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Abstract

Hydraulic simulation models have been used to simulate the steady-state of a water
distribution system (WDS) for serval decades. These models have been used in WDS
simulation toolkits and have played a critical role in the design, operation, and management
of WDSs in industry and research. In recent years, a number of graph theory based
WDS solution methods have been developed. These methods have explored the structural
properties (both matrix and graph) of the problem to improve the speed and reliability of
WDS simulations. One question that naturally arises is which method or combination of
methods should be applied?

In this thesis, a WDS simulation testbed, called WDSLib, has been developed as a
tool that can be used to answer the above question. WDSLib is an extensible simulation
toolkit for the steady-state analysis of a WDS. It has been created using modularised
object-oriented design and implemented in C++ programming language. WDSLib can
be used (1) to implement, test, and compare different solution methods, (2) to focus the
research on the most time-consuming parts of a solution method, (3) to guide the choice
of solution method when multiple simulation runs are used (such as occurs in a genetic
algorithm run).

WDSLib has been used to investigate the performance of four solution methods, namely
the global gradient algorithm (GGA), the reformulated co-tree flows method, the GGA
with the forest-core partitioning algorithm (FCPA), and the RCTM with the FCPA, on eight
case study benchmark networks with between 934 and 19647 pipes and between 848 and
17971 nodes. The results can be used to inform the choice of the solution method for a
given combination of the network features under different design settings. This work also
demonstrates how to (1) use the WDSLib to implement, test, and benchmark the existing
solution methods and (2) use the results to determine which method or combination of
methods to used under a setting of interest.

A new graph theory algorithm, called the bridge-block partitioning algorithm (BBPA),
has been proposed which further partitions the WDS network in a number of bridge
components and a number of block components. The BBPA is also implemented in the
WDSLib in order to ensure a fair comparison with the existing methods. The BBPA
is a pre-processing and post-processing method, the use of which provides significant
advantages over the current methods in terms of both the computational speed and the
reliability of the solution. This work also demonstrates how to (1) use the WDSLib to
implement, test, and benchmark the new solution method and (2) use the WDSLib to
demonstrate the efficiency of new method without having to reengineer the content of
shared WDSLib functions and data representations.
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Chapter 1

Introduction and Publications Overview

1.1 Introduction
Water distribution systems (WDSs) are essential components of every city and town to
satisfy the water consumption requirements of the population, of agriculture and for
industry. The expansion of a WDS system will be necessary when the size of a city expands.
As a result, the cost, especially the capital cost, may be high.

A number of different techniques in terms of minimising the cost of the designed water
distribution systems have been studied previously, including traditional methods, such as
linear programming and non-linear programming (Alperovits and Shamir 1977; Quindry
et al. 1981), and evolutionary algorithms (EAs), such as genetic algorithms (Murphy
et al. 1993; Simpson et al. 1994; Dandy et al. 1996; Savic and Walters 1997), simulated
annealing (Loganathan et al. 1995; Cunha and Sousa 1999), tabu search (Lippai et al. 1999).
harmony search (Geem et al. 2002; Geem 2006), the shuffled frog leaping algorithm (Eusuff
and Lansey 2003), particle swarm optimisation (Suribabu and Neelakantan 2006; Montalvo
et al. 2008), ant colony optimisation (Maier et al. 2003; Zecchin et al. 2006, 2007;
Ostfeld and Tubaltzev 2008), memetic algorithm (Baños et al. 2007) and differential
evolution (Suribabu 2010; Vasan and Simonovic 2010; Zheng et al. 2012). The main
advantage of using EAs over the traditional methods is that EAs are able to deal with the
nonlinear, higher dimensional and discrete nature of the WDS design problems. It has
been demonstrated by the existing research that it is promising to use of EAs to find an
optimal or near optimal WDS design. One drawback of using EAs is that they can be
time-consuming. This is because designing a WDS using an EA always requires a large
number of evaluations (usually hundreds of thousands). A component that consumes a
substantial amount of time in an EA run for the optimisation of a WDS is the hydraulic
simulation .

The steady-state demand-driven hydraulic simulation of a water distribution system has
been a research topic since 1936 with the first manual method, the loop flow corrections
method (Cross 1936), approached the problem by using successive approximations. Since
then, many attempts have been made to improve the accuracy and the efficiency of the
hydraulic simulation component. These attempts to improve the WDS hydraulic simulation
model have became increasingly important when a large number of network simulations is
required especially when considering the use of (1) evolutionary algorithms to perform
single-objective and multi-objective optimisation of WDS network designs, and (2) real-
time network monitoring and calibration under the supervisory control and data acquisition
(SCADA) operational setting.

1
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In a hydraulic simulation, there are two sets of primary equations that govern the
underlying relationships of aWDS under steady-state conditions: a set of mass conservation
or continuity equations and a set of energy conservation equations. Some assumptions
are made to simplify the governing equations of a hydraulic simulation including: (1) that
the velocity heads are negligible when compared to the friction head losses, (2) that the
minor head losses at the pipe junctions and fittings are much smaller than the friction head
losses, (3) water is incompressible, (4) the demands are considered to occur at a particular
time instance and are concentrated at the nodes of a network, and (5) the demands are
independent of nodal pressure. With the above assumptions, the two governing equations
mentioned above can be described as: (1) the mass conservation equations: the total inflow
must equal to the total outflow at any node; (2) the energy conservation equations: the head
difference must be equal to the friction head loss for any pipe.

These two sets of governing equations can be formulated as a large and sparse non-linear
saddle point problem (Benzi et al. 2005). There is a number of well-known iteration
methods for solving this non-linear saddle point problem. These include: range space
methods (Todini and Pilati 1988), null space methods (Rahal 1995; Elhay et al. 2014), and
loop-based methods (Epp and Fowler 1970; Nielsen 1989). Moreover, the use of graph
theory has became increasingly popular in developing solution methods to improve both
the efficiency and the reliability of WDS solution process. The main reason underpinning
the philosophy of using graph theory with hydraulic simulation is the invariant nature of the
network topology. This fixed topology can often be exploited as a pre-and-post-processing
step to speed-up the computations.
Range Space Methods: The global gradient algorithm (GGA) (Todini and Pilati 1988),
a range space method, employed block elimination to reduce the size of the key matrix.
Although graph theory is not used when deriving GGA solution method, the node-arc
incidence matrix, which was first used in Todini and Pilati (1988) to describe the network
topology, provides a portal into using graph theory to simplify the solution process of a
WDS network. Simpson et al. (2012) developed the concept of separating the forest and
core components while Deuerlein (2008) introduced the forest-core partitioning algorithm
(FCPA). The forest component is separated out from the core by sweeping the node-arc
incidence matrix. After the forest component is separated out, a standard GGA is then
applied to the core component of the network. The main advantage of the FCPA is to
separate the forest, which is linear component of the system of equations, from the core,
which is the nonlinear component of the system of equations. This process speeds up the
demand-dependent model (DDM) solution process when a network has a significant forest
portion. Later, the graph matrix partitioning algorithm (GMPA) (Deuerlein et al. 2015)
was proposed. The GMPA exploited the linear relationships between flows of the internal
trees within the core and the flows of the corresponding super-links after the forest of the
network had been removed.
Loop-Based Methods: The Hardy Cross method (Cross 1936), a loop based method,
is the oldest method. In the Hardy Cross method, the system of equations is solved by
successive approximation, in which a set of flows that satisfies continuity is successively
corrected loop by loop until the predefined stopping test has been met. In another paper,
Epp and Fowler (1970) developed a programmable version of the Hardy Cross method.
However, the loop-based method is not widely used because (1) it required the identification
of the loops, (2) it required the use of a pseudo-source if the network has more than one
source, and (3) it required the determination a set of initial flows that satisfies continuity.
Deuerlein (2008) proposed a decomposition model for WDS graph, in which the network
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is first partitioned into forest component and core component. After separating out the
forest component, the core component can be further partitioned into blocks and bridges.
The remaining nonlinear component is then solved by a loop-based method. Later, Creaco
and Franchini (2013) used the concept of the minimum cycle basis to achieve the sparsest
key matrix for loop formulation. The main disadvantage of their method is that the process
to identify the minimum cycle basis is time consuming. More recently, Alvarruiz et al.
(2015) presented two methods to identify the minimum cycle basis that are significantly
less time-consuming.
Null SpaceMethods: The null spacemethod uses a spanning tree and a co-tree combination
to reduce the effort in identifying loops. The null space method, in the context of hydraulic
simulation, is a special case of the loop-based method. For example, in most cases, the
minimum cycle basis achieved in Creaco and Franchini (2013) and Alvarruiz et al. (2015)
cannot be achieved in the null space method. The co-tree flows method (CTM) (Rahal
1995) is the first null space method, which partitions the network into a spanning tree and
a co-tree. The CTM has the following disadvantages: (1) it uses a pseudo-source if the
network has more than one source, (2) it requires that a set of initial flows be found that
satisfies continuity. Later, the reformulated co-tree flows method (RCTM) was introduced
by Elhay et al. (2014) to address the start-up requirements of the loop-based method and
the CTM by incorporating the Schilders’ Factorisation (Schilders 2009). In another paper,
Abraham and Stoianov (2015) proposed a partial update method for null space method.
Savings in computation time, compared with the RCTM, are achieved by reducing the
calculations of the head loss components and matrix multiplications by only calculating
them when the stopping test for the corresponding pipe flows has not been met.

Despite the intensive research that has been undertaken in the field, these methods are
not widely adopted in the industry because: (1) the relative performance of different graph
theory based algorithm depends on the topology of the target network and it is difficult to
evaluate the impact of these topology factors by only examining the incidence matrix that
describes the pipe network connectivity and (2) a simulation platform is not available to
efficiently implement these algorithms so that a user is not able to easily benchmark the
performance of different solution methods on the network of interest.

1.2 Research Aims
This research has been carried out in order to address the aforementioned limitations and
to achieve a broader acceptance of the application of graph theory in the field of hydraulics,
the aims of which can be summarised as follows:

Aim #1: To develop an extensible, robust, and efficient testbed for WDS solution
methods EPANET2 (Rossman 2000) is one of the most widely used WDS simulation
packages. EPANET2 implemented the global gradient algorithm (Todini and Pilati 1988)
to provide a steady-state demand-driven solution of a WDS. However, it has been pointed
out by Guidolin et al. (2010) that the EPANET2 implementation is not explicitly designed
to be easily understood or to easily accommodate new solution methods. As a result,
the researchers who have focused on the hydraulic solution methods have used different
platforms (for example Matlab and C++) to compare the performance of methods. Cross-
platform comparisons favour compiled languages, for example C++, over interpreted
languages, for example Matlab. This thesis advances the field by developing a simulation
platform, called WDSLib, for the testing and the evaluation of existing and new WDS
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solution methods. Moreover, a number of graph theory based WDS solution methods have
been efficiently implemented to provide a fast simulation platform for both once-off and
multi-run simulation settings.

Aim #2: To provide insight in the choice of solution methods for given combinations
of network features and given design settings It is often difficult, if not impossible, to
determine a priori what method or combination of methods to use for a given network
topology. The simulation platform developed inAim #1 is used to benchmark the hydraulic
solution of a number of case study water distribution networks with a variety of topology
features. The correlations between these topology features and the relative performance of
the methods of interest are studied.

Aim #3: To develop a new graph theory based algorithm to further partition the
WDS A new algorithm that can be used to further partition the network is proposed. This
algorithm is implemented in the simulation platform developed in Aim #1 and a detailed
case study is carried out exploring the algorithm’s efficiency and its reliability.

1.3 Publications
This thesis is comprised of three publications. Their contribution to the body of knowledge
is aligned with the research aims in Section 1.2. This section gives a brief description for
each publication and its contribution.

Chapter 3 presents the development of an extensible simulation platform, WDSLib,
for the demand-driven steady-state analysis of a WDS. WDSLib has been created using a
modularised object-oriented design and implemented in the C++ programming language,
and has been validated against a reference MATLAB implementation. Two solution
methods, namely the global gradient algorithm (GGA) and the reformulated co-tree
flows method (RCTM), and a pre-processing and post-processing method, the forest-core
partitioning algorithm (FCPA), are currently implemented in WDSLib.

Chapter 4 presents a thorough benchmark study to compare the performance of GGA,
GGA with FCPA, RCTM, and RCTM with FCPA using WDSLib developed in the first
publication. The results of this study will help inform the choice of solution methods for
given combinations of network features and given design settings.

Chapter 5 proposes a bridge-block partitioning algorithm (BBPA) that further partitions
the network into bridges, blocks and cut-vertices. It has been shown that the use of
the BBPA is not only able to significantly reduce the computation time of the once-off
simulation and the multi-run simulation, but also able to improve the reliability of the
solution.

1.3.1 Contributions to the development of a WDS Simulation
Platform for WDS Simulation and Optimisation

A number of contributions have been made in developing a framework for efficiently
incorporating graph theory in a WDS simulation model that can be used for simulation,
optimisation, and management of a WDS network. These contributions are presented while
describing the workflows involved in different graph theory based WDS solution methods.
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Fig. 1.1. Traditional water distribution system simulation toolkit structures

Fig. 1.1 shows the high level workflow that is used in existingWDS simulation platforms.
It is obvious that this workflow in traditional WDS simulation toolkits is straightforward:
first, the network information is parsed from an EPANET input file (for example, ENopen),
second, the network is solved by using the GGA (for example, ENsolveH), and finally the
solution of the network is outputted.

In contrast, WDSLib, that was developed as part of this research, has incorporated
two WDS solution methods, namely the global gradient algorithm and the reformulated
co-tree flows methods, and two pre-processing and post-processing methods, namely
forest-core partitioning algorithm and bridge-block partitioning algorithm. Each of the
two solution methods can be used with either, both, or neither of the two pre-processing
and post-precessing methods. The high level flowchart for each combination is shown in
Fig. 1.2. The functions used for different combinations of solution methods are categorised
into five different level of repetitions: once before every multiple simulation (L1a), once
before every iterative phase (L2a), once every iterative phase (L3), once after every iterative
phase (L2b), and once after every multiple simulation (L1b). The level of each function
is determined by the number of times it should be run. This categorisation of the WDS
solution methods is discussed in more detail in Chapter 3. Publication 1 describes the
WDSLib, a WDS simulation test bed. WDSLib allows users to (i) choose from, or modify,
different approaches and implementations of different WDS model analyses, and (ii) extend
the toolkit to include new developments. WDSLib uses a pluggable architecture where
solution methods, and their accompanying pre-processing and post-processing code are
easily substituted, studied, and benchmarked. WDSLib is later used as a benchmarking
tool in Publications 2 and 3.

1.3.2 Contributions to WDS Solution Methods
Publication 2 presents a benchmarking study on two existing WDS solution methods, the
GGA and the RCTM, with or without the FCPA (a pre- and post-processing method). In this
research, the aim is to address the problem of which solution method or methods to apply.
Previous publications have performed case studies comparing the performance of their
respective methods against that of the GGA. However, these comparisons have often been
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Fig. 1.2. New WDSLib water distribution system simulation toolkit structure

done using different implementation languages, and different levels of code optimisation –
which makes a fair cross-comparison of methods difficult. This research here presents a
thorough benchmark study to compare the performance of GGA, GGA-with-FCPA, RCTM,
and RCTM-with-FCPA for a range of case study networks using a fast C++ implementation.

Publication 3 proposes a new graph theory algorithm, the bridge-block partitioning
algorithm (BBPA), to further partition a WDS network into bridges and blocks. A bridge
element can be solved using a linear solver, similar to a forest element in the FCPA
and each block can be solved separately as a smaller non-linear system. The BBPA is
a pre-and-post-processing method that is able to (1) reduce the computation time for a
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once-off simulation setting, a multi-run simulation setting and an operational simulation
setting; (2) improve the numerical reliability of the solution; and (3) allow the solution of
each block to be found in parallel.

This thesis is structured as follows. Chapter 2 gives a detailed review of existing
solution methods that can be used to solve the steady-state demand-driven flows and heads
in a WDS. Chapter 3 presents the WDSLib software package. A benchmark study on four
WDS solution methods is carried out in Chapter 4. Chapter 5 describes the bridge-block
partitioning algorithm. Finally, Chapter 6 offers some conclusions and recommendations
for future study.
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Chapter 2

Review of the Existing Water Distribution
System Solution Methods

This chapter reviews the fundamental aspects of the hydraulic analysis of a steady-state
demand-driven water distribution system. The system of equations for a WDS is first
described in Section 2.1. Section 2.2 describes some of the recent applications of graph
theory concepts in the solution of the steady-state problem for a water distribution system.
Then, in Section 2.3, the solution methods that are used to simulate the steady-state of a
WDS are reviewed.

2.1 WDS Model equations
This thesis considers a demand-driven water distribution system with np pipes, nj unknown-
head nodes and nf fixed-head nodes. The j-th pipe of the network can be characterised
by its diameter dj , length lj , resistance factor rj . The i-th node of the network can be
characterised by its nodal demand di, and the elevation head zi.

Let q = (q1, q2, ....qnp )T denote the vector of unknown flows, h = (h1, h2, ....hnj )T

denote the vector of unknown heads, r = (r1, r2, ....rnp )T denote the vector of pipe
resistance factors, d = (d1, d2, .....dnj )T denote the vector of nodal demands, el =
(el1 , el2 ....elnr

)T denote the vector of fixed head elevations.
The head loss exponent n is assumed to be dependent only on the head loss model:

n = 2 for the Darcy-Weisbach head loss model and n = 1.852 for Hazen-Williams head
loss model. The head loss within the pipe j, which connects the node i and the node
k, is modelled by hi − hk = rjqj |qj |n−1. Denote by G(q) ∈ Rnp×np , a diagonal square
matrix with elements [G]jj = rj |qj |n−1 for j = 1, 2, ....np. Denote by F (q) ∈ Rnp×np ,
a diagonal square matrix where the j-th element on its diagonal [F ]jj = ∂

∂qj
[G]jjqj .

The unknown-head node-arc incidence matrix A1 is full rank, where [A1]ij is used to
represent the relationship between pipe i and node j: [A1]ij = −1 if pipe i enters node j,
[A1]ij = 1 if pipe i leaves node j, and [A1]ij = 0 if pipe i is not connected to node j. The
matrixA2 is the fixed-head node-arc incidence matrix, where [A2]ij is used to represent
the relationship between pipe i and fixed head node j: [A2]ij = −1 if pipe i enters fixed
head node j, [A2]ij = 1 if pipe i leaves fixed head node j, and [A2]ij = 0 if pipe i is not
connected to fixed head node j. The steady-state flows and heads in the WDS system
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are modeled by the demand-driven model (DDM) continuity equations Eq. (2.1) and the
energy conservation equations Eq. (2.2):

−A1
Tq − d = O (2.1)

G(q)q −A1h−A2el = O, (2.2)

which can be expressed as
(
G(q) −A1
−A1

T O

)(
q
h

)
−
(
A2el
d

)
= O, (2.3)

where its Jacobian matrix is

J =

(
F (q) −A1
−A1

T O

)
. (2.4)

and it is sometimes referred to as a nonlinear saddle point problem (Benzi et al. 2005).
This non-linear system is normally solved by the Newton method, in which q(m+1) and

h(m+1) are repeatedly computed from q(m) and h(m) by
(
F (m) (qm) −A1
−A1

T O

)(
q(m+1) − q(m)

h(m+1) − h(m)

)
= −

(
G(m)q(m) −A1h

(m) −A2el
−A1

Tq(m) − d,

)
(2.5)

until the relative differences ||q
(m+1)−q (m) ||∞
||q (m+1) ||∞ and ||h

(m+1)−h(m) ||∞
||h(m+1) ||∞

are sufficiently small.
The most widely used WDS simulation method in current use is the Global Gradient

Algorithm (GGA) (Todini and Pilati 1988), which solves the non-linear system of equations,
Eq. (2.5), representing the WDS. The GGA and its implementations exhibit excellent
convergence characteristics for a wide range of starting values and a wide variety of WDS
problems. However, some networks have structural properties which can be exploited to
further improve the efficiency of the solution process. In the next section, some of the
graph theory concepts that are used in WDS analysis are described.

2.2 Graph Theory Concepts
Associated with a WDS is a graph G=(V , E), where the elements of V are the nodes
(vertices) of the graph G and elements of E are the pipes (links) of the graph G. The first
description of the WDS graph was introduced by Todini and Pilati (1988), in which the
network graph is described by a directed node-arc incidence matrix. This directed node-arc
incidence matrix is divided into an unknown-head node-arc incidence matrix,A1, and a
fixed-head node-arc incidence matrix,A2.

Forest A tree is a graph in which any two vertices are connected by exactly one edge.
Most WDSs have trees, the collections of which are called forests. By dividing a WDS
graph into its linear forest component, Gf =

(
Vf , Ef

)
, and non-linear core component,

Gc = (Vc, Ec), the flows in the forest pipes can be computed a priori and the heads in the
forest nodes can be computed a posteriori by a linear process. Hence, the dimension of the
key matrices in the solution process can be significantly reduced when the forest is a large
part of the network.
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Spanning Tree A spanning tree is an acyclic subgraph which traverses every node in a
graph, such that the addition of any co-tree element creates a loop. An acyclic graph is a
graph having no graph cycles. A WDS, with or without a forest, can be partitioned into
two subgraphs: a spanning tree component, Gst = (Vst, Est), and a set of co-tree edges,
Ect, so that Est ∪ Ect = Ec, Est ∩ Ect = ∅. This relationship can sometimes be used to
further exploit the block structure of the Jacobian matrix to produce, in realistic WDSs, an
even smaller key matrix. This is achieved by dealing separately with the spanning tree and
the co-tree in the Newton method linearisation.

Loop A loop, know as a simple cycle in graph theory, is a path of edges and vertices
wherein a vertex is reachable from itself with no repetitions of vertices and edges. Two
loops, C1 and C2, can be used to form another loop by using the symmetric difference of
two sets ((C1 ∪ C2) − (C1 ∩ C2)). The set of all loops is called the cycle space. Consider
a connected graph G=(V ,E) with a spanning tree Gst ∈ G and the complementary co-tree
edges Ect . For every co-tree edge e ∈ Ect there is a unique cycle Ce in Gst + e; these
cycles Ce are the fundamental cycles of G with respect to the spanning tree Gst.

If T is a spanning tree or spanning forest of a given graph G, and e is an edge that does
not belong to T , then the fundamental cycle Ce defined by e is the simple cycle consisting
of e together with the path in T connecting the endpoints of e. There are exactly np−nj + c
fundamental cycles, one for each edge that does not belong to T . Each of them is linearly
independent from the remaining cycles, because they include an edge e that is not present
in any other fundamental cycle. Therefore, the fundamental cycles form a cycle basis for
the cycle space. A cycle basis of a graph is a minimal set of simple cycles that allows every
cycle in the cycle space to be expressed as a symmetric difference of basis cycles.

Minimum cycle basis The cycles that can be made by a spanning tree and the
corresponding co-tree is a subset of the cycle space. In cycle-based methods, it is often
preferable to use a shortest cycle basis. The Shortest Maximal Cycle Basis (SMCB) is
a cycle basis B of a given graph G with the property that the length of the longest cycle
included in B is the smallest among all bases of G. It is possible to minimise the number of
non-zeros in the key matrix of loop-based methods by using a shortest cycle basis.

2.3 Solution Methods
We consider three types of hydraulic solution methods: (1) range space methods, (2)
loop-based methods and (3) null space methods. These three types of solution methods
and the applications of graph theory in each of the three categories are discussed in the
following sections.

2.3.1 Range Space Methods
The global gradient algorithm (GGA), a range space method, was first proposed by Todini
and Pilati (1988). They applied block elimination to Eq. (2.5) to yield a two-step Newton
solver for the cases when the head loss is modelled by the Hazen-William formula:

h(m+1) = U−1
{
−nd +A1

T [(1− n)q(k) −G−1A2el]
}

(2.6)
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where the Schur complement is defined as U = A1
TG−1A1

q(m+1) =
1
n

{
(n− 1)q(k) +G−1(A2el +A1h)

}
(2.7)

The GGA has become the most widely used network formulation method in hydraulic
software packages, such as EPANET2 (Rossman 2000). This is mainly because of the
outstanding convergence characteristics that have been exhibited by the GGA. Even so, a
number of issues have been reported in the literature.

Simpson and Elhay (2010) pointed out that the original GGA was designed only for the
use of Hazen-William head loss model, in which the Hazen-William coefficient is assumed
to be independent of flow. The Darcy-Weisbach friction factor, unlike the Hazen-William
coefficient C, is dependent on the pipe flow. However, Rossman (2000) incorrectly treated
the Darcy-Weisbach resistance factors in computing the Jacobian matrix. Simpson and
Elhay (2010) gave the correct formulae to compute the Jacobian for the Darcy-Weisbach
head-loss model. They derived the terms of the matrix F for three flow regimes based
on the ranges of Reynolds number. A special case is the transitional flow regime, where
Dunlop’s interpolating cubic spline (Dunlop 1991) is used to ensure a smooth transition of
the friction factors from the laminar to the turbulent flow (Table (2.2)). Note that Dunlop’s
interpolating cubic spline used in their paper is identical to that in EPANET2. The resulting
two-step Newton solver when the head loss is modelled by either the Darcy-Weisbach or
Hazen-William formula is:

V h(m+1) = −d +A1
TF−1

[
(G− F ) q(m) −A2el

]
(2.8)

where the Schur complement is defined as V = A1
TF−1A1 and F is the correct

computed Jacobian matrix when the head loss is modelled by either the Darcy-Weisbach or
Hazen-William formula,

q(m+1) = q(m) + F−1A1h
(m+1) − F−1

[
Gq(m) −A2el

]
. (2.9)

The use of the correct Jacobian matrix restores the quadratic convergence associated
with the Newton method. Furthermore, when the correct corresponding Jacobian is used
with the Darcy Weisbach head-loss model, the Jacobian matrix is no longer singular as
a result of the presence of zero flows due to the use of the correct expression for friction
factor as shown in the first row of Table 2.1.

In the following, denote

R = 4|q|
πνD

=
vD

ν
, a =

(
2 ln2 10
π2g

)
, b = 1/3.7, c = 5.74

(
πν/4

)9/10 , η = R/2000

ρ =

∣∣∣∣∣
D

q

∣∣∣∣∣

9/10
, θ =

ε

3.7D +
5.74
R9/10 =

bε

D
+ cρ, θ̂ =

bε

D
+

5.74
40009/10 , σ =

|q|
q
, q , 0

ω = 2 + 9cρ
5θ ln(θ)

.

Elhay and Simpson (2011) proposed a regularisation method to deal with the zero flows
when the pipe head losses are modelled by the Hazen-William head-loss formula. This
method sets an upper bound on the condition number of the Schur Complement. This
regularisation starts by adding a modification vector,

(
T O
O O

)(
q
h

)
,
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Table 2.1. The resistance factor formulae

Range ofR Resistance factor r
R ≤ 2000 128ν

πg
L
D4Laminar flow∗

2000 < R < 4000 (
8
π2g

)
L
D5
∑3
k=0

(
αk + βk/θ

)
ηkTransitional flow

R ≥ 4000 L
D5

a
ln2 θTurbulent flow

∗Note that this resistance factor term for laminar flow is independent of q

Table 2.2. Coefficients of the cubic interpolating spline defining the Darcy-Weisbach
friction factor for 2000 < R < 4000. The constants are τ = 0.00514215 and ξ = −0.86859.

k αk βk

0 5/(ξ2ln2τ̂ ) τ/(ξ3ln3τ̂ )
1 0.128− 12/(ξ2ln2τ̂ ) −5τ/(2ξ3ln3τ̂ )
2 −0.128 + 9/(ξ2ln2τ̂ ) 2τ/(ξ3ln3τ̂ )
3 0.032− 2/(ξ2ln2τ̂ ) −τ/(2ξ3ln3τ̂ )

Table 2.3. The elements of the Darcy-Weisbach head loss model vector φ(r(q), q).

Range ofR The diagonal terms inG
R ≤ 2000 q

(
128ν
πg

)
L
D4

2000 < R < 4000 q|q|
(

8
π2g

)
L
D5
∑3
k=0

(
αk + βk/θ

)
ηk

R ≥ 4000 q|q| LD5
a

ln2 θ

Table 2.4. The diagonal terms of the matrix F , the Jacobian of Darcy-Weisbach head loss
model φ(r(q), q).

Range ofR The diagonal terms in F
R ≤ 2000

(
128ν
πg

)
L
D4

2000 < R < 4000
(

8
π2g

)
L
D5 |q|

∑3
k=0

{
9c
10
βk
þ2

∣∣∣Dq
∣∣∣
9/10
+ (2 + k)

(
αk + βk/θ

)}
ηk

R ≥ 4000 L
D5

a|q|
ln2 θ

(
2 + 9cρ

5θ ln θ

)
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to both sides of Eq. (2.3) to ensure that the Schur complement is invertible. The modified
two-stage GGA equations are:

Wh(m+1) = −d +A1
T (F + T )−1

[
(G− F − T ) q(m) −A2el

]
(2.10)

whereW = A1
T (F + T )−1A1

q(m+1) = q(m) + (F + T )−1A1h
(m+1) − (F + T )−1

[
Gq(m) −A2el

]
(2.11)

Forest and Core

Simpson et al. (2012) proposed the forest-core partitioning algorithm (FCPA) to reduce
the WDS simulation runtime of the GGA. The main contribution of this paper was the
proposed detailed computer algorithm to implement the decomposition model as earlier
suggested by Deuerlein (2008).

The FCPA can be described by the following steps:

1. Identify the forest component as distinct from the core component, and at the same
time find the flows of the forest pipes and adjust the demands.

a) Create four lists, p, a list of pipes, v, a list of nodes, s, a list of pipes, and t, a list
of nodes. Initialise p with all pipe indices within the network, v with all node
indices within the network, and each of s and t with an empty list. When the
forest identification has been completed, p will contain the indices of the pipes
in the core, v will contain the indices of the nodes in the core, s will contain
the indices of the pipes in the forest, and t will contain the indices of the nodes
in the forest.

b) Identify the columns of the submatrixA1(p,v) (also denoted byA1p,v ) – which
can be interpreted as a sub-matrix ofA1 that is composed of the rows ofA1
indicated by list p and the columns of A1 indicated by list v – that has only
one non-zero element (this represents a leaf node in a tree). Record the column
number and the corresponding row number of each non-zero element. For
instance, the i-th column has only one non-zero element and it sits at the j-th
row. This meansA1(p(j),v(i)) is the only nonzero element in column i.

c) Find, if it exists, the column m of row j of the submatrix A1(p,v), which
contains the other non-zero element, and its value to α = ±1.

d) If m is defined, replace the m-th element within the demand vector with
dm = dm + di and set the flow in pipe j to qj = −αdi and insert the value into
the q vector.

e) Move the index of pipe j from list p to list s and node i from list v to list t.
f) Repeat the steps until all columns in A1(p,v) have more than one non-zero

element.

2. Solve for heads and flows of the core component of the network using the standard
GGA (as in the above paper):

(
Gp,p −A1p,v

−A1p,v

T O

)(
qp
hv

)
=

(
A2pel
dv

)
. (2.12)

3. Once the iterative solution process for the core has stopped, the forest heads can be
found by solving the linear system:
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A1s,tht = Gs,sqs −A2sel −A1s,vhv. (2.13)

The FCPA simplifies the problem by identifying the linear forest part of the problem
and solving it separately from the nonlinear core part to avoid unnecessary computation in
the iterative process.

Internal Trees and Topological Minors

Deuerlein et al. (2015) presented another graph partitioning algorithm, called the graph
matrix partitioning algorithm (GMPA), that has the potential to reduce the dimension of
the non-linear part of the system of equations to be solved even further and hence reduce
the simulation runtime. The detailed steps of the GMPA are:

1. The GMPA starts by partitioning the network into core and forest using the FCPA.
2. The GMPA partitions (i) the nodes in the core component of the graph into two lists:

a list of supernodes s, nodes with degree greater than two (in other words three or
more pipes are connected to the node), and a list of interior tree nodes i, nodes with
degree two and (2) the pipes in the core component of the graph into two lists: a list
of internal co-tree chords c, the chords of the internal tree and a list of internal tree
branches t, pipes that connected to the interior path nodes.

3. The system of equations in Eq. (2.12) can be permuted into:



Gt,t −A1s,t −A1i,t

Gc,c −A1s,c −A1i,c

−A1s,t

T −A1s,c

T

−A1i,t

T −A1i,c

T







qt
qc
hs
hi


 =




A2tel
A2cel
ds
di


 (2.14)

4. The GGA with the GMPA, which is used to in Deuerlein et al. (2015), can now be
divided into two parts: a global step,

ATpG
(k)
s

−1
Aph

(k+1)
s = d̂s +A

T
p q

(k)
c −ATpG(k)

s
−1 (

h(k)
s +ARel

)
(2.15)

q(k+1)
c = q(k)

c −G(k)
s

−1 (
h(k)
s +Aph

(k+1)
s +ARel

)
, (2.16)

and a local step,
q(k+1)
t = P Tq(k)

c −A1i,tdi (2.17)

h(k+1)
i = −A−1

1i,t

(
A1s,th

(k+1)
s +A2tel +G

(k)
t q

(k+1)
t

)
, (2.18)

whereP = A1i,cA1i,t

−1,Ap = A1s,c+PA1s,t ,AR = A2c+PA2t , d̂s = A1s,tA1i,t

−1di+

ds, andGs
(k) = G(k)

c,c + PG
(k)
t,t P

T .
The GMPA exploits the linear relationships between flows of the internal trees and the

flows of the corresponding super-links after the forest of the network has been removed.
The GMPA can save significant computational time by reducing the dimension of the
problem for the most time consuming part of the calculations.
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2.3.2 Loop Based Methods
The Hardy Cross method (Cross 1936), also known as the loop flow corrections method
(LFC), is the oldest solution method and uses successive approximations, solving for
each loop flow correction independently. In this method, a set of initial flows satisfying
continuity is successfully improved until the energy balance around the loop is achieved. In
the Hardy Cross method, there are two sets of equations –(i) mass conservation equations
and (ii) loop energy conservation equations– which are used to model the underlying
relationship between the flows and heads of a WDS. The Hardy Cross method is a manual
iterative method that was popular for its simplicity before computers.

Minimum cycle basis

Creaco and Franchini (2013) presented a new automatic procedure for the identification of
a minimum cycle basis for a planar graph. It can be described as follows:

1. Find a spanning tree and co-tree permutation
2. For i=1, 2, ... number of loops, do

a) Remove the i-th co-tree pipe
b) Find the shortest path between the two end nodes of the i-th co-tree pipe using

Dijkstra’s algorithm (Dijkstra 1959)
c) The minimum cycle is i-th co-tree pipe and the shortest path between the two

end nodes of the i-th co-tree pipe

The advantage of this algorithm in the solution of WDS models is that using it minimises
the number of of non-zeros in the Schur complement which allows for a faster iterative
solution. However, one major drawback is its expensive overhead. Therefore, this algorithm
is of limited use in practice.

Recently, Alvarruiz et al. (2015) proposed two algorithms to select a set of network
loops in order to achieve a highly sparse matrix. Although, a smaller number of non-zeros
in the Schur complement was reported in Creaco and Franchini (2013), the substantial
improvement in terms of the efficiency reported by Alvarruiz et al. (2015) suggests the
latter algorithm is the better practical choice.

2.3.3 Null Space Methods
The null space methods are special cases of loop-based method: all null space formulations
can be rewritten as loop-based formulations, but not all loop-based formulations can be
rewritten as null space formulations.

Co-Tree flows method

In 1995, Rahal (1995) proposed a co-tree flows formulation (CTM). The CTM algorithm
can be described as:

1. Identify the main supply source, which is the one with the highest elevation head.
2. Transform the WDS network into its associated circulating graph by connecting all

unknown-head nodes with the main source by pseudo-links.
3. Connect the main source with other sources by pseudo-links.

16



Chapter 2. Review of the Existing Water Distribution System Solution Methods

4. Identify the spanning tree and co-tree of the WDS.
5. Sum the demands that are to be carried by the tree branches, STD, assuming the

co-tree will not carry any demand.
6. Determine the associated chain of branches, CT , closing a circuit for each co-tree

chord.
7. Specify a set of initial water flows in the co-tree chords, Q(0)

T .
8. Compute the head difference between the main water source and the all other water

sources Z.
9. For i=1,2,. . . n until the stopping criteria has been met:

a) Assemble the Jacobian matrix of

H (QT ) +CTH (CT
TQT + STD) = O (2.19)

b) Use the Newton method to compute the co-tree flow correction and hence the
new co-tree chord flow rate.

10. Calculate the corresponding flow rates for the spanning tree
11. Determine the nodal heads using the tree structure

The CTM differs from the methods that have been discussed so far. Although it bears some
resemblance to the loop flows correction formulation, it does not require initial pipe flows
to satisfy continuity. The CTM is able to reduce the dimension of the equations of a water
distribution system to the number of unknown co-tree flows (equal to the number of pipes
minus the number of nodes). In order to perform CTM, it is necessary to: (1) identify
the associated circulating graph; (2) determine the demands that are to be carried by tree
branches; (3) find the associated chain of branches closing a circuit for each co-tree chord;
and (4) compute pseudo link head losses Z.

Reformulated Co-tree flows method In a paper by Elhay et al. (2014), a reformulated
co-tree flows method (RCTM) was proposed. It exploits the relationship between the co-tree
flows and spanning tree flows. This is achieved by applying the Schilders’ factorization
to permute the A1 matrix into a lower triangular square block at the top, representing a
spanning tree, and a rectangular block below, representing the corresponding co-tree. As a
result, the number of unknowns that needs to be solved for in the nonlinear system is the
number of the co-tree flow pipes, as in the CTM.

The RCTM can be summarised as follows:

1. The RCTM starts by partitioning the network into a spanning tree and a co-tree.
2. Permute:

a) the unknown head index matrix (A1) into two blocks with an lower triangular
block, T1, representing the spanning tree, above a rectangular block, T2,
representing the co-tree;

b) the vector of unknown flows q into q1, the vector of flows in the spanning tree
pipes, and q2, the vector of flows in the co-tree pipes;
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c) the product of the fixed-head node-arc incidence matrix and the vector of
elevation heads of the fixed-head nodes,A2el, into a1 for the spanning tree,
and a2, for the co-tree;

d) the matrixG into matricesG1 for the spanning tree andG2 for the co-tree;
e) the matrix F into matrices F1 for the spanning tree and F2 for the co-tree.

3. Compute the matrix L21 by

L21 = −T 2T
−T
1

.
4. Provide an initial estimate of the co-tree flows q(0)

2

5. For i=1,2,. . . n until the stopping criteria has been met

a) get the corresponding spanning tree flows using

q(i)
1 = L

T
21q

(i)
2 − T−T

1 d. (2.20)

b) Solve for the co-tree flows using

W (i)q(i+1)
2 = L21

(
F (i)

1 −G(i)
1
)
q(i)

1 +
(
F (i)

2 −G(i)
2
)
q(i)

2 +L21a1 + a2.
(2.21)

6. The heads are found after the iterative process of the RCTM by using a linear solution
process:

R1h = F 1q
(i+1)
1 − (F 1 −G1) q(i)

1 − a1. (2.22)

This partitioning of the network equations reduces the size of the non-linear component of
the solver to np − nj (the number of co-tree elements in the network). It has been shown
in Elhay et al. (2014) that the RCTM and the GGA have identical iterative results and
solutions if the same starting values are used. However, for RCTM, the user only needs to
set the initial flow estimates for the co-tree pipes, q(0)

2 , in contrast to GGA where initial
flow estimates are required for all pipes. The flows in the complementary spanning tree
pipes are generated by Eq.(2.20).
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Chapter 3

Publication 1: WDSLib: A Water
Distribution System Simulation Test Bed

3.1 Synopsis
Water distribution system solution methods have been frequently used in WDS design,
management and operation. In each of the above WDS simulation settings, often a WDS
network with a fixed network topology needs to be solved many times. Thus, choosing the
most suitable solution method can significantly improve the efficiency in a given setting.

Previous work on WDS simulation has focused on two research areas: (1) hydraulic
solution methods and (2) solver software design. There is a disconnect between the two
research areas. The researchers in the area of software design have focused on developing
EPANET-based toolkits that are thread-safe and object-oriented. At the same time, the
researchers in the area of improving the hydraulic solution methods have not developed
a universal and reliable toolkit to implement, test and compare different WDS solution
methods. In this chapter, WDSLib, a numerically robust, efficient and accurate C++ library,
is described. WDSLib is written using a modular object-oriented design which allows
users to easily mix and interchange solution components.

In this newly developed WDS software package, four WDS simulation methods are
currently implemented, namely the global gradient algorithm (GGA), the GGA with the
forest-core partitioning algorithm (FCPA), the reformulated co-tree flows method (RCTM),
and the RCTM with the FCPA. WDSLib offers users the ability to: (i) choose from, or
modify, different approaches and implementations of different WDS model analyses, and
(ii) extend the toolkit to include new developments.

3.1.1 Citation
Qiu, M, Alexander, B, Simpson, AR & Elhay, S 2018, ‘WDSLib: A Water Distribution
System Simulation Test Bed’, Manuscript submitted for publication to Environmental
Modelling & Software.
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3.2 Highlights
• A library for the steady-state analysis of a water distribution system (WDS)

• An open-source C++ software implementation of a number ofWDS solution methods.

• A fast simulation platform for both once-off and multi-run simulations

• A timing model to parameterize multiple simulation times is introduced.

• Several improvements to the existing solution methods have been made.

3.3 Abstract
WDSLib is an extensible simulation toolkit for the steady-state analysis of a water
distribution system. It includes a range of solution methods: the forest-core partitioning
algorithm, the global gradient algorithm, the reformulated co-tree flow method, and also
combinations of these methods. WDSLib has been created using a modularized object-
oriented design and implemented in the C++ programming. WDSLib has been designed to:
avoid unnecessary computations by hoisting each of the modules to its appropriate level
of repetition, perform the computations independently of measurement units using scaled
variables, accurately report the execution time of all the modules to parameterize multiple
simulation times from a series of sampling simulation runs, and guard against numerical
failures. WDSLib can be used to: implement, test and compare different solution methods;
focus the research on the most time-consuming parts of a solution method; and guide the
choice of solution method when multiple simulation runs are required.

3.3.1 Software availability
Name of the Software: WDSLib
Version: 1.0
Available from: https://github.com/a1184182/WDSLib
Language: C++
Year first available: 2018

3.3.2 Keywords
Water Distribution System; C++ toolkit; Object-Oriented design; Forest-Core Partitioning
Algorithm; Reformulated Co-tree Flows Method; Global Gradient Algorithm; open source
software

3.4 Introduction
Hydraulic simulation has been used to model water distribution systems (WDSs) for
several decades and is an essential tool for the design, operation, and management of
WDSs in industry and research. Hydraulic simulation allows users (1) to optimize WDS
network parameters, such as pipe diameters, in a design setting, (2) to calibrate network
parameters, such as demand patterns, in a conventional operational setting, (3) to conduct
real-time monitoring and calibration of the network elements in a supervisory control and
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data acquisition (SCADA) operational setting, and (4) to adjust control devices, such as
valves, in a management setting. In the design setting and both the above operational
settings, repeated hydraulic assessment is required on a network with fixed topology. In the
management setting, repeated hydraulic assessment is required on a network with flexible
network parameter settings. With ever-increasing network sizes and the need for real-time
management using a SCADA system, it is important to have a robust simulation package
which can be configured to be maximally efficient whatever the setting.

In the field of hydraulic simulation, the system of equations can be formulated as a large
and sparse non-linear saddle point problem. There are several well-known iteration methods
for solving the non-linear saddle point problem. These include: range space methods
(Global Gradient Algorithm (Todini and Pilati 1988)), Null space methods (Co-Tree flow
formulation variations (Rahal 1995; Elhay et al. 2014)), and loop-based methods (Loop flow
correction (Cross 1936)). Their relative performance in terms of speed, rate-of-convergence,
and accuracy depends among other things on the topology of the target network: size
of the forest component, the number of network loops, and the density of these network
loops. It is difficult to evaluate the impact of these topology factors by only examining
the incidence matrix that describes the pipe network connectivity. As a result, the best
method to use for a particular network cannot be easily determined a priori. Moreover,
extra complexity is introduced when a multi-run hydraulic assessment is required. During
a multi-run hydraulic simulation, the elapsed computation time of each method can be
broken down into two parts: the components that are only required to be performed once at
the very beginning for the same network, called the overhead, and the components that are
required to be carried out repeatedly for each separate run until the required number of
iterations has been met, called the hydraulic-phase. It is desirable to have a simulation
platform, given the different levels of repetition, to implement these alternative algorithms
efficiently. Equipped with such a platform a user would be able to easily benchmark the
performance of alternative methods on a small number of evaluations for a given network
and use that performance to inform the choice of algorithm to use for either a once-off
simulation setting or for a multiple simulation setting (such as for an evolutionary algorithm
(EA)).

This work describes an extensible WDS simulation platform called WDSLib. WDSLib
is a numerically robust, efficient and accurate C++ library that implements many WDS
simulation methods. WDSLib is written using a modular object-oriented design which
allows users to easily mix and interchange solution components, thereby enabling users to
avoid redundant computations. It has been optimized to use sparse data structures which
are oriented to the pattern of access required for each solution method. WDSLib has been
validated for accuracy on a range of realistic benchmark water distribution networks against
reference implementations and tested for speed. The program accepts the input file formats
of the industry standard EPANET2 (Rossman 2000) toolkit and its performance is faster
than EPANET2 in all tested settings and benchmarks.

The remainder of this paper is structured as follows. The next section describes related
methodologies and implementations. A general description of the WDS demand-driven
steady-state problem is given in the next section. Section 3.6 presents a mathematical
formulation of the network and the solution methods that are used in WDSLib. The
tool-kit structure is then given in section 3.7. This is followed, in section 3.8, by the toolkit
implementation details. Section 3.9 provides some examples of how the toolkit can be
utilized in a simulation work flow. The results are discussed in Section 3.10. Finally,
section 3.11 summarizes the results of this paper and describes future extensions to the
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toolkit.

3.5 Background
This section describes related water distribution system network solution methods and
implementations. The first sub-section describes solution methods, including those used
by WDSLib. This is followed by a description of currently available implementations and
compares these with WDSLib.

3.5.1 Related Methods
This research considers a water distributionmodelmade up of energy conservation equations
and the demand driven model continuity equations. The Hardy Cross method (Cross 1936),
also known as the loop flow corrections method, is one of the oldest methods and uses
successive approximations, solving for each loop flow correction independently. It is a
method that was widely used for its simplicity at the time when it was introduced. More
than three decades later, Epp and Fowler (1970) developed a computer version of Cross’s
method and replaced the numerical solver with the Newton method, which solves for all
loop flow corrections simultaneously. However, this method has not been widely used
because of the need (i) to identify the network loops, (ii) to find initial flows that satisfy
continuity and (iii) to use pseudo-loops.

The GGA is a range space method that solves for both flows and heads. It was the
first algorithm, in the field of hydraulics, to exploit the block structure of the Jacobian
matrix to reduce the size of the key matrix in the linearization of the Newton method. The
GGA has gained popularity through its rapid convergence rate for a wide range of starting
values. This is the result of using the Newton method on an optimizations problem that
has a quadratic surface. However, it was reported by Elhay and Simpson (2011) that the
GGA fails catastrophically in the presence of zero flows in a WDS when the head loss is
modeled by the Hazen-Williams formula. Regularization methods have been proposed by
both Elhay and Simpson (2011) and Gorev et al. (2012) to deal with zero flows when the
head loss is modeled by the Hazen-Williams formula.

The GGA as it was first proposed, applied only for the WDSs in which the head loss is
modeled by the Hazen-Williams formula, where the resistance factor was independent of
flow. Rossman (1994) extended the GGA to allow the use of the Darcy-Weisbach formula.
It has been pointed out in Simpson and Elhay (2010), however, that Rossman incorrectly
treated the Darcy-Weisbach resistance factor as independent of the flow. They introduced
the correct Jacobian matrix to deal with this. It has been demonstrated that once the correct
Jacobian matrix is used, the quadratic convergence rate of the Newton method is restored.
Furthermore, Elhay and Simpson (2011) reported that the GGA does not fail in the presence
of zero flows when the derivatives of the Darcy-Weisbach Jacobian matrix are correctly
computed for laminar flows.

The co-trees flow method (CTM) (Rahal 1995) is a null space method that solves
for the co-tree flows and spanning tree flows separately. The CTM, unlike the loop flow
corrections method, does not require the initial flows to satisfy continuity. However, it does
require: (i) the identification of the associated circulating graph; (ii) the determination of
the demands that are to be carried by tree branches; (iii) finding the associated chain of
branches closing a circuit for each co-tree chord; (iv) computing pseudo-link head losses.
The reformulated co-trees flow method (RCTM) (Elhay et al. 2014) is also a null space
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method that solves for co-tree flows and spanning trees flows separately. It represents a
significant improvement on the CTM by removing requirements (i) to (iv) above. It uses
the Schilders’ factorization (Schilders 2009) to permute the node-arc incidence matrix into
an invertible spanning tree block and a co-tree block. This permutation reduces the size of
the Jacobian matrix from the number of junctions (as in the GGA) to approximately the
number of loops in the network.

Abraham and Stoianov (2015) proposed a novel idea to speed-up the solution process
when using a null space method to solve a WDS network. Their idea exploits the fact that a
significant proportion of run-time is spent computing the head losses. At the same time,
flows within some pipes exhibit negligible changes after a few iterations. As a result, there
is no point in wasting computer resources to re-compute the pipe head losses for the pipes
that have little or no change in flows. This partial update can be used to economize the
computational complexity of the GGA, the RCTM and their variations.

The forest-core partitioning algorithm (FCPA) (Simpson et al. 2012) speeds up the
solution process in the case where the network has a significant forest component. This
algorithm permutes the system equations to partition the linear component of the problem,
which is the forest of the WDS, from the non-linear component, which is the core of the
WDS. It can be viewed as a method that simplifies the problem by solving for the flows
and the heads in the forest just once instead of at every iteration. The FCPA reduces the
number of pipes, number of junctions, and the dimension of the Jacobian matrix in the
core by the number of forest pipes (or nodes).

The graph matrix partitioning algorithm(GMPA) (Deuerlein et al. 2015) exploited the
linear relationships between flows of the internal trees within the core and the flows of the
corresponding super-links after the forest of the network has been removed. This was a
major breakthrough. The GMPA permutes the node-arc incidence matrix in such a way
that all of the nodes with degree two in the core can be treated as a group. By partitioning
the network this way, the network can be solved by a global step, which solves for the
nodes with degree greater than two (super nodes) and the pipes which connect to them
(path chords), and a local step, which solves for the nodes with degree two (interior path
nodes) and pipes connected to them (path-tree links).

3.5.2 Related Implementations
EPANET 2 (Rossman 2000) is a widely used WDS simulation package. EPANET 2
implemented the GGA to provide a demand-driven steady-state solution of a WDS. The
code for EPANET 2 is in the public domain, allowing many extensions to be developed.
Currently available extensions include: the implementation of a pressure-dependent
model (Cheung et al. 2005; Morley and Tricarico 2008; Siew and Tanyimboh 2012; Jun
and Guoping 2012) and a real-time simulation capability (Vassiljev and Koppel 2015).

