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Investigating the vulnerability of power networks gives us insight into the network

elements that require reinforcement in order to maintain highly reliable power. The

current state of climate has become of increasing concern, and has caused a rapid

increase in renewable energy. Unlike conventional generation, renewable energy is

highly dependent on the weather, potentially exposing network vulnerabilities to cas-

cading failure and network congestion. A new model of Nesti et al. [38] investigates

emergent cascades that arise from fluctuations in renewable energy. In particular,

the authors use the theory of large deviations in order to rank the most-likely initial

line failures. On the other hand, there are a number of studies that link frequent

congestions to high wind penetration, and use generation re-dispatch in order to es-

timate wind curtailment. In this thesis, we first extend the initial emergent cascade

model, by using the power spectrum to identify significant cycles in solar generation,

and find that this decreases the probabilities of line failure. Then, we develop a new

long-term congestion management model, which we use to investigate the impact

of new wind farm connections on wind curtailment in the South Australian power

network. We predict the power output of the new wind farms using a combina-

tion of linear regression, ARMA models and quantile regression. We find that the

Mid-North has the largest amount of spare network capacity, and that transmission

upgrades must coincide with the integration of new wind farms in the South East.
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Chapter 1

Introduction

1.1 Problem description

In the modern-day, we use power directly or indirectly in every aspect of life. Power

networks supply electricity to residential homes and major industries including agri-

culture and hospitality. Without a constant supply of electricity, food may spoil and

critical medical equipment may fail. There are many other consequences including

the impact on the economy, and hence maintaining a highly reliable power network

is crucial.

Originally, power networks were developed to deliver electricity produced from con-

ventional generators that burn fossil fuels. Unfortunately, when fossil fuels are

burned, large amounts of carbon dioxide is released into the atmosphere which con-

tributes to global warming. The current state of climate has become of increasing

concern, and has caused a rapid increase in clean renewable energy. Unlike conven-

tional generation, renewable energy is highly dependent on the weather, potentially

exposing vulnerabilities in the network.

A reliable power network is able to supply the demand with a high degree of con-

fidence and experience negligible loss of load, more commonly known as blackouts.

Large-scale blackouts may leave a tremendous number of consumers, including res-

idential homes and commercial businesses, without power for long periods of time.

Typically, power is restored within a few hours but may potentially take days. Power

losses of this magnitude have a significant financial impact on affected businesses

and the network operators. The main mechanism that leads to large-scale blackouts

is called cascading failure, which is a process of successive line failures caused by
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dependencies in the network topology. Therefore, a model is needed in order to iden-

tify the network elements vulnerable to cascade and motivate solutions to reduce

the risk of blackouts.

In 2011, an unfortunate mistake made by a technician caused the initial outage of

a major transmission line near San Diego. Power redistribution resulted in a fast-

moving large-scale blackout that affected southern California and nearby parts of

Mexico. Approximately 2.7 million customers went without power for up to 12 hours.

A year later, the cascade model of Bernstein et al. [4] identified the San Diego region

to be the most vulnerable area to cascading failure. This highlights the importance

of cascade modelling in order to identify network vulnerabilities.

Commonly, models analyse classical cascades which result from a random distur-

bance, such as equipment malfunction, technical mistake, or extreme weather. How-

ever, more recently, high renewable penetration has motivated models to treat wind

and solar energy as stochastic resources. Nesti et al. [38] introduced a new model

to investigate emergent cascades which arise from random fluctuations in renewable

energy. The initial evidence demonstrates that emergent cascades have a higher

average line propagation than classical cascades and therefore are more likely to

produce fast-moving large-scale blackouts. In reality, cascades are rare events as

heavily-loaded transmission lines are relieved through congestion management.

There are numerous aspects to maintaining reliable power, one of which is managing

network congestions in order to operate in a secure state. A network element is con-

gested when it is operating outside its physical stability limit, and secure operation,

among other things, refers to a power network with no congestions. Congestion

management consists of both short-term and long-term management. Short-term

management concerns operating in a secure state now, and long-term management

is concerned with having sufficient transmission capacity in order to secure operation

over the coming years. Managing congestions in the short and long-term reduces

the risk of blackouts but may significantly impact wind penetration - the percentage

of electricity supplied by wind energy.

Many countries around the world have invested in wind energy, as it has become

one of the cheapest sources of power. This has resulted in high wind penetration

levels, as seen in Table 1.1.
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Country Penetration

1. Denmark 41%

2. Ireland 28%

3. Portugal 24%

4. Germany 21%

5. Spain 19%

Table 1.1: Top 5 countries with the highest wind penetration in 2018 [65].

High wind penetration levels exacerbate network congestion for two reasons: the

available wind resource is not correlated with demand, and wind farm locations are

clustered such that they share transmission capacity. Moreover, wind farms require

a large amount of empty land in order to be efficient and therefore are located in

rural areas. Typically, generator connections to rural regions of the network either

have a lower transmission capacity, or rely on a limited number of high-capacity

transmission lines to transport power to major loads. Geographical correlations

in the wind resource produce frequent periods where wind power output is near

installed capacity, and may congest the network.

In order to alleviate congestion, generation is re-dispatched. The re-dispatch solu-

tion may curtail the power output of at least one wind farm, referred to as wind

curtailment. The amount of curtailed power is a quantity of interest, which inflates

short-term congestion management costs and constrains wind penetration levels.

Therefore, it is crucial to understand the dynamics that cause wind curtailment and

identify the network elements that impose the constraint. A deeper understanding

will lead to long-term solutions for appropriate integration of wind farms in order

to ensure sufficient transmission capacity is available.

The South Australian (SA) power network is a particularly interesting case study

due to the high wind penetration levels - almost 40% of SA’s generation in 2019 was

from wind energy [52]. Furthermore, there are several wind farm projects that have

approval and are currently pending development. These new wind farm develop-

ments are likely to begin operating in the coming few years, dramatically increasing

wind capacity in SA. However, for SA to be successful in supporting the resulting

higher penetration levels, there needs to be sufficient understanding about future

congestions that might arise.
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1.2 The South Australian power network

The SA power network is part of a larger interconnected power network called the

National Electricity Market (NEM). The NEM interconnects five states of Australia:

Queensland, New South Wales (including the Australian Capital Territory), Victo-

ria, Tasmania and South Australia. Each state has its own generation capacity and

can import/export power via inter-connectors between states. The Australian En-

ergy Market Operator (AEMO) manages the NEM, and is responsible for dispatch-

ing power, maintaining network stability, forecasting renewable resource, network

maintenance and planning. Moreover, they have partnerships with the Bureau of

Meteorology (BOM) and the Australian Renewable Energy Agency (ARENA).

The SA power network consists of a transmission network operated by ElectraNet,

and a distribution network operated by SA Power Networks (SAPN). In SA, gas

contributed 47.4%, wind 39.5%, rooftop PV 7.9%, diesel and small non-scheduled

generation 0.8%, battery 0.2% and large-scale solar 0.03% of the 14,503 GWh of

power generation in SA in the 2018-19 financial year [52]. Therefore, SA is a coal-

free state as the last coal generator, Northern Power Station, was decommissioned

in May 2016. In comparison, the NEM relies on coal generation (59.9%) and a fairly

minor contribution from wind (6.2%) [3]. In the same period, SA imported 791 GWh

of power from Victoria and exported 1,259 GWh, which is a significant improvement

from the 2016-17 financial year where the net flows were 2,725 GWh of power imports

[49]. It is clear that new wind farms since mid 2017 have stabilised the generation

deficit that immediately followed the closure of the coal power station.

The increased amount of non-synchronous generation presents a new set of challenges

in SA, one of which is managing low system strength. System strength relates to

the ability of the power network to manage fluctuations in supply and demand

while maintaining stable voltage levels [20]. SA’s power network has a very high

ratio of wind generation compared to the demand in the state and is capable of

meeting, and historically has met, over 120% of its demand from wind generation

alone. The system strength of the power network can be low during these periods,

due to reduced levels of online conventional synchronous generation [49]. However,

control systems such as battery storage and synchronous condensers help to manage

this. Synchronous condensers operate in a similar way to a conventional generator

with a rotating mass, and have been used since the beginning of the SA power

network.

Another aspect of AEMO’s system strength arrangements for SA involves the cur-
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tailment of wind generation during periods of very high wind output. During the

2018-19 financial year, approximately 3.3% of South Australian wind generation was

curtailed to maintain the power system within secure limits. This was an increase

from 2.4% of wind generation curtailed in the previous year [52]. Key drivers for

increased curtailment included record high wind generation and insufficient syn-

chronous generation due to periods of relatively low prices [48].

As part of the network planning process, AEMO published in 2018 the Integrated

System Plan (ISP) [47], which is a cost-based optimisation that forecasts the trans-

mission network requirements of the NEM over the next 20 years. AEMO’s mod-

elling estimates that the additional transmission investment proposed in the 2018

ISP delivers savings of around $1.2 billion. The transmission investment that con-

cerns SA includes improved system strength and a new inter-connector. The lack of

spinning turbines from conventional generation in SA, means there is an immediate

requirement for synchronous condensers to supply system strength and inertia to the

region. The new inter-connector RiverLink proposes a 750 MW transfer capacity

between South Australia and New South Wales and is currently under assessment by

ElectraNet. Expected benefits include increased system strength in SA and enable

the connection of renewable energy in the Riverland.

Furthermore, AEMO assessed 34 candidate renewable energy zones (REZ) across

the NEM, including 9 in SA: South East, Riverland, Mid-North, Yorke Peninsula,

Northern SA, Leigh Creek, Roxby Downs, Eastern and Western Eyre Peninsula. The

assessment identifies the Mid-North for least-cost integration of additional wind ca-

pacity into the transmission network. A significant factor of least-cost integration is

the REZ’s spare network capacity defined by the MW value of additional generation

that can be transported from the REZ to the required load centre [47]. The ISP

reports considerable spare network capacity of 1000 MW in both the Mid-North and

Northern SA, and 500 MW in the South East. New renewable developments will

utilise spare network capacity for cost-effective wind integration.

Currently, there are a number of approved wind farm projects spread out across

SA. Tilt Renewables have operated wind farms in SA since 2008 and are now in

the development phase of another 300 MW wind farm which is situated east of

Adelaide [56]. DP Energy plan to commence development of their renewable energy

park in Northern SA in mid 2020, which will include a 210 MW wind farm [21].

More recently, RES Australia was granted development consent for a 185 MW wind

farm located in the Mid-North [60]. Finally, REpower Australia have approval for a

600 MW wind farm located on the Yorke Peninsula that will deliver electricity direct
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to Adelaide via an undersea cable. REpower Australia have already delivered 6 wind

farms in SA, equating to over 500 MW of installed capacity [2]. These promising

renewable projects will establish sufficient wind capacity in SA to achieve higher

wind penetration levels.

1.3 Structure of the thesis

Chapter 2 consists of four main sections. Section 2.1 introduces the physical phe-

nomena of electrical circuits and power network security and stability before deriving

DC power flows and power redistribution. Section 2.2 provides a broad overview

of cascade models. We first present physical models that analyse classical cascades

caused by random disturbances and the emergent cascade model of Nesti et al. [38]

which analyses cascades that emerge due to fluctuations in renewable energy. We

then consider abstract models of Dobson et al. [16], which along with other work

of Dobson et al. [18] motivate cascade model validation methods of Qi et al. [55].

Similarly, Section 2.3 provides a literature review of network congestion and wind

curtailment with an emphasis on short-term and long-term congestion management.

We first describe case studies of Joos and Staffel [29] and of Luo et al. [33] that anal-

yse observed wind curtailment from short-term congestion management. We then

introduce a re-dispatch model of Gu et al. [24] to quantify wind curtailment relief

provided by long-term congestion management, and comment on more generalised

re-dispatch models [12, 35, 63]. Finally, we conclude this chapter with statistical

concepts related to time series and regression analysis which are necessary to un-

derstand our work.

The two main contributions of this thesis are: an improved emergent cascade model

and a new long-term congestion management model. In Chapter 3, we first discuss

in-depth, the emergent cascade model of Nesti et al. [38]. The authors develop

time series models for wind and solar generation in order to estimate the covariance

of power injections for the German power network. In Section 3.2, we produce

diagnostic plots of the wind and solar models in order to determine goodness-of-fit.

The diagnostics of the solar model motivate Section 3.3, where we follow the work of

Boland [9] and extend the model to incorporate a deterministic Fourier series. We

then demonstrate that the extension of the solar model improves the goodness-of-fit

and increases the accuracy of the estimates for the failure probabilities. We conclude

this section with a discussion of our main results and future work.

The long-term congestion management model quantifies the impact of additional
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wind capacity on wind curtailment in SA and consists of three new components:

a network model of SA, a wind power simulation and a short-term generation re-

dispatch model. To that end, Chapter 4 presents a simplified open-access AC model

of the SA power network. First, Section 4.1 outlines the physical model which

consists of the network elements whose parameters are publicly available, and the

network elements whose parameters are estimated or assumed. Then, in Section 4.2,

we balance the time series of generation and demand to determine the dynamic

inputs to the physical model. In Section 4.3, we present diagnostic plots of our AC

model to ensure its capability of emulating network operation. Then, in Section 4.4,

we perform a DC approximation to the AC model to obtain a closed-form analytical

solution, and assess the validity of the assumptions using conditions presented by

Purchala et al. [54]. We conclude with a visualisation of the power transmission

distribution factors of the estimated DC network model.

In Chapter 5, we first investigate potential methods to simulate a time series of wind

generation in SA. Then, in Section 5.2, we briefly introduce the dataset of wind

speed and wind direction obtained from the BOM, and apply pre-processing steps.

In Section 5.3 we develop a mean prediction model which estimates the expected

level of wind generation from a series of linear regressions. Then, in Section 5.4,

we develop an error simulation model which simulates a stochastic deviation from

the mean prediction, in order to obtain a realistic time series of wind generation.

We conclude by validating our wind power simulations against historical data, using

performance metrics such as correlation and probability of exceedance.

In our final chapter, we first develop two optimisation models to perform short-

term generation re-dispatch in order to estimate the amount of wind curtailment.

Then, in Section 6.2, we bring together the network model from Chapter 4, the

wind power simulation from Chapter 5 and the short-term re-dispatch to form the

long-term congestion management model. Results from the model are presented in

Section 6.3, where we compare our findings to the 2018 ISP and demonstrate our

models potential to aid long-term planning decisions. We conclude this section with

a discussion of the limitations of our methodology and areas of future research.

Finally, in Chapter 7 we conclude the thesis, commenting on our contributions,

future work, and lessons learned.



Chapter 2

Background

In order to investigate cascading failure and network congestion, we represent a

power network as a connected graph G(n,m), where the n nodes represent buses

and the m edges represent network branches. The buses represent substations, which

among other things, connect transmission elements such as lines, power generators,

and loads. A network branch is either a transmission line or a transformer. Trans-

mission lines are designed to transport generated power across the network with

minimal losses. High-voltage transmission lines are used over longer distances in

the transmission network and transformers are designed to convert power between

different voltage levels. A bus may have a generator or load connected. The gen-

erators convert a fuel resource (potentially renewable) into power, where it is then

transported across the transmission network until it is extracted by a load. The

loads extract power equal to their demand and can represent a distribution network

or an industrial customer. An example power network with 5 buses and 5 branches

is represented as a graph G(5, 5) in Figure 2.1.

Furthermore, we require knowledge of the power flows. There are two distinct types

of power dynamics, namely direct current (DC) and alternating current (AC). All

power networks are AC but the DC model is sometimes used to approximate the

power flows. We now present electrical circuit and power network background to

derive the DC power flow model.
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generator load

transmission line

bus

transformer

Figure 2.1: A basic example of a graph G(5, 5), which represents a power network

transmission system. The generators inject power into the network at the blue buses,

and the load extracts power from the network at the red bus. The grey buses have

no generator or load attached and therefore the corresponding power injections are

always zero.

2.1 Electric circuits and power networks

In this section, we present necessary material on power networks to understand

this thesis, and for more details see [28]. First, consider the simpler DC circuit,

i.e., battery operated, where a fixed voltage is applied. The voltage (V ) creates

a potential electrical difference such that the electrons flow within a circuit with

fixed direction toward the positive charge. This movement of electrons through a

conductor is referred to as the current (I). Electric power (P ) combines current and

voltage such that

P = V I .

Ohm’s law states that for any DC circuit the electric current is directly propor-

tional to the voltage. This gives rise to the resistance (R) of the conductor as the

proportionality constant such that

I =
V

R
.

An electrical network (or power network) consists of a series of closed circuits that

obey Kirchhoff’s laws. In particular, Kirchoff’s first law states that for any node in

an electrical circuit, the sum of currents flowing into a node is equal to the sum of

currents flowing out of that node, and is known as the conservation of charge. In a

power network the buses represent the nodes, as shown in Figure 2.1.
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A power network has a specific topology which consists of the connection points

between all the network elements such as transmission branches, generators and

loads. Additionally, the network elements have parameter specifications that effect

the power dynamics. For instance, generators have a maximal generation capacity

that cannot be exceeded; branches have a maximal power carrying capacity that

should not be exceeded; each bus is defined on a nominal voltage level; and there are

resistive forces that create power losses in the network. Assuming all this information

about a network is known, then given the power output of each generator and the

demand of each load in the network, collectively known as the power injections, the

DC power flows are solved using a system of linear equations. We derive the solution

to the DC power flows in Section 2.1.3.

In an AC circuit, the voltage oscillates as a sinusoidal wave which causes the cur-

rent to alternate directions. Real power networks utilise three-phase alternating

current transmission for constant power transfer and an improved capacity-to-cost

ratio. Three-phased power is achieved by running three wires in parallel each offset

by 120 degrees. Specifically, an AC circuit has time-dependent current, i(t), and

voltage, v(t), of the general form

v(t) = V0 cos(ωt+ τ v), i(t) = I0 cos(ωt+ τ i) , for t ≥ 0 .

Here, V0 and I0 are the amplitudes of voltage and current, respectively, and τ v and

τ i are the phase shifts of voltage and current, respectively. The parameter ω is

the frequency of both voltage and current. Under stable conditions it is a system-

wide parameter equal to 2πω0, where ω0 is the nominal system frequency (50 Hz in

Australia and 60 Hz in America). The relationship between sine waves and complex

numbers is exploited to simplify the power flow analysis. Thus, defining the complex

voltage and current phasor respectively as

V =
V0√

2
ejτ

v

, I =
I0√

2
ejτ

i

,

where j =
√
−1, we obtain the active (or real) power flows

p = Re(V I) ,

where Re indicates the real part, and I is the complex conjugate of the current, I.

Consequently, the related quantities

q = Im(V I) and S = p+ jq ,

denote the reactive power and apparent power, respectively, where Im indicates the

imaginary part. Therefore, the AC power flows are defined in terms of complex
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numbers that involve active power and reactive power. Active power corresponds to

power that is consumed by the loads. By the laws of electromagnetic induction, in

order to supply active power, energy is consumed to create and maintain a magnetic

field, called reactive power. Although reactive power does not contribute to the

load, it is essential to maintain voltage levels across the power network.

Additionally, the complex behaviour gives rise to the reactance, X, which is the

opposing force applied to a change in current or voltage, due to inductance or ca-

pacitance (energy stores in the form of magnetic and electric fields). The impedance,

Z, is given by

Z = R + jX ,

and the admittance, Y , is related such that

Y = Z−1 = G+ jB ,

where G and B are called the conductance and the susceptance, respectively. Given

an electrical network with known AC power injections and impedance properties,

the branch power flows are solutions to a system of quadratic equations. These

are inherently more complex than the DC-equivalent system of linear equations.

Fortunately, under normal stability conditions, the complex power flows can be

approximated by linear equations to produce the DC approximation [5, 13, 38, 58].

Prior to defining the DC approximation, we highlight some important concepts

applied in power systems engineering.

2.1.1 Per-unit system

In power systems analysis, the per-unit system (pu) is commonly used to express

system quantities as a fraction of a defined base unit such that

Ppu =
P

Pbase
, Vpu =

V

Vbase
, Zpu =

Z

Zbase
and Ypu =

Y

Ybase
.

In system-wide calculations a common system base, Pbase, is chosen. Typically, the

base power is chosen to be Pbase = 100 MVA to make the power quantities more

convenient. Base voltage is commonly chosen to be the nominal voltage level of the

bus. Power networks are typically interconnected systems that connect buses defined

on different voltage levels. A transformer will connect adjacent buses and convert the

power between the voltage level of the sending and receiving bus. The significance

of the per-unit system is that the voltage on either side of the transformer is equal
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to 1 pu. The base impedance and base admittance are calculated from electrical

circuit laws as follows

Zbase =
Vbase
Ibase

=
V 2
base

IbaseVbase
=
V 2
base

Pbase
,

Ybase =
1

Zbase
.

It is also simple to convert between a per-unit value defined on different power bases.

One obvious need would be to convert a per-unit power flow solution back to the

actual power flow solution. The new per-unit power flow solution P new
pu with base

P new
base is given by

P new
pu = Ppu ×

P new
base

Pbase
.

The per-unit power flows are converted back to the power flows using the identity

base power P new
base = 1 MVA. In Section 2.1.3 the calculations of the DC power flows

use per-unit values, but we omit pu for notation purposes.

2.1.2 Security and stability

The notion of power system security and stability are closely related. Power system

security refers to the state of grid operation, whilst stability refers to the power

system’s ability to regain a state of operating equilibrium after being subjected

to a physical disturbance (e.g. line failure, transformer failure, generator failure,

etc.). The power system can be operated in a secure, unsatisfactory or unstable

state.

Operating in a secure state implies that the network parameters are within limits

and will remain within limits if subjected to a single disturbance. Operating in an

unsatisfactory state implies that the system is stable with some network parameters

operating outside their limits and will most likely remain in an unsatisfactory state

if subjected to a single disturbance. However, operating in an unsatisfactory state

for long periods due to multiple disturbances can cause the system to move to an

unstable state, where it is vulnerable to collapse.

Security is managed by the market operators who conduct the centrally-coordinated

security-constrained optimised dispatch for the projected demand profile. The opti-

mal dispatch schedules available generation to minimise operational costs subject to

the network constraints. The network constraints correspond to transmission branch

power flow capacities and bus voltage levels, which are continuously monitored in
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real-time using system observation controllers such as Supervisory Control and Data

Acquisition (SCADA).

Transmission elements are subject to faults that occur over time or caused by an

exogenous disturbance. Such events can either immediately cause the network ele-

ment to fail, unplanned outage, or are intentionally removed from service to perform

make-safe maintenance, planned outage. As a result, operators incorporate a level

of network redundancy in the dispatched generation solution in order to ensure that

no load shedding occurs due to any failures, commonly known as the N − k prob-

lem [6]. Typically, operators perform an N − 1 level contingency analysis to ensure

that failure of any element does not result in load shedding. However, this becomes

convoluted for large interconnected systems with potentially concurrent elements

offline for maintenance. In reality, operators need to consider the N −k−p problem

where there are k unplanned outages and p planned outages. Maintaining higher

reliability is achieved with a substantial increase in operating cost.

Line failures cause system dynamics to deviate from a state of equilibrium. Large

deviations will cause violations in operating limits and result in an unstable system

vulnerable to collapse. We briefly summarise three key areas of power system sta-

bility: rotor-angle stability, frequency stability and voltage stability. Rotor-angle

stability refers to the ability of the power network to remain in synchronism af-

ter being subjected to a disturbance. This requires sufficient synchronising torques

between the rotors of synchronous generators, such that at equilibrium the electro-

magnetic torque, the force applied to the rotor from electromagnetic induction, is

equal and opposite to the mechanical torque, the force applied to the rotor from

burning fuel. When mechanical torque leads electromagnetic torque, the rotor is

accelerating; conversely, when electromagnetic torque leads mechaninal torque, the

rotor is decelerating.

Frequency stability concerns the ability of the power network to maintain balance

between generation and demand following a disturbance. When demand exceeds

the total generation, the system frequency falls below the nominal synchronous

frequency, and increases above the nominal frequency when total generation exceeds

demand. Unless balance is restored, the system frequency will continue to deviate

from the nominal to an extent where synchronism will be lost. Frequency stability is

managed by maintaining a low Rate-of-Change-of-Frequency (RoCoF) immediately

following the disconnection of a large load or generator.

