusion criteria which incorporates women 

with high MBD. This eligibility criterion will allow the study population to be an accurate 

representation of the population of interest. Also, any study of this nature will need to 

incorporate baseline measures and repeat measures of the mammography variables, in 

addition to safety and tolerability data. Utilising this study design will allow the effect size of 

the intervention on the MBD variables to be calculated and evidence to be presented 

regarding the safety and overall tolerability of the drug. 

 

3.6  Future Research 

The initial hypothesis was that breast elasticity might be a viable biomarker for MBD and the 

associated aims and objectives, as reported in Section 2, were trying to establish whether this 

is the case. The results from this study were produced so they could be applied to the 

subsequent studies within this thesis. The findings from this chapter demonstrate that 

HAVAHT+Ai™ was associated with a reduction in %VBD and TFV. The future studies within this 
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doctoral thesis can incorporate the breast elasticity outcome measure with the use of the 

SWE ultrasound machine. The breast elasticity can be measured at more frequent intervals 

than mammography. This study design will allow us to determine if breast elasticity also 

changes in response to this hormonal intervention, if these changes correlate with the 

changes occurring in the mammography variables and whether the breast elasticity is more 

sensitive to detect changes. 
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Chapter 4 Pharmacodynamics (breast tissue elasticity) of 

Combination Subcutaneous Testosterone and Anastrozole 

(HAVAHT+Ai™) in Premenopausal Women with High 

Mammographic Breast Density  

4.1 Introduction 

As reported in Chapter 3, HAVAHT+Ai™ has demonstrated the potential to be efficacious at 

reducing %VBD and TFV within a cohort of women with high MBD and therefore increased 

breast cancer risk. This study is the initial study within this research program for which we 

have incorporated the measure of breast elasticity to evaluate the response of the breast 

tissue to the investigational product. The study within this chapter is a sub-study analysis 

within a single-dose pharmacokinetic trial of HAVAHT+Ai™. As the results in Study 1 (Chapter 

3) suggest, repeat dosages of HAVAHT+Ai™, which led to a cumulative testosterone dosage of 

500 to 700mg+, were found to be the most efficacious for reducing MBD. Therefore, as this is 

a single-dose study, it is not hypothesised that MBD and its associated variables will change in 

response to the investigational product; however, there may be a short-term response seen 

in the breast elasticity. 

 

As mentioned in Section 1.2.4, the breast is embryologically a modified sweat gland, and it 

responds like a sweat gland to any alteration to its E/A ratio (McNally and Stein 2017). When 

there is a shift in this ratio towards an androgenic tissue environment in the breast, there is a 

substantial change in MBD (as is seen following menopause) (Boyd, Martin et al. 2002). The 

only widely accepted intervention shown to achieve this effect in premenopausal women is 

oral tamoxifen. As a partial agonist of oestrogen, tamoxifen causes significant alterations in 

both breast and systemic oestrogenic stimulation; this systemic oestrogenic stimulation can 

result in significant treatment-related side effects that reduce the compliance with tamoxifen 

as a breast cancer chemopreventative agent (Peres 2014). 

 
Within the breast, there are many enzymes that convert reproductive pro-hormones, 

including aromatase (Vachon, Sasano et al. 2011) and 5α-reductase (Suzuki, Miki et al. 2006). 

These enzymes convert testosterone to either E2 or DHT, the latter being ten times more 

potent than testosterone as an androgenic agent. High MBD tissue has been shown to 
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contain very high levels of aromatase (Vachon, Sasano et al. 2011), resulting in enhanced 

intracrine production of oestrogen. Aromatisation of testosterone is important in both the 

pre-and postmenopausal breast (Dabrosin 2005). 

  

By using HAVAHT+Ai™, we intend to utilise the overexpression of these enzymatic systems in 

high MBD breast tissue by treating with a pharmacological dose of testosterone combined 

with a low dose of an Ai, thus shifting the E/A ratio towards an androgenic tissue 

environment. This androgenic environment results from the Ai blocking the conversion of 

testosterone to oestradiol, thus increasing bioavailable testosterone in the breast tissue. In 

addition, higher serum testosterone results in more of this androgen being delivered to the 

breast. Ultimately, the consequence of these two actions is a high level of intra-mammary 

testosterone being made available for conversion to DHT and a reduction in intra-mammary 

E2. 

 

As previously mentioned in Section 1.5, within the tissue of high MBD, there is decreased 

activity of the extracellular matrix-degrading enzymes, MMPs and an overexpression of their 

specific inhibitors (TIMPs). The organisation of the extracellular matrix is likely to play a role in 

mediating the mechanical properties of tissues and may influence the elasticity of the tissue. 

Nilsson, Garvin et al. (2007) conducted research into the effect of oestrogen and tamoxifen 

on the secretion and activity of MMP-2 and MMP-9 and TIMP-1 and TIMP-2, finding that 

tamoxifen treatment induced a significant increase in MMP-2/MMP-9 activity (P<0.001 as 

compared to control cells) and that oestradiol significantly decreased MMP-2/MMP-9 activity 

(P<0.05 as compared to control cells) and this decrease was in part reversed by addition of 

tamoxifen to the oestradiol treatment (P<0.01). Nilsson, Garvin et al. (2007) also reported 

that tamoxifen significantly increased TIMP-1 levels (P<0.05 as compared to control) whereas 

oestradiol significantly lowered the amounts (P<0.01 as compared to control cells). We 

hypothesised that by using HAVAHT+Ai™ to decrease the oestradiol levels within the breast, 

there will be an increase in the extracellular matrix degrading proteins of MMP-2 and MMP-9 

and an increase in the TIMP-1 and TIMP-2 tissue inhibitors, which would lead to greater 

extracellular matrix regulation. Therefore, breast tissue elasticity may change in response to 

the HAVAHT+Ai™ intervention, and this could be detected earlier than the global tissues as 

seen with mammography. 
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4.2 Objectives 

This is the first study within this thesis that directly measures the effect of a 

chemopreventative agent (HAVAHT+Ai™), that has been shown to reduce MBD (as per 

Chapter 3), on breast tissue elasticity. This study evaluates the potential effect on 

HAVAHT+Ai™ on breast tissue elasticity, as measured by SWE and whether these changes 

correlate with changes (if occurring) in MBD, as measured by VolparaDensity™. 

 

4.3 Method 

This pharmacodynamic analysis was a sub-study study within a single-dose, single-centre, 

open-label non-randomised pharmacokinetic trial of HAVAHT+Ai™ in premenopausal women 

conducted at Wellend Health Pty Ltd, Toorak Gardens, South Australia. This trial was 

approved by the Bellberry Limited Human Research Ethics Committee (HREC) (approval 

number 2017-06-434). As the purpose of the trial was descriptive, a formal sample size 

calculation was not appropriate. A planned sample size of 12 participants was based on 

feasibility, and it was anticipated that sufficient information would be obtained to achieve the 

primary pharmacokinetic objective of the trial. 

 

4.3.1 Patient Population 

The trial population consisted of premenopausal women. Potential participants were those 

either referred by their medical practitioners or self-referred to the Wellend Health Pty Ltd 

clinic for HAVAHT+Ai™ therapy for the reduction of high MBD. Potential patients were 

screened for their eligibility to be included in the study during the 21 days prior to the 

scheduled dosing date. Participants were eligible for the study if the following criteria were 

met; premenopausal levels of follicular stimulating hormone, luteinizing hormone and 

oestradiol (FSH/LH/E2) according to the definition of “premenopausal range”, 

VolparaDensity™ volumetric breast density of ≥ 15.5% (combined average both breasts), aged 

between 33-55 years inclusive, body weight between 50 and 90kg inclusive, in good general 

health without clinically significant cardiac, respiratory, or psychiatric disease and a negative 

pregnancy test. Participants were excluded from the trial if there was the presence of breast 

cancer, had a previous or concomitant other malignancy (non-breast, other than skin) within 

the previous five years, diabetes mellitus or glucose intolerance, history of coronary artery 
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disease, existing testosterone, oestrogen and/or anastrozole treatment or systemic hormonal 

contraception. Participants who prematurely withdrew post-dosing were to be replaced to 

ensure that at least 11 participants completed the trial. Prior to dosing, the participants were 

confirmed to be in the luteal phase of their menstrual cycle, as based on progesterone levels 

of >4nmol/L. 

 

4.3.2 Investigational Product 

All participants received the same active treatment of HAVAHT+Ai™, a subcutaneous pellet 

with 80mg of testosterone and 4mg of anastrozole. This dosing regimen of HAVAHT+Ai™ is 

appropriate for a population of the age and BMI set out in the inclusion criteria. The 

participants were advised to place a patch of EMLA local anaesthetic cream (a combination of 

lidocaine and prilocaine) at least one hour before the planned administration of the 

HAVAHT+Ai™ at the site of the proposed insertion. The investigational product was 

administered to each participant by Dr Stephen Birrell, The Medical Director of Wellend 

Health Pty Ltd. Prior to administration, a standard sterile procedure was undertaken, and 5ml 

of xylocaine was injected with a 25-gauge needle on the right gluteal region midway between 

the greater tuberosity of the hip and the superior tuberosity of the pelvis. A 4mm incision was 

made through the skin, and a 4mm trochar was inserted at an angle of 45˚ into the 

subcutaneous tissue for a length of 5cm. The implant was inserted to the end of the trochar, 

after the withdrawal of the trochar, the wound was closed with a butterfly closure such as 

steri-strips and covered with a waterproof dressing.  The pellet was inserted between 8 am 

and 10 am on the day of dosing.  

 

4.3.3 Outcome Measures 

All participants had a baseline mammogram conducted by Dr Jones and Partners Medical 

Imaging at Burnside Hospital. These mammography images were analysed by 

VolparaDensity™ software, which provided the variables of %VBD, TFV and total breast 

volume in cm3 (TBV). The participants also consented for their 12-month annual follow-up 

mammogram to be analysed as part of this study. 
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Breast elasticity was measured with SWE and was conducted using the SuperSonic™ Imagine 

Aixplorer® ShearWave™ ultrasound (Aixplorer®, France) (Figure 4-1). A linear transducer head 

with ample ultrasound gel (Figure 4-2) was placed on the breast, parallel from the nipple, two 

centimetres away from the nipple in a diagonal direction (Figure 4-3).  

 

 
Figure 4-1: SuperSonic™ Imagine Aixplorer® ShearWave™ Elastography ultrasound device 

 

 
Figure 4-2: Linear transducer head with ultrasound gel 
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Figure 4-3: Diagram of the location and direction of the linear transducer head on the breast 

 
The breast was visually divided into eight quadrants (Figure 4-4), in reference to Figure 4-4, 

number one is the right outer lower quadrant, number two is the right outer upper quadrant, 

three was the right inner upper quadrant, four is the right inner lower quadrant, five is the 

left inner lower quadrant, six is the left inner upper quadrant, seven is the left outer upper 

quadrant and eight is the left outer lower quadrant. Once the images were captured, they 

were analysed post-hoc on the SWE machine. To analyse the image and generate the 

elasticity data, a single or multiple pre-defined circular Q-Box™ were placed on the image 

(Figure 4-5), within this Q-Box™ a ROI was created and the minimum, maximum, mean and 

standard deviation (SD) of the tissue elasticity in kilopascals (kPa) and the depth of the tissue 

was calculated from this ROI. For this study, six 3mm (6 x 3mm) Q-Box™ were placed on the 

image (Figure 4-5). 

 

 
Figure 4-4: Image sequence of the breast quadrants used in shear wave elastography 

 
The average of all six Q-Box™ per image were combined to determine the average elasticity of 

both breasts combined per participant. The Medical Director at Wellend Health Pty Ltd 

advised the method of using 6 x 3mm Q-Box™ as the best method for acquiring the elasticity 
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data and therefore was used within this study. Once the images had the Q-Box™ and elasticity 

measurements generated, a report was made with all the images and all the corresponding 

data which was exported from the machine. Breast elasticity was assessed at baseline, and on 

days 29, 57 and 85. 

 

 
Figure 4-5: Shear wave ultrasound output with six 3mm Q-Box™ and the elasticity measurements 

 

4.3.4 Statistical Analyses 

All collected data was collated and tabulated using Microsoft Excel (Microsoft, USA). All 

statistical analyses were conducted using IBM SPSS version 25 (IBM, Amarok, USA). The 

statistical model chosen for each analysis is described in the corresponding result section. 

4.4  Results 

4.4.1 Patient Demographic 

11 participant datasets were included in this analysis. The average age of the participants was 

41.5 (SD 3.7) years; a full summary of the participant demographics is presented in Table 4-1. 

All participants had their data included in all the analyses.  
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Table 4-1: Participant characteristics 

Demographic Parameters (Units) Average (SD) 

Age (years) 41.4 (3.7) 

Weight (kg) 67.87 (10.27) 

Height (m) 1.673 (0.066) 

BMI (kg/m2) 24.14 (2.26) 

 Number of Participants (%) 

Race (white) 10 (90.9%) 

Race (white/Asian) 1 (9.1%) 

Ethnicity (not Hispanic or Latino) 11 (100%) 

 

4.4.2 Changes in Breast Elasticity from Baseline to Month 3 

The descriptive summary of the breast elasticity values and the change in breast elasticity are 

presented in Table 4-2. 

Table 4-2: Mean Breast elasticity summary and change from baseline 

Timepoint Breast Elasticity 

(SD) in kPa 

Change from 

Baseline (kPa) 

Baseline 13.67 (7.89)  

Month 1 11.68 (5.58) -1.99 

Month 2 9.86 (5.63) -3.80 

Month 3 8.63 (3.96) -5.04 

 

Due to the small sample size of this study, a spaghetti plot was created to visualise the 

patterns for each study participant (Figure 4-6). This plot shows that there is significant 

variation within each individual dataset. The most common trajectory was a breast elasticity 

decrease from baseline, however there were two participants whose breast elasticity 

increased over the three weeks.  
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Figure 4-6: Breast elasticity for each individual participant, at each timepoint 

 

Upon analysing the data, it was observed that there were outliers present in each data set. All 

of these data points were assessed and deemed to be true values and were left within the 

analysis. The original data were not normally distributed as determined by the Shapiro-Wilk 

test; for this reason, the Friedman test, a non-parametric statistical model, was used to 

analyse the data. 

 

The results show that breast tissue elasticity was statistically significantly different at the 

different time points during the intervention X2(3) = 30.835, p<0.0005. The median values of 

the breast tissue elasticity at each time point are presented in Table 4-3. Pairwise 

comparisons were performed with Bonferroni corrections for multiple comparisons. The 

breast elasticity was statistically significantly different between baseline and month 2 

(p=0.002) and baseline and month 3 (p<0.0005). There were no statistically significant 

differences between baseline and month 1 (p=1.000). 
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Table 4-3: Median breast elasticity values 

Timepoint Median Breast 

Elasticity (kPa) 

p-value (difference 

from baseline) 

Baseline 13.10  

Month 1 10.80 1.000 

Month 2 8.39 0.002 

Month 3 7.98 <0.0005 

 

4.4.3 Changes Between Percentage Volumetric Breast Density from Baseline 

to Month 12 

Within the study protocol, the participants were scheduled to have a mammogram after 12-

months. From this data, it enabled us to determine the effect of HAVAHT+Ai™ on %VBD 

across 12 months. The women all had differing dosages levels, due to the small sample sizes, 

the results will be provided as the overall changes and then descriptive statistics regarding the 

different dosage groups. 

 

Upon looking at the data sets, the data were normally distributed, and there were no outliers 

present in either data set. The mean %VBD of the baseline data was 19.41% (SD 3.07), and 

the 12-month data was 18.08% (SD 4.91%). The results of a paired-samples T-Test showed 

that there was a statistically insignificant mean difference of -1.33% (95% -1.61% to 4.26%; p= 

0.34). As mentioned, that treatment doses varied between participants; Table 4-5 shows the 

descriptive statistics of the %VBD changes as per the number of HAVAHT+Ai™ pellets 

inserted. 
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Table 4-4: Descriptive statistics of the %VBD changes as per the number of HAVAHT+Ai™ pellets 

Dose 

(number of 

pellets)a 

Number of 

Participants 

Baseline 

Mean %VBD 

12- Month 

Mean %VBD 

Mean %VBD 

Absolute 

Change 

1 2 18.4% 16.5% -1.9% 

2 1 17.5% 18.3% 0.8% 

3 5 18.9% 16.36% -2.54% 

4 2 20.0% 21.2% 1.2% 

5 1 24.7% 23.4% -1.3% 

a The number of pellets varied due to the participants having the choice of continuing therapy or 
discontinuing therapy once the 3-month study had reached completion 

 

4.4.4 Changes in Total Fibroglandular Volume from Baseline to Month 12 

 

The TFV (cm3) is a mammography variable that calculates the volume of fibroglandular (or 

dense) tissue within the breast. The data of the baseline TFV was not normally distributed, 

and there was one outlier present in the baseline dataset, which was assessed and deemed to 

be a correct figure and was left in the analysis. As the data was not normally distributed, a 

non-parametric statistical model was chosen to analyse the data. Table 4-6 shows the mean 

descriptive statistics for the dose-specific changes.  

 

The mean fibroglandular volume of the baseline dataset was 197.4cm3 (SD 118.7cm3) and 

184.4cm3 (SD 125.1cm3) for the 12-month dataset, this was a mean difference of -13.02cm3 

(SD 29.55). 
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Table 4-5: Descriptive statistics of the TFV changes as per number of HAVAHT+Ai™ pellets 

Dose 

(number of 

pellets) 

Number of 

Participants 

Mean 

Baseline 

(cm3) 

 Mean 12- 

Month 

(cm3) 

Change 

(cm3) 

1 2 214.55 197 -17.55 

2 1 196.3 254.4 58.1 

3 5 137.32 107.24 -30.08 

4 2 389.6 386.8 -2.8 

5 1 80 69.8 -10.2 

 

When using the non-parametric statistical models, the median values and median differences 

are the data used unless otherwise stated. The distribution of the differences between the 

two groups was not symmetrical in shape; for this reason, the Sign test was chosen as it does 

not require the assumption of symmetry within the differences. 

 

Eleven participants were recruited into the pharmacokinetic study, and all 11 had a baseline 

and 12-month follow-up data recorded. All data are median values unless otherwise stated. In 

the analysis, when comparing the baseline and TFV at baseline and month 12; participants 

had a lower TFV at 12-months (126.90cm3) compared to the baseline data (154.10cm3) with a 

median difference of -22cm3, this result had a p-value of 0.065. From the 11 participants, two 

had increased, and nine had decreased TFV, there were zero ties within the dataset. 

 

4.4.5 Correlations Between Per Cent Volumetric Breast Density and Breast 

Elasticity  

This section contains three different statistical analyses to determine if; 

1. The baseline %VBD were correlated with the breast elasticity 

2. The 12-month %VBD measures were correlated with the 3-month breast elasticity measures 

3. The changes in %VBD were correlated with the change in elasticity from baseline to the final 

measures 

 

For parametric data, the Pearson’s correlation coefficient and for non-parametric data, the 

Spearman Rank Order correlation was used to determine if there was a relationship between 
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the %VBD and the breast elasticity. The correlation thresholds that were used were in 

accordance with the recommended medical research thresholds (Mukaka 2012) and are 

presented in Table 4-6. 

                              

Table 4-6: Pearson's correlation coefficient correlation thresholds 

Size of Correlation Interpretation 

.90 to 1.00 (-.90 to -1.00) Very high positive (negative) correlation  

.70 to .90 (-.70 to -.90) High positive (negative) correlation 

.50 to .70 (-.50 to -.70) Moderate positive (negative) correlation 

.30 to .50 (-.30 to -.50) Low positive (negative) correlation 

.00 to .30 (.00 to -.30) Negligible correlation 

 

Both the baseline %VBD and the breast elasticity data, according to the Shapiro-Wilks test, 

were normally distributed, and there were no outliers present in either dataset. Using 

Pearson’s correlation coefficient, the results showed an r-value of 0.184 (p=0.589), this is a 

statistically insignificant negligible correlation between the two variables. The correlation is 

presented in Figure 4-7. 

 

 
Figure 4-7: Correlation between %VBD and breast elasticity at baseline  

 

Both the 12-month %VBD and three-month elasticity data, according to the Shapiro-Wilks 

test, was normally distributed. Using Pearson’s correlation coefficient, the results showed an 

r-value = 0.184 
p=0.589 
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r-value of 0.233 (p = 0.491), this is a statistically insignificant negligible correlation between 

the two variables. The correlation is presented in Figure 4-8. 

 
 

 
Figure 4-8: Correlation between %VBD at 12 months and breast elasticity at 3 months 

 

When determining if there is a correlation between change in %VBD and the change in the 

elasticity values, the correlation analysis was conducted on the difference values between the 

baseline %VBD and 12-month %VBD results, and the difference values between the baseline 

elasticity and the 3-month elasticity values. The Shapiro-Wilk test for normality showed that 

the data were normally distributed; there were no outliers present within the data. Pearson’s 

correlation for the change in the variables had an r-value of 0.315 (p=0.345); this was a 

statistically insignificant low positive correlation between the change in the variables across 

the study. The correlation is presented in Figure 4-9. 

 

r-value = 0.233 
p=0.491 
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Figure 4-9: Correlation between change in %VBD (baseline to month 12) and change in breast elasticity (baseline to month 

3) 

 

4.4.6 Correlations Between the Total Fibroglandular Volume and Breast 

Elasticity  

The TFV is the recorded volume of dense tissue within the mammogram, this is a variable of 

interest as the %VBD is influenced by both the fibroglandular volume and the TBV, so if a 

therapeutic intervention reduces both variables, the %VBD may remain unchanged. The TFV 

is the outcome measure that can quantify the extent of the changes occurring in the actual 

dense tissue itself; this being the tissue of interest in regard to interventions being used to 

reduce MBD. 

 

Within the baseline TFV and the baseline breast elasticity values, the Shapiro-Wilks test 

showed that the baseline fibroglandular data were not normally distributed. There was a 

single outlier present within the data, and upon further analysis, this was deemed a correct 

figure and therefore was left in the analysis. Spearman’s rank-order correlation was used as 

the statistical model. The results produced a rs value of -0.118 (p=0.729); this was a 

statistically insignificant negligible correlation between the baseline fibroglandular volume 

values and the baseline breast elasticity values. The correlation is presented in Figure 4-10. 

 

 

r-value = 0.315 
p=0.345 
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Figure 4-10: Correlation between total fibroglandular volume and breast elasticity at baseline 

 

About the 12-month fibroglandular volume and 3-month elasticity data, the fibroglandular 

data, according to the Shapiro-Wilks test, was not normally distributed. No outliers were 

present within either dataset. Spearman rank-order correlation was used as the statistical 

model for the analysis. The results showed a rs value of -0.436 (p=0.180) this was a statistically 

insignificant moderate negative correlation between the variables. The correlation is 

presented in Figure 4-11. 

 

 
Figure 4-11: Correlation between total fibroglandular volume (month 12) and breast elasticity (month 3) 

 

Rs value = -0.118 
p=0.729 

Rs value = -0.436 
p=0.180 
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When determining if there was a correlation between change in TFV and the change in the 

elasticity values, the correlation analysis was conducted on the difference values of the 

baseline TFV and the 12-month TFV and the difference values of the baseline elasticity and 

the 3-month elasticity values. The Shapiro-Wilks test showed that the data were normally 

distributed. There was an outlier within the fibroglandular volume dataset, and with further 

analysis, this was deemed a true value and left in the analysis. Pearson correlation coefficient 

demonstrated that the r-value was 0.689 (p=0.019); this was a statistically significant 

moderate positive correlation between the two variables. The correlation is presented in 

Figure 4-12. 

 

 
Figure 4-12: Correlation between change in total fibroglandular volume (baseline to month 12) and change in breast 

elasticity (baseline to month 3) 

 

In addition to the elasticity changes across the three months, two additional analyses were 

conducted for the one-month data and the two-month data elasticity change with the TFV 

changes across the 12 months. With the change from baseline to the one-month elasticity 

variables, the data were normally distributed according to the Shapiro-Wilk test, and there 

were multiple outliers within both datasets, which were deemed to be correct values and left 

in the analysis. Pearson’s correlation coefficient produced an r-value of 0.611 (p=0.046). This 

was a statistically significant, moderate positive correlation between the two variables. The 

correlation is presented in Figure 4-13. 

 

 

r-value = 0.689 
p=0.019 
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Figure 4-13: Correlation between change in total fibroglandular volume (baseline to month 12) and change in breast 

elasticity (baseline to month 1) 

 

The last analysis was the elasticity changes from baseline to month two, and the TFV changes 

from baseline to month 12, the data were normally distributed according to the Shapiro-Wilks 

test. There was a single outlier in the TFV dataset, which was assessed and deemed a true 

value and left in the analysis. Pearson’s correlation coefficient produced an r-value of 0.818 

(p=0.002). This shows that there was a statistically significant high positive correlation 

between the elasticity change two months and the TFV changes at 12-months. The 

correlation is presented in Figure 4-14. 

 

 
Figure 4-14: Correlation between change in total fibroglandular volume (baseline to month 12) and change in breast 

elasticity (baseline to month 2) 

r-value = 0.611 
p=0.046 

r-value = 0.818 
p=0.002 



 96 

 

4.5 Discussion 

This was a sub-study within a single dose, single-centre, open-label, non-randomised 

pharmacokinetic trial of HAVAHT+Ai™ conducted on 11 premenopausal women. This study 

aimed to determine the pharmacodynamic effect on breast tissue elasticity, which is an 

experimental biomarker to determine breast tissue changes.  

 

The breast tissue elasticity reduced progressively over time, with a relative reduction of 37% 

from baseline to the 3-month measurement. It has previously been reported that high MBD 

tissue shares similar characteristics to malignant breast tissue, specifically the fibrodense 

areas having a downregulation of fibroblasts, leading to a greater extracellular matrix 

component and low adipocytes (DeFilippis, Chang et al. 2012) and a decreased regulation of 

MMPs and their inhibitors TIMPs (Bonnans, Chou et al. 2014). This abnormal extracellular 

matrix deposition can lead to tissue stiffening, causing increased tissue elasticity as seen in 

breast cancer (Bonnans, Chou et al. 2014). We hypothesised that the characteristics of high 

MBD, such as high extracellular matrix content would lead to greater tissue elasticity; 

therefore, changes in elasticity may precede a change in MBD. These study results 

demonstrated that the HAVAHT+Ai™ combination had a rapid physiological effect on high 

breast tissue elasticity in this cohort of women with high MBD.  

 

With the additional analyses that could be conducted with the 12-month follow-up 

mammogram, within this sample, the combination of HAVAHT+Ai™ descriptively produced an 

overall mean decrease in %VBD across the 12-months. In addition, the analyses showed that 

the TFV decreased over the 12 months, and this reduction was approaching the conventional 

benchmark for statistical significance with consistently large effect sizes across the 

participants. This decrease in TFV is of particular interest as the fibroglandular tissue is what 

constitutes the dense tissue, so a reduction in this tissue specifically may be able to reduce 

the breast cancer risk. Additionally, if an intervention can reduce the breast volume and the 

TFV, the %VBD value may not show a reduction, which could lead to Type II errors when 

accepting or negating the null hypothesis. Therefore, specifically seeing a change in this 

variable may beneficial. 
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One of the key objectives of this thesis is to determine if breast tissue elasticity can be used as 

a biomarker for MBD. Within this study, we were able to conduct correlation analyses on the 

changes in the breast elasticity with the changes in %VBD and the changes TFV. From these 

analyses, it showed that there was a statistically significant moderate correlation with the 

change in elasticity over three months to the change in TFV over the 12 months. The results 

also showed a moderate and strong correlation with the elasticity changes at month one and 

month two, respectively, with the TFV changes at 12 months. These result shows great 

promise that the elasticity changes may be able to represent and predict the density changes 

in a timelier manner, which is one of the strongest reasons to research breast elasticity as a 

biomarker for breast tissue changes. However, this study was unable to inform us as to what 

would happen to the elasticity values across a full 12 months. Furthermore, as this study was 

not sufficiently powered, we are unable to statistically demonstrate the significance of the 

results. Future research needs to be conducted with a formally powered sample size to 

demonstrate whether this relationship exists. 

