
UNIVERSITY OF ADELAIDE

DOCTORAL THESIS

Bio-Inspired Computing For Complex
And Dynamic Constrained Problems

Author:
Vahid ROOSTAPOUR

Supervisor:
Prof. Frank NEUMANN

Co-Supervisors:
Dr. Wanru GAO

Dr. Mojgan POURHASSAN

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Optimisation and Logistics
School of Computer Science

October, 2020

i

Declaration of Authorship
I, Vahid ROOSTAPOUR, certify that this work contains no material which has been
accepted for the award of any other degree or diploma in my name, in any university
or other tertiary institution and, to the best of my knowledge and belief, contains
no material previously published or written by another person, except where due
reference has been made in the text. In addition, I certify that no part of this work
will, in the future, be used in a submission in my name, for any other degree or
diploma in any university or other tertiary institution without the prior approval of
the University of Adelaide and where applicable, any partner institution responsible
for the joint-award of this degree.

I acknowledge that copyright of published works contained within this thesis re-
sides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on
the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University
to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision of
an Australian Government Research Training Program Scholarship.

Signed:

Date: October 7, 2020

ii

UNIVERSITY OF ADELAIDE

Abstract
Faculty of Engineering, Computer and Mathematical Sciences

School of Computer Science

Doctor of Philosophy

Bio-Inspired Computing For Complex And Dynamic Constrained Problems

by Vahid ROOSTAPOUR

Bio-inspired algorithms are general-purpose optimisation methods that can find so-
lutions with high qualities for complex problems. They are able to find these so-
lutions with minimal knowledge of a search space. Bio-inspired algorithms (the
design of which is inspired by nature) can easily adapt to changing environments.
In this thesis, we contribute to the theoretical and empirical understanding of bio-
inspired algorithms, such as evolutionary algorithms and ant colony optimisation.
We address complex problems as well as problems with dynamically changing con-
straints. Firstly, we review the most recent achievements in the theoretical analysis
of dynamic optimisation via bio-inspired algorithms. We then continue our inves-
tigations in two major areas: static and dynamic combinatorial problems. To tackle
static problems, we study the evolutionary algorithms that are enhanced by using
a knowledge-based mutation approach in solving single- and multi-objective min-
imum spanning tree (MST) problems. Our results show that proper development
of biased mutation can significantly improve the performance of evolutionary algo-
rithms. Afterwards, we analyse the ability of single- and multi-objective algorithms
to solve the packing while travelling (PWT) problem. This NP-hard problem is
chosen to represent real-world multi-component problems. We outline the limita-
tions of randomised local search in solving PWT and prove the advantage of using
evolutionary algorithms. Our dynamic investigations begin with an empirical anal-
ysis of the ability of simple and advanced evolutionary algorithms to optimise the
dynamic knapsack (KP) problem. We show that while optimising a population of so-
lutions can speed up the ability of an algorithm to find optimal solutions after a dy-
namic change, it has the exact opposite effect in environments with high-frequency
changes. Finally, we investigate the dynamic version of a more general problem
known as the subset selection problem. We prove the inability of the adaptive greedy
approach to maintain quality solutions in dynamic environments and illustrate the
advantage of using evolutionary algorithms theoretically and practically.

iii

Acknowledgements

I would like to express my sincere appreciation to my principal supervisor, Prof.
Frank Neumann, for his patience, motivation and immense knowledge, and for his
continuous support of my PhD study. It’s been an honour to be one of his PhD
students. I thank him for encouraging my research and for allowing me to grow as
a research scientist.

I would like to extend my sincere thanks to my co-supervisors, Dr Mojgan Pourhas-
san and Dr Wanru Gao, for all their support and priceless guidance during my PhD.

Last but not least, I gratefully thank all of the co-authors of the papers built on the re-
search in this thesis: Aneta Neumann, Jakob Bossek, and Tobias Friedrich. I learned
a lot in collaboration with them.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

1 Introduction 1
1.1 Contibutions and Background . 2
1.2 Thesis Organisation . 6

I Basics 7

2 Bio-Inspired Computing and Analytical Methods 8
2.1 Introduction . 8
2.2 Local Search . 9

2.2.1 Randomised Local Search . 10
2.3 Evolutionary Computation . 11

2.3.1 Solution Representation . 11
2.3.2 Parent Selection . 11
2.3.3 Crossover . 12
2.3.4 Mutation . 12
2.3.5 Survivor Selection . 13
2.3.6 (1+1) EA . 13
2.3.7 Multi-Objective Evolutionary Algorithms 14

G-SEMO . 16
NSGA-II and SPEA2 . 16

2.4 Analytical Methods . 18
2.4.1 Deviation Bounds . 18
2.4.2 Fitness Based Partitions . 19
2.4.3 Drift Analysis . 19
2.4.4 Conclusion . 21

3 Combinatorial Optimisation 22
3.1 Introduction . 22

v

3.2 Linear Pseudo-Boolean Functions . 23
3.2.1 ONEMAX Problem . 24

3.3 Knapsack Problem . 24
3.4 Packing While Travelling . 25
3.5 Minimum Spanning Tree Problem . 27
3.6 Vertex Cover Problem . 28
3.7 Makespan Scheduling Problem . 28
3.8 Subset Selection and Submodular Functions 29
3.9 Conclusion . 30

4 A Survey on Evolutionary Algorithms in Dynamic Environments 32
4.1 Introduction . 32
4.2 Analysis of Evolutionary Algorithms on Dynamic Problems 33

4.2.1 ONEMAX Under Dynamic Uniform Constraints 34
4.2.2 Linear Pseudo-Boolean Functions Under Dynamic Uniform Con-

straints . 38
4.2.3 Dynamic Vertex Cover Problem 40
4.2.4 Dynamic Makespan Scheduling 42
4.2.5 The MAZE Problem . 44

4.3 Ant Colony Optimisation . 45
4.3.1 Dynamic Problems . 46

4.4 Conclusions . 47

II Static Combinatorial Optimisation Problems 48

5 Evolutionary Algorithms with Biased Mutation for the Minimum Span-
ning Tree Problem 49
5.1 Introduction . 49
5.2 Preliminaries . 50

5.2.1 Algorithms . 50
5.3 Single-Objective Problem . 53
5.4 Multi-Objective Problem . 58

5.4.1 Experimental Approximation . 59
5.4.2 Theoretical Analysis . 61

5.5 Conclusion . 65

6 Baseline Evolutionary Algorithms for the Packing While Travelling Prob-
lem 67
6.1 Introduction . 67
6.2 Preliminaries . 68

6.2.1 Problem Definition . 68
6.2.2 Algorithms . 68

6.3 Theoretical Analysis . 70

vi

6.3.1 Correlated Weights and Profits 72
RLS_swap . 72
G-SEMOe . 74

6.3.2 Uniform Weights . 76
6.4 Experiments . 78

6.4.1 Benchmarking and Experimental Setting 78
6.4.2 Analysis . 79

6.5 Conclusion . 81

III Dynamic Combinatorial Optimisation Problems 82

7 Evolutionary Multi-Objective Optimisation for the Dynamic Knapsack Prob-
lem 83
7.1 Introduction . 83
7.2 The Dynamic Knapsack Problem . 85

7.2.1 The Dynamic Constraint . 86
7.2.2 Benchmark and Experimental Setting 86

7.3 Baseline Evolutionary Algorithms . 88
7.3.1 Algorithms . 88
7.3.2 Experimental Results . 90

Dynamic Uniform Constraint . 91
Dynamic Linear Constraint . 92

7.4 NSGA-II and SPEA2 . 95
7.4.1 New formulation for Dynamic KP 95
7.4.2 Additional Elitism . 96
7.4.3 Experimental Results . 97
7.4.4 Analysis . 98

7.5 Conclusion . 104

8 Pareto Optimisation for Dynamic Subset Selection 105
8.1 Introduction . 105
8.2 Problem Formulation . 107
8.3 Theoretical Analysis . 108

8.3.1 Algorithms . 108
8.3.2 Adaptive Generalised Greedy Algorithm 110
8.3.3 Pareto Optimisation . 112

8.4 Experimental Investigations . 116
8.4.1 Experimental Setting . 116
8.4.2 The Influence Maximisation Problem 117

Empirical Analysis . 118
8.4.3 EAMC and NSGA-II with elitism 120
8.4.4 The Maximum Coverage Problem 122

vii

Empirical Analysis . 123
8.5 Conclusions . 125

9 Conclusion 127

Bibliography 130

viii

List of Figures

4.1 Construction graph for pseudo-Boolean optimisation with n = 5 bits. . 46

5.1 Triangular-tailed graph G with a chain of p = n/4 triangles and a
giant component GC = Kn/2. [NW07] 51

5.2 Worst case graph for random initialisation in the setting of bit-representation. 57
5.3 Empirical probabilities pm(r) of edges to be part of at least one non-

dominated spanning tree as a function of its rank r measured by the
domination number (lower is better). The empirical data is accompa-
nied by regression models of the form b · ((n� 1)/n)r. See Table 5.1
for supportive results of a regression analysis. 60

5.4 Triangular-tailed graph G with a chain of p = n/4 triangles and a
giant component GC = Kn/2. [NW07] . 62

8.1 Single subgraph Gi of G = (U, V, E) . 112
8.2 Budget over time for dynamic problems 117

ix

List of Tables

4.1 Upper bounds on the expected re-optimisation times of evolutionary
algorithms on the ONEMAX problem with a dynamic uniform con-
straint. 34

4.2 Upper bounds on the expected re-optimisation time of evolutionary
algorithms on linear functions with a dynamic uniform constraint. . . 39

5.1 Results of regression analysis separated by graph class and instance
size. 61

7.1 The mean, standard deviation values and statistical tests of the offline
error for (1+1) EA, MOEA, MOEA_D based on the uniform distribu-
tion with all the weights as one. 91

7.2 The mean, standard deviation values and statistical tests of the offline
error for (1+1) EA, MOEA, MOEA_D based on the uniform distribution. 93

7.3 The mean, standard deviation values and statistical tests of the offline
error for (1+1) EA, MOEA, MOEA_D based on the normal distribution. 94

7.4 The mean, standard deviation values and statistical tests of the to-
tal offline error for MOEA_D, NSGA-II, SPEA2, NSGA-II with elitism
and, SPEA2 with elitism based on the uniform distribution. 99

7.5 The mean, standard deviation values and statistical tests of the total
offline error for MOEA_D, NSGA-II, SPEA2, NSGA-II with elitism,
and SPEA2 with elitism based on the normal distribution. 100

7.6 The mean, standard deviation values and statistical tests of the par-
tial offline error for MOEA_D, NSGA-II, SPEA2, NSGA-II with elitism
and, SPEA2 with elitism based on the uniform distribution. 102

7.7 The mean, standard deviation values and statistical tests of the partial
offline error for MOEA_D, NSGA-II, SPEA2, NSGA-II with elitism,
and SPEA2 with elitism based on the normal distribution. 103

8.1 The mean, standard deviation values and statistical tests of the par-
tial offline error for GGA, AdGGA, G-SEMO, and G-SEMOwp for the
dynamic influence maximisation problem. 119

x

8.2 The mean, standard deviation values and statistical tests of the par-
tial offline error for GGA, AdGGA, G-SEMOwp, EAMC, and NSGA-II
with elitism, based on the number of evaluations. 124

xi

To Mitra

1

Chapter 1

Introduction

Bio-inspired computing methods are well-known general problem-solvers that are
applicable to various problems. These algorithms (which include evolutionary algo-
rithms (EA) [ES15], ant colony optimisation(ACO) [DS04], and particle swarm opti-
misation (PSO) [KE95]) are inspired by procedures that occur in nature. EAs, for ex-
ample, mimic principles from Darwinian evolutionary theory, and ACO is inspired
by the pheromone-based communication of biological ants, which serves to find the
nearest path between the food source and the nest. These algorithms use random
operators and do not require much advance knowledge about the problem under
consideration. They are able to achieve high-quality solutions in cases where the
complexity of a problem makes problem-specific algorithms difficult to find. Dur-
ing the last two decades, these algorithms have been successfully implanted in a vast
range of applications, such as combinatorial optimisation problems [NW10b; SK18;
CWM11].

Combinatorial optimisation problems are the set of problems over finite discrete
search spaces that are bounded by a set of constraints, and the goal is to find the
optimal solution(s) with respect to given evaluation function(s). These problems
include a variety of theoretical and real-world applications with different levels of
computational complexity. The minimum spanning tree (MST) problem, knapsack
(KP) problem, and packing while travelling (PWT) problem are well-known combi-
natorial optimisation problems that represent real-world applications. While some
of the combinatorial optimisation problems, such as MST, are solvable in polyno-
mial time, many others are proven to be NP-hard. The complexity of NP-hard
problems, such as KP and PWT, is also different. PWT is proven not to have an al-
gorithm that guarantees a constant approximation ratio in polynomial time unless
P = NP , while there is a 2-approximation algorithm for KP (see Chapter 3 for the
details). Due to the ability of bio-inspired algorithms to explore the search space
of complex problems, their performance in optimising combinatorial problems has
been studied extensively in the literature.

Chapter 1. Introduction 2

1.1 Contibutions and Background

A wide range of studies have investigated the performance of bio-inspired algo-
rithms in practice, since these algorithms can easily be applied to a variety of prob-
lems. Moreover, the key feature of these algorithms is their use of random operators
to explore the search space, and theoretical analysis of random processes is chal-
lenging. Thus, although significant improvements have been achieved during the
last two decades in the theoretical understanding of bio-inspired strategies, there
is still a considerable gap between the theoretical and practical understanding of
these algorithms. This gap in understanding needs to be addressed [DN20; Jan13;
Pop14]. Theoretical investigations of bio-inspired methods have mostly considered
the performance of evolutionary algorithms and ant colony optimisation algorithms.
These investigations have included studies of polynomially solvable problems (such
as MST and the shortest path problem) as well as well-known NP-hard problems,
such as KP and subset selection [MA94; NW10a; QBF20; STW04].

The complexity of many combinatorial problems comes from their objective func-
tions. However, in real-world applications, another challenge is to deal with dy-
namic changes in the constraints during the optimisation process. Evolutionary al-
gorithms (in their capacity of general-purpose problem-solving methods) have been
widely used to tackle dynamic optimisation problems, both theoretically and empir-
ically [Yan15]. Many theoretical investigations have considered the performance of
evolutionary algorithms in dynamic environments, where either the constraint(s) or
some properties of the search space might change during the optimisation process.
Neumann and Witt studied the behaviour of the simplest evolutionary algorithm
((1 + 1) EA) on the dynamic makespan scheduling problem, in which the adver-
sary can change the processing time of a job [NW15]. They calculated the expected
time of finding a good-quality solution in different situations, where the algorithms
either started from scratch and the dynamic changes happened frequently, or the al-
gorithms started from a good-quality solution and aimed to find a new good-quality
solution after one change. The same analyses have also been applied to dynamic
graph problems where a dynamic change might add/remove an edge to/from a
graph [Bos+19; PRN19].

In this thesis, we review the most recent theoretical results relating to the perfor-
mance of evolutionary algorithms and ant colony optimisation in the context of
problems with dynamically changing constraints. We discuss how dynamism has
been applied to pseudo-Boolean benchmark functions and the specific case of the
ONEMAX problem, in addition to some well-known combinatorial optimisation prob-
lems such as the vertex cover problem, makespan scheduling, and the Maze prob-
lem. We describe the application of theoretical tools to analysing the performance of
evolutionary algorithms and ant colony optimisation.

Chapter 1. Introduction 3

After completing a review of the most recent theoretical results, we study the ben-
efits of using a knowledge-based mutation operator in evolutionary algorithms to
solve the single- and multi-objective MST (moMST) problems. The main idea is to
change the direction of the search based on external knowledge about the features
of the minimum spanning tree. For the classical MST problem, it is legitimate to as-
sume that edges of low weight/rank are more likely to be in an MST than edges
of high weight/rank. Such knowledge can also be leveraged in terms of biased
mutation, as demonstrated by Raidl et al. [RKJ06] on random graphs. The authors
showed that mutation, where the edge selection probability is biased towards lower
rank edges, can lead to immense speedups for evolutionary algorithms for different
sub-graph selection problems, inter alia the MST. Likewise, for the moMST prob-
lem, non-dominated spanning trees are more likely to be composed of edges which
are dominated by few other edges, i.e., edges of low non-domination level or dom-
ination number. A recent study by Bossek et al. [BGN19] confirms this assumption
empirically. Both Raidl et al. and Bossek et al. consider the simple edge-exchange
mutation on spanning trees: an edge is added to a spanning tree and an edge is
dropped from the unique introduced cycle to obtain another spanning tree. Bias is
introduced by modifying the edge selection probability to favour low-rank edges.
We show that although the biased mutation can significantly improve the running
time of evolutionary algorithms in terms of finding the MST, it might require expo-
nential expected running time when heavy edges are frequent and essential in the
MST. To avoid the exponential time, as well as to exploit the advantages of using
biased mutation, we introduce a mixed mutation operator. This operator performs
the biased mutation in half of the iterations and uses the common uniform mutation
in the other half. We prove that this new mutation operator improves the state-of-
the-art results for finding MST via evolutionary algorithms.

We continue our theoretical investigation of static problems by analysing the pack-
ing while travelling (PWT) problem [PN17]. PWT, also known as the nonlinear
knapsack problem, is a modified version of a more general problem called the travel-
ling thief problem (TTP) [BMB13]. These problems, which are common in real-world
applications and known as multi-components, include more than one component to
be solved [Bon+19]. Their final objective function integrates the components in a
way that optimising a single component does not necessarily result in a final high-
quality solution. The TTP problem, for example, is a combination of the travelling
salesman problem (TSP) and KP. In TTP, there is a graph of connected cities, and each
city has a number of items with positive profits and weights. A vehicle with constant
capacity has to visit each city exactly once and pick up the items in a way that max-
imises the benefit function. As the vehicle packs an item, the item’s weight impacts
the velocity of the vehicle. The higher the weight of the item, the lower the velocity
of the vehicle. The final benefit function combines the profit of the packed items and
the cost function, which is calculated as the total time that the vehicle takes to tra-
verse the chosen path according to the weight of the packed items. The cost function

Chapter 1. Introduction 4

in this problem is nonlinear. In PWT, the problem is only characterised by a fixed
route. However, it is proven that PWT is NP-hard, and there is no approximation
algorithm with a constant approximation ratio, even for two cities [PN17]. While the
objective function is still nonlinear, we consider a version of this problem in which
the weights and profits of the items are highly correlated. We show that the classic
randomised local search (RLS) algorithm is unable to escape from local optima and
present a modified mutation for RLS to address this stucking issue. We prove an
upper bound of O(n3) for our algorithm as well as the same upper bound for a well-
known multi-objective algorithm called G-SEMO. The other instance of PWT that is
considered in this thesis assumes items with weights equal to one. We show that
the simple evolutionary algorithm, (1 + 1) EA, finds the optimal solution of the uni-
form version in expected time O(n2 log(max{n, pmax}), where pmax is the maximum
profit of the items. Finally, we compare the algorithms in practice and show that
incorporating population can help local search algorithms to find the global optima.

Next, we analyse the performance of the well-known single- and multi-objective bio-
inspired optimisation algorithms on two dynamic combinatorial problems. Most
studies for dynamic problems so far focus on dynamic fitness functions [NYB12].
However, in real-world applications the optimisation goal, such as maximising profit
or minimising costs, often does not change. Instead, resources to achieve this goal
change over time and influence the quality of solutions that can be obtained. In the
context of continuous optimisation, dynamically changing constraints have been in-
vestigated in [AHN18; NY12].

The empirical investigation of dynamic KP is motivated by theoretical studies in
[Shi+19]. Shi et al. showed the efficacy of using multi-objective evolutionary al-
gorithms in optimising linear functions under dynamic uniform constraints. They
proved that a simple population-based algorithm outperforms (1 + 1) EA with at
least the factor O(n). In terms of the dynamic setting, they assumed that the algo-
rithms started with an optimal solution, right before a dynamic change altered the
capacity. In the first part of our experiments, we examine their results by considering
a version of KP in which the weights are set to one. We use the benchmarks provided
in [Pol+14], which were initially created for TTP and include three different types of
items in terms of the correlation between the weights and the profits with varying
complexity. The dynamism in our benchmark has been applied by changing the
capacity of knapsack, which is the constraint in KP, during the optimisation pro-
cess. We study changes with different magnitudes, either from uniform or normal
distributions, and different frequencies. While the initial experiments on KP with
uniform weights confirm the results in [Shi+19], the examinations on the general KP
show the importance of small details in the algorithm. Our results demonstrate the
impact of the size of the population in multi-objective algorithms as well as the defi-
nition of dominance, which is crucial in using multi-objective algorithms. Moreover,
we show that when dynamic changes happen with high frequency, the population

Chapter 1. Introduction 5

slows down the ability of the algorithms to track an optimal solution. The signifi-
cant performance of G-SEMO as a baseline evolutionary algorithm motivates us to
compare it with two well-known advanced algorithms in the literature, NSGA-II
and SPEA2. We show that the emphasis of these advanced algorithms on the dis-
tribution of final solutions reduces their ability to track the optimal solution after
dynamic changes.

We continue our studies on dynamic optimisation by considering the dynamic ver-
sion of the monotone subset selection problem under monotone dynamic constraints.
In this problem, which is the general version of all the combinatorial optimisation
problems that have been studied in this thesis, a set of elements, an objective func-
tion, a cost function and a budget constraint are given. The goal is to select a subset
of items such that it maximises the objective function without exceeding the budget
constraint. To consider the general monotone functions, we use a specific property
of set functions called submodularity. A set function f is, informally, submodular if,
for sets X ✓ Y, the contribution of adding a single element e to X is larger than the
contribution of adding e to Y, i. e. f (X [{e}) � f (Y [{e}). Submodular functions
and subset selection are widely used in artificial intelligence applications. Although
the subset selection is NP-hard, it has been proven that greedy algorithms guar-
antee the best possible worst-case approximation for monotone submodular func-
tions. These results have been extended to monotone functions concerning an ex-
ternal factor called submodularity ratio a f , which measures the submodularity of a
given function. The performance of evolutionary algorithms on subset selection has
been recently studied in [Bia+20] and [Qia+17]. They showed not only that multi-
objective evolutionary algorithms could guarantee the best possible worst-case ap-
proximation similar to the generalised greedy algorithm, but that such algorithms
could also find better solutions in real applications. Motivated by these studies, we
investigate the performance of an adaptive version of the generalised greedy algo-
rithm and G-SEMO on the monotone subset selection problem. They theoretically
proved that the adaptive greedy algorithm performs arbitrarily bad facing the dy-
namic problem. On the other hand, starting with a zero solution and budget B,
G-SEMO efficiently finds the optimal solution to all possible budgets smaller than
B. Moreover, it efficiently repairs the population after a dynamic change occurs.
Similarly to the empirical analysis of dynamic KP, we compare the performance of
G-SEMO with NSGA-II and SPEA2 (which are the established multi-objective al-
gorithms in the literature) in optimising the dynamic version of two different real-
world benchmarks. Our results demonstrate that, for some constraints, the greedy
algorithm outperforms evolutionary algorithms at the early stages of the optimi-
sation. However, as the process continues, the evolutionary algorithms maintain
their population in a way that allows them to respond adequately to the dynamic
changes. We also show that if there is enough time to react after a dynamic change,
there is no incremental improvement to be gained by using NSGA-II and SPEA-II in
comparison with G-SEMO.

Chapter 1. Introduction 6

1.2 Thesis Organisation

This thesis is structured as follows. In Part I, which relates to the background, Chap-
ter 2 introduces the bio-inspired algorithms and the analytical methods that are used
in this thesis. In Chapter 3, a brief history and the exact definitions of the problems
that we analyse are presented. Chapter 4 is a survey that reviews the most recent
results of evolutionary algorithms and ant colony optimisation on well-known prob-
lems. Part II of this thesis presents the results of our investigations on static prob-
lems. In Chapter 5, we outline our studies on the impact of using biased mutation
in evolutionary algorithms to solve single- and multi-objective MSTs. The results of
analysing the baseline evolutionary algorithms facing PWT are explained in Chapter
6. In Part III of the thesis, we present our investigation on the behaviour of evolu-
tionary algorithms optimising combinatorial problems with dynamically changing
constraints. We empirically analyse the performance of well-known bio-inspired al-
gorithms on the dynamic KP in Chapter 7. In Chapter 8, we consider a more general
problem in this field and show the outperformance of evolutionary algorithms in
finding high-quality solutions for the subset selection problem in comparison with
greedy algorithms. Finally, Chapter 9 concludes the thesis and presents the high-
lights of the study.

7

Part I

Basics

8

Chapter 2

Bio-Inspired Computing and Analytical Methods

2.1 Introduction

Bio-inspired computing incorporates computing methods inspired by nature. These
algorithms iteratively search for better solutions and employ heuristics that involve
randomness. They are also part of a broader class of stochastic search algorithms. The
random behaviour of bio-inspired computing methods means that they can be con-
sidered general problem-solving techniques, capable of finding high-quality solu-
tions for NP-hard problems.

Generally, the optimisation algorithms that we consider in this thesis begin the op-
timisation process using the initialised solution x. Defining the fitness function f :
D ! R, the algorithms explore the search space D to find solution y such that f (y)

will be better than f (x). They repeat the search procedure iteratively, with the aim
of finding a solution x⇤ with optimal fitness value.

While stochastic search algorithms have been developed rapidly, the theoretical anal-
ysis of their behaviour is still far behind is still far behind their practical implementa-
tion. The main reason for this is the lack of theoretical tools and the high complexity
of analysing random decisions that are made during the optimisation process. How-
ever, there have been significant achievements in developing tools and techniques
to study the randomness of bio-inspired algorithms during the past decade.

In this chapter, we introduce the bio-inspired algorithms and analytical methods that
are used in this thesis. In order to provide a detailed explanation , we use a well-
known pseudo-Boolean benchmark function called LEADINGONES. In this problem,
solutions x = (x1, · · · , xn) 2 {0, 1}n are binary bit-strings of size n. The fitness value
of a solution is the length of consecutive 1 bits that start from the first position. The
fitness function is mathematically defined as LO(x) = Ân

j=1 ’j
i=1 xi.

This chapter is structured in two parts. The first part begins by introducing local
search and the randomised local search algorithm (Section 2.2). Next, in Section 2.3,

Chapter 2. Bio-Inspired Computing and Analytical Methods 9

Algorithm 1: Local Search
1 The initial solution x and neighbourhood function N (x) are given;
2 while stopping criterion not met do
3 Replace x with the better solution y 2 N (x)

we present the main concepts of evolutionary algorithms, how to model a prob-
lem in order to solve it using evolutionary algorithms, and the single- and multi-
objective algorithms that are considered in this thesis. In the second part of this
chapter, we introduce the analytical methods which are commonly used to anal-
yse the performance of bio-inspired algorithms. We present deviation bounds in
Section 2.4.1 , followed by recent approaches such as fitness-based partitioning and
drift analysis (Sections 2.4.2 and 2.4.3, respectively).

2.2 Local Search

As the name suggests, local search algorithms try to find a good-quality solution by
locally searching a portion of the search space. A local search algorithm starts from
an initial solution (chosen randomly or initialised using another algorithm) and it-
eratively explores its neighbourhoodfor a better quality solution (see Algorithm 1).
Note that an appropriate neighbourhood function is required to define the neigh-
bourhood. When a new solution is found, the search continues, using the new solu-
tion as the initial point. The search stops when the algorithm is unable to improve
the solution, which occurs when it has either found the optimal solution or become
stuck in local optima.

In complex search spaces, it is common that local search algorithms become stuck in
a local optimum point. In other words, they find a solution that is better than its sur-
roundings, but which is not necessarily the global optima. To avoid this problem,
a proper definition of neighbourhood function N (x) is necessary. The neighbour-
hood is mainly chosen based on the solution representation. For bit-string solutions,
it is common to define the neighbourhood using the Hamming distance. For two
solutions x, y 2 {0, 1}n, Hamming distance H(x, y) = Ân

i=1 = |xi � yi| counts the
number of bits that have different values to each other. The neighbourhood of a bit-
string solution x is defined by solutions y, such that H(x, y) is either less than some
constant value c or equal to c. When the solutions are represented by real values,
one can use the Euclidean distance function to determine the neighbourhood. Size
of neighbourhood significantly impacts the final results of local search algorithms.
Searching a larger portion of the search space might prevent the algorithm from con-
verging on an optimal point. On the other hand, searching a small neighbourhood
causes fast convergence with insufficient exploration. One approach which benefits
from this trade-off is to use a dynamic neighbourhood size. In such cases, the algo-
rithms start with the larger neighbourhood, which entails exploration, and reduce it

Chapter 2. Bio-Inspired Computing and Analytical Methods 10

Algorithm 2: RLS
1 The initial solution x is given;
2 while stopping criterion not met do
3 y flip one bit of x chosen uniformly at random;
4 if f (y) � f (x) then
5 x y;

gradually, so that perform the exploitation.

Another considerable issue in local search algorithms is the direction of the search.
This issue entails two main questions: what is the criteria for the algorithm to accept
a new solution, and how does the algorithm choose the next solution? Regarding
the quality of new solutions, to prevent the algorithm from becoming stuck at a
local optimum point, it might be necessary for the algorithms to be able to accept
solutions with at least the same quality as that of the current search point. In local
search algorithms, there are two approaches to searching the neighbourhood. One is
to explore all the possible neighbours of the current solution, and to then choose the
best one , in terms of the fitness value, as the next point. This approach, however,
does not apply to many problems, because of the size of the search space. This
approach is impractical in settings where the search space is prohibitively large. The
other approach is to select the first solution in the neighbourhood that satisfies the
criteria.

The following section describes the randomised local search algorithm. This al-
gorithm chooses a neighbour solution by performing a limited number of random
changes to the current solution.

2.2.1 Randomised Local Search

Consider the LEADINGONES problem introduced in Section 2.1. Let x denote the
initial solution. The simplest approach to maximising LO(x) is to iteratively choose
a random solution y near x and replace x with y if LO(y) � LO(x). This is precisely
what the randomised local search (RLS) does.

The progress continues until RLS cannot find a better solution within a preset num-
ber of iterations. Note that the size of neighbourhood plays an important role in this
algorithm. In the coming chapters, we will present some The process continues until
RLS cannot find a better solution within a pre-set number of iterations. Note that the
size of the neighbourhood plays an important role in this algorithm. In the coming
chapters, we will present some situations in which RLS cannot escape from local op-
tima due to the small size of the neighbourhood. On the other hand, searching in a
large area prevents the algorithm from converging on a high-quality solution.

In this thesis, we consider problems in which the solutions are presented as binary
bit-strings with size n. For such problems, the standard RLS algorithm is presented

Chapter 2. Bio-Inspired Computing and Analytical Methods 11

in Algorithm 2. Starting with an initial solution x, RLS creates a new solution y by
flipping exactly one bit of x uniformly at random, and replacing x with y if the new
solution is superior in terms of fitness. The algorithm repeats these steps for as long
as the stopping criterion is not met.

The standard RLS uses the Hamming distance to determine the neighbourhood of
the current solution. It searches among solutions that are different from the current
solution in a single bit. While the fixed number of bit flips in this method eases the
theoretical analysis of RLS, we will consider problems in this thesis that are proven
to require more than one bit-flip to escape the local optima (Chapter 6). In such
cases, we modify the bit-flip process in RLS.

2.3 Evolutionary Computation

Evolutionary algorithms (EAs) are randomised general-purpose problem-solving
methods that mimic principles from Darwinian evolutionary theory based on the
concepts of selection, inheritance, competence, survival and reproduction. These al-
gorithms use a population of individuals and prioritise members of the population
with higher fitness values as potential parents of the next generation. These al-
gorithms have proven successful in a wide range of applications, in particular, in
tackling combinatorial NP-hard optimisation problems [CWM11; Deb01]. In Sec-
tions 2.3.1 to 2.3.5, we describe the four main issues to be addressed properly before
performing an evolutionary algorithm on a given problem.

2.3.1 Solution Representation

While evolutionary algorithms can be applied to various problems, they are only
capable of obtaining reliable results in the case of problems that have been appropri-
ately modelled. The first step in using EAs is to select solution representation. Either a
single real number, a binary value, a string, or a combination of different values can
represent a solution. For example, if we need to optimise the location of a facility
in a two-dimensional space, we can use an array of two real values as the solution
representation. In the LEADINGONES example, each solution is represented using a
sequence of zero/one bits.

2.3.2 Parent Selection

When performing evolutionary algorithms, the next step is to define the selection
operation. From a population of individuals, the selection operator must choose
parent solutions in order to produce the next generation. The selection must take
into account the quality of solutions, allowing for the fact that solutions with better
fitness value have a greater chance of becoming parents. In this way, the algorithm
assures that the offspring inherit the beneficial properties of better solutions. On the
other hand, it must not overcome the random nature of the evolutionary algorithms,

Chapter 2. Bio-Inspired Computing and Analytical Methods 12

i.e., even the worst solutions must have some chance of becoming parents, since they
might carry some unique specifications that could result in advantages if combined
with other individuals. Roulette wheel selection is a commonly used selection oper-
ator which calculates the probability of selecting each individual based on its fitness
value. For a solution x in population P, the likelihood of being chosen as a parent
is f (x)/(Ây2P f (y)). The other selection operator in many standard EAs is tourna-
ment selection. Tournament selection picks two individuals uniformly at random
and selects the better one as the parent.

The number of parents to be chosen depends on the reproduction operators, which
determine how to combine parents to create offspring. Usually, two main operators
(crossover and mutation) are used to perform this step. These operators are described
in the next sections.

2.3.3 Crossover

The crossover is responsible for recombination of the parents, and it results in in-
heritance. In other words, crossover operation transfers the properties of the parents
to the children. The standard crossovers take two individuals as parents and create
two offspring. For bit-string representations, the single-point crossover and uniform
crossover are commonly used operators. Consider two solutions x = (x1, · · · , xn)

and y = (y1, · · · , yn). The single-point crossover operator chooses a random num-
ber 1 i n � 1, cuts both solutions from the ith bit, and swaps the sub-parts.
The result of this operation for x and y will be xy1 = (x1, · · · , xi, yi+1, · · · , yn) and
xy2 = (y1, · · · , yi, xi+1, · · · , xn). The uniform crossover, on the other hand, selects
the ith bits of xy1 and xy2 from {xi, yi}, uniformly at random. This operator ran-
domly chooses a bit for the first offspring and sets the other bit for the second off-
spring. For the LEADINGONES problem, the following example shows how a low-
quality solution might carry beneficial properties. The crossover operation is the key
to transfer those properties to the next generation. Imagine there exists a solution
that has a series of zero bits at the beginning, followed by a long sequence of ones.
While the fitness value of this solution is minimal, using a single-point crossover to
combine it with an appropriate solution can result in a high-quality individual. Note
that this example also shows why the selection operator must consider some small
probability for selecting also bad solutions.

2.3.4 Mutation

The next step is to perform mutation. In contrast to the crossover (which transfers
the specifications), the mutation operator ensures that the population is not trapped
in a local area. In many situations, because of the dominance of good solutions and
their high chance of being selected for reproduction, most of the individuals con-
verge on the best-found solution. However, we need the population to cover all of
the search space, in order to find the global optima rather than converging on local

Chapter 2. Bio-Inspired Computing and Analytical Methods 13

ones. The mutation operator makes an entirely random change on an offspring. This
means it might develop a solution that is far from the original one, either in the solu-
tion space or in objective space. To perform the mutation, evolutionary algorithms
need a (small) mutation probability that is set as a parameter of the algorithm. After
the crossover produces offspring, the algorithm considers each of the offspring and
mutates them according to the mutation probability. For bit-string solutions with
size n, a typical mutation operation is to flip each bit of the solution with the proba-
bility of 1/n. One can also use the search operator in RLS, which selects one bit of the
solution uniformly at random and flips it. For solutions with real values, a mutation
operator can add or subtract a random value to or from the original solution.

2.3.5 Survivor Selection

Finalising the offspring reproduction, EAs must select final solutions to create a new
population. Depending on the number of generated offspring and the size of the
population, there are different strategies to perform this step. In contrast to the par-
ent selection discussed in Section 2.3.2, all these strategies are deterministic. In this
step, the algorithms either compare offspring with the parents and select the ones
with better fitness value, or only select the next generation from the offspring solu-
tions. Moreover, some algorithms apply elitism, transferring the best of the previous
population directly to the next population. This could also include transferring some
random solutions to the next population, in order to ensure random inheritance.

The evolutionary loop continues until some threshold is met. The threshold entails
one of the following: either the algorithm reaches a pre-set number of generations,
the algorithm performs a determined number of evaluations, or it fails to make any
significant additional improvements to the quality of the results.

2.3.6 (1+1) EA

The performance of different evolutionary approaches may vary according to the
nature of the problem and the specifications of the search space. In this thesis, we
study the performance of (1 + 1) EA (see Algorithm 3) as a simple single-objective
evolutionary algorithm in which the population includes only one solution and only
one offspring is generated at each iteration. This algorithm is quite similar to RLS,
except that multiple bit flips are allowed in the mutation step. Instead of flipping
one bit uniformly at random, this algorithm has the potential to flip all bits of the
current solution with probability 1/n, where n is size of the solution.

Note that (1 + 1) EA does not use a crossover, and it explores the search space by
implementing the mutation operator only. However, the fact that it might flip more
than one bit significantly improves its performance in comparison to RLS. Moreover,
we show in Chapter 7 that in optimising only one solution, the (1 + 1) EA is superior
to some advanced multi-objective optimisers in specific dynamic environments.

Chapter 2. Bio-Inspired Computing and Analytical Methods 14

Algorithm 3: (1 + 1) EA
1 The initial solution x is given;
2 while stopping criterion not met do
3 y flip each bit of x independently with probability 1/n;
4 if f (y) � f (x) then
5 x y;

2.3.7 Multi-Objective Evolutionary Algorithms

In many real-world applications, we face problems with more than one objective
function to be optimised. Such problems are termed multi-objective problems. Let k
denote the number of objectives. Then each solution x will be a k-dimensional point
f (x) = (f1(x), · · · , fk(x)) in the objective space. In such cases, comparison of the
solutions might not be as clear as is the case for single-objective problems. This is
because one solution could be better in one objective but worse in another.

A simple approach to dealing with more than one objective is to consider weights
for each objective and solve the single-objective version. In a maximisation prob-
lem, let wi denote a real weight value for objective function fi. One can use a single-
objective optimisation algorithm to maximise g(x) = Ân

i=1 wi fi(x). This approach,
called weighted-sum, is highly dependent on the weight vector (w1, · · · , wk). Since
the weighted-sum approach finds an optimal solution in the direction of the weight
vector, it cannot produce good results to complex problems with non-convex objec-
tive spaces. Moreover, in multi-objective problems, we are looking for a handful of
solutions that are optimal in terms of different objectives. Hence, we need to use the
weighted-sum approach multiple times, with different weight vectors. However,
there is no guarantee that well-distributed weight vectors result in a good distribu-
tion of the solutions in objective space [FF95].

A more promising way to address the quality problem in multi-objective optimisa-
tion is the dominance concept. For a maximisation problem, we say that solution x
dominates y (x ⌫ y) if and only if x 6= y and fi(x) � fi(y) for 1 i k. The
dominance is strong and denoted by x � y if at least one inequality is strict.

Note that according to the definition of dominance, there is not necessarily any sin-
gle optimal solution. This is because the objectives might contradict each other.
For more clarification, consider a multi-objective version of LEADINGONES called
LEADINGONES-TRAILINGZEROS [Lau+02]. In this version we want to optimise the
objective function LOTZ(x) = (LO(x), TZ(x)). In addition to LO(x) = Ân

j=1 ’j
i=1 xi,

the second objective TZ(x) = Ân
j=1 ’n

i=j (1� xi) is defined as the length of a se-
quence of zero bits that is started from the last position, where the aim is to maximise
both objectives. Clearly, maximising LO(x) in this problem, minimises TZ(x).

In multi-objective problems, the goal is to find a set of optimal solutions. These

Chapter 2. Bio-Inspired Computing and Analytical Methods 15

Algorithm 4: G-SEMO Algorithm
1 The initial solution x is given;
2 P {x};
3 while stopping criterion not met do
4 Select x from P uniformly at random;
5 x0 flip each bit of x with probability 1

n ;
6 if @z 2 P such that z � x0 then
7 P (P \ {z 2 P | x0 ⌫ z}) [{x0};

solutions, called non-dominated solutions or Pareto optimal solutions, are solutions
which are not dominated by any other solution in the search space. The Pareto so-
lutions to the LEADINGONES-TRAILINGZEROS problem, for example, are a set of
n + 1 solutions {s0, · · · , sn}, where si starts with a sequence of i one bits followed by
a sequence of n� i zero bits. Note that the size of the Pareto set could be exponen-
tial for some discrete optimisation problems. However, the algorithms try to find a
well-distributed set that includes a solution for all parts the Pareto front, the map of
a Pareto set in the objective space.

Attempts to optimise multi-objective problems while considering all the objectives
separately (and without converting them into a scalar optimisation) began with the
vector evaluated genetic algorithm (VEGA) in 1984 [Sch85]. The most significant
part of VEGA was the development of a selection operator that randomly divides
the population into k subsets, where k is the number of objective functions. For the
kth subset, the comparison of solutions to be chosen for the reproduction phase was
based on the kth objective. In this algorithm, a solution with a considerable fitness
value in the jth function had to be lucky to be compared based on the jth function.
Otherwise, it could not survive. Later, Murata and Ishibuchi introduced the multi-
objective genetic algorithm (MOGA), which combines the weighted-sum approach
with the dominance concept [MI95]. For the current population, MOGA finds the
non-dominated set first. In the selection phase, the algorithm produces a random
weight vector, re-evaluates the population based on the g(x) function and then as-
signs each solution a proportional selection probability according to the new fitness
values. After performing the crossover and mutation operators and generating the
new population, MOGA replaces a fixed number of randomly chosen individuals
from the randomly chosen solutions of the non-dominated set. This approach in-
creases the survival chance of Pareto solutions.

In the next two sections, we describe the details of the multi-objective approaches
that we consider in this thesis, both theoretically and empirically.

Chapter 2. Bio-Inspired Computing and Analytical Methods 16

Algorithm 5: NSGA-II
1 Generate initial population set P0 and offspring set Q0;
2 while stopping criterion not met do
3 Rt Pt [Qt; // combine parent and offspring population
4 F fast-non-dominated-sort(Rt); // F = (F1,F2, · · ·), all

non-dominated fronts of Rt
5 Pt+1 ∆ and i 1;
6 while |Pt+1| + |Fi| N do
7 crowding-distance-assignment(Fi);
8 Pt+1 Pt+1 [Fi;
9 i i + 1;

10 Sort Fi based on the crowding distance in descending order;
11 Pt+1 Pt+1 [Fi[1 : (N � |Pt+1|)];
12 Qt+1 make-new-pop(Pt+1);
13 t t + 1;

G-SEMO

The global simple evolutionary multi-objective algorithm (G-SEMO) introduced in
[Gie03] is a simple extension of the (1 + 1) EA algorithm for multi-objective optimi-
sation (see Algorithm 4). Its population is initialised with only one solution. In the
main loop, G-SEMO selects a random solution x from the population and mutates
it by using the same mutation operator in (1 + 1) EA. The created solution y is then
compared to other individuals based on the dominance concept introduced earlier
in this section. G-SEMO looks for solutions that are not strongly dominated by other
solutions in the population. If the algorithm finds a non-dominated solution, it adds
it to the population and removes the solutions that are (weakly) dominated by the
new one. In other words, this algorithm only keeps non-dominated solutions; this is
how it controls its population size. However, the size may become exponential. In
cases of potentially exponential population growth, there are some approaches that
categorise solutions based on their property (their size for instance), as well as one
used in Chapter 6 to deal with potentially exponential population size. As discussed
earlier, another challenge in multi-objective problems is to find non-dominated solu-
tions that represent all the Pareto front. G-SEMO, however, does not use any partic-
ular approach to maintain the diversity of the Pareto set. In the next section, we in-
troduce two algorithms that use specific approaches for generating well-distributed
solutions.

NSGA-II and SPEA2

The first version of the non-dominated sorting genetic algorithm (NSGA) was in-
troduced in 1995 [SD94]. The main innovation in this algorithm was to consider
the population set as a set of different Pareto fronts. The solutions were then se-
lected based on the front in which they had been. However, NSGA’s survival loop,

Chapter 2. Bio-Inspired Computing and Analytical Methods 17

Algorithm 6: SPEA2
1 Generate the initial population set P0 and archive set P0={};
2 Calculate the fitness values of solutions in P0;
3 while stopping criterion not met do
4 Mating selection: Generate a mating pool by tournament selection from Pt;
5 Variation: Apply crossover and mutation operators on the mating pool to

produce Pt+1;
6 Fitness assignment: Calculate fitness values of solutions in Pt+1 and Pt+1;
7 Environmental selection: Generate Pt+1 by choosing N non-dominated

solutions from Pt and Pt+1;

similar to the MOGA, had a high chance of loosing valuable solutions. Later in
2002, NSGA-II was introduced [Deb+02]. In the initial state, NSGA-II starts with a
randomly generated population P0 and assigns a fitness (or rank) to each solution
based on its non-dominated rank. Offspring population Q0 is then produced us-
ing usual selection, recombination, and mutation operators. Algorithm 5 describes
how NSGA-II performs after the initial step and after each dynamic change. It sorts
the combination of offspring and population sets into a set of non-dominated fronts
F = {F1,F2, · · · } such that solutions in F1 are non-dominated solutions, solutions
in F2 are non-dominated solutions after removing solutions of F1 from the com-
bined set, and so on. Then, starting from the first front, it adds solutions to Pt+1 until
the ith front which adding Fi exceeds the population size N. NSGA-II calculates
crowding distance for each of the solutions, in order to distinguish solutions in the
same fronts. The crowding distance is an estimation of the perimeter of a cuboid
around a solution formed by using the solution’s nearest neighbours as vertices.
Thus, larger crowding distance means that the solution is in a sparse area. It assigns
an infinite value to the solutions with the highest or lowest objective values in each
front. The algorithm finally produces Qt+1 from Pt+1, using evolutionary operators
and considering the front rank and crowding distance as the objectives.

SPEA2, an improved version of the strength Pareto evolutionary algorithm intro-
duced in [ZT98], uses another approach to produce distributed solutions [ZLT01].
As described in (Algorithm 6), this algorithm keeps the best non-dominated solu-
tions of each generation in the archive set Pt with size N, and generates population
set Pt+1 by performing evolutionary operators on Pt+1. The fitness value of solution
x in SPEA2 is calculated based on two factors: integer raw fitness 0 R(x), which
represents the non-dominancy power of solutions that dominate x, and density es-
timate 0 < D(x) 1/2, which is calculated based on the inverse of distance to the
kth nearest neighbour of x with the same raw fitness value. k =

p
N + N is chosen

as the default value of k. The final fitness value of x is F(x) = R(x) + D(x), in which
R(x) is 0 when x is a non-dominated solution and the lesser value of D(x) illustrates
the better distributed solution.

Chapter 2. Bio-Inspired Computing and Analytical Methods 18

2.4 Analytical Methods

The history of runtime analysis of bio-inspired computing begins with Muhlenbein’s
study of evolutionary algorithms [Müh92]. The computational analysis of these al-
gorithms considers the number of evaluations that is required to find an optimal
solution with respect to the size of the input. There have been many advancements
in the theoretical tools which can be used to perform rigorous runtime analysis of
bio-inspired computing. These tools have been used to analyse the behaviour of
evolutionary algorithms and ant colony optimisation solving combinatorial optimi-
sation problems [Doe20; Len20]. The following sections introduce techniques and
analytical tools that we used in this thesis to study the performance of algorithms.

2.4.1 Deviation Bounds

Deviation inequalities are the well-known mathematical tools that are mainly used
to bound the probability of deviating a random variable from its expected value. In
the area of runtime analysis, these tools are used to prove the probability that the
actual running time of the optimisation algorithms will deviate from the expected
time. In this section, we introduce the two commonly used deviation inequalities.

Markov’s Inequality: For a non-negative random variable X and for all k 2 R>0,
the following inequality holds

Pr(X � k · E[X]) 1
k

Note that X could be any non-negative random variable. Thus, Markov’s inequality
is specifically useful when we can repeat a process to ensure the result.

Chernoff Bounds Let X1, X2, · · · , Xn be independent Poisson trials such that, for
1 i n, Pr(Xi = 1) = pi, where 0 pi 1, and µ = E[X] = Ân

i=1 pi. Then, the
following inequalities hold:

Pr(X � (1 + d)µ)
✓

ed

(1 + d)1+d

◆µ

d > 0

Pr(X � (1 + d)µ) e�µd2/3 0 < d 1

Pr(X � (1 + d)µ) e�µd2/2 0 < d 1

Chernoff bounds are exponentially decreasing bounds which are stronger than the
Markov’s inequality. However, they require the random variables to be indepen-
dent.