As a result of synchronous generation being replaced by asynchronous renewable

generation, power networks have experienced a reduction in synchronous inertia [26].
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Synchronous generators operate with high inertia as they consist of a rapidly moving

rotor, which has momentum. On the other hand, asynchronous generators such as

wind farms rotate at a variable speed that is much slower than the system frequency,

and solar farms have no rotation. A disturbance to the power network applies a force

of change to the system frequency that is countered by the synchronous inertia;

therefore, it is important to maintain inertia levels for frequency stability.

Voltage stability refers to the ability of the power system to maintain balance between

the supply and consumption of reactive power at all buses, in order to maintain bus

voltages within prescribed limits.

2.1.3 DC power flows

The DC approximation to the AC power flows is reliable under the following condi-

tions:

• Voltage stability: the per-unit system implies that |Vk| ≈ 1 pu for each

bus k, where Vk denotes the voltage at bus k.

• Rotor-angle stability: define the phase angle, θk, by the voltage phase shift

τ v at bus k. Under stable conditions, for each branch (k, h), the phase angle

difference θk − θh is sufficiently small so that sin(θk − θh) ≈ θk − θh.

• Resistance is negligible: for any branch (k, h), the resistance rkh is much

smaller than the reactance xkh.

When the above conditions are satisfied, the approximate power flow along branch

(k, h) is given by

fkh =
θk − θh
xkh

.

It is convenient to represent the power flow equations in matrix form, adopting from

graph theory the edge-vertex incidence matrix and the weighted Laplacian matrix

for a graph G(n,m). The edge-vertex incidence matrix is defined by

Q(k,h),j =


1 for j = k ,

−1 for j = h ,

0 otherwise ,

such that Q ∈ Rm×n is an m× n matrix with row sums equal to zero. The m×m
susceptance matrix is defined by

B = diag(β1, . . . , βm) ,
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where β` = βkh = −x−1
kh represents the per-unit susceptance of branch ` = (k, h),

commonly viewed as edge weights. The weighted Laplacian matrix is of the form

L = Q>BQ with elements

Lkh =


∑

h:(k,h)∈G
βkh for k = h ,

−βkh for k 6= h .

Under the DC model, the per-unit power flows are of the form

f̂ = BQθ , (2.1)

and the per-unit power injections are given by

p = Lθ ,

where θ is the column vector of phase angles. As the incidence Q has zero row

sums, the Laplacian L is not invertible. Thus, another matrix, L, obtained by using

a reference bus, is commonly used. A reference, slack or swing bus has a fixed

phase angle, θslack = 0, and the power injection is given by the mismatch between

generation and load. Without loss of generality, the phase angle of bus n is set to

zero and is called the reference bus. The Laplacian L has rank n− 1 and thus L is

invertible such that

θ = L
−1
p .

A real power network does not operate with a reference bus. Instead, network

operators will adjust for the transmission losses using as many generator buses as

possible in order to minimise system changes. Another method of Nesti et al. [38]

uses the Moore-Penrose pseudo-inverse of the Laplacian L defined by

L+ =

(
L+

1

n
J

)−1

− 1

n
J , (2.2)

where J ∈ Rn×n is the n × n matrix with all entries equal to one. This method

implicitly sets the average value of the phase angles to zero and will be used to

define the notion of effective resistance in Section 2.1.4. When n is large, numerical

errors may arise in (2.2) due to the matrix L + 1
n
J being ill-conditioned. However,

the matrix L+ can be factored using a singular value decomposition. It directly

follows that

θ = L+p . (2.3)

Then, the substitution of Equation (2.3) into Equation (2.1) implies that the per-

unit power flows on the system power base are given by

f̂ = BQL+p .
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It is convenient to normalise the power flows by their corresponding branch ca-

pacities. This is a separate technique from the per-unit system which applies a

system-wide scaling factor. Denote by C ∈ Rm×m the diagonal matrix with di-

agonal elements c−1
` for every ` = 1, . . . ,m, where c` is the capacity of branch `,

measured on the system power base, Pbase. A linear transformation, defined by C,

of the power flows results in the normalised power flows

f = Hp , (2.4)

where H = CBQL+ ∈ Rm×n is the matrix of power transmission distribution fac-

tors (PTDFs). Nesti et al. [38] assume that the failure of branch ` occurs when

|f`| ≥ 1. After a branch failure, the power is redistributed throughout the altered

network.

2.1.4 Power redistribution

In the literature it is common to use line outage distribution factors (LODFs) to

calculate the redistribution of power. The following derivation of the LODFs is based

on Cetinay et al. [13]. When a branch fails and is disconnected from operation, the

power that was flowing across the disconnected branch redistributes throughout

the network. The redistribution is governed by the LODFs and might cause other

branches to become overloaded.

Given the failure event of branch `, denote by G(`) = G(n,m\{`}) the graph that

represents the network without branch `. The power that flowed across branch `

redistributes throughout the altered network G(`). We are interested in finding the

LODF coefficient φ
(`)
k that represents the change in power flow across branch k given

the failure of branch `. Denote by f
(`)
k the power flow across branch k given the

failure of branch `. The new power flow on branch k after branch ` is disconnected

is given by

f
(`)
k = fk + φ

(`)
k f

(`)
` ,

for every k 6= ` and where f
(`)
` = ±1 depending on the power flow direction of

branch `. This is an efficient calculation that uses the previous power flow solution.

The LODFs, φ
(`)
k , are calculated using the notion of effective resistance (also known

as resistance distance in graph theory), which is the resistance between two buses

in the power network. Cetinay et al. [13] derive the effective resistance Rij between

bus i and bus j as follows:

Rij = (L+)ii + (L+)jj − 2(L+)ij .
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Consider the failure of branch ` = (i, j). The change in power flows can be expressed

using the original power flow solution such that

∂ (`)f = CBQ∂ (`)θ , (2.5)

where ∂ (`) denotes the change caused by the failure of branch `. The new Laplacian

L(`) of the altered network G(`) is given by

L(`) = L− β`Q`Q
>
` ,

where β` represents the `th diagonal entry of the susceptance matrix, B, and Q`

represents the `th column of the edge-vertex incidence matrix, Q. Intuitively, this

says that the new Laplacian after branch ` fails is equal to the difference between

the Laplacian before failure and the effect of branch `. From Meyer’s relation [36],

the Moore-Penrose pseudo-inverse of the Laplacian L(`) is given by

L(`)+ = L+ +
L+Q`β`Q

>
` L

+

1− β`Q>` L+Q`

. (2.6)

The change in the phase angles caused by the failure of branch ` is given by

∂ (`)θ = ∂ (`)Lp

=
(
L(`)+ − L+

)
p . (2.7)

Power flow redistribution is immediate, hence the power injections remain the same

after failure until re-dispatch. Substitute Equation (2.6) into (2.7) and then Equa-

tion (2.7) into (2.5). Then, the change in power flow along branch k = (a, b) given

the failure of branch ` = (i, j) is given by

∂ f
(`)
k = βk

c`
ck

(
Q>k L

+Q`

1− β`Q>` L+Q`

)
f

(`)
` ,

where f
(`)
` = c−1

` β`Q
>
` L

+P . This can be simplified using the notion of effective

resistance by noticing that

Q>k L
+Q` = (ea − eb)>L+(ei − ej)

= (L+)ai − (L+)aj + (L+)bi − (L+)bi

=
1

2
(Raj −Rai +Rbi −Rbj) ,

where ei is a unit vector equal to one in the ith index and zero elsewhere. Then, the

LODF coefficient φ
(`)
k that represents the power change along branch k given branch

` fails is given by

φ
(`)
k = βk

c`
ck

Raj −Rai +Rbi −Rbj

2(1− β`Rij)
.
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The extension of LODFs for a joint failure follows. Denote J (`) by the collection

of branches that fail jointly with ` as

J (`) = {k : |f (`)
k |≥ 1} .

The redistributions amount to calculating the matrix of PTDFs of the altered net-

work G(`) = G(n,m\J (`)), denoted by H(`). After redistribution the power flows

are given by

f (`) = H(`)p .

A disconnected branch might cause a part of the network to separate and form an

island. Such a branch is referred to as a bridge between the two network components.

Bridges are crucial links in the power network as their disconnection can leave islands

with insufficient generation capability and vulnerable to collapse. A branch (i, j)

is a bridge if it has effective resistance Rij = 1. Power flow calculations must be

performed separately for each island.

2.2 Cascading failure review

There are two types of cascade models: physical models and abstract models. The

physical models calculate the power flows for a stable system (no violations in the

network constraints) and introduce a cascade initiating event. Typically, the initi-

ating event is random, in order to represent a disturbance on the network caused by

an exogenous event such as extreme weather, equipment malfunction or malicious

damage.

Current physical models implement different initiating events and approximate the

thermal process of line overload [4, 15, 64]. In the operation of the power net-

work, calculating the AC power flows is standard procedure. However, the physical

models in the cascade literature calculate the power flows using the DC model

from Equation (2.4), and determine the redistribution using the LODFs from Equa-

tion (2.5).

On the other hand, the abstract models do not calculate power flows, but instead

consider a loading-dependent approximation to cascading failure. Using the loading-

dependent approximation it becomes a straightforward exercise to estimate the prob-

abilities of large-scale blackouts, which are otherwise not tractable. Additionally,

the parameters of the abstract models can be estimated from cascade data. Esti-

mation is possible due to the reduced parameter space that neglects the network

information (line ratings, susceptance, etc.).
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2.2.1 Physical models

Previous research examines cascading failure from a number of perspectives. Dob-

son et al. [15] consider the state of the power grid over time. The model is composed

of a short-time scale and a long-time scale. The long-time scale loosely captures the

idea that grid operators will upgrade the network in response to line failures, and

the short-time scale consists of cascading failure. The authors consider a physical

model that uses a random initiating event. This model contains two types of line

failures: initiating random line failures and random failures of overloaded lines. The

first type replicates a random network disturbance, where the lines are assumed to

be failing independently of each other, with probability

P(line ` fails) = h0(f`,t) ,

where h0 is a positive and non-decreasing function and fj,t is the power flow along

line ` on day t. The authors choose h0 to be a constant function, which intu-

itively means that failure is irrespective of the power flows. This is reasonable if

we assume that the disturbance does not target specfic network elements. However,

disturbances caused by strong winds are highly likely to target specific regions of

the network due to the geographical dependence. For instance, transmission lines

located in areas prone to strong winds are more likely to disconnect.

The second type of failure is an approximation to the heating of a line. An over-

loaded line takes time to heat up and the overload may be corrected prior to failure.

The overloaded lines are assumed to be failing independently of each other, with

probability

P(overloaded line ` fails) = h1(f`,t) ,

where h1 is a positive and non-decreasing function of the overload |f`,t| ≥ 1. The

authors also choose h1 to be constant. This is a crude estimate as lines with larger

power flows will heat up faster, making them more likely to fail than lines that

are marginally overloaded. Such behaviour is not represented in the assumption of

uniform probability. However, this initial model for cascading failure defines a clear

structure which other authors have since refined.

Bernstein et al. [4] develop a short-time cascade model targeted towards physical

attacks, such as an electromagnetic pulse (EMP). The model introduces a random

initiating event that is isotropic, such that all system elements within the radius

of the epicentre are disconnected. The authors improve upon the approximation of

the thermal dynamics presented in Dobson et al. [15] by adopting an exponential
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smoothing process. Specifically, denote by f̃`,t the smoothed process of the power

flow along line ` at stage t, then

f̃`,t = α|f`,t|+(1− α)f̃`,t−1 for t ≥ 1 ,

where the smoothing factor α > 0 controls the lag due to the thermal dynamics,

such that when α = 1 the smoothed process is equal to the power flow. A line

failure occurs when the smoothed process experiences overload such that
∣∣∣f̃`,t∣∣∣ ≥ 1.

The smoothed process is an improvement upon the uniform dynamics presented

by Dobson et al. [15] because lines with larger overloads fail faster than lines with

smaller overloads. Additionally, this framework allows the parameter α to be tuned

to achieve a deterministic time to failure. This is a more dynamic failure process

which could be extended to incorporate daily ambient temperature to tune the lag

parameter. The authors ran simulations of their model on the Western Electricity

Coordinating Council (WECC) regional interconnect power grid in America. The

authors concluded that the San Diego area was most vulnerable, which was very

topical at the time due to the recent large-scale blackout in 2011.

Wang et al. [64] introduce a stochastic Markov chain model based on power flow

redistribution which incorporates the uncertainty in demand and renewable gener-

ation. It is more realistic to treat the power injections as a stochastic input rather

than a deterministic input due to the uncertainties involved in forecasting renewable

generation. The Markov model is defined on the state space given by the vector of

line states s = [s1, . . . , sm], where s` ∈ {0, 1} such that s` = 0 represents a tripped

line and s` = 1 represents a line that is still operational. Figure 2.2 depicts the

line state transition process where λ`(t) is the line failure rate and µ`(t) is the line

restoration rate. The restoration rate is included for generality but is held fixed

at µ`(t) = 0, as line restoration usually occurs after the cascade stops, and there-

fore s` = 0 is an absorbing state. The significance of this method is that λ`(t) is

a time-varying process that depends on the power flows. This allows the authors

to disconnect lines based on the relay settings specificied to trip overloaded lines

within a time threshold, which is potentially different for each line. Realistic relay

settings are more accurate line tripping mechanisms than exponential smoothing

implemented by Bernstein et al. [4], but the trade-off is increased model complex-

ity.
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µ`(t)

λ`(t)

Figure 2.2: Line state transitions.

Nesti et al. [38] build on the idea of stochastic power injections introduced by

Wang et al. [64] in order to analyse cascades that arise from fluctuations in renew-

able generation, called emergent cascades. Specifically, for a network G(n,m) they

model the power injections, p, as an n-dimensional multivariate Gaussian vector

such that

p ∼ Nn(µ, εΣp) ,

where µ represents the nominal values of the power injections, Σp represents the

stochastic fluctuation of the power injections, and the parameter ε > 0 is used to

control the magnitude of fluctuation. The linear relation between the power flows

and the power injections is leveraged to estimate the distributional properties of the

power flows. The authors use large deviations theory to analyse emergent failures

and their propagation in power networks. In particular, they demonstrate that

emergent cascades have a higher line average propagation than classical cascades,

and therefore are more likely to produce fast-moving large-scale blackouts.

2.2.2 Abstract models

The CASCADE model was developed by Dobson et al. [16], which models cascading

failure in a loading-dependent system. The authors consider a system where each line

` has an initial load |f̂`| chosen uniformly from a specified interval. Additionally, the

branch capacity, c`, is included such that if at any stage during the cascade
∣∣∣f̂`∣∣∣ ≥ c`

the line ` is disconnected. The cascade is initiated by some initial disturbance which

adds the load D onto every line, large enough to trip at least one line. Power that

is redistributed, due to each line failure event, places more stress on the operational

lines. This is approximated by adding the load P to every operational line. Denote

by Mt the number of line failures in stage t. Then the number of component failures
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prior to stage t is given by

St−1 =
t−1∑
j=0

Mj , for t ≥ 1, and t ∈ N .

Given they have not failed in a previous stage, the lines that fail at stage t of the

cascade satisfy

|f̂`|+D + St−1P ≥ c` .

The model is then used in Dobson et al. [18] to demonstrate the risk of cascading

failure caused by system loading. At very low loading, failures have a minimal

impact upon the network and the distribution of cascade size has an approximate

exponential tail. However, when the system is loaded near a critical point, the

distribution of cascade size exhibits a power law region that increases the risk of

large-scale blackouts. The authors demonstrate that the distribution of the final

cascade size, S, is given by

P(S = r) ≈ θ(rλ+ θ)r−1 e
−(rλ+θ)

r!
, for 0 ≤ r ≤ n− 1 ,

a generalised Poisson distribution with parameters θ and λ. In another paper of

Dobson et al. [17], the same authors show that this is equivalent to the total number

of individuals produced by a branching process, where the initial number of failures

is Poisson with parameter θ and the number of failures in consecutive stages is

Poisson with parameter λ. It is particularly useful to formulate the Galton-Watson

branching process to statistically describe cascading failure.

Cascades are comprised of a series of stages, where the initiating event is stage 0.

The Galton-Watson branching process [30] evolves from power redistribution where

each line failure i in stage t produces a random number ξti of line failures in stage

(t+ 1) as described in Definition 2.2.1.

Definition 2.2.1. A Galton-Watson Poisson branching process {Mt}t∈N evolves

according to the recurrence relation M0 = 1 and for t > 0

Mt+1 =
Mt∑
i=1

ξti ,

where ξti are independent and identically distributed Poisson random variables with

parameter λ > 0.

A simple pictorial representation of a Galton-Watson process can be seen in Fig-

ure 2.3. However, the cascade event is actually a random number M0 of independent

Galton-Watson processes. The importance of the branching processes is that their
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M0 = 1

M1 = 3

M2 = 3

S3 = 7

ζ01 = 3

ζ11 = 2

ζ12 = 0

ζ13 = 1

Figure 2.3: A realisation of a Galton-Watson branching process where the nodes

indicate line failures and the edges indicate dependence between failures.

parameters are, as shown in Section 2.2.3, estimable and can be used to approxi-

mate the distribution of cascade size. In contrast, regular simulation methods are

inefficient at obtaining statistics for large-scale blackouts.

2.2.3 Validation

Cascading failure has three main features: line failure propagation, cascade size

and spatial spreading. The branching process approximation to cascading failure

quantifies line failure propagation and predicts cascade size. Qi et al. [55] estimate

the parameters of the branching process, θ and λ, from cascade data outlined in

Table 2.1. The maximum likelihood estimator for the initial number of failures is

given by

θ̂ =
1

K

K∑
k=1

M
(k)
0 ,

where the superscript, (k), denotes cascade k of the total K observed cascades. Also,

the standard Harris estimator of propagation is given by

λ̂ =

∑K
k=1

(
M

(k)
1 +M

(k)
2 + · · ·

)
∑K

k=1

(
M

(k)
0 +M

(k)
1 + · · ·

) .
The estimators θ̂ and λ̂ represent the average number of lines that jointly fail in the

initial failure event and the average line failure propagation, respectively. A cascade

model is validated by simulating cascades and comparing the MLEs θ̂ and λ̂ to those

obtained from observed cascade data.
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stage 0 stage 1 stage 2 · · ·

cascade 1 M
(1)
0 M

(1)
1 M

(1)
2 · · ·

cascade 2 M
(2)
0 M

(2)
1 M

(2)
2 · · ·

...
...

...
...

...

cascade K M
(K)
0 M

(K)
1 M

(K)
2 · · ·

Table 2.1: Structure of cascade data, where M
(k)
t is the number of failures in stage

t of cascade k.

Dobson et al. [19] validate the spatial spreading using outage data of the form

presented in Table 2.1. The outage data consists of a list of transmission line names

accompanied by the time of failure (to nearest minute). Consider the smallest sub-

network that contains all the line failures. First, the authors group the data into

individual cascades such that a time gap of more than one hour between successive

failures starts a new cascade. Then, they group outages within individual cascades

into stages such that a time gap of more than one minute starts a new stage. The

spatial spreading of cascading failure refers to the distance between successive line

failures. The authors define the notion of the bus network distance between lines `

and k to be

dbus(`, k) =minimum number of buses in a network path

joining the midpoint of ` to the midpoint of k .

The mean bus distance can be estimated for any network. This provides the neces-

sary normalisation to compare spatial spreading between simulated and real cascade

data.

2.3 Congestion review

Network congestion occurs whenever a transmission line is operating outside its sta-

bility limit [11]. Congestion management concerns the process to alleviate congested

elements and avoid line failure [32]. Managing congestion is particularly challenging

in power systems because the physical flows are controlled through the power injec-

tions by power flow physics. Additionally, further restrictions such as bus voltage

limits and ensuring secured N − 1 operation must be considered [14].

Congestion management occurs over different time frames. Short-term management
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consists of generation re-dispatch, where network operators re-dispatch power in or-

der to alleviate congestion and secure operation. Long-term management consists

of investment in transmission capacity and network expansion in order to relieve the

most frequent congestions. Over the past decade, a significant amount of new power

generation has been invested in wind energy around the world [65]. Without suffi-

cient long-term planning, increased wind capacity has resulted in frequent network

congestion and has necessitated frequent short-term management [29, 33].

Frequent short-term congestion management may result in a significant increase

in operational costs [29, 63]. The cost of re-dispatch actions primarily includes

compensation to conventional and/or renewable generators, for any additional or

curtailed output. Curtailment is a reduction in the output of a generator from what

it could otherwise produce, and is usually forced by the network operators [8]. Con-

ventional generation could be entitled to compensation for additional fuel, carbon

emissions and possibly extra start-ups [63]. Effective modelling of congestion man-

agement supports network operators to expand their network appropriately in order

to minimise short-term congestion management. We present power network case

studies that review observed network congestion and wind curtailment. Then, we

describe models that have been used for network congestion and wind curtailment

studies.

2.3.1 Case studies

High wind penetration levels induce congestion into the network due to two main

factors:

1. negative temporal correlation between wind power and demand, and

2. geographical mismatch between wind power and demand in the network [24].

Negative temporal correlation occurs because it is generally windier at night when

demand is low, and calmer in the day when demand is high. Geographical mismatch

refers to the fact that wind farms are typically built in rural areas, as they require

large amounts of land space, whilst demand is centered in highly-populated cities.

This results in higher power transfers through rural areas of the network that are

not necessarily designed to support such load. Consequently, wind generators are

curtailed to alleviate congestion in the network [24, 29].

Joos and Staffell [29] investigate the effects of wind curtailment in Germany and

Britain over the period of 2012 to 2016. The curtailment rate is the measure of
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the percentage of time wind curtailment is present. Higher curtailment rates cause

an increase in the total curtailed wind output, which then directly impacts the

compensation paid to wind farms for curtailment. Table 2.2 highlights key statistics

relevant to quantifying wind curtailment.

Germany 2012 2016

Wind generation (%) 8.37 13.02

Wind curtailment rate (%) 0.70 4.36

Curtailed wind output (TWh) 0.36 3.53

Compensation to wind (me) 30.85 325.89

Britain

Wind generation (%) 5.61 11.13

Wind curtailment rate (%) 0.44 5.64

Curtailed wind output (TWh) 0.05 1.12

Compensation to wind (me) 5.92 81.88

Table 2.2: Summary statistics of wind curtailment in Germany and Britain.

From Table 2.2, it is evident that higher wind penetration levels induce wind curtail-

ment. For what is a fairly modest increase in percentage of wind generation, both

countries experience significantly larger increases in curtailed wind output. This

means that without effective congestion management further investment in wind

power will be less economical.

Germany’s large investment in wind power has resulted in higher wind penetration

but at a significant cost. Further investment in wind power is likely to aggravate

congestion. In Britain, the authors identify that a large portion of the onshore wind

farms located in Scotland (North of Britain) demonstrate high curtailment rates.

The main contributing factor is geographical mismatch, with wind power centred in

Scotland whilst demand is centred in England and a weak North-South connection in

the power network. The operators have undertaken a long term strategy to reinforce

the North-South network to alleviate congestion.

Similarly, Luo et al. [33] determine that wind curtailment in China is caused by a

combination of geographical mismatch and weak network transmission to central

China. The distribution of effective wind power in China is centered in the north-

ern regions with no useable wind speeds in central China [59]. From 2000 to 2012,

installed wind capacity in China increased by 48% annually. However, the authors
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highlight that proper network planning was not undertaken, resulting in weak net-

work connections to central China regions and increased network congestion.

2.3.2 Re-dispatch and curtailment models

Power is re-dispatched in order to alleviate congestion within a short-term time

scale. This secures operation and avoids the potential of line failure. However, as

a result of increased security constraints, re-dispatch may curtail wind generation.

Typically, re-dispatch models are a variation on a DC optimal power flow.