 

One of the limitations of this study, as previously mentioned, is the sample size, as this was a 

pilot study, no formal sample size calculation was completed. This unmeasured statistical 

power means that although the results can show a sign of effect, the results are unable to 

show the level of significance and need to be interpreted with caution. A further limitation of 

this study is the lack of previous research for the use of SWE for this indication. When using 

SWE, there are a variety of post-hoc analysis techniques that can be used to calculate breast 

elasticity. However, SWE hasn’t been used to measure and evaluate changes for this 

indication, so no validated techniques have been published in the literature. Some of the 

results that were produced during this trial appeared to have a substantial amount of 

variation in the within-subject repeat measures. As this machine has not been used previously 

and the design of this trial was Phase 1, with no control group, we are unsure if this variability 

is natural fluctuations, measurement error, or the true results of the intervention on the 

breast tissue elasticity. In order to distinguish what may be causing the fluctuations, a 

reliability study, in women not receiving any hormonal intervention that could affect the 

breast, controlling for fluctuations in the participant’s menstrual cycle needs to be completed. 

This additional information will allow us to calculate the intra-rater reliability and determine if 

there are natural fluctuations within the breast tissue elasticity. 
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As mentioned, another limitation with the SWE machine is the lack of validated protocols to 

produce the whole breast elasticity results. When using the SWE machine, once the image 

has been saved, Q-box™ are placed on the image, these produce the mean, max, min, SD 

elasticity of the area within the Q-Box™. These are customisable regarding the diameter and 

the location they are placed, and there is also the option of tracing the image to develop a 

customised shaped Q-Box™. There is no set protocol to utilise the Q-Box™ to find the whole 

breast average elasticity. By changing the number, diameter and location of the Q-Box™, the 

elasticity values can change. Future studies need to be conducted to analyse the best method 

to find the average breast elasticity. This further information could aid future studies, to find a 

reliable and consistent method to determine the elasticity, which will be especially beneficial 

when designing longitudinal trials with repeat elasticity measures to detect true change. 

 

4.6 Conclusion 

Overall, this pilot study generated evidence to show an association between a reduction in 

breast elasticity and a singular dose of HAVAHT+Ai™. There is also early evidence that these 

changes may correlate with the changes occurring in TGV in response to the same 

intervention.  

 

4.7 Future Studies 

Future studies need to be conducted to firstly determine consistency in the response of 

elasticity with another intervention that can affect MBD variables. In addition, due to the 

fluctuations seen in this study, a reliability study looking at the behaviour of breast elasticity, 

not on any interventions that can influence the breast tissue, needs to be conducted to 

determine if these fluctuations are, as mentioned, measurement error or typical findings. 

Studies of this nature can be found in Chapter 6 and Chapter 8 of this thesis. 
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Chapter 5 Anastrozole and GTx-024: The Effect of an Aromatase 

Inhibitor and Selective Androgen Receptor Modulator on 

Mammographic Breast Density and Breast Elasticity in 

Premenopausal Women 

5.1 Background 

In Chapter 4, in response to the therapeutic intervention of T and anastrozole (HAVAHT+Ai™), 

it was demonstrated that mean breast elasticity and mean TFV decreased within the recruited 

cohort of women. Further to this, the decreases in the mean breast elasticity were seen as early 

as the one-month repeat measurement. This early data is promising for the primary objective 

of this thesis and has generated initial findings and hypotheses, that can be further developed. 

As with all new, novel ideas, further research is required to validate the present findings, 

decrease the impact of research biases on the results and generate new evidence to contribute 

to the overall body of evidence. To determine if breast elasticity can be influenced by 

therapeutic interventions targeted at reducing MBD and determine if these changes correlated 

with the changes in MBD and the VolparaDensity™ variables, it needs to be established whether 

breast elasticity can be modified with a different intervention than HAVAHT+Ai™. By 

establishing whether a different intervention produces similar results with breast elasticity and 

MBD changes, we can show consistency with the response, which will contribute to 

demonstrating that breast elasticity may be a valid biomarker for MBD. 

 

In addition to validating the findings, this chapter aimed to work through some of the 

limitations discussed in Section 4.5, one of which was the timing of the outcome 

measurements; the main issue being the omission of a 12-month SWE ultrasound to measure 

breast elasticity. As the schedule of assessments in Chapter 4 varied between the SWE breast 

elasticity measurements and the mammography variables, a study that had both variables 

measured at the same time points needed to be conducted to accurately calculate the 

relationship between the variables, and also to analyse the behaviour of breast elasticity across 

a 12-month time period. 
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This chapter is the second experimental trial conducted for this research program. A different 

hormonal combination was used to reduce oestrogenic drive and shift the E/A ratio towards an 

androgenic environment. This hormonal combination utilised an Ai (anastrozole) to block the 

conversion of androstenedione to E1 and testosterone to E2. The second component of the 

combination was a SARM (GTx-024 also called enobosarm). As discussed in Chapter 1, the 

rationale for using a SARM is that Ai’s are contraindicated in premenopausal women due to 

perturbations in the homeostatic mechanisms controlling ovarian function (Casper 2007). Thus, 

by administering GTx-024, we postulated that the impact of an Ai on the hypothalamic-pituitary 

axis would be circumvented and not result in ovarian hyper-stimulation, allowing the 

combination to reduce MBD without undue side effects. 

5.2 Objectives 

The primary objective of this trial was to determine whether the combination of enobosarm 

and anastrozole reduces the VolparaDensity™ MBD measurements of %VBD and TFV and 

breast elasticity in kPa as measured by SWE. 

The secondary objective of this trial was to determine whether the changes (if changes are 

observed) in the VolparaDensity™ mammography variables (%VBD and TFV) correlate with 

the changes in the breast elasticity in kPa as measured by SWE. 

 

5.3 Research Questions 

5.3.1 Primary Research Questions 

1. Does the combination of GTx-024 and anastrozole reduce %VBD and TFV in 

premenopausal women with high MBD? 

2. Does the combination of GTx-024 and anastrozole reduce breast elasticity in kPa in 

premenopausal women with high MBD? 

 

5.3.2 Secondary Research Questions 

1. Do the changes in %VBD and TFV correlate with the changes in breast elasticity? 
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5.4 Method 

5.4.1 Research Design and Ethical Approval 

This trial was designed to obtain data regarding the effect of anastrozole and GTx-024 in a 

patient population in a clinical situation, during a 12-month dosing regimen. Given the lack of 

previous studies researching this treatment regimen, a single-centre, open-label pilot study 

with a small group of premenopausal women was deemed the most suitable design to 

determine any signal of effect. Bellberry Limited HREC approved the study (approval number 

2016-02-099), and all patients provided informed consent. The study has also been registered 

on Clinicaltrials.gov (clinical trial identifier: NCT032646651). 

 

5.4.2 Patient Population 

The trial population consisted of premenopausal women. Participants were referred to the 

clinic for either the evaluation of high MBD or breast pain or both factors. Participants were 

screened for eligibility for study participation during the 21 days prior to the scheduled dosing 

date. At the screening visit, medical histories (including menstrual history) and demographic 

data, including sex, age, race, body weight (kg), and height (cm) were recorded. Other 

assessments included physical examination, breast examination, mammography (if not 

performed within the previous three months, utilising VolparaDensity™ analysis), complete 

vital signs, and laboratory tests as specified. Participants were eligible if they had 

premenopausal levels of FSH/LH/E2, VolparaDensity™ volumetric breast density of ≥ 15.5% 

(combined average both breasts) and breast pain in the previous month of equal to or greater 

than 40mm on a 100mm VAS for pain.  

 

5.4.3 Treatment Regimens 

Patients were scheduled to be treated daily for a 12-month period with the investigational 

product of both GTx-024 (GTx Pharmaceuticals, Memphis, TN) 9mg a day as three x 3mg soft 

gel capsules and anastrozole 1mg a day as singular a solid tablet. These treatments were 

dispensed monthly, and treatment compliance was recorded for each participant. The 
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investigational product was labelled according to the Australian Code of Good Manufacturing 

Practice for medicinal products. As the study was open label, no blinding was required.  

 

5.4.4 Outcome Measures 

As per the methodology in Chapter 4, MBD was measured using VolapraDensity™, which 

analyses a digital mammogram to provide the measurements of TFV in cm3, TBV in cm3 and 

from these measurements %VBD is calculated. Figure 5-1 is the visual output that is produced 

with VolparaDensity™. Mammograms were performed at baseline and month 12. Shear wave 

elastography was conducted using SuperSonic™ Imagine Aixplorer®® ShearWave™ ultrasound 

machine (Aixplorer®, France). The methodology for the SWE was described in Section 4.3.3. 

Shear wave elastography was done at baseline, month one, month three and month 12. 

Breast pain was measured using a 100mm VAS for breast pain (Appendix 2). Menopausal 

symptoms were measured using the Menopause Rating Scale (MRS) (Appendix 3) at baseline, 

month one, month three and month 12. 

 

 
Figure 5-1: VolparaDensity™ Output 

 
Blood tests were conducted at baseline, month one, month three, month six, month nine and 

month 12 for haematology, biochemistry and a hormonal profile including LH, FSH, E2, 

progesterone, total testosterone, FAI, SHBG. Blood tests were done by Clinpath Laboratories 

at Burnside Hospital and analysed at the corresponding laboratory. Serum plasma anastrozole 

levels were measured at months nine and 12. This was done by CPR Pharma Services Pty Ltd 
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(now known as Agilex Biolabs Pty Ltd), South Australia. All AEs were documented. The 

Schedule of assessments and procedures are presented in Table 5-1. 
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Table 5-1: Schedule of Assessments and Procedures 

Trial Montha Physical examb 

Medical History 

Serum 

Pregnancy Testc 

 

Mammographyd Urine 

Pregnancy 

Haeme 

And Bio 

Hormonal 

Profilef 

Shear 

Wave 

Ultrasoundg 

Breast 

Pain/Stiffnessh 

Menopause 

Questionnairei 

Vital 

Signsj 

AEk 

and 

Con- 

Meds 

Screening X X  X X    X  

Baseline (pre-

dose) 
  X   X X X X X 

1 Months    X X X X   X 

3 Months   X X X X X X  X 

6 Months    X X     X 

9 Months    X X     X 

12 Months 

(end of study) 
 X X X X X X X  X 

15 Months 

(Follow-up) 
  X X X  X X  X 

End of trial/Early termination 
 

a Assessments were to be made in the following order: Vital signs, adverse events and blood sampling. 

b Physical examination includes breasts, height, weight and BMI calculation. 
c Serum pregnancy test. 
d Unless mammography performed in previous three months using VolparaDensity™ analysis on a New Generation Hologic mammogram machine (Dr Jones & Partners at Burnside War Memorial Hospital or St Andrews Hospital). 
e Safety laboratory tests: haematology and biochemistry. 
f Hormonal profile included LH, FSH, E2, progesterone, FAI, dehydroepiandrosterone sulphate (DHEAS) and SHBG. Repeat measurement of progesterone was to be carried out, 3 days post result, in participants not in the luteal phase of their menstrual cycle 

at the time of first assessment. 
g Assessment of breast tissue elasticity. The pre-dose assessment denoted the baseline. 
h Breast pain/stiffness as measured by a 100mm visual analogue pain scale. 
i As measured by menopause rating scale  
j Vital signs included seated systolic and diastolic blood pressure, pulse rate and body temperature. 
k Adverse Events and Concomitant Medication were collected, following consent, at every visit and unsolicited for the duration of the trial. 
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5.4.5 Data synthesis and Analytical Procedures 

All data were tabulated into Microsoft Excel 2016 (Microsoft, USA). SPSS version 25 (IBM, 

USA) was used to compute the descriptive statistics and inferential statistics. The significance 

level was set a priori with a p-value equal or less than 0.05, with a 95% CI presented for the 

primary and secondary analyses. All subjects were included in the analysis using the intention-

to-treat principle. Population sample characteristics were reported using descriptive statistics. 

 

The distribution of the data was assessed via the Shapiro-Wilk test with a p-value greater than 

0.05 determining the data were normally distributed. Outliers were determined by a visual 

assessment of a box plot; any determined outliers were further analysed to be grouped as 

true values or measurement errors; if the values were deemed true values, they were left 

within the analysis.  

 

The pre- and post-intervention data for the mammography variables (%VBD, TFV, TBV) were 

analysed using a paired samples T-test for parametric data; the Wilcoxon-Signed Rank test 

was used for non-parametric data. The breast elasticity at each of the four time points was 

analysed using a one-way repeat measure analysis of variance (ANOVA) with post-hoc 

Bonferroni adjustments for parametric data. Friedman test was the alternative statistical 

model for the one-way repeat measure ANOVA, for non-parametric data. Correlation analyses 

were conducted using Pearson’s correlation coefficient for the parametric data. Spearman’s 

Rank Order Correlation Coefficient was used for non-parametric data. 

 

5.5 Results 

5.5.1 Participant Characteristics 

Eight participants were recruited during the period of January 2017 to May 2017. Table 5-2 

presents the participant demographic characteristics. The average treatment compliance was 

97.7% (SD 3.7%), with 12.5%of participants having 100% compliance. One participant 

withdrew from the study during the tenth month for reasons not related to the 

investigational product. 
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Table 5-2: Participant Characteristics 

Demographic 

Parameter (Units) 

Average (SD) 

Age (years) 40 (3.2) 

Weight (kg) 64.6 (11.1) 

Height (m) 168.4 (2.5) 

BMI (kg/m2) 22.8 (3.5) 

%VBD 21.70% (3.7) 

Pain (VAS) 71.13 (16.4) 

MRS 12.86 (6.2) 

% of Participants 

Gender (Female) 100% 

Race (White) 100% 

Race (White/Asian) 0% 

Ethnicity  

(Not Hispanic or Latino) 

0% 

 

 

5.5.2 Mammography Variables 

5.5.2.1 Percentage Volumetric Breast Density 
Table 5-3 presents the mammography variable data. The %VBD data were normally 

distributed, and no outliers were present in the data. The participants had a greater 

baseline %VBD of 21.7% (SD 3.7%) compared to the end of study (EOS) values of 18.5% (SD 

4.7%), this was a decrease of 3.2% (95% CI -6.67 to 0.26; p = 0.065). This result had a Cohen’s 

D effect size of 0.78.  

  

%VBD = Percentage volumetric breast density as 
measured with VolparaDensity™ 
VAS = Visual analogue scale 
MRS = Menopause rating scale 
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Table 5-3: Mammography Variable Values 

 Mean value 

(SD) 

Mean Change 

from Baseline 

(SD) 

95% CI p-value 

%VBD 

Baseline 21.7% (3.7)    

12 Month 18.5% (4.8) -3.2% (4.1%) -6.67% to 0.26 0.065 

Total Fibroglandular Volume 

Baseline 226.3cm3 

(112.1) 

   

12 Month 131.6cm3 

(82.0) 

-94.7cm3 (33.7%) 67.01 to 122.45  <0.005 

Total Breast Volume 

Baseline 1115.4cm3 

(235.9) 

   

12 Month 794.8cm3 

(660.6) 

-320.6cm3 

(131.8%) 

-430.84 to -

210.42 

<0.005 

 
 

5.5.2.2 Total Fibroglandular Volume 
Table 5-3 presents the TFV variable data. The TFV data was positively skewed, with a Shapiro-

Wilk test result showing a p-value of 0.034; thus, the data was not normally distributed. There 

were no outliers present within the data. The Wilcoxon-Sign Rank test was used to analyse 

the data. The median TFV was greater at baseline with a value of 185.1cm3 compared to the 

12-month time point with a median value of 111.4cm3. There were eight negative differences, 

and zero positive differences and ties. This was a median difference of -79.4cm3 with a p-

value of 0.008.  

 

5.5.2.3 Total Breast Volume 
Table 5-3 presents the TBV data. The TBV data were normally distributed as per the Shapiro-

Wilk test with a p-value of 0.735. There were no outliers present within the data. Total breast 

volume was greater at baseline with a value of 1115.4cm3 (SD 667.6cm3) compared to the 

12-month (end-of-study) values of 794.8cm3 (SD 660.3cm3). This was a change of -320.6cm3 

(95% CI -430.8cm3 to -210.4cm3; p<0.005). This result had a Cohens D value of 0.65. 

 

%VBD = Percentage volumetric breast density as measured with VolparaDensity™ 
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5.5.3  Average Whole Breast Elasticity 

Table 5-4 presents the average and median whole breast elasticity values at each time point. 

The baseline, month three and month 12 data were not normally distributed; the month one 

data were normally distributed. 

 

Table 5-4: Whole breast elasticity average, median and test for normality values 

Time Point Average Elasticity in 

kPa (SD) 

Median 

Elasticity in kPa 

Shapiro-Wilk 

Test p-value 

Baseline 17.9 (9.4) 17.2 0.015 

Month 1 14.3 (4.8) 13.5 0.396 

Month 3 13.9 (7.8) 12.8 0.000 

Month 12 12.6 (5.3) 11.9 0.048 

 
Within the four datasets, there were five outliers that were greater than one-point-five box 

lengths from the edge of the boxplot; these were in the baseline, month three and month 12 

dataset. These were deemed to be correct values and were not excluded from the analysis. 

There was an extreme outlier in the three-month dataset; this is classified as being greater 

than three box lengths from the edge of the box. Again, this was deemed to be a correct 

figure and was left in the analysis. Due to the data being non-parametric, the Friedman test 

was used to analyse the data.  

 

The results from the Friedman test showed that breast elasticity was statistically significantly 

different at the different time points in response to the GTx-024 and anastrozole hormonal 

combination with a p-value of 0.003. Pairwise comparisons were performed with Bonferroni 

corrections for multiple comparisons. There were statistically significant differences between 

the baseline and the 12-month elasticity data with a p-value of 0.001. The complete results 

from the pairwise comparisons are presented in Table 5-5. 

 

Table 5-5: Results of the whole breast elasticity Friedman pairwise comparisons 

Pairwise Comparison p-value 

Baseline – 1 month 0.490 

Baseline – 3 months 0.147 

Baseline – 12 months 0.001 
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5.5.4 Correlations Between Mammography Variables and Breast Elasticity 

Correlation analyses were run between the mammography variables and the whole breast 

elasticity data. All of the correlation coefficient results are presented in Table 5-6. The most 

notable correlation was between the change in breast elasticity from baseline to month 12 

and the change in TFV from baseline to month 12; this resulted in a moderate correlation 

with a r-value of 0.586, this correlation had a p-value of 0.127 (Figure 5-2). In this analysis, the 

data of the change in TFV was not normally distributed and was transformed using 

logarithmic transformation. The correlation analysis between the change in breast elasticity 

from baseline to one month and the change in TFV from baseline to month 12 resulted in an 

r-value of 0.500, with a p-value of 0.313. Lastly, the change in breast elasticity from baseline 

to month one and the change in TBV from baseline to month 12 with a r-value of 0.585, with 

a p-value of 0.223. 

 

 
Figure 5-2: Correlation between total fibroglandular volume change (baseline to month 12) and elasticity change (baseline 

to month 12) 

  



 110 

 

Table 5-6: Correlation coefficient results between breast elasticity and mammography variables 

Correlation Pearson’s R p-value 

Baseline Correlations 

Breast elasticity and TBV 0.246 0.557 

Breast elasticity and TFV 0.470 0.221 

Breast elasticity and %VBD 0.264 0.528 

End of Study Correlations 

Breast elasticity and TBV 0.854 0.007 

Breast elasticity and TFV 0.842 0.009 

Breast elasticity and %VBD 0.273 0.523 

Baseline to End of Study Change Correlations   

Breast elasticity and TFV 0.586 0.127 

Breast elasticity and TBV 0.280 0.502 

Breast elasticity and %VBD -0.12 0.997 

Elasticity Change at 1 month and all other Baseline to 

End of Study Change Correlations 

  

Breast elasticity and TFV 0.500 0.313 

Breast elasticity and TBV 0.585 0.223 

Breast elasticity and %VBD -0.451 0.262 

 

 

5.5.5 Blood Analysis 

All blood serum hormone results are presented in Appendix 4; LH, FSH, E2, progesterone, 

testosterone and DHEAS remained stable through the study, with no out of range values. Free 

androgen index was increased at all time points except for baseline; the mean values at 

month six, nine, and 12 being 7.44%, 10%, 6.53%, respectively. Sex hormone binding globulin 

was significantly decreased at all time points in 87.50-100% of the participants, the mean 

values at month one, three, six, nine and 12 being 12.88nmol/L, 11.63nmol/L, 10nmol/L, 

11.00nmol/L, 11.63nmol/L, respectively. Serum plasma anastrozole levels were 30.09ng/ml 

(SD 9.42ng/ml) at nine months and 29.74ng/ml (SD 7.59ng/ml) at 12 months.   

 

%VBD – Percentage volumetric density as analysed with 
VolparaDensity™  
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5.5.6 Adverse Events 

There was a total of 88 AEs across all eight participants. There were 11 AEs that were deemed 

related or possibly related to GTx-024 and anastrozole, and these are all listed in Table 5-7. 

These AEs ranged from mild to moderate severity, the most commonly occurring AEs being 

increased alanine aminotransferase (ALT) (47u/L, 125 u/L and 98 u/L). There were no serious 

adverse events, deaths or withdrawals from the study due to any AEs. 

 

Table 5-7: List of adverse events (AEs) related 

Commonly Occurring 

Drug Related Adverse 

Events 

Number of 

Events 

Mild Severity 

Night Sweats 2 

Acne 2 

Voice changes 2 

Hair Loss 1 

Moderate Severity 

Increased ALT 3 

Voice changes 1 

 

5.6 Discussion 

This is the first study utilising GTx-024 and anastrozole therapy in premenopausal women for 

the reduction of MBD. This initial evidence for the proof of concept regarding the efficacy of 

this combination was demonstrated in both the primary endpoint of %VBD and TFV and the 

secondary endpoint of breast elasticity. In regards to the primary research question, the 

results showed that %VBD had an average reduction of -3.2%, this is a relative reduction of -

14.75% which is above the 10% MBD reduction required for breast cancer risk reduction 

benefits as stated by Cuzick, Warwick et al. (2011). This reduction was also trending towards 

the conventional level of statistical significance with a p-value of 0.065. Following the 

decreases in %VBD, the TFV had a statistically significant reduction of -79.35cm3, which was a 

relative reduction of 41.86%. This TFV reduction is more than double the 20% reduction in the 

dense area seen in women treated with tamoxifen, which lead to a 50% reduction in breast 

cancer mortality (Li, Humphreys et al. 2013). Furthermore, TBV had a statistically significant 
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reduction of -320.63cm3, this being an absolute reduction of 28.75%. These are significantly 

large decreases that have been seen in a small number of women and indicate that this 

treatment may be favourable for the indication of reducing MBD variables. The significant 

decrease in TFV is of great relevance as this reduction represents a decrease in the stromal 

and fibroglandular part of the breast tissue; this being the tissue of interest regarding MBD 

and the reductions that lead to beneficial effects in breast cancer risk. These results indicate 

that the combination of GTx-024 and anastrozole is able to reduce %MBD, TBV and TFV in a 

small population of women. Having validated the effect of this combination on MBD variables, 

the next stage is to analyse how the breast elasticity responds to the same hormonal 

intervention and how these changes correlate with the changes in the mammography 

variables. 

 

The second objective of this study was determining whether the hormonal combination of 

GTx-024 and anastrozole, in addition to the MBD variables, was able to reduce breast 

elasticity. For this research objective, there were also favourable results, as the findings show 

that there was a statistically significant reduction in breast elasticity at the 12-month 

measurement, with a reduction of -5.37kpa, this being a relative reduction of 30.4%. There 

were also decreases in breast elasticity reported at each time point with a reduction of -

3.69kPa (relative reduction of 20.6%) at one month and -4kPa (relative reduction of 22.3%) at 

the three-month time point. This investigational product is the second hormonal combination 

that has decreased both MBD variables and breast elasticity, which indicates that there is 

consistency in the response, which can further provide evidence that breast elasticity may be 

a valid biomarker for MBD. These results also further demonstrate that breast elasticity 

responds at a very early stage to the intervention. Within the first month, 67% of the 

reduction that occurred over the 12 months had already been observed. This early elasticity 

reduction may be used to show signs of early response. With this early response being 

favourable for the indication of determining patient response to interventions that reduce 

MBD. Aiding the decision that a woman may be a responder or a non-responder to the 

therapy and whether they should continue the therapy, as many of these interventions have 

undesirable side effect profiles.  

 

The third part of this study was analysing whether the changes in %VBD and TFV correlate 

with the changes in breast elasticity. This analysis needed to be conducted to demonstrate 
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that the change in elasticity relates to the changes in the mammography variables. If there is 

the correlation, and as elasticity is responding to the intervention at such an early time point, 

breast elasticity may be able to predict the changes in %VBD and TFV. The results from this 

study show that there was an insignificant negative, weak correlation between the changes in 

breast elasticity with the change in %VBD. It was also analysed whether the changes in breast 

elasticity at one month correlated with the changes in %VBD across the 12-month 

intervention period. This analysis was done to determine if breast elasticity has the potential 

to be used as an early indicator for MBD changes. These results demonstrate that within this 

cohort, there is no correlation between these two variables. 

 

However, when analysing the correlation between breast elasticity and TFV, there were more 

favourable results. The results showed that there was a moderate correlation at one month 

and at 12 months. Both of these findings were statistically insignificant, but as the study was 

underpowered, there is some data to promote further research that change in breast 

elasticity may correlation with changes in TFV, which is still beneficial for breast cancer risk 

and mortality reduction (Li, Humphreys et al. 2013).  

 

These correlations with both %VBD and TFV, in particular, TFV showed that there is somewhat 

of a relationship. However, the aim of this research program is to validate elasticity to be used 

as an early indicator of response to interventions to reduce MBD as MBD takes an extended 

time to show significant changes. Longer studies may lead to a stronger correlation between 

these three variables, as there is more time for changes in %VBD and TFV to occur. Another 

explanation for the weaker than expected correlation between elasticity and %VBD is 

that %VBD is calculated with the TFV and TBV, which in this study both decreased. This 

indicates that the %VBD may not have changed at the same rate as the elasticity and the TFV 

variables. 

 

As mentioned, some of these findings were statistically insignificant, however, this was a pilot, 

proof of concept pharmacokinetic study, so when observing the trends for the decreases and 

the correlations that were described, the results are favourable to generate and guide future 

studies. The findings within this study indicate that as the fibrodense region of the breast 

decreases, the breast elasticity may also decrease. This is favourable as with further research, 

elasticity may be used as a non-invasive and comfortable biomarker to determine the early 
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response of breast tissue to hormonal interventions. Thus, allowing healthcare providers to 

modify the treatment approach based on whether the patient is a responder or a non-

responder. This knowledge can influence patient management, their health-related outcomes 

and the cost of the treatment (Manton, Chaturvedi et al. 2006). 

 

This study does have some limitations which need to be taken into consideration when 

interpreting the findings. Firstly, as it was an early proof of concept pharmacokinetic study, 

only eight women were recruited. For this reason, this study was not powered to prove 

statistical significance; this meaning that although the results can show a sign of effect in 

regard to the breast tissue elasticity and the mammography variables, we cannot provide a 

definitive conclusion regarding the outcomes. A further limitation was the study design; it was 

an open-label, phase II drug trial, which did not have a control group. By not having a control 

group (and not controlling all variables), we are unable to determine if there was a causal 

relationship between the hormonal intervention and the effect on the breast tissue. For the 

same reason, we are also unable to report what would have occurred in the breast tissue of 

women not on the hormonal intervention. More rigorous research designs, such as an RCT, 

with a placebo-controlled group are required to determine if GTx-024 and anastrozole is the 

causal factor for the reduction in MBD and breast elasticity, and the subsequent reduction in 

breast cancer risk. 

 

A further limitation of this study was the within-subject variation of the breast elasticity data. 