The EPANET 2 implementation is not explicitly designed to necessarily be easy to
understand or accommodate alternative solution methods (Guidolin et al. 2010). The
elements that are used in EPANET 2 are stored by the variables that describe their graph
properties. For example, (1) junctions, reservoirs, and tanks are stored as a C struct
called Node and (2) all valves, pipes, and pumps are stored as a C struct called Link. The
abundant use of global variables limits the reusability and the possibility of the thread-safe
design (Guidolin et al. 2010).

Consequently, it is difficult to cleanly incorporate new solution methods into EPANET 2
in a manner that allows a fair comparison of performance between these methods. Moreover,
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because there are no clearly defined interfaces for the incorporation of third-party code
components in EPANET 2, there is no guarantee that independently authored extensions
will be easy to combine with each other.

In the absence of a popular easy-to-modify WDS simulation platform there is currently
no straightforward means for comparing different solution methods. To date, when new
solution methods have been developed they have been compared using different research
systems, on different platforms with different implementation languages. This leads to
difficulty in comparing methods, limits the reusability of code, and creates a barrier for
researchers to reproduce and replicate results. To address these issues, an extensible
framework is required that allows implementation of new methodologies to be easily
incorporated without an adverse impact on the performance of the rest of the system.

To this end, a number of attempts have been made to implement an object-oriented
wrapper to encapsulate the EPANET 2 solver (openNet (Morley et al. 2000) andOOTEN(van
Zyl et al. 2003)). However, these two systems were focused on providing more flexibility
in the processing of input to the core EPANET solver. They did not address any issues
relating to the solution process. CWSnet, a C++ implementation in object-oriented style,
was produced by Guidolin et al. (2010) as an alternative to EPANET 2.0. In CWSnet,
more attention has been given to the hydraulic elements of the WDS network. In addition,
CWSNet provides a pressure driven model, and takes advantage of the computing power of
the computer’s Graphics Processing Unit (GPU). However, in CSWnet the data structures
representing the network are specialized to the solution methods that it uses. These data
structures are not easily adapted to work efficiently with the different traversal orders, and
graph algorithms used by newly developed solution methods. However, CWSnet still uses
the same hydraulic solver and the same linear solver techniques implemented in EPANET
2 (Guidolin et al. 2010).

To accommodate the deficiencies referred to above, this paper presents a new hydraulic
simulation toolkit WDSlib. WDSlib is coded in C++, and incorporates a number of recently
published techniques. This toolkit offers users the ability to: (i) choose from, or modify,
different approaches and implementations of different WDS model analyses, and (ii) extend
the toolkit to include new developments. These features have been implemented using fast
and modularized code. A focus of attention in this research has been program correctness,
robustness and code efficiency. The correctness of the toolkit has been validated against a
reference MATLAB implementation. The differences between all results (intermediate and
final) produced by the C++ toolkit and the MATLAB implementation were shown to be
smaller than 10−10. In the interest of toolkit robustness, special attention has been paid
to numerical processes to guard against avoidable failures, such as loss of significance
through subtractive cancellation, and numerical errors, such as division by zero. The data
structures and code libraries in WDSLib are shared and all implementations have been
carefully designed to ensure fairness of performance comparisons between algorithms.
WDSLib uses a pluggable architecture where solution-methods, and their accompanying
pre-processing and post-processing code are easily substituted. In addition, different
numerical linear algebra techniques can be incorporated using a well-defined interface.
This concludes the discussion of related work. The mathematical formulations of the
solution methods used in WDSLib are presented in the next section.
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3.6 General WDS Demand-Driven Steady-State
Problem

This section describes the generalWDS demand-driven steady-state problem. The following
starts with the basic definitions and notation, followed by the system equations. Finally, the
relevant equations are shown for each of the different solution methods that are implemented
in WDSLib. All variables are described in the nomenclature section in Appendix E in
Section 3.17.

3.6.1 Definitions and Notation
Consider a water distribution system that contains np pipes, nj junctions, nr fixed head
nodes and nf forest pipes and nodes. The j − th pipe of the network can be characterized
by its diameter Dj , length Lj , resistance factor rj . The i− th node of the network has two
properties: its nodal demand di and its elevation zi.

Let q = (q1, q2, ....qnp )T denote the vector of unknown flows, h = (h1, h2, ....hnj )T

denote the vector of unknown heads, r = (r1, r2, ....rnp )T denote the vector of resistance
factors, d = (d1, d2, .....dnj )T denote the vector of nodal demands, el = (el1 , el2 ....elnf

)T

denote the vector of fixed head elevations.
The head loss exponent n is assumed to be dependent only on the head loss model:

n = 2 for the Darcy-Weisbach head loss model and n = 1.852 for Hazen-Williams head
loss model. The head loss within the pipe j, which connects the node i and the node k, is
modelled by hi − hk = rjqj |qj |n−1. Denote byG(q) ∈ Rnp×np , a diagonal square matrix
with element [G]jj = rj |qj |n−1 for j = 1, 2, ....np. Denote by F (q) ∈ Rnp×np , a diagonal
square matrix where the j-th element on its diagonal [F ]jj = d

dqj
[G]jjqj . A1 is the full

rank, unknown head, node-arc incidence matrix, where [A1]ji is used to represent the
relationship between pipe j and node i; [A1]ji = −1 if pipe j enters node i, [A1]ji = 1 if
pipe j leaves node i, and [A1]ji = 0 if pipe j is not connected to node i. A2 is the
fixed-head node-arc incidence matrix, where [A2]ji is used to represent the relationship
between pipe j and fixed head node i, [A2]ji = −1 if pipe j enters fixed head node i,
[A2]ji = 1 if pipe j leaves fixed head node i, and [A2]ji = 0 if pipe j is not connected to
fixed head node i.

3.6.2 System of Equations
The steady-state flows and heads in the WDS system are modeled by the demand-driven
model (DDM) continuity equations (1) and the energy conservation equations (2):

−A1
Tq − d = O (3.1)

G(q)q −A1h−A2el = O, (3.2)
which can be expressed as

(
G(q) −A1
−A1

T O

)(
q
h

)
−
(
A2el
d

)
= 0, (3.3)

where its Jacobian matrix is

J =

(
F (q) −A1
−A1

T O

)
(3.4)
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and it is sometimes referred to as a nonlinear saddle point problem (Benzi et al. 2005).
This non-linear system is normally solved by the Newton method, in which q(m+1) and

h(m+1) are repeatedly computed from q(m) and h(m) by
(
F (m) (q(m)) −A1
−A1

T O

)(
q(m+1) − q(m)

h(m+1) − h(m)

)
= −

(
G(m)q(m) −A1h

(m) −A2el
−A1

Tq(m) − d,

)
(3.5)

until the relative differences ||q
(m+1)−q (m) ||
||q (m+1) || and ||h

(m+1)−h(m) ||
||h(m+1) ||

are sufficiently small.

3.6.3 Global Gradient Algorithm (GGA)
Todini and Pilati (1988) applied block elimination to Eq. (3.5) to yield a two-step
Hazen-William solver: Eq. (3.6) for the heads and Eq. (3.7) for the flows.

h(m+1) = U−1
{
−nd +A1

T [(1− n)q(m) −G−1A2el]
}

(3.6)

q(m+1) =
1
n

{
(n− 1)q(k) +G−1(A2el +A1h)

}
(3.7)

Later, Simpson and Elhay (2010) proposed

V h(m+1) = −d +A1
TF−1

[
(G− F ) q(m) −A2el

]
(3.8)

where V = A1
TF−1A1

q(m+1) = q(m) + F−1A1h
(m+1) − F−1

[
Gq(m) −A2el

]
(3.9)

as the generalized equations that can be applied when the head-loss is modeled by the
Hazen-Williams equation or the Darcy-Weisbach equation. The correct Jacobian matrix
with the formula for F , when head loss is modeled by Darcy-Weisbach equation, can be
found in Simpson and Elhay (2010). They showed that the use of the correct Jacobian
matrix restores the quadratic rate of convergence.

It is important to note that the GGA, as it was originally proposed, solves the entire
network by a non-linear solver, and this can include some unnecessary computations which
can be avoided by exploiting the structural properties of the WDS graph composition. The
methods described below exploit these structural properties to potentially improve the
speed of the solution process.

3.6.4 Forest-Core Partitioning (FCPA)
Associated with a WDS is a graph G = (V,E), where the elements of V are the nodes
(vertices) of the graph G and elements of E are the pipes (links) of the graph G. The
graph G can be partitioned into smaller subgraphs with special properties. The special
properties that are exploited in WDSLib and their formulations are described in this
subsection. The concept of partitioning the WDS network was proposed by Deuerlein
(2008) in order to simplify the WDS solution process. Simpson et al. (2012) extended
the idea of the network partitioning of Deuerlein (2008) and introduced the forest-core
partitioning algorithm (FCPA), which partitions the network into a treed component and a
looped or core component. The FCPA starts with a searching algorithm which identifies
the forest subgraph, Gf =

(
Vf , Ef

)
, in which S ∈ Nnf×np is the permutation matrix
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which identifies the pipes in the forest, Ef , as distinct from the pipes in the core , Ec,
and T ∈ Nnf×nj is the permutation matrix which identifies the nodes in the forest, Vf , as
distinct from the nodes in the core, Vc, as distinct from the core subgraph,Gc = (Vc, Ec), in
which P ∈ Nnpc×np is the permutation matrix for Ec and C ∈ Nnjc×nj is the permutation
matrix for Vc.

The flows of the pipes in the forest, Sq, can be found directly from

Sq = −
(
TA1

TST
)−1

Td. (3.10)

The system for the reduced non-linear problem (for the core heads and flows) can be
expressed as

(
PGP T −PA1C

T

−CA1
TP O

)(
Pq
Ch

)
=

(
PA2el

Cd +CA1
TSTSq

)
, (3.11)

and then the Newton iterative method is applied to Eq. (3.11).
Finally, once the iterative solution process for the core has stopped, the forest heads can

be found by solving a linear system:

Th =
(
−SA1T

T
)−1 (

SA2el − SGSTSq + SA1C
TCh

)
. (3.12)

The system for the reduced non-linear problem (for the core heads and flows) in Eq. (3.11)
can be expressed as: (

Ĝ −Â1
−Â1T O

)(
q̂
ĥ

)
=

(
Â2el
d̂

)
(3.13)

where Ĝ = PGP T , Â1 = PA1C
T , q̂ = Pq, ĥ = Ch, Â2 = PA2, and d̂ = Cd +

CA1
TSTSq.

The FCPA simplifies the problem by identifying the linear part of the problem and
solving it separately from the core to avoid unnecessary computation in the iterative process.

3.6.5 Reformulated Co-Tree flows Method (RCTM)
A graph, with or without forest, can be partitioned into two sub-graphs: a spanning tree
subgraph and a complementary co-tree subgraph. The reformulated co-tree flow method
(RCTM) (Elhay et al. 2014) exploited the relationship between the spanning tree pipes and
the co-tree pipes. The RCTM starts with a spanning tree search algorithm which identifies
a spanning tree subgraph, Gst = (V,Est), in which K1 ∈ Nnpst×np is the permutation
matrix that identifies the pipes in the spanning tree, Est, as distinct from the pipes in the
co-tree, Ect. R is the permutation matrix for the nodes which traverse the same sequence
as the corresponding spanning tree pipes, Est, and K2 ∈ Nnpct×np is the permutation
matrix for the pipes in the complementary co-tree edges, Ect. It is important to note that
there are many choices of spanning tree for any cyclic graph. The choice of spanning tree
and co-tree combination does not affect the correctness of the method.

By exploiting the relationship between the spanning tree and cotree, Elhay et al. (2014)
proposed the following equations to solve the WDS for the flows: first for the spanning tree
flows q(m+1)

1 ,
q(m+1)

1 = L21
Tq(m)

2 −R−T1 d̂ (3.14)

and second for the co-tree flows q(m+1)
2 :

W (m+1)q(m+1)
2 = L21

(
F (m+1)

1 −G(m+1)
1

)
q(m+1)

1 +
(
F (m)

2 −G(m)
2
)
q(m)

2 + a2 (3.15)

29



Chapter 3. Publication 1: WDSLib: A Water Distribution System Simulation Test Bed

where: R1 = K1Â1R
T ; R2 = K2Â1R

T ; L21 = −R2R
−T
1 ; F (m)

1 = K1
̂

F (m)K1
T ;

F (m)
2 = K2

̂
F (m)K2

T G(m)
1 = K1

̂
G(m)K1

T ; G(m)
2 = K2

̂
G(m)K2

T ; a1 = K1Â2el;
a2 = L21K1Â2el +K2Â2el;W (m) = L21(F (m)

1 )−1L21
T + (F (m)

2 )−1.
Note that in Eq. (3.14), an initial set of the co-tree flows q(0)

2 is needed to commence
the solution process.

The heads are found after the iterative process of the RCTM has been completed by
using a linear solution process:

R1h = F 1q
(m+1)
1 − (F 1 −G1) q(m)

1 − a1 (3.16)

This partitioning of the network equations reduces the size of the non-linear component
of the solver to np−nj (the number of co-tree elements in the network). It has been proven
by Elhay et al. (2014) that the RCTM and the GGA have identical iterative results and
solutions if the same starting values are used. However, for the RCTM, the user only needs
to set the initial flow estimates for the co-tree pipes, q(0)

2 , in contrast to GGA where initial
flow estimates are required for all pipes. The flows in the complementary spanning pipes
are generated by Eq.(3.14) in the RCTM.

3.7 WDSLib Structure
WDSLib is a WDS simulation toolkit consisting of a set of C++ member functions, which
henceforth will be referred to just as functions, that can be composed to solve for the steady
state solution of a WDS. WDSLib can be used for a once-off simulation or a multi-run
simulation. Pre-packaged driver code is provided to perform once-off simulations using
a choice of solver methods. For a multi-simulation setting, where the use-cases are very
diverse, the user is able to select the desired components of WDSLib to compose and
compile their own driver.

Individual functions in WDSLib are classified according to their role in the simulation
workflow. In any simulation workflow, there will be functions that will only have to be
executed once. For example, functions to read the input file or partition the network will
only have to execute once at the start of the simulation (or of all simulations). Likewise,
code to reverse the network partitioning and write simulation results will only have to
execute once at the end of the simulation. In this work, these functions that are only required
to be run once are called level one (L1) functions. L1 functions relate to network topology,
which is invariant for the whole simulation. In a multi-simulation setting, certain functions
will need to be run once for every hydraulic-phase. An example of such a module is the
module making the initial guesses of pipe flow rates for the updated network configuration.
In this work, these, once-per-assessment functions, are called level two (L2) functions.

Finally, for every hydraulic assessment there is a non-linear iterative phase in the
solution process. The functions in this phase run many times for each hydraulic assessment
until the stopping test has been satisfied. Examples of these include the functions to
calculate the G and F matrices (see Eqs. (3) and (4)) and running the Cholesky solver.
These iterative-phase functions are called level three (L3) functions.

Fig. 3.1 illustrates the global structure of WDSLib under a once-off simulation setting
and a multi-run simulation setting. The modular setup of WDSLib allows each module
to be run the minimum number of times determined by its simulation setting. Under the
module structure described above a once-off simulation setting can be viewed as a special
case where the L1 functions and L2 functions are both run once. Note that after running
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the initial L1 functions it is possible to run hydraulic assessments of the network in parallel.
This mode of execution might be used in a design setting such as using a genetic algorithm
(GA) to optimize pipe diameter sizes.

Fig. 3.1. Global structure of WDSLib for both simulation settings

L1 and L2 functions are classified into parts a and b according to whether they run
before or after the lower level processing that they embed. These functions are detailed in
Fig. 3.2. The L1 functions that run at the start of the simulation are called L1a functions.
These include the module to read the configuration file and the EPANET .inp file; partition
the network; and solve the linear part(s) of the network. The corresponding L1b functions
are run at the end of the simulation. These include tasks such as reversing the network
partitioning. Note that certain L1a functions require their corresponding L1b functions to
be used. For example the forest search module needs to be paired with the reverse FCPA
permutation. There is a similar structure for L2 functions. L2a functions are run at the start
of each hydraulic assessment and L2b functions run at the end. The functions that must be
included for the FCPA method are denoted with single asterisks. Likewise the functions
that must be included with the RCTM method are denoted with double asterisks. For
these methods to work correctly all affiliated functions must be included in the simulation
workflow. Note that it is also possible to run both the RCTM and FCPA in the same
workflow. Also note that the user cannot run both GGA and RCTM in the same workflow –
the user must choose between these solution methods.

Table 3.1 provides a mapping from the function descriptions in Fig. 3.2 to the function
names in WDSLib. In addition, the dependencies between functions for each solution
method are shown in Table 3.1a, Table 3.1b, Table 3.1c and Table 3.1d. The columns in
each table list, respectively, the description of the function, its name in WDSLib, the C++
class in which it appears, its input parameters, and its output values. Note, that void is used
in these latter two columns to denote that the function interacts with the class variables
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Fig. 3.2. Function classification in WDSLib. The functions marked with single asterisks
must be used for the FCPA method. The functions marked with double asterisks must be
used for the RCTM method. Note that it is possible to use both methods at the same time.
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Table 3.1. Key function descriptions, names, their classes, inputs and outputs. The
affiliated functions are shown in sub-tables (3.1a) (3.1b) (3.1c) (3.1d).

(a) Shared Modules
Description Module name Class Input Output
Read the configuration file readConfig runManager config file name void
Read EPANET input file getInputData Input EPANET .inp file EPANET err code
Variables scaling scale Solver void void
AMD bandwidth reduction AMD Suitesparse void void
Calculate the resistance constants getRf Solver net resistance constant
Generate initial guesses of flows init Solver diameter flow rate
Calculate the head loss coefficients getGF Solver net, resistance constant void
Stopping test stopTest Solver result norm
Recover scaled variables rScale Solver void void

(b) Global gradient algorithm (GGA)

Description Module name Class Input Output
GGA Solver runH GGASolver(Solver) void void

(c) Forest-core algorithm (FCPA)

Description Module name Class Input Output
Forest search forestSearch topology SN, EN void
Calculate flows in forest forestFlow solver demands flows in forest pipes
Calculate heads in forest forestHead solv result heads in forest pipes
Reverse FCPA permutation rFCPA Solver void void

(d) Reformuated cotree flows method (RCTM)
Description Module name Class Input Output
Spanning tree search STSearch topology SN, EN void
RCTM solver runH RCTMsolver (Solver) void void
Calculate heads in ST and CT RCTMHead RCTMsolver flows in ST and CT void
Reverse RCTM permutation rRCTM RCTMsolver void void

rather than through its parameters and return value. Examples of how these functions
can be coded are presented in section 3.9. The key data-access functions in WDSLib are
described next.

Getter and Setter methods Each class in WDSLib has various methods available for
setting the network parameters and retrieving the results of the WDS network. These
methods allow the user to reconfigure the network before and during simulation runs. The
names of the setter methods all start with a prefix set and the names of the getter methods
all start with a prefix get. For example, a user can set (write-to) the diameter of pipe index
to value by calling pipe->setD(index,value) and get (read-from) the head of node
index by calling h[index]=result->gethFinal(index). A summary of the variables
that can be read-from (read-access through getter methods) and written-to (write-access
through setter methods for each key classes is specified in Table 3.2. This concludes the
discussion of the the broad structure of the WDSLib package. The next section describes
key aspects of the implementation of the package.
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Table 3.2. The getter and setter functions of each class and the variables they access

Class Name Description Read-Access Write-Access
Net Basic network properties, & Pipe and Node Node,Pipe, np, nj,

ns
Node Node properties d, zs, zu
Pipe Pipe properties SN , EN , L,D,R, pipe ID
Flag Flag information getFlag("flagN",flagV) setFlag("flagN")
Parameter Parameter information getPara("paraN",paraV) setPara("paraN")
Simulation Manage hydraulic simulation - -
Solver Parent class of solution methods - -
GGASolver GGA solution method Result -
RCTMSolver RCTM solution method Result -
Topology Network topology information getCore, getForest
Result Results of the simulations qIter, hIter, GIter , FIter,

numIter, CresIter, Ere-
sIter, Time

3.8 WDSLIB: Toolkit Implementation
This section outlines key implementation details of WDSLib. As previously mentioned, the
overall aim of WDSLib is to provide a clearly-structured, flexible and extensible hydraulic
simulation toolkit that allows testing, evaluation, and use, in production settings, of both
existing and new WDS solution techniques. These aims require WDSLib be implemented
so that it is fast to execute, flexible to configure, robust to challenging input data cases, and
easy to understand and modify. The following describes aspects of the implementation
of WDSLib that enable it to meet these requirements. The next subsection describes
the general considerations that informed the design of the whole toolkit. This general
discussion is followed by a summary of key improvements to the solution processes encoded
in forest searching and spanning tree searching in the WDSLib package.

3.8.1 General capabilities and properties
This sub-section describes design aspects underpinning the utility and performance of
WDSLib. In-turn, the following outlines measures taken to: (1) maximize code clarity
and modularity; (2) increase the efficiency of memory access and storage; (3) maximize
numerical robustness; (4) facilitate accurate timing of code execution; and (5) maximize
simulation speed for different settings.

Design Considerations 1: Modularity

The modular design of WDSLib is central to the evaluation and testing of different WDS
solution methods. All methods have been defined to perform a single, well–defined,
function and each class can be compiled, used and tested independently. These features
allow users to assemble the methods of interest from independently developed components
to create a customized WDS solution method in a reliable way. WDSLib’s modular design
also allows the users to profile the computation time of each individual component of
an algorithm. Functions communicate through well-defined interfaces and the function
code has been factored to minimize development and testing cost. This architecture allows
customized simulation applications (i) to combine the functions of interest and (ii) to
implement new solution algorithms to extend the functionalities of WDSLib.
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Design Considerations 2: Memory Considerations

Care was taken to minimize the memory footprint of executing code (in order to reduce
memory requirements and prevent memory leaks) in the interest of the toolkit efficiency
and toolkit robustness. Reducing memory requirements allows the solution of larger WDS
problems for a given memory capacity. In WDSLib, memory reduction was achieved
through both, using sparse matrix representations and the systematic allocation and
deallocation of working structures in the C++ code. The matrices used in WDS simulation
are often sparse, with the density of the full node-arc incidence matrix being only 2/nj .
Consequently, it is more efficient to store these matrices using sparse storage schemes which
store only the non-zero elements of the matrix and pointers to their locations (Davis et al.
2013). It is important to note that the choice of a sparse matrix representation is made based
on (1) the storage requirements of the matrix and (2) common search orders to column
elements and row elements. This latter factor means that the best format for sparse matrix
representation varies with the preponderant orders of search, (row-wise, column-wise,
or both), employed by each method. There is a number of common storage formats for
sparse matrices (Compressed column storage (CCS) of Duff et al. (1989)), Compressed row
storage (CRS), Block Compressed column storage (BCCS), Block Compressed row storage
(BCRS), and Adjacency lists). As will be described shortly, WDSLib, uses a modified
adjacency-list representation.

Other implementations use a variety of storage schemes. In EPANET 2, theA1 matrix
is stored as two arrays of node indices, which represent start nodes (SN ) and the end nodes
(EN ) of each pipe. The i− th entry of the SN and EN arrays represent the start node
and end node of i− th pipe of the network. This storage format minimizes the memory
required to store theA1 matrix because only the indices are required to be stored because
[A1](i,SNi) = −1 and [A1](i,ENi) = 1. As shown in Table 3.4, searching through rows
(pipes) of matrices that are stored in this format is efficient. However, searching though the
columns (nodes) is relatively inefficient. This storage format is also used in CWSnet.

Both CCS and CRS are used in the FCPA implementation reported in Simpson et al.
(2012), and the RCTM implementation reported in Elhay et al. (2014). The partial update
null space method (Abraham and Stoianov 2015) used CCS. The memory requirement for
storing the A1 matrix in CCS is 2 × nnz + nj + 1 as shown in Table 3.4. This storage
scheme is fast for searching through columns (nodes) of matrices that are stored in CCS
and slow for searching though rows (pipes).

Table 3.3. The adjacency-list matrix presentation

Node Index adjacent to Size
1 {(vi, ej )|vi ∈ N (v1) ej connects v1 and vi} Deg(v1)
2 {(vi, ej )|vi ∈ N (v2) ej connects v2 and vi} Deg(v2)
3 {(vi, ej )|vi ∈ N (v3) ej connects v3 and vi} Deg(v3)
...

...
...

nj {(vi, ej )|vi ∈ N (vnj ) ej connects vnj and vi} Deg(vnj )

In WDSLib, a modified adjacency list, described in Table 3.3, tailored for WDS
hydraulic simulation, is used. An adjacency list for an undirected and unweighted graph
consists of nj unordered lists for each vertex ni, which contains all the vertices to which
vertex ni is adjacent. The network that is shown in the Fig. 3.3 has one source, three
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Table 3.4. Different sparse representations forA1

Types size(A1) size(A2) size([A1 A2]) Column Search Row Search
CCS 2× nnz + nj + 1 2× nnz + nf + 1 4× np + nn + 2 O(n) O((nj )n)
CRS 2× nnz + np + 1 2× nnz + np + 1 6× np + 2 O((np)n) O(n)
EPANET - - 2× np O(n) O((nj )n)
WDSlib - - 4× np O(n) O(n)

nodes, and four pipes. The adjacency list for this network can be described by four lists
{{2, 3}, {1, 4}, {1, 4}, {2, 3}}. Each list describes the set of adjacent vertices of a vertex
in the graph. For example, the first list, {2, 3}, represents that the vertex 1 is adjacent to
the vertex 2 and vertex 3.

Fig. 3.3. A simple sample network. Numbers denote junction and pipe indices in the
network.

The adjacency list is modified to include a directed and weighted graph for WDSLib.
Thismodified adjacency list for a directed andweightedWDSgraph consists ofnj unordered
lists for each vertex ni. This list contains all the vertex and edge pairs to which vertex ni is ad-
jacent. For example, the adjacency list for the same network that is shown in the Fig. 3.3 can
be described by four lists {{(2, 1), (3, 4)}, {(1, 1), (4, 2)}, {((1, 4), (4, 3)}, {(2, 2), (3, 3)}}.
Each list represents the set of adjacent vertex and edge pair of a vertex in the graph. For
example, the first list, {(2, 1), (3, 4)}, describes that the vertex 1 is adjacent to the vertex 2
by edge 1 and the vertex 3 by edge 4. It is fast to search through both the rows and columns
of theA1 matrices that are stored in this format.

In addition to these optimized encodings, bothG and F are diagonal square matrices,
which require less storage when stored as vectors than in sparse matrix form. The storage
methods used for the variables in WDSLib and their associated memory usage are given in
Table 3.5.

As a final note, to offer further assurance of the correctness of memory management
in WDSLib, Valgrind (Nethercote and Seward 2007), a programming debugging tool,
was deployed during testing to detect any memory leaks, memory corruption, and double-
freeing.
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Table 3.5. Vectors and matrices in WDSLib

variables type size storage method memory requirements
q, L, D, r vector np × 1 vector np× double
h, d vector nj × 1 vector nj× double
G, F matrix np × np vector np× double
A1,A2 matrix np × nj sparse matrix (2× np)× integer
L21 matrix (np − nj ) × nj sparse matrix ≤ (np − nj ) × nj × integer

Table 3.6. WDS variables and units

Variables SI unit US Customary unit Scaling factor
Length m ft L0 = max (L)
Diameter m ft D0 = max (D)
Nodal head m ft h0 = max (el)
Source elevation m ft el0 = max (el)
flow m3/s ft3/s q0 = max (d)
demand m3/s ft3/s d0 = max (d)
G, F s/m2 s/ft2 G0 =

L0
Dp

0
|q0|n−1

Design Considerations 3: Numerical Considerations

The calculations in WDSLib are performed in C++ under IEEE-standard double precision
floating point arithmetic with machine epsilon εmach = 2.22× 10−16. Invariant terms and
parameters in every equation were evaluated in advance and replaced by full 20-decimal
digit accuracy constants. Intermediate results of calculations, (which are not easily
accessible in EPANET), can be output at the user’s request. The stopping tolerance and
stopping test can be set by the user either through the configuration file or by the relevant
setter method in the Parameter class.

In the construction of any numerical solver, there are two primary dangers that are
associated with floating point arithmetic that cannot be ignored: (i) subtractive cancellation
and (ii) overflow and underflow. To avoid problems associated with these, all input variables
are scaled to a similar range to minimize the risk of avoidable computational inaccuracy or
failure in floating point arithmetic. It is important to note that unscaled or poorly scaled
variables can unnecessarily confound a computation. These scaled input variables are
physically dimensionless, which allows computation which is independent of the system of
measurement units.

The variables, that are provided in EPANET input file for the package, and their
corresponding units in US customary and SI units are shown in Table 3.6. As with the
input variables, the system equations were modified to use dimensionless variables. Once
the stopping test is satisfied, the original variables are then recovered by reversing the initial
scaling. Details of the scaling are shown in the Appendix A in Section 3.13.

To help ensure that WDSLib solution methods are both fast and reliable. The sparse
matrix operations are implemented using SuiteSparse (Davis et al. 2013). SuiteSparse is
a state-of-the-art sparse arithmetic suite with exceptional performance, from which the
approximate minimum degree permutation (AMD) and the sparse Cholesky decomposition
routines have been used.
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Design Considerations 4: Timing Considerations

When executing WDSLib, each function reports the time spent in it by sampling wall
clock time at the start and end of its execution. Although the overhead for sampling
wall clock time is small, there are at least two special considerations involved in the
interpretation of these timings: (i) the operating system, at its own discretion, may launch
background processes (for example anti-virus software), which will distort the timings and
(ii) extrapolating the timing for multiple hydraulic simulations from a single analysis (as
may be required, for example, in a genetic algorithm or other evolutionary algorithm run)
must be done with care because the relationship between the different settings is not linear.

This concludes the discussion of the main considerations concerning the global design
of WDSLib. In the following, key details of the implementation of selected parts of the
solution processes are described.

3.8.2 Key Improvements to Solution Processes
The WDSLib implementation makes several improvements to extant solution processes.
This section focuses on the improvement of the network partitioning processes in FCPA
and RCTM.

Key Improvement 1: Improvement to partitioning in Forest Search

The forest-core partitioning algorithm (FCPA) in this paper is a substantial improvement
over the algorithm of the original paper (Simpson et al. 2012). Specifically the original
FCPA algorithm almost always required many sweeps of the columns (nodes) of theA1
matrix in order to reduce the forest component down to the core component. The refined
algorithm exploits the adjacency list representation of theA1 matrix so that the partitioning
process is achieved in a single sweep. This improves the speed of the partitioning process
from being O(anp) to O(np + nf ) where a is the depth of the deepest tree-component in
the forest. This can lead to substantial time savings in the case when a is relatively large.

The pseudo-code for this refined forest search algorithm is shown in Appendix B in
Section 3.14 This algorithm traverses each tree component in turn from its leaf nodes,
which maximizes the locality of operations with respect to the graph representation. In this
algorithm, a node is identified as a leaf node when its node degree is one. Every time a
leaf node, node k, is identified, the node pointer is moved to its adjacent node, node k, and
the node degree of node k is reduced by one. This process repeats if the adjusted node
degree of node k is one. Otherwise, node k is the root node for this tree and the algorithm
progresses to the next tree in the forest.

Key Improvement 2: Improvement to Spanning Tree Search

The reformulated co-tree flows method (RCTM) in this paper is also a substantial improve-
ment over the algorithm of the original paper (Elhay et al. 2014). The original spanning
tree search algorithm sweeps the rows of the A1 matrix (pipes) in order to identify the
singleton rows and their corresponding columns. The spanning tree search in the original
RCTM required a sweep of of theA1 matrix to identify the next pipe in the spanning tree.
This algorithm is O(npnj ), which is relatively inefficient.

The pseudo-code for the refined spanning tree search algorithm is shown in Appendix
C in Section 3.15 This improved algorithm takes as input the adjacency list describing the
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network and the pipe indexes of the core component of the network from the Algorithm
1 (if the FCPA is used). In this algorithm, all water sources are the starting point of the
search process, SN , and marked as visited. The nodes in SN are then used as to identify a
spanning tree within the WDS. This is achieved by repeatedly finding all adjacent pairs,
node t and pipe s, of and removing the first node in SN by using the adjacency list. If the
adjacent node t is not visited then node t is inserted into the spanning-tree node vector,
STN , and search node vector, SN , and node t is marked as visited and pipe s to the
spanning-tree pipe vector, STP , and pipe s is marked as visited. If the adjacent node t is
visited and the pipe s is not visited then the pipe s is inserted into the co-tree pipe vector,
CTP and mark pipe s as visited. This process is repeated until SN is empty. The overall
time-complexity of this algorithm is O(np + nj ) (compared to O(npnj) as mentioned
above) is the same as the best asymptotic complexity of breadth-first search on a graph.

3.9 Example Applications
WDSLib consists of a collection of functions which can be used either as a standalone
application for fast one-off simulations or as a library of software components that can be
integrated into a user’s own WDS solution processes. This section presents two example
applications. The first application is the setup for a basic one-off simulation of a WDS.
The second application (described in subsection 3.9.1) presents an example using WDSLib
to implement a simple 1+1 Evolutionary Strategy (Beyer and Schwefel 2002) (1+1-ES or,
more commonly, 1+1EA) for sizing pipes in a WDS.

Example 1 - Once-off Simulation
The setup for WDSLib as a standalone application is straightforward. The user provides a
configuration text file that specifies input and output filenames; the name of the solver; the
desired output variables; and simulation parameters. These values have sensible defaults
so the user can set up the solver by using a minimal configuration such as that shown in
Fig. 3.4. By using this config file, WDSLib is configured to run a single hydraulic analysis
of the network that is stored as say "hanoi.inp", an EPANET- formatted input file, under
"Network/" sub-directory, using the reformulated co-tree flows method with the forest-core
partitioning algorithm. The full set of configuration parameters for once off simulations is
shown in Fig. 3.10 in Appendix 3.16.

3.9.1 Example 2 - A Simple Network Design Application
As a minimalist example of the application of WDSLib to a WDS network design problem,
the following example uses 1+1EA for optimally sizing pipe diameters. This algorithm
takes an existing network with randomly generated pipe diameters and optimizes the
network to minimize cost, subject to given pressure head constraints. A 1+1EA is a very
simple evolutionary strategy (Beyer and Schwefel 2002) which starts with a randomly
generated individual (in this case a WDS diameter configuration). This 1+1EA then
progresses by applying a mutation to a random pipe diameter size, and then evaluating the
new individual. If the new individual is better it replaces the old network. This process
continues in a loop until a given number of evaluations is reached.
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1 [ InputFile ]
2 <directory > %the input file directory
3 Network /
4 <file > %the input file name
5 hanoi.inp
6 <end >
7 % --------------------------------------------------%
8 [ controlFlag ]
9 <SolverFlag > %1 for GGA 2 for RCTM
10 2
11 <FCPAFlag >
12 1
13 <end >
14 % --------------------------------------------------%

Fig. 3.4. A minimal configuration file to run the GGA in WDSLib

The C++ code for this example is shown in Figs. 3.5, 3.6, 3.7, and 3.8. If the name of
the file containing this code is: simpEA.cc then the simplest command to compile this
code is:

g++ simpEA.cc -o simpEA -Llib -lWDSLib

To run this code the user would type:

./simpEA config.txt

where config.txt contains the same configuration text as for the previous example.
Starting with the main function in Fig. 3.5, line 15 points to the config file specified by

the command line. The next two lines initialize the result and the simulation according
to the configuration file. This is followed by the L1a module to perform the user selected
L1a functions. Line 19 generates the initial pipe diameters of the network and line 20
initializes the workspace for the mutated string. Line 23 sets the pipe diameters of the
network. Line 24 evaluates the current network configuration. The permutation and scaling
for the current individual is reversed by L1b in line 25 of Fig. 3.5. Line 26 calculates the
fitness of the current network configuration by using the evaluate function in Fig. 3.8.
This function applies a penalty for pressure head constraint violations and pipe material
costs. The body of the 1+1EA is contained in the selection operator and mutation operator
that follow. Lines 27 to 31 compare the string in the current generation with the current
best string if the individual p1, as measured by evaluate is better than the individual p2
then p1 replaces p2. Line 32 mutates the current network, p2, using mutate (see Fig. 3.7).
The mutate function changes the diameter of a randomly selected pipe in the network to a
randomly selected diameter, chosen from a set of commercially available pipe diameters.
The mutated individual, stored in the workplace p1, is used as the network configuration
for the next iteration. Until the total number of generations is reached, the user selected
information about the best individual is outputted by dispResult in line 34 of Fig. 3.5.

It should be noted that the algorithm described above can be used to design a simple
WDS but is not optimal in terms of speed of convergence. Other EA’s such as genetic
algorithms (Simpson et al. 1994) will perform better. However the above example has the
advantage of simplicity and contains all the basic elements that a GA would use when
interacting with WDSLib.

40



Chapter 3. Publication 1: WDSLib: A Water Distribution System Simulation Test Bed

1 # include " Simulation .h"
2 # include " result .h"
3 using namespace std;
4 # define GTN 100000 //

the total number of generations
5 /* available pipe diameters ( inches )*/
6 vector <int > ADiameter

={36 ,48 ,60 ,72 ,84 ,96 ,108 ,120 ,132 ,144 ,156 ,168 ,180 ,192 ,204};
7 /* dollar per unit length */
8 vector <int > unitCost

={93.6 ,133.7 ,176.3 ,221 ,267.6 ,315.8 ,365.4 ,416.5 ,468.7 ,
9 522.1 ,576.6 ,632.1 ,688.5 ,745.1 ,804.1};

10 vector <int > generateinitialDiameters (int); // see fig. 6
11 vector <int > mutate (vector <int >); // see fig. 7
12 double evaluate (Net*, Result *); // see fig. 8
13 int main(int argc , char *argv []){
14 srand (1);
15 char * config =argv [1];
16 Result * result =new Result ();
17 Simulation * simulation1 =new Simulation (); // initialize the

simulation class
18 Net *net= simulation1 ->L1a(result , config ); // perform the

L1a functions
19 vector <int > p1= generateinitialDiameter (net ->getNp ());// initial

guesses of diameter
20 vector <int > p2;

// work space for current best
21 double cost , currentbest ;
22 for(int i=0;i<GTN;i++){
23 simulation1 ->setD (&p1 ,& ADiameter ,net -> getPIPE () ->Diascale ());
24 simulation1 ->solve( result ); //

perform the L2 and L3 functions
25 simulation1 ->L1b( result ); //

reverse the permutation
26 cost= evaluate (result ,net ,&p1); // evaluate

the network cost
27 if(cost < currentbest ||i==0){ //

selection operator
28 currentbest =cost;
29 p2=p1;
30 cout <<i<<"\t"<<currentbest <<"\t"<<penaltyCost <<endl;
31 }
32 p1= mutate (&p2);

// mutation operator
33 }
34 simulation1 -> dispResult ( result );
35 delete simulation1 ;
36 delete result ;
37 return 0;
38 }

Fig. 3.5. Example code for 1+1EA for Pipe Sizing
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1 vector <int > generateinitialDiameters (int np)
2 {
3 vector <int > Diameter = vector <int >(np);
4 for (int i=0;i<np;i++)
5 Diameter [i]= rand ()% ADiameter .size (); // set the index for

pipe diameters
6 return Diameter ;
7 }

Fig. 3.6. Implementation code for pipe size initialization

1 vector <int > mutate (vector <int >* string ){
2 vector <int > string1 ;
3 string1 =* string ;
4 int aa=rand ()%( string ->size ()); // choose which pipe to mutate
5 int a=rand ()% ADiameter .size (); // choose a pipe diameter after

the mutation
6 ( string1 )[aa]=a; // set the pipe index
7 return string1 ;
8 }

Fig. 3.7. Implementation code for the mutation operator

1 double evaluate ( Result * result ,Net* net ,vector <int > *p1) {
2 PIPE* pipe =net -> getPIPE ();
3 double np=net ->getNp ();
4 double nj=net ->getNj ();
5 double P=1e7;
6 double cost1 =0;
7 penaltyCost =0;
8 vector <double > hsol=result -> getHsol (); // get the vector of

nodal heads
9 vector <double >* L=pipe ->getL (); // get the

vector of pipe lengths
10 vector <double >* zu=net -> getNODE () ->getZU (); // get the vector of

nodal elevations
11 double Lscale =pipe -> Lenscale (); // get the

scaling factor for length
12 for (int i = 0; i<np; i++)
13 cost1 +=(*L)[i]* Lscale * unitCost [(* p1)[i]]; // calculate the

material cost
14 for (int i = 0; i<nj; i++)
15 if (( hsol)[i] -(*zu)[i]<minP)
16 penaltyCost +=( minP -( hsol)[i]+(* zu)[i])* scaleP ;// calculate

penalty cost
17 return cost1+ penaltyCost ;
18 }

Fig. 3.8. Implementation code for the evaluation function
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This concludes the presentation of examples in this work. The next section presents a
case study that illustrates the performance of WDSLib in a multi-simulation setting.

3.10 Case Study
The following presents timing results for WDSLib running the 1+1EA described in the
previous section. The results below compare the four different solvers plus EPANET2.
Note, that detailed timings for once-off simulations comparing the four methods can be
found in Qiu et al. (2018). Three networks were benchmarked in these experiments. These
were the N1, N3, and N4 case-study networks used in Simpson et al. (2012). Table 3.7
summarizes the characteristics of these networks.

Table 3.7. Benchmark networks summary

Full Network Forest & Core Networks Co-tree Network
Network np nj ns nf (nf /n#

p ) njc npc nct
N1 934 848 8 361 (38%) 573 487 84
N3 1975 1770 4 823 (42%) 1152 947 205
N4 2465 1890 3 429 (17%) 2036 1461 757

Table 3.8 shows the results of the 1+1EA from Fig. 3.5 for the GGA, GGA with FCPA,
RCTM, RCTM with FCPA and the EPANET2 solvers. For each of the four WDSLib
solvers above, the timings are given for running the EA with and without the L1 modules
hoisted out the main EA loop. Each experiment evaluates the WDS network 100,000 times.
And the best performing method for each network is highlighted in bold. It is important to
note that 1+1EA using both the GGA and the WDSLib

Table 3.8. The actual 1+1 Evolutionary Algorithm run-time with 100,000 evaluations
(min.) for each of the four solution methods applied to networks N1, N3, and N4

GGA GGA with FCPA RCTM RCTM with FCPA EPANET
min. min. min. min. min.

N1 6.73 4.64 4.53 4.13 9.81
N3 15.21 9.79 13.75 10.30 26.43
N4 21.14 16.29 23.92 21.93 67.11

The results show that the EA runs using WDSLib are substantially faster than the
runs using the EPANET2 solver. This is, in part, due to the fact that the EPANET2
solver is designed as a standalone solver which does not facilitate lifting out of invariant
computations from the EA loop.

As a demonstration of how the performance of an EA can be traced Fig. 3.9 shows the
evolution of the fitness values of the N1 network. These traces were extracted from a file
written to in line 9 in Fig. 3.8. As can be seen, the cost and the pressure head violation
terms drop during the EA run. Note that there will be considerable variation between
1+1EA runs due to its highly stochastic nature.
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3.12 References
References are included in bibliography Chapter 7. In addition, the submitted paper is
given in Appendix A.

3.13 Appendix A Scaling
In WDSlib, all input variables are scaled to a similar range to minimize the risk of avoidable
computational inaccuracy or failures in floating point arithmetic.

The variables are scaled as following: Ĝ = G/G0, q̂ = q/q0, ĥ = h/h0, êl = el/el0,
d̂ = d/d0 whereG, h, el, and d are the original input vectors, G0, h0, el0, and d0 are the
scaling factors and Ĝ, ĥ, êl, and d̂ are the scaled input vectors.

By substituting G = ĜG0, q = q̂q0, h = ĥh0, el = êlel0, d = d̂d0, Eq. (3.1) and
Eq. (3.2) become:

G0q0Ĝq̂ − h0A1ĥ− el0A2êl = 0 (3.17)

q0A1
T q̂ − d0d̂ = 0 (3.18)

Eq. (3.17) and Eq. (3.18) can be further simplified by introducing the notation:
a = h0/ (G0q0), b = el0/ (G0q0), and c = d0/q0:

Ĝq̂ − aA1ĥ− bA2êl = 0 (3.19)

A1
T q̂ − cd̂ = 0 (3.20)

with the following matrix form:
(

Ĝ −A1
−A1

T O

)(
q̂
aĥ

)
−
(
bA2êl
cd̂

)
= 0. (3.21)

Finally, the network can be solved by using Eq. (3.22) and Eq. (3.23):

ĥ(m+1) =
1
a
U−1[−cd̂−A1F̂

−1[(F̂ − Ĝ)q̂(m) + bA2êl]] (3.22)

q̂(m+1) = q̂(m) + aF̂−1A1ĥ
m+1 − F̂−1(Ĝq̂(m) − bA2êl) (3.23)

Choice of scaling factors

The choice of the scaling factor, despite much research, is not well understood. In this
subsection, a choice for each scaling factor, based on the experience of the authors, is
recommended. There are two types of variables and parameters that need to be scaled:
invariants and variants.

Data sets that have very wide range of values can confound numerical accuracy. As a
result, it may be preferable to scale the data to a narrower range. The default scaling factor
for each of the input data is chosen to be its maximum absolute value. For example, the
scaling factor for demand is max(d), so that its values range from zero to one.
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In contrast, it is more difficult to choose a scaling factor a priori for values that vary
between iterations (variants). This is because the range of variants can change as the
iteration progresses. As a result, the intermediate and the final results might not be within
the same range as the initial guesses.

There are two variants that need to be scaled: q, h. A good choice of the scaling factor

for the flow rate is
∑
d

nf
because the demand at each node must be satisfied by the water

sources in the WDS and it is a reasonable assumption that the all demands are equally
carried by each pipe that is directly connected to a water source and a good choice of the
scaling factor for nodal head ismax(el) because the maximum nodal head cannot exceed
the maximum elevation head of the fixed nodes.

During the process of the computation, the matricesG and F are scaled because their
input variables are scaled. For the Darcy-Weisbach head loss model, the diagonal elements
of the matrixG are modelled by:

[G]jj = diag
{(

8
π2g

)
Lj
D5
j

fj |qj |
}

for j = 1, . . . , np

where the friction factor f is modelled by the Swamee-Jain formula:

fj =





64
Rj

if Rj ≤ 2000
∑3
k=0(αk + βk/θj )(Rj/2000)k if 2000 < Ri < 4000
0.25

log2(θj) if Rj ≥ 4000

(3.24)

where θj =
εj

3.7Dj
+

5.74
R0.9
j

and Rj =
4qj
πυDj

for j = 1, . . . , np. Note that αk and βk are

constant, the values of which can be found in Elhay and Simpson (2011)
In order to make sure the Reynolds number, a dimensionless variable, is not affected by

scaling, ν̂ =
D0
q0
ν is introduced, Reynolds number Rj becomes

4q̂jq0
πν̂ (q0/D0)D̂jD0

, which

can be further simplified to
4q̂j
πν̂D̂j

, where the scaling factors are canceled.

In order to make sure f is also not affected by the scaling, ε̂ = D0ε is introduced, θj
becomes

θj =
ε̂jD0

3.7D̂jD0
+

5.74
R0.9
j

for j = 1, . . . , np

which can be further simplified to

θj =
ε̂j

3.7D̂j
+

5.74
R0.9
j

for j = 1, . . . , np

where the scaling factors are canceled. It is evident that the friction factors remain the
same because the values for the only two variables R and θ are unchanged.

Finally, diagonal elements ofG can be expressed as: G0Ĝ, where G0 = (
8
π2g

)
L0
D5

0
|q0|

and [Ĝ]jj = diag
{
L̂j
D̂5
j

fj |q̂j |
}

for j = 1, . . . , np.

For the Hazen-Williams head loss model, the diagonal elements of the matrix G

are modelled by: [G]jj = diag

{
10.67Lj

C1.852
j D4.871

j

|qj |(n−1)
}

for j = 1, . . . , np, where Cj
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is the Hazen-Williams coefficient for the j-th pipe. The Hazen-Williams coefficient,
unlike the friction factor in the Darcy-Weisbach head loss model, is independent of
flow rate, pipe wall condition, and flow regimes, which means it is an independent
variable. As a result, the scaling factor for Hazen-WilliamsG can simply be derived by:

[G]jj = diag
{

10.67L̂jL0
Ĉ1.852
j C1.852

0 D̂4.871
j D4.871

0
|q̂j |(n−1)|q0|(n−1)

}
and the equation for diagonal

elements of G for Hazen-Williams equation can be expressed as: G = diag {G0Ĝ},
where G0 =

10.67L0
C1.852

0 D4.871
0
|q0|(n−1) and [G]jj = diag

{
L̂j

Ĉ1.852
j D̂4.871

j

|q̂j |(n−1)
}

for j =

1, . . . , np.