Gu et al. [24] quantify the impact of congestion on curtailment by defining the

sensitivity of wind curtailment for line ` as follows

s` =
∂ WC

∂ c`
,

where WC is the amount of wind curtailment and c` is the line capacity. For a

power network with one congested line, `, and one curtailed wind farm at bus, k,

a perturbation applied to the capacity of line, `, results in the following system of

differential equations

∂ pk + ∂ ph = 0 , (2.8)

H`k∂ pk +H`h∂ ph = ∂ c` . (2.9)

Here, pk and ph are the power injections at bus k and h, respectively, H is the

matrix of PTDFs, (2.8) is the power balancing equation where the marginal unit

at bus h picks up the power mismatch due to curtailment, and (2.9) is a result of

the DC model from Equation (2.4). The analytical expression of wind curtailment

sensitivity is given by

s` =
−∂ pk

−H`h∂ pk +H`k∂ pk
=

1

H`k −H`h

,

and indicates the curtailment to be relieved by increasing the capacity, c`. The

authors perform a simulation using a DC optimal power flow such that the curtailed

generator and marginal unit are chosen to minimise costs. The same authors extend

their initial model to allow for multiple congested lines [23]. However, this technique

targets one wind farm and curtails its output, as opposed to managing the output

of all generators, and therefore may over-estimate wind curtailment that occurs in

a real power network.

More general optimal power flows that re-dispatch all generators have been used in

other curtailment studies. Burke and O’Malley [12] use a DC security-constrained
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optimal power flow in order to perform a curtailment sensitivity analysis. This is

a linear optimisation model that applies N − 1 contingency as the security con-

straint. In addition to the security constraint, McKenna et al. [35] incorporate

voltage control, non-synchronous penetration limits and operating power reserves.

Limits on non-synchronous generation may be enforced by network operators in or-

der to maintain required stability. Van den Bergh et al. [63] combine a comprehen-

sive re-dispatch model with a day-ahead unit-commitment model. The day-ahead

generation dispatch minimises operational generation costs and does not impose

transmission limits. Therefore, the model of Van de Bergh et al. [63] estimates

curtailment from the most economical generation dispatch.

2.4 Statistical concepts

This section details the fundamental mathematical methods used in this thesis. Ini-

tially, we introduce the theory of large deviations in order to evaluate the probability

of rare events. Then, we introduce time series, and explain different modelling tech-

niques such as Fourier series, auto-regressive moving average (ARMA) processes,

and relevant goodness-of-fit diagnostic plots. Finally, we introduce least squares re-

gression and its extension to a generalised non-parametric quantile regression.

2.4.1 Large deviations

Consider the mean of a sequence of n real random variables X1, X2, . . . , Xn given

by

Sn =
1

n

n∑
i=1

Xi .

The Weak Law of Large Numbers states that if X1, X2, . . . , Xn are independent and

identically distributed with µ = E[X1] <∞ then for every ε > 0

P(|Sn − µ| > ε)→ 0 , as n→∞ .

Whilst this provides understanding of the mean in the limit as n→∞, it does not

describe the rate of convergence. The theory of large deviations shows that in many

cases the decay rate is in fact exponential. Consider the probability that the mean

Sn exceeds a > µ. Then, the Chernoff bound is an upper bound given by

P (Sn > a) ≤ e−nδ(a) , (2.10)
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where δ(a) is known as the decay rate [61]. Without loss of generality, the decay

rate is a Legendre transform of the random variable X1 such that

δ(a) = sup
θ

(θa− logM(θ)) , (2.11)

where M(θ) < ∞ is the moment generating function of X1. A direct result from

Equation (2.10) is Cramer’s theorem given by

lim
n→∞

1

n
lnP(Sn > a) = −δ(a) .

2.4.2 Time series

We provide a brief introduction to time series analysis, and for further detail see [25].

A time series is an ordered sequence of observations recorded over time, where each

observation is time dependent. Generally, we analyse discrete-time series where the

observations yt are recorded at specific times even when the measured variable Yt is

continuous. Discrete-time series contain values of the measured variable at equally-

spaced times, in order to create either a sampled series or an averaged series. A

sampled series records the observed value at a specific time, whereas an averaged

series records the average of the observed values over a specific interval. Due to

time-dependent observations, time series models explain the temporal correlation in

the observed data. Models that explain the temporal dependence can predict future

values based on previous observations. Processes that can be predicted exactly

are known to be deterministic, whereas stochastic processes incorporate random

behaviour such that future values have a probability distribution conditioned on

past values.

The simplest stochastic process is a random process where each observation is inde-

pendent, called the white noise process.

Definition 2.4.1. A process {εt}t∈N is said to be white noise with mean 0 and

variance σ2, written

εt ∼ N(0, σ2)

if the random variables εt are independent and identically distributed normal random

variables.

By definition, it is immediate that the first two moments, mean and variance, are

constant over time. Since the observations are identically distributed, it follows that

higher-order moments also remain constant over time. Such a process is referred to

as being strictly stationary.
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Definition 2.4.2. A process is strictly stationary if

(Yt1 , . . . , Ytk) and (Yt1+τ , . . . , Ytk+τ )

have the same joint distribution for all sets of time points t1, . . . , tk and all inte-

gers τ ≥ 0, for k ≥ 1.

Very few processes are strictly stationary. In practice we are concerned only with

second-order stationary, where only the first two moments remain constant over

time.

Definition 2.4.3. The process {Yt}t∈N is called second-order stationary if

E(Yt) = µ ,

cov(Yt, Yt−τ ) = γ(τ) ,

for all τ ∈ N and the auto-covariance function γ(τ) depends only on the lag τ .

The definition of second-order stationary involves the auto-covariance function, γ(τ),

which describes the second-order variation between observations in time. The auto-

covariance function is normalised to values between 1 and −1 to obtain the auto-

correlation function. Auto-correlation is a measure of the dependence between values

observed at different lags, τ , and is a useful diagnostic tool to assess whether a model

captures the temporal dependence within the data.

Definition 2.4.4. The process {Yt}t∈N with auto-covariance function γ(τ) has auto-

correlation function given by

ρ(τ) =
γ(τ)

γ(0)
for τ ≥ 0 .

At lag τ = 0, the auto-correlation is always perfectly correlated such that γ(0) = 1,

and at lag τ = 1, the auto-correlation is measured using adjacent observations.

The auto-covariance and auto-correlation is generalised to the cross-covariance and

cross-correlation in order to observe the relation between two time series.

Definition 2.4.5. The processes {Xt}t∈N and {Yt}t∈N have cross-covariance at

lag τ given by

γxy(τ) =
1

n− 1

n∑
t=1

(Xt−τ − µx)(Yt − µy) ,

where µx and µy are the means of the processes {Xt}t∈N and {Yt}t∈N, respectively,

and n is the number of samples.
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Definition 2.4.6. The processes {Xt}t∈N and {Yt}t∈N with cross-covariance func-

tion γxy(τ) have cross-correlation at lag τ given by

ρxy(τ) =
γxy(τ)√

γxx(0)γyy(0)
,

where γxx(0) and γyy(0) are the variances of the processes {Xt}t∈N and {Yt}t∈N,

respectively.

In comparison to auto-covariance, the cross-covariance, and therefore the cross-

correlation, is an asymmetric function such that ρxy(τ) 6= ρxy(−τ). A peak in the

cross-correlation at lag τ indicates that one time series experiences a delay τ .

It is common to decompose a time series into the deterministic and stochastic com-

ponents. Consider the decomposition of the time series {Yt}t∈N such that

Yt = Dt + ψt ,

where Dt represents the deterministic component and ψt represents the stochastic

component. The deterministic component contains the overall trend and seasonality,

whilst the stochastic component is a stationary series of random variation. Fourier

series is a spectral analysis technique used to identify significant cycles that can

be included in the deterministic component [9]. Alternatively, ARMA processes are

probabilistic models extensively used for modelling stationary time series.

2.4.3 Fourier series

Fourier transforms provide a method for frequency domain analysis or spectral anal-

ysis. In the frequency domain, seasonal cycles are more easily detected than in the

time domain. The Fourier transform of a function f(t) is given by

F (ω) =

∫ ∞
−∞

f(t) exp−2πiωt dt ,

where t is time and ω is frequency. Additionally, the original function f(t) can be

expressed as

f(t) =

∫ ∞
−∞

F (ω) exp2πiωt dt ,

which is known as the Fourier inversion theorem [22].

As time series data consists of discrete observations of a continuous variable, we

focus on the discrete Fourier transform. Consider the decomposition of the time
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series {yt : t = 1, 2, . . . , n} into trigonometric functions such that

yt = µ+

n
2
−1∑
j=1

(
αj cos

(
2πjt

n

)
+ βj sin

(
2πjt

n

))
,

known as a Fourier series. The Fourier series demonstrates that the summation

of cosine and sine waves at different frequencies can represent any series. Each

frequency contributes a certain amount to the variance of the series, called the

power. A frequency with a high power is more significant than another frequency

with a lower power. The distribution of power across the frequencies is called the

power spectrum, defined from the least squares estimates of the Fourier coefficients

given by

µ̂ =
1

n

n∑
t=1

yt ,

α̂j =
2

n

n∑
t=1

yt cos

(
2πjt

n

)
,

β̂j =
2

n

n∑
t=1

yt sin

(
2πjt

n

)
.

The power spectrum is the Fourier transform of the auto-covariance function and

shows how the variance of the stochastic process is distributed with frequency. The

sample variance is given by

V =
1

n

n∑
t=1

(yt − y)2 =

n/2−1∑
j=1

(α̂2
j + β̂2

j ) ,

where y is the sample mean of the time series {yt : t = 1, 2, . . . , n} [9]. The

contribution of frequency ω to the sample variance is the power spectrum defined

as follows:

υ(ω) =
α̂2
ω + β̂2

ω

2
.

Significant spikes in the power spectrum correspond to cycles that contribute signif-

icantly to the variance of the time series.

2.4.4 Auto-regressive moving average processes

The moving average (MA) model is a basic development of the white noise process.

The model is constructed by linear combinations of lagged elements of a purely

random process.
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Definition 2.4.7. A process {Yt}t∈N is said to be a moving average of order q if

Yt =

q∑
j=0

mjεt−j ,

where mj are the moving average coefficients, and {εt}t∈N is the white noise process,

and q ≥ 0 is an integer.

The auto-regressive (AR) model, as the name suggests, regresses future values on

past values.

Definition 2.4.8. A process {Yt}t∈N is said to be auto-regressive of order p if

Yt = εt +

p∑
k=1

akYt−k ,

where ak are the auto-regressive coefficients, {εt}t∈N is the white noise process, and

p ≥ 1 is an integer.

The AR and MA models can be combined to form an auto-regressive moving average

(ARMA) model.

Definition 2.4.9. A process {Yt}t∈N is said to be an ARMA(p, q) process with

p auto-regressive and q moving-average components if

Yt =

p∑
k=1

akYt−k +

q∑
j=0

mjεt−j ,

where ak and mj are the auto-regressive and moving average coefficients, respec-

tively, {εt}t∈N is the white noise process, and p ≥ 1, q ≥ 0 are integers.

Additionally, there exists a variant of ARMA models where the assumption of the

error term is relaxed to be uncorrelated but dependent. In this case the variance

is conditional, and forms the basis for auto-regressive conditional heteroscedastic

(ARCH) and generalised auto-regressive conditional heteroscedastic (GARCH) pro-

cesses, used in wind and solar time series analysis [10].

2.4.5 Goodness-of-fit

The goodness-of-fit of a statistical model describes how well the model fits the

data. Diagnostic plots are used to analyse the goodness-of-fit to observe patterns

in the residuals. Identifying patterns in the residual behaviour may inform a more

accurate model. We perform two diagnostic plots: cumulative periodogram and auto-

correlation. The cumulative periodogram is, as the name suggests, the cumulative
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values of the periodogram. The periodogram is a representation of the spectral

density similar to the power spectrum described in Section 2.4.3. The residuals of a

model with a reasonable goodness-of-fit will appear as white-noise in the diagnostic

plots.

Recall from Definition 2.4.1, that the white noise process consists of independent

observations. This implies there is no correlation between any two observations.

Therefore, the periodogram is flat because there are no statistically significant cycles,

and the auto-correlation is effectively zero for all lags greater than zero. At lag 0,

the time series is perfectly correlated with itself, which is a feature of any time

series.

We simulate a white-noise process and present the diagnostic plots in Figure 2.4.

We include the hypothesis test for white noise at the 5% level of significance, in-

dicated by the red lines. The null hypothesis is that the residuals are white noise.

The null is rejected when values violate the 5% significance limits. In particular,

a spike in the cumulative periodogram (Figure 2.4a) indicates a significant cycle at

the corresponding frequency and a spike in the auto-correlation (Figure 2.4b) indi-

cates a significant auto-correlation at the corresponding lag. Both of which indicate

deviations from white noise.
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(b) Auto-correlation.

Figure 2.4: Goodness-of-fit diagnostic plots of a white noise process. The dashed

red lines indicate the 5% significance levels of the corresponding hypothesis test. (a)

The cumulative periodogram where the x-axis represents the frequency of the cycle.

(b) The auto-correlation where the x-axis is the lag. From the diagnostics we would

conclude that the process is white noise.

The cumulative periodogram in Figure 2.4a is linear and remains within the 5% level

of significance. The auto-correlation in Figure 2.4b is not statistically significant for



2.4 Statistical concepts 35

lags greater than zero. Since there are no violations the diagnostics demonstrate

a process consistent with white noise. However, we highlight that even the white

noise process may violate the significance level. Therefore, the hypothesis test is not

a hard cut-off and may require additional analysis.

2.4.6 Linear regression

Linear regression is a statistical method used to describe the mean effects of a set

of predictor variables on a response variable. A simple linear regression relates the

response variable Y and predictor variable X as follows:

Y = β0 + β1X + ε ,

where β0 and β1 are unknown parameters, and ε is the error due to a number of

possible factors, including the choice of the model [62]. Given the observed set of

data pairs (xi, yi) for i = 1, . . . , n of the random variables X and Y , the unknown

parameters β0 and β1 are estimated using the least squares method. The least squares

estimates β̂0 and β̂1 minimise the sum of squared errors given by the quantity

n∑
i=1

[yi − (β0 + β1xi)]
2 .

It is convenient to represent the regression model in matrix notation such that
y1

y2

...

yn

 =


1 x1

1 x2

...
...

1 xn


[
β0

β1

]
+


ε1

ε2

...

εn

 ,

which simplifies to

Y = Xβ + ε ,

where X is often referred to as the model matrix. From linear algebra, the least

squares estimates β̂0 and β̂1 are given by

β̂ =

[
β̂0

β̂1

]
=
(
X>X

)−1
XY .

The fitted and residual values are given by Ŷ = Xβ̂ and ε̂ = Y −Xβ̂, respectively.

Additional predictor variables may be included in the model for multiple regression

analysis. The key assumptions for regression are:
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1. The relationship between the response variable and each of the pre-

dictor variables is linear. However, the predictor variables may be trans-

formed in order to obtain a linear relationship.

2. The residual values are homoscedastic. The residuals ε̂ are assumed to

have constant variance.

After ensuring the model assumptions are satisfied and the model is unbiased, the

next step of model evaluation is measure of goodness of fit. Numerical quantities

such as R-squared (R2), or coefficient of determination, are used to evaluate the

residual spread around the fitted regression line. R-squared is a measure of the

explained sum of squares over the total sum of squares such that

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − y)2

,

where y is the sample mean of yi, i = 1, . . . , n. For the same dataset, higher R-

squared values indicate a smaller residual spread. As predictor variables are added

to the model, the R-squared value will always increase; therefore, a model with

more predictor variables will appear to have a better fit. In multiple regression, the

adjusted R-squared is used because the quantity adjusts for the number of predictors

in the model, and increases only if a new predictor improves the model fit more than

expected. The adjusted R-squared value is given by

R
2

= 1− (1−R2)
n− 1

n− p− 1
,

where p is the total number of predictor variables and n is the sample size.

2.4.7 Quantile regression

For a response Y and predictor X, linear regression models the conditional mean

E[Y |X] and assumes the conditional distribution is normal with constant variance.

On the other hand, quantile regression extends linear regression to model different

quantile levels of the conditional distribution, refer to [31] for more details.

The quantile level, τ , is the proportion associated with the corresponding conditional

quantile of Y given X, written as QY |X(τ). Therefore, the quantile level is the value

of Y below which the proportion of the conditional response is τ such that

τ = P
(
Y ≤ QY |X(τ)|X

)
.

The quantile regression model assumes that the τth conditional quantile function

on p predictor variables is given by

QY |X(τ) = Xβτ ,
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whereX ∈ Rn×p is the model matrix, and βτ ∈ Rp×1 is the column vector of quantile

regression estimates. The quantile regression estimates of βτ are given by

β̂τ = arg min
β

n∑
i=1

ρτ
(
yi − x>i β

)
,

where xi is the column vector of the ith row of the model matrix X, and ρτ is the

check function given by

ρτ (u) = u(τ − 1u<0) .



Chapter 3

Emergent cascades

The majority of the literature analyses cascades that arise from a random phys-

ical disturbance [6, 15, 64]; these are referred to as classical cascades. In recent

years, power networks have transitioned to use more renewable resources and less

conventional power. Renewable resources such as wind and solar are known to be

stochastic, as they depend on the available resource. Whilst some models consider

power generated from renewable sources to be stochastic [64], Nesti et al. [38] anal-

yse their potential to cause the initial line failure. This is referred to as an emergent

failure and the redistribution of power may result in an emergent cascade.

First, we present the emergent cascade model of Nesti et al. [38], which includes

their theoretical model as well as a case study of the German power network. In

Section 3.2, we analyse the goodness-of-fit of the models for wind and solar gen-

eration used by Nesti et al. [38], and motivate our extension to the model of solar

generation. Then, in Section 3.3, we extend the model of solar generation and

demonstrate its improved goodness-of-fit. We conclude this section with a discus-

sion of our contribution and future work.

3.1 Emergent cascade model

3.1.1 Stochastic power injections

Nesti et al. [38] model the power injections, p, as an n-dimensional multivariate

Gaussian vector such that

p ∼ Nn(µ, εΣp) ,
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where µ represents the nominal values of the power injections, Σp represents the

stochastic fluctuation of the power injections, and ε > 0 is used to control the

magnitude of fluctuation. The distribution of the power injections, p, is valid only

when the covariance matrix, Σp, is positive definite. In order to ensure this holds,

the power flow calculation is decomposed into its deterministic and stochastic parts.

This is a necessary decomposition, as the deterministic part does not vary and thus

corresponds to a zero diagonal entry in the covariance matrix, Σp, which violates

positive definiteness. The deterministic part consists of conventional power and

load, whereas the stochastic part consists of wind and solar power. Therefore, a

stochastic bus is defined to be any bus where a wind farm and/or a solar farm is

attached.

The authors assume DC power flows f is such that f = Hp, where H is the matrix

of PTDFs from Equation (2.4). Then, the decomposition is performed as follows:

ns number of stochastic buses,

nd number of deterministic buses,

m number of lines,

Is ⊂ {1, . . . , ns} indices of stochastic buses,

Id ⊂ {1, . . . , nd} indices of deterministic buses,

ps = (pi)i∈Is ∈ Rns stochastic power injection,

pd = (pi)i∈Id ∈ Rnd deterministic power injection,

Hs ∈ Rm×ns matrix consisting of the columns of H indexed by Is ,

Hd ∈ Rm×ns matrix consisting of the columns of H indexed by Id ,

fs = Hsps ∈ Rm stochastic component of f ,

fd = Hdpd ∈ Rm deterministic component of f .

The decomposition of the normalised power flows results in f = fs + fd.

The stochastic power injections are modelled by an ns-dimensional multivariate

Gaussian with mean µs ∈ Rns and covariance matrix Σps ∈ Rns×ns such that

ps ∼ Nns(µs, εΣps) ,

where the ns×ns stochastic covariance matrix, Σps , is positive definite. From linear

combinations of multivariate Gaussian distributions, the stochastic line covariance

is given by

Σfs = HsΣpsH
>
s .
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Typically, the number of transmission lines exceeds the number of buses, m > n ≥
ns, thus Σfs is not positive definite and the joint distribution is degenerate. There-

fore, whilst the decomposition provides insight into the stochastic and determinis-

tic power flows, it does not provide a more complicated multivariate distribution.

Hence, the marginal distributions of the line power flows are used to determine the

probability of line failures.

3.1.2 Probability of line failures

Nesti et al. [38] assume that line failure occurs when the absolute normalised power

flow along line `, |f`|, is greater than or equal to 1. However, line failure is not

immediate, as it takes time for lines to heat up, and therefore is a questionable

assumption. The absolute line power flows for each line ` follow a Gaussian distri-

bution given by

|f`|∼ N(|ν`|, εσ2
` ) ,

where ν` = e>` (Hsµs + fd) and σ2
` = (Σfs)``, and e` is the column vector with 1 in

the `th position and 0 elsewhere. As ε → 0, line failures become rare events and

the principle of large deviations applies. The marginal distribution of the power

flows follow a Gaussian distribution with a corresponding Legndre transform given

by

δ(a) =
(a− |ν`|)2

2σ2
`

.

The sequence of line power flows satisfy the large deviations principle

lim
ε→0

ε lnP(|f`|≥ 1) = −(1− |ν`|)2

2σ2
`

= −δ` ,

where δ` is the decay rate of line `. The most vulnerable lines have smaller decay

rates and higher probabilities of failure, and the first line to fail has the smallest

decay rate.

3.1.3 Most likely power injections

The authors of [38] calculate the most likely power injections, p(`), that cause the

failure of line `. The stochastic power injections, ps, and absolute power flow along

line `, |f`|, are jointly multivariate Gaussian. Therefore, maximising the conditional

distribution is equivalent to the constrained quadratic program

min
ps

1
2
(ps − µs)>Σ−1

ps (ps − µs) (3.1)

s.t. |e>` (Hsps + fd)|≥ 1 ,
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which consists of two disjoint inequality constraints, resulting in two separate opti-

misation sub-problems. We solve each optimisation sub-problem using the method

of Lagrange multipliers. The Lagrangian of the optimisation sub-problem corre-

sponding to the nominal power flow ν` > 0 is given by

 L(ps, λ) =
1

2
(ps − µs)>Σ−1

ps (ps − µs) + λ(e>` (Hsps + fd)− 1) ,

where λ > 0 is the Lagrange multiplier. The constraint in (3.1) becomes tight as

ε → 0, such that e>` (Hsps + fd) = 1, which corresponds to the failure of line `.

Differentiating (3.1) with respect to the stochastic power injections, ps, results in

the following:

∂

∂ps
L(ps, λ) = (ps − µs)>Σ−1

ps − λe
>
` Hs = 0 ,

which implies

ps = µs + λΣpsH
>
s e` . (3.2)

Then, pre-multiplying Equation (3.2) by e>` Hs results in

e>` Hs(ps − µs) = λe>` HsΣpsH
>
s e` ,

1− ν` = λσ2
` , where σ2

` = (Σfs)`` = e>` HsΣpsH
>
s e` ,

λ =
1− ν`
σ2
`

. (3.3)

Substituting Equation (3.3) into (3.2), and considering the optimisation sub-problem

when ν` ≤ 0, the most likely power injections that lead to the failure of line ` are

given by

p(`)
s = µs +

(sign(ν`)− ν`)
2σ2

`

ΣpsH
>
s e` .

The most likely power injections that cause the failure of line ` are used to calculate

the most likely power flows after redistribution

f (`) = Hsp
(`)
s + fd .

After redistribution, if any other lines become overloaded, they too are discon-

nected. This process continues to form the emergent cascade. The authors perform

a case study of the theoretical emergent cascade model on the German power net-

work.

3.1.4 Case study: German power network

The German power network is interconnected with the rest of the synchronous grid

of Continental Europe that services over 500 million people in 26 countries [57].
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The transmission system operators for each regional jurisdiction formed the Eu-

ropean Network of Transmission System Operators for Electricity (ENTSO-E) in

2009.

The German Federal Ministry of Education and Research funded the project Sci-

GRID (Scientific GRID), which developed open-source methods for the automated

generation of electricity networks. The SciGRID German power network is imple-

mented in the Power System Analysis module for Python (PyPSA). In PyPSA, the

authors calculate the Optimal Power Flow (OPF) across the German power network

for each hour of the day 01/01/2011.

The German power network in Figure 3.1, consists of 585 buses, 852 lines, 1423

generators, 96 transformers and 38 pump storage units. The generating units include

489 solar farms, 488 onshore wind farms, 5 offshore wind farms and the remaining

441 conventional generators. The 96 transformers are located at the buses and

inter-connect two different voltage levels: 220 kV and 380 kV.