There appeared to be a substantial level of observed fluctuations in the SWE repeat 

measurements (which was also reported in Chapter 4). As there was no control group and no 

normative data from previous research using SWE for this indication, we are unable to 

determine if the elasticity values were reflecting the response of the breast tissue to the 

intervention, measurement error or natural fluctuations. Further research should done on 

healthy subjects, controlling for hormonal fluctuations to determine the normative values, 

and the normal fluctuations in breast tissue elasticity that may occur in a premenopausal 

patient population. This data is integral for the interpretation of these results and any future 

SWE results generated. 
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5.7  Conclusion 

This study aimed to determine if enobosarm and anastrozole, a novel hormonal combination 

of an Ai and a SARM, used in premenopausal women with high MBD, could reduce %VBD, TFV 

and breast elasticity. This study generated evidence that this combination had signs of being 

efficacious at reducing %VBD, TFV and breast elasticity. Although not reaching the 

conventional threshold for statistical significance, there was a strong correlation between the 

changes in breast elasticity and TFV. These results are encouraging for breast elasticity being 

a viable biomarker for MBD. To further validate these findings, future research needs to be 

conducted with a more rigorously designed, adequately powered, placebo-controlled, 

double-blind RCT to determine if there was a causal relationship between GTx-024 and 

anastrozole and the reductions in %VBD, TFV and breast elasticity. Additionally, as suggested, 

further research also needs to be done to determine the natural fluctuations that occur with 

the elasticity of the breast across the month due to hormonal fluctuations when a woman is 

not on any hormonal interventions. 
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Chapter 6 Does the Region of Interest Size Affect the Breast 

Elasticity and Coefficient of Variation of a Data Set Analysing the 

Average Breast Elasticity of Women on Hormonal 

Chemopreventative Therapy? 

6.1 Introduction 

Shear wave elastography operates by having the ultrasound beams generate acoustic 

radiation force impulses (ARFI), which provide the mechanical excitation through pushing 

beams that deform the underlying tissue of interest. Several of these pushing beams are 

transmitted at different depths, which result in the propagation of transient shear waves. The 

speed of these shear waves is then measured using a scanner with a very fast frame rate, 

allowing the shear waves to be followed in real-time. This is repeated for different lines; 

allowing a map of a ROI to be created from analysing the differences in arrival times and 

calculating the shear wave speeds. A colour-coded image is then displayed on the SWE 

monitor, a Q-Box™ which is a measuring tool is placed on this image, which provides an area 

for the elasticity variables to be calculated.  The quantitative data is presented as a measure 

of shear wave speed in m/s-1 or converted to the Young’s Modulus and displayed as kPa 

(Bercoff, Pernot et al. 2004, Bercoff, Tanter et al. 2004, Sebag, Vaillant-Lombard et al. 2010, 

Shiina, Nightingale et al. 2015).  

 

To date, within the field of breast imaging, the predominant use of SWE is differentiating 

between benign and malignant lesions. For this indication, the common technique to quantify 

the tissue elasticity is to use a circular Q-Box™ that usually ranges in size from 2-3mm in 

diameter, which is then placed over the stiffest part of the lesion (it may also include the area 

immediately adjacent to this region). Another Q-Box™ is then placed on an adjacent area of 

fatty tissue to provide a reference value (Chang, Moon et al. 2011, Berg, Zhang et al. 2012, 

Youk, Gweon et al. 2013, Au, Ghai et al. 2014). This is a practical technique as it has been 

found that, with exceptions, malignant masses are of a greater elasticity than benign, so it is 

imperative that the quantitative values of the stiffest region of the lesion are known. A further 

use of SWE is determining the effectiveness of neoadjuvant chemotherapy on malignant 

breast lesions, for which the same technique as differentiating benign or malignant breast 
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lesions is used. However, this indication uses repeat measures to quantify the changes 

occurring in the elasticity values (Evans, Armstrong et al. 2013, Jing, Cheng et al. 2016, Ma, 

Zhang et al. 2017).  

 

Few studies have used SWE to calculate the average breast elasticity of the entire breast and 

not just a particular lesion. In current literature, the techniques chosen to measure breast 

elasticity with the absence of a lesion, have been to use either the outer upper region of the 

breast (Li, Wang et al. 2015) or divide the breast into four quadrants (Rzymski, Skórzewska et 

al. 2011, Rzymski, Wysocki et al. 2011, Rzymski, Wilczak et al. 2012) and place one 3mm Q-

Box™ on an area of the image that represents the glandular tissue and one that represents 

the fatty tissue, which provides the minimum, mean, maximum and SD of both the fatty and 

the glandular tissue and additionally the glandular to fatty ratio. There are weaknesses with 

using these techniques. Firstly, the different regions of the breast have varying amounts of 

glandular and fatty tissue and it has been seen that the mean elasticity of the glandular tissue 

can vary in the different quadrants (some areas having greater or lower elasticity). Secondly, 

the elasticity values are variable throughout each SWE image; relying on one Q-Box™, again, 

may not provide an accurate representation of the true mean elasticity for each quadrant of 

the breast and subsequently, the whole breast. Using this technique can also increase the 

operator’s influence on the elasticity values, as the operator can bias the data by placing the 

Q-Box™ on an area of greater or lesser elasticity, whichever favours their intentions. This 

operator dependence is particularly problematic for longitudinal studies or studies analysing 

the efficacy of therapeutic interventions, as unless the Q-Box™ location is kept constant, 

unreliable findings can be reported. 

 

6.2 Objective 

Currently, there is no published literature reporting the differences in the mean elasticity 

values between differing breast quadrants and the impact of using different sized Q-Box™ or 

the number of Q-Box™ on the overall elasticity values. As there is increasing interest in 

researching whole breast elasticity for a variety of indications, there needs to be a 

standardised protocol in regard to the breast quadrants used and Q-Box™ size, frequency and 

location on the SWE image. This will improve the reliability and accuracy of calculating the 

mean whole breast elasticity. The objective of this research is to determine if using different 
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post-hoc analysis protocols can significantly change the overall elasticity values and to find a 

protocol which provides the most precise data attenuation for future research. 

 

6.3 Method 

6.3.1 Patient Demographics 

The data was acquired from a collection of SWE images of 11 women who were participants 

of a clinical trial at Wellend Health Pty Ltd (Chapter 4 – HAVAHT+Ai™ study), South Australia 

(Bellberry Limited Human Research Ethics Committee approval number 2017-06-434). 

Participants of this trial all provided permission for their images and data to be used for 

subsequent research. Women were recruited into the initial trial if they had a 

VolparaDensity™ %VBD of ≥ 15.5% (combined average both breasts), aged between 33-55 

years inclusive, body weight between 50 and 90kg inclusive and in good general health. 

Please refer to Chapter 4, Section 4.3.1 for full eligibility criteria. 

 

6.3.2 Shear Wave Elastography Imaging Protocol 

Breast SWE was conducted using the SuperSonic™ Imagine Aixplorer® ShearWave™ 

elastorgaphy machine (Aixlorer, France). Four images were taken per breast, one in each 

quadrant (Fig. 6-1), the transducer head was held still for 5 to 10 seconds in order for the 

shear waves to propagate through the tissues. A generous amount of contact gel was used to 

prevent artefactual stiffness from being recorded. Please refer to Chapter 4, Section 4.3.3 for 

further details regarding the method for the capturing of the SWE images.  

 

 
Figure 6-1: Image sequence of the breast quadrants used in shear wave elastography 
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6.3.3 Elasticity Data Generation 

Seven different protocols were used to generate the elasticity data from the SWE images. The 

protocols used were a circular Q-Box™ with varying diameter and frequencies, the Q-Box™ 

trace function and the Q-Box™ ratio function. The original protocol that was used in Chapter 4 

and 5 of this thesis was the 6 x 3mm Q-Box™ placed evenly across the image (Figure 6-2), this 

then determined the minimum, maximum, mean and standard deviation of the tissue 

elasticity measured in kPa and the depth of the placing of each Q-Box™. The 6 x 3mm Q-Box™ 

protocol, as stated in Section 4.3.3, was advised as the method to be used by the Medical 

Director of Wellend Health Pty Ltd. 

 

 
Figure 6-2: Shear Wave Elastography Image with 6 x 3mm Q-Box™ places evenly over the image 

 

From the 6 x 3mm Q-Box™, the mean elasticity was calculated per quadrant, per breast and 

the overall breast elasticity. The same calculations were conducted using six, six-millimetre (6 

x 6mm) Q-Box™ (Figure 6-3), one ten millimetre Q-Box™ (Figure 6-4), using the Q-Box™ trace 

function to trace the entire image (Figure 6-5), and using the Q-Box™ trace to trace the 

desired ROI, not including the elasticity artefacts and ‘black holes’, which are locations within 

the image where the elasticity does not correspond to the B-mode images and produces 

extremely high elasticity figures or where shear waves have not been calculated, leaving the 

elasticity as zero, respectively (Figure 6-6). These different protocols were chosen for a variety 

of reasons; the diameter of the other Q-Box™ were arbitrary in value but were used to 

determine if altering the size and frequency could have a greater clinical utility or a greater 

level of reliability. The Q-Box™ trace function was chosen, as on face value, appeared as 
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though it would be time-efficient and as it incorporates the largest area of the breast easily 

omitting any artefacts and black holes, it was hypothesised that it could generate the most 

valid data. The Q-Box™ trace function was also a technique used by Evans (2015) for research 

utilising SWE for whole breast elasticity, which was presented in a conference paper.  

 

 

 
Figure 6-3: Shear Wave Elastography image with 6 x 6mm Q-Box™ es places evenly across the image 

 

 
Figure 6-4: Shear Wave Elastography Image with one 10mm Q-Box™  placed in the middle of the image 
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Figure 6-5: Shear Wave Elastography image with a Q-Box™ traced around the border of the region of interest 

 

 
Figure 6-6: Shear Wave Elastography image with the Q-Box™ traced within the region of interest, avoiding artefacts or black 

holes 

 

The last two methods of calculating the elasticity were using the Q-Box™ ratio function, firstly 

placing one 3mm Q-Box™ on an area that represents glandular tissue and another 3mm Q-

Box™ on an area that represents predominately fatty tissue (Figure 6-7). Within the image, 

fatty tissue appeared black on the B-mode image and dark blue on the shear wave image. 

Glandular tissue appeared white on the B-mode image and light blue on the shear wave 

image. This technique provided the minimum, maximum, mean elasticity of both the 

glandular and the fatty tissue in addition to the glandular-to-fatty elasticity ratio. The Q-Box™ 

ratio function was then repeated, this protocol was slightly altered with a customised sized Q-

Box™ (Figure 6-8); the size of the Q-Box™ depended on the area of the glandular and the fatty 

tissue. This protocol was done to ensure the Q-Box™ only contained the tissue of interest. For 
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this study, the elasticity from the singular glandular tissue Q-Box™ was used as the breast 

elasticity data; the actual ratio was not included in this analysis. 

 

 
Figure 6-7: Shear Wave Elastography image using Q-Box™ ratio function, placing a 3mm Q-Box™ on an area of glandular 

tissue and an area of fatty tissue 

 

 
Figure 6-8: Shear Wave Elastography Image using Q-Box™ ratio function, placing a 3mm Q-Box™ on an area of glandular 

tissue and a 1mm Q-Box™ on an area of fatty tissue. This image also shows areas where the shear wave hasn't propagated 

 
 

6.3.4 Statistical Analysis 

The data were entered into Microsoft Excel (2016), and statistical analysis was conducted 

using SPSS 25 (IBM, New York, USA). The 6 x 3mm Q-Box™™ protocol was used as the 

reference standard for the analyses, while the other protocols are the index tests. The data 

were analysed using repeated measures ANOVAs with Bonferroni post-hoc analysis to 

determine if there was a statistically significant difference between the reference standard 
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and the index test, this analysis was done for all of the different quadrants of the breast, left 

and right breast and both breasts combined. In addition, the coefficient of variation (CV) was 

calculated for each protocol, and this provided the levels of dispersions of each of the 

variables. A Bland-Altman plot was used to find the level of agreement between the 

references standard and the other variables. Where applicable, statistical significance was 

determined with a p-value ≤ 0.05, and a confidence interval that did not cross zero.  

 

6.4 Results 

6.4.1 Participant Demographics 

The data for this chapter were collected from the 11 participants that were recruited for the 

study in Chapter 4. All the participant demographic data have previously been reported in 

Section 4.4.1. All participants had their data included in all the analyses. 

 

6.4.2 Determining the Reference Standard 

As reported in Section 6.2, the objective of this study was to determine the best method of 

extracting the breast elasticity data from the shear wave elastography image. The 6 x 3mm Q-

Box™ was decided as the reference standard as it was the method previously advised as the 

method to use to collect elasticity data from the Medical Director at Wellend Health Pty Ltd, 

who worked closely with the Supersonic Aixplorer® Adelaide, South Australia representative.  

 

The initial analysis was looking at the whole breast combined dataset; this was the mean of 

the left and right breasts. The descriptive statistics are presented in Table 6-1.  
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Table 6-1: Descriptive statistics for average breast elasticity for each protocol 

Variable Mean (SD) in kPa 

6 x 3mm Q-Box™ 10.90 (4.35) 

6 x 6mm Q-Box™ 11.30 (4.30) 

1 x 10mm Q-Box™ 9.71 (3.780) 

ROI Full trace 12.21 (4.81) 

ROI Free-Trace 10.68 (3.60) 

Ratio Glandular Q-Box™ 13.51 (4.71) 

Alternative Ratio Glandular Q-

Box™ 

11.30 (3.70) 

 

The whole breast elasticity dataset was normally distributed, and there were no outliers 

present within the data. According to Mauchly’s test for sphericity, the sphericity of the data 

was violated. The Epsilon (ε) was 0.605, as calculated according to Greenhouse and Geiser 

(1959) and was used to correct the one-way repeated measure ANOVA. The breast elasticity 

values from a number of the difference protocols were statistically significantly different from 

the 6 x 3mm Q-Box™™ protocol, F (3.318, 142.661) = 40.833, p<0.0005. In regard to the 

pairwise comparison, all the results can be found in Table 6-2.  

 

Table 6-2: Pairwise comparison of all protocol elasticity data 

Q-Box™ 

Reference 

Protocol 

Index Protocol Mean Difference 

(kPa) 

95% Confidence Interval p-value 

6 x 3mm Q-Box™ 6 x 6mm Q-Box™ -0.40 -0.82 to 0.02 0.081 

 1 x 10mm Q-Box™ 1.19 0.68 to 1.70 <0.0005 

 ROI Full Trace -1.31 -2.12 to -0.50 <0.0005 

 ROI Free-Trace 0.22 -0.30 to 0.74 1.000 

 Ratio -2.61 -3.40 to -1.82 <0.0005 

 Alternative Ratio -0.40 -1.45 to 0.66 1.000 

 

When comparing the 6 x 3mm Q-Box™ data to the 6 x 6mm Q-Box™ data, there was a 

statistically insignificant mean difference of -0.40kPa (95% CI -0.82 to 0.02; p = 0.081). This 

demonstrates that although the 6 x 6mm data provides a slightly lower mean elasticity value, 

there were no real differences between the protocols. The comparison between the 6 x 3mm 

Q-Box™ data to the 10mm data revealed a statistically significant mean difference of 1.19kPa 
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(95% CI 0.68 to 1.70; p<0.0005). This result demonstrated that the 10mm Q-Box™ 

consistently gave higher readings than the 6 x 3mm protocol. There was a statistically 

significant mean difference between the 6 x 3mm Q-Box™ data and the full-box trace data 

with a mean difference of -1.31kPa (95% CI -2.12 to -0.50; p<0.0005). This result 

demonstrates that the full-box trace produced consistently lower whole breast elasticity 

values when compared to the 6 x 3mm Q-Box™ data. There was a statistically insignificant 

difference between the 6 x 3mm Q-Box™ and the Free-Trace Q-Box™ data of 0.22kPa (95% CI 

-0.29 to 0.74; p=1.000), as with the 6 x 6mm Q-Box™ data, there was no real difference 

between the Free-Trace Q-Box™ data and the 6 x 3mm Q-Box™ data. There was a statistically 

significant difference of -2.61kPa (95% Ci -3.40 to -1.82; p<0.0005) between the original ratio 

data and the 6 x 3mm Q-Box™ data. Interestingly, there was a statistically insignificant 

difference of -0.40kPa (95% CI -1.45 to 0.66; p=1.000) between the alternative ratio data and 

the 6 x 3mm Q-Box™ data. 

 

As there seemed to be a significant difference between the original ratio data and the 

alternate ratio data, the results from the repeat measures ANOVA were recorded for these 

two variables. When comparing the original Q-Box™ ratio data to the alternative Q-Box™ ratio 

data, there was a statistically significant mean difference of 2.22kPa (95%CI 1.08 to 3.35; 

p<0.0005). This result alluded to the hypothesised inconsistency that can occur when using 

the Q-Box™ ratio as a technique to generate the breast elasticity data. This is due to this 

technique using a singular Q-Box™, and the fluctuating elasticity within a particular ROI; so, 

the positioning of the Q-Box™ can significantly influence the elasticity data. This may be why 

there is a statistically significant difference between the data using the original ratio and the 

alternate ratio protocol. 

 

The next stage of the analysis was to determine the coefficient of variation for the data 

generated using each of the protocols. The coefficient of variation is a measure of the 

dispersion of the data and is defined as the ratio of the SD to the mean. The protocol which 

generates the lowest CV shows a greater level of precision than the remaining protocols. The 

CV results are presented in Table 6-3. The protocol with the lowest coefficient of variation 

was the whole breast Free-Trace Q-Box™. 
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Table 6-3: Coefficient of variations of elasticity protocols 

Elasticity Protocol Mean Coefficient of 

Variation % (SD) 

6 x 3mm Q-Box™ 51.80% (8.81) 

6 x 6mm Q-Box™ 52.22% (19.80) 

1 x 10mm Q-Box™ 39.76% (11.94) 

Q-Box™ Full Trace 31.02% (9.77) 

Free-Trace 30.96% (9.22) 

Original Ratio Data 39.27% (10.33) 

Alternative Ratio Data 34.28% (9.17) 

 

 

6.4.3 Bland Altman Plots 

The next stage of this analysis is using a Bland Altman plot. A Bland Altman plot was proposed 

in 1983 (Altman and Bland 1983) and is used to describe the agreement and precision of two 

quantitative measurements by creating limits of agreement. These limits of agreement are 

calculated using the mean and the standard deviation of the differences between the two 

measurements. The Bland Altman plot is interpreted informally; however, Altman and Bland 

(1983) recommended that 95% of the data points should lie between the limits of agreement. 

When interpreting the plot, the solid line represents the bias, which is computed as the 

breast elasticity value generated by one of the protocols minus the value of the other 

method. Ideally, this bias should be close to zero; however, if not, it indicates that the two 

methods are systematically producing different results. In addition, when interpreting the 

plot, the limits of agreement and the bias need to be considered in a clinical manner, if the 

bias is large and the limits of agreement are wide, this may indicate the results are 

ambiguous, and the SWE protocol is not a valid method to generate the breast tissue 

elasticity. The 6 x 3mm Q-Box™ protocol remains the reference standard for the Bland Altman 

plots. Figure 6-9 shows the Bland Altman plot of the 6 x 6 mm Q-Box™ protocol and the 3 x 

3mm Q-Box™ Protocol. 
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Figure 6-9: Bland Altman plot with 6 x 6mm Q-Box™ and 6 x 3mm Q-Box™ protocol data 

 

For this plot, the bias is 0.4kPa which is a relatively small bias and would not impact the 

clinical interpretation of the data. The upper limit of agreement was 2.09kPa, and the lower 

limit of agreement was -1.29kPa, there is a large spread of the data points above and below 

the bias, and there are three data points that fall outside the 95% limits of agreement. There 

also is appears to be a larger spread of the data as the elasticity increases, which may 

represent a proportional bias. Figure 6-10 shows the Bland Altman plot of the 10mm Q-Box™ 

data and the 6 x 3mm Q-Box™ protocol data. 

 

 
Figure 6-10: Bland Altman Plot with 10mm Q-Box™ and 6 x 3mm Q-Box™ protocol data 
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This plot has a larger bias of -1.19kPa, which demonstrates that the measures are producing 

systematically different elasticity measurements. The limits of agreement are also clinically 

relevant as the lower limit is -3.23kPa, which shows the measurement error with the 10mm 

Q-Box™ would produce ambiguous results as the limits are large enough to make the 

interpretation of the results by clinicians or researchers difficult; as they would not be able to 

determine if changes in elasticity are relating to a true change in the tissue or due to 

measurement error. Figure 6-11 shows the Bland-Altman plot of the full-box trace Q-Box™ 

data and the 6 x 3mm Q-Box™ protocol data. 

 

 
Figure 6-11: Bland Altman plot with Full-Box Trace Q-Box™ and 6 x 3mm Q-Box™ protocol data 

 

The Bland-Altman plot for the full-box trace Q-Box™ shows that the bias is quite high with a 

value of 1.31kPa and the upper limit of agreement is 4.58kPa. Again, this shows that using this 

method to generate elasticity data would not be appropriate for clinical trials as the limits of 

agreement are so wide any changes observed would be ambiguous as we would not be 

certain the changes recorded are due to changes in the tissue or just measurement error. 

There is also substantial spread within the data, which shows a lack of precision within the 

data collected. There is also a proportional bias as there appears to be a larger spread of the 

data as the elasticity increases. Figure 6-12 shows the Bland Altman plot of the Free-Trace Q-

Box™ data and the 6 x 3mm Q-Box™ protocol data. 
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Figure 6-12: Bland Altman plot with Free-Trace Q-Box™ and 6 x 3mm Q-Box™ protocol data  

 

The Bland-Altman plot of the Free-Trace Q-Box™ data and the 6 x 3mm Q-Box™ data show a 

small bias with a value of -0.22kPa, which demonstrates that the two methods of generating 

elasticity data are essentially equivalent. The limits of agreement are also lower than some of 

the other variables. This plot shows that as the elasticity increases the differences also 

increases, which could indicate a proportional bias is present within the data. Upon doing a 

linear regression, there was a r-value of 0.585 with a p-value of <0.0005, showing that 

statistically no proportional bias was present. Figure 6-13 shows the Bland Altman plot of the 

original ratio Q-Box™ data (glandular tissue) and the 6 x 3mm Q-Box™ protocol data. 

 

 
Figure 6-13: Bland Altman plot with Original ratio glandular Q-Box™ and 6 x 3mm Q-Box™ protocol data 
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The Bland-Altman plot of the original ratio Q-Box™ data (glandular tissue) and the 6 x 3mm Q-

Box™ protocol data shows that the data lacks precisions with the data points scattered 

around the bias and through the limits of agreement. The bias itself is large with a value of 

2.61kPa, and the limits of agreement are very wide showing that any results produced using 

this method are ambiguous and may or may not reflect changes within the tissue of 

measurement error. Figure 6-14 shows the Bland Altman plot of the alternative ratio 

glandular Q-Box™ data and the 6 x 3mm Q-Box™ protocol data. 

 

 
Figure 6-14: Bland Altman plot with Alternative ratio glandular Q-Box™ and 6 x 3mm Q-Box™ protocol data 

 

The Bland-Altman plot of the alternative ratio Q-Box™ data (glandular tissue) and the 6 x 

3mm Q-Box™ protocol data shows that the limits of agreement are wide and as reported with 

other methods, this demonstrates that results gathered using this method of breast elasticity 

generation are ambiguous as we are unable to determine if the change has come from 

changes in the tissue elasticity or just due to measurement error.  

 

Out of all the Bland Altman plots presented and the visual, objective interpretation that 

followed, it was decided that the greatest level of agreement is between the Free-Trace Q-

Box™ protocol and the reference standard of the 6 x 3mm Q-Box™ protocol. The 6 x 6mm Q-

Box™, due to the level of agreement, may also be a valid measurement protocol.  
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6.4.4 Comparison of Quadrants 

The next analysis conducted was to determine if there was a difference in the value of each 

quadrant, as some studies use a singular quadrant to determine the breast elasticity. This 

analysis was conducted for the 6x3mm Q-Box™, 6x6mm Q-Box™ and the Free-Trace Q-Box™. 

6.4.4.1  6 x 3mm Q-Box™ 

The initial analysis was to determine if the data were normally distributed. According to the 

Shapiro-Wilks analysis, the data were not normally distributed. Results from the Shapiro-Wilks 

test are presented in Table 6-4. 

 

Table 6-4: 6 x 3mm Q-Box™ Shapiro-Wilks test for normality values 

Quadrant Shapiro-Wilk 

p-value 

Lower Outer 0.045 

Upper Outer 0.061 

Upper Inner 0.000 

Lower Inner 0.090 

 

As the data was not normally distributed a non-parametric statistical model was chosen. The 

Friedman Test was used to determine if there were differences between the breast 

quadrants. The descriptive statistics are presented in table 6-5. 

 

Table 6-5: 6 x 3mm Q-Box™ descriptive statistics for comparison of values between breast quadrants 

 Breast Quadrant Median Elasticity (kPa)  

Lower Outer 10.03 

Upper Outer 11.40 

Upper Inner 9.78 

Lower Inner 10.06 

 

According to the Freidman Test, the breast elasticity was statistically significantly different 

within the different breast quadrants X2(3) = 8.12, p=0.043. To conduct the pairwise 

comparisons, the Wilcoxon Signed-Rank Test was used, so the number of measurements 

were not taken into account. In order to use the Wilcoxon Signed-Rank Test to determine if 

there is a statistically significant median difference between two related groups, the shape of 

the distribution of the median differences should be symmetrical. All of the differences in the 
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following results were symmetrical. The results for the individual Wilcoxon Signed-Rank test 

are presented in Table 6-6. 

 

Table 6-6: Wilcoxon Signed-Rank Test Pairwise Comparison results for 6 x 3mm Q-Box™ 

Breast Quadrant Comparison 

Quadrant 

Median 

Difference in 

kPa 

Positive 

Differences 

(N) 

Negative 

Differences 

(N) 

p-value 

Lower Outer Upper Outer -1.69 28 16 0.037 

 Upper Inner -0.14 23 21 0.981 

 Lower Inner -0.60 22 22 0.506 

Upper Outer Upper Inner 2.41 13 31 0.043 

 Lower Inner 1.53 16 28 0.126 

Lower Inner Upper Inner 0.32 21 23 0.912 

 

These results suggest, when compared to the Lower Outer breast quadrant and the Upper 

Inner breast quadrants, the Upper Outer breast quadrant had a statistically significantly 

greater breast elasticity. The other quadrants had no significant differences. 

 

The Final Analysis was using the CV to determine if there was a difference in the level of 

variability of elasticity data collected from each of the four quadrants. The results of the CV 

are presented in Table 6-7 below. 

 

Table 6-7: Coefficient of Variation of the breast quadrants using the 6 x 3mm Q-Box™  

Breast Quadrant Coefficient of Variation 

(%) 

Lower Outer 44.76 

Upper Outer 41.35 

Upper Inner 53.93 

Lower Inner 50.76 

 

From these results, it can be seen that there were some differences in the variability of the 

data; the CV was lowest for the Upper Outer and highest for the upper inner.  
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6.4.4.2 6 x 6mm Q-Box™  

According to the Shapiro-Wilks analysis, the data showed to be not normally distributed. The 

Shapiro-Wilks results are shown in Table 6-8. 

                                          

Table 6-8: 6 x 6mm Q-Box™ Shapiro-Wilk test for normality values 

Quadrant Shapiro-Wilk p-value 

Lower Outer 0.080 

Upper Outer 0.053 

Upper Inner 0.001 

Lower Inner 0.111 

 

As the data was not normally distributed, again, a non-parametric test (Friedman Test) was 

used to analyse the data. The descriptive statistics are presented in Table 6-9. 

 
Table 6-9: 6 x 3mm Q-Box™ descriptive statistics for comparison of values between breast quadrants 

Quadrant Median Elasticity (kPa)  

Lower Outer 10.02 

Upper Outer 11.85 

Upper Inner 10.28 

Lower Inner 10.38 

 

The breast elasticity was statistically significantly different in the different breast quadrants 

X2(3) = 11.645 and p-value of 0.009. The Wilcoxon Signed-Rank test was used for the pairwise 

comparison between the quadrants. The results from the Wilcoxon Signed-Rank test are 

presented in Table 6-10. 

 
Table 6-10: Wilcoxon Signed-Rank Test Pairwise Comparison results for 6 x 6mm Q-Box™  

Breast Quadrant Comparison 

Quadrant 

Median 

Difference in 

kPa 

Positive 

Differences 

(n) 

Negative 

Differences 

(n) 

p-value 

Lower Outer Upper Outer -1.75 30 14 0.056 

 Upper Inner -0.72 24 20 0.718 

 Lower Inner -0.57 24 20 0.653 

Upper Outer Upper Inner 2.44 13 31 0.080 

 Lower Inner 1.98 14 30 0.071 

Lower Inner Upper Inner -0.18 23 21 0.480 
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When using the 6 x 6mm Q-Box™, there were no statistically significant differences between 

any of the breast quadrants.  