47



Chapter 3. Publication 1: WDSLib: A Water Distribution System Simulation Test Bed

3.14 Appendix B Forest Search Algorithm

Algorithm 1: Forest Search Algorithm
input :Adjacency list, d and Deg
output :Forest, RootNode, q and d

1 k ← 1;
2 for i← 1 to nj do
3 n = i;
4 while Deg(n) == 1 do
5 for (Adjp,Adjv) ∈ Adj(n) do
6 if Deg(Adjv) == 1 then
7 Forest[k]←Union(Forest[k], (Adjp, n))
8 else
9 q(Adjp) ← d(n);
10 d(Adjv) ← d(Adjv) + d(n);
11 Deg(Adjv) ← Deg(Adjv) − 1;
12 n = Adjv;
13 if Deg[n] ≥ 2 then
14 RootNode[k] = n;
15 k ← k + 1;
16 end if
17 end if
18 end for
19 end while
20 end for
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3.15 Appendix C Spanning Tree Search Algorithm

Algorithm 2: Spanning Tree Search Algorithm
input : adjList
output :Spanning Tree and Co-Tree elements

1 STP ← {} ; // initialize an empty vector for spanning tree
pipes

2 STN ← {} ; // initialize an empty vector for spanning tree
nodes

3 CTP ← {} ; // initialize an empty vector for co-tree pipes
4 V N ← {} ; // initialize a boolean vector for visited nodes
5 V P ← {} ; // initialize a boolean vector for visited pipes
6 SN ← {} ; // initialize an empty set of searching nodes
7 for i← nj to nf do
8 V N [i] = true ; // mark the source i as visited
9 SN ← i ; // insert this node into the search node vector

10 end for
11 while SN is not empty do
12 i← the first element in SN ;
13 foreach (Adjp,Adjv) ∈ Adj[i] do
14 if VN[Adjv] == false then
15 STP ← Adjp ; // mark pipe as a spanning tree pipe
16 STN ← Adjv ; // mark node as a corresponding spanning

tree pipe
17 SN ← Adjv ;
18 VN[Adjv]=true;
19 VP=[Adjp]=true;
20 end if
21 else if VN[Adjp]==false then
22 CTP ← Adjp ; // removed pipe j as a singleton pipe
23 VP[Adjp]=true;
24 end if
25 end foreach
26 remove i from SN ;
27 end while
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3.16 Appendix D Complete configuration files

1 [ InputFile ]
2 <directory > % REQUIRED INFORMATION the input file directory
3 WDSnetwork /
4 <file > % REQUIRED INFORMATION the input file name
5 n1.inp
6 <end > %end of input file
7 % --------------------------------------------------%
8 [ Parameter ]
9 <maxIter > % maximum number of iteration
10 50
11 <initV > % initial veloc ity
12 0.3048 %1ft/s
13 <StopTol > % stopping tolerance used
14 1.000e-6
15 <NormTyp > %norm type 1 for 1-norm , 2 for 2-norm , 3 for inf -

norm
16 3.0
17 <StopTest > % stopping test used 1 for q-norm , 2 for h-norm 3 for

q&h-norm
18 1
19 <SerP > % service pressure
20 20.0
21 <MinP > % Minimum pressure
22 40.0
23 <Demandfuc > %type of consumption function
24 1.00
25 <MaxNpIterResult > %np treshold for disping iterates result
26 50.0
27 <MinImproTol >
28 1.0000e-3
29 <end > %end of parameter
30 % --------------------------------------------------%
31 [ dispFlag ]
32 <BasicFlag >
33 false
34 <NetInfoFlag >
35 false
36 <ConvergenceFlag >
37 false
38 <StatFlag >
39 false
40 <ScalingFlag >
41 0
42 <NodalResultflag >
43 0
44 <LinkResultflag >
45 false
46 <QitersFlag >
47 false
48 <HitersFlag >
49 false
50 <timeFlag >
51 false
52 <end > %end of dispFlag
53 % --------------------------------------------------%
54 [ controlFlag ]
55 <SolverFlag > %1 for GGA 2 for RCTM 3 for SMPA 4 for PDM
56 1
57 <FCPAFlag >
58 0
59 <end > %end of controlFlag
60 % --------------------------------------------------%

Fig. 3.10. A configuration file to run the RCTM in WDSLib
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3.17 Appendix E Nomenclature
Acronyms
CT Co-tree
CTP Co-tree pipes
DW Darcy-Weisbach head loss formula
FCPA Forest-core partitioning algorithm
GGA Global gradient algorithm
HW Hazen-William head loss formula
WDS Water distribution system
RCTM Reformulated co-tree flows method
nnz Number of non-zeros
STP Spanning tree pipes
STN Spanning tree nodes
ST Spanning tree
Constants
g Gravitational acceleration constant
ν Kinematic viscosity of water
FCPA variables
C Permutation matrix for the nodes in the core, Ec, of the network
Ec Set of core pipes (edges) in Gc
Ef Set of forest pipes (edges) in Gf
Gc Core subgraph
Gf Forest subgraph
P Permutation matrix for the pipes in the core, Ec, of the network
S Permutation matrix for the pipes in the forest, Ef ,of the network
T Permutation matrix for the nodes in the forest, Ef , of the network
Vc Set of core nodes (vertices) in Gc
Vf Set of forest nodes (vertices) in Gf
Hydraulic variables for GGA
A1 Unknown-head node-arc incidence matrix
A2 Fixed-head node-arc incidence matrix
d Vector of nodal demands
di Demand of node i
D Vector of pipe diameters
Dj Diameter of pipe j
el Vector of Fixed-head nodes elevation heads
elk Fixed-head nodes elevation heads at node k
E Set of pipes in graph G
EN Vector of end nodes
EN j End nodes of pipe j
f Vector of Darcy-Weisbach friction factors
f j Darcy-Weisbach friction factor of pipe j
F Diagonal Matrix of generalized headloss derivatives when the headloss is modelled

by either the HW and the DW
[F ]jj Generalized headloss derivatives for pipe j
G Full WDS graph
G Diagonal matrix with elements rj |qj |n−1
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[G]jj rj |qj |n−1

h Vectors of unknown heads
hi Heads at node i
J Jacobian matrix
L1a Functions run once before multiple simulation
L2a Functions run once before hydraulic assessment
L3 Functions run every iteration
L2b Functions run once after hydraulic assessment
L1b Functions run once after multiple simulation
L Vector of pipe lengths
Lj Length of pipe j
n Head loss exponent
nf Number of forest pipes and nodes
nj Number of junctions
np Number of pipes
nr Number of fixed-head nodes
nst Number of ST pipes and nodes
nct Number of CT pipes
q Vector of unknown flows
qj Flow in pipe j
R Vector of Reynolds numbers
Rj Reynolds number for pipe j
SN Vector of start nodes
SN j Start nodes of pipe j
U Diagonal matrix of Schur Complement when headloss is modelled by HW
V Generalized Schur Complement when the headloss is modelled by both the HW

and the DW
V Set of node in graph G
zi Elevation at node i
αk Interpolating spline coefficient
βk Interpolating spline coefficient
θ Vector as defined in Eq. (3.24)
ε Vector of pipe roughness heights
εj Roughness height for pipe j
RCTM variables
Est Set of ST pipes (edges)
Ect Set of complementary CT pipes (edges)
K1 Orthogonal permutation matrix for pipes in the ST
K2 Orthogonal permutation matrix for pipes in the CT
L21 A part of a basis for the null space of the permuted node-arc incidence for the

RCTM
R Orthogonal permutation matrix for nodes in the ST
Vst Set of ST nodes (vertices)
W Schur complement for the RCTM

52



Chapter 4

Publication 2: A Benchmarking Study of
Water Distribution System Solution

Methods

4.1 Synopsis
In Chapter 3, WDSLib, a numerically robust, efficient and accurate C++ library, was
developed for steady-state hydraulic simulation of WDS networks. However, different
solution methods exploit different properties of the WDS network. For example, the
FCPA exploits the linear forest component of the network, while the RCTM exploits the
relationship between the flows in the spanning tree pipes and the flows in the co-tree pipes.
The relative performance of solvers in terms of speed, rate-of-convergence, and accuracy
depends, amongst other things, on the topology of the target network: the size of the forest
component, the number of network loops and the density of these network loops. It is
difficult to evaluate the impact of these topology factors by only examining the incidence
matrix that describes the pipe network connectivity. As a result, the best method to use for
a particular network cannot be easily determined a priori.

In this research, efficient implementations of four solution methods, the global gradient
algorithm (GGA), theGGAwith the forest-core partitioning algorithm (FCPA), reformulated
co-tree flow method (RCTM), and the RCTM with the FCPA, are compared on eight case
study benchmark networks containing between 934 and 19647 pipes and between 848 and
17971 nodes. These simulations were carried out under both a once-off simulation setting
and a multiple simulation setting.

An important objective of this research is to ensure a fair comparison between solution
methods. To achieve this, a unified framework has been developed for the mathematical
formulations of four solution methods, the GGA with and without FCPA, RCTM with and
without FCPA, for WDSs. Each of the solution methods is presented in terms of pure
orthogonal permutations of the system of equations to minimise the intermediate steps to
ensure a fair comparison between the solution methods.

4.1.1 Citation
Qiu, M, Simpson, AR, Elhay, S & Alexander, B 2018, ‘A Benchmarking Study of Water
Distribution System Solution Methods’, Manuscript submitted for publication to Journal
of Water Resources Planning and Management.
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4.2 Abstract
In recent years a number of new WDS solution methods have been developed. These
methods have been aimed at improving the speed and reliability of WDS simulations.
However, to date, these methods have not been benchmarked against each other in a reliable
way. This research addresses this problem by using a newly developed software platform,
WDSLib, as a fair basis for a detailed comparison of the performance of these methods
under different settings. In this work, efficient implementations of three solution methods,
the Global Gradient Algorithm (GGA), the forest-core partitioning algorithm (FCPA), and
the reformulated co-tree flow method (RCTM), and combinations of these, are compared
on eight case study benchmark networks containing between 934 and 19647 pipes and
between 848 and 17971 nodes. These simulations were carried out under both a once-off
simulation setting and a multiple simulation setting (such as occurs in a genetic algorithm).
Timings for these benchmark runs are decomposed into stages so that the performance of
these methods can be easily estimated for different settings. The results of this study will
help inform the choice of solution methods for given combinations of network features and
given design settings. In addition, timing results are compared with EPANET2.

4.2.1 Keywords
water distribution systems solution; Forest-Core Partitioning Algorithm; Global Gradient
Algorithm; Reformulated Co-tree Flow Method; hydraulic analysis; EPANET.

4.3 Introduction
Water Distribution Systems (WDSs) are frequently modeled by a system of nonlinear
equations, the steady-state solutions of which, the flows and heads in the system, are used
in WDS design, management and operation. In a design setting, the solutions might be
used as part of an optimization problem to determine the best choices of some network
parameters such as pipe diameters. In a management setting, the solutions might be used
for the calibration of network parameters such as demand patterns. In an operational
environment, new solutions might be needed to adjust control device settings whenever
new supervisory control and data acquisition (SCADA) information becomes available.

The most widely used WDS simulation method in current use is the Global Gradient
Algorithm (GGA) (Todini and Pilati 1988), which solves the non-linear system of equations
representing the WDS. The GGA and its implementations exhibit excellent convergence
characteristics for a wide range of starting values and a wide variety of WDS problems.
However, some networks have structural properties which can be exploited to further
improve the efficiency of the solution process. The GGA, a range space method, exploits
the block structure of the full Jacobian matrix in order to produce a smaller key matrix in the
linearization of the Newtonmethod. The reformulated co-tree flowsmethod (RCTM) (Elhay
et al. 2014), a null-space method (Benzi et al. 2005), can further exploit the block structure
of the Jacobian matrix to produce, in realistic WDSs, an even smaller key matrix. This
is achieved by dealing separately with the spanning tree and the co-tree in the Newton
method linearization.

Another avenue for reducing computation can be exploited by using the Forest-Core
Partitioning Algorithm (FCPA) (Simpson et al. 2012) to separate the problem into its
linear and non-linear components. The observation underpinning the FCPA is that most
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WDSs have trees, the collections of which are called forests. The complement of the
forest in a network is called the core. The flows in a forest can be computed a-priori by a
linear process. Hence, the dimension of the key matrices in the solution process can be
significantly reduced when the forest is a large part of the network.

With the development of different solution methods, WDS simulation package users are
faced with a choice of which solution method or methods to apply. Previous publications
performed case studies comparing the performances of their respective methods to the GGA.
However, these comparisons were often done using different implementation languages,
and different levels of code optimization – which makes cross-comparison of methods
difficult. Consequently, there is a need for a study which reliably compares the relative
performance of these methods using a fast, carefully designed code implementation. To
this end, this work presents a thorough benchmark study to compare the performance of
GGA, GGA-with-FCPA, RCTM, and RCTM-with-FCPA for a range of case study networks
using a fast C++ implementation. The timings for these runs are decomposed according
to how often each solution component is executed in different simulation settings. From
these timings it is possible to accurately predict runtimes for long-run multiple simulation
settings. To confirm the relevance of these results, the timings have been compared with
the speed of the industrial and research standard toolkit of EPANET2 (Rossman 2000) and
was found to be faster in all cases.

This paper is organized as followed. A detailed review of existing solution methods is
given in the next section. The section following presents the mathematical formulation
of each method. The motivation for a benchmark study is then given, followed by the
methodology used in this paper to carry out a benchmark study. The description of the
module categorization is then presented. This is followed by a case study of the four
solution methods applied to the eight case study networks. The results are discussed in the
next section. The last section offers some conclusions.

4.4 Literature Review
This section provides a review of the algorithms that are tested in this paper. A brief
development history of WDS solution algorithms is presented in the first subsection. The
next subsection gives an overview of the GGA and its development, followed by an overview
of solution methods which use the null space approach (such as co-trees flow method
(CTM) and RCTM). Finally, a review of the methods that use graph theory to simplify
problem complexity are presented.

4.4.1 Development history of the WDS algorithms
This research considers a water distributionmodelmade up of energy conservation equations
and the demand driven model continuity equations. The Hardy Cross method (Cross 1936),
also known as the loop flow corrections method, is one of the oldest methods and uses
successive approximations, solving for each loop flow correction independently. It is a
method that was widely used for its simplicity at the time when it was introduced. More
than three decades later, Epp and Fowler (1970) developed a computer version of Cross’s
method and replaced the numerical solver with the Newton method, which solves for all
loop flow corrections simultaneously. However, this method has not been widely used
because of the need (i) to identify the network loops, (ii) to find initial flows that satisfy
continuity equation and (iii) to use pseudo-loops.

57



Chapter 4. Publication 2: A Benchmarking Study of Water Distribution System Solution
Methods

Many methods have been proposed to improve the computational efficiency of the WDS
model. These include: matrix decomposition (Todini and Pilati 1988; Elhay et al. 2014;
Deuerlein et al. 2015), graph partitioning (Rahal 1995; Simpson et al. 2012; Alvarruiz
et al. 2015), network skeletonization (Saldarriaga et al. 2008; Shamir and Salomons 2008),
and network clustering (Anderson and Al-Jamal 1995; Perelman and Ostfeld 2011). Both
network skeletonization and network clustering can produce a smaller network to solve.
However, they are not considered in this study because the solutions from both methods are
approximations to the solutions for the full networks, unlike the exact solutions produced
by the methods used in this study. A summary of methods that improve the computational
efficiency of the steady-state demand-driven WDS solution process follows.

4.4.2 Global gradient algorithm
The GGA is a range space method that solves for both flows and heads. It was the first
algorithm, in the field of hydraulics, to exploit the block structure of the Jacobian matrix to
reduce the size of the key matrix in the linearization of the Newton method. The GGA has
gained popularity through its rapid convergence rate for a wide range of starting values.
This is the result of using the Newton method on an optimization problem that has a
quadratic surface. However, it was reported by Elhay and Simpson (2011) that the GGA
fails catastrophically in the presence of zero flows in a WDS when the head loss is modeled
by the Hazen-Williams formula. Regularization methods have been proposed by both Elhay
and Simpson (2011) and Gorev et al. (2012) to deal with zero flows when the head loss is
modeled by the Hazen-Williams formula.

The GGA as it was first proposed, applied only for the WDSs in which the head loss
is modeled by the Hazen-Williams formula, where the resistance factor was independent
of flow. In EPANET2, Rossman (2000) extended the GGA to allow the use of the
Darcy-Weisbach formula. It has been pointed out in Simpson and Elhay (2010), however,
that Rossman incorrectly treated the Darcy-Weisbach resistance factor as independent
of the flow. They introduced the correct Jacobian matrix to deal with this. It has been
demonstrated that once the correct Jacobian matrix is used, the quadratic convergence rate
of the Newton method is restored. Furthermore, Elhay and Simpson (2011) reported that
the GGA no longer fails in the presence of zero flows when the derivative of the Jacobian
matrix is correctly computed with the Darcy-Weisbach formula.

4.4.3 Null space method
The co-trees flow method (CTM) (Rahal 1995) is a null space method that solves for
the co-tree flows and spanning tree flows separately. The CTM, unlike the loop flow
corrections method, does not require the initial flows to satisfy continuity. However, it does
require: (i) the identification of the associated circulating graph; (ii) the determination of
the demands that are to be carried by tree branches; (iii) finding the associated chain of
branches closing a circuit for each co-tree chord; (iv) computing pseudo-link head losses.
The RCTM (Elhay et al. 2014) is also a null space method that solves co-tree flows and
spanning trees flows separately. It represents a significant improvement on the CTM by
removing requirements (i) to (iv) above. It uses the Schilders’ factorization (Schilders
2009) to permute the node-arc incidence matrix into an invertible spanning tree block and
a co-tree block. This permutation reduces the size of the Jacobian matrix from the number
of junctions (as in the GGA) to the approximate number of loops in the network.

58



Chapter 4. Publication 2: A Benchmarking Study of Water Distribution System Solution
Methods

Abraham and Stoianov (2015) proposed a novel idea to speed-up the solution process
when using a null space method to solve a WDS network. Their idea exploits the fact that a
significant proportion of runtime is spent computing the head losses. At the same time,
flows within some pipes exhibit negligible changes after a few iterations. As a result, there
is no point in wasting computer resources to re-compute the pipe head losses for the pipes
that have little or no change in flows. This partial update can be used to economise the
computational complexity of the GGA, the RCTM and their variations.

4.4.4 Graph theory
The forest-core partitioning algorithm (FCPA) (Simpson et al. 2012) speeds up the solution
process. This algorithm permutes the system equations to partition the linear component
of the problem, which is the forest of the WDS, from the non-linear component, which is
the core of the WDS. It can be viewed as a method that simplifies the problem by solving
for the flows and the heads in the forest just once instead of at every iteration. The FCPA
reduces the number of pipes, number of junctions, and the dimension of the Jacobian
matrix in the core by the number of forest pipes (or nodes).

The graph matrix partitioning algorithm(GMPA) (Deuerlein et al. 2015) exploited the
linear relationships between flows of the internal trees and the flows of the corresponding
super-links after the forest of the network has been removed. This was a major breakthrough.
The GMPA permutes the node-arc incidence matrix in such a way that all of the nodes
with degree two in the core can be treated as a group. By partitioning the network this way,
the network can be solved by a global step, which solves for the nodes with degree greater
than two (super nodes) and the pipes which connect to them (path chords), and a local step,
which solves for the nodes with degree two (interior path nodes) and pipes connected to
them (path-tree links).

In a recent paper by Elhay et al. (2018), they proposed a single framework for both
the FCPA and GMPA and extended the methods applicability to the pressure dependent
problem. Although the flows and heads in the forest component of a pressure driven WDS
cannot be determined by a linear process, they can be solved by a similar linear iterative
process as the local step in the GMPA.

4.5 Motivation
Thus far, this paper has discussed the recent developments in the solution methods. Previous
work on WDS simulation has focused on two research areas: (i) hydraulic solution methods
(Nielsen 1989; Simpson et al. 2012; Elhay et al. 2014; Deuerlein et al. 2015) and (ii)
solver software design (Morley et al. 2000; van Zyl et al. 2003; Guidolin et al. 2010). Two
observations can be made when comparing these two areas of research focus:

(i) Different platforms have been used to compare algorithm implementations. Some
methods have been compared against EPANET, some methods have been implemented by
using parts of the EPANET toolkit, some methods have been benchmarked using MATLAB,
and others use purpose-written C or C++ code. Comparing timing results between
all of these different platforms is especially difficult because MATLAB is a modeling
programming language which is not necessarily intended to produce fast production code.
As a consequence, the execution of MATLAB code will typically be slower than carefully
written C++ code even if the solution method implemented in MATLAB is potentially
faster. This will later be discussed in detail.
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(ii) Timing results can be accurately extrapolated to different design settings only if
the implementation code is sufficiently modularized and the timings are available for each
module.

To address the problems described above, this work describes themethodology employed
to ensure a fair comparison between solution methods.

4.6 Network Formulations
This section provides an unified framework for the mathematical formulations of four
solution methods, the GGA with and without FCPA, RCTM with and without FCPA, for
WDSs. Each of the solution methods is presented in terms of pure orthogonal permutation
of the system of equations to minimize the intermediate steps to ensure a fair comparison
between the solution methods. The following starts with the basic definitions and notation,
followed by the system equations. The next subsection focuses on the use of network
partitioning methods to speed up the solution process for WDSs. Finally, the equations for
different solution methods are shown.

4.6.1 Definitions and Notation
Consider a water distribution system that contains np pipes, nj junctions, nr fixed head
nodes, nf forest pipes and nodes, npc pipes in the core network, njc nodes in the core
network, nct pipes in the co-tree network and nst pipes in the spanning tree network. The
j − th pipe of the network can be characterized by its diameter Dj , length Lj , resistance
factor rj . The i − th node of the network has two properties: its nodal demand di
and its elevation zui . Let q =

(
q1, q2, . . . , qnp

)T
denote the vector of unknown flows,

h =
(
h1, h2, ....hnj

)T
denote the vector of unknown heads, r =

(
r1, r2, ....rnp

)T
denote

the vector of resistance factors, d =
(
d1, d2, .....dnj

)T
denote the vector of nodal demands,

el =
(
el1 , el2 ....elnf

)T
denote the vector of fixed head elevations.

The head loss exponent n is assumed to be n = 2 for the Darcy-Weisbach head loss
model and n = 1.852 for Hazen-Williams head loss model. The head loss within the
pipe j, which connects the node i and the node k, is modeled by hi − hk = rjqj |qj |n−1.
Denote by G (q) ∈ Rnp×np , a diagonal square matrix with elements [G]ii = ri|qi|n−1

for i = 1, 2, ....np. Denote by F (q) ∈ Rnp×np , a diagonal square matrix where the
k-th element on its diagonal [F ]kk = d

dqk
[G]kk qk. A1 is the full rank, unknown head,

node-arc incidence matrix, where [A1]ij is used to represent the relationship between pipe
i and node j; [A1]ij = −1 if pipe i enters node j, [A1]ij = 1 if pipe i leaves node j, and
[A1]ij = 0 if pipe i is not connected to node j. A2 is the fixed-head node-arc incidence
matrix, where [A2]ij is used to represent the relationship between pipe i and fixed head
node j, [A2]ij = −1 if pipe i enters fixed head node j, [A2]ij = 1 if pipe i leaves fixed head
node j, and [A2]ij = 0 if pipe i is not connected to fixed head node j.

Denote by Ef , the set of indices of the pipes in the forest; by Vf , the set of indices of
the nodes in the forest; by Ec, the set of indices of the pipes in the core; and by Vc, the set
of indices of the nodes in the core. Denote by Est, the set of indices of the pipes in the
spanning tree; by Vst, the node indices that correspond with the spanning tree pipes; and
by Ect, a set of indices of the pipes in the co-tree.
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4.6.2 System of Equations
There are two primary equations that model the underlying relationship of the flows and
the heads of a WDS: the demand-driven model (DDM) continuity equations (4.1) and the
energy conservation equations (4.2):

−A1
Tq − d = O (4.1)

G (q) q −A1h−A2el = O. (4.2)

This non-linear system of equations can be expressed in matrix form as
(
G (q) −A1
−A1

T O

)(
q
h

)
−
(
A2el
d

)
= 0 (4.3)

and it is sometimes referred to as a nonlinear saddle point problem (Benzi et al. 2005).
This non-linear system is normally solved by the Newton method, in which q(m+1), a

vector of flows at (m+1)-th iteration, and h(m+1), a vector of heads at (m+1)-th iteration,
are repeatedly computed from q(m), a vector of flows at (m)-th iteration, and h(m), a vector
of heads at (m)-th iteration, by
(
F (m) (q(m)) −A1
−A1

T O

)(
q(m+1) − q(m)

h(m+1) − h(m)

)
= −

(
G(m)q(m) −A1h

(m) −A2el
−A1

Tq(m) − d

)
(4.4)

until the differences (q(m+1) − q(m)) and (h(m+1) − h(m)) are sufficiently small.

The Global Gradient Algorithm

The GGA takes advantage of the block structure of Eq. (4.3) to obtain a two-step solver:
Eq. (4.5) for the heads and Eq. (4.6) for the flows when the head-loss is modeled by
Hazen-William equation.

Uh(m+1) = −nd +A1
T
[
(1− n) q(m) −G−1A2el

]
(4.5)

where U = A1
TG−1A1

q(m+1) =
1
n
{(n− 1) q(m) +G−1(A2el +A1h)}. (4.6)

Later, Simpson and Elhay (2010) proposed

V h(m+1) = −d +A1
TF−1

[
(G− F ) q(m) −A2el

]
(4.7)

where V = A1
TF−1A1

q(m+1) = q(m) + F−1A1h
(m+1) − F−1

[
Gq(m) −A2el

]
(4.8)

as the generalized equations that can be applied when the head-loss is modeled by the
Hazen-William equation or the Darcy-Weisbach equation. The correct Jacobian matrix
with the formula for F , when head loss is modeled by Darcy-Weisbach equation, can be
found in Simpson and Elhay (2010). They showed that the use of the correct Jacobian
matrix restores the quadratic rate of convergence.
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4.6.3 Network Partitioning
Associated with a WDS is a graph G=(V, E), where the elements of V are the nodes
(vertices) of the graph G and elements of E are the pipes (links) of the graph G. In this
subsection, the permutation of the system equations (4.3) for the FCPA is introduced,
followed by a description of the RCTM, which further exploits the block structure of the
Jacobian matrix.

Forest-Core Partitioning Algorithm

In a demand-driven model, it is possible to exploit the fact that every WDS can be divided
into two subgraphs: a treed subgraph (forest) Gf =

(
Vf , Ef

)
and a looped subgraph (core)

Gc = (Vc, Ec), so that Ef ∪EC = E, Ef ∩EC = ∅, Vf ∪ VC = V . All flows and heads in
both the forest and the core must be found. The flows in the forest can be found by a linear
process before the iterative solution phase and the heads in the forest can be found linearly
after the iterative phase.

Simpson et al. (2012) proposed the FCPA, which partitions the network into a treed
component and a looped component (referred to as the core) thereby reducing the com-
putation time where the network has a significant forest component. The FCPA starts by
generating a permutation matrix

P1 =




np nj
nf S O
npc P O
njc O C
nf O T


 (4.9)

, where
[
S
P

]
∈ Rnp×np is the square orthogonal permutation matrix for the pipes,

S ∈ Rnf×np is the permutation matrix which identifies the pipes in the forest as distinct
from those of the core of the WDS, P ∈ Rnpc×np is the permutation matrix for the pipes

in the core of the WDS,
[
C
T

]
∈ Rnj×nj is the square orthogonal permutation matrix for

the nodes, C ∈ Rnjc×nj is the permutation matrix for the nodes in the core of the WDS,
T ∈ Rnf×nj is the permutation matrix which identifies the nodes in the forest as distinct
from those of the core of the WDS.
A new lemma is proposed as follows:

LEMMA 1. Suppose

Q =
( n

m1 P
m2 S

)
,

Q ∈ Rn×n, is an orthogonal permutation matrix and that D = diag{d1, d2, · · · , dn} ∈
Rn×n is diagonal. Then

PDST = 0 (4.10)
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Proof. P =
(
ei1 , ei2 , . . . , eim1

)T
for a set of indices T = {i1, i2, · · · , im1} and S =

(
ej1 , ej2 , . . . , ejm2

)T
for a set of indices V = {j1, j2, · · · , jm2}. Note that T∩S = ∅. Now

for some 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 there exist it , js such that

eTi PDSTej = eTitditejs = 0
from which (4.10) follows. End of LEMMA 1�

After applying the FCPA permutation, the system equations become

P1 ×
[
G −A1
−A1

T O

]
× P1

T × P1 ×
(
q
h

)
− P1 ×

(
A2el
d

)
= O (4.11)

and with this permutation, Eq. (4.3) leads to




SGST O −SA1C
T −SA1T

T

O
[
PGP T −PA1C

T

−CA1
TP T O

]
O

−CA1
TST O

−TA1
TST O O O







Sq
Pq
Ch
Th


−




SA2el
PA2el
Cd
Td


 = O

(4.12)

where (i)
(
−SA1C

T −SA1T
T

−PA1
TCT −PA1T

T

)
, which is the original top right two-by-two block in

the first matrix of Eq. (4.12), is the permutedA1 matrix, in which the (2,2) block, which is
−PA1T

T , becomesO because the pipes in the core do not connect to any nodes in the

forest which are not root nodes, and (ii)
(
SGST SGP T

PGST PGP T

)
, which is the original top

left two-by-two matrix of Eq. (4.12), is the permutedG matrix, in which it is evident from
the Lemma 1 that the (1,2) and (2,1) blocks, which are SGP T and PGST , becomeO.

The top right block (the (1,2) block) of the permutedA1 matrix,−SA1T
T , is invertible

and can be permuted to be lower triangular form because it represents the union of the
trees. The flows of the pipes in the forest, Sq can be found directly from

Sq = −
(
TA1

TST
)−1

Td. (4.13)
Rewriting the second and third block equations of Eq. (4.12) gives:

[
PGP T −PA1C

T

−CA1
TP O

](
Pq
Ch

)
=

(
PA2el

Cd +CA1
TSTSq

)
, (4.14)

which is the system for the reduced non-linear problem (for the core heads and flows). This
can be expressed as: [

Ĝ −Â1
−Â1T O

](
q̂
ĥ

)
=

(
Â2el
d̂

)
(4.15)

where Ĝ = PGP T , Â1 = PA1C
T , q̂ = Pq, ĥ = Ch, Â2 = PA2, and d̂ = Cd +

CA1
TSTSq and then the Newton iterative method is applied to Eq. (4.15).

Finally, once the iterative solution process for the core has stopped, the forest heads can
be found by solving a linear system:

Th =
(
−SA1T

T
)−1 (

SA2el − SGSTSq + SA1C
TCh

)
(4.16)

after the flows and heads of the core network are found.
The FCPA simplifies the problem by identifying the linear part of the problem and

solving it separately from the core to avoid unnecessary computation in the iterative process.
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Reformulated co-tree flows method

We first introduce some graph notation before we describe the RCTM in more detail.
A spanning tree is an acyclic graph which traverses every node in a graph, such that
the addition of any co-tree element creates a loop. A WDS, with or without a forest,
can be partitioned into two subgraphs: a spanning tree Gst = (Vst, Est), and a co-tree
Gct = (Vct, Ect), so that Est ∪ Ect = Ec, Est ∩ Ect = ∅. The flows in the spanning tree
can be found directly from the co-tree flows.

Elhay et al. (2014) proposed the reformulated co-tree flow method (RCTM) to exploit
this relationship between the co-tree flows and spanning tree flows. This is achieved by
applying the Schilders’ factorization to permute theA1 matrix into a lower triangular square
block at the top, representing a spanning tree, and a rectangular block below, representing
the corresponding co-tree. The RCTM starts by generating a permutation matrix:

P2 =




np nj
nst K1 O
nct K2 O
nj O R


 (4.17)

where
[
K1
K2

]
∈ Rnp×np is the square orthogonal permutation matrix for the pipes, in which

K1 ∈ Rnst×np is the permutation matrix that identifies the pipes in the spanning tree as
distinct from those in the co-tree andK2 ∈ Rnct×np is the permutation matrix for the pipes
in the co-tree,R is the permutation matrix for the nodes to have the same sequence that are
traversed by the corresponding spanning tree pipes.

The permuted system equation of the RCTM is:

P2 ×
[
Ĝ −Â1
−Â1T O

]
× P2

T × P2 ×
(
q̂
ĥ

)
− P2 ×

(
Â2el
d̂

)
= O (4.18)

and (4.14) becomes:


K1ĜK1

T O −K1Â1R
T

O K2ĜK2
T −K2Â1R

T

−RÂ1TK1
T −RÂ1TK2

T O






K1q̂
K2q̂
Rĥ


−



K1Â2el
K2Â2el
Rd̂


 = O (4.19)

in which the (1,2) and (2,1) blocks, which areK1GK2
T andK2GK1

T , becomeO for
the reasons shown in Lemma 1.

The complexity of the problem is reduced because the (1,3) block of the key matrix,
−K1Â1R

T , is lower triangular and invertible. As a result, the Newton solver can be
partitioned into a different two-step process: (i) solve for the non-linear co-tree flows, (ii)
solve for the corresponding spanning tree flows (a linear computation). The heads can be
solved once after the iterative process has completed.

By permuting the network equations into (4.19), Elhay el al. (2014) proposed the
following equations to solve the WDS for the flows, first for the spanning tree flows q(m+1)

1 :

q(m+1)
1 = L21

Tq(m)
2 −R−T1 d̂ (4.20)

and second for the co-tree flows q(m+1)
2 :

W (m+1)q(m+1)
2 = L21

(
F (m+1)

1 −G(m+1)
1

)
q(m+1)

1 +
(
F (m)

2 −G(m)
2
)
q(m)

2 + a2 (4.21)
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where: R1 = K1Â1R
T ; R2 = K2Â1R

T ; L21 = −R2R
−T
1 ; F (m)

1 = K1
̂

F (m)K1
T ;

F (m)
2 = K2

̂
F (m)K2

T G(m)
1 = K1

̂
G(m)K1

T ; G(m)
2 = K2

̂
G(m)K2

T ; a1 = K1Â2el;
a2 = L21K1Â2el +K2Â2el; W (m) = L21(F (m)

1 )−1L21
T + (F (m)

2 )−1. Note that in
Eq. (4.20), an initial set of the co-tree flows q(0)

2 is needed to commence the solution
process.
The heads are found after the iterative process of the RCTM by using a linear solution
process:

R1h = F 1q
(m+1)
1 − (F 1 −G1) q(m)

1 − a1 (4.22)

This partitioning of the network equations reduces the size of the non-linear component
of the solver to np−nj (the number of co-tree elements in the network). It has been proven
by Elhay et al. (2014) that the RCTM and the GGA have identical iterative results and
solutions if the same starting values are used. However, for RCTM, the user only needs to
set the initial flow estimates for the co-tree pipes, q(0)

2 , in contrast to GGA where initial
flow estimates are required for all pipes. The flows in the complementary spanning tree
pipes are generated by Eq.(4.20).

4.7 Methodology
This section describes the methodology used to carry out a comparative study of the
WDS solution methods. The following describes the software platform used to run
the benchmarking simulations. This description is followed by the proposed algorithm
evaluation method.

4.7.1 The Software Platform
To run the benchmark tests required by this study a hydraulic simulation toolkit, WDSLib,
was created. This toolkit, written in C++, incorporated the solution methods studied in this
paper, which include the GGA, the GGA with the FCPA, the RCTM, and the RCMT with
the FCPA. In order to provide a useful platform for comparison, the solution methods were
implemented using fast and modularized code. A focus of attention in this research has
been the implementation correctness, robustness and efficiency. The correctness∗ of the
toolkit has been validated against a reference MATLAB implementation. The differences
between all results (intermediate and final) produced by the C++ toolkit and the MATLAB
implementation were shown to be smaller than 10−10. In the interest of toolkit robustness,
special attention has been paid to numerical processes to guard against avoidable failures,
such as loss of significance through subtractive cancellation, and numerical errors, such
as division by zero. The data structures and code libraries in the toolkit are shared and
all solution method implementations have been carefully designed to ensure fairness of
performance comparisons between algorithms.

The following subsections describe the measures taken in the implementation the
solution methods to help ensure the validity of the timing experiments for the case study
results. These include measures to ensure accurate timing results, minimization of memory
use, and numerical robustness.

∗terms recognized in Computer Science will be designated by asterisk superscript
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Timing Considerations

C++ was chosen as the implementation language because timings in MATLAB are
confounded by a variety of factors. The MATLAB programming language is a hybrid of
interpreted language and compiled language: some codes are interpreted by MATLAB
with no compilation, some codes are partially compiled by a closed-source just-in-time
(JIT) compiler, and some codes are fully compiled. MATLAB may also perform additional
work and bookkeeping between the interpretation of one line and the next.

In contrast, C++ is a compiled language: the compiler translates the code into native
machine instructions which are later executed by the hardware. This faster and much
simpler model of execution overcomes many of the problems associated with MATLAB
timing. As a consequence, a C++ implementation forms a better basis for a fair comparison
of different WDS solution methods.

When executing the timing experiments in this work, each code module reports the time
spent in it by sampling wall clock time at the start and end of its execution. Although the
overhead for sampling wall clock time is small, there are at least two special considerations
involved in the interpretation of these timings: (i) the operating system, at its own discretion,
may launch background processes (for example anti-virus software), which distort the
timings and (ii) extrapolating the timing for multiple simulations (as may occur, for example,
in a genetic algorithm or other evolutionary algorithm run) from a single analysis must
be done with care because the relationship between the different settings is not linear.
More detail on these issues is given in a later section describing the proposed algorithm
evaluation method.

Memory Considerations

Memory management for each method was very carefully handled to advantage that method
in the interest of a fair comparison. To offer further assurance of the correctness of memory
management, Valgrind (Nethercote and Seward 2007), a programming tool for memory
debugging, memory leak detection and profiling tool, was deployed during testing to detect
any memory leaks, memory corruption, and double-freeing.

Numerical considerations

The calculations in this paper were performed in C++ under IEEE-standard double precision
floating point arithmetic with machine epsilon εmach = 2.2204−16. The constants and
parameters in every equation were gathered and replaced by full 20-decimal digit accuracy
values. In addition, all dependent constants in mathematical expressions were removed.

The stopping test used in this benchmark study is
||q(m+1) − q(m)||∞
||q(m+1)||∞

≤ 10−6 to ensure

a fair comparison between the GGA and the RCTM because one of the benefits of using
the RCTM is that it only solves for the pipe flows within the iterative phase.

In the setup of the benchmark experiments, there are two primary dangers that are
associated with floating point arithmetic that cannot be ignored: (i) subtractive cancellation
and (ii) overflow and underflow. To avoid problems associated with these, all input variables
are scaled to a similar range to minimize the risk of avoidable computational inaccuracy or
failure in floating point arithmetic. It is important to note that unscaled or poorly scaled
variables can unnecessarily confound the computation. After scaling, variables become
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Table 4.1. WDS variables and units

Variables SI unit US unit Scaling factor
Length m ft L0 = max (L)
Diameter m ft D0 = max (D)
Nodal head m ft h0 = max (el)
Source elevation m ft el0 = max (el)
flow m3/s ft3/s q0 = max (d)
demand m3/s ft3/s d0 = max (d)
G1, F1 s/m2 s/ft2 G0 =

L0
Dp

0
|q0|n−1

physically dimensionless, which allows computation which is independent of the system of
measurement units.

The variables that are provided in EPANET input files for the experiments and their
corresponding units in US Customary and SI system are shown in Table 4.1. The system
equations were modified to use dimensionless variables. Once the stopping test has been
satisfied, the original variables can then be recovered by reversing the initial scaling.

In these experiments approximate minimum degree permutation (AMD) and sparse
Cholesky decomposition from SuiteSparse (Davis et al. 2013) have been used. SuiteSparse
is a state-of-the-art sparse arithmetic package with exceptional performance.

4.7.2 Proposed algorithm evaluation method
In this work, there are two settings of interest: a once-off network simulation setting and
a multi-run setting such as in a genetic algorithm or evolutionary algorithm (EA) that
requires many simulations where say the network topology is invariant but pipe diameters
can vary. In the case studies presented in this paper results are presented for: (1) a once-off
simulation setting and (2) a multi-simulation setting, as might be used in an EA setting for
WDS design.

In the experiments, in order to avoid unnecessary computations, each module of
implementation code is categorized according to the number of times it needs to be invoked
in the context of the given setting. This categorization is described in the following
subsection.

Module Categorization

For the purposes of modeling execution times, code modules in a multiple simulation run
can be divided into three categories: (i) modules that run only once for every multiple
simulation are called level-1 modules (L1). The level of a module is determined by the
number of times it would be run. Examples of L1 modules include the module that loads
the WDS network configuration file and the module that identifies the forest pipes in
FCPA; (ii) modules that are run once for every simulation are called level-2 modules (L2).
Examples of L2 modules are those that initialize, respectively, all pipe flows in the GGA,
core flows in FCPA and co-tree flows in RCTM; (iii) modules that are run once for each
iteration of every simulation are called level-3 modules (L3). An example of an L3 module
is the module computing theG and F matrices in any of the solution methods described
here.
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In a once-off network simulation setting, for each trial, a given solver configuration is
used to solve an input network and the time to complete the solution is measured. In this
setting, the FCPA and RCTM modules require certain computations which only need to be
done once every iterative phase. The computation for these so-called invariants can be
lifted* out of the iterative phase and executed once per evaluation, thus saving computation
time. The second setting considered here is a multiple simulation run, such as one might
find in a GA to optimize the design of a WDS, for example. In this setting, a network with
a fixed topology is solved multiple times for say different pipe diameters. In this case,
because of the fixed topology, the FCPA and RCTM have modules that need only be run
once for each multiple simulation run. This again reduces the overall simulation runtime.

4.8 Case Studies
The implementation described above was used to evaluate the efficiency of the four solution
methods in two simulation settings: a once-off simulation setting, in which the steady-state
heads and flows are computed just once with the given WDS parameters, and a design
setting, in which the steady-state heads and flows need to be computed many times to,
say, find the least-cost design by EA optimization. In the methodology section, the four
solution methods, namely GGA, GGA with FCPA, RCTM, and RCTM with FCPA, were
decomposed into modules. These modules were categorized into levels by using the method
described in the previous section. Fig.4.1 shows the module classifications and the level
of repetition of different modules for the different solution methods. The columns of the
block diagram show different solution methods and the rows of the block diagram show the
levels of repetition of the steps as they would be executed in a multiple simulation setting.
In the body of the table, the different methods are separated by double vertical lines where
column(s) intersect a box, which means the modules that are represented by that box are
used by the method(s) that are presented by that column(s). For example, the modules for
RCTM that are required to be carried out once before a multiple simulation include: (i)
load the configuration file and read EPANET input file, (ii) find the Schilders’ spanning
tree co-tree factorization and (iii) find and apply the AMD bandwidth reduction.

Table 4.2. Benchmark networks summary

Full Network Forest & Core Networks Co-tree Network
Network np nj ns nf (nf /n#

p ) njc npc nct
N1 934 848 8 361 (38%) 573 487 84
N2 1118 1039 2 321 (29%) 797 718 79
N3 1975 1770 4 823 (42%) 1152 947 205
N4 2465 1890 3 429 (17%) 2036 1461 757
N5 2509 2443 2 702 (28%) 1087 1741 66
N6 8585 8392 2 1850 (22%) 6735 6542 193
N7 14830 12523 7 2932 (20%) 11898 9591 2307
N8 19647 17971 15 4414 (22%) 15232 13557 1676

#nf /np shows the proportion of the forest

Eight benchmark networks were used to study the effectiveness of each method under
different design settings. The networks used here were derived from Simpson et al. (2012)
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Fig. 4.1. Module classification for GGA, GGA and FCPA, RCTM and RCTM with FCPA

with some slight modifications to remove control devices, patterns, curves and pumps.
Details of these networks are given in that paper. The basic network characteristics of the
case study networks are summarized in Table 4.2. All the case study networks are realistic.
The ratio between the number of the forest pipes and the total number of pipes ranges
between 17% and 42%. The ratio between the number of the co-tree pipes and the total
number of the pipes ranges between 3% and 31%. Each of the four solution methods and
the GGA implementation in the EPANET are applied to these eight benchmark networks.
It has been pointed out by Guidolin et al. (2010) that the code implementation in EPANET
are highly optimized for its performance and not written to be readily decomposed into
modules for different tasks.. As a result, it is difficult, if not impossible, to apply the
module categorization method proposed in the current paper to EPANET. The times taken
by both ENopen, the EPANET function for reading the input file and memory allocation,
and ENclose, the EPANET function for memory deallocation are not counted in the final
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EPANET timing.
The next section presents the timing analysis for these case study networks. Of course,

the same benchmark tests performed on another computing platform will produce quite
different results, but the authors believe that the relative timings will remain the same.

4.9 Results and Discussion
The benchmark tests were performed on a Intel(R) Xeon(R) CPU E5-2698 v3 running at
2.30 GHz with 16 cores and 40MB L3 cache on a High Performance Computing machine
called Phoenix at the University of Adelaide. The number of cores allocated to each test
was limited to one. Each timing test was repeated 15 times on each benchmark network.

Table 4.3. Detailed statistics of the time of each module of the GGA applied to network
N1 (15 runs)

Type Function Statistical Properties (milliseconds)
Min Max Mean(%) Median Std.

Dev
Std.
Err

Computed once every multiple simulation

L1
AMD 0.54 1.45 0.67(66.9%) 0.57 0.20 0.04
Housekeeping 0.28 0.58 0.33 (33.1%) 0.29 0.09 0.02

Sub-Total Statistics 0.82 1.74 1.00 (14.8%) 0.90 0.20 0.04
Computed once every simulation

L2

GetGF-1 0.01 0.01 0.01(23.1%) 0.01 0.00 0.00
init 0.00 0.00 0.00(5.4%) 0.00 0.00 0.00
scaling 0.04 0.05 0.04 (66.3%) 0.04 0.00 0.00
Housekeeping 0.00 0.00 0.00(5.2%) 0.00 0.00 0.00

Sub-Total Statistics 0.05 0.07 0.06 (0.8%) 0.06 0.00 0.00
Iterative Phase

TL3
/NI

L3
(NI=8)

GetGF-2 1.19 2.52 1.42(24.9%) 0.18 1.28 0.30 0.02
Linear Solver 3.11 4.32 3.53(62.1%) 0.44 3.49 0.31 0.06
2nd Phase 0.31 0.59 0.36(6.4%) 0.05 0.33 0.08 0.02
normTest 0.11 0.57 0.14(2.4%) 0.02 0.12 0.09 0.02
Other 0.18 0.85 0.24(4.2%) 0.03 0.19 0.14 0.03

Sub-Total Statistics 4.91 6.52 5.69(84.3%) 0.71 5.69 0.41 0.00
Computed once every multiple simulation
L1 UndoPermutation 0.00 0.00 0.00(100%) 0.00 0.00 0.00

Sub-Total Statistics 0.00 0.00 0.00(0.05%) 0.00 0.00 0.00
Grand-Total Statistics 6.02 7.55 6.75 6.67 0.44 0.08

4.9.1 Once-off Simulation Setting
The mean, minimum, maximum and median wall clock times for all modules were collected.
As an example, the detailed statistics of the time for each module of the GGA method
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applied to N1, the first case study network. Table 4.3 presents the detailed timing results
of all modules used in the toolkit implementation of the GGA without FCPA at the three
levels of repetition: once every multiple simulation (L1), once every simulation (L2) and
once every solver iteration (L3). The sub-total for each level is summarized after each
level of repetition and the grand-total is shown in the last row. The percentage inside the
bracket shows the contribution of each of the modules towards its level of repetition and
the contribution of each of the levels towards the total runtime. For example, the AMD
permutation contributes 66.9% of the L1 time and the all L1 modules contribute 14.8%
towards the total runtime. The mean time for a once-off simulation of the N1 network is
6.75 ms. Of the total time, 84.3% was spent on L3 tasks. The two most time-consuming
tasks are the linear solver in the iterative process, which solves the linearization of the
non-linear problem by using Eq. (4.7), and getGF-2, which computes the derivatives of the
head-loss equations.

Table 4.4. The mean time of once-off simulation run averaged over 15 once-off simu-
lations for each of the four solution methods applied to the eight case study networks
(milliseconds±standard error) and the % diff. refers to relative difference compared to the
GGA mean time

GGA GGA with FCPA RCTM RCTM with FCPA EPANET
Mean time Mean time %diff. Mean time %diff. Mean time %diff. Mean time %diff.

N1 6.75± 0.08 4.66± 0.07 -31 5.37± 0.09 -20 4.56 ± 0.08 -32 9.09 +35
N2 8.48± 0.07 6.61 ± 0.07 -22 9.98± 0.12 +18 8.97± 0.08 +6 16.75 +98
N3 13.88± 0.11 8.72 ± 0.09 -37 11.52± 0.10 -17 9.05± 0.06 -35 21.46 +55
N4 14.63± 0.32 12.68 ± 0.53 -19 17.09± 0.85 +47 16.28± 0.47 +35 26.45 +81
N5 16.87± 0.24 12.19± 0.13 -28 12.67± 0.14 -25 10.20 ± 0.13 -40 28.46 +69
N6 49.53± 0.19 44.79± 0.18 -28 35.34± 0.17 -29 32.53 ± 0.15 -39 172.84 +249
N7 83.39± 0.42 63.06 ± 0.65 -24 169.50±1.61 +103 156.61± 1.16 +88 307.17 +268
N8 192.10±3.85 131.82 ± 4.0 -31 352.44±9.25 +83 307.16± 7.2 +60 600.08 +212

Table 4.5. The number of non-zeros in the key matrices of each of the four solution
methods applied to the eight case studies networks and the "relative diff." refers to the
relative difference compared to the number of non-zeros in the key matrix of the GGA

GGA GGA with
FCPA

Relative diff.
using FCPA

RCTM RCTM with
FCPA

Relative diff.
using RCTM and

RCTM with
FCPA

N1 2684 1609 -40% 350 350 -87%
N2 3265 2302 -29% 1219 1219 -63%
N3 5708 3239 -43% 2534 2534 -56%
N4 6714 5429 -19% 6951 6951 +3.5%
N5 7451 5345 -28% 551 551 -93%
N6 25554 20004 -22% 2514 2514 -90%
N7 41147 32351 -21% 32389 32389 -21%
N8 57233 43991 -23% 73252 73252 +28%

Table 4.4 shows the summary statistics of the 15 repetitions of each solution method
applied to the eight benchmark networks. Under a once-off simulation setting, the GGA
implementation in this paper has been able to achieve between a 26% and 73% speedup
when compared with the GGA implementation in EPANET by implementing the proposed
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Table 4.6. The mean of the per-iteration timings for each of the modules in L3 for the four
solution methods applied to the eight case studies (milliseconds)

GGA GGA+FCPA
GetGF Linear

Solver#
2nd
Phase

norm
test

GetGF Linear
Solver#

2nd
Phase

norm
test

N1 0.18 0.44 0.36 0.14 0.14 0.27 0.03 0.01
N2 0.22 0.61 0.02 0.02 0.21 0.39 0.04 0.01
N3 0.20 1.11 0.03 0.03 0.12 0.56 0.07 0.02
N4 0.66 1.67 0.05 0.03 0.47 1.36 0.03 0.02
N5 0.42 1.47 0.04 0.03 0.33 0.98 0.03 0.02
N6 0.48 1.49 0.05 0.04 0.40 0.96 0.03 0.01
N7 1.92 5.70 0.23 0.09 1.57 3.94 0.22 0.07
N8 3.17 12.38 0.38 0.21 2.86 7.72 0.33 0.12

RCTM RCTM+FCPA
GetGF Linear

Solver#
2nd
Phase

norm
test

GetGF Linear
Solver#

2nd
Phase

norm
test

N1 0.16 0.14 0.02 0.01 0.14 0.11 0.02 0.01
N2 0.22 0.29 0.05 0.02 0.20 0.26 0.04 0.01
N3 0.20 0.50 0.07 0.02 0.11 0.41 0.06 0.02
N4 0.56 1.54 0.11 0.03 0.45 1.47 0.10 0.03
N5 0.43 0.39 0.07 0.03 0.32 0.31 0.05 0.02
N6 0.47 0.37 0.07 0.03 0.42 0.30 0.05 0.02
N7 1.90 5.49 0.43 0.10 1.65 5.30 0.40 0.08
N8 3.51 17.71 1.68 0.22 3.08 15.97 1.35 0.17

# within the iterative solution process

module categorization. The best performing algorithm combination for each network is
highlighted in bold. Both the GGA and the RCTM benefit from the use of the FCPA
(between 19.3% and 37.2% of time saved for the GGA, between 7.6% and 21.4% saved for
the RCTM).