Chapter 2. Bio-Inspired Computing and Analytical Methods 19

2.4.2 Fitness Based Partitions

This simple method introduced by Wegener [Weg03] in 2003 partitions the search
space into smaller parts with some specific ranked properties, and calculates the ex-
pected time of passing through these partitions to find the optimal solution. To be
more precise, let D denote the search space and f : D ! R be the objective function
to be maximised. Dividing D into m partitions, denoted by A1, A2, · · · , Am, assume
that for any i < j, x 2 Ai, and y 2 Aj we have f (x) < f (y). In other words, the
fitness value of solutions increases when increasing the index of partitions. Further-
more, let Am only include optimal solutions. Let p(x) be the probability of creating
solution y 2 Aj from solution x 2 Ai such that j > i. Considering pi = minx2Ai p(x),
the smallest probability that jumping from Ai to Aj will happen, Lemma 1 in [Weg03]
proves that the expected optimisation time is upper bounded by Âm�1

i=1 (1/pi). The
associated proof is simple. Since the smallest probability of producing a solution
in partitions Ai+1, · · · , Am from a solution of partition Ai is pi, the expected time
required to arrive at such an event 1/pi.

We now show the application of this method using a simple example. Consider
the LEADINGONES problem introduced in Section 2.1 and the RLS algorithm in Sec-
tion 2.2.1. The search space of the LEADINGONES problem is {0, 1}n, the set of all
bit-strings with size n. Let Ai represent the set of bit-strings with fitness i, i. e., solu-
tions that start with exactly i but not i + 1 consecutive ones. To improve the fitness
of solution x 2 Ai, RLS must flip the (i + 1)th bit of x. This occurs with probabil-
ity 1/n. Thus, the expected time in which RLS will find the optimal solution to the
LEADINGONES problem is upper bounded by Ân�1

i=1 n = O(n2).

2.4.3 Drift Analysis

Drift analysis (introduced by He and Yao [HY01]) is one of the most important tools
in theoretical analysis of bio-inspired computing. Generally speaking, this method
counts the number of steps required for the algorithm to fill a gap defined by an
auxiliary function.

The simplified formal definition of the drift is as follows:

Definition 2.1 (Drift [LW13]). Consider a non-negative random variable Xt, t � 0 and
a natural filtration Ft = (X0, · · · , Xt), i. e. the information available up to time t. The
expected one-step change d = E[Xt � Xt+1 | Ft] for t > 0 is called drift.

After defining the auxiliary function, the goal is to show that the algorithm can im-
prove the value of the function by at least a certain amount in each step. When the
amount of improvement is constant, one can use the additive drift, which is defined
as follows:

Chapter 2. Bio-Inspired Computing and Analytical Methods 20

Definition 2.2 (Additive Drift [LW13]). Let (Xt)t�0, be a stochastic process over some
bounded state space S 2 R+

0 . Assume that E[T0 | X0] < •, where Ta = min{t | Xt a}
is the first hitting time for threshold a � 0. Then:

• if E[Xt � Xt+1 | Ft; Xt > 0] � du then E[T0 | X0] X0
du

.

• if E[Xt � Xt+1 | Ft] dl then E[T0 | X0] � X0
dl

.

Using additive drift, we now analyse the performance of RLS on LEADINGONES. We
set the random variable Xt = n� LO1(xt), where xt is the current solution of RLS in
step t. Since RLS flips exactly one bit of xt, the probability of flipping a zero bit in
position LO1(xt) + 1 is at least 1/n. Thus, we have E[Xt � Xt+1|Xt] � du = 1/n. In
the worst case, the initial solution of RLS does not have any one bits, i. e., we have
X0 = n. Hence, using additive drift, the expected time for RLS to find the optimal
solution to the LEADINGONES problem is E[T0|X0] X0/du n2 = O(n2).

The more recently introduced multiplicative drift (which we also use in this thesis)
considers the improvements that are proportional to the current value of the auxil-
iary function. The definition of multiplicative drift as introduced in [DJW12] is as
follows:

Theorem 2.3 (Multiplicative Drift [DJW12]). Let S 2 R be a finite set of positive numbers
with minimum smin. Let {X(t)}t2N be a sequence of random variables over S [{0}. Let
T be the random variable that denotes the first point in time t 2 N for which X(t) = 0.
Suppose that there exists a real number d > 0 that

E
h

X(t) � X(t+1) | X(t) = s
i
� ds

holds for all s 2 S with Pr(X(t) = s) > 0. Then for all s0 2 S with Pr(X(0) = s0) > 0, we
have

E[T | X(0) = s0]
1 + ln(s0/smin)

d
.

To demonstrate how to use multiplicative drift, we briefly define the ONEMAX prob-
lem (see Section 3.2.1 for a detailed definition). For a given bit-string x 2 {0, 1}n,
OM(x) = Ân

i=1 xi is the number of ones in x. The goal is to find a solution x⇤ =

(1, · · · , 1) that maximises OM.

Now, we use multiplicative drift to prove an upper bound on the expected time
required for RLS to optimise ONEMAX. For a given solution xt, let s = n�OM(x)

denote the number of zeros in xt. Considering the same definition of Xt = s, the
probability of reducing s by one is equal to the probability of flipping a zero bit,
which is s/n. Hence, we have E[Xt � Xt+1|Xt = s] = s/n. Note that the the value
of s0 is n in the worst case and the smallest value of s is smin = 1. Setting d to 1/n,
we can use multiplicative drift to show that the expected time for RLS to find the
optimal solution of ONEMAX is E[T|X0 = n] = (1 + ln(n)) /(1/n) = O(n log n).

Chapter 2. Bio-Inspired Computing and Analytical Methods 21

2.4.4 Conclusion

The first part of this chapter presented details of the bio-inspired algorithms that
we use in this thesis. It began by introducing the local search method RLS, and
then described the main concepts of evolutionary computation. Next, the simplest
evolutionary algorithm and its extension for multi-objective optimisation, known as
(1 + 1) EA and G-SEMO respectively, were presented. At the end of the first part, we
introduced NSGA-II and SPEA2, which are well-known advanced multi-objective
algorithms.

In the second part of this chapter, we reviewed analytical methods for studying
bio-inspired computation. We introduced fitness-based partitioning, which tracks
the quality of solutions in moving through defined levels after presenting deviation
bounds that are used to bound the probability of deviating from the expected value.
Finally, we presented more recently introduced analytical tools (known as drift) that
consider the amount of improvement in the quality of solutions in each step of the
algorithms.

22

Chapter 3

Combinatorial Optimisation

3.1 Introduction

Combinatorial optimisation aims to find the best feasible solution in a finite dis-
crete search space when a fitness function evaluates solutions and a set of given
constraints determines the search space [PS82]. Combinatorial optimisation prob-
lems appear in many applications, such as facility location, scheduling and AI. As a
general definition, a combinatorial optimisation problem is characterised by a triple
(S, f , W), where S denotes the search space, f denotes the fitness function and W is
the set of constraints. The goal is to find the global optimal solution in the search
space such that the solution optimises (maximises or minimises) the fitness function
and satisfies the constraints.

The size of the search space in many combinatorial optimisation problems grow
exponentially in relation to the size of input. While in some cases an algorithm exists
that finds the optimal solution(s) in polynomial time, there is no such algorithm for
most of the combinatorial optimisation problems unless P = NP . For these NP-
hard problems, we are looking for the algorithms that guarantee an approximation
of the optimal solutions. The precise definition of an a-approximation ratio is as
follows.

Definition 3.1 (Approximation ratio). An algorithm for a problem has an approximation
ratio of a(n) if, for any input of size n, the fitness OPT of the solution produced by the
algorithm is within a factor of a(n) of the fitness OPT⇤ of an optimal solution:

max
✓

OPT
OPT⇤

,
OPT⇤

OPT

◆
 a(n).

The knapsack problem, minimum vertex cover problem and subset selection prob-
lem are all examples of problems that are considered in this thesis and have an
approximation algorithm with a constant approximation ratio. We also study the

Chapter 3. Combinatorial Optimisation 23

packing while travelling problem, which is proven not to have any approximation
algorithm with a constant approximation ratio [PN15].

In this chapter, we define the problems that are considered in this thesis, includ-
ing the problems studied in Chapters 5 to 8 and the problems that are reviewed
in the survey Chapter 4. Firstly, we define a broad set of optimisation problems
known as linear pseudo-Boolean functions, as well as the ONEMAX problem, which
is an important example of this type. Sections 3.3 and 3.4 introduce the knapsack
problem and packing while travelling problem, both of which are packing problems
with different complexities. Next, we present the minimum spanning tree and mini-
mum vertex cover problems in Sections 3.5 and 3.6, respectively. These are two well-
known graph problems. Finally, after presenting the makespan scheduling problem
in Section 3.7, we define a problem called ’subset selection’ in Section 3.8. The defi-
nition of subset selection includes all the other problems introduced in this chapter.

3.2 Linear Pseudo-Boolean Functions

Linear pseudo-Boolean functions play a key role in the runtime analysis of evolu-
tionary algorithms. Let x = (x1, x2, . . . , xn) be a search point in search space {0, 1}n,
and wi, 1 i n positive real weights. A linear pseudo-Boolean function f (x) is
defined as follows:

f (x) = w0 +
n

Â
i=1

wixi.

For simplicity and as done in most studies, we assume w0 = 0 in the rest of this
section. The optimisation of a linear objective function under a linear constraint is
equivalent to the classical knapsack problem [KPP04] (see Section 3.3). The optimi-
sation of a linear objective function together with a uniform constraint has recently
been investigated in the static setting [Fri+17]. Given a bound B, 0 B n, a solu-
tion x is feasible if the number of 1-bits of the search point x has a maximum of B.
The bound B is also known as the cardinality bound. We denote the number of 1-bits
of x by |x|1 = Ân

i=1 xi. The formal definition for maximising a pseudo-Boolean linear
function under a cardinality bound constraint is given by:

max f (x)

s.t. |x|1 B.

The dynamic version of this problem, referred to as the problem with a dynamic uni-
form constraint, is defined in [Shi+19]. Here, the cardinality bound changes from B
to some new value B⇤. Starting from a solution that is optimal for the bound B,
the problem is then to find an optimal solution for B⇤. The re-optimisation time of
an evolutionary algorithm is defined as the number of fitness evaluations that are

Chapter 3. Combinatorial Optimisation 24

required to find the new optimal solution. In Section 4.2.2, we present the most re-
cent results in optimising linear pseudo-Boolean functions under dynamic uniform
constraint.

3.2.1 ONEMAX Problem

As a specific case of a linear pseudo-Boolean function with weights equal to one,
ONEMAX has gained a lot of attention in the area of runtime analysis. In the ONE-
MAX problem, the number of ones in the solution is the objective to be maximised.
More precisely, for a bit-string solution (x1, · · · , xn) 2 {0, 1}n, the goal is to max-
imise the objective function f (x) = Ân

i=1 xi. Droste [Dro02] has interpreted this
problem as maximising the number of bits that match a given objective bit-string.
With this goal in mind, he has introduced the dynamic ONEMAX problem, in which
dynamic changes happen to the objective bit-string over time. An extended version
of this problem is defined by Kötzing et al. [KLW15]. In their version of the prob-
lem, not only are bit-strings allowed, but each position can take on integer values in
{0, . . . , r� 1} for r 2 N�2. The formal definition of the problem follows.

Let [r] = {0, . . . , r� 1} for r 2 N�2, and x, y 2 [r]. Moreover, let the distance between
x and y be

d(x, y) = min {(x� y) mod r, (y� x) mod r} .

The extended ONEMAX problem, ONEMAXa : [r]n ! R, where a is the objective
string defining the optimum, is given as:

ONEMAXa(x) =
n

Â
i=1

d(ai, xi).

The goal is to find and maintain a solution with minimum value of ONEMAXa.

Given a probability value p, the dynamism that is defined on this problem is to
change each component i, 1 i n, of the optimal solution a independently as:

ai =

(ai + 1 mod r; with probability p/2
ai � 1 mod r; with probability p/2

ai; with probability 1� p

The detailed results of analysing the dynamic ONEMAX problem have been pre-
sented in Section 4.2.1

3.3 Knapsack Problem

This section introduces the knapsack problem (KP), which has been studied exten-
sively in the past decades because of its many applications [RT89; Sah75]. In this
problem, n items with profits {p1, . . . , pn} and weights {w1, . . . , wn}, and a knapsack

Chapter 3. Combinatorial Optimisation 25

with capacity C are given. The goal is to fill the knapsack with the items in order to
maximise the total profit while ensuring that the total weight does not exceed C.

The fractional KP is an easy version of this problem which is solvable in polyno-
mial time with a deterministic algorithm. In this version, it is permissible to break
the items. Thus, it is sufficient to select items in a ‘greedy’ manner, based on the
profit/weight ratio. However, this greedy algorithm can perform arbitrarily badly
in the 0/1 KP. In the 0/1 KP, we can either pick an item or leave it. This version is
proven to be NP-hard (a simple modification in the greedy algorithm results in a
2-approximation algorithm for 0/1 KP). In this version, a solution x could be rep-
resented by a bit string of {0, 1}n which has the overall weight w(x) = Ân

i=1 wixi

and profit p(x) = Ân
i=1 pixi. The goal is to find a solution x⇤ = arg max{p(x) | x 2

{0, 1}n ^ w(x) C} of maximum profit of which the weight does not exceed the
capacity constraint C. In the rest of this thesis, we only consider the 0/1 knapsack
problem, referring to it as the ‘knapsack problem’.

In the following section, we introduce the dynamic programming approach to solve
KP in pseudo-polynomial time O(n2Pmax) where Pmax = max{p1, · · · , pn}. Consider
table A with size n⇥ nPmax. Let A[i, j] be the weight of a solution that is a subset of
first i items with profit j and the minimum weight. Then we set

A[i + 1, j] =

8
<

:
min{A[i, j], wi+1 + A[i, j� pi+1} if pi+1 j

A[i, j] otherwise.

Finally, the optimal solution will be max{j|A[n, j] C}. This is a pseudo-polynomial
algorithm, since Pmax could be exponential in size n, e. g., 2n. However, this approach
has been used to propose a fully polynomial time approximation scheme (FPTAS)
for KP. With this aim, instead of the actual profits pi, we use p0 = bpi/Kc, where
K = #Pmax/n for an arbitrary small epsilon. It is shown that this algorithm results in
a (1� #)-approximate solution in time O(n2bn/#c).

The dynamic version of KP is investigated empirically in Chapter 7. We study dy-
namic environments in which the capacity of the knapsack changes during the op-
timisation process. Different scenarios are considered according to the magnitude,
frequency and distribution of dynamic changes.

3.4 Packing While Travelling

In many real-world applications, we are facing problems that consist of multiple
sub-problems (or components). The relation between the components is such that to
solve the main multi-component problem, it is necessary to consider all the compo-
nents simultaneously.

Examples of multi-component problems include the generalised minimum span-
ning tree problem (GMST) and the generalised travelling salesman problem (GTSP).

Chapter 3. Combinatorial Optimisation 26

In both of these cases, clusters of nodes exist; the problem is to choose one node
from each cluster, and then solve the MST and TSP on the selected nodes, respec-
tively. These problems can be decomposed into a node selection component and
an MST/TSP component. Hierarchical approaches to each problem are investigated
theoretically in [Cor+16] and [PN18].

The travelling thief problem (TTP), introduced by Bonyadi et al., is another exam-
ple of an NP-hard multi-component problem that combines the travelling salesman
problem and the knapsack problem [BMB13]. In this problem, there are a number of
items distributed between the nodes of a graph. The goal is to find a Hamiltonian
cycle and choose items from the visited nodes such that the benefit function is max-
imised. The integration of these components in a non-linear objective function is
carried out in such a way that optimising one component does not necessarily result
in a near-optimal solution.

Using the same formulation, Polyakovskiy and Neumann introduced the packing
while travelling problem (PWT), which is actually the packing version of TTP with
a fixed travelling path [PN17]. The goal in this problem is to a packing plan for a
vehicle with a specified capacity. The vehicle must visit all the nodes in a specific
order, and pick items in a way that maximises the benefit function without vio-
lating the capacity constraint. The benefit function has a direct relationship to the
profit of packed items, while its relationship with velocity is inverse. The velocity of
the vehicle as it travels between each of the two cities is determined by the weight
of the vehicle, such that the more weight the vehicle carries, the lower its velocity.
Polyakovskiy and Neumann proved that this problem, for even two cities, is NP-
hard. Later, Neumann et al. [Neu+18] presented an exact dynamic programming
approach for PWT. They also proved that there is no polynomial time algorithm
with constant approximation ratio for PWT unless P = NP , and presented an FP-
TAS for maximising the objective value over the baseline travel cost in which the
vehicle travels the path empty.

I the general PWT problem proposed in 2016 by Polyakovskiy and Neumann [PN15],
given a set of m + 1 ordered cities, distances di from city i to i + 1 (1 i m) and
a set of items N = [m

i=1Ni distributed over first m cities such that city 1 i m
contains items Ni, let |Ni| = ni denote the number of items in city i. Positive integers
profit pij and weight wij are assigned to each item eij 2 Ni, 1 j ni. Path M =

(1, 2, . . . , m + 1) is travelled by a vehicle with velocity v = [vmin, vmax] and capacity
C. A solution vector s = (x11x12 . . . x1n1 . . . xmnm) represents a set of selected items
S ✓ N such that variable xij 2 {0, 1} indicates whether item eij is selected or not. Let
W(s) denote the sum of weights of items in s. As such, s is feasible if W(s) C. Let

P(s) =
m

Â
i=1

ni

Â
j=1

pijxij

Chapter 3. Combinatorial Optimisation 27

be the total profit and

T(s) =
m

Â
i=1

di

vmax � n Âi
k=1 Ânk

j=1 wkjxkj
,

where n = vmax�vmin
C is a constant, be the total travel time for a vehicle carrying items

defined by s. The denominator of T(s) is such that picking an item in city i only
affects the time required to travel from city i to the end. Thus, the benefit value of s
is computed as

B(s) = P(s)� R · T(s),

where R is a given renting rate. The aim is to find a feasible solution s⇤ such that
s⇤ = arg maxs2{0,1}n B(s).

The effect that different values of R have on the benefit function has been consid-
ered previously [WPN16]. Generally speaking, where R = 0 , PWT becomes a 0/1
knapsack problem, while a larger R entails a situation in which the vehicle must
pick fewer items to arrive at the optimal solution. This problem is proven to be NP-
hard by reducing the subset sum problem to the decision variant of unconstrained
PWT [PN17].

Chapter 6 theoretically investigates the performance of variants of RLS, (1 + 1) EA,
and G-SEMO algorithms on a version of PWT involving two cities.

3.5 Minimum Spanning Tree Problem

The minimum spanning tree (MST) is a subset of the edges of an undirected con-
nected graph G with specific features. A spanning tree of graph G is a sub-graph
G0 if and only if there exists exactly one path between any two connected vertices
in G0. Each edge e is assigned a positive weight w(e) and the goal is to find a span-
ning tree with minimum total weight, called MST. Note that MST is not necessarily
unique. However, it is widely used in real-world applications such as path planning
and clustering. To be more precise, for a given graph G = (V, E) with vector set V
and edge set E, and a given weight function w : E ! R+, the minimum spanning
tree of G is spanning tree T = (V, E0) such that Âe2E0 w(e) is minimum.

The MST problem is well-understood and solvable in polynomial time using well-
known algorithms, e.g., Kruskal’s algorithm [Kru56]. His algorithm starts with an
empty graph G00 that doesn’t have any edges, but has the same vertices as the given
graph. Then it sorts the edges of E in ascending order, based on their weights. At
each step, the algorithm adds the lightest edge to G00 if it does not cause a cycle. The
process continues until G00 becomes a spanning tree, which is proven to also be an
MST.

Chapter 3. Combinatorial Optimisation 28

In the area of runtime analysis of bio-inspired computation, spanning tree problems
have obtained significant attention. The classical MST problem has been investi-
gated for simple single-objective approaches of EAs [NW07] and ant colony opti-
mization [NW10a]. Furthermore, it has been shown that a multi-objective formula-
tion of the problem can lead to significantly faster evolutionary algorithms [NW06].

In Chapter 5, we investigate the performance of evolutionary algorithms enhanced
with a knowledge-based biased mutation which faces single- and multi-objective
MST problem.

3.6 Vertex Cover Problem

The vertex cover problem is one of the best-known NP-hard combinatorial opti-
misation problems. Given a graph G = (V, E), where V = {v1, . . . , vn} is the set of
vertices and E = {e1, . . . , em} is the set of edges, the goal is to find a minimum subset
of nodes VC ✓ V that covers all edges in E, i.e., 8e 2 E, e \ VC 6= ∆. In the dynamic
version of the problem, an edge can be added to or deleted from the graph.

As the vertex cover problem is NP-hard, it has been mainly studied in terms of
approximations. The problem can be approximated within a worst-case approx-
imation ratio of 2 by various algorithms. One standard approach to obtaining a
2-approximation is to compute a maximal matching and take all nodes adjacent to
the chosen matching edges for the vertex cover. In the dynamic version of the prob-
lem (starting from a solution that is a 2-approximation for the current instance of
the problem) the goal is to obtain a 2-approximate solution for that instance of the
problem after one dynamic change. The re-optimisation time for this problem refers
to the time required for the investigated algorithm to find a 2-approximate solution
for the new instance. This dynamic setting has been investigated in [PGN15] and
the detailed explanation of the results is presented in Section 4.2.3.

3.7 Makespan Scheduling Problem

The other classical problem that we consider in our survey (see Chapter 4) is the
makespan scheduling problem [SN12], which can be defined as follows. Given n
jobs and their processing times pi > 0, 1 i n, the goal is to assign each job to one
of two machines M1 and M2 such that the makespan is minimised. The makespan
is the time that the busier machine takes to finish all assigned jobs. A solution is
represented by a vector x 2 {0, 1}n which means that job i is assigned to machine
M1 if xi = 0 and it is assigned to M2 if xi = 1, 1 i n. With this representation,
the makespan of a given solution x is given by

f (x) = max

(
n

Â
i=1

pi(1� xi),
n

Â
i=1

pixi

)

Chapter 3. Combinatorial Optimisation 29

and the goal is to minimise f . In the dynamic version of this problem, the processing
time of a job may change over time, but stays within a given interval. Neumann and
Witt [NW15] have investigated the setting pi 2 [L, U], 1 i n, where L and U are a
lower and upper bound for each processing time. Their analysis concentrates on the
time evolutionary algorithms need to produce a solution where the two machines
have a time discrepancy at most U. Dynamic changes to the processing times of the
jobs have been investigated in two different settings. In the first setting, an adversary
is allowed to change the processing time of exactly one job. In the second setting,
the job to be changed is picked by an adversary but the processing time of a job is
altered randomly.

3.8 Subset Selection and Submodular Functions

Most of the problems that we have introduced so far are specific examples of a more
general NP-hard problem called the subset selection problem. Given a set of el-
ements, the goal is to select a subset of these elements to maximise an objective
function according to a cost function and a budget constraint. The subset selection
problem appears in many real-world application with a variety the objective and
cost functions, .

Initial studies on this problem have considered specific type of monotone objective
functions known as submodular functions. For a given finite set V = {v1, · · · , vn},
set function f : 2V ! R is submodular if and only if any of the following equivalent
conditions hold:

1. For any subsets X ✓ Y ✓ V and item v /2 Y, we have

f (X [{v})� f (X) � f (Y [{v})� f (Y).

2. For any subsets X, Y ✓ V, we have

f (X) + f (Y) � f (X [Y) + f (X \Y).

3. For any subset X ✓ V and items v1 6= v2 /2 X, we have

f (X [{v1}) + f (X [{v2}) � f (X [{v1, v2}) + f (X).

The area of submodular function optimisation under given static constraints has
been studied quite extensively in the literature. Nemhauser et al. considered max-
imising nondecreasing submodular functions under a cardinality constraint [NW81].
They proved that the greedy algorithm which iteratively adds a new element with a
maximum marginal gain could maintain (1� 1/e)-approximation. Following their
results, Khuller et al. showed the unbounded approximation of the greedy approach

Chapter 3. Combinatorial Optimisation 30

in maximising submodular functions under linear constraints [KMN99]. Generalis-
ing the greedy approach using a simple modification, however, they showed that
it could guarantee optimal (1/2)(1 � 1/e)-approximation in particular submodu-
lar functions for the maximum coverage problem. The generalised greedy algo-
rithm compares the result of the iteratively found solution with the best feasible
single-element solution and returns the maximum. Krause and Guestrin extended
(1/2)(1� 1/e) approximation ratio to maximising submodular functions under lin-
ear constraint [KG05], which later has been improved to (1 � 1/

p
e) by Lin and

Bilmes [LB10].

In the case of monotone submodular functions, greedy algorithms are often able to
achieve the best possible worst-case approximation guarantee (unless P = NP).
Motivated by many real-world applications, the performance of greedy algorithms
in general cost functions have also been considered later. Iyer and Bilmes studied
cases in which the cost function is monotone and submodular [IB13], while Zhang
and Vorobeychik investigated problems with only monotone cost functions [ZV16]
as a more general case.

To aid consideration of the general problems, some new definitions have been pre-
sented. Submodularity ratio [ZV16], for example, is a definition that we use in Chap-
ter 8; it determines how close a function is to being submodular. The function f is
a f -submodular where

a f = min
X✓Y,v/2Y

f (X [v)� f (X)
f (Y [v)� f (Y)

.

This definition is equivalent to the definitions of submodularity when a f = 1, i. e.
we have submodularity in this case.

Another notation which is used in our analysis is the curvature of function f . The
curvature measures deviation from linearity and reflects the effect of marginal con-
tribution according to the function f [CC84; Von10]. For a monotone submodular
function f : 2V ! R+,

k f = 1�min
v2V

f (V)� f (V \ v)
f (v)

is defined as the total curvature of f .

3.9 Conclusion

In this chapter, we presented definitions of the problems that have been considered
throughout the rest of this thesis. We first introduced the definition of linear pseudo-
Boolean functions and a well-known specific case of the ONEMAX problem. More-
over, we described two NP-hard packing problems: the knapsack problem and its

Chapter 3. Combinatorial Optimisation 31

more complicated extension, which is known as the packing while travelling prob-
lem.

Next, we presented our graph problems: the minimum spanning tree, which has
been considered in Chapter 5, and vertex cover problem alongside its dynamic ver-
sion which is reviewed Section 4.2.3. Finally, after presenting the makespan schedul-
ing problem, we defined a more general type of problem, known as subset selection,
which includes all the problems considered in this thesis.

32

Chapter 4

A Survey on Evolutionary Algorithms in Dynamic
Environments

4.1 Introduction

Real-world problems are often stochastic and have dynamic components. Evolu-
tionary algorithms and other bio-inspired algorithmic approaches such as ant colony
optimisation have been applied to a wide range of dynamic problems. The goal of
this chapter is to give an overview on recent theoretical developments in the area of
evolutionary computation for dynamic problems in the context of discrete optimisa-
tion.

Dynamic problems constitute an important part occurring in real-world applica-
tions. Problems can change over time due to different components becoming un-
available or available at a later point in time. Different parts of the problem that can
be subject to a change are the objective function and possible constraints of the given
problem. In terms of scheduling of trains, trains might become unavailable due to
mechanical failures and it might be necessary to reschedule the trains in the network
in order to still serve the demands of the customers well.

The area of runtime analysis has contributed many interesting studies to the theo-
retical understanding of bio-inspired algorithms in this area. We start by investi-
gating popular benchmark algorithms such as randomised local search (RLS) and
(1 + 1) EA, which have been introduced in Sections 2.2.1 and 2.3.6, on different dy-
namic problems. This includes dynamic versions of ONEMAX, the classical vertex
cover problem, the makespan scheduling problem, and problem classes of the well-
known knapsack problem.

Ant colony optimisation (ACO) algorithms are the other important type of bio-
inspired algorithms that has been used and analysed for solving dynamic and stoch-
astic problems. Due to their different way of constructing solutions, based on sam-
pling from the underlying search space by performing random walks on a so-called

Chapter 4. A Survey on EAs in Dynamic Environments 33

construction graph, they have a different ability to deal with dynamic problems.
Furthermore, an important parameter in ACO algorithms is the pheromone update
strength which allows to determine how quickly previously good solutions are for-
gotten by the algorithms. This parameter plays a crucial role when distinguishing
ACO algorithms from classical evolutionary algorithms. At the end of this chap-
ter, we present a summary of the obtained results on the dynamic problems in the
context of ACO.

The contents of this chapter are based on the chapter seven of the book "Theory of
Evolutionary Computation" [DN20; NPR20]. This chapter is organised as follows.
We present the results obtained for evolutionary algorithms in Section 4.2. We high-
light theoretical results on the behaviour of ACO algorithms for dynamic problems
in Section 4.3, and finish with some conclusions.

4.2 Analysis of Evolutionary Algorithms on Dynamic Prob-
lems

In this section, we summarise recent theoretical analyses that have been performed
on evolutionary algorithms dealing with dynamic optimisation problems.

In dynamically changing optimisation problems, some part of the problem is subject
to change over time. Usually changes to the objective function or the constraints of
the given problem are considered. The different problems that have been studied
from a theoretical perspective will be introduced in the forthcoming subsections.

The theoretical analysis of evolutionary algorithms for dynamic problems concen-
trates on the classical algorithms such as randomised local search (RLS) and (1 +

1) EA. Analysing evolutionary algorithms with respect to their runtime behaviour,
one considers the number of solutions that are produced until a solution of desired
quality has been achieved. The expected time to reach this goal refers to the expected
number of such solutions. The expected optimisation time refers to the expected num-
ber of solutions that are produced until an optimal search point has been produced
for the first time. Considering dynamic problems, we are often interested in the ex-
pected re-optimisation time of an algorithm. Starting with a good (or even optimal)
solution for the considered problem, the expected number of constructed solutions
required to obtain a solution of the same quality after a dynamic change has occurred
is analysed.

Shi et al. have investigated the efficiency of evolutionary algorithms for solving lin-
ear pseudo-Boolean functions with a dynamic linear constraint in [Shi+19]. Particu-
lar attention has been paid to the ONEMAX problem. ONEMAX has been the centre
of attention in some other related works as well [Dro02; KLW15]. We first present the
investigations that have been performed on this problem, then we give a summary
of the results that have been obtained for linear pseudo-boolean functions under

Chapter 4. A Survey on EAs in Dynamic Environments 34

(1 + 1) EA MOEA MOEA-S MOGA

O
⇣

n log
⇣

n�B
n�B⇤

⌘⌘
O
⇣

nD log
⇣

n�B
n�B⇤

⌘⌘
O
⇣

n log
⇣

n�B
n�B⇤

⌘⌘
O
✓

min{
p

nD
3
2 , D2

q
n

n�B⇤ }
◆

if B < B⇤

O
⇣

n log
⇣

B
B⇤
⌘⌘

O
⇣

nD log
⇣

B
B⇤
⌘⌘

O
⇣

n log
⇣

B
B⇤
⌘⌘

O
✓

min{
p

nD
3
2 , D2

q
n

B⇤ }
◆

if B > B⇤

TABLE 4.1: Upper bounds on the expected re-optimisation times of
evolutionary algorithms on the ONEMAX problem with a dynamic

uniform constraint.

dynamic uniform constraints. Furthermore, in this section we explain the analysis
that has been carried out for the dynamic vertex cover problem and the dynamic
makespan scheduling problem. Another problem which has been investigated in
the context of dynamic optimisation is the MAZE problem for which evolutionary
algorithms as well as ant colony optimisation algorithms have been theoretically
studied [KM12; LW16; LW17]. The results of evolutionary algorithms and ACO al-
gorithms for this problem are presented in Section 4.2.5 and Section 4.3, respectively.

4.2.1 ONEMAX Under Dynamic Uniform Constraints

The first runtime analysis of evolutionary algorithms for a dynamic discrete prob-
lem has been presented by Droste [Dro02]. In that article, the ONEMAX problem is
considered and the goal is to find a solution which has the minimum Hamming dis-
tance to an objective bit-string. A dynamic change in that work is changing one bit
of the objective bit-string, which happens at each time step with probability p0 and
results in the dynamic changes of the fitness function over time. Droste has found
the maximum rate of the dynamic changes such that the expected optimisation time
of (1 + 1) EA remains polynomial for the studied problem. More precisely, he has
proved that (1 + 1) EA has a polynomial expected runtime if p0 = O(log(n)/n),
while for every substantially larger probability the runtime becomes super polyno-
mial. It is worth noting that the results of that article hold even if the expected
re-optimisation time of the problem is larger than the expected time until the next
dynamic change happens.

Using drift analysis, Kötzing et al. [KLW15] have reproved some of the results
in [Dro02]. Furthermore, they have carried out theoretical investigations for the
extended dynamic ONEMAX problem (see Section 3.2.1), in which each variable can
take on more than two values. They also carried out an anytime analysis (introduced
in [JZ14]) and show how closely their investigated algorithm can track the dynami-
cally moving target over time.

The optimisation time of evolutionary algorithms for ONEMAX and the general class
of linear pseudo-Boolean function, under a dynamic uniform constraint given in
Section 3.2 has been analysed in [Shi+19]. For now, we concentrate on ONEMAX

with with dynamic uniform constraint. The authors have analysed a standard (1 +

1) EA (Algorithm 3) and three other evolutionary algorithms which are presented

Chapter 4. A Survey on EAs in Dynamic Environments 35

Algorithm 7: MOEA; Assuming B B⇤. [Shi+19]
1 P an initial solution;
2 while stopping criterion not met do
3 Choose x 2 P uniformly at random;
4 Obtain y from x by flipping each bit of x with probability 1/n;
5 if (B⇤� |y|1�B) ^ (@w 2 P : w <MOEA y) then
6 P (P [{y}) \ {z 2 P | y �MOEA z};

in Algorithms 7 to 9. The results of their investigations are summarised in Table 4.1.
The (1 + 1) EA analysed in this paper, uses the fitness function

f(1+1)(x) = f (x)� (n + 1) · max{0, |x|1 � B⇤}

already introduced in [Fri+17]. It gives a large penalty to infeasible solutions by
subtracting for each unit of constraint violation a term of (n + 1). This implies that
each infeasible solution is worse than any feasible one. The penalty of this fitness
function, guides the search towards the feasible region and does not allow the (1 +

1) EA to accept an infeasible solution after a feasible solution has been found for the
first time.

Shi et al. [Shi+19] have used multiplicative drift analysis [DJW12] for investigat-
ing the behaviour of the studied algorithms. The potential function that they have
used for analysing (1 + 1) EA on ONEMAX with a dynamic uniform constraint is
|x|0, when B B⇤. Here, the initial solution, denoted by xorg, is feasible, and the
algorithm needs to increase the number of ones of the solution, until the cardinality
bound B⇤ is reached. In this situation, the drift on |x|0 is W(|x|0/n) for (1 + 1) EA.
Using multiplicative drift analysis, the expected number of generations to reach a
solution x⇤ with |x⇤|0 = n� B⇤ is

O
✓

n log
✓ |xorg|0

|x⇤|0

◆◆
= O

✓
n log

✓
n� B
n� B⇤

◆◆
.

For the situation where B � B⇤, the initial solution is infeasible and the number
of ones of the solution need to decrease (and possibly increase again, in case the
last move to the feasible region has decreased |x|1 to less than B⇤). The considered
potential function in this situation is |x|1 and the drift on that is W(|x|1/n), giving
an expected re-optimisation time of O

�
n log

� B
B⇤
��

.

The second algorithm that the authors have investigated is the Multi-Objective Evo-
lutionary Algorithm (MOEA) (see Algorithm 7). Here dominance of solutions is
defined with respect to the vector-valued fitness function

fMOEA(x) = (|x|1, f (x)).

Chapter 4. A Survey on EAs in Dynamic Environments 36

Algorithm 8: MOEA-S; Assuming B B⇤. [Shi+19]
1 P an initial solution;
2 while stopping criterion not met do
3 Choose x 2 P uniformly at random;
4 Obtain y from x by flipping bit one bit xi, i 2 {1, . . . , n} chosen u.a.r.;
5 if 8z 2 P : y kMOEA�S z then
6 P P [{y}
7 if (B⇤ � |y|1 � B) ^ (9z 2 P : y <MOEA-S z) then
8 z y;

A solution y dominates a solution z w. r. t. fMOEA (y ⌫ z) iff |y|1 = |z|1 and f (y) �
f (z). Furthermore, y strictly dominates z (y � z) iff y ⌫ z and f (y) > f (z). The
algorithm keeps at most one individual for each Hamming weight between B and
B⇤. Let D = |B⇤ � B|, then the size of population P is at most D + 1. The analysis
shows that this population size slows down the re-optimisation process for the ONE-
MAX problem. For the case where B < B⇤ and B > B⇤, the potential function that
Shi et al. [Shi+19] have used for analysing this algorithm is M = minx2P |x|0 and
M = maxx2P |x|1, respectively. The analysis is similar to their analysis of (1 + 1) EA,
except that the drift on M is W(M

n·D). The D in the denominator comes from the
fact that selecting the individual x with minimum |x|0 for B < B⇤ (minimum |x|1
for B > B⇤) from the population, happens at each iteration with probability at
least 1

D+1 . Using multiplicative drift analysis, they obtained an upper bound of
O
�
nD log

� n�B
n�B⇤

��
for B < B⇤ and an upper bound of O

�
nD log

� B
B⇤
��

for B > B⇤.

The third investigated algorithm is a variant of MOEA named MOEA-S shown in
Algorithm 8. In this algorithm only single-bit flips are allowed and a different defi-
nition for dominance is used. The new notion of dominance does not let the popula-
tion size grow to a size larger than 2. If B B⇤, for two bit strings y, z 2 {0, 1}n we
have:

• y dominates z, denoted by y <MOEA�S z if at most one value among |y|1 and |z|1
equals B⇤ or B⇤ � 1, and (|y|1 > |z|1) _ (|y|1 = |z|1 ^ f (y) � f (z))

• y dominates z, denoted by y <MOEA�S z if both |y|1, |z|1 2 {B⇤, B⇤ � 1}, and
|y|1 = |z|1 ^ f (y) � f (z)

This implies that y and z are incomparable, denoted by y kMOEA�S z, iff |y|1 = B⇤

and |z|1 = B⇤ � 1 or vice versa.

For B > B⇤, a similar definition of dominance is given by switching the dependency
of |y|1 � |z|1 on the number of 1-bits to |y|1 |z|1. The results of MOEA-S are ob-
tained by observing that this algorithm behaves like RLS on ONEMAX. It is shown
that the expected re-optimisation time for ONEMAX with a dynamic uniform con-
straint is O

�
n log

� n�B
n�B⇤

��
if B < B⇤ and O

�
n log

� B
B⇤
��

if B > B⇤.

Chapter 4. A Survey on EAs in Dynamic Environments 37

Algorithm 9: MOGA; Assuming B B⇤ [Shi+19], Concept from [DDE15].
1 P {x}, x an initial solution;
2 while stopping criterion not met do

/* Mutation phase. */
3 Choose x 2 P uniformly at random;
4 Choose ` according to Bin(n, p);
5 for i = 1 to l do
6 x(i) mutate`(x);

7 V = {x(i) | x(i) is valid};
8 if V 6= ∆ then
9 Choose x0 2 V uniformly at random;

10 else x0 x;

/* Crossover phase. */
11 for i = 1 to l do
12 y(i) crossc(x, x0);

13 M = {y(i) | y(i) is <MOEA-maximal ^ |y(i)|1 = |x|1 + 1};
14 if M = {y} then
15 y0 y;

16 else y0 x;

/* Selection phase. */
17 if (B⇤ � |y0|1 � B) ^ (@w 2 P : w <MOEA y0) then
18 P (S [{y0}) \ {z 2 S | y0 �MOEA z};

Shi et al. [Shi+19] have also introduced a multi-objective variant of the (1 + (l +

l)) GA [DDE15], which is the fourth algorithm that they have analysed for ONE-
MAX with a dynamically changing uniform constraint. In this algorithm, the same
notion of dominance as MOEA is used, and the population size can grow to D + 1.
Having a solution x, at each iteration l offspring are generated by the mutation oper-
ator, which flips l = Bin(n, p) random bits of x, where p is the mutation probability.
The offspring that have a 0 flipped to 1 (a 1 flipped to 0) are considered to be valid
for B⇤ > B (for B⇤ < B). One of the valid offspring (if exists), x0, is then used in
the crossover phase, in which it is recombined with the parent solution l times. For
a crossover probability c, the crossover operator creates a bit-string y = y1y2 · · · yn,
where each bit yi, 1 i n is chosen to be xi with probability c, and x0i otherwise.
The algorithm selects the best solution y with Hamming weight one larger than the
Hamming weight of x. The solution y is added to the population if it meets the
cardinality constraint and is not dominated by any other solution in the population.

Chapter 4. A Survey on EAs in Dynamic Environments 38

It is proved that this algorithm solves the ONEMAX problem with a dynamically
changing uniform constraint in expected time

O
✓

min
⇢p

nD
3
2 , D2

r
n

n� B⇤

�◆

if p = l
n , c = 1

l , l =
p

n/(n� |x|1) for B⇤ > B, and in expected time

O
✓

min
⇢p

nD
3
2 , D2

r
n
B⇤

�◆

if l =
p

n/|x|1 for B⇤ < B [Shi+19]. The key argument behind these results is to
show a constant probability of producing a valid offspring in the mutation phase,
and then show a constant probability of generating a solution y in the crossover
phase that is the same as x except for one bit, which is flipped from 0 to 1 for B⇤ > B
and from 1 to 0 for B⇤ < B.

4.2.2 Linear Pseudo-Boolean Functions Under Dynamic Uniform Con-
straints

The classical (1 + 1) EA and three multi-objective evolutionary algorithms have been
investigated in [Shi+19] for re-optimising linear functions under dynamic uniform
constraints. The general class of linear constraints on linear problems leads to ex-
ponential optimisation times for many evolutionary algorithms [Fri+17; ZH07]. Shi
et al. [Shi+19] considered the dynamic setting given in Section 3.2 and analyse the
expected re-optimisation time of the investigated evolutionary algorithms. This sec-
tion includes the results that they have obtained, in addition to the proof ideas of
their work.

The algorithms that are investigated in their work, are presented in Algorithms 3 of
Section 2.3.6 and 7 to 9 of Section 4.2.1; and the results are summarised in Table 4.2.
The (1 + 1) EA (Algorithm 3) uses the following fitness function which has been
introduced by Friedrich et al. [Fri+17] (similar to the fitness function for ONEMAX

in Section 4.2.1):

f(1+1)(x) = f (x)� (nwmax + 1) · max{0, |x|1 � B⇤}

Here, wmax = max1in wi denotes the maximum weight, and the large penalty for
constraint violations guides the search towards the feasible region.

Shi et al. [Shi+19] have investigated this setting similar to the analysis of ONEMAX

under dynamic uniform constraints (Section 4.2.1). The main difference is that for
a non-optimal solution with B⇤ 1-bits, an improvement is not possible by flipping a
single bit. A 2-bit flip that flips a 1 and a 0 may be required, resulting in an expected
re-optimisation time of O

�
n2 log(B⇤wmax)

�
.

Chapter 4. A Survey on EAs in Dynamic Environments 39

(1 + 1) EA MOEA MOEA-S MOGA

O(n2 log(B⇤wmax)) O(nD2) O(n log D) O(nD2)

TABLE 4.2: Upper bounds on the expected re-optimisation time of
evolutionary algorithms on linear functions with a dynamic uniform

constraint.

The second investigated algorithm, MOEA, uses the fitness function fMOEA and the
notion of dominance defined in Section 4.2.1. Unlike the re-optimisation time of this
algorithm for the ONEMAX problem, whose upper bound is worse than the upper
bound of (1 + 1) EA; for the general linear functions the upper bounds obtained
for MOEA are smaller than the ones obtained for (1 + 1) EA. The reason is that the
algorithm is allowed to keep one individual for each Hamming weight between the
two bounds in the population. This avoids the necessity for a 2-bit flip. To reach a
solution that is optimal for cardinality A + 1, the algorithm can use the individual
that is optimal for cardinality A and flip the 0-bit whose weight is maximal. This
happens in an expected number of at most en(D + 1) iterations, where D = |B⇤ � B|.
As there are D + 1 different cardinality values between the two bounds, the expected
time to reach the optimal solution with cardinality B⇤ is O(nD2).

MOEA-S (Algorithm 8) has also been analysed for linear functions with a dynam-
ically changing uniform constraint. It uses single bit-flips and the population in-
cludes at most 2 solutions: one with Hamming weight at most B⇤ � 1 and one with
Hamming weight B⇤. With this setting, long waiting times for selecting a certain
individual of the population are avoided. The algorithm starts with one solution in
the population. It has been shown that in time O(n log D) the population consists
of one solution with Hamming weight B⇤ � 1 and one with Hamming weight B⇤.
Then the authors use a potential function to measure the difference of the current
population to an optimal solution with Hamming weight B⇤. The potential is given
by the number of 0-bits in the two solutions that need to be set to 1 in order to obtain
an optimal solution. Using multiplicative drift analysis with respect to the potential
function, they have proved that the expected re-optimisation time of the algorithm
is O(n log D).

The fourth algorithm that is analysed in [Shi+19] is MOGA (Algorithm 9 of Sec-
tion 4.2.1). The authors have shown that, choosing an optimal solution of Hamming
weight A < B⇤ for reproduction, an optimal solution for Hamming weight A + 1
is produced with probability W(n�1/2) in the next generation, if p = l

n , c = 1
l

and l =
p

n. Since there are D + 1 different Hamming weights to consider, and
each iteration of the algorithm constructs O(l) = O(

p
n) solutions, the expected

re-optimisation time is upper bounded by O(nD2).

Chapter 4. A Survey on EAs in Dynamic Environments 40

4.2.3 Dynamic Vertex Cover Problem

The common representation for solving the vertex cover problem by means of evolu-
tionary algorithms is the node-based representation [Fri+10; KN13; OHY09; PSN16].
A different representation, the edge-based representation, has been suggested and
analysed in [JOZ13] for the static vertex cover problem. In this representation a
search point is a bit-string x 2 {0, 1}m, where m denotes the number of edges in the
given graph G = (V, E). For a given search point x, E(x) = {ei 2 E | xi = 1} is the
set of chosen edges. The cover set induced by x, denoted by VC(x), is the set of all
nodes that are adjacent to at least one edge in E(x).

Three variants of RLS and (1 + 1) EA have been investigated. This includes one
node-based approach and two edge-based approaches. The node-based approach
and one of the edge-based approaches use a standard fitness function,

f (s) = |VC(s)| + (|V| + 1) · |{e 2 E|e \VC(s) = ∆}|,

in which each uncovered edge obtains a large penalty of |V| + 1. In [JOZ13], an
exponential lower bound for finding a 2-approximate solution for the static ver-
tex cover problem with these two approaches using the fitness function f has been
shown. Furthermore, considering the dynamic vertex cover problem, Pourhassan
et al. [PGN15] have proved that there exist classes of instances of bipartite graphs
where dynamic changes on the graph lead to a bad approximation behaviour.

The third variant of an evolutionary algorithm that Jansen et al. [JOZ13] have in-
vestigated, is an edge-based approach with a specific fitness function. The fitness
function fe has a very large penalty for common nodes among selected edges. It is
defined as

fe(s) = |VC(s)| + (|V| + 1) · |{e 2 E | e \VC(s) = ∆}|
+ (|V| + 1) · (m + 1) · |{(e, e0) 2 E(s)⇥ E(s) | e 6= e0, e \ e0 6= ∆}|.

This fitness function guides the search towards a matching, and afterwards to a max-
imal matching. In other words, whenever the algorithms find a matching, then they
do not accept a solution that is not a matching, and whenever they find a matching
that induces a node set with k uncovered edges, then they do not accept a solution
with k0 > k uncovered edges. It is well known that taking all the nodes belonging
to the edges of a maximal matching for a given graph results in a 2-approximate for
the vertex cover problem.

Chapter 4. A Survey on EAs in Dynamic Environments 41

The variant of RLS and (1 + 1) EA work with the edge-based representation and the
fitness function fe. Note that search points are bit-strings of size m, and the proba-
bility of flipping each bit in (1 + 1) EA is 1/m. Jansen et al. [JOZ13] have proved
that RLS and (1 + 1) EA with the edge-based approach find a maximal matching
which induces a 2-approximate solution for the vertex cover problem in expected
time O(m log m), where m is the number of edges.

The behaviour of RLS and (1 + 1) EA with this edge-based approach has been in-
vestigated on the dynamic vertex cover problem (see Section 3.6) in [PGN15]. It is
proved in [PGN15] that starting from a 2-approximate solution for a current instance
of the problem, in expected time O(m) RLS finds a 2-approximate solution after a
dynamic change of adding or deleting an edge. The authors of that paper have in-
vestigated the situation for adding an edge and removing an edge separately. For
adding an edge, they have shown that the new edge is either already covered and
the maximal matching stays a maximal matching, or it is not covered by the current
edge set and the current edge set is a matching that induces a solution with one
(only the new edge) uncovered edge. Since the number of uncovered edges does not
grow in this approach and the algorithm selects the only uncovered edge with prob-
ability 1/m, a maximal matching is found in expected m steps. This argument also
holds for (1 + 1) EA, but the probability of selecting the uncovered edge and having
no other mutations with this algorithm is at least 1/(em). Therefore, the expected
re-optimisation time for (1 + 1) EA after a dynamic addition is also O(m).

When an edge is deleted from the graph, if it had been selected in the solution, a
number of edges can be uncovered in the new situation. All these uncovered edges
had been covered by the two nodes of the removed edge, and can be partitioned
into two sets U1 and U2, such that all edges of each set share a node. Therefore,
if the algorithm selects one edge from each set (if any exist), the induced node set
becomes a vertex cover again. It will again be a maximal matching and therefore a
2-approximate solution. On the other hand, no other one-bit flips in this situation
can be accepted, because they either increase the number of uncovered edges, or
make the solution become a non-matching. With RLS, in which only one-bit flips are
possible, the probabilities of selecting one edge from U1 and U2 at each step are |U1|

m
and |U2|

m , respectively. Therefore, in expected time O(m) one edge from each set is
selected by the algorithm.