 

The Final Analysis was using the CV to determine if there was a difference in the level of 

variability of elasticity data collected from each of the four quadrants. The results of the CV 

are presented in Table 6-11 below. 

 

Table 6-11: Coefficient of Variation of the breast quadrants using the 6 x 6mm Q-Box™  

Breast Quadrant Coefficient of Variation 

(%) 

Lower Outer 45.71 

Upper Outer 37.92 

Upper Inner 49.14 

Lower Inner 48.13 

 

From these results, it can be seen that there were some differences in the variability of the 

data, as with the 6 x 3mm Q-Box™ elasticity data, the CV was lowest for the Upper Outer and 

highest for the Upper Inner.  

 

6.4.4.3 Free-Trace Q-Box™ 

When using the Free-Trace Q-Box™, according to the Shapiro-Wilks analysis, the data were 

not normally distributed. The results from the Shapiro-Wilks analysis are presented in Table 6-

12. 

 

Table 6-12: Free-Trace Q-Box™ Shapiro-Wilk test for normality values 

Quadrant Shapiro-Wilk p-value 

Lower Outer 0.059 

Upper Outer 0.187 

Upper Inner 0.012 

Lower Inner 0.374 

 

The descriptive results from the non-parametric Friedman Analysis are presented in Table 6-

11. 
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Table 6-13: Free-Trace Q-Box™ descriptive statistics for comparison of values between breast quadrants 

Quadrant Median Elasticity in kPa  

Lower Outer 9.88 

Upper Outer 11.58 

Upper Inner 10.28 

Lower Inner 10.28 

 

The Friedman test results were X2(3) = 3.144 with a p-value of 0.370. This demonstrates that 

there were no significant differences between the breast quadrants when using the Free-

Trace Q-Box™ protocol, and for this reason, the pairwise comparison does not need to be 

completed. This concludes that the group means were equal within this specific population 

when using this specific protocol. 

 

The Final Analysis was using the CV to determine if there was a difference in the level of 

variability of elasticity data collected from each of the four quadrants. The results of the CV 

are presented in Table 6-14 below. 

 

Table 6-14: Coefficient of Variation of the breast quadrants using the 6 x 6mm Q-Box™  

Breast Quadrant Coefficient of Variation 

(%) 

Lower Outer 41.24 

Upper Outer 32.12 

Upper Inner 44.24 

Lower Inner 42.94 

 

From these results, it can be seen that there were some differences in the variability of the 

data, as with both the 6 x 3mm and 6 x 6mm Q-Box™ elasticity data, the CV was lowest for 

the Upper Outer and highest for the Upper Inner.  

 

6.4.4.4 Comparison of Quadrants Summary 

For all three protocols, the upper outer breast quadrant had the greatest elasticity. This was 

statistically significant when compared to the lower outer and the upper inner quadrants 

when using the three x 3mm Q-Box™ protocol. This quadrant also consistently had the lowest 
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CV, showing the least amount of variability of the collected data of the four quadrants. All 

other quadrants and protocols showed that the elasticity in the breast quadrants were equal.  

 

6.4.5 Comparison of Left and Right Breast 

The next analysis that needed to be completed was to determine if there was a difference 

between the left and right breast with the 6 x 3mm, 6 x 6mm and Free-Trace Q-Box™ data. 

 

6.4.5.1 6 x 3mm Q-Box™ 

The initial analysis was to determine if the data was normally distributed. The data was tested 

for violation of normality using the Shapiro-Wilk test; the results suggest the data was not 

normally distributed for the left breast (p= 0.014) and was normally distributed for the right 

breast (p= 0.339). 

                                                  

Due to the non-parametric nature of the left breast data, the data were analysed using the 

Wilcoxon Signed-Rank test. All results are median values unless otherwise described. The 

descriptive statistics for the analysis are presented in Table 6-15. 

 

Table 6-15: Descriptive statistics for 6 x 3mm Q-Box™ comparison of left and right breast 

 Left Breast Right Breast Difference 

10.34 kPa 10.16 kPa -0.22 

 

The data of eleven participants with four repeat measure were used to determine if there was 

a difference in the elasticity values between the left and the right breasts as measured using 

the 6 x 3mm Q-Box™ protocol. The Wilcoxon Signed-rank test demonstrated there were no 

statistically significant median differences between the left and right breast, z=0.37, P=0.709. 

 

Upon looking at the CV between the right and left breast, there were some differences when 

using the 6 x 3mm Q-Box™ protocol. The left breast had a CV of 45.90% and the right was 

39.42%.  
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6.4.5.2 6 x 6mm Q-Box™  

The initial analysis was to determine if the data were normally distributed. The data was 

tested for violation of normality using the Shapiro-Wilk test; the results suggest the data was 

normally distributed (left breast p-value = 0.0.051; right breast p-value = 0.195) 

 

The paired samples T-test was used to analyse the data; the descriptive statistics are 

presented in table 6-17. 

 

Table 6-16: Descriptive statistics for 6 x 6mm Q-Box™ comparison of left and right breast 

Breast Mean Elasticity in kPa 

(SD) 

Left 11.29 (4.96) 

Right 11.31 (4.22) 

 

The mean difference was 0.015 (± 3.32) (95% CI -1.02 to 0.99; p=0.976). There were no 

statistically significant differences between the left and right breast when using the 6 x 6mm 

Q-Box™. Upon looking at the CV between the right and left breast, there were some 

differences when using the 6 x 6mm Q-Box™ protocol. The left breast had a CV of 43.99%, 

and the right was 37.28%. 

6.4.5.3 Free-Trace Q-Box™ 

The initial analysis was to determine if the data was normally distributed. The data was tested 

for violation of normality using the Shapiro-Wilk test; the results suggested that the data was 

normally distributed (left breast p-value = 0.315; right breast p-value = 0.311). The paired 

samples T-test was used to analyse the data; the descriptive statistics are presented in Table 

6-22. 

Table 6-17: Descriptive statistics for Free-Trace Q-Box™ comparison of left and right breast 

Breast Mean Elasticity in kPa (SD) 

Left 11.29 (4.97) 

Right 11.31 (4.22) 

 

The mean difference was -0.18 (±2.64) (95% CI -0.98 to 0.63; p=0.662). There are no 

statistically significant differences between the left and right breast when using the Free-

Trace Q-Box™. Upon looking at the CV between the right and left breast, there were some 



 138 

differences when using the Free-Trace Q-Box™. The left breast had a CV of 37.25% and the 

right breast was 34.58%.  

 

6.4.5.4 Comparison of Left and Right Breast Summary 

These analyses showed that with each of the three protocols, there were no differences 

between the left and right breasts. The CV showed some differences, with the right breast 

always having a lower CV but these differences may be arbitrary due to the singular data set 

and may have occurred due to chance. 

 

6.5 Discussion 

This study analysed the effect of using differing post-hoc SWE image analysis protocols on 

breast elasticity values. This analysis was undertaken to find the most precise method of 

measuring whole breast elasticity, as to date, there is no protocol to find the average whole 

breast elasticity; this being due to the novel and experimental nature of SWE being used for 

this indication. The data included in this study were re-analysed from the pharmacokinetic 

sub-study, which was presented in Chapter 4. This trial had recruited 11 participants who had 

four repeat SWE measurements, across a three-month time period. The Q-Box™ protocols 

that were used were as follows; 

• 6 x 3mm Q-Box™ placed across the image 

• 6 x 3mm Q-Box™ placed across the image 

• A singular 10mm Q-Box™ placed in the middle of the image 

• Full-Box trace Q-Box™, which was done using the Q-Box™ trace function to trace the 

border of the image 

• Free-Trace Q-Box™, which was done using the Q-Box™ trace function and tracing the 

image to avoid all ultrasound artefacts and black holes present within the SWE image 

 

In addition to these protocols, the Q-Box™ ratio function was used, this is when a singular Q-

Box™ is placed on an area of glandular tissue, and another singular Q-Box™ is placed on an 

area of fatty tissue. This was done twice with some variation in the sizes of the Q-Box™ 

capturing the data for each of the tissue types. These additional protocols were used because 
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this is a commonly used protocol in previous research, and it needed to be determined if it is 

a reliable and valid method to find the whole breast elasticity.  

 

As using whole SWE to measure whole breast elasticity is a novel biomarker for changes in 

the breast tissue, there is no gold standard of data collection methods in the literature to 

compare these SWE results to. This meant that there were some limitations in findings the 

protocol with the most valid results. The statistical model that was initially conducted was a 

one-way repeated measures ANOVA with post-hoc Bonferroni adjustments. The 6 x 3mm Q-

Box™ was the reference standard for this analysis, as it was the original protocol used to 

collect the breast elasticity data. This statistical model was used to determine if any of the 

protocols produced elasticity values that were statistically similar or different to the 6 x 3mm 

Q-Box™ data. As there is no gold standard to provide the ‘true’ elasticity values, we can be 

more confident in the validity of the findings if multiple protocols produced similar results. 

When looking at the repeated measures ANOVA, if no other protocol produced similar data to 

the 6 x 3mm Q-Box™, it would have been reconsidered as the reference standard for this 

analysis. From the repeated measures ANOVA, the 6 x 6mm, Free-Trace, and alternative ratio 

Q-Box™ data showed no statistically significant differences in the acquired data. Bland-Altman 

plots were created to visually show the agreement and precision of the different Q-Box™ 

protocols when compared to the 6 x 3mm Q-Box™ data. Finally, the CV was calculated for all 

the datasets; this analysis presents a value that represents the dispersion of the data around 

the mean and can help determine the protocol with the most precise results. 

 

From the statistical calculations and observations, it was found that the method with the 

greatest agreement and lowest amount of variation (lowest CV) was the Free-Trace Q-Box™ , 

which has previously been used in research by Evans (2015) for which the whole breast 

elasticity was also calculated using SWE. The other protocols which had similar data to the 6 x 

3mm Q-Box™ data were the 6 x 6mm Q-Box™ and the alternative ratio data. The three main 

protocols that were considered to be used as the reference standard for future research were 

the 6 x 3mm Q-Box, 6 x 6mm Q-Box™ and Free-Trace Q-Box™ protocols. The Q-Box™ ratio 

data was omitted from this consideration, as although commonly used in scientific research 

as a method to calculate the elasticity of the glandular tissue in the breast, it did not appear 

to be a reliable method of breast elasticity quantification. This opinion is due to the fact that 

when using a singular Q-Box, the elasticity can be greatly influenced by where the Q-Box™ is 
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placed. As the elasticity differs throughout the image, one Q-Box™ is not a good 

representation of the whole breast quadrant. This misrepresentation was demonstrated 

within this study, as there were statistically significant differences in the average elasticity 

between the two ratio datasets. Using the Q-Box™ ratio function can also introduce large 

measurement bias to the study, as the operator can choose where the Q-Box™ is placed. This 

operator dependence and small ROI of an area of variable data potentially allows the 

elasticity to be manipulated by the researcher. This potential for manipulation can lead to 

unreliable data, especially in longitudinal studies, with repeat measurements, with the 

objective of determining the efficacy of an intervention or determining changes within the 

breast tissue.  

 

As previously mentioned, the Free-Trace Q-Box™ was chosen as the protocol to use as the 

reference standard for future research. During this study, the Free-Trace Q-Box™ had the 

lowest CV; this showed that elasticity generated using this protocol had the greatest precision 

out of all the different protocols. The precision of a measurement shows the variability of the 

results and is a description of the random errors in the data. The Free-Trace Q-Box™ may 

have had the least variability due to the operator being able to omit objects within the image 

that are not true representations of the elasticity values. These objects include artefacts, 

which are areas on the colour elasticity image that might not be a representation of the 

mechanical properties of the breast tissue but rather an issue with the SWE. The areas in the 

image that have artefacts have extremely high elasticity values, which do not correspond to 

any structure on the B-Mode image (Figure 6-15) 
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Figure 6-15: Shear wave Elastography image with Ultrasound artefact highlighted 

 

The other objects that can induce random errors in the results are a phenomenon called 

‘black holes’; these are areas within the image for which the shear waves have not 

propagated. These black holes appear dark on the colour coded SWE output (Figure 6-16). As 

the shear waves have not propagated through the tissue, no elasticity values are recorded; 

consequently, the elasticity is displayed as 0.00kPa. With the Free-Trace Q-Box™, the 

operator can visualise, and trace around the artefacts and ‘black holes’, which decreases the 

random errors and variability in the data. This ability to trace around artefacts and ‘black 

holes’ increases the precision of the data when compared to the 6 x 3mm Q-Box™ data, as 

these can be placed around these areas but without as much precision, so may still include 

sections of ‘black holes’ or artefacts and lead to inaccurate elasticity data. As the Free-Trace 

Q-Box™ is still operator dependent, there is still the opportunity for operator bias to influence 

the elasticity values. However, as a larger ROI is included in the analysis, the actual placement 

of the box has less of an impact on the overall results. 
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Figure 6-16: Shear Wave Elastography image with a 'black hole'; an area the shear waves have not propagated 

 

Another reason for why the Free-Trace Q-Box™ was chosen as the future reference standard 

was its clinical utility. One of the key aspects of outcome measures that need to be analysed 

and considered, when being used for clinical and research purposes is the clinical utility. The 

clinical utility is how easy the outcome measure is to use, and the time taken to use the 

measure, this including the time taken to administer, enter the data and calculate the results. 

When using the SWE machine, manual analysis always needs to be conducted, as the process 

is not automated. The Free-Trace Q-Box™ is one of the quickest protocols studied with this 

analysis. For the protocols that require multiple Q-Box™, you are required to press the Q-

Box™ button on the screen for each new Q-Box™ (Figure 6-17), size it using the roll-ball on 

the SWE machine (Figure 6-18) and then place it on the image in the desired location. 
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Figure 6-17: Shear Wave Elastography machine with the Q-Box™ function highlighted. This needs to be pressed six times 

when using the 3 x 6mm and 6 x 6mm protocols 
 

 

Figure 6-18: Shear Wave Elastography dial that can be slid from left to right to re-size the Q-Box™ 

 

Additionally, with the six Q-Box™, you then need to calculate the average elasticity from the 

six mean values for each Q-Box™ on the image. In contrast, when using the Free-Trace Q-

Box™, the Q-Box™ command on the machine only needs to be pressed once, and then the 

operator proceeds to trace the ROI, avoiding the artefacts and black holes, using the attached 

stylus on the SWE machine (Figure 6-19). Only one set of data is also produced for each 

quadrant (Figure 6-20). This method generally only takes a few seconds per image. The 

clinical utility of the Free-Trace Q-Box™ is beneficial for larger clinical trials as the data can be 

generated in a timelier manner, there is less data that needs to be entered, and there is less 

need for manual calculations to determine the average elasticity of each quadrant.  
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Figure 6-19: Using the attached stylus on the shear wave elastography machine to trace the region of interest using the 

Free-Trace Q-Box™ protocol 

 
 

 

Figure 6-20: Comparison of the different shear wave elastography reports when using the 3 x 6mm Q-Box™ protocol and the 
Free-Trace Q-Box™ protocol 

 

 
This study also analysed whether there were differences in the elasticity of the different 

breast quadrant, this was important as some studies analyse the data from just one quadrant 

and it is important that we know if there are inherent differences across the breast. The 

findings from this study suggest that when using all three of the protocols, the upper outer 
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breast quadrant consistently had a higher elasticity value. This data agreeing with pre-existing 

data, showing that the upper outer quadrant having the greatest dense area when compared 

to the other three quadrants (Chan, Chen et al. 2017), which may explain why the elasticity 

was increased in this area. When using the Free-Trace Q-Box™ method, there were no 

statistically significant differences in the breast elasticity. This showing that if a researcher 

wanted to make the SWE measure quicker, they could use a single breast quadrant if using 

the Free-Trace Q-Box™. The upper outer quadrant also consistently had the lowest CV, so if 

using just a single quadrant to measure the changes in the breast with repeat measures, it 

would be recommended to use the upper outer quadrant. These calculations, however, were 

based on a small sample size and with a repeat study may reveal that there are significant 

differences in the breast quadrants. Further research is required to make a definitive 

statement.  

6.6 Conclusion 

Using the SWE machine to measure the whole breast elasticity is a new indication for this 

device, and as such, there is limited research to guide the user towards the most valid and 

reliable method for collecting this data. This current study utilised a number of different 

protocols and found that the Free-Trace Q-Box™ protocol was the most precise method, with 

the lowest CV, and had one of the lowest levels of potential for the researcher or assessor to 

manipulate the data. These results and analyses into the different methods of elasticity data 

generation will aid future use of SWE in the research and clinical environment and can aid the 

increased consistency among different studies. As this was not the method used in the first 

two interventional studies in this research program, a re-analysis of the data of those studies 

is required to determine if the findings are significantly altered. 
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Chapter 7 Re-analysis of data from Chapter 4 and 6: utilising the 

Free-Trace Q-box™ function as described in Chapter 5. 

 

7.1 Introduction 

As described in both Chapter 4 and Chapter 5, the breast elasticity data showed a significant 

amount of within-subject variations; this variation did not appear to follow any particular 

trend or pattern. To further analyse this, the previous chapter (Chapter 6) described an 

analysis where the method of elasticity data generation was evaluated to see if this was an 

influence on the within-subject variation in the data. Seven different protocols were used, and 

from the analyses, it was determined that the method of using the Free-Trace Q-Box™ 

function had similar values to the 6 x 3mm Q-Box™ and 6 x 6mm Q-Box™ values. The Free-

Trace Q-Box™ also had the lowest CV and therefore was the method which had the greatest 

precision. This level of precision was hypothesised to be due to the Free-Trace Q-Box™ having 

the largest area of the image included in in the ROI for which the elasticity is calculated for the 

quadrant. Also, when using the Free-Trace Q-Box™, the regions where the shear waves did not 

propagate, and the ultrasound artefacts that distort the elastic properties of the image, were 

omitted from the calculation. As the breast elasticity in Chapter 4 and Chapter 5 was collected 

using the 6 x 3mm Q-Box™ protocol, it was deemed to be of significant importance to repeat 

these analyses using the Free-Trace Q-Box™ to evaluate whether the initial results and 

conclusions are still valid. 

 

7.2 Objective 

The objective of this study was to re-analyse the data from Chapter 4 (HAVAHT+Ai™) and 

Chapter 5 (enobosarm and anastrozole) studies to determine if there were significant 

differences, which changed the findings and conclusions of the studies when using the Free-

Trace Q-Box™ elasticity data, compared to the 6 x 3mm Q-Box™ elasticity data. 
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7.3 Method 

The shear wave images that were taken for both the Chapter 4 (HAVAHT+Ai™) and Chapter 5 

(enobosarm and anastrozole) studies were reopened on the SuperSonic™ Aixplorer® Shear 

Wave Ultrasound Machine. Each image for all the participants had the elasticity re-acquired 

using the Free-Trace Q-Box™ function. As per the previous description, the Free-Trace Q-Box™ 

function aimed to incorporate the largest ROI possible yet avoiding the areas that the shear 

waves have not propagated and any artefacts that may have distorted the average elasticity of 

the image.  

 

Once the elasticity data for each image had been reacquired, reports were created for each 

participant visit and the data was entered into Microsoft Excel (2016). Following data entry, 

the same analyses that were initially conducted in each of the chapters, were redone with the 

data from the Free-Trace Q-Box™. The statistical analyses that were done for this chapter 

included; 

• The comparison of the within-subject data of the different elasticity acquirement 

protocols for the HAVAHT+Ai™ study and the enobosarm and anastrozole study. If the 

data were normally distributed, it was analysed using a paired samples T-test. If not, 

the Wilcoxon-Sign tank test was used. If the distribution of the median difference was 

not symmetrical, the sign test was used to determine if there was a significant 

difference between the median values for each group. 

• The repeat analysis of the change in elasticity over-time for the HAVAHT+Ai™ study 

and the enobosarm and anastrozole study. The initial analyses were conducted using 

the one-way repeat measures ANOVA if the data were normally distributed. If the data 

were not normally distributed, the Friedman test would be the statistical model 

chosen.  

• The correlation between the elasticity values and mammography variable values for 

the HAVAHT+Ai™ study and Study two. This analysis was conducted using Pearson’s 

correlation coefficient if the data were normally distributed. If the data was not 

normally distributed, a Spearman’s rank-order correlation was used.  

Statistical significance was set at p≤ 0.05 and with the confidence intervals for differences 

(where applicable) not crossing zero. 
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7.4 Results 

7.4.1 Comparison of Within-subject Data - Pharmacodynamics (Breast Tissue 

Elasticity) of Combination Subcutaneous Testosterone and Anastrozole 

(HAVAHT+Ai™) in Premenopausal Women with High Mammographic 

Breast Density  

 

The first analysis that was completed had the objective of determining if there was a 

statistically significant difference between the within-subject data points of the Free-Trace Q-

Box™ values and the 6 x 3mm Q-Box™ values. The breast elasticity from each participant, at 

each time point, for both of the variables were used in this analysis. The difference score was 

computed, the data were checked for outliers, and the Shapiro-Wilk test was used to assess 

the normality of the data. The p-value for the Shapiro-Wilk test was 0.000, which established 

that the data was not normally distributed; from visually inspecting the data on a histogram, it 

was observed that there was a strong positive skew in the dataset. From visually inspecting a 

box-plot of the data, it was observed that there were two outliers present in the dataset. 

These outliers were assessed and were deemed to be true values and were included in the 

analysis. Upon looking at the symmetry of the median differences, it was observed that the 

data was not symmetrical. Therefore, the Sign Test was the statistical model chosen to analyse 

the data. The data are all reported as median values unless otherwise stated; the descriptive 

statistics are presented in Table 7.1. 

 

Table 7-1: Descriptive statistics for the comparison of Q-Box™ protocols of within-subjects from the pharmacodynamic 
(breast tissue elasticity) of combination subcutaneous Testosterone (T) and anastrozole (Ai) in premenopausal women with 

high MBD 

6 x 3mm Q-Box™ Median 

Elasticity 

Free-Trace Q-Box™ Median 

Elasticity 

Difference 

10.39kPa 10.14kPa -0.11kPa 

 

There was a total of 44 data-points included in the analysis; 25 of these had positive 

differences, 19 had negative differences, and there were zero ties within the differences. The 
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results from the Sign Test show that there were no statistically significant median differences 

between the 6 x 3mm Q-Box™ data and the Free-Trace Q-Box™ data, z= 0.754, p= 0.451. 

 

7.4.1.1 Summary 
These results showed that when using the Free-Trace Q-Box™ protocol, there were no 

differences in the elasticity values that were obtained using the original 6 x 3mm Q-Box™ 

protocols.  

 

7.4.2 Repeat Analyses - Pharmacodynamics (Breast Tissue Elasticity) of 

Combination Subcutaneous Testosterone and Anastrozole 

(HAVAHT+Ai™) in Premenopausal Women with High Mammographic 

Breast Density  

 

7.4.2.1 Change in Breast Elasticity Over Time with Repeat Measurements 
The following analysis was evaluating the change in the breast elasticity data, at different time 

points, with the repeat measurements. This analysis was done to calculate if there were 

changes in the breast elasticity across the study using the Free-Trace Q-Box™ data, and 

whether this outcome differed from the original calculations using the 6 x 3mm Q-Box™ 

elasticity data. As with the analysis above, initially, the data was assessed using the Shapiro-

Wilk test. The Shapiro-Wilk test results are presented in Table 7-2. 

 

 

Table 7-2: Shapiro-Wilk values for the repeat measure analysis using the Free-Trace Q-Box™ elasticity 

Measurement Shapiro-Wilk p-value 

Baseline 0.052 

Month 1 0.001 

Month 2 0.000 

Month 3 0.001 
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The Shapiro-Wilk test result suggests that the data was not normally distributed. Using the 

boxplot to visually assess the data, five outliers were observed within the data; three outliers 

were in the one-month dataset, one was in the second-month dataset, and one was in the 

third-month dataset. These outliers were checked and were deemed to be true values and 

were to be included in the analysis. As the data was non-parametric, the Friedman test was 

used to analyse the data. 

7.4.2.1.1 Friedman Test of Free-Trace Q-Box™ Data 

The median values for the Friedman test are presented in Table 7-3. 

 

Table 7-3: Median values for each time point using the Free-Trace Q-Box™ for the repeat analysis of pharmacodynamics 
(breast tour elasticity) of combination subcutaneous Testosterone (T) and anastrozole (Ai) (HAVAHT+Ai™) in premenopausal 

women with high MBD 

Measurement Median Elasticity 

(kPa)  

Difference from 

Baseline (kPa) 

Baseline 12.20  

Month 1 10.65 -1.55 

Month 2 8.50 -3.70 

Month 3 7.85 -4.35 

 

The results from the Friedman test demonstrated that the breast elasticity values were 

statistically significantly different at the different time points during the time period that the 

women were on the HAVAHT+Ai™ intervention, X2 = 27.734, p<0.0005. The pairwise 

comparisons from the Friedman test are presented in Table 7-4. 

 

Table 7-4: Results of the pairwise comparison of the Friedman test with comparisons from baseline to the different time 
points and adjusted significance values 

Timepoint Adjusted Significance 

Baseline to Month 1 1.000 

Baseline to Month 2 0.002 

Baseline to Month 3 <0.0005 

 

The results from the pairwise comparison component of the Friedman test demonstrate that 

the breast elasticity had statistically significant reductions from baseline to month two, and 

from baseline to month three. 
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7.4.2.1.2 Original Results from Chapter 4 

 
The original results of the one-way repeat measure ANOVA using the 6 x 3mm Q-Box™ data 

are presented in table 7-5. 

 

Table 7-5: Original results using the 6 x 3mm Q-Box™ for the one-way repeat measures ANOVA 

Timepoint Breast Elasticity 

(SD) in kPa 

Change from 

Baseline (kPa) 

95% CI p-value 

Baseline 13.67 (7.89)    

Month 1 11.68 (5.58) -1.99 -4.35 to 0.36 0.148 

Month 2 9.86 (5.63) -3.80 -6.72 to -0.87 0.004 

Month 3 8.63 (3.96) -5.04 -7.31 to -2.78 >0.005 

 

These two results demonstrate that when using the Free-Trace Q-Box™, the results are not 

substantially different from the original calculations using the 6 x 3mm Q-Box™ data. The 

original figures showed greater decreases over the three months of the study, however both 

reductions at month two and month three reached statistical significance, and both of the p-

values were similar between the two different data collection protocols. 

 

7.4.2.2 Correlations Between Breast Elasticity and Per Cent Volumetric Breast Density 
Using the Free-Trace Q-Box™ Elasticity Data 

The next section of analyses is the correlations between the breast elasticity data and 

the %VBD data. The first analysis was the correlation between the baseline %VBD and baseline 

breast elasticity.  

7.4.2.2.1 Baseline Breast Elasticity and Baseline Per Cent Volumetric Breast Density 

The Shapiro-Wilk test was again used to determine the normality within the data. The 

normality of the data was not violated from the results of this test (baseline elasticity p-value = 

0.128; baseline %VBD p-value 0.286). For this reason, Pearson’s correlation coefficient was the 

statistical model chosen to perform the analysis. Using Pearson’s correlation coefficient, the 

results produced an r-value of 0.252 (p=0.456); this is a negligible correlation between the two 

variables (Figure 7-1). 
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Figure 7-1: Correlation between baseline %VBD and baseline breast elasticity in kPa 

 
The original 6 x 3mm Q-Box™ data produced an r-value of 0.184 (p=0.589). This result was a 

negligible correlation between the two variables. Using the Free-Trace Q-Box™ elasticity data 

did not change the overall outcome of the correlation analysis.  

 

 

 

7.4.2.2.2 End of Study Breast Elasticity and End of Study Per Cent Volumetric Breast 

Density 

The next analysis that was conducted was to analyse the correlations between the EOS %VBD 

data and the EOS breast elasticity data. The Shapiro-Wilk test was again used to determine 

normality within the data. The results showed that the data was normally distributed (EOS 

elasticity p-value = 0.559; EOS %VBD p-value = 0.320). For this reason, the Pearson’s 

correlation coefficient was the statistical model chosen for the analysis. The results showed an 

r-value of 0.256 (p=0.448), which is a negligible correlation between the two variables. The 

scatterplot with the trendline for this correlation is presented in Figure 7-2.  