Figure 3.1: Map of the SciGRID German power network. The edge colour indicates

the transmission line voltage on two levels: 220 kV and 380 kV.

The dataset includes the marginal cost of power for each fuel type. These costs are
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used in the OPF in Section 3.1.5. The marginal cost of renewable resources is zero,

hence multiple optimal solutions exist1. Also included is the hourly time series of

normalised power generation (pu) of wind and solar for the year 2011. The authors

exclude the storage units from the OPF in Section 3.1.5.

3.1.5 Data based model for µs

Nesti et al. [38] obtain realistic nominal power flows, ν, by performing a DC optimal

power flow (OPF) for a specific hour. The OPF minimises the total cost of generation

subject to energy balance, generation capacities and transmission constraints. The

authors scale the line limits, c`, by a contingency factor of 0.7, in order to ensure

the network is not overloaded and allow for reactive power flows. Denote by gk the

expected generation at bus k, as outputted by the OPF, and dk the load at bus k.

Then, the nominal power injections, µ, are given by

µk = gk + dk for k = 1, . . . , 585 ,

and the nominal values of the stochastic power injections are given by µs = (µk)k∈Is .

3.1.6 Data based model for Σps

Nesti et al. [38] estimate the steady-state covariance, Σp, from the residual fluctua-

tion around the fitted values of a stochastic model. The authors fit ARMA models

to hourly power generation values of wind and solar.

The SciGRID dataset contains the time series

yw.off ∈ R8760×5 ,yw.on ∈ R8760×488 ,ysol ∈ R8760×489 ,

for the available power output of wind offshore, yw.off, wind onshore, yw.on, and

solar generation, ysol, for each hour of the year 2011. The authors select a portion

of the data {1, . . . , N}, corresponding to the month of January, to be used to fit the

models. For each time series, let y(·)(t, j) denote the available power output in MW

at time t ∈ {1, . . . , N} for the j-th generator, where (·) is either wind or solar.

1The authors use the general linear programming kit (GLPK) solver. We note that a different

solver may produce a different solution.
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Wind model As a pre-processing step, the two time series yw.off and yw.on are

merged by summing the onshore and offshore power generation at the buses Iw.off ⊂
Iw.on. This results in

yw(t, j) = yw.on(t, j) + 1j∈Iw.off
yw.off(t, j) ,

where 1j∈Iw.off
is the indicator that wind farm j is located at a bus with an off-

shore wind farm. For each wind farm j, the power generation is modelled by an

ARMA(1,24) such that

yw(t, j) = a1,jyw(t− 1, j) + ew(t, j)

+ m1,jew(t− 1, j) + · · ·+m24,jew(t− 24, j) , (3.4)

where a1,j and mk,j, k = 1, . . . , 24, are the estimated auto-regressive and moving

average coefficients, respectively, and ew(1, j), . . . , ew(N, j) are the residuals.

Solar model The authors describe the model for solar generation as an ARMA(24,24)

with all parameters fixed to 0, except for the ones corresponding to the seven hours

before, and the one corresponding to twenty-four hours before. Each solar farm j is

represented by

ysol(t, j) = a1,jysol(t− 1, j) + · · ·+ a7,jysol(t− 7, j)

+ a24,jysol(t− 24, j) + esol(t, j)

+ m1,jesol(t− 1, j) + · · ·+m7,jesol(t− 7, j)

+ m24,jesol(t− 24, j) , (3.5)

where esol(1, j), . . . , esol(N, j) are the residuals. The model captures the depen-

dency on the hour of the day as well as the projection of the current day. We

refer to the model as a seasonal auto-regressive moving average (SARMA) given by

SARMA(7, 7)(1, 1)24 where the seasonal parameters correspond to the 24 hour lag.

This notation clearly identifies the model parameters that are estimated.

Estimating the covariance The variance of power generation is estimated as

the empirical variance of the residuals e(·)(t, j), t = 1, . . . , N , for each generator of

a given type, where (·) is either wind or solar. Denote U(·) ∈ RN×ns by the residual

matrix for a given generator type such that the ik-th entry is given by

(U(·))ik = 1j∈ke(·)(i, j) ,
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where 1j∈k is the indicator that generator j is located at bus k. The covariance

matrix of a given generator type is given by

Σ(·) =
1

N
u>u ,

where u = U(·) − 1
N

11>U(·), and 1 is an N × 1 column vector of ones. The residual

matrix for solar generation contains only residuals esol(t, j)t∈D, where D is the set of

daylight hours, resulting in a residual matrix Usol ∈ RN∗×ns where N∗ < N .

Assuming that the residuals for wind and solar are independent, the power injection

covariance matrix for a given hour h is modelled by

Σps(h) = Σw + 1h∈DΣsol ,

where Σw ∈ Rns×ns is the estimated covariance matrix of wind generation, Σsol ∈
Rns×ns is the estimated covariance matrix of solar generation, and 1h∈D is the indi-

cator that the hour h corresponds to daylight.

3.2 Goodness-of-fit

In Section 3.1.6, we present the time series models of wind and solar generation,

which the authors use to estimate the stochastic covariance matrix, Σps . These mod-

els may have a significant effect on the ranking of decay rates, δ`, and therefore we

assess their goodness-of-fit using the cumulative periodogram and auto-correlation

diagnostic plots from Section 2.4.5.

Wind model There are 488 time series of wind generation. The ARMA(1, 24)

is fitted to each time series. We present the goodness-of-fit diagnostic plots for the

residual series of each model fit in Figure 3.2.
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(a) Cumulative periodogram. (b) Auto-correlation.

Figure 3.2: Goodness-of-fit diagnostic plots of the residuals from the ARMA(1, 24)

fitted to the 488 time series of wind generation. The dashed red lines indicate the

5% level of significance. (a) Each line corresponds to the cumulative periodogram

of the residual series from one model fit. (b) Box-plots of the auto-correlation of the

residual series for all the fitted models. From the diagnostics we conclude that the

model is reasonable.

In Figure 3.2a, each cumulative periodogram is linear and remains within the 5%

level of significance. Therefore, we conclude that no significant cycles are present.

In Figure 3.2b, the box-plots are centred at zero and contained within the 5% level

of significance. Therefore, we conclude that the residuals are not auto-correlated,

and that the ARMA(1, 24) is a reasonable model for wind generation.

Solar model There are 489 time series of solar generation. The SARMA(7, 7)(1, 1)24

is fitted to each time series. We present the goodness-of-fit diagnostic plots for the

residual series of each model fit in Figure 3.3.

The cumulative periodogram in Figure 3.3a, consists of 157 models that violate the

5% level of significance. Whilst the violation is relatively small, the cumulative

periodogram displays three peaks that suggests the presence of significant cycles.

Furthermore, the auto-correlation in Figure 3.3b demonstrates that the majority of

models have a negligible auto-correlation. However, the mean auto-correlation at

a lag of 8 hours falls below the 5% significance level. We conclude that the model

does not explain all seasonal cycles, and extend the model in Section 3.3.
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(a) Cumulative periodogram. (b) Auto-correlation.

Figure 3.3: Goodness-of-fit diagnostic plots of the residuals from the

SARMA(7, 7)(1, 1)24 fitted to the 489 time series of solar generation. The dashed

red lines indicate the 5% level of significance. (a) Each line corresponds to the

cumulative periodogram of the residual series from one model fit. (b) Box-plots

of the auto-correlation of the residual series for all fitted models. The cumulative

periodogram is non-linear and indicates the presence of potentially seasonal cycles

in the residuals.

3.3 Solar model extension

Solar generation is highly dependent on solar irradiance which is a measure of light

energy from the Sun at the Earth’s surface. The amount of light energy at the earth’s

surface depends on the time of day, the time of year as well as other atmospheric

variables that produce cloud formations.

The time of day is a measure of Earth’s rotation which usually results in daylight

hours and night-time hours (periods of no sun). The time of year is a measure of

Earth’s elliptical orbit around the sun which creates seasons where Earth is closer

or farther from the sun. These are deterministic cyclic behaviours that can be

predicted, whereas predicting cloud formations is more difficult.

Boland [9] proposes the decomposition of solar power output, St, into a deterministic

trend, Dt, and a stochastic component, ψt, such that

St =

Dt + ψt t ∈ D ,

0 otherwise ,

where D denotes daylight hours. Fourier series is used to model the deterministic
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trend, and an ARMA(7, 7) is used to model the stochastic component. We remove

the daily seasonal component of the SARMA model as this will be captured in the

Fourier series if needed. We refer to this model as a Fourier filtered auto-regressive

moving average (FFARMA) model.

3.3.1 Deterministic model

Spectral analysis is performed to identify significant cycles. In particular, we calcu-

late the average power spectrum given by

υ(ω) =
1

489

489∑
j=1

υj(ω) ,

where υj(ω) is the power spectrum of ysol(t, j), t = 1, . . . , 8760. Figure 3.4 plots the

average power spectrum normalised such that values represent the contribution of

variance. Then in Table 3.1, we rank the cycles based on their contribution to the

variance of solar generation.

Figure 3.4: Normalised average power spectrum of solar generation for German solar

farms. The x-axis is the number of cycles per year given by 8760ω, and the y-axis

is the average power spectrum, υ(ω), normalised by total power. On average, the

daily and twice-daily cycles explain over 60% of the variation in solar generation.

We choose to fit the Fourier series using the significant cycles corresponding to

1, 2, 365, 730 and 1095 cycles per year, where 730 and 1095 cycles per year correspond

to the twice and thrice daily cycles, respectively. Additionally, the ranking of the

cycles, in Table 3.1, demonstrates that up to two side-bands have significant power.

Side-bands modulate the width of the cycle to account for the varying lengths of
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day between summer and winter. The deterministic Fourier series model is given

by

Dt = α0 + α1 cos
2πt

8760
+ β1 sin

2πt

8760
+

α2 cos
4πt

8760
+ β1 sin

4πt

8760
+

17∑
i=3

3∑
n=1

2∑
m=−2

[
αi cos

2π(365n+m)t

8760
+ βi sin

2π(365n+m)t

8760

]
,

where αi and βi are the Fourier series coefficients. On average, the deterministic

model explains over 75% of the total variation. We provide an example of the fit of

the deterministic model to the actual solar generation in Figure 3.5.

Cycles per year Normalised Ḡj(ω)

365 0.506

730 0.134

366 0.025

367 0.023

364 0.018

363 0.015

732 0.009

1 0.007

1095 0.006

2 0.005

Table 3.1: The top 10 cycles per year with the highest contribution to the variance.

The side-bands of the daily cylce, e.g. 364 and 366, are also significant.

Figure 3.5: An example time series of solar generation (black) overlaid with the

deterministic trend (blue), Dt. The deterministic trend predicts the average daily

profile but does not explain the day-to-day or intra-day variations.
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3.3.2 Goodness-of-fit

In the FFARMA model, prior to fitting the stochastic component, Xt, the determin-

istic model, Dt, on average explains over 75% of the variance in solar generation.

This means that the stochastic ARMA(7, 7) model is fitted to a less variable time se-

ries. Therefore, we expect the diagnostic plots of the FFARMA model in Figure 3.6,

will have an improved fit.

(a) Cumulative periodogram. (b) Auto-correlation.

Figure 3.6: Goodness-of-fit diagnostic plots of the residuals from the FFARMA

model fitted to the 489 time series of solar generation. The dashed red lines indicate

the 5% level of significance. (a) Each line corresponds to the cumulative periodogram

of the residual series from one model fit. (b) Box-plots of the auto-correlation of

the residual series for each fitted model. The diagnostics demonstrate an improved

model fit.

The cumulative periodogram in Figure 3.6a, is linear and only contains 47 models

that violate the 5% level of significance. Whilst this is not perfect, the violations

appear negligible and therefore we conclude that no seasonality is present in the

residuals. The auto-correlation in Figure 3.6b, consists of zero mean box-plots at all

lags except at a lag of 16 hours and is a minor improvement upon the previous model.

Therefore, we conclude that the FFARMA model has an improved goodness-of-fit

over the SARMA model used by Nesti et al. [38].
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3.3.3 Results

Nesti et al. [38] report the ranking of the most vulnerable lines in the German

power network, relative to the hour 11 am of the day 01/01/2011. We reproduce

the results in Table 3.2a2. Then, we perform the same method, using the FFARMA

model to estimate the solar covariance matrix, Σsol. The new ranking is presented

in Table 3.2b.

` P(|f`| ≥ 1) I`

361 1.744× 10−2 2.226

803 8.228× 10−4 4.954

19 6.784× 10−4 5.132

27 6.033× 10−4 5.24

670 3.527× 10−4 5.737

809 7.575× 10−5 7.177

586 5.574× 10−5 7.466

587 5.454× 10−5 7.486

810 2.496× 10−5 8.225

389 2.449× 10−5 8.244

390 2.420× 10−5 8.255

712 6.440× 10−6 9.514

682 5.337× 10−6 9.693

683 5.318× 10−6 9.697

714 3.876× 10−6 9.999

715 1.052× 10−6 11.249

554 4.267× 10−7 12.117

488 4.209× 10−7 12.13

707 1.199× 10−7 13.341

818 1.199× 10−7 13.341

(a) Reproduced results from [38].

` P(|f`| ≥ 1) I`

361 1.693× 10−2 2.251

27 8.454× 10−5 7.073

670 7.656× 10−5 7.167

19 3.340× 10−5 7.95

389 2.048× 10−5 8.413

390 2.024× 10−5 8.424

803 1.083× 10−5 9.019

809 5.982× 10−6 9.585

586 4.909× 10−6 9.773

587 4.773× 10−6 9.8

516 3.026× 10−6 10.236

810 2.108× 10−6 10.582

712 4.143× 10−7 12.145

554 2.796× 10−7 12.524

488 2.757× 10−7 12.538

714 2.409× 10−7 12.668

682 1.022× 10−7 13.496

683 1.017× 10−7 13.5

707 2.812× 10−8 14.744

818 2.812× 10−8 14.744

(b) Σsol estimated from the FFARMA

model.

Table 3.2: Line indexes, exact failure probabilities, and decay rates for the 20 top

most vulnerable lines, 11 am. (a) Solar covariance matrix, Σsol, is estimated from

the SARMA model from [38]. (b) Solar covariance matrix, Σsol, is estimated using

our FFARMA model. The ranking of decay rates changes when we modify the solar

model.

It is evident in Table 3.2, that the ranking is sensitive to the models used for es-

2The reproduced ranking differs to the ranking presented in [38]. We find that lines 389 and

390 are not operating at capacity at 11 am and thus, are ranked lower. This is also the case in the

code provided to us by the authors.
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timation. Whilst line 361 remains the most vulnerable, almost every other line is

in a new position. Still, it is worth noting that most (if not all) of the original

most vulnerable lines make it to the new list. Additionally, the reported decay rates

corresponding to the FFARMA model are larger than the original decay rates in

Table 3.2a and therefore exact failure probabilities have decreased.

3.4 Discussion

In this chapter, we discussed in-depth, the emergent cascade model of Nesti et

al. [38] and its application to the German power network, including the models of

wind and solar generation. Our goodness-of-fit analysis of the wind model fitted to

the 488 time series of wind generation, demonstrated no significant cycles or auto-

correlation. Therefore, we concluded that the wind model was reasonable. On the

other hand, we found that 157 models of the 489 time series of solar generation

violated the 5% critical level of the cumulative periodogram. Additionally, the

shape of all cumulative periodograms were non-linear and suggested the presence of

significant cycles, and motivated our extension.

In Section 3.3, our extension to the solar model follows the ideas of Boland [9], and

considers the deterministic and stochastic components of solar generation separately.

This allowed us to fit a deterministic Fourier series to the significant cycles identified

by the power spectrum. The identified Fourier series explained, on average, over 75%

of the variation in solar generation. The goodness-of-fit of our extended FFARMA

model contained only 47 models that violated the 5% critical level of the cumulative

periodogram. Whilst this is still not perfect, the cumulative periodograms were

significantly more linear in shape. Therefore, we concluded our FFARMA model

had an improved fit.

Finally, we compared the line indexes, exact failure probabilities and decay rates for

the 20 top most vulnerable lines at 11 am. We found that the most vulnerable line,

` = 361, reported by Nesti et al. [38], remained the most vulnerable after extending

the solar model. Since the authors assume the most vulnerable line is the first to

failure, our extension does not affect their results. However, using the FFARMA

model increased the exact failure probabilities across all lines, and would impact a

simulation-based study.

The authors debate the main assumption of the emergent cascade model which is

that fluctuations in renewable energy follows a multivariate Gaussian distribution.
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We had considered that technical features of wind turbines such as brakes and pitch

control, motivate a truncated multivariate Gaussian distribution that is bounded

above such that

p ∼ TNn(µ,Σp) s.t. p ≤ b

where b is the column vector of upper limits. We recognised that f` is a linear

combination of the power injections, p, given by

f` = a>p

where a is a column vector of the `th row of the matrix of PTDFs, H. Therefore, the

marginal distribution of the power flow along line ` is characterised by the moment

generating function given by

Mf`(t) = E[exp(a>pt)]

=

∫ b−µ
−∞ exp(− (a>w−σ2t)2

2σ2 ) dw∫ b−µ
−∞ exp(−a>w

2σ2 ) dw

where the transformation w = p−µ is applied for simplification [27]. This is not a

known distribution and must be solved numerically. This is a complicated problem

and is left as future work.

Another point to note, is that the stochastic covariance matrix, Σps , is estimated

from hourly data, whereas power networks dispatch generation on shorter time inter-

vals such as 5-15 minutes. The forecast error of semi-scheduled generation decreases

for shorter time frames and therefore we expect the exact failure probabilities to de-

crease further. It would be interesting to see the impact of a smaller data resolution

on the magnitude of the exact failure probabilities.

Most importantly, the emergent cascade model needs to be validated. We suggest

to identify cascades from real unplanned outage data and determine if any exhibit

average line propagations similar to emergent cascades. Depending on the case

study, unplanned outage data may be very difficult to obtain. We had intended to

perform a case study of the emergent cascade model on the South Australian power

network which included simulation and validation. However, conversations with

AEMO and ElectraNet suggested that obtaining unplanned outage data is highly

unlikely. Given our strong intentions to perform a case study on the SA power

network, we left this as future work. This concludes our discussion of emergent

cascades, as we now divert our focus to network congestion.



Chapter 4

South Australian power network

The first wind farm built in SA was the 34 MW Starfish Hill wind farm commis-

sioned in September 2003. At the end of 2019, the total installed capacity of wind

generation in SA exceeded 1,800 MW. This combined with SA’s relatively small

average demand has meant that within the NEM, SA has the highest percentage of

wind generation, as seen in Figure 4.1.

Figure 4.1: Percentage of power generation for each fuel type in each state for the

2017-18 financial year [42]. AUS refers to the overall fuel mix of Australia. In SA,

wind power contributed almost 40% of all electricity generation.

In Chapter 6, we analyse the network congestion that would result from increas-

ing installed wind capacity in the South Australian power network. The analysis

performs a simulation study of the network power flows, the calculations of which

require a model of the SA power network. Ideally, the model would be an exact

representation of the real network. However, the information needed for an exact

representation is not available. Therefore, we develop a simplified network model
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from publicly available data.

The network model is constructed of two parts: the physical model and its dy-

namic inputs. The physical model represents the real physical network components,

whereas the dynamic inputs correspond to the scheduling of generation to meet a

varying demand. The physical model and its dynamic inputs determine the network

power flows.

In this chapter, we outline a simplified open-access AC model of the SA power net-

work for the year 2015. We first estimate the physical model for the real network.

Then, in Section 4.2, we determine realistic inputs for 2015. In Section 4.3, we

perform model diagnostics to ensure that the AC model reflects realistic operation.

Then in Section 4.4, we describe a DC approximation to the AC model and as-

sess its accuracy. We conclude this chapter with a brief visualisation of the power

transmission distribution factors.

4.1 Physical model

AC power flow calculations require more information than the DC model. A lot

of this information is not published. Therefore, we assume realistic values for the

parameters when there is no published data. In this section, we discuss how each

parameter for each network element is estimated and include the source where appli-

cable. Currently, our model does not include synchronous condensers. Table 4.1 pro-

vides an overview of the parameters and whether they are publicly available.

4.1.1 Topology

The network topology is a list of the buses, branches, generators, loads and inter-

connectors, and consists of their connections. The topology is mapped from AEMO’s

2019 high voltage main systems diagram [53], which is publicly available. However,

the publicly available dynamic inputs (as discussed in Section 4.2) do not contain

industrial loads. Therefore, we simplify the topology by combining the buses pre-

sented in Appendix A, and a plot of the resulting network is shown in Figure 4.2.

Additionally, the edge-vertex incidence matrix is provided in Appendix A.2.
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Element Parameter (units) Variable Published

Bus Voltage level (kV) V 3

Branch Capacity (MW) c 3

Branch Resistance (Ω) R 7

Branch Inductive reactance (Ω) X 7

Branch Shunt susceptance (S) Bc 7

Branch Length (km)† - 3

Generator Active power capacity (MW)‡ Pmax 3

Generator Maximum reactive power limit Qmax 7

Generator Minimum reactive power limit Qmin 7

Generator Power factor ϕG 7

FACTS Static Var Compensator (SVC) location - 3

FACTS Maximum SVC reactive power limit Qmax 7

FACTS Minimum SVC reactive power limit Qmin 7

FACTS Shunt capacitance power factor ϕC 7

Fast AC Transmission System (FACTS)

† indicates a parameter that is not directly used for load-flow analysis.

‡ we model inter-connectors as generators.

Table 4.1: Overview of the network parameters.

4.1.2 Buses

The network buses are identified from the topology and are characterised by their

voltage level. The SA transmission network is defined on two voltage levels: 132 kV

and 275 kV. AEMO’s high voltage main systems diagram [53] identifies the voltage

level of each bus. A bus that houses a transformer is split into two buses defined on

each voltage level. For example, the bus Para is split into Para 132 and Para 275,

and there exists a transformer that connects Para 132 to Para 275.

There are three types of network buses:

1. Generator bus - has at least one generator attached.

2. Load bus - any bus that has no power generation capability.

3. Slack bus - designed to make up for transmission losses. In the model, we al-
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locate the slack to the South East 275 kV bus, as this corresponds to significant

import/export between SA and Victoria.

The topology consists of 25 generator buses, 16 load buses and one designated slack

bus.

Figure 4.2: Map of the simplified South Australian power network topology with 42

buses, 49 branches and 7 transformers. The edge colour indicates the transmission

line voltage on two levels: 132 kV and 275 kV. The network inter-connects to Victoria

via transmission lines connected to the Monash and South East buses.

4.1.3 Branches

The branches consist of 49 transmission lines and 7 transformers. The branch param-

eters are the most important to accurately estimate, as they determine the maximal

power flows and transmission losses. The branch parameters consist of the capacity
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c, resistance R, inductive reactance X and shunt susceptance BC .

Branch Capacity

The branch capacity is the maximal power transfer across a branch. Therefore, it is

critical for congestion analysis as it determines the point at which the line becomes

congested. The branch capacities are published in AEMO’s transmission equipment

ratings dataset [46]. These are apparent power ratings measured in MVA, which

include both active and reactive power. Some transmission lines are dynamically

rated such that the different seasons, spring/autumn, summer and winter, each

has a corresponding branch capacity. We use the dynamically rated capacities to

determine congestion.

Transmission Parameters

There is no public data available for the resistance R, inductive reactance X and

shunt susceptance BC of the transmission branches. Therefore, we estimate the

parameters of the transmission lines from their length and the parameters of the

transformers from their capacity.

The Australian Government’s data repository includes the Electricity Transmission

Lines dataset produced by Geoscience Australia in 2015 [1]. This dataset provides

the transmission line lengths in decimal degrees (dd). We convert this into kilometres

(km) by using 1 dd = 111.32 km. Lines that are not included in the dataset,

are approximated by straight line distances between the to and from buses. The

transmission parameters of the lines are estimated using typical per kilometre values,

displayed in Table 4.2.

Parameter Units 132 kV 275 kV

R Ω / ph / km 0.112 0.040

X Ω / ph / km 0.39 0.319

BC S / ph / km 2.564× 10−6 3.651× 10−6

Electrical resistance is measured in ohms, Ω = V
A

, where V is voltage and A is amperes.