The analysis for (1 + 1) EA dealing with a dynamic deletion is more complicated,
because multiple-bit flips can happen. In other words, it is possible to deselect an
edge and uncover some edges at the same step where an edge from U1 or U2 is
being selected to cover some other edges. An upper bound of O(m log m) is shown
in [PGN15] for the expected re-optimisation time for (1 + 1) EA after a dynamic
deletion, which is the same as the expected time to find a 2-approximate solution
with that algorithm, starting from an arbitrary solution.

Chapter 4. A Survey on EAs in Dynamic Environments 42

4.2.4 Dynamic Makespan Scheduling

Makespan scheduling is another problem which has been considered in a dynamic
setting [NW15]. It is assumed that the processing time of job i for 1 i n, is
pi 2 [L, U], where L and U are lower and upper bounds on the processing time
of jobs respectively. In addition, the ratio between the upper bound and the lower
bound is denoted by R = U/L. The runtime performance of (1 + 1) EA and RLS
is studied in terms of finding a solution with a good discrepancy and it is assumed
that there is no stopping criteria for the algorithms except achieving such a solution.
The discrepancy d(x) of a solution x is defined as

d(x) =

�����

n

Â
i=1

pi(1� xi)

!
�

n

Â
i=1

pixi

!����� .

Note that a solution that has a smaller discrepancy also has a smaller makespan.
Moreover, the proofs benefit from an important observation about the fuller ma-
chine (the machine which is loaded heavier and determines the makespan). The
observation is on the minimum number of jobs of the fuller machine in terms of U
and L. :

• Every solution has at least d(P/2)/Ue � d(nL/2)/Ue = d(n/2)(L/U)e =

d(n/2)R�1)e jobs on the fuller machine, where P = Ân
i=1 pi

Two dynamic settings are studied for this problem. The first one is called the adver-
sary model in which a strong adversary is allowed to choose at most one arbitrary
job i in each iteration and change its processing time to a new pi 2 [L, U]. It is
proven that, independently of initial solution and the number of changes made by
the adversary, RLS obtains a solution with discrepancy at most U in expected time
of O(n min{log n, log R}). In the case of RLS, the number of jobs on the fuller ma-
chine increases only when the fuller machine is switched. Otherwise it increases the
makespan and will not be accepted by the algorithm. This fact is the base of the
proof. It is proved that if the fuller machine switches (either by an RLS step, which
moves a single job between machines, or by a change that the adversary makes),
then a solution with discrepancy at most U has been found in a step before and after
the switch.

The proof for (1 + 1) EA is not as straightforward as for RLS, since (1 + 1) EA may
switch multiple jobs between the machines in one mutation step. However, it is
shown that the number of incorrect jobs on the fuller machine, which should be
placed on the other machine to decrease the makespan, has a drift towards zero.
Using this argument, it is shown that (1 + 1) EA will find a solution with discrep-
ancy at most U in expected time O(n3/2). Whether the better upper bounds such as
O(n log n) are possible is still an open problem.

In the same dynamic setting, recovering a discrepancy of at most U is also studied

Chapter 4. A Survey on EAs in Dynamic Environments 43

for both RLS and (1 + 1) EA algorithms. It is assumed that the algorithm has already
achieved or has been initialised by a solution with the discrepancy of at most U and
the processing time of a job changes afterwards. By applying the multiplicative drift
theorem on the changes of the discrepancy and using the fact that the discrepancy
will change by at most U� L, it is proven that (1 + 1) EA and RLS recover a solution
with discrepancy of at most U in expected time of O(min{R, n}).

The makespan scheduling problem has also been studied in another dynamic set-
ting. In this model which is called the random model, it is assumed that all job sizes
are in {1, . . . , n}. At each dynamic change, the adversary chooses one job i and its
value will change from pi to pi � 1 or pi + 1 each with probability of 1/2. The only
exceptions are pi = n and pi = 1 for which it changes to pi = n � 1 and pi = 2,
respectively. Overall, this setting has less adversarial power than the adversary model
due to the randomness and changes by only 1 involved.

Let the random variable Xi denote the random processing time of job i at any point of
time. The following lemma proves that no large gap exists in the value of processing
times which are randomly chosen for jobs.

Lemma 4.1 (Lemma 4 in [NW15]). Let f(i) := |{Xj | Xj = i ^ j 2 {1, . . . , n}}| where
i 2 {1, . . . , n}, be the frequency of jobs of size i. Let

G := max{l | 9i : f(i) = f(i + 1) = · · · = f(i + l) = 0}

is the maximum gap size, i. e. maximum number of intervals with zero frequency everywhere.
Then, for some constant c > 0,

Pr(G � l) n2�cl .

This lemma states that, for any constant c > 0 and gap size G � c0 log n with a
sufficiently large c0, there is no gap of size G with probability at least 1� n · n�c�1 =

1� n�c. This probability is counted as a high probability in this study.

When the discrepancy is larger than G, it is proven that it decreases by at least one
if two jobs swap between the fuller and the emptier machines. Furthermore, the
maximum possible discrepancy for an initial solution is n2 when all the jobs have
the processing time of n and are placed on one machine. Finally, it is proven that
regardless of the initial solution, (1 + 1) EA obtains with high probability a discrep-
ancy of at most O(log n) after a one-time change in time O(n4 log n).

The previous result considered the worst-case initial solution. However, it is proven
that if the initial solution is generated randomly, then its expected discrepancy is
Q(n
p

n) and it is O(n
p

n log n) with high probability. Thus, with a random initial
solution, (1 + 1) EA obtains a discrepancy of O(log n) after a one-time change in
time O(n3.5 log2 n) with high probability.

Chapter 4. A Survey on EAs in Dynamic Environments 44

The two results on (1 + 1) EA and in the random model are for a one-time change.
In extreme case, however, the processing time of a job may increase or decrease by
one in each step which makes it hard to obtain a discrepancy of O(log n), unlike the
other results in this setting. Although, by using the results in the adversary model
and considering that R = U = n, it is possible to find a solution with discrepancy
of at most n. In the final theorem of this study, it is proven that independently of
the initial solution and the number of changes, (1 + 1) EA and RLS obtain a solution
with discrepancy of at most n in expected time O(n3/2) and O(n log n), respectively.
In addition, it is shown that the expected ratio between the discrepancy and the
makespan is 6/n. This is done by considering that a solution of discrepancy at most
n is obtained together with a lower bound on the makespan. The expected sum of
all processing times is n(n + 1)/2 and it is at least n2/3 + n with the probability of
1� 2�W(n). Hence, the expected makespan is at least n2/6 + n/2. Furthermore, if
the sum of processing times is less than n2/3 + n, then the ratio would be at least
n/n since the processing times are at least one. Hence, if n is not too small the ratio
is bounded from above by

6
n
� 3

n
+ 2�W(n) 6

n
.

4.2.5 The MAZE Problem

The dynamic pseudo-boolean function MAZE proposed in [KM12], consists of n + 1
phases of t0 = kn3 log n iterations. During the first phase, the function is equivalent
to ONEMAX. In the next n phases, all bit-strings except two, still have the value
equivalent to ONEMAX. The two different bit-strings, for each phase p are 0p1n�p

and 0p�11n�p+1 which have fitness values with an oscillating pattern: for two itera-
tions out of three, these two bit-strings are assigned values n + 2 and n + 1, respec-
tively, and at the third iteration, this assignment is reversed. Note that during the
last phase, MAZE behaves similar to TRAP. The formal definition of MAZE follows:

MAZE(x, t) =

8
>>>>>><

>>>>>>:

n + 2 if t > (n + 1) · t0 ^ x = 0n

n + 2 if t > t0 ^ x = OPT(t)

n + 1 if t > t0 ^ x = ALT(t)

ONEMAX(x) otherwise

OPT(t) =

8
<

:
OPTbt/t0c if t 6= 0 mod 3

ALTbt/t0c otherwise

ALT(t) =

8
<

:
ALTbt/t0c if t 6= 0 mod 3

OPTbt/t0c otherwise

OPTp = 0p1n�p for p n

ALTp = 0p�11n�p+1 for p n.

Chapter 4. A Survey on EAs in Dynamic Environments 45

While it was shown in [KM12] that a (1 + 1) EA loses track of the optimum for this
problem and requires with high probability an exponential amount of time to find
the optimum, Lissovoi and Witt [LW16] have proved that the optimum of the MAZE

function extended to finite alphabets, can be tracked by a (µ + 1) EA when the parent
population size µ is chosen appropriately and a genotype diversity mechanism is
used.

In another work [LW17], the behaviour of parallel evolutionary algorithms is studied
on the MAZE problem. In their analysis, it is proved that both the number of inde-
pendent sub-populations (or islands), l, and the length of the migration intervals, t,
influence the results. When t is small, particularly for t = 1, migration occurs too
often, and the algorithm behaves similar to (1 + l) EA and fails to track the MAZE

efficiently, for l = O(n1�#), where # is an arbitrary small positive constant. But with
a proper choice of t, more precisely t = t0, where t0 is the number of iterations in
each phase in the definition of the MAZE problem, and a choice of l = Q(log n), the
algorithm is able to track the optimum of MAZE efficiently.

The analysis of (µ + 1) EA and parallel evolutionary algorithms on the MAZE prob-
lem shows that both these algorithms have limitations for tracking the optimum.
(µ + 1) EA not only exploits the small number of individuals among which the opti-
mum is oscillated, but also requires genotype diversity and a proper choice of µ. On
the other hand, the obtained positive results of parallel evolutionary algorithms on
the MAZE problem depend on a careful choice of migration frequency. But on the
plus side, with parallel evolutionary algorithms, the problem can be extended to a
finite-alphabet version.

4.3 Ant Colony Optimisation

After having investigated evolutionary algorithms for dynamic problems, we now
give a summary on the results obtained in the context of ant colony optimisation
(ACO). ACO algorithms construct solutions for a given optimisation problem by
performing random walks on a so-called construction graph. The construction graph
frequently used in pseudo-Boolean optimisation is shown in Figure 4.1. This ran-
dom walk is influenced by so-called pheromone values on the edges of the graph.
At each time step, the pheromone values induce a probability distribution on the
underlying search space which is used to sample new solutions for the given prob-
lem. Pheromone values are adapted over time such that good components of so-
lutions obtained during the optimisation process are reinforced. The idea is that
this reinforcement then leads to better solutions during the optimisation process.
An algorithm which is frequently studied throughout theoretical investigations for
pseudo-Boolean maximisation is MMAS (see Algorithm 7). It is a simplification of
the Max-Min Ant System introduced in [SH00]. The algorithm, which is given in
Algorithm 7, only uses one ant in each iteration. However, variants of MMAS called

Chapter 4. A Survey on EAs in Dynamic Environments 46

e1,1

e1,0

e2,1

e2,0

e3,1

e3,0

e4,1

e4,0

e5,1

e5,0

v0 v1 v2 v3 v4 v5

FIGURE 4.1: Construction graph for pseudo-Boolean optimisation
with n = 5 bits.

l-MMAS, where in each iteration l ants are used, have also been studied in the liter-
ature. Pheromone values are chosen within the interval [tmin, tmax] where tmin and
tmax are lower and upper bounds used in MMAS. Furthermore, the update strength
r plays an important role in the runtime analysis of ACO algorithms. For MMAS,
a large update strength such as r = 1 often makes the considered MMAS algo-
rithms similar to simple evolutionary algorithms such as (1 + 1) EA. The consid-
ered algorithms are usually analysed with respect to the number of solutions until
a given goal has been achieved. As in the case of runtime analysis of evolutionary
algorithms, one is often interested in the expected number of solutions to reach the
desired goal.

Algorithm 10: MMAS
1 Set t(u,v) = 1/2 for all (u, v) 2 E.;
2 Construct a solution x⇤.;
3 Update pheromones w. r. t. x⇤.;
4 repeat forever
5 Construct a solution x.;
6 if f (x) � f (x⇤) then x⇤ := x.;
7 Update pheromones w. r. t. x⇤.;

4.3.1 Dynamic Problems

Kötzing and Molter [KM12] compared the behaviour of (1 + 1) EA and MMAS on
the MAZE problem. The MAZE problem has an oscillating behaviour of different
parts of the function and the authors have shown that MMAS is able to track this
oscillating behaviour if r is chosen appropriately, i.e. r = q(1/n) whereas (1 + 1) EA
looses track of optimum with probability close to 1.

In the case of dynamic combinatorial optimisation problems, dynamic single-source
shortest paths problems have been investigated in [LW15]. Given a destination node
t 2 V, the goal is to compute for any node v 2 V \ t a shortest paths from v to t. The
set of these single-source shortest paths can be represented as a tree with root t and
the path from v to t in that tree gives a shortest path from v to t. The authors have
investigated different types of dynamic changes for variants of MMAS. They first
investigated the MMAS and show that this algorithm can effectively deal with one
time changes and build on investigations in [ST12] for the static case. They show that

Chapter 4. A Survey on EAs in Dynamic Environments 47

the algorithm is able to recompute single-source shortest paths in an expected num-
ber of O(`⇤/tmin + ` ln(tmax/tmin)/r) iterations after a one change has happened.
The parameter ` denotes the maximum number of arcs in any shortest path to node
t in the new graph and `⇤ = min{`, log n}. The result shows that MMAS is able
to track dynamic changes if they are not too frequent. Furthermore, they present a
lower bound of W(`/tmin) in the case that r = 1 holds. Afterwards, periodic local
and global changes are investigated. In the case of the investigated local changes,
l-MMAS with a small l is able to track periodic local changes for a specific setting.
For global changes, a setting with oscillation between two simple weight functions
is introduced where an exponential number of ants would be required to make sure
that an optimal solution is sampled with constant probability in each iteration.

4.4 Conclusions

Evolutionary algorithms have been extensively used to deal with dynamic problems.
We have given an overview on recent results regarding the theoretical foundations
of evolutionary algorithms for dynamic problems in the context of rigorous runtime
analysis. Various results for dynamic problems in the context of combinatorial op-
timisation for problems such as makespan scheduling and minimum vertex cover
have been summarised and the benefits of different approaches to deal with such
dynamic problems have been pointed out.

While all these studies have greatly contributed to the understanding of the basic
working principles of evolutionary algorithms and ant colony optimisation in dy-
namic environments, analysing the behaviour on complex problems remains highly
open.

48

Part II

Static Combinatorial Optimisation
Problems

49

Chapter 5

Evolutionary Algorithms with Biased Mutation for
the Minimum Spanning Tree Problem

5.1 Introduction

In this chapter, we consider the minimum spanning tree problem which has been
described in Section 3.5. Given an undirected edge-weighted graph, the goal is to
find a spanning sub-graph which is a tree and has minimal total weight among all
such trees. When each edge is assigned multiple – usually conflicting – weights, one
is interested in a set of multi-objective compromise solutions (moMST).

Usually evolutionary algorithms perform an unbiased search due to their frequent
application in settings where knowledge on the fitness function can only be gained
by fitness function evaluations. However, if domain knowledge on the composi-
tion of (Pareto-)optimal solutions is available one should incorporate this knowledge
into mutation operators to speed up the evolution considerably [DHN07; DHN06;
FQW18; Fri+18; JS10].

In this chapter we consider biased mutation for evolutionary algorithms for the
single- and multi-objective MST problem and compare with unbiased counterparts.
Specifically, we examine the effects of mutation bias on the time complexity of sim-
ple EAs until they hit an optimal solution or cover the Pareto-front for the first time.
We show that bias can be both boon and bane depending on the structure of optimal
solutions on example graphs. I. e., there are situations where introduced bias leads
to improved upper bounds where we save a factor of n if the ranks of edges which
are part of optimal solutions are O(n). Contrarily, if heavy edges are frequent mem-
bers of optimal solutions, bias towards lightweight edges may entail an exponential
deterioration in the expected running time. Luckily, in the single-objective setting,
we can combine the best of both worlds. A simple modification, which decides for
unbiased or biased mutation in each step independently with probability 1/2, leads
to a guaranteed polynomial runtime bound of O(n3 log(n ·wmax)) for general graphs

Chapter 5. EAs with Biased Mutation for the MST Problem 50

where wmax is the maximum edge weight in the graph. At the same time this strategy
benefits from bias if the circumstances allow for it saving on a factor of n.

The contributions of this chapter has been accepted to be presented at the genetic
and evolutionary computation conference (GECCO 2020) [RBN20]. We introduce
the (mo)MST problem formally, establish a vocabulary and introduce the considered
algorithms in Section 5.2. Sections 5.3 and 5.4 deal with our runtime analysis in the
single-objective and multi-objective MST setting, respectively. Section 5.5 wraps up
the work with some concluding remarks.

5.2 Preliminaries

Let G = (V, E) denote a graph with vertex set V and edge set E. For convenience, we
write n = |V| and m = |E|. Consider the definition of single objective MST in Sec-
tion 3.5. In the multi-objective scenario, each edge is assigned two weights w(e) =

(w1(e), w2(e)).1 The goal is to find a spanning tree such that the total weight in both
weight functions is minimised simultaneously. This may result in a set of incompara-
ble trade-offs which are not necessarily better than each other in both weights. In or-
der to capture this aspect mathematically we adopt the well-known notion of Pareto
dominance to establish a partial order of spanning trees. Let w(Ti) = Âe2T wi(e) be
the weight of spanning tree Ti. We say spanning tree T1 weakly (Pareto-)dominates
spanning tree T2, denoted by T1 ⌫ T2, if w1(T1) w1(T2) ^ w2(T1) w2(T2). The
strong dominance holds when at least one of the inequalities is strict and it is de-
noted by T1 � T2. T1 is called non-dominated if there is no other spanning tree
that dominates T1. Likewise, w(T1) = (w1(T1), w2(T1)) is the non-dominated objec-
tive vector. The union set of all non-dominated spanning trees is called Pareto set,
its image in objective space is called the Pareto front, and each solution is termed
a Pareto(-optimal) solution or multi-objective MST (moMST). Our goal is to find a
non-dominated spanning tree for each non-dominated objective vector. In the fol-
lowing, we present the algorithms that we use to tackle these problems.

5.2.1 Algorithms

We consider the performance of a version of (1+1) EAMST, which is designed based
on (1 + 1) EA of Section 2.3.6 to deal with our graph problem (see Algorithm 11),
facing the single-objective MST problem. (1+1) EAMST is initialised with a random
spanning tree T. There have been different studies on generating random spanning
trees such as a rather classical randomised algorithm by Broder [Bro89], with ex-
pected running time of O(n log n) for almost all graphs or more recently by Madry
et al. [MST15]. Afterwards, the algorithm sets an edge-selection strategy, i. e., the
edge-selection probability distribution that is used in Line 6. Next, the algorithm

1Clearly, more than two objective functions are possible. Since we restrict our analysis to bi-
objective problems in this chapter we refrain from introducing the general form in favour of less nota-
tion overhead.

Chapter 5. EAs with Biased Mutation for the MST Problem 51

Algorithm 11: (1+1) EAMST

1 Let T be a random spanning tree on G = (V, E).;
2 Set the edge-selection strategy;
3 while optimum not found do
4 T0 T;
5 k 1 + Pois(1);
6 Based on the selection strategy, assign the probability q(e) to each edge

e 2 E.;
7 for k times do
8 Choose e 2 E with probability q(e).;
9 T0 T0 [{e};

10 Drop an edge from the resulting cycle in T0 uniformly at random.;

11 if T0 has no worse fitness than T then
12 T T0;

2a
3a

2a 2a

3a
2a 2a

3a

2a

GC

T1 T2 Th

FIGURE 5.1: Triangular-tailed graph G with a chain of p = n/4 trian-
gles and a giant component GC = Kn/2. [NW07]

sets k = Pois(1) + 1, the number of edges for the mutation step, where Pois(1) stems
from a Poisson distribution with rate l = 1. The constant ensures that we always
perform at least one mutation and avoids counting iterations that does not generate
new solutions. The same approach has been used in [RPN19]. In the mutation step,
an edge is selected according to its probability q(e) and is added to T. As the mutant
is no longer acyclic after the edge insertion, removing a randomly chosen edge from
the unique cycle is required to reestablish the tree property. This guarantees that the
resulting graph is a spanning tree. The algorithm repeats this procedure k times to
achieve a new solution T0 and replaces T by T0 if w(T0) w(T).

We consider three versions of Algorithm 11 where the difference is in the edge-
selection strategy.

(1+1) EA-UM refers to the unbiased variant of (1+1) EAMST in which always each
edge is selected with uniform probability q(e) = 1/m. We also consider (1+1) EAMST

with biased mutation called (1+1) EA-BM, in which the mutation probability of edge
e has been set based on the approximation of the probability that e appears in the
MST. The approximation, which is the result of experimental analyses, gives higher
probability to the edges with lower weights to be selected. The details on how to
calculate the approximation is given in the following sections. Note that for these

Chapter 5. EAs with Biased Mutation for the MST Problem 52

Algorithm 12: G-SEMOMST

1 Initialise population P with a random spanning tree on G = (V, E).;
2 Set the edge-selection strategy.;
3 while not all Pareto-optimal solutions found do
4 Choose T 2 P uniformly at random.;
5 T0 T;
6 k 1 + Pois(1);
7 Based on the selection strategy, assign the probability q(e) to each edge

e 2 E.;
8 for k times do
9 Choose e 2 E with probability q(e).;

10 T0 T0 [{e};
11 Drop an edge from the resulting cycle in T0 uniformly at random.;

12 if {T00 2 P | T00 � T0} = ∆ then
13 P = P \ {T00 2 P | T0 ⌫ T00} [{T0};

versions of (1+1) EAMST, the edge-selection strategy does not change during the opti-
misation process and has been set at the beginning of the algorithm. In other words,
the edge-selection strategy deterministically assigns values of q(e) (see line 6 in Al-
gorithm 11), i. e., either uniform or biased mutation with probability 1. Additionally,
we analyse a “hybrid” (1+1) EAMST, called (1+1) EA-MM (MM for mixed mutation),
where in each iteration of the outer loop the algorithm decides by fair coin-tossing
which strategy (biased or unbiased) to use.

For the multi-objective scenario, our runtime analysis is based on the G-SEMOMST

(see Algorithm 12) which is a version of G-SEMO algorithm introduced in Chapter 2.
G-SEMOMST stores a set of non-dominated solutions in the population P, which is
initialised with a single random spanning tree. In each iteration, it selects a solution
T from P uniformly at random and sets the number of the edges to be added in the
mutation step: one plus a random value sampled from a Poisson distribution with
l = 1. The mutation step is the same as the (1+1) EAMST and guarantees that the
resulting graph T0 is also a spanning tree. If there is no solution in P that strongly
dominates T0, T0 is added to P and all the solutions that T0 weakly dominates are
removed from P. Similar to the single-objective setting, two versions are subject
to analysis: G-SEMO-UM with uniform edge-selection probability q(e) = 1/m and
its biased counterpart G-SEMO-BM, in which edges that are dominated by fewer
edges in E have higher probability to be selected for the mutation (see Section 5.4 for
details).

Chapter 5. EAs with Biased Mutation for the MST Problem 53

5.3 Single-Objective Problem

In this section, we consider two types of triangular-tailed graphs, G1 and G2, which
are structurally the same but are different in the weights of the edges. A triangular-
tailed graph consists of a clique, GC, with n = n/2 vertices and a triangular tail, GT,
with h = n/4 triangles (Figure 5.1). In both G1 and G2, each triangle has 2 edges
with weights 2a and one edge with weight 3a, where a := n2. The weights of edges
in the clique are 4a and a in G1 and G2, respectively.

Neumann and Wegener proved that (1+1) EAMST, which uses bit-string represen-
tation, flips each bit with probability 1/m and is initialised with a random graph,
finds the MST of the triangular-tailed graphs in W(n4 log n) expected time [NW07],
i. e. the triangular-tailed graph has been used as the worst case example to prove the
lower bound. This bound is proven for a fitness function that prevents the algorithm
to accept solutions other than spanning trees after achieving the first spanning tree.
Moreover, the most time consuming phase in their proof is finding the MST from
an achieved spanning tree. Hence, their proof also holds even if (1+1) EAMST is ini-
tialised with a spanning tree.

Using the same worst case example, we prove that (1+1) EA-UM finds the MST in
Q(n2 log n). Afterwards, we improve this bound for graph G1, in which the edges
of GT are lighter than the edges of the clique, by enhancing the biased mutation
in (1+1) EA-BM. Inspired by the study of Raidl et al. [RKJ06], we use the ranking
strategy to perform the biased mutation. To this aim, we assign rank r, 1 r
|E|, to each edge based on its placement in ascending order of the weights, ties are
broken uniformly at random. For each edge e 2 E with rank r, we approximate the
probability of e to appear in the MST with p(r) = ar. Then, we set

q(e) = qb(e) =

p
p(r)

Âm
i=1
p

p(r)
,

as the probability of selecting e for the mutation step, where a = n�1
n . We show that

(1+1) EA-BM finds the MST of G1 in expected time Q(n log n). However, it takes
exponential time for (1+1) EA-BM to find the MST of G2, in which the edges of GT

are heavier than the edges of GC. In the following proofs, let b = B(T) denote the
set of bad selected edges in the tail of solution T, which have weight 3a.

Lemma 5.1. (1+1) EA-BM and (1+1) EA-UM do not increase the value of b during the
optimisation process.

Proof. Let T0 be the result of k subsequent edge insertions into T by mutation. Any
changes in the structure of the solution in GC does not change the weight and neither
b. It is similar when an edge with weight 2a is added and the other edge with weight
2a is removed from the cycle. Therefore, we only consider the number of changes in
GT that the swap between 2a and 3a edges happen in the same triangle. Let bi and bd

Chapter 5. EAs with Biased Mutation for the MST Problem 54

denote the number of swaps that increase and decrease w(T), respectively. We have
|B(T0)| = |B(T)| + bi � bd and w(T0) = w(T) + a(bi � bd). On the other hand, the
algorithms accept T0 if and only if w(T0) w(T), which implies that bi bd. Thus,
in an accepted move, the number of bad edges added to T is less than or equal to the
number of added edges with weight 2a.

The following theorem considers the performance of (1+1) EA-UM on triangular-
tailed graphs.

Theorem 5.2. (1+1) EA-UM finds the MST of triangular-tailed graph G 2 {G1, G2} in
Q(n2 log n) steps with probability 1� o(1).

Proof. Here, we follow the proof of Claim 10 in [NW07]. Note that we can focus
on GT since the initial solution is a random spanning tree and all weights in GC are
equal. Moreover, the MST contains all 2a edges and no 3a edge. Since (1+1) EA-UM
does not increase b (Lemma 5.1), we need to calculate the expected time to achieve
b = 0. In order to reduce b by one, the algorithm needs to insert a 2a edge and
remove the 3a edge from the resulting cycle. The probability of adding only one
edge is the probability of zero events in the Poisson distribution, which is equal to
e�1, and there are b specific 2a edges that need to be added. Since the maximum
size of a consequent cycle is 3, removing the 3a edge happens with the constant
probability 1/3. Hence, the probability of swapping a 2a edge with the 3a edge in
a required triangle is b/(3em) that happens in expected time 3em/b by the waiting-
time argument. Let T(1+1) EA-UM denote the first hitting time that (1+1) EA-UM finds
the MST. Since b is at most n, we obtain the following upper bound on the expected
time with probability 1� o(1)

E[T(1+1) EA-UM]
n

Â
k=1

3e · m
k
 3en2Hn

 3en2(log n + 1) = O(n2 log n).

Now we prove the lowe bound. Similar to the argument in the proof of the coupon
collector’s theorem (see, e. g., [MR95]), the lower bound 3en2(log n + 1)� cn2 holds
with the probability 1� e�ec , if (1+1) EA-UM only adds one edge in each iteration.
Setting c = log n

2 , the lower bound for the expected time is W(n2 log n) with proba-
bility 1� o(1). Let k-step refer to the iterations that k triangle edges are chosen for
the mutation step and note that k 3n/4. It is enough to bound the contribution
of k-steps on b during an2 log n iterations for a constant a > 0. The probability of a
k-step for a constant k � 1 is

pUM
k =

e�1

(k� 1)!
·
✓

3n/4
k

◆
·
✓

1
m

◆k
= q(nkm�k) = q(n�k),

Chapter 5. EAs with Biased Mutation for the MST Problem 55

where the first term is the probability of k� 1 events in the Poisson distribution with
l = 1. Note that (1+1) EA-UM always adds at least one edge and pUM

0 = 0. Within
Q(n2 log n) iterations, the expected number of 2-steps is O(log n) and there are o(1)

k-steps with k > 2. Each 2-step reduces b by at most 2. On the other hand, in a
random spanning tree, each triangle contains a bad edge with probability 2/3. Thus,
b is at least n/8 = Q(n) with probability 1� e�W(n), using a Chernoff bound with
d = 2/8. Hence, with the probability 1� o(1), the expected time for (1+1) EA-UM
to find the MST is

E[T(1+1) EA-UM] = Q

b�2 log n

Â
k=1

m
k

!
= Q

b

Â
k=1

n2

k
�

b

Â
k=b�2 log n

n2

k

!

= Q

b

Â
k=1

n2

k
�

2 log n

Â
k=1

n2

k

!
=

Q(n)

Â
k=1

n2

k
�

O(log n)

Â
k=1

n2

k

= Q(n2 log n)�O(n2 log log n) = Q(n2 log n).

Now, we consider the performance of (1+1) EA-BM on the graphs G1 and G2.

Lemma 5.3. Using the biased mutation with probability qb(e), the probability of selecting
edge e with rank r = O(n) is Q(1/n).

Proof. Considering the denominator of qb(e), we have

m

Â
i=1

ai/2 =

p
a� a(m+1)/2

1�
p

a
=

(1� o(1)) ·
p

a
1�
p

a

=
(1� o(1)) ·

p
n� 1

p
n�
p

n� 1
= Q(n).

Since r = O(n), for the numerator we have 1 � (1� 1
n)r/2 � (1� 1

n)cn � e�c0 , where
c < c0 are constants. We conclude that qb(e) = 1�o(1)

2ec0n
= Q(1/n).

Lemma 5.3 proves that the edges of GT in G1 have higher probability to be chosen in
(1+1) EA-BM than in (1+1) EA-UM. In the following theorem, we show the effect of
this property on the performance of (1+1) EA-BM.

Theorem 5.4. (1+1) EA-BM finds the MST of G1 in Q(n log n) with probability 1� o(1).

Proof. The proof is analogous to the proof of Theorem 5.2. However, we use Lemma
5.3 to tighten the probability of selecting edges from GT. Hence, the expected waiting
for the beneficial event in which a bad edge is removed from the tail is Q(n/b). Thus,
we obtain an upper bound of O(n log n).

To prove the lower bound, similar to the proof of Theorem 5.2, we use the argument
of coupon collector’s theorem with a similar approach used in [DJW02]. However, it

Chapter 5. EAs with Biased Mutation for the MST Problem 56

must be noted that we argue on the minimum number of edge selections such that
all the bad edges are chosen for the mutation at least once. According to Lemma 5.3,
the probability of selecting an edge in GT is at least 1/cn for a constant c. Moreover,
we have the initial number of bad edges is at least n/8 after the random initialisation
with probability 1� o(1). Note that (1+1) EA-BM selects at least one edge in each
iteration.

Therefore, (1 � 1/cn)t is the probability of no triangle edge is selected after t it-
erations. Consequently, the probability of flipping at least one triangle edge in t
iterations is 1� (1� 1/cn)t that implies (1� (1� 1/cn)t)n/8 is the probability of se-
lecting all of the n/8 bad edges at least once. Hence, the probability that at least one
bad edge has never been selected in t iterations is 1� (1� (1� 1/cn)t)n/8. Finally,
the probability that (1+1) EA-BM does not attempt to remove at least one bad edge
in t = (n� 1) ln n steps is 1� (1� (1� 1/cn)(n�1) ln n)n/8 � 1� e�1/8c.

Therefore, (1+1) EA-BM needs W(n log n) iterations to find the MST with probability
of 1� e�1/8c � o(1), which completes the proof.

Although (1+1) EA-BM efficiently finds the MST of G1, the next argument shows
that, in graphs similar to G2, finding the MST takes exponential time.

Lemma 5.5. The probability of selecting an edge with rank r = W(n2) is exponentially
small.

Proof. According to the proof of Lemma 5.3, it is enough to show that the enumerator
of p(r) is exponentially small when r > cn2 for some constant c. To this aim, we have

✓
1� 1

n

◆ r
2

✓

1� 1
n

◆ c
2 n2

 e�
c
2 n = O(e�n).

Theorem 5.6. The expected time for (1+1) EA-BM to find the MST of G2 is exponential.

Proof. In G2, edges of GT have higher weights than the edges of GC. Since there are
W(n2) edges in GC, the rank of edges of GT is W(n2). Using the result of Lemma 5.5,
the probability of selecting any of the edges of GT is O(e�n). Hence, the expected
time to select each of these edges for the mutation step is W(en). This implies that,
in expectation, (1+1) EA-BM needs exponential time to reduce the value of b by one;
consequently, it needs exponential time to find the MST of G2.

Before we continue with a result on arbitrary graphs we make a short trip into an-
other solution encoding. Let A refer to the (1+1) EAMST that uses a bit-string rep-
resentation of the edges instead of spanning trees. Consider the lollipop graph pre-
sented in Figure 5.2 which consists of a clique with n/2 vertices and a path of length
n/2 connected to it. Let all the edges of the clique have lower weights than all

Chapter 5. EAs with Biased Mutation for the MST Problem 57

GC = Kn/2

Path of length n/2

FIGURE 5.2: Worst case graph for random initialisation in the setting
of bit-representation.

the edges of the path. Therefore, the rank of edges in the path is W(n2) and have
qb(e) = O(e�n). Creating a random sub-graph from the lollipop graph, the number
of chosen edges from the tail is at most 2n/3 with probability 1 � o(1). The lol-
lipop graph illustrates that it is essential for A to be initialised with a spanning tree.
Otherwise, it takes exponential time for it to find even a connected graph.

In the following, we analyse the effect of using both mutation strategies simultane-
ously in (1+1) EA-MM. Note that in every t iterations, (1+1) EA-MM performs t/3
uniform mutations and t� t/3 biased mutations with probability of 1� o(1). This
implies that repeating (1+1) EA-MM c � 4 times, the results of Theorems 5.2 and
5.4 also hold for the (1+1) EA-MM. However, since (1+1) EA-MM benefits from the
uniform mutation in half of the iterations, it is also able to find the MST of G2 in
Q(n2 log n).

This is the motivation to analyse the performance of (1+1) EA-MM on general graphs.
For arbitrary graph G, let w(Ti) be the weight of Ti, the spanning tree achieved by
the algorithm in iteration i, and T⇤ be the minimum spanning tree. We define

g(Ti) = w(Ti)� w(T⇤),

the weight gap that the algorithm needs to cover to reach the MST. Note that a MST
is not necessarily unique but its weight is unique. We also redefine 1-step as an
iteration that the algorithm adds only one edge and removes a random edge from the
resulting cycle. Using a similar representation of Lemma 1 in [NW07], the following
lemma presents how 1-steps contribute to reduce the value of g(T).

Lemma 5.7. Let solution T be an arbitrary spanning tree. There exists a set of k 2
{1, · · · , n � 1} different accepted 1-steps that if happen in any order transform T to T⇤

and reduce w(T) by g(T)/k on average.

Proof. Let E(T) and E(T⇤) denote the edges of T and T⇤, respectively. Using an
existence proof, Kano [Kan87] proved that there is a bijection a : E(T⇤) \ E(T) !
E(T) \ E(T⇤) such that w(e) w(a(e)) and adding e to T creates a cycle that in-
cludes a(e). Let k = |E(T⇤) \ E(T)|. Swapping all the edges e 2 E(T⇤) \ E(T) with
a transforms T to T⇤ and reduces g(T) to zero. Thus, each of these good swaps de-
creases the value of g(T) on average by g(T)/k. Moreover, any 1-step that does a
good swap is accepted since it results in a solution that is not worse than T.

Chapter 5. EAs with Biased Mutation for the MST Problem 58

Using the result of Lemma 5.7 we prove a performance bound on (1+1) EA-MM on
arbitrary graphs.

Theorem 5.8. Starting from a random spanning tree, (1+1) EA-MM finds the minimum
spanning tree in expected time O(n3 log(n · wmax)), where wmax is the maximum weight of
the edges.

Proof. Let D(g) = g(Ti)� g(Ti+1) be the contribution of the algorithm in reducing
the value of g in one iteration. The probability of having a 1-step equals to the prob-
ability of having zero events in the Poisson distribution which is 1/e. Thus, with
the probability of 1/(2enm), the uniform strategy causes a 1-step such that a specific
edge e is added and a specific edge from the created cycle is removed. From Lemma
5.7 there are k good swaps. Therefore, the probability of a good swap in a 1-step
with uniform strategy is k/(2enm). Since a good swap reduces the value of g(T) on
average by g(T)/k, for D(g) we have

E[D(g)] =
g(T)

k
· k

2enm
.

Since the the maximum value of g(T) is n · wmax, using the multiplicative drift the-
orem [DG13] with d = 1/(2enm), the expected first hitting time that g(T) = 0 is
upper bounded by

ln(n · wmax) + 1� 1
2enm

� = O(n3 log(n · wmax)).

Although (1+1) EA-MM guarantees a polynomial expected time to find T⇤ for any
arbitrary graph, experiments by Raidl et al. showed that in many random graphs, all
the edges of T⇤ have rank O(n). This implies that the expected time for (1+1) EA-MM
to find the MST improves to O(n2 log(n · wmax)) in many applications, since the
probability performing a beneficial step improves to 1/(2em).

5.4 Multi-Objective Problem

In this section we consider the multi-objective version of the minimum spanning
tree problem. Firstly, we introduce the ranking of the edges in multi-objective space
and experimentally show a considerably good approximation for the appearance of
edges in an moMST according to their ranks. Using the approximation, we analyse
the performance of G-SEMO-UM and G-SEMO-BM dealing with two different types
of graphs.

Chapter 5. EAs with Biased Mutation for the MST Problem 59

5.4.1 Experimental Approximation

The work by Raidl. et al. [RKJ06] considered the single-objective scenario and lays
the groundwork for our empirical study. As a reminder: the authors showed that
low rank edges have a much higher probability to be part of MSTs. In the setting
of multiple conflicting objectives similar assumptions are reasonable, i. e., that non-
dominated spanning trees are more likely composed of “low-rank” edges for an ap-
propriate definition of “rank”. In a recent study Bossek et al. [BGN19] considered
different ranking definitions in the bi-objective case. More precisely, they considered
(1) the non-domination level and (2) the domination number of an edge to define the
rank and established a total order on the edges with low ranks being favoured. Simi-
lar to Raidl’s work, they conducted an empirical study and estimated the probability
pm(r) of edges to be part of at least one spanning tree as a function of its rank r for
different graph classes (more details in the following). They, next, empirically evalu-
ated the convergence speed of biased edge selection strategies in comparison to the
baseline of random uniform selection. They obtained significant improvements, par-
ticularly in the case where the domination number d(e) = |{e0 2 E |w(e0) ⌫ w(e)}|
was adopted for the definition of rank and the probability of choosing an edge with
edge r for insertion was set to

qm
b (r) =

pm(r)
Âr pm(r)

,

i. e., proportional to its probability of appearance in non-dominated solutions. We
catch up on their work and illustrate empirically, that b · ((n� 1)/n)r – similar to
Raidl’s results – is indeed a good approximation for the probability pm(r). In line
with Bossek et al., our empirical study is based on different graph types reflecting
different levels of density and edge weight distribution. Complete graphs (CEG for
Complete Edge Generation) with n nodes placed uniformly at random in [0, 100]2 are
studied alongside graphs where the interconnection of nodes is based on a Delauney
triangulation of the point cloud in the Euclidean plane (Delauney Edge Generation).
Note that in the latter case m = Q(n). Edge weights wi(e), i = 1, 2 either both
are realisations of uniform random numbers stemming from a U [5, 200]-distribution
(RNDRND; in consistence with [KC01; ZG99]) or the first weight corresponds to
the Euclidean distance between the nodes in the plane and the second weight is
sampled from a U [5, 200] distribution (EUCRND). For each graph type, i. e., CEG-
RNDRND, CEG-EUCRND, DEG-RNDRND and DEG-EUCRND we consider n 2
{25, 50, 100, 250}.

The estimation of pm(r) follows [BGN19]. Here, we describe the procedure in a
nutshell and refer the interested reader to the original work. First consider a single
random graph G = (V, E) of a given graph type and problem size n. For each

Chapter 5. EAs with Biased Mutation for the MST Problem 60

DEG-RNDRND / n=25 DEG-RNDRND / n=50 DEG-RNDRND / n=100 DEG-RNDRND / n=250

DEG-EUCRND / n=25 DEG-EUCRND / n=50 DEG-EUCRND / n=100 DEG-EUCRND / n=250

CL-DEG-RNDRND / n=25 CL-DEG-RNDRND / n=50 CL-DEG-RNDRND / n=100 CL-DEG-RNDRND / n=250

CL-DEG-EUCRND / n=25 CL-DEG-EUCRND / n=50 CL-DEG-EUCRND / n=100 CL-DEG-EUCRND / n=250

CEG-RNDRND / n=25 CEG-RNDRND / n=50 CEG-RNDRND / n=100 CEG-RNDRND / n=250

CEG-EUCRND / n=25 CEG-EUCRND / n=50 CEG-EUCRND / n=100 CEG-EUCRND / n=250

0 20 40 60 80 0 50 100 150 0 100 200 300 400 0 250 500 750 1000

0 25 50 75 0 50 100 150 200 0 100 200 300 400 0 250 500 750 1000

0 25 50 75 0 50 100 150 0 100 200 300 400 0 300 600 900

0 30 60 90 120 0 100 200 0 200 400 0 500 1000

0 25 50 75 0 50 100 150 200 0 100 200 300 0 200 400 600

0 50 100 0 50 100 150 200 0 200 400 600 0 300 600 900
0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

Rank

Pr
ob

(e
 in

 n
on

-d
om

in
at

ed
 s

pa
nn

in
g

tre
e)

Data �((n-1)/n)r

FIGURE 5.3: Empirical probabilities pm(r) of edges to be part of at
least one non-dominated spanning tree as a function of its rank r mea-
sured by the domination number (lower is better). The empirical data
is accompanied by regression models of the form b · ((n� 1)/n)r. See

Table 5.1 for supportive results of a regression analysis.

edge e, we calculate the number of non-dominated spanning trees that e is part of 2,
termed the share s(e), and estimate the probability of r-ranked edges by the average
of all shares of the corresponding rank. We repeat this process for 1000 random
graphs of the corresponding graph type and n 2 {25, 50, 100, 250} and use the mean
probability over all 1000 instances as the final estimate for pm(r).

Figure 5.3 shows the estimations of pm(r), the probability of rank-r edges to be part

2The set of non-dominated spanning trees is approximated by a simple weighted-sum approach
minimising lw1(T) + (1� l)w2(T) for equidistantly sampled l = k/1000, k = 0, . . . , 1000.

Chapter 5. EAs with Biased Mutation for the MST Problem 61

TABLE 5.1: Results of regression analysis separated by graph class
and instance size.

Graph class n R2 RMSE b

25 0.9434 0.0243 0.2900
50 0.9240 0.0263 0.2515

100 0.9113 0.0264 0.2253CEG-EUCRND

250 0.8893 0.0289 0.1988

25 0.9315 0.0299 0.2960
50 0.9196 0.0299 0.2559

100 0.9062 0.0297 0.2270CEG-RNDRND

250 0.8954 0.0298 0.1996

25 0.9802 0.0184 0.4054
50 0.9832 0.0166 0.4006

100 0.9784 0.0198 0.4024DEG-EUCRND

250 0.9712 0.0269 0.4041

25 0.9647 0.0336 0.4269
50 0.9566 0.0351 0.4174

100 0.9570 0.0347 0.4152DEG-RNDRND

250 0.9540 0.0360 0.4095

of at least one non-dominated spanning tree, separated by graph class and num-
ber of nodes. The estimations are accompanied by fitted regression models of the
form b · ((n� 1)/n)r. We observe that the model mostly adheres quite well to the
data. These apparent observations a supported by the results of a regression analy-
sis shown in Table 5.1. Here, the R2 values – a measure for the fraction of variance in
the data explained by the model – takes values close to 1 with a minimum of 0.8893
for CEG-EUCRND graphs with n = 250 nodes. Additionally, the root mean squared
error (RMSE) values, i. e., the mean deviation of the model predictions to the data,
are very low consistently. All in all the experiments support our parametric model
assumption for different dense and sparse graphs. As a consequence, we use this
empirical estimate for our upcoming theoretical runtime analysis.

5.4.2 Theoretical Analysis

Motivated by the experimental results, we use pm(r) = b · ((n� 1)/n)r as the ap-
proximation for the probability of an edge with domination number r appears in
the moMST. As b consistently takes values in (0, 1) throughout the experiments, we
drop this constant factor in subsequent investigations. Note that we break rank ties
randomly. Hence, we have m = |E| different edges with m different probabilities.
Using Bossek et al. [BGN19] approach, for each edge e with domination number r
we set

q(e) = qm
b (r)

Chapter 5. EAs with Biased Mutation for the MST Problem 62

1,2
2,1

1,2 1,2

2,1

1,2 1,2

2,1

1,2 u, u u, u

u, u u, u
GC

T1 T2 Th

FIGURE 5.4: Triangular-tailed graph G with a chain of p = n/4 trian-
gles and a giant component GC = Kn/2. [NW07]

for the probability of choosing e in the mutation step in Algorithm 12. Using the
same arguments as in Lemma 5.3, we have the following lemma for biased mutation
in the multi-objective setting.

Lemma 5.9. Using the biased mutation with probability q(e) = qm
b (r), the probability of

selecting edge e with domination count r = O(n) is Q(1/n).

Again, we consider the triangular-tailed graph in two versions Gm
1 and Gm

2 . Both
graphs contain h triangles in the tail. In each triangle, the two upper edges have
weights (1, 2) while the bottom edge has weight (2, 1). The difference lies in the
composition of the clique part GC. Here, in Gm

1 all edges have the same weight (k, k),
k > 2 while in Gm

2 there exists a subset GS = {e1, . . . , el} ✓ GC of size l (n/2� 1)

with w(e) = (u, u), u > 2, for each edge e 2 GS and w(e) = (k, k), k > u + n + 1, for
all remaining clique edges. We also assume that the edges in GS do not create any
cycle. Let us at this point retain the following: every non-dominated spanning tree
of Gm

1 contains an arbitrary spanning tree on GC as a sub-graph. In contrast, in Gm
2

every non-dominated spanning tree must necessarily contain GS as a sub-graph.

Let us briefly state our goals here. We denote by T ⇤ the set of non-dominated span-
ning trees for a given graph and by F = w(T ⇤) its image, i. e., the set of all Pareto-
optimal objective vectors. We seek to locate for each f 2 F a spanning tree T⇤ 2 T ⇤.

Lemma 5.10. For both Gm
1 and Gm

2 we have |F | = Q(n).

Proof. Let us first consider the clique part. In Gm
1 each spanning tree of GC has equal

weight, we may fix an arbitrary one. In Gm
2 the non-dominated spanning tree of

GC must include all the edges of GS. Thus, for each graph type Gm
1 and Gm

2 , the
contribution of the edges of GC in objective values are the same. Since the triangu-
lar tail is identical for both Gm

1 and Gm
2 , the following observations hold for both

versions. Every non-dominated spanning tree contain exactly two edges of each tri-
angle, in particular at least one edge with weight (1, 2), i. e. there are at least h edges
of weight (1, 2) in each Pareto solution. Hence, for each non-dominated spanning
tree the weight of the triangular part is

h ·
"

1
2

#
+ r ·

"
1
2

#
+ (h � r) ·

"
2
1

#
=

"
3h � r
3h + r

#
,

Chapter 5. EAs with Biased Mutation for the MST Problem 63

where 0 r h is the number of triangles that have two upper edges in the span-
ning tree. Together with our observations in the clique part, this implies r 2 Q(n)

and, as a direct consequence, |F | = Q(n).

Let f0, f1, . . . , fh 2 F be the objective vectors in ascending order of the first weight
(and thus in descending order of the second weight). In the following, we show that
we can easily move between Pareto-optimal spanning trees with distinct weights.
We use the notation d(T, T0) := |T \ T0| and speak about distance of spanning trees
in terms of the necessary edge exchange operations needed to transform T to T0.

Lemma 5.11. For each non-dominated spanning tree T in Gm
1 and Gm

2 with w(T) = fi, 0
i h, there is a non-dominated spanning tree T0 with d(T, T0) = 1 such that

• w(T0) = fi+1 for 0 i h � 1 or

• w(T0) = fi�1 for 1 i h.

Proof. We only prove the first case. The proof for the other case is similar. Consider
a non dominated spanning tree T with w(T) = fi, 0 i h � 1. T contains exactly
(h � i) edges of weights (2, 1) in the triangular-tail part. Now we obtain T0 by in-
cluding one of the h � (h � i) = i remaining edges of weight (2, 1) and dropping a
(1, 2) weighted edge on the resulting cycle. It follows that w(T0) = fi+1 and clearly
d(T, T0) = 1.

Lemma 5.11 states that once we found a single non-dominated spanning tree it is
easy to obtain the others.