 

r-value = 0.252 
p=0.456 
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Figure 7-2: Correlation between EOS %VBD and breast elasticity at 3 months (final Breast elasticity measurement) 

 
The original correlation coefficient using the 6 x 3mm Q-Box™ data produced an r-value of 

0.233 (p=0.491), which is also a negligible correlation between the two variables. Using the 

Free-Trace Q-Box™ elasticity data did not change the overall outcome of the correlation 

analysis. 

 

7.4.2.2.3 Changes in Breast Elasticity and Changes in Per Cent Volumetric Breast 

Density 

When determining if there was a correlation between the changes in %VBD and the change in 

the breast elasticity values for the Free-Trace Q-Box™ data, the same analyses that were 

originally conducted in Chapter 4 were completed. The initial correlation was on the 

difference values between the baseline %VBD and the 12-month %VBD results, and the 

difference values between the baseline elasticity and the three-month elasticity findings. The 

Shapiro-Wilk test results suggested the data was normally distributed (change in elasticity 

(baseline to 3 months) p-value = 0.099; change in %VBD (baseline to 12 months) p-value = 

0.287). For this reason, the Pearson’s correlation coefficient was used to analyse the data. The 

results show an r-value of 0.234 (p = 0.488), which showed a negligible correlation between 

the two variables. The scatterplot with the trendline for this correlation is presented in Figure 

7-3. 

 

r-value = 0.256 
p=0.448 



 154 

 
Figure 7-3: Correlation between change in %VBD (baseline to month 12) and breast elasticity in kPa (baseline to month 3) 

 
The original calculation using the 6 x 3mm Q-Box™ data had a similar finding with an r-value of 

0.315 (p=0.345), which was a low positive correlation between the variables across the study. 

Using the Free-Trace Q-Box™ elasticity data did slightly alter the outcome of the correlation 

analysis, as it went from low to a negligible correlation. Both findings are clinically 

insignificant, as it does not show a valuable relationship between the two variables. 

 

7.4.2.2.4 Summary 

These results show that there were some differences in the individual correlation coefficients, 

but these differences did not change the overall outcomes and conclusions of the analyses. 

The findings using the Free-Trace Q-Box™ data suggest that there were negligible correlations 

between %VBD and breast elasticity, and the changes in %VBD and changes in elasticity. 

 

7.4.2.3 Correlations Between Elasticity and Total Fibroglandular Volume  
The next group of analyses was the correlations between the TFV measurements, and the 

breast elasticity values and the changes in these variables. 

  

r-value = 0.234 
p=0.488 
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7.4.2.3.1 Correlation Analysis Between Baseline Total Fibroglandular Volume and 

Breast Elasticity 

The initial analysis was to determine if there was a correlation between the baseline TFV and 

the baseline breast elasticity. The Shapiro-Wilk test results suggest the baseline elasticity was 

normally distributed (p=0.128), and the baseline TFV data violated normality (p=0.014). As one 

of the variables was not normally distributed, the Spearman’s rank-order correlation 

coefficient was the statistical model chosen to analyse the data. Spearman’s coefficient 

produced an r-value of 0.100 (P=0.770). This was a negligible correlation between the baseline 

TFV and the baseline breast elasticity (Figure 7-4).  

 

 
Figure 7-4: Correlation between total fibroglandular volume at baseline and breast elasticity at baseline 

  

This result was a similar result to the original analysis using the 6 x 3mm Q-Box™ data which 

produced an r-value of -0.188 (p=0.729). Using the Free-Trace Q-Box™ elasticity data did not 

change the overall outcome of the correlation analysis, except one was a positive and one was 

a negligible correlation.  

 

  

r-value = 0.100 
p=0.770 
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7.4.2.3.2 End of Study Total Fibroglandular Volume and End of Study Breast Elasticity 

The next analysis was conducted to determine the correlation between the EOS TFV, which 

was measured at 12 months and the EOS breast elasticity, which was measured at 3 months. 

The Shapiro-Wilk test results suggest the EOS elasticity is normally distributed (p-value = 

0.559), and the EOS TFV data violated normality (p-value = 0.035). Again, the Spearman’s rank-

order correlation coefficient was used to analyse the data. The Spearman’s coefficient 

produced an rs value of -0.427 (p=0.190); this demonstrates a low correlation between the 

two variables (Figure 7-5). 

 

 
Figure 7-5: Correlation between EOS total fibroglandular volume (12 month) and EOS Breast Elasticity (3 months) 

 

The original analyses using the 6 x 3mm Q-Box™ data, the Spearman’s rank-order correlation 

produced a rs value of -0.436 (p=0.180), which again was a low, negative correlation between 

the variables. Using the Free-Trace Q-Box™ elasticity data did not alter or change the overall 

outcome of the correlation analysis.  

 

  

rs value =  -0.427 
p=0.190 
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7.4.2.3.3 Correlation Between Change in Total Fibroglandular Volume and Change in 

Breast Elasticity 

The next analysis is a correlation between the change in TFV from baseline to month 12 and 

the change in breast elasticity from baseline to month three. The Shapiro-Wilk test results 

suggest that both sets of the data were normally distributed (change in elasticity (baseline to 3 

months) p-value = 0.099; change in TFV (baseline to 12 months) p-value = 0.104). As the data 

was parametric, the Pearson’s correlation coefficient was the statistical model chosen, and 

this analysis produced and r-value of 0.616 (p=0.044), this was a statistically significant 

moderate correlation between the two variables (Figure 7-6). 

 

 
Figure 7-6: Correlation between change in total fibroglandular volume (baseline to month 12) and change in breast elasticity 

(baseline to month 3) 

 

In regard to the previous analysis conducted in Chapter 4, Pearson’s correlation coefficient 

demonstrated that the r-value was 0.689 (p=0.019). This result again was a statistically 

significant moderate positive correlation between the change in elasticity from baseline to 

month three and the change in TFV from baseline to month 12. Using the Free-Trace Q-Box™ 

elasticity data did not change the outcome of the correlation analysis.  

 

Further to this analysis, a correlation analysis was conducted on the change in TFV between 

baseline and month 12 and the change in elasticity from baseline to month one and the 

r-value = 0.616 
p=0.044 
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change in breast elasticity from baseline to month two. The Shapiro-Wilk test suggests that 

the change in elasticity (baseline to 1 month) data violated normality (p-value = 0.042), and 

the change in elasticity (baseline to 2 months) was normally distributed (p-value = 0.558). As 

the change in elasticity from baseline to month one was not normally distributed; the 

Spearman rank-order correlation was used to analyse this data. The change in breast elasticity 

from baseline to month two was normally distributed, and for this reason, Pearson’s 

correlation coefficient was used to analyse the data. 

 

Firstly, the Spearman rank-order correlation produced a rs value of 0.609 (p=0.047) between 

the change in TFV and the change in breast elasticity from baseline to one month. This result 

was a statistically significant moderate correlation between the two variables (Figure 7-7). 

 

 
Figure 7-7: Correlation between change in total fibroglandular volume (baseline to month 12) and change in breast elasticity 

(baseline to month 1) 

The original analysis that was conducted in Chapter 4 using the 6 x 3mm Q-Box™ produced an 

r-value of 0.611 (p=0.046), which again was a statistically significant moderate positive 

correlation between the elasticity change at month one and the TFV change at 12 months. 

Using the Free-Trace Q-Box™ data did not change the overall outcome of the correlation 

analysis.  

 

The last analysis was the correlation between the TFV change and the elasticity change from 

baseline to month two. Pearson’s correlation coefficient produced an r-value of 0.813 

rs value = 0.609 
p=0.047 
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(p=0.002) (Figure 7-8). This result was a statistically significant, high correlation between the 

two variables. 

 
Figure 7-8: Correlation between change in total fibroglandular volume (baseline to month 12) and change in breast elasticity 

(baseline to month 2) 

 

The original analysis that was conducted in Chapter 4 using the 6 x 3mm Q-Box™ produced 

very similar results with an r-value of 0.818 (p=0.002), which was a statistically, high 

correlation between the two variables. Using the Free-Trace Q-Box™ elasticity data did not 

change the overall outcome of the correlation analysis.  

 

7.4.2.3.4 Summary 

These analyses again showed that there were no significant differences in the outcomes 

between the original results using the 6 x 3mm Q-Box™ data and the Free-Trace Q-Box™ 

elasticity data. The conclusions remain that there are moderate to strong correlation between 

the changes in TFV and changes in breast elasticity. Also, the same conclusions remain that 

there is a moderate and strong correlation with early breast elasticity changes seen at one 

month and month two, respectively, with the changes in TFV across 12 months. These results 

may not have changed significantly with the Free-Trace Q-Box™ data as, although the method 

of data collection has a lower CV and it less influenced by the artefacts and black holes, the 

actual spread of the data has remained the same, while the mean elasticity is lower. This 

would conclude the correlations remained mostly the same, yet the data used was different. 

r-value = 0.813 
p=0.002 
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These results show that breast elasticity may be able to predict early the changes occurring in 

the potential changes in TFV at 12 months, which gives promise for breast elasticity being a 

biomarker for changes within the breast tissue with further research. 

 

7.4.3 Comparison of Within-subject Data - Anastrozole and GTx-024: The 

Effect of an Aromatase Inhibitor and Selective Androgen Receptor 

Modulator on Mammographic Breast Density and Breast Elasticity in 

Premenopausal Women 

 

The initial analysis that was conducted in this section was to determine if there was a 

statistically significant difference between the within-subject data points, using the Free-Trace 

Q-Box™ and 6 x 3mm Q-Box™ data. Upon looking at the normality of the data, the Shapiro-

Wilk test showed a significance value of 0.000, which demonstrated that the data was not 

normally distributed, and there was a strong negative skew with the data. There was one 

extreme outlier that sat greater than 1.5 box lengths from the edge of the boxplot. Upon 

further analysis, this figure was deemed a correct figure and kept within the analysis. The Sign 

test was the statistical model chosen as the distribution of the median differences were not 

symmetrical. All data are reported as median values unless otherwise reported. The 

descriptive statistics are presented in Table 7-6. 

 

Table 7-6: Descriptive statistics for the within-subjects data from anastrozole and GTx-024: the effect of an aromatase 
inhibitor and selective androgen receptor modulator on MBD and breast elasticity in premenopausal women 

6 x 3mm Q-Box™ Median 

Elasticity 

Free-Trace Q-Box™ Median 

Elasticity 

Difference 

14.05 kPa 13.77 kPa -0.70 kPa 

 

There was a total of 39 data points within the analysis, 10 had positive differences, 29 

negative differences, and there were zero ties within the differences. The Sign test 

demonstrated that there was a statistically significant median difference of -0.70kPa, the 

standardized test statistic (z) = -2.88 and a p-value of 0.004. 
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7.4.4 Repeat Analyses - Anastrozole and GTx-024: The Effect of an Aromatase 

Inhibitor and Selective Androgen Receptor Modulator on 

Mammographic Breast Density and Breast Elasticity in Premenopausal 

Women 

 

7.4.4.1 Change in Elasticity Over Time with Repeat Measurements 
This analysis is evaluating the repeat measures of the Free-Trace Q-Box™ breast elasticity 

data. This analysis was conducted to determine if there was a statistically significant difference 

in the elasticity data at the different time points and whether this differed from the original 

analyses using the 6 x 3mm Q-Box™. 

 

The data were first analysed to establish the normality of the data and whether there were 

any outliers in the data. The results from the Shapiro-Wilk test are presented in Table 7-7. 

 

Table 7-7: Shapiro-Wilk test for normality for the Free-Trace repeat measures data 

Measurement Shapiro-Wilk Value 

Baseline 0.032 

Month 1 0.321 

Month 3 0.048 

Month 12 0.148 

 

The baseline and month three datasets were both not normally distributed; month one and 

month 12 were normally distributed. There were also two outliers present in the data; these 

were in the month one and month three datasets. Upon further inspection, these data points 

were deemed true values and were left to be included in the analysis. As not all of the data 

were normally distributed, the Friedman test was the statistical model used to analyse the 

data. All values are median values unless otherwise stated. The median values for the breast 

elasticity values are presented in Table 7-8. 
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Table 7-8: Descriptive statistics for the Free-Trace Q-Box™ data 

Timepoint Median Elasticity (kPa) Difference in Elasticity from 

Baseline (kPa) 

Baseline 15.00  

Month 1 13.35 -1.65 

Month 3 11.50 -3.50 

Month 12 13.40 -1.60 

 

The Friedman test showed that the breast elasticity was statistically significantly different at 

the different time points throughout the study X2(3) = 10.762, p=0.013. The pairwise 

comparisons are presented in Table 7-9. 

 

Table 7-9: Results from the Friedman test pairwise comparison for Free-Trace Q-Box™ data with adjusted statistical 
significance 

Timepoint Adjusted Significance p-value 

Baseline to Month 1 1.000 

Baseline to Month 3 0.014 

Baseline to Month 12 0.094 

 

These results show that there was a statistically significant decrease in the median breast 

elasticity from baseline to Month 3 however there was a slight increase in the median 

elasticity values from month 3 to month 12, resulting in statistically insignificant changes from 

baseline to month 12. 

 

7.4.4.1.1 Original Results from the 6 x 3mm Q-Box™ One-way Repeat Measures 

ANOVA 

 
The original one-way repeat measures ANOVA using the 6 x 3mm Q-Box™ results are 

presented in Table 7-10. 
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Table 7-10: Original one-way repeat measure ANOVA using 6 x 3mm Q-Box™ 

 Value (SD) Change from 

Baseline (SD) 

95% CI p-value 

Breast Tissue Elasticity (kPa) 

Baseline 17.94 (9.35)    

Month 1 14.25 (4.76) -3.69 (9.83) -7.50 to 0.12 0.064 

Month 3 13.94 (7.75) -4.00 (11.18) -8.36 to 0.364 0.097 

Month 12 12.55 (5.34) -5.37 (11.54) -9.85 to -0.92 0.009 

 

The original results which used the 6 x 3mm Q-Box™ presented more dramatic decreases in 

the breast elasticity across the four repeat measurements. The results showed a trend for 

decreasing elasticity values across the three-time points after baseline, with no mean elasticity 

increases at any time point. The decreases reached statistical significance at the 12-month 

dataset.  

 

7.4.4.1.2 Summary 

These results demonstrate that when using the Free-Trace Q-Box™ data, there are significant 

differences in the outcomes and conclusions regarding the data. The elasticity decreased from 

baseline in both the datasets; however, when using the Free-Trace Q-Box™ data, the elasticity 

increased slightly at the 12-month repeat measure. This result could demonstrate that the 

breast elasticity has quite rapid acute decreases and then begins to plateau as the timeline 

extends. Further explanations for the discrepancies between the results produced by the two 

elasticity protocols could be that the 6 x 3mm Q-Box™ data is more influenced by artefacts 

and fluctuations in the data and it may have been possible that artefacts were included in the 

baseline images, increasing the mean elasticity and showing greater decreases with the 

follow-up measurements. In addition to this, there may have been areas in the month 12 

images where the shear waves didn’t propagate (black holes), which produces a lower mean 

elasticity and therefore may show greater reductions with time. Furthermore, as the elasticity 

fluctuates across each SWE image and the 6 x 3mm Q-Box™ method requires the operator to 

place the Q-Box™  across the image, it is possible that by chance the Q-Box™  were placed on 

areas on lower elasticity, thus producing a lower mean elasticity at the 12-month time point. 
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Further research needs to be completed to determine if there is a true elasticity plateau at 

some point during the intervention, or to determine if there were measurement errors at any 

point during the study.  

 

7.4.4.2 Correlations Between Elasticity and Per Cent Volumetric Breast Density 
The next group of analyses that were conducted were the analyses of the correlation between 

the %VBD and the breast elasticity values. 

 

7.4.4.2.1 Correlation Between Baseline Per Cent Volumetric Breast Density and Breast 

Elasticity 

The initial calculation conducted was to determine the correlation between the 

baseline %VBD and the baseline breast elasticity values. The Shapiro-Wilk suggested that the 

data was normally distributed (baseline elasticity p-value = 0.778; baseline %VBD p-value = 

0.185). As the data was normally distributed the Pearson’s correlation coefficient was the 

statistical model used the analyse the data. The results from the Pearson’s correlation 

coefficient showed there was no correlation between the two variables with an r-value of 

0.000 (p=0.999) (Figure 7-9). There was no pattern of a relationship between baseline breast 

elasticity and baseline %VBD.  

 

 
Figure 7-9: Correlation between %VBD at baseline and breast elasticity in kPa at baseline 

r-value = 0.000 
p=0.999 
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The original results conducted in Chapter 5 using the 6 x 3mm Q-Box™ data. These 

correlations resulted in an r-value of 0.264 (p=0.528), which was a negligible correlation 

between the two variables. Using the Free-Trace Q-Box™ data did not change the result of the 

correlation analysis.   

 

7.4.4.2.2 Correlation Between End of Study Per Cent Volumetric Breast Density and 

End of Study Breast Elasticity 

The next analysis was to correlation the EOS %VBD values with the EOS breast elasticity 

values. The Shapiro-Wilk results suggested both sets of data were normally distributed (EOS 

elasticity p-value = 0.596; EOS %VBD p-value = 0.576).The Pearson’s correlation coefficient 

produced an r-value of 0.114 (p=0.788); this was a negligible correlation between the two 

variables (Figure 7-10). 

 

 
Figure 7-10: Correlation between EOS %VBD (12-month data) and EOS breast elasticity (12 months) 

This result was similar to the original analysis presented in Chapter 5, using the 6 x 3mm Q-

Box™ data. This analysis produced an r-value of 0.273 (p=0.523), which was a negligible 

correlation between the two variables. Using the Free-Trace Q-Box™ data did not change the 

overall result of the correlation analysis. 

 

r-value = 0.114 
p=0.788 
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7.4.4.2.3 Correlation Between the Change in Per Cent Volumetric Breast Density and 

Change in Breast Elasticity 

The initial calculation was looking at the correlation between the change in breast elasticity 

and the change in %VBD from baseline to the final 12-month repeat measurement. The data 

was normally distributed as per the Shapiro-Wilk test (change in elasticity (baseline to 12 

months) p-value = 0.609; change in %VBD (baseline to 12 months) p-value = 0.435). The 

results from Pearson’s correlation coefficient produced an r-value of 0.315 (p=0.448), which 

was a low correlation between the two variables (Figure 7-11) 

 

 
Figure 7-11: Correlation between change in %VBD (baseline to month 12) and change in breast elasticity (baseline to month 

12) 

These results differed from the original analysis, which used the 6 x 3mm Q-Box™ data. These 

analyses produced an r-value of -0.120 (p=0.997), which was a negligible, negative correlation 

between the two variables. Using the Free-Trace Q-Box™ elasticity data changed the 

correlation from negligible to low. 

 

The final analysis for this section was using the Free-Trace Q-Box™ data to correlate the 

changes in %VBD from baseline to the 12-month measurements, and the change in elasticity 

from the baseline measurement to the one-month time point. The data was normally 

distributed according to the Shapiro-Wilk test (change in elasticity (baseline to one month) p-

value = 0.231; change in %VBD (baseline to 12 months) p -value = 0.435). The Pearson’s 

r-value = 0.315 
p=0.448 
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correlation coefficient produced an r-value of 0.041 (p=0.925); this was a negligible, positive 

correlation between the two variables (Figure 7-12). 

 
Figure 7-12: Correlation between change in %VBD (baseline to month 12) and change in breast elasticity (baseline to month 

one) 

 

These results vary significantly from the original analysis using the 6 x 3mm Q-Box™ data, 

presented in Chapter 5. This analysis produced an r-value of -0.451 (p=0.262), which was a low 

negative correlation between the two variables. Using the Free-Trace Q-Box™ elasticity data 

changed the correlation analysis from moderate to negligible.  

 

7.4.4.3 Correlations Between Elasticity and Total Fibroglandular Volume 
The next group of analyses is correlation the breast elasticity values with the TFV values.  
 

7.4.4.3.1 Correlation Between Baseline Breast Elasticity and Baseline Total 

Fibroglandular Volume 

The initial analysis was to correlate the baseline elasticity values with the baseline TFV values. 

The data was normally distributed as per the Shapiro-Wilk test (baseline elasticity p-value = 

0.779; baseline TFV p-value = 0.264). The Pearson’s correlation coefficient was used to analyse 

the data. The correlation coefficient produced an r-value of 0.078 (p=0.854); this a negligible, 

positive correlation between the two variables (Figure 7-13). 

 

r-value = 0.041 
p=0.925 
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Figure 7-13: Correlation between baseline total fibroglandular volume and baseline breast elasticity 

 

The original calculation produced a similar result to the one just presented. The original 

analysis produced an r-value of 0.273 (p=0.523), which was a negligible, positive correlation 

between the two variables. Using the Free-Trace Q-Box™ elasticity data changed the 

correlation analysis outcome from low to negligible.  

 

7.4.4.3.2 Correlation Between End of Study Breast Elasticity and End of Study Total 

Fibroglandular Volume 

The next correlation conducted was the correlation between the EOS breast elasticity and the 

EOS TFV. The data was normally distributed as per the Shapiro-Wilk test (EOS elasticity p-value 

= 0.596; EOS TFV p-value = 0.462). The Pearson’s correlation coefficient was the statistical test 

used. The results of this test produced an r-value of -0.547 (p=0.161), which was a negative, 

moderate correlation between the two variables (Figure 7-14). 

r-value = 0.078 
p=0.854 
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Figure 7-14: Correlation between EOS total fibroglandular volume (12 months) and EOS breast elasticity (12 months) 

 

The original result presented in Chapter 5 was substantially different from the results just 

presented. The results from Chapter 6 showed an r-value of 0.842 (p=0.009), which was a 

statistically significant, high positive correlation between the two variables. Using the Free-

Trace Q-Box™ elasticity data changed the results from a positive to a negative correlation and 

changed the overall correlation from high to moderate.  

 

7.4.4.3.3 Correlation Between the Change in Breast Elasticity with the Change in Total 

Fibroglandular Volume 

The first analysis in this group of analyses is a correlation the change in elasticity from the 

baseline measure to the 12-month time point with the change in TFV from the baseline 

measure to the 12-month time point. According to the Shapiro-Wilk test the TFV violated the 

test for normality (p=0.034), and therefore the data were transformed using a logarithmic 

transformation. Following the data transformation, the Shapiro-Wilk test demonstrated the 

change in TFV was 0.087, which was normally distributed. The change in elasticity was 

normally distributed (p = 0.609). As both datasets were now normally distributed, Pearson’s 

correlation coefficient was used to analyse the data. This correlation analysis produced an r-

value of 0.657 (p=0.077); this was a moderate, positive correlation between the two variables 

(Figure 7-15). 

r-value = -0.547 
p=0.161 
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Figure 7-15: Correlation between change in total fibroglandular volume (baseline to month 12) and change in breast 

elasticity (baseline to month 12) 

 

The original results in Chapter 5 produced a similar result with an r-value of 0.678 (p=0.139), 

which again was a moderate correlation between the two variables. Using the Free-Trace Q-

Box™ data did not change the overall conclusion from the correlation analysis.  

 

Upon evaluating the change in breast elasticity from baseline to one month, and its 

correlation to the changes in TFV from baseline to month 12. The results from the Shapiro-

Wilk test showed the change in elasticity (baseline to one month) was normally distributed 

(p=0.231). The change in TFV was listed above and was normally distributed with transformed 

data. The results from the Pearson’s correlation coefficient produced an r-value of 0.459 

(p=0.253), which was a positive, low correlation between the two variables (Figure 7-16). 

 

r-value = 0.657 
p=0.077 
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Figure 7-16: Correlation between change in total fibroglandular volume (baseline to month 12) and change in breast 

elasticity (baseline to month 1) 

This result was a similar result to the original analysis in Chapter 5 with an r-value of 0.500 

(p=0.313), which was a positive, moderate correlation between the two variables. Using the 

Free-Trace Q-Box™ data changed the overall correlation from moderate to low; however, the 

actual r-values are quite similar in value. 

 

7.4.4.3.4 Correlation Between Elasticity and Total Breast Volume 

The next group of analyses is between the breast elasticity and the TBV at the different time 

points.  

 

7.4.4.3.5 Correlation Between Baseline Breast Elasticity and Baseline Total Breast 

Volume 

The Initial analysis conducted was the correlation between the baseline elasticity and the 

baseline TBV. The data was normally distributed according to the Shapiro-Wilk test (baseline 

elasticity p-value 0.778; baseline TBV p-value = 0.345), as the data was normally distributed 

the Pearson’s correlation coefficient was used to analyse the data. This correlation produced 

an r-value for this correlation was 0.095 (p=0.822), which was a positive, negligible correlation 

between the two variables (Figure 7-17). 

r-value = 0.459 
p=0.253 
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Figure 7-17: Correlation between baseline total breast volume and baseline breast elasticity 

 

This result was a similar result to the original results presented in Chapter 5, with this 

correlation producing an r-value of 0.246 (p=0.557), which again was a positive, negligible 

correlation between the two variables. Using the Free-Trace Q-Box™ data did not alter the 

conclusion from the correlation analysis.  

 

7.4.4.3.6 Correlation Between End of Study Breast Elasticity and End of Study Total 

Breast Volume 

Upon looking at the EOS elasticity and the EOS TBV, the data was normally distributed (EOS 

elasticity p-value = 0.596; EOS TBV p-value = 0.086). Pearson’s r-value was -0.605 (p=0.112), 

which was a negative, moderate correlation between the two variables (Figure 7-18). 

 

r-value = 0.095 
p=0.822 
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Figure 7-18: Correlation between EOS total breast volume (12 months) and EOS breast elasticity (12 months) 

These results differed substantially from the original analysis presented in Chapter 5; this 

analysis produced an r-value of 0.845 (p=0.007), this being a statistically significant strong 

correlation between the two variables. Using the Free-Trace Q-Box™ data, the results went 

from a positive, negligible relationship to a negative high positive correlation between the two 

variables.  

 

7.4.4.3.7 Change in Breast Elasticity and Change in Total Breast Volume 

The next analysis was to look at the correlation between the change in breast elasticity from 

baseline to 12 months and the change in TBV from baseline to 12 months. The data was 

normally distributed according to the Shapiro-Wilk test (change in elasticity (baseline to 12 

months) p-value = 0.623; change in TBV (baseline to 12 months) p-value = 0.735). The 

Pearson’s r-value was -0.225 (p=0.592). This result was a similar result to the previous analysis 

that was presented in Chapter 5 with that analysis producing an r-value of 0.280 (p=0.502), 

both correlations were statistically insignificant, low correlations between the two variables 

(one a positive, one a negative correlation) (Figure 7-19).  

 

r-value = -0.605 
p=0.112 
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Figure 7-19: Correlation between change in total breast volume (baseline to month 12) and change in breast elasticity 

(baseline to month 12) 

 

The final analysis was to correlation the change in elasticity from baseline to month one and 

the change in TBV from baseline to month 12. Again, the data was normally distributed 

according the Shapiro-Wilk test (change in elasticity (baseline to one month) p-value = 0.231), 

and the change in TBV was listed above. The Pearson’s correlation coefficient produced an r-

value of 0.283 (p=0.497), which was a low, positive correlation between the two variables 

(Figure 7-20). This result was different from the original analysis, which resulted in an r-value 

of 0.585 (p=0.223), which was a positive, moderate correlation between the two variables. 

Therefore, using the Free-Trace Q-Box™ elasticity data changed the overall conclusion of the 

correlation analysis.  

 

r-value = 0.280 
p=0.502 
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Figure 7-20: Correlation between change in total breast volume (baseline to month 12) and change in breast elasticity 

(baseline to month one) 

 

7.5 Discussion 

Within the original experimental studies located in Chapter 4 (HAVAHT+Ai™ study) and 

Chapter 5 (enobosarm and anastrozole study) of this thesis, the whole breast elasticity was 

calculated from SWE images using 6 x 3mm Q-Box™ across eight images (each breast 

quadrant) and then averaging the elasticity from these Q-Box™. Observations of the data in 

these studies revealed substantial within-subject variation, which did not appear to follow a 

pattern or a consistent trend of increasing or decreasing breast elasticity. Due to these 

observations, it was decided that the elasticity data needed to be examined, and that the data 

would be re-acquired using a variety of different Q-Box™ protocols to extract the data from 

the SWE image. Collecting this data was done to evaluate which methods had high levels of 

agreement with the reference standard, and which method had the lowest CV, therefore the 

greatest precision when collecting the elasticity data. In addition, the clinical utility of the data 

collection method was evaluated, as for this research program the focus is the use of SWE in 

clinical research, therefore the chosen SWE method needed to be easily implemented in 

research protocols and be able to be conducted in a timely manner.  