Susceptance is measured in Siemens, S = 1
Ω

.

ph refers to a per phase representation, which is converted to per-unit for use in load-flow analysis.

Table 4.2: Typical overhead transmission line parameters (rated frequency 50 Hz).
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The transformers are defined on their reactance such that the resistance R = 0 and

the shunt capacitance BC = 0. The transformer reactance X is given by

X = 0.12
Pbase
c

,

where c is the branch capacity and Pbase is the power base for per-unit calcula-

tions.

4.1.4 Generators

There are two distinct types of generation data: network parameters and time series

of generation. We discuss the network parameters here, and the time series data

later in Section 4.2.

Reactive power limits

All generators have active and reactive power capacity limits (or rated power). The

active power capacity limit is obtained from AEMO’s generation information [51],

and is used to calculate the reactive power limits. The maximum reactive power

limit, Qmax, of a generator is proportional to the generation capacity, Pmax, such

that

Qmax = Pmax tan(cos−1(ϕG)) ,

where ϕG is the rated power factor. We choose a conservative rated power factor

ϕG ≈ 0.95. The minimum reactive power limit, Qmin, is normally a larger magnitude

than the maximum, as the generators are required to absorb reactive power in the

network. However, when congestion is present the system is under stress and only

small amounts of reactive power are absorbed, and thus we approximate

Qmin = −Qmax .

Connection

When calculating DC power flows, it is reasonable to have the generators located

at the high voltage buses because the DC approximation assumes the voltages are

1 pu. However, when calculating AC power flows, the voltages may vary based on the

network loading. Therefore, we connect the generators to the high voltage buses via

transformers. The transformers have the ability to boost the voltage level to above
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1 pu at the high voltage bus. This is common practice in power systems engineering

as operating voltage levels above 1 pu decreases transmission losses.

Conventional generators are connected by one transformer with reactance

XG1 = 0.12
Pbase
Pmax

,

where Pmax is the generators rated power and Pbase is the power base for per-unit

calculations. Wind farms are connected by two transformers to allow the voltage of

the intermediary bus to be controlled to 1 pu. We assume the reactance XW1 and

XW2 are given by

XW1 = 0.05
Pbase
Pmax

,

XW2 = 0.1
Pbase
Pmax

.

The capacity of these transformers are given by

ctrans =
Pmax
ϕtrans

,

where ϕtrans = 1.01 is the transformer power factor. Most importantly, the trans-

formers attached to the high voltage buses are equipped with a tap ratio of 1.05.

This means that a voltage level of 1 pu at the from bus is increased to 1.05 pu at

the to bus.

4.1.5 Inter-connectors

South Australia is connected to Victoria via two inter-connectors: Heywood and

Murraylink. At any given time the inter-connectors are either importing power from

Victoria or exporting excess power to Victoria. We represent the inter-connectors

as a generator, with effectively infinite capacity, attached to the corresponding high

voltage bus in SA. Therefore, power imports across the inter-connector are repre-

sented as generation and power exports are represented as negative generation. The

benefit to modelling the inter-connectors as generators, is that negative generation,

which is effectively demand, still produces reactive power to support voltages.

Since the inter-connectors are being modelled as generators, the corresponding volt-

age set point is chosen to be 1.03 pu. This means that the SA buses South East

and Monash connected to Heywood and Murraylink, respectively, will have a fixed

voltage of 1.03 pu. Whilst a fixed voltage is unrealistic, this assumption means it is

guaranteed to be greater than 1 pu, in order to support the power transfer across

the inter-connectors.
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4.1.6 Flexible AC transmission system devices

Flexible AC transmission system (FACTS) devices are static electrical components

of the network designed to provide voltage control and enhance the power transfer

capability. FACTS devices can be connected in series with the power network (series

compensation) and in shunt with the power network (shunt compensation) [37].

Whilst power networks include FACTS devices, there is minimal reporting on their

locations and specific parameters.

We incorporate shunt capacitive compensation into the model to improve the power

factor at load buses. In the real network, capacitors are located at the connections

to the distribution network. When demand is high, the capacitors are turned on in

order to increase the power factor. We attempt to emulate this by turning on shunt

capacitance when the power factor drops below 0.9. This is designed to achieve a

more realistic power factor of 0.98.

In addition to capacitors, static VAR compensators (SVCs) are typically connected

to the power network near large loads. These electrical components can both produce

and absorb large amounts of reactive power. The SA network has two SVCs; one

at Para and one at South East [44]. We model the SVC at the Para 275 kV bus

as a generator with 300 MW of reactive power and no active power. Since we are

modelling the South East inter-connector as a generator, the additional reactive

power that the generator provides emulates the operation of the SVC as well.

4.2 Dynamic inputs

In the operation of the power network, generation is scheduled every five minutes

in order to meet demand. This is a complex optimisation designed to minimise cost

whilst ensuring that the network constraints are satisfied. The generation values for

each generator and the demand at each load are the inputs to the physical model,

which together determine the power flows.

We describe below the time series generation and load data for the AC model of the

year 2015. We choose to use the time series data corresponding to 2015 in order

to avoid wind curtailment that has occurred due to limitations brought in after the

state-wide blackout that occurred in September 2016 [43].
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4.2.1 Power generation time series

The power generation time series of each generator in SA is sourced from AEMO’s

Market Management System (MMS) data model [50]. The MMS is the large data

repository where all publicly available electricity market data is archived. We access

the Supervisory Control and Data Acquisition (SCADA) dispatch data and inter-

connector flow data to compile our generation time series. Recall, that the inter-

connectors are modelled as generators which is why they are included here.

Dispatch data

The SCADA dispatch data is the measurement of a generator’s output at the trans-

mission connection point and is available for every 5-minute interval. A generator

that is not dispatched will either have no power generation and be turned off, or

consume power to run essential equipment. We will see this later in Chapter 5 when

investigating wind generation.

The dataset contains missing data, which is distributed among the generators as

indicated by Table 4.3. Since the amount of missing data is negligible, we perform

linear imputation. This is a linear interpolation between the two observations at

the boundary of the missing region. The linear assumption fails as the interval

length increases. Fortunately, the median length of the missing regions is one data

point, and the mean length is three consecutive missing data points. Therefore, the

imputation method is reasonable.

ID Missing data

CATHROCK 0.09%

CNUNDAWF 0.59%

LKBONNY1 0.01%

MTMILLAR 0.05%

STARHLWF 0.51%

WPWF 0.04%

Table 4.3: Percentage of missing data within the time series of generation for each

generator. Generators that are not listed have a complete time series.
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Inter-connector flow data

The inter-connector power flow data is a measurement of the power transfer across

the corresponding inter-connecting transmission line. The MMS publishes this data

at 30-minute intervals [50], which is a lower resolution than the 5-minute dispatch.

We perform linear interpolation to up-sample the inter-connector data to a 5-minute

resolution to be compatible with the generation data. Whilst the change in inter-

connector flows is relatively constrained, it may not necessarily be linear over a

30-minute period. We account for such inaccuracies in Section 4.2.3.

4.2.2 Demand time series

The distribution network acts as the loads of the transmission network. SA Power

Networks (SAPN) manage the distribution network and publish Zone Substation

data [39]. We use the Zone Substation data to create the demand time series for

the loads of the transmission network.

The dataset contains the active and reactive demand recorded every 30-minutes at

each distribution connection point. The distribution connection points have a cor-

responding associated transmission connection point. The total active and reactive

demand at the transmission connection point is used as the active and reactive load

time series. However, the distribution system in Adelaide may be connected across

multiple transmission connection points. In particular, the dataset contains non-

existent transmission connections points such as Metro North, Metro East, Metro

West and Metro South. We allocate the demand to our simplified network as fol-

lows: Metro North to Para 275, Metro West to North West, Metro South to South

West and the allocation for Metro East is displayed in Table 4.4.

The dataset does not include power that is supplied directly from the transmis-

sion network to industry, and some substations are excluded due to confidentiality

[40]. Therefore, this dataset underestimates the total demand, which we address in

Section 4.2.3.

Similarly to the inter-connector flows, we perform linear interpolation to up-sample

the demand data to a 5-minute resolution to be compatible with the generation

data. In this case, demand does not significantly change in a 30-minute period and

thus linear interpolation is reasonable.
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Magill North West Para 275

Burnside Kilburn Clearview

Campbelltown North Adelaide Golden Grove

Kent Town Northfield Harrow

Linden Park Prospect Hillcrest

Norwood Holden Hill

Woodforde Ingle Farm

Hope Valley

Tea Tree

Table 4.4: Allocation of Metro East demand from the distribution substation to the

associated transmission connection point.

4.2.3 Balancing

The dynamic inputs are formed from a combination of sources, namely generation

obtained from AEMO and load obtained from SAPN. This results in a significant

discrepancy between total generation and total load. Such imbalances cause the

Newton-Raphson algorithm for the AC power flows to be non-convergent, potentially

because there is no feasible solution. Therefore, the inputs require generation and

load balancing to obtain realistic inputs that account for transmission losses.

The dynamic inputs of generation and load form a set of power injections, p, where

the power injection at bus k is given by

pk = gk − dk ,

where gk and dk are the total generation and total demand at bus k = 1, . . . , n,

respectively. We form the raw power injections using the power generation time

series from Section 4.2.1, the demand time series from Section 4.2.2, and assume a

constant 200 MW demand at the Davenport bus for power supplied to the Olympic

Dam and Prominent Hill mining operations. The algorithm in Figure 4.3 is used

to balance the raw power injections in order to obtain the power injections used for

the AC model.

Transmission Losses Unlike DC power which assumes a lossless network, AC

power experiences power losses. Thus, in most cases total generation is greater than

total demand to account for losses across the network. Therefore, we account for

transmission losses, χ = 4%, when balancing the inputs. Variations in transmission

losses are accounted for by the slack generator.
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raw p

∑n
k=1 pk > χ

add

industrial

load

proportionally

adjust

load

determine

load and

inter-

connectors

feasible?

reschedule

conventional

generation

AC model p

yes

no

no

yes

Figure 4.3: Flowchart of the algorithm to calculate the power injections for the AC

model. The input is the raw power injections as described above. The output is the

modified power injections used as the inputs for the AC model. This algorithm does

not change the generation from wind farms.
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Add industrial load As we described previously, the load data from SAPN did

not include power supplied to industry direct from the transmission network. There-

fore, we allocate load to major commercial and industrial sites as per Table 4.5. The

total amount of industrial load is capped at 250 MW to respect a reasonable maxi-

mum industrial demand.

Bus Contribution

Adelaide CBD 10%

Bungama 10%

Mt Barker 10%

North West 40%

South West 10%

Cultana 132 10%

Table 4.5: Contribution of industrial load.

Proportionally adjust load The central load buses are proportionally changed

in order to achieve a realistic balance that accounts for transmission losses. The

central buses include Adelaide CBD, Magill, Mt Barker South, North West, Para

and South West. We restrict to adjusting the central loads because large imbalances

can lead to unrealistically high rural demand.

Determine load and inter-connectors At this point, we have either increased

or decreased load in order to obtain a realistic balance with the current generation

profile. However, the previous processes are provisional and do not necessarily lead

to power flows that respect network constraints. Therefore, we optimise the load

and inter-connectors to find a solution that satisfies the constraints.

Suppose the power flows that result from the power injections at this point in the

algorithm, p, do not respect their transmission limits. Then, we apply a quadratic

optimisation in order to determine a new set of power injections, p′, such that the

new power flows respect their transmission limits. We separate the power injections,

p, into two components: a variable component, p̂, and a fixed component, p̄. The

variable component, p̂, consists of the load buses and the buses that correspond

to the two inter-connectors. Thus, the fixed component, p̄, consists of generator

buses that correspond to conventional and renewable generation. We optimise over
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the variable component which reduces the problem dimension and the number of

constraints.

The optimisation objective function minimises the change in the inputs given by

min
p̂k

∑
k

(p̂′k − p̂k)2 .

Intuitively, the value of the objective function is smaller for solutions that have lots

of small changes and larger for solutions that might only have one large change.

The AC power flows are non-linear and do not have a closed-form solution. There-

fore, we constrain the power flows assuming a DC power flow model. Whilst DC

power flows may not be as accurate, the optimisation can still inform a new gen-

eration solution to be used in AC power flow calculations. Denote by Ĥ and H̄

the matrix of PTDFs restricted to the variable and fixed buses, respectively. The

transmission constraint |f ′| ≤ 1 is given by

|Hp′| ≤ 1 ,

which implies

−1 ≤ Ĥp̂′ + H̄p̄′ ≤ 1 ,

and therefore

Ĥp̂′ ≤ 1− H̄p̄ ,

−Ĥp̂′ ≤ 1 + H̄p̄ ,

where p̄′ = p̄ because the fixed component remains constant. Additionally, the new

power injections, p′, must satisfy 1>p′ = 0, because the DC approximation assumes

a lossless network. The resulting quadratic optimisation is given by

min
p̂k

∑
k

(p̂′k − p̂k)2

s.t. Ĥp̂′ ≤ 1− H̄p̄ ,
−Ĥp̂′ ≤ 1 + H̄p̄ ,

1>p̂′ = −1>p̄ ,

p̂′ ≤ ĝavail ,

p̂′ ≥ −d̂max .

(4.1)

where d̂max is the column vector of maximum demand and ĝavail is the column

vector of available generation at each bus corresponding to the variable component.

The optimisation presented here is similar to the short-term re-dispatch models in

Section 6.1.
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Reschedule conventional generation We extend the variable component of the

power injections in the optimisation problem (4.1) to include generator buses that

correspond to conventional generation. Renewable generators are treated as part

of the fixed component, p̄, so that wind generation is preserved for simulation in

Chapter 5.

4.3 Model diagnostics

Sections 4.1 and 4.2 form our AC model of the SA power network. Ideally, this

should be representative of the real network and its operation such that:

• voltage levels must not operate outside of (0.9, 1.1) per-unit and are operated

within a soft limit of (0.95, 1.05) per-unit, and

• branch flows should not exceed capacity.

The diagnostic plots of the simplified open-access AC model are displayed in Fig-

ures 4.4 and 4.5.

The bus voltages in Figure 4.4 demonstrate that voltages do not operate outside

(0.9, 1.1) per-unit and are typically restricted to (0.95, 1.05) per-unit. It is quite

reasonable that a few buses operate above 1.05 pu, in order to support the voltage at

connected buses. On the other hand, voltage drops below 0.95 pu would be avoided

wherever possible. It can be seen that the number of instances where voltage is

below 0.95 pu in the AC model is negligible.

The branch power flows, from Figure 4.5, demonstrate only a few instances of

branches operating outside their capacity. This includes the South East transformer

and the Robertstown-Northwest Bend transmission line. In both cases, the vio-

lation is negligible. Therefore, we conclude that our AC model respects realistic

operation.
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Figure 4.4: Diagnostic box-plots of the bus voltage levels (pu) for the AC model of

the SA power network. The voltage levels of all the buses are contained within the

limits (0.9, 1.1) per-unit.
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Figure 4.5: Diagnostic box-plots of the branch power flows (pu) for the AC model of

the SA power network. There is a very small number of instances where the branch

power flows exceed their capacity.
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4.4 DC approximation

Whilst AC power flows are more realistic, no closed-form solution exists and there-

fore it is convenient to analyse DC power flows. The physical model of the AC model

is used for the DC model. Most software packages can easily switch between AC and

DC power flow calculations. However, the dynamic inputs from Section 4.2 contain

transmission losses, whereas DC assumes a lossless network. Since the AC model

underestimates demand, we proportionally increase load, as seen in Section 4.2.3, in

order to satisfy the balancing equation.

In order to linearise the AC power flows a number of assumptions are made:

• Line resistance is negligible.

• Voltages are near 1 pu.

• Voltage angle differences are small.

In the subsequent sections, we address the validity of each assumption.

4.4.1 Line resistance

The first assumption that plays a major role in the accuracy of DC power flows,

is the one of negligible line resistance. The X/R ratio is a condition number that

quantifies how much the line reactance, X, dominates the line resistance, R. Larger

ratios imply a higher accuracy of the DC approximation. The influence of resistance

decreases when voltage increases, which means that only high voltage transmission

lines withstand this condition.

In Table 4.2, we present typical line parameters for transmission lines of 132 kV

and 275 kV, which are used in our AC model. The corresponding X/R ratios are

displayed in Table 4.6.

132 kV 275 kV

X/R 3.482 7.975

Table 4.6: The X/R ratio for the 132 kV and 275 kV transmission lines.
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It can be seen that the X/R ratio for the 275 kV lines is sufficiently large to ensure

small errors. However, the X/R ratio for the 132 kV lines potentially leads to errors

around 5% [54], especially since the topology of the network includes very long

132 kV transmission lines which have a high resistance and experience large power

losses.

4.4.2 Voltage variations

The second assumption of the DC approximation is that voltages are near 1 pu.

However, it has been noted that the critical characteristic is a flat voltage profile

rather than being near unity [54]. This is because nodal voltages operated above 1 pu

experience decreased power losses, which is closer to the lossless assumption.

The individual voltage distributions for each bus are displayed in Figure 4.4 in

Section 4.3. However, this does not quantify the magnitude of voltage deviations.

We measure the voltage deviations by calculating their standard deviation

σV =

√√√√ 1

n− 1

n∑
i=1

(Vi − V )2 ,

where V is the average voltage magnitude. We calculate the voltage deviation, σV ,

for each time point and plot the resulting distribution in Figure 4.6.

Figure 4.6: Distribution of the voltage deviation, σV , at each time point of the AC

model. The vast majority of times have a voltage deviation less than 0.02.
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It is evident that the location of the voltage deviation distribution is approximately

0.015, but the distribution has a long tail. Time points corresponding to voltage

deviations that exceed 0.02 are not accurate. Once again, the X/R ratio for the

275 kV transmission lines is large enough to ensure the errors are less the 5%, whereas

the X/R ratio for the 132 kV transmission lines corresponds to errors potentially

above 5% [54].

4.4.3 Voltage angle differences

Denote by θk and θh the voltage angles of the to and from buses of the branch (k, h),

respectively. Then, the line voltage angle difference is given by θk−θh. The assump-

tion of small voltage angle differences results in the following approximations

sin(θk − θh) ≈ θk − θh ,

cos(θk − θh) ≈ 1 .

We calculate the line voltage angle differences for each time point of the SA network

model, and assess the error of the sine and cosine approximations in Figure 4.7.

Figure 4.7: Error percentage of the sine and cosine approximations for the DC

model. We include the (grey) distribution of the line voltage angle differences of the

AC model. It can be seen that the location of the distribution coincides with small

errors in the sine and cosine approximations.

The distribution of the line voltage angles is located where the sine and cosine

approximations have minimal error. Therefore, we conclude that the assumption



74 South Australian power network

of small voltage angle differences is reasonable and is the source of negligible er-

ror.

4.5 Power transmission distribution factors

The linear DC model calculates the matrix of PTDFs, H, which are the coefficients

of the power injections, p. Therefore, a change in the power injection will result in a

change in the power flow along each line ` based on the PTDFs. This phenomenon

may also be considered as the sensitivity of the power flow solution to changes in the

power injections. This is a feature of the physical model described in Section 4.1,

and is useful for diagnosing causes of congestion.

The sensitivity of the branch power flows is governed by the matrix of PTDFs, H.

The sensitivity of branch ` to the power injection at bus k is given by

s`k = |H`k| ,

where s`k = 1 implies that a 1 MW increase in power injected at bus k induces a

1 MW change in branch `. We visualise the sensitivity between each branch-bus

pair as a heatmap in Figure 4.8. It is evident that the branch most sensitive to

the power injection at the largest number of buses is the Tailem Bend 275 - South

East 275 transmission line. This transmission line is critical in exporting/importing

power to and from Victoria.
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Figure 4.8: Visualisation of the PTDFs which represent the change in the real power

flows due to a 1 MW increase in the power injections for the DC model. The most

sensitive line is the 275 kV high voltage transmission line TABSES 2 which connects

Tailem Bend and South East.
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Wind power simulation

The installed capacity of wind generation in SA is increased by incorporating new

hypothetical wind farms into the physical model of the network developed in Sec-

tion 4.1. The time series of generation for new wind farms is unknown and therefore

requires simulation in order to be combined with the dynamic inputs from Sec-

tion 4.2. In this chapter, we develop a wind power simulation methodology and

then validate the method using historical wind generation data for SA.

5.1 Overview

In Chapter 4 we developed the physical model of the South Australian power net-

work for 2015, which includes 17 operational wind farms with a combined capacity

of 1,491 MW. We briefly introduce the wind farms in Table 5.1 and show their lo-

cations in Figure 5.1. We note that since 2015 the following wind farms have been

commissioned: the 314 MW Hornsdale wind farm in 2017, the 119 MW Wilogoleche

wind farm in 2018, and the first stage of the 212 MW Lincoln Gap wind farm in

2019.

The time series of wind generation for each wind farm is sourced from AEMO [45],

and was introduced in Section 4.2.1. We plot a sample of the wind generation for

the wind farms in the Mid-North (East) in Figure 5.2. It is evident that, despite

variation between the time series of generation for each wind farm, there is also

correlation. This is demonstrated between the 75th and 150th index, where the

available wind resource obviously increases, and thus the power output of the wind

farms also increases.
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ID Name Zone Capacity (MW) Year

BLUFF1 The Bluff Mid-North (East) 52 2012

CATHROCK Cathedral Rocks Eastern Eyre Peninsula 66 2005

CLEMGPWF Clements Gap Mid-North (West) 57 2010

CNUNDAWF Canunda South East 46 2005

HALLWF1 Hallett 1 Mid-North (East) 94 2007

HALLWF2 Hallett 2 Mid-North (East) 71 2009

LKBONNY1 Lake Bonney 1 South East 80 2005

LKBONNY2 Lake Bonney 2 South East 159 2008

LKBONNY3 Lake Bonney 3 South East 39 2010

MTMILLAR Mount Millar Eastern Eyre Peninsula 70 2006

NBHWF1 North Brown Hill Mid-North 132 2008

SNOWNTH1 Snowtown North Mid-North (West) 144 2014

SNOWSTH1 Snowtown South Mid-North (West) 126 2014

SNOWTWN1 Snowtown Mid-North (West) 99 2008

STARHLWF Starfish Hill Fleurieu Peninsula† 34 2003

WATERLWF Waterloo Mid-North (East) 131 2010

WPWF Wattle Point Yorke Peninsula 91 2005

† indicates a zone that is not officially recognised for development in the ISP.

Table 5.1: Overview of the wind farms in South Australia. The ID is the abbre-

viation used by AEMO; the zone is the renewable energy zone (REZ) where the

wind farm is located according to AEMO’s integration system plan (ISP) [47]; the

capacity is the wind farms maximum power output; and the year refers to the year

the wind farm started operation.

A correlation matrix is a matrix with elements consisting of pairwise correlation

coefficients between sets of variables. This technique is predominantly used in vi-

sualisation in order to identify sets of correlated variables. When constructing the

correlation matrix for time series data, we evaluate the cross-correlation between two

time series. Denote by W j
t the time series of generation for wind farm j measured

in MW. Then, the time series {W 1
t }t∈N, {W 2

t }t∈N, . . . , {W 17
t }t∈N have a correlation

matrix given by

[ ρ ]ij = ρwiwj
(0) ,

where ρwiwj
(0) is Spearman’s rank correlation coefficient [66] of {W i

t }t∈N and {W j
t }t∈N.

In Figure 5.3, we plot the correlation matrix of the time series of generation for all

the wind farms.
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Figure 5.1: Map of the wind farm locations in South Australia. The Mid-North and

South East contain the majority of installed wind capacity.

Figure 5.2: An example of the time series of generation for the wind farms in the

Mid-North (East). The x-axis represents time and the y-axis is power output per-

unit.
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Figure 5.3: Correlation of wind generation in SA. The time series of generation for

all wind farms are positively correlated.

It is evident that there are three distinct groups of highly correlated wind farms:

South East, Mid-North (East) and Mid-North (West). A contributing factor to the

high correlation presence is due to the well-known geographical dependency of the

weather. Clustering of wind farms is common, as companies develop wind farms in

areas where the wind resource is plentiful and there is access to transmission.