Theorem 5.12. On Gm
1 , given an initial spanning tree T, G-SEMO-UM needs expected

time O(n3 log n) to cover the Pareto front.

Proof. Let T be a spanning tree with w(T) = fi and b(T) denote the number of
triangle edges with weight (2, 1) for T. We shall refer those edges bottom edges in
the following. Since, w(T) = fi clearly b(T) = i. By Lemma 5.11 we can move
to a tree with weight vector fi+1 or fi�1 by adding or removing a bottom edge. In
G-SEMOMST (see Algorithm 12) achieving f (i + 1) happens with probability at least

✓
1

i + 1

◆
·
✓

e�1 · (h � i)
m

◆
·
✓

2
3

◆
=

2(h � i)
3em(i + 1)

.

Here, the first term is the probability to select the individual T with w(T) = fi such
that T0 with w(T0) = fi+1 is not included in the population yet, the second term is
the probability for the 0 event of a Pois(l = 1) distribution, i. e., to add exactly one
edge to the sampled solution, and the third term is the probability to remove one of
the non-bottom edges from the resulting cycle. Adopting waiting time arguments,
the expected number of iterations until fi+1 is achieved is bounded from above by

Chapter 5. EAs with Biased Mutation for the MST Problem 64

3em(i + 1)/2(h � i). Hence, the total time until the population of G-SEMOMST con-
tains each one solution for each Pareto-optimal objective vector fi, i = 0, . . . , h – only
by adding bottom edges and starting with a solution with trade-off f0 in the worst
case – is bounded by the sum

h�1

Â
i=0

3em(i + 1)
2(h � i)

=
3em

2
·

h�1

Â
i=0

(i + 1)
(h � i)

 3em
2

·
h�1

Â
i=0

h

(h � i)

=
3emh

2
· Hh = O(n3 log n).

On the other hand, to include fi�1, the algorithm must choose a non-bottom edge
from the triangles that include one, with probability i/(em), and remove the bottom
edge with probability 1/3. Thus, the probability of this event is i/3em(i + 1), i. e.,
the expected number of iterations for such event happen is 3em(i + 1)/i. Therefore
– only by decreasing the number of bottom edges and starting from fh in the worst
case – the expected time for G-SEMOMST to achieve all the objective vectors in the
Pareto front is upper bounded by the sum

h

Â
i=1

3em(i + 1)
i

= 3em ·
h

Â
i=1

(i + 1)
i
 3em ·

h

Â
i=1

h

i

= 3emh · Hh = O(n3 log n).

All together, since one of the cases is always available, the total upper bound is
O(n3 log n).

Next we consider the performance of G-SEMO-UM on Gm
2 . In an arbitrary moMST

T of Gm
2 , let s = |GS \ T| denote the number of optimal edges GS in T.

Lemma 5.13. For two solutions T1, T2 2 Gm
2 , T1 � T2 if and only if s1 > s2.

Proof. Considering the proof of lemma 5.10, the difference between the objective
values of T1 and T2 that is caused because of the chosen tail edges is at most n. On the
other hand, increasing s improves both objective values by at least n + 1. Thus any
solution that has larger s have strictly better objective value in both objectives.

Lemma 5.13 shows that all the solutions in the population set of G-SEMOMST have
the same value of s. Note that G-SEMOMST starts with a spanning tree and any
offspring is also a spanning tree.

Theorem 5.14. On Gm
2 , given an initial spanning tree T, G-SEMO-UM needs expected

time O(n3 log n) to cover the Pareto-front.

Chapter 5. EAs with Biased Mutation for the MST Problem 65

Proof. We consider two phases in this proof. The first phase is to find the solution T
with s = l, i. e. T contains all the edges of GS. After this phase, we know that any
offspring is a Pareto-optimal solution. The next phase is to cover the whole Pareto
front.

Note that all the solutions in the current population have the same value of s < l.
Thus, the probability of choosing solution T with highest s is 1. To increase s, the
algorithm adds edge e 2 GS \ T with probability (l � s)/m. Adding e can cause
a cycle with size at most n. In the worst case, there is only one edge in the cycle
that can be removed without removing another optimal edge. Hence, a beneficial
removing happens with probability of 1/n. Therefore, the probability of increasing
s by 1 is at least e�1 · l�s

m · 1
n , where e�1 is the probability that G-SEMOMST adds only

one edge. Such mutation step happens after O(mn/(l� s)) iterations in expectation.
The minimum initial value for s is zero and l is at most n � 1. Thus, the expected
time for G-SEMOMST to finish phase one is upper bounded by

l�1

Â
i=0

mn
e(l � s)

 n3
n

Â
i=1

1
n

= O(n3 log n)

In the second phase, G-SEMOMST does not accept a solution with s < l. Hence,
the same argument as in Theorem 5.12 proves that G-SEMOMST finishes the second
phase in O(n3 log n) expected time and this completes the proof.

Now we consider G-SEMO-BM algorithm with biased mutation that select the edges
with q(e) = qm

b (r). The number of edges in the tail of Gm
1 and Gm

2 is the same and
equal to 3n/4. In both of the graphs, these edges dominate every other edges and
consequently have lower non-domination ranks, i. e. each edge have a unique ran-
dom rank within {1, · · · , 3n/4}. Moreover, in Gm

2 , edges of GS dominate other edges
of GC. Hence, ranks 3n/4, · · · , (3n/4) + l belong to the edges of GS. Therefore, as
Lemma 5.9 shows, all the edges that belong to the moMSTs in Gm

1 and Gm
2 have the

selection probability Q(1/n). Using the same arguments as in Theorems 5.12 and
5.14, the following result hold for the performance of G-SEMOMST on the graphs Gm

1

and Gm
2 .

Corollary 5.15. On Gm
1 and Gm

2 , given an initial spanning tree T, G-SEMO-BM needs
expected time O(n2 log n) to cover the Pareto-front.

5.5 Conclusion

We performed a rigorous asymptotic runtime analysis of evolutionary algorithms
with biased mutation for the classic Minimum Spanning Tree problem. Bias in this

Chapter 5. EAs with Biased Mutation for the MST Problem 66

context means that edges of low weight in the single-objective case and of low domi-
nation number in the multi-objective case are assigned a higher probability of muta-
tion. Our findings reveal that bias is blessing and curse at the same time. While a sig-
nificant time complexity speedup can be achieved in some cases, bias may also lead
to exponential expected optimisation time if edges of high rank are part of optimal
solutions. We showed that using the biased and unbiased mutations simultaneously
is the key to avoid the extreme cases of bias.

67

Chapter 6

Baseline Evolutionary Algorithms for the Packing
While Travelling Problem

6.1 Introduction

While a number of simple nonlinear problems, such as trap functions and Leadin-
gOnes, have been deeply studied from theoretical and practical aspects [AD18; GK16;
NB03], the literature is not equally rich for investigations of EAs on non-linear func-
tions. Specifically, multi-component problems have gained a lot of attention dur-
ing recent years due to their appearance in many real-world applications [Bon+19].
Multi-component problems consist of different components integrating with each
other in a way that it is essential to deal with all the components simultaneously to
find good quality solutions.

In this chapter, we theoretically analyse the performance of three baseline evolu-
tionary algorithms, RLS_swap, (1+1) EA and G-SEMOe, on variations of the packing
while travelling problem, which has been introduced in Section 3.4 and prove upper
bounds for the expected running times. RLS_swap and G-SEMOe are modified ver-
sions of RLS and G-SEMO algorithms that are introduced in Sections 2.2.1 and 2.3.7,
respectively. We prove that for the instances with correlated weights and profits,
RLS_swap and G-SEMOe find the optimal solution in expected time O(n3). Fur-
thermore, we consider the instances with uniform weights and prove that (1+1) EA
finds the optimal solution in expected time O(n2 log(max{n, pmax}). We also inves-
tigate the performance of these algorithms in addition to two other multi-objective
algorithms, which are introduced in section 6.4, from the experimental point of view.

The work of this chapter is based on a conference paper presented at 15th workshop
on foundations of genetic algorithms (FOGA XV) [RPN19]. The rest of the chapter is
organised as follows. Section 6.2 presents the detailed definition of considered PWT
problem and the algorithms used in this study. In Section 6.3, we investigate the
problem theoretically for correlated weights and uniform weights in Sections 6.3.1

Chapter 6. Baseline EAs for the PWT problem 68

and 6.3.2, respectively. Our experimental analyses are presented in Section 6.4, fol-
lowed by a conclusion in Section 6.5.

6.2 Preliminaries

In this section we present the version of PWT problem that is considered in this
chapter as well as the details of algorithms that we analyse.

6.2.1 Problem Definition

In this chapter, we consider a version of PWT which is slightly different from the one
introduced in Section 3.4. In this version, there are only two cities and n items that
are located in the first city. In addition, the weights of the given items are favourably
correlated with the profits, i.e. for any two item ei and ej, pi > pj implies wi < wj.
Hence, for a bit string solution s = (x1 · · · xn) 2 {0, 1}n, we have

B(s) =
n

Â
i=1

xi · pi �
Rd

vmax � n Ân
i=1 xi · wi

,

where d is the distance between the two cities.

We assume there are no items with the exact same weight and profit, however, all the
proofs can be extended to include these cases and achieve the same results. More-
over, without loss of generality, in the rest of the chapter we assume that items are
indexed in a way that p1 � p2 · · · � pn and w1 w2 · · · wn. We also consider
another version of the problem in which all the weights are uniform and equal to
one.

6.2.2 Algorithms

In this chapter we study the behaviour of three algorithms. The first one, described
in Algorithm 13, is a RLS variant called RLS_swap, which is able to do a swap (flip
a zero bit and a one bit simultaneously), in addition to the usual one-bit flip. This
modification of the classical RLS has been previously considered for the MST prob-
lem in [NW07]. In each iteration, if the current solution is all zeros or ones, it flips
a randomly chosen bit of the solution. Otherwise, with probability of 1/2, it either
does a one-bit flip as described or chooses a one and a zero uniformly at random
and flips both of them. The generated offspring replaces the current solution if it is
at least as good as its parent with respect to the fitness function. This swap muta-
tion is added in RLS_swap because there are some situations in optimising PWT in
which no one-bit flip is able to pass the local optima.

Another algorithm we consider is (1+1) EA (Algorithm 3). This algorithm, as intro-
duced in Section 2.3.6 flips each bit of the current solution with probability of 1/n in

Chapter 6. Baseline EAs for the PWT problem 69

Algorithm 13: RLS_swap
1 Choose s 2 {0, 1}n uniformly at random;
2 Let |s|1 denote the number of items in s;
3 while stopping criterion not met do
4 p a random real number in [0, 1];
5 if |s|1 = 0_ |s|1 = n _ p < 1/2 then
6 Create s0 by flipping a randomly chosen bit of s ;
7 else
8 Create s0 by flipping a randomly chosen zero bit and a randomly chosen

one bit of s ;

9 if F(s0) � F(s) then
10 s s0;

each mutation step. Similar to RLS_swap, it compares the parent and the offspring
and picks the better one for the next generation.

In RLS_swap and (1+1) EA, which are single-objective algorithms, the comparisons
between solutions is based on the fitness function

F(s) = (q(s), B(s))

where q(s) = min{C � w(s), 0}. According to q(s), s is infeasible if and only if
q(s) < 0 and the absolute value of q(s) denotes the amount of constraint violation.
The goal is to maximise F(s) with respect to lexicographic order, i.e. s1 is better than
s2 (F(s1) � F(s2)) if and only if (q(s1) > q(s2)) _ (q(s1) = q(s2) ^ B(s1) � B(s2)).
This implies that any feasible solution has better fitness than any infeasible solu-
tion. Moreover, between two infeasible solutions, the one with smaller constraint
violation is better.

We also consider PWT with a multi-objective algorithm using a variant of G-SEMO
algorithm introduced in Section 2.3.7, which uses a specific selection function to deal
with the exponential size of the population (Algorithm 9). Neumann and Sutton
suggested G-SEMOe for the knapsack problem with correlated weights and profits
to avoid the effects of an exponential population size [NS18]. We use the same ap-
proach since PWT easily changes to KP when R = 0. As the objectives, we use the
weight function (W(s)) and the previously defined fitness function (F(s)). The aim
is to minimise W(s) while maximising F(s). Between two solutions s1 and s2, we say
s1 (weakly) dominates s2, denoted by s1 ⌫ s2, if and only if W(s1) W(s2)^ F(s1) �
F(s2). The dominance is called strong, denoted by s1 � s2, when at least one of the
inequalities strictly holds. Note that based on this definition, similar to the single-
objective fitness function, each feasible solution dominates all infeasible solutions
and an infeasible solution closer to the constraint bound dominates the more distant
ones.

Chapter 6. Baseline EAs for the PWT problem 70

Algorithm 14: G-SEMOe

1 Choose s 2 {0, 1}n uniformly at random;
2 P {s};
3 while stopping criterion not met do
4 Let Pi = {s 2 P | |s|1 = i}, 0 i n and I = {i | Pi 6= ∆};
5 Choose j 2 I uniformly at random;
6 s arg max{B(x) | x 2 Pj};
7 Create s0 by flipping each bit of s independently with probability of 1/n;
8 if {z 2 P : z � s0} = ∆ then
9 P P \ {z 2 P | s0 ⌫ z} [{s0};

6.3 Theoretical Analysis

In this section, we theoretically investigate the performance of RLS_swap, G-SEMOe

and (1+1) EA on different versions of the PWT problem by using the running time
analysis. We first consider RLS_swap and G-SEMOe on the PWT with correlated
weights and profits. Next, the behaviour of (1+1) EA on the PWT problem with
uniform weights is analysed.

To study the PWT problem, we need to investigate the properties of an optimal solu-
tion and the impact of adding or removing an item on the benefit function. For this
reason, in the following lemma we prove that the weight of the current solution, wi,
and pi determine if item ei is worth adding to or removing from the current solution.

Lemma 6.1. For each item ei there is a unique threshold wei such that adding ei to the
current solution s improves the benefit function if and only if W(s) < wei . Moreover,
W(s) > wei + wi if and only if removing ei increases the benefit function.

Proof. Assume that the current solution s does not include item ei and s0 = s [ei.
Hence, we have

B(s0)� B(s) = (P(s0)� RT(s0))� (P(s)� RT(s))

= pi � Rd
✓

1
vmax � n(W(s) + wi)

� 1
vmax � nW(s)

◆

= pi �
Rdnwi

(vmax � n(W(s) + wi)) · (vmax � nW(s))
. (6.1)

Adding ei to s increases B(s) only if the value of Expression 6.1 is greater than zero.
Solving this equation we have

B(s0)� B(s) � 0 () W(s)

weiz }| {
vmax

n
� wi

2

1 +

s

1 +
4Rd

nwi pi

!
. (6.2)

Chapter 6. Baseline EAs for the PWT problem 71

By solving Equation 6.1 for each ei , 1 i n, we can find wei such that adding ei

to s improves B(s) if and only if W(s) < wei . Considering the case that ei 2 s and
s0 = s \ {ei}, a similar calculation implies that

B(s0)� B(s) � 0 () W(s) � vmax

n
+

wi
2

1�

s

1 +
4Rd

nwi pi

!
(6.3)

� wei + wi.

In other words, removing ei from s increases the benefit function if and only if
W(s) > wei + wi, which completes the proof.

A direct result from Equations 6.2 and 6.3 is that

pi � pj ^ wi wj =) wei � wej .

Therefore, we have we1 > we2 > · · · > wen . Moreover, if the weight of solution s
equals wei then B(s) = B(s[ei). Note that for any item ei and ej, i < j, if removing ei

is beneficial, then it is the same for ej because of the correlated weights and profits.
Hence, for any 1 i < j n, we also have

wei + wi > wej + wj. (6.4)

Now we discuss the optimal solution of the PWT problem. Let si = (1i, 0n�i) denote
the solution that only includes the first i items and s0 = (0n). Consider the case that
for some i, we have wei > W(si�1). Hence, by Lemma 6.1, adding ei to si�1 improves
the benefit function and B(si) > B(si�1). Moreover, since we1 � · · · � wei , we have
B(si) � · · · � B(s1). The claim is that for a given set of items, there is a unique k
such that the optimal solution of the PWT problem is packing either k or k ^ (k + 1)

items with the lowest indices. In the second case, sk and sk+1 are both optimal and
have the same benefit value. The following lemma proves this claim.

Lemma 6.2. The optimal solution for the Packing While Travelling problem is the set of k
or k ^ (k + 1) items with highest profits and lowest weights where k is unique and depends
on the given set of items.

Proof. First, we assume that wen > W(sn�1). In this case, we have B(sn) > B(sn�1)

and sn is the optimal solution. On the other hand, if we1 < 0 then the optimal solution
is s0. In the rest of the proof, we assume that neither of these cases happen.

Let o = min{i | W(si) > we(i+1)
, 0 i n� 1}. According to the definition of o

and weo+1 , adding any item to so decreases the benefit function. Moreover, we have
W(so�1) < weo , which implies W(so�1) + wo = W(so) < weo + wo. Hence, removing
any item from so also reduces the benefit function. Therefore, the following equation

Chapter 6. Baseline EAs for the PWT problem 72

holds:
B(s0) < · · · < B(so) � B(so+1) > · · · > B(sn).

The equality B(so) = B(so+1) holds only when weo+1 = W(so). However, all other
inequalities are strict according to Lemma 6.1.

To prove that so or so ^ so+1 are the only optimums, it is now enough to show that
for any i, si has the highest benefit value among other solutions with i items. This is
also true since the items in si have the highest profits and the lowest weights, which
result in the highest benefit value.

Involving the capacity constraint C, however, may change the optimal solution. We
define sk, k = max{j | W(sj) C, 0 j o}, the feasible solution with the highest
benefit function, which is the actual optimal solution with respect to C. This finalises
the proof.

From this point, we denote the optimal solution by s⇤ and k = |s⇤| denotes the
number of selected items in the optimal solution.

6.3.1 Correlated Weights and Profits

In this section, we consider the instances of the PWT problem in which the weights
are strongly correlated with the profits. We calculate the performance of RLS_swap
and G-SEMOe for this type of PWT.

RLS_swap

Using the result of Lemma 6.2, we analyse the performance of RLS_swap finding
the optimal solution of the PWT problem in terms of the number of evaluations. We
refer to the first k bits of s⇤ as the first block and the rest as the second block. Let
l and r denote the number of zeros in the first block and the number of ones in the
second block, respectively. For technical reason, we assume item e0 exists where
we0 > Ân

i=1 wi and x0 = 1. We denote the solution achieved by RLS_swap after t
generations as st. Consequently, we define

ht = max{0 i k | x0 = x1 = · · · = xi = 1^W(st) < wei + wi},

to be the index of a specific bit of st. The following lemma and theorem consider the
performance of RLS_swap on the PWT problem with correlated weights.

Lemma 6.3. Having obtained a solution st, RLS_swap does not accept a solution s0 =<

x01, · · · , x0n > in which 9i ht : x0i = 0.

Proof. Since the weights and profits are correlated, it is enough to prove RLS_swap
does not remove eht . Let s0 denote the solution in generation t0 > t such that W(s0) �

Chapter 6. Baseline EAs for the PWT problem 73

weht
+ wht for the first time after t, i.e. RLS_swap is able to remove eht from s0. Note

that all the items ei, i ht, are still in s0 at time t0. Furthermore, no swap mutation
can remove eht since it has a higher profit value and less weight than other missed
items. Hence, there exists an item ex, x > ht, that has been added to s0 with a one-bit
flip in iteration t0 � 1 such that W(s0)� wx < weht

+ wht , C � W(s0) � weht
+ wht

and B(s0) � B(s0 \ ex). From the benefit inequality and Lemma 6.1, we have

W(s0)� wx wex)W(s0) wex + wx.

Since x > ht, according to Inequality 6.4, we have weht
+ wht > wex + wx. Hence,

W(s0) < weht
+ wht which contradicts with the assumption that it is beneficial to

remove eht from s0 and completes the proof.

According to the definition of ht, the weight of the accepted solutions after genera-
tion t is lower bounded by W(sht), in which the first ht items are selected. This shows
that the maximum possible value for ht is k, otherwise s⇤ is not the optimal solution
(Lemma 6.2). Let

y = max {ht, min{i | ht < i n ^ xi = 1}} , (6.5)

be the index of the first one bit after a sequence of zeros after ht. Let y = ht if there
is no one bit after ht. Similarly to the proof of Lemma 6.3, the following corollary
holds.

Corollary 6.4. Obtaining a solution s with W(s) < wey + wy, RLS_swap does not remove
ey except by reducing the value of y.

Reducing the value of y to y0 < y is either caused by swapping ey with item ey0 or
inserting ey0 with a one-bit flip. In the first case, due to Inequality 6.4, and in the
second case, due to Lemma 6.1, we have W(s0) < wey0 + wy0 , i. e. Corollary 6.4 holds
for y0.

Theorem 6.5. RLS_swap finds the optimal solution for the Packing While Travelling prob-
lem with correlated weights and profits in O(n3) expected time.

Proof. Let RLS_swap start with a random solution s0. We analyse the optimisation
process in three main phases. In the first phase, RLS_swap finds a feasible solution.
The second phase is to obtain ht = k and the third phase is to remove the remaining
items from the second block to achieve the optimal solution.

If W(s0) C the first phase is already complete. Therefore, let W(s0) > C. Using
a fitness level argument, Neumann and Sutton proved that (1+1) EA, which uses a
fitness function with strictly higher priority in weight constraint satisfaction, finds a
feasible solution for KP with correlated weights and profits in O(n2) expected time
(Theorem 3 in [NS18]). Their proof also holds for RLS_swap since the constraint
is linear and RLS_swap is able to do a one-bit flip in O(n) expected time. Hence,

Chapter 6. Baseline EAs for the PWT problem 74

RLS_swap finds a feasible solution s in O(n2) expected time and completes the first
phase.

In the second phase, we analyse the expected time needed to increase the value of
ht to ht = k. To do this, we need to calculate the expected time to find a solution s
such that xht+1 = 1 and W(s) weht+1 + wht+1. Let s denote the current solution.
According to Lemma 6.1 and 6.2, if W(s) � wek+1 + wk+1, removing any item from
the second block improves the benefit function. Moreover, adding any item to the
second block decreases the benefit. The probability of a one-bit flip, which removes
an item from the second block, is r/(2n) and it happens in expected time O(2n/r).
Since there are at most n items to be removed, RLS_swap obtains s with W(s) <

wek+1 + wk+1 in 2n (Âr
i=1 1/i) = O(n log n) expected time. Note that after this point,

no item can be removed from s with a one-bit flip.

Now we examine the value of y as defined in Equation 6.5. Let y > ht. Since there
is no accepted one-bit flip that removes an item, we have W(s) < wey + wy and
Corollary 6.4 holds. Otherwise, we have y = ht and there are two cases: y = ht = k
or y = ht < k. Let y = ht = k. In this case, s includes of all the items in the first block
and there is no item in the second block to be removed. Therefore, RLS_swap has
found s⇤ which is the optimal solution. In the other case, that y = ht < k, adding
eht+1 is beneficial and there exists at least one acceptable one-bit flip that adds an
item to the solution s in expected time O(n). Let y > ht be the first item added. Since
this bit flip is beneficial, we have W(s) + wy < wey + wy and Corollary 6.4 holds.
Thus in O(n) we have a solution in which y > ht and RLS_swap cannot remove
ey. At this stage, any two-bit flip that swaps ey and eht+1 improves ht by one. This
swap takes place in O(n2) expected time. Thus in expected time O(n2) RLS_swap
increases ht by one. Since the maximum value of ht is k n, RLS_swap achieves
ht = k in expected time O(n3).

Finally in the third phase, RLS_swap needs to remove the remaining items from the
second block. Note that the first k items are now selected and cannot be removed
anymore. Each item can be removed with a one-bit flip which results in O(n log n)

expected time for this phase.

Therefore we can conclude that RLS_swap finds the optimal solution for the PWT
with correlated weights and profits in O(n3) expected time.

G-SEMOe

In this section we consider the time performance of G-SEMOe on the PWT problem
with correlated weights and profits. The two objectives used in this algorithm are the
weight function and the lexicographical fitness function, denoted by W(s) and F(s),
respectively. We say solution s1 weakly dominates solution s2, denoted by s1 ⌫ s2,
if W(s1) W(s2) ^ F(s1) � F(s2). In the case of at least one strict inequality, it
is called strong dominance. In our analysis, which is inspired by [NS18], we use a

Chapter 6. Baseline EAs for the PWT problem 75

fitness level argument on the weights of the solution and compute the expected time
needed to find at least one Pareto solution. Next, we calculate the time for finding
the entire Pareto front. Due to Lemma 6.2, we can observe the following corollary
that describes the Pareto front structure.

Corollary 6.6. The Pareto set corresponding to the Packing While Travelling problem with
correlated weights and profits is the solution set {s0, · · · , sk = s⇤}.

Proof. As it is explained in the proof of Lemma 6.1, si, i n, dominates all the
solutions with size i. On the other hand, we have B(s0) · · · B(sk) while
W(s0) · · · W(sk), which implies that {s0, · · · , sk} do not dominate each other.
Furthermore, sk dominates every solution si, i > k, since it has a higher fitness value
and less weight. Thus, there exists no solution dominating {s0, · · · , sk = s⇤}, which
completes the proof.

The following theorem proves that the expected time for G-SEMOe to find the entire
Pareto front of the PWT problem with correlated weights and profits is O(n3).

Theorem 6.7. G-SEMOe finds all the non-dominated solutions of the Packing While Trav-
elling problem with correlated weights and profits in O(n3) expected time.

Proof. The proof consists of two phases. In the first phase, G-SEMOe finds the Pareto
solution {0}n. In the second phase, G-SEMOe finds other Pareto solutions based on
the assumption of having at least one optimal solution.

Note that according to the definition of F(s), an infeasible solution with less con-
straint violation always dominates the other ones, even in this two-objective space.
Hence, while G-SEMOe has not achieved a feasible solution, the size of its popula-
tion remains one. Therefore, it behaves exactly the same as (1+1) EA until it finds
a feasible solution, which is argued in first phase of Theorem 6.5, and takes O(n2)

expected time. In the rest of the analysis of the first phase, we assume that G-SEMOe

has found a feasible solution.

To analyse the first phase, we define n fitness levels Ai, 0 i n� 1, based on the
weight objective W(s) as follows:

Ai = {s | s = s0} i = 0

Ai = {s | W(si�1) < W(s) W(si)} 1 i n.

According to the correlation of the weights, this definition guarantees that if a solu-
tion s belongs to level Ai, 1 i n, then s includes at least one of the items ej where
j � i. Moreover, removing ej from s moves it to a lower level. Now assume that P
denotes the population in step t of G-SEMOe. Let Au denote the lowest level that has
been achieved until step t and s 2 Au has the highest fitness among the solutions
in level Au. G-SEMOe chooses this solution by choosing |s|1 from I, which happens

Chapter 6. Baseline EAs for the PWT problem 76

with the probability of 1/|I| � 1/n. Furthermore, there exists item ex in s such that
x � u and removing it produces a solution in a lower level. This solution will be
accepted since it has the lowest weight. The one-bit flip that removes ex from s hap-
pens with the probability of 1/(en). Thus, G-SEMOe reduces u with probability of
1/(en2) in step t. In other words, G-SEMOe reduces u, at least by one, in expected
time O(n2). On the other hand, s0, which is the only solution of level A0, is a Pareto
solution since it has the lowest possible weight. Thus, if the algorithm achieves A0

then the first phase is accomplished. Since the maximum possible value of u is n and
u is reduced by one in every O(n2) expected iterations, G-SEMOe finishes the first
phase in expected time of O(n3).

In the second phase, we assume si 2 P, i k exists such that si is Pareto solution
by Corollary 6.6, and either si�1 or si+1, which are also Pareto solutions, do not exist
in P. Otherwise, the second phase is already finished. Adding ei+1 to or removing
ei from si results in si+1 or si�1, respectively. For such a step, the algorithm must
choose i 2 I and flip the correct bit, which happens with the probability 1/n and
1/(en), respectively. Hence, the algorithm finds a new Pareto solution from si in
O(n2) expected iterations. Based on Corollary 6.6, the size of the Pareto set is k + 1
n. Therefore, G-SEMOe finds all the k + 1 Pareto solutions of the PWT problem with
correlated weights and profits in O(n3) expected time.

6.3.2 Uniform Weights

In this section, we analyse the performance of (1+1) EA on another version of the
Packing While Travelling problem. Here we assume that weights of all the items
are one and the profits are arbitrary. Similar to the previous instances, we assume
items {e1, · · · , en} are indexed such that p1 � · · · � pn. Note that the results of
Lemmata 6.1 and 6.2 also holds for the uniform weights. Moreover, since correlated
weights and profits are actually the more general version of the uniform weights,
the results for G-SEMOe and RLS_swap also holds.

The analysis of (1+1) EA is based on the following Lemma which proves the exis-
tence of a set of one-bit flips and two-bit flips which transform an arbitrary solution
to the optimal solution.

Lemma 6.8. Let W(s⇤) be the weight of the optimal solution and the current solution s is
feasible. There exists a set of one-bit flips and two-bit flips that transform s to an optimal
solution if they happen in any order.

Proof. Assume that W(s) W(s⇤). This implies that i = |s|1 k, where i is the
number of selected items in s. In this case, any two-bit flips that swap a one bit from
the second block and a zero bit from the first block will be accepted by the algorithm.
If there is no one bit in the second block, then all the one-bit flips that change a zero
bit in the first block are accepted and this set leads s to the optimal solution s⇤. Note
that all defined one-bit flips will be accepted (Lemma 6.1 and Lemma 6.2) since i k

Chapter 6. Baseline EAs for the PWT problem 77

and the weights are one. Hence, it is not necessary for the bit flips to happen in a
special order. The other case, that C �W(s) > W(s⇤), is similar to the first one. Any
two-bit flips that swap a zero bits in the first block with a one bit in the second block
and any one-bit flips that remove ones from the second block are accepted by the
algorithm. Thus, in this case, there also exists a set of one-bit flips and two-bit flips
that, if they occure in any order, transform s into the optimal solution.

Here we present some more definitions that help us with analysis of the performance
of (1+1) EA on the PWT problem. Assume M is the set of m1 one-bit flips and m2 two-
bit flips that transform the current solution s to an optimal solution and |M| = m1 +

m2. Moreover, let g(s) = B(s⇤)� B(s) be the difference between the benefit of s and
the optimal solution. Therefore, we can denote the contribution of one-bit flips and
two-bit flips in g(s) by g1(s) and g2(s), respectively, such that g(s) = g1(s) + g2(s).
In the next theorem, we calculate the expected time for (1+1) EA to find the optimal
solution of the PWT problem with unifrom weights.

Theorem 6.9. The expected time for (1+1) EA to find the optimal solution for the Packing
While Travelling problem with uniform weights is O(n2 max{log n, log pmax}).

Proof. As mentioned in the proof of Theorem 6.5, it is proven in Theorem 3 in [NS18]
that (1+1) EA finds a feasible solution in O(n2) expected time. Thus, we assume that
(1+1) EA has already found a feasible solution s. Let Dt = g(s)� g(s0) = B(s0)� B(s)
denote the improvement of (1+1) EA in iteration t which transforms s to s0. We
partition the proof into two cases. Firstly, let the overall contribution of one-bit flips
in g(s) be more than the total improvement that could be achieved by two-bit flips.
Hence, we have g1(s) � g(s)

2 . Since there are m1 one-bit flips in M, each of them
happens with the probability of m1

en and improves the solution in average by g1(s)
m1

.
Thus, in this case we have :

E[Dt] �
g1(s)
m1

· m1

en
� g1(s)

en
� g(s)

2en
.

In the second case, the sum of improvements by two-bit flips in M is more than
the total improvement of one-bit flips and we have g2(s) � g(s)

2 . Here, the average
improvement of each two-bit flip is g2(s)

m2
and each takes place with a probability of

m2
2en2 . Therefore, we have:

E[Dt] �
g2(s)
m2

· m2

2en2 �
g2(s)
2en2 �

g(s)
4en2 .

We can conclude that the expected improvement at step t is at least E[Dt] � g(s)
4en2 . On

the other hand, B(s⇤) n · pmax is the maximum possible benefit value, ignoring
the cost function. To use the multiplicative drift, it is only necessary to calculate the
minimum possible amount of g(s).

Chapter 6. Baseline EAs for the PWT problem 78

Let sl be the last solution that turned into an optimal solution with a bit flip. We
need to find the minimum of B(s⇤)� B(sl) which happens when B(sl) is maximized.
There are three possibilities in which sl is the closest solution to the optimal solution.
If the last bit flip is a two-bit flip, to maximize B(sl), sl = sk�1 [ek+1. In this case,
we have g(sl) = pk � pk+1 � 1, since all the profits are integers. If the last bit flip
is a one-bit and it adds an item to sl , then the maximum benefit of sl is achieved
when sl = sk�1. Therefore, we have g(sl) = pk � Rdn

(vmax�n(k�1))(vmax�nk) . Considering
R, d, vmin and vmax as constants, g(s) = O(n�q) for some constant q � 1. The same
result holds for the third case where the final bit flip removes ek+1 from sl = sk+1.

Finally, using the multiplicative drift with X0 = n · pmax, xmin = n�q and d = 1
4en2 ,

the expected first hitting time T that (1+1) EA finds the optimal solution for the PWT
problem with uniform weights is:

E[T|X0] 4en2 ln(n · pmax · nq) = O(n2 max{log n, log pmax}).

6.4 Experiments

In this section, we experimentally investigate the performance of our algorithms.
The goal is to complement the theoretical analysis to gain additional insight into
the behaviour of the algorithms during the optimisation process. Moreover, by
analysing the running time of our algorithms on random instances with different
sizes, we present a clearer view of how they perform.

In the previous section, we showed that the classical RLS cannot find the optimal so-
lution by doing only one-bit flips and it is essential to do a two-bit flip to escape local
optima. However, what happens if the classical RLS is enhaced with a population?
To answer this question, we also consider another two multi-objective algorithms
called SEMOe and SEMO_swap. They are different from G-SEMOe (Algorithm 9)
only in the mutation step. The mutation step in SEMO_swap is the same as Algo-
rithm 13. SEMOe, on the other hand, only chooses one bit, uniformly at random,
and flips it. Our experiments show that SEMOe avoids the classical RLS weakness
by using the population and performs even better than the other multi-objective al-
gorithms.

6.4.1 Benchmarking and Experimental Setting

To compare the practical performance of different algorithms in different types of
PWT, we used thirty different instances where each instance consists of 300 items.
Each instance of size n for the correlated PWT is generated by choosing n integer
profits uniformly at random within [1,1000] and assigning them to p1, · · · , pn in de-
scending order. Similarly, n uniformly random integers within the same interval are

Chapter 6. Baseline EAs for the PWT problem 79

generated and sorted in ascending order as the weights w1, · · · , wn. Hence, for any
item ei, ej : i < j we have pi � pi and wi wj. For the instances with uniform
weights, we use the same profits as correlated instances but change the weights to
one. We set the constant values in all the instances as follows: n = 300, d = 50,
R = 70, vmax = 1 and vmin = 0.1. C = 8000 is the capacity chosen for correlated in-
stances. To calculate the proper capacity for uniform instances, we use the average of
the maximum number of items with correlated weights that fit in C = 8000, which
results in C = 72 for the uniform instances. Furthermore, for all the experiments,
algorithms start with the zero solution.

We use these instances in the first experiment, in which we show how the algorithms
converge to the optimal solution for the correlated and uniform instances. We run
each algorithm for all thirty instances, record the best found solution in each gener-
ation and normalise its benefit value to the interval [0,1] with respect to the optimal
solution for each instance. We plot the average of normalised values as the success
rate for each algorithm (Figure 6.1). Hence, this value is one when an algorithm
finds the optimal solution for all thirty different instances.

In the final experiments, in which we consider the optimisation time for algorithms,
we run each algorithm on instances with seven different sizes, n = 100, 200,
500, 1000, 2000, 5000, 10000. For each n, we have thirty different instances which are
created with the same constants as the previous ones. For each algorithm, we record
the average number of evaluations to find the optimal solution for the thirty in-
stances with the same n as its optimisation time. Hence, for each algorithm, we have
seven points to estimate the performance (Figure 6.2). We only do this analysis with
the correlated instances.

In our results for (1+1) EA and G-SEMOe, we only count the generations that an
actual bit flip has happened in mutation steps. The same approach has been used
in [DW18]. This causes the analysis to be fair since RLS_swap guarantees to create
a new solution in each mutation step but (1+1) EA and G-SEMOe do not flip any of
the bits with the probability of 1/e (36.7% of times).

6.4.2 Analysis

In this section, we analyse the performance of the algorithms based on the exper-
imental results. Figure 6.1 illustrates how the algorithms converge to the optimal
solutions for all the instances on average. In both types of the instances, it can be ob-
served that (1+1) EA and RLS get close to the optimal solutions much faster than the
multi-objective algorithms, which demonstrates that using population slows down
the convergence rate significantly. (1+1) EA, however, has major problems in find-
ing the optimal solutions when it is close to the optimum and only a few bit flips are
needed. The reason is that (1+1) EA is able to flip more than one bit. Hence, it is
likely to improve the benefit value, but increase the hamming distance between the

Chapter 6. Baseline EAs for the PWT problem 80

100 101 102 103 104 105 106

#Generations

-0.2

0

0.2

0.4

0.6

0.8

1

M
ea

n
of

 B
en

ef
it

V
al

ue

(1+1)EA
SEMO_swap
SEMO
RLS_swap
GSEMO

(A) Correlated weights and profits

100 101 102 103 104 105 106

#Generations

-0.2

0

0.2

0.4

0.6

0.8

1

M
ea

n
of

 B
en

ef
it

V
al

ue

(1+1)EA
SEMO_swap
RLS_swap
SEMO
GSEMO

(B) Uniform weights

FIGURE 6.1: The average best solution in each generation for
RLS_swap, (1+1) EA, G-SEMOe, SEMOe and SEMO_swap in thirty

different instances.

current solution and the optimal solution in the same time. In other words, (1+1) EA
is able to improve the benefit function while the improved solution needs more bit
flips to reach the optimal solution than before. Note that Figure 6.1 is plotted with
a logarithmic x scale to make it easier to distinguish the difference between the first
105 generations. While the other algorithms almost achieve the optimal solution in
the first 105 generations, (1+1) EA performs two times worse than the others.

Looking into the multi-objective algorithms, Figure 6.1 illustrates that G-SEMOe and
SEMO_swap behave almost identically while SEMOe outperforms both. This shows
that although SEMOe can flip only one bit in each generation, the population enables
the algorithm to bypass the local optima and find a better solution. In other words,
using population and dominance concepts is another method to escape local optima
with only one-bit flips. The reason, as described in the proof of Theorem 3.7, is
that one-bit flips can always reduce the weight of the solution. Using weight as
an objective in population-based multi-objective algorithms makes it possible for
SEMOe to obtain the zero solution, which is a Pareto optimal solution, by using only
one-bit flips. From that point, the algorithm can gradually find all the other Pareto

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
#Items

0

1

2

3

4

5

6

7

8

9

10

#G
en

er
at

io
ns

107

(1+1)EA
SEMO_swap
GSEMO
SEMO
RLS_swap
n2

n log(n)

FIGURE 6.2: Comparison between the running time of the algorithms
according to the experimental results.

Chapter 6. Baseline EAs for the PWT problem 81

optimal solutions, including the general optimal solution, by adding the correct item
to the previous optimal solution. Generally speaking, RLS_swap and SEMOe, which
enhance versions of the classical RLS to avoid the local optima, perform better for
this Packing While Travelling problem variation.

The results of the final experiment are presented in Figure 6.2. We run each algo-
rithm for instances with seven different sizes, and for each specific size, we have
thirty different instances. Figure 6.2 shows the average of running times for each
instance size. It validates the results in Figure 6.1, in which RLS_swap has a better
performance than the other algorithms while multi-objective algorithms outperform
(1+1) EA. This data can also be used to give an insight into the expected optimisation
time for each algorithm. Figure 6.2 presents the data for n2 and n log n expressions
which suggests that the order of magnitude for the running times for these algo-
rithms on random instances is close to n2 or n log n.

6.5 Conclusion

While evolutionary algorithms have been thoroughly studied in solving linear func-
tions, their performance on non-linear problems is not clear. In this chapter, we
study the performance of three base-line EAs, from a theoretical viewpoint, on the
packing while travelling problem, which is also known as a non-linear knapsack
problem. We prove that RLS_swap and G-SEMOe find the optimal solution in O(n3)

expected time for instances with correlated weights and profits. In addition, we
show that (1+1) EA finds the optimal solution for instances with uniform weights
in O(n2 log(max{n, pmax})), where pmax is the highest profit of the given items. We
also empirically investigate these algorithms and, based on our investigations, we
conjecture an upper bound of O(n2).

82

Part III

Dynamic Combinatorial
Optimisation Problems

83

Chapter 7

Evolutionary Multi-Objective Optimisation for the
Dynamic Knapsack Problem

7.1 Introduction

Evolutionary algorithms and other bio-inspired computing have been applied to
many dynamic and stochastic problems [NY12; RKD17] as they have the ability to
easily adapt to changing environments.

Theoretical investigations for combinatorial optimisation problems with dynami-
cally changing constraints have been carried out on different problems [NPR20],
recently. Studies investigated the efficiency of algorithms in finding good quality
solutions from scratch, when criteria change dynamically during optimisation pro-
cess, and/or adopting the current valuable solution when a new dynamic change
happens. The goal of this chapter is to contribute to this research direction from an
experimental perspective.

The multidimensional knapsack problem has been previously investigated in a dy-
namic environment [UU09; BÖ14; BÖ17]. In this problem, each item has m profits
and weights in m dimensions. The capacity of knapsack has also been defined in an
m dimensional space, and the goal is to maximise total profit without exceeding the
capacity in any of the dimensions. Baykosoglu and Ozsoydan in [BÖ17] compared
the performance of evolutionary and population-based methods, such as differen-
tial evolution (DE), memetic algorithm (MA), and firefly algorithm (FA), versus con-
structive search strategies such as greedy randomised adaptive search procedure
(GRASP). They considered two different scenarios. Firstly, they fixed the magni-
tude of changes and compared algorithms in various alteration frequencies. They
showed that FA and GRASP perform significantly better in this scenario. However,
in the scenario with various magnitudes, constructive strategies seem to be more
sensitive.

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 84

In this chapter, we use dynamic version of one dimensional knapsack problem and
compare the algorithms in more challenging scenarios in which the magnitude, the
distribution, and frequency of changes vary.

To experimentally investigate evolutionary algorithms for the knapsack problem
with dynamically changing capacity, we design a specific benchmark set. This bench-
mark set is built on classical static knapsack instances and varies the constraint
bound over time. The changes of the constraint bound occur randomly every t itera-
tions, where t is a parameter determining the frequency of changes. The magnitude
of a change is either chosen according to a uniform distribution in an interval [�r, r],
where r determines the magnitude of changes. Furthermore, we examine changes
according to the normal distribution N (0, s2) with mean 0 and standard deviation
s. Here s is used to determine the magnitude of changes and large values of s make
larger changes more likely.

The comparison between the algorithms is based on the offline errors. We compute
the exact optimal solutions for each possible capacity by performing dynamic pro-
gramming in preprocessing phase. To calculate the total offline error, we consider
the difference between the profit of the best achieved feasible solution in each itera-
tion and the profit of the optimal solution. Total offline error illustrates the perfor-
mance of the algorithms during the optimisation process and demonstrate how fast
an algorithm finds a good quality feasible solution. In the second part of the chap-
ter, which considers advanced evolutionary algorithms, we also do the comparisons
according to the partial offline error. The partial offline error only considers the
best feasible solution found by an algorithm exactly before the next dynamic change
happens. This factor does not illustrate how fast the algorithm finds a good quality
solution. In this way, instead of analysing the performance during the optimisation
period, we study the algorithms based on their final results.

The first part of our experimental analysis, which investigates the theoretical re-
sults in [Shi+19], corresponds to examining the uniform instances, in which all the
weights are one. We consider the performance of (1+1) EA (Algorithm 3) against
two versions of multi-objective evolutionary algorithms (MOEA and MOEA_D).
The multi-objective approaches, which only differ in their definition of dominance,
are developed based on the G-SEMO (Algorithm 4) in a way that store infeasible
solutions as part of the population in addition to feasible solutions. The range of
feasible and infeasible solutions stored in the multi-objective algorithms is set based
on the anticipated change of the constraint bound. Our experimental analysis con-
firm the theoretical results and show that the multi-objective approaches that use
population to deal with the dynamic changes outperform (1+1) EA.

Afterwards, we study the performance of the same baseline algorithms dealing with

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 85

general version of the dynamic knapsack problem, in which the weights are not uni-
form. For the general setting, we investigate different instances of knapsack prob-
lem, such as instances with randomly chosen weights and profits, and instances with
strongly correlated weights and profits. We study the behaviour of the algorithms
in various situations, where the frequency and the magnitude of changes are differ-
ent. Our results show that the (1+1) EA has an advantage over the multi-objective
algorithms when the frequency of changes is high. In this case, the population slow
down the adaptation to the changes. On the other hand, lower frequency of changes
play in favor of the multi-objective approaches, in most of the cases. Exceptions
occur in some situations where weights and profits are highly correlated or have
similar values.

In addition to these baseline evolutionary algorithms, we extend our experiments to
investigating the performance of NSGA-II and SPEA2 (Algorithms 5 and 6 of Sec-
tion 7), as the representatives of advanced evolutionary algorithms, in the dynamic
environment. We use Jmetal package as the base of our implementations and modify
the algorithms to perform on the dynamic KP [DN11]. Each of the algorithms calcu-
late a specific fitness value based on the non-dominance rank and position of each
individual among the others in the objective space. We compare these algorithms
with MOEA_D, as it outperforms the other baseline evolutionary algorithms, and
investigate the performance of advanced techniques in NSGA-II and SPEA2 against
the simple approach of MOEA_D. Our experimental results illustrates that while
NSGA-II and SPEA2 react faster to a dynamic change, MOEA_D can find better so-
lution if it has enough time before the next dynamic change. We also show that the
techniques for producing well-distributed non-dominated solutions prevent these
algorithms to improve their best feasible solution. Thus, we address this problem by
presenting an additional elitism to address this problem.

The work of this chapter is based on a conference paper [RNN18] presented at the
15th international conference on parallel problem solving from nature (PPSN XV)
and its extended version that is submitted to the evolutionary computation jour-
nal [RNN20]. The outline of the chapter is as follows: Section 7.2 introduces the
knapsack problem, how the dynamism is applied and our benchmarks. The base-
line evolutionary algorithms and the detailed analysis of their experimental results
is presented in Section 7.3. In Section 7.4, we present NSGA-II and SPEA2, the nec-
essary modifications to apply them on the dynamic knapsack problem, and their
experimental results in detail. Finally, a conclusion follows in Section 7.5.

7.2 The Dynamic Knapsack Problem

In this section, we explain how a dynamic change impacts the constraint bound
in KP (knapsack problem introduced in Section 3.3), and introduce the details of
benchmarks and the experimental settings used in Sections 7.3 and 7.4.

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 86

We consider two types of this problem based on the consideration of the weights.
Firstly, we assume that all the weights are one and uniform dynamic constraint is
applied. In this case, the limitation is on the number of items chosen for each solu-
tion and the optimal solution is to pick C items with the highest profits. Next, we
consider the general case where the profits and weights are linear integers under
linear constraint on the weight.

7.2.1 The Dynamic Constraint

In the dynamic version of KP considered in this chapter, the capacity dynamically
changes during the optimisation with a preset frequency factor denoted by t. A
change happens every t generations, i.e., the algorithm has t generations to find
the optimum of the current capacity and to prepare for the next change. In the
case of uniformly random alterations, the capacity of next interval is achieved by
adding a uniformly random value in [�r, r] to C. Moreover, we consider another
case in which the amount of the changes is chosen from the Gaussian distribution
N (0, s2). Figure 7.1 illustrates how dynamic changes from different distributions
affect the capacity. Note that the scales of the subfigures are not the same. For exam-
ple, the total change after 100 dynamic changes under N (0, 1002) is less than 1000
(Figure 7.1a) while the capacity reached almost 45000 with dynamic changes under
U (�10000, 10000) (Figure 7.1d). This indicates that there are different types of chal-
lenges, resulting from the dynamic changes that the algorithms must consider.

The combination of different distributions and frequencies brings interesting chal-
lenges for the algorithms. In an environment where the constraint changes with a
high frequency, the algorithms have less time to find the optimal solution, hence,
it is likely that an algorithm which tries to improve only one solution will perform
better than another algorithm that needs to optimise among several solutions. On
the other hand, the algorithms that pay a lot of attention to the configuration of solu-
tions in objective space, might loose the track of new optimal solution. This is caused
by their preference in solutions with better distribution factor, instead searching for
feasible solutions that are closer to the capacity constraint. Furthermore, the uniform
distribution guarantees upper and lower bounds on the magnitude of the changes.
This property could be beneficial for the algorithms which keep a certain number of
solutions in each generation, so that they do get ready and react faster after a dy-
namic change. If the changes happen under a normal distribution, however, there is
no strict bound on the value of any particular change, which means it is not easy to
predict which algorithms will perform better in this type of environment.

7.2.2 Benchmark and Experimental Setting

In this section, we present the dynamic benchmarks and the experimental settings.
We use eil101 benchmarks, which were originally generated for Traveling Thief
Problem [Pol+14], ignoring the cities and only using the items. The weights and

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 87

0 2000 4000 6000 8000 10000

4200

4800

5400

(A) N (0, 1002).