 

The best protocol for collecting the data was determined to be the Free-Trace Q-Box™ 

method, which is the method of tracing the ROI over the image; omitting any areas where the 

r-value = 0.585 
p=0.223 
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shear waves have not propagated and omitting areas where artefacts have corrupted the 

image. When using this method, firstly, there isn’t the same degree of elasticity variation due 

to the areas of extremely high and low elasticity being omitted as per the method stated 

above. Additionally, when using this method, there is a large area to calculate the average 

elasticity, which provides a more accurate representation of the assumed true elasticity from 

the image. When using the 6 x 3mm Q-Box™ protocol, a substantial amount of area in the 

SWE image is not included in the elasticity calculation. As the elasticity in the tissue fluctuates 

to such a great extent, smaller ROIs may substantially alter the value for the whole breast 

elasticity. To determine if changing the method of analysing the SWE images influenced the 

results of the original two experimental studies, the original images were re-evaluated using 

the Free-Trace Q-Box™, and all the relevant analyses that were conducted in these studies 

were repeated with the new dataset to determine if the outcomes differed. 

 

Regarding the within-subject data of the HAVAHT+Ai™ study of Chapter 4, there were no 

statistically significant median differences between the two elasticity datasets (6 x 3mm and 

Free-Trace Q-Box™). However, when analysing the within-subject data of the enobosarm and 

anastrozole study of Chapter 5, there were statistically significant median differences between 

the two datasets. The Free-Trace Q-Box™ had a slightly lower median elasticity of 13.77kPa 

which was 0.7kPa lower than that produced with the 6 x 3mm Q-Box™ method. As mentioned 

in Chapter 6, using different Q-Box™ protocols or sizes and varying the position the Q-Box™ 

are placed can alter the elasticity output, and this was demonstrated within this analysis. From 

this analysis it can be reinforced that it is crucial that a consistent elasticity protocol is used 

amongst researchers to generate the mean whole breast elasticity or measurement error may 

bias the results, increasing the risk of Type 1 errors (false positives). 

 

Regarding the repeat measurements and the analysis of the change in elasticity over time, in 

the HAVAHT+Ai™ study the original data and subsequent analyses using the 6 x 3mm Q-Box™ 

protocol, the results showed statistically significant decreases in the mean breast elasticity 

from the second month with reductions of -3.80kPa (95% CI -6.72 to 0.87;p=0.0004), and 

there was also a statistically significant reduction at the three-month time point with a 

decrease of -5.04kPa (95% CI -7.31 to -2.78; p<0.005). When using the Free-Trace Q-Box™ 

data in the second analysis, the trends of decreasing elasticity were similar, but the overall 
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decreases were slightly less than the original analysis. In the Free-Trace Q-Box™ analysis, as 

with the original analyses, there were statistically significant reductions at month two of -

2.97kPa (95% CI -5.30 to -0.64; p=0.005) and at month three with reduction of -4.04kPa (95% 

CI -5.84 to -2.24; p<0.0005). Both datasets showed a statistically significant reduction at the 

same time points; the Free-Trace Q-Box™ data may have had a smaller reduction due to the 

decreased variability of the data. As the method decreases the potential for elasticity 

extremes, it may have led to observed smaller mean changes. The Free-Trace Q-Box™ data 

also had smaller confidence intervals, which demonstrates a greater level of precision of the 

results. This smaller confidence interval being favourable for clinical research and shows a 

greater indication of efficacy in studies with smaller sample sizes. Overall, these results 

demonstrate that the original conclusions that HAVAHT+Ai™ influenced breast elasticity can 

be maintained.  

 

Similar findings were observed in the repeated measure analysis of the enobosarm and 

anastrozole study from Chapter 5. The original analysis demonstrated that there were 

statistically significant changes in the breast elasticity at the 12-month time point with a 

change of -5.37kPa (95% CI -9.85 to -0.92; p=0.009). The breast elasticity changes also 

approached statistical significance at the one-month time point with a change of -3.69kPa 

(95% CI -7.50 to 0.12; p=0.064). When using the Free-Trace Q-Box™, as the data was non-

parametric, the Friedman test and median values were used. This analysis showed a 

statistically significant reduction at the third month with a change of -3.50kPa (p=0.014) and 

the 12-month reductions plateaued, leading to a statistically insignificant change of -1.60kPa 

(p=0.094). The changes between month three and month 12 were statistically insignificant 

with a breast elasticity increase of 0.58kPa (95% CI -1.58 to 2.69; p=1.000). If the Free-Trace 

Q-Box™ elasticity analysis was redone using a parametric test, as per the Friedman test, there 

were statistically significant changes of -2.76kPa (95% CI -5.39 to -0.12; p=0.094) at the third 

month time point. These results then plateaued and became statistically insignificant at the 

12-month time point with a reduction of -2.18kPa (95% CI -4.57 to 0.209; p=0.094). One of the 

major limitations of this study is that we do not know if this was a true plateau with the tissue 

elasticity or whether there was a measurement error. A future study with more regular SWE 

imaging may be able to provide more insight into what is happening with the breast elasticity 

between the third and 12th month.  
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With the Free-Trace Q-Box™ data, even though the results were not as favourable for the 

hypothesis, this method of data collection produced more precise results with narrow 

confidence intervals. The confidence intervals also had a greater range below zero, showing a 

greater likelihood that the true mean would show a reduction at the 12-month time point. 

Additionally, as the sample size is small, even a slight increase in a participant’s breast 

elasticity could influence the results and lead to statistically insignificant results. With this 

sample size, the confidence intervals may be a better indication of efficacy in this scenario. 

Further explanations for the insignificant results could be that as the mammograms were only 

conducted at baseline and month 12, it is unable to determine if the changes within the %VBD 

and TFV also plateaued at the three-month mark, so it cannot be concluded that the elasticity 

changes reflected changes in the mammography variables. Based on the confidence intervals, 

it can be hypothesised that the elasticity does decrease across the 12 months, but the sample 

size may have influenced the findings. Overall, as seen in the HAVAHT+Ai™ study, reductions 

may occur in the breast elasticity in response to the interventions. Future research needs to 

be done with more regular outcome measures for both breast elasticity and mammography 

for %VBD and TFV.  

 

The next  analysis was the correlations between the mammography variables and breast 

elasticity, and the differences in these correlations when using 6 x 3mm Q-Box™ and the Free-

Trace Q-Box™. From the results of this study, descriptively, there were several variations 

between the different Q-Box™ protocols. An example of this was from the enobosarm and 

anastrozole study, analysing the correlation between the change in %VBD and the change in 

tissue elasticity across 12-months. The original Pearson’s r-value was 0.315, and the 

subsequent r-value was -0.12, although both were statistically insignificant, the change in the 

method of data collection has changed the direction of the correlation, which has the 

potential to lead to a dramatically different conclusion being made from the data. However, as 

most of the correlations were not statistically significant, these changes could have occurred 

due to chance and may not be replicated with a larger study.  

 

From these new data analyses conducted in this chapter, it was re-evaluated whether the 

original conclusions in regard to the thesis objectives were still correct or whether these have 
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changed, and if so, what are the new conclusions that can be drawn from the data. The 

original objectives of the HAVAHT+Ai™ study were to determine the potential effects of 

HAVAHT+Ai™ on breast tissue elasticity, as measured by SWE and whether these changes 

correlate with changes in MBD. The initial results, using the data collected with the 6 x 3mm 

Q-Box™, demonstrated that there were statistically significant changes from the second 

month of the study, and this continued for the third month with again statistically significant 

breast elasticity decreases. From the baseline values to month two, the 95% CI showed values 

of -6.72 to -0.87 with a p-value of 0.004, and the baseline to month three results produced a 

95% CI of -7.31 to -2.78 with a p-value of less than 0.0005. These low p-values and CI that 

favour more significant decreases, alluded to a lower risk of the results occurring due to 

chance and demonstrated quite significant effect sizes in response to the intervention. The 

analysis of this study using the Free-Trace Q-Box™ elasticity data, showed very similar results 

with a significant median decrease of -3.70kPa at two months with a p-value of 0.002 and the 

median decrease of -4.35kPa at three months with a p-value of less than 0.0005. These results 

also present very low p-values which demonstrates a low risk of chance affecting the results. 

The similarities between the results show that even when using a technique that produces 

more precise data, the same conclusions can be drawn from the data, this being that breast 

elasticity may be used as a biomarker of early response to changes in the breast tissue and 

further research is warranted.  

 

The secondary objective of this study was analysing the correlations between the 

mammography variables and the elasticity values. As previously discussed in Chapter 4, the 

most important correlation that needed to be evaluated was the change in the elasticity data 

and the change in TFV. In regard to the HAVAHT+Ai™ study, when observing the change in TFV 

at 12 months and the change in breast elasticity at three months with Free-Trace Q-Box™ 

data, there were both statistically significant moderate correlation between the two variables. 

In addition, when looking at the correlations, with elasticity at one month and TFV at 12 

months, both analyses showed statistically significant moderate correlations. These results 

demonstrated that within the HAVAHT+Ai™ study, there might be a relationship between the 

changes in breast elasticity and TFV, which could be confirmed with more research. 
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In regard to the anastrozole and enobosarm study and the change in breast elasticity and TFV, 

the Free-Trace Q-Box™ data produced a moderate, positive relationship which was 

approaching the traditional level of statistical significance. When looking at the elasticity 

change at one month to the TFV across 12 months, there was an r-value of 0.459 (p=0.253), 

which was close to the original calculation with a moderate correlation of 0.500 (p=0.313). 

Both of the results (old and new) demonstrate that elasticity changes may correlate with TFV 

changes, and elasticity may have the potential to be able to predict an early response of the 

changes in TFV across 12 months of chemopreventative use.  

 

These new results are still favourable for the hypothesis that the changes in elasticity correlate 

with the changes in the mammography variables. However, this hypothesis cannot be ruled 

out as the sample size of the study is small and small variations in the individual’s participants 

results can dramatically change the outcome of the study. A larger study needs to be 

conducted to determine if the breast elasticity changes at one month can correlation with the 

TFV changes.  

 

7.6 Conclusion 

The findings within this chapter demonstrate that even when using a more precise method to 

calculate the breast elasticity, there were still statistically significant reductions in the breast 

elasticity in response to both interventions. These results were seen at the three-month time 

point in both the studies and with statistically insignificant reductions at the 12-month time 

point in the enobosarm and anastrozole study. These results also show that there are still 

moderate correlations between changes in breast elasticity and changes in TFV and these 

correlations may also be seen as early as one month in the breast elasticity measures.  
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Chapter 8 The Behaviour of Breast Elasticity as Measured by Shear 

Wave Elastography in Healthy Women in Regard to Menstrual Cycle 

Changes, Repeatability and Intra-rater Reliability. 

8.1 Background 

Within the first two experimental studies, as previously commented on, it was observed that 

there was substantial within-subject variation with repeated measures when using the SWE to 

measure whole breast elasticity. This observation showed that with some of the repeat 

measures, the breast elasticity would decrease and then subsequently increase with the 

following measurement. In the absence of a control group, there is uncertainty as to how 

much of this variability are genuine changes in the breast and related to hormonal fluctuations 

or other factors, and how much is due to measurement error. This study was designed to 

provide information on these unknowns, analysing the behaviour of breast elasticity through 

repeat measures in women without breast disease and who are not using hormonal 

interventions of any kind. This will provide more insight into the results from the other trials 

within this thesis. 

 

In addition, as using SWE to measure the whole breast elasticity is a new indication and is not 

widely researched, this study aimed to calculate the intra-rater reliability of SWE on whole 

breast elasticity. This analysis allowed us to determine if any of the measured changes are 

occurring due to the interventions in the HAVAHT+Ai™ study and the enobosarm and 

anastrozole study, rather than the assessor’s technique or issues with the images acquired. 

 

This study is a reliability and repeatability study with four repeat measures, every two weeks 

on 19 women who were free from breast disease and any form of systemic hormonal 

intervention. Whole breast elasticity and stage of the menstrual cycle were assessed and 

recorded for each participant. The images were also obtained using two patient positions to 

measure the effect of different patient position on the whole breast elasticity. 
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8.2 Objectives 

The primary objectives of this trial were to determine the behaviour of breast tissue elasticity 

with repeat measures on healthy women and to determine whether the hormonal 

fluctuations that occur with the menstrual cycle can influence the breast elasticity 

measurements. 

 

The secondary objectives of this trial were to: 

1. Determine the intra-rater reliability of using SWE to measure the whole breast 

elasticity in a healthy cohort. 

2. Determine whether the arm position changes the breast elasticity output. 

3. Determine the normative breast elasticity values of this healthy cohort to use as a 

comparison for other studies within this thesis. 

 

8.3 Publication Manuscript 

The Statement of Authorship for this publication manuscript is presented in Appendix 5. 
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Abstract 

Introduction 

Shear wave elastography (SWE), is an imaging technique that analyses the elasticity of a tissue 

or organ of interest. SWE has proven to be valuable in breast assessments, and there are 

emerging indications for using the assessment of whole breast elasticity. This study aims to 

determine the behaviour, influence of hormonal fluctuations, patient position and intra-rater 

reliability on breast elasticity across four repeat measures.  

 
Method 

19 premenopausal women who were absent of any breast disease, and not on any form of 

hormonal interventions had four repeat SWE measurements, two weeks apart in two different 

patient positions. Each patient had their stage of menstrual cycle determined via blood 

analysis. Statistical analysis was conducted to determine the intra-rater reliability, the 

difference in breast elasticity across the different stages of the menstrual cycle and difference 

in elasticity measures using differing patient position. The mean whole breast elasticity was 

also calculated.  

 

Results 

Mean breast elasticity during the follicular stage was 6.61kPa (SD 1.86) and 6.70kPa (SD 2.01) 

during the luteal stage; this was a statistically insignificant difference (p= 0.670). The breast 
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elasticity was not statistically different at any time point (p=0.602). There was a statistically 

significant median difference of -1.16kPa (p<0.005) between the two patient positions. The 

intra-rater ICC was 0.98 (95% CI 0.97 to 0.99; p<0.005) for the whole breast measurements. 

 

Conclusion 

Average whole breast elasticity is a reproducible measure for healthy women and has the 

potential to be used as an outcome measure to determine the efficacy of therapeutic 

interventions for breast conditions. 

 
Introduction 

Shear wave elastography (SWE) is an elastography technique that analyses the soft tissue 

mechanical properties of the tissue or organ of interest. SWE uses acoustic radiation force 

impulses, which provide the mechanical excitation through pushing beams that deform the 

underlying tissue of interest. Several of these pushing beams are transmitted at different 

depths, which results in the propagation of transient shear waves. The speed of these shear 

waves is then measured using a scanner with a very fast frame rate, allowing the shear waves 

to be followed in real-time. This is repeated for different lines; allowing a map of a region of 

interest (ROI) to be created from analysing the differences in arrival times and calculating the 

shear wave speeds. A colour-coded image is then displayed on the SWE monitor, and the 

quantitative data is presented as a measure of shear wave speed in meters per second (m/s-1) 

or converted to the Youngs Modulus and displayed as kPa. Throughout the measurement, B-

mode image guidance is possible as the same transducer that generates the shear wave also 

captures their propagation (Bercoff, Pernot et al. 2004, Bercoff, Tanter et al. 2004, Sebag, 

Vaillant-Lombard et al. 2010, Shiina, Nightingale et al. 2015). 

 

To date, within the realm of breast health, the main use of SWE has been differentiating 

breast lesions as being either benign or malignant, with current research showing that there is 

a statistically significant difference in elasticity values between benign and malignant lesions, 

in which malignant lesions predominately have a greater elasticity (Athanasiou, Tardivon et al. 

2010, Chang, Moon et al. 2011, Berg, Cosgrove et al. 2012, Au, Ghai et al. 2014). For this 

indication, the operator places a Q-Box™ (a tool used to calculate the area of elasticity) on the 

SWE image within the area of the greatest elasticity in the lesion to generate the maximum or 
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mean elasticity of the lesion. This indication has been proven reliable with intra-observer 

reliability for maximum and mean elasticity reported as high (ICC = 0.84 and 0.87) and the 

interobserver agreement for maximum elasticity quantification having a Cohens Kappa value 

of 0.66 (95% CI 0.59 to 0.73) (Cosgrove, Berg et al. 2012), which represents a substantial level 

of agreement between the two observers (McHugh 2012).  

 

SWE has proven to be extremely valuable in breast assessments, and with this there are new 

emerging indications that are aiming to assess the whole breast elasticity; rather than the 

selective area of interest. These indications include correlation of the breast elasticity with the 

BI-RAD breast density assessment (Evans 2015). For this indication, the elasticity was obtained 

using a ROI as large as possible within the SWE image rather than selectively choosing an area 

of tissue. There has also been research into monitoring breast pain, inflammation and capsular 

contracture (Rzymski, Kubasik et al. 2011, Rzymski, Kubasik et al. 2011, Sowa, Yokota et al. 

2017). These new indications use different methodologies to that listed above, as rather than 

finding the area of greatest elasticity, the whole breast elasticity is sought. For this, the 

researcher needs to take an image in each quadrant of the breast and select a ROI to calculate 

the elasticity of each quadrant and then the breast as a whole. This type of imaging may be 

used to detect changes within the breast tissue in response to therapeutic interventions. 

Therefore, it is important to know the typical behaviour of breast elasticity in a healthy cohort 

upon repeat measures, this including the effect of natural hormonal fluctuations with the 

menstrual cycle, examination the reliability of using SWE, and determination if the patient 

position has a significant effect on the elasticity measurement. By gaining this information, 

researchers and clinician will have more knowledge about breast elasticity and feel more 

confident using it as an outcome measure in clinical practice or future health research. 

 

Therefore, the aim of this study was to determine the behaviour of breast elasticity across 

four repeat measures, analyse the intra-rater reliability of whole breast elasticity when using 

SWE, and determine if the patient position can significantly alter the elasticity output in a 

healthy patient cohort. 
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Material and Methods 

This study was approved by the Institutional Human Research Ethics Committee at The 

University of Adelaide (approval number H-2018-197.) Informed consent was obtained from 

all participants. Subjects were recruited from the Burnside Breast Centre and Wellend Health 

Pty Ltd, located in Toorak Gardens, South Australia, through Facebook advertising, and 

through word of mouth of the participants. The study population consisted of premenopausal 

women between the ages of 18 and 50 years, who were currently not pregnant or lactating. 

Participants were excluded from this study if they had the presence of breast cancer, had 

breast implants, had any previous breast surgery, the presence of a pacemaker or are 

currently on any hormonal treatments for mammographic breast density (MBD) or systemic 

contraceptive medications with the exception of the Mirena. The participants were required 

to attend four visits, one every two weeks, each comprising of a blood test to measure 

progesterone to determine the stage of the menstrual cycle and the SWE imaging.  

 

Determination of Stage of the Menstrual Cycle 

Forearm venous blood samples (5ml) were collected for each participant prior to the SWE 

imaging at each visit. The blood was allowed to clot, and the serum was separated by 

centrifugation, collected and stored at -80° until further use. Assays were performed by a 

commercial pathology laboratory. Paramagnetic particle-based enzyme immunoassay was 

used for the determination of progesterone from serum samples. The reference limits for the 

follicular stage were <3nmol/L, and the luteal phase was 5-75nmol/L. 

 

Shear Wave Ultrasound Protocol 

The elasticity was evaluated using the Aixplorer® ShearWave™ Ultrasound machine 

(Supersonic Imagine, Aix-en-Provence, France) with a SuperLinear™ SL15-4 linear transducer 

with a bandwidth of 2-10 megahertz, in the default breast pre-set, running in SWE mode. Two 

different positions were utilized during this study, firstly the volunteer lying supine with arms 

relaxed by their sides (position A), the second position was the volunteers lying supine with 

the ipsilateral arm to the breast being imaged resting under their head (position B). A single 

operator conducted all the scans for all the participants and all the repeated measures. The 

imaging protocol is presented in (Figure 8-1), the breast was divided into four quadrants, the 
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outer lower, the outer upper, the inner upper and the inner lower. Each quadrant was 

scanned from the left to right breast, three times in position A and once in position B. The 

transducer head was positioned approximately 2cm away from the nipple and was placed on 

the skin in a parallel manner from the nipple (Figure 8-2). 

 

 
Figure 8-1:  Image sequence of the breast quadrants used in shear wave elastography 

 

 
Figure 8-2: Positioning of the transducer head on the breast 

 

Once the images were acquired, the elasticity values were generated by using the Q-Box™ 

trace function to trace the largest ROI from the image omitting any areas for which the shear 

waves had not propagated (black holes) or any areas for which ultrasound artefacts were seen 

on the image (as these lead to excessively high elasticity values that do not correspond to 

figures on the B-Mode ultrasound image) (Figure 8-3), this again generated values for the Emin, 

Emean, Emax and SD for each quadrant. The Emean of each quadrant were used to produce the 

mean elasticity for each breast and both left and right breasts combined.  
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Figure 8-3: Shear wave ultrasound image with Free-Trace Q-Box™, avoiding a black hole 

 

Statistical Analysis 

All data were entered into in Microsoft Excel (Microsoft, USA), and all statistical analyses were 

performed using SPSS Version 25 Software (IBM, Armonk, NY, USA). The paired samples T-test 

for parametric data, and the Sign test for non-parametric data were used to determine if there 

was a difference in the within-subject breast elasticity values during the different periods of 

the menstrual cycle, and whether there was a difference in the breast elasticity when the 

participant had their arms relaxed by their side or resting above their head. For these 

analyses, data was presented as median or mean (SD) unless otherwise stated. The 

interquartile range (IQR) was used to determine which patient position had the least amount 

of dispersion within the data. The Friedman test was used to analyse the behaviour of the 

average breast elasticity with the repeated measures. Intra-class correlation coefficient (ICC) 

analysis was used to determine the intra-rater reliability of the measurements. Data were 

considered statistically significant at p<0.05 and if the confidence interval (CI) did not cross 

zero.  

 

Results 

19 women volunteered to be included in the study; the mean age was 30.56 years (SD 9.10) 

with a mean BMI of 25.04. The patient characteristics are presented in Table 8-1. The average 

estimates of the Young’s Modulus for both breasts combined were 6.80kPa (SD 2.13kPa). 
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Table 8-2 shows the average breast elasticity of each quadrant for each repeated measure and 

the change in position for the participants.  

 

Table 8-1: Participant Characteristics 

Demographic Average (min-max) 

Age 30.56 years (23.25 – 48.77) 

Weight 68.88kg (50 – 90) 

Height 166.25cm (155 – 176) 

BMI 25.04 (19 – 32) 

% of nulliparous participants 78.95% 

% of participants using Mirena 36.84% 

% of participants who previously used systemic contraception 73.68% 

Length of previous systemic contraception use 3.12 years (0.66 – 14 years) 

Race 

Caucasian 100% 

Asian 0% 

African 0% 

Other 0% 

 

 

Breast Elasticity and Stage of Menstrual Cycle 

The paired-samples t-test was used to analyse the difference between the average breast 

elasticity in the luteal and follicular stage of the menstrual cycle. With the arms relaxed the 

mean elasticity during the follicular stage was 6.61kPa (SD 1.86) and during the luteal phase 

6.70kPa (SD 2.01). There was a mean difference of 0.09kPa (95% CI -0.37 to 0.55; p=0.670) 

between the two menstrual cycle stages. This was a statistically insignificant difference in the 

elasticity values in the follicular or luteal stage of the menstrual cycle. In regard to the position 

of the arms resting above the participants head, the mean elasticity during the follicular stage 

was 8.26kPa (SD 2.98), and the luteal phase was 8.38kPa (SD 3.13). This was a statistically 

insignificant difference of 0.12kPa (95% CI -0.54 to 0.30; p=0.559). 

 

 

Breast Elasticity with Repeat Measures 

The Friedman test was used to analyse the average breast elasticity over four repeat 

measures. The average elasticity for each time point is reported in Table 2. The breast 

elasticity was not statistically different at any time point (p=0.602). 
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Table 8-2: Median whole breast elasticity at each time point 

Measure Elasticity 

kPa (SD) 

1 6.53 (1.93) 

2 6.75 (1.84) 

3 6.99 (2.59) 

4 6.77 (2.15) 

 

Breast Elasticity and Participant Position 

The descriptive statistics for this data showed the mean elasticity for the arms relaxed was 

6.76 kPa (SD 2.12), and the arms above the participant’s head was 8.31 kPa (SD 3.10) with a 

mean difference of 1.55 kPa, all of the results are reported in Table 3. As the data was non-

parametric, the Sign test was used for the analysis. The results from the Sign test show that 

the median elasticity for arms relaxed was 6.19 kPa, and the arms above the participant’s 

head was 7.53 kPa; this was a statistically significant median difference of -1.16 kPa (p<0.005). 

The IQR was compared for each of these positions, the IQR for the arms relaxed data set was 

3.38, and the IQR for the participant's arms resting above their head was 4.75. 

 

Table 8-3: Mean breast elasticity (SD) for each quadrant in position A and B 

 Position A Position B 

 Measure 1 Measure 2 Measure 3 Measure 4 Measure 1 Measure 2 Measure 3 Measure 4 

Lower 

Outer 

6.20 (2.02) 6.38 (2.41) 6.47 (2.97) 6.30 (2.43) 7.65 (3.42) 8.01 (3.39) 8.06 (3.82) 7.78 (3.07) 

Upper 

Outer 

6.86 (3.00) 7.40 (2.55) 7.54 (3.65) 6.83 (2.67) 6.90 (3.26) 7.58 (3.08) 8.06 (3.84) 7.64 (3.08) 

Upper 

Inner 

6.73 (2.11) 7.00 (2.43) 7.26 (2.84) 7.51 (2.58) 8.18 (3.01) 8.90 (3.99) 10.12 (4.72) 10.15 (4.54) 

Lower 

Inner 

6.34 (1.69) 6.22 (1.69) 6.67 (1.91) 6.46 (2.14) 7.93 (2.39) 8.48 (3.24) 8.74 (2.98) 8.71 (3.70) 
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Intra-rater Reliability 

There were 76 datasets (4 quadrants for each breast, each with three repeat measurements), 

the ICC was used to determine the reliability. The reliability of the SWE measurements made 

by the same operator was excellent with an ICC of 0.98 (95% CI 0.97 to 0.99; p <0.005). 

 

Discussion 

SWE is a relatively new form of radiographic imaging that is gaining more traction in regard to 

breast health. Previously in regard to the breast, it has been used to differentiate between 

benign or malignant lesions. However, more indications for this imaging modality are 

beginning to be researched and utilised in clinical practice. For this reason, it is imperative to 

know the behaviour of breast elasticity in women without any breast disease. The population 

of disease-free women in this cohort had an average breast elasticity of 6.80kPa, which was in 

line with a previous study on healthy subjects by Li, Wang et al. (2015) who reported a mean 

elasticity for glandular tissue of 6.60kPa and fatty tissue of 4.86kPa. These results were lower 

than Rzymski, Skórzewska et al. (2011) who found that glandular tissue had a mean elasticity 

of 11.28kPa and fatty tissue of 9.24kPa. Both of these studies reported the glandular and fatty 

tissue separately, which explains the slight variation within the results. The only study using 

the full trace function, similarly reporting the average elasticity, was Evans (2015) who 

reported an average elasticity of 10-13kPa in women; however, these women had varying 

levels of breast density ranging from A to D on the Bi-RAD scale, this meaning the data was not 

normative as dense breast can be considered pathological.   

 

The main focus of this study was to determine the behaviour of breast elasticity on repeat 

measurements and whether the stage of the menstrual cycle influenced these results. Female 

sex hormones, especially oestrogen and progesterone, influence the structure and 

composition of multiple tissues inclusive of the breast parenchyma (Lorenzen, Sinkus et al. 