Wind generation is stochastic and variable on a 5-minute period. Whilst time series

models seem reasonable, our analysis of the power spectrum showed that significant

cycles explain only a small portion of the variance, see Appendix B. When the

deterministic model explains only a small portion of the variance in the data, it

leads to simulations that are too random such that there is a small correlation with

existing wind farms. Since high correlation in wind generation is a significant driver

for network congestion, we explore deterministic models such as regression.

Unlike time series models, regression models do not require de-trending since they

exploit the correlations between the variables. The power output of a wind farm

is bounded above by its generation capacity, and below by the power required to

run essential equipment when there is insufficient wind resource. We apply a logit
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transformation to the wind generation in Section 5.3.1 such that the model is fitted

in an unbounded space. The transformed variables in Figure 5.4 demonstrate a

linear relationship.

Figure 5.4: Scatterplot of the generation from SNOWSTH1 and SNOWNTH1 in

the transformed logit space. The variables demonstrate a linear relationship.

As an example, we fit a simple linear regression that predicts the response variable

SNOWNTH1 from the other wind farms in the Mid-North (West) given by

SNOWNTH1 ∼ CLEMGPWF + SNOWSTH1 + SNOWTWN1 .

From the summary of the regression, provided in Table 5.2, we see a high adjusted R-

squared value. This suggests that a regression based model will be able to accurately

predict the power output of one wind farm from the power output of nearby wind

farms.

Term Estimate Standard Error Test Statistic p-value

(Intercept) -1.189 0.081 -14.703 0.000

CLEMGPWF -0.069 0.005 -14.611 0.000

SNOWSTH1 0.419 0.003 124.851 0.000

SNOWTWN1 0.781 0.005 171.727 0.000

Adjusted R-squared 0.8571

Table 5.2: Output from the linear regression that predicts the response wind farm

SNOWNTH1. The high adjusted R-squared value demonstrates that the predictor

wind farms explain a significant amount of the variation in the response.

We simulate the time series of generation for a new wind farm using historical

wind generation of the existing wind farms and wind data. In Section 5.3 we fit a
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number of linear regression models, which are used to predict the expected power

output of the new wind farm, called the mean prediction model. However, this is a

deterministic approach to modelling a stochastic variable. Hence, in Section 5.4, we

simulate a stochastic deviation from the expected power output in order to obtain a

realistic time series of wind generation, called the error simulation model. We assess

the goodness-of-fit of the mean prediction model and the error simulation model

by applying a leave-one-out technique such that one of the existing wind farms is

treated as unknown. This emulates the prediction of a new wind farm, and allows

us to produce diagnostic plots.

5.2 Data

The wind power simulation uses historical wind generation data from Section 4.2.1

and wind data from the Bureau of Meteorology (BOM) [41]. First, we introduce the

wind data, and second, we describe the pre-processing steps performed on the data

prior to fitting the model.

5.2.1 Meteorological data

There are a number of weather stations deployed throughout SA that are operated by

the BOM and measure a range of atmospheric variables. In particular, they record

the wind speed in m/s and the wind direction in degrees. The dataset contains

wind speed and direction for the weather stations listed in Table 5.3 at a 1-minute

resolution.

Station number Name Zone Start year Complete (%)

26021 Mt Gambier South East 1941 99

21133 Snowtown (Rayville Park) Mid-North 1998 98

21131 Clare High School Mid-North 1993 99

Table 5.3: Basic weather station information. The station number is the BOM

identification number, and the column Complete refers to the number of complete

observations. The Mid-North weather stations are used for both East and West

Mid-North wind farms.

The missing data at the 1-minute resolution is imputed by linear interpolation.

Then the data are down-sampled to a 5-minute resolution to coincide with the 5-
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minute dispatch. Since the data are down-sampled, the linear imputation will have

a negligible effect, especially for wind direction.

Typically, the wind direction is a continuous variable that measures the angle in de-

grees, where 0 degrees is true North. For our purposes, we are not interested in mea-

suring the complex relationship between direction and power generation; therefore,

we factor the direction into a categorical variable. Denote by ojt the wind direction

of weather station j at time t. The wind direction is factored such that

Θj
t =



NNE 0 ≤ ojt < 45 ,

ENE 45 ≤ ojt < 90 ,

ESE 90 ≤ ojt < 135 ,

SSE 135 ≤ ojt < 180 ,

SSW 180 ≤ ojt < 225 ,

WSW 225 ≤ ojt < 270 ,

WNW 270 ≤ ojt < 315 ,

NNW 315 ≤ ojt < 360 ,

where Θj
t represents the categorical wind direction of weather station j at time t.

5.2.2 Data processing

Prior to fitting the mean prediction model, we perform pre-processing steps on the

wind generation data. First, we normalise the power generation by the generators

capacity to eliminate scaling effects, which is important for Section 5.3.1. Second,

we remove all observations that contain non-positive power generation values, to

ensure that 0 < W j
t < 1, which is a required condition to perform the logit transfor-

mation. The non-positive values arise when wind speeds are below the turbine cut-in

speed, which is the minimum required speed before the turbines produce power, and

therefore the wind farm consumes power to run essential equipment. Removing non-

positive values for estimation is reasonable because network congestion occurs only

during windy periods when wind farms are operating at high power outputs.

Additionally, the data contains periods of maintenance that effect the wind genera-

tion profiles as seen in Figure 5.5. Such behaviour in the data biases the parameter

estimation. We filter out the periods of maintenance using the method described in

Appendix C.
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Figure 5.5: An example of maintenance affecting the power output of a wind farm in

the South East. The x-axis represents time and the y-axis is the power output per-

unit. The (red) highlighted time series corresponds to a wind farm that experiences

a sudden loss of power for approximately 3 hours. This is inconsistent with the

available wind resource in the South East, indicated by the (grey) time series of

generation of the other nearby wind farms.

5.3 Mean prediction model

Consider the new wind farm to be located in a zone where there are currently k oper-

ational wind farms with corresponding power generation W 1
t ,W

2
t , . . . ,W

k
t measured

in MW, and m weather stations, where Φ1
t ,Φ

2
t , . . . ,Φ

m
t and Θ1

t ,Θ
2
t , . . . ,Θ

m
t represent

the corresponding wind speeds (m/s) and the categorical wind directions, respec-

tively. Initially, we propose a method of regression called the average regression

model, and then improve this model in the corrected average regression model.

5.3.1 Average regression model

The average regression model is designed to estimate the average effect that an

existing wind farm has on the the other wind farms. Then, the average effect of

all existing wind farms can be used to predict the power output of a new wind

farm.

For each wind farm j = 1, . . . , k, we regress the power generation W j∗
t on all

other wind farms, where ∗ indicates a variable in the logit transformed space such
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that

W j∗
t = logit(W j

t ) = log

(
W j
t

1−W j
t

)
.

The logit transformation is used to allow for the fact that the normalised power

generation is constrained to lie in the range 0 < W j
t < 1. This results in a total of

k models, where Model j is given by

W j∗
t = α1,jW

1∗
t + · · ·+ αj−1,jW

j−1∗
t + αj+1,jW

j+1∗
t + · · ·+ αk,jW

k∗
t +

β1,jΦ
1
t + · · ·+ βm,jΦ

m
t + γ1,jΘ

1
t + · · ·+ γm,jΘ

m
t ,

(5.1)

where αi,j is the regression coefficient of wind farm i in Model j, βh,j and γh,j are

the regression coefficients of wind speed and wind direction, respectively, of weather

station h in Model j. Wind direction is a categorical variable measured on eight

levels, refer to Section 5.2.1. The regression model in Equation (5.1) estimates a

coefficient for each level such that

γh,j = 1NNEξNNE,j + · · ·+ 1NNW ξNNW,j ,

where 1 is the indicator function and ξ`,j is the coefficient for Level ` in Model j.

We use the γh,j variables in (5.1) to simplify the notation. Then, the fitted values

of the average regression model are given by

η∗t = α1W
1∗
t + · · ·+ αkW

k∗
t + β1Φ1

t + · · ·+ βmΦm
t + γ1Θ1 + · · ·+ γmΘm , (5.2)

where the average regression coefficients are given by

αi =
1

k

k∑
j=1

αi,j ,

βh =
1

k

k∑
j=1

βh,j ,

γh = 1NNEξNNE + · · ·+ 1NNW ξNNW ,

where ξ` = 1
k

∑k
j=1 ξ`,j.

The average regression model is deterministic, and therefore the same inputs pro-

duce the same fitted values, η∗t . Applying a leave-one-out technique, we treat

SNOWNTH1 as unknown, and fit the average regression model using the Snow-

town and Clare High school weather stations, and the other wind farms within the

South East: CLEMGPWF, SNOWSTH1 and SNOWTWN1. We plot the residu-

als versus fitted values of the average regression model in Figure 5.6. We repeat

the leave-one-out process for the other 12 wind farms from the South East and

Mid-North, and provide their diagnostic plots in Appendix D Figure D.1.
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Figure 5.6: Residual versus fitted values of the average regression model that predicts

SNOWNTH1. The x-axis is the fitted values, η∗t , and the y-axis is the difference

between the fitted values and the actual values. A linear trend-line is evident in the

residuals.

The residuals in Figure 5.6 contain a linear trend, which is induced by the estimation

procedure. The average regression coefficients are estimated using k − 1 wind farm

predictors in Equation (5.1), as one wind farm is the response variable, whereas

the fitted values are calculated using all k wind farms in Equation 5.2. The extra

predictor causes the fitted values to be biased, and thus resulting in a linear trend

in the residuals. We propose a post-corrective method to remove the linear trend,

called the corrected average regression model.

5.3.2 Corrected average regression model

In order to correct the bias induced by the estimation of the average regression

model, we estimate the linear trend observed in the residuals. First, we calculate the

residuals from the individual regression models from Equation (5.1) such that

ej∗t = W j∗
t − η∗t ,

where ej∗t are the residual values for wind farm j = 1, . . . , k. The linear relationship

between the residuals and the fitted values is given by

ej∗t = sjη
∗
t + rj ,

where sj and rj represent the slope and intercept of Model j, respectively. Then,

the fitted values of the corrected average regression are given by

η̂∗t = η∗t + sη∗t + r , (5.3)
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where s and r represent the mean slope and intercept for the k wind farms, respec-

tively. We plot the residuals versus fitted values of the corrected average regression

model in Figure 5.7, when SNOWNTH1 is treated as unknown. Similarly, the

supplementary diagnostics of the other 12 wind farms are provided later in Fig-

ure D.2.

Figure 5.7: Residual versus fitted values of the corrected average regression model

that predicts SNOWNTH1. The x-axis is the fitted values, η̂∗t , and the y-axis is

the difference between the fitted values and the actual values. The Spearman’s

rank correlation coefficient of −0.06 is statistically significant and suggests a small

curvilinear trend.

Figure 5.7 demonstrates that the fitted values of the corrected average regression

significantly reduce the linear trend present in the average regression from Figure 5.6.

The average Spearman’s rank correlation coefficient of −0.08 for all wind farms,

which includes Figures 5.7 and D.2, is statistically significant and suggests a small

curvilinear trend. Furthermore, the conditional density of the residuals given the

fitted values has a uni-modal structure consistent with a bivariate normal. However,

there still exists negative slope excursions near extreme values corresponding to the

generation limits. These are attributed to maintenance, where at least one wind

farm is not operating normally, and truncation due to capacity limits. This suggests

that our filtering of maintenance in Section 5.2.2 could be improved. However, this

could be expected to have a minimal effect on the parameter estimation due to the

large dataset.

The fitted values of the corrected average regression are referred to as the mean

predicted values and are deterministic. Therefore, we develop a stochastic model

using the residuals of the corrected average regression model in order to simulate

realistic stochastic wind generation.
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5.4 Error simulation model

Local variations in atmospheric conditions result in wind generation being stochastic.

This means that wind farms will fluctuate around the mean prediction level with

a specified standard deviation. We develop a time series model that simulates the

error around the mean prediction such that the time series of generation for a new

wind farms is stochastic.

5.4.1 Time series model

The difference between the mean prediction values from the corrected average re-

gression model, η̂∗t , and the actual values of each wind farm j = 1, . . . , k is given

by

êj∗t = W j∗
t − η̂∗t .

We know that the residuals of the corrected average regression model, êj∗t , contain

a small linear trend which will induce auto-correlation. We model the residuals, êj∗t ,

using an ARMA(2,1) model such that

êj∗t = a1j ê
j∗
t−1 + a2j ê

j∗
t−2 + εt +m1jεt−1 ,

where a1j and a2j are the autoregressive coefficients, m1j is the moving average

coefficient, and {εt}t∈N is the white noise process. This gives us k ARMA models

for the residuals, one for each existing wind farm. As the actual residuals for a

new wind farm cannot be obtained, we estimate the parameters of the average

ARMA(2,1) model such that

a1 =
1

k

k∑
j=1

a1j ,

a2 =
1

k

k∑
j=1

a2j ,

m1 =
1

k

k∑
j=1

m1j .

We simulate the average ARMA(2,1) to obtain the simulated residuals, ζ∗t . Diag-

nostic plots of the auto-correlation and partial auto-correlation of the simulated

residuals are displayed in Figure 5.8.

Figure 5.8 demonstrates that the auto-correlation and partial auto-correlation of

the simulations of the ARMA(2,1) successfully model the strong auto-regressive
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nature of the residuals. We found that simpler models, such as the AR(2), did not

accurately represent the partial auto-correlation.

The time series model captures the auto-correlation structure but assumes a fixed

Gaussian conditional density between the residuals and the fitted values. In practice,

we observe that the conditional density near capacity has a smaller standard devi-

ation and a smaller mean, refer to Figure 5.7. Therefore, we use quantile regression

to transform the simulated residuals, ζ∗t .

(a) Simulations from the AR(2) model.

(b) Simulations from the ARMA(2,1) model.

Figure 5.8: The autocorrelation (left) and the partial autocorrelation (right) of the

residuals and the simulated residuals. The simulated residuals are simulations from

a time series model fitted to the residual values of the corrected average regression

model that predicts SNOWNTH1. (a) Simulations from the AR(2) model, and (b)

simulations from the ARMA(2,1) model with supplementary plots in Figures D.3

and D.4. The more complex ARMA model captures the partial auto-correlation

structure.
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5.4.2 Quantile regression transformation

The quantile regression transformation fits two models: an upper and a lower quan-

tile. The two quantiles outline the shape of the residuals in Figure 5.7. We then

transform the ARMA time series simulation to the corresponding residual quan-

tiles. This extends the parametric time series simulation to a non-parametric ap-

proach.

Denote by Qêj∗t |η̂∗t
(τ) the τth quantile function for the conditional distribution of

residuals, êj∗t , given the mean predicted values, η̂∗t . The quantile function is modelled

as a natural cubic spline on K knots such that

Qêj∗t |η̂∗t
(τ) =

K+2∑
n=1

κnbn(η̂∗t ) ,

where bn(x) is the nth basis functions of the natural cubic spline, and κn is the

corresponding quantile regression coefficient. Therefore, this provides k estimates of

the residual conditional distribution, one for each existing wind farm. We average

the quantile functions in order to obtain the averaged quantile function

Qê∗t |η̂∗t (τ) =
1

k

k∑
j=1

Qêj∗t |η̂∗t
(τ) , (5.4)

which evaluates the mean residual conditional distribution. This averaged quantile

function is used to transform the simulated values from the time series model to fit

the quantiles of the residuals. Since we average over the quantile functions, the choice

of knots becomes less significant. Additionally, the fitted values of different wind

farms in the logit space vary, and therefore the knots are given by the quantile func-

tion of the fitted values, Qη̂∗t
(τ), evaluated at τ = 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 0.9, 0.99.

As the max-min data range is unstable, we fit the 5th and 95th percentile for the

lower and upper quantiles, respectively. Given a time t > 0 such that the cor-

responding mean predicted value η̂∗t = η and the simulated residual ζ∗t = ζ, we

evaluate the lower and upper average quantiles Qê∗t |η̂∗t =η(0.05) and Qê∗t |η̂∗t =η(0.95),

respectively. The simulated residuals are linearly transformed such that

ψ∗t (ζ
∗
t = ζ|η̂∗t = η) = sηζ + rη , (5.5)

are called the transformed simulated residuals. Here, the slope sη and intercept rη

are solved simultaneously using the linear system given by

Qê∗t |η̂∗t (0.95) = sηQζ∗t
(0.95) + rη ,

Qê∗t |η̂∗t (0.05) = sηQζ∗t
(0.95) + rη ,
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where Qζ∗t
(0.95) is the quantile function for the simulated values of the average

ARMA(2,1) process evaluated at τ = 0.95. This technique approximates the dis-

tribution of the residuals for each mean predicted value with a normal distribution

fitted to the 5th and 95th percentiles. In Figure 5.9, we compare the lower, median

and upper quantiles of the transformed simulated residuals to the actual residual

quantiles in the transformed space. A negative logit difference implies that the

transformed simulated residuals underestimate the actual residual quantile, and a

positive logit difference implies that the transformed simulated residuals overesti-

mate the actual residual quantile.

Figure 5.9: The x-axis is the fitted values, η̂∗t , of the corrected average regression

model fitted to SNOWNTH1. The y-axis is the logit difference between the averaged

quantile function, Qê∗t |η̂∗t (τ), and the actual residual quantiles evaluated at τ =

0.05, 0.5, 0.95. Refer to Figure D.5 for supplementary plots.

It is evident that the method underestimates all three quantiles corresponding to

low wind generation values. At high wind generation values, the median and the

upper quantiles are reasonable estimates, whereas the lower quantile overestimates

the lower quantile of the residuals. It is important to note that the method uses the

residuals of existing wind farms in order to simulate the residuals for the new wind

farm. If the response variable was known, the method of quantile transformation

would likely have greater accuracy.

The transformed simulated residuals ψ∗t (ζ
∗
t |η̂∗t ) are combined with the mean pre-

dicted values η̂∗t such that

W new∗
t = η̂∗t + ψ∗t (ζ

∗
t |η̂∗t ) ,

which implies

W new
t =

exp(η̂∗t + ψ∗t (ζ
∗
t |η̂∗t ))

1 + exp(η̂∗t + ψ∗t (ζ
∗
t |η̂∗t ))

, (5.6)

where W new
t is the simulated power output in MW of a new wind farm at time t.

We validate our wind power simulation methodology in the next section.
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5.5 Validation

The model diagnostics provide a high level of detail regarding the ability of the

simulation method to predict the existing wind farms. However, network congestion

occurs when the total amount of wind generation in a particular zone is significant.

This is due to generators in the same zone sharing transmission capacity, which leads

to network elements being heavily loaded and possibly operating outside their sta-

bility limits. Therefore, we validate the wind power simulation model by comparing

simulated generation values with the total wind generation for each zone as opposed

to individual wind farms. We simulate 50 new wind farms for each zone using our

wind power simulation methodology, and calculate the correlation and Probability

of Exceedance (POE). Correlation refers to the strength of the relationship between

the relative movements of two time series, and POE measures the proportion of time

a time series spends above a given value.

Simulations need to be correlated with the existing wind farms such that high wind

generation levels are obtained during windy periods. Figure 5.10 demonstrates that

the new wind farms are highly correlated with existing generation. The spread of

correlation for the South East is very small due to its high within-zone correlation.

On the other hand, wind farms in the Mid-North (West) are more spatially dis-

tributed resulting in a slightly lower location for the correlation distribution and a

larger variance.

Congestion occurs when wind farms are operating at high power outputs. Therefore,

we assess the 75% POE which corresponds to the proportion of time the power

output of a wind farm is above 75% of its capacity. It is evident in Figure 5.11

that the POE for the observed total generation is not contained within the POE

distribution of the simulations. The wind power simulation predicts the 75% POE

within less than 2% on average.

Despite a relatively small inflation in the POE, the simulation models appear to

be producing accurate realistic stochastic wind generation and closely following the

total wind generation profiles in Figure 5.12. Therefore, we conclude that our wind

power simulation methodology is reasonable and that the errors are small.
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Figure 5.10: Distribution of the correlation between simulated and existing total

wind generation for each zone. Simulations are highly correlated with existing wind

generation.

Figure 5.11: Distribution of the 75% probability of exceedance for each zone. The

green line represents the actual POE of the existing total wind generation for each

zone. Simulations marginally overestimate the POE.
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Figure 5.12: Distribution of total wind generation and simulated wind generation

for each zone.



Chapter 6

Congestion and wind

curtailment

A number of network congestion and wind curtailment case studies have been per-

formed [7, 29, 33, 34], but none have been applied to the Australian power network.

Whilst wind penetration in the NEM is relatively small, wind penetration in SA is

almost 40% [52]. We perform a first analysis into quantifying wind curtailment that

results from connecting additional wind capacity to the SA power network.

In Section 6.1, we develop two short-term re-dispatch models in order to estimate

the amount of wind curtailment. In Section 6.2, we develop a long-term congestion

management model that quantifies the impact of connecting new wind farms on

network congestion and wind curtailment. Then, in Section 6.3, we present results

of our methodology applied to the SA power network. We conclude this chapter

with a discussion of the limitations of our model and future work.

6.1 Short-term re-dispatch

There are two main re-dispatch methods: targeted and global redistribution. Tar-

geted methods will nominate a single wind farm to curtail [24], whereas global

redistribution is more flexible, as it manages the output of all generators. Typically,

global redistribution is solved using optimisation [12, 35, 63].

We formulate two optimisation problems: a linear and a quadratic. The linear opti-

misation maximises the amount of wind generation within the re-dispatch solution.
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This is time independent and therefore depends only on the current demand profile.

On the other hand, the quadratic optimisation minimises the change from the most

economic dispatch solution. This helps to satisfy more technical constraints such as

generator ramping rates.

Consider a set of power injections, p ∈ Rn, which produce a set of power flows,

f ∈ Rm, where there exists at least one branch, `, that is congested such that

|f`| ≥ 1. Then, the re-dispatch model calculates a new set of power injections,

p′ ∈ Rn, such that no branch is congested so that |f ′| ≤ 1, where f ′ ∈ Rm is

the power flows that result from re-dispatch and 1 is a column vector with all

entries equal to one. We separate the power injections into two components: a

variable component, p̂ ∈ Rn1+1, which consists of n1 generator buses and the slack

bus, and a fixed component, p̄ ∈ Rn2 , consisting of n2 load buses, such that n =

n1 +n2 +1. We note that the fixed component, p̄, remains constant after re-dispatch

and therefore p̄′ = p̄. We assume that no load is lost and therefore the load buses

do not change. Hence, we optimise over the variable component, which reduces the

problem dimension and the number of constraints.

6.1.1 Maximise wind generation

The linear optimisation performs generation re-dispatch in order to maximise wind

generation whilst satisfying the network constraints. The objective function is given

by

max
p̂′k

n∑
k=1

1k∈IW p̂
′
k , (6.1)

where 1k∈IW is the indicator for a bus connected to a wind farm. Maximising wind

generation is a heuristic, which attempts to replicate other optimisation objectives

such as minimising operational costs. Renewable energy is the cheapest fuel source

and will displace conventional generation in power markets. This is also equivalent

to minimising wind curtailment in the re-dispatched solution.

We enforce that the re-dispatch solution must satisfy transmission constraints by

assuming a DC approximation. Equation (2.4) states the linear DC power flows f =

Hp, where H ∈ Rm×n is the matrix of PTDFs. Denote by Ĥ ∈ Rm×(n1+1) and H̄ ∈
Rm×n2 the matrix of PTDFs restricted to the variable and fixed buses, respectively.