0 2000 4000 6000 8000 10000
2000

4000

6000

8000

10000

(B) N (0, 5002).

0 2000 4000 6000 8000 10000
0

1000

3000

(C) U (�2000, 2000).
0 2000 4000 6000 8000 10000
0

10000

30000

50000

(D) U (�10000, 10000).

FIGURE 7.1: Examples for constraint bound C over 10000 generations
with t = 100 using uniform and normal distributions. Initial value

C = 4815.

profits are generated in three different classes. In Uncorrelated (uncorr) instances,
the weights and profits are integers chosen uniformly at random within [1, 1000].
The Uncorrelated Similar Weights (unc-s-w) instances have uniformly distributed
random integers as the weights and profits within [1000, 1010] and [1, 1000], respec-
tively. Finally, there is the Bounded Strongly Correlated (bou-s-c) variations which
result in the hardest instances and comes from the bounded knapsack problem. The
weights of this instance are chosen uniformly at random within [1, 1000] and the
profits are set according to the weights within the weights plus 100. In addition,
in Section 7.3.2, where the weights are one, we set all the weights to one and con-
sider the profits as they are in the benchmarks. The initial capacity in this version is
calculated by dividing the original capacity by the average of the profits. Dynamic
changes add a value to C each t generations. Four different situations in terms of
frequencies are considered: high frequent changes with t = 100, medium frequent
changes with t = 1000, t = 5000 and low frequent changes with t = 15000.

In the case that weights are 1, the value of dynamic changes are chosen uniformly
at random within the interval [�r, r], where r = 1 are r = 10. In the case of linear
weights, when changes are uniformly random, we investigate two values for r: r =

2000, 10000. Also, changes from normal distribution is experimented for s = 100,
s = 500.

We use the offline errors to compute the performance of the algorithms. In each
generation, we record error ei = p(x⇤i)� p(xi) where x⇤i and xi are the optimal so-
lution and the best achieved feasible solution in generation i, respectively. If no
feasible solution is found in generation i, we consider solution yi that denotes the

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 88

solution with the smallest constraint violation. Then, the offline error is calculated
as ei = p(x⇤i) + n(yi). Hence, the total offline error for m generations would be
Âm

i=1 ei/m.

The benchmarks for dynamic changes are thirty different files. Each file consists of
100000 changes, as numbers in [�r, r] generated uniformly at random. Similarly,
there are thirty other files with 100000 numbers generated under the normal distri-
bution N (0, s2). The algorithms start from the beginning of each file and pick the
number of change values from the files. Hence, for each setting, we run the algo-
rithms thirty times with different dynamic change values and record the total offline
error of each run.

In order to establish a statistical comparison of the results among different algo-
rithms, we use a multiple comparisons test. In particularity, we focus on the method
that compares a set of algorithms. For statistical validation we use the Kruskal-Wallis
test with 95% confidence. Afterwards, we apply the Bonferroni post-hoc statistical
procedures that are used for multiple comparisons of a control algorithm against
two or more other algorithms. For more detailed descriptions of the statistical tests
we refer the reader to [CF09].

Our results are summarised in the Tables 7.1 .. 7.7. The columns represent the al-
gorithms with the corresponding mean value and standard deviation. Note, X(+)

is equivalent to the statement that the algorithm in the column outperformed algo-
rithm X, and X(�) is equivalent to the statement that X outperformed the algorithm
in the given column. If the algorithm X does not appear, this means that no signifi-
cant difference was observed between the algorithms.

7.3 Baseline Evolutionary Algorithms

In this section, we introduce the baseline evolutionary algorithms that are consid-
ered in this chapter and present detailed comparison of their performance according
the total offline values.

7.3.1 Algorithms

We investigate the performance of three algorithms in this section. The initial solu-
tion for all these algorithms is a solution with items chosen uniformly at random.
After a dynamic change happens to constraint C, all the algorithms update the so-
lution(s) and start the optimisation process with the new capacity. This update is
addressing the issue that after a dynamic change, current solutions may become in-
feasible or the distance of its weight from the new capacity become such that it is
not worth to be kept anymore. (1+1) EA (Algorithm 3) flips each bit of the current
solution with the probability of 1

n as the mutation step. Afterward, the algorithm
chooses between the original solution and the mutated one using the value of the

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 89

Algorithm 15: MOEA
1 Update C;
2 S+ {z 2 S+ [S�|C < w(z) C + d};
3 S� {z 2 S+ [S�|C� d w(z) C};
4 if S+ [S� = ∆ then
5 q best previous solution;

6 if C < w(q) C + d then
7 S+ {q} [S+;
8 else if C� d w(q) C then
9 S� {q} [S�;

10 while a change happens do
11 if S+ [S� = ∆ then
12 Initialise S+ and S� by Repair(q,d,C);
13 else
14 choose x 2 S+ [S� uniformly at random;
15 y flip each bit of x independently with probability 1

n ;
16 if (C < w(y) C + d) ^ (@p 2 S+ : p <MOEA y) then
17 S+ (S+ [{y}) \ {z 2 S+|y �MOEA z};

18 if (C� d w(y) C) ^ (@p 2 S� : p <MOEA y) then
19 S� (S� [{y}) \ {z 2 S�|y �MOEA z};

fitness function. Let pmax = max1in pi be the maximum profit among all the items.
The fitness function that we use in (1+1) EA is as follows:

f1+1(x) = p(x)� (n · pmax + 1) · n(x),

where n(x) = max {0, w(x)� C} is the constraint violation of x. If x is a feasible
solution, then w(x) C and n(x) = 0. Otherwise, n(x) is the weight distance of
w(x) from C.

The algorithm aims to maximise f1+1 which consists of two terms. The first term is
the total profit of the chosen items and the second term is the applied penalty to in-
feasible solutions. The amount of penalty guarantees that a feasible solution always
dominates an infeasible solution. Moreover, between two infeasible solutions, the
one with weight closer to C dominates the other one.

The other algorithm we consider in this chapter is a multi-objective evolutionary
algorithm (Algorithm 15), which is inspired by a theoretical study on the perfor-
mance of evolutionary algorithms in the reoptimisation of linear functions under
dynamic uniform constraints [Shi+19]. Each solution x in the objective space is a
two-dimensional point fMOEA(x) = (w(x), p(x)). We say solution y dominates solu-
tion x w.r.t. fMOEA, denoted by y <MOEA x, if w(y) = w(x) ^ f(1+1)(y) � f(1+1)(x).

According to the definition of <MOEA, two solutions are comparable only if they
have the same weight. Note that if x and y are infeasible and comparable, then the

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 90

Algorithm 16: Repair
input : Initial solution q, d, C
output: S+ and S� such that |S+ [S�| = 1

1 while |S+ [S�| = 0 do
2 y flip each bit of q independently with probability of 1

n ;
3 if f1+1(y) � f1+1(q) then
4 q y;
5 if C < w(q) C + d then
6 S+ {q} [S+;
7 else if C� d w(q) C then
8 S� {q} [S�;

one with higher profit dominates. MOEA uses a parameter denoted by d, which de-
termines the maximum number of individuals that the algorithm is allowed to store
around the current C. For any weight in [C � d, C + d], MOEA keeps a solution.
The algorithm prepares for the dynamic changes by storing nearby solutions, even
if they are infeasible as they may become feasible after the next change. A large d,
however, causes a large number of solutions to be kept, which reduces the probabil-
ity of choosing anyone. Since the algorithm chooses only one solution to mutate in
each iteration, this affects the MOEA’s performance in finding the optimal solution.

After each dynamic change, MOEA updates the sets of solutions. If a change occurs
such that all the current stored solutions are outside of the storing range, namely
[C � d, C + d], then the algorithm consider the previous best solution as the ini-
tial solution and uses the Repair function (Algorithm 16), which behaves similar
to (1+1) EA, until a solution with weight distance d from C is found.

To address the slow rate of improvement of MOEA caused by a large d, we use the
standard definition of dominance in multi-objective optimisation– i.e., solution y
dominates solution x, denoted by y <MOEA_D x, if w(y) w(x) ^ p(y) � p(x). This
new algorithm, called MOEA_D, is obtained by replacing lines 14-19 of Algorithm 15
with Algorithm 17. It should be noticed that if y is an infeasible solution then it is
only compared with other infeasible solutions and if y is feasible it is only compared
with other feasible solutions. MOEA_D keeps fewer solutions than MOEA and over-
all the quality of the kept solutions is higher, since they are not-dominated by any
other solution in the population.

7.3.2 Experimental Results

In this section we describe the initial settings of the algorithms and analyse their
performance using the mentioned statistical tests. The initial solution for all the
algorithms is a pack of items which are chosen uniformly at random. Each algorithm
initially runs for 10000 generations without any dynamic change. After this, the first
change is introduced, and the algorithms run one million further generations with

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 91

Algorithm 17: MOEA_D (Dominance and Selection)
14 choose x 2 S+ [S� uniformly at random;
15 y flip each bit of x independently with probability 1

n ;
16 if (C < w(y) C + d) ^ (@p 2 S+ : p <MOEA_D y) then
17 S+ (S+ [{y}) \ {z 2 S+|y �MOEA_D z};

18 if (C� d w(y) C) ^ (@p 2 S� : p <MOEA_D y) then
19 S� (S� [{y}) \ {z 2 S�|y �MOEA_D z};

TABLE 7.1: The mean, standard deviation values and statistical tests
of the offline error for (1+1) EA, MOEA, MOEA_D based on the uni-

form distribution with all the weights as one.

n r t (1+1) EA (1) MOEA (2) MOEA_D (3)
mean st stat mean st stat mean st stat

uncor 100 5 100 4889.39 144.42 2(�),3(�) 1530.00 120.76 1(+) 1486.85 123.00 1(+)

100 5 1000 1194.23 86.52 2(�),3(�) 44.75 8.96 1(+) 46.69 8.51 1(+)

unc-s-w 100 5 100 4990.80 144.87 2(�),3(�) 1545.36 115.15 1(+) 1500.07 106.70 1(+)

100 5 1000 1160.23 130.32 2(�),3(�) 41.90 6.13 1(+) 43.06 7.22 1(+)

bou-s-c 100 5 100 13021.98 780.76 2(�),3(�) 4258.53 580.77 1(+) 4190.55 573.13 1(+)

100 5 1000 3874.76 911.50 2(�),3(�) 177.62 83.16 1(+) 175.14 80.73 1(+)

dynamic changes in every t generations. For MOEA and MOEA_D, it is necessary to
initially provide a value for d. These algorithms keep at most d feasible solutions and
d infeasible solutions, to help them efficiently deal with a dynamic change. When
the dynamic changes come from U (�r, r), it is known that the capacity will change
at most r. Hence, we set d = r. In case of changes from N (0, s2), d is set to 2s,
since 95% of values will be within 2s of the mean value. Note that a larger d value
increases the population size of the algorithms and there is a trade-off between the
size of the population and the speed of algorithm in reacting to the next change.

Dynamic Uniform Constraint

In this section, we validate the theoretical results against the performance of (1+1) EA
and Multi-Objective Evolutionary Algorithm. Shi et al. state that the multi-objective
approach performs better than (1+1) EA in re-optimising the optimal solution of dy-
namic KP under uniform constraint [Shi+19]. Although the MOEA that we used in
this experiment is not identical to the multi-objective algorithm studied previously
in [Shi+19] and they only considered the re-optimisation time, the experiments show
that multi-objective approaches outperform (1+1) EA in the case of uniform con-
straints (Table 7.1). An important reason for this remarkable performance is the
relation between optimal solutions in different weights. In this type of constraint,
the difference between the optimal solution of weight w and w + 1 is one item. As
a result of this, keeping non-dominated solutions near the constrained bound helps
the algorithm to find the current optimum more efficiently and react faster after a
dynamic change.

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 92

Furthermore, according to the results, there is no significant difference between us-
ing MOEA and MOEA_D in this type of KP. Considering the experiments in Sec-
tion 7.3.2, a possible reason is that the size of population in MOEA remains small
when weights are one. Hence, MOEA_D, which stores fewer items because of its
dominance definition, has no advantage in this manner anymore. In addition, the
constraint is actually on the number of the items. Thus, both definitions for domi-
nance result the same in many cases.

Dynamic Linear Constraint

In this section, we consider the same algorithms in more difficult environments
where weights are arbitrary under dynamic linear constraint. As it is shown in
Section 7.3.2, the multi-objective approaches outperform (1+1) EA in the case that
weights are one. Now we try to answer the question: Does the relationship between
the algorithms hold when the weights are arbitrary?

The data in Table 7.2 shows the experimental results in the case of dynamic linear
constraints and changes under a uniform distribution. It can be observed that (as
expected) the mean of errors decreases as t increases. Larger t values give more
time to the algorithm to get closer to the optimal solution. Moreover, starting from a
solution which is near to the optimal for the previous capacity, can help to speed up
the process of finding the new optimal solution in many cases.

We first consider the results of dynamic changes under the uniform distribution.
We observe in Table 7.2 that unlike with uniform constraint, in almost all the set-
tings, MOEA has the worst performance of all the algorithms. The first reason for
this might be that, in case of the uniform constraints, the magnitude of a capacity
change is equal to the Hamming distance of optimal solutions before and after the
change. In other words, when weights are one, we can achieve the optimal solu-
tion for weight w by adding an item to the optimal solution for weight w� 1 or by
deleting an item from the optimal solution for w + 1. However, in case of arbitrary
weights, the optimal solutions of weight w and w + d could have completely differ-
ent items, even if d is small. Another reason could be the effect of having a large
population. A large population may cause the optimisation process to take longer
and it could get worse because of the definition of <MOEA, which only compares
solutions with equal weights. If s is a new solution and there is no solution with
w(s) in the set of existing solutions, MOEA keeps s whether s is a good solution or
not, i.e., regardless of whether it is really a non-dominated solution or whether there
exist another solution with lower weight and higher profit in the set. This compar-
ison also does not consider if s has any good properties to be inherited by the next
generation. For example, MOEA generate s that includes items with higher weights
and lower profits. Since it might have a unique weight, MOEA keeps it in the pop-
ulation. Putting s in the set of solutions decreases the probability of choosing all
other solution, even those solutions that are very close to the optimal solution. As

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 93

TABLE 7.2: The mean, standard deviation values and statistical tests
of the offline error for (1+1) EA, MOEA, MOEA_D based on the uni-

form distribution.

n r t (1+1) EA (1) MOEA (2) MOEA_D (3)
mean st stat mean st stat mean st stat

uncor 100 2000 100 5564.37 463.39 2(+),3(�) 11386.40 769.77 1(�),3(�) 3684.26 525.50 1(+),2(+)

100 2000 1000 2365.56 403.64 2(+),3(�) 7219.17 587.50 1(�),3(�) 776.14 334.69 1(+),2(+)

100 2000 5000 1415.42 167.08 2(+),3(�) 3598.29 420.12 1(�),3(�) 270.90 121.43 1(+),2(+)

100 2000 15000 914.55 102.82 2(+),3(�) 2004.16 368.82 1(�),3(�) 88.80 43.98 1(+),2(+)

unc-s-w 100 2000 100 3128.43 188.36 2(+),3(�) 5911.11 534.24 1(�),3(�) 2106.45 249.28 1(+),2(+)

100 2000 1000 606.14 99.23 2(+),3(�) 1564.23 619.97 1(�),3(�) 302.34 24.60 1(+),2(+)

100 2000 5000 147.55 31.80 3(�) 174.23 95.98 3(�) 60.94 9.12 1(+),2(+)

100 2000 15000 64.65 17.13 2(�),3(�) 40.66 15.51 1(+),3(�) 19.26 4.04 1(+),2(+)

bou-s-c 100 2000 100 3271.07 266.54 2(+) 5583.53 337.81 1(�),3(�) 3036.97 297.33 2(+)

100 2000 1000 1483.01 85.14 2(+),3(�) 2639.16 106.47 1(�),3(�) 617.92 186.35 1(+),2(+)

100 2000 5000 796.77 89.80 2(+),3(�) 1256.62 118.27 1(�),3(�) 251.41 109.58 1(+),2(+)

100 2000 15000 538.45 66.98 2(+),3(�) 687.95 116.91 1(�),3(�) 104.27 61.06 1(+),2(+)

uncor 100 10000 100 10256.72 210.51 2(+),3(+) 16278.97 248.43 1(�),3(�) 11038.07 236.91 1(�),2(+)

100 10000 1000 3604.18 285.73 2(+) 13340.20 704.32 1(�),3(�) 3508.51 473.42 2(+)

100 10000 5000 1607.78 278.60 2(+),3(�) 10614.45 1660.32 1(�),3(�) 1183.52 411.83 1(+),2(+)

100 10000 15000 987.64 219.53 2(+),3(�) 8006.35 1612.20 1(�),3(�) 566.69 219.54 1(+),2(+)

unc-s-w 100 10000 100 7192.82 153.93 2(+),3(+) 12617.69 318.23 1(�),3(�) 8057.44 274.17 1(�),2(+)

100 10000 1000 1846.43 115.23 2(+) 6981.81 768.78 1(�),3(�) 1743.12 364.38 2(+)

100 10000 5000 539.39 65.39 2(+) 3488.28 819.51 1(�),3(�) 519.63 175.22 2(+)

100 10000 15000 208.73 36.91 2(+) 1525.23 306.72 1(�),3(�) 201.97 79.28 2(+)

bou-s-c 100 10000 100 7187.80 122.59 2(+),3(+) 15111.38 231.53 1(�),3(�) 12736.55 229.48 1(�),2(+)

100 10000 1000 2282.81 219.24 2(+),3(+) 8301.43 569.90 1(�),3(�) 3575.26 550.54 1(�),2(+)

100 10000 5000 1370.48 250.59 2(+) 5248.40 1045.78 1(�),3(�) 1472.19 493.88 2(+)

100 10000 15000 955.38 133.33 2(+) 3852.07 752.84 1(�),3(�) 977.41 397.75 2(+)

it can be seen in the Table 7.2, however, there is only one case in which MOEA beat
the (1+1) EA: when the weights are similar, and the magnitude of changes are small
(2000), which means the population size is also small (in comparison to 10000), and
finally t is at its maximum to let the MOEA to use its population to optimise the
problem.

Although MOEA does not perform very well in instances with general weights,
the multi-objective approach with a better defined dominance, MOEA_D, does out-
perform (1+1) EA in many cases. We compare the performance of (1+1) EA and
MOEA_D below.

When changes are smaller, it can be seen in Table 7.2 that the mean of offline errors
of MOEA_D is smaller than (1+1) EA. The dominance of MOEA_D is such that only
keeps the dominant solutions. When a new solution is found, the algorithm compare
it to all of the population, removes solutions that are dominated by it and keeps it
only if it is not dominated by the any other one. This process improves the quality of
the solutions by increasing the probability of keeping a solution beneficial to future
generations. Moreover, it reduces the size of the population significantly. Large
changes to the capacity, however, makes the MOEA_D keep more individuals, and
it is in this circumstance that (1+1) EA may perform better than MOEA_D.

When r = 10000, MOEA_D does not have significantly better results in all cases
unlike in the case of r = 2000, and in most of the situations it performs as well as

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 94

TABLE 7.3: The mean, standard deviation values and statistical tests
of the offline error for (1+1) EA, MOEA, MOEA_D based on the nor-

mal distribution.

n s t (1+1) EA (1) MOEA (2) MOEA_D (3)
mean st stat mean st stat mean st stat

uncor 100 100 100 2714.72 106.06 2(+),3(+) 9016.83 2392.48 1(�),3(�) 4271.09 789.94 1(�),2(+)

100 100 1000 1386.66 97.11 2(+),3(�) 3714.89 737.11 1(�),3(�) 412.89 27.25 1(+),2(+)

100 100 5000 801.54 73.67 2(+),3(�) 1266.35 119.25 1(�),3(�) 108.28 14.22 1(+),2(+)

100 100 15000 549.71 78.98 2(+),3(�) 749.86 148.03 1(�),3(�) 61.93 17.03 1(+),2(+)

unc-s-w 100 100 100 412.24 111.07 2(+),3(+) 1979.65 914.35 1(�) 1904.09 877.55 1(�)

100 100 1000 85.55 23.13 2(+),3(+) 1566.54 409.32 1(�) 1482.37 391.75 1(�)

100 100 5000 36.94 13.61 2(+),3(+) 1414.66 448.78 1(�) 1322.35 414.27 1(�)

100 100 15000 29.14 19.70 2(+),3(+) 1237.67 665.27 1(�) 1137.80 648.73 1(�)

bou-s-c 100 100 100 1491.36 260.72 2(+),3(+) 4625.49 1302.52 1(�),3(�) 2903.77 717.92 1(�),2(+)

100 100 1000 736.10 53.99 2(+),3(�) 1748.61 189.94 1(�),3(�) 312.88 35.52 1(+),2(+)

100 100 5000 446.94 39.36 2(+),3(�) 640.60 91.29 1(�),3(�) 101.21 17.47 1(+),2(+)

100 100 15000 337.85 40.44 2(+),3(�) 469.16 93.99 1(�),3(�) 70.16 22.26 1(+),2(+)

uncor 100 500 100 4013.84 699.56 2(+),3(�) 10133.28 1128.57 1(�),3(�) 2469.58 649.04 1(+),2(+)

100 500 1000 1991.43 163.25 2(+),3(�) 5205.30 635.00 1(�),3(�) 511.58 187.21 1(+),2(+)

100 500 5000 1110.36 86.81 2(+),3(�) 1965.38 203.34 1(�),3(�) 143.28 54.20 1(+),2(+)

100 500 15000 732.32 81.25 2(+),3(�) 953.22 125.64 1(�),3(�) 45.26 13.87 1(+),2(+)

unc-s-w 100 500 100 1686.42 272.35 2(+),3(+) 4739.46 1283.37 1(�),3(�) 2693.60 580.74 1(�),2(+)

100 500 1000 262.12 57.43 2(+) 766.41 438.22 1(�),3(�) 304.96 124.57 2(+)

100 500 5000 75.09 16.18 3(�) 86.91 42.32 3(�) 47.31 14.83 1(+),2(+)

100 500 15000 37.60 10.96 2(�),3(�) 28.57 9.70 1(+),3(�) 15.82 4.18 1(+),2(+)

bou-s-c 100 500 100 2523.48 244.20 2(+),3(�) 4778.00 498.80 1(�),3(�) 2248.91 85.01 1(+),2(+)

100 500 1000 1075.70 144.73 2(+),3(�) 1862.45 236.14 1(�),3(�) 343.62 72.49 1(+),2(+)

100 500 5000 579.38 81.32 2(+),3(�) 717.55 50.92 1(�),3(�) 99.07 42.41 1(+),2(+)

100 500 15000 407.41 53.79 3(�) 358.09 44.40 3(�) 33.33 13.59 1(+),2(+)

(1+1) EA. In all high frequency conditions where t = 100, the (1+1) EA has bet-
ter performance. It may be caused by MOEA_D needing more time to optimise a
population with a larger size. Moreover, when the magnitude of changes is large,
it is more likely that a new change will force MOEA_D to remove all of its stored
individuals and start from scratch.

We now study the experimental results that come from considering the dynamic
changes under the normal distribution (Table 7.3). The results confirm that (1+1) EA
is faster when changes are more frequent. When the variation of changes is small,
skipping the case with uncorrelated similar weights and frequent changes, MOEA_D
has always been the best algorithm in terms of performance and MOEA has been the
worst.

The most notable results occur in the case with uncorrelated similar weights and
small s. (1+1) EA outperforms both other algorithms in this instance. This happens
because of the value of d and the weights of the instances. d is set to 2s in the multi-
objective approaches and the weights of items are integers in [1001, 1010] in this
type of instance. (1+1) EA is able to freely get closer to the optimal solutions from
both directions, while the multi-objective approaches are only allowed to consider
solutions in range of [C � d, C + d]. In other words, it is possible that there is only
one solution in that range or even no solution. Thus, the multi-objective approaches
either do not find any feasible solution and get penalty in the offline error, or are not
able to improve their feasible solution. Hence, multi-objective approaches have no

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 95

advantage in this type of instances according to the value of d and weights of the
items, and in fact, may have a disadvantage.

On the other hand, increasing s to 500 is enough for MOEA and MOEA_D to benefit
from the population again. Although (1+1) EA outperforms them in t = 100, it is
not the absolute dominant algorithm in instances with uncorrelated similar weights
anymore. More precisely, the results show that there is no significant difference be-
tween their performances in bounded strongly correlated instances and t = 15000.
Furthermore, the use of population in MOEA even cause a significantly better per-
formance in low frequent changes and uncorrelated similar weights instances.

7.4 NSGA-II and SPEA2

The results presented in Section 7.3.2 demonstrate the advantage of solving dynamic
KP as a multi-objective optimisation problem. We showed that using populations,
specifically in low frequent alterations, improve the efficiency and the quality of
founded solutions by preparing the algorithms for the coming dynamic changes. In
this section, we analyse the performance of NSGA-II and SPEA2 on the dynamic
knapsack problem. Both algorithms are well established approaches in the area of
evolutionary multi-objective optimisation. We are interested in analysing the advan-
tages of their heuristic techniques in comparison to each other and also in the envi-
ronments with high frequent changes. Moreover, we compare their performance
with MOEA_D as the best baseline algorithm of the previous section.

As both of these algorithms, unlike MOEA_D, use specific techniques to guarantee a
well-distributed solution set, to consider the capacity constraint and also prepare the
algorithm for the following dynamic changes, we present a new formulation of the
problem. Moreover, we discuss the elitism in each of the algorithms and show how
the elitism in plain versions, which is in favour of more distributed solutions, causes
the loss of good quality solution with respect to the profit and capacity constraint.
Next, we apply an additional elitism to improve the performance against the plain
versions of the algorithms.

7.4.1 New formulation for Dynamic KP

In this section, we present a new fitness evaluation approach, different from the
one used for MOEA_D, for NSGA-II and SPEA2 to solve the dynamic knapsack
problem. In contrast to MOEA_D which uses two separate solution sets to store
infeasible solutions to prepare for the following dynamic changes, we benefit from
the ability of SPEA2 and NSGA-II in finding a well-distributed non-dominated set.
We force the algorithms to find non-dominated solutions with weights within the
interval [C � d, C + d]. To this aim, we apply penalty on the weights and profits of

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 96

On the Performance of Baseline Evolutionary
Algorithms on the Dynamic Knapsack Problem

Vahid Roostapour vahid.roostapour@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Aneta Neumann aneta.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Frank Neumann frank.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Abstract
(Needs to be updated) Evolutionary algorithms are bio-inspired algorithms that can
easily adapt to changing environments. In this paper, we study single- and multi-
objective baseline evolutionary algorithms for the classical knapsack problem where
the capacity of the knapsack varies over time. We establish different benchmark sce-
narios where the capacity changes every � iterations according to a uniform or normal
distribution. Our experimental investigations analyze the behavior of our algorithms
in terms of the magnitude of changes determined by parameters of the chosen dis-
tribution, the frequency determined by � and the class of knapsack instance under
consideration. Our results show that the multi-objective approaches using a popu-
lation that caters for dynamic changes have a clear advantage on many benchmarks
scenarios when the frequency of changes is not too high.

Keywords
combinatorial optimization, dynamic constraints, knapsack problem.

1 Introduction

p(x)
w(x)
x1

x2

x4

x5

x3

C
Evolutionary algorithms Eiben and Smith (2007) have been widely applied to a

wide range of combinatorial optimization problems. They often provide good solu-
tions to complex problems without a large design effort. Furthermore, evolutionary
algorithms and other bio-inspired computing have been applied to many dynamic and
stochastic problems Nguyen and Yao (2012); Rakshit et al. (2017) as they have the ability
to easily adapt to changing environments.

Most studies for dynamic problems so far focus on dynamic fitness func-
tions Nguyen et al. (2012). However, in real-world applications the optimization goal,
such as maximizing profit or minimizing costs, often does not change. Instead, re-
sources to achieve this goal change over time and influence the quality of solutions

c�201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

On the Performance of Baseline Evolutionary
Algorithms on the Dynamic Knapsack Problem

Vahid Roostapour vahid.roostapour@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Aneta Neumann aneta.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Frank Neumann frank.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Abstract
(Needs to be updated) Evolutionary algorithms are bio-inspired algorithms that can
easily adapt to changing environments. In this paper, we study single- and multi-
objective baseline evolutionary algorithms for the classical knapsack problem where
the capacity of the knapsack varies over time. We establish different benchmark sce-
narios where the capacity changes every � iterations according to a uniform or normal
distribution. Our experimental investigations analyze the behavior of our algorithms
in terms of the magnitude of changes determined by parameters of the chosen dis-
tribution, the frequency determined by � and the class of knapsack instance under
consideration. Our results show that the multi-objective approaches using a popu-
lation that caters for dynamic changes have a clear advantage on many benchmarks
scenarios when the frequency of changes is not too high.

Keywords
combinatorial optimization, dynamic constraints, knapsack problem.

1 Introduction

p(x)
w(x)
x1

x2

x4

x5

x3

C
Evolutionary algorithms Eiben and Smith (2007) have been widely applied to a

wide range of combinatorial optimization problems. They often provide good solu-
tions to complex problems without a large design effort. Furthermore, evolutionary
algorithms and other bio-inspired computing have been applied to many dynamic and
stochastic problems Nguyen and Yao (2012); Rakshit et al. (2017) as they have the ability
to easily adapt to changing environments.

Most studies for dynamic problems so far focus on dynamic fitness func-
tions Nguyen et al. (2012). However, in real-world applications the optimization goal,
such as maximizing profit or minimizing costs, often does not change. Instead, re-
sources to achieve this goal change over time and influence the quality of solutions

c�201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

On the Performance of Baseline Evolutionary
Algorithms on the Dynamic Knapsack Problem

Vahid Roostapour vahid.roostapour@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Aneta Neumann aneta.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Frank Neumann frank.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Abstract
(Needs to be updated) Evolutionary algorithms are bio-inspired algorithms that can
easily adapt to changing environments. In this paper, we study single- and multi-
objective baseline evolutionary algorithms for the classical knapsack problem where
the capacity of the knapsack varies over time. We establish different benchmark sce-
narios where the capacity changes every � iterations according to a uniform or normal
distribution. Our experimental investigations analyze the behavior of our algorithms
in terms of the magnitude of changes determined by parameters of the chosen dis-
tribution, the frequency determined by � and the class of knapsack instance under
consideration. Our results show that the multi-objective approaches using a popu-
lation that caters for dynamic changes have a clear advantage on many benchmarks
scenarios when the frequency of changes is not too high.

Keywords
combinatorial optimization, dynamic constraints, knapsack problem.

1 Introduction

p(x)
w(x)
x1

x2

x4

x5

x3

C
Evolutionary algorithms Eiben and Smith (2007) have been widely applied to a

wide range of combinatorial optimization problems. They often provide good solu-
tions to complex problems without a large design effort. Furthermore, evolutionary
algorithms and other bio-inspired computing have been applied to many dynamic and
stochastic problems Nguyen and Yao (2012); Rakshit et al. (2017) as they have the ability
to easily adapt to changing environments.

Most studies for dynamic problems so far focus on dynamic fitness func-
tions Nguyen et al. (2012). However, in real-world applications the optimization goal,
such as maximizing profit or minimizing costs, often does not change. Instead, re-
sources to achieve this goal change over time and influence the quality of solutions

c�201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

On the Performance of Baseline Evolutionary
Algorithms on the Dynamic Knapsack Problem

Vahid Roostapour vahid.roostapour@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Aneta Neumann aneta.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Frank Neumann frank.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Abstract
(Needs to be updated) Evolutionary algorithms are bio-inspired algorithms that can
easily adapt to changing environments. In this paper, we study single- and multi-
objective baseline evolutionary algorithms for the classical knapsack problem where
the capacity of the knapsack varies over time. We establish different benchmark sce-
narios where the capacity changes every � iterations according to a uniform or normal
distribution. Our experimental investigations analyze the behavior of our algorithms
in terms of the magnitude of changes determined by parameters of the chosen dis-
tribution, the frequency determined by � and the class of knapsack instance under
consideration. Our results show that the multi-objective approaches using a popu-
lation that caters for dynamic changes have a clear advantage on many benchmarks
scenarios when the frequency of changes is not too high.

Keywords
combinatorial optimization, dynamic constraints, knapsack problem.

1 Introduction

p(x)
w(x)
x1

x2

x4

x5

x3

C
Evolutionary algorithms Eiben and Smith (2007) have been widely applied to a

wide range of combinatorial optimization problems. They often provide good solu-
tions to complex problems without a large design effort. Furthermore, evolutionary
algorithms and other bio-inspired computing have been applied to many dynamic and
stochastic problems Nguyen and Yao (2012); Rakshit et al. (2017) as they have the ability
to easily adapt to changing environments.

Most studies for dynamic problems so far focus on dynamic fitness func-
tions Nguyen et al. (2012). However, in real-world applications the optimization goal,
such as maximizing profit or minimizing costs, often does not change. Instead, re-
sources to achieve this goal change over time and influence the quality of solutions

c�201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

On the Performance of Baseline Evolutionary
Algorithms on the Dynamic Knapsack Problem

Vahid Roostapour vahid.roostapour@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Aneta Neumann aneta.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Frank Neumann frank.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Abstract
(Needs to be updated) Evolutionary algorithms are bio-inspired algorithms that can
easily adapt to changing environments. In this paper, we study single- and multi-
objective baseline evolutionary algorithms for the classical knapsack problem where
the capacity of the knapsack varies over time. We establish different benchmark sce-
narios where the capacity changes every � iterations according to a uniform or normal
distribution. Our experimental investigations analyze the behavior of our algorithms
in terms of the magnitude of changes determined by parameters of the chosen dis-
tribution, the frequency determined by � and the class of knapsack instance under
consideration. Our results show that the multi-objective approaches using a popu-
lation that caters for dynamic changes have a clear advantage on many benchmarks
scenarios when the frequency of changes is not too high.

Keywords
combinatorial optimization, dynamic constraints, knapsack problem.

1 Introduction

p(x)
w(x)
x1

x2

x4

x5

x3

C
Evolutionary algorithms Eiben and Smith (2007) have been widely applied to a

wide range of combinatorial optimization problems. They often provide good solu-
tions to complex problems without a large design effort. Furthermore, evolutionary
algorithms and other bio-inspired computing have been applied to many dynamic and
stochastic problems Nguyen and Yao (2012); Rakshit et al. (2017) as they have the ability
to easily adapt to changing environments.

Most studies for dynamic problems so far focus on dynamic fitness func-
tions Nguyen et al. (2012). However, in real-world applications the optimization goal,
such as maximizing profit or minimizing costs, often does not change. Instead, re-
sources to achieve this goal change over time and influence the quality of solutions

c�201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

On the Performance of Baseline Evolutionary
Algorithms on the Dynamic Knapsack Problem

Vahid Roostapour vahid.roostapour@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Aneta Neumann aneta.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Frank Neumann frank.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Abstract
(Needs to be updated) Evolutionary algorithms are bio-inspired algorithms that can
easily adapt to changing environments. In this paper, we study single- and multi-
objective baseline evolutionary algorithms for the classical knapsack problem where
the capacity of the knapsack varies over time. We establish different benchmark sce-
narios where the capacity changes every � iterations according to a uniform or normal
distribution. Our experimental investigations analyze the behavior of our algorithms
in terms of the magnitude of changes determined by parameters of the chosen dis-
tribution, the frequency determined by � and the class of knapsack instance under
consideration. Our results show that the multi-objective approaches using a popu-
lation that caters for dynamic changes have a clear advantage on many benchmarks
scenarios when the frequency of changes is not too high.

Keywords
combinatorial optimization, dynamic constraints, knapsack problem.

1 Introduction

p(x)
w(x)
x1

x2

x4

x5

x3

C
Evolutionary algorithms Eiben and Smith (2007) have been widely applied to a

wide range of combinatorial optimization problems. They often provide good solu-
tions to complex problems without a large design effort. Furthermore, evolutionary
algorithms and other bio-inspired computing have been applied to many dynamic and
stochastic problems Nguyen and Yao (2012); Rakshit et al. (2017) as they have the ability
to easily adapt to changing environments.

Most studies for dynamic problems so far focus on dynamic fitness func-
tions Nguyen et al. (2012). However, in real-world applications the optimization goal,
such as maximizing profit or minimizing costs, often does not change. Instead, re-
sources to achieve this goal change over time and influence the quality of solutions

c�201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

On the Performance of Baseline Evolutionary
Algorithms on the Dynamic Knapsack Problem

Vahid Roostapour vahid.roostapour@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Aneta Neumann aneta.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Frank Neumann frank.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Abstract
(Needs to be updated) Evolutionary algorithms are bio-inspired algorithms that can
easily adapt to changing environments. In this paper, we study single- and multi-
objective baseline evolutionary algorithms for the classical knapsack problem where
the capacity of the knapsack varies over time. We establish different benchmark sce-
narios where the capacity changes every � iterations according to a uniform or normal
distribution. Our experimental investigations analyze the behavior of our algorithms
in terms of the magnitude of changes determined by parameters of the chosen dis-
tribution, the frequency determined by � and the class of knapsack instance under
consideration. Our results show that the multi-objective approaches using a popu-
lation that caters for dynamic changes have a clear advantage on many benchmarks
scenarios when the frequency of changes is not too high.

Keywords
combinatorial optimization, dynamic constraints, knapsack problem.

1 Introduction

p(x)
w(x)
x1

x2

x4

x5

x3

C
Evolutionary algorithms Eiben and Smith (2007) have been widely applied to a

wide range of combinatorial optimization problems. They often provide good solu-
tions to complex problems without a large design effort. Furthermore, evolutionary
algorithms and other bio-inspired computing have been applied to many dynamic and
stochastic problems Nguyen and Yao (2012); Rakshit et al. (2017) as they have the ability
to easily adapt to changing environments.

Most studies for dynamic problems so far focus on dynamic fitness func-
tions Nguyen et al. (2012). However, in real-world applications the optimization goal,
such as maximizing profit or minimizing costs, often does not change. Instead, re-
sources to achieve this goal change over time and influence the quality of solutions

c�201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

On the Performance of Baseline Evolutionary
Algorithms on the Dynamic Knapsack Problem

Vahid Roostapour vahid.roostapour@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Aneta Neumann aneta.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Frank Neumann frank.neumann@adelaide.edu.au
School of Computer Science, University of Adelaide, Adelaide, Australia

Abstract
(Needs to be updated) Evolutionary algorithms are bio-inspired algorithms that can
easily adapt to changing environments. In this paper, we study single- and multi-
objective baseline evolutionary algorithms for the classical knapsack problem where
the capacity of the knapsack varies over time. We establish different benchmark sce-
narios where the capacity changes every � iterations according to a uniform or normal
distribution. Our experimental investigations analyze the behavior of our algorithms
in terms of the magnitude of changes determined by parameters of the chosen dis-
tribution, the frequency determined by � and the class of knapsack instance under
consideration. Our results show that the multi-objective approaches using a popu-
lation that caters for dynamic changes have a clear advantage on many benchmarks
scenarios when the frequency of changes is not too high.

Keywords
combinatorial optimization, dynamic constraints, knapsack problem.

1 Introduction

p(x)
w(x)
x1

x2

x4

x5

x3

C
Evolutionary algorithms Eiben and Smith (2007) have been widely applied to a

wide range of combinatorial optimization problems. They often provide good solu-
tions to complex problems without a large design effort. Furthermore, evolutionary
algorithms and other bio-inspired computing have been applied to many dynamic and
stochastic problems Nguyen and Yao (2012); Rakshit et al. (2017) as they have the ability
to easily adapt to changing environments.

Most studies for dynamic problems so far focus on dynamic fitness func-
tions Nguyen et al. (2012). However, in real-world applications the optimization goal,
such as maximizing profit or minimizing costs, often does not change. Instead, re-
sources to achieve this goal change over time and influence the quality of solutions

c�201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

FIGURE 7.2: A situation that NSGA-II and SPEA2 lose the best
feasible solution because of the impact of distance factor on the

solution ranking.

solutions outside of the interval such that for any solution x we have

wMO(x) =

8
<

:
w(x) if w(x) 2 [C� d, C + d]

w(x) + (n · wmax + 1) · a(x) otherwise,
(7.1)

where for solution x that w(x) /2 [C� d, C + d], a(x) = min{|w(x)� C� d|, |w(x)�
C + d|} is the distance from the edge of the interval. Similar to the weight, we apply
penalty on the profit as follows

pMO(x) =

8
<

:
p(x) if w(x) 2 [C� d, C + d]

p(x)� (n · pmax + 1) · a(x) otherwise.
(7.2)

Note that the objectives are weight
�
wMO(x)

�
and profit

�
pMO(x)

�
which should

be minimised and maximised, respectively. The penalty guarantees that any solu-
tion in the preferred interval dominate the solutions outside and solutions that are
closer to the interval dominate farther ones. In this way if the algorithms produce a
well-distributed non-dominated solutions, we expect to have good quality feasible
solutions even after the dynamic change.

7.4.2 Additional Elitism

While we still look for the feasible solution with the highest profit, the new formula-
tion does not apply penalties on all infeasible solutions and there are better solutions
in the population in terms of profit value which their weight exceed the capacity
constraint. In NSGA-II and SPEA2, solutions are preferred according to their rank,
which is calculated based on the number of solutions that dominate them, and their
distance from the other solutions in the objective space. Although the best feasible
solution is a non-dominated solution, it is possible that the algorithms lose it be-
cause of the distance factor. Figure 7.2 demonstrates such a situation in which the
algorithms have to pick 4 solutions from non-dominated set {x1, · · · , x5} to produce
the next generation. Note that solutions x1, x2 and x3 are feasible, and the others

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 97

are infeasible. Both of the algorithms tend to keep x1 and x5 since they are border
solutions and have the maximum distance factor. Thus, they have to choose 2 solu-
tions within {x2, x3, x4}. Although, x3 is the best feasible solution in this situation,
the algorithms pick x2 and x4 since they provide a better distributed set. To address
this problem, we artificially change the distance factor of the best feasible solution
so that the algorithms keep it in the next generation.

To apply it on the NSGA-II, we store the best feasible solution in a separate variable.
After line 10, we check if a new feasible solution dominated the previous one. If the
stored best solution has been removed from the population set after line 10, and the
best feasible solution in Pt+1 has less profit value, we artificially remove the worst
solution from Pt+1 with regards to the front ranks and crowding distances, add the
stored best solution to the first front of Pt+1, and assign infinity value to its crowding
distance. Otherwise, either the best feasible solution is still in Pt+1 or the algorithm
has found a better feasible solution. Hence, we only update the stored best feasi-
ble solution and assign the infinity value to its crowding distance. Note that by
performing this approach, we assign more reproduction power the best feasible so-
lution since it is always the winner of selection phase. Hence, it is more probable that
we update the feasible solution close to the constraint and achieve a better feasible
solution.

In SPEA2, the elitism procedure is similar to NSGA-II. We store the best feasible
solution and either update it or artificially add it to archive set in each generation
after environmental selection (Line 6 in Algorithm 6). However, to make sure that
it has a higher probability of reproduction, we assign zero to its fitness value. In
this case, the solution is the outcome of tournament selection phase and has more
opportunity to produce an offspring.

Note that changing the fitness values happens exactly before the reproduction steps.
Since both algorithms re-evaluate fitness values prior to selecting the parents, the
elitism approach guarantees that if another solution dominate the current best fea-
sible solution then we remove it from the population. Hence, it does not affect the
natural behaviour of the algorithms.

7.4.3 Experimental Results

We compare NSGA-II and SPEA2 results with MOEA_D as the previous winner
algorithm in most of the cases. While the definition of dominance is the only limita-
tion on the population size in MOEA_D, we set the population size for NSGA-II and
SPEA2 to 20.

In addition to the total offline error, introduced in Section 7.2.2, we also compare the
algorithms based on a new factor, called partial offline error. This factor considers
the best feasible solution achieved by an algorithm right before a dynamic change,
i.e., the performance of algorithms are analysed based on their final population only.

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 98

This factor illustrates the final achievement of the algorithms during a "no change"
period and does not consider the performance of the algorithms within the optimisa-
tion process. To compute the best partial offline error, instead of all the generations,
we record the profit value of best feasible solution only in the last generation before
the next change. Let xi denote the best feasible solution before i + 1th change hap-
pens and x⇤i denote the optimal solution corresponding to the ith capacity. If there is
no feasible solution in the last generation, yi denotes the solution with lowest n(x),
the constraint violation of solution x. Then, the partial offline error is calculated as
follow:

EBO =
b106/tc

Â
i=1

ei
b106/tc , (7.3)

where e(x) if the offline error of solution x calculated as follows:

ei =

8
<

:
p(x⇤i)� p(xi) if n(xi) = 0

p(x⇤i) + n(yi) otherwise.
(7.4)

7.4.4 Analysis

We now present a detailed analysis on the performance of simple and advanced
baseline evolutionary algorithms on the dynamic knapsack problem in our experi-
ments.

In Table 7.4, we compare the different algorithms: MOEA_D, NSGA-II, SPEA2 and
two novel algorithms NSGA-II(we) and SPEA2(we) based on the elitism mechanism.
We summarise our results in terms of the mean value of the offline error achieved
for each instance based on the uniform distribution.

The displayed results show NSGA-II and SPEA2 significantly outperform MOEA_D
when the changes occur more frequently, i.e., t = 100, 1000 for most considered
instances. However, MOEA_D achieves better results for the uncorrelated similar
weights instances compared to NSGA-II and SPEA2 when the frequently is low. For
the frequency t = 15000, the MOEA_D algorithm especially has sufficient time to
find a good solution. When comparing MOEA_D, NSGA-II, SPEA2 with algorithms
based on elitism, NSGA-II(we) and SPEA2(we) achieve the best results among all
different instances in most cases. This may indicate that both algorithms effectively
used the elitism strategy outlined in Section 7.4.2.

In Table 7.5, we compare these algorithms for different instances based on the Nor-
mal distribution. We investigate the combinations; s = 100 and s = 500, and t =

100, 1000, 50000, 150000. MOEA_D is usually outperformed by SPEA2. However,
with the exception of the following cases: uncorrelated similar weights, s = 100, t =

5000, 1500, and uncorrelated, uncorrelated similar weights, s = 500, t = 5000, 1500,
MOEA_D performed better. Furthermore, by comparing MOEA_D and NSGA-II,

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 99

TA
B

L
E

7.
4:

Th
e

m
ea

n,
st

an
da

rd
de

vi
at

io
n

va
lu

es
an

d
st

at
is

tic
al

te
st

s
of

th
e

to
ta

lo
ffl

in
e

er
ro

r
fo

r
M

O
EA

_D
,N

SG
A

-I
I,

SP
EA

2,
N

SG
A

-I
I

w
ith

el
iti

sm
an

d,
SP

EA
2

w
ith

el
iti

sm
ba

se
d

on
th

e
un

ifo
rm

di
st

ri
bu

tio
n.

n
r

t
M

O
EA

_D
(1

)
N

SG
A

-I
I(

2)
SP

EA
2

(3
)

N
SG

A
-I

I(
w

e)
(4

)
SP

EA
2(

w
e)

(5
)

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

un
co

r
10

0
20

00
10

0
36

84
.2

6
52

5.
50

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
13

4.
29

30
.5

3
1(

+
) ,

4(
�

) ,
5(
�

)
12

3.
12

31
.6

5
1(

+
) ,

4(
�

) ,
5(
�

)
48

.7
2

14
.4

3
1(

+
) ,

2(
+

) ,
3(

+
)

50
.7

4
18

.5
0

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

20
00

10
00

77
6.

14
33

4.
69

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
12

6.
57

66
.7

0
1(

+
) ,

4(
�

) ,
5(
�

)
10

3.
17

57
.0

2
1(

+
) ,

4(
�

) ,
5(
�

)
8.

05
4.

76
1(

+
) ,

2(
+

) ,
3(

+
)

6.
51

5.
40

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

20
00

50
00

27
0.

90
12

1.
44

4(
�

) ,
5(
�

)
16

8.
85

11
2.

04
4(
�

) ,
5(
�

)
13

7.
66

92
.8

4
4(
�

) ,
5(
�

)
3.

05
2.

17
1(

+
) ,

2(
+

) ,
3(

+
)

2.
33

3.
26

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

20
00

15
00

0
88

.8
0

43
.9

8
4(
�

) ,
5(
�

)
14

0.
99

14
1.

45
4(
�

) ,
5(
�

)
11

5.
72

11
6.

15
4(
�

) ,
5(
�

)
1.

04
1.

20
1(

+
) ,

2(
+

) ,
3(

+
)

0.
62

1.
03

1(
+

) ,
2(

+
) ,

3(
+

)

un
c-

s-
w

10
0

20
00

10
0

21
06

.4
5

24
9.

28
2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
10

.3
5

2.
43

1(
+

) ,
3(

+
) ,

5(
+

)
13

4.
24

40
.8

0
1(

+
) ,

2(
�

) ,
4(
�

)
8.

71
1.

92
1(

+
) ,

3(
+

) ,
5(

+
)

64
.1

1
20

.4
0

1(
+

) ,
2(
�

) ,
4(
�

)

10
0

20
00

10
00

30
2.

34
24

.6
0

2(
�

) ,
4(
�

) ,
5(
�

)
3.

37
2.

35
1(

+
) ,

3(
+

) ,
5(

+
)

20
9.

79
96

.2
6

2(
�

) ,
4(
�

) ,
5(
�

)
1.