The number of non-zeros in the key matrices is commonly used as an indicator of
the computational complexity of the Cholesky factorization when sparse arithmetic is
used. The numbers of non-zeros in the key matrices of the four WDS solution methods
are summarized in Table 4.5. The number of non-zeros in the key matrix of the GGA is a
topology-related constant whereas the number of non-zeros in the key matrix of the RCTM
is determined by the choice of spanning tree. NetworkN8 is the only case where the number
of non-zero elements in the key matrix of the RCTM is significantly greater than that of the
GGA, therefore network N8 is the only case where the per-iteration runtime of the RCTM
linear solver is greater than that of the GGA (Table 4.6). Using the FCPA with the GGA
can reduce the number of non-zeros in its key matrix. Moreover, the dimension of the
non-linear problem reduces from np to npc which reduces the per-iteration execution time
when computing the head loss derivatives, second phase and the stopping test. Although
the number of non-zeros in the key matrix of the RCTM is independent of whether or not
the FCPA is used, using the FCPA does: (i) reduce the computation time of the matrix
multiplication in the linear solver, (ii) reduce the dimension of the search space which
speeds up the process of partitioning the co-tree pipes from the spanning tree pipes in the

72



Chapter 4. Publication 2: A Benchmarking Study of Water Distribution System Solution
Methods

RCTM, and (iii) reduce the number of pipes in the spanning tree. This can be seen by the
per-iteration execution times for each of the L3 modules, which are shown in the Table 4.6.

Table 4.7. The number of iterations required for each of the four solution methods to
satisfy the stopping test for the eight case studies networks. The "relative diff." refers to the
relative difference compared to the number of iterations for the GGA

GGA GGA with
FCPA

RCTM RCTM with
FCPA

Relative diff.
using RCTM

N1 8 8 12 12 +50%
N2 8 8 13 13 +62.5%
N3 8 8 9 9 +12.5%
N4 9 9 13 13 +44.4%
N5 8 8 10 10 +25%
N6 10 10 12 12 +20%
N7 9 9 13 13 +44.4%
N8 9 9 11 11 +22.2%

The number of iterations required for each of the four solution methods to satisfy the
stopping test for the eight case studies networks is shown in the Table 4.7. It is evident
from Table 4.7 that the GGA took exactly the same number of iterations to satisfy the
stopping test with or without the FCPA. The flows in the forest network satisfy a linear
system, which does not change from one iteration to the next. Therefore, the flows in the
forest pipes reach their steady-state after the first iteration. Similarly, the RCTM with or
without FCPA takes the same number of iterations. In the cases that were analyzed in
this study, the RCTM required a greater number of iterations to satisfy the stopping test
compared to the GGA. This is because different mechanisms are used to generate a set of
initial flows for the two methods as discussed previously.

It is worth using the FCPA in conjunction with both the GGA and RCTM for a once-off
simulation given that FCPA decreases the L3 per-iteration time without increasing the
number of iterations per module. Interestingly, a smaller per-iteration time is required by
the L3 modules of the RCTM except for network N8. However, RCTM requires a greater
number of iterations for all the case study networks. This sometimes causes a greater time
for the RCTM to satisfy the stopping test.

4.9.2 Multiple Simulation Setting
The performance of the four solution methods under the multiple simulation setting are
compared. Pipe diameters for the eight case study networks were randomly generated at
each evaluation to simulate an evolutionary algorithm run. It is important to note that the
use of randomly generated pipe diameters gives an overestimate of the total runtime. This
is because, as EA’s progress, the pipe diameters in its population become increasingly
realistic, which, on average, should reduce the number of iterations at the L3 level.

Table 4.8 and Table 4.9 show the detailed timing results of multiple simulations with
number of evaluations NE = 100, 000 for each of the four solution methods applied to
the networks N1 and N8. Table 4.8 shows that exploiting the treed nature of network N1
gives the FCPA a 29% time saving over the GGA and 15% time saving over the RCTM. A
smaller saving is achieved by the use of the FCPA for network N8: 14% for the GGA and
9% for the RCTM. In a multiple simulation setting, the RCTM is more timing-consuming

73



Chapter 4. Publication 2: A Benchmarking Study of Water Distribution System Solution
Methods
Table 4.8. The actual time required to perform a multiple simulation, where number of
evaluations NE = 100, 000, of each of the four solution methods applied to N1 network
(ms unless otherwise stated) and "% diff." refers to the relative difference compared to the
GGA

GGA GGA with FCPA RCTM RCTM with FCPA
(ms) (ms) % diff. (ms) % diff. (ms) % diff.

L1

AMD 1.36 0.64 0.19 0.14

FCPA - 0.66 - - 0.16
RCTM - - 0.53 0.33
scaling 0.09 0.05 0.04 0.02
HouseKeeping 2.05 1.78 3.93 0.36

Sub-Total 3.50 3.01 -14% 4.69 +34% 1.01 -71%

L2
GetGF-1 2790.15 1899.44 588.75 422.93
init 1345.87 887.32 1703.29 1311.09
HouseKeeping 533.19 380.98 811.72 626.93

Sub-Total 4669.21 3167.74 -32% 3103.76 -34% 2360.95 -49%

L3

GetGF-2 105292.0 89779.9 105596.0 98439.6
Linsolve 166072.0 100730.0 122200.0 95539.0
second phase 36483.3 23477.1 19716.9 14872.4
normTest 50892.4 34836.7 12753.1 9440.8
HouseKeeping 15748.3 12593.3 6605.0 6340.2

Sub-Total 374488 261417 -30% 266871 -29% 224632 -40%

L2
reverseFCPA - 6053.5 - 1776.4
reverseRCTM - - 1335.5 824.5

Sub-Total 0 6053.5 — 1335.5 — 2600.93 —
L1 undo permutation 0.02 0.01 0.002 0.002

Sub-Total 0.02 0.01 -40% 0.002 -89% 0.002 -91%
(min.) (min.) (min.) (min.)

EA runtime 6.35 4.53 -29% 4.53 -29% 3.83 -40%

than the GGA when applied to network N8 because of the greater number of nonzero
elements in its key matrix (Table 4.5).

Table 4.10 shows the actual multiple simulation runtime with 100,000 evaluations
for each of the four solution methods applied to the eight case study networks. Under
a multi-run simulation setting, the GGA implementation in this paper has been able to
achieve between a 35% and 81% speedup when compared with the GGA implementation in
EPANET by implementing the proposed module categorization. Note that both the upper
and lower range values of the speed-up achieved by implementing the proposed module
categorization in a multi-run simulation are higher than those in a once-off simulation.
This is because the effectiveness of proposed module categorization and the number of
evaluation are directly proportional. The fastest solution methods for each of the case study
networks are highlighted in bold. Both the GGA and the RCTM benefit from the use of
the FCPA, which is also observed under the once-off simulation setting. The relative time
saving accruing from the use of the FCPA is smaller for the RCTM than it is for the GGA.

4.10 Conclusions
This paper presents a reliable benchmark study on four water distribution system demand-
driven steady-state solution methods, namely the Global Gradient Algorithm (GGA), the
GGA with Forest-Core Partitioning Algorithm (FCPA), the Reformulated Co-Tree flow
Method (RCTM), and the RCTM with FCPA. These solution methods were implemented
using fast, carefully designed, and modularized C++ code in order to provide a fair basis
for comparing these methods.

74



Chapter 4. Publication 2: A Benchmarking Study of Water Distribution System Solution
Methods

Table 4.9. The actual time required to perform a multiple simulation, where number of
evaluations NE = 100, 000, of each of the four solution methods applied to N8 network
(ms unless otherwise stated). The "% diff." refers to the relative difference compared to the
GGA

GGA GGA with FCPA RCTM RCTM with FCPA
(ms) (ms) %

diff.
(ms) %

diff.
(ms) % diff.

L1

AMD 14.16 8.49 10.68 8.60
FCPA - 1.75 - 1.64
RCTM - - 45.30 24.11
scaling 0.69 0.36 0.47 0.34
housekeeping 7.86 5.39 8.02 5.70

Sub-Total 22.71 15.99 -30% 64.47 +184% 40.39 +78%

L2
GetGF-1 10069.00 7481.70 9920.71 7375.28
init 2362.45 1782.70 73221.90 65377.80
housekeeping 1686.00 1342.04 42063.10 43556.10

Sub-Total 14117.45 10606.44 -25% 125205.71 +787% 116309.18 +723%

L3

GetGF-2 2331270.0 2173440.0 3732280.0 3561510.0
Linsolve 6884030.0 5689170.0 11339200.0 10975000.0
second phase 314826.0 280212.0 1129820.0 995822.0
normTest 162986.0 112226.0 257123.0 183340.0
housekeeping 40008.0 33472.0 54777.0 47128.0

Sub-Total 9733120 8288520 -15% 16513200 +70% 15762800.0 +62%

L2
reverseFCPA - 18405.5 - 19017.2
reverseRCTM - - 24182.3 16772.6

Sub-Total 0 18405.5 24182.3 35789.8
L1 undo permutation 0.03 0.03 0.06 0.06

Sub-Total 0.03 0.03 -13% 0.06 +83% 0.06 +64%
(min.) (min.) (min.) (min.)

EA runtime 162.51 138.68 -15% 277.80 +71% 265.34 +63%

Table 4.10. The actual multiple simulation runtime (in minutes) with 100,000 evaluations
for each of the four solution methods applied to each of the eight case study networks and
the "% diff." refers to relative difference compared to the GGA time

GGA GGA with FCPA RCTM RCTM with FCPA EPANET
min. min. %diff. min. %diff. min. %diff. min. %diff.

N1 6.35 4.35 -31 4.53 -29 3.83 -40 9.70 +53
N2 8.39 5.83 -31 8.67 +3 7.78 -7 13.96 +66
N3 14.88 9.64 -35 12.45 -16 10.30 -31 25.35 +70
N4 20.86 16.86 -19 24.02 +15 21.93 +5 68.08 +226
N5 16.47 12.50 -24 10.90 -34 9.26 -44 32.18 +95
N6 70.66 58.62 -17 39.58 -44 36.25 -49 238.64 +238
N7 128.01 94.71 -26 216.88 +69 204.59 +60 422.62 +230
N8 162.511 138.68 -15 277.80 +71 265.34 +63 843.03 +419

The correctness of the implemented solution methods in C++ has been validated against
a MATLAB implementation. The robustness of the implementation was achieved by: (i)
incorporating necessary precautions in the numerical processes to guard against avoidable
computational failures, (ii) using Valgrind to detect any memory leaks and (iii) scaling
the variables to avoid overflow, underflow and subtractive cancellation. Implementation
efficiency was achieved by, (i) identifying the program loop invariants and hoisting them
out of the program loop to avoid any unnecessary computations and (ii) gathering the
constants and parameters in every equation to minimize the number of parameters.

The following observations can be made for the four solution methods by comparing
the detailed timing of four WDS solution methods applied to the eight case study networks:
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1. In the case studies that have been analyzed, the per-iteration time required to perform
the RCTM is less than the GGA except for N8. However, the RCTM requires a
greater number of iterations to satisfy the stopping test which leads to the RCTM
requiring more time than the GGA for some case study networks. This is because
of the different mechanisms used to generate the initial pipe flow guesses in these
methods.

2. In the case studies analyzed, the mean time per-iteration of the L3 modules (iterative
solution procedure to solve the nonlinear equations) is affected by the number of
non-zeros in the key matrix and the dimension of the non-linear problem. The
smaller the number of non-zeros and the smaller the dimension of the non-linear
problem, the smaller the solution time will be.

3. Both the GGA and the RCTM benefit from partitioning the forest component from
the core component. The FCPA saves less time for the RCTM than it does for the
GGA because the forest component is a part of the spanning tree calculation.

4. Significant time savings have been observed when comparing the implemented
solution methods with EPANET for a multiple run simulation setting.

As a final note, a significant proportion of the runtime savings, in themethod implementation,
can be attributed to the decomposition of the modules of the solution methods into different
levels of repetition. This decomposition exploits invariants in the solution process in order
to avoid unnecessary computations.
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Chapter 5

Publication 3: A Bridge-Block Partitioning
Algorithm for Speeding up Analysis of

Water Distribution Systems

5.1 Synopsis
In Chapter 4, WDSLib, a water distribution system simulation toolkit that was developed
in Chapter 3, was used as a fair basis for a detailed comparison of the performance of four
water distribution system solution methods, namely the global gradient algorithm (GGA),
the GGA with the forest-core partitioning algorithm (FCPA), the reformulated co-tree
flows method (RCTM), and the RCTM with the FCPA under different settings. Another
type of graph property, bridge and block components, has been investigated in this chapter.
The bridge-block partitioning algorithm (BBPA) begins by using the FCPA to separate the
forest component from the core component. Then, the BBPA further partitions the core
component of the network into block and bridge components.

Bridge components are the pipes in the core that are not part of any loop. The solutions
for the bridge components can be found by a linear process – in the same way as can the
forest component in the FCPA. The remainder of the network is consisting of blocks and
solutions for these block components can be found separately. It is possible to separate two
blocks with a single node called a cut-vertex. The advantages in speed and reliability for
the BBPA arise, in part, from the smaller systems that result from partitioning the network
into these smaller blocks, if the core component of the WDS graph is one-connected.

The BBPA exploits the fact that the flows and heads in one block component are weakly
coupled with those of the other block components and the solution of the flows and heads
in a bridge component is a linear process. The convergence rate for the solution of the
core component of a WDS, without the BBPA, is restricted to that of the worst block of
the network. The number of iterations required by each block is bounded above by that
required by the unpartitioned system.

The use of BBPA can also improve the reliability of the solution. The numerical
reliability of the solution can be determined by the condition number of the Schur
complement. The condition number of a matrix is the ratio of the largest to the smallest
singular value of any square matrix. In most cases, the condition numbers for all the
individual blocks will be smaller than the condition number of the full matrix.

In this Chapter, the advantage of using BBPA is demonstrated on eight case studies
with between 932 to 19647 pipes and between 848 and 17971 nodes. The global gradient
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algorithm (GGA) with the forest-core partitioning algorithm (FCPA) is between 30% and
70% faster if the BBPA is used. The BBPA has the following attractions: (1) it significantly
reduces the computation time by partitioning the non-linear system of equations into a
number of linear bridges and a number of independent non-linear blocks, (2) it improves the
reliability of the solution because the condition number of each block is bounded above by
that of the full system, (3) it minimises the need to regularise in the presence of zero flows
when the head loss is modelled by the Hazen-William formula, (4) blocks with unchanged
demands do not need recomputing in a management setting, and (5) the solution of the
blocks can be solved in parallel.

5.1.1 Citation
Qiu, M, Elhay, S, Simpson, AR & Alexander, B 2018, ‘A Bridge-Block Partitioning
Algorithm for Speeding up Analysis Of Water 1 Distribution Systems’, Manuscript
submitted for publication to Journal of Water Resources Planning and Management.
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5.2 Abstract
Many water distribution system (WDS) solution methods have been developed to perform
demand-driven steady-state analysis. These methods are used to solve the non-linear
system of equations that model a WDS. WDS networks have structural properties that can
often be exploited to speed up these solution methods. One solution method that exploits
these structural properties is the forest-core partitioning algorithm that was proposed as
a pre-processing and post-processing method that can be used to separate the network
into a linear forest component and a non-linear core component. This paper presents a
complementary method for pre-and post-processing called the bridge-block partitioning
algorithm (BBPA). This method further partitions the core component of the network into
a number of linear bridge components and a number of non-linear block components. The
use of BBPA to partition a WDS network provides significant advantages over current
solution methods in terms of both speed and solution reliability.

5.2.1 Keywords
Global gradient algorithm (GGA); Graph Theory; Bridge-Block Partitoning; Water
distribution systems; Hydraulic analysis.

5.3 Introduction
Hydraulic simulation algorithms use mathematical models designed to simulate the
hydraulic performance of a water distribution system (WDS) and have played a critical
role in the design, operation, and management of WDSs in research and industry. These
models have been used for (1) optimizing WDS network design parameters (such as
pipe diameters), (2) for calibrating network parameters (such as demand patterns), (3)
conducting real-time monitoring and calibration of the network elements in a supervisory
control and data acquisition (SCADA) operational setting, and (4) adjusting control devices
(such as valves). In hydraulic simulation, the system of equations can be formulated as a
large and sparse non-linear saddle-point problem. There are several well-known iterative
methods for solving the non-linear saddle-point problem. These include: range space
methods, null space methods, and loop-based methods.

The most widely used WDS solution method is the Global Gradient Algorithm (Todini
and Pilati 1988). The GGA, a range space method, takes advantage of the block structure of
the full Jacobian matrix to achieve a smaller key matrix in the linearization of the Newton
method. Since the development of the GGA, numerous new WDS hydraulic solution
methods have been proposed and improvements have been made to existing WDS hydraulic
solution methods. Most of these new WDS hydraulic solution methods employ graph
theory to decompose or partition the WDS network graph into sub-graphs which results in
a smaller system of equations. Deuerlein (2008) introduced a decomposition model for
a WDS network graph, in which the one-connected components are categorized as the
forest component and the biconnected components are categorized as the core component.
After removing the forest component, the core component can be further partitioned into
blocks that are connected by bridge elements. After the partitioning processes, a loop
flow corrections method is then used. Simpson et al. (2012) proposed a matrix based
identification method for the forest component and the core component and introduced
the forest-core partitioning algorithm (FCPA). In the FCPA, flows and heads in the forest
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component can be solved for just once. The remaining system of equations, representing
the core – which has a smaller dimension if the network has a significant forest component
– is then solved iteratively by the Newton method. Deuerlein et al. (2015) proposed another
graph partitioning algorithm which exploits the properties of network components in series
within the core component of the network. This algorithm exploits the fact that flows in
the internal tree pipes are linearly dependent on the topological minor. This relationship
has been used to partition the non-linear Newton solver into a non-linear global step and a
linear local step.

The loop-based method is a solution method which attempts to reduce the size of the
simulation problem. The oldest loop-based method (and the oldest method overall) is
the Hardy Cross method (Cross 1936). In the Hardy Cross method, there are two sets of
equations –(i) mass conservation equations and (ii) loop energy conservation equations–
which are used to model the underlying relationship of the flows and heads of a WDS. This
non-linear system of equations is solved by successive approximation, in which a set of
initial flows that satisfies continuity is successively corrected until a predefined stopping test
has been met. The Hardy Cross method is an iterative manual method that was popular for
its simplicity before the introduction of computers. Epp and Fowler (1970) also explored
the possibility of using a loop formulation to perform hydraulic simulations. They proposed
a programmable version of the Hardy Cross method. However, this method is not widely
used because it required (1) the identification of loops, (2) the use of pseudo-loops if the
network has more than one source, and (3) the finding of a set of initial flows that satisfies
continuity. Later, Creaco and Franchini (2013) incorporated the concept of minimum
cycle basis to identify a set of loops that can be used to achieve the sparsest key matrix for
loop formulation. It is reported in their paper that, although the loop method requires less
computation time than the GGA, the time taken for identifying the minimum cycle basis
can be a major disadvantage. More recently, Alvarruiz et al. (2015) presented two methods
to identify the minimum cycle basis that used significantly less time.

The null space method is a special loop-based method: all null space formulations
can be rewritten as loop-based formulations, but not all loop-based formulations can be
rewritten as null space formulations. The co-tree flows method (CTM) is the first null
space method, which partitions the network component into a spanning tree and a co-tree.
The CTM has the same disadvantages as the loop flow correction method. Later, the
reformulated co-tree flow method (RCTM) was introduced by Elhay et al. (2014) to address
the initialization requirements by incorporating Schilders’ factorizations (Schilders 2009).
Abraham and Stoianov (2015) proposed a partial update method for the null space methods,
that is also applicable to the GGA, in which computation time is saved through minimizing
the calculation of the head loss component by only calculating the friction factors and the
head loss components of the pipes that have not satisfied the stopping test.

In this paper, a new graph partitioning algorithm, referred to as the bridge-block
partitioning algorithm (BBPA), is proposed. The BBPA begins by using the FCPA to
separate the core component from the forest component. Then, the BBPA further partitions
the core component of the network into block and bridge components. Bridge components
can be defined as the pipes in the core that are not part of any loop. For example,
in Fig. 5.1(a) the bridge pipes are highlighted in bold. The solutions for these bridge
components (block 1, block 3, and block 4) can be found by a linear process – as can the
forest component in the FCPA. The remainder of the network consists of blocks, labeled
block 2 and block 5 and solutions for these components can be found separately. It is
possible to separate two blocks with a single node called a cut-vertex. This scenario is
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(a) Example A (b) Example B

Fig. 5.1. Two example networks of blocks, bridges, and cut-vertices

illustrated in Fig. 5.1(b). The node (cut-vertex 2) is a cut-vertex that separates the two
blocks. These two blocks can also also be solved separately, as was the case in part (a) of
the example. The advantages in speed and reliability for the BBPA arise, in part, from the
smaller systems that result from partitioning the network into these smaller blocks if the
core component of the WDS graph is one-connected.

The BBPA exploits the fact the flows and heads in one block component are weakly
coupled with these of the other block components and the solution of the flows and heads
in a bridge component is a linear process. The convergence rate for the solution of the core
component of a WDS, without the BBPA, is restricted to that of the worst block of the
network. Solving each block separately reduces the number of iterations executed to the
number of iterations required by that block.

There is a number of advantages to using the BBPA to identify the linear bridge
components and the block components of a WDS network:

1. The number of iterations required by each block is bounded by that required by
the unpartitioned system – solving the flows and heads in each block separately
significantly reduces the overall computational time for the non-linear solver in
almost all cases.

2. It improves the numerical reliability of the solution. The numerical reliability of
the solution can be determined by the condition number of the Schur complement.
The condition number of a matrix is the ratio of the largest to the smallest singular
value of any square matrix. A rough rule of thumb is: one digit of reliability in the
solution is lost for every power of ten in the condition number. If a square matrix
is partitioned into block diagonal form by orthogonal permutations, the condition
numbers of blocks can be no greater than that of the full matrix. In most cases, the
condition numbers for all the individual blocks will be smaller than the condition
number of the full matrix. This phenomenon is illustrated later in this paper.

3. It reduces the need to regularize for the presence of zero flows (Elhay and Simpson
2011). It has been pointed out by Simpson et al. (2012) that solving for the flows and
heads separately can avoid the numerical failure that occurs when there are nodes
with zero demand present in the forest. It is shown in this paper that there are blocks,
in some networks, that have zero accumulative demands. The solutions of these
networks need a regularization method to deal with the presence of the zero flows
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to avoid catastrophic numerical failure when the Hazen-William head loss model is
used. Using the BBPA avoids this failure which reduces the need for regularization.

4. It reduces the computational time in a management setting because the flows in the
blocks with unchanged nodal demands do not need to be solved again and the heads
in the corresponding block only need to be adjusted a posteriori.

5. The solution of each block can be found in parallel in a demand-driven model because
the flows and heads in one block component can be found separately from those of
the other block components.

The main contributions of this paper are: (1) to extend the concept of using bridge and
block components in the loop flow correction method, proposed in Deuerlein (2008), to a
generalized graph partitioning algorithm that can be used with any demand-driven WDS
solution method, (2) to establish the theoretical advantages of using the BBPA in terms of
reducing computational load and improving numerical reliability, (3) to provide a detailed
case study to demonstrate BBPA’s usefulness in terms of performance and accuracy.

This paper is organized as follows. Some definitions and notations are given in the next
section. The section following provides the derivation of the method with some examples.
The algorithmic description of the BBPA is then given, followed by the a discussion of
the relation of the BBPA and other methods. This is followed by a benchmark analysis
of the BBPA applied to the eight case study networks that supports the claim about the
advantages of using the BBPA. These results are then discussed in the section that follows.
Finally, the last section summarizes the overall findings.

5.4 General WDS Demand-Driven Steady-State
Problem

This section describes the generalWDS demand-driven steady-state problem. The following
starts with the basic definition and notations, followed by the system equations. Finally, the
Global Gradient Algorithm, which is used as the hydraulic solver to separately solve each
block, are shown.

5.4.1 Definitions and Notation
Consider a water distribution system that contains np pipes, nj junctions, nr fixed head
nodes and nf forest pipes and nodes. The j − th pipe of the network can be characterized
by its diameter Dj , length Lj , resistance factor rj . The i− th node of the network has two
properties: its nodal demand di and its elevation head zi.

Let q = (q1, q2, ....qnp )T denote the vector of unknown flows, h = (h1, h2, ....hnj )T

denote the vector of unknown heads, r = (r1, r2, ....rnp )T denote the vector of resistance
factors, d = (d1, d2, .....dnj )T denote the vector of nodal demands, el = (el1 , el2 ....elnr

)T

denote the vector of fixed head elevations.
The head loss exponent n is assumed to be dependent only on the head loss model:

n = 2 for the Darcy-Weisbach head loss model and n = 1.852 for Hazen-Williams head
loss model. The head loss within the pipe j, which connects the node i and the node k, is
modelled by hi − hk = rjqj |qj |n−1. Denote byG(q) ∈ Rnp×np , a diagonal square matrix
with elements [G]jj = rj |qj |n−1 for j = 1, 2, ....np. Denote by F (q) ∈ Rnp×np , a diagonal
square matrix where the j-th element on its diagonal [F ]jj = d

dqj
[G]jjqj . The matrixA1
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is the full rank, unknown head, node-arc incidence matrix. The matrixA2 is the fixed-head
node-arc incidence matrix.

5.4.2 System of Equations
The steady-state flows and heads in a WDS system are modeled by the demand-driven
model (DDM) continuity equations (1) and the energy conservation equations (2):

−A1
Tq − d = O (5.1)

G(q)q −A1h−A2el = O, (5.2)
which can be expressed as

(
G(q) −A1
−A1

T O

)(
q
h

)
−
(
A2el
d

)
= 0, (5.3)

where its Jacobian matrix used in the solution process is

J =

(
F (q) −A1
−A1

T O

)
(5.4)

and it is sometimes referred to as a nonlinear saddle point problem (Benzi et al. 2005).
This non-linear system is often solved by the Newton method, in which q(m+1) and

h(m+1) are repeatedly computed from q(m) and h(m) by
(
F (m) (q(m)) −A1
−A1

T O

)(
q(m+1) − q(m)

h(m+1) − h(m)

)
= −

(
G(m)q(m) −A1h

(m) −A2el
−A1

Tq(m) − d,

)
(5.5)

until the relative differences ||q
(m+1)−q (m) ||
||q (m+1) || and ||h

(m+1)−h(m) ||
||h(m+1) ||

are sufficiently small.

5.4.3 Global Gradient Algorithm
Todini and Pilati (1988) applied block elimination to Eq. (5.5) to yield a two-step
Hazen-Williams only solver: Eq. (5.6) for the heads and Eq. (5.7) for the flows.

Uh(m+1) =
{
−nd +A1

T [(1− n)q(m) −G−1A2el]
}

(5.6)

where U = A1
TG−1A1 is the Schur complement, and

q(m+1) =
1
n

{
(n− 1)q(m) +G−1(A2el +A1h)

}
(5.7)

Later, Simpson and Elhay (2010) proposed

V h(m+1) = −d +A1
TF−1

[
(G− F ) q(m) −A2el

]
(5.8)

where V = A1
TF−1A1 is the Schur complement, and

q(m+1) = q(m) + F−1A1h
(m+1) − F−1

[
Gq(m) −A2el

]
(5.9)

as the generalized equations that can be applied when the head-loss is modeled by the
Hazen-William equation or the Darcy-Weisbach equation. The correct Jacobian matrix
with the formula for F , when head loss is modeled by Darcy-Weisbach equation, can be
found in Simpson and Elhay (2010). They showed that the use of the correct Jacobian
matrix restores the quadratic rate of convergence.
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5.5 Derivation of the Bridge-Block Partitioning
Algorithm

The following terminology will be used in this paper. Associated with a WDS is a graph
G=(V, E), where the elements of V are the nodes (vertices) of the graph G and elements of E
are the pipes (links or edges) of the graph G. Every WDS can be divided into two subgraphs:
a treed subgraph (forest) Gf =

(
Vf , Ef

)
and a looped subgraph (core) Gc = (Vc, Ec), so

that Ef
⋃
Ec = E, Ef

⋂
Ec = ∅, Vf

⋃
Vc = V . A cut-vertex is a node in a WDS graph, the

removal of which will increase the number of connected components, and a bridge is a
pipe in a WDS graph, the removal of which will separate its two end nodes. A block is a
maximal connected subgraph without a cut-vertex. A WDS graph can be decomposed into
a tree of blocks, cut-vertices, and bridges called a block-cut tree (Diestel 2005). A root
block is a block which includes one or more water sources. Note that every water source is
defined to be within the root block of its network component. That is, all water sources are
in the root block of their connected component of the network. The level of block i in a
rooted block-cut tree is the length of the unique path, composed of blocks, from the root
block to block i. The parent of block i is the block connected to block i on the path to the
root block. If block i is the parent of block j, then block j is the child of block i. A block
of a graph G containing only one cut-vertex is called an end block of G. Note that any
block except for the root block has a unique parent block, and any block except for an end
block can have multiple child blocks.

A WDS graph can be divided into nb subgraphs, Gb1=(Vb1 ,Eb1), Gb2=(Vb2 ,Eb2), ...,
Gbnb

= (Vbnb
,Ebnb

). If two blocks, Gbi
=(Ebi

,Vbi
) and Gbj

=(Ebj
,Vbj

), are adjacent, then
Ebi
∩ Ebj

= ∅ and Vbi
∩ Vbj

= cij where cij is the cut-vertex that connects the parent
block i and child block j. The cut-vertex, cij , in the parent block, bi, is a cluster of the
demands of this cut-vertex and all its descendant blocks. A block except for the end block
can have multiple cut-vertices behaving as clusters of demands because a parent block
can have multiple child blocks. The cut-vertex, cij , in the child block, bj , is considered
as a pseudo-source. The head of the cut-vertex, cij , that is found in the parent block,
bi, is used as the elevation head of the pseudo-source for the corresponding child block.
With the exception of the root block, every block has a single cut-vertex that behaves as
a pseudo-source. The ancestors of a block are the blocks in the path from the root block
to this block, excluding the block itself and including the root block. The descendants of
block i are all the blocks that have block i as an ancestor.

The BBPA is now derived by generating two orthogonal permutation matrices and using
them to manipulate the matrixA1 to find nb unknown-head node-arc incidence matrices
for each block,B11,B22, .....Bnbnb , and nb − 1 fixed head node-arc incidence matrices,
C1,C2, ...,Cnb−1. Note that in the following,Bij , the block in the i-th block row and the
j-th block column, is used to denote the fixed head node-arc incidence matrices, where the
subscripts i and j are used to indicate the location of the block, row j and column i, and
also to indicate a direct connection between the block i and block j.

Recall that all blocks except for the root block have exactly one cut-vertex that behaves
as a pseudo-source. The terms involving these pseudo-sources are moved to the right-
hand-side of the system leaving the remaining node-arc incidence matrix full rank. This is
because each of the diagonal block matrices of A1, a full rank matrix, is also full rank.
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The permutation matrix that is used to permute the system equation, Eq. (5.3), is

P1 =

(np nj
np P O
nj O R

)
, (5.10)

where P =
(
P eb1

P eb2
. . .P enb

)T∈ Znp×np is the square orthogonal permutation
matrix for the pipes in each block, in which P ebi

∈ Znp×npbi , for i = 1, 2, ....nb, is the
permutation matrix that identifies the pipes in the block i as distinct from the pipes in other
blocks andR =

(
Rvb1

Rvb2
. . .Rvnb

)T∈ Znj×nj is the square orthogonal permutation
matrix for the nodes in each block, in which Rvbi

∈ Rnj×nvbi , for i = 1, 2, ....nb, is the
permutation matrix that identifies the nodes in the block i as distinct from the nodes in
other blocks.

The permuted system of the BBPA equations is:

P1

(
G −A1
−A1

T O

)
P1

TP1

(
q
h

)
− P1

(
a
d

)
= O (5.11)

where a = A2el. With this permutation, Eq. (5.3) becomes:
(

PGP T −PA1R
T

−RA1
TP T O

)(
Pq
Rh

)
−
(
Pa
Rd

)
= O (5.12)

where

PA1R
T =




B11 O . . . O
B21 B22 . . . O
...

...
. . .

...
Bnb1 Bnb2 . . . Bnbnb



,

in which all the block entries above the diagonal blocks become zero matrices because
there is no pipe in a parent block that connects to any node in any of its child blocks. The
block entries below the diagonal blocks,Bij represent the connection between the nodes
in the parent block, block j, and the pipes in the child block, block i, which areO when
block j and block i are not adjacent blocks. It has been pointed out above that any block,
except for the end block, can have multiple child blocks. Furthermore, any block, except
for the root block, can have only one parent block. As a result, each block column can have
more than two non-zero block entries (including the diagonal block in that block column)
and each block row, except for the root block row, has exactly two non-zero block entries
(including the diagonal block in that block row).

PGP T =




Gb1 O . . . O
O Gb2 . . . O
...

...
. . .

...
O O . . . Gbnb



,Pq =




qb1
qb2
...
qbnb



,Rh =




hb1
hb2
...
hbnb



,Pa =




ab1
ab2
...
abnb




in which any block that is not a root block becomesO, andRd =
(
dTb1 dTb2 . . . dTbnb

)T
.

The matrix PA1R
T in Eq. (5.12) can be divided into two block matrices: a block diagonal
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matrix:

AB =




B11 O . . . O
O B22 . . . O
...

...
. . .

...
O O . . . Bnbnb



, (5.13)

where each block matrix on its block diagonal represents the node-arc incidence matrix of
the corresponding graph block, and a lower block triangular matrix that only has entries
below its block diagonal:

AC =




O O . . . O
B21 O . . . O
...

...
. . .

...
−Bnb1 −Bnb2 . . . O



, (5.14)

where each matrix block represents the connection from the cut-vertex acting as a pseudo-
source to a child block (row) and the connection from the same cut-vertex acting as a
cluster of demand nodes to the parent block (column). Recall that, each block row of the
matrixAB +AC , except for the block row representing the root graph blocks, has exactly
two non-zero block entries: one of two non-zero block entries is on the block diagonal of
the matrixAB and the other one of the two non-zero block entries is in the lower triangular
part of the matrixAC .

DefiningGB = PGP
T , qB = Pq, hB = Rh, aB = Pa, and dB = Rd, Eq. (5.12)

can be rewritten as
(

GB −AC −AB
−ACT −ABT O

)(
qB
hB

)
=

(
aB
dB

)
. (5.15)

The matrixAC can be moved from the left-hand-side of Eq. (5.15) to its right-hand-side
and Eq. (5.15) becomes:

(
GB −AB
−ABT O

)(
qB
hB

)
=

(
aB +AChB
dB +AC

TqB

)
(5.16)

Defining âB = aB +AChB and d̂B = dB +ACTqB , Eq. (5.16) expands to



Gb1 O . . . O −B11 O . . . O
O Gb2 . . . O O B22 . . . O
...

...
. . .

...
...

...
. . .

...
O O . . . Gbnb

O O . . . Bnbnb

−B11T O . . . O O O . . . O
O −B22T . . . O O O . . . O
...

...
. . .

... O O . . . O
O O . . . −Bnbnb

T O O . . . O







qb1
qb2
...
qbnb

hb1
hb2
...
hbnb




=




âb1
âb2
...
̂abnb

d̂b1
d̂b2
...
̂dbnb




.

(5.17)
It is evident from the expanded system of equations, Eq. (5.17), of the BBPA that the
amount of computation can be significantly reduced by solving each block separately.
Moreover, these blocks can be solved in parallel. This is because the permutedA1 matrix,
PA1R

T , can be rearranged into a block diagonal matrix, which allows the non-linear
system of equations in Eq. (5.3) be partitioned into nb smaller independent non-linear
systems.
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5.5.1 Update of the demands and nodal heads
The demands for each block are only required to be updated once before every evaluation
and the head for each unknown-head node is only required to be updated once after the
solution of each block is found. As stated previously, each block row of the matrix AC
has only one non-zero block entry below its block diagonal. The matrixBij only has one
column entry that is non-zero. This column entry is theA2 matrix for that block, which is
the node-arc incidence matrix representing the connection between the pseudo-source and
the pipes in the child block.

LEMMA 2. Suppose v ∈ Rnj×1 is a column vector of all ones A1 ∈ Rnp×nj , is an
unknown-head node-arc incidence matrix and A2 ∈ Rnp×1 is a fixed-head node-arc
incidence matrix for one of the WDS’s blocks that is not the root block. Then

−A1v = A2 (5.18)

Proof. Denote by p1, a set of indices for the pipes that are not connected to a water
source; by p2, a set of indices for the pipes that are connected to a water source. Let
A1 =

(
a1T a2T . . . anp

T
)T

. The i-th row of the matrix A1 has two non-zero
entries, 1 and -1, and the i-th row of the matrixA2 is zero if i ∈ p1. It is evident that the
inner product of ai and v becomes 0. The j-th row of the matrixA1 has only one entry, -1,
and the j-th row of the matrix A2 has only one entry, 1, if j ∈ p2. It is evident that the
inner product of aj and vT is -1. End of LEMMA 2�

The relationship shown in Eq. (5.18) can be used to calculate termAchB in Eq. (5.16).
The relationship between the unknown head node-arc incidence matrix,Bii, and the fixed
head node-arc incidence matrix,Bij , is

Bij = −Biiv, (5.19)

the transpose of which isBijT = −vTBiiT and multiplying both sides by qBj , the flows
in block j , we getBijTqBj = −vTBiiTqBj . Therefore,

Bij
TqBj = −vTdBj , (5.20)

which is in fact the sum of the demands in the child block to the cut-vertex in the parent
block. Eq. (5.20) is used repeatedly from the end block to the root block until theAcTqB
in Eq. (5.16) has been replaced. This process is performed only once before the iterative
phase.

Multiplying both sides of the Eq. (5.19) by the unknown head at cut-vertex cj , hcj , we
get

Bijhcj = −Biivhcj , (5.21)

which is used to moveAchb from the left-hand-side of the equation to the right-hand-side
of the equation so that each block can be solved in parallel. The heads need only be
computed just once after the iterations for all blocks have been completed.
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5.5.2 The properties of the system of equations after bridge-block
partitioning

In the BBPA, a full WDS network is partitioned into nb smaller independent non-
linear systems by permuting the original full system of equations using two orthogonal
permutations P andR. One of the main contributions of this paper is to show that the use
of the BBPA can significantly reduce the computational loads and improve the numerical
reliability of the results.

The BBPA can be used to improve the reliability of solution of the looped component in
the final WDS solution. This is because the condition number, the ratio between the largest
to the smallest singular value of a matrix, can be used to estimate the loss of reliable digits
in solving a linear system with that matrix. The orthogonal permutations of the BBPA
shuffle the nj singular values of the Schur Complement into their corresponding blocks.
This is because pre-and-post-multiplying a matrix by orthogonal matrices preserves the
singular values. The upper bound of the largest singular value of all blocks is the largest
singular value of the full system and the lower bound for the smallest singular value of all
blocks is the smallest singular value for the full system. Therefore, the condition number
of each block at the solution is bounded above by the condition number of the full system
of equations but in most cases will be smaller. Moreover, the only occasions when one of
the blocks has the same condition number as the full system is where both the highest and
lowest singular values are present in the same block. Even in this particular case the other
blocks in the system will have lower condition numbers than the full system.

Furthermore, the use of the BBPA can minimize the need to use regularization methods
for handling zero-flows. In the FCPA paper (Simpson et al. 2012), the authors pointed out
that it is common for zero flows to occur at the ends of trees with zero demands. Similarly,
it is also possible for all nodes in the end blocks to have zero demands. The GGA fails
catastrophically at these blocks when the head loss is modelled by the Hazen-William head
loss model. One side-effect of identifying these end blocks with zero nodal demands is
zero flows can be assigned to all pipes in these blocks and the head of pseudo-source can be
assigned to all nodes in these blocks. When zero flows occur in other blocks, regularization
is needed only for the blocks with the presence of zero flows instead of the full system.

In addition to the improvement of the numerical reliability of the final result, the use of
the BBPA can significantly reduce computational loads. This reduction in computational
loads is achieved through: (1) the bridge component being solved by a linear process,
the removal of which reduces the number of non-zeroes in Schur component, (2) the
probable reduction in the number iterations required by each block as shown in Appendix
in section 5.13, and (3) the non-linear system of equations for each block is independent of
other blocks which allows each block to be solved in parallel.

5.6 Bridge-Block Partitioning Algorithm
The steps of the BBPA are now described. The BBPA starts with a forest search algorithm
to identify the forest component as distinct from the core. This is followed by identifying
all the blocks and bridges in the core, and updating the demands for the cut-vertices by
using Stage 3 as given below, a variation of the algorithm detailed by Hopcroft and Tarjan
(1973). Note that this algorithm is based on the depth-first search and runs in linear time.
There are two ways to solve the core of the network: in parallel or serially.
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Parallel: It can be more efficient to solve all the blocks in parallel when the solution
of the entire system is needed, such as in a design setting. After the network has been
permuted, each block is then individually solved by using Stage 4 in no particular order.
Once the solutions for all blocks are found, the heads for the core nodes are recovered by
using Stage 5 from the root block to the end blocks. Finally, the heads for the forest nodes
are solved.

Stage 3:Bridge block partitioning determination& bottom-up demand adjustment
/* Serial determination of network block from the end blocks to the root

blocks and bottom-up cut-vertex demand accumulation */
input :Adjacency List and d
output :The system of equations of all blocks

1 Procedure DFS(currentNode,d,dm)
2 visited[currentNode] = true;
3 d=d+1;
4 depth[currentNode] = d;
5 low[currentNode] = d;
6 foreach (nextNode,nextPipe)∈ adjList(currentNode) do
7 if nextNode is not a Forest node then
8 if nextNode is not visited then
9 stack.push_back(adjList[currentNode]);
10 parent[nextnode]=nextpipe;
11 DFS(nextnode,d,dm);
12 if low[currentNode]≥ depth[currentNode] then
13 BlockSource[NB].push_back(currentNode);
14 do
15 temp←stack->pop_back();
16 if (temp.first<np) then
17 BlockPipe[NB].insert(temp.first);
18 end if
19 if (temp.second!=currentNode) then
20 if (temp.second<nj) then
21 if (BlockNode[NB].insert(temp.second).second==true)

then
22 (*dm)[currentNode]+=(*dm)[temp.second];
23 end if
24 else if (temp.second>=nj) then
25 BlockSource[NB].insert(temp.second);
26 end if
27 while (temp.first!=nextPipe);
28 NB = NB + 1;
29 end if
30 low[currentNode]=min(low[nextNode],low[currentNode]);
31 else if (parent[currentNode],nextpipe&&depth[nextnode]<depth[currentNode])

then
32 stack.push_back(adjList[currentNode]);
33 low[currentNode]=min(low[currentNode],depth[nextnode]);
34 end if
35 end foreach
36 Algorithm BBPA()
37 for currentNode← nj to nj + nf do
38 DFS(currentNode,depth,dm);
39 end for
40 Initialize the system of equations for each block using Eq. (5.16);
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Stage 4: Serial or parallel block solution
/* Nonlinear solution for the blocks can either be found serially or in

parallel */
input :The system of equations for a block
output :The solution of the flows in the input block and heads that need to be updated

1 foreach Block do
2 if The size of the block =1 then
3 This block is a bridge and assign the demand of the only node to the flow of

the only pipe;
4 else
5 if Sum of the demands in this block=0 then
6 assign the flows of the pipes=0;
7 continue
8 endif
9 Using a WDS solution method to solve the nonlinear system for the flows and

interim heads.;
10 endif
11 end foreach

Stage 5: Top-down head correction
/* Top-down determinations of corrected heads from the relative heads. Actual

heads in any block can only be found when the flows and interim heads of its
ancestor blocks have been found */

input :The unrecovered heads of a block
input :The head of the pseudo-source from the parent block of the current block
output :The recovered heads of the input block

1 foreach Block do
2 if The input block is not the root bock then
3 Recover the actual heads of the input block from the interim heads by using

Eq. (5.21).
4 endif
5 end foreach

Serial: Alternatively, each of the blocks can be solved in sequence. After the network has
been permuted, each block is then separately solved by using Stage 4 and Stage 5 from the
root block to the end blocks. Note that it is possible to only solve for a part of the system
which includes the blocks of interest and their ancestor blocks. Solving the system this
way reduces the computational time in a management setting because (1) the flows in the
blocks with unchanged nodal demands do not need to be solved again and the heads in the
corresponding block only need to be adjusted a posteriori and (2) a different priority can
be assigned to a different block which allows blocks with different priorities to be updated
in a different time interval. Finally, the heads for the forest nodes are solved.
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5.7 Example
In this section, the use of the BBPA is demonstrated by applying it to the example network
shown in Fig. 5.2. The system of equations for each block are displayed. This network has
eight pipes, six nodes with unknown heads, and one water source. The solution for this
example is demonstrated below in two steps: (1) network permutation and (2) network
solution.

Fig. 5.2. A simple example network that is made up of three blocks, and two cut-vertices.
Block 1 is referred to asB1, Block 2 is referred to asB2, and Block 3 is referred to asB3.
Cut-vertex 1 is referred to as cv1 and Cut-vertex 2 is referred to as cv2.

5.7.1 Permutation for example network
The unknown-head node-arc incidence matrix,A1, and the fixed-head node-arc incidence
matrix,A2 for this example network are

A1 =




−1 0 0 0 0 0
1 0 0 0 0 −1
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 −1 1 0 0
0 1 0 −1 0 0
0 1 0 0 −1 0
0 0 0 0 1 −1




,A2 =




1
0
0
0
0
0
0
0




.
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The system of pipe head loss and nodal continuity equations for the example network is



G1 1 0 0 0 0 0
G2 −1 0 0 0 0 1

G3 −1 1 0 0 0 0
G4 0 −1 1 0 0 0

G5 0 0 1 −1 0 0
G6 0 −1 0 1 0 0

G7 0 −1 0 0 1 0
G8 0 0 0 0 −1 1

1 −1 −1 0 0 0 0 0
0 0 1 −1 0 −1 −1 0
0 0 0 1 1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 −1
0 1 0 0 0 0 0 1







q1
q2
q3
q4
q5
q6
q7
q8
h1
h2
h3
h4
h5
h6




=




el7
0
0
0
0
0
0
0
d1
d2
d3
d4
d5
d6




. (5.22)

By permuting the rows (pipes) in the ordering given by p = {1; 2; 3; 7; 8; 4; 5; 6} and
the columns (nodes) in the ordering given by v = {1; 6; 2; 5; 3; 4}, the system of equations
in Eq. (5.22) can be rearranged into the following block structure:

Block



P
ip
e
s

B1

B2

B3


N

o
d
e
s

B1

B2

B3

Pipes Nodes

B1 B2 B3 B1 B2 B3





G1 1 0 0 0 0 0
G2 −1 1 0 0 0 0

G3 −1 0 1 0 0 0
G7 0 0 −1 1 0 0

G8 0 1 0 −1 0 0
G4 0 0 −1 0 1 0

G5 0 0 0 0 1 −1
G6 0 0 −1 0 0 1

1 −1 −1 0 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 −1 0 −1 0 −1
0 0 0 1 −1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 −1 1







q1
q2
q3
q7
q8
q4
q5
q6

h1
h6
h2
h5
h3
h4

=







el7
0
0
0
0
0
0
0

d1
d6
d2
d5
d3
d4

(5.23)

*the bold numbers in the matrix represent the cut-vertices

Eq. (5.23) has three graph blocks as shown in Fig. 5.2 include Block 1 (a bridge), Block
2, and Block 3. Note that, for cross-referencing purposes, this equation has been labeled
with the block numbers (affiliated with pipes and nodes) corresponding to each entity in
the example network. The cut-vertices (cv1 and cv2 in Fig. 5.2) are highlighted in bold
in their corresponding matrix blocks. In the equation, it is evident that the permutedA1
matrix is a block three by three, lower block triangular matrix which represents a WDS
with the three graph blocks (B1,B2, andB3).

The end block (B3 in Fig. 5.2) is a sub-network consisting of three pipes {4; 5; 6},
two nodes {3; 4}, and a pseudo-source at node {2}. The nodal demands of this block
do not need to be updated because this is the end block. The head of the node 2 (cv2) ,
which is the cut-vertex behaving as the pseudo-source for this block, can be moved to the
right-hand-side of system of equations using Eq. (5.16). The solution of blockB3 can be
found separately after the head of the pseudo-source at node {2} is found.

The second block diagonal row (B2 in Fig. 5.2) is a sub-network consisting of four
pipes {2; 3; 7; 8}, three nodes {2; 5; 6}, and one pseudo-source at node {1}. This is
an intermediate block so that the demand at the node 2 (cv2), a cut-vertex that is not a
pseudo-source, needs to be updated by increasing its demand by the sum of demands at all
nodes of its child block (B3) as follows: d̂2 = d2 + d3 + d4 using Eq. (5.20). Node 1 (cv1),
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which is the cut-vertex behaving as the pseudo-source for this block,B2, can be moved to
the right-hand-side of system of equations using Eq. (5.16). The solution of blockB2 can
be found separately after the head of the pseudo-source at node {1} is found.

Finally, the root block (B1 in Fig. 5.2) is a sub-network consisting of pipe {1}, node
{1}, and source {7}. BlockB1 is a bridge component. The bridge component can be solved
by using a linear process. The demand for the node 1 in Fig. 5.2 (cv1), a cut vertex in the
root block, is updated by increasing its demand by the sum of demands at all nodes of its
child block (B2) as follows: d̂1 = d1 + d2 + d3 + d4 + d5 + d6 and the elevation head for
the source stays the same. After updating the demands and heads, the system of equations
in Eq. (5.23) becomes:

Block



P
ip
e
s

B1

B2

B3


N

o
d
e
s

B1

B2

B3

Pipes Nodes

B1 B2 B3 B1 B2 B3





G1 1 0 0 0 0 0
G2 0 1 0 0 0 0

G3 0 0 1 0 0 0
G7 0 0 −1 1 0 0

G8 0 1 0 −1 0 0
G4 0 0 0 0 1 0

G5 0 0 0 0 1 −1
G6 0 0 0 0 0 1

1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 −1 1







q1
q2
q3
q7
q8
q4
q5
q6

h1
h6
h2
h5
h3
h4

=







el7
h1
h1
0
0
h2
0
h2

d1 + d2 + d3 + d4 + d5 + d6
d6

d2 + d3 + d4
d5
d3
d4

(5.24)

Note that the system of equations obtained in Eq. (5.24) is equivalent to performing
block Gauss-Jordan elimination on Eq. (5.23). Solving the system of equations in this way
requires solving each block in a particular sequence, from the root block (B1) to the end
block (B3). The sequence that is required in the example network in Fig. 5.2 is: (1) to
find the solution of blockB1, the root block; (2) to find the solution of blockB2 using the
head of the node one, cv1, in blockB1 ; and (3) to find the solution of blockB3, the end
block, using the head of the node two, cv2, in blockB2.

Furthermore, the second pipe head-loss block equation or the second block equation
(B2) in Eq. (5.24) is:

Gb2qb2 −B22hb2 = B21hb1 ,

which expands to:



G2
G3

G7
G8







q2
q3
q7
q8


 +




1 0 0
0 1 0
0 −1 1
1 0 −1






h6
h2
h5


 =




h1
h1
0
0


 , (5.25)

the right-hand-side of which can be rewritten as:

B21hb1 = −B22[v3h1], (5.26)

which expands to: 


h1
h1
0
0


 =




1 0 0
0 1 0
0 −1 1
1 0 −1






h1
h1
h1



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using Eq. (5.21). Substituting it back into Eq. (5.25), we get:

Gb2qb2 −B22hb2 = −B22[v3h1],

which expands to:



G2
G3

G7
G8







q2
q3
q7
q8


 +




1 0 0
0 1 0
0 −1 1
1 0 −1






h6
h2
h5


 =




1 0 0
0 1 0
0 −1 1
1 0 −1






h1
h1
h1


 ,

which can further simplified into:

Gb2qb2 −B22[hb2 + v3h1] = O,

which expands to:



G2
G3

G7
G8







q2
q3
q7
q8


 +




1 0 0
0 1 0
0 −1 1
1 0 −1






h6 − h1
h2 − h1
h5 − h1


 = O.