Then, the transmission constraints, |f ′| ≤ 1, imposed by the re-dispatch, p′, are

given by

|Hp′| ≤ 1 ,
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which implies

Ĥp̂′ ≤ 1− H̄p̄ , (6.2)

−Ĥp̂′ ≤ 1 + H̄p̄ . (6.3)

Additionally, the DC approximation assumes a lossless network which results in the

power balancing equation

1>p′ = 0 . (6.4)

A load bus does not have generation capacity, whereas a generator bus may have a

load connected. Therefore, the new power injections, p̂′, are bounded above by the

difference between the available generation, ĝavail ∈ Rn1+1, and the current load,

d̂ ≥ 0 ∈ Rn1+1. We assume no curtailment is present in the original power injections,

p̂, and therefore wind farms cannot increase generation in the re-dispatch solution,

p̂′. On the other hand, conventional generators can increase up to their maximum

capacity as they are not limited by available resource. The available generation at

bus k is given by

ĝavailk =

p̂k k ∈ IW ,

Pmax
k otherwise ,

where Pmax
k is the maximum generation capacity at bus k. The load must remain

fixed in the re-dispatch and therefore the upper bound is given by

p̂′ ≤ ĝavail − d̂ . (6.5)

Similarly, the fixed load also implies that the re-dispatch, p̂′, is bounded below by

the demand, d̂. However, as we notice in Chapter 5, wind farms consume power

for essential equipment when there is no wind. Therefore, available generation at a

bus may be negative and have no load connected. In order to ensure the problem is

feasible, we take the minimum of demand and available generation such that

p̂′ ≥ min(−d̂, ĝavail) . (6.6)

Combining Equations (6.1)-(6.6), the linear optimisation problem is given by

max
p̂′k

n∑
k=1

1k∈IW p̂
′
k

s.t. Ĥp̂′ ≤ 1− H̄p̄ ,
−Ĥp̂′ ≤ 1 + H̄p̄ ,

1>p̂′ = −1>p̄ ,

p̂′ ≤ ĝavail − d̂ ,
p̂′ ≥ min(−d̂, ĝavail) ,

(6.7)
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where
∑

k∈IW (pk − p′k) is the total curtailment. The linear optimisation depends

only on the current demand profile and therefore is independent of time. In reality,

a conventional generator requires time to accelerate/decelerate to its new power

output. Therefore, the main assumption is that sufficient forecasting is performed

in order to operate at the optimal solution. However, it may not be feasible to

operate with maximum wind generation due to low system strength. Thus the

linear optimisation may underestimate curtailment.

6.1.2 Minimise system change

The quadratic optimisation reschedules generation by minimising the change from

the current set of power injections, p. The main assumption that motivates this

method is that the current power injections, p, are the most economic. This is rea-

sonable because in Section 6.2, the inputs are balanced by replacing expensive coal

and gas generation with inexpensive wind generation, which replicates minimising

operational costs. Therefore, the quadratic optimisation finds a new dispatch solu-

tion that is close to the most economic and satisfies transmission constraints. The

quadratic objective function is given by

min
p̂′k

n∑
k=1

[
(p̂′k − p̂k)2 − λ1k∈IW (p̂′k − p̂k)

]
, (6.8)

where λ > 0 is the penalty applied to curtailing wind generation; λ = 0 corresponds

to no penalty and results in more wind curtailment, whereas λ� 0 corresponds to

a harsh penalty, similar to the linear optimisation problem. Whilst harsh penalties

significantly reduce wind curtailment, the trade-off is that the change in other inputs

may increase dramatically.

The constraints of the quadratic optimisation are the same as the linear optimisa-

tion (6.7). However, to solve the problem using software such as Matlab, we need

to represent the objective function (6.8) in standard quadratic form. We apply a

change of variables, x = p̂′ − p̂, in order to obtain a quadratic objective function

given by

min
1

2
x>x− λ · 1>IWx , (6.9)

which is in standard quadratic form. The branch power flow constraints for the new

variable, x, are adapted from Equations (6.2) and (6.3) as follows:

−1− H̄p̄′ − Ĥp̂ ≤ Ĥp̂′ − Ĥp̂ ≤ 1− H̄p̄′ − Ĥp̂ ,

Ĥx ≤ 1−Hp , (6.10)

−Ĥx ≤ 1 +Hp . (6.11)
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The constraints (6.10) and (6.11) ensure that the absolute power flows from re-

dispatch are within capacity, |f ′| ≤ 1. In addition to the power flow constraint, we

also derive the balancing equation that requires the sum of the power injections to

be zero. Using the result from Equation (6.4), the balancing equation for the new

variable, x, is given by

1>x = 1>p̂′ − 1>p̂ = −1>p̄− 1>p̂ = −1>p . (6.12)

Finally, the bounds from the linear optimisation (6.7) for the re-dispatch solution, p̂′,

are translated by −p̂ in order to ensure the solution is feasible. The objective (6.9)

and the constraints (6.10)-(6.12) form the following quadratic optimisation prob-

lem:
min
x

1
2
x>x− λ · 1>Iwx

s.t. Ĥx ≤ 1−Hp ,
−Ĥx ≤ 1 +Hp ,

1>x = −1>p ,

x ≤ ĝavail − d̂− p̂ ,
x ≥ min(−d̂, ĝavail)− p̂ .

(6.13)

Suppose the optimisation has solution x∗. Then, the re-dispatch solution is recovered

from p̂′ = x∗ + p̂.

6.2 Long-term congestion management model

Power transfers across the network are constrained by transmission capacity. New

wind farms that are connected to renewable energy zones share the transmission

capacity with the existing wind farms. As the transmission capacity is used, periods

of very high wind output may be directed to curtail due to transmission constraints

in the network.

Furthermore, the correlation of wind power exacerbates the frequency of congestion

and curtailment, which increases short-term congestion management costs. There-

fore, long-term planning is essential to ensure sufficient transmission capacity is

available in order to avoid the most frequent congestions.

We develop a long-term congestion management model that quantifies the impact

of additional wind capacity on network congestion and wind curtailment in SA. An

overview of the model is described in Figure 6.1. Then, we briefly describe each step

of the model, and refer to more detailed descriptions.
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obtain power

injections

simulate new

wind farms

balance inputs

calculate power flows

estimate curtailed

wind output

Figure 6.1: Flowchart of the long-term congestion management model.

Obtain power injections The power injections consist of the generation and load

time series from the DC model. Initially, we balance the power injections for the AC

model in Section 4.2, and then perform the DC approximation in Section 4.4. DC

power flows assume a lossless network and therefore the sum of the power injections

is zero.

Simulate new wind farms New hypothetical wind farms are incorporated into

the existing network. We simulate the time series of generation for each new wind

farm and combine this with the power injections. The simulation is performed using

the wind power simulation explained in Chapter 5.

Balance inputs Incorporating the additional simulated wind generation into the

power injections, increases total generation whilst total demand remains constant.

This may create an unrealistic mismatch between total generation and total de-

mand. Therefore, we offset the additional wind generation by removing existing

coal and gas generation. This process replicates the evolution of the power net-

work from conventional power to renewable power and is assumed to be the most

economic. First, coal generation is removed because SA’s Northern Power Station

closed in 2016. Second, gas generation is removed because gas is the most expensive

energy resource. However, the gas turbines in SA are important for system strength.
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Therefore, we maintain a minimum of 150 MW of gas power.

Calculate power flows Power flow calculations are performed in MATPOWER.

This is a trusted software used by power system researchers from academia, gov-

ernment, and industry [67, 68]. We use a closed-form DC power flow. Whilst the

DC power flow is not as accurate as AC calculations for specific time points, it has

proven to be a useful analysis tool in identifying overall trends [12, 35, 63].

Estimate curtailed wind output The most economic power injections may pro-

duce power flows that exceed transmission constraints. When this occurs, generation

is rescheduled in order to obtain a re-dispatch solution that satisfies the transmis-

sion constraints. Then, the total amount of wind curtailment is estimated from

the re-dispatch solution. We use the linear optimisation from Section 6.1.1 because

we believe that operators will be able to implement sufficient forecasting and other

clever solutions at their disposal in order to operate at or near maximum wind

generation.

6.3 Results

Wind farms in SA are predominantly located in two renewable energy zones: Mid-

North and South East. As described in Chapter 5, we separate the Mid-North into

an East and West component in order to increase the accuracy of the wind power

simulation. Then, we perform a load-flow analysis of the SA power network where

additional wind is incorporated into one of the three zones: South East, Mid-North

(East) and Mid-North (West). To clarify, one simulation incorporates 100 MW of

additional wind capacity in the South East. A list of the simulations are displayed

below.

Zone Wind Capacity Connection

South East 100 - 600 MW Snuggery

Mid-North (East) 100 - 600 MW Belalie

Mid-North (West) 100 - 600 MW Brinkworth 132

Table 6.1: Simulations of additional wind capacity at the corresponding connection

point in SA. A total of 18 simulations are conducted at 100 MW intervals.

Each simulation consists of the time points t = 1, . . . , 105120, corresponding to
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every 5-minutes of the year 2015. For each time point, we record the pre-dispatch,

pt, corresponding to the power injections after Step 3 of the flowchart in Figure 6.1,

the resulting power flow of the pre-dispatch, ft, and the re-dispatch, p′t, from Step 5.

The total amount of curtailed wind output for the year is given by∑
t

∑
k∈IW

(gk,t − g′k,t) ,

where gk,t and g′k,t is the generation at bus k at time t in the pre-dispatch and

re-dispatch, respectively. Additionally, the wind penetration for the year is given

by
total generation from wind

total generation
=

∑
t

∑
k∈IW g′k,t∑

t

∑
k g
′
k,t

.

In the subsequent sections, we use our results to provide insight into future network

congestion and wind curtailment in SA.

6.3.1 Optimal renewable energy zone

For our purpose, we are comparing only the South East and Mid-North. The ISP [47]

outlines a number of factors that determine the optimal REZ for wind farm integra-

tion. However, we take a simpler approach by comparing wind penetration curves

given the wind capacity investment in each zone. Wind penetration is a reasonable

measure as it depends on available transmission and quality of the wind resource,

both of which are considered in the ISP. From our simulations, we construct the

wind penetration curves displayed in Figure 6.2, and provide the numerical values

in Table 6.2.

It is evident, that for the same amount of wind capacity, the Mid-North has much

higher penetration in comparison to the South East. Therefore, the optimal renew-

able energy zone is the Mid-North. Moreover, the Mid-North (West) appears to

have the best quality of wind resource because it has the largest amount of available

wind generation for the same amount of capacity. However, at higher additional

wind capacities, wind generation in the Mid-North (West) is curtailed, resulting in

constrained penetration.

6.3.2 Estimate spare network capacity

AEMO defines spare network capacity by the MW value of additional generation

that can be transported from the REZ to the required load centre [47]. This is
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Figure 6.2: The percentage of wind power that penetrates the network given the

additional investment in wind capacity. Investment in wind capacity in the Mid-

North results in higher wind penetration levels.

an important limit because if the total wind capacity in a REZ exceeds the spare

network capacity then curtailment will occur. Therefore, we estimate the spare

network capacity by incorporating additional wind capacity until curtailment occurs.

We plot the resulting curtailment against the amount of additional wind capacity

in Figure 6.3, and provide the numerical values in Table 6.2.

Figure 6.3: The total amount of curtailed wind power (GWh) given the additional

investment in wind capacity. Immediate curtailment is evident in the South East.

Mid-North It is immediately evident that the Mid-North has significantly more

capacity than the South East. Furthermore, curtailment in the Mid-North (East)



6.3 Results 103

and Mid-North (West) begins at 300 MW and 200 MW, respectively. Therefore, we

estimate the spare network capacity to be approximately 500 MW. Having said that,

it is reasonable for operators to tolerate a small amount of curtailment in order to

increase penetration. Since wind curtailment in the Mid-North (East) is negligible,

the network can tolerate 900 MW of additional wind capacity and experience less

than 3% curtailment of the additional generation.

South East Immediate curtailment is evident for the South East, and therefore

the spare network capacity is less than 100 MW. This differs dramatically from

the 2018 ISP which reports the spare network capacity to be 500 MW. We note

that the spare network capacity of the REZs is used as an assumption to the ISP

modelling.

We identify two changes in the physical network: our simplified network combines

the Mayura and Snuggery substations, and the Heywood inter-connector received a

substantial transmission upgrade in 2016. The Mayura and Snuggery substations

are geographically adjacent and would have only a minimal effect on the power

flows. Additionally, in Section 6.3.3, we show that other network elements impose

the constraint prior to the inter-connector and therefore it is not the reason for

increased spare network capacity in the ISP.

Furthermore, in our case study additional wind capacity is connected to Snuggery,

which already connects 335 MW of wind capacity from the Canunda and Lake

Bonney wind farms. We chose the Snuggery substation due to the increased wind

resource near the coast, which capitalises on the prevailing south-west coastal winds,

and therefore new wind farms are likely to be built closer to the coast. Whilst

changing the connection to Blanche or Mt Gambier may reduce curtailment, our

modelling suggests this will not achieve a spare network capacity of 500 MW. We

expect that AEMO has access to more accurate data, and therefore this may indicate

that our physical model could be improved.
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Additional Wind Capacity (MW)

0 100 200 300 400 500 600

Additional available wind generation (GWh)

South East - 252.94 505.22 754.92 1006.55 1261.09 1516.29

Mid-North (East) - 294.64 593.44 877.49 1173.89 1468.08 1760.75

Mid-North (West) - 314.04 629.79 954.64 1267.69 1592.03 1904.21

Additional wind generation after curtailment (GWh)

South East - 219.93 378.52 509.10 616.73 711.38 789.55

Mid-North (East) - 294.64 593.44 877.44 1173.40 1466.04 1755.60

Mid-North (West) - 314.04 627.29 884.80 1053.64 1184.99 1287.06

Percentage of additional wind generation curtailed (%)

South East - 13.05 25.08 32.56 38.73 43.59 47.93

Mid-North (East) - 0.00 0.00 0.00 0.04 0.14 0.29

Mid-North (West) - 0.00 0.40 7.32 16.89 25.57 32.41

Wind penetration (%)

South East 41.85 44.02 45.53 46.67 47.45 47.98 48.26

Mid-North (East) 41.85 44.75 47.64 50.21 52.73 54.99 57.01

Mid-North (West) 41.85 44.95 47.98 50.31 51.57 52.24 52.49

Curtailed wind output (GWh)

South East 0.00 33.01 126.69 245.81 389.82 549.71 726.74

Mid-North (Eest) 0.00 0.00 0.00 0.04 0.49 2.04 5.14

Mid-North (West) 0.00 0.00 2.50 69.84 214.05 407.04 617.15

Table 6.2: Numerical values of additional wind generation for each simulation. This

includes the values of wind penetration and curtailment from Figures 6.2 and 6.3.
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6.3.3 Identify transmission constraints

Incorporating additional generation in a particular area of the network will cause

a non-uniform increase in the power flows. Moreover, the change in power flow is

governed by the PTDFs. This may lead to power flows that exceed transmission

capacity in the pre-dispatch solution and need to be rescheduled, potentially caus-

ing curtailment. In order to identify the transmission elements that constrain wind

penetration, we investigate the maximal loading of the power flows, |ft|, in Fig-

ures 6.4-6.6. Additionally, we provide the numerical values of the maximal loadings

in Table 6.3.

Mid-North In Figure 6.4a, the highlighted congested elements in the pre-dispatch

do not result in curtailment because curtailment occurs beyond 200 MW as shown

in Figure 6.3. These correspond to infrequent congestions that are rectified by

generation re-dispatch. However, as additional wind capacity is increased in the

Mid-North (East), Figure 6.4b demonstrates that the congestions in the transmission

lines Brinkworth - Templers West and Templers West - Para 275 emerge. This is

also a feature of the Mid-North (West) in Figure 6.5b, with the addition of the

Brinkworth transformer. In Section 6.3.4, we assess the benefit of connecting to the

Bungama bus instead of Brinkworth.

South East Once again, immediate congestion is present in the South East. From

Section 6.3.2, we know this congestion induces wind curtailment. Congested ele-

ments include the 132 kV transmission lines Snuggery - South East 132, Snuggery -

Blanche, Blanche - Mt Gambier and the South East transformer. Therefore, conges-

tion occurs before transmission across the inter-connector, eliminating this to be a

possible reason that explains the discrepancy between our estimated spare network

capacity for the simplified network in 2015 and AEMO’s reported spare network

capacity in the 2018 ISP. Furthermore, as additional wind capacity is increased to

600 MW, numerous transmission elements become congested, thus making it overly

expensive to upgrade transmission to increase the spare network capacity to values

much larger than 100 MW. We explore this further in Section 6.3.5.
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(a) Incorporate 100 MW of additional wind capacity into the Mid-North (East).

Figure 6.4: Maximum loading of the transmission network in the pre-dispatch so-

lution when connecting additional wind capacity in the Mid-North (East). The

maximal loading of the network elements is less than 1.2 pu, and does not result in

wind curtailment.
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(b) (cont.) Incorporate 600 MW of additional wind capacity into the Mid-North (East).

Figure 6.4 (cont.): Maximum loading of the transmission network in the pre-dispatch

solution when connecting additional wind capacity in the Mid-North (East). The

main congestions have a maximal loading of 1.22 pu, and occur in series between

Brinkworth 275 and Para 275.
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(a) Incorporate 100 MW of additional wind capacity into the Mid-North (West).

Figure 6.5: Maximum loading of the transmission network in the pre-dispatch solu-

tion when connecting additional wind capacity in the Mid-North (West). The main

congestions between Brinkworth 132 and Para 275 have a maximal loading of less

than 1.1 pu, and do not result in wind curtailment.
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(b) (cont.) Incorporate 600 MW of additional wind capacity into the Mid-North (West).

Figure 6.5 (cont.): Maximum loading of the transmission network in the pre-dispatch

solution when connecting additional wind capacity in the Mid-North (West). The

main congestions between Brinkworth 132 and Para 275 are similar to the Mid-North

(East) except more severe with loadings above 1.8 pu.
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(a) Incorporate 100 MW of additional wind capacity into the South East.

Figure 6.6: Maximum loading of the transmission network in the pre-dispatch so-

lution when connecting additional wind capacity in the South East. The maximal

loading of the network elements is between 1-1.5 pu, and results in significant wind

curtailment.
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(b) (cont.) Incorporate 600 MW of additional wind capacity into the South East.

Figure 6.6 (cont.): Maximum loading of the transmission network in the pre-dispatch

solution when connecting additional wind capacity in the South East. A significant

amount of additional wind capacity in the South East results in many congested

network elements.
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Branch Additional Wind Capacity (MW)

to from 100 200 300 400 500 600

M
id
-N

o
rt
h

(E
a
st
)

Snuggery Blanche 1.00 1.00 1.00 1.00 1.00 1.00

Tailem Bend Keith 0.52 0.52 0.52 0.52 0.51 0.51

Keith Kincraig 0.57 0.57 0.57 0.57 0.56 0.56

Mt Gambier Blanche 0.80 0.80 0.80 0.80 0.80 0.80

Kincraig Penola West 0.64 0.64 0.64 0.64 0.63 0.63

Penola West South East 132 0.50 0.50 0.50 0.50 0.50 0.50

South East 132 Mt Gambier 0.42 0.42 0.42 0.42 0.42 0.42

Snuggery South East 132 0.75 0.75 0.75 0.75 0.75 0.75

Waterloo Robertstown 132 0.65 0.63 0.62 0.62 0.59 0.62

Magill Adelaide CBD 1.13 1.13 1.13 1.13 1.13 1.13

Templers West Para 275 0.99 0.98 0.98 1.00 1.11 1.22

Tailem Bend 275 South East 275 0.76 0.76 0.76 0.76 0.84 0.94

Brinkworth 275 Templers West 0.99 0.98 0.98 1.00 1.11 1.22

Brinkworth 132 Brinkworth 275 0.77 0.77 0.76 0.77 0.80 0.83

South East 132 South East 275 1.08 1.13 1.19 1.25 1.30 1.39

M
id
-N

o
rt
h

(W
e
st
)

Snuggery Blanche 1.00 1.00 1.00 1.00 1.00 1.00

Tailem Bend Keith 0.52 0.52 0.52 0.52 0.51 0.52

Keith Kincraig 0.57 0.57 0.57 0.56 0.56 0.56

Mt Gambier Blanche 0.80 0.80 0.80 0.80 0.80 0.80

Kincraig Penola West 0.64 0.64 0.64 0.63 0.63 0.63

Penola West South East 132 0.50 0.50 0.50 0.50 0.50 0.49

South East 132 Mt Gambier 0.42 0.42 0.42 0.42 0.42 0.42

Snuggery South East 132 0.75 0.75 0.75 0.75 0.75 0.75

Waterloo Robertstown 132 0.76 0.85 0.93 1.02 1.12 1.20

Magill Adelaide CBD 1.13 1.13 1.13 1.13 1.13 1.13

Templers West Para 275 1.07 1.15 1.23 1.43 1.69 1.81

Tailem Bend 275 South East 275 0.76 0.76 0.76 0.76 0.82 0.99

Brinkworth 275 Templers West 1.07 1.15 1.23 1.43 1.69 1.81

Brinkworth 132 Brinkworth 275 1.03 1.31 1.57 1.86 2.14 2.47

South East 132 South East 275 1.08 1.13 1.18 1.26 1.32 1.38

S
o
u
th

E
a
st

Snuggery Blanche 1.29 1.58 1.87 2.16 2.45 2.74

Tailem Bend Keith 0.62 0.73 0.83 0.92 1.00 1.08

Keith Kincraig 0.67 0.77 0.87 0.96 1.05 1.13

Mt Gambier Blanche 1.06 1.31 1.57 1.83 2.08 2.34

Kincraig Penola West 0.74 0.84 0.94 1.03 1.12 1.20

Penola West South East 132 0.59 0.69 0.79 0.87 0.95 1.02

South East 132 Mt Gambier 0.57 0.74 0.91 1.08 1.25 1.42

Snuggery South East 132 1.00 1.25 1.51 1.76 2.01 2.26

Waterloo Robertstown 132 0.68 0.68 0.68 0.69 0.70 0.70

Magill Adelaide CBD 1.13 1.12 1.12 1.12 1.11 1.12

Templers West Para 275 0.99 0.99 0.99 0.99 0.99 0.99

Tailem Bend 275 South East 275 0.88 1.01 1.15 1.24 1.29 1.38

Brinkworth 275 Templers West 0.99 0.99 0.99 0.99 0.99 0.99

Brinkworth 132 Brinkworth 275 0.74 0.72 0.70 0.70 0.69 0.69

South East 132 South East 275 1.46 1.92 2.36 2.82 3.29 3.73

Table 6.3: Maximal loading of the transmission network in the pre-dispatch solution

when connecting additional wind capacity. Branches that do not exceed capacity

are omitted.
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6.3.4 Investigate the connection to the Mid-North

We found that connecting the additional wind generation to Brinkworth in the Mid-

North (West) resulted in congestions in the transmission lines Brinkworth - Templers

West and Templers West - Para 275 as well as the Brinkworth transformer. There-

fore, we observe the benefit of connecting additional wind generation to Bungama.

We choose Bungama because there are three parallel paths connecting Bungama

to Adelaide and therefore the power flows are less sensitive to the power injection.

This can be seen in the visualisation of the power transmission distribution fac-

tors from Section 4.5. We compare the resulting curtailment and penetration in

Figure 6.7.

(a) Curtailed wind output (GWh). (b) Wind penetration.

Figure 6.7: Curtailed wind power output (left) and wind penetration (right) from

connecting to Brinkworth (before) and Bungama (after) in the Mid-North (West).

The connection to Bungama eliminates the previous curtailment observed from the

connection to Brinkworth.

It is evident that particular connections have larger tolerances to large power injec-

tions than others. In this case, Bungama is the superior connection for wind farm

integration as it eliminates all previous curtailment, seen in Figure 6.7a. Using this

connection point, the estimated spare network capacity in the Mid-North would

increase to approximately 1000 MW with negligible curtailment. This highlights

that the spare network capacity is highly dependent on the point of connection, and

motivates modelling techniques like ours where we have control over the connection

point.
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6.3.5 Alleviate curtailment in the South East

In Section 6.3.3, we identify four transmission branches that constrain spare network

capacity in the South East. As suggested by our model, we perform the following

transmission upgrades in order to eliminate curtailment within the first 100 MW of

additional wind capacity:

• increase the capacity of South East transformer by 50%.

• increase the capacity of Snuggery - Blanche transmission line by 30%.

• increase the capacity of Blanche - Mt Gambier transmission line by 5%.

• increase the capacity of Snuggery - South East transmission line by 0.5%.

We compare the results of before and after transmission upgrades in Figure 6.8.

(a) Curtailed wind output (GWh). (b) Wind penetration.

Figure 6.8: Curtailed wind power output (left) and wind penetration (right) of

before and after transmission upgrades in the South East. The proposed upgrades

eliminate curtailment within the first 100 MW of additional wind capacity.