18
0.

51
1(

+
) ,

3(
+

) ,
5(

+
)

24
.7

6
15

.3
7

1(
+

) ,
2(
�

) ,
3(

+
) ,

4(
�

)

10
0

20
00

50
00

60
.9

4
9.

12
2(
�

) ,
4(
�

) ,
5(
�

)
3.

78
3.

02
1(

+
) ,

3(
+

)
35

7.
82

12
5.

60
2(
�

) ,
4(
�

) ,
5(
�

)
0.

56
0.

39
1(

+
) ,

3(
+

) ,
5(

+
)

13
.4

2
5.

70
1(

+
) ,

3(
+

) ,
4(
�

)

10
0

20
00

15
00

0
19

.2
6

4.
04

2(
�

) ,
4(
�

) ,
5(
�

)
4.

08
4.

43
1(

+
) ,

3(
+

)
35

3.
30

16
6.

59
2(
�

) ,
4(
�

) ,
5(
�

)
0.

36
0.

47
1(

+
) ,

3(
+

) ,
5(

+
)

5.
29

4.
21

1(
+

) ,
3(

+
) ,

4(
�

)

bo
u-

s-
c

10
0

20
00

10
0

30
36

.9
7

29
7.

34
3(
�

) ,
4(
�

) ,
5(
�

)
22

4.
80

6.
82

4(
�

) ,
5(
�

)
20

3.
96

6.
62

1(
+

) ,
5(
�

)
71

.9
6

2.
46

1(
+

) ,
2(

+
)

58
.1

3
4.

74
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

20
00

10
00

61
7.

92
18

6.
35

3(
�

) ,
4(
�

) ,
5(
�

)
23

5.
49

15
.1

0
4(
�

) ,
5(
�

)
20

0.
86

9.
40

1(
+

) ,
5(
�

)
24

.8
2

1.
96

1(
+

) ,
2(

+
)

15
.3

6
1.

61
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

20
00

50
00

25
1.

41
10

9.
58

4(
�

) ,
5(
�

)
24

2.
63

17
.7

6
3(
�

) ,
4(
�

) ,
5(
�

)
20

4.
60

7.
40

2(
+

) ,
4(
�

) ,
5(
�

)
10

.3
6

2.
44

1(
+

) ,
2(

+
) ,

3(
+

)
4.

76
1.

21
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

20
00

15
00

0
10

4.
27

61
.0

6
2(

+
) ,

4(
�

) ,
5(
�

)
24

4.
34

25
.9

8
1(
�

) ,
4(
�

) ,
5(
�

)
20

7.
38

12
.7

4
4(
�

) ,
5(
�

)
5.

74
2.

27
1(

+
) ,

2(
+

) ,
3(

+
)

2.
07

1.
08

1(
+

) ,
2(

+
) ,

3(
+

)

un
co

r
10

0
10

00
0

10
0

11
03

8.
07

23
6.

91
2(
�

) ,
4(
�

) ,
5(
�

)
12

27
.9

3
62

.1
1

1(
+

) ,
3(

+
) ,

4(
�

)
16

88
.4

1
95

.9
8

2(
�

) ,
4(
�

) ,
5(
�

)
94

4.
55

57
.2

3
1(

+
) ,

2(
+

) ,
3(

+
) ,

5(
+

)
13

87
.1

9
92

.7
2

1(
+

) ,
3(

+
) ,

4(
�

)

10
0

10
00

0
10

00
35

08
.5

1
47

3.
42

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
89

8.
80

12
6.

18
1(

+
) ,

4(
�

) ,
5(
�

)
10

83
.2

5
20

3.
47

1(
+

) ,
4(
�

) ,
5(
�

)
19

7.
58

34
.0

4
1(

+
) ,

2(
+

) ,
3(

+
)

38
0.

65
94

.1
2

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
50

00
11

83
.5

2
41

1.
83

4(
�

) ,
5(
�

)
95

1.
97

25
6.

55
4(
�

) ,
5(
�

)
98

7.
39

35
1.

94
4(
�

) ,
5(
�

)
99

.7
6

32
.3

2
1(

+
) ,

2(
+

) ,
3(

+
)

10
6.

14
50

.7
0

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
15

00
0

56
6.

70
21

9.
54

4(
�

) ,
5(
�

)
95

3.
69

45
9.

12
4(
�

) ,
5(
�

)
92

7.
86

61
3.

20
4(
�

) ,
5(
�

)
59

.9
6

35
.2

2
1(

+
) ,

2(
+

) ,
3(

+
)

40
.0

5
32

.2
7

1(
+

) ,
2(

+
) ,

3(
+

)

un
c-

s-
w

10
0

10
00

0
10

0
80

57
.4

4
27

4.
17

2(
�

) ,
4(
�

) ,
5(
�

)
56

2.
54

34
.3

4
1(

+
) ,

4(
�

)
65

3.
70

41
.7

5
4(
�

) ,
5(
�

)
28

3.
83

18
.2

0
1(

+
) ,

2(
+

) ,
3(

+
)

39
6.

46
34

.8
9

1(
+

) ,
3(

+
)

10
0

10
00

0
10

00
17

43
.1

2
36

4.
38

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
60

1.
19

10
8.

71
1(

+
) ,

4(
�

) ,
5(
�

)
58

4.
00

10
6.

60
1(

+
) ,

4(
�

) ,
5(
�

)
11

6.
02

26
.0

0
1(

+
) ,

2(
+

) ,
3(

+
)

10
7.

31
28

.4
2

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
50

00
51

9.
63

17
5.

22
4(
�

) ,
5(
�

)
63

8.
72

22
4.

53
4(
�

) ,
5(
�

)
59

3.
92

22
6.

11
4(
�

) ,
5(
�

)
58

.8
3

30
.1

9
1(

+
) ,

2(
+

) ,
3(

+
)

41
.6

3
24

.3
5

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
15

00
0

20
1.

97
79

.2
8

2(
+

) ,
3(

+
) ,

4(
�

) ,
5(
�

)
61

8.
73

27
7.

40
1(
�

) ,
4(
�

) ,
5(
�

)
54

9.
70

26
6.

72
1(
�

) ,
4(
�

) ,
5(
�

)
25

.4
1

19
.5

6
1(

+
) ,

2(
+

) ,
3(

+
)

15
.0

5
13

.8
8

1(
+

) ,
2(

+
) ,

3(
+

)

bo
u-

s-
c

10
0

10
00

0
10

0
12

73
6.

55
22

9.
48

2(
�

) ,
4(
�

) ,
5(
�

)
14

49
.0

9
39

.4
5

1(
+

) ,
4(
�

)
16

25
.3

9
64

.9
9

4(
�

) ,
5(
�

)
69

3.
73

38
.5

6
1(

+
) ,

2(
+

) ,
3(

+
)

87
8.

51
62

.4
7

1(
+

) ,
3(

+
)

10
0

10
00

0
10

00
35

75
.2

6
55

0.
54

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
14

21
.5

9
10

5.
78

1(
+

) ,
4(
�

) ,
5(
�

)
15

15
.0

4
14

5.
19

1(
+

) ,
4(
�

) ,
5(
�

)
30

6.
22

38
.6

2
1(

+
) ,

2(
+

) ,
3(

+
)

38
6.

50
61

.4
7

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
50

00
14

72
.1

9
49

3.
88

4(
�

) ,
5(
�

)
14

19
.6

6
22

3.
08

4(
�

) ,
5(
�

)
14

91
.4

0
28

1.
66

4(
�

) ,
5(
�

)
17

6.
12

47
.5

5
1(

+
) ,

2(
+

) ,
3(

+
)

20
2.

88
48

.3
5

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
15

00
0

97
7.

42
39

7.
75

4(
�

) ,
5(
�

)
13

49
.7

7
29

4.
06

4(
�

) ,
5(
�

)
14

48
.1

2
36

9.
69

4(
�

) ,
5(
�

)
10

9.
48

40
.9

0
1(

+
) ,

2(
+

) ,
3(

+
)

12
9.

12
41

.1
9

1(
+

) ,
2(

+
) ,

3(
+

)

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 100

TA
B

L
E

7.
5:

Th
e

m
ea

n,
st

an
da

rd
de

vi
at

io
n

va
lu

es
an

d
st

at
is

tic
al

te
st

s
of

th
e

to
ta

lo
ffl

in
e

er
ro

r
fo

r
M

O
EA

_D
,N

SG
A

-I
I,

SP
EA

2,
N

SG
A

-I
I

w
ith

el
iti

sm
,a

nd
SP

EA
2

w
ith

el
iti

sm
ba

se
d

on
th

e
no

rm
al

di
st

ri
bu

tio
n.

n
s

t
M

O
EA

_D
(1

)
N

SG
A

-I
I(

2)
SP

EA
2

(3
)

N
SG

A
-I

I(
w

e)
(4

)
SP

EA
2(

w
e)

(5
)

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

un
co

r
10

0
10

0
10

0
42

71
.0

9
78

9.
94

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
9.

67
1.

85
1(

+
) ,

3(
�

) ,
5(
�

)
6.

66
2.

25
1(

+
) ,

2(
+

)
7.

34
2.

08
1(

+
)

5.
48

2.
59

1(
+

) ,
2(

+
)

10
0

10
0

10
00

41
2.

89
27

.2
5

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
3.

79
1.

89
1(

+
) ,

3(
�

) ,
4(
�

) ,
5(
�

)
1.

61
1.

14
1(

+
) ,

2(
+

) ,
5(
�

)
1.

08
0.

45
1(

+
) ,

2(
+

)
0.

58
0.

31
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

10
0

50
00

10
8.

29
14

.2
2

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
5.

03
3.

59
1(

+
) ,

4(
�

) ,
5(
�

)
2.

82
2.

95
1(

+
) ,

5(
�

)
0.

44
0.

34
1(

+
) ,

2(
+

)
0.

11
0.

10
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

10
0

15
00

0
61

.9
3

17
.0

3
2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
3.

79
2.

79
1(

+
) ,

4(
�

) ,
5(
�

)
1.

82
2.

12
1(

+
) ,

5(
�

)
0.

18
0.

18
1(

+
) ,

2(
+

)
0.

05
0.

08
1(

+
) ,

2(
+

) ,
3(

+
)

un
c-

s-
w

10
0

10
0

10
0

19
04

.0
9

87
7.

55
2(

+
) ,

3(
+

)
78

75
.6

4
46

51
.3

5
1(
�

) ,
4(
�

) ,
5(
�

)
77

55
.1

8
46

09
.3

2
1(
�

) ,
4(
�

) ,
5(
�

)
39

05
.3

4
24

96
.6

5
2(

+
) ,

3(
+

)
35

26
.7

0
21

50
.9

6
2(

+
) ,

3(
+

)

10
0

10
0

10
00

14
82

.3
7

39
1.

75
2(

+
) ,

3(
+

) ,
4(

+
) ,

5(
+

)
89

14
.5

8
12

33
.5

7
1(
�

) ,
4(
�

) ,
5(
�

)
89

81
.2

5
12

60
.7

7
1(
�

) ,
4(
�

) ,
5(
�

)
42

64
.0

4
10

11
.7

9
1(
�

) ,
2(

+
) ,

3(
+

)
41

69
.1

8
99

2.
44

1(
�

) ,
2(

+
) ,

3(
+

)

10
0

10
0

50
00

13
22

.3
5

41
4.

28
2(

+
) ,

3(
+

)
44

90
.6

7
14

77
.3

0
1(
�

) ,
4(
�

) ,
5(
�

)
45

02
.9

8
14

86
.9

6
1(
�

) ,
4(
�

) ,
5(
�

)
21

02
.7

5
12

41
.4

6
2(

+
) ,

3(
+

)
21

35
.0

4
12

02
.3

9
2(

+
) ,

3(
+

)

10
0

10
0

15
00

0
11

37
.8

0
64

8.
73

2(
+

) ,
3(

+
)

45
85

.8
6

11
41

.7
8

1(
�

) ,
4(
�

) ,
5(
�

)
45

98
.8

9
11

47
.2

6
1(
�

) ,
4(
�

) ,
5(
�

)
18

63
.6

0
13

21
.1

4
2(

+
) ,

3(
+

)
19

54
.1

1
14

55
.1

1
2(

+
) ,

3(
+

)

bo
u-

s-
c

10
0

10
0

10
0

29
03

.7
7

71
7.

92
2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
20

.4
7

3.
55

1(
+

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
14

.4
5

2.
00

1(
+

) ,
2(

+
) ,

5(
�

)
11

.9
9

2.
80

1(
+

) ,
2(

+
)

9.
80

1.
97

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
0

10
00

31
2.

88
35

.5
3

3(
�

) ,
4(
�

) ,
5(
�

)
17

.2
2

0.
73

4(
�

) ,
5(
�

)
12

.3
2

1.
10

1(
+

) ,
4(
�

) ,
5(
�

)
3.

89
0.

60
1(

+
) ,

2(
+

) ,
3(

+
)

3.
61

1.
15

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
0

50
00

10
1.

21
17

.4
7

3(
�

) ,
4(
�

) ,
5(
�

)
17

.0
2

0.
84

4(
�

) ,
5(
�

)
12

.6
2

1.
97

1(
+

) ,
4(
�

) ,
5(
�

)
1.

44
0.

30
1(

+
) ,

2(
+

) ,
3(

+
)

1.
10

0.
40

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
0

15
00

0
70

.1
6

22
.2

6
2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
17

.0
4

0.
85

1(
+

) ,
4(
�

) ,
5(
�

)
13

.3
7

2.
13

1(
+

) ,
4(
�

) ,
5(
�

)
0.

73
0.

25
1(

+
) ,

2(
+

) ,
3(

+
)

0.
46

0.
38

1(
+

) ,
2(

+
) ,

3(
+

)

un
co

r
10

0
50

0
10

0
24

69
.5

8
64

9.
04

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
54

.7
2

30
.3

8
1(

+
) ,

4(
�

) ,
5(
�

)
41

.1
6

24
.5

7
1(

+
) ,

4(
�

) ,
5(
�

)
16

.9
3

9.
82

1(
+

) ,
2(

+
) ,

3(
+

)
13

.8
1

9.
04

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

50
0

10
00

"
51

1.
58

18
7.

21
2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
70

.7
9

52
.3

1
1(

+
) ,

4(
�

) ,
5(
�

)
51

.2
3

39
.4

5
1(

+
) ,

4(
�

) ,
5(
�

)
3.

75
2.

51
1(

+
) ,

2(
+

) ,
3(

+
)

2.
47

1.
87

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

50
0

50
00

14
3.

28
54

.2
0

4(
�

) ,
5(
�

)
10

8.
83

57
.5

7
4(
�

) ,
5(
�

)
80

.0
0

45
.6

4
4(
�

) ,
5(
�

)
1.

35
0.

45
1(

+
) ,

2(
+

) ,
3(

+
)

0.
88

0.
63

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

50
0

15
00

0
45

.2
6

13
.8

7
2(

+
) ,

3(
+

) ,
4(
�

) ,
5(
�

)
14

2.
80

60
.9

9
1(
�

) ,
4(
�

) ,
5(
�

)
10

7.
71

48
.5

0
1(
�

) ,
4(
�

) ,
5(
�

)
0.

58
0.

18
1(

+
) ,

2(
+

) ,
3(

+
)

0.
44

0.
38

1(
+

) ,
2(

+
) ,

3(
+

)

un
c-

s-
w

10
0

50
0

10
0

26
93

.6
0

58
0.

74
2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
29

.1
2

8.
72

1(
+

) ,
3(

+
) ,

5(
+

)
16

4.
38

61
.2

6
1(

+
) ,

2(
�

) ,
4(
�

)
28

.7
2

8.
57

1(
+

) ,
3(

+
) ,

5(
+

)
78

.3
5

29
.1

9
1(

+
) ,

2(
�

) ,
4(
�

)

10
0

50
0

10
00

30
4.

96
12

4.
57

2(
�

) ,
4(
�

) ,
5(
�

)
6.

92
2.

73
1(

+
) ,

3(
+

) ,
5(

+
)

41
3.

96
22

1.
74

2(
�

) ,
4(
�

) ,
5(
�

)
5.

93
3.

00
1(

+
) ,

3(
+

) ,
5(

+
)

52
.5

1
22

.4
2

1(
+

) ,
2(
�

) ,
3(

+
) ,

4(
�

)

10
0

50
0

50
00

47
.3

1
14

.8
3

2(
�

) ,
4(
�

) ,
5(
�

)
2.

65
1.

51
1(

+
) ,

3(
+

)
40

2.
22

32
8.

16
2(
�

) ,
4(
�

) ,
5(
�

)
1.

10
1.

10
1(

+
) ,

3(
+

) ,
5(

+
)

20
.0

5
16

.5
5

1(
+

) ,
3(

+
) ,

4(
�

)

10
0

50
0

15
00

0
15

.8
2

4.
18

2(
�

) ,
4(
�

) ,
5(
�

)
2.

26
2.

02
1(

+
) ,

3(
+

)
26

4.
22

28
0.

33
2(
�

) ,
4(
�

) ,
5(
�

)
0.

33
0.

37
1(

+
) ,

3(
+

) ,
5(

+
)

5.
62

6.
89

1(
+

) ,
3(

+
) ,

4(
�

)

bo
u-

s-
c

10
0

50
0

10
0

22
48

.9
1

85
.0

1
3(
�

) ,
4(
�

) ,
5(
�

)
98

.4
5

4.
84

4(
�

) ,
5(
�

)
80

.2
0

3.
81

1(
+

) ,
5(
�

)
32

.9
1

0.
98

1(
+

) ,
2(

+
)

23
.6

4
1.

43
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

50
0

10
00

34
3.

62
72

.4
9

3(
�

) ,
4(
�

) ,
5(
�

)
10

6.
57

9.
43

4(
�

) ,
5(
�

)
81

.9
3

6.
29

1(
+

) ,
5(
�

)
9.

59
1.

48
1(

+
) ,

2(
+

)
5.

22
1.

50
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

50
0

50
00

99
.0

7
42

.4
1

4(
�

) ,
5(
�

)
11

2.
97

10
.1

0
3(
�

) ,
4(
�

) ,
5(
�

)
85

.8
7

8.
79

2(
+

) ,
4(
�

) ,
5(
�

)
2.

82
0.

61
1(

+
) ,

2(
+

) ,
3(

+
)

1.
02

0.
26

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

50
0

15
00

0
33

.3
3

13
.5

9
2(

+
) ,

5(
�

)
11

7.
62

11
.4

7
1(
�

) ,
4(
�

) ,
5(
�

)
90

.2
6

10
.3

4
4(
�

) ,
5(
�

)
1.

10
0.

24
2(

+
) ,

3(
+

)
0.

30
0.

08
1(

+
) ,

2(
+

) ,
3(

+
)

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 101

we observe the same behaviour except for the mean values for the instance bounded
strongly correlated where s = 500, t = 1500 are substantially worse than those of
MOEA_D. The results show that NSGA-II(we) and SPEA2(we) significantly outper-
form MOEA_D, NSGA-II and SPEA2 in most of the cases as expected due to the
elitism approach.

Table 7.6 clearly indicates that the elitism mechanisms used in NSGA-II(we) and
SPEA2(we) achieve substantially better results with respect to the partial offline er-
ror compared NSGA-II, SPEA2, and MOEA_D in all instances. Interestingly, NSGA-
II(we) benefits much more from elitism than SPEA2(we), and NSGA-II(we) achieves
the lowest partial offline error across most instances. An exception are bounded
strongly correlated instances with r = 100. The MOEA_D algorithm, especially for
r = 2000, 10000 and t = 15000 significantly outperforms NSGA-II and SPEA2 by
one order of magnitude in terms of offline error in most cases.

Furthermore, Table 7.7 shows results for the the Normal distribution. The results
summarise the partial offline error and statistical tests for all five algorithms. NSGA-
II(we) and SPEA2(we) perform significantly better than MOEA_D, NSGA-II and
SPEA2 in all instances. Noticeably, SPEA2(we) for uncorrelated and bounded strong-
ly correlated instances, s = 500, and t = 5000, 15000 finds the results close to the
optimum. Similar to the experiments based on the total offline error, MOEA_D is
outperformed by NSGA-II and SPEA2, whereas MOEA_D outperforms NSGA-II
and SPEA2 in the instance with uncorrelated similar weights and s = 100.

The impact of elitism in MOEA_D, NSGA-II(we), and SPEA2(we) is also illustrated
by observing the mean values of the same column in one specific instance. Note that
in an environment with low frequent changes the algorithms have more time to find
a good solution before the next change happens, i.e., the mean of total/partial offline
error for one specific algorithm against the same instance supposed to decrease by
increasing the value of t. However, such pattern could not be seen for NSGA-II
and SPEA2, mostly in t � 1000. It shows that NSGA-II and SPEA2 find and fix a
well distributed set of solution in the first 1000 iterations, according to the classic
distribution techniques, and do not improve the best found solution, which cause
adding the same amount of error to the total offline error in the next iterations.

Comparing the results of algorithms in uniform instances according the total and of-
fline partial errors (Tables 7.4,7.6), also illustrates the the importance of customised
elitism in advanced evolutionary algorithm. The outperformance of MOEA_D in
low frequent changes according to the partial offline error shows that at the end of
each interval, it has found a better solution than classic NSGA-II and SPEA2. How-
ever, according to the total offline error, this progress is slow and not significantly
better in average.

Overall, our results suggest that NSGA-II(we) and SPEA2(we) using the elitism
mechanism significantly outperform the classical NSGA-II, SPEA2 and MOEA_D.

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 102

TA
B

L
E

7.
6:

Th
e

m
ea

n,
st

an
da

rd
de

vi
at

io
n

va
lu

es
an

d
st

at
is

tic
al

te
st

so
ft

he
pa

rt
ia

lo
ffl

in
e

er
ro

rf
or

M
O

EA
_D

,N
SG

A
-I

I,
SP

EA
2,

N
SG

A
-I

I
w

ith
el

iti
sm

an
d,

SP
EA

2
w

ith
el

iti
sm

ba
se

d
on

th
e

un
ifo

rm
di

st
ri

bu
tio

n.

n
r

t
M

O
EA

_D
(1

)
N

SG
A

-I
I(

2)
SP

EA
2

(3
)

N
SG

A
-I

I(
w

e)
(4

)
SP

EA
2(

w
e)

(5
)

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

un
co

r
10

0
20

00
10

0
21

34
.0

3
37

7.
28

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
13

5.
95

29
.9

3
1(

+
) ,

4(
�

) ,
5(
�

)
11

9.
59

29
.4

8
1(

+
) ,

4(
�

) ,
5(
�

)
26

.0
4

8.
48

1(
+

) ,
2(

+
) ,

3(
+

)
25

.8
6

10
.3

3
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

20
00

10
00

33
6.

71
17

9.
08

3(
�

) ,
4(
�

) ,
5(
�

)
12

8.
84

69
.2

1
4(
�

) ,
5(
�

)
10

3.
68

57
.1

7
1(

+
) ,

4(
�

) ,
5(
�

)
2.

31
1.

49
1(

+
) ,

2(
+

) ,
3(

+
)

0.
69

0.
75

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

20
00

50
00

79
.8

0
47

.4
9

4(
�

) ,
5(
�

)
16

8.
92

11
6.

40
4(
�

) ,
5(
�

)
14

1.
67

99
.4

7
4(
�

) ,
5(
�

)
0.

50
0.

47
1(

+
) ,

2(
+

) ,
3(

+
)

0.
01

0.
01

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

20
00

15
00

0
14

.7
0

16
.1

7
2(

+
) ,

3(
+

) ,
4(
�

) ,
5(
�

)
14

1.
09

14
1.

93
1(
�

) ,
4(
�

) ,
5(
�

)
12

3.
87

12
8.

21
1(
�

) ,
4(
�

) ,
5(
�

)
0.

13
0.

29
1(

+
) ,

2(
+

) ,
3(

+
)

0.
00

0.
00

1(
+

) ,
2(

+
) ,

3(
+

)

un
c-

s-
w

10
0

20
00

10
0

11
02

.0
9

11
3.

57
2(
�

) ,
4(
�

) ,
5(
�

)
5.

71
1.

74
1(

+
) ,

3(
+

) ,
5(

+
)

13
3.

25
40

.7
4

2(
�

) ,
4(
�

)
3.

59
0.

90
1(

+
) ,

3(
+

) ,
5(

+
)

54
.7

3
18

.7
4

1(
+

) ,
2(
�

) ,
4(
�

)

10
0

20
00

10
00

10
3.

15
15

.9
5

2(
�

) ,
4(
�

) ,
5(
�

)
2.

55
2.

12
1(

+
) ,

3(
+

)
23

3.
01

10
1.

48
2(
�

) ,
4(
�

) ,
5(
�

)
0.

27
0.

27
1(

+
) ,

3(
+

) ,
5(

+
)

17
.3

9
11

.6
2

1(
+

) ,
3(

+
) ,

4(
�

)

10
0

20
00

50
00

10
.3

2
5.

06
2(
�

) ,
3(

+
) ,

4(
�

)
3.

49
3.

41
1(

+
) ,

3(
+

) ,
4(
�

)
39

1.
01

14
1.

59
1(
�

) ,
2(
�

) ,
4(
�

) ,
5(
�

)
0.

25
0.

27
1(

+
) ,

2(
+

) ,
3(

+
) ,

5(
+

)
6.

96
3.

67
3(

+
) ,

4(
�

)

10
0

20
00

15
00

0
1.

34
1.

05
3(

+
) ,

4(
�

)
4.

27
4.

85
3(

+
) ,

4(
�

)
38

1.
02

18
7.

18
1(
�

) ,
2(
�

) ,
4(
�

) ,
5(
�

)
0.

21
0.

41
1(

+
) ,

2(
+

) ,
3(

+
) ,

5(
+

)
1.

60
1.

94
3(

+
) ,

4(
�

)

bo
u-

s-
c

10
0

20
00

10
0

12
96

.5
4

24
1.

04
3(
�

) ,
4(
�

) ,
5(
�

)
23

0.
77

7.
05

4(
�

) ,
5(
�

)
20

4.
91

5.
07

1(
+

) ,
5(
�

)
43

.9
2

1.
13

1(
+

) ,
2(

+
)

33
.1

4
1.

81
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

20
00

10
00

25
9.

02
92

.3
1

4(
�

) ,
5(
�

)
23

6.
93

16
.8

9
4(
�

) ,
5(
�

)
20

1.
48

9.
66

4(
�

) ,
5(
�

)
12

.8
4

1.
72

1(
+

) ,
2(

+
) ,

3(
+

)
6.

00
1.

86
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

20
00

50
00

96
.7

9
61

.3
3

2(
+

) ,
4(
�

) ,
5(
�

)
24

1.
60

23
.8

3
1(
�

) ,
4(
�

) ,
5(
�

)
20

4.
39

11
.1

5
4(
�

) ,
5(
�

)
4.

84
2.

22
1(

+
) ,

2(
+

) ,
3(

+
)

1.
01

0.
91

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

20
00

15
00

0
37

.6
0

33
.8

8
2(

+
) ,

3(
+

) ,
5(
�

)
25

4.
73

34
.3

5
1(
�

) ,
4(
�

) ,
5(
�

)
21

4.
77

19
.6

4
1(
�

) ,
4(
�

) ,
5(
�

)
2.

58
1.

82
2(

+
) ,

3(
+

)
0.

23
0.

41
1(

+
) ,

2(
+

) ,
3(

+
)

un
co

r
10

0
10

00
0

10
0

94
10

.1
3

23
0.

91
2(
�

) ,
4(
�

) ,
5(
�

)
10

84
.4

2
58

.2
4

1(
+

) ,
3(

+
) ,

4(
�

)
14

48
.5

5
87

.9
5

2(
�

) ,
4(
�

) ,
5(
�

)
67

9.
17

47
.1

7
1(

+
) ,

2(
+

) ,
3(

+
) ,

5(
+

)
10

01
.9

1
77

.7
3

1(
+

) ,
3(

+
) ,

4(
�

)

10
0

10
00

0
10

00
23

45
.9

9
38

3.
96

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
96

5.
88

13
5.

52
1(

+
) ,

4(
�

) ,
5(
�

)
99

5.
26

16
5.

62
1(

+
) ,

4(
�

) ,
5(
�

)
13

0.
83

22
.9

8
1(

+
) ,

2(
+

) ,
3(

+
)

13
0.

05
38

.0
8

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
50

00
69

8.
49

26
4.

02
4(
�

) ,
5(
�

)
97

9.
27

27
1.

39
4(
�

) ,
5(
�

)
94

3.
22

34
5.

44
4(
�

) ,
5(
�

)
58

.9
0

20
.0

5
1(

+
) ,

2(
+

) ,
3(

+
)

16
.5

2
7.

66
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

10
00

0
15

00
0

29
9.

81
15

6.
20

2(
+

) ,
3(

+
) ,

4(
�

) ,
5(
�

)
97

7.
11

46
7.

85
1(
�

) ,
4(
�

) ,
5(
�

)
95

6.
92

65
9.

17
1(
�

) ,
4(
�

) ,
5(
�

)
32

.7
0

20
.8

8
1(

+
) ,

2(
+

) ,
3(

+
)

5.
21

4.
16

1(
+

) ,
2(

+
) ,

3(
+

)

un
c-

s-
w

10
0

10
00

0
10

0
59

81
.9

3
29

0.
09

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
55

6.
04

33
.9

9
1(

+
) ,

4(
�

) ,
5(
�

)
61

4.
58

37
.5

1
1(

+
) ,

4(
�

) ,
5(
�

)
19

6.
66

13
.1

7
1(

+
) ,

2(
+

) ,
3(

+
)

25
6.

44
25

.6
8

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
10

00
99

8.
81

25
0.

14
2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
63

1.
46

10
9.

27
1(

+
) ,

4(
�

) ,
5(
�

)
59

1.
64

10
9.

36
1(

+
) ,

4(
�

) ,
5(
�

)
81

.5
9

20
.3

3
1(

+
) ,

2(
+

) ,
3(

+
)

54
.0

6
16

.6
0

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
50

00
23

8.
21

88
.1

1
2(

+
) ,

3(
+

) ,
4(
�

) ,
5(
�

)
66

2.
77

22
9.

14
1(
�

) ,
4(
�

) ,
5(
�

)
59

7.
54

22
9.

58
1(
�

) ,
4(
�

) ,
5(
�

)
34

.9
1

20
.6

4
1(

+
) ,

2(
+

) ,
3(

+
)

16
.4

4
11

.3
1

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
15

00
0

69
.8

1
33

.5
8

2(
+

) ,
3(

+
) ,

4(
�

) ,
5(
�

)
64

0.
56

29
2.

14
1(
�

) ,
4(
�

) ,
5(
�

)
56

9.
05

28
5.

58
1(
�

) ,
4(
�

) ,
5(
�

)
10

.8
4

10
.1

0
1(

+
) ,

2(
+

) ,
3(

+
)

3.
91

5.
01

1(
+

) ,
2(

+
) ,

3(
+

)

bo
u-

s-
c

10
0

10
00

0
10

0
90

19
.7

3
28

4.
72

2(
�

) ,
4(
�

) ,
5(
�

)
14

56
.7

9
37

.2
6

1(
+

) ,
4(
�

)
15

79
.0

5
56

.7
3

4(
�

) ,
5(
�

)
54

1.
12

31
.1

9
1(

+
) ,

2(
+

) ,
3(

+
)

67
7.

47
46

.4
5

1(
+

) ,
3(

+
)

10
0

10
00

0
10

00
20

16
.7

9
46

0.
67

2(
�

) ,
4(
�

) ,
5(
�

)
14

51
.6

7
12

1.
58

1(
+

) ,
4(
�

) ,
5(
�

)
15

03
.4

0
13

4.
60

4(
�

) ,
5(
�

)
23

2.
06

31
.4

4
1(

+
) ,

2(
+

) ,
3(

+
)

25
2.

87
28

.8
4

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
50

00
78

6.
47

30
8.

14
2(

+
) ,

3(
+

) ,
4(
�

) ,
5(
�

)
14

04
.0

9
22

8.
27

1(
�

) ,
4(
�

) ,
5(
�

)
14

89
.0

8
26

9.
61

1(
�

) ,
4(
�

) ,
5(
�

)
12

4.
10

36
.7

0
1(

+
) ,

2(
+

) ,
3(

+
)

12
6.

24
29

.4
1

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
00

0
15

00
0

58
9.

52
29

8.
05

2(
+

) ,
3(

+
) ,

4(
�

) ,
5(
�

)
13

46
.8

7
30

9.
54

1(
�

) ,
4(
�

) ,
5(
�

)
14

65
.5

4
35

8.
38

1(
�

) ,
4(
�

) ,
5(
�

)
72

.2
2

28
.6

4
1(

+
) ,

2(
+

) ,
3(

+
)

84
.2

0
32

.6
1

1(
+

) ,
2(

+
) ,

3(
+

)

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 103

TA
B

L
E

7.
7:

Th
e

m
ea

n,
st

an
da

rd
de

vi
at

io
n

va
lu

es
an

d
st

at
is

tic
al

te
st

so
ft

he
pa

rt
ia

lo
ffl

in
e

er
ro

rf
or

M
O

EA
_D

,N
SG

A
-I

I,
SP

EA
2,

N
SG

A
-I

I
w

ith
el

iti
sm

,a
nd

SP
EA

2
w

ith
el

iti
sm

ba
se

d
on

th
e

no
rm

al
di

st
ri

bu
tio

n.

n
s

t
M

O
EA

_D
(1

)
N

SG
A

-I
I(

2)
SP

EA
2

(3
)

N
SG

A
-I

I(
w

e)
(4

)
SP

EA
2(

w
e)

(5
)

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

m
ea

n
st

st
at

un
co

r
10

0
10

0
10

0
28

50
.6

9
50

2.
97

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
7.

43
1.

75
1(

+
) ,

4(
�

) ,
5(
�

)
5.

59
2.

25
1(

+
)

4.
99

2.
14

1(
+

) ,
2(

+
)

4.
36

2.
76

1(
+

) ,
2(

+
)

10
0

10
0

10
00

19
0.

16
22

.9
0

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
3.

41
2.

00
1(

+
) ,

4(
�

) ,
5(
�

)
1.

47
1.

24
1(

+
) ,

5(
�

)
0.

45
0.

22
1(

+
) ,

2(
+

)
0.

25
0.

16
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

10
0

50
00

45
.9

3
12

.3
5

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
4.

73
3.

54
1(

+
) ,

4(
�

) ,
5(
�

)
2.

46
2.

54
1(

+
) ,

4(
�

) ,
5(
�

)
0.

11
0.

13
1(

+
) ,

2(
+

) ,
3(

+
)

0.
00

0.
00

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
0

15
00

0
26

.3
0

12
.8

6
2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
4.

19
3.

49
1(

+
) ,

4(
�

) ,
5(
�

)
1.

80
2.

39
1(

+
) ,

4(
�

) ,
5(
�

)
0.

06
0.

11
1(

+
) ,

2(
+

) ,
3(

+
)

0.
00

0.
00

1(
+

) ,
2(

+
) ,

3(
+

)

un
c-

s-
w

10
0

10
0

10
0

18
37

.4
7

85
4.

78
2(

+
) ,

3(
+

)
78

39
.3

8
46

20
.5

8
1(
�

) ,
4(
�

) ,
5(
�

)
78

37
.0

7
46

47
.1

7
1(
�

) ,
4(
�

) ,
5(
�

)
38

45
.5

5
24

25
.3

9
2(

+
) ,

3(
+

)
35

56
.9

9
21

59
.3

8
2(

+
) ,

3(
+

)

10
0

10
0

10
00

14
18

.0
1

37
9.

70
2(

+
) ,

3(
+

) ,
4(

+
) ,

5(
+

)
88

92
.2

1
12

30
.4

8
1(
�

) ,
4(
�

) ,
5(
�

)
89

80
.8

8
12

56
.8

3
1(
�

) ,
4(
�

) ,
5(
�

)
42

43
.0

8
98

8.
88

1(
�

) ,
2(

+
) ,

3(
+

)
40

69
.8

3
95

8.
42

1(
�

) ,
2(

+
) ,

3(
+

)

10
0

10
0

50
00

12
58

.8
4

41
3.

82
2(

+
) ,

3(
+

)
44

99
.7

8
14

88
.5

8
1(
�

) ,
4(
�

) ,
5(
�

)
45

21
.0

1
14

98
.0

7
1(
�

) ,
4(
�

) ,
5(
�

)
21

21
.5

7
12

16
.6

1
2(

+
) ,

3(
+

)
21

35
.1

8
12

18
.8

2
2(

+
) ,

3(
+

)

10
0

10
0

15
00

0
10

83
.8

4
64

9.
82

2(
+

) ,
3(

+
)

46
98

.9
0

11
68

.4
7

1(
�

) ,
4(
�

) ,
5(
�

)
47

05
.4

9
11

63
.0

0
1(
�

) ,
4(
�

) ,
5(
�

)
18

88
.2

1
13

30
.0

9
2(

+
) ,

3(
+

)
20

14
.7

2
14

85
.7

1
2(

+
) ,

3(
+

)

bo
u-

s-
c

10
0

10
0

10
0

13
93

.4
6

18
3.

93
2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
18

.7
0

2.
02

1(
+

) ,
4(
�

) ,
5(
�

)
14

.1
8

1.
65

1(
+

) ,
4(
�

) ,
5(
�

)
8.

20
1.

87
1(

+
) ,

2(
+

) ,
3(

+
)

7.
33

1.
69

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
0

10
00

13
8.

05
28

.2
1

3(
�

) ,
4(
�

) ,
5(
�

)
17

.1
3

0.
85

4(
�

) ,
5(
�

)
12

.4
7

0.
98

1(
+

) ,
4(
�

) ,
5(
�

)
2.

20
0.

63
1(

+
) ,

2(
+

) ,
3(

+
)

2.
10

1.
09

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
0

50
00

52
.0

9
14

.3
4

3(
�

) ,
4(
�

) ,
5(
�

)
17

.1
5

1.
23

4(
�

) ,
5(
�

)
12

.7
4

2.
07

1(
+

) ,
4(
�

) ,
5(
�

)
0.

67
0.

30
1(

+
) ,

2(
+

) ,
3(

+
)

0.
38

0.
29

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

10
0

15
00

0
41

.8
6

20
.7

7
3(
�

) ,
4(
�

) ,
5(
�

)
17

.3
9

2.
04

4(
�

) ,
5(
�

)
13

.1
9

2.
20

1(
+

) ,
4(
�

) ,
5(
�

)
0.

35
0.

23
1(

+
) ,

2(
+

) ,
3(

+
)

0.
06

0.
07

1(
+

) ,
2(

+
) ,

3(
+

)

un
co

r
10

0
50

0
10

0
13

50
.6

9
42

2.
15

2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
54

.7
7

29
.7

3
1(

+
) ,

4(
�

) ,
5(
�

)
40

.2
4

23
.6

7
1(

+
) ,

4(
�

) ,
5(
�

)
7.

22
3.

63
1(

+
) ,

2(
+

) ,
3(

+
)

5.
70

3.
66

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

50
0

10
00

18
3.

02
88

.6
5

3(
�

) ,
4(
�

) ,
5(
�

)
70

.7
1

52
.9

9
4(
�

) ,
5(
�

)
51

.7
1

39
.8

8
1(

+
) ,

4(
�

) ,
5(
�

)
0.

70
0.

52
1(

+
) ,

2(
+

) ,
3(

+
)

0.
20

0.
12

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

50
0

50
00

23
.9

0
14

.5
2

2(
+

) ,
3(

+
) ,

4(
�

) ,
5(
�

)
10

8.
64

59
.6

9
1(
�

) ,
4(
�

) ,
5(
�

)
81

.3
3

47
.7

7
1(
�

) ,
4(
�

) ,
5(
�

)
0.

12
0.

11
1(

+
) ,

2(
+

) ,
3(

+
)

0.
01

0.
02

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

50
0

15
00

0
"

1.
59

1.
27

2(
+

) ,
3(

+
) ,

4(
�

) ,
5(
�

)
14

4.
02

64
.9

1
1(
�

) ,
4(
�

) ,
5(
�

)
11

3.
76

51
.8

0
1(
�

) ,
4(
�

) ,
5(
�

)
0.

04
0.

13
1(

+
) ,

2(
+

) ,
3(

+
)

0.
00

0.
00

1(
+

) ,
2(

+
) ,

3(
+

)

un
c-

s-
w

10
0

50
0

10
0

18
84

.0
4

51
3.

97
2(
�

) ,
3(
�

) ,
4(
�

) ,
5(
�

)
18

.7
6

6.
17

1(
+

) ,
3(

+
) ,

5(
+

)
15

9.
74

61
.2

2
1(

+
) ,

2(
�

) ,
4(
�

)
17

.9
2

5.
98

1(
+

) ,
3(

+
) ,

5(
+

)
71

.7
1

27
.5

2
1(

+
) ,

2(
�

) ,
4(
�

)

10
0

50
0

10
00

16
5.

71
11

0.
24

2(
�

) ,
4(
�

)
2.

62
1.

14
1(

+
) ,

3(
+

) ,
5(

+
)

42
8.

28
23

1.
68

2(
�

) ,
4(
�

) ,
5(
�

)
1.

39
0.

84
1(

+
) ,

3(
+

) ,
5(

+
)

45
.5

4
20

.0
0

2(
�

) ,
3(

+
) ,

4(
�

)

10
0

50
0

50
00

13
.8

6
10

.2
2

2(
�

) ,
3(

+
) ,

4(
�

)
1.

70
1.

11
1(

+
) ,

3(
+

) ,
4(
�

) ,
5(

+
)

42
4.

22
34

8.
57

1(
�

) ,
2(
�

) ,
4(
�

) ,
5(
�

)
0.

06
0.

10
1(

+
) ,

2(
+

) ,
3(

+
) ,

5(
+

)
14

.6
1

13
.3

3
2(
�

) ,
3(

+
) ,

4(
�

)

10
0

50
0

15
00

0
2.

40
2.

04
3(

+
) ,

4(
�

)
2.

22
2.

19
3(

+
) ,

4(
�

)
28

0.
57

30
2.

69
1(
�

) ,
2(
�

) ,
4(
�

) ,
5(
�

)
0.

02
0.

08
1(

+
) ,

2(
+

) ,
3(

+
) ,

5(
+

)
3.

17
4.

74
3(

+
) ,

4(
�

)

bo
u-

s-
c

10
0

50
0

10
0

90
7.

16
16

5.
35

3(
�

) ,
4(
�

) ,
5(
�

)
10

0.
75

5.
39

4(
�

) ,
5(
�

)
80

.7
1

3.
23

1(
+

) ,
5(
�

)
19

.0
1

1.
55

1(
+

) ,
2(

+
)

13
.0

5
2.

21
1(

+
) ,

2(
+

) ,
3(

+
)

10
0

50
0

10
00

12
9.

70
36

.5
4

3(
�

) ,
4(
�

) ,
5(
�

)
10

6.
58

10
.2

2
3(
�

) ,
4(
�

) ,
5(
�

)
81

.9
5

6.
81

1(
+

) ,
2(

+
) ,

4(
�

) ,
5(
�

)
4.

32
1.

44
1(

+
) ,

2(
+

) ,
3(

+
)

1.
70

1.
32

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

50
0

50
00

31
.6

3
20

.8
2

2(
+

) ,
4(
�

) ,
5(
�

)
11

3.
69

15
.0

2
1(
�

) ,
4(
�

) ,
5(
�

)
85

.2
7

9.
19

4(
�

) ,
5(
�

)
0.

86
0.

39
1(

+
) ,

2(
+

) ,
3(

+
)

0.
10

0.
12

1(
+

) ,
2(

+
) ,

3(
+

)

10
0

50
0

15
00

0
7.

40
3.

70
2(

+
) ,

3(
+

) ,
5(
�

)
11

9.
19

14
.9

8
1(
�

) ,
4(
�

) ,
5(
�

)
89

.7
4

13
.5

0
1(
�

) ,
4(
�

) ,
5(
�

)
0.

33
0.

28
2(

+
) ,

3(
+

)
0.

01
0.

01
1(

+
) ,

2(
+

) ,
3(

+
)

Chapter 7. Evolutionary Multi-Objective Optimisation for the Dynamic KP 104

Furthermore, our experiments confirmed that in environments with medium and
high frequent changes MOEA_D is outperformed by NSGA-II and SPEA2. How-
ever, there is no significant difference between the performance of MOEA_D and
classic versions of NSGA-II and SPEA2 when there is sufficient time for algorithms
to adapt their solutions according to the new change.

7.5 Conclusion

In this chapter we studied the evolutionary algorithms for the KP where the ca-
pacity dynamically changes during the optimisation process. In the introduced
dynamic setting, the frequency of changes is determined by t. The magnitude of
changes is chosen randomly either under the uniform distribution U (�r, r) or under
the normal distribution N (0, s2). We compared the performance of (1+1) EA, two
simple multi-objective approaches with different dominance definitions (MOEA,
MOEA_D), the classic versions versions of NSGA-II and SPEA2 as advance multi-
objective algorithms, and the effect of customised elitism on their performance. Our
experiments in the case of uniform weights verified the previous theoretical stud-
ies for (1+1) EA and MOEA [Shi+19]. It is shown that the multi-objective approach,
which uses a population in the optimisation, outperforms (1+1) EA. Furthermore,
we considered the algorithms in the case of general weights for different classes of
instances with a variation of frequencies and magnitudes. Our results illustrated
that MOEA does not perform well in the general case due to its dominance pro-
cedure. However, MOEA_D, which benefits from a population with a smaller sise
and non-dominated solutions, beats (1+1) EA in most cases. On the other hand, in
the environments with highly frequent changes, (1+1) EA performs better than the
multi-objective approaches. In such cases, the population slows down MOEA_D in
reacting to the dynamic change. Selecting MOEA_D as the winner baseline algo-
rithm, we compared its performance with NSGA-II and SPEA2 as advanced evo-
lutionary algorithm. Our results showed that although classic versions of NSGA-II
and SPEA2 are significantly better than MOEA_D in many cases, their distribution
handling techniques prevent the algorithms to keep track of the optimal solutions.
Thus MOEA_D outperform them in low frequent changes. To address this weak-
ness, we improved these algorithms by applying an additional elitism which keeps
the best found solution in the population.

105

Chapter 8

Pareto Optimisation for Dynamic Subset Selection

8.1 Introduction

Subset selection form an important class of problems as many optimisation prob-
lems can be modelled by them. In the case of monotone submodular objective func-
tions, greedy algorithms are often able to achieve the best possible worst case ap-
proximation guarantee (unless P = NP). Recently, Pareto optimisation approaches
have been investigated for a wide range of subset selection problems. It has been
shown that these approaches often achieve the same worst case performance ra-
tio, but obtain solutions of higher quality on real-world benchmarks. It has been
shown in [Qia+17] that G-SEMO, which is introduced in Section 2.3.7 and known
as POMC in the literature, is able to achieve a f = (a f /2)(1� 1

ea f)-approximation
where a f measures the closeness of the considered function f to submodularity. The
approximation matches the worst-case performance ratio of the generalised greedy
algorithm [ZV16].

In this chapter, we study monotone functions with a dynamic constraint where the
constraint bound B changes over time. Such constraint changes reflect real-world
scenarios where resources vary during the process. We show that greedy algorithms
have difficulties in adapting their current solutions after changes have happened. In
particular, we show that there are simple dynamic versions of the classical knapsack
problem where adding elements in a greedy fashion when the constraint bound in-
creases over time can lead to an arbitrary bad performance ratio. For the case where
constraint bounds decrease over time, we introduce a submodular graph covering
problem and show that the considered adaptive generalised greedy algorithm may
encounter an arbitrarily bad performance ratio on this problem.

Investigating G-SEMO, we theoretically show that this algorithm obtains for each
constraint bound b 2 [0, B], a f = (a f /2)(1� 1

ea f)-approximation efficiently. Fur-
thermore, when relaxing the bound B to B⇤ > B, f-approximations for all values
of b 2 [0, B⇤] are obtained efficiently. As the complement to our theoretical results,

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 106

we perform experiments by considering two real-world problems under two differ-
ent constraint types and thirty dynamic benchmarks for each of them. We create
a baseline by performing our best algorithms for one million generations and sta-
tistically compare the results based on offline errors. Moreover, we compare the
performance of our algorithms with two additional algorithmic approaches, namely
EAMC [Bia+20] and NSGA-II [Deb+02]. EAMC is the most recent in the literature
that guarantees a polynomial expected time and NSGA-II is a well-known evolu-
tionary multi-objective algorithm used in many applications.

In the first part of our experiments, by benchmarking the generalised greedy algo-
rithm, its adaptive version and G-SEMO on the influence maximization problem in
social networks over sequences of dynamic changes, we show that G-SEMO obtains
superior results to the generalised greedy and adaptive generalised greedy algo-
rithms, specifically when the cost function depends on the structure of the graph.
We consider the experimental results in four intervals to examine whether the algo-
rithms behave differently during the optimisation process. Here, G-SEMO shows an
even more prominent advantage as more dynamic changes are carried out because
it is able to improve the quality of its solutions and cater for changes that occur in
the future.

To compare these algorithms with EAMC and NSGA-II as the second part of the ex-
periments, we study the maximum coverage problem using two graph benchmarks
with different sizes and two cost functions. For the "random" cost, we assign a ran-
dom value to each node of the graph as their cost value. For the other cost function,
called "outdegree," the cost is calculated based on the outdegree of each node. Our
results show that EAMC which limits its population size to guarantee the polyno-
mial expected time is not capable of dealing with dynamic changes and performs
worse than the other algorithms. NSGA-II which is known to be a high perform-
ing evolutionary multi-objective algorithm, on the other hand, beats G-SEMO when
the constraint costs are random. However, because of its limited population size
and also the effect of the crowding-distance factor in the selection procedure, which
forces the population to be distributed along the Pareto front, NSGA-II is inferior to
G-SEMO for the outdegree cost function.