The third pipe head-loss block equation or the third block equation (B3) in Eq. (5.24) is:

Gb3qb3 −B33hb3 = B32hb2 ,

which expands to:


G4

G5
G6






q4
q5
q6


 +




1 0
1 −1
0 1



(
h3
h4

)
=



h2
0
h2


 . (5.27)

Eq. (5.27) can be further simplified to


G4

G5
G6






q4
q5
q6


 +




1 0
1 −1
0 1



(
h3 − h2
h4 − h2

)
= O

using a similar manipulation as for Block 2 above.
Finally, the system of equations in Eq. (5.24) may be rewritten as:

Block



P
ip
e
s

B1

B2

B3


N
o
d
e
s

B1

B2

B3

Pipes Nodes

B1 B2 B3 B1 B2 B3





G1 1 0 0 0 0 0
G2 0 1 0 0 0 0

G3 0 0 1 0 0 0
G7 0 0 −1 1 0 0

G8 0 1 0 −1 0 0
G4 0 0 0 0 1 0

G5 0 0 0 0 1 −1
G6 0 0 0 0 0 1

1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 −1 1







q1
q2
q3
q7
q8
q4
q5
q6

h1
h6 − h1
h2 − h1
h5 − h1
h3 − h2
h4 − h2

=







el7
0
0
0
0
0
0
0

d1 + d2 + d3 + d4 + d5 + d6
d6

d2 + d3 + d4
d5
d3
d4

(5.28)
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5.7.2 Solving the example network
Consider the network shown in Fig. 5.2 and its permuted system of equations, Eq. (5.28).
Each block becomes an independent system and can be solved sequentially from the root
block to the end block. The system of equations for the root block,B1 (Block 1 in Fig. 5.2),
which also represents a bridge, is:

(
G1 1
1 0

)(
q1
h1

)
=

(
el7

d1 + d2 + d3 + d4 + d5 + d6

)
, (5.29)

the solution of which can be used to solve its child block, blockB2 (Block 2 in Fig. 5.2)
by using:




G2 1 0 0
G3 0 1 0

G7 0 −1 1
G8 1 0 −1

1 0 0 1
0 1 −1 0
0 0 1 −1







q8
q7
q3
q2

h6 − h1
h2 − h1
h5 − h1




=




0
0
0
0
d6

d2 + d3 + d4
d5




, (5.30)

and finally, the end block, blockB3 Block 3 in Fig. 5.2) can be solved by using:



G4 1 0
G5 1 −1

G6 0 1
1 1 0
0 −1 1







q6
q5
q3

h3 − h2
h4 − h2



=




0
0
0
d3
d4



. (5.31)

The systems of equations for each of the three blocks can also be solved in parallel.
Note that, when using BBPA, if the head loss of the example network shown in Fig. 5.2

is modeled by the Hazen-William formula and the nodal demands at nodes three and
four are zero, this does not cause a failure of the method due to singularity of the Schur
complement, unlike the GGA and RCTM on the same network (Elhay and Simpson 2011).
In addition, the block with zero total demand can be solved (1) prior to the iterative phase
by assigning zero flows to all applicable pipes and (2) by assigning the heads of the source
to all nodes in this block after the iterative phase.

5.8 Relation of BBPA to other solution methods
The BBPA can be described as a pre-and-post-processing method for the following reasons:
(1) it finds the blocks and bridges of a WDS, (2) the bridges can be solved by using a linear
process similar to the forest component, and (3) then uses any WDS solution method, for
example GGA, RCTM, or GMPA, to, independently, solve each block.

The BBPA can also be used to identify the forest component of the network. However,
the use of the FCPA requires less overhead than the BBPA.

The same topological properties exploited by FCPA and BBPA are partly responsible
for the savings achieved by partial-update (Abraham and Stoianov 2015). The forest and
bridge components - being linear - converge after just one iteration of application of a non
linear solver. The partial update scheme is able to exploit this by checking for convergence
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every iteration. Once the convergence test for a pipe has been met, the head-loss of the
converged component does not need to be re-computed, whereas the linear solver for the full
system is required until the convergence tests for all pipes have been met. In contrast, FCPA
and BBPA have the advantage of identifying these components in advance and removing
them from non-linear solution process. BBPA also has the additional advantage of being
able to exploit earlier convergence of different blocks in the core network and removing
them from the problem once they have converged. As a result, the authors recommend that
it is inefficient to implement the partial update for a full WDS system before applying the
FCPA and the BBPA. The usefulness of applying the partial update to each block requires
further investigation.

5.9 Case Studies
A comparison of the GGA with or without BBPA on eight case study networks has been
carried out in order to support the above discussion. Note that the first step each method is
to use FCPA to remove the forest component from the case study networks, to ensure a fair
comparison.

The efficiency and reliability of the BBPA in a once-off simulation setting, in which
the steady-state heads and flows are computed just once with the given WDS parameters,
was benchmarked against an efficient GGA implementation. As a baseline, timings of the
solution process for the benchmark networks using EPANET2 were also recorded. The
benchmark tests were performed on a Intel(R) Core(TM) CPU i5-4590 running at 3.30
GHz with 4 cores in C++ under IEEE-standard double precision floating point arithmetic
with machine epsilon εmach = 2.22× 10−16. The number of cores allocated to each test
was limited to one. Each timing test, measuring wall-clock time, was repeated 15 times on
each benchmark network.

It is shown that the use of an efficiently implemented BBPA can provide a significant
runtime reduction and improvement in the reliability of the solution. The BBPA with the
GGA and the standalone GGA were each applied to eight case studies with between 932
and 19,651 pipes and between 848 and 17,977 nodes with no pumps and no valves.

5.10 Results and Discussion
The basic details of the case study networks considered in this study are described in
columns 2 to 4 in Table 5.1 and more information can be found in Simpson et al. (2012).
The size of the core component for each of the eight case studies is shown in the columns 5
and 6, the number of blocks in column 7, with the number of blocks with no nodal demands
in the brackets, and the number of bridges in column 8. Table 5.2 shows the detailed profile
of the size of each block in each of the eight case study networks. The size of the largest
block, smallest block, and median block and the number in brackets is the percentage of
the corresponding block size as a proportion of the core component of the network

Table 5.3 shows the summary statistics of the 15 repetitions of each solution method
applied to the eight benchmark networks. The GGA benefits from the use of the BBPA by
between 33% and 70%. It has been established in Elhay et al. (2014) and Abraham and
Stoianov (2015) that the number of non-zeros can be used as a surrogate to approximate
the runtime of the non-linear system. The saving in runtime is partially achieved through
the reduction in the number of non-zeros by the removal of the bridge components.
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Table 5.1. Benchmark networks summary, their core network size, the number of blocks
and the number of bridges

Full Network Core network BBPA
Network np nj ns njc npc The number

of blocks
The number
of bridges

N1 934 848 8 573 487 33(1)∗ 118
N2 1118 1039 2 797 718 10(2) 45
N3 1975 1770 4 1152 947 7 6
N4 2465 1890 3 2036 1461 47(3) 62
N5 2509 2443 2 1087 1741 8(1) 45
N6 8585 8392 2 6735 6542 7(2) 58
N7 14830 12523 7 11898 9591 487(19) 895
N8 19647 17971 15 15232 13557 17(2) 59
∗Numbers in the brackets refers to the number of blocks with no nodal demands

Table 5.2. The profile of blocks in each of the eight case study networks: size of the largest,
the smallest and the median blocks

Largest size block Smallest size block Median size block
Network np nj np nj np nj
N1 81(18)∗ 62(17) 3(0.7) 2(0.5) 7(1.6) 5(1.4)
N2 684(91.9) 615(92.2) 2(0.3) 1 (0.1) 9.5 (1.3) 8(1.2)
N3 953 (83.1) 78(33.1) 6(0.5) 5(2.1) 31 (2.7) 25.5(10.8)
N4 1549(78.7) 1100(78.8) 2 (0.1) 1 (0.1) 7(0.4) 5(0.4)
N5 1061(60.3) 1026(60.5) 2(0.1) 1(0.1) 53(3.0) 52(3.1)
N6 5578(83.7) 5418(83.7) 2(0.03) 1(0.02) 51(0.8) 50(0.8)
N7 8418(77.00) 6970(88.52) 2(0.02) 1(0.01) 4(0.04) 1(0.01)
N8 14961(98.78) 13309(98.79) 3(0.02) 2(0.01) 12(0.08) 11(0.08)
∗Numbers in the brackets refers to the percentage of the corresponding block size in the

core component of the network

Another important factor of the algorithm efficiency is the number of iterations required
to satisfy the stopping test. Figs. (5.3) shows that the number of iterations required by
each block of networkN1 and the number of iteration required by the full system to satisfy
the stopping test. The horizontal axis shows the number of junctions and the vertical axis
shows the number of iterations, and the diameter of the bubble represents the number of
blocks with the same number of junctions which required the same number of iterations
to satisfy the stopping test. For example, in network N1 there are six blocks that have
two nodes, three of which require six iterations to satisfy the stopping test; one of which
requires five iterations to satisfy the stopping test; and four of which require four iterations
to satisfy the stopping test. The number of iterations that is required by each block of N1 is
bounded above by that which is required by the full network of N1. The bubble plots for
networks N2 to N8 can be found in the supplemental data.

On another note, the BBPA can also be used to improved reliability of the solution.
Fig. (5.4) shows that the condition number at the solution and the condition number for
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Table 5.3. The mean time of once-off simulation runs averaged over 15 once-off
simulations for each of the two solution methods applied eight case study networks
(milliseconds±standard error) and the "% diff." refers to relative difference compared to
the GGA mean time

EPANET GGA with FCPA GGA with BBPA
Mean time Mean time Mean time %diff.

N1 9.09 4.66± 0.07 2.32± 0.05 -50%
N2 16.75 6.61± 0.07 2.86± 0.04 -56%
N3 21.46 8.72± 0.09 3.64± 0.05 -58%
N4 26.45 22.76± 0.53 6.64± 0.11 -70%
N5 28.46 12.19± 0.13 5.97± 0.12 -51%
N6 172.84 44.79± 0.18 28.53± 0.12 -36%
N7 307.17 63.06± 0.65 42.35± 0.67 -33%
N8 600.08 131.82± 3.99 59.08±0.6 -55%

Fig. 5.3. The number of iterations for each block of network N1 against the number of
junctions (the diameter of the bubble represents the number of blocks with the same number
of junctions which required the same number of iterations to satisfy the stopping test)

the full system. The following observation can be made from the Fig. (5.4) that (i) the
condition number for each block is bounded above by the condition number for the full
matrix, (ii) each of networks N2, N5, N6, and N8 has one block with the same condition
number as the full system.
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Fig. 5.4. The condition number of the Schur complement at the solution for each block
(scatter point) and the condition number of the Schur complement for the full system (red
line)

5.11 Conclusions
In this paper, the bridge-block partitioning algorithm is introduced. The BBPA is a
pre-processing and post-processing algorithm that (1) first partitions the network into
bridge components and block components, (2) then solves for the flows in the bridge
components by a linear process, (3) after that it separately solves for the flows and the
estimated heads for each independent block by using any WDS solver, and (4) finally
the heads are recovered by a linear process at the end. This partitioning of the network
can be used to speed-up the solution process of the steady state demand-driven hydraulic
simulation and to improve the reliability of the results if the core component of the WDS
graph is one-connected. The speed-up of the solution process is achieved by (1) solving
the bridge component in the BBPA by a linear process similar to that of solving for the
forest in the FCPA, which reduces the number of non-zeroes in the Schur complement
(2) solving each block by using the minimum number of iterations that is required by that
block. Moreover, the BBPA improves the reliability of the results because the condition
number of the Schur Complement for each block is bounded above by the condition number
for the Schur Complement of the full system.

The usefulness of the BBPA has also been demonstrated by applying it to eight
benchmark networks with between 934 and 19,647 pipes and between 848 and 17,971
nodes. The total savings in wall clock time after applying the BBPA to the GGA are
between 33% and 70%. It is shown that, the number of iterations and the condition number
required by each block are bounded by the number of iterations and the condition number
required by the full system, respectively. The use of the BBPA can also minimize the need
to regularize the zero flows when the head loss is modelled by the Hazen-William head
loss equation. This is because in real life systems, such as the case study networks used
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in this paper, can have blocks, such that the nodes in these block all have zero demands,
which can be handled by use of BBPA. Moreover, when regularization is needed, it is only
required to be applied at the corresponding block instead of the full system of equations.

5.12 References
References are included in bibliography Chapter 7. In addition the submitted paper is given
in Appendix C.

5.13 Appendix: Why the number of iterations required
by each block is bounded above by that of the full
system

The BBPA is derived to partition the WDS network into a number of blocks to improve
the efficiency and reliability of the WDS solution process. The number of iterations that is
required by each block is bounded above by the number of iterations that is required by the
full system. The permuted system of equations shown in Eq. (5.15) can be rewritten as

(
F (m)
B −AB

−ABT O

)(
q(m+1)
B

h(m+1)
B

)
−
(

0 AC
AC

T 0

)(
q(m+1)
B

h(m+1)
B

)
= −

(
(G(m)

B − F (m)
B )q(m)

B − aB
−dB.

)
.

(5.32)

Note that each block row of the matrixAC , that represents a root block, is entirely zero.
As a result, the system of equations for the root block Bi is

(
F (m)
bi

−Bii
−BiiT O

)(
q(m+1)
bi

h(m+1)
bi

)
= −

(
(G(m)

bi
− F (m)

bi
)q(m)
bi

− abi

−d̂bi
.

)
. (5.33)

Also note that each block row of the matrixAC , that does not represent a root block, has
exactly one non-zero block and each of these blocks has exactly one non-zero column. As
a result, the system of equations for a block, Bj , that is not a root block is

(
F (m)
bj

−Bkj −Bjj
−BjjT O O

)



q(m+1)
bj

h(m+1)
bk

h(m+1)
bj


 = −

(
(G(m)

bj
− F (m)

bj
)q(m)
bj

− abj

−d̂bj

)
, (5.34)

where the non-zero block row entry at block row j, Bkj = P ebj
A1R

T
vbk
∈ Rnpbj

×njbj ,
which represents the connection between the current block j and its parent block k, has
only one non-zero column entry,A2bj

= P ebj
A1R

T
cvbk
∈ Rnpbj

×1. This non-zero column
entry is the unknown-head node-arc incidence matrix for block bk and cvbk

is the cut-vertex
that behaves as the pseudo-source in block bk. We can write the term Bkjh

(m+1)
bk

as
[P ebj

A1R
T
cvbk

][Rcvbk
h], which isA2bj

hcvbj
(see (5.25) and (5.27)).

In addition, the combination of matricesBjj andA2bj
is the Laplacian matrix of the

graph of block Bj . Every row of a Laplacian matrix has exactly two non-zero entries:
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1 and -1. Therefore, Bjjvnjbj
+A2bj

vnfbj
= o. We also know that nfbj

= 1 which is
equivalent toBjjvnjbj

= −A2bj
as shown in Lemma 2.

Thus, the left-hand-side of the first block equation of Eq. (5.34) is:
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and can be rewritten as
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, gives
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The matrices on the left-hand-side of Eq. (5.33) and Eq. (5.35) are identical and invertible
and the right-hand-side of both equations are also identical. Therefore

(
q
h

)
=

(
q̂
ĥ

)

The Newton equation shown in Eq. (5.32), which is the GGA solution of an orthogonal
permutation of the original system of equations, has the same flows and heads iterates as
the GGA solution of Eq. (5.5). Moreover, it is shown above that the Newton equation in
Eq. (5.33) has the same flow and head iterates as the Newton equation in Eq. (5.32). At
the same time, the Newton equation in Eq. (5.35) has the same flow iterates as the Newton
equation in Eq. (5.32) and the actual heads can be recovered from the interim heads a
posteriori. Thus, solving each block individually produces the same flow iterates as solving
the unpartitioned WDS network. The number of iterations for each block to satisfy the
stopping test, ||q

m+1−qm||∞
||qm+1||∞ , is bounded above by the number of iterations required by the

whole system.
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5.14 Supplementary Data

Fig. 5.5. The number of iterations for each block of networkN2 against the number of junctions (the diameter
of the bubble represents the number of blocks with the same number of junctions which required the same
number of iterations to satisfy the stopping test)

Fig. 5.6. The number of iterations for each block of networkN3 against the number of junctions (the diameter
of the bubble represents the number of blocks with the same number of junctions which required the same
number of iterations to satisfy the stopping test)
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Fig. 5.7. The number of iterations for each block of networkN4 against the number of junctions (the diameter
of the bubble represents the number of blocks with the same number of junctions which required the same
number of iterations to satisfy the stopping test)

Fig. 5.8. The number of iterations for each block of networkN5 against the number of junctions (the diameter
of the bubble represents the number of blocks with the same number of junctions which required the same
number of iterations to satisfy the stopping test)
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Fig. 5.9. The number of iterations for each block of networkN6 against the number of junctions (the diameter
of the bubble represents the number of blocks with the same number of junctions which required the same
number of iterations to satisfy the stopping test)

Fig. 5.10. The number of iterations for each block of network N7 against the number of junctions (the
diameter of the bubble represents the number of blocks with the same number of junctions which required
the same number of iterations to satisfy the stopping test)
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Fig. 5.11. The number of iterations for each block of network N8 against the number of junctions (the
diameter of the bubble represents the number of blocks with the same number of junctions which required
the same number of iterations to satisfy the stopping test)
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Chapter 6

Conclusions and Recommendations for
Future Study

6.1 Conclusions
The research presented here has been mainly concerned with the existing steady-state
demand-drivenwater distribution system (WDS) solutionmethods andwith the development
of a new graph theory based partitioning method. WDS solution methods are a key
component that is used repeatedly to solveWDSmodels in everyWDS design, management
and operation problem. There are a number of special graph properties of the WDS graph
that can be exploited to improve the efficiency of the WDS solution process. This thesis
demonstrates the usefulness of using graph properties in terms of the computational speed
and numerical reliability.

6.2 Research Contributions
The key contributions of this research are summarised as follows.

The development of a testbed for water distribution system solution methods. A
software package, that can be used (1) to efficiently implement a number of WDS solution
methods; (2) to incorporate newly developed WDS solution methods; (3) to compare
different solution methods; (4) to focus the research on the most time-consuming parts of a
solution method; and (5) to guide the choice of solution method when multiple simulation
runs are required, is an essential tool to achieve the aims that have been set forth for this
research. Chapter 3 introduced WDSLib, a library for steady-state hydraulic simulation of
WDS networks. WDSLib provides (1) a fast simulation platform for both once-off and
multi-run simulations and (2) a testbed for comparing different solution methods in different
settings for the same network topologies. As such, WDSLib is designed with a pluggable
architecture which can extended to efficiently incorporate new solution methods as they
are created. This will enhance the capability of the research community to demonstrate
the efficacy of new methods without having to re-engineer the content of shared WDSLib
functions and data representations.

Propose a framework for benchmarking water distribution system solution methods
In Chapter 4, a framework for comparing different WDS solution methods is proposed.
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The proposed framework significantly reduces the computation load of each of the solution
methods that are implemented in WDSLib. This is achieved by categorising each of
the functions that are used in each of the solution methods into three categories: (1)
the functions that will only have to be executed once are called level one (L1) functions.
L1 functions relate to network topology, which is invariant for the whole simulation;
(2) in a multi-simulation setting, certain functions will need to be run once for every
hydraulic-phase. These, once-per-assessment functions, are called level two (L2) functions;
and (3) for every hydraulic assessment, there is a non-linear iterative phase in the solution
process. The functions in this phase run many times for each hydraulic assessment until the
stopping test has been satisfied. These iterative-phase functions are called level three (L3)
functions. Equipped with such a framework, it is possible (1) to conduct a fair comparison
between different solution methods; and (2) to allow each function to be run the minimum
number of times determined by its simulation setting.

Use the proposed framework to conduct a benchmark study on four different WDS
solution methods The proposed framework is then used in Chapter 4 to benchmark the
performance of four solution methods, the global gradient algorithm (GGA), the GGA with
the forest-core partitioning algorithm (FCPA), the reformulated co-tree flows method, and
the RCTM with the FCPA, against each other. Each of the four solution methods is applied
to eight case study networks.

Propose a new partitioning algorithm to improve the existing WDS solution methods
In Chapter 5, a new graph partitioning algorithm, bridge-block partitioning algorithm
(BBPA), is proposed. The BBPA is a pre-and-post-processing algorithm that partitions
the WDS graph into a number of bridge components and a number of block components.
Each of the bridge components can be solved using a linear process similar to the FCPA
and each of the block components can be separately solved by using any WDS solution
method, the GGA, RCTM, or GMPA. There is a number of advantages to using the BBPA:
(1) the number of iterations required by each block is bounded above by that required by the
unpartitioned system – solving the flows and heads in each block separately significantly
reduces the overall computational time for the non-linear solver in almost all cases; (2)
the condition number of the Schur complement of each block is bounded above by that
of the unpartitioned system. In most cases, the condition numbers for all the individual
blocks will be smaller than the condition number of the full matrix; (3) the solution of each
block can be found in parallel in a demand-driven model because the flows and heads in
one block component are independent from those of the other block components.

6.3 Recommendations for WDS demand-driven solution
methods

The performance of any water distribution system solution method is very problem
dependent. To date, there has been no reliable method that accurately predicts the
performance of a given algorithm on a particular network a priori. This is reflected in the
performance differences reported in this thesis.

The network topology is the most influential factor in the performance of different
solution methods (matrix density, the distribution of non-zero elements after bandwidth
reduction, etc.). Recommendations are given as follows:
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1. There often are a significant number of forest pipes in most real-life water distribution
systems. It is recommended to use the FCPA as the first step of every demand-driven
steady-state WDS simulation.

2. Use the BBPA, after the FCPA, to identify the linear bridge components and the
independent block components. The flows in the bridge components can be solved
just once every iterative phase. The solution of each block can be found independently.
Finally, the heads in the system can be solved just once after the iterative phase.

3. The performance of the RCTM is dependent upon the choice of spanning tree. It is
difficult, if not impossible, to determine the optimal choice of spanning that minimises
the number of non-zeros in the Schur complement. As a result, an arbitrary choice
of spanning tree is normally used. A trial run is recommended before a multi-run
simulation, to identify the relative performance and thereby determine which WDS
solution method or combination of WDS solution methods to use.

6.4 Scope for future work
Suggestions for possible future work include:

1. The water distribution system solution methods that are evaluated and developed in
this research have been applied to a number of real-life WDS networks with between
934 and 19,647 pipes and between 848 and 17,971 nodes. However, these real-life
WDS networks only consist of pipes, nodes, tanks, and reservoirs. Extension of
the solution methods to incorporate the use of control devices and pumps will be a
valuable contribution.

2. The performance of different WDS solution methods are dependent upon the network
topology. It would be an interesting study to determine a priori the best method to
use for a given WDS network.

3. This work has only considered the steady-state solution of a WDS under the demand-
driven model. The usefulness of the WDS solution methods, that are investigated in
the current research, under the pressure driven setting should also be investigated in
the future

4. The performance of the RCTM is determined by on the choice of spanning tree.
Different choices of spanning tree will produce a different number of non-zeros in
the Schur complement and a different set of initial guesses of flows. A study on
how to choose an optimal or near optimal spanning tree may speed up the RCTM
significantly.
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Highlights

• A library for the steady-state analysis of a water distribution system (WDS)

• An open-source C++ software implementation of a number of WDS solution meth-

ods.

• A fast simulation platform for both once-off and multi-run simulations

• A timing model to parameterize multiple simulation times is introduced.

• Several improvements to the existing solution methods have been made.

Abstract

WDSLib is an extensible simulation toolkit for the steady-state analysis of a

water distribution system. It includes a range of solution methods: the forest-core

partitioning algorithm, the global gradient algorithm, the reformulated co-tree flow

method, and also combinations of these methods. WDSLib has been created using

a modularized object-oriented design and implemented in the C++ programming

language, and has been validated against a reference MATLAB implementation.

WDSLib has been designed: (i) to avoid unnecessary computations by hoisting each
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of the modules to its appropriate level of repetition, (ii) to perform the computations

independently of measurement units using scaled variables, (iii) to accurately report

the execution time of all the modules in that it is possible to produce a timing

model to parameterize multiple simulation times (such as in an optimization using

a genetic algorithm) from a series of sampling simulation runs and (iv) to guard

against numerical failures. Two example applications, a once-off simulation and

a network optimization design application simulation, are presented. This toolkit

can be used (i) to implement, test and compare different solution methods, (ii) to

focus the research on the most time-consuming parts of a solution method and (iii)

to guide the choice of solution method when multiple simulation runs are required.

Keywords: Water Distribution System; C++ toolkit; Object-Oriented design; Forest-

Core Partitioning Algorithm; Reformulated Co-tree Flows Method; Global Gradient Al-

gorithm; open source software

Software availability1

Name of the Software: WDSLib2

Version: 1.03

Available from: https://github.com/a1184182/WDSLib4

Language: C++5

Year first available: 20186

1 Introduction7

Hydraulic simulation has been used to model water distribution systems (WDSs) for8

several decades and is an essential tool for the design, operation, and management of9

WDSs in industry and research. Hydraulic simulation allows users (1) to optimize WDS10

network parameters, such as pipe diameters, in a design setting, (2) to calibrate network11

parameters, such as demand patterns, in a conventional operational setting, (3) to conduct12
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real-time monitoring and calibration of the network elements in a supervisory control and13

data acquisition (SCADA) operational setting, and (4) to adjust control devices, such as14

valves, in a management setting. In the design setting and both the above operational15

settings, repeated hydraulic assessment is required on a network with fixed topology. In16

the management setting, repeated hydraulic assessment is required on a network with17

flexible network parameter settings. With ever-increasing network sizes and the need for18

real-time management using a SCADA system, it is important to have a robust simulation19

package which can be configured to be maximally efficient whatever the setting.20

In the field of hydraulic simulation, the system of equations can be formulated as a21

large and sparse non-linear saddle point problem. There are several well-known iteration22

methods for solving the non-linear saddle point problem. These include: range space23

methods (Global Gradient Algorithm (Todini and Pilati 1988)), Null space methods (Co-24

Tree flow formulation variations (Rahal 1995; Elhay et al. 2014)), loop-based methods25

(Loop flow correction (Cross 1936)), and pre-and-post-processing methods (forest-core26

partitioning algorithm (Simpson et al. 2014), domain decomposition (Diao et al. 2014),27

network clustering (Perelman and Ostfeld 2011)). Their relative performance in terms of28

speed, rate-of-convergence, and accuracy depends among other things on the topology of29

the target network: size of the forest component, the number of network loops, and the30

density of these network loops. It is difficult to evaluate the impact of these topology fac-31

tors by only examining the incidence matrix that describes the pipe network connectivity.32

As a result, the best method to use for a particular network cannot be easily determined a33

priori. Moreover, extra complexity is introduced when a multi-run hydraulic assessment34

is required. During a multi-run hydraulic simulation, the elapsed computation time of35

each method can be broken down into two parts: the components that are only required36

to be performed once at the very beginning for the same network, called the overhead,37

and the components that are required to be carried out repeatedly for each separate run38

until the required number of iterations has been met, called the hydraulic-phase. It is39

desirable to have a simulation platform, given the different levels of repetition, to im-40

plement these alternative algorithms efficiently. Equipped with such a platform a user41
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would be able to easily benchmark the performance of alternative methods on a small42

number of evaluations for a given network and use that performance to inform the choice43

of algorithm to use for either a once-off simulation setting or for a multiple simulation44

setting (such as for an evolutionary algorithm (EA)).45

This work describes an extensible WDS simulation platform called WDSLib. WDSLib46

is a numerically robust, efficient and accurate C++ library that implements many WDS47

simulation methods. WDSLib is written using a modular object-oriented design which48

allows users to easily mix and interchange solution components, thereby enabling users49

to avoid redundant computations. It has been optimized to use sparse data structures50

which are oriented to the pattern of access required for each solution method. WDSLib51

has been validated for accuracy on a range of realistic benchmark water distribution52

networks against reference implementations and tested for speed. The program accepts53

the input file formats of the industry standard EPANET2 (Rossman 2000) toolkit and54

its performance is faster than EPANET2 in all tested settings and benchmarks.55

The remainder of this paper is structured as follows. The next section describes related56

methodologies and implementations. A general description of the WDS demand-driven57

steady-state problem is given in the next section. Section 3 presents a mathematical58

formulation of the network and the solution methods that are used in WDSLib. The59

tool-kit structure is then given in section 4. This is followed, in section 5, by the toolkit60

implementation details. Section 6 provides some examples of how the toolkit can be61

utilized in a simulation work flow. The results are discussed in Section 7. Finally,62

section 8 summarizes the results of this paper and describes future extensions to the63

toolkit.64

2 Background65

This section describes related water distribution system network solution methods and66

implementations. The first sub-section describes solution methods, including those used67

by WDSLib. This is followed by a description of currently available implementations and68
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compares these with WDSLib.69

2.1 Related Methods70

This research considers a water distribution model made up of energy conservation equa-71

tions and the demand driven model continuity equations. The Hardy Cross method (Cross72

1936), also known as the loop flow corrections method, is one of the oldest methods and73

uses successive approximations, solving for each loop flow correction independently. It74

is a method that was widely used for its simplicity at the time when it was introduced.75

More than three decades later, Epp and Fowler (1970) developed a computer version of76

Cross’s method and replaced the numerical solver with the Newton method, which solves77

for all loop flow corrections simultaneously. However, this method has not been widely78

used because of the need (i) to identify the network loops, (ii) to find initial flows that79

satisfy continuity and (iii) to use pseudo-loops.80

The GGA is a range space method that solves for both flows and heads. It was the81

first algorithm, in the field of hydraulics, to exploit the block structure of the Jacobian82

matrix to reduce the size of the key matrix in the linearization of the Newton method.83

The GGA has gained popularity through its rapid convergence rate for a wide range84

of starting values. This is the result of using the Newton method on an optimizations85

problem that has a quadratic surface. However, it was reported by Elhay and Simpson86

(2011) that the GGA fails catastrophically in the presence of zero flows in a WDS when87

the head loss is modeled by the Hazen-Williams formula. Regularization methods have88

been proposed by both Elhay and Simpson (2011) and Gorev et al. (2012) to deal with89

zero flows when the head loss is modeled by the Hazen-Williams formula.90

The GGA as it was first proposed, applied only for the WDSs in which the head loss91

is modeled by the Hazen-Williams formula, where the resistance factor was independent92

of flow. Rossman (2000) extended the GGA to allow the use of the Darcy-Weisbach93

formula. It has been pointed out in Simpson and Elhay (2010), however, that Rossman94

incorrectly treated the Darcy-Weisbach resistance factor as independent of the flow. They95

introduced the correct Jacobian matrix to deal with this. It has been demonstrated that96
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once the correct Jacobian matrix is used, the quadratic convergence rate of the Newton97

method is restored. Furthermore, Elhay and Simpson (2011) reported that the GGA98

does not fail in the presence of zero flows when the derivatives of the Darcy-Weisbach99

Jacobian matrix are correctly computed for laminar flows.100

The co-trees flow method (CTM) (Rahal 1995) is a null space method that solves for101

the co-tree flows and spanning tree flows separately. The CTM, unlike the loop flow cor-102

rections method, does not require the initial flows to satisfy continuity. However, it does103

require: (i) the identification of the associated circulating graph; (ii) the determination of104

the demands that are to be carried by tree branches; (iii) finding the associated chain of105

branches closing a circuit for each co-tree chord; (iv) computing pseudo-link head losses.106

The reformulated co-trees flow method (RCTM) (Elhay et al. 2014) is also a null space107

method that solves for co-tree flows and spanning trees flows separately. It represents a108

significant improvement on the CTM by removing requirements (i) to (iv) above. It uses109

the Schilders’ factorization (Schilders 2009) to permute the node-arc incidence matrix into110

an invertible spanning tree block and a co-tree block. This permutation reduces the size111

of the Jacobian matrix from the number of junctions (as in the GGA) to approximately112

the number of loops in the network.113

Abraham and Stoianov (2015) proposed a novel idea to speed-up the solution process114

when using a null space method to solve a WDS network. Their idea exploits the fact115

that a significant proportion of run-time is spent computing the head losses. At the116

same time, flows within some pipes exhibit negligible changes after a few iterations. As a117

result, there is no point in wasting computer resources to re-compute the pipe head losses118

for the pipes that have little or no change in flows. This partial update can be used to119

economize the computational complexity of the GGA, the RCTM and their variations.120

The forest-core partitioning algorithm (FCPA) (Simpson et al. 2014) speeds up the121

solution process in the case where the network has a significant forest component. This122

algorithm permutes the system equations to partition the linear component of the prob-123

lem, which is the forest of the WDS, from the non-linear component, which is the core124

of the WDS. It can be viewed as a method that simplifies the problem by solving for125
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the flows and the heads in the forest just once instead of at every iteration. The FCPA126

reduces the number of pipes, number of junctions, and the dimension of the Jacobian127

matrix in the core by the number of forest pipes (or nodes).128

The graph matrix partitioning algorithm(GMPA) (Deuerlein et al. 2015) exploited129

the linear relationships between flows of the internal trees within the core and the flows130

of the corresponding super-links after the forest of the network has been removed. This131

was a major breakthrough. The GMPA permutes the node-arc incidence matrix in such132

a way that all of the nodes with degree two in the core can be treated as a group. By133

partitioning the network this way, the network can be solved by a global step, which134

solves for the nodes with degree greater than two (super nodes) and the pipes which135

connect to them (path chords), and a local step, which solves for the nodes with degree136

two (interior path nodes) and pipes connected to them (path-tree links).137

2.2 Related Implementations138

EPANET 2 (Rossman 2000) is a widely used WDS simulation package. EPANET 2 im-139

plemented the GGA to provide a demand-driven steady-state solution of a WDS. The140

code for EPANET 2 is in the public domain, allowing many extensions to be devel-141

oped. Currently available extensions include: the implementation of a pressure-dependent142

model (Cheung et al. 2005; Morley and Tricarico 2008; Siew and Tanyimboh 2012; Jun143

and Guoping 2012) and a real-time simulation capability (Vassiljev and Koppel 2015).144

The EPANET 2 implementation is not explicitly designed to necessarily be easy to145

understand or accommodate alternative solution methods (Guidolin et al. 2010). The146

elements that are used in EPANET 2 are stored by the variables that describe their147

graph properties. For example, (1) junctions, reservoirs, and tanks are stored as a C148

struct called Node and (2) all valves, pipes, and pumps are stored as a C struct called149

Link. The abundant use of global variables limits the reusability and the possibility of150

the thread-safe design (Guidolin et al. 2010).151

Consequently, it is difficult to cleanly incorporate new solution methods into EPANET152

2 in a manner that allows a fair comparison of performance between these methods.153
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Moreover, because there are no clearly defined interfaces for the incorporation of third-154

party code components in EPANET 2, there is no guarantee that independently authored155

extensions will be easy to combine with each other.156

In the absence of a popular easy-to-modify WDS simulation platform there is currently157

no straightforward means for comparing different solution methods. To date, when new158

solution methods have been developed they have been compared using different research159

systems, on different platforms with different implementation languages. This leads to160

difficulty in comparing methods, limits the reusability of code, and creates a barrier for161

researchers to reproduce and replicate results. To address these issues, an extensible162

framework is required that allows implementation of new methodologies to be easily163

incorporated without an adverse impact on the performance of the rest of the system.164

To this end, a number of attempts have been made to implement an object-oriented165

wrapper to encapsulate the EPANET 2 solver (openNet (Morley et al. 2000) and OOTEN(van166

Zyl et al. 2003)). However, these two systems were focused on providing more flexibility167

in the processing of input to the core EPANET solver. They did not address any is-168

sues relating to the solution process. CWSnet, a C++ implementation in object-oriented169

style, was produced by Guidolin et al. (2010) as an alternative to EPANET 2.0. In CWS-170

net, more attention has been given to the hydraulic elements of the WDS network. In171

addition, CWSNet provides a pressure driven model, and takes advantage of the comput-172

ing power of the computer’s Graphics Processing Unit (GPU). However, in CSWnet the173

data structures representing the network are specialized to the solution methods that it174

uses. These data structures are not easily adapted to work efficiently with the different175

traversal orders, and graph algorithms used by newly developed solution methods. How-176

ever, CWSnet still uses the same hydraulic solver and the same linear solver techniques177

implemented in EPANET 2 (Guidolin et al. 2010).178

To accommodate the deficiencies referred to above, this paper presents a new hy-179

draulic simulation toolkit WDSlib. WDSlib is coded in C++, and incorporates a number180

of recently published techniques. This toolkit offers users the ability to: (i) choose from,181

or modify, different approaches and implementations of different WDS model analyses,182
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and (ii) extend the toolkit to include new developments. These features have been imple-183

mented using fast and modularized code. A focus of attention in this research has been184

program correctness, robustness and code efficiency. The correctness of the toolkit has185

been validated against a reference MATLAB implementation. The differences between186

all results (intermediate and final) produced by the C++ toolkit and the MATLAB im-187

plementation were shown to be smaller than 10−10. In the interest of toolkit robustness,188

special attention has been paid to numerical processes to guard against avoidable failures,189

such as loss of significance through subtractive cancellation, and numerical errors, such190

as division by zero. The data structures and code libraries in WDSLib are shared and all191

implementations have been carefully designed to ensure fairness of performance compar-192

isons between algorithms. WDSLib uses a pluggable architecture where solution-methods,193

and their accompanying pre-processing and post-processing code are easily substituted.194

In addition, different numerical linear algebra techniques can be incorporated using a195

well-defined interface. This concludes the discussion of related work. The mathematical196

formulations of the solution methods used in WDSLib are presented in the next section.197

3 General WDS Demand-Driven Steady-State Problem198

This section describes the general WDS demand-driven steady-state problem. The fol-199

lowing starts with the basic definitions and notation, followed by the system equations.200

Finally, the relevant equations are shown for each of the different solution methods that201

are implemented in WDSLib. All variables are described in the nomenclature section in202

Appendix E.203

3.1 Definitions and Notation204

Consider a water distribution system that contains np pipes, nj junctions, nr fixed head205

nodes and nf forest pipes and nodes. The j− th pipe of the network can be characterized206

by its diameter Dj, length Lj, resistance factor rj. The i − th node of the network has207

two properties: its nodal demand di and its elevation zi.208
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Let q = (q1, q2, ....qnp)T denote the vector of unknown flows, h = (h1, h2, ....hnj
)T209

denote the vector of unknown heads, r = (r1, r2, ....rnp)T denote the vector of resistance210

factors, d = (d1, d2, .....dnj
)T denote the vector of nodal demands, el = (el1 , el2 ....elnf

)T211

denote the vector of fixed head elevations.212

The head loss exponent n is assumed to be dependent only on the head loss model:213

n = 2 for the Darcy-Weisbach head loss model and n = 1.852 for Hazen-Williams head214

loss model. The head loss within the pipe j, which connects the node i and the node k,215

is modelled by hi−hk = rjqj|qj|n−1. Denote by G(q) ∈ Rnp×np , a diagonal square matrix216

with element [G]jj = rj|qj|n−1 for j = 1, 2, ....np. Denote by F (q) ∈ Rnp×np , a diagonal217

square matrix where the j-th element on its diagonal [F ]jj = d
dqj

[G]jjqj. A1 is the full218

rank, unknown head, node-arc incidence matrix, where [A1]ji is used to represent the219

relationship between pipe j and node i; [A1]ji = −1 if pipe j enters node i, [A1]ji = 1 if220

pipe j leaves node i, and [A1]ji = 0 if pipe j is not connected to node i. A2 is the221

fixed-head node-arc incidence matrix, where [A2]ji is used to represent the relationship222

between pipe j and fixed head node i, [A2]ji = −1 if pipe j enters fixed head node i,223

[A2]ji = 1 if pipe j leaves fixed head node i, and [A2]ji = 0 if pipe j is not connected to224

fixed head node i.225

3.2 System of Equations226

The steady-state flows and heads in the WDS system are modeled by the demand-driven227

model (DDM) continuity equations (1) and the energy conservation equations (2):228

−A1
Tq − d = O (1)

229

G(q)q −A1h−A2el = O, (2)

which can be expressed as230



G(q) −A1

−A1
T O






q

h


−



A2el

d


 = 0, (3)
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where its Jacobian matrix is231

J =



F (q) −A1

−A1
T O


 (4)

and it is sometimes referred to as a nonlinear saddle point problem (Benzi et al. 2005).232

This non-linear system is normally solved by the Newton method, in which qm+1 and233

hm+1 are repeatedly computed from qm and hm by234



F (m)(qm) −A1

−A1
T O






q(m+1) − q(m)

h(m+1) − h(m)


 = −



G(m)q(m) −A1h

(m) −A2el

−A1
Tq(m) − d,


 (5)

until the relative differences
||q(m+1)−q(m)||
||q(m+1)|| and ||h(m+1)−h(m)||

||h(m+1)||
are sufficiently small.235

3.3 Global Gradient Algorithm236

Todini and Pilati (1988) applied block elimination to Eq. (5) to yield a two-step Hazen-237

William solver: Eq. (6) for the heads and Eq. (7) for the flows.238

h(m+1) = U−1
{
−nd+A1

T [(1− n)q(m) −G−1A2el]
}

(6)

where U = A1
TG−1A1239

q(m+1) =
1

n

{
(n− 1)q(m) +G−1(A2el +A1h)

}
(7)

Later, Simpson and Elhay (2010) proposed240

V h(m+1) = −d+A1
TF−1

[
(G− F ) q(m) −A2el

]
(8)241

where V = A1
TF−1A1242

243

q(m+1) = q(m) + F−1A1h
(m+1) − F−1

[
Gq(m) −A2el

]
(9)244
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as the generalized equations that can be applied when the head-loss is modeled by the245

Hazen-Williams equation or the Darcy-Weisbach equation. The correct Jacobian matrix246

with the formula for F , when head loss is modeled by Darcy-Weisbach equation, can be247

found in Simpson and Elhay (2010). They showed that the use of the correct Jacobian248

matrix restores the quadratic rate of convergence.249

It is important to note that the GGA, as it was originally proposed, solves the entire250

network by a non-linear solver, and this can include some unnecessary computations which251

can be avoided by exploiting the structural properties of the WDS graph composition.252

The methods described below exploit these structural properties to potentially improve253

the speed of the solution process.254

3.4 Forest-Core Partitioning255

Associated with a WDS is a graph G = (V,E), where the elements of V are the nodes256

(vertices) of the graph G and elements of E are the pipes (links) of the graph G. The257

graph G can be partitioned into smaller subgraphs with special properties. The special258

properties that are exploited in WDSLib and their formulations are described in this259

subsection. The concept of partitioning the WDS network was proposed by Deuerlein260

(2008) in order to simplify the WDS solution process. Simpson et al. (2014) extended261

the idea of the network partitioning of Deuerlein (2008) and introduced the forest-core262

partitioning algorithm (FCPA), which partitions the network into a treed component263

and a looped or core component. The FCPA starts with a searching algorithm which264

identifies the forest subgraph, Gf = (Vf , Ef ), in which S ∈ Nnf×np is the permutation265

matrix which identifies the pipes in the forest, Ef , as distinct from the pipes in the266

core , Ec, and T ∈ Nnf×nj is the permutation matrix which identifies the nodes in the267

forest, Vf , as distinct from the nodes in the core, Vc, as distinct from the core subgraph,268

Gc = (Vc, Ec), in which P ∈ Nnpc×np is the permutation matrix for Ec and C ∈ Nnjc×nj
269

is the permutation matrix for Vc.270
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The flows of the pipes in the forest, Sq, can be found directly from271

Sq = −
(
TA1

TST
)−1

Td. (10)272

The system for the reduced non-linear problem (for the core heads and flows) can be273

expressed as274



PGP T −PA1C

T

−CA1
TP O






Pq

Ch


 =




PA2el

Cd+CA1
TSTSq


 , (11)275

and then the Newton iterative method is applied to Eq. (11).276

Finally, once the iterative solution process for the core has stopped, the forest heads277

can be found by solving a linear system:278

Th =
(
−SA1T

T
)−1 (

SA2el − SGSTSq + SA1C
TCh

)
. (12)279

The system for the reduced non-linear problem (for the core heads and flows) in Eq. 11280

can be expressed as:281 


Ĝ −Â1

−Â1
T O






q̂

ĥ


 =



Â2el

d̂


 (13)282

where Ĝ = PGP T , Â1 = PA1C
T , q̂ = Pq, ĥ = Ch, Â2 = PA2, and d̂ = Cd +283

CA1
TSTSq.284

The FCPA simplifies the problem by identifying the linear part of the problem and285

solving it separately from the core to avoid unnecessary computation in the iterative286

process.287

3.5 Reformulated Co-Tree flows method288

A graph, with or without forest, can be partitioned into two sub-graphs: a spanning289

tree subgraph and a complementary co-tree subgraph. The reformulated co-tree flow290

method (RCTM) (Elhay et al. 2014) exploited the relationship between the spanning tree291
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pipes and the co-tree pipes. The RCTM starts with a spanning tree search algorithm292

which identifies a spanning tree subgraph, Gst = (V,Est), in which K1 ∈ Nnpst×np is the293

permutation matrix that identifies the pipes in the spanning tree, Est, as distinct from294

the pipes in the co-tree, Ect. R is the permutation matrix for the nodes which traverse295

the same sequence as the corresponding spanning tree pipes, Est, and K2 ∈ Nnpct×np
296

is the permutation matrix for the pipes in the complementary co-tree edges, Ect. It is297

important to note that there are many choices of spanning tree for any cyclic graph. The298

choice of spanning tree and co-tree combination does not affect the correctness of the299

method.300

By exploiting the relationship between the spanning tree and cotree, Elhay et al.301

(2014) proposed the following equations to solve the WDS for the flows: first for the302

spanning tree flows q
(m+1)
1 ,303

q
(m+1)
1 = L21

Tq
(m)
2 −R−T1 d̂ (14)304

and second for the co-tree flows q
(m+1)
2 :305

W (m+1)q
(m+1)
2 = L21

(
F

(m+1)
1 −G(m+1)

1

)
q
(m+1)
1 +

(
F

(m)
2 −G(m)

2

)
q
(m)
2 + a2 (15)306

where: R1 = K1Â1R
T ; R2 = K2Â1R

T ; L21 = −R2R
−T
1 ; F

(m)
1 = K1

̂F (m)K1
T ; F

(m)
2 =307

K2
̂F (m)K2

T G
(m)
1 = K1

̂G(m)K1
T ; G

(m)
2 = K2

̂G(m)K2
T ; W (m) = L21(F

(m)
1 )−1L21

T +308

(F
(m)
2 )−1; a1 = K1Â2el; a2 = L21K1Â2el +K2Â2el.309

Note that in Eq. (14), an initial set of the co-tree flows q
(0)
2 is needed to commence310

the solution process.311

The heads are found after the iterative process of the RCTM has been completed by312

using a linear solution process:313

R1h = F 1q
(m+1)
1 − (F 1 −G1) q

(m)
1 − a1 (16)

This partitioning of the network equations reduces the size of the non-linear compo-314
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nent of the solver to np−nj (the number of co-tree elements in the network). It has been315

proven by Elhay et al. (2014) that the RCTM and the GGA have identical iterative re-316

sults and solutions if the same starting values are used. However, for the RCTM, the user317

only needs to set the initial flow estimates for the co-tree pipes, q
(0)
2 , in contrast to GGA318

where initial flow estimates are required for all pipes. The flows in the complementary319

spanning pipes are generated by Eq.(14) in the RCTM.320

4 WDSLib Structure321

WDSLib is a WDS simulation toolkit consisting of a set of C++ member functions,322

which henceforth will be referred to just as functions, that can be composed to solve323

for the steady state solution of a WDS. WDSLib can be used for a once-off simulation324

or a multi-run simulation. Pre-packaged driver code is provided to perform once-off325

simulations using a choice of solver methods. For a multi-simulation setting, where the326

use-cases are very diverse, the user is able to select the desired components of WDSLib327

to compose and compile their own driver.328

Individual functions in WDSLib are classified according to their role in the simulation329

workflow. In any simulation workflow, there will be functions that will only have to be330

executed once. For example, functions to read the input file or partition the network will331

only have to execute once at the start of the simulation (or of all simulations). Likewise,332

code to reverse the network partitioning and write simulation results will only have to333

execute once at the end of the simulation. In this work, these functions that are only334

required to be run once are called level one (L1) functions. L1 functions relate to network335

topology, which is invariant for the whole simulation. In a multi-simulation setting,336

certain functions will need to be run once for every hydraulic-phase. An example of337

such a module is the module making the initial guesses of pipe flow rates for the updated338

network configuration. In this work, these, once-per-assessment functions, are called level339

two (L2) functions.340

Finally, for every hydraulic assessment there is a non-linear iterative phase in the so-341
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lution process. The functions in this phase run many times for each hydraulic assessment342

until the stopping test has been satisfied. Examples of these include the functions to343

calculate the G and F matrices (see Eqs. (3) and (4)) and running the Cholesky solver.344

These iterative-phase functions are called level three (L3) functions.345

Fig. 1 illustrates the global structure of WDSLib under a once-off simulation setting346

and a multi-run simulation setting. The modular setup of WDSLib allows each module347

to be run the minimum number of times determined by its simulation setting. Under348

the module structure described above a once-off simulation setting can be viewed as a349

special case where the L1 functions and L2 functions are both run once. Note that after350

running the initial L1 functions it is possible to run hydraulic assessments of the network351

in parallel. This mode of execution might be used in a design setting such as using a352

genetic algorithm (GA) to optimize pipe diameter sizes.353

Figure 1: Global structure of WDSLib for both simulation settings

L1 and L2 functions are classified into parts a and b according to whether they run354

before or after the lower level processing that they embed. These functions are detailed355

in Fig. 2. The L1 functions that run at the start of the simulation are called L1a func-356
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tions. These include the module to read the configuration file and the EPANET .inp file;357

partition the network; and solve the linear part(s) of the network. The corresponding358

L1b functions are run at the end of the simulation. These include tasks such as reversing359

the network partitioning. Note that certain L1a functions require their corresponding L1b360

functions to be used. For example the forest search module needs to be paired with the361

reverse FCPA permutation. There is a similar structure for L2 functions. L2a functions362

are run at the start of each hydraulic assessment and L2b functions run at the end. The363

functions that must be included for the FCPA method are denoted with single asterisks.364

Likewise the functions that must be included with the RCTM method are denoted with365

double asterisks. For these methods to work correctly all affiliated functions must be366

included in the simulation workflow. Note that it is also possible to run both the RCTM367

and FCPA in the same workflow. Also note that the user cannot run both GGA and368

RCTM in the same workflow – the user must choose between these solution methods.369

Table 1 provides a mapping from the function descriptions in Fig. 2 to the function370

names in WDSLib. In addition, the dependencies between functions for each solution371

method are shown in Table 1a, Table 1b, Table 1c and Table 1d. The columns in each372

table list, respectively, the description of the function, its name in WDSLib, the C++373

class in which it appears, its input parameters, and its output values. Note, that void374

is used in these latter two columns to denote that the function interacts with the class375

variables rather than through its parameters and return value. Examples of how these376

functions can be coded are presented in section 6. The key data-access functions in377

WDSLib are described next.378

Getter and Setter methods Each class in WDSLib has various methods available for379

setting the network parameters and retrieving the results of the WDS network. These380

methods allow the user to reconfigure the network before and during simulation runs.381

The names of the setter methods all start with a prefix set and the names of the getter382

methods all start with a prefix get. For example, a user can set (write-to) the diameter383

of pipe index to value by calling pipe->setD(index,value) and get (read-from) the384

head of node index by calling h[index]=result->gethFinal(index). A summary of385
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Figure 2: Function classification in WDSLib. The functions marked with single asterisks
must be used for the FCPA method. The functions marked with double asterisks must
be used for the RCTM method. Note that it is possible to use both methods at the same
time.
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Table 1: Key function descriptions, names, their classes, inputs and outputs. The affili-
ated functions are shown in sub-tables (1a) (1b) (1c) (1d).