It is evident in Figure 6.8a that the proposed transmission upgrades eliminate cur-

tailment for the first 100 MW of additional wind capacity. However, the spare

network capacity is only increased to a value between 100-200 MW, corresponding

to less than 1% increase in wind penetration. After which, curtailment occurs at a

relatively steep rate.

6.4 Discussion

In this chapter we brought together models from previous chapters to form our

long-term congestion management model for the SA power network. The exact,
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real-life network is not available and therefore we developed a simplified open-access

AC model from publicly available data. There were two main challenges with this

model. First, public demand data is only available for the distribution network,

which omits power supplied directly to industry and confidential loads. This results

in an unrealistic mismatch between generation and load which requires a lot of work

to balance. Second, there is very limited published data about FACTS devices and

therefore expert knowledge is required to handle reactive power supplies. Further-

more, we used a DC approximation in order to obtain a closed-form power flow

solution. We briefly assessed the usefulness of the DC approximation to our AC

model. However, our assessment relies on the results of Purchala et al. [54], and is

by no means exhaustive. We recognise a definite need for future work into the devel-

oping and testing of network models. This will provide consistency and allow other

research problems to avoid the time consuming process of network estimation.

We limited ourselves to using the time series of generation and load from 2015

in order to avoid wind curtailment that occurred after September 2016 when SA

experienced a state-wide blackout. If curtailment were present in the original data

this would introduce a whole new set of difficulties: curtailed wind farms would

affect the estimation of regression parameters in the wind power simulation and the

upper bound in the re-dispatch model would need to be able to distinguish between

curtailed and normal operation. The ability to handle curtailed data is crucial for

the study of more recent years and hence, handling curtailed data is an important

area of future research.

Our modelling is restricted to investigating additional wind capacity in the Mid-

North and South East. Whilst this may seem fairly restrictive, these are the two

major REZs that cover the majority of the network. Although as the spare network

capacity within the Mid-North is used, simulation of wind generation in other areas

will become of interest. Potentially, more flexibility could be achieved through

spatio-temporal modelling which is another area of future research.

The estimation of wind curtailment relies on the short-term re-dispatch model. We

used a novel short-term re-dispatch model in the form of a linear optimisation which

maximises wind generation. The re-dispatch may underestimate curtailment for

three reasons. First, the optimisation is independent of time and therefore assumes

sufficient forecasting is performed to be able to operate at the optimal solution.

Second, in some circumstances, operating at maximum wind generation is not cost

effective due to conventional generator shut down and start up costs. Third, the

only security constraint applied corresponds to the transmission constraints. Others
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include N − 1 security which ensures the network remains stable after the loss of

any one element. Adding these additional constraints will increase the estimated

amount of wind curtailment. Similar to the network model, the real re-dispatch

is not available and therefore there is a need for future work into developing and

testing re-dispatch models.

We have developed a high-level model that provides critical information for specific

wind farm integration problems. In Section 6.3.4, we saw that choosing a different

bus connection for additional wind generation in the Mid-North (West) dramatically

changed network congestion. There are fewer connection options for other zones

such as the South East. However, different connections may reduce the number of

required line upgrades for curtailment free integration. This motivates a need for

an efficient exhaustive model that determines an optimal connection arrangement,

but for now this is yet another area for future work.



Chapter 7

Conclusion

In this thesis we have made two main contributions: an improved emergent cascade

model and a new long-term congestion management model. The congestion man-

agement model consists of three new components, including a network model of SA,

a wind power simulation and a short-term generation re-dispatch model. Here we

recap the main findings of each section, discuss lessons learned, and describe future

work.

Chapter 3: Emergent cascades

Findings In this chapter we discuss the emergent cascade model of Nesti et al. [38],

which is the initial model that investigates cascades that arise from fluctuations in

renewable energy. The authors use hourly power generation data of wind and solar

farms to estimate the steady-state covariance matrix of the power injections. We find

that the wind model has a reasonable goodness-of-fit and show that the diagnostics

of the solar model suggest the presence of significant cycles. Using a power spectrum,

we identify significant cycles in solar generation corresponding to the annual and

daily cycles. We find that the extended solar model that incorporates a Fourier

series fitted to the significant cycles improves the goodness-of-fit. Furthermore, we

find that our extended model reduces the diagonal elements of the line covariance

matrix and hence decreases the probability of line failure.

Lessons learned and future work The failure probabilities rely heavily on the

estimation of the steady-state covariance matrix of the power injections. More

accurate models for the steady-state covariance matrix, such as those developed in
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this thesis, should be used. Furthermore, future work would be to estimate the

steady-state covariance matrix of the power injections from shorter-time-interval

data, such as 5-15 minutes, for more accurate estimates of the probabilities of line

failure.

Chapter 4: South Australian power network

Future work In this chapter we outline our simplified open-access AC model of

the South Australian transmission network and show its capability of emulating

network operation. We then apply a DC approximation to obtain a closed-form

power flow solution. Unfortunately, the public data used for our SA network model

may not be realistic, and therefore applying our method to more accurate data,

potentially obtained from the network operators ElectraNet, is future work. We

note that a consequence of more accurate data may result in the network model

becoming confidential as opposed to open-access.

Another area of future research is extending our method to incorporate AC power

flows. This is inherently more difficult due to reactive power and requires a com-

patible AC re-dispatch model.

Chapter 5: Wind power simulation

Findings In this chapter we develop a wind power simulation for future wind

farms in SA. Our model takes account of key features such as correlation with

existing wind farms, climatic inputs, temporal dependence in wind generation and

non-Gaussian errors. The model has been verified on existing wind generation data

and shown to be accurate.

Lessons learned and future work Currently, the wind power simulation model

is restricted to the South East and the Mid-North. Spatio-temporal modelling may

be applied to the existing data in order to simulate the time series of generation for

a new wind farm in other REZs. This becomes an important area of future work as

the spare network capacity in the Mid-North is used.
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Chapter 6: Congestion and wind curtailment

Findings Our last main section focuses on the long-term congestion management

model. Integrating the wind farm simulation into a network model with a re-dispatch

model provides a realistic method for modelling new wind farms at a high level of

resolution. Since our open-access network model may not be realistic, our analysis

is a proof of concept which demonstrates that comprehensive realistic models can

describe future congestions. This information may aid network planning in long-

term congestion management.

Lessons learned and future work We use a novel re-dispatch model designed

to maximise wind generation. This may underestimate curtailment for two reasons.

First, the re-dispatch is time independent and assumes sufficient forecasting is per-

formed to operate at the optimal solution. However, maximum wind generation

may not always be cost effective due to conventional generator start up and shut

down costs. Second, we can further constrain the re-dispatch by including genera-

tor ramping rates and N − 1 security. More sophisticated re-dispatch models will

increase estimated wind curtailment and more accurately represent real operation.

Introducing more sophisticated re-dispatch models is more future work.

Another area of future research is to be able to use generation data where curtailment

is present. We were restricted to 2015 in order to avoid curtailment, but modelling

of more recent years will need to manage curtailment. What makes this a very

difficult problem is that curtailment is not published. Therefore, identifying wind

farms that are curtailed is an important area of future research.

Closing remarks

Here we have provided an in-depth long-term congestion management model that

quantifies the impact of connecting new wind farms on network congestion and

wind curtailment in South Australia. We hope our methods will be used for future

work investigating network congestion and wind curtailment in South Australia and

elsewhere.
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Revised South Australian network

topology

We simplify the network topology of South Australia by combining various substa-

tions. We sum the load and generation at the individual buses to create the time

series of load and generation for our simplified network. In Figure A.1, we provide

a visualisation of the combined substations. In Table A.1, we present the edge-list

and data for our simplified network.

In Chapter 4, we discussed that to emulate real operation, the generators are con-

nected to the high-voltage buses via transformers. These transformers are necessary

to control the voltage fluctuations of the high-voltage buses. In Figure A.2, we

present a visual representation of the edge-vertex incidence matrix for the SA net-

work with the additional transformers.
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North West†
Torrens Island

Pelican Point

New Osborne

Kilburn

Northfield

South West†
Happy Valley

Morphett Vale East

Cherry Gardens

Para
Parafield Gardens

Munno Para

Angus Creek

Adelaide CBD†
East Terrace

City West

Mt Barker South
Mt Barker

Tailem Bend
Mobilong

Mannum

Templers
Dorrien

Clare North
Mintaro

Waterloo
Waterloo East

Monash
Berri

Port Lincoln
Sleaford

Yadnarie
Wuddina

Cultana
Whyalla Central

Davenport
Olympic Dam

Neuroodla

Leigh Creek

Bungama
Baroota

Hummocks
Kadina East

Ardrossan West

Dalrymple

Penola West
Ladbroke Grove

Snuggery
Mayura

Brinkworth
Red Hill

† indicates an artificial name.

Figure A.1: Buses that are combined in order to obtain the simplified topology in

Figure 4.2.
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to from ID voltage (kV) Spr/Aut Summer Winter Length (km)

Blanche Snuggery SNGBLA 1 132 111.00 105.00 126.00 49.60

Brinkworth 132 Bungama 132 REDBUN T 132 150.00 141.00 173.00 40.83

Brinkworth 132 Clare North BRICLN 1 132 160.00 160.00 160.00 31.88

Clare North Waterloo MINWAT 1 132 189.00 183.00 207.00 18.88

Cultana 132 Yadnarie CULMBK T 132 89.00 73.00 126.00 153.44

Hummocks Bungama 132 BUNHUM T 132 111.00 105.00 126.00 100.91

Keith Tailem Bend 132 TABKEI 2 132 183.00 178.00 183.00 133.24

Kincraig Keith KEIKIN 1 132 183.00 183.00 183.00 109.39

Monash North West Bend NWBMON 1 132 165.00 165.00 165.00 103.38

Mt Gambier Blanche MTGBLA 1 132 118.00 118.00 126.00 19.84

North West Bend Robertstown 132 ROBNWB 1 132 145.00 141.00 158.00 71.80

Penola West Kincraig KINPEW 1 132 183.00 183.00 183.00 63.27

South East 132 Penola West PEWSES 1 132 183.00 178.00 183.00 39.14

South East 132 Mt Gambier SESMTG 1 132 183.00 178.00 183.00 39.14

South East 132 Snuggery SNGSES T 132 289.00 274.00 290.00 47.78

South West Mt Barker South MTBCHG 1 132 183.00 178.00 183.00 24.09

Templers Para 132 TEMROS 1 132 137.00 137.00 137.00 9.65

Waterloo Hummocks HUMWAT 1 132 111.00 105.00 126.00 97.06

Waterloo Templers WATTEM 1 132 137.00 137.00 137.00 57.01

Waterloo Robertstown 132 ROBMW4 2 132 137.00 137.00 137.00 27.35

Yadnarie Port Lincoln YADPLT 1 132 89.00 73.00 91.00 132.48

Adelaide CBD Magill MAGEAT 1 275 286.00 286.00 286.00 7.69

Belalie Davenport DVPBLI 1 275 613.00 591.00 675.00 141.52

Blyth West Bungama 275 BUNBHW 1 275 481.00 451.00 564.00 78.87

Brinkworth 275 Davenport DVPBRI 1 275 336.00 289.00 452.00 155.81

Bungama 275 Davenport DVPBUN 1 275 429.00 429.00 429.00 94.83

Canowie Mt Lock MLOCAN 1 275 613.00 591.00 675.00 36.05

Davenport Cultana 275 DVPCUL 2 275 457.00 457.00 457.00 66.21

Magill North West TOAMAG 1 275 617.00 595.00 680.00 50.66

Magill Para 275 PARMAG 1 275 617.00 595.00 667.00 24.32

Mt Barker South Tungkillo MTBMB3 1 275 366.00 356.00 366.00 29.97

Mt Lock Davenport DVPMLO 1 275 476.00 476.00 476.00 90.03

North West Adelaide CBD TOBCIW 1 275 750.00 750.00 750.00 19.55

Para 275 Robertstown 275 ROBPAR 1 275 481.00 451.00 564.00 154.56

Para 275 North West PARTOA 4 275 857.00 857.00 857.00 24.35

Para 275 Templers West TEWPAR 1 275 336.00 289.00 452.00 1.79

Para 275 Blyth West BHWMUN 1 275 481.00 451.00 564.00 102.48

Robertstown 275 Canowie CANROB 1 275 476.00 476.00 476.00 83.25

Robertstown 275 Mokota MOKROB 1 275 429.00 429.00 429.00 57.01

South West Mt Barker South CHGMTS 1 275 1226.00 1182.00 1350.00 23.72

South West Magill MAGHAV 1 275 905.00 902.00 905.00 29.72

Tailem Bend 275 South East 275 TABSES 2 275 617.00 597.00 657.00 325.90

Tailem Bend 275 South West CHGTAB 1 275 617.00 597.00 677.00 138.81

Tailem Bend 275 Tungkillo TUNTAB 1 275 624.00 603.00 684.00 69.30

Templers West Brinkworth 275 BRITEW 1 275 336.00 289.00 452.00 1.79

Tungkillo Para 275 PARTUN 1 275 962.00 896.00 1120.00 45.77

Tungkillo Robertstown 275 ROBTUN 1 275 572.00 572.00 572.00 109.02

Willalo Mokota MOKWIO 1 275 613.00 591.00 675.00 12.78

Willalo Belalie WIOBLI 1 275 613.00 591.00 675.00 16.89

Brinkworth 132 Brinkworth 275 T BRI - 200.00 200.00 200.00 -

Bungama 132 Bungama 275 T BUN - 200.00 200.00 200.00 -

Cultana 132 Cultana 275 T CUL - 200.00 200.00 200.00 -

Para 132 Para 275 T PAR 160.00 160.00 160.00 -

Robertstown 132 Robertstown 275 T ROB - 160.00 160.00 160.00 -

South East 132 South East 275 T SES - 200.00 200.00 200.00 -

Tailem Bend 132 Tailem Bend 275 T TAB - 160.00 160.00 160.00 -

Table A.1: Edge-list data of our simplified network. The columns Spring/Autumn,

Summer and Winter are the seasonal branch capacities measured in MVA.
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Figure A.2: The edge-vertex incidence matrix for the SA network with the addi-

tional transformer connections between the generators and high-voltage buses. The

transformers correspond to the rows greater than 42 and the columns greater than

56.



Appendix B

Spectral analysis of wind

generation in South Australia

The seasonality of wind generation in South Australia is explored using the power

spectrum. The power spectrum is a spectral analysis tool that describes a time series

by the distribution of power across the different frequencies. Significant frequencies

are then used in a Fourier series for mean prediction. The effectiveness of the

Fourier model relies on two components: the variance explained and the stability

of the significant cycles over time. We first fit a low-pass filter in order to assess

whether a Fourier model is a viable method. Then, we analyse its stability over

time.

Denote by υk(ω) the power of frequency ω in the time series of generation for wind

farm k. We calculate the total power, which is also the variance explained, of a

low-pass filter with cut-off corresponding to a daily cycle. The resulting Fourier

series explained 78% of the variance on average. This is a high enough percentage

to consider this as a possible mean prediction method. However, a low-pass fits all

the frequencies that are lower than the daily cut-off and therefore over-fits the data.

We now attempt to identify a smaller set of frequencies that greatly contribute to

the power of the low-pass filter.

The wind power generation is high resolution data measured at 5-minute intervals

which captures the variability of wind power. Higher resolution data contains more

frequencies than lower resolution data and in this case the 5-minute data results in

a noisy power spectrum. This makes it difficult to determine significant frequencies

because it is unclear if the noise is caused by the resolution or a flat spectrum. We
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propose two methods, down-sampling and aggregation, to obtain lower resolution

data to determine whether the noise is a result of the high resolution data. Down-

sampling is performed by sampling equally spaced observations of the data at a lower

resolution, and aggregation is performed by summing the values of equally spaced

intervals at a lower resolution to obtain a new aggregated series. As opposed to

down-sampling, aggregation increases the signal to noise ratio to ensure the signifi-

cant frequencies originate from the signal. We use down-sampling and aggregation

to calculate new datasets at 30-minute, hourly and daily resolutions for the years

2016 and 2017. We rank the frequencies by total power on each dataset such that

the total power of frequency ω across all the wind farms is given by

υ̂(ω) =
1

n

n∑
k=1

υk(ω)∑
ω υk(ω)

where υk(ω) is the power spectrum of wind farm k and n is the number of wind

farms. We rank the frequencies on their total power, υ̂(ω), in Table B.1.

5-min 30-min 60-min daily

1 0.97 0.97 0.97 0.97

2 365.50 365.50 365.50 4.87

3 2.44 2.44 2.44 2.44

4 4.87 4.87 4.87 5.85

5 64.82 64.82 29.73 30.70

6 29.73 29.73 64.82 77.00

7 30.70 30.70 30.70 64.82

8 77.00 77.00 77.00 24.37

9 39.47 39.47 39.47 37.52

10 1.95 1.95 1.95 53.61

11 37.52 37.52 37.52 39.47

12 19.01 19.01 19.01 26.32

13 72.61 72.61 72.61 19.01

14 1.46 1.46 1.46 1.46

15 24.37 24.37 24.37 107.21

16 5.85 5.85 5.85 8.77

17 36.55 36.55 36.55 29.73

18 101.85 101.85 101.85 46.78

19 58.97 58.97 58.97 1.95

20 56.04 56.04 56.04 72.61

(a) Down-sampled.

5-min 30-min 60-min daily

1 0.97 0.97 0.97 0.97

2 365.50 365.50 365.50 2.44

3 2.44 2.44 2.44 4.87

4 4.87 4.87 4.87 29.73

5 64.82 64.82 64.82 30.70

6 29.73 29.73 29.73 64.82

7 30.70 30.70 30.70 39.47

8 77.00 77.00 77.00 1.95

9 39.47 39.47 39.47 77.00

10 1.95 1.95 1.95 37.52

11 37.52 37.52 37.52 72.61

12 19.01 19.01 19.01 19.01

13 72.61 72.61 72.61 1.46

14 1.46 1.46 1.46 24.37

15 24.37 24.37 24.37 5.85

16 5.85 5.85 5.85 36.55

17 36.55 36.55 36.55 101.85

18 101.85 101.85 101.85 58.97

19 58.97 58.97 58.97 53.61

20 56.04 56.04 56.04 56.04

(b) Aggregated.

Table B.1: Ranking of the frequencies with the highest total power, υ̂(ω), across

all wind farms for each dataset. The columns 5-min is the significant cycles of the

original data.

The results from Table B.1 demonstrate consistency amongst the most significant

frequencies. We fit a Fourier series corresponding to the significant cycles above for

the years 2016-2018 and record the corresponding variance explained in Table B.2.

This demonstrates that the Fourier series explains only at most 24% of the vari-
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ance, which decreases to 17% in 2018. Therefore, we conclude that the spectrum is

relatively flat and that cycles of wind generation may change from year to year.

2016 2017 2018

BLUFF1 0.22 0.18 0.16

CATHROCK 0.13 0.17 0.11

CLEMGPWF 0.14 0.14 0.10

CNUNDAWF 0.17 0.17 0.17

HALLWF1 0.24 0.17 0.17

HALLWF2 0.23 0.18 0.15

LKBONNY1 0.17 0.17 0.15

LKBONNY2 0.18 0.16 0.13

LKBONNY3 0.18 0.16 0.13

MTMILLAR 0.17 0.23 0.13

NBHWF1 0.21 0.16 0.15

SNOWNTH1 0.17 0.17 0.12

SNOWSTH1 0.18 0.17 0.11

SNOWTWN1 0.14 0.17 0.13

STARHLWF 0.18 0.18 0.15

WATERLWF 0.21 0.18 0.16

WPWF 0.13 0.17 0.13

Table B.2: Variance explained by the selected cycles for each year.
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Processing maintenance

The time series of generation data for 2015 from AEMO [45] contains periods where

the power output of a wind farm appears constrained. We believe this is caused

by either an electrical feeder malfunction or general maintenance. Since this is a

large dataset with over 100,000 observations for each wind farm, manually removing

these points would be too time consuming. Therefore, we apply a basic set of rules

in order to identify the maintenance times within the time series of generation for

each wind farm. Maintenance corresponds to a point such that

- if a wind farm has no power output and the average of all other wind farms

within the zone is greater than the cuttoff c, or

- if a wind farm has power output p% less than the average of all other wind

farms within the zone for at least h hours.

We use different values for the parameters c, p and h, as the within-zone correlation

was different for each zone. Below we outline the values of the parameters.

Zone c p h

South East 0.1 pu 20% 1 hour

Mid-North (East) 0.2 pu 40% 3 hours

Mid-North (West) 0.2 pu 30% 2 hours

Table C.1: Maintenance processing parameter values.

We recognise that this processing method might not be perfect; however, superior

methods will have negligible effect on the parameter estimation due to the size of

the dataset.



Appendix D

Diagnostic plots for the wind

power simulation

In Chapter 5, the goodness-of-fit of the mean prediction model and error simulation

model is assessed using various diagnostic plots. These are produced by applying a

leave-one-out technique and treating the power output of the removed wind farm as

unknown. We do this to emulate predicting values of a new wind farm whose power

output is unknown. Within Chapter 5, we present the diagnostic plots for the case

where the Snowtown North Wind Farm (SNOWNTH1) is treated as unknown. The

diagnostic plots corresponding to all other wind farms are presented here.
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Figure D.1: Residual versus fitted values of the average regression model. The x-axis

is the fitted values, η∗t , and the y-axis is the difference between the actual values

and the fitted values. A linear trend-line is evident in the residuals.
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Figure D.2: Residual versus fitted values of the corrected average regression model.

The x-axis is the fitted values, η̂∗t , and the y-axis is the difference between the actual

values and the fitted values. The average correlation coefficient of -0.08 suggests a

relatively small linear trend.
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Figure D.3: Auto-correlation of the actual residuals and the simulated residuals, ζ∗t .

Simulations are of an ARMA(2,1) time series model fitted to the residuals of the

corrected average regression model. The simulations of the ARMA(2,1) model the

strong auto-correlation observed in the residuals.
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Figure D.4: Partial auto-correlation of the actual residuals and the simulated resid-

uals, ζ∗t . Simulations are of an ARMA(2,1) time series model fitted to the residuals

of the corrected average regression model. The simulations of the ARMA(2,1) ac-

curately model the partial auto-correlation.
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Figure D.5: The fit of the simulated residuals compared to the actual residuals

when each wind farm is treated as unknown. The x-axis is the fitted values, η̂∗t ,

of the corrected average regression. The y-axis is the logit difference between the

averaged quantile function, Qê∗t |η̂∗t (τ), and the actual residual quantiles evaluated

at τ = 0.05, 0.5, 0.95. The method tends to underestimate the lower and median

quantiles when the expected wind power output is low.
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Figure D.5 (cont.): The fit of the simulated residuals compared to the actual resid-

uals when each wind farm is treated as unknown. The x-axis is the fitted values, η̂∗t ,

of the corrected average regression. The y-axis is the logit difference between the

averaged quantile function, Qê∗t |η̂∗t (τ), and the actual residual quantiles evaluated

at τ = 0.05, 0.5, 0.95. The method tends to underestimate the lower and median

quantiles when the expected wind power output is low.
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Figure D.5 (cont.): The fit of the simulated residuals compared to the actual resid-

uals when each wind farm is treated as unknown. The x-axis is the fitted values, η̂∗t ,

of the corrected average regression. The y-axis is the logit difference between the

averaged quantile function, Qê∗t |η̂∗t (τ), and the actual residual quantiles evaluated

at τ = 0.05, 0.5, 0.95. The method tends to underestimate the lower and median

quantiles when the expected wind power output is low.
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Obtaining statistics of cascading line outages spreading in an electric transmis-

sion network from standard utility data. IEEE Transactions on Power Systems,

31(6):4831–4841, 2016.

[20] ElectraNet. Power system strength. https://www.electranet.com.au/wp-

content/uploads/2018/05/180103_ElectraNet_System-Strength_Fact-

Sheet_WEB.pdf, 2018. [Online; accessed 10 Apr. 2020].

[21] DP Energy. Port Augusta renewable energy park. http://dpenergy.info/

parep/the-project, 2019. [Online; accessed 8 Apr. 2020].
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