This chapter is based on an extended version of a conference paper [Roo+19] which
is submitted to the Journal of Artificial Intelligence [Roo+20]. The chapter is struc-
tured as follows. In the next section, we formulate the dynamic subset selection
problems. In section 8.3, we firstly introduce the algorithms that are studied theoret-
ically and then show that the adaptive generalised greedy algorithm may encounter
an arbitrary bad performance ratio even when starting with an optimal solution for
the initial budget. In contrast, we show that G-SEMO can maintain f-approximation
efficiently. Section 8.4 presents our experimental setting, the results, and the empiri-
cal analysis. We discuss our experimental investigations for influence maximisation
in social networks in Section 8.4.2. Then extend our investigations by considering

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 107

NSGA-II and EAMC facing the benchmarks for maximum coverage problem in Sec-
tion 8.4.4, and finish with some concluding remarks.

8.2 Problem Formulation

In this chapter we consider optimisation problems in which the cost function and
objective functions are monotone and quantified according to their closeness to sub-
modularity. Please note that in this chapter, since we are dealing with sets and el-
ements, capital and small letters are chosen as the notation of sets and elements,
respectively.

Chapter 2 presented the different definitions for submodularity and we use the fol-
lowing one in this chapter. For a given set V = {v1, · · · , vn}, a function f : 2V ! R

is submodular if for any X ✓ Y ✓ V and v /2 Y

f (X [v)� f (X) � f (Y [v)� f (Y). (8.1)

In many applications the function to be optimised, f , comes with a cost function c
which is subject to a given cost constraint B. Often the cost function c cannot be eval-
uated precisely. Hence, the function ĉ which is y-approximation of c is used [ZV16].
Moreover, according to the submodularity of f , the aim is to find a good approxima-
tion instead of finding the optimal solution.

Consider the static version of an optimisation problem defined in 2.

Definition 8.1 (The Static Problem). Given a monotone objective function f : 2V ! R+,
a monotone cost function c : 2V ! R+ and a budget B, the goal is to compute a solution X
such that

X = arg max
Y✓V

f (Y) s.t. c(Y) B.

As for the static case investigated in [Qia+17], we are interested in a f-approximation
where f = (a f /2)(1� 1

ea f) depends on the submodularity ratio.

Zhang and Vorobeychik considered the performance of the generalised greedy algo-
rithm [ZV16], given in Algorithm 18, according to the approximated cost function ĉ.
Starting from the empty set, the algorithm always adds the element with the largest
objective to cost ratio that does not violate the given constraint bound B.

Let Kc = max{|X| : c(X) B}. The optimal solution X̃B in these investigations
is defined as X̃B = arg max{ f (X) | c(X) ac

B(1+a2
c (Kc�1)(1�kc)))

yKc
} where ac is the

submodularity ratio of c. This formulation gives the value of an optimal solution for
a slightly smaller budget constraint. The goal is to obtain a good approximation of
f (X̃B) in this case.

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 108

It has been shown in [ZV16] that the generalised greedy algorithm, which adds the
item with the highest marginal contribution to the current solution in each step,
achieves a (1/2)(1 � 1

e)-approximate solution if f is monotone and submodular.
[Qia+17] extended these results to objective functions with a f submodularity ra-
tio and proved that the generalised greedy algorithm obtains a f = (a f /2)(1 �

1
ea f)-approximation. For the remainder of this chapter, we assume f = (a f /2)(1�
1

ea f) and are interested in obtaining solutions that are f-approximation for the con-
sidered problems.

In this chapter, we study the dynamic version of problem given in Definition 8.1.

Definition 8.2 (The Dynamic Problem). Let X be a f-approximation for the problem
in Definition 8.1. The dynamic problem is given by a sequence of changes where in each
change the current budget B changes to B⇤ = B + d, d 2 R��B. The goal is to compute a
f-approximation X0 for each newly given budget B⇤.

The Dynamic Problem evolves over time by the changing budget constraint bounds.
Note that every fixed constraint bound gives a static problem and any good approxi-
mation algorithm can be run from scratch for the newly given budget. However, the
main focus of this chapter are algorithms that can adapt to changes of the constraint
bound.

8.3 Theoretical Analysis

G-SEMO and GGA are proven to find a f-approximated solution on the static ver-
sion of submodular subset selection problems. In this section, we analyse their per-
formance in a dynamic environment. We first consider an extended version of GGA,
which is an adaptive version to perform in the dynamic environment. Then we
prove the power of G-SEMO in computing f-approximation in static and dynamic
versions.

8.3.1 Algorithms

We consider dynamic problems according to Definition 8.2 with f = (a f /2)(1 �
1

ea f) and are interested in algorithms that adapt their solutions to the new constraint
bound B⇤ and obtain a f-approximation for the new bound B⇤. As the generalised
greedy algorithm can be applied to any bound B, the first approach would be to
run it for the newly given bound B⇤. However, this might lead to totally different
solutions and adaptation of already obtained solutions might be more beneficial.
Furthermore, adaptive approaches that change the solution based on the constraint
changes are of interest as they might be faster in obtaining such solutions and/or be
able to learn good solutions for the different constraint bounds that occur over time.

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 109

Algorithm 18: Generalised Greedy Algorithm
input: Initial budget constraint B.

1 X ∆;
2 V 0 V;
3 repeat
4 v⇤ arg maxv2V0

f (X[v)� f (X)
ĉ(X[v)�ĉ(X) ;

5 if ĉ(X [v⇤) B then
6 X X [v⇤;
7 V 0 V 0 \ {v⇤};
8 until V 0 ∆;
9 v⇤ arg maxv2V;ĉ(v)B f (v);

10 return arg maxS2{X,v⇤} f (S);

Algorithm 19: Adaptive Generalised Greedy Algorithm
1 Let B⇤ be the new budget;
2 if B⇤ < B then
3 while ĉ(X) > B⇤ do
4 v⇤ arg minv2X

f (X)� f (X\{v})
ĉ(X)�ĉ(X\{v}) ;

5 X X \ {v⇤} ;

6 else if B⇤ > B then
7 V 0 V \ X;
8 repeat
9 v⇤ arg maxv2V0

f (X[v)� f (X)
ĉ(X[v)�ĉ(X) ;

10 if ĉ(X [v⇤) B⇤ then
11 X X [v⇤;
12 V 0 V 0 \ {v⇤};
13 until V 0 ∆;

14 v⇤ arg maxv2V;ĉ(v)B⇤ f (v) ;
15 return arg maxS2{X,v⇤} f (S);

Based on the generalised greedy algorithm, we introduce the adaptive generalised
greedy algorithm. This algorithm is modified from Algorithm 18 in a way that en-
ables it to deal with a dynamic change. Let X be the current solution of the al-
gorithm. When a dynamic change decreases the budget constraint, the algorithm
removes items from X according to their marginal contribution, until it achieves a
feasible solution. When there is a dynamic increase, this algorithm behaves similarly
to the generalised greedy algorithm.

Furthermore, we consider the Pareto optimisation approach G-SEMO (Algorithm 4)
presented in Section 2.3.7. G-SEMO is a multi-objective optimisation approach which
is proven to perform better than the generalised greedy algorithm in case of local op-
tima [Qia+17]. We reformulate the problem as a bi-objective problem in order to use

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 110

G-SEMO as follows:

arg max
X2{0,1}n

(f1(X), f2(X)),

where:

f1(X) =

8
<

:
�•, ĉ(X) > B + 1

f (X), otherwise
, f2(X) = �ĉ(X).

This algorithm optimises the cost function and the objective function simultane-
ously. To achieve this, it uses the concept of dominance to compare two solutions.
Solution X1 dominates X2, denoted by X1 ⌫ X2, if f1(X1) � f1(X2) ^ f2(X1) �
f2(X2). The dominance is strict, �, when at least one of the inequalities is strict.
G-SEMO produces a population of non-dominated solutions and optimises them
during the optimisation process. In each iteration, it chooses solution X randomly
from the population and flips each bit of the solution with the probability of 1/n.
It adds the mutated solution X0 to the population only if there is no solution in the
population that dominates X0. All the solutions which are dominated by X0 will be
deleted from the population afterward.

Note that we only compute the objective vector (f1(X), f2(X)) when the solution
X is created. This implies that the objective vector is not updated after changes to
the constraint bound B. As a consequence solutions whose constraint exceeds the
value of B + 1 for a newly given bound are kept in the population. However, newly
produced individuals exceeding B + 1 for the current bound B are not included in
the population as they are dominated by the initial search point 0n. We are using
the value B + 1 instead of B in the definition of f1 as this gives the algorithm some
look ahead for larger constraint bounds. However, every value of at least B would
work for our theoretical analyses. The only drawback would be a potentially larger
population size which influences the value Pmax in our runtime bounds.

8.3.2 Adaptive Generalised Greedy Algorithm

In this section we analyse the performance of the adaptive generalised greedy algo-
rithm. This algorithm is a modified version of the generalised greedy using the same
principle in adding and deleting items. However, in this section we prove that the
adaptive generalised greedy algorithm is not able to deal with the dynamic change,
i.e., the approximation obtained can become arbitrarily bad during a sequence of
dynamic changes.

In order to show that the adaptive generalised greedy algorithm can not deal with
dynamic increases of the constraint bound, we consider a special instance of the
classical knapsack problem. Note that the knapsack problem is special submodular
problem where both the objective and the cost function are linear.

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 111

Given n + 1 items ei = (ci, fi) with cost ci and value fi independent of the choice
of the other items, we assume there are items ei = (1, 1

n), 1 i n/2, ei = (2, 1),
n/2 + 1 i n, and a special item en+1 = (1, 3). We have finc(X) = Âei2X fi and
cinc(X) = Âei2X ci as the linear objective and constraint function, respectively.

Theorem 8.3. Given the dynamic knapsack problem (finc, cinc), starting with B = 1 and
increasing the bound n/2 times by 1, the adaptive generalised greedy algorithm computes a
solution that has approximation ratio O(1/n).

Proof. For the constraint B = 1 the optimal solution is {en+1}. Now let there be n/2
dynamic changes where each of them increases B by 1. In each change, the algorithm
can only pick an item from {e1, · · · , en/2}, otherwise it violates the budget constraint.
After n/2 changes, the budget constraint is 1 + n/2 and the result of the algorithm is
S = {en+1, e1, · · · , en/2} with f (S) = 3 + (n/2) · (1/n) = 7/2 and c(S) = 1 + n/2.
However, an optimal solution for budget 1 + n/2 is S⇤ = {en+1, en/2+1, . . . , e 3n

4
} with

f (S⇤) = 3 + n
4 . Hence, the approximation ratio in this example is (7/2)/(3 + n/4) =

O(1/n)

Now we consider the case where the constraint bound decreases over time and show
that the adaptive generalised greedy algorithm may also encounter situations where
the approximation ratio becomes arbitrarily bad over time.

We consider the following Graph Coverage Problem. Let G = (U, V, E) be a bipartite
graph with bipartition U and V of vertices with |U| = n and |V| = m. The goal
is to select a subset S ✓ U with |S| B such that the number of neighbors of S
in V is maximised. Note that the objective function f (S) measuring the number of
neighbors of S in V is monotone and submodular.

We consider the graph G = (U, V, E) which consists of k disjoint subgraphs

Gi = (Ui = {ui
1, · · · , ui

l}, Vi = {vi
1, · · · , vi

2l�2}, Ei)

(see Figure 8.1). Node ui
1 is connected to nodes vi

2j�1, 1 j l � 1. Moreover, each
vertex ui

j, 2 j l is connected to two vertices vi
2j�3 and vi

2j�2. We assume that
k =
p

n and l = n/k =
p

n.

Theorem 8.4. Starting with the optimal set S = U and budget B = n, there is a spe-
cific sequence of dynamic budget reductions such that the solution obtained by the adaptive
generalised greedy algorithm has the approximation ratio O(1/

p
n).

Proof. Let the adaptive generalised greedy algorithm be initialised with X = U and
B = n = kl. We assume that the budget decreases from n to k where each single
decrease reduces the budget by 1. In the first k steps, to change the cost of solution
from n to n � k, the algorithm removes the nodes ui

1, 1 i k, as they have a
marginal contribution of 0. Following these steps, all the remaining nodes have the

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 112

⋯

⋯

"#$ "%$

&#$ &%$ &%'(%$&)$&*$ &%' (*$

"'$"*$

⋯ ⋯

FIGURE 8.1: Single subgraph Gi of G = (U, V, E)

same marginal contribution of 2. The solution X of size k obtained by the removal
steps of the adaptive generalised greedy algorithm contains k vertices which are
connected to 2k nodes of V, thus f (X) = 2k = 2

p
n. Such a solution is returned

by the algorithm for B = k as the most valuable single node has at most (l � 1) =

(
p

n� 1) neighbors in V. For B = k, the optimal solution X⇤ = {ui
1 | 1 i k}

has f (X⇤) = k(l � 1) = n�
p

n. Therefore, the approximation ratio achieved by the
adaptive generalised greedy algorithm is upper bounded by (2

p
n)/(n �

p
n) =

O(1/
p

n).

8.3.3 Pareto Optimisation

In this section we analyse the behaviour of G-SEMO facing a dynamic change. Ac-
cording to Lemma 3 in [Qia+17], for any X ✓ V and v⇤ = arg maxv/2X

f (X[v)� f (X)
ĉ(X[v)�ĉ(X) ,

we have
f (X [v⇤)� f (X) � a f

ĉ(X [v⇤)� ĉ(X)
B

· (f (X̃)� f (X)).

We denote by dĉ = min{ĉ(X [v)� ĉ(X) | X ✓ V, v /2 X} the smallest contribution
of an element to the cost of a solution for the given problem. Moreover, let Pmax be
the maximum size of G-SEMO’s population during the optimisation process.

The following theorem considers the static case and shows that G-SEMO computes
a f-approximation efficiently for every budget b 2 [0, B].

Theorem 8.5. Starting from {0}n, G-SEMO computes, for any budget b 2 [0, B], a f =

(a f /2)(1� 1/ea f)-approximate solution after T = cnPmax · B
dĉ

iterations with the constant
probability, where c � 8e + 1 is a sufficiently large arbitrary constant.

Proof. For a budget b 2 [0, B] and some k, we first consider the number of iterations
to find a (a f /2)

⇣
1� (1� a f

k)k
⌘

-approximate solution. We consider the largest value
of i for which there is a solution X in the population where ĉ(X) i < b and

f (X) �

1�
✓

1� a f
i

bk

◆k
!
· f (X̃b)

holds for some k. Initially, it is true for i = 0 with X = {0}n. We now show
that adding v⇤ to the current solution has the desired contribution to achieve a
f-approximate solution. Let X ✓ V and v⇤ = arg maxv/2X

f (X[v)� f (X)
ĉ(X[v)�ĉ(X) .

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 113

Assume that

f (X) �

1�
✓

1� a f
i

bk

◆k
!
· f (X̃b)

holds for some ĉ(X) i < b and k. Then adding v⇤ leads to

f (X [v⇤) �

1�
✓

1� a f
i + ĉ(X [v⇤)� ĉ(X)

b(k + 1)

◆k+1
!
· f (X̃b).

This process only depends on the quality of X and is independent of its structure.
Starting from {0}n, if the algorithm carries out such steps at least b/dĉ times, it
reaches a solution X such that

f (X [v⇤) �

1�
✓

1� a f
b

bk⇤

◆k⇤
!
· f (X̃b)

�
✓

1� 1
ea f

◆
· f (X̃b).

Considering item z = arg maxv2V:ĉ(v)b f (v), by submodularity and a 2 [0, 1] we
have f (X [v⇤) (f (X) + f (z))/a f .

This implies that

max{ f (X), f (z)} � (a f /2) · (1� 1
ea f

) · f (X̃b).

We consider T = cnPmaxB/dĉ iterations of the algorithm and analyse the success
probability within T steps. To have a successful mutation step where v⇤ is added to
the currently best approximate solution, the algorithm has to choose the right indi-
vidual in the population, which happens with probability at least 1/Pmax. Further-
more, the single bit corresponding to v⇤ has to be flipped which has the probability
at least 1/(en). We call such a step a success. Let random variable Yj = 1 when there
is a success in iteration j of the algorithm and Yj = 0, otherwise. Thus, we have

Pr(Yj = 1) � 1
en

· 1
Pmax

as long as a f-approximation for bound b has not been obtained.

Furthermore, let Y⇤i , 1 i T, be mutually independent random binary variables
with Pr[Y⇤i = 1] = 1

enPmax
and Pr[Y⇤i = 0] = 1� 1

enPmax
. For the expected value of the

random variable Y⇤ = ÂT
j=1 Y⇤j we have:

E[Y⇤] =
T

enPmax
=

cB
edĉ
� cb

edĉ
.

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 114

We use Lemma 1 in [DHK11] for moderately correlated variables which allows the
use of the following Chernoff bound

Pr (Y < (1� d)E[Y⇤]) Pr (Y⇤ < (1� d)E[Y⇤])

 e�E[Y⇤]d2/2. (8.2)

Using Equation 8.2 with d = (1 � e
c), we bound the probability of not finding a

f-approximation of X̃b in time T = cnPmaxB/dĉ by

Pr(Y b
dĉ

) e�
(c�e)2B

2cedĉ e�
(c/2)2B

2cedĉ

 e�
cB

8edĉ e�
B
dĉ .

Using the union bound and taking into account that there are at most B/dĉ differ-
ent values for b to consider, the probability that there is a b 2 [0, B] for which no
f-approximation has been obtained is upper bounded by B

dĉ
· e�

B
dĉ .

This implies that G-SEMO finds a (a f /2)(1� 1
ea f)-approximate solution with prob-

ability at least 1� B
dĉ
· e�

B
dĉ for each b 2 [0, B].

Note that in case of B/dĉ � log n, the probability of achieving a f-approximation
for every b 2 [0, B] is 1 � o(1). In order to achieve a probability of 1 � o(1) for
any possible change, we can run the algorithm for T0 = cnPmax · max{log n, B

dĉ
},

c � 8e + 1, iterations.

Now we consider the performance of G-SEMO in the dynamic version of the prob-
lem. In this version, it is assumed that G-SEMO has achieved a population which
includes a f-approximation for all budgets b 2 [0, B]. Reducing the budget from
B to B⇤ implies that a f-approximation for the newly given budget B⇤ is already
contained in the population.

Consideration must be given to the case where the budget increases. Assume that
the budget changes from B to B⇤ = B + d where d > 0. We analyse the time un-
til G-SEMO has updated its population such that it contains for any b 2 [0, B⇤] a
f-approximate solution.

We define

Imax(b, b0) = max{i 2 [0, b] | 9X 2 P, ĉ(X) i

^ f (X) �

1�
✓

1� a f
i

bk

◆k
!
· f (X̃b)

^ f (X) �

1�
✓

1� a f
i

b0k0

◆k0
!
· f (X̃b0)}

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 115

for some k and k0. The notion of Imax(b, b0) enables us to correlate progress in terms
of obtaining a f-approximation for budgets b and b0.

Theorem 8.6. Let G-SEMO have a population P such that, for every budget b 2 [0, B],
there is a f-approximation in P. After changing the budget to B⇤ > B, G-SEMO has
computed a f-approximation with probability W(1) within T = cnPmax

d
dĉ

steps for every
b 2 [0, B⇤].

Proof. Let P denote the current population of G-SEMO in which, for any budget
b B, there is a

⇣
1� (1� a f

k)k
⌘

-approximate solution for some k.

Let X be the solution corresponding to Imax(B, B⇤). Let v⇤ = arg maxv/2X
f (X[v)� f (X)
ĉ(X[v)�ĉ(X)

be the item with the highest marginal contribution which could be added to X and
X0 = X [v⇤. According to Lemma 3 and Theorem 2 in [Qia+17] and the definition
of Imax(B, B⇤), we have

f (X0) �
✓

1� (1� a f
Imax + ĉ(X0)� ĉ(X)

Bk
)k
◆
· f (X̃B)

and

f (X0) �
✓

1� (1� a f
Imax + ĉ(X0)� ĉ(X)

B⇤k0
)k0
◆
· f (X̃B⇤).

This implies that adding v⇤ to X violates the budget constraint B, otherwise we
would have a greater value for Imax.

If Imax + ĉ(X0)� ĉ(X) � B⇤, then, similar to the proof of Theorem 8.5, we have

max{ f (X), f (z)} � (a f /2) ·
✓

1� 1
ea f

◆
· f (X̃B⇤).

Otherwise, we have

f (X0) �
✓

1� (1� a f
B

B⇤k0
)k0
◆
· f (X̃B⇤).

From this point, the argument in the proof of Theorem 8.5 holds, i.e., G-SEMO ob-
tains, for each value b 2 [B, B⇤], a f-approximation after d

dĉ
successes.

Hence, after T = cnPmaxd/dĉ iterations, for all b 2 [B, B⇤] with probability 1� d
dĉ
·

e�
d
dĉ , we have a f = (a f /2)(1� 1

ea f)-approximation in the population.

Note that if the dynamic change is sufficiently large such that d
dĉ
� log n, then the

probability of having obtained, for every budget b 2 [0, B⇤], a f-approximation in-
creases to 1� o(1). A success probability of 1� o(1) can be obtained for this magni-
tude of changes by giving the algorithm time T0 = cnPmax max{log n, d

dĉ
}, c � 8e + 1.

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 116

A special class of known submodular problems is the maximisation of a function
with a cardinality constraint. In this case, the constraint value can take on at most
n + 1 different values and we have Pmax n + 1. Furthermore, we have d = 1 which
leads to the following two corollaries.

Corollary 8.7. Consider the static problem with cardinality constraint bound B. G-SEMO
computes, for every budget b 2 [0, B], a f-approximation within T = cn2 · max{B, log n},
c � 8e + 1, iterations with probability 1� o(1).

Corollary 8.8. Consider the dynamic problem with a cardinality constraint B. Assume
that P contains a f-approximation for every b 2 [0, B]. Then after increasing the budget
to B⇤, G-SEMO computes, for every budget b 2 [0, B⇤], a f-approximation in time T =

cn2 max{d, log n}, c � 8e + 1 and d = |B⇤ � B|, with probability 1� o(1).

8.4 Experimental Investigations

In this section, we experimentally compare the performance of our algorithms on
dynamic variants of problems, where the constraint bound changes over time. We
first analyse the practical performance of three algorithms that have been investi-
gated theoretically in the previous section, the generalised greedy algorithm (GGA),
the adaptive generalised greedy algorithm (AdGGA) and G-SEMO, on the dynamic
submodular influence maximisation problem [Qia+17; ZV16]. In addition to the
plain G-SEMO described in Algorithm 4, we also consider another version in which
the algorithm has a warm-up phase. Starting from a zero solution, G-SEMOwp per-
forms ten thousand generations before the first change happens, which gives it more
time to build a population that is prepared for the following changes.

Afterward, we include two more algorithms. EAMC, introduced in [Bia+20], is a
newer algorithm that theoretically guarantees f-approximation in polynomial ex-
pected time 2en2(n + 1). The other algorithm is a version of NSGA-II that benefits
from a specific elitism to keep track of the best-found solution in a dynamic environ-
ment. We compare these two algorithms with G-SEMOwp, GGA and AdGGA on the
dynamic submodular maximum coverage problem. The following section describes
our experimental setting.

8.4.1 Experimental Setting

We build our dynamic benchmark based on the approach in Chapter 7. We have two
problems, and for each problem, we consider two different cost functions. Thus, we
study four types of instances. Each instance has an initial, a maximum and a min-
imum budget denoted by Binit, Bmax and Bmin, respectively. Every t evaluation, a
dynamic change adds the value of d 2 [�r, r], which is chosen uniformly at random,
to the current budget B 2 [Bmax, Bmin]. In other words, the iterative algorithms have
t evaluations to find a solution for budget constraint B, before the next change hap-
pens. We consider two hundred changes for each run, and there are thirty different

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 117

0 25 50 75 100 125 150 175 200
Time

5

10

15

20

25

30

Bu
dg

et
 B

FIGURE 8.2: Budget over time for dynamic problems

sequences of random changes produced for each instance. An example of how the
budget values change over time with Binit = 10 and d 2 {�1, 1} is shown in Fig-
ure 8.2. For the baseline in the influence maximisation and the maximum coverage
problems, we run G-SEMOwp and NSGA-II for all occurred budget constraints for
one million generations, respectively.

Algorithms start with the initial budget constraint Binit. To calculate the error for
each algorithm, let si denote the best-found solution right before the change i hap-
pens, and si

b be the solution found by the baseline algorithm. For each dynamic
change, we record error ei as : ei = f (si

b)� f (si). Then for each interval that contains
m changes, the partial offline error is Âm

i=1 ei/m.

We compare the performance of algorithms for each instance according to the thirty
partial offline error values. To establish a statistical comparison of the results among
different algorithms, we use a multiple comparisons test. In particularity, we focus
on the method that compares a set of algorithms. For statistical validation, we use
the Kruskal-Wallis test with 95% confidence. Afterwards, we apply the Bonferroni
post-hoc statistical procedures that are used for multiple comparisons of a control
algorithm against two or more other algorithms. For more detailed descriptions of
the statistical tests, we refer the reader to [CF09].

Our results are summarised in the Tables 8.1 and 8.2. The columns represent the
algorithms with the corresponding mean value and standard deviation. Note, X(+)

is equivalent to the statement that the algorithm in the column outperformed algo-
rithm X, and X(�) is equal to the statement that X outperformed the algorithm in
the given column. If the algorithm X does not appear, this means that no significant
difference was observed between the algorithms.

8.4.2 The Influence Maximisation Problem

The influence maximisation problem aims to identify a set of most influential users
in a social network. Given a directed graph G = (V, E) where each node represents
a user. Each edge (u, v) 2 E has assigned an edge probability pu,v((u, v) 2 E). The

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 118

probability pu,v corresponds to the strengths of influence from user u to user v. The
goal is to find a subset X ✓ V such that the expected number of activated nodes
from X, IC(X), is maximised. Given a cost function c and a budget B the submod-
ular optimisation problem is formulated as arg maxX✓V E[|IC(X)|] s.t. c(X) B. To
calculate E[|IC(X)|] in our experiments, we simulate the random process of influ-
ence of solution X for 500 times independently, and use the average as the value of
E[|IC(X)|].

We consider two types of cost functions. The routing constraint takes into account
the costs of visiting nodes whereas the cardinality constraint counts the number of
chosen nodes. For both cost functions, the constraint is met if the cost is at most
B. For more detailed descriptions of the influence maximisation through a social
network problem, we refer the reader to [KKT15; Qia+17; ZV16].

To build the dynamic benchmark, as described in Section 8.4.1, we assume that
the initial constraint bound is Binit = 10, which stays within the interval [5, 30].
d 2 {�1, 1} is chosen uniformly at random and we consider four values for t 2
{100, 1000, 5000, 10000}. In G-SEMOwp, we consider the option of G-SEMO having a
warm-up phase where there are no dynamic changes for the first 10000 evaluations.
This allows G-SEMOwp to optimise for an extended period for the initial bound.
It should be noted that the number of evaluations in the warm-up phase and our
choices of t are relatively small compared to the choice of 10eBn2 used in [Qia+17]
for optimising the static problem with a given fixed bound B. The results are shown
in Table 8.1. For this problem, we divide the experiment, which contains a sequence
of two hundred changes, into 4 parts and we perform the statistical tests for each
part separately. In this way, we show how the iterative algorithms perform during
the optimisation process.

Empirical Analysis

We first investigate the influence maximisation for the routing constraint that is
based on the simulated networks as done for the static case in [Qia+17]. We consider
a social network with 400 nodes that are built using the popular Barabasi-Albert
(BA) model [AB02] with edge probability p = 0.1. The routing network is based on
the Erdos-Renyi (ER) model [ER59] where each edge is presented with probability
p = 0.02. Nodes are placed randomly in the plane and the edge costs are given by
Euclidean distances. Furthermore, each chosen node has a cost of 0.1.

As it can be observed in Table 8.1, in the instances with t = 100, both greedy algo-
rithms are significantly better than POMCs. When the frequency of changes is that
high, G-SEMOwp is not even able to keep reducing the mean of errors in the third
and fourth intervals. Furthermore, the impact of the warm-up phase is only notice-
able in the first interval and fades when the plain G-SEMO has more time to adapt
its population.

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 119

TABLE 8.1: The mean, standard deviation values and statistical
tests of the partial offline error for GGA, AdGGA, G-SEMO, and

G-SEMOwp for the dynamic influence maximisation problem.

r t interval GGA (1) AdGGA (2) G-SEMO (3) G-SEMOwp (4)
mean st stat mean st stat mean st stat mean st stat

Rout 1 100 1-50 10.05 1.57 3(+) ,4(+) 11.53 3.76 3(+) ,4(+) 57.93 20.13 1(�) ,2(�) ,4(�) 29.25 9.98 1(�) ,2(�) ,3(+)

constraint 1 100 51-100 9.98 1.69 3(+) ,4(+) 12.36 4.91 3(+) ,4(+) 40.88 16.20 1(�) ,2(�) 27.65 9.89 1(�) ,2(�)

1 100 100-151 9.73 1.48 3(+) ,4(+) 12.25 4.04 3(+) ,4(+) 36.96 11.91 1(�) ,2(�) 29.11 11.18 1(�) ,2(�)

1 100 151-200 9.72 1.57 3(+) ,4(+) 14.22 5.39 3(+) ,4(+) 35.96 13.74 1(�) ,2(�) 29.75 12.41 1(�) ,2(�)

1 1000 1-50 10.05 1.57 3(+) ,4(+) 11.53 3.76 3(+) ,4(+) 24.73 5.17 1(�) ,2(�) 18.80 4.63 1(�) ,2(�)

1 1000 51-100 9.98 1.69 3(+) ,4(+) 12.36 4.91 14.10 3.96 1(�) 12.95 4.21 1(�)

1 1000 100-151 9.73 1.48 2(+) ,3(+) 12.25 4.04 1(�) 12.38 3.57 1(�) 11.68 4.27
1 1000 151-200 9.72 1.57 2(+) 14.22 5.39 1(�) ,3(�) ,4(�) 11.19 5.54 2(+) 10.55 4.67 2(+)

1 5000 1-50 10.05 1.57 11.53 3.76 4(�) 10.74 2.33 9.16 2.49 2(+)

1 5000 51-100 9.98 1.69 3(�) ,4(�) 12.36 4.91 3(�) ,4(�) 4.32 1.94 1(+) ,2(+) 3.96 2.18 1(+) ,2(+)

1 5000 100-151 9.73 1.48 3(�) ,4(�) 12.25 4.04 3(�) ,4(�) 3.45 1.98 1(+) ,2(+) 3.38 2.28 1(+) ,2(+)

1 5000 151-200 9.72 1.57 3(�) ,4(�) 14.22 5.39 3(�) ,4(�) 2.64 2.42 1(+) ,2(+) 2.65 2.79 1(+) ,2(+)

1 10000 1-50 10.05 1.57 3(�) ,4(�) 11.53 3.76 3(�) ,4(�) 6.84 1.91 1(+) ,2(+) 5.78 2.20 1(+) ,2(+)

1 10000 51-100 9.98 1.69 3(�) ,4(�) 12.36 4.91 3(�) ,4(�) 2.39 2.68 1(+) ,2(+) 1.50 2.05 1(+) ,2(+)

1 10000 100-151 9.73 1.48 3(�) ,4(�) 12.25 4.04 3(�) ,4(�) 1.91 1.91 1(+) ,2(+) 1.21 2.35 1(+) ,2(+)

1 10000 151-200 9.72 1.57 3(�) ,4(�) 14.22 5.39 3(�) ,4(�) 1.27 2.42 1(+) ,2(+) 1.08 2.42 1(+) ,2(+)

Card 1 100 1-50 1.18 0.47 3(+) ,4(+) 1.25 0.57 3(+) ,4(+) 68.97 12.46 1(�) ,2(�) ,4(�) 36.68 13.13 1(�) ,2(�) ,3(+)

constraint 1 100 51-100 1.00 0.55 3(+) ,4(+) 1.15 0.62 3(+) ,4(+) 51.53 12.07 1(�) ,2(�) ,4(�) 34.84 13.08 1(�) ,2(�) ,3(+)

1 100 100-151 0.90 0.57 3(+) ,4(+) 0.97 0.63 3(+) ,4(+) 46.25 11.26 1(�) ,2(�) 33.98 13.38 1(�) ,2(�)

1 100 151-200 0.75 0.65 3(+) ,4(+) 0.79 0.72 3(+) ,4(+) 42.91 12.59 1(�) ,2(�) 32.31 13.04 1(�) ,2(�)

1 1000 1-50 1.18 0.47 3(+) ,4(+) 1.25 0.57 3(+) ,4(+) 31.53 7.18 1(�) ,2(�) 22.93 4.58 1(�) ,2(�)

1 1000 51-100 1.00 0.55 3(+) ,4(+) 1.15 0.62 3(+) ,4(+) 13.97 5.58 1(�) ,2(�) 12.31 4.36 1(�) ,2(�)

1 1000 100-151 0.90 0.57 3(+) ,4(+) 0.97 0.63 3(+) ,4(+) 10.22 4.59 1(�) ,2(�) 9.55 3.14 1(�) ,2(�)

1 1000 151-200 0.75 0.65 3(+) ,4(+) 0.79 0.72 3(+) ,4(+) 8.28 5.48 1(�) ,2(�) 7.82 4.29 1(�) ,2(�)

1 5000 1-50 1.18 0.47 3(+) ,4(+) 1.25 0.57 3(+) ,4(+) 10.25 2.65 1(�) ,2(�) 7.88 2.02 1(�) ,2(�)

1 5000 51-100 1.00 0.55 3(+) 1.15 0.62 1.80 1.02 1(�) 1.29 0.95
1 5000 100-151 0.90 0.57 0.97 0.63 1.59 1.29 1.29 0.97
1 5000 151-200 0.75 0.65 0.79 0.72 1.09 1.31 1.02 1.23
1 10000 1-50 1.18 0.47 3(+) ,4(+) 1.25 0.57 3(+) ,4(+) 5.40 1.41 1(�) ,2(�) 4.17 1.12 1(�) ,2(�)

1 10000 51-100 1.00 0.55 4(�) 1.15 0.62 3(�) ,4(�) 0.68 0.63 2(+) 0.40 0.58 1(+) ,2(+)

1 10000 100-151 0.90 0.57 4(�) 0.97 0.63 4(�) 0.59 0.56 0.31 0.62 1(+) ,2(+)

1 10000 151-200 0.75 0.65 3(�) ,4(�) 0.79 0.72 3(�) ,4(�) 0.19 0.37 1(+) ,2(+) 0.16 0.60 1(+) ,2(+)

Considering the instances with medium-frequency changes, we see a remarkable
improvement in the performance of G-SEMO and G-SEMOwp. Although GGA and
AdGGA are still better in the first fifty changes of t = 1000, the results show that
G-SEMO and G-SEMOwp outperform AdGGA in the final interval and are not signif-
icantly worse than GGA anymore. In the frequency of t = 5000, GGA does not beat
POMCs in the first interval either. This shows the exceptional ability of G-SEMO
algorithms in providing a population so that efficiently adapts to an environment
with dynamic changes in such a short time. Note that in routing constraint, there is
no significant difference in the performance of G-SEMO and G-SEMOwp when the
frequency of changes is medium. However, the results depict that in some cases,
such as the third interval of t = 1000 and the first interval of t = 5000, G-SEMOwp

outperforms AdGGA while G-SEMO is unable to do so.

When the optimisation interval increases to t = 10000, G-SEMO and G-SEMOwp

outperform GGA and AdGGA in all the intervals. This shows that 10000 evaluations
are enough for G-SEMO to perform better than the greedy algorithms.

It should be noticed that the routing cost is affected by the structure of the graph.
Let there are some nodes in the graph that can influence a considerable number of
other nodes. Because of the routing constraint and their distance, the greedy al-
gorithms might not select them together in a single solution. In other words, the

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 120

greedy behaviour of GGA and AdGGA might be against their performance in rout-
ing constraint. Such cases do not appear when the constraint is on the number of
selected nodes in a solution. Hence, the greedy algorithms should behave much
better in cardinality constraint. While our theoretical analyses show the outperfor-
mance of G-SEMO, the interesting question is how much does it take for G-SEMO
and G-SEMOwp to track the dynamic changes in practice.

To consider the cardinality constraint, we use the social news data which is collected
from the social news aggregator Digg. The Digg dataset contains stories submitted
to the platform over a period of a month, and IDs of users who voted on the popular
stories. The data consist of two tables that describe friendship links between users
and the anonymised user votes on news stories [HL12]. As in [Qia+17], we use
the preprocessed data with 3523 nodes and 90244 edges, and the estimated edge
probabilities from the user votes based on the method in [BBM12].

While the effect of the warm-up phase is still visible in the first two intervals, similar
to the routing constraint, G-SEMO and G-SEMOwp cannot beat greedy algorithms
in cardinality constraint and high-frequency changes. The statistical advantage of
greedy algorithms holds even when t increases to 1000. However, a significant im-
provement happens in t = 5000. The results show that greedy algorithms lose their
advantage against G-SEMOwp after the first fifty changes. But G-SEMO needs more
time to reach the other algorithms. The fact that evolutionary algorithms do not
show a significant performance until t = 5000 shows the effectiveness of the greedy
approaches in situations where the constraint is not affected by the structure of the
graph, as discussed above.

Contrary to the routing constraint, G-SEMO and G-SEMOwp are outperformed by
the greedy algorithms in the first interval, even when t = 10000. However, the
warm-up phase helps G-SEMOwp to take the lead and outperform other algorithms
from the second interval. On the other hand, it takes three intervals for the plain
G-SEMO to show statistically better results than the greedy algorithms. Note that
the warm-up phase in only 10000 evaluations. Thus, having a prepared population,
even for 10000 evaluations for such a complicated benchmark, highly improves the
results of evolutionary algorithms in dynamic environment.

8.4.3 EAMC and NSGA-II with elitism

In this section, we explain two more algorithms that we study experimentally in ad-
dition to the algorithms in previous sections. EAMC (Algorithm 20) has been intro-
duced in [Bia+20] and has been proven to find a f-approximate solution in expected
time 2en2(n + 1). While the definition of dominance is the only factor to control the
population size in G-SEMO, EAMC keeps only two solutions per each possible so-
lution size. Thus, the population size does not increase to more than 2n in EAMC.

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 121

Algorithm 20: EAMC Algorithm
1 Update B;
2 Update P;
3 while stopping criterion not met do
4 Select X from P uniformly at random;
5 X0 flip each bit of X with probability 1

n ;
6 if ĉ(X0) B then
7 i |X0|;
8 if bin(i) 6= ∆ then
9 P P [{X0}, Ui Vi X0;

10 else
11 if g(X0) > g(Ui) then
12 Ui X0;

13 if f (X0) > f (Vi) then
14 Vi X0;

15 P (P \ bin(i)) [{Ui} [{Vi};

16 t = t + 1;

In addition to f (X), this algorithm also uses another fitness function as follow:

g(X) =

8
<

:
f (X), |X| = 0

f (X)/(1� e�a f ĉ(X)/B), otherwise.

Moreover, function bin(i) returns solutions in the population with size i. The poly-
nomial bound for EAMC is the results of specific definition of g(X). Note that ac-
cording to this definition, one needs submodularity ratio of f to use EAMC which
computing its exact value might be difficult. However, [Bia+20] showed that using
a lower bound a for a f results in the approximation ratio of (a f /2)(1� 1/ea). To
adopt EAMC to the dynamic environment, we update the population after each dy-
namic change. Since EAMC keeps and compares solutions according to their size,
recording infeasible solutions can cause removing the feasible ones. Thus, the up-
date process only removes solutions that become infeasible after the change.

The other algorithm that we use in this section is the same version of NSGA-II with
additional elitism presented in Chapter 7. NSGA-II, Algorithm 5 as explained in
Chapter 2, sorts solutions based on non-dominated fronts based on the objective
values such that each solutions in front Fi, i > 1, is dominated by at least one solu-
tion in Fi�1. It also computes the distance between solutions in the same front, called
crowding distance, and uses this to achieve well-distributed solutions. Finally, front
ranks and crowding distance is used to generate the next generation. As we showed
in Chapter 7, the plain version of NSGA-II loses the best-found solution during op-
timisation of the dynamic knapsack problem. That is the result of original approach

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 122

which prioritise the distribution of solutions. The additional elitism locates the best-
found solution according to the budget constraint in each generation and increases
its crowding distance. Hence, it assures that this solution is not removed from the
population because of the distribution factor. We use fN and cN as the objective func-
tions and set the population size twenty. To prepare this algorithm for the upcoming
changes, we let it to keep solutions with costs up to B + d and we set high penalty to
solutions that violate this bound. Hence, we define fN and cN as follow:

cN(X) =

8
<

:
c(X) if c(x) B + d

c(X) + (n · cmax + 1) · h(X) otherwise
(8.3)

and

fN(X) =

8
<

:
f (X) if c(x) B + d

f (X) + (n · fmax + 1) · h(X) otherwise,
(8.4)

where cmax, fmax, and h(X) are maximum possible cost, maximum possible fitness,
and the amount of violation, respectively.

8.4.4 The Maximum Coverage Problem

We use the maximum coverage problem to compare the performance of AdGGA,
GGA, G-SEMOwp, EAMC, and NSGA-II, which have been described in previous
sections. In this problem, a set of elements U and a collection V = {S1, S2, · · · , Sn}
of subsets of U are given. Considering a monotone cost function c, the goal is to
select subsets from V such that their union cover the maximum number of elements
in U, while the cost of this selection do not exceed the budget constraint B. To be
more precise, we are looking for arg maxX✓V f (X) = |SSi2X Si| such that c(X) B.
We use directed graphs as the benchmarks for this problem. Each node p represents
a subset Sp 2 V that contains node p and all of its adjacent nodes. We use two
types of cost functions as defined by [Bia+20]. The "outdegree" cost of node p is
calculated as o(p) = 1�max{d(p)� q, 0}, where d(p) is the out degree of p and q is
a constant set to six. For "random" cost function we assigned a random positive cost
value in (0, 1] to each node. Cost of a selected set of nodes X is c(X) = Âp2X o(p).
Our benchmarks are two graphs originally generated for maximum independent set
problem [Xu+07]. frb35-17-mis is a graph with 450 nodes and 17,827 edges, and the
graph of frb30-15-mis has 595 nodes and 27,856 edges.

To apply the dynamic changes, similar to Section 8.4.2, we generated thirty files for
each constraint that includes two hundred random numbers. However, the magni-
tudes of changes, budget intervals, and initial budget are chosen according to each
cost function. The budget for "outdegree" is initially set to 500 that is bounded by
the Bmin = 250 and Bmax = 750 during the optimisation process, and d is a random
integer within [�20, 20]. In instances with "random" cost, the budget changes within

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 123

the range [0, 3], initially set to 1 and the magnitude of changes is d 2 {�0.1, 0.1}.
The results are presented in Table 8.2.

Empirical Analysis

In this section, we compare the performance of three evolutionary and two greedy
algorithms in dynamic environments with a variety of frequencies. In Section 8.4.2,
we divided the sequence of dynamic changes into four intervals to study how our
evolutionary algorithms improve during the optimisation process. In this experi-
ment, we consider all 200 changes as a whole, and we calculate the partial offline er-
ror for all the changes. Since smaller benchmarks are considered here, we can study
how long does it take for the algorithms to compensate the errors generated at the
beginning of the dynamic changes and outperform the others after 200 changes.

Note that the random cost is similar to the cardinality constraint in Section 8.4.2
since it considers each node despite the structure of the graph. In other words, the
increase in fitness value occurred by adding a specific node is independent of the
rise in the cost. Adding a node that covers lots of other nodes, however, is always
expensive when we consider the outdegree cost. Thus, we expect better results from
the greedy approaches when the random constraint is considered.

Generally observing the results in Table 2, AdGGA performed worst than GGA in
most of the cases. It should be noticed that its inability to trace the best solution is al-
ready proven in Section 8.3.2. However, the results confirm that in comparison with
the evolutionary approaches, AdGGA’s greedy behaviour is still beneficial in the en-
vironment that the frequency of changes is high. On the other hand, we have EAMC
that has the worst performance among the other iterative algorithms. It does not
statistically outperform any of the algorithms in our experiments. Considering the
random cost, it achieves a lower mean of partial error only in the smaller benchmark
and t = 45000. While 45000 is still significantly less than the proven theoretical ex-
pected time O(n3), EAMC cannot compete with the other algorithms. The situation
becomes a bit better with the outdegree cost. Although it is still unable to outper-
form the others, the mean of its partial offline error becomes lower than AdGGA’s
in t = 15000. The reason for such a poor performance is how EAMC compares so-
lutions to keep them in the population. Despite the fact that its approach guarantees
the polynomial size of the population, it increases the chance of storing a bad solu-
tion only because no better solution with the same size has been found yet. Hence,
it needs more time to prepare its population for the next dynamic change. In the
following, we compare the performance of the rest of the algorithms in detail.

Consider the results for smaller benchmark, frb30-15. In instances with t = 100 and
random cost, GGA and AdGGA are significantly better than the other algorithms,
and NSGA-II achieves better results than G-SEMOwp. The benefit of the greedy ap-
proach in the random cost, do not let NSGA-II dominate GGA before doing 15000

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 124

TA
B

L
E

8.
2:

Th
e

m
ea

n,
st

an
da

rd
de

vi
at

io
n

va
lu

es
an

d
st

at
is

tic
al

te
st

s
of

th
e

pa
rt

ia
lo

ffl
in

e
er

ro
r

fo
r

G
G

A
,A

dG
G

A
,G

-S
EM

O
w

p
,E

A
M

C
,

an
d

N
SG

A
-I

Iw
ith

el
iti

sm
,b

as
ed

on
th

e
nu

m
be

r
of

ev
al

ua
tio

ns
.

n
r

t
G

G
A

(1
)

A
dG

G
A

(2
)

G
-S

EM
O

w
p

(3
)

EA
M

C
(4

)
N

SG
A

-I
I(

5)
m

ea
n

st
st

at
m

ea
n

st
st

at
m

ea
n

st
st

at
m

ea
n

st
st

at
m

ea
n

st
st

at
fr

b3
0-

15
45

0
0.

1
10

0
2.

12
0.

55
2(

+
) ,

3(
+

) ,
4(

+
) ,

5(
+

)
8.

92
1.

30
1(
�

) ,
3(

+
) ,

4(
+

)
33

.8
7

13
.3

5
1(
�

) ,
2(
�

)
59

.5
7

24
.1

8
1(
�

) ,
2(
�

) ,
5(
�

)
19

.7
8

9.
96

1(
�

) ,
4(

+
)

ra
nd

om
45

0
0.

1
10

00
2.

12
0.

55
2(

+
) ,

3(
+

) ,
4(

+
)

8.
92

1.
30

1(
�

) ,
4(

+
) ,

5(
�

)
10

.6
0

3.
94

1(
�

) ,
4(

+
) ,

5(
�

)
28

.1
6

9.
14

1(
�

) ,
2(
�

) ,
3(
�

) ,
5(
�

)
5.

27
1.

86
2(

+
) ,

3(
+

) ,
4(

+
)

45
0

0.
1

50
00

2.
12

0.
55

2(
+

) ,
3(

+
) ,

4(
+

)
8.

92
1.

30
1(
�

) ,
3(
�

) ,
5(
�

)
3.

60
1.

02
1(
�

) ,
2(

+
) ,

4(
+

) ,
5(
�

)
15

.2
0

4.
86

1(
�

) ,
3(
�

) ,
5(
�

)
2.

15
0.

75
2(

+
) ,

3(
+

) ,
4(

+
)

45
0

0.
1

15
00

0
2.

12
0.

55
2(

+
) ,

4(
+

) ,
5(
�

)
8.

92
1.

30
1(
�

) ,
3(
�

) ,
5(
�

)
1.

55
0.

31
2(

+
) ,

4(
+

)
10

.2
0

3.
37

1(
�

) ,
3(
�

) ,
5(
�

)
1.

13
0.

33
1(

+
) ,

2(
+

) ,
4(

+
)

45
0

0.
1

45
00

0
2.

12
0.

55
2(

+
) ,

3(
�

) ,
4(

+
) ,

5(
�

)
8.

92
1.

30
1(
�

) ,
3(
�

) ,
5(
�

)
0.

67
0.

14
1(

+
) ,

2(
+

) ,
4(

+
)

6.
76

2.
29

1(
�

) ,
3(
�

) ,
5(
�

)
0.

59
0.

23
1(

+
) ,

2(
+

) ,
4(

+
)

fr
b3

0-
15

45
0

20
10

0
16

.6
6

1.
54

2(
+

) ,
3(

+
) ,

4(
+

) ,
5(

+
)

23
.8

3
5.

32
1(
�

) ,
4(

+
)

28
.7

5
3.

21
1(
�

) ,
4(

+
)

43
.1

8
6.

57
1(
�

) ,
2(
�

) ,
3(
�

) ,
5(
�

)
28

.1
8

3.
62

1(
�

) ,
4(

+
)

ou
td

eg
re

e
45

0
20

10
00

16
.6

6
1.