2003, Rzymski, Wilczak et al. 2012, Kaaks, Tikk et al. 2014). Oestrogens are well-known 

stimulators of collagen biosynthesis and cell growth in several cell types (Beldekas, 

Gerstenfeld et al. 1982, Ernst, Schmid et al. 1988, Surazynski, Jarzabek et al. 2003). Cell 

proliferation is lowest during the follicular stage of the menstrual cycle because of low 

oestrogen and progesterone levels. During the luteal stage, there are higher levels of 
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oestrogen and progesterone, which leads to significant changes in the breast lobules and the 

proliferation of the breast epithelium reaches its peak (Pike, Spicer et al. 1993, Dimitrakakis 

and Bondy 2009). Additionally, Hussain, Roberts et al. (1999) documented a correlation 

between the plasma levels of progesterone and changes in breast volume. Consequently, the 

influence of oestrogen and progesterone on cell proliferation and collagen synthesis may 

influence the breast elasticity. This study reported that there was only a small difference 

between the two stages of the menstrual cycle, with the luteal stage having a slightly higher 

elasticity. This difference was not statistically significant. These results were similar to Li, Wang 

et al. (2015) which found no significant differences in elasticity between glandular and adipose 

tissue throughout the menstrual cycle, with the glandular tissue elasticity being lower on the 

luteal phase than in the early follicular phase. These results demonstrate that the hormone 

fluctuations that occur throughout the menstrual cycle do not significantly influence the 

breast elasticity. If being used for longitudinal studies or for clinical assessment, these results 

show that the stage of the menstrual cycle does not need to be taken into account for when 

participants are to be imaged, and any changes that occur within the elasticity may be due to 

other factors. 

 

Additionally, within longitudinal studies or clinical practice, to determine if a therapeutic 

intervention were able to influence the average breast elasticity, it is necessary to know that 

the elasticity remains stable in disease-free women who are not on any form of intervention 

and that the elasticity would not be influenced by the operator. Within this study, it was found 

that in this demographic, the average breast elasticity did not change over four repeat 

measurements. The results also showed that there was excellent intra-rater reliability with the 

SWE measurements. These findings demonstrate that if used in a longitudinal study, any 

changes that were seen within an intervention group are more likely due to the intervention 

and not measurement errors.  

 

The final variable of this study analysed was whether a change in position would affect the 

average breast elasticity. As SWE for the breast is a relatively new imaging modality, there is 

no protocol for the best position to conduct the imaging. This study demonstrated that there 

were statistically significant differences in the breast elasticity from when the participant had 

their arms relaxed by their side or resting above their head. This indicates that there needs to 
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be consistency within the participant position for longitudinal studies; otherwise, the results 

could be affected. This information may also be important when comparing the results of 

different studies. Due to the decreased IQR, the authors of this study recommended using 

arms relaxed by the participants side. 

 

Conclusion 

These findings suggest that the stage of the menstrual cycle does not influence the average 

breast elasticity. In addition, within a disease-free population, the breast elasticity does not 

change over four repeat measures and the intra-rater reliability is excellent. Consequently, 

average breast elasticity is a reproducible measure and may be used as an outcome measure 

to determine the efficacy for therapeutic intervention for breast conditions. 
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8.4 Publication Summary 

This study was conducted due to the variation seen within the other studies utilising SWE to 

measure breast elasticity. It needed to be researched as to whether these fluctuations that 

were seen in the breast elasticity were due to the effect of the hormonal combinations or 

were due to other influencing factors such as operator changes or error, stage of the 

menstrual cycle or the overall reliability of the SWE machine. This study recruited 19 

premenopausal women between the ages of 18 and 50 years, with an average age of 30.56 

years who were currently not pregnant or lactating or on any form of hormonal intervention 

with the exception of the Mirena. 

 

The first interesting finding from this study was the average breast elasticity was 6.80kPa (± 

2.13kPa), this is significantly different from the other two experimental studies that utilised 

the SWE with the baseline measurement for those studies being 15.18kPa for the study 

utilising enobosarm and anastrozole and 12.81kPa for the study utilising HAVAHT+Ai™. When 

the data from these two studies were combined the average elasticity was 13.81kPa (±3.94), 

which when using the Welch test demonstrated a statistically significant mean difference of 

7.28kPa (95% CI 5.21 to 9.34; p<0.0005) between the data produced in this study. The MBD of 

the participants within this study was not measured, however taking a random sample of 

women with no breast pain is more likely to represent a group with a lower %VBD than a 

group purposively recruited for having a measured high MBD. For this reason, it can be 

hypothesised that women with a greater MBD may have a greater elasticity when compared 

to a healthy cohort. This is a promising finding for the overall aim of this thesis to determine if 

elasticity, as measured by SWE, is a viable biomarker for MBD as with future research it could 

be determined whether the baseline correlation of MBD correlated with breast kPa. 

 

The second important finding of this study is that within this cohort, the stage of the 

menstrual cycle did not influence the breast elasticity. There was a statistically insignificant 

difference of 0.09kPa (95% CI -0.37 to 0.55; p=0.670) when comparing the follicular to the 

luteal stage of the menstrual cycle. This is a beneficial finding as this shows that the timing of 

the SWE in relation to the menstrual cycle should not dramatically influence the output. The 

third important finding was that there was no statistically significant difference in kPa at any 
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time point with the repeat measurements (p=0.602). Both of these findings are of importance, 

as the consistency within this study can allude to the changes being seen in the previous 

studies being due to the hormonal intervention rather than other influencing factors, such as 

the menstrual cycle hormone fluctuations on the repeatability of the SWE machine. This also 

has more supporting evidence as the intra-rater reliability was excellent with an intra-class 

correlation coefficient of 0.98 (95% CI 0.97 to 0.99; p<0.005). 

 

The final important finding of this study was the statistically significant differences between 

the elasticity outcomes of patients who had their arms relaxed compared to their arms above 

their head. The median elasticity for the arms relaxed position was 6.19 kPa, and for the arms 

above head position was 7.53 kPa, this was a median difference of 1.16 kPa. These results 

demonstrate that changing the position of the participants’ arms can significantly change the 

results. The implications of this finding show that the participant position needs to be kept 

constant with repeat measures as it could lead to clinically significant differences. The 

researcher needs to monitor this, as frequently during the SWE examinations during this study 

and the other studies within this thesis, participants would change their arm position for 

comfort reasons and required prompting to return their arms to the position required. If this is 

not kept constant within measures or with repeat measures, there could be significant 

changes occurring which are solely due to the arm position.  

 

8.5 Conclusion 

Overall, this study demonstrates that SWE when being used to measure the average breast 

elasticity is a repeatable and reliable method and is not greatly influenced by fluctuating 

menstrual hormones or the operator, the only factor discovered within this study that can 

influence the average breast elasticity is the patient position. Although further research is 

required, when using SWE to determine the pharmacodynamic effect of a hormonal 

intervention, there is promising evidence suggestive that the changes occurring are due to the 

intervention. 
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8.6 Future Research 

 

Future research will need to be conducted with women who have high MBD not on hormonal 

intervention. This will help determine if these women have different reliability psychometric 

properties or breast behaviour when their breast elasticity is being measured by SWE. 
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Chapter 9 Discussion and Conclusion 

9.1 Overview 

Breast cancer is one of the most prevalent types of cancer among women, and it is a sizeable 

universal medical issue. Mammographic breast density is a major independent modifiable risk 

factor for breast cancer, and it has been predicted that a third of breast cancer could be linked 

to a woman having highly dense breasts (Boyd, Martin et al. 2010). Currently, MBD is being 

considered as an appropriate baseline breast cancer risk marker, and a surrogate endpoint for 

assessing therapeutic interventions; this due to the strong association between MBD and risk 

of breast cancer. These considerations also allow MBD to be used as a biomarker to evaluate 

the efficacy of interventions that are aimed at reducing breast cancer risk.  

Within the first chapter of this thesis, a literature review was conducted regarding the use of 

mammography and MBD as a surrogate endpoint or biomarker for clinical trials and several 

limitations were identified. These limitations were listed in Section 1.4.1 and include the 

subjective nature of the interpretation of MBD when using a non-automated method of MBD 

quantification. Non-automated methods can also lack the sensitivity to see a significant 

change in the MBD values, which can lead to Type 2 errors and insignificant results in clinical 

trials. Furthermore, the increased imaging quality that comes with improved technologies can 

lead to improved results when using automated methods. In addition, different 

mammography machines can lead to significantly different MBD values for the same patient 

(Kerlikowske, Ichikawa et al. 2007, Vachon, Pankratz et al. 2007, Lokate, Stellato et al. 2013, 

Work, Reimers et al. 2014). Breast pain is also quite common in women, and in particular in 

women, with high MBD; this breast pain and fear of breast pain is a prominent reason for 

women choosing not to attend mammography visits and also for not returning for follow up 

mammograms if they did attend one visit (Kee, Telford et al. 1992, Marshall 1994, Straughan 

and Seow 1995, Elwood, McNoe et al. 1998). The reported fear of breast pain may lead to 

recruitment issues or high attrition rates in research. Another limitation of mammography is 

the ionising radiation that is delivered with each image, which can accumulate during 

longitudinal studies where multiple imaging sessions are required, which in itself is a breast 

cancer risk. 
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One of the most significant limitations of using MBD variables as a biomarker during clinical 

trials is the relative time-insensitivity to detect changes in the mammography variables 

(MBD, %VBD, PMD, TFV, TBV). Despite a drug having an immediate pharmacological effect, 

any potential resultant improvement in breast structure may not be seen for a year, this being 

either due to the typical interval used for mammographic imaging or the time required for the 

intervention to produce an effect on the tissue structure of the breast. Hence long clinical 

trials may need to be designed and implemented to determine whether a treatment is 

effective. Concerning this, within a clinical environment, women on anti-oestrogen therapies 

(which usually have considerable adverse effects) do not have a method of providing timely 

feedback of their response to their intervention, which may contribute to the low compliance 

rates seen with some of these treatments. Due to these limitations, it was concluded that 

there was a knowledge gap regarding a biomarker for MBD for the early detection of changes 

in the breast tissue. Ideally, if a biomarker was found, it could be used in both clinical research 

and within clinical care settings. 

Breast elasticity appeared to be a potentially viable option as a biomarker of MBD. The 

reasons for this being that high MBD tissue has extensive collagen, a more significant number 

of cells, increased ECM and a low adipocyte component (Alowami, Troup et al. 2003, Li, Sun et 

al. 2005, DeFilippis, Chang et al. 2012). These histological components can lead to tissue 

stiffening, as is seen in malignant breast lesions, and this would lead to increased measurable 

elasticity of the tissue of interest. 

This thesis investigated whether whole breast elasticity, as measured by SWE, can be used as a 

biomarker for MBD and to establish a reliable and valid protocol of using SWE to measure 

whole breast elasticity. This chapter will review how the studies included in this thesis 

contributed to the research and development of whole breast elasticity as a biomarker for 

MBD. This chapter will be separated into the following sections; 

1. The use of breast elasticity as a biomarker for MBD 

2. The protocol that should be used to determine whole breast elasticity 

3. The limitations of this research 

4. The clinical and research implications of this work 

5. Conclusion 
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9.2 The Use of Breast Elasticity as a Biomarker for Mammographic Breast 
Density 

The first overarching aim of this research program was to generate evidence into the validity 

of using whole breast elasticity as a biomarker for MBD. Four different studies were 

conducted regarding this research aim. The first key point was that when using SWE to 

measure whole breast elasticity, there was a very strong intra-rater reliability with an ICC of 

0.98 (95% CI 0.97 to 0.99; p<0.0005). Having a strong intra-rater reliability score is essential in 

longitudinal studies; strong reliability allows us to increase our confidence that repeated SWE 

measures will remain consistent when measured by a single individual if no changes are 

occurring within the breast tissue (Roach 2006). Another important psychometric property is 

the inter-rater reliability; however, for feasibility reasons during this research program, this 

measure could not be calculated and will need to be examined with further research. In 

addition to this, within a population of women not on any hormonal intervention, with four 

repeat measures, breast elasticity was not statistically different at any time point. From these 

results, we can conclude that foremost, breast elasticity measured using SWE with a single 

operator is a reliable outcome measure and has favourable psychometric properties that 

would make it a desirable outcome measure for use in clinical trials. However, as will all 

research, these studies will need to be replicated or expanded to further validate the findings 

presented. 

The second key point to examine is the baseline normative breast elasticity values. Two of the 

studies which utilised SWE had recruited women with high MBD (objectively measured with 

VolparaDensity™) and one study recruited women from the general population who had not 

previously had a breast density assessment. Within this third study, it could be hypothesised 

that the population had a lower mean breast density, this being due to the prevalence of high 

MBD in the Australian population (with approximately 50% of the population potentially being 

categorised as heterogeneously dense breasts or extremely dense breasts) (Cording, Smith et 

al. 2018). The participants in this group also did not have breast pain, which is commonly 

associated with high MBD. The average elasticity of the women within the third study who 

were hypothesised as having lower MBD was 6.80kPa (± 2.13kPa) and the mean breast 

elasticity from the studies with women with quantified high MBD was 13.81kPa (±3.94kPa). 

This resulted in a statistically significant difference of 7.28kPa. On face value, this reveals that 
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women recruited due to a higher MBD had greater elasticity than a sample of the general local 

population. As the MBD was not formally measured in the healthy population group, future 

studies need to be conducted in a cross-sectional manner to determine whether there is a 

relationship between MBD and breast elasticity, recruiting a broad sample of women, from 

varying age groups, with varying MBD values. Future research could also aim to correlate the 

baseline TFV and breast elasticity, as TFV represents the volume of the fibrodense region of 

the breast. Through this research program, early evidence has demonstrated a potential trend 

for women with high MBD to have a greater baseline breast elasticity, which contributes to 

the evidence supporting breast elasticity being a biomarker for MBD, warranting further 

investigation.  

The next key finding was that breast elasticity responds and decreases (in a rapid manner) to 

hormonal interventions that have also been shown to reduce %VBD and TFV. The initial study 

in this thesis (Chapter 3) was a cohort analysis of a patient database of women who were 

administered HAVAHT+Ai™. This study concluded that there was a correlation with the use of 

HAVAHT+Ai™ and the reduction of %VBD and TFV. The initial experimental trial (Chapter 4: 

The HAVAHT+Ai™ study), was a three-month pharmacodynamic sub-study within a 

pharmacokinetic study of HAVAHT+Ai™. This study revealed that breast elasticity decreased 

with a single dose of HAVAHT+Ai™; the mean elasticity decreased consistently from baseline 

to the three-month time point, reaching statistical significance at the second and third month. 

In addition to the overall breast elasticity decreases, the final mean elasticity was 8.77 kPa 

(±3.67kPa), which is approaching the hypothesised normative values previously reported of 

6.80kPa in Chapter 8. 

Generally, a similar pattern was observed within the enobosarm and anastrozole study 

(Chapter 5); however, this cohort of women started with a higher mean elasticity at baseline, 

and even with the decreases throughout the study, the values did not approach the 

hypothesised normative values of 6.80kPa. These decreases were statistically significant at the 

three-month time point, with a reduction also being recorded at one month. As this trial had 

an additional breast elasticity measure at month 12, this time point demonstrated a slight 

statistically insignificant increase in elasticity compared to the three-month time point. It can 

be observed that both of these studies had a statistically significant elasticity decrease in the 

first three months from the commencement of the intervention. However, what is unexplored 
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is the histological changes occurring with the breast tissue after this time point. When using 

the 6 x 3mm Q-Box™, the results demonstrated a statistically significant reduction at the 12-

month time point. This reduction is what we hypothesised would represent the changes 

occurring in the breast tissue and what we believed to be the true results. However, these 

results are not consistent with the Free-Trace Q-Box™ results, and there are a few reasons 

why this could have been the case. Firstly, these results may be the correct findings as no 

previous research has been conducted in this area; although it was hypothesised that further 

reductions should be seen at the 12-month time point, the reductions may plateau after the 

three-month time point. Secondly, the small sample size of the study lead to small fluctuations 

within the individual participant results, which had a large impact on the mean overall values. 

For these reasons, it would be beneficial to conduct further research, with a formal sample 

size calculation, to produce significantly powered results. The data generated in this thesis 

would enable such a calculation. Future studies could also be designed with a more frequent 

outcome measure assessment schedule; this could include both SWE and mammography 

imaging. As we hypothesised that the changes in breast elasticity might occur before the 

changes in the breast tissue that lead to quantifiable changes in %VBD and TFV, it would be 

beneficial to create a time profile of the elasticity and MBD changes occurring. Knowing this 

information would also aid the design for future research, in particular, concerning the design 

of the schedule of assessments. 

A further key finding was the trend of strong correlations between the changes in breast 

elasticity and changes in TFV, and the early time point for which these changes correlated. In 

addition to this was the lack of a correlation between the changes in elasticity and the changes 

in %VBD. The HAVAHT+Ai™ study demonstrated a trend of negligible correlations between the 

changes in %VBD from the baseline measure to the month 12 measure and the breast 

elasticity changes from baseline to month three. The enobosarm and anastrozole study had 

similar results with the correlation analyses between the change in breast elasticity and 

change in %VBD from baseline to month 12 showing a trend towards a low correlation. These 

findings demonstrate that within both of these studies, there was a trend towards a negligible 

and low correlation between the changes in %VBD and the changes in elasticity. These results 

establish that within our study populations, there was not a relationship between these two 

variables. However, this low correlation was hypothesised, as with both the HAVAHT+Ai™ and 
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enobosarm and anastrozole interventions, the TFV and TBV decreased. The resultant effect of 

this is %VBD not reducing to the same degree as the other two variables, or it may even 

remain stable as the percentage is calculated from these two variables.  

Due to the reasons mentioned above, the change in TFV and breast elasticity was considered 

the more relevant correlations to explore. This is because the change in TFV reflect changes in 

the absolute fibrodense areas of the breast, which is the area hypothesised to be positively 

associated with breast cancer risk as this is the actual tissue where breast cancer develops 

(Haars, van Noord et al. 2005, Ursin, Hovanessian-Larsen et al. 2005). Furthermore, breast 

elasticity changes occur in response to early functional changes within the structure of the 

breast tissue, whereas measurable changes to a woman's %VBD take a significant length of 

time. For this reason, if there is a correlation between these variables, the lack of correlation 

could have been due to the duration of the study, and there is the potential that if the study 

were longer, there could be a correlation between the changes with the elasticity values and 

the %VBD values. Future longitudinal trials, with multiple yearly, follow-ups, could incorporate 

SWE to quantify breast elasticity as an early measure and then continue with mammography 

and SWE for the extended length of the trial. A trial of this nature is needed to determine if 

changes in %VBD correlation with the elasticity but just at a later time point.  

The correlation between the change in breast elasticity and change in TFV, from both the 

HAVAHT+Ai™ and the enobosarm and anastrozole study demonstrated consistent results. 

Within the HAVAHT+Ai™ study, the correlation between the change in TFV from baseline to 

month 12 and change in elasticity at month 1 and 3, both showed a statistically significant, 

moderate correlation. While the correlation between change in TFV and elasticity at 2 months 

demonstrated a high correlation, this correlation also reaching statistical significance. The 

same pattern was observed in the enobosarm and anastrozole study with a moderate 

correlation between the baseline and 12-month change in TFV and elasticity and a low (r= 

0.459) correlation with the change in elasticity at one month, with the r-value threshold for a 

moderate correlation being 0.500. However, both of these findings did not reach the 

conventional level of statistical significance.  

These results suggest that there is consistency in the two studies showing that breast elasticity 

decreases with a hormonal intervention that also reduces %VBD and TFV, and that there was a 
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relationship with the changes between these variables. There was also consistency in the 

correlation between the changes in TFV and breast elasticity, and these correlations were able 

to be observed at an early time point within the studies. These findings are favourable for the 

objective of this research program, as this evidence suggests that breast elasticity responds in 

a similar manner to the measured mammography variable of TFV, which is a key feature of a 

biomarker. These breast elasticity responses also occurred within the first few months of using 

the interventions, which allows the potential of breast elasticity to predict the changes in TFV 

at an early time point when using a hormonal intervention. The early response is beneficial as 

clinically, breast elasticity as measured by SWE may be able to determine if a patient is a 

responder or a non-responder to hormonal interventions which have been prescribed to 

reduce MBD and aid in the decision making for either the continuation or cessation of 

treatment. Also, within the realm of research, it could shorten the length of time required for 

conducting clinical trials, as breast elasticity is more sensitive to demonstrate a response to an 

intervention and this response occurs within the first few months of treatment.  

9.3 The Protocol that Should be Used to Determine Whole Breast Elasticity 

From the literature review, it was found that using SWE to measure whole breast elasticity is a 

relatively new indication, and for this reason there was no consistently used protocol or 

methodology described in the literature that demonstrated valid and reliable results as the 

psychometric properties were not recorded. A key objective of this research program was to 

develop a protocol for this indication to be used in both the clinical and research settings and 

the development of this protocol was considered to be a priority in this research program. The 

reason for this priority was that within the studies included in this thesis that used SWE, the 

methodology needed to produce valid and reliable elastography results. During the initial SWE 

sessions, there were fluctuating elasticity values within each breast quadrant with the 

repeated measures; with these fluctuations not appearing to follow any trend or pattern. In 

addition to this, through experimentation, it was found that the researcher could easily 

manipulate the data if the Q-Box™ were not placed carefully or consistently on the image. 

Secondly, there is a need for a protocol that other researchers can use when conducting 

further SWE studies for whole breast elasticity. For research purposes, and clinical purposes, it 

is beneficial to use a consistent protocol to produce comparable results; this helps to 
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contribute to the body of evidence regarding whole breast elasticity and helps monitor a 

patient’s health accurately.  

 

Through this research program, different participant positions and a variety of post-hoc 

imaging analysis techniques were explored. These techniques included placing Q-Box™ with a 

predefined diameter or tracing a custom Q-Box™ around the full image to create a large ROI. 

This ROI is the area included in the breast elasticity calculation. To make the decision about 

which technique should be described as the ideal protocol, several key desirable parameters 

were considered; these included the ability to generate a valid breast elasticity results, which 

was an approximation as we did not have a validated reference standard with which to 

compare the results. However, omitting artefacts and "black holes" may provide more valid 

results than if these were left within the ROI.  

 

The ideal technique also needed to have a high level of precision, which demonstrated the 

minimal spread of values of the collected data. Furthermore, another critical parameter that 

needs to be considered was the clinical utility of the outcome measure, with the technique 

ideally needing to be conducted in a timely manner and not be significantly labour intensive 

for the researcher. A further, important additional consideration of the chosen technique 

should be the comfort levels of the patients; the chosen technique should be relatively 

comfortable for the patient or participant, as this has the potential to reduce attrition rates as 

it is already subjectively an uncomfortable experience for some of the participants.  

 

The methodology that was chosen to be described as the standardised technique is described 

below in Section 9.3.1 to 9.3.4. The justification for why these decisions were made are also 

presented. This methodology is appropriate for the SuperSonic™ Imagine Aixplorer® SWE 

ultrasound machine (Figure 9-1) and may differ for other SWE ultrasound devices.  
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Figure 9-1: SuperSonic™ Imagine Aixplorer® Shear Wave Elastography Ultrasound machine 

9.3.1  Patient Position 

The advice regarding patient position requires more research to make a definitive statement. 

From the data analysed in this research program, the suggested position should be the patient 

lying supine on the examination table with their arms resting relaxed by their side. During this 

research program, two positions were researched; one with the participants having their arms 

relaxed by their side and the other position had the participants ipsilateral arm to the breast 

being examined resting above their head. There was a statistically significant difference of 

1.55kPa between the two positions. As previously stated, there is currently no validated gold 

standard to compare the elasticity values to establish which technique is more accurate. There 

were two reasons for the decision that arms relaxed was the ideal position of choice for 

measuring whole breast elasticity. Firstly, the IQR was 3.38 in the arms relaxed group 

compared to 4.75 in the arm above the head group, showing that the relaxed arms group 

produced more precise data. The second reason for choosing this position was the subjective 

interpretation of the body language of the participants, with it appearing that the participants 

were more comfortable with their arms relaxed by their side. 

As suggested, the guidelines for the patient position when using SWE to measure whole breast 

elasticity requires more research. When using traditional ultrasound, the patient is usually 
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lying supine with a pillow placed under the shoulder of the breast to be examined, and the 

patient's arm elevated over their head (Kossoff 2000); this position allows the breast to be 

distributed over the chest wall. Traditional ultrasound, however, is used to investigate specific 

regions of the breast, rather than calculate the tissue properties of the whole breast as we 

have been doing with SWE. In addition to this, breast elasticity can change with gravity-

induced deformations that occur with changes in tissue weight distribution (Griesenauer, Weis 

et al. 2017). So, if using the traditional ultrasound patient position, the rotation of the torso 

would increase the gravitational forces on the breast and may alter the breast elasticity 

measurements. The process of elevating the arm may also increase the strain on the breast 

tissue. This increased strain may contribute to the mean elasticity values being higher in this 

position, out of the two positions measured, which was seen in the result with this position 

producing significantly higher elasticity values in the Chapter 8 study.  

9.3.2 Transducer Setup and Placement Position 

A linear transducer (Figure 9-2) is used, and ample ultrasound gel is placed on the transducer 

head (Figure 9-3) and also directly on the breast (on each quadrant to be imaged).  

 

Figure 9-2: SuperSonic™ Imagine Aixplorer® SWE linear transducer 
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Figure 9-3: Ultrasound gel being placed on the linear transducer head 

The ample ultrasound gel aids the propagation of the shear waves and reduces the extent of 

the artefacts and or areas that the shear waves have not propagated (black holes) within the 

image. In regard to the placement of the transducer head, each breast is divided into four 

quadrants (Figure 9-4); the lower outer (1, 8), upper outer (2, 7), upper inner (3, 6) and lower 

inner quadrants (4, 5). The transducer head is placed horizontally in a perpendicular position, 

2cm away from the nipple (Figure 9-5).  

 

Figure 9-4: Diagram of breast quadrants for shear wave ultrasound images 
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Figure 9-5: Location of the transducer head in relation to the nipple when using SWE 

With the ample ultrasound gel, the transducer is held in the position with no pressure applied 

from the operator for approximately three to five seconds, allowing time for shear waves to 

propagate through the tissue (this allows for a black hole free image). The image is then frozen 

and labelled by using a body mark on the image (Figure 9-6).  

 

Figure 9-6: SWE output image with body mark indicating what breast quadrant has been imaged 

By capturing images of each breast quadrant, it can provide useful information as the elasticity 

values differ between different quadrants and to establish a thorough calculation of the whole 

breast elasticity all quadrants need to be included in the analysis. Once the images have been 

saved, they are analysed post hoc. 

9.3.3 Post-hoc Analysis of the Shear Wave Elasticity Images 

After capturing and saving the SWE images, there needs to be the post-hoc analysis to 

calculate and present the breast elasticity of the ROI. The function on the SuperSonic™ 
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Aixplorer® SWE ultrasound machine that was chosen to do this was the Q-Box™ trace (Figure 

9-7).  

 

Figure 9-7: Q-Box™ trace function command button on SuperSonic™ Aixplorer® SWE ultrasound 

The Q-Box™ trace feature allows the user to define the ROI by tracing the desired area on the 

touch screen using the stylus provided with the SWE machine (Figure 9-8). When using the Q-

Box™ trace, the aim is to include as much area in the ROI as possible but omit areas that 

include artefacts or black holes (Figure 9-9).  

 

Figure 9-8: User using the attached stylus tracing around the desired region of interest 
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Figure 9-9: Free-Trace Q-Box™ on SWE image to omit ultrasound artefacts 

The reasons this method was chosen were due to the analyses in Chapter 6, which include the 

Q-Box™ trace having the lowest CV, again providing the most precise data which is beneficial 

for clinical trials to demonstrate a change in the breast elasticity values. This method also took 

the least amount of time to analyse the images and enter the data into excel due to one 

dataset per quadrant as opposed to the six datasets that were produced per breast quadrant 

with some of the other methodologies. Once the data has been entered into the statistical 

software of choice, the mean, maximum, minimum and SD of the elasticity can be calculated 

for each quadrant (left and right breast combined), the left or right breast or the average 

whole breast elasticity, as was done in this research program. 

9.4  The Limitations of this Research 

As with all research, the studies within this thesis have limitations that need to be considered 

when interpreting the findings and conclusions.  

9.4.1 Pilot Studies and Sample Size 

Firstly, both the enobosarm and anastrozole and HAVAHT+Ai™ trials were pilot studies, and 

for this reason, had small sample sizes with no formal power calculations. Therefore, the 

results produced from the included studies have limited power to detect differences in the 

results. A pilot study was an appropriate research design for this doctoral research program. 