(a) Shared Modules

Description Module name Class Input Output
Read the configuration file readConfig runManager config file name void
Read EPANET input file getInputData Input EPANET .inp file EPANET err code
Variables scaling scale Solver void void
AMD bandwidth reduction AMD Suitesparse void void
Calculate the resistance constants getRf Solver net resistance constant
Generate initial guesses of flows init Solver diameter flow rate
Calculate the head loss coefficients getGF Solver net, resistance constant void
Stopping test stopTest Solver result norm
Recover scaled variables rScale Solver void void

(b) Global gradient algorithm (GGA)

Description Module name Class Input Output
GGA Solver runH GGASolver(Solver) void void

(c) Forest-core algorithm (FCPA)

Description Module name Class Input Output
Forest search forestSearch topology SN, EN void
Calculate flows in forest forestFlow solver demands flows in forest pipes
Calculate heads in forest forestHead solv result heads in forest pipes
Reverse FCPA permutation rFCPA Solver void void

(d) Reformuated cotree flows method (RCTM)

Description Module name Class Input Output
Spanning tree search STSearch topology SN, EN void
RCTM solver runH RCTMsolver (Solver) void void
Calculate heads in ST and CT RCTMHead RCTMsolver flows in ST and CT void
Reverse RCTM permutation rRCTM RCTMsolver void void
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Table 2: The getter and setter functions of each class and the variables they access

Class Name Description Read-Access Write-Access
Net Basic network properties, & Pipe and Node Node,Pipe, np, nj,

ns
Node Node properties d, zs, zu
Pipe Pipe properties SN , EN , L, D, R, pipe ID
Flag Flag information getFlag(”flagN”,flagV) setFlag(”flagN”)
Parameter Parameter information getPara(”paraN”,paraV)setPara(”paraN”)
Simulation Manage hydraulic simulation - -
Solver Parent class of solution methods - -
GGASolver GGA solution method Result -
RCTMSolver RCTM solution method Result -
Topology Network topology information getCore, getForest
Result Results of the simulations qIter, hIter, GIter ,

FIter, numIter, Cre-
sIter, EresIter, Time

the variables that can be read-from (read-access through getter methods) and written-to386

(write-access through setter methods for each key classes is specified in Table 2. This387

concludes the discussion of the the broad structure of the WDSLib package. The next388

section describes key aspects of the implementation of the package.389

5 WDSLIB: Toolkit Implementation390

This section outlines key implementation details of WDSLib. As previously mentioned,391

the overall aim of WDSLib is to provide a clearly-structured, flexible and extensible hy-392

draulic simulation toolkit that allows testing, evaluation, and use, in production settings,393

of both existing and new WDS solution techniques. These aims require WDSLib be im-394

plemented so that it is fast to execute, flexible to configure, robust to challenging input395

data cases, and easy to understand and modify. The following describes aspects of the im-396

plementation of WDSLib that enable it to meet these requirements. The next subsection397

describes the general considerations that informed the design of the whole toolkit. This398

general discussion is followed by a summary of key improvements to the solution processes399

encoded in forest searching and spanning tree searching in the WDSLib package.400
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5.1 General capabilities and properties401

This sub-section describes design aspects underpinning the utility and performance of402

WDSLib. In-turn, the following outlines measures taken to: (1) maximize code clarity403

and modularity; (2) increase the efficiency of memory access and storage; (3) maximize404

numerical robustness; (4) facilitate accurate timing of code execution; and (5) maximize405

simulation speed for different settings.406

Design Considerations 1: Modularity407

The modular design of WDSLib is central to the evaluation and testing of different WDS408

solution methods. All methods have been defined to perform a single, well–defined,409

function and each class can be compiled, used and tested independently. These features410

allow users to assemble the methods of interest from independently developed components411

to create a customized WDS solution method in a reliable way. WDSLib’s modular design412

also allows the users to profile the computation time of each individual component of an413

algorithm. Functions communicate through well-defined interfaces and the function code414

has been factored to minimize development and testing cost. This architecture allows415

customized simulation applications (i) to combine the functions of interest and (ii) to416

implement new solution algorithms to extend the functionalities of WDSLib.417

Design Considerations 2: Memory Considerations418

Care was taken to minimize the memory footprint of executing code (in order to re-419

duce memory requirements and prevent memory leaks) in the interest of the toolkit420

efficiency and toolkit robustness. Reducing memory requirements allows the solution of421

larger WDS problems for a given memory capacity. In WDSLib, memory reduction was422

achieved through both, using sparse matrix representations and the systematic allocation423

and deallocation of working structures in the C++ code. The matrices used in WDS424

simulation are often sparse, with the density of the full node-arc incidence matrix being425

only 2/nj. Consequently, it is more efficient to store these matrices using sparse stor-426

age schemes which store only the non-zero elements of the matrix and pointers to their427
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locations (Davis et al. 2014). It is important to note that the choice of a sparse ma-428

trix representation is made based on (1) the storage requirements of the matrix and (2)429

common search orders to column elements and row elements. This latter factor means430

that the best format for sparse matrix representation varies with the preponderant or-431

ders of search, (row-wise, column-wise, or both), employed by each method. There is432

a number of common storage formats for sparse matrices (Compressed column storage433

(CCS) of Duff et al. (1989)), Compressed row storage (CRS), Block Compressed column434

storage (BCCS), Block Compressed row storage (BCRS), and Adjacency lists). As will435

be described shortly, WDSLib, uses a modified adjacency-list representation.436

Other implementations use a variety of storage schemes. In EPANET 2, the A1437

matrix is stored as two arrays of node indices, which represent start nodes (SN) and the438

end nodes (EN) of each pipe. The i− th entry of the SN and EN arrays represent the439

start node and end node of i − th pipe of the network. This storage format minimizes440

the memory required to store the A1 matrix because only the indices are required to441

be stored because [A1](i,SNi) = −1 and [A1](i,ENi) = 1. As shown in Table 4, searching442

through rows (pipes) of matrices that are stored in this format is efficient. However,443

searching though the columns (nodes) is relatively inefficient. This storage format is also444

used in CWSnet.445

Both CCS and CRS are used in the FCPA implementation reported in Simpson446

et al. (2014), and the RCTM implementation reported in Elhay et al. (2014). The447

partial update null space method (Abraham and Stoianov 2015) used CCS. The memory448

requirement for storing the A1 matrix in CCS is 2× nnz + nj + 1 as shown in Table 4.449

This storage scheme is fast for searching through columns (nodes) of matrices that are450

stored in CCS and slow for searching though rows (pipes).451

In WDSLib, a modified adjacency list, described in Table 3, tailored for WDS hy-452

draulic simulation, is used. An adjacency list for an undirected and unweighted graph453

consists of nj unordered lists for each vertex ni, which contains all the vertices to which454

vertex ni is adjacent. The network that is shown in the Fig. 3 has one source, three455

nodes, and four pipes. The adjacency list for this network can be described by four lists456
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Table 3: The adjacency-list matrix presentation

Node Index adjacent to Size
1 {(vi, ej)|vi ∈ N(v1) ej connects v1 and vi} Deg(v1)
2 {(vi, ej)|vi ∈ N(v2) ej connects v2 and vi} Deg(v2)
3 {(vi, ej)|vi ∈ N(v3) ej connects v3 and vi} Deg(v3)
...

...
...

nj {(vi, ej)|vi ∈ N(vnj
) ej connects vnj

and vi} Deg(vnj
)

{{2, 3}, {1, 4}, {1, 4}, {2, 3}}. Each list describes the set of adjacent vertices of a vertex457

in the graph. For example, the first list, {2, 3}, represents that the vertex 1 is adjacent458

to the vertex 2 and vertex 3.459

Figure 3: A simple sample network. Numbers denote junction and pipe indices in the
network.

The adjacency list is modified to include a directed and weighted graph for WDSLib.460

This modified adjacency list for a directed and weighted WDS graph consists of nj un-461

ordered lists for each vertex ni. This list contains all the vertex and edge pairs to which462

vertex ni is adjacent. For example, the adjacency list for the same network that is shown463

in the Fig. 3 can be described by four lists {{(2, 1), (3, 4)}, {(1, 1), (4, 2)}, {((1, 4), (4, 3)}, {(2, 2), (3, 3)}}.464

Each list represents the set of adjacent vertex and edge pair of a vertex in the graph. For465

example, the first list, {(2, 1), (3, 4)}, describes that the vertex 1 is adjacent to the vertex466

2 by edge 1 and the vertex 3 by edge 4. It is fast to search through both the rows and467

columns of the A1 matrices that are stored in this format.468

In addition to these optimized encodings, bothG and F are diagonal square matrices,469
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Table 4: Different sparse representations for A1

Types size(A1) size(A2) size([A1 A2]) Column Search Row Search

CCS 2× nnz + nj + 1 2× nnz + nf + 1 4× np + nn + 2 O(n) O((nj)n)
CRS 2× nnz + np + 1 2× nnz + np + 1 6× np + 2 O((np)n) O(n)
EPANET - - 2× np O(n) O((nj)n)
WDSlib - - 4× np O(n) O(n)

which require less storage when stored as vectors than in sparse matrix form. The storage470

methods used for the variables in WDSLib and their associated memory usage are given471

in Table 5.472

As a final note, to offer further assurance of the correctness of memory management in473

WDSLib, Valgrind (Nethercote and Seward 2007), a programming debugging tool, was474

deployed during testing to detect any memory leaks, memory corruption, and double-475

freeing.476

Table 5: Vectors and matrices in WDSLib

variables type size storage method memory requirements
q, L, D, r vector np × 1 vector np× double
h, d vector nj × 1 vector nj× double
G, F matrix np × np vector np× double
A1, A2 matrix np × nj sparse matrix (2× np)× integer
L21 matrix (np − nj)× nj sparse matrix ≤ (np − nj)× nj × integer

Design Considerations 3: Numerical Considerations477

The calculations in WDSLib are performed in C++ under IEEE-standard double pre-478

cision floating point arithmetic with machine epsilon εmach = 2.22 × 10−16. Invariant479

terms and parameters in every equation were evaluated in advance and replaced by full480

20-decimal digit accuracy constants. Intermediate results of calculations, (which are not481

easily accessible in EPANET), can be output at the user’s request. The stopping toler-482

ance and stopping test can be set by the user either through the configuration file or by483

the relevant setter method in the Parameter class.484
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Table 6: WDS variables and units

Variables SI unit US Customary unit Scaling factor
Length m ft L0 = max (L)
Diameter m ft D0 = max (D)
Nodal head m ft h0 = max (el)
Source elevation m ft el0 = max (el)
flow m3/s ft3/s q0 = max (d)
demand m3/s ft3/s d0 = max (d)
G, F s/m2 s/ft2 G0 = L0

Dp
0
|q0|n−1

In the construction of any numerical solver, there are two primary dangers that are485

associated with floating point arithmetic that cannot be ignored: (i) subtractive cancel-486

lation and (ii) overflow and underflow. To avoid problems associated with these, all input487

variables are scaled to a similar range to minimize the risk of avoidable computational488

inaccuracy or failure in floating point arithmetic. It is important to note that unscaled489

or poorly scaled variables can unnecessarily confound a computation. These scaled input490

variables are physically dimensionless, which allows computation which is independent of491

the system of measurement units.492

The variables, that are provided in EPANET input file for the package, and their493

corresponding units in US customary and SI units are shown in Table 6. As with the494

input variables, the system equations were modified to use dimensionless variables. Once495

the stopping test is satisfied, the original variables are then recovered by reversing the496

initial scaling. Details of the scaling are shown in Appendix A.497

To help ensure that WDSLib solution methods are both fast and reliable. The sparse498

matrix operations are implemented using SuiteSparse (Davis et al. 2014). SuiteSparse is a499

state-of-the-art sparse arithmetic suite with exceptional performance, from which the ap-500

proximate minimum degree permutation (AMD) and the sparse Cholesky decomposition501

routines have been used.502

Design Considerations 4: Timing Considerations503

When executing WDSLib, each function reports the time spent in it by sampling wall504

clock time at the start and end of its execution. Although the overhead for sampling505
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wall clock time is small, there are at least two special considerations involved in the506

interpretation of these timings: (i) the operating system, at its own discretion, may507

launch background processes (for example anti-virus software), which will distort the508

timings and (ii) extrapolating the timing for multiple hydraulic simulations from a single509

analysis (as may be required, for example, in a genetic algorithm or other evolutionary510

algorithm run) must be done with care because the relationship between the different511

settings is not linear.512

This concludes the discussion of the main considerations concerning the global design513

of WDSLib. In the following, key details of the implementation of selected parts of the514

solution processes are described.515

5.2 Key Improvements to Solution Processes516

The WDSLib implementation makes several improvements to extant solution processes.517

This section focuses on the improvement of the network partitioning processes in FCPA518

and RCTM.519

Key Optimization 1: Improvements to partitioning in Forest Search520

The forest-core partitioning algorithm (FCPA) in this paper is a substantial improvement521

over the algorithm of the original paper (Simpson et al. 2014). Specifically the original522

FCPA algorithm almost always required many sweeps of the columns (nodes) of the523

A1 matrix in order to reduce the forest component down to the core component. The524

refined algorithm exploits the adjacency list representation of the A1 matrix so that525

the partitioning process is achieved in a single sweep. This improves the speed of the526

partitioning process from being O(anp) to O(np+nf ) where a is the depth of the deepest527

tree-component in the forest. This can lead to substantial time savings in the case when528

a is relatively large.529

The pseudo-code for this refined forest search algorithm is shown in Appendix B This530

algorithm traverses each tree component in turn from its leaf nodes, which maximizes the531

locality of operations with respect to the graph representation. In this algorithm, a node532
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is identified as a leaf node when its node degree is one. Every time a leaf node, node k,533

is identified, the node pointer is moved to its adjacent node, node k, and the node degree534

of node k is reduced by one. This process repeats if the adjusted node degree of node k535

is one. Otherwise, node k is the root node for this tree and the algorithm progresses to536

the next tree in the forest.537

Key Optimization 2: Improvements to Spanning Tree Search538

The reformulated co-tree flows method (RCTM) in this paper is also a substantial im-539

provement over the algorithm of the original paper (Elhay et al. 2014). The original540

spanning tree search algorithm sweeps the rows of the A1 matrix (pipes) in order to541

identify the singleton rows and their corresponding columns. The spanning tree search542

in the original RCTM required a sweep of of the A1 matrix to identify the next pipe in543

the spanning tree. This algorithm is O(npnj), which is relatively inefficient.544

The pseudo-code for the refined spanning tree search algorithm is shown in Ap-545

pendix C This improved algorithm takes as input the adjacency list describing the network546

and the pipe indexes of the core component of the network from the Algorithm 1 (if the547

FCPA is used). In this algorithm, all water sources are the starting point of the search548

process, SN , and marked as visited. The nodes in SN are then used as to identify a549

spanning tree within the WDS. This is achieved by repeatedly finding all adjacent pairs,550

node t and pipe s, of and removing the first node in SN by using the adjacency list.551

If the adjacent node t is not visited then node t is inserted into the spanning-tree node552

vector, STN , and search node vector, SN , and node t is marked as visited and pipe s to553

the spanning-tree pipe vector, STP , and pipe s is marked as visited. If the adjacent node554

t is visited and the pipe s is not visited then the pipe s is inserted into the co-tree pipe555

vector, CTP and mark pipe s as visited. This process is repeated until SN is empty.556

The overall time-complexity of this algorithm is O(np + nj) (compared to O(npnj) as557

mentioned above) is the same as the best asymptotic complexity of breadth-first search558

on a graph.559
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6 Example Applications560

WDSLib consists of a collection of functions which can be used either as a standalone561

application for fast one-off simulations or as a library of software components that can be562

integrated into a user’s own WDS solution processes. This section presents two example563

applications. The first application is the setup for a basic one-off simulation of a WDS.564

The second application (described in subsection 6.1) presents an example using WDSLib565

to implement a simple 1+1 Evolutionary Strategy (Beyer and Schwefel 2002) (1+1-ES566

or, more commonly, 1+1EA) for sizing pipes in a WDS.567

Example 1 - Once-off Simulation568

The setup for WDSLib as a standalone application is straightforward. The user provides569

a configuration text file that specifies input and output filenames; the name of the solver;570

the desired output variables; and simulation parameters. These values have sensible571

defaults so the user can set up the solver by using a minimal configuration such as that572

shown in Fig. 4. By using this config file, WDSLib is configured to run a single hydraulic573

analysis of the network that is stored as say ”hanoi.inp”, an EPANET- formatted input574

file, under ”Network/” sub-directory, using the reformulated co-tree flows method with575

the forest-core partitioning algorithm. The full set of configuration parameters for once

1 [InputFile]

2 <directory > %the input file directory

3 Network/

4 <file > %the input file name

5 hanoi.inp

6 <end >

7 % --------------------------------------------------%

8 [controlFlag]

9 <SolverFlag > %1 for GGA 2 for RCTM

10 2

11 <FCPAFlag >

12 1

13 <end >

14 % --------------------------------------------------%

Figure 4: A minimal configuration file to run the GGA in WDSLib

576

off simulations is shown in Fig. 10 in Appendix D.577
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6.1 Example 2 - A Simple Network Design Application578

As a minimalist example of the application of WDSLib to a WDS network design problem,579

the following example uses 1+1EA for optimally sizing pipe diameters. This algorithm580

takes an existing network with randomly generated pipe diameters and optimizes the581

network to minimize cost, subject to given pressure head constraints. A 1+1EA is a very582

simple evolutionary strategy (Beyer and Schwefel 2002) which starts with a randomly583

generated individual (in this case a WDS diameter configuration). This 1+1EA then584

progresses by applying a mutation to a random pipe diameter size, and then evaluating585

the new individual. If the new individual is better it replaces the old network. This586

process continues in a loop until a given number of evaluations is reached.587

The C++ code for this example is shown in Figs. 5, 6, 7, and 8. If the name of the588

file containing this code is: simpEA.cc then the simplest command to compile this code589

is:590

g++ simpEA.cc -o simpEA -Llib -lWDSLib591

To run this code the user would type:592

./simpEA config.txt593

where config.txt contains the same configuration text as for the previous example.594

Starting with the main function in Fig. 5, line 15 points to the config file specified by595

the command line. The next two lines initialize the result and the simulation according596

to the configuration file. This is followed by the L1a module to perform the user selected597

L1a functions. Line 19 generates the initial pipe diameters of the network and line 20598

initializes the workspace for the mutated string. Line 23 sets the pipe diameters of the599

network. Line 24 evaluates the current network configuration. The permutation and600

scaling for the current individual is reversed by L1b in line 25 of Fig. 5. Line 26 calculates601

the fitness of the current network configuration by using the evaluate function in Fig. 8.602

This function applies a penalty for pressure head constraint violations and pipe material603

costs. The body of the 1+1EA is contained in the selection operator and mutation604

operator that follow. Lines 27 to 31 compare the string in the current generation with605
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1 #include "Simulation.h"

2 #include "result.h"

3 using namespace std;

4 #define GTN 100000 //the total number of

generations

5 /* available pipe diameters (inches)*/

6 vector <int > ADiameter

={36 ,48 ,60 ,72 ,84 ,96 ,108 ,120 ,132 ,144 ,156 ,168 ,180 ,192 ,204};

7 /* dollar per unit length */

8 vector <int >unitCost

={93.6 ,133.7 ,176.3 ,221 ,267.6 ,315.8 ,365.4 ,416.5 ,468.7 ,

9 522.1 ,576.6 ,632.1 ,688.5 ,745.1 ,804.1};

10 vector <int > generateinitialDiameters(int); // see fig. 6

11 vector <int > mutate(vector <int >); // see fig. 7

12 double evaluate(Net*, Result *); // see fig. 8

13 int main(int argc , char *argv []){

14 srand (1);

15 char *config=argv [1];

16 Result *result=new Result ();

17 Simulation *simulation1=new Simulation (); // initialize the

simulation class

18 Net *net=simulation1 ->L1a(result ,config); // perform the L1a

functions

19 vector <int > p1=generateinitialDiameter(net ->getNp());// initial

guesses of diameter

20 vector <int > p2; //work space for

current best

21 double cost ,currentbest;

22 for(int i=0;i<GTN;i++){

23 simulation1 ->setD(&p1 ,&ADiameter ,net ->getPIPE ()->Diascale ());

24 simulation1 ->solve(result); // perform the L2 and L3

functions

25 simulation1 ->L1b(result); // reverse the

permutation

26 cost=evaluate(result ,net ,&p1); // evaluate the network

cost

27 if(cost <currentbest ||i==0){ // selection operator

28 currentbest=cost;

29 p2=p1;

30 cout <<i<<"\t"<<currentbest <<"\t"<<penaltyCost <<endl;

31 }

32 p1=mutate (&p2); // mutation operator

33 }

34 simulation1 ->dispResult(result);

35 delete simulation1;

36 delete result;

37 return 0;

38 }

Figure 5: Example code for 1+1EA for Pipe Sizing
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1 vector <int > generateinitialDiameters(int np)

2 {

3 vector <int > Diameter = vector <int >(np);

4 for (int i=0;i<np;i++)

5 Diameter[i]=rand()%ADiameter.size(); //set the index for pipe

diameters

6 return Diameter;

7 }

Figure 6: Implementation code for pipe size initialization

1 vector <int > mutate(vector <int >* string){

2 vector <int > string1;

3 string1 =* string;

4 int aa=rand()%(string ->size()); // choose which pipe to mutate

5 int a=rand()%ADiameter.size(); // choose a pipe diameter after the

mutation

6 (string1)[aa]=a; //set the pipe index

7 return string1;

8 }

Figure 7: Implementation code for the mutation operator

1 double evaluate (Result* result ,Net* net ,vector <int > *p1) {

2 PIPE* pipe =net ->getPIPE ();

3 double np=net ->getNp ();

4 double nj=net ->getNj ();

5 double P=1e7;

6 double cost1 =0;

7 penaltyCost =0;

8 vector <double > hsol=result ->getHsol (); //get the vector of nodal

heads

9 vector <double >* L=pipe ->getL(); //get the vector of pipe

lengths

10 vector <double >* zu=net ->getNODE ()->getZU(); //get the vector of nodal

elevations

11 double Lscale=pipe ->Lenscale (); //get the scaling factor

for length

12 for (int i = 0; i<np; i++)

13 cost1 +=(*L)[i]* Lscale*unitCost [(*p1)[i]]; // calculate the material

cost

14 for (int i = 0; i<nj; i++)

15 if ((hsol)[i]-(*zu)[i]<minP)

16 penaltyCost +=(minP -(hsol)[i]+(*zu)[i])*scaleP;// calculate penalty

cost

17 return cost1+penaltyCost;

18 }

Figure 8: Implementation code for the evaluation function
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the current best string if the individual p1, as measured by evaluate is better than the606

individual p2 then p1 replaces p2. Line 32 mutates the current network, p2, using mutate607

(see Fig. 7). The mutate function changes the diameter of a randomly selected pipe in the608

network to a randomly selected diameter, chosen from a set of commercially available pipe609

diameters. The mutated individual, stored in the workplace p1, is used as the network610

configuration for the next iteration. Until the total number of generations is reached, the611

user selected information about the best individual is outputted by dispResult in line612

34 of Fig. 5.613

It should be noted that the algorithm described above can be used to design a simple614

WDS but is not optimal in terms of speed of convergence. Other EA’s such as genetic615

algorithms (Simpson et al. 1994) will perform better. However the above example has the616

advantage of simplicity and contains all the basic elements that a GA would use when617

interacting with WDSLib.618

This concludes the presentation of examples in this work. The next section presents619

a case study that illustrates the performance of WDSLib in a multi-simulation setting.620

7 Case Study621

The following presents timing results for WDSLib running the 1+1EA described in the622

previous section. The results below compare the four different solvers plus EPANET2.623

Note, that detailed timings for once-off simulations comparing the four methods can be624

found in Qiu et al. (2018). Three networks were benchmarked in these experiments.625

These were the N1, N3, and N4 case-study networks used in Simpson et al. (2014).626

Table 7 summarizes the characteristics of these networks.

Table 7: Benchmark networks summary

Full Network Forest & Core Networks Co-tree Network
Network np nj ns nf (nf/n

#
p ) njc npc nct

N1 934 848 8 361 (38%) 573 487 84
N3 1975 1770 4 823 (42%) 1152 947 205
N4 2465 1890 3 429 (17%) 2036 1461 757
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Table 8 shows the results of the 1+1EA from Fig. 5 for the GGA, GGA with FCPA,627

RCTM, RCTM with FCPA and the EPANET2 solvers. For each of the four WDSLib628

solvers above, the timings are given for running the EA with and without the L1 modules629

hoisted out the main EA loop. Each experiment evaluates the WDS network 100,000630

times. And the best performing method for each network is highlighted in bold. It is631

important to note that 1+1EA using both the GGA and the WDSLib632

Table 8: The actual 1+1EA run-time with 100,000 evaluations (min.) for each of the
four solution methods applied networks N1, N3, N4

GGA GGA with FCPA RCTM RCTM with FCPA EPANET
min. min. min. min. min.

N1 6.73 4.64 4.53 4.13 9.81
N3 15.21 9.79 13.75 10.30 26.43
N4 21.14 16.29 23.92 21.93 67.11

The results show that the EA runs using WDSLib are substantially faster than the633

runs using the EPANET2 solver. This is, in part, due to the fact that the EPANET2634

solver is designed as a standalone solver which does not facilitate lifting out of invariant635

computations from the EA loop.636

As a demonstration of how the performance of an EA can be traced Fig. 9 shows the637

evolution of the fitness values of the N1 network. These traces were extracted from a file638

written to in line 30 in Fig. 5. As can be seen, the cost and the pressure head violation639

terms drop during the EA run. Note that there will be considerable variation between640

1+1EA runs due to its highly stochastic nature.641

8 Conclusions642

This paper has described WDSLib, a library for steady-state hydraulic simulation of WDS643

networks. WDSLib is fast, modular, and portable with implementation of several stan-644

dard and recently published hydraulic solution methods. We have outlined the supported645

solution methodologies, the structure of the package and key aspects of WDSLib’s imple-646

mentation. Two example applications have been presented including a design case study647
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devices and pressure driven models is future work.664
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Appendix A Scaling759

In WDSlib, all input variables are scaled to a similar range to minimize the risk of760

avoidable computational inaccuracy or failures in floating point arithmetic.761

The variables are scaled as following: Ĝ = G/G0, q̂ = q/q0, ĥ = h/h0, êl = el/el0,762

d̂ = d/d0 where G, h, el, and d are the original input vectors, G0, h0, el0, and d0 are the763

scaling factors and Ĝ, ĥ, êl, and d̂ are the scaled input vectors.764

By substituting G = ĜG0, q = q̂q0, h = ĥh0, el = êlel0, d = d̂d0, Eq. (1) and765

Eq. (2) become:766

G0q0Ĝq̂ − h0A1ĥ− el0A2êl = 0 (17)767

q0A1
T q̂ − d0d̂ = 0 (18)768

Eq. (17) and Eq. (18) can be further simplified by introducing the notation: a =769

h0/ (G0 ∗ q0), b = el0/ (G0 ∗ q0), and c = d0/q0:770

Ĝq̂ − aA1ĥ− bA2êl = 0 (19)771

772

A1
T q̂ − cd̂ = 0 (20)773

with the following matrix form:774




Ĝ −A1

−A1
T O







q̂

aĥ


−




bA2êl

cd̂


 = 0. (21)775

Finally, the network can be solved by using Eq. (22) and Eq. (23):776

ĥ(m+1) =
1

a
U−1[−cd̂−A1F̂

−1[(F̂ − Ĝ)q̂(m) + bA2êl]] (22)777

778

q̂(m+1) = q̂(m) + aF̂−1A1ĥ
m+1 − F̂−1(Ĝq̂(m) − bA2êl) (23)
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Choice of scaling factors779

The choice of the scaling factor, despite much research, is not well understood. In this780

subsection, a choice for each scaling factor, based on the experience of the authors, is781

recommended. There are two types of variables and parameters that need to be scaled:782

invariants and variants.783

Data sets that have very wide range of values can confound numerical accuracy. As784

a result, it may be preferable to scale the data to a narrower range. The default scaling785

factor for each of the input data is chosen to be its maximum absolute value. For example,786

the scaling factor for demand is max(d), so that its values range from zero to one.787

In contrast, it is more difficult to choose a scaling factor a priori for values that vary788

between iterations (variants). This is because the range of variants can change as the789

iteration progresses. As a result, the intermediate and the final results might not be790

within the same range as the initial guesses.791

There are two variants that need to be scaled: q, h. A good choice of the scaling792

factor for the flow rate is

∑
d

nf
because the demand at each node must be satisfied by793

the water sources in the WDS and it is a reasonable assumption that the all demands794

are equally carried by each pipe that is directly connected to a water source and a good795

choice of the scaling factor for nodal head is max(el) because the maximum nodal head796

cannot exceed the maximum elevation head of the fixed nodes.797

During the process of the computation, the matrices G and F are scaled because798

their input variables are scaled. For the Darcy-Weisbach head loss model, the diagonal799

elements of the matrix G are modelled by:800

[G]jj = diag

{
(

8

π2g
)
Lj
D5
j

fj|qj|
}

for j = 1, . . . , np801
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where the friction factor f is modelled by the Swamee-Jain formula:802

fj =





64

Rj

if Rj ≤ 2000

∑3
k=0(αk + βk/θj)(Rj/2000)k if 2000 < Ri < 4000

0.25
log2(θj)

if Rj ≥ 4000

(24)803

where θj =
εj

3.7Dj

+
5.74

R0.9
j

and Rj =
4qj
πυDj

for j = 1, . . . , np. Note that αk and βk are804

constant, the values of which can be found in Elhay and Simpson (2011)805

In order to make sure the Reynolds number, a dimensionless variable, is not affected806

by scaling, ν̂ =
D0

q0
ν is introduced, Reynolds number Rj becomes

4q̂jq0

πν̂(q0/D0)D̂jD0

, which807

can be further simplified to
4q̂j

πν̂D̂j

, where the scaling factors are canceled.808

In order to make sure f is also not affected by the scaling, ε̂ = D0ε is introduced, θj809

becomes810

θj =
ε̂jD0

3.7D̂jD0

+
5.74

R0.9
j

for j = 1, . . . , np811

which can be further simplified to812

θj =
ε̂j

3.7D̂j

+
5.74

R0.9
j

for j = 1, . . . , np813

where the scaling factors are canceled. It is evident that the friction factors remain the814

same because the values for the only two variables R and θ are unchanged.815

Finally, diagonal elements of G can be expressed as: G0Ĝ, where G0 = (
8

π2g
)
L0

D5
0

|q0|816

and [Ĝ]jj = diag

{
L̂j

D̂5
j

fj|q̂j|
}

for j = 1, . . . , np.817

For the Hazen-Williams head loss model, the diagonal elements of the matrix G818

are modelled by: [G]jj = diag

{
10.67Lj

C1.852
j D4.871

j

|qj|(n−1)
}

for j = 1, . . . , np, where Cj is819

the Hazen-Williams coefficient for the j-th pipe. The Hazen-Williams coefficient, unlike820

the friction factor in the Darcy-Weisbach head loss model, is independent of flow rate,821

pipe wall condition, and flow regimes, which means it is an independent variable. As822

a result, the scaling factor for Hazen-Williams G can simply be derived by: [G]jj =823
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diag

{
10.67L̂jL0

Ĉ1.852
j C1.852

0 D̂4.871
j D4.871

0

|q̂j|(n−1)|q0|(n−1)
}

and the equation for diagonal elements824

of G for Hazen-Williams equation can be expressed as: G = diag
{
G0Ĝ

}
, where G0 =825

10.67L0

C1.852
0 D4.871

0

|q0|(n−1) and [G]jj = diag

{
L̂j

Ĉ1.852
j D̂4.871

j

|q̂j|(n−1)
}

for j = 1, . . . , np.826
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Appendix B Forest Search Algorithm827

Algorithm 1: Forest Search Algorithm

input : Adjacency list, d and Deg
output: Forest, RootNode, q and d

k ← 1;
for i← 1 to nj do

n = i;
while Deg(n) == 1 do

for (Adjp,Adjv) ∈ Adj(n) do
if Deg(Adjv) == 1 then

Forest[k]←Union(Forest[k], (Adjp, n))
else
q(Adjp)← d(n);
d(Adjv)← d(Adjv) + d(n);
Deg(Adjv)← Deg(Adjv)− 1;
n = Adjv;
if Deg[n] ≥ 2 then

RootNode[k] = n;
k ← k + 1;

end if

end if

end for

end while

end for
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Appendix C Spanning Tree Search Algorithm828

Algorithm 2: Spanning Tree Search Algorithm

input : adjList
output: Spanning Tree and Co-Tree elements
STP ← {} ; // initialize an empty vector for spanning tree pipes

STN ← {} ; // initialize an empty vector for spanning tree nodes

CTP ← {} ; // initialize an empty vector for co-tree pipes

V N ← {} ; // initialize a boolean vector for visited nodes

V P ← {} ; // initialize a boolean vector for visited pipes

SN ← {} ; // initialize an empty set of searching nodes

for i← nj to nf do
V N [i] = true ; // mark the source i as visited

SN ← i ; // insert this node into the search node vector

end for
while SN is not empty do

i← the first element in SN ;
foreach (Adjp,Adjv) ∈ Adj[i] do

if VN[Adjv] == false then
STP ← Adjp ; // mark pipe as a spanning tree pipe

STN ← Adjv ; // mark node as a corresponding spanning

tree pipe

SN ← Adjv ;
VN[Adjv]=true;
VP=[Adjp]=true;

end if
else if VN[Adjp]==false then

CTP ← Adjp ; // removed pipe j as a singleton pipe

VP[Adjp]=true;

end if

end foreach
remove i from SN ;

end while
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Appendix D Complete configuration files829

1 [InputFile]

2 <directory > %REQUIRED INFORMATION the input file directory

3 WDSnetwork/

4 <file > %REQUIRED INFORMATION the input file name

5 n1.inp

6 <end > %end of input file

7 % --------------------------------------------------%

8 [Parameter]

9 <maxIter > %maximum number of iteration

10 50

11 <initV > %initial veloc ity

12 0.3048 %1ft/s

13 <StopTol > %stopping tolerance used

14 1.000e-6

15 <NormTyp > %norm type 1 for 1-norm , 2 for 2-norm , 3 for inf -norm

16 3.0

17 <StopTest > %stopping test used 1 for q-norm , 2 for h-norm 3 for q&h-

norm

18 1

19 <SerP > %service pressure

20 20.0

21 <MinP > %Minimum pressure

22 40.0

23 <Demandfuc > %type of consumption function

24 1.00

25 <MaxNpIterResult > %np treshold for disping iterates result

26 50.0

27 <MinImproTol >

28 1.0000e-3

29 <end > %end of parameter

30 % --------------------------------------------------%

31 [dispFlag]

32 <BasicFlag >

33 false

34 <NetInfoFlag >

35 false

36 <ConvergenceFlag >

37 false

38 <StatFlag >

39 false

40 <ScalingFlag >

41 0

42 <NodalResultflag >

43 0

44 <LinkResultflag >

45 false

46 <QitersFlag >

47 false

48 <HitersFlag >

49 false

50 <timeFlag >

51 false

52 <end > %end of dispFlag

53 % --------------------------------------------------%

54 [controlFlag]

55 <SolverFlag > %1 for GGA 2 for RCTM 3 for SMPA 4 for PDM

56 1

57 <FCPAFlag >

58 0

59 <end > %end of controlFlag

60 % --------------------------------------------------%

Figure 10: A configuration file to run the RCTM in WDSLib
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Appendix E Nomenclature830

Acronyms831

CT Co-tree832

CTP Co-tree pipes833

DW Darcy-Weisbach head loss formula834

FCPA Forest-core partitioning algorithm835

GGA Global gradient algorithm836

HW Hazen-William head loss formula837

WDS Water distribution system838

RCTM Reformulated co-tree flows method839

nnz Number of non-zeros840

STP Spanning tree pipes841

STN Spanning tree nodes842

ST Spanning tree843

Constants844

g Gravitational acceleration constant845

ν Kinematic viscosity of water846

FCPA variables847

C Permutation matrix for the nodes in the core, Ec, of the network848

Ec Set of core pipes (edges) in Gc849

Ef Set of forest pipes (edges) in Gf850

Appendix A. Submitted version of Publication 1: WDSLib: A Water Distribution System
Simulation Test Bed

163



Gc Core subgraph851

Gf Forest subgraph852

P Permutation matrix for the pipes in the core, Ec, of the network853

S Permutation matrix for the pipes in the forest, Ef ,of the network854

T Permutation matrix for the nodes in the forest, Ef , of the network855

Vc Set of core nodes (vertices) in Gc856

Vf Set of forest nodes (vertices) in Gf857

Hydraulic variables for GGA858

A1 Unknown-head node-arc incidence matrix859

A2 Fixed-head node-arc incidence matrix860

d Vector of nodal demands861

di Demand of node i862

D Vector of pipe diameters863

Dj Diameter of pipe j864

el Vector of Fixed-head nodes elevation heads865

elk Fixed-head nodes elevation heads at node k866

E Set of pipes in graph G867

EN Vector of end nodes868

EN j End nodes of pipe j869

f Vector of Darcy-Weisbach friction factors870

f j Darcy-Weisbach friction factor of pipe j871
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F Diagonal Matrix of generalized headloss derivatives when the headloss is modelled872

by either the HW and the DW873

[F ]jj Generalized headloss derivatives for pipe j874

G Full WDS graph875

G Diagonal matrix with elements rj|qj|n−1876

[G]jj rj|qj|n−1877

h Vectors of unknown heads878

hi Heads at node i879

J Jacobian matrix880

L1a Functions run once before multiple simulation881

L2a Functions run once before hydraulic assessment882

L3 Functions run every iteration883

L2b Functions run once after hydraulic assessment884

L1b Functions run once after multiple simulation885

L Vector of pipe lengths886

Lj Length of pipe j887

n Head loss exponent888

nf Number of forest pipes and nodes889

nj Number of junctions890

np Number of pipes891

nr Number of fixed-head nodes892
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nst Number of ST pipes and nodes893

nct Number of CT pipes894

q Vector of unknown flows895

qj Flow in pipe j896

R Vector of Reynolds numbers897

Rj Reynolds number for pipe j898

SN Vector of start nodes899

SN j Start nodes of pipe j900

U Diagonal matrix of Schur Complement when headloss is modelled by HW901

V Generalized Schur Complement when the headloss is modelled by both the HW902

and the DW903

V Set of node in graph G904

zi Elevation at node i905

αk Interpolating spline coefficient906

βk Interpolating spline coefficient907

θ Vector as defined in Eq. (24)908

ε Vector of pipe roughness heights909

εj Roughness height for pipe j910

RCTM variables911

Est Set of ST pipes (edges)912

Ect Set of complementary CT pipes (edges)913
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K1 Orthogonal permutation matrix for pipes in the ST914

K2 Orthogonal permutation matrix for pipes in the CT915

L21 A part of a basis for the null space of the permuted node-arc incidence for the916

RCTM917

R Orthogonal permutation matrix for nodes in the ST918

Vst Set of ST nodes (vertices)919

W Schur complement for the RCTM920
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ABSTRACT8

In recent years a number of new WDS solution methods have been developed. These methods9

have been aimed at improving the speed and reliability of WDS simulations. However, to date,10

these methods have not been benchmarked against each other in a reliable way. This research11

addresses this problem by using a newly developed software platform,WDSLib, as a fair basis for12

a detailed comparison of the performance of these methods under different settings. In this work,13

efficient implementations of three solution methods, the Global Gradient Algorithm (GGA), the14

forest-core partitioning algorithm (FCPA), and the reformulated co-tree flow method (RCTM), and15

combinations of these, are compared on eight case study benchmark networks containing between16

934 and 19647 pipes and between 848 and 17971 nodes. These simulations were carried out under17

both a once-off simulation setting and a multiple simulation setting (such as occurs in a genetic18

algorithm). Timings for these benchmark runs are decomposed into stages so that the performance19

of these methods can be easily estimated for different settings. The results of this study will help20

inform the choice of solution methods for given combinations of network features and given design21

settings. In addition, timing results are compared with EPANET2.22

Keywords: water distribution systems solution; Forest-Core Partitioning Algorithm; Global23

Gradient Algorithm; Reformulated Co-tree Flow Method; hydraulic analysis; EPANET.24
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INTRODUCTION25

Water Distribution Systems (WDSs) are frequently modeled by a system of nonlinear equa-26

tions, the steady-state solutions of which, the flows and heads in the system, are used in WDS27

design, management and operation. In a design setting, the solutions might be used as part of28

an optimization problem to determine the best choices of some network parameters such as pipe29

diameters. In a management setting, the solutions might be used for the calibration of network30

parameters such as demand patterns. In an operational environment, new solutions might be needed31

to adjust control device settings whenever new supervisory control and data acquisition (SCADA)32

information becomes available.33

The most widely usedWDS simulation method in current use is the Global Gradient Algorithm34

(GGA) (Todini and Pilati 1988), which solves the non-linear system of equations representing35

the WDS. The GGA and its implementations exhibit excellent convergence characteristics for a36

wide range of starting values and a wide variety of WDS problems. However, some networks37

have structural properties which can be exploited to further improve the efficiency of the solution38

process. The GGA, a range space method, exploits the block structure of the full Jacobian matrix in39

order to produce a smaller key matrix in the linearization of the Newton method. The reformulated40

co-tree flows method (RCTM) (Elhay et al. 2014), a null-space method (Benzi et al. 2005), can41

further exploit the block structure of the Jacobian matrix to produce, in realistic WDSs, an even42

smaller key matrix. This is achieved by dealing separately with the spanning tree and the co-tree in43

the Newton method linearization.44

Another avenue for reducing computation can be exploited by using the Forest-Core Partitioning45

Algorithm (FCPA) (Simpson et al. 2012) to separate the problem into its linear and non-linear46

components. The observation underpinning the FCPA is that mostWDSs have trees, the collections47

of which are called forests. The complement of the forest in a network is called the core. The flows48

in a forest can be computed a-priori by a linear process. Hence, the dimension of the key matrices49

in the solution process can be significantly reduced when the forest is a large part of the network.50

With the development of different solution methods, WDS simulation package users are faced51
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with a choice of which solution method or methods to apply. Previous publications performed52

case studies comparing the performances of their respective methods to the GGA. However, these53

comparisons were often done using different implementation languages, and different levels of54

code optimization – which makes cross-comparison of methods difficult. Consequently, there is a55

need for a study which reliably compares the relative performance of these methods using a fast,56

carefully designed code implementation. To this end, this work presents a thorough benchmark57

study to compare the performance of GGA, GGA-with-FCPA, RCTM, and RCTM-with-FCPA for58

a range of case study networks using a fast C++ implementation. The timings for these runs are59

decomposed according to how often each solution component is executed in different simulation60

settings. From these timings it is possible to accurately predict runtimes for long-run multiple61

simulation settings. To confirm the relevance of these results, the timings have been compared with62

the speed of the industrial and research standard toolkit of EPANET2 (Rossman 2000) and was63

found to be faster in all cases.64

This paper is organized as followed. A detailed review of existing solution methods is given in65

the next section. The section following presents the mathematical formulation of each method. The66

motivation for a benchmark study is then given, followed by the methodology used in this paper to67

carry out a benchmark study. The description of the module categorization is then presented. This68

is followed by a case study of the four solution methods applied to the eight case study networks.69

The results are discussed in the next section. The last section offers some conclusions.70

LITERATURE REVIEW71

This section provides a review of the algorithms that are tested in this paper. A brief development72

history of WDS solution algorithms is presented in the first subsection. The next subsection gives73

an overview of the GGA and its development, followed by an overview of solution methods which74

use the null space approach (such as co-trees flow method (CTM) and RCTM). Finally, a review of75

the methods that use graph theory to simplify problem complexity are presented.76
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Development history of the WDS algorithms77

This research considers a water distribution model made up of energy conservation equations78

and the demand driven model continuity equations. The Hardy Cross method (Cross 1936), also79

known as the loop flow corrections method, is one of the oldest methods and uses successive80

approximations, solving for each loop flow correction independently. It is a method that was widely81

used for its simplicity at the time when it was introduced. More than three decades later, Epp and82

Fowler (1970) developed a computer version of Cross’s method and replaced the numerical solver83

with the Newton method, which solves for all loop flow corrections simultaneously. However, this84

method has not been widely used because of the need (i) to identify the network loops, (ii) to find85

initial flows that satisfy continuity equation and (iii) to use pseudo-loops.86

Many methods have been proposed to improve the computational efficiency of the WDSmodel.87

These include: matrix decomposition (Todini and Pilati 1988; Elhay et al. 2014; Deuerlein et al.88

2015), graph partitioning (Rahal 1995; Simpson et al. 2012; Alvarruiz et al. 2015), network skele-89

tonization (Saldarriaga et al. 2008; Shamir and Salomons 2008), and network clustering (Anderson90

and Al-Jamal 1995; Perelman and Ostfeld 2011). Both network skeletonization and network clus-91

tering can produce a smaller network to solve. However, they are not considered in this study92

because the solutions from both methods are approximations to the solutions for the full networks,93

unlike the exact solutions produced by the methods used in this study. A summary of methods94

that improve the computational efficiency of the steady-state demand-driven WDS solution process95

follows.96

Global gradient algorithm97

The GGA is a range space method that solves for both flows and heads. It was the first algorithm,98

in the field of hydraulics, to exploit the block structure of the Jacobian matrix to reduce the size of99

the key matrix in the linearization of the Newton method. The GGA has gained popularity through100

its rapid convergence rate for a wide range of starting values. This is the result of using the Newton101

method on an optimization problem that has a quadratic surface. However, it was reported by Elhay102

and Simpson (2011) that the GGA fails catastrophically in the presence of zero flows in a WDS103
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when the head loss is modeled by the Hazen-Williams formula. Regularization methods have been104

proposed by both Elhay and Simpson (2011) and Gorev et al. (2012) to deal with zero flows when105

the head loss is modeled by the Hazen-Williams formula.106

The GGA as it was first proposed, applied only for the WDSs in which the head loss is modeled107

by the Hazen-Williams formula, where the resistance factor was independent of flow. In EPANET2,108

Rossman (2000) extended the GGA to allow the use of the Darcy-Weisbach formula. It has been109

pointed out in Simpson and Elhay (2010), however, that Rossman incorrectly treated the Darcy-110

Weisbach resistance factor as independent of the flow. They introduced the correct Jacobian matrix111

to deal with this. It has been demonstrated that once the correct Jacobian matrix is used, the112

quadratic convergence rate of the Newton method is restored. Furthermore, Elhay and Simpson113

(2011) reported that the GGA no longer fails in the presence of zero flows when the derivative of114

the Jacobian matrix is correctly computed with the Darcy-Weisbach formula.115

Null space method116

The co-trees flow method (CTM) (Rahal 1995) is a null space method that solves for the co-tree117

flows and spanning tree flows separately. The CTM, unlike the loop flow corrections method, does118

not require the initial flows to satisfy continuity. However, it does require: (i) the identification of119

the associated circulating graph; (ii) the determination of the demands that are to be carried by tree120

branches; (iii) finding the associated chain of branches closing a circuit for each co-tree chord; (iv)121

computing pseudo-link head losses. The RCTM (Elhay et al. 2014) is also a null space method that122

solves co-tree flows and spanning trees flows separately. It represents a significant improvement on123

the CTM by removing requirements (i) to (iv) above. It uses the Schilders’ factorization (Schilders124

2009) to permute the node-arc incidence matrix into an invertible spanning tree block and a co-tree125

block. This permutation reduces the size of the Jacobian matrix from the number of junctions (as126

in the GGA) to the approximate number of loops in the network.127

Abraham and Stoianov (2015) proposed a novel idea to speed-up the solution process when128

using a null space method to solve a WDS network. Their idea exploits the fact that a significant129

proportion of runtime is spent computing the head losses. At the same time, flows within some130
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pipes exhibit negligible changes after a few iterations. As a result, there is no point in wasting131

computer resources to re-compute the pipe head losses for the pipes that have little or no change132

in flows. This partial update can be used to economize the computational complexity of the GGA,133

the RCTM and their variations.134

Graph theory135

The forest-core partitioning algorithm (FCPA) (Simpson et al. 2012) speeds up the solution136

process. This algorithm permutes the system equations to partition the linear component of the137

problem, which is the forest of the WDS, from the non-linear component, which is the core of the138

WDS. It can be viewed as a method that simplifies the problem by solving for the flows and the139

heads in the forest just once instead of at every iteration. The FCPA reduces the number of pipes,140

number of junctions, and the dimension of the Jacobian matrix in the core by the number of forest141

pipes (or nodes).142

The graph matrix partitioning algorithm(GMPA) (Deuerlein et al. 2015) exploited the linear143

relationships between flows of the internal trees and the flows of the corresponding super-links after144

the forest of the network has been removed. This was a major breakthrough. The GMPA permutes145

the node-arc incidence matrix in such a way that all of the nodes with degree two in the core can be146

treated as a group. By partitioning the network this way, the network can be solved by a global step,147

which solves for the nodes with degree greater than two (super nodes) and the pipes which connect148

to them (path chords), and a local step, which solves for the nodes with degree two (interior path149

nodes) and pipes connected to them (path-tree links).150

In a recent paper by Elhay et al. (2018), they proposed a single framework for both the FCPA151

and GMPA and extended the methods applicability to the pressure dependent problem. Although152

the flows and heads in the forest component of a pressure driven WDS cannot be determined by a153

linear process, they can be solved by a similar linear iterative process as the local step in the GMPA.154

MOTIVATION155

Thus far, this paper has discussed the recent developments in the solution methods. Previous156

work onWDS simulation has focused on two research areas: (i) hydraulic solutionmethods (Nielsen157
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1989; Simpson et al. 2012; Elhay et al. 2014; Deuerlein et al. 2015) and (ii) solver software design158