54
2(

+
) ,

4(
+

) ,
5(

+
)

23
.8

3
5.

32
1(
�

) ,
3(
�

)
16

.3
6

2.
46

2(
+

) ,
4(

+
) ,

5(
+

)
32

.5
4

6.
88

1(
�

) ,
3(
�

) ,
5(
�

)
19

.4
8

2.
32

1(
�

) ,
3(
�

) ,
4(

+
)

45
0

20
50

00
16

.6
6

1.
54

2(
+

) ,
3(
�

) ,
4(

+
) ,

5(
�

)
23

.8
3

5.
32

1(
�

) ,
3(
�

) ,
5(
�

)
9.

01
2.

11
1(

+
) ,

2(
+

) ,
4(

+
)

27
.6

9
6.

31
1(
�

) ,
3(
�

) ,
5(
�

)
12

.5
8

2.
56

1(
+

) ,
2(

+
) ,

4(
+

)

45
0

20
15

00
0

16
.6

6
1.

54
2(

+
) ,

3(
�

) ,
5(
�

)
23

.8
3

5.
32

1(
�

) ,
3(
�

) ,
5(
�

)
6.

14
1.

75
1(

+
) ,

2(
+

) ,
4(

+
)

22
.7

5
6.

16
3(
�

) ,
5(
�

)
9.

95
2.

14
1(

+
) ,

2(
+

) ,
4(

+
)

45
0

20
45

00
0

16
.6

6
1.

54
2(

+
) ,

3(
�

) ,
4(

+
) ,

5(
�

)
23

.8
3

5.
32

1(
�

) ,
3(
�

) ,
5(
�

)
4.

25
1.

87
1(

+
) ,

2(
+

) ,
4(

+
)

21
.7

1
3.

23
1(
�

) ,
3(
�

) ,
5(
�

)
7.

89
2.

03
1(

+
) ,

2(
+

) ,
4(

+
)

fr
b3

5-
17

59
5

0.
1

10
0

2.
28

0.
91

3(
+

) ,
4(

+
) ,

5(
+

)
6.

25
2.

61
3(

+
) ,

4(
+

) ,
5(

+
)

54
.3

5
21

.7
1

1(
�

) ,
2(
�

)
10

0.
95

45
.8

8
1(
�

) ,
2(
�

) ,
5(
�

)
31

.2
7

13
.5

7
1(
�

) ,
2(
�

) ,
4(

+
)

ra
nd

om
59

5
0.

1
10

00
2.

28
0.

91
2(

+
) ,

3(
+

) ,
4(

+
) ,

5(
+

)
6.

25
2.

61
1(
�

) ,
3(

+
) ,

4(
+

)
18

.5
8

8.
93

1(
�

) ,
2(
�

) ,
4(

+
)

43
.7

3
17

.7
2

1(
�

) ,
2(
�

) ,
3(
�

) ,
5(
�

)
9.

49
4.

08
1(
�

) ,
4(

+
)

59
5

0.
1

50
00

2.
28

0.
91

2(
+

) ,
3(

+
) ,

4(
+

)
6.

25
2.

61
1(
�

) ,
4(

+
) ,

5(
�

)
6.

32
2.

67
1(
�

) ,
4(

+
) ,

5(
�

)
22

.1
3

7.
55

1(
�

) ,
2(
�

) ,
3(
�

) ,
5(
�

)
3.

38
1.

04
2(

+
) ,

3(
+

) ,
4(

+
)

59
5

0.
1

15
00

0
2.

28
0.

91
2(

+
) ,

4(
+

)
6.

25
2.

61
1(
�

) ,
3(
�

) ,
5(
�

)
2.

36
0.

82
2(

+
) ,

4(
+

) ,
5(
�

)
13

.7
3

4.
21

1(
�

) ,
3(
�

) ,
5(
�

)
1.

40
0.

43
2(

+
) ,

3(
+

) ,
4(

+
)

59
5

0.
1

45
00

0
2.

28
0.

91
2(

+
) ,

3(
�

) ,
4(

+
) ,

5(
�

)
6.

25
2.

61
1(
�

) ,
3(
�

) ,
5(
�

)
0.

73
0.

25
1(

+
) ,

2(
+

) ,
4(

+
)

8.
53

2.
23

1(
�

) ,
3(
�

) ,
5(
�

)
0.

62
0.

25
1(

+
) ,

2(
+

) ,
4(

+
)

fr
b3

5-
17

59
5

20
10

0
16

.0
0

1.
08

2(
+

) ,
3(

+
) ,

4(
+

) ,
5(

+
)

35
.2

4
10

.6
9

1(
�

) ,
4(

+
)

38
.4

8
3.

71
1(
�

) ,
4(

+
)

56
.1

1
6.

40
1(
�

) ,
2(
�

) ,
3(
�

) ,
5(
�

)
37

.8
2

4.
50

1(
�

) ,
4(

+
)

ou
td

eg
re

e
59

5
20

10
00

16
.0

0
1.

08
2(

+
) ,

3(
+

) ,
4(

+
) ,

5(
+

)
35

.2
4

10
.6

9
1(
�

) ,
3(
�

)
21

.2
5

2.
73

1(
�

) ,
2(

+
) ,

4(
+

)
46

.2
3

7.
88

1(
�

) ,
3(
�

) ,
5(
�

)
25

.4
1

3.
45

1(
�

) ,
4(

+
)

59
5

20
50

00
16

.0
0

1.
08

2(
+

) ,
3(
�

) ,
4(

+
)

35
.2

4
10

.6
9

1(
�

) ,
3(
�

) ,
5(
�

)
9.

77
2.

42
1(

+
) ,

2(
+

) ,
4(

+
) ,

5(
+

)
36

.3
0

8.
20

1(
�

) ,
3(
�

) ,
5(
�

)
16

.0
7

3.
23

2(
+

) ,
3(
�

) ,
4(

+
)

59
5

20
15

00
0

16
.0

0
1.

08
2(

+
) ,

3(
�

) ,
4(

+
)

35
.2

4
10

.6
9

1(
�

) ,
3(
�

) ,
5(
�

)
4.

93
2.

40
1(

+
) ,

2(
+

) ,
4(

+
) ,

5(
+

)
31

.9
3

6.
15

1(
�

) ,
3(
�

) ,
5(
�

)
11

.9
6

2.
86

2(
+

) ,
3(
�

) ,
4(

+
)

59
5

20
45

00
0

16
.0

0
1.

08
2(

+
) ,

3(
�

) ,
4(

+
)

35
.2

4
10

.6
9

1(
�

) ,
3(
�

) ,
5(
�

)
2.

12
1.

86
1(

+
) ,

2(
+

) ,
4(

+
)

27
.0

0
4.

74
1(
�

) ,
3(
�

) ,
5(
�

)
8.

19
2.

51
2(

+
) ,

4(
+

)

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 125

evaluations. For G-SEMOwp, it is more challenging to get better than greedy al-
gorithms. It requires 15000 evaluations before each change to perform as good as
NSGA-II, and 45000 evaluations to outperform GGA. However, the situation is dif-
ferent when the cost function is calculated based on the outdegree. t = 5000 is
enough for G-SEMOwp and NSGA-II to outperform the greedy algorithms.

For the more complicated benchmark, frb35-17, almost the same results hold. How-
ever, it gets harder for our evolutionary algorithms to beat greedy algorithms. Un-
der the random cost, AdGGA outperforms NSGA-II, EAMC and G-SEMOwp, when
t = 100 and GGA remains unbeatable until t = 45000. GGA also gains better results
with outdegree cost. It outperforms other algorithms in t = 100 and 1000 and loses
only to G-SEMO afterward. These results are reasonable since the size of solutions
increases to 595 bits in the frb35-17 benchmark, which increases the expected time for
each bit to be flipped by an evolutionary algorithm. Consequently, our algorithms
need more time to find better solutions. However, the results show that NSGA-II
seems to have more difficulties in dealing with the bigger size than G-SEMOwp.

The other fact extracted from the results is that NSGA-II has a better performance
than G-SEMOwp when we have random cost. However, the results of G-SEMOwp

are better at outdegree cost. This pattern can be observed in both benchmarks. That
is the result of the population size and how each algorithm handles the replacement
of a new solution. While G-SEMOwp can store a valuable solution for each possible
cost, the NSGA-II concentrates on producing a well-distributed population. Con-
sider the cases that there are a lot of non-dominated solutions with cost values close
to the constraint. G-SEMOwp can keep them all, which is an advantage if the next
dynamic change does not affect the constraint significantly. However, because of
the distribution factor, NSGA-II minimises the number of solutions that are close to
each other. These situations rarely happen with random constraint, since, as dis-
cussed previously, it is similar to the cardinality constraint and the possible values
for the cost of the solutions are more evenly distributed.

8.5 Conclusions

Many real-world problems can be modelled as submodular functions and have prob-
lems with dynamically changing constraints. We have contributed to the area of
submodular optimisation with dynamic constraints. Key to the investigations have
been the adaptability of algorithms when constraints change. We have shown that an
adaptive version of the generalised greedy algorithm frequently considered in sub-
modular constrained optimisation is not able to maintain a f-approximation. Fur-
thermore, we have pointed out that the population-based G-SEMO algorithm is able
to cater for and recompute f-approximations for related constraints bounds in an ef-
ficient way. We challenged G-SEMO and greedy approaches against EAMC as a re-
cently introduced algorithm with polynomial expected running time, and NSGA-II

Chapter 8. Pareto Optimisation for Dynamic Subset Selection 126

as an advanced multi-objective algorithm in practice. Our experimental results con-
firm the advantage of G-SEMO and NSGA-II over the considered greedy approaches
on important real-world problems. Furthermore, they show that evolutionary algo-
rithms are able to significantly improve their performance over time when dealing
with dynamic changes.

127

Chapter 9

Conclusion

Bio-inspired strategies are general-purpose optimisation techniques that are inspired
by nature. These algorithms can find high-quality solutions for complex problems
without much knowledge about the search space. In this thesis, we contributed to
the theoretical and practical understanding of bio-inspired algorithms dealing with
complex problems, as well as problems with dynamically changing constraints.

In Part I of the thesis, we introduced the bio-inspired algorithms to be considered
in the subsequent chapters, followed by a description of theoretical tools designed
to analyse these algorithms (Chapter 2). Next, in Chapter 3, we explained combina-
torial optimisation and presented a detailed definition of well-known combinatorial
problems that we studied in this thesis. Evolutionary algorithms and other bio-
inspired algorithms have been widely applied to dynamic problems. In Chapter 4,
the final chapter of Part I, we provided an overview of major theoretical develop-
ments in the area of runtime analysis for these problems. We reviewed recent theo-
retical studies of evolutionary algorithms and ant colony optimisation for problems
where the objective functions or the constraints change over time.

Part II of the thesis was dedicated to the investigation of static combinatorial prob-
lems. In Chapter 5, we considered a single- and multi-objective version of the min-
imum spanning tree (MST) problem, as well as introducing a biased mutation. A
biased mutation puts more emphasis on the selection of low-ranking edges in terms
of low domination number. We presented example graphs in which the biased mu-
tation significantly sped up the expected runtime until (Pareto-)optimal solutions
were found. On the other hand, we demonstrated that bias can lead to exponen-
tial runtime if “heavy” edges are necessarily part of an optimal solution. However,
on general graphs in the single-objective setting, we showed that a combined muta-
tion operator, which decides for unbiased or biased edge selection in each step with
equal probability, exhibits a polynomial upper bound – as unbiased mutation – in
the worst case and benefits from bias if the circumstances are favourable.

Chapter 9. Conclusion 128

From a theoretical viewpoint, the literature extensively investigates the performance
of baseline evolutionary algorithms on linear problems, while the theoretical analy-
sis of non-linear problems is still far behind. In Chapter 6, variations of the packing
while travelling (PWT) problem – also known as the non-linear knapsack problem
– were studied in an attempt to analyse the performance of EAs to solve non-linear
problems from a theoretical perspective. We investigated PWT for two cities and n
items with correlated weights and profits, using single-objective and multi-objective
algorithms. Our results show that RLS_swap, which differs from the classical RLS
in its ability to swap two bits in one iteration, finds the optimal solution in O(n3)

expected time. We also studied an enhanced version of G-SEMO, which uses a
specific selection operator to deal with exponential population size, and proved
that it finds the Pareto front in the same asymptotic expected time. In the case of
uniform weights, (1 + 1) EA is able to find the optimal solution in expected time
O(n2 log (max{n, pmax})), where pmax is the largest profit of the given items. We
also performed an experimental analysis to complement our theoretical investiga-
tions and provide additional insights into the runtime behaviour of our algorithms
solving PWT.

In the Part III, we studied the performance of bio-inspired algorithms to solve dy-
namic problems. In Chapter 7, we studied single- and multi-objective baseline evo-
lutionary algorithms for the classical knapsack problem where the capacity of the
knapsack varies over time. We established different benchmark scenarios, where
the capacity changes every t iterations according to a uniform or normal distribu-
tion. Our experimental investigations analysed the behaviour of our algorithms in
terms of the magnitude of changes determined by the parameters of the chosen dis-
tribution, the frequency determined by t, and the class of knapsack instances under
consideration. Our results showed that the multi-objective approaches using a pop-
ulation that caters for dynamic changes have a clear advantage in many benchmark
scenarios when the frequency of changes is not too high. Furthermore, we demon-
strated that the distribution handling techniques in advanced algorithms such as
NSGA-II and SPEA2 do not necessarily result in better performance, and even pre-
vent these algorithms from finding good quality solutions in comparison with sim-
ple multi-objective approaches.

Finally, in Chapter 8, we considered the subset selection problem for function f with
a constraint bound B that changes over time. We pointed out that adaptive variants
of greedy approaches commonly used in the area of submodular optimisation are
not able to maintain their approximation quality in dynamic environments. Inves-
tigating the G-SEMO Pareto optimisation approach, we showed that this algorithm
efficiently computes a f = (a f /2)(1� 1

ea f)-approximation, where a f is the submod-
ularity ratio of f , for each possible constraint bound b B. Furthermore, we showed
that G-SEMO is able to adapt its set of solutions quickly in the case that B increases.
Our experimental investigations for the influence maximisation in social networks

Chapter 9. Conclusion 129

showed the advantage of G-SEMO over generalised greedy algorithms. We also
considered EAMC, a new evolutionary algorithm with polynomial expected time
guaranteed to maintain a f approximation ratio, and NSGA-II (an advanced multi-
objective optimisation algorithm), with the aim of demonstrating their challenges in
optimising the maximum coverage problem. Our empirical analysis showed that,
within the same number of evaluations, G-SEMO is able to outperform NSGA-II un-
der linear constraints, while EAMC performs significantly worse than all considered
algorithms in most cases.

In this thesis, we tried to provide more insight into the performance of bio-inspired
algorithms from both theoretical and practical points of views. While we contributed
to the understanding of the basic working principles of bio-inspired algorithms,
analysing their ability to solve complex problems remains highly open. In the case of
using knowledge-based mutation to solve MST problem, we still want to extend our
theories to general graphs and support them with practical results. Moreover, we
aim to extend our results for the PWT to more than two cities, with correlated items
and items with uniform weights. However, cases in which items are uncorrelated,
or are correlated separately in each city, might prove as hard to solve as the general
case. Furthermore, if we were to extend our use of bio-inspired algorithms to dy-
namic environments, we might find that uncertainties often change over time and
are therefore dynamic. It would be interesting to analyse the ability of evolutionary
algorithms to solve problems where uncertainties change over time. For future re-
search, it would also be interesting to examine environments that are both dynamic
and stochastic, as many real-world problems have both properties at the same time.

130

Bibliography

[AB02] Réka Albert and Albert-László Barabási. “Statistical mechanics of com-
plex networks”. In: Reviews of modern physics 74.1 (2002), p. 47.

[AD18] Denis Antipov and Benjamin Doerr. “Precise Runtime Analysis for Plateaus”.
In: Parallel Problem Solving from Nature - PPSN XV - 15th International
Conference, Coimbra, Portugal, September 8-12, 2018, Proceedings, Part II.
Ed. by Anne Auger et al. Vol. 11102. Lecture Notes in Computer Science.
Springer, 2018, pp. 117–128.

[AHN18] Maria Yaneli Ameca-Alducin, Maryam Hasani-Shoreh, and Frank Neu-
mann. “On the Use of Repair Methods in Differential Evolution for Dy-
namic Constrained Optimization”. In: Applications of Evolutionary Com-
putation, Proceedings. 2018, pp. 832–847.

[BBM12] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. “Topic-aware
social influence propagation models”. In: IEEE Conference on Data Min-
ing. IEEE Computer Society. 2012, pp. 81–90.

[BGN19] Jakob Bossek, Christian Grimme, and Frank Neumann. “On the ben-
efits of biased edge-exchange mutation for the multi-criteria spanning
tree problem”. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO 2019, Prague, Czech Republic, July 13-17, 2019. Ed. by
Anne Auger and Thomas Stützle. ACM, 2019, pp. 516–523.

[Bia+20] Chao Bian et al. “An Efficient Evolutionary Algorithm for Subset Se-
lection with General Cost Constraints”. In: The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, New York, NY, USA, February
7-12, 2020. AAAI Press, 2020, pp. 3267–3274.

[BMB13] Mohammad Reza Bonyadi, Zbigniew Michalewicz, and Luigi Barone.
“The travelling thief problem: The first step in the transition from theo-
retical problems to realistic problems”. In: Proceedings of the IEEE Congress
on Evolutionary Computation, CEC 2013, Cancun, Mexico, June 20-23, 2013.
IEEE, 2013, pp. 1037–1044.

[BÖ14] Adil Baykasoglu and Fehmi Burcin Özsoydan. “An improved firefly al-
gorithm for solving dynamic multidimensional knapsack problems”. In:
Expert Syst. Appl. 41.8 (2014), pp. 3712–3725.

Bibliography 131

[BÖ17] Adil Baykasoglu and Fehmi Burcin Özsoydan. “Evolutionary and population-
based methods versus constructive search strategies in dynamic combi-
natorial optimization”. In: Inf. Sci. 420 (2017), pp. 159–183.

[Bon+19] Mohammad Reza Bonyadi et al. “Evolutionary Computation for Mul-
ticomponent Problems: Opportunities and Future Directions”. In: Op-
timization in Industry: Present Practices and Future Scopes. Ed. by Shub-
habrata Datta and J. Paulo Davim. Cham: Springer International Pub-
lishing, 2019, pp. 13–30.

[Bos+19] Jakob Bossek et al. “Runtime analysis of randomized search heuristics
for dynamic graph coloring”. In: Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO 2019, Prague, Czech Republic, July 13-
17, 2019. Ed. by Anne Auger and Thomas Stützle. ACM, 2019, pp. 1443–
1451.

[Bro89] Andrei Z. Broder. “Generating Random Spanning Trees”. In: 30th An-
nual Symposium on Foundations of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October - 1 November 1989. IEEE Computer Soci-
ety, 1989, pp. 442–447.

[CC84] Michele Conforti and Gérard Cornuéjols. “Submodular set functions,
matroids and the greedy algorithm: Tight worst-case bounds and some
generalizations of the Rado-Edmonds theorem”. In: Discrete Applied Math-
ematics 7.3 (1984), pp. 251–274.

[CF09] Gregory W. Corder and Dale I. Foreman. Nonparametric Statistics for Non-
Statisticians: A Step-by-Step Approach. Wiley, 2009. ISBN: 047045461X.

[Cor+16] Dogan Corus et al. “A parameterised complexity analysis of bi-level op-
timisation with evolutionary algorithms”. In: Evolutionary computation
24.1 (2016), pp. 183–203.

[CWM11] Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz. Variants
of Evolutionary Algorithms for Real-World Applications. Springer Publish-
ing Company, Incorporated, 2011.

[DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel. “From black-box com-
plexity to designing new genetic algorithms”. In: Theor. Comput. Sci. 567
(2015), pp. 87–104.

[Deb+02] Kalyanmoy Deb et al. “A fast and elitist multiobjective genetic algo-
rithm: NSGA-II”. In: IEEE Trans. Evolutionary Computation 6.2 (2002),
pp. 182–197.

[Deb01] Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary Algo-
rithms. New York, NY, USA: John Wiley & Sons, Inc., 2001.

[DG13] Benjamin Doerr and Leslie Ann Goldberg. “Adaptive Drift Analysis”.
In: Algorithmica 65.1 (2013), pp. 224–250.

[DHK11] Benjamin Doerr, Edda Happ, and Christian Klein. “Tight Analysis of the
(1+1)-EA for the Single Source Shortest Path Problem”. In: Evolutionary
Computation 19.4 (2011), pp. 673–691.

Bibliography 132

[DHN06] Benjamin Doerr, Nils Hebbinghaus, and Frank Neumann. “Speeding Up
Evolutionary Algorithms Through Restricted Mutation Operators”. In:
Parallel Problem Solving from Nature - PPSN IX. Ed. by Thomas Philip
Runarsson et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 978–987.

[DHN07] Benjamin Doerr, Nils Hebbinghaus, and Frank Neumann. “Speeding Up
Evolutionary Algorithms Through Asymmetric Mutation Operators”.
In: Evolutionary Computation 15.4 (Dec. 2007), pp. 401–410.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. “On the analysis of
the (1+1) evolutionary algorithm”. In: Theor. Comput. Sci. 276.1-2 (2002),
pp. 51–81.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. “Multiplicative
drift analysis”. In: Algorithmica 64.4 (2012), pp. 673–697.

[DN11] Juan José Durillo and Antonio J. Nebro. “jMetal: A Java framework for
multi-objective optimization”. In: Advances in Engineering Software 42.10
(2011), pp. 760–771.

[DN20] Benjamin Doerr and Frank Neumann. Theory of Evolutionary Computa-
tion—Recent Developments in Discrete Optimization. 2020.

[Doe20] Benjamin Doerr. “Probabilistic Tools for the Analysis of Randomized
Optimization Heuristics”. In: Theory of Evolutionary Computation: Recent
Developments in Discrete Optimization. Ed. by Benjamin Doerr and Frank
Neumann. Cham: Springer International Publishing, 2020, pp. 1–87. ISBN:
978-3-030-29414-4.

[Dro02] S. Droste. “Analysis of the (1+1) EA for a dynamically changing ONEMAX-
variant”. In: Evolutionary Computation, 2002. CEC ’02. Proceedings of the
2002 Congress on. Vol. 1. 2002, pp. 55–60.

[DS04] Marco Dorigo and Thomas Stützle. Ant colony optimization. MIT Press,
2004.

[DW18] Carola Doerr and Markus Wagner. “Simple on-the-fly parameter selec-
tion mechanisms for two classical discrete black-box optimization bench-
mark problems”. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018. Ed. by Hernán
E. Aguirre and Keiki Takadama. ACM, 2018, pp. 943–950.

[ER59] P Erdős and A Rényi. “On random graphs I”. In: Publicationes Mathemat-
icae Debrecen 6 (1959), pp. 290–297.

[ES15] A. E. Eiben and James E. Smith. Introduction to Evolutionary Computing,
Second Edition. Natural Computing Series. Springer, 2015.

[FF95] Carlos M. Fonseca and Peter J. Fleming. “An Overview of Evolutionary
Algorithms in Multiobjective Optimization”. In: Evol. Comput. 3.1 (1995),
pp. 1–16.

Bibliography 133

[FQW18] Tobias Friedrich, Francesco Quinzan, and Markus Wagner. “Escaping
Large Deceptive Basins of Attraction with Heavy-tailed Mutation Oper-
ators”. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence. GECCO ’18. New York, NY, USA: ACM, 2018, pp. 293–300.

[Fri+10] Tobias Friedrich et al. “Approximating Covering Problems by Random-
ized Search Heuristics Using Multi-Objective Models”. In: Evolutionary
Computation 18.4 (2010), pp. 617–633.

[Fri+17] Tobias Friedrich et al. “Analysis of the (1+1) EA on Subclasses of Lin-
ear Functions under Uniform and Linear Constraints”. In: Proceedings
of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms,
FOGA 2017, Copenhagen, Denmark, January 12-15, 2017. Ed. by Christian
Igel, Dirk Sudholt, and Carsten Witt. ACM, 2017, pp. 45–54.

[Fri+18] Tobias Friedrich et al. “Heavy-Tailed Mutation Operators in Single-Objective
Combinatorial Optimization”. In: Parallel Problem Solving from Nature –
PPSN XV. Ed. by Anne Auger et al. Cham: Springer International Pub-
lishing, 2018, pp. 134–145.

[Gie03] Oliver Giel. “Expected runtimes of a simple multi-objective evolution-
ary algorithm”. In: The 2003 Congress on Evolutionary Computation, 2003.
CEC’03. Vol. 3. IEEE. 2003, pp. 1918–1925.

[GK16] Christian Gießen and Timo Kötzing. “Robustness of populations in stochas-
tic environments”. In: Algorithmica 75.3 (2016), pp. 462–489.

[HL12] Tad Hogg and Kristina Lerman. “Social Dynamics of Digg”. In: EPJ Data
Science 1.1 (2012), p. 5.

[HY01] Jun He and Xin Yao. “Drift analysis and average time complexity of evo-
lutionary algorithms”. In: Artificial intelligence 127.1 (2001), pp. 57–85.

[IB13] Rishabh K. Iyer and Jeff A. Bilmes. “Submodular Optimization with
Submodular Cover and Submodular Knapsack Constraints”. In: Advances
in Neural Information Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States. Ed. by Christopher
J. C. Burges et al. 2013, pp. 2436–2444.

[Jan13] Thomas Jansen. Analyzing Evolutionary Algorithms - The Computer Science
Perspective. Natural Computing Series. Springer, 2013.

[JOZ13] Thomas Jansen, Pietro Simone Oliveto, and Christine Zarges. “Approx-
imating vertex cover using edge-based representations”. In: Foundations
of Genetic Algorithms XII, FOGA ’13, Adelaide, SA, Australia, January 16-
20, 2013. Ed. by Frank Neumann and Kenneth A. De Jong. ACM, 2013,
pp. 87–96.

[JS10] Thomas Jansen and Dirk Sudholt. “Analysis of an Asymmetric Mutation
Operator”. In: Evolutionary Computation 18.1 (Mar. 2010), pp. 1–26.

[JZ14] Thomas Jansen and Christine Zarges. “Evolutionary algorithms and ar-
tificial immune systems on a bi-stable dynamic optimisation problem”.

Bibliography 134

In: Genetic and Evolutionary Computation Conference, GECCO ’14, Vancou-
ver, BC, Canada, July 12-16, 2014. Ed. by Dirk V. Arnold. ACM, 2014,
pp. 975–982.

[Kan87] Mikio Kano. “Maximum and k-th maximal spanning trees of a weighted
graph”. In: Combinatorica 7.2 (1987), pp. 205–214.

[KC01] J.D. Knowles and D.W. Corne. “A Comparison of Encodings and Algo-
rithms for Multiobjective Minimum Spanning Tree Problems”. In: Evo-
lutionary Computation 1 (2001), pp. 544–551.

[KE95] James Kennedy and Russell Eberhart. “Particle swarm optimization”.
In: Proceedings of International Conference on Neural Networks (ICNN’95),
Perth, WA, Australia, November 27 - December 1, 1995. IEEE, 1995, pp. 1942–
1948.

[KG05] Andreas Krause and Carlos Guestrin. A note on the budgeted maximiza-
tion of submodular functions. Carnegie Mellon University. Center for Au-
tomated Learning and Discovery, 2005.

[KKT15] David Kempe, Jon M. Kleinberg, and Éva Tardos. “Maximizing the Spread
of Influence through a Social Network”. In: Theory of Computing 11 (2015),
pp. 105–147.

[KLW15] Timo Kötzing, Andrei Lissovoi, and Carsten Witt. “(1+1) EA on Gen-
eralized Dynamic OneMax”. In: Proceedings of the 2015 ACM Conference
on Foundations of Genetic Algorithms XIII, Aberystwyth, United Kingdom,
January 17 - 20, 2015. Ed. by Jun He et al. ACM, 2015, pp. 40–51.

[KM12] Timo Kötzing and Hendrik Molter. “ACO Beats EA on a Dynamic Pseudo-
Boolean Function”. In: Parallel Problem Solving from Nature - PPSN XII -
12th International Conference, Taormina, Italy, September 1-5, 2012, Proceed-
ings, Part I. Ed. by Carlos A. Coello Coello et al. Vol. 7491. Lecture Notes
in Computer Science. Springer, 2012, pp. 113–122.

[KMN99] Samir Khuller, Anna Moss, and Joseph Naor. “The Budgeted Maximum
Coverage Problem”. In: Inf. Process. Lett. 70.1 (1999), pp. 39–45.

[KN13] Stefan Kratsch and Frank Neumann. “Fixed-Parameter Evolutionary Al-
gorithms and the Vertex Cover Problem”. In: Algorithmica 65.4 (2013),
pp. 754–771.

[KPP04] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems.
Springer, 2004. ISBN: 978-3-540-40286-2.

[Kru56] Joseph B. Kruskal. “On the Shortest Spanning Subtree of a Graph and
the Traveling Salesman Problem”. In: Proceedings of the American Mathe-
matical Society 7.1 (1956), pp. 48–50.

[Lau+02] Marco Laumanns et al. “Running Time Analysis of Multi-objective Evo-
lutionary Algorithms on a Simple Discrete Optimization Problem”. In:
Parallel Problem Solving from Nature - PPSN VII, 7th International Confer-
ence, Granada, Spain, September 7-11, 2002, Proceedings. Ed. by Juan Julián

Bibliography 135

Merelo Guervós et al. Vol. 2439. Lecture Notes in Computer Science.
Springer, 2002, pp. 44–53.

[LB10] Hui Lin and Jeff A. Bilmes. “Multi-document Summarization via Bud-
geted Maximization of Submodular Functions”. In: Human Language Tech-
nologies: Conference of the North American Chapter of the Association of Com-
putational Linguistics, Proceedings, June 2-4, 2010, Los Angeles, California,
USA. The Association for Computational Linguistics, 2010, pp. 912–920.

[Len20] Johannes Lengler. “Drift Analysis”. In: Theory of Evolutionary Computa-
tion: Recent Developments in Discrete Optimization. Ed. by Benjamin Do-
err and Frank Neumann. Cham: Springer International Publishing, 2020,
pp. 89–131. ISBN: 978-3-030-29414-4.

[LW13] Per Kristian Lehre and Carsten Witt. “General drift analysis with tail
bounds”. In: arXiv preprint arXiv:1307.2559 (2013).

[LW15] Andrei Lissovoi and Carsten Witt. “Runtime analysis of ant colony op-
timization on dynamic shortest path problems”. In: Theor. Comput. Sci.
561 (2015), pp. 73–85.

[LW16] Andrei Lissovoi and Carsten Witt. “MMAS Versus Population-Based EA
on a Family of Dynamic Fitness Functions”. In: Algorithmica 75.3 (2016),
pp. 554–576.

[LW17] Andrei Lissovoi and Carsten Witt. “A Runtime Analysis of Parallel Evo-
lutionary Algorithms in Dynamic Optimization”. In: Algorithmica 78.2
(2017), pp. 641–659.

[MA94] Zbigniew Michalewicz and Jaroslaw Arabas. “Genetic Algorithms for
the 0/1 Knapsack Problem”. In: Methodologies for Intelligent Systems, 8th
International Symposium, ISMIS ’94, Charlotte, North Carolina, USA, Oc-
tober 16-19, 1994, Proceedings. Ed. by Zbigniew W. Ras and Maria Ze-
mankova. Vol. 869. Lecture Notes in Computer Science. Springer, 1994,
pp. 134–143.

[MI95] Tadahiko Murata and Hisao Ishibuchi. “MOGA: multi-objective genetic
algorithms”. In: IEEE international conference on evolutionary computation.
Vol. 1. 1995, pp. 289–294.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Page
61. Cambridge University Press, 1995.

[MST15] Aleksander Madry, Damian Straszak, and Jakub Tarnawski. “Fast Gen-
eration of Random Spanning Trees and the Effective Resistance Metric”.
In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015. Ed.
by Piotr Indyk. SIAM, 2015, pp. 2019–2036.

[Müh92] Heinz Mühlenbein. “How Genetic Algorithms Really Work: Mutation
and Hillclimbing”. In: Parallel Problem Solving from Nature 2, PPSN-II,
Brussels, Belgium, September 28-30, 1992. Ed. by Reinhard Männer and
Bernard Manderick. Elsevier, 1992, pp. 15–26.

Bibliography 136

[NB03] Siegfried Nijssen and Thomas Bäck. “An analysis of the behavior of sim-
plified evolutionary algorithms on trap functions”. In: IEEE Trans. Evo-
lutionary Computation 7.1 (2003), pp. 11–22.

[Neu+18] Frank Neumann et al. “A Fully Polynomial Time Approximation Scheme
for Packing While Traveling”. In: Algorithmic Aspects of Cloud Computing
- 4th International Symposium, ALGOCLOUD 2018, Helsinki, Finland, Au-
gust 20-21, 2018, Revised Selected Papers. Ed. by Yann Disser and Vassilios
S. Verykios. Vol. 11409. Lecture Notes in Computer Science. Springer,
2018, pp. 59–72.

[NPR20] Frank Neumann, Mojgan Pourhassan, and Vahid Roostapour. “Analysis
of Evolutionary Algorithms in Dynamic and Stochastic Environments”.
In: Theory of Evolutionary Computation. Springer, 2020, pp. 323–357.

[NS18] Frank Neumann and Andrew M. Sutton. “Runtime Analysis of Evo-
lutionary Algorithms for the Knapsack Problem with Favorably Cor-
related Weights”. In: Parallel Problem Solving from Nature - PPSN XV -
15th International Conference, Coimbra, Portugal, September 8-12, 2018, Pro-
ceedings, Part II. Ed. by Anne Auger et al. Vol. 11102. Lecture Notes in
Computer Science. Springer, 2018, pp. 141–152.

[NW06] Frank Neumann and Ingo Wegener. “Minimum spanning trees made
easier via multi-objective optimization”. In: Natural Computing 5.3 (2006),
pp. 305–319.

[NW07] Frank Neumann and Ingo Wegener. “Randomized local search, evolu-
tionary algorithms, and the minimum spanning tree problem”. In: Theo-
retical Computer Science 378.1 (2007), pp. 32–40.

[NW10a] Frank Neumann and Carsten Witt. “Ant Colony Optimization and the
minimum spanning tree problem”. In: Theoretical Computer Science 411.25
(2010), pp. 2406–2413.

[NW10b] Frank Neumann and Carsten Witt. Bioinspired Computation in Combinato-
rial Optimization. Natural Computing Series. Springer, 2010.

[NW15] Frank Neumann and Carsten Witt. “On the Runtime of Randomized Lo-
cal Search and Simple Evolutionary Algorithms for Dynamic Makespan
Scheduling”. In: Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015. Ed. by Qiang Yang and Michael J. Wooldridge. AAAI Press,
2015, pp. 3742–3748.

[NW81] George L Nemhauser and Laurence A Wolsey. “Maximizing submod-
ular set functions: formulations and analysis of algorithms”. In: North-
Holland Mathematics Studies. Vol. 59. Elsevier, 1981, pp. 279–301.

[NY12] T.T. Nguyen and X. Yao. “Continuous Dynamic Constrained Optimiza-
tion: The Challenges”. In: IEEE Transactions on Evolutionary Computation
16.6 (2012), pp. 769–786. ISSN: 1089-778X. DOI: 10.1109/TEVC.2011.
2180533.

https://doi.org/10.1109/TEVC.2011.2180533
https://doi.org/10.1109/TEVC.2011.2180533

Bibliography 137

[NYB12] Trung Thanh Nguyen, Shengxiang Yang, and Jürgen Branke. “Evolu-
tionary dynamic optimization: A survey of the state of the art”. In: Swarm
and Evolutionary Computation 6 (2012), pp. 1–24.

[OHY09] Pietro Simone Oliveto, Jun He, and Xin Yao. “Analysis of the (1+1) -EA
for Finding Approximate Solutions to Vertex Cover Problems”. In: IEEE
Trans. Evolutionary Computation 13.5 (2009), pp. 1006–1029.

[PGN15] Mojgan Pourhassan, Wanru Gao, and Frank Neumann. “Maintaining 2-
Approximations for the Dynamic Vertex Cover Problem Using Evolu-
tionary Algorithms”. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference. 2015, pp. 903–910.

[PN15] Sergey Polyakovskiy and Frank Neumann. “Packing While Traveling:
Mixed Integer Programming for a Class of Nonlinear Knapsack Prob-
lems”. In: Integration of AI and OR Techniques in Constraint Programming
- 12th International Conference, CPAIOR 2015, Barcelona, Spain, May 18-
22, 2015, Proceedings. Ed. by Laurent Michel. Vol. 9075. Lecture Notes in
Computer Science. Springer, 2015, pp. 332–346.

[PN17] Sergey Polyakovskiy and Frank Neumann. “The Packing While Trav-
eling Problem”. In: European Journal of Operational Research 258.2 (2017),
pp. 424–439.

[PN18] Mojgan Pourhassan and Frank Neumann. “Theoretical Analysis of Local
Search and Simple Evolutionary Algorithms for the Generalized Travel-
ling Salesperson Problem”. In: Evolutionary computation (2018), pp. 1–34.

[Pol+14] Sergey Polyakovskiy et al. “A comprehensive benchmark set and heuris-
tics for the traveling thief problem”. In: Proceedings of Conference on Ge-
netic and Evolutionary Computation. ACM. 2014, pp. 477–484.

[Pop14] Elena Popovici. “Anne Auger and Benjamin Doerr (eds): Theory of ran-
domized search heuristics: foundations and recent developments - World
Scientific (2011), 359 pp”. In: Genetic Programming and Evolvable Machines
15.1 (2014), pp. 111–112.

[PRN19] Mojgan Pourhassan, Vahid Roostapour, and Frank Neumann. “Runtime
analysis of RLS and (1 + 1) EA for the dynamic weighted vertex cover
problem”. In: Theoretical Computer Science (2019). ISSN: 0304-3975.

[PS82] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity. Prentice-Hall, 1982. ISBN: 0-13-152462-
3.

[PSN16] Mojgan Pourhassan, Feng Shi, and Frank Neumann. “Parameterized
Analysis of Multi-objective Evolutionary Algorithms and the Weighted
Vertex Cover Problem”. In: Parallel Problem Solving from Nature - PPSN
XIV - 14th International Conference, Edinburgh, UK, September 17-21, 2016,
Proceedings. Ed. by Julia Handl et al. Vol. 9921. Lecture Notes in Com-
puter Science. Springer, 2016, pp. 729–739.

Bibliography 138

[QBF20] Chao Qian, Chao Bian, and Chao Feng. “Subset Selection by Pareto Op-
timization with Recombination”. In: The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, New York, NY, USA, February 7-12,
2020. AAAI Press, 2020, pp. 2408–2415.

[Qia+17] Chao Qian et al. “On Subset Selection with General Cost Constraints”.
In: International Joint Conference on Artificial Intelligence, IJCAI 2017. 2017,
pp. 2613–2619.

[RBN20] Vahid Roostapour, Jakob Bossek, and Frank Neumann. “Runtime Anal-
ysis of Evolutionary Algorithms with Biased Mutation for the Multi-
Objective Minimum Spanning Tree Problem”. In: arXiv preprint arXiv:2004.10424
(2020).

[RKD17] Pratyusha Rakshit, Amit Konar, and Swagatam Das. “Noisy evolution-
ary optimization algorithms - A comprehensive survey”. In: Swarm and
Evolutionary Computation 33 (2017), pp. 18–45.

[RKJ06] Günther R. Raidl, Gabriele Koller, and Bryant A. Julstrom. “Biased Mu-
tation Operators for Subgraph-Selection Problems”. In: IEEE Trans. Evo-
lutionary Computation 10.2 (2006), pp. 145–156.

[RNN18] Vahid Roostapour, Aneta Neumann, and Frank Neumann. “On the Per-
formance of Baseline Evolutionary Algorithms on the Dynamic Knap-
sack Problem”. In: Parallel Problem Solving from Nature - PPSN XV - 15th
International Conference, Coimbra, Portugal, September 8-12, 2018, Proceed-
ings, Part I. Vol. 11101. Lecture Notes in Computer Science. Springer,
2018, pp. 158–169.

[RNN20] Vahid Roostapour, Aneta Neumann, and Frank Neumann. “Evolution-
ary Multi-Objective Optimization for the Dynamic Knapsack Problem”.
In: arXiv preprint arXiv:2004.12574 (2020).

[Roo+19] Vahid Roostapour et al. “Pareto Optimization for Subset Selection with
Dynamic Cost Constraints”. In: The Thirty-Third AAAI Conference on Arti-
ficial Intelligence, AAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019. AAAI Press, 2019, pp. 2354–2361.

[Roo+20] Vahid Roostapour et al. “Pareto Optimization for Subset Selection with
Dynamic Cost Constraints. CoRR abs/1811.07806v2 (2020)”. In: arXiv
preprint 1811.07806v2 (2020).

[RPN19] Vahid Roostapour, Mojgan Pourhassan, and Frank Neumann. “Analy-
sis of baseline evolutionary algorithms for the packing while travelling
problem”. In: Proceedings of the 15th ACM/SIGEVO Conference on Founda-
tions of Genetic Algorithms, FOGA 2019, Potsdam, Germany, August 27-29,
2019. Ed. by Tobias Friedrich, Carola Doerr, and Dirk V. Arnold. ACM,
2019, pp. 124–132.

[RT89] Keith W. Ross and Danny H. K. Tsang. “The stochastic knapsack prob-
lem”. In: IEEE Trans. Communications 37.7 (1989), pp. 740–747.

Bibliography 139

[Sah75] Sartaj Sahni. “Approximate Algorithms for the 0/1 Knapsack Problem”.
In: J. ACM 22.1 (1975), pp. 115–124.

[Sch85] J. David Schaffer. “Multiple Objective Optimization with Vector Evalu-
ated Genetic Algorithms”. In: Proceedings of the 1st International Confer-
ence on Genetic Algorithms, Pittsburgh, PA, USA, July 1985. Ed. by John J.
Grefenstette. Lawrence Erlbaum Associates, 1985, pp. 93–100.

[SD94] Nidamarthi Srinivas and Kalyanmoy Deb. “Muiltiobjective optimiza-
tion using nondominated sorting in genetic algorithms”. In: Evolutionary
computation 2.3 (1994), pp. 221–248.

[SH00] Thomas Stützle and Holger H. Hoos. “MAX-MIN Ant System”. In: Fu-
ture Generation Comp. Syst. 16.8 (2000), pp. 889–914.

[Shi+19] Feng Shi et al. “Reoptimization Time Analysis of Evolutionary Algo-
rithms on Linear Functions Under Dynamic Uniform Constraints”. In:
Algorithmica 81.2 (2019), pp. 828–857.

[SK18] Kevin Sim and Paul Kaufmann. Applications of Evolutionary Computation:
21st International Conference, EvoApplications 2018, Parma, Italy, April 4-6,
2018, Proceedings. Vol. 10784. Springer, 2018.

[SN12] Andrew M. Sutton and Frank Neumann. “A Parameterized Runtime
Analysis of Simple Evolutionary Algorithms for Makespan Scheduling”.
In: Parallel Problem Solving from Nature - PPSN XII - 12th International Con-
ference, Taormina, Italy, September 1-5, 2012, Proceedings, Part I. Ed. by Car-
los A. Coello Coello et al. Vol. 7491. Lecture Notes in Computer Science.
Springer, 2012, pp. 52–61.

[ST12] Dirk Sudholt and Christian Thyssen. “Running time analysis of Ant
Colony Optimization for shortest path problems”. In: J. Discrete Algo-
rithms 10 (2012), pp. 165–180.

[STW04] Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. “The analysis of
evolutionary algorithms on sorting and shortest paths problems”. In: J.
Math. Model. Algorithms 3.4 (2004), pp. 349–366.

[UU09] Sima Uyar and H. Turgut Uyar. “A Critical Look at Dynamic Multi-
dimensional Knapsack Problem Generation”. In: Applications of Evolu-
tionary Computing, EvoWorkshops 2009: EvoCOMNET, EvoENVIRONMENT,
EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART,
EvoNUM, EvoSTOC, EvoTRANSLOG, Tübingen, Germany, April 15-17, 2009.
Proceedings. Ed. by Mario Giacobini et al. Vol. 5484. Lecture Notes in
Computer Science. Springer, 2009, pp. 762–767.

[Von10] Jan Vondrák. “Submodularity and curvature: The optimal algorithm”.
In: RIMS Kôkyûroku Bessatsu B23 (2010), pp. 253–266.

[Weg03] Ingo Wegener. “Methods for the analysis of evolutionary algorithms on
pseudo-Boolean functions”. In: Evolutionary optimization. Springer, 2003,
pp. 349–369.

Bibliography 140

[WPN16] Junhua Wu, Sergey Polyakovskiy, and Frank Neumann. “On the Impact
of the Renting Rate for the Unconstrained Nonlinear Knapsack Prob-
lem”. In: Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference, Denver, CO, USA, July 20 - 24, 2016. Ed. by Tobias Friedrich,
Frank Neumann, and Andrew M. Sutton. ACM, 2016, pp. 413–419.

[Xu+07] Ke Xu et al. “Random constraint satisfaction: Easy generation of hard
(satisfiable) instances”. In: Artif. Intell. 171.8-9 (2007), pp. 514–534.

[Yan15] Shengxiang Yang. “Evolutionary Computation for Dynamic Optimiza-
tion Problems”. In: Genetic and Evolutionary Computation Conference, GECCO
2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings. Ed.
by Sara Silva and Anna Isabel Esparcia-Alcázar. ACM, 2015, pp. 629–
649.

[ZG99] G Zhou and M Gen. “Genetic Algorithm Approach on Multi-Criteria
Minimum Spanning Tree Problem”. In: European Journal of Operational
Research 114 (1999), pp. 141–152.

[ZH07] Yuren Zhou and Jun He. “A Runtime Analysis of Evolutionary Algo-
rithms for Constrained Optimization Problems”. In: IEEE Trans. Evolu-
tionary Computation 11.5 (2007), pp. 608–619.

[ZLT01] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. “SPEA2: Improving
the strength Pareto evolutionary algorithm”. In: TIK-report 103 (2001).

[ZT98] Eckart Zitzler and Lothar Thiele. “An evolutionary algorithm for multi-
objective optimization: The strength pareto approach”. In: TIK-report 43
(1998).

[ZV16] Haifeng Zhang and Yevgeniy Vorobeychik. “Submodular Optimization
with Routing Constraints”. In: Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, AAAI 2016. AAAI Press, 2016, pp. 819–826.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Contibutions and Background
	Thesis Organisation

	I Basics
	Bio-Inspired Computing and Analytical Methods
	Introduction
	Local Search
	Randomised Local Search

	Evolutionary Computation
	Solution Representation
	Parent Selection
	Crossover
	Mutation
	Survivor Selection
	(1+1) EA
	Multi-Objective Evolutionary Algorithms
	G-SEMO
	NSGA-II and SPEA2

	Analytical Methods
	Deviation Bounds
	Fitness Based Partitions
	Drift Analysis
	Conclusion

	Combinatorial Optimisation
	Introduction
	Linear Pseudo-Boolean Functions
	OneMax Problem

	Knapsack Problem
	Packing While Travelling
	Minimum Spanning Tree Problem
	Vertex Cover Problem
	Makespan Scheduling Problem
	Subset Selection and Submodular Functions
	Conclusion

	A Survey on Evolutionary Algorithms in Dynamic Environments
	Introduction
	Analysis of Evolutionary Algorithms on Dynamic Problems
	OneMax Under Dynamic Uniform Constraints
	Linear Pseudo-Boolean Functions Under Dynamic Uniform Constraints
	Dynamic Vertex Cover Problem
	Dynamic Makespan Scheduling
	The MAZE Problem

	Ant Colony Optimisation
	Dynamic Problems

	Conclusions

	II Static Combinatorial Optimisation Problems
	Evolutionary Algorithms with Biased Mutation for the Minimum Spanning Tree Problem
	Introduction
	Preliminaries
	Algorithms

	Single-Objective Problem
	Multi-Objective Problem
	Experimental Approximation
	Theoretical Analysis

	Conclusion

	Baseline Evolutionary Algorithms for the Packing While Travelling Problem
	Introduction
	Preliminaries
	Problem Definition
	Algorithms

	Theoretical Analysis
	Correlated Weights and Profits
	RLS_swap
	G-SEMOe

	Uniform Weights

	Experiments
	Benchmarking and Experimental Setting
	Analysis

	Conclusion

	III Dynamic Combinatorial Optimisation Problems
	Evolutionary Multi-Objective Optimisation for the Dynamic Knapsack Problem
	Introduction
	The Dynamic Knapsack Problem
	The Dynamic Constraint
	Benchmark and Experimental Setting

	Baseline Evolutionary Algorithms
	Algorithms
	Experimental Results
	Dynamic Uniform Constraint
	Dynamic Linear Constraint

	NSGA-II and SPEA2
	New formulation for Dynamic KP
	Additional Elitism
	Experimental Results
	Analysis

	Conclusion

	Pareto Optimisation for Dynamic Subset Selection
	Introduction
	Problem Formulation
	Theoretical Analysis
	Algorithms
	Adaptive Generalised Greedy Algorithm
	Pareto Optimisation

	Experimental Investigations
	Experimental Setting
	The Influence Maximisation Problem
	Empirical Analysis

	EAMC and NSGA-II with elitism
	The Maximum Coverage Problem
	Empirical Analysis

	Conclusions

	Conclusion
	Bibliography