The reasoning for this was due to both the included interventions used being novel therapies, 

and the outcome measure of breast elasticity also being innovative with no published 
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literature reporting the psychometric properties for its use regarding this indication. 

Therefore, by conducting a study of this nature, it allowed us to determine if SWE was an 

appropriate choice of an outcome measure for these studies and we were able to estimate 

the effect of the enobosarm and anastrozole and HAVAHT+Ai™ interventions on breast 

elasticity. However, as the sample size hasn't been guided by a power calculation, there is the 

possibility of making inaccurate assumptions or predictions based on these results (Van 

Teijlingen and Hundley 2001) regarding the validity and the effect of the interventions on 

breast elasticity. In addition, the future response of breast elasticity in further studies cannot 

be guaranteed.  

The information presented above demonstrates that we need to be cautious about 

formulating definitive statements regarding the findings of both of these studies. However, 

both the data from the enobosarm and anastrozole intervention and the HAVAHT+Ai™ 

intervention studies produced statistically significantly higher elasticity values compared to 

the healthy participant study presented in Chapter 8, and the elasticity decreases and 

correlations were consistent in both the enobosarm and anastrozole and the HAVAHT+Ai™ 

studies. These results maintain the provide promising data regarding the validity and clinical 

utility of breast elasticity as a biomarker for MBD. 

9.4.2  Uncontrolled Open-Label Study Designs 

Both of the intervention studies (enobosarm and anastrozole and HAVAHT+Ai™) utilised an 

uncontrolled, open-label trial design. This open-label trial design specifies that everyone 

recruited for the study received the active intervention, and this establishes that there was no 

control group. There are several problems associated with this type of study design. Firstly, as 

the assessor has not been blinded to the intervention group, the study results can be 

influenced by observer bias, which is 'any kind of systemic discrepancy from the truth during 

the process of observing and recording information for a study' (Mahtani, Spencer et al. 2018). 

Even though the SWE is relatively operator-independent due to the fact no pressure is being 

placed through the transducer head (unlike in other forms of elastography), this observer bias 

had the potential to impact the study results. As previously discussed in Chapter 6, the 

placement of the Q-Box™ can significantly alter the results of the study, so the researcher may 

have consciously or unconsciously placed the Q-Box™ in a more favourable position to show 
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better results. We did try and control for this bias by using the Free-Trace Q-Box™, which 

significantly reduced the opportunities of the researcher to manipulate the date as compared 

to the other Q-Box™ methodologies. This attempt at controlling for observer bias was unlike 

other studies which have used SWE for breast tissue analyses, as commonly in these previous 

studies, the Q-Box™ ratio function was used. The Q-Box™ ratio technique requires the 

researcher to place two circular Q-Box™ on the image (one Q-Box™ for fibroglandular tissue 

and one for fatty tissue), which provides the elasticity of the fibroglandular area of the breast. 

Using the Q-Box™ ratio technique can lead to a substantial level of data manipulation, as only 

one Q-Box™ is used for the fibroglandular tissue, the researcher can place the Q-Box™ on a 

region that may provide more favourable results for their hypothesis, whether this be higher 

or lower elasticity, as the elasticity can fluctuate throughout a single image.  

 

Another limitation of the open-label study design and therefore, the studies included in this 

research program, is the lack of a control group. By not having a control arm of either the 

intervention studies, we were unable to compare the breast elasticity changes to a group of 

participants with similar baseline characteristics, who were not utilising the hormonal 

interventions used within these trials. The lack of a control group can result in maturation bias 

affecting the study results, and we are unable to describe the behaviour of the breast 

elasticity in a population not on the intervention. Therefore, the natural progression of 

fluctuations or the breast elasticity in the absence of an intervention were unable to be 

observed and described. We did try to negate for the lack of a control group by incorporating 

the study from Chapter 8 of this thesis, which used four repeat measure on healthy women to 

determine the unbiased behaviour of breast elasticity. This study demonstrated no significant 

differences in the breast elasticity values across the repeat measures or with hormonal 

fluctuations of the menstrual cycle. However, as the women in the intervention studies were 

explicitly recruited for having high MBD, and the women in the reliability were recruited from 

the general local population, there was not a valid comparison group. Any future trials should 

be designed with a placebo-controlled group, and the assessors should be blinded, which will 

negate the maturation bias and also reduce the risk of observer bias or any other researcher-

based biases that can be introduced. 
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9.4.3  Inability to Calculate Baseline Correlations Between Breast Elasticity 

and Per Cent Volumetric Breast Density and Total Fibroglandular 

Volume 

A further limitation of this research program was the inability to conduct a baseline 

correlation between the whole breast elasticity and %VBD and TFV. As a key hypothesis was 

that there would be a higher baseline breast elasticity in women with high MBD due to the 

structure and histology of the tissue. It would have been of value to calculate this correlation 

to provide fundamental evidence to determine if breast elasticity could be used as a 

biomarker for MBD. However, during the studies included in this thesis, the only participants 

that had VolapraDensity™ measurements were the women with high MBD. As we recruited 

women with no signs of breast disease or pathology for the reliability study in Chapter 8, it 

was deemed unethical to expose these women to unnecessary radiation which would occur 

during mammography; therefore, they did not have mammograms and subsequently 

VolparaDensity™ measurements. For this reason, we were forced to assume that these 

women had a lower MBD than the women explicitly recruited for their high MBD, due to the 

reason previously listed in Section 9.2. This allowed us to hypothesise that the baseline 

elasticity values are higher in women with greater MBD but didn't allow us to make a direct 

correlation analysis of the spectrum of MBD and breast elasticity. 

In future research, it would be beneficial to conduct a cross-sectional study using women from 

a breast screening program, who have had a mammogram and also then undertake SWE on 

the breast to measure the elasticity. This would give us a sample of women with varying 

breast densities to conduct correlation analyses with breast elasticity. If there is a strong 

correlation between the two variables, this could aid the research into breast elasticity as a 

biomarker for MBD but could also, when properly validated, be used as a screening tool for 

women under the age of 40, who are concerned about their breast density. These women are 

under the age who are eligible for the Australian government-funded breast screening 

programs; therefore, elasticity may be able to guide the medical practitioner in regard to 

decision making for whether a woman should be referred for a mammogram. 
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9.5 Future Research 

As previously mentioned, the studies in this thesis are contributing to the early body of 

evidence for elasticity as a biomarker for interventions to reduce MBD. However, as listed in 

Section 9.4, there are limitations in the methodologies of the studies within this thesis. There 

needs to be ongoing research into this area further to validate breast elasticity for use in 

clinical research. This section will state areas of future research which need to be conducted 

to further contribute to the literature.  

Firstly, normative breast elasticity values measured using SWE need to be accurately 

measured and validated. This ideally would have a larger cohort, which would be a larger 

representation of the population, and the averages would be less influenced by individual 

variations of breast elasticity. In addition, future research needs to measure %VBD, TFV and 

breast elasticity measurements of all the participants. These measurements, for feasibility 

reasons during this research program, could not be measured. By doing these additional 

measures, the researcher will be able to accurately state the normative breast elasticity 

ranges of individuals with low MBD and high MBD. Furthermore, with all of these breast 

variables, a linear correlation analysis could be conducted to observe if there is a relationship 

between breast elasticity and %VBD, and TFV. As mentioned in Section 9.4.3, a potential study 

design to uncover this data would be a cross-sectional study. The sample for this study could 

be women recruited from a breast screening program. These women, as a representation of a 

population of women over 50, would have varying degrees of breast density and TFV, these 

participants would also undergo SWE to measure their breast elasticity. This mammography 

data and elasticity data would allow normative values to be calculated, and correlation 

analyses to be made between the variables. This study could also use a sub-group of women 

to have their SWE images captured and the corresponding breast elasticity values extracted by 

two assessors which would allow the inter-rater reliability to be calculated. The inter-rater 

reliability is a vital psychometric property of an outcome measure for longitudinal studies with 

repeated measurements and was unable to be calculated within this thesis due to the inability 

of the researcher to find a second assessor.  
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Furthermore, as the studies included in this thesis were pilot trials, more robust larger studies 

and trials need to be conducted. Ideally, this future research should be designed as a double-

blind, randomised, placebo-controlled trial. Any future studies of this nature also need to have 

a sample size calculation done to determine the adequate sample size to allow the findings to 

be reliable and not due to chance. By running a trial of this nature, the researcher would be 

able to reduce the risk of bias (for example maturation bias and observation bias) and 

determine if there was a statistically sound causal relationship between the intervention and 

the changes in elasticity. In addition, any future works of this nature could have a more regular 

schedule of assessments, both for SWE and mammography. From designing the research this 

way, more information regarding what changes are occurring in the breast tissue after the 

three-month time point and whether mammography variables are also able to detect changes 

at this early time point could be discovered. 

A further plan for supplementary research could be a histological study to determine the 

structure and histological properties of breast tissue of high and low elasticity values. This 

research would provide further information into the similarities or differences between the 

tissue and cellular make up of breasts of high MBD, and breasts of high elasticity and would be 

incredibly useful to further validate the use of breast elasticity as an outcome measure and a 

breast cancer screening tool.    

9.6 Conclusion 

The overall objective of this research program was to determine if breast elasticity, as 

measured by SWE, could act as a biomarker of the early response of breast tissue to 

interventions that reduce MBD. Through the clinical trials and subsequent data analysis, this 

thesis presented early evidence that breast elasticity may prove to be a valid and reliable 

biomarker to be used in clinical trials. Although the studies were small and of low power, there 

were significant reductions in the measured breast elasticity, which trended in the same 

direction of the other MBD variable results, these being a reduction in %VBD and TFV. Also, 

there is early evidence that baseline elasticity is higher in women with a greater MBD 

compared to those with a lower MBD. The findings of this research can be the foundation for 

future research, as we have presented a precise and reliable imaging protocol and evidence 

that breast elasticity responds to hormonal interventions that have also been shown to 
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reduce %VBD and TFV. With further research, if proven valid with more extensive clinical 

trials, breast elasticity could dramatically aid the research into developing novel interventions 

to reduce MBD. Breast elasticity could also have significant clinical uses to guide health 

management decisions and provide early feedback into a patient's response to interventions, 

which could improve health-related outcomes and may improve patient compliance. 
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Appendix 2 – Visual Analogue Scale for Breast Pain 
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Appendix 3 – Menopausal Rating Scale
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Appendix 4 – Blood Serum Hormone Results 
Subject 

number 

Visit Collection 

Date 

Collection 

Time 

Description Units Range 

Low 

Range 

High 

Result Out of 

range 
001 Screening 3/02/2017 0920 LH U/L   11.9  

    FSH U/L   5.1  

    Oestradiol pmol/L   1006  

    Progesterone nmol/L   0.3  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <0.6  

    DHEAS umol/L 1.7 11.7 1.8  

    SHBG nmol/L 28 150 65  

001 1 Month 07/03/2017 0845 LH U/L   30.5  

    FSH U/L   14.2  

    Oestradiol pmol/L   434  

    Progesterone nmol/L   1.6  

    Testosterone nmol/L 0 1.8 0.4  

    FAI % 0.4 6.0 4.0  

    DHEAS umol/L 1.7 11.7 3.4  

    SHBG nmol/L 28 150 10 *Low 

001 Month 3 1/05/2017 0850 LH U/L   31.1  

    FSH U/L   12.6  

    Oestradiol pmol/L   839  



 257 

    Progesterone nmol/L     

    Testosterone nmol/L 0 1.8 0.6  

    FAI % 0.4 6.0 6.7  

    DHEAS umol/L 1.7 11.7   

    SHBG nmol/L 28 150 9 *LOW 

001 Month 6 07/08/17 0915 LH U/L   1.7  

    FSH U/L   2.5  

    Oestradiol pmol/L   118  

    Progesterone nmol/L   30.0  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <4.0  

    DHEAS umol/L 1.7 11.7 3.7  

    SHBG nmol/L 28 150 10 *LOW 

001 Month 9 02/11/17 0936 LH U/L   10.2  

    FSH U/L   6.3  

    Oestradiol pmol/L   105  

    Progesterone nmol/L   <0.5  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <4.4  

    DHEAS umol/L 1.7 11.7 3.6  

    SHBG nmol/L 28 150 9 *LOW 

001 Month 12 05/02/18 1220 LH U/L   1.5  

    FSH U/L   2.8  
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    Oestradiol pmol/L   132  

    Progesterone nmol/L   19.2  

    Testosterone nmol/L 0 1.8 <0.1  

    FAI % 0.4 6.0 <0.8  

    DHEAS umol/L 1.7 11.7 2.9  

    SHBG nmol/L 28 150 12 *LOW 

002 Screening 10/02/2017 0815 LH U/L   4.1  

    FSH U/L   2.4  

    Oestradiol pmol/L   1530  

    Progesterone nmol/L   1.0  

    Testosterone nmol/L 0 1.8 0.4  

    FAI % 0.4 6.0 0.3 * 

    DHEAS umol/L 1.7 11.7 3.5  

    SHBG nmol/L 28 150 149  

002 Month 1 15/03/2017 Unknown LH U/L   3.4  

    FSH U/L   6.3  

    Oestradiol pmol/L   65  

    Progesterone nmol/L   0.8  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <3.1  

    DHEAS umol/L 1.7 11.7 4.4  

    SHBG nmol/L 28 150 13 *LOW 

002 Month 3 08/05/2017 0920 LH U/L   2.7  
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    FSH U/L   7.8  

    Oestradiol pmol/L   100  

    Progesterone nmol/L   0.5  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <4.4  

    DHEAS umol/L 1.7 11.7   

    SHBG nmol/L 28 150 9 *LOW 

002 Month 6 16/08/2017 0800 LH U/L   4.2  

    FSH U/L   2.9  

    Oestradiol pmol/L   198  

    Progesterone nmol/L   0.4  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <4.4  

    DHEAS umol/L 1.7 11.7 3.9  

    SHBG nmol/L 28 150 9 *LOW 

002 Month 9 15/11/17 1458 LH U/L   46.2  

    FSH U/L   22.4  

    Oestradiol pmol/L   526  

    Progesterone nmol/L   0.6  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <3.3  

    DHEAS umol/L 1.7 11.7 3.7  

    SHBG nmol/L 28 150 12 *LOW 
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002 Month 12 14/02/18 1030 LH U/L   8.2  

    FSH U/L   9.6  

    Oestradiol pmol/L   351  

    Progesterone nmol/L   0.4  

    Testosterone nmol/L 0 1.8 <0.1  

    FAI % 0.4 6.0 <1.0  

    DHEAS umol/L 1.7 11.7 3.7  

    SHBG nmol/L 28 150 10 *LOW 

003 Screening 07/02/2017 0935 LH U/L   4.7  

    FSH U/L   5.0  

    Oestradiol pmol/L   269  

    Progesterone nmol/L   14.0  

    Testosterone nmol/L 0 1.8 0.6  

    FAI % 0.4 6.0 0.8  

    DHEAS umol/L 1.7 11.7 4.3  

    SHBG nmol/L 28 150 71  

003 Month 1 07/03/2017 0915 LH U/L   2.0  

    FSH U/L   2.7  

    Oestradiol pmol/L   109  

    Progesterone nmol/L   10.1  

    Testosterone nmol/L 0 1.8 0.4  

    FAI % 0.4 6.0 4.0  

    DHEAS umol/L 1.7 11.7 5.4  
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    SHBG nmol/L 28 150 10 *LOW 

003 Month 3 03/05/2017 0910 LH U/L   0.5  

    FSH U/L   2.1  

    Oestradiol pmol/L   117  

    Progesterone nmol/L   11.1  

    Testosterone nmol/L 0 1.8 0.6  

    FAI % 0.4 6.0 6.7 *HIGH 

    DHEAS umol/L 1.7 11.7   

    SHBG nmol/L 28 150 9 *LOW 

003 Month 6 10/08/2017 0920 LH U/L   4.7  

    FSH U/L   6.8  

    Oestradiol pmol/L   <50  

    Progesterone nmol/L   1.4  

    Testosterone nmol/L 0 1.8 0.6  

    FAI % 0.4 6.0 6.7 *HIGH 

    DHEAS umol/L 1.7 11.7 5.9  

    SHBG nmol/L 28 150 9 *LOW 

003 Month 9 6/11/2017 0939 LH U/L   8.0  

    FSH U/L   5.8  

    Oestradiol pmol/L   89  

    Progesterone nmol/L   <0.5  

    Testosterone nmol/L 0 1.8 0.6  

    FAI % 0.4 6.0 6.7  
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    DHEAS umol/L 1.7 11.7 5.6  

    SHBG nmol/L 28 150 9  

003 Month 12 09/02/2018 0925 LH U/L   4.7  

    FSH U/L   8.9  

    Oestradiol pmol/L   65  

    Progesterone nmol/L   0.5  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <4.0  

    DHEAS umol/L 1.7 11.7 5.8  

    SHBG nmol/L 28 150 10 CS * LOW 

005 Screening 04/02/2017 0910 LH U/L   5.7  

    FSH U/L   2.4  

    Oestradiol pmol/L   331  

    Progesterone nmol/L   2.6  

    Testosterone nmol/L 0 1.8 0.7  

    FAI % 0.4 6.0 0.7  

    DHEAS umol/L 1.7 11.7 2.1  

    SHBG nmol/L 28 150 100  

005 Month 1 08/03/2017 1050 LH U/L   6.6  

    FSH U/L   7.8  

    Oestradiol pmol/L   94  

    Progesterone nmol/L   <0.5  

    Testosterone nmol/L 0 1.8 0.6  
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    FAI % 0.4 6.0 3.5  

    DHEAS umol/L 1.7 11.7 3.0  

    SHBG nmol/L 28 150 17 *LOW 

005 Month 3 27/04/2017 1035 LH U/L   3.9  

    FSH U/L   5.6  

    Oestradiol pmol/L   136  

    Progesterone nmol/L     

    Testosterone nmol/L 0 1.8 0.7  

    FAI % 0.4 6.0 4.7  

    DHEAS umol/L 1.7 11.7   

    SHBG nmol/L 28 150 15 *LOW 

005 Month 6 17/07/2017 1425 LH U/L   3.8  

    FSH U/L   3.1  

    Oestradiol pmol/L   773  

    Progesterone nmol/L   0.5  

    Testosterone nmol/L 0 1.8 0.9  

    FAI % 0.4 6.0 6.0  

    DHEAS umol/L 1.7 11.7 3.4  

    SHBG nmol/L 28 150 15 *LOW 

005 Month 9 06/11/2017 0926 LH U/L   6.0  

    FSH U/L   5.6  

    Oestradiol pmol/L   479  

    Progesterone nmol/L   <0.5  
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    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <3.1  

    DHEAS umol/L 1.7 11.7 3.1  

    SHBG nmol/L 28 150 13 *LOW 

005 Month 12 30/01/2018 0918 LH U/L   7.3  

    FSH U/L   3.9  

    Oestradiol pmol/L   506  

    Progesterone nmol/L   <0.5  

    Testosterone nmol/L 0 1.8 0.5  

    FAI % 0.4 6.0 3.3  

    DHEAS umol/L 1.7 11.7 2.7  

    SHBG nmol/L 28 150 15 *LOW 

006 Screening 04/02/2017 0000 LH U/L   6.8  

    FSH U/L   6.9  

    Oestradiol pmol/L   170  

    Progesterone nmol/L   0.7  

    Testosterone nmol/L 0 1.8 1.1  

    FAI % 0.4 6.0 1.5  

    DHEAS umol/L 1.7 11.7 6.6  

    SHBG nmol/L 28 150 72  

006 Month 1 03/03/2017 0840 LH U/L   4.4  

    FSH U/L   9.0  

    Oestradiol pmol/L   81  
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    Progesterone nmol/L   0.6  

    Testosterone nmol/L 0 1.8 1.2  

    FAI % 0.4 6.0 13.3* HIGH 

    DHEAS umol/L 1.7 11.7 9.8  

    SHBG nmol/L 28 150 9 *LOW 

006 Month 3 28/04/2017 0800 LH U/L   3.7  

    FSH U/L   6.7  

    Oestradiol pmol/L   220  

    Progesterone nmol/L   0.7  

    Testosterone nmol/L 0 1.8 1.3  

    FAI % 0.4 6.0   

    DHEAS umol/L 1.7 11.7   

    SHBG nmol/L 28 150 6 *LOW 

006 Month 6 02/08/2017 0910 LH U/L   3.5  

    FSH U/L   6.0  

    Oestradiol pmol/L   78  

    Progesterone nmol/L   6.0  

    Testosterone nmol/L 0 1.8 0.9  

    FAI % 0.4 6.0 18.0  

    DHEAS umol/L 1.7 11.7 9.8  

    SHBG nmol/L 28 150 5 *LOW 

006 Month 9 06/11/2017 1020 LH U/L   2.9  

    FSH U/L   4.4  
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    Oestradiol pmol/L   287  

    Progesterone nmol/L   0.2  

    Testosterone nmol/L 0 1.8 0.8  

    FAI % 0.4 6.0 13.3* High 

    DHEAS umol/L 1.7 11.7 8.3  

    SHBG nmol/L 28 150 6* LOW 

006 Month 10 29/12/2017 1130 LH U/L   3.9  

    FSH U/L   6.5  

    Oestradiol pmol/L   135  

    Progesterone nmol/L   3.9  

    Testosterone nmol/L 0 1.8 0.9  

    FAI % 0.4 6.0 15.0 *HIGH 

    DHEAS umol/L 1.7 11.7 10  

    SHBG nmol/L 28 150 6 *LOW 

008 Screening 06/02/2017 0915 LH U/L   3.3  

    FSH U/L   6.4  

    Oestradiol pmol/L   187  

    Progesterone nmol/L   54.8  

    Testosterone nmol/L 0 1.8 0.4  

    FAI % 0.4 6.0 0.5  

    DHEAS umol/L 1.7 11.7 3.4  

    SHBG nmol/L 28 150 78  

008 Month 1 07/03/2017 1240 LH U/L   3.2  
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    FSH U/L   4.9  

    Oestradiol pmol/L   119  

    Progesterone nmol/L   22.6  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <3.1  

    DHEAS umol/L 1.7 11.7 5.2  

    SHBG nmol/L 28 150 13 *LOW 

008 Month 3 04/05/2017 0000 LH U/L   5.4  

    FSH U/L   7.6  

    Oestradiol pmol/L   66  

    Progesterone nmol/L   3.8  

    Testosterone nmol/L 0 1.8 0.6  

    FAI % 0.4 6.0 6.7 *HIGH 

    DHEAS umol/L 1.7 11.7   

    SHBG nmol/L 28 150 9 *LOW 

008 Month 6 04/08/2017 1037 LH U/L   7.2  

    FSH U/L   14.6  

    Oestradiol pmol/L   <44  

    Progesterone nmol/L     

    Testosterone nmol/L 0 1.8 0.4  

    FAI % 0.4 6.0 5.0  

    DHEAS umol/L 1.7 11.7 5.3  

    SHBG nmol/L 28 150 8 *LOW 
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008 Month 9 14/11/2017 0000 LH U/L   4.0  

    FSH U/L   5.0  

    Oestradiol pmol/L   94  

    Progesterone nmol/L   6.2  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <3.3  

    DHEAS umol/L 1.7 11.7 4.9  

    SHBG nmol/L 28 150 12 *LOW 

008 Month 12 06/02/2018 1113 LH U/L   6.1  

    FSH U/L   13.5  

    Oestradiol pmol/L   61  

    Progesterone nmol/L   0.3  

    Testosterone nmol/L 0 1.8 0.5  

    FAI % 0.4 6.0 2.8  

    DHEAS umol/L 1.7 11.7 6.3  

    SHBG nmol/L 28 150 18 *LOW 

010 Screening 06/03/2017 0855 LH U/L   1.1  

    FSH U/L   1.0  

    Oestradiol pmol/L   <44  

    Progesterone nmol/L   0.3  

    Testosterone nmol/L 0 1.8 0.4  

    FAI % 0.4 6.0 0.1  

    DHEAS umol/L 1.7 11.7 1.9  
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    SHBG nmol/L 28 150 281 *HIGH 

010 Month 1 07/04/2017 1040 LH U/L   2.5  

    FSH U/L   2.4  

    Oestradiol pmol/L   182  

    Progesterone nmol/L   36.8  

    Testosterone nmol/L 0 1.8 0.4  

    FAI % 0.4 6.0 1.7  

    DHEAS umol/L 1.7 11.7 3.9  

    SHBG nmol/L 28 150 24 *LOW 

010 Month 3 30/05/2017 0950 LH U/L   8.0  

    FSH U/L   3.9  

    Oestradiol pmol/L   254  

    Progesterone nmol/L   0.4  

    Testosterone nmol/L 0 1.8 0.5  

    FAI % 0.4 6.0 3.6  

    DHEAS umol/L 1.7 11.7 4.3  

    SHBG nmol/L 28 150 14 *LOW 

010 Month 6 13/09/2017 1030 LH U/L   4.4  

    FSH U/L   9  

    Oestradiol pmol/L   127  

    Progesterone nmol/L   2  

    Testosterone nmol/L 0 1.8 0.26  

    FAI % 0.4 6.0 1.5  
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    DHEAS umol/L 1.7 11.7 4.2  

    SHBG nmol/L 28 150 17  

010 Month 9 04/12/2017 0930 LH U/L   7.1  

    FSH U/L   5.9  

    Oestradiol pmol/L   69  

    Progesterone nmol/L   <0.5  

    Testosterone nmol/L 0 1.8 <0.1  

    FAI % 0.4 6.0 <0.7  

    DHEAS umol/L 1.7 11.7 4.3  

    SHBG nmol/L 28 150 15 *LOW 

010 Month 12 13/03/2018 1400 LH U/L   4.0  

    FSH U/L   4.1  

    Oestradiol pmol/L   275  

    Progesterone nmol/L   <0.5  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <2.9  

    DHEAS umol/L 1.7 11.7 5.5  

    SHBG nmol/L 28 150 14 *LOW CS 

011 Screening 11/03/2017 0933 LH U/L   3.1  

    FSH U/L   6.8  

    Oestradiol pmol/L   128  

    Progesterone nmol/L   <0.5  

    Testosterone nmol/L 0 1.8 0.2  



 271 

    FAI % 0.4 6.0 0.5  

    DHEAS umol/L 1.7 11.7 3.9  

    SHBG nmol/L 28 150 40  

011 Month 1 06/04/2017 0945 LH U/L   3.1  

    FSH U/L   9  

    Oestradiol pmol/L   pending  

    Progesterone nmol/L   pending  

    Testosterone nmol/L 0 1.8 0.54  

    FAI % 0.4 6.0 7.7  

    DHEAS umol/L 1.7 11.7   

    SHBG nmol/L 28 150 7  

011 Month 3 19/06/2017 0920 LH U/L   4.0  

    FSH U/L   8.5  

    Oestradiol pmol/L   83  

    Progesterone nmol/L   0.7  

    Testosterone nmol/L 0 1.8 <0.4  

    FAI % 0.4 6.0 <1.8  

    DHEAS umol/L 1.7 11.7 4.6  

    SHBG nmol/L 28 150 22 *LOW 

011 Month 6 12/09/2017 1130 LH U/L   5.5  

    FSH U/L   3.7  

    Oestradiol pmol/L   141  

    Progesterone nmol/L   19.0  
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    Testosterone nmol/L 0 1.8 0.5  

    FAI % 0.4 6.0 10.0  

    DHEAS umol/L 1.7 11.7 6.6  

    SHBG nmol/L 28 150 5 *LOW 

011 Month 9 07/12/2017 1032 LH U/L   4.5  

    FSH U/L   6.8  

    Oestradiol pmol/L   120  

    Progesterone nmol/L   <0.5  

    Testosterone nmol/L 0 1.8 <0.1  

    FAI % 0.4 6.0 <1.4  

    DHEAS umol/L 1.7 11.7 5.3  

    SHBG nmol/L 28 150 7 *LOW 

011 Month 12 13/03/18 1420 LH U/L   1.6  

    FSH U/L   1.8  

    Oestradiol pmol/L   124  

    Progesterone nmol/L   12.0  

    Testosterone nmol/L 0 1.8 0.4  

    FAI % 0.4 6.0 5.0  

    DHEAS umol/L 1.7 11.7 6.4  

    SHBG nmol/L 28 150 8 *LOW 
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