(Morley et al. 2000; Van Zyl et al. 2003; Guidolin et al. 2010). Two observations can be made159

when comparing these two areas of research focus:160

(i) Different platforms have been used to compare algorithm implementations. Some methods161

have been compared against EPANET, some methods have been implemented by using parts162

of the EPANET toolkit, some methods have been benchmarked using MATLAB, and others use163

purpose-written C or C++ code. Comparing timing results between all of these different platforms is164

especially difficult becauseMATLAB is amodeling programming languagewhich is not necessarily165

intended to produce fast production code. As a consequence, the execution of MATLAB code will166

typically be slower than carefully written C++ code even if the solution method implemented in167

MATLAB is potentially faster. This will later be discussed in detail.168

(ii) Timing results can be accurately extrapolated to different design settings only if the imple-169

mentation code is sufficiently modularized and the timings are available for each module.170

To address the problems described above, this work describes the methodology employed to171

ensure a fair comparison between solution methods.172

NETWORK FORMULATIONS173

This section provides an unified framework for the mathematical formulations of four solution174

methods, the GGAwith and without FCPA, RCTMwith and without FCPA, for WDSs. Each of the175

solution methods is presented in terms of pure orthogonal permutation of the system of equations176

to minimize the intermediate steps to ensure a fair comparison between the solution methods. The177

following starts with the basic definitions and notation, followed by the system equations. The next178

subsection focuses on the use of network partitioning methods to speed up the solution process for179

WDSs. Finally, the equations for different solution methods are shown.180

Definitions and Notation181

Consider a water distribution system that contains np pipes, nj junctions, nr fixed head nodes,182

nf forest pipes and nodes, npc pipes in the core network, njc nodes in the core network, nct pipes183

in the co-tree network and nst pipes in the spanning tree network. The j − th pipe of the network184
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can be characterized by its diameter Dj , length Lj , resistance factor rj . The i − th node of the185

network has two properties: its nodal demand di and its elevation zui . Let q =
(
q1, q2, . . . , qnp

)T
186

denote the vector of unknown flows, h =
(
h1, h2, ....hnj

)T
denote the vector of unknown heads,187

r =
(
r1, r2, ....rnp

)T
denote the vector of resistance factors, d =

(
d1, d2, .....dnj

)T
denote the188

vector of nodal demands, el =
(
el1 , el2 ....elnf

)T
denote the vector of fixed head elevations.189

The head loss exponent n is assumed to be n = 2 for the Darcy-Weisbach head loss model and190

n = 1.852 for Hazen-Williams head loss model. The head loss within the pipe j, which connects the191

node i and the node k, is modeled by hi−hk = rjqj |qj |n−1. Denote by G (q) ∈ Rnp×np , a diagonal192

square matrix with elements [G]ii = ri|qi|n−1 for i = 1, 2, ....np. Denote by F (q) ∈ Rnp×np , a193

diagonal square matrix where the k-th element on its diagonal [F ]kk =
d
dqk

[G]kk qk. A1 is the full194

rank, unknown head, node-arc incidence matrix, where [A1]ij is used to represent the relationship195

between pipe i and node j; [A1]ij = −1 if pipe i enters node j, [A1]ij = 1 if pipe i leaves node196

j, and [A1]ij = 0 if pipe i is not connected to node j. A2 is the fixed-head node-arc incidence197

matrix, where [A2]ij is used to represent the relationship between pipe i and fixed head node j,198

[A2]ij = −1 if pipe i enters fixed head node j, [A2]ij = 1 if pipe i leaves fixed head node j, and199

[A2]ij = 0 if pipe i is not connected to fixed head node j.200

Denote by Ef , the set of indices of the pipes in the forest; by Vf , the set of indices of the nodes201

in the forest; by Ec, the set of indices of the pipes in the core; and by Vc, the set of indices of the202

nodes in the core. Denote by Est, the set of indices of the pipes in the spanning tree; by Vst, the203

node indices that correspond with the spanning tree pipes; and by Ect, a set of indices of the pipes204

in the co-tree.205

System of Equations206

There are two primary equations thatmodel the underlying relationship of the flows and the heads207

of a WDS: the demand-driven model (DDM) continuity equations (1) and the energy conservation208

equations (2):209

−A1
T q − d = O (1)210

Appendix B. Submitted version of Publication 2: A Benchmarking Study of Water
Distribution System Solution Methods

177



G (q) q −A1h−A2el = O. (2)211

This non-linear system of equations can be expressed in matrix form as212




G (q) −A1

−A1
T O







q

h


−




A2el

d


 = 0 (3)213

and it is sometimes referred to as a nonlinear saddle point problem (Benzi et al. 2005).214

This non-linear system is normally solved by the Newton method, in which q(m+1), a vector215

of flows at (m+1)-th iteration, and h(m+1), a vector of heads at (m+1)-th iteration, are repeatedly216

computed from q(m), a vector of flows at (m)-th iteration, and h(m), a vector of heads at (m)-th217

iteration, by218




F (m) (q(m)) −A1

−A1
T O







q(m+1) − q(m)

h(m+1) − h(m)


 = −




G(m)q(m) −A1h(m) −A2el

−A1
T q(m) − d


 (4)219

until the differences (q(m+1) − q(m)) and (h(m+1) − h(m)) are sufficiently small.220

The Global Gradient Algorithm221

The GGA takes advantage of the block structure of Eq. (3) to obtain a two-step solver: Eq. (5)222

for the heads and Eq. (6) for the flows when the head-loss is modeled by Hazen-William equation.223

Uh(m+1) = −nd +A1
T
[
(1− n) q(m) −G−1A2el

]
(5)224

where U = A1
T G−1A1225

q(m+1) =
1
n
{(n− 1) q(m) +G−1(A2el +A1h)}. (6)226
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Later, Simpson and Elhay (2010) proposed227

V h(m+1) = −d +A1
T F−1

[
(G− F ) q(m) −A2el

]
(7)228

where V = A1
T F−1A1229

230

q(m+1) = q(m) + F−1A1h(m+1) − F−1
[
Gq(m) −A2el

]
(8)231

as the generalized equations that can be applied when the head-loss is modeled by the Hazen-232

William equation or the Darcy-Weisbach equation. The correct Jacobian matrix with the formula233

for F , when head loss is modeled by Darcy-Weisbach equation, can be found in Simpson and Elhay234

(2010). They showed that the use of the correct Jacobian matrix restores the quadratic rate of235

convergence.236

Network Partitioning237

Associated with a WDS is a graph G=(V, E), where the elements of V are the nodes (vertices)238

of the graph G and elements of E are the pipes (links) of the graph G. In this subsection, the239

permutation of the system equations (3) for the FCPA is introduced, followed by a description of240

the RCTM, which further exploits the block structure of the Jacobian matrix.241

Forest-Core Partitioning Algorithm242

In a demand-driven model, it is possible to exploit the fact that every WDS can be divided243

into two subgraphs: a treed subgraph (forest) Gf =
(
Vf , Ef

)
and a looped subgraph (core)244

Gc = (Vc, Ec), so that Ef ∪EC = E, Ef ∩EC = ∅, Vf ∪ VC = V . All flows and heads in both the245

forest and the core must be found. The flows in the forest can be found by a linear process before246

the iterative solution phase and the heads in the forest can be found linearly after the iterative phase.247

Simpson et al. (2012) proposed the FCPA, which partitions the network into a treed component248

and a looped component (referred to as the core) thereby reducing the computation time where the249
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network has a significant forest component. The FCPA starts by generating a permutation matrix250

P1 =




np nj

nf S O

npc P O

njc O C

nf O T




(9)251

, where




S

P


 ∈ Rnp×np is the square orthogonal permutation matrix for the pipes, S ∈ Rnf×np252

is the permutation matrix which identifies the pipes in the forest as distinct from those of the253

core of the WDS, P ∈ Rnpc×np is the permutation matrix for the pipes in the core of the WDS,254 

C

T


 ∈ Rnj×nj is the square orthogonal permutation matrix for the nodes, C ∈ Rnjc×nj is the255

permutation matrix for the nodes in the core of the WDS, T ∈ Rnf×nj is the permutation matrix256

which identifies the nodes in the forest as distinct from those of the core of the WDS.257

A new lemma is proposed as follows:258

LEMMA 1. Suppose259

Q =




n

m1 P

m2 S


,260

Q ∈ Rn×n, is an orthogonal permutation matrix and that D = diag{d1, d2, · · · , dn} ∈ Rn×n is261

diagonal. Then262

PDST = 0 (10)263

264

Proof. P =
(
ei1 , ei2 , . . . , eim1

)T

for a set of indicesT = {i1, i2, · · · , im1} andS =
(
ej1 , ej2 , . . . , ejm2

)T

265

for a set of indices V = {j1, j2, · · · , jm2}. Note that T ∩ S = ∅. Now for some 1 ≤ i ≤ m1, 1 ≤266
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j ≤ m2 there exist it , js such that267

eT
i PDSTej = e

T
itditejs = 0268

from which (10) follows. End of LEMMA 1�269

After applying the FCPA permutation, the system equations become270

P1 ×




G −A1

−A1
T O


× P1

T × P1 ×




q

h


− P1 ×




A2el

d


 = O (11)271

and with this permutation, Eq. (3) leads to272




SGST O − SA1CT −SA1T T

O




P GP T −P A1CT

−CA1
T P T O




O

−CA1
T ST O

−T A1
T ST O O O







Sq

P q

Ch

T h




−




SA2el

P A2el

Cd

T d




= O (12)273

where (i)



−SA1CT −SA1T T

−P A1
T CT −P A1T T


, which is the original top right two-by-two block in the first274

matrix of Eq. (12), is the permuted A1 matrix, in which the (2,2) block, which is −P A1T T ,275

becomes O because the pipes in the core do not connect to any nodes in the forest which are not276

root nodes, and (ii)




SGST SGP T

P GST P GP T


, which is the original top left two-by-two matrix of Eq.277

(12), is the permuted G matrix, in which it is evident from the Lemma 1 that the (1,2) and (2,1)278

blocks, which are SGP T and P GST , become O.279

The top right block (the (1,2) block) of the permuted A1 matrix, −SA1T T , is invertible and280

can be permuted to be lower triangular form because it represents the union of the trees. The flows281

of the pipes in the forest, Sq can be found directly from282
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Sq = −
(
T A1

T ST
)−1

T d. (13)283

Rewriting the second and third block equations of Eq. (12) gives:284




P GP T −P A1CT

−CA1
T P O







P q

Ch


 =




P A2el

Cd +CA1
T ST Sq


 , (14)285

which is the system for the reduced non-linear problem (for the core heads and flows). This can be286

expressed as:287 


Ĝ −Â1

−Â1T O







q̂

ĥ


 =




Â2el

d̂


 (15)288

where Ĝ = P GP T , Â1 = P A1CT , q̂ = P q, ĥ = Ch, Â2 = P A2, and d̂ = Cd+CA1
T ST Sq289

and then the Newton iterative method is applied to Eq. (15).290

Finally, once the iterative solution process for the core has stopped, the forest heads can be291

found by solving a linear system:292

T h =
(
−SA1T T

)−1 (
SA2el − SGST Sq + SA1CT Ch

)
(16)293

after the flows and heads of the core network are found.294

The FCPA simplifies the problem by identifying the linear part of the problem and solving it295

separately from the core to avoid unnecessary computation in the iterative process.296

Reformulated co-tree flows method297

Wefirst introduce some graph notation beforewe describe the RCTM inmore detail. A spanning298

tree is an acyclic graph which traverses every node in a graph, such that the addition of any co-tree299

element creates a loop. A WDS, with or without a forest, can be partitioned into two subgraphs: a300

spanning treeGst = (Vst, Est), and a co-treeGct = (Vct, Ect), so thatEst∪Ect = Ec,Est∩Ect = ∅.301

The flows in the spanning tree can be found directly from the co-tree flows.302

Elhay et al. (2014) proposed the reformulated co-tree flow method (RCTM) to exploit this303
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relationship between the co-tree flows and spanning tree flows. This is achieved by applying the304

Schilders’ factorization to permute the A1 matrix into a lower triangular square block at the top,305

representing a spanning tree, and a rectangular block below, representing the corresponding co-tree.306

The RCTM starts by generating a permutation matrix:307

P2 =




np nj

nst K1 O

nct K2 O

nj O R




(17)308

where



K1

K2


 ∈ Rnp×np is the square orthogonal permutation matrix for the pipes, in which309

K1 ∈ Rnst×np is the permutation matrix that identifies the pipes in the spanning tree as distinct310

from those in the co-tree and K2 ∈ Rnct×np is the permutation matrix for the pipes in the co-tree,311

R is the permutation matrix for the nodes to have the same sequence that are traversed by the312

corresponding spanning tree pipes.313

The permuted system equation of the RCTM is:314

P2 ×




Ĝ −Â1

−Â1T O


× P2

T × P2 ×




q̂

ĥ


− P2 ×




Â2el

d̂


 = O (18)315

and (14) becomes:316




K1ĜK1
T O −K1Â1RT

O K2ĜK2
T −K2Â1RT

−RÂ1T K1
T −RÂ1T K2

T O







K1q̂

K2q̂

Rĥ



−




K1Â2el

K2Â2el

Rd̂



= O (19)317

in which the (1,2) and (2,1) blocks, which are K1GK2
T and K2GK1

T , become O for the reasons318

shown in Lemma 1.319
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The complexity of the problem is reduced because the (1,3) block of the keymatrix,−K1Â1RT ,320

is lower triangular and invertible. As a result, the Newton solver can be partitioned into a different321

two-step process: (i) solve for the non-linear co-tree flows, (ii) solve for the corresponding spanning322

tree flows (a linear computation). The heads can be solved once after the iterative process has323

completed.324

By permuting the network equations into (19), Elhay el al. (2014) proposed the following325

equations to solve the WDS for the flows, first for the spanning tree flows q(m+1)
1 :326

q(m+1)
1 = L21

T q(m)
2 −R−T

1 d̂ (20)327

and second for the co-tree flows q(m+1)
2 :328

W (m+1)q(m+1)
2 = L21

(
F (m+1)

1 −G(m+1)
1

)
q(m+1)

1 +
(
F (m)

2 −G(m)
2
)

q(m)
2 + a2 (21)329

where: R1 = K1Â1RT ; R2 = K2Â1RT ; L21 = −R2R−T
1 ; F (m)

1 = K1
̂

F (m)K1
T ; F (m)

2 =330

K2
̂

F (m)K2
T G(m)

1 = K1
̂

G(m)K1
T ; G(m)

2 = K2
̂

G(m)K2
T ; W (m) = L21(F (m)

1 )−1L21
T +331

(F (m)
2 )−1; a1 =K1Â2el; a2 = L21K1Â2el +K2Â2el. Note that in Eq. 20, an initial set of the332

co-tree flows q(0)
2 is needed to commence the solution process.333

The heads are found after the iterative process of the RCTM by using a linear solution process:334

R1h = F 1q(m+1)
1 − (F 1 −G1) q(m)

1 − a1 (22)

This partitioning of the network equations reduces the size of the non-linear component of the335

solver to np − nj (the number of co-tree elements in the network). It has been proven by Elhay336

et al. (2014) that the RCTM and the GGA have identical iterative results and solutions if the same337

starting values are used. However, for RCTM, the user only needs to set the initial flow estimates338

for the co-tree pipes, q(0)
2 , in contrast to GGA where initial flow estimates are required for all pipes.339

The flows in the complementary spanning tree pipes are generated by Eq.(20).340
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METHODOLOGY341

This section describes the methodology used to carry out a comparative study of the WDS342

solution methods. The following describes the software platform used to run the benchmarking343

simulations. This description is followed by the proposed algorithm evaluation method.344

The Software Platform345

To run the benchmark tests required by this study a hydraulic simulation toolkit, WDSLib,346

was created. This toolkit, written in C++, incorporated the solution methods studied in this paper,347

which include the GGA, the GGA with the FCPA, the RCTM, and the RCMT with the FCPA. In348

order to provide a useful platform for comparison, the solution methods were implemented using349

fast and modularized code. A focus of attention in this research has been the implementation350

correctness, robustness and efficiency. The correctness∗ of the toolkit has been validated against a351

reference MATLAB implementation. The differences between all results (intermediate and final)352

produced by the C++ toolkit and the MATLAB implementation were shown to be smaller than353

10−10. In the interest of toolkit robustness, special attention has been paid to numerical processes354

to guard against avoidable failures, such as loss of significance through subtractive cancellation,355

and numerical errors, such as division by zero. The data structures and code libraries in the toolkit356

are shared and all solution method implementations have been carefully designed to ensure fairness357

of performance comparisons between algorithms.358

The following subsections describe the measures taken in the implementation the solution359

methods to help ensure the validity of the timing experiments for the case study results. These360

include measures to ensure accurate timing results, minimization of memory use, and numerical361

robustness.362

Timing Considerations363

C++ was chosen as the implementation language because timings in MATLAB are confounded364

by a variety of factors. The MATLAB programming language is a hybrid of interpreted language365

and compiled language: some codes are interpreted by MATLAB with no compilation, some366

∗terms recognized in Computer Science will be designated by asterisk superscript
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codes are partially compiled by a closed-source just-in-time (JIT) compiler, and some codes367

are fully compiled. MATLAB may also perform additional work and bookkeeping between the368

interpretation of one line and the next.369

In contrast, C++ is a compiled language: the compiler translates the code into native machine370

instructions which are later executed by the hardware. This faster and much simpler model of371

execution overcomes many of the problems associated with MATLAB timing. As a consequence, a372

C++ implementation forms a better basis for a fair comparison of different WDS solution methods.373

When executing the timing experiments in this work, each code module reports the time374

spent in it by sampling wall clock time at the start and end of its execution. Although the375

overhead for sampling wall clock time is small, there are at least two special considerations376

involved in the interpretation of these timings: (i) the operating system, at its own discretion, may377

launch background processes (for example anti-virus software), which distort the timings and (ii)378

extrapolating the timing for multiple simulations (as may occur, for example, in a genetic algorithm379

or other evolutionary algorithm run) from a single analysis must be done with care because the380

relationship between the different settings is not linear. More detail on these issues is given in a381

later section describing the proposed algorithm evaluation method.382

Memory Considerations383

Memory management for each method was very carefully handled to advantage that method384

in the interest of a fair comparison. To offer further assurance of the correctness of memory385

management, Valgrind (Nethercote and Seward 2007), a programming tool for memory debugging,386

memory leak detection and profiling tool, was deployed during testing to detect any memory leaks,387

memory corruption, and double-freeing.388

Numerical considerations389

The calculations in this paper were performed in C++ under IEEE-standard double precision390

floating point arithmetic with machine epsilon εmach = 2.2204−16. The constants and parameters391

in every equation were gathered and replaced by full 20-decimal digit accuracy values. In addition,392

all dependent constants in mathematical expressions were removed.393
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The stopping test used in this benchmark study is
||q(m+1) − q(m)||∞
||q(m+1)||∞

≤ 10−6 to ensure a fair394

comparison between the GGA and the RCTM because one of the benefits of using the RCTM is395

that it only solves for the pipe flows within the iterative phase.396

In the setup of the benchmark experiments, there are two primary dangers that are associatedwith397

floating point arithmetic that cannot be ignored: (i) subtractive cancellation and (ii) overflow and398

underflow. To avoid problems associated with these, all input variables are scaled to a similar range399

to minimize the risk of avoidable computational inaccuracy or failure in floating point arithmetic.400

It is important to note that unscaled or poorly scaled variables can unnecessarily confound the401

computation. After scaling, variables become physically dimensionless, which allows computation402

which is independent of the system of measurement units.403

The variables that are provided in EPANET input files for the experiments and their corre-404

sponding units in US Customary and SI system are shown in Table 1. The system equations were405

modified to use dimensionless variables. Once the stopping test has been satisfied, the original406

variables can then be recovered by reversing the initial scaling.407

In these experiments approximate minimum degree permutation (AMD) and sparse Cholesky408

decomposition fromSuiteSparse (Davis et al. 2013) have been used. SuiteSparse is a state-of-the-art409

sparse arithmetic package with exceptional performance.410

Proposed algorithm evaluation method411

In this work, there are two settings of interest: a once-off network simulation setting and a412

multi-run setting such as in a genetic algorithm or evolutionary algorithm (EA) that requires many413

simulations where say the network topology is invariant but pipe diameters can vary. In the case414

studies presented in this paper results are presented for: (1) a once-off simulation setting and (2) a415

multi-simulation setting, as might be used in an EA setting for WDS design.416

In the experiments, in order to avoid unnecessary computations, eachmodule of implementation417

code is categorized according to the number of times it needs to be invoked in the context of the418

given setting. This categorization is described in the following subsection.419
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Module Categorization420

For the purposes of modeling execution times, code modules in a multiple simulation run can be421

divided into three categories: (i) modules that run only once for everymultiple simulation are called422

level-1 modules (L1). The level of a module is determined by the number of times it would be run.423

Examples of L1 modules include the module that loads the WDS network configuration file and the424

module that identifies the forest pipes in FCPA; (ii) modules that are run once for every simulation425

are called level-2 modules (L2). Examples of L2 modules are those that initialize, respectively, all426

pipe flows in the GGA, core flows in FCPA and co-tree flows in RCTM; (iii) modules that are run427

once for each iteration of every simulation are called level-3 modules (L3). An example of an L3428

module is the module computing the G and F matrices in any of the solution methods described429

here.430

In a once-off network simulation setting, for each trial, a given solver configuration is used to431

solve an input network and the time to complete the solution is measured. In this setting, the FCPA432

and RCTM modules require certain computations which only need to be done once every iterative433

phase. The computation for these so-called invariants can be lifted* out of the iterative phase and434

executed once per evaluation, thus saving computation time. The second setting considered here435

is a multiple simulation run, such as one might find in a GA to optimize the design of a WDS, for436

example. In this setting, a network with a fixed topology is solved multiple times for say different437

pipe diameters. In this case, because of the fixed topology, the FCPA and RCTM have modules that438

need only be run once for each multiple simulation run. This again reduces the overall simulation439

runtime.440

CASE STUDIES441

The implementation described above was used to evaluate the efficiency of the four solution442

methods in two simulation settings: a once-off simulation setting, in which the steady-state heads443

and flows are computed just once with the given WDS parameters, and a design setting, in which444

the steady-state heads and flows need to be computed many times to, say, find the least-cost design445

by EA optimization. In the methodology section, the four solution methods, namely GGA, GGA446
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with FCPA, RCTM, and RCTM with FCPA, were decomposed into modules. These modules were447

categorized into levels by using the method described in the previous section. Fig.1 shows the448

module classifications and the level of repetition of different modules for the different solution449

methods. The columns of the block diagram show different solution methods and the rows of the450

block diagram show the levels of repetition of the steps as they would be executed in a multiple451

simulation setting. In the body of the table, the different methods are separated by double vertical452

lines where column(s) intersect a box, which means the modules that are represented by that box453

are used by the method(s) that are presented by that column(s). For example, the modules for454

RCTM that are required to be carried out once before a multiple simulation include: (i) load455

the configuration file and read EPANET input file, (ii) find the Schilders’ spanning tree co-tree456

factorization and (iii) find and apply the AMD bandwidth reduction.457

Eight benchmark networks were used to study the effectiveness of each method under different458

design settings. The networks used here were derived from Simpson et al. (2012) with some slight459

modifications to remove control devices, patterns, curves and pumps. Details of these networks are460

given in that paper. The basic network characteristics of the case study networks are summarized461

in Table 2. All the case study networks are realistic. The ratio between the number of the forest462

pipes and the total number of pipes ranges between 17% and 42%. The ratio between the number463

of the co-tree pipes and the total number of the pipes ranges between 3% and 31%. Each of464

the four solution methods and the GGA implementation in the EPANET are applied to these eight465

benchmark networks. It has been pointed out by Guidolin et al. (2010) that the code implementation466

in EPANET are highly optimized for its performance and not written to be readily decomposed467

into modules for different tasks.. As a result, it is difficult, if not impossible, to apply the module468

categorization method proposed in the current paper to EPANET. The times taken by both ENopen,469

the EPANET function for reading the input file and memory allocation, and ENclose, the EPANET470

function for memory deallocation are not counted in the final EPANET timing.471

The next section presents the timing analysis for these case study networks. Of course, the same472

benchmark tests performed on another computing platform will produce quite different results, but473
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the authors believe that the relative timings will remain the same.474

RESULTS AND DISCUSSION475

The benchmark tests were performed on a Intel(R) Xeon(R) CPU E5-2698 v3 running at 2.30476

GHz with 16 cores and 40MBL3 cache on a High Performance Computing machine called Phoenix477

at the University of Adelaide. The number of cores allocated to each test was limited to one. Each478

timing test was repeated 15 times on each benchmark network.479

Once-off Simulation Setting480

The mean, minimum, maximum and median wall clock times for all modules were collected.481

As an example, the detailed statistics of the time for each module of the GGA method applied to482

N1, the first case study network. Table 3 presents the detailed timing results of all modules used in483

the toolkit implementation of the GGA without FCPA at the three levels of repetition: once every484

multiple simulation (L1), once every simulation (L2) and once every solver iteration (L3). The485

sub-total for each level is summarized after each level of repetition and the grand-total is shown486

in the last row. The percentage inside the bracket shows the contribution of each of the modules487

towards its level of repetition and the contribution of each of the levels towards the total runtime.488

For example, the AMD permutation contributes 66.9% of the L1 time and the all L1 modules489

contribute 14.8% towards the total runtime. The mean time for a once-off simulation of the N1490

network is 6.75 ms. Of the total time, 84.3% was spent on L3 tasks. The two most time-consuming491

tasks are the linear solver in the iterative process, which solves the linearization of the non-linear492

problem by using Eq. (7), and getGF-2, which computes the derivatives of the head-loss equations.493

Table 4 shows the summary statistics of the 15 repetitions of each solution method applied to494

the eight benchmark networks. Under a once-off simulation setting, the GGA implementation in495

this paper has been able to achieve between a 26% and 73% speedup when compared with the496

GGA implementation in EPANET by implementing the proposed module categorization. The best497

performing algorithm combination for each network is highlighted in bold. Both the GGA and the498

RCTM benefit from the use of the FCPA (between 19.3% and 37.2% of time saved for the GGA,499

between 7.6% and 21.4% saved for the RCTM).500
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The number of non-zeros in the key matrices is commonly used as an indicator of the com-501

putational complexity of the Cholesky factorization when sparse arithmetic is used. The numbers502

of non-zeros in the key matrices of the four WDS solution methods are summarized in Table 5.503

The number of non-zeros in the key matrix of the GGA is a topology-related constant whereas504

the number of non-zeros in the key matrix of the RCTM is determined by the choice of spanning505

tree. Network N8 is the only case where the number of non-zero elements in the key matrix of the506

RCTM is significantly greater than that of the GGA, therefore network N8 is the only case where507

the per-iteration runtime of the RCTM linear solver is greater than that of the GGA (Table 6).508

Using the FCPA with the GGA can reduce the number of non-zeros in its key matrix. Moreover,509

the dimension of the non-linear problem reduces from np to npc which reduces the per-iteration510

execution time when computing the head loss derivatives, second phase and the stopping test. Al-511

though the number of non-zeros in the key matrix of the RCTM is independent of whether or not the512

FCPA is used, using the FCPA does: (i) reduce the computation time of the matrix multiplication513

in the linear solver, (ii) reduce the dimension of the search space which speeds up the process of514

partitioning the co-tree pipes from the spanning tree pipes in the RCTM, and (iii) reduce the number515

of pipes in the spanning tree. This can be seen by the per-iteration execution times for each of the516

L3 modules, which are shown in the Table 6.517

The number of iterations required for each of the four solution methods to satisfy the stopping518

test for the eight case studies networks is shown in the Table 7. It is evident from Table 7 that the519

GGA took exactly the same number of iterations to satisfy the stopping test with or without the520

FCPA. The flows in the forest network satisfy a linear system, which does not change from one521

iteration to the next. Therefore, the flows in the forest pipes reach their steady-state after the first522

iteration. Similarly, the RCTM with or without FCPA takes the same number of iterations. In the523

cases that were analyzed in this study, the RCTM required a greater number of iterations to satisfy524

the stopping test compared to the GGA. This is because different mechanisms are used to generate525

a set of initial flows for the two methods as discussed previously.526

It is worth using the FCPA in conjunction with both the GGA and RCTM for a once-off527
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simulation given that FCPA decreases the L3 per-iteration time without increasing the number of528

iterations per module. Interestingly, a smaller per-iteration time is required by the L3 modules of529

the RCTM except for network N8. However, RCTM requires a greater number of iterations for all530

the case study networks. This sometimes causes a greater time for the RCTM to satisfy the stopping531

test.532

Multiple Simulation Setting533

The performance of the four solution methods under the multiple simulation setting are com-534

pared. Pipe diameters for the eight case study networks were randomly generated at each evaluation535

to simulate an evolutionary algorithm run. It is important to note that the use of randomly generated536

pipe diameters gives an overestimate of the total runtime. This is because, as EA’s progress, the537

pipe diameters in its population become increasingly realistic, which, on average, should reduce538

the number of iterations at the L3 level.539

Table 8 and Table 9 show the detailed timing results of multiple simulations with number of540

evaluations NE = 100, 000 for each of the four solution methods applied to the networks N1 and541

N8. Table 8 shows that exploiting the treed nature of network N1 gives the FCPA a 29% time542

saving over the GGA and 15% time saving over the RCTM. A smaller saving is achieved by the use543

of the FCPA for network N8: 14% for the GGA and 9% for the RCTM. In a multiple simulation544

setting, the RCTM is more timing-consuming than the GGA when applied to network N8 because545

of the greater number of nonzero elements in its key matrix (Table 5).546

Table 10 shows the actual multiple simulation runtime with 100,000 evaluations for each of547

the four solution methods applied to the eight case study networks. Under a multi-run simulation548

setting, the GGA implementation in this paper has been able to achieve between a 35% and 81%549

speedup when compared with the GGA implementation in EPANET by implementing the proposed550

module categorization. Note that both the upper and lower range values of the speed-up achieved551

by implementing the proposed module categorization in a multi-run simulation are higher than552

those in a once-off simulation. This is because the effectiveness of proposed module categorization553

and the number of evaluation are directly proportional. The fastest solution methods for each of the554
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case study networks are highlighted in bold. Both the GGA and the RCTM benefit from the use of555

the FCPA, which is also observed under the once-off simulation setting. The relative time saving556

accruing from the use of the FCPA is smaller for the RCTM than it is for the GGA.557

CONCLUSIONS558

This paper presents a reliable benchmark study on four water distribution system demand-driven559

steady-state solutionmethods, namely theGlobal Gradient Algorithm (GGA), theGGAwith Forest-560

Core Partitioning Algorithm (FCPA), the Reformulated Co-Tree flow Method (RCTM), and the561

RCTM with FCPA. These solution methods were implemented using fast, carefully designed, and562

modularized C++ code in order to provide a fair basis for comparing these methods.563

The correctness of the implemented solution methods in C++ has been validated against aMAT-564

LAB implementation. The robustness of the implementation was achieved by: (i) incorporating565

necessary precautions in the numerical processes to guard against avoidable computational failures,566

(ii) using Valgrind to detect any memory leaks and (iii) scaling the variables to avoid overflow,567

underflow and subtractive cancellation. Implementation efficiency was achieved by, (i) identifying568

the program loop invariants and hoisting them out of the program loop to avoid any unnecessary569

computations and (ii) gathering the constants and parameters in every equation to minimize the570

number of parameters.571

The following observations can bemade for the four solutionmethods by comparing the detailed572

timing of four WDS solution methods applied to the eight case study networks:573

1. In the case studies that have been analyzed, the per-iteration time required to perform the574

RCTM is less than the GGA except for N8. However, the RCTM requires a greater number575

of iterations to satisfy the stopping test which leads to the RCTM requiring more time than576

the GGA for some case study networks. This is because of the different mechanisms used to577

generate the initial pipe flow guesses in these methods.578

2. In the case studies analyzed, the mean time per-iteration of the L3 modules (iterative solution579

procedure to solve the nonlinear equations) is affected by the number of non-zeros in the key580
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matrix and the dimension of the non-linear problem. The smaller the number of non-zeros581

and the smaller the dimension of the non-linear problem, the smaller the solution time will582

be.583

3. Both the GGA and the RCTM benefit from partitioning the forest component from the core584

component. The FCPA saves less time for the RCTM than it does for the GGA because the585

forest component is a part of the spanning tree calculation.586

4. Significant time savings have been observed when comparing the implemented solution587

methods with EPANET for a multiple run simulation setting.588

As a final note, a significant proportion of the runtime savings, in the method implementation,589

can be attributed to the decomposition of the modules of the solution methods into different levels590

of repetition. This decomposition exploits invariants in the solution process in order to avoid591

unnecessary computations.592
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TABLE 1. WDS variables and units

Variables SI unit US unit Scaling factor
Length m ft L0 = max (L)
Diameter m ft D0 = max (D)
Nodal head m ft h0 = max (el)
Source elevation m ft el0 = max (el)
flow m3/s ft3/s q0 = max (d)
demand m3/s ft3/s d0 = max (d)
G1, F1 s/m2 s/ft2 G0 =

L0
Dp

0
|q0|n−1

TABLE 2. Benchmark networks summary

Full Network Forest & Core Networks Co-tree Network
Network np nj ns nf (nf /n#

p ) njc npc nct

N1 934 848 8 361 (38%) 573 487 84
N2 1118 1039 2 321 (29%) 797 718 79
N3 1975 1770 4 823 (42%) 1152 947 205
N4 2465 1890 3 429 (17%) 2036 1461 757
N5 2509 2443 2 702 (28%) 1087 1741 66
N6 8585 8392 2 1850 (22%) 6735 6542 193
N7 14830 12523 7 2932 (20%) 11898 9591 2307
N8 19647 17971 15 4414 (22%) 15232 13557 1676

#nf /np shows the proportion of the forest
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TABLE 3. Detailed statistics of the time of each module of the GGA applied to network N1 (15
runs)

Type Function Statistical Properties (milliseconds)
Min Max Mean(%) Median Std.

Dev
Std.
Err

Computed once every multiple simulation

L1
AMD 0.54 1.45 0.67(66.9%) 0.57 0.20 0.04
Housekeeping 0.28 0.58 0.33 (33.1%) 0.29 0.09 0.02

Sub-Total Statistics 0.82 1.74 1.00 (14.8%) 0.90 0.20 0.04
Computed once every simulation

L2

GetGF-1 0.01 0.01 0.01(23.1%) 0.01 0.00 0.00
init 0.00 0.00 0.00(5.4%) 0.00 0.00 0.00
scaling 0.04 0.05 0.04 (66.3%) 0.04 0.00 0.00
Housekeeping 0.00 0.00 0.00(5.2%) 0.00 0.00 0.00

Sub-Total Statistics 0.05 0.07 0.06 (0.8%) 0.06 0.00 0.00
Iterative Phase

TL3
/NI

L3
(NI=8)

GetGF-2 1.19 2.52 1.42(24.9%) 0.18 1.28 0.30 0.02
Linear Solver 3.11 4.32 3.53(62.1%) 0.44 3.49 0.31 0.06
2nd Phase 0.31 0.59 0.36(6.4%) 0.05 0.33 0.08 0.02
normTest 0.11 0.57 0.14(2.4%) 0.02 0.12 0.09 0.02
Other 0.18 0.85 0.24(4.2%) 0.03 0.19 0.14 0.03

Sub-Total Statistics 4.91 6.52 5.69(84.3%) 0.71 5.69 0.41 0.00
Computed once every multiple simulation
L1 UndoPermutation 0.00 0.00 0.00(100%) 0.00 0.00 0.00

Sub-Total Statistics 0.00 0.00 0.00(0.05%) 0.00 0.00 0.00
Grand-Total Statistics 6.02 7.55 6.75 6.67 0.44 0.08

TABLE 4. The mean time of once-off simulation run averaged over 15 once-off simulations for
each of the four solution methods applied eight case study networks (milliseconds±standard error)
and the % diff. refers to relative difference compared to the GGA mean time

GGA GGA with FCPA RCTM RCTM with FCPA EPANET
Mean time Mean time %diff. Mean time %diff. Mean time %diff. Mean time %diff.

N1 6.75± 0.08 4.66± 0.07 -31 5.37± 0.09 -20 4.56 ± 0.08 -32 9.09 +35
N2 8.48± 0.07 6.61 ± 0.07 -22 9.98± 0.12 +18 8.97± 0.08 +6 16.75 +98
N3 13.88± 0.11 8.72 ± 0.09 -37 11.52± 0.10 -17 9.05± 0.06 -35 21.46 +55
N4 14.63± 0.32 12.68 ± 0.53 -19 17.09± 0.85 +47 16.28± 0.47 +35 26.45 +81
N5 16.87± 0.24 12.19± 0.13 -28 12.67± 0.14 -25 10.20 ± 0.13 -40 28.46 +69
N6 49.53± 0.19 44.79± 0.18 -28 35.34± 0.17 -29 32.53 ± 0.15 -39 172.84 +249
N7 83.39± 0.42 63.06 ± 0.65 -24 169.50±1.61 +103 156.61± 1.16 +88 307.17 +268
N8 192.10±3.85 131.82 ± 4.0 -31 352.44±9.25 +83 307.16± 7.2 +60 600.08 +212
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TABLE 5. The number of non-zeros in the key matrices of each of the four solution methods
applied to the eight case studies networks and the relative diff. refers to the relative difference
compared to the number of non-zeros in the key matrix of the GGA

GGA GGA with
FCPA

Relative diff.
using FCPA

RCTM RCTM with
FCPA

Relative diff.
using RCTM and

RCTM with
FCPA

N1 2684 1609 -40% 350 350 -87%
N2 3265 2302 -29% 1219 1219 -63%
N3 5708 3239 -43% 2534 2534 -56%
N4 6714 5429 -19% 6951 6951 +3.5%
N5 7451 5345 -28% 551 551 -93%
N6 25554 20004 -22% 2514 2514 -90%
N7 41147 32351 -21% 32389 32389 -21%
N8 57233 43991 -23% 73252 73252 +28%

TABLE 6. The mean of per-iteration timings for each of the modules in L3 for the four solution
methods applied to the eight case studies (milliseconds)

GGA GGA+FCPA
GetGF Linear

Solver#
2nd
Phase

norm
test

GetGF Linear
Solver#

2nd
Phase

norm
test

N1 0.18 0.44 0.36 0.14 0.14 0.27 0.03 0.01
N2 0.22 0.61 0.02 0.02 0.21 0.39 0.04 0.01
N3 0.20 1.11 0.03 0.03 0.12 0.56 0.07 0.02
N4 0.66 1.67 0.05 0.03 0.47 1.36 0.03 0.02
N5 0.42 1.47 0.04 0.03 0.33 0.98 0.03 0.02
N6 0.48 1.49 0.05 0.04 0.40 0.96 0.03 0.01
N7 1.92 5.70 0.23 0.09 1.57 3.94 0.22 0.07
N8 3.17 12.38 0.38 0.21 2.86 7.72 0.33 0.12

RCTM RCTM+FCPA
GetGF Linear

Solver#
2nd
Phase

norm
test

GetGF Linear
Solver#

2nd
Phase

norm
test

N1 0.16 0.14 0.02 0.01 0.14 0.11 0.02 0.01
N2 0.22 0.29 0.05 0.02 0.20 0.26 0.04 0.01
N3 0.20 0.50 0.07 0.02 0.11 0.41 0.06 0.02
N4 0.56 1.54 0.11 0.03 0.45 1.47 0.10 0.03
N5 0.43 0.39 0.07 0.03 0.32 0.31 0.05 0.02
N6 0.47 0.37 0.07 0.03 0.42 0.30 0.05 0.02
N7 1.90 5.49 0.43 0.10 1.65 5.30 0.40 0.08
N8 3.51 17.71 1.68 0.22 3.08 15.97 1.35 0.17

# within the iterative solution process
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TABLE 7. The number of iterations required for each of the four solution methods to satisfy the
stopping test for the eight case studies networks. The relative diff. refers to the relative difference
compared to the number of iterations for the GGA

GGA GGA with
FCPA

RCTM RCTM with
FCPA

Relative diff.
using RCTM

N1 8 8 12 12 +50%
N2 8 8 13 13 +62.5%
N3 8 8 9 9 +12.5%
N4 9 9 13 13 +44.4%
N5 8 8 10 10 +25%
N6 10 10 12 12 +20%
N7 9 9 13 13 +44.4%
N8 9 9 11 11 +22.2%

TABLE 8. The actual time required to perform a multiple simulation, where number of evaluations
NE = 100, 000, of each of the four solution methods applied to N1 network (ms unless otherwise
stated) and % diff. refers to the relative difference compared to the GGA

GGA GGA with FCPA RCTM RCTM with FCPA
(ms) (ms) % diff. (ms) % diff. (ms) % diff.

L1

AMD 1.36 0.64 0.19 0.14

FCPA - 0.66 - - 0.16
RCTM - - 0.53 0.33
scaling 0.09 0.05 0.04 0.02
HouseKeeping 2.05 1.78 3.93 0.36

Sub-Total 3.50 3.01 -14% 4.69 +34% 1.01 -71%

L2
GetGF-1 2790.15 1899.44 588.75 422.93
init 1345.87 887.32 1703.29 1311.09
HouseKeeping 533.19 380.98 811.72 626.93

Sub-Total 4669.21 3167.74 -32% 3103.76 -34% 2360.95 -49%

L3

GetGF-2 105292.0 89779.9 105596.0 98439.6
Linsolve 166072.0 100730.0 122200.0 95539.0
second phase 36483.3 23477.1 19716.9 14872.4
normTest 50892.4 34836.7 12753.1 9440.8
HouseKeeping 15748.3 12593.3 6605.0 6340.2

Sub-Total 374488 261417 -30% 266871 -29% 224632 -40%

L2
reverseFCPA - 6053.5 - 1776.4
reverseRCTM - - 1335.5 824.5

Sub-Total 0 6053.5 — 1335.5 — 2600.93 —
L1 undo permutation 0.02 0.01 0.002 0.002

Sub-Total 0.02 0.01 -40% 0.002 -89% 0.002 -91%
(min.) (min.) (min.) (min.)

EA runtime 6.35 4.53 -29% 4.53 -29% 3.83 -40%
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TABLE 9. The actual time required to perform a multiple simulation, where number of evaluations
NE = 100, 000, of each of the four solution methods applied to N8 network (ms unless otherwise
stated). The % diff. refers to the relative difference compared to the GGA

GGA GGA with FCPA RCTM RCTM with FCPA
(ms) (ms) %

diff.
(ms) % diff. (ms) % diff.

L1

AMD 14.16 8.49 10.68 8.60
FCPA - 1.75 - 1.64
RCTM - - 45.30 24.11
scaling 0.69 0.36 0.47 0.34
housekeeping 7.86 5.39 8.02 5.70

Sub-Total 22.71 15.99 -30% 64.47 +184% 40.39 +78%

L2
GetGF-1 10069.00 7481.70 9920.71 7375.28
init 2362.45 1782.70 73221.90 65377.80
housekeeping 1686.00 1342.04 42063.10 43556.10

Sub-Total 14117.45 10606.44 -25% 125205.71 +787% 116309.18 +723%

L3

GetGF-2 2331270.0 2173440.0 3732280.0 3561510.0
Linsolve 6884030.0 5689170.0 11339200.0 10975000.0
second phase 314826.0 280212.0 1129820.0 995822.0
normTest 162986.0 112226.0 257123.0 183340.0
housekeeping 40008.0 33472.0 54777.0 47128.0

Sub-Total 9733120 8288520 -15% 16513200 +70% 15762800.0 +62%

L2
reverseFCPA - 18405.5 - 19017.2
reverseRCTM - - 24182.3 16772.6

Sub-Total 0 18405.5 24182.3 35789.8
L1 undo permutation 0.03 0.03 0.06 0.06

Sub-Total 0.03 0.03 -13% 0.06 +83% 0.06 +64%
(min.) (min.) (min.) (min.)

EA runtime 162.51 138.68 -15% 277.80 +71% 265.34 +63%

TABLE 10. The actual multiple simulation runtime with 100,000 evaluations (min.) for each of
the four solution methods applied to each of the eight case study networks and the % diff. refers to
relative difference compared to the GGA time

GGA GGA with FCPA RCTM RCTM with FCPA EPANET
min. min. %diff. min. %diff. min. %diff. min. %diff.

N1 6.35 4.35 -31 4.53 -29 3.83 -40 9.70 +53
N2 8.39 5.83 -31 8.67 +3 7.78 -7 13.96 +66
N3 14.88 9.64 -35 12.45 -16 10.30 -31 25.35 +70
N4 20.86 16.86 -19 24.02 +15 21.93 +5 68.08 +226
N5 16.47 12.50 -24 10.90 -34 9.26 -44 32.18 +95
N6 70.66 58.62 -17 39.58 -44 36.25 -49 238.64 +238
N7 128.01 94.71 -26 216.88 +69 204.59 +60 422.62 +230
N8 162.511 138.68 -15 277.80 +71 265.34 +63 843.03 +419
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Fig. 1. Module classification for GGA, GGA and FCPA, RCTM and RCTM with FCPA

Appendix B. Submitted version of Publication 2: A Benchmarking Study of Water
Distribution System Solution Methods

206



Appendix C

Submitted version of Publication 3: A
Bridge-Block Partitioning Algorithm for

Speeding up Analysis of Water Distribution
Systems

207



A Bridge-Block Partitioning Algorithm for Speeding up Analysis of Water1

Distribution Systems2

Mengning Qiu1, Angus R. Simpson2, Sylvan Elhay3, and Bradley Alexander43

1PhD Student, University of Adelaide, South Australia, 5005. Email:4

mengning.qiu@adelaide.edu.au5

2Professor, University of Adelaide, South Australia, 5005.6

3Visiting Research Fellow, University of Adelaide, South Australia, 5005.7

4Senior Lecturer, University of Adelaide, South Australia, 5005.8

ABSTRACT9

Many water distribution system (WDS) solution methods have been developed to perform10

demand-driven steady-state analysis. These methods are used to solve the non-linear system of11

equations that model a WDS. WDS networks have structural properties that can often be exploited12

to speed up these solution methods. One solution method that exploits these structural properties13

is the forest-core partitioning algorithm that was proposed as a pre-processing and post-processing14

method that can be used to separate the network into a linear forest component and a non-linear core15

component. This paper presents a complementary method for pre-and post-processing called the16

bridge-block partitioning algorithm (BBPA). This method further partitions the core component17

of the network into a number of linear bridge components and a number of non-linear block18

components. The use of BBPA to partition a WDS network provides significant advantages over19

current solution methods in terms of both speed and solution reliability.20

INTRODUCTION21

Hydraulic simulation algorithms use mathematical models designed to simulate the hydraulic22

performance of a water distribution system (WDS) and have played a critical role in the design,23
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operation, and management ofWDSs in research and industry. These models have been used for (1)24

optimizing WDS network design parameters (such as pipe diameters), (2) for calibrating network25

parameters (such as demand patterns), (3) conducting real-time monitoring and calibration of the26

network elements in a supervisory control and data acquisition (SCADA) operational setting, and27

(4) adjusting control devices (such as valves). In hydraulic simulation, the system of equations can28

be formulated as a large and sparse non-linear saddle-point problem. There are several well-known29

iterative methods for solving the non-linear saddle-point problem. These include: range space30

methods, null space methods, and loop-based methods.31

The most widely used WDS solution method is the Global Gradient Algorithm (Todini and32

Pilati 1988). The GGA, a range space method, takes advantage of the block structure of the full33

Jacobian matrix to achieve a smaller key matrix in the linearization of the Newton method. Since34

the development of the GGA, numerous newWDS hydraulic solution methods have been proposed35

and improvements have been made to existingWDS hydraulic solution methods. Most of these new36

WDS hydraulic solution methods employ graph theory to decompose or partition theWDS network37

graph into sub-graphs which results in a smaller system of equations. Deuerlein (2008) introduced38

a decomposition model for a WDS network graph, in which the one-connected components are39

categorized as the forest component and the biconnected components are categorized as the core40

component. After removing the forest component, the core component can be further partitioned41

into blocks that are connected by bridge elements. After the partitioning processes, a loop flow42

corrections method is then used. Simpson et al. (2012) proposed a matrix based identification43

method for the forest component and the core component and introduced the forest-core partitioning44

algorithm (FCPA). In the FCPA, flows and heads in the forest component can be solved for just45

once. The remaining system of equations, representing the core – which has a smaller dimension if46

the network has a significant forest component – is then solved iteratively by the Newton method.47

Deuerlein et al. (2015) proposed another graph partitioning algorithm which exploits the properties48

of network components in series within the core component of the network. This algorithm exploits49

the fact that flows in the internal tree pipes are linearly dependent on the topological minor. This50
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relationship has been used to partition the non-linear Newton solver into a non-linear global step51

and a linear local step.52

The loop-based method is a solution method which attempts to reduce the size of the simulation53

problem. The oldest loop-based method (and the oldest method overall) is the Hardy Cross54

method (Cross 1936). In the Hardy Cross method, there are two sets of equations –(i) mass55

conservation equations and (ii) loop energy conservation equations– which are used to model the56

underlying relationship of the flows and heads of a WDS. This non-linear system of equations57

is solved by successive approximation, in which a set of initial flows that satisfies continuity is58

successively corrected until a predefined stopping test has been met. The Hardy Cross method is59

an iterative manual method that was popular for its simplicity before the introduction of computers.60

Epp and Fowler (1970) also explored the possibility of using a loop formulation to perform hydraulic61

simulations. They proposed a programmable version of the Hardy Cross method. However, this62

method is not widely used because it required (1) the identification of loops, (2) the use of pseudo-63

loops if the network hasmore than one source, and (3) the finding of a set of initial flows that satisfies64

continuity. Later, Creaco and Franchini (2013) incorporated the concept of minimum cycle basis65

to identify a set of loops that can be used to achieve the sparsest key matrix for loop formulation.66

It is reported in their paper that, although the loop method requires less computation time than the67

GGA, the time taken for identifying the minimum cycle basis can be a major disadvantage. More68

recently, Alvarruiz et al. (2015) presented two methods to identify the minimum cycle basis that69

used significantly less time.70

The null spacemethod is a special loop-basedmethod: all null space formulations can be rewrit-71

ten as loop-based formulations, but not all loop-based formulations can be rewritten as null space72

formulations. The co-tree flows method (CTM) is the first null space method, which partitions the73

network component into a spanning tree and a co-tree. The CTM has the same disadvantages as the74

loop flow correction method. Later, the reformulated co-tree flow method (RCTM) was introduced75

by Elhay et al. (2014) to address the initialization requirements by incorporating Schilders’ factor-76

izations (Schilders 2009). Abraham and Stoianov (2015) proposed a partial update method for the77
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(a) Example A (b) Example B

Fig. 1. Two example networks of blocks, bridges, and cut-vertices

null space methods, that is also applicable to the GGA, in which computation time is saved through78

minimizing the calculation of the head loss component by only calculating the friction factors and79

the head loss components of the pipes that have not satisfied the stopping test.80

In this paper, a new graph partitioning algorithm, referred to as the bridge-block partitioning81

algorithm (BBPA), is proposed. The BBPA begins by using the FCPA to separate the core82

component from the forest component. Then, the BBPA further partitions the core component of83

the network into block and bridge components. Bridge components can be defined as the pipes in84

the core that are not part of any loop. For example, in Fig. 1(a) the bridge pipes are highlighted85

in bold. The solutions for these bridge components (block 1, block 3, and block 4) can be found86

by a linear process – as can the forest component in the FCPA. The remainder of the network87

consists of blocks, labeled block 2 and block 5 and solutions for these components can be found88

separately. It is possible to separate two blocks with a single node called a cut-vertex. This scenario89

is illustrated in Fig. 1(b). The node (cut-vertex 2) is a cut-vertex that separates the two blocks.90

These two blocks can also also be solved separately, as was the case in part (a) of the example. The91

advantages in speed and reliability for the BBPA arise, in part, from the smaller systems that result92

from partitioning the network into these smaller blocks if the core component of the WDS graph is93

one-connected.94

The BBPA exploits the fact the flows and heads in one block component are weakly coupled with95
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these of the other block components and the solution of the flows and heads in a bridge component96

is a linear process. The convergence rate for the solution of the core component of a WDS, without97

the BBPA, is restricted to that of the worst block of the network. Solving each block separately98

reduces the number of iterations executed to the number of iterations required by that block.99

There is a number of advantages to using the BBPA to identify the linear bridge components100

and the block components of a WDS network:101

1. The number of iterations required by each block is bounded by that required by the unpar-102

titioned system – solving the flows and heads in each block separately significantly reduces103

the overall computational time for the non-linear solver in almost all cases.104

2. It improves the numerical reliability of the solution. The numerical reliability of the solution105

can be determined by the condition number of the Schur complement. The condition number106

of a matrix is the ratio of the largest to the smallest singular value of any square matrix.107

A rough rule of thumb is: one digit of reliability in the solution is lost for every power of108

ten in the condition number. If a square matrix is partitioned into block diagonal form by109

orthogonal permutations, the condition numbers of blocks can be no greater than that of the110

full matrix. In most cases, the condition numbers for all the individual blocks will be smaller111

than the condition number of the full matrix. This phenomenon is illustrated later in this112

paper.113

3. It reduces the need to regularize for the presence of zero flows (Elhay and Simpson 2011). It114

has been pointed out by Simpson et al. (2012) that solving for the flows and heads separately115

can avoid the numerical failure that occurs when there are nodes with zero demand present116

in the forest. It is shown in this paper that there are blocks, in some networks, that have117

zero accumulative demands. The solutions of these networks need a regularization method118

to deal with the presence of the zero flows to avoid catastrophic numerical failure when the119

Hazen-William head loss model is used. Using the BBPA avoids this failure which reduces120

the need for regularization.121
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4. It reduces the computational time in amanagement setting because the flows in the blockswith122

unchanged nodal demands do not need to be solved again and the heads in the corresponding123

block only need to be adjusted a posteriori.124

5. The solution of each block can be found in parallel in a demand-driven model because the125

flows and heads in one block component can be found separately from those of the other126

block components.127

The main contributions of this paper are: (1) to extend the concept of using bridge and block128

components in the loop flow correction method, proposed in Deuerlein (2008), to a generalized129

graph partitioning algorithm that can be used with any demand-driven WDS solution method, (2)130

to establish the theoretical advantages of using the BBPA in terms of reducing computational load131

and improving numerical reliability, (3) to provide a detailed case study to demonstrate BBPA’s132

usefulness in terms of performance and accuracy.133

This paper is organized as follows. Some definitions and notations are given in the next section.134

The section following provides the derivation of the method with some examples. The algorithmic135

description of the BBPA is then given, followed by the a discussion of the relation of the BBPA136

and other methods. This is followed by a benchmark analysis of the BBPA applied to the eight case137

study networks that supports the claim about the advantages of using the BBPA. These results are138

then discussed in the section that follows. Finally, the last section summarizes the overall findings.139

GENERAL WDS DEMAND-DRIVEN STEADY-STATE PROBLEM140

This section describes the general WDS demand-driven steady-state problem. The following141

starts with the basic definition and notations, followed by the system equations. Finally, the Global142

Gradient Algorithm, which is used as the hydraulic solver to separately solve each block, are shown.143

Definitions and Notation144

Consider a water distribution system that contains np pipes, nj junctions, nr fixed head nodes145

and nf forest pipes and nodes. The j − th pipe of the network can be characterized by its diameter146
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Dj , length Lj , resistance factor rj . The i − th node of the network has two properties: its nodal147

demand di and its elevation head zi.148

Let q =
(
q1, q2, ....qnp

)T
denote the vector of unknown flows, h =

(
h1, h2, ....hnj

)T
denote149

the vector of unknown heads, r =
(
r1, r2, ....rnp

)T
denote the vector of resistance factors, d =150

(
d1, d2, .....dnj

)T
denote the vector of nodal demands, el =

(
el1 , el2 ....elnr

)T
denote the vector of151

fixed head elevations.152

The head loss exponent n is assumed to be dependent only on the head loss model: n = 2153

for the Darcy-Weisbach head loss model and n = 1.852 for Hazen-Williams head loss model.154

The head loss within the pipe j, which connects the node i and the node k, is modelled by155

hi − hk = rjqj |qj |n−1. Denote by G (q) ∈ Rnp×np , a diagonal square matrix with elements156

[G]jj = rj |qj |n−1 for j = 1, 2, ....np. Denote by F (q) ∈ Rnp×np , a diagonal square matrix where157

the j-th element on its diagonal [F ]jj =
d
dqj

[G]jj qj . The matrix A1 is the full rank, unknown158

head, node-arc incidence matrix. The matrix A2 is the fixed-head node-arc incidence matrix.159

System of Equations160

The steady-state flows and heads in a WDS system are modeled by the demand-driven model161

(DDM) continuity equations (1) and the energy conservation equations (2):162

−A1
T q − d = O (1)163

G (q) q −A1h−A2el = O, (2)164

which can be expressed as165




G (q) −A1

−A1
T O







q

h


−




A2el

d


 = 0, (3)166
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where its Jacobian matrix used in the solution process is167

J =




F (q) −A1

−A1
T O


 (4)168

and it is sometimes referred to as a nonlinear saddle point problem (Benzi et al. 2005).169

This non-linear system is often solved by the Newton method, in which q(m+1) and h(m+1) are170

repeatedly computed from q(m) and h(m) by171




F (m) (q(m)) −A1

−A1
T O







q(m+1) − q(m)

h(m+1) − h(m)


 = −




G(m)q(m) −A1h(m) −A2el

−A1
T q(m) − d,


 (5)172

until the relative differences ||q
(m+1)−q (m) ||
||q (m+1) || and ||h

(m+1)−h(m) ||
||h(m+1) ||

are sufficiently small.173

Global Gradient Algorithm174

Todini and Pilati (1988) applied block elimination to Eq. (5) to yield a two-step Hazen-Williams175

only solver: Eq. (6) for the heads and Eq. (7) for the flows.176

h(m+1) = U−1
{
−nd +A1

T [(1− n)q(m) −G−1A2el]
}

(6)177

where U = A1
T G−1A1 is the Schur complement, and178

q(m+1) =
1
n

{
(n− 1)q(m) +G−1(A2el +A1h)

}
(7)179

Later, Simpson and Elhay (2010) proposed180

V h(m+1) = −d +A1
T F−1

[
(G− F ) q(m) −A2el

]
(8)181

where V = A1
T F−1A1 is the Schur complement, and182

q(m+1) = q(m) + F−1A1h(m+1) − F−1
[
Gq(m) −A2el

]
(9)183
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as the generalized equations that can be applied when the head-loss is modeled by the Hazen-184

William equation or the Darcy-Weisbach equation. The correct Jacobian matrix with the formula185

for F , when head loss is modeled by Darcy-Weisbach equation, can be found in Simpson and Elhay186

(2010). They showed that the use of the correct Jacobian matrix restores the quadratic rate of187

convergence.188

DERIVATION OF THE BRIDGE-BLOCK PARTITIONING ALGORITHM189

The following terminology will be used in this paper. Associated with a WDS is a graph190

G=(V, E), where the elements of V are the nodes (vertices) of the graph G and elements of E are191

the pipes (links or edges) of the graph G. Every WDS can be divided into two subgraphs: a treed192

subgraph (forest)Gf =
(
Vf , Ef

)
and a looped subgraph (core)Gc = (Vc, Ec), so thatEf ∪Ec = E,193

Ef ∩ Ec = ∅, Vf ∪ Vc = V . A cut-vertex is a node in a WDS graph, the removal of which will194

increase the number of connected components, and a bridge is a pipe in a WDS graph, the removal195

of which will separate its two end nodes. A block is a maximal connected subgraph without a196

cut-vertex. A WDS graph can be decomposed into a tree of blocks, cut-vertices, and bridges called197

a block-cut tree (Diestel 2005). A root block is a block which includes one or more water sources.198

Note that every water source is defined to be within the root block of its network component. That199

is, all water sources are in the root block of their connected component of the network. The level200

of block i in a rooted block-cut tree is the length of the unique path, composed of blocks, from the201

root block to block i. The parent of block i is the block connected to block i on the path to the root202

block. If block i is the parent of block j, then block j is the child of block i. A block of a graph203

G containing only one cut-vertex is called an end block of G. Note that any block except for the204

root block has a unique parent block, and any block except for an end block can have multiple child205

blocks.206

A WDS graph can be divided into nb subgraphs, Gb1=(Vb1 ,Eb1), Gb2=(Vb2 ,Eb2), ..., Gbnb
=207

(Vbnb
,Ebnb

). If two blocks, Gbi
=(Ebi

,Vbi
) and Gbj

=(Ebj
,Vbj

), are adjacent, then Ebi
∩ Ebj

= ∅ and208

Vbi
∩ Vbj

= cij where cij is the cut-vertex that connects the parent block i and child block j. The209

cut-vertex, cij , in the parent block, bi, is a cluster of the demands of this cut-vertex and all its210
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descendant blocks. A block except for the end block can have multiple cut-vertices behaving as211

clusters of demands because a parent block can have multiple child blocks. The cut-vertex, cij , in212

the child block, bj , is considered as a pseudo-source. The head of the cut-vertex, cij , that is found213

in the parent block, bi, is used as the elevation head of the pseudo-source for the corresponding214

child block. With the exception of the root block, every block has a single cut-vertex that behaves215

as a pseudo-source. The ancestors of a block are the blocks in the path from the root block to this216

block, excluding the block itself and including the root block. The descendants of block i are all217

the blocks that have block i as an ancestor.218

The BBPA is now derived by generating two orthogonal permutation matrices and using them219

to manipulate the matrix A1 to find nb unknown-head node-arc incidence matrices for each block,220

B11, B22, .....Bnbnb , and nb − 1 fixed head node-arc incidence matrices, C1, C2, ..., Cnb−1.221

Note that in the following, Bij , the block in the i-th block row and the j-th block column, is used to222

denote the fixed head node-arc incidence matrices, where the subscripts i and j are used to indicate223

the location of the block, row j and column i, and also to indicate a direct connection between the224

block i and block j.225

Recall that all blocks except for the root block have exactly one cut-vertex that behaves as a226

pseudo-source. The terms involving these pseudo-sources are moved to the right-hand-side of the227

system leaving the remaining node-arc incidence matrix full rank. This is because each of the228

diagonal block matrices of A1, a full rank matrix, is also full rank. The permutation matrix that is229

used to permute the system equation, Eq. (3), is230

P1 =




np nj

np P O

nj O R


, (10)231

where P =

(
P eb1

P eb2
. . .P enb

)T

∈ Znp×np is the square orthogonal permutation matrix232

for the pipes in each block, in which P ebi
∈ Znp×npbi , for i = 1, 2, ....nb, is the permutation233
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matrix that identifies the pipes in the block i as distinct from the pipes in other blocks and234

R =

(
Rvb1

Rvb2
. . .Rvnb

)T

∈ Znj×nj is the square orthogonal permutation matrix for the235

nodes in each block, in which Rvbi
∈ Rnj×nvbi , for i = 1, 2, ....nb, is the permutation matrix that236

identifies the nodes in the block i as distinct from the nodes in other blocks.237

The permuted system of the BBPA equations is:238

P1




G −A1

−A1
T O


P1

T P1




q

h


− P1




a

d


 = O (11)239

where a = A2el. With this permutation, Eq. (3) becomes:240




P GP T −P A1RT

−RA1
T P T O







P q

Rh


−




P a

Rd


 = O (12)241

where242

P A1RT =




B11 O . . . O

B21 B22 . . . O

...
...

. . .
...

Bnb1 Bnb2 . . . Bnbnb




,243

in which all the block entries above the diagonal blocks become zero matrices because there is no244

pipe in a parent block that connects to any node in any of its child blocks. The block entries below245

the diagonal blocks, Bij represent the connection between the nodes in the parent block, block j,246

and the pipes in the child block, block i, which are O when block j and block i are not adjacent247

blocks. It has been pointed out above that any block, except for the end block, can have multiple248

child blocks. Furthermore, any block, except for the root block, can have only one parent block. As249

a result, each block column can have more than two non-zero block entries (including the diagonal250

block in that block column) and each block row, except for the root block row, has exactly two251
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non-zero block entries (including the diagonal block in that block row).252

P GP T =




Gb1 O . . . O

O Gb2 . . . O

...
...

. . .
...

O O . . . Gbnb




,P q =




qb1

qb2

...

qbnb




,Rh =




hb1

hb2

...

hbnb




,P a =




ab1

ab2

...

abnb




in which any block that is not a root block becomes O, and Rd =
(

dT
b1 dT

b2 . . . dT
bnb

)T

. The253

matrix P A1RT in Eq. (12) can be divided into two block matrices: a block diagonal matrix:254

AB =




B11 O . . . O

O B22 . . . O

...
...

. . .
...

O O . . . Bnbnb




, (13)255

where each block matrix on its block diagonal represents the node-arc incidence matrix of the256

corresponding graph block, and a lower block triangular matrix that only has entries below its257

block diagonal:258

AC =




O O . . . O

B21 O . . . O

...
...

. . .
...

−Bnb1 −Bnb2 . . . O




, (14)259

where each matrix block represents the connection from the cut-vertex acting as a pseudo-source260

to a child block (row) and the connection from the same cut-vertex acting as a cluster of demand261

nodes to the parent block (column). Recall that, each block row of the matrix AB +AC , except262

for the block row representing the root graph blocks, has exactly two non-zero block entries: one263

of two non-zero block entries is on the block diagonal of the matrix AB and the other one of the264

two non-zero block entries is in the lower triangular part of the matrix AC .265
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Defining GB = P GP T , qB = P q, hB = Rh, aB = P a, and dB = Rd, Eq. (12) can be266

rewritten as267




GB −AC −AB

−AC
T −AB

T O







qB

hB


 =




aB

dB


 . (15)268

The matrix AC can be moved from the left-hand-side of Eq. (15) to its right-hand-side and Eq. (15)269

becomes:270 


GB −AB

−AB
T O







qB

hB


 =




aB +AChB

dB +AC
T qB


 (16)271

Defining âB = aB +AChB and d̂B = dB +AC
T qB , Eq. (16) expands to272




Gb1 O . . . O −B11 O . . . O

O Gb2 . . . O O B22 . . . O

...
...

. . .
...

...
...

. . .
...

O O . . . Gbnb
O O . . . Bnbnb

−B11T O . . . O O O . . . O

O −B22T . . . O O O . . . O

...
...

. . .
... O O . . . O

O O . . . −Bnbnb
T O O . . . O







qb1

qb2

...

qbnb

hb1

hb2

...

hbnb




=




âb1

âb2

...

̂abnb

d̂b1

d̂b2

...

̂dbnb




. (17)273

It is evident from the expanded system of equations, Eq. (17), of the BBPA that the amount of274

computation can be significantly reduced by solving each block separately. Moreover, these blocks275

can be solved in parallel. This is because the permutedA1 matrix, P A1RT , can be rearranged into276

a block diagonal matrix, which allows the non-linear system of equations in Eq. (3) be partitioned277

into nb smaller independent non-linear systems.278

Update of the demands and nodal heads279

The demands for each block are only required to be updated once before every evaluation and280

the head for each unknown-head node is only required to be updated once after the solution of each281
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block is found. As stated previously, each block row of the matrix AC has only one non-zero block282

entry below its block diagonal. The matrix Bij only has one column entry that is non-zero. This283

column entry is the A2 matrix for that block, which is the node-arc incidence matrix representing284

the connection between the pseudo-source and the pipes in the child block.285

Lemma 1. Suppose v ∈ Rnj×1 is a column vector of all ones A1 ∈ Rnp×nj , is an unknown-head286

node-arc incidence matrix and A2 ∈ Rnp×1 is a fixed-head node-arc incidence matrix for one of287

the WDS’s blocks that is not the root block. Then288

−A1v = A2 (18)289

290

Proof. Denote by p1, a set of indices for the pipes that are not connected to awater source; by p2, a set291

of indices for the pipes that are connected to awater source. LetA1 =
(

a1T a2T . . . anp
T

)T

.292

The i-th row of the matrix A1 has two non-zero entries, 1 and -1, and the i-th row of the matrix293

A2 is zero if i ∈ p1. It is evident that the inner product of ai and v becomes 0. The j-th row of294

the matrix A1 has only one entry, -1, and the j-th row of the matrix A2 has only one entry, 1, if295

j ∈ p2. It is evident that the inner product of aj and vT is -1. End of LEMMA 1. �296

The relationship shown in Eq. (18) can be used to calculate term AchB in Eq. (16). The297

relationship between the unknown head node-arc incidence matrix, Bii, and the fixed head node-298

arc incidence matrix, Bij , is299

Bij = −Biiv, (19)300

the transpose of which is Bij
T = −vT Bii

T and multiplying both sides by qBj , the flows in block301

j , we get Bij
T qBj = −vT Bii

T qBj . Therefore,302

Bij
T qBj = −vT dBj , (20)303

which is in fact the sum of the demands in the child block to the cut-vertex in the parent block.304
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Eq. (20) is used repeatedly from the end block to the root block until the Ac
T qB in Eq. (16) has305

been replaced. This process is performed only once before the iterative phase.306

Multiplying both sides of the Eq. (19) by the unknown head at cut-vertex cj , hcj , we get307

Bijhcj = −Biivhcj , (21)308

which is used to move Achb from the left-hand-side of the equation to the right-hand-side of the309

equation so that each block can be solved in parallel. The heads need only be computed just once310

after the iterations for all blocks have been completed.311

The properties of the system of equations after bridge-block partitioning312

In the BBPA, a full WDS network is partitioned into nb smaller independent non-linear systems313

by permuting the original full system of equations using two orthogonal permutations P and R.314

One of the main contributions of this paper is to show that the use of the BBPA can significantly315

reduce the computational loads and improve the numerical reliability of the results.316

The BBPA can be used to improve the reliability of solution of the looped component in the final317

WDS solution. This is because the condition number, the ratio between the largest to the smallest318

singular value of a matrix, can be used to estimate the loss of reliable digits in solving a linear319

systemwith that matrix. The orthogonal permutations of the BBPA shuffle the nj singular values of320

the Schur Complement into their corresponding blocks. This is because pre-and-post-multiplying321

a matrix by orthogonal matrices preserves the singular values. The upper bound of the largest322

singular value of all blocks is the largest singular value of the full system and the lower bound for323

the smallest singular value of all blocks is the smallest singular value for the full system. Therefore,324

the condition number of each block at the solution is bounded above by the condition number of325

the full system of equations but in most cases will be smaller. Moreover, the only occasions when326

one of the blocks has the same condition number as the full system is where both the highest and327

lowest singular values are present in the same block. Even in this particular case the other blocks328

in the system will have lower condition numbers than the full system.329
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Furthermore, the use of the BBPA can minimize the need to use regularization methods for330

handling zero-flows. In the FCPA paper (Simpson et al. 2012), the authors pointed out that it is331

common for zero flows to occur at the ends of trees with zero demands. Similarly, it is also possible332

for all nodes in the end blocks to have zero demands. The GGA fails catastrophically at these333

blocks when the head loss is modelled by the Hazen-William head loss model. One side-effect of334

identifying these end blocks with zero nodal demands is zero flows can be assigned to all pipes in335

these blocks and the head of pseudo-source can be assigned to all nodes in these blocks. When336

zero flows occur in other blocks, regularization is needed only for the blocks with the presence of337

zero flows instead of the full system.338

In addition to the improvement of the numerical reliability of the final result, the use of the BBPA339

can significantly reduce computational loads. This reduction in computational loads is achieved340

through: (1) the bridge component being solved by a linear process, the removal of which reduces341

the number of non-zeroes in Schur component, (2) the probable reduction in the number iterations342

required by each block as shown in the Appendix, and (3) the non-linear system of equations for343

each block is independent of other blocks which allows each block to be solved in parallel.344

BRIDGE-BLOCK PARTITIONING ALGORITHM345

The steps of the BBPA are now described. The BBPA starts with a forest search algorithm346

to identify the forest component as distinct from the core. This is followed by identifying all the347

blocks and bridges in the core, and updating the demands for the cut-vertices by using Stage 1 as348

given below, a variation of the algorithm detailed by Hopcroft and Tarjan (1973). Note that this349

algorithm is based on the depth-first search and runs in linear time. There are two ways to solve the350

core of the network: in parallel or serially.351

Parallel: It can be more efficient to solve all the blocks in parallel when the solution of the entire352

system is needed, such as in a design setting. After the network has been permuted, each block is353

then individually solved by using Stage 2 in no particular order. Once the solutions for all blocks354

are found, the heads for the core nodes are recovered by using Stage 3 from the root block to the355

Appendix C. Submitted version of Publication 3: A Bridge-Block Partitioning Algorithm
for Speeding up Analysis of Water Distribution Systems

223



end blocks. Finally, the heads for the forest nodes are solved.

Stage 1: Bridge block partitioning determination & bottom-up demand adjustment
/* Serial determination of network block from the end blocks to the root blocks

and bottom-up cut-vertex demand accumulation */
input : Adjacency List and d
output: The system of equations of all blocks

1 Procedure DFS(currentNode,d,dm)
2 visited[currentNode] = true;
3 d=d+1;
4 depth[currentNode] = d;
5 low[currentNode] = d;
6 foreach (nextNode,nextPipe)∈ adjList(currentNode) do
7 if nextNode is not a Forest node then
8 if nextNode is not visited then
9 stack.push_back(adjList[currentNode]);
10 parent[nextnode]=nextpipe;
11 DFS(nextnode,d,dm);
12 if low[currentNode]≥ depth[currentNode] then
13 BlockSource[NB].push_back(currentNode);
14 do
15 temp←stack->pop_back();
16 if (temp.first<np) then
17 BlockPipe[NB].insert(temp.first);
18 end if
19 if (temp.second!=currentNode) then
20 if (temp.second<nj) then
21 if (BlockNode[NB].insert(temp.second).second==true) then
22 (*dm)[currentNode]+=(*dm)[temp.second];
23 end if
24 else if (temp.second>=nj) then
25 BlockSource[NB].insert(temp.second);
26 end if
27 while (temp.first!=nextPipe);
28 NB = NB + 1;
29 end if
30 low[currentNode]=min(low[nextNode],low[currentNode]);
31 else if (parent[currentNode],nextpipe&&depth[nextnode]<depth[currentNode]) then
32 stack.push_back(adjList[currentNode]);
33 low[currentNode]=min(low[currentNode],depth[nextnode]);
34 end if
35 end foreach
36 Algorithm BBPA()
37 for currentNode← nj to nj + nf do
38 DFS(currentNode,depth,dm);
39 end for
40 Initialize the system of equations for each block using Eq. (16);

356
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Stage 2: Serial or parallel block solution
/* Nonlinear solution for the blocks can either be found serially or in parallel */
input : The system of equations for a block
output: The solution of the flows in the input block and heads that need to be updated

1 foreach Block do
2 if The size of the block =1 then
3 This block is a bridge and assign the demand of the only node to the flow of the only

pipe;
4 else
5 if Sum of the demands in this block=0 then
6 assign the flows of the pipes=0;
7 continue
8 endif
9 Using a WDS solution method to solve the nonlinear system for the flows and

interim heads.;
10 endif
11 end foreach

Stage 3: Top-down head correction
/* Top-down determinations of corrected heads from the relative heads. Actual heads in

any block can only be found when the flows and interim heads of its ancestor blocks
have been found */

input : The unrecovered heads of a block
input : The head of the pseudo-source from the parent block of the current block
output: The recovered heads of the input block

1 foreach Block do
2 if The input block is not the root bock then
3 Recover the actual heads of the input block from the interim heads by using Eq. (21).
4 endif
5 end foreach

Serial: Alternatively, each of the blocks can be solved in sequence. After the network has been357

permuted, each block is then separately solved by using Stage 2 and Stage 3 from the root block358

to the end blocks. Note that it is possible to only solve for a part of the system which includes the359

blocks of interest and their ancestor blocks. Solving the system this way reduces the computational360

time in a management setting because (1) the flows in the blocks with unchanged nodal demands361

do not need to be solved again and the heads in the corresponding block only need to be adjusted a362

posteriori and (2) a different priority can be assigned to a different block which allows blocks with363
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different priorities to be updated in a different time interval. Finally, the heads for the forest nodes364

are solved.365

EXAMPLE366

In this section, the use of the BBPA is demonstrated by applying it to the example network367

shown in Fig. 2. The system of equations for each block are displayed. This network has eight368

pipes, six nodes with unknown heads, and one water source. The solution for this example is369

demonstrated below in two steps: (1) network permutation and (2) network solution.370

Fig. 2. A simple example network that is made up of three blocks, and two cut-vertices. Block 1
is referred to as B1, Block 2 is referred to as B2, and Block 3 is referred to as B3. Cut-vertex 1 is
referred to as cv1 and Cut-vertex 2 is referred to as cv2.

Permutation for example network371

The unknown-head node-arc incidence matrix, A1, and the fixed-head node-arc incidence372

matrix, A2 for this example network are373
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A1 =




−1 0 0 0 0 0

1 0 0 0 0 −1

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 −1 1 0 0

0 1 0 −1 0 0

0 1 0 0 −1 0

0 0 0 0 1 −1




,A2 =




1

0

0

0

0

0

0

0




.

The system of pipe head loss and nodal continuity equations for the example network is374




G1 1 0 0 0 0 0

G2 −1 0 0 0 0 1

G3 −1 1 0 0 0 0

G4 0 −1 1 0 0 0

G5 0 0 1 −1 0 0

G6 0 −1 0 1 0 0

G7 0 −1 0 0 1 0

G8 0 0 0 0 −1 1

1 −1 −1 0 0 0 0 0

0 0 1 −1 0 −1 −1 0

0 0 0 1 1 0 0 0

0 0 0 0 −1 1 0 0

0 0 0 0 0 0 1 −1

0 1 0 0 0 0 0 1







q1

q2

q3

q4

q5

q6

q7

q8

h1

h2

h3

h4

h5

h6




=




el7

0

0

0

0

0

0

0

d1

d2

d3

d4

d5

d6




. (22)375

By permuting the rows (pipes) in the ordering given by p = {1; 2; 3; 7; 8; 4; 5; 6} and the columns376

(nodes) in the ordering given by v = {1; 6; 2; 5; 3; 4}, the system of equations in Eq. (22) can be377

rearranged into the following block structure:378
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Block



P
ip

e
s

B1

B2

B3




N
o

d
e
s

B1

B2

B3

P ipes Nodes

B1 B2 B3 B1 B2 B3






G1 1 0 0 0 0 0

G2 −1 1 0 0 0 0

G3 −1 0 1 0 0 0

G7 0 0 −1 1 0 0

G8 0 1 0 −1 0 0

G4 0 0 −1 0 1 0

G5 0 0 0 0 1 −1

G6 0 0 −1 0 0 1

1 −1 −1 0 0 0 0 0
0 1 0 0 1 0 0 0

0 0 1 −1 0 −1 0 −1
0 0 0 1 −1 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 −1 1







q1

q2

q3

q7

q8

q4

q5

q6

h1

h6

h2

h5

h3

h4

=







el7

0

0

0

0

0

0

0

d1

d6

d2

d5

d3

d4

(23)379

*the bold numbers in the matrix represent the cut-vertices380

Eq. (23) has three graph blocks as shown in Fig. 2 include Block 1 (a bridge), Block 2, and381

Block 3. Note that, for cross-referencing purposes, this equation has been labeled with the block382

numbers (affiliated with pipes and nodes) corresponding to each entity in the example network. The383

cut-vertices (cv1 and cv2 in Fig. 2) are highlighted in bold in their corresponding matrix blocks.384

In the equation, it is evident that the permuted A1 matrix is a block three by three, lower block385

triangular matrix which represents a WDS with the three graph blocks (B1, B2, and B3).386

The end block (B3 in Fig. 2) is a sub-network consisting of three pipes {4; 5; 6}, two nodes {3;387

4}, and a pseudo-source at node {2}. The nodal demands of this block do not need to be updated388

because this is the end block. The head of the node 2 (cv2) , which is the cut-vertex behaving as389

the pseudo-source for this block, can be moved to the right-hand-side of system of equations using390

Eq. (16). The solution of block B3 can be found separately after the head of the pseudo-source at391

node {2} is found.392

The second block diagonal row (B2 in Fig. 2) is a sub-network consisting of four pipes {2;393

3; 7; 8}, three nodes {2; 5; 6}, and one pseudo-source at node {1}. This is an intermediate394
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block so that the demand at the node 2 (cv2), a cut-vertex that is not a pseudo-source, needs to be395

updated by increasing its demand by the sum of demands at all nodes of its child block (B3) as396

follows: d̂2 = d2 + d3 + d4 using Eq. (20). Node 1 (cv1), which is the cut-vertex behaving as the397

pseudo-source for this block, B2, can be moved to the right-hand-side of system of equations using398

Eq. (16). The solution of block B2 can be found separately after the head of the pseudo-source at399

node {1} is found.400

Finally, the root block (B1 in Fig. 2) is a sub-network consisting of pipe {1}, node {1}, and401

source {7}. Block B1 is a bridge component. The bridge component can be solved by using a402

linear process. The demand for the node 1 in Fig. 2 (cv1), a cut vertex in the root block, is updated403

by increasing its demand by the sum of demands at all nodes of its child block (B2) as follows:404

d̂1 = d1+d2+d3+d4+d5+d6 and the elevation head for the source stays the same. After updating405

the demands and heads, the system of equations in Eq. (23) becomes:406

Block



P
ip

e
s

B1

B2

B3




N
o

d
e
s

B1

B2

B3

P ipes Nodes

B1 B2 B3 B1 B2 B3






G1 1 0 0 0 0 0

G2 0 1 0 0 0 0

G3 0 0 1 0 0 0

G7 0 0 −1 1 0 0

G8 0 1 0 −1 0 0

G4 0 0 0 0 1 0

G5 0 0 0 0 1 −1

G6 0 0 0 0 0 1

1 −1 −1 0 0 0 0 0
0 1 0 0 1 0 0 0

0 0 1 −1 0 −1 0 −1
0 0 0 1 −1 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 −1 1







q1

q2

q3

q7

q8

q4

q5

q6

h1

h6

h2

h5

h3

h4

=







el7

h1

h1

0

0

h2

0

h2

d1 + d2 + d3 + d4 + d5 + d6

d6

d2 + d3 + d4

d5

d3

d4

(24)407

Note that the system of equations obtained in Eq. (24) is equivalent to performing block Gauss-408

Jordan elimination on Eq. (23). Solving the system of equations in this way requires solving each409

block in a particular sequence, from the root block (B1) to the end block (B3). The sequence that410
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is required in the example network in Fig. 2 is: (1) to find the solution of block B1, the root block;411

(2) to find the solution of block B2 using the head of the node one, cv1, in block B1 ; and (3) to412

find the solution of block B3, the end block, using the head of the node two, cv2, in block B2.413

Furthermore, the second pipe head-loss block equation or the second block equation (B2) in414

Eq. (24) is:415

Gb2qb2 −B22hb2 = B21hb1 ,416

which expands to:417




G2

G3

G7

G8







q2

q3

q7

q8




+




1 0 0

0 1 0

0 −1 1

1 0 −1







h6

h2

h5



=




h1

h1

0

0




, (25)418

the right-hand-side of which can be rewritten as:419

B21hb1 = −B22[v3h1], (26)420

which expands to:421 


h1

h1

0

0




=




1 0 0

0 1 0

0 −1 1

1 0 −1







h1

h1

h1




422

using Eq. (21). Substituting it back into Eq. (25), we get:423

Gb2qb2 −B22hb2 = −B22[v3h1],424
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which expands to:425




G2

G3

G7

G8







q2

q3

q7

q8




+




1 0 0

0 1 0

0 −1 1

1 0 −1







h6

h2

h5



=




1 0 0

0 1 0

0 −1 1

1 0 −1







h1

h1

h1



,426

which can further simplified into:427

Gb2qb2 −B22[hb2 + v3h1] = O,428

which expands to:429




G2

G3

G7

G8







q2

q3

q7

q8




+




1 0 0

0 1 0

0 −1 1

1 0 −1







h6 − h1

h2 − h1

h5 − h1



= O.430

The third pipe head-loss block equation or the third block equation (B3) in Eq. (24) is:431

Gb3qb3 −B33hb3 = B32hb2 ,432

which expands to:433




G4

G5

G6







q4

q5

q6



+




1 0

1 −1

0 1






h3

h4


 =




h2

0

h2



. (27)434
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Eq. (27) can be further simplified to435




G4

G5

G6







q4

q5

q6



+




1 0

1 −1

0 1






h3 − h2

h4 − h2


 = O436

using a similar manipulation as for Block 2 above. Finally, the system of equations in Eq. (24) may437

be rewritten as:438

Block



P
ip

e
s

B1

B2

B3




N
o

d
e
s

B1

B2

B3

P ipes Nodes

B1 B2 B3 B1 B2 B3






G1 1 0 0 0 0 0

G2 0 1 0 0 0 0

G3 0 0 1 0 0 0

G7 0 0 −1 1 0 0

G8 0 1 0 −1 0 0

G4 0 0 0 0 1 0

G5 0 0 0 0 1 −1

G6 0 0 0 0 0 1

1 −1 −1 0 0 0 0 0
0 1 0 0 1 0 0 0

0 0 1 −1 0 −1 0 −1
0 0 0 1 −1 0 0 0

0 0 0 0 0 1 1 0

0 0 0 0 0 0 −1 1







q1

q2

q3

q7

q8

q4

q5

q6

h1

h6 − h1

h2 − h1

h5 − h1

h3 − h2

h4 − h2

=







el7

0

0

0

0

0

0

0

d1 + d2 + d3 + d4 + d5 + d6

d6

d2 + d3 + d4

d5

d3

d4

(28)439

Solving the example network440

Consider the network shown in Fig. 2 and its permuted system of equations, Eq. (28). Each441

block becomes an independent system and can be solved sequentially from the root block to the end442

block. The system of equations for the root block, B1 (Block 1 in Fig. 2), which also represents a443

bridge, is:444 

G1 1

1 0






q1

h1


 =




el7

d1 + d2 + d3 + d4 + d5 + d6


 , (29)445
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the solution of which can be used to solve its child block, block B2 (Block 2 in Fig. 2) by using:446




G2 1 0 0

G3 0 1 0

G7 0 −1 1

G8 1 0 −1

1 0 0 1

0 1 −1 0

0 0 1 −1







q8

q7

q3

q2

h6 − h1

h2 − h1

h5 − h1




=




0

0

0

0

d6

d2 + d3 + d4

d5




, (30)447

and finally, the end block, block B3 (Block 3 in Fig. 2) can be solved by using:448




G4 1 0

G5 1 −1

G6 0 1

1 1 0

0 −1 1







q6

q5

q3

h3 − h2

h4 − h2




=




0

0

0

d3

d4




. (31)449

The systems of equations for each of the three blocks can also be solved in parallel.450

Note that, when using BBPA, if the head loss of the example network shown in Fig. 2 is modeled451

by the Hazen-William formula and the nodal demands at nodes three and four are zero, this does452

not cause a failure of the method due to singularity of the Schur complement, unlike the GGA453

and RCTM on the same network (Elhay and Simpson 2011). In addition, the block with zero total454

demand can be solved (1) prior to the iterative phase by assigning zero flows to all applicable pipes455

and (2) by assigning the heads of the source to all nodes in this block after the iterative phase.456

RELATION OF BBPA TO OTHER SOLUTION METHODS457

The BBPA can be described as a pre-and-post-processing method for the following reasons: (1)458

it finds the blocks and bridges of a WDS, (2) the bridges can be solved by using a linear process459

similar to the forest component, and (3) then uses any WDS solution method, for example GGA,460
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RCTM, or GMPA, to, independently, solve each block.461

The BBPA can also be used to identify the forest component of the network. However, the use462

of the FCPA requires less overhead than the BBPA.463

The same topological properties exploited by FCPA and BBPA are partly responsible for464

the savings achieved by partial-update (Abraham and Stoianov 2015). The forest and bridge465

components - being linear - converge after just one iteration of application of a non linear solver.466

The partial update scheme is able to exploit this by checking for convergence every iteration. Once467

the convergence test for a pipe has been met, the head-loss of the converged component does468

not need to be re-computed, whereas the linear solver for the full system is required until the469

convergence tests for all pipes have been met. In contrast, FCPA and BBPA have the advantage470

of identifying these components in advance and removing them from non-linear solution process.471

BBPA also has the additional advantage of being able to exploit earlier convergence of different472

blocks in the core network and removing them from the problem once they have converged. As a473

result, the authors recommend that it is inefficient to implement the partial update for a full WDS474

system before applying the FCPA and the BBPA. The usefulness of applying the partial update to475

each block requires further investigation.476

CASE STUDIES477

A comparison of the GGAwith or without BBPA on eight case study networks has been carried478

out in order to support the above discussion. Note that the first step each method is to use FCPA to479

remove the forest component from the case study networks, to ensure a fair comparison.480

The efficiency and reliability of the BBPA in a once-off simulation setting, in which the steady-481

state heads and flows are computed just once with the given WDS parameters, was benchmarked482

against an efficient GGA implementation. As a baseline, timings of the solution process for the483

benchmark networks using EPANET2 were also recorded. The benchmark tests were performed on484

a Intel(R) Core(TM) CPU i5-4590 running at 3.30 GHz with 4 cores in C++ under IEEE-standard485

double precision floating point arithmetic with machine epsilon εmach = 2.22×10−16. The number486

of cores allocated to each test was limited to one. Each timing test, measuring wall-clock time, was487
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TABLE 1. Benchmark networks summary, their core network size, the number of blocks and the
number of bridges

Full Network Core network BBPA
Network np nj ns njc npc The

number of
blocks

The
number of
bridges

N1 934 848 8 573 487 33(1)∗ 118
N2 1118 1039 2 797 718 10(2) 45
N3 1975 1770 4 1152 947 7 6
N4 2465 1890 3 2036 1461 47(3) 62
N5 2509 2443 2 1087 1741 8(1) 45
N6 8585 8392 2 6735 6542 7(2) 58
N7 14830 12523 7 11898 9591 487(19) 895
N8 19647 17971 15 15232 13557 17(2) 59
∗numbers in the brackets refers to the number of blocks with no nodal demands

repeated 15 times on each benchmark network.488

It is shown that the use of an efficiently implemented BBPA can provide a significant runtime489

reduction and improvement in the reliability of the solution. The BBPA with the GGA and the490

standalone GGA were each applied to eight case studies with between 932 and 19,651 pipes and491

between 848 and 17,977 nodes with no pumps and no valves.492

RESULTS AND DISCUSSION493

The basic details of the case study networks considered in this study are described in columns494

2 to 4 in Table 1 and more information can be found in Simpson et al. (2012). The size of the core495

component for each of the eight case studies is shown in the columns 5 and 6, the number of blocks496

in column 7, with the number of blocks with no nodal demands in the brackets, and the number497

of bridges in column 8. Table 2 shows the detailed profile of the size of each block in each of the498

eight case study networks. The size of the largest block, smallest block, and median block and the499

number in brackets is the percentage of the corresponding block size as a proportion of the core500

component of the network501

Table 3 shows the summary statistics of the 15 repetitions of each solution method applied to the502

eight benchmark networks. The GGA benefits from the use of the BBPA by between 33% and 70%.503
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TABLE 2. The profile of blocks in each of the eight case study networks: size of the largest, the
smallest and the median blocks

Largest size block Smallest size block Median size block
Network np nj np nj np nj

N1 81(18) 62(17) 3(0.7) 2(0.5) 7(1.6) 5(1.4)
N2 684(91.9) 615(92.2) 2(0.3) 1 (0.1) 9.5 (1.3) 8(1.2)
N3 953 (83.1) 78(33.1) 6(0.5) 5(2.1) 31 (2.7) 25.5(10.8)
N4 1549(78.7) 1100(78.8) 2 (0.1) 1 (0.1) 7(0.4) 5(0.4)
N5 1061(60.3) 1026(60.5) 2(0.1) 1(0.1) 53(3.0) 52(3.1)
N6 5578(83.7) 5418(83.7) 2(0.03) 1(0.02) 51(0.8) 50(0.8)
N7 8418(77.00) 6970(88.52) 2(0.02) 1(0.01) 4(0.04) 1(0.01)
N8 14961(98.78) 13309(98.79) 3(0.02) 2(0.01) 12(0.08) 11(0.08)

numbers in the brackets refers to the percentage of the corresponding block size in the core
component of the network

It has been established in Elhay et al. (2014) and Abraham and Stoianov (2015) that the number504

of non-zeros can be used as a surrogate to approximate the runtime of the non-linear system. The505

saving in runtime is partially achieved through the reduction in the number of non-zeros by the506

removal of the bridge components.507

TABLE 3. The mean time of once-off simulation runs averaged over 15 once-off simulations for
each of the two solution methods applied eight case study networks (milliseconds±standard error)
and the % diff. refers to relative difference compared to the GGA mean time

EPANET GGA with FCPA GGA with BBPA
Mean time Mean time Mean time %diff.

N1 9.09 4.66± 0.07 2.32± 0.05 -50%
N2 16.75 6.61± 0.07 2.86± 0.04 -56%
N3 21.46 8.72± 0.09 3.64± 0.05 -58%
N4 26.45 22.76± 0.53 6.64± 0.11 -70%
N5 28.46 12.19± 0.13 5.97± 0.12 -51%
N6 172.84 44.79± 0.18 28.53± 0.12 -36%
N7 307.17 63.06± 0.65 42.35± 0.67 -33%
N8 600.08 131.82± 3.99 59.08±0.6 -55%

Another important factor of the algorithm efficiency is the number of iterations required to508

satisfy the stopping test. Fig. (3) shows that the number of iterations required by each block of509

networkN1 and the number of iteration required by the full system to satisfy the stopping test. The510
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Fig. 3. The number of iterations for each block of networksN1 against the number of junctions (the
diameter of the bubble represents the number of blocks with the same number of junctions which
required the same number of iterations to satisfy the stopping test)

horizontal axis shows the number of junctions and the vertical axis shows the number of iterations,511

and the diameter of the bubble represents the number of blocks with the same number of junctions512

which required the same number of iterations to satisfy the stopping test. For example, in network513

N1 there are six blocks that have two nodes, three of which require six iterations to satisfy the514

stopping test; one of which requires five iterations to satisfy the stopping test; and four of which515

require four iterations to satisfy the stopping test. The number of iterations that is required by each516

block ofN1 is bounded above by that which is required by the full network ofN1. The bubble plots517

for networks N2 to N8 can be found in the supplemental data.518

On another note, the BBPA can also be used to improved reliability of the solution. Fig. (4)519

shows that the condition number at the solution and the condition number for the full system. The520

following observation can be made from the Fig. (4) that (i) the condition number for each block is521

bounded above by the condition number for the full matrix, (ii) each of networks N2, N5, N6, and522

N8 has one block with the same condition number as the full system.523
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Fig. 4. The condition number of the Schur complement at the solution for each block (scatter point)
and the condition number of the Schur complement for the full system (red line)

CONCLUSIONS524

In this paper, the bridge-block partitioning algorithm is introduced. The BBPA is a pre-525

processing and post-processing algorithm that (1) first partitions the network into bridge components526

and block components, (2) then solves for the flows in the bridge components by a linear process,527

(3) after that it separately solves for the flows and the estimated heads for each independent block by528

using any WDS solver, and (4) finally the heads are recovered by a linear process at the end. This529

partitioning of the network can be used to speed-up the solution process of the steady state demand-530

driven hydraulic simulation and to improve the reliability of the results if the core component of531

the WDS graph is one-connected. The speed-up of the solution process is achieved by (1) solving532

the bridge component in the BBPA by a linear process similar to that of solving for the forest in the533

FCPA, which reduces the number of non-zeroes in the Schur complement (2) solving each block534

by using the minimum number of iterations that is required by that block. Moreover, the BBPA535
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improves the reliability of the results because the condition number of the Schur Complement for536

each block is bounded above by the condition number for the Schur Complement of the full system.537

The usefulness of the BBPA has also been demonstrated by applying it to eight benchmark538

networks with between 934 and 19,647 pipes and between 848 and 17,971 nodes. The total savings539

in wall clock time after applying the BBPA to the GGA are between 33% and 70%. It is shown540

that, the number of iterations and the condition number required by each block are bounded by the541

number of iterations and the condition number required by the full system, respectively. The use of542

the BBPA can also minimize the need to regularize the zero flows when the head loss is modelled543

by the Hazen-William head loss equation. This is because in real life systems, such as the case544

study networks used in this paper, can have blocks, such that the nodes in these block all have zero545

demands, which can be handled by use of BBPA. Moreover, when regularization is needed, it is546

only required to be applied at the corresponding block instead of the full system of equations.547
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APPENDIX: WHY THE NUMBER OF ITERATIONS REQUIRED BY EACH587

BLOCK IS BOUNDED ABOVE BY THAT OF THE FULL SYSTEM588

The BBPA is derived to partition the WDS network into a number of blocks to improve the589
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efficiency and reliability of the WDS solution process. The number of iterations that is required by590

each block is bounded above by the number of iterations that is required by the full system. The591

permuted system of equations shown in Eq. (15) can be rewritten as592




F (m)
B −AB

−AB
T O







q(m+1)
B

h(m+1)
B


−




0 AC

AC
T 0







q(m+1)
B

h(m+1)
B


 = −




(G(m)
B − F (m)

B )q(m)
B − aB

−dB.


 . (32)593

Note that each block row of the matrix AC , that represents a root block, is entirely zero. As a594

result, the system of equations for the root block Bi is595




F (m)
bi

−Bii

−Bii
T O







q(m+1)
bi

h(m+1)
bi


 = −




(G(m)
bi

− F (m)
bi

)q(m)
bi

− abi

−d̂bi
.


 . (33)596

Also note that each block row of the matrix AC , that does not represent a root block, has exactly597

one non-zero block and each of these blocks has exactly one non-zero column. As a result, the598

system of equations for a block, Bj , that is not a root block is599




F (m)
bj

−Bkj −Bjj

−Bjj
T O O







q(m+1)
bj

h(m+1)
bk

h(m+1)
bj



= −




(G(m)
bj

− F (m)
bj

)q(m)
bj

− abj

−d̂bj


 , (34)600

where the non-zero block row entry at block row j, Bkj = P ebj
A1RT

vbk
∈ Rnpbj

×njbj , which601

represents the connection between the current block j and its parent block k, has only one non-zero602

column entry, A2bj
= P ebj

A1RT
cvbk
∈ Rnpbj

×1. This non-zero column entry is the unknown-head603

node-arc incidence matrix for block bk and cvbk
is the cut-vertex that behaves as the pseudo-source604

in block bk. We can write the term Bkjh(m+1)
bk

as [P ebj
A1RT

cvbk
][Rcvbk

h], which is A2bj
hcvbj

(see605

(Eq. (25) and Eq. (27)).606

In addition, the combination of matrices Bjj and A2bj
is the Laplacian matrix of the graph of607

block Bj . Every row of a Laplacian matrix has exactly two non-zero entries: 1 and -1. Therefore,608

Bjjvnjbj
+A2bj

vnfbj
= o. We also know that nfbj

= 1 which is equivalent to Bjjvnjbj
= −A2bj

609
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as shown in Lemma 1.610

Thus, the left-hand-side of the first block equation of Eq. (34) is:611

F (m)
bj

q(m+1)
bj

−Bkjh(m+1)
bk

−Bjjh(m+1)
bj

612

and can be rewritten as613

F (m)
bj

q(m+1)
bj

−Bjjvnjbj
h(m+1)

bk
−Bjjh(m+1)

bj
614

and finally, denoting q̂(m+1) = q(m+1)
bj

and ĥ(m+1) = h(m+1)
bj

+ vnjbj
h(m+1)

bk
, gives615




F (m)
bj

−Bjj

−Bjj
T O







q̂(m+1)

ĥ(m+1)


 = −




(G(m)
bj

− F (m)
bj

)q(m)
bj

− abj

−d̂bj


 . (35)616

The matrices on the left-hand-side of Eq. (33) and Eq. (35) are identical and invertible and the617

right-hand-side of both equations are also identical. Therefore618




q

h


 =




q̂

ĥ


619

The Newton equation shown in Eq. (32), which is the GGA solution of an orthogonal permuta-620

tion of the original system of equations, has the same flows and heads iterates as the GGA solution621

of Eq. (5). Moreover, it is shown above that the Newton equation in Eq. (33) has the same flow622

and head iterates as the Newton equation in Eq. (32). At the same time, the Newton equation in623

Eq. (35) has the same flow iterates as the Newton equation in Eq. (32) and the actual heads can be624

recovered from the interim heads a posteriori. Thus, solving each block individually produces the625

same flow iterates as solving the unpartitioned WDS network. The number of iterations for each626

block to satisfy the stopping test, ||q
(m+1)−q (m) ||∞
||q (m+1) ||∞ , is bounded above by the number of iterations627

required by the whole system.628
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SUPPLEMENTARY DATA629

Fig. 5. The number of iterations for each block of network N2 against the number of junctions (the diameter of
the bubble represents the number of blocks with the same number of junctions which required the same number of
iterations to satisfy the stopping test)

Fig. 6. The number of iterations for each block of network N3 against the number of junctions (the diameter of
the bubble represents the number of blocks with the same number of junctions which required the same number of
iterations to satisfy the stopping test)
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Fig. 7. The number of iterations for each block of network N4 against the number of junctions (the diameter of
the bubble represents the number of blocks with the same number of junctions which required the same number of
iterations to satisfy the stopping test)

Fig. 8. The number of iterations for each block of network N5 against the number of junctions (the diameter of
the bubble represents the number of blocks with the same number of junctions which required the same number of
iterations to satisfy the stopping test)
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Fig. 9. The number of iterations for each block of network N6 against the number of junctions (the diameter of
the bubble represents the number of blocks with the same number of junctions which required the same number of
iterations to satisfy the stopping test)

Fig. 10. The number of iterations for each block of network N7 against the number of junctions (the diameter of
the bubble represents the number of blocks with the same number of junctions which required the same number of
iterations to satisfy the stopping test)
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Fig. 11. The number of iterations for each block of network N8 against the number of junctions (the diameter of
the bubble represents the number of blocks with the same number of junctions which required the same number of
iterations to satisfy the stopping test)